Generating Single Stubs with Parameter Specification Generating Single Stubs with Parameter Specification

Generating Single Stubs with Parameter
Specification

The Stub Generationfunction provides the option to generate single stub subprograms (interface objects)
online by using a stub generation screen where you either type in the parameter definitions required or
read them in from an existing subprogram or a parameter data area (PDA).

Generating a stub subprogram from a PDA saves you the effort of creating a subprogram and defining an
inline parameter data area before generating the stub subprogram.

This section covers the following topics:
® Using the Stub Generation Function
® Specifying Parameters

e Examples of Stub Generation

Using the Stub Generation Function

The stub subprograms (interface objects) are generated into the current Natural library in the current
system file. Therefore, we strongly recommend that you log on to the application library (or one of its
steplibs) used by the client at execution time of the re@Ate_NAT

Important:

The stub generation function overwrites any data contained in the source work area. When you invoke the
stub generation function, a corresponding message will warn you not to delete any existing data
unintentionally: choose PF12 to cancel the function or choose ENTER to confirm the action and overwrite
the contents of the source work area.

¥ To generate a single stub subprogram
1. Before you invoke the SYSRPC utility, consider the following:
® | og on to the library into which you want to generate the stub subprogram.

e If you generate a stub subprogram from a PDA: Rename or copy the PDA from which you want
to generate the stub subprogram if there are objects on the client side that still reference this
PDA. The new name of the PDA must be identical to the name of the r€AbteNAT
program.

2. In theCodefield of theClient Maintenance menu, enter the following command:

SG

Generating Single Stubs with Parameter Specification Using the Stub Generation Function

3. Choose ENTER.
The Generate Client Stub Routinewindow appears.

4. In theProgram Namefield, enter the name of the stub subprogram to be generated.
The name of the stub subprogram must be identical to the name of the G&hbateATprogram.
Thelibrary field is preset to the name of the current library and cannot be changed.

In theCompressionfield, enter compression tyf@e 1 or 2 (default isl); seeUsing Compression
described irDperating a Natural RPC EnvironmeinttheNatural Remote Procedure Call (RPC)

documentation.
5. Choose ENTER.

e |If the name entered in tiRkrogram Namefield corresponds to the name of an object that
already exists in the assigned library, a window appears with an appropriate message:

Enter arN (No) and choose ENTER if you want to cancel the operation. You will return to the
Client Maintenance menu.

Or:
Enter aY (Yes) and choose ENTER if you want to continue with the stub generation.

If the specified name is identical to a cataloged object of the type subprogram or PDA, the
parameter definitions of the respective subprogram or PDA are displayed&mtthe
Generation screen.

If the specified name is identical to a stub subprogram for which also a source object exists, all
field attributes (see als®pecifying Parameter$érom a previous stub generation are retained.
Otherwise, all field attributes are setMidmodifiable).

e |If the name entered in tiRkrogram Namefield, doesnot correspond to the name of an object
that already exists in the assigned library, an er8atyp Generationscreen is displayed.

6. On theStub Generationscreen, add or modify the parameters to be used in the stub subprogram as
described irSpecifying Parameters

The commands provided on tBé&ub Generationscreen correspond to the commands described in
Commands and PF Keys the sectiorService Directory Maintenance

Exceptions:

Using the Stub Generation Function Generating Single Stubs with Parameter Specification

Attribute Values

EXPIRATION | Not applicable to stub generation.
COMPAT |IDL | NONE | void

IDL Stub generation according to IDL requirements.
NONE Stub generation according to Natural requirements.
void Show COMPAT setting.

Note:

See alsoSpecial Considerations for Reliable RREDdSpecial
Considerations for Calling EntireX RPC Servers

LIMIT 32000 | 1GB | void

32000 Sets the upper size limit to 32000 bytes.
1GB Sets the upper size limit to 1 GB.

void removes a size limit set witHMIT 32000 or LIMIT
1GB

7. Choose ENTER to generate the stub subprogram and to exit. The stub subprogram is generated into
the assigned library.

TheSYSRPC - Information window appears which indicates the size the stub subprogram requires
for sending data from the client to the server or vice versa. The size includes internal RPC
information used for the stub subprogram. The indication of the size helps you configure the
middleware layer used; for example, the Broker attribute file when EntireX Broker is used.

The following message appears in 8¢SRPC - Information window when you generate a stub
subprogram from the example subprogram TESTS5Hzample lbelow):

Stub TESTSS is generated in library SAGTEST (99,49).
It requires:
Send length: 2249 bytes
Receive length: 2221 bytes

If dynamic parameters, X-arrays or X-group arrays are used, this message only indicates the
minimum length requirements. The actual length requirements can only be determined during
program execution and may be different from call to call. IRbed length or theReceive

length exceeds the Entire Net-Work limit of 32000 bytes, a window appears with a corresponding
warning:

Enter aY (Yes) to continue, or aN (No) to cancel the generation. If you entéf, dhis setting is kept
for the entire SYSRPC session, that is, you can continue generating stub subprograms without
receiving further warnings.

If the total data (without internal RPC information) sent or received exceeds the limit of 1073739357

bytes (which is 1 GB minus 2467 bytes of internal RPC information), SYSRPC stops processing and
issues a corresponding error message. This error message displays the subtotal of the data in bytes
that could be transferred at the field up to which the subtotal was calculated. The corresponding field
is then marked. In this case, reduce the amount of data and then continue generating the stub

Generating Single Stubs with Parameter Specification Specifying Parameters

subprogram.

If the stub subprogram was generated in the Natural system library SYSRPC, you must move the
stub subprogram to the application library or steplib using the Natural transfer utility SYSMAIN or the
Object Handler. Note that you may have to recatalog the source of the stub subprogram in the target
environment.

Specifying Parameters

In the input fields provided on tt&tub Generationscreen, you can enter the parameter definitions that
are used in the stub subprogram (interface object). You can specify a maximum of 5000 parameters.
Unless indicated in the table below, input in the fields is mandatory.

Field

Description

Level

The level of the field.

A level can be a number in the range froin(highest level) t®9 (lowest level). The
leadingO is optional.

See alsd®efining GroupsandExample Zor an example of a group definition.

Attr

The attribute of the parameter:
M(modifiable - INOUT),0O (output - OUT) ol (input - IN).

Parameters assigned a level numbe2 of greater are considered to be a part of a
group. Parameters within a group must have the same attribute as the immediatg
preceding group that is assigned one level higher. For nested groups, this is the
of the group with the highest level. For an example of a group definitioExseeple
2.

If a stub subprogram has been generated from a subprogram or from a PDA, the
attribute isMby default and may need modification.

If a stub subprogram has been generated from another stub subprogram, the att
values specified for the original stub subprogram are retained.

The generated stub subprogram contains a comment that indicates the attribute
specified for the parametdN , OUTor INOUT.

ply
Aattribute

ibute

Type

A Natural data format such as(numeric) ands (group), oK (Kanji). Natural data
formatsC (attribute control) and Handle are not allowed.

For a description of Natural data formats, Beemat and Length of User-Defined
VariablesandSpecial Formatsn the sectiordser-Defined Variableg the

Programming Guide

Defining Groups Generating Single Stubs with Parameter Specification

Field Description

Length The length of the parameter DY NAMIC

This field does not apply to the following Natural data formatgate),G (group),L
(logical) andT (time).

The Natural data form# is restricted to 1073739357 bytes, Natural data foBnat
restricted to 536869678 bytes.

DYNAMICindicates a dynamic parameter and applies to the Natural data féraradg
B.

Prec Only applies to Natural data formatgnumeric) andP (packed). Optional.

The precision of the parameter, that is, the number of digits after the decimal poipt.

Dimension %2/3 Only applies to arrays. Optional.
The first, second and third dimension of the parameter.
An X-array or an X-group array is specified by entering an asterisk (*) for a dimenpsion.

See als®efining X-Arrays and X-Group Arrays

The section below contains information on:

® Defining Groups

® Defining X-Arrays and X-Group Arrays

® Special Considerations for Reliable RPC

® Special Considerations for Calling EntireX RPC Servers
Defining Groups

You only need to define a group structure for a client Natural object that calls a non-Natural object located
on an EntireX RPC server. The group structure must correspond to the IDL definition in EntireX (see
Special Considerations for Calling EntireX RPC Seruefsgroup structure is not required for a client

Natural object that calls a subprogram located on a Natural RPC server.

Group arrays and X-group arrays passed from a client Natural object to a stub subprogram must be
contiguous. Therefore, we strongly recommend that you always pass a complete array to the stub
subprogram by using asterisk (*) notation for all dimensions. We also strongly recommend that you use
identical data definitions in the client Natural program, the stub subprogram and the server program.

See alsd&xample Zor an example of a group definition.

Defining X-Arrays and X-Group Arrays

If any dimension of a parameter is extensible, all other dimensions of the parameter are also extensible. If
you define extensible and fixed dimensions for a parameter in a subprogram, the stub generation function
issues a warning and automatically changes the fixed dimension to an extensible dimension as

Generating Single Stubs with Parameter Specification Examples of Stub Generation

demonstrated iExample 3In a group structure, you can define either an extensible or a fixed dimension
for each level. There is ho automatic change of a fixed dimension to an extensible dimension between
levels.

Natural RPC only supports extensible upper bounds. All X-arrays and X-group arrays in the generated
DEFINE DATA PARAMETERarea of the stub subprogram are therefore defin€ttgs .

A Warning:
If you generate a stub subprogram from a subprogram or a PDA that
contains an X-array or X-group array with an extensible lower
bound, the extensible lower bound will be converted to an extensible
upper bound.

For an example of a group with an extensible dimensiorEsaaple 3

Special Considerations for Reliable RPC

If you want to use reliable RPC and your parameter definitions do not contain group structures, you must
setCOMPAT IDL before generating the stub subprogram.

Special Considerations for Calling EntireX RPC Servers

The attribute definitions on tH&tub Generationscreen depend on the perspective of the client.
Conversely, the parameter direction in the IDL definition depends on the perspective of the server. This
means:

® OUTon theStub Generationscreen corresponds e in the IDL definition.
® [N on theStub Generationscreen corresponds @JTin the IDL definition.

If you want to call an EntireX RPC server and the parameter definitions @tulh&enerationscreen
contain group structures, group structure and attribute definitions @tuthesenerationscreen must
correspond to the group structure and parameter direction in the IDL definition.

If you want to call an EntireX RPC server and the corresponding IDL file does not contain group
structures, it is recommended to E@MPAT IDL before generating the stub subprogram. In this case,
the attribute definitions on tH&tub Generationscreen must correspond to the parameter direction in the
IDL definition.

Examples of Stub Generation

This section provides examples of Natural subprograms and the stub subprograms (interface objects)
generated from them.

The parameter definitions indicated below are extracted from example subprograms, which are supplied in
the Natural system library SYSRPC.

Example 1 Generating Single Stubs with Parameter Specification

Example 1

The followingDEFINE DATA PARAMETERarea (example subprogram TESTS5) shows four
modifiable parameters and the corresponding parameter definitions Stuth&enerationscreen:

DEFINE DATA
PARAMETER
01 #IDENTIFIER (A10)
01 #N-OF-ID (14)
01#FREQ (P5.2)
01 #A100 (A100/5,4)

Stub Generation

Level| Attr | Type| Length| Prec Dimension 1 Dimension 2 Dimension 3

1101 M |A |10
201 (M I 4

300 |[M [P |5 2

401 |M 100 5 4
Example 2

The followingDEFINE DATA PARAMETERarea (example subprogram TESTS6) shows a nested group
structure and the corresponding parameter definitions dattliieGenerationscreen:

DEFINE DATA
PARAMETER
01 GROUP-1(10)
02 A (A20)
02 B (A20)
02 GROUP-2(20)
03 C (A10/5)
03 D (A10)
01 LINE (A) DYNAMIC

Stub Generation
Level| Attr | Type| Length Prec/ Dimension 1 Dimension 2 Dimension 3

1|01 M |G 10

2|02 M A 20

3|02 M A 20

4102 M |G 20

5/03 M A 10 5

6/03 M A 10

7|01 M A DYNAMIC

Generating Single Stubs with Parameter Specification Example 3

Example 3

The followingDEFINE DATA PARAMETERarea (example subprogram TESTS7) shows a nested group
structure with extensible dimensions and the corresponding parameter definitionStarbteneration
screen.

DEFINE DATA
PARAMETER
01 GROUP-1(10)
02 A (A20)
02 B (A20)
02 GROUP-2(0:*)
03 C (A10/5)
03 D (A10)
01 LINE (A) DYNAMIC

Stub Generation

Level| Attr | Type| Length Prec Dimension 1 Dimension 2 Dimension 3
1101 |M |G 10
202 M |A 20
3|02 |M |A 20
4102 M |G *
503 M |A 10 5
6/03 M |A 10
7|01 M A DYNAMIC

	Generating Single Stubs with Parameter Specification
	Using the Stub Generation Function
	Specifying Parameters
	Defining Groups
	Defining X-Arrays and X-Group Arrays
	Special Considerations for Reliable RPC
	Special Considerations for Calling EntireX RPC Servers

	Examples of Stub Generation
	Example 1
	Example 2
	Example 3

