
Natural for Mainframes

System Functions

Version 4.2.6 for Mainframes

October 2009

This document applies to Natural Version 4.2.6 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © Software AG 1979-2009. All rights reserved.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. Other company and product names mentioned herein may be trademarks of their respective owners.

Table of Contents

1 System Functions ... 1
2 Natural System Functions for Use in Processing Loops ... 3

Using System Functions in Processing Loops ... 4
AVER(r)(field) .. 6
COUNT(r)(field) ... 6
MAX(r)(field) ... 6
MIN(r)(field) .. 7
NAVER(r)(field) ... 7
NCOUNT(r)(field) ... 7
NMIN(r)(field) ... 8
OLD(r)(field) .. 8
SUM(r)(field) .. 8
TOTAL(r)(field) .. 9
Examples .. 9

3 Mathematical Functions .. 15
4 Miscellanous Functions ... 19
5 POS - Field Identification Function ... 21
6 RET - Return Code Function ... 23
7 SORTKEY - Sort-Key Function .. 25
Index ... 29

iii

iv

1 System Functions

This documentation describes various Natural “built-in” functions for use in certain statements.

Note: As of Natural Version 6.2 for Windows and UNIX, Version 6.3 for OpenVMS and
Version 4.2 for Mainframes, all new system functions are preceded by an asterisk (*) to
avoid naming conflicts with, for example, user-defined variables in existing applications.

This documentation is organized under the following headings:

DescribesNatural system functionswhich can be used in a program
loop context.

System Functions for Use in
Processing Loops

Describes the system functions which are supported in arithmetic
processing statements and in logical condition criteria.

Mathematical Functions

Describes various system functions for field identification, receiving
return code from a non-Natural program called via a CALL
statement, converting “incorrectly sorted” characters.

Miscellaneous Functions

See also:

■ System Functions in the Programming Guide.
■ Example of System Variables and System Functions in the Programming Guide.

1

2

2 Natural System Functions for Use in Processing Loops

■ Using System Functions in Processing Loops ... 4
■ AVER(r)(field) ... 6
■ COUNT(r)(field) .. 6
■ MAX(r)(field) .. 6
■ MIN(r)(field) ... 7
■ NAVER(r)(field) ... 7
■ NCOUNT(r)(field) .. 7
■ NMIN(r)(field) ... 8
■ OLD(r)(field) ... 8
■ SUM(r)(field) .. 8
■ TOTAL(r)(field) ... 9
■ Examples .. 9

3

This chapter describes thoseNatural system functionswhich can be used in a program loop context.

Using System Functions in Processing Loops

■ Specification/Evaluation
■ Use in SORT GIVE Statement
■ Arithmetic Overflows in AVER, NAVER, SUM or TOTAL
■ Statement Referencing (r)

Specification/Evaluation

Natural system functions may be specified in

■ assignment and arithmetic statements:
■ MOVE

■ ASSIGN

■ COMPUTE

■ ADD

■ SUBTRACT

■ MULTIPLY

■ DIVIDE

■ input/output statements:
■ DISPLAY

■ PRINT

■ WRITE

that are used within any of the following statement blocks:

■ AT BREAK

■ AT END OF DATA

■ AT END OF PAGE

that is, for all FIND, READ, HISTOGRAM, SORT or READ WORK FILE processing loops.

If a system function is used within an AT END OF PAGE statement, the corresponding DISPLAY
statement must include the GIVE SYSTEM FUNCTIONS clause.

Records rejected by a WHERE clause are not evaluated by a system function.

System Functions4

Natural System Functions for Use in Processing Loops

If system functions are evaluated from database fields which originated from different levels of
processing loops initiated with a FIND, READ, HISTOGRAM or SORT statement, the values are always
processed according to their position in the loop hierarchy. For example, values for an outer loop
will only be processed when new data values have been obtained for that loop.

If system functions are evaluated from user-defined variables, the processing is dependent on the
position in the loop hierarchy where the user-defined variable was introduced in reporting mode.
If the user-defined variable is defined before any processing loop is initiated, it will be evaluated
for system functions in the loopwhere the AT BREAK, AT END OF DATA or AT END OF PAGE statement
is defined. If a user-defined variable is introduced within a processing loop it will be processed
the same as a database field from that processing.

For selective referencing of system function evaluation for user-defined variables it is recommended
to specify a loop reference with the user-defined variable to indicate in which loop the value is to
be processed. The loop referencemay be specified as a statement label or source code line number.

Use in SORT GIVE Statement

System functions may also be referenced when they have been evaluated in a GIVE clause of a
SORT statement.

For a reference to a system function evaluatedwith a SORT GIVE statement, the name of the system
function must be prefixed with an asterisk (*).

Arithmetic Overflows in AVER, NAVER, SUM or TOTAL

Fields to which the system functions AVER, NAVER, SUM and TOTAL are to be applied must be long
enough (either by default or user-specified) to hold any overflowdigits. If any arithmetic overflow
occurs, an error message will be issued.

Normally, the length is the same as that of the field to which the system function is applied; if this
is not long enough, use the NL option of the SORT GIVE statement to increase the output length as
follows:

SUM(field)(NL=nn)

This will not only increase the output length but also causes the field to be made longer internally.

5System Functions

Natural System Functions for Use in Processing Loops

Statement Referencing (r)

Statement referencing is also available for system functions (see also Referencing of Database Fields
Using (r) Notation in the section User-Defined Variables of the Programming Guide).

By using a statement label or the source-code line number (r) you candetermine inwhich processing
loop the system function is to be evaluated for the specified field.

AVER(r)(field)

Same as field.

Exception: for a field of format N, AVER(field)will be of format P (with the same length
as the field).

Format/length:

This system function contains the average of all values encountered for the field specified with
AVER. AVER is updated when the condition under which AVERwas requested is true.

COUNT(r)(field)

P7Format/length:

COUNT is incremented by 1 on each pass through the processing loop in which it is located. COUNT
is incremented regardless of the value of the field specified with COUNT.

MAX(r)(field)

Same as field.Format/length:

This system function contains the maximum value encountered for the field specified with MAX.
MAX is updated (if appropriate) each time the processing loop in which it is contained is executed.

System Functions6

Natural System Functions for Use in Processing Loops

MIN(r)(field)

Same as field.Format/length:

This system function contains the minimum value encountered for the field specified with MIN.
MIN is updated (if appropriate) each time the processing loop in which it is located is executed.

NAVER(r)(field)

Same as field.

Exception: for a field of format N, NAVER(field)will be of format P (with the same length
as the field).

Format/length:

This system function contains the average of all values - excluding null values - encountered for
the field specified with NAVER. NAVER is updated when the condition under which NAVERwas re-
quested is true.

NCOUNT(r)(field)

P7Format/length:

NCOUNT is incremented by 1 on each pass through the processing loop in which it is located unless
the value of the field specified with NCOUNT is a null value.

Whether the result of NCOUNT is an array or a scalar value depends on its argument (field). The
number of the resulting occurrences is the same as of field.

7System Functions

Natural System Functions for Use in Processing Loops

NMIN(r)(field)

Same as field.Format/length:

This system function contains the minimum value encountered - excluding null values - for the
field specified with NMIN. NMIN is updated (if appropriate) each time the processing loop in which
it is located is executed.

OLD(r)(field)

Same as field.Format/length:

This system function contains the value which the field specified with OLD contained prior to a
control break as specified in an AT BREAK condition, or prior to the end-of-page or end-of-data
condition.

SUM(r)(field)

Same as field.

Exception: for a field of format N, SUM(field)will be of format P (with the same length
as the field).

Format/length:

This system function contains the sum of all values encountered for the field specified with SUM.
SUM is updated each time the loop in which it is located is executed. When SUM is used following
an AT BREAK condition, it is reset after each value break. Only values that occur between breaks
are added.

System Functions8

Natural System Functions for Use in Processing Loops

TOTAL(r)(field)

Same as field.

Exception: for a field of format N, TOTAL(field)will be of format P (with the same length
as the field).

Format/length:

This system function contains the sum of all values encountered for the field specified with TOTAL
in all open processing loops in which TOTAL is located.

Examples

■ Example 1 - AT BREAK Statement with Natural System Functions OLD, MIN, AVER, MAX, SUM,
COUNT
■ Example 2 - AT BREAK Statement with Natural System Function AVER
■ Example 3 - AT END OF DATA Statement with System Functions MAX, MIN, AVER
■ Example 4 - AT END OF PAGE Statement with System Function AVER

Example 1 - AT BREAKStatement with Natural System Functions OLD, MIN, AVER, MAX, SUM, COUNT

** Example 'ATBEX3': AT BREAK (with Natural system functions)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (1)
 2 CURR-CODE (1)
END-DEFINE
*
LIMIT 3
READ EMPLOY-VIEW LOGICAL BY CITY = 'SALT LAKE CITY'
 DISPLAY NOTITLE CITY NAME 'SALARY' SALARY(1) 'CURRENCY' CURR-CODE(1)
 /*

AT BREAK OF CITY
 WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X)
 31T ' MINIMUM:' MIN(SALARY(1)) CURR-CODE(1) /
 31T ' AVERAGE:' AVER(SALARY(1)) CURR-CODE(1) /
 31T ' MAXIMUM:' MAX(SALARY(1)) CURR-CODE(1) /
 31T ' SUM:' SUM(SALARY(1)) CURR-CODE(1) /
 35T COUNT(SALARY(1)) 'RECORDS FOUND' /

END-BREAK
 /*
 AT END OF DATA

9System Functions

Natural System Functions for Use in Processing Loops

 WRITE 22T 'TOTAL (ALL RECORDS):'
 T*SALARY TOTAL(SALARY(1)) CURR-CODE(1)
 END-ENDDATA
END-READ
*
END

Output of program ATBEX3:

 CITY NAME SALARY CURRENCY
-------------------- -------------------- ---------- --------

SALT LAKE CITY ANDERSON 50000 USD
SALT LAKE CITY SAMUELSON 24000 USD

S A L T L A K E C I T Y MINIMUM: 24000 USD
 AVERAGE: 37000 USD
 MAXIMUM: 50000 USD
 SUM: 74000 USD
 2 RECORDS FOUND

SAN DIEGO GEE 60000 USD

S A N D I E G O MINIMUM: 60000 USD
 AVERAGE: 60000 USD
 MAXIMUM: 60000 USD
 SUM: 60000 USD
 1 RECORDS FOUND

 TOTAL (ALL RECORDS): 134000 USD

Example 2 - AT BREAK Statement with Natural System Function AVER

** Example 'ATBEX4': AT BREAK (with Natural system functions)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (2)
*
1 #INC-SALARY (P11)
END-DEFINE
*
LIMIT 4
EMPL. READ EMPLOY-VIEW BY CITY STARTING FROM 'ALBU'
 COMPUTE #INC-SALARY = SALARY (1) + SALARY (2)
 DISPLAY NAME CITY SALARY (1:2) 'CUMULATIVE' #INC-SALARY
 SKIP 1
 /*

AT BREAK CITY

System Functions10

Natural System Functions for Use in Processing Loops

 WRITE NOTITLE
 'AVERAGE:' T*SALARY (1) AVER(SALARY(1)) /
 'AVERAGE CUMULATIVE:' T*#INC-SALARY AVER(EMPL.) (#INC-SALARY)

END-BREAK
END-READ
*
END

Output of program ATBEX4:

NAME CITY ANNUAL CUMULATIVE
 SALARY
-------------------- -------------------- ---------- ------------

HAMMOND ALBUQUERQUE 22000 42200
 20200

ROLLING ALBUQUERQUE 34000 65200
 31200

FREEMAN ALBUQUERQUE 34000 65200
 31200

LINCOLN ALBUQUERQUE 41000 78700
 37700

AVERAGE: 32750
AVERAGE CUMULATIVE: 62825

Example 3 - AT END OF DATA Statement with System Functions MAX, MIN, AVER

** Example 'AEDEX1S': AT END OF DATA
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 SALARY (1)
 2 CURR-CODE (1)
END-DEFINE
*
LIMIT 5
EMP. FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'
 IF NO RECORDS FOUND
 ENTER
 END-NOREC
 DISPLAY PERSONNEL-ID NAME FIRST-NAME
 SALARY (1) CURR-CODE (1)
 /*

AT END OF DATA

11System Functions

Natural System Functions for Use in Processing Loops

 IF *COUNTER (EMP.) = 0
 WRITE 'NO RECORDS FOUND'
 ESCAPE BOTTOM
 END-IF
 WRITE NOTITLE / 'SALARY STATISTICS:'
 / 7X 'MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
 / 7X 'MINIMUM:' MIN(SALARY(1)) CURR-CODE (1)
 / 7X 'AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)

END-ENDDATA
 /*
END-FIND
*
END

Output of program AEDEX1S:

PERSONNEL NAME FIRST-NAME ANNUAL CURRENCY
 ID SALARY CODE
--------- -------------------- -------------------- ---------- --------

11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:
 MAXIMUM: 70800 DM
 MINIMUM: 42000 DM
 AVERAGE: 55680 DM

Example 4 - AT END OF PAGE Statement with System Function AVER

** Example 'AEPEX1S': AT END OF PAGE (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 SALARY (1)
 2 CURR-CODE (1)
END-DEFINE
*
FORMAT PS=10
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000'
 DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
 NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
 /*

AT END OF PAGE

System Functions12

Natural System Functions for Use in Processing Loops

 WRITE / 28T 'AVERAGE SALARY: ...' AVER(SALARY(1)) CURR-CODE (1)
END-ENDPAGE

END-READ
*
END

Output of program AEPEX1S:

 NAME CURRENT SALARY CURRENCY
 POSITION CODE
-------------------- ------------------------- ---------- --------

CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

 AVERAGE SALARY: ... 33533 USD

13System Functions

Natural System Functions for Use in Processing Loops

14

3 Mathematical Functions

The following mathematical functions are supported in arithmetic processing statements (ADD,
COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) and in logical condition criteria:

ExplanationFormat/LengthFunction

Absolute value of field.same as fieldABS(field)

Arc tangent of field.F8ATN(field)

Cosine of field.F8COS(field)

If the value of the field is equal to or greater than 1017, COS(field)
will be "1".

Exponentiation of exponent field to base e , that is, efield, where e is
Euler's number.

F8EXP(field)

Fractional part of field.same as fieldFRAC(field)

Integer part of field.same as fieldINT(field)

Natural logarithm of field.F8LOG(field)

Sign of field (-1, 0, +1).same as fieldSGN(field)

Sine of field .F8SIN(field)

If the value of the field is equal to or greater than 1017, SIN(field)
will be "0".

Square root of field.(*)SQRT(field)

A negative value in the argument field will be treated as positive.

The maximum number of digits before the decimal point of the
argument is 22.

Tangent of field.F8TAN(field)

If the value of the field is equal to or greater than 1017, TAN(field)
will be "0".

15

ExplanationFormat/LengthFunction

Extract numeric value from an alphanumeric field. The content of
the fieldmust be the alphanumeric (code page orUnicode) character

same as target fieldVAL(field)

representation of a numeric value. Leading or trailing blanks in the
fieldwill be ignored; decimal point and leading sign character will
be processed.

If the target field is not long enough, decimal digits will be truncated
(see also Field Truncation and Field Rounding in the section Rules for
Arithmetic Assignment of the Programming Guide).

* These functions are evaluated as follows:

■ If field has format/length F4, format/length of SQRT(field)will be F4.
■ If field has format/length F8 or I, format/length of SQRT(field)will be F8.
■ If field has format N or P, format/length of SQRT(field)will be Nn.7 or Pn.7 respectively
(where n is automatically calculated to be large enough).

A field to be used with a mathematical function - except VAL - may be a constant or a scalar; its
format must be numeric (N), packed numeric (P), integer (I), or floating point (F).

A field to be used with the VAL function may be a constant, a scalar, or an array; its format must
be alphanumeric.

Mathematical Functions Example:

** Example 'MATHEX': Mathematical functions
**
DEFINE DATA LOCAL
1 #A (N2.1) INIT <10>
1 #B (N2.1) INIT <-6.3>
1 #C (N2.1) INIT <0>
1 #LOGA (N2.6)
1 #SQRTA (N2.6)
1 #TANA (N2.6)
1 #ABS (N2.1)
1 #FRAC (N2.1)
1 #INT (N2.1)
1 #SGN (N1)
END-DEFINE
*
COMPUTE #LOGA = LOG(#A)
WRITE NOTITLE '=' #A 5X 'LOG' 40T #LOGA
*
COMPUTE #SQRTA = SQRT(#A)
WRITE '=' #A 5X 'SQUARE ROOT' 40T #SQRTA
*
COMPUTE #TANA = TAN(#A)
WRITE '=' #A 5X 'TANGENT' 40T #TANA

System Functions16

Mathematical Functions

*
COMPUTE #ABS = ABS(#B)
WRITE // '=' #B 5X 'ABSOLUTE' 40T #ABS
*
COMPUTE #FRAC = FRAC(#B)
WRITE '=' #B 5X 'FRACTIONAL' 40T #FRAC
*
COMPUTE #INT = INT(#B)
WRITE '=' #B 5X 'INTEGER' 40T #INT
*
COMPUTE #SGN = SGN(#A)
WRITE // '=' #A 5X 'SIGN' 40T #SGN
*
COMPUTE #SGN = SGN(#B)
WRITE '=' #B 5X 'SIGN' 40T #SGN
*
COMPUTE #SGN = SGN(#C)
WRITE '=' #C 5X 'SIGN' 40T #SGN
*
END

Output of program MATHEX:

#A: 10.0 LOG 2.302585
#A: 10.0 SQUARE ROOT 3.162277
#A: 10.0 TANGENT 0.648360

#B: -6.3 ABSOLUTE 6.3
#B: -6.3 FRACTIONAL -0.3
#B: -6.3 INTEGER -6.0

#A: 10.0 SIGN 1
#B: -6.3 SIGN -1
#C: 0.0 SIGN 0

17System Functions

Mathematical Functions

18

4 Miscellanous Functions

The following topics are covered:

POS - Field Identification Function

RET - Return Code Function

SORTKEY - Sort-Key Function

19

20

5 POS - Field Identification Function

I4Format/length:

The system function POS(field-name) contains the internal identification of the fieldwhose name
is specified with the system function.

POS(field-name)may be used to identify a specific field, regardless of its position in a map. This
means that the sequence and number of fields in a map may be changed, but POS(field-name)
will still uniquely identify the same field. With this, for example, you need only a single REINPUT
statement to make the field to be MARKed dependent on the program logic.

Example:

DECIDE ON FIRST VALUE OF ...
 VALUE ...
 COMPUTE #FIELDX = POS(FIELD1)
 VALUE ...
 COMPUTE #FIELDX = POS(FIELD2)
 ...
END-DECIDE
...
REINPUT ... MARK #FIELDX

If the field specified with POS is an array, a specific occurrence must be specified; for example,
POS(FIELDX(5)). POS cannot be applied to an array range.

POS and *CURS-FIELD

The system function POS(field-name)maybe used in conjunctionwith theNatural systemvariable
*CURS-FIELD to make the execution of certain functions dependent on which field the cursor is
currently positioned in.

*CURS-FIELD contains the internal identification of the field in which the cursor is currently posi-
tioned; it cannot be used by itself, but only in conjunction with POS(field-name). You may use

21

them to check if the cursor is currently positioned in a specific field and have processing performed
depending on that condition.

Example:

IF *CURS-FIELD = POS(FIELDX)
 MOVE *CURS-FIELD TO #FIELDY
END-IF
...
REINPUT ... MARK #FIELDY

Notes:

1. The values of *CURS-FIELD and POS(field-name) serve only as internal identifications of the
fields and cannot be used for arithmetic operations.

2. The value returned by POS(field-name) for an occurrence of an X-array (an array for which at
least one bound in at least one dimension is specified as expansible) may change after the
number of occurrences for a dimension of the array has been changed using the EXPAND, RESIZE
or REDUCE statements.

3. Natural RPC: If *CURS-FIELD and POS(field-name) refer to a context variable, the resulting
information can only be used within the same conversation.

4. In Natural for Ajax applications, *CURS-FIELD identifies the operand that represents the value
of the control that has the input focus. You may use *CURS-FIELD in conjunction with the POS
function to check for the control that has the input focus and perform processing depending
on that condition.

See also

■ Dialog Design, Field Sensitive Processing and Simplifying Programming in the Programming Guide.
■ POS22 - Version 2.2 Algorithm for POS System Function in the Parameter Reference.

System Functions22

POS - Field Identification Function

6 RET - Return Code Function

I4Format/length:

The system function RET(program-name)may be used to receive the return code from a non-Nat-
ural program called via a CALL statement.

RET(program-name) can be used in an IF statement and within the arithmetic statements ADD,
COMPUTE, DIVIDE, MULTIPLY and SUBTRACT.

Example:

DEFINE DATA LOCAL
1 #RETURN (I4)
...
END-DEFINE
...
...
CALL 'PROG1'
IF RET('PROG1') > #RETURN
 WRITE 'ERROR OCCURRED IN PROGRAM 1'
END-IF
...

23

24

7 SORTKEY - Sort-Key Function

SORTKEY (character-string)

This system function is used to convert “incorrectly sorted” characters (or combinations of charac-
ters) into other characters (or combinations of characters) that are “correctly sorted” alphabetically
by the sort program or database system.

A253Format/length:

Several national languages contain characters (or combinations of characters)which are not sorted
in the correct alphabetical order by a sort program or database system, because the sequence of
the characters in the character set used by the computer does not always correspond to the alpha-
betical order of the characters.

For example, the Spanish letter "CH" would be treated by a sort program or database system as
two separate letters and sorted between "CG" and "CI" - although in the Spanish alphabet it is in
fact a letter in its own right and belongs between "C" and "D".

Or it may be that, contrary to your requirements, lower-case and upper-case letters are not treated
equally in a sort sequence, that letters are sorted after numbers (although you may wish them to
be sorted before numbers), or that special characters (for example, hyphens in double names) lead
to an undesired sort sequence.

In such cases, you can use the system function SORTKEY(character-string). The values computed
by SORTKEY are only used as sort criterion, while the original values are used for the interaction
with the end-user.

You can use the SORTKEY function as an arithmetic operand in a COMPUTE statement and in a logical
condition.

As character-string you can specify an alphanumeric constant or variable, or a single occurrence
of an alphanumeric array.

25

Whenyou specify the SORTKEY function in aNatural program, the user exit NATUSKnnwill be invoked
- nn being the current language code (that is, the current value of the system variable *LANGUAGE).

You canwrite this user exit in any programming language that provides a standard CALL interface.
The character-string specified with SORTKEYwill be passed to the user exit. The user exit has to
be programmed so that it converts any “incorrectly sorted” characters in this string into corres-
ponding “correctly sorted” characters. The converted character string is then used in the Natural
program for further processing.

The general calling conventions for external programs are explained in the description of the CALL
statement.

See User Exit for Computation of Sort Keys for more details on the calling conventions for SORTKEY
user exits.

Example:

DEFINE DATA LOCAL
1 CUST VIEW OF CUSTOMERFILE
 2 NAME
 2 SORTNAME
END-DEFINE
...
*LANGUAGE := 4
...
REPEAT
 INPUT NAME

SORTNAME := SORTKEY(NAME)
 STORE CUST
 END TRANSACTION
 ...
END-REPEAT
...
READ CUST BY SORTNAME
 DISPLAY NAME
END-READ
...

Assume that in the above example, at repeated executions of the INPUT statement, the following
values are entered: "Sanchez", "Sandino" and "Sancinto".

At the assignment of SORTKEY(NAME) to SORTNAME, the user exit NATUSK04 would be invoked.
This user exit would have to be programmed so that it first converts all lower-case letters to upper-
case, and then converts the character combination "CH" to "Cx" - where xwould correspond to
the last character in the character set used, i.e. hexadecimally H'FF' (assuming that this last char-
acter is a non-printable character).

System Functions26

SORTKEY - Sort-Key Function

The “original” names (NAME) as well as the converted names to be used for the desired sorting
(SORTNAME) are stored. To read the file, SORTNAME is used. The DISPLAY statementwould then output
the names in the correct Spanish alphabetical order:

Sancinto
Sanchez
Sandino

27System Functions

SORTKEY - Sort-Key Function

28

Index

A
ABS

system function, 15
ATN

system function, 15

C
COS

system function, 15

E
EXP

system function, 15

F
FRAC

system function, 15

I
INT

system function, 15

L
LOG

system function, 15

S
SGN

system function, 15
SIN

system function, 15
SQRT

system function, 15
system functions, 1

T
TAN

system function, 15

V
VAL

system function, 16

29

30

	System Functions
	Table of Contents
	1 System Functions
	2 Natural System Functions for Use in Processing Loops
	Using System Functions in Processing Loops
	Specification/Evaluation
	Use in SORT GIVE Statement
	Arithmetic Overflows in AVER, NAVER, SUM or TOTAL
	Statement Referencing (r)

	AVER(r)(field)
	COUNT(r)(field)
	MAX(r)(field)
	MIN(r)(field)
	NAVER(r)(field)
	NCOUNT(r)(field)
	NMIN(r)(field)
	OLD(r)(field)
	SUM(r)(field)
	TOTAL(r)(field)
	Examples
	Example 1 - AT BREAK Statement with Natural System Functions OLD, MIN, AVER, MAX, SUM, COUNT
	Example 2 - AT BREAK Statement with Natural System Function AVER
	Example 3 - AT END OF DATA Statement with System Functions MAX, MIN, AVER
	Example 4 - AT END OF PAGE Statement with System Function AVER

	3 Mathematical Functions
	4 Miscellanous Functions
	5 POS - Field Identification Function
	6 RET - Return Code Function
	7 SORTKEY - Sort-Key Function
	Index

