
Natural under UTM - Part 3
This part of the Natural UTM Interface documentation covers the following topics:

Notation vrs or vr: If used in the following document, the notation vrs or vr stands for the relevant version,
release, system maintenance level numbers.

User Exits
Several user exits are provided in the Natural UTM Interface. These are described below.

To use any of these exits, the corresponding user program must be linked with the front-end part of the
Natural UTM application. The user exit RP2PRNT is an exception.

User exit routines are called with the customary register conventions.

ACCEXIT | ACCINIT | INPTEX | RP2PRNT | RMSPOOL | SHUTALL | SHUTLST | STRTALL |
STRTFST | TRMIOEX | UINPEX | UOUTEX | UVGEXIT | WHCEXT

ACCEXIT - Macro NATUTM

The user exit ACCEXIT can be used to retrieve accounting information. Depending on the value of the
parameter ACCNT in macro NURENT, this user exit is activated either at the end of each dialogue step or at
each change of application (new Natural logon ID); see also Accounting for Natural UTM Applications.

ACCINIT - Macro NATUTM

The user exit ACCINIT can be used to gather accounting information. It is activated at the beginning of
each dialogue step; see also Accounting for Natural UTM Applications.

INPTEX - Program FREXIT

The user exit INPTEX is activated whenever an input message is read. See also the description of the
program INPTEX in the section Utility Programs for Use with Natural under UTM.

RP2PRNT - Macro NURENT

The user exit RP2PRNT is intended as an interface to other manufacturers’ spooling systems. The user
exit routine (spooling program) must be reentrant and linked with the reentrant part of the Natural UTM
application. See also Other Spooling Systems and the description of the parameter SPOOL in the section
Parameters of Macro NATUTM.

RMSPOOL - Macros NATUTM and NURENT

If you wish to write your own spooling interface program, call it RMSPOOL. The program RMSPOOL can
be linked to the (non-reentrant) front-end part or to the reentrant part of the Natural UTM application. If it
is to be linked to the reentrant part, the program itself must be written so as to be reentrant.

1

Natural under UTM - Part 3Natural under UTM - Part 3

Important:
If program RMSPOOL is to be used, the SPOOL parameter in the macros NATUTM and NURENT must be
set to SPOOL=RMSPOOL.

The Natural UTM Interface passes the following parameters to program RMSPOOL:

Address
(Format/Length)

Contents

1st Address (A2) Function code. Possible function codes are:

OP The print file has to be opened, and the first print record is passed.

PR Any subsequent print record is passed.

CL The print file has to be closed.

2nd Address Print record (data to be printed).

The first byte of the print record contains the line/form feed character. (If
function code CL, this is a dummy address.)

3rd Address (B2) Length of print record (including feed character).

(If function code CL, this is a dummy address.)

4th Address (A8) Printer name.

5th Address Print buffer.

This buffer can be used as work area by RMSPOOL (also if RMSPOOL is
reentrant) for any purpose. The buffer is available for exclusive use by
RMSPOOL between dialogue input and dialogue output.

6th Address (B2) Length of print buffer.

7th Address (A8) Current user ID (as in the system variable *USER).

8th Address (A8) Current terminal ID (as in the system variable *INIT-ID).

9th Address (A8) Current Natural library name (as in the system variable *LIBRARY-ID).

10th Address (A8) Current Natural program name (as in the system variable *PROGRAM).

11th Address
(A4/B4)

Return code.

When RMSPOOL is invoked, the Natural UTM Interface sets this field to binary
0. Upon return of control from RMSPOOL, any value other than binary 0 is
interpreted as error code and (if displayable) is displayed to the user on the
terminal screen and also output to SYSLST.

SHUTALL - Macro NATUTM

The user exit specified with the SHUTALL parameter in macro NATUTM is activated whenever a UTM
task is terminated (KDCSHUTn). By default, this user exit is SHUTEX1.

2

SHUTALL - Macro NATUTMNatural under UTM - Part 3

If the user exit specified with SHUTALL is to be used, the parameter USAGE=SHUT in KDCDEF for the
Natural UTM Interface must have been set when generating KDCROOT.

SHUTLST - Macro NATUTM

The user exit specified with the SHUTLST parameter in macro NATUTM is activated when the last UTM
task is terminated (KDCSHUTn). By default, this user exit is SHUTEX2.

If the user exit specified with SHUTLST is to be used, the parameter USAGE=SHUT in KDCDEF for the
Natural UTM Interface must have been set when generating KDCROOT.

STRTALL - Macro NATUTM

The user exit specified with the STRTALL parameter in macro NATUTM is activated whenever a UTM
task is started. By default, this user exit is STARTEX.

STRTFST - Macro NATUTM

The user exit specified with the STRTFST parameter in macro NATUTM is activated when the first UTM
task is started. By default, this user exit is STAPPLX.

TRMIOEX - Program FREXIT

The user exit TRMIOEX is activated with each formatted input or output message.

UINPEX - Macro NURENT

The user exit specified with the UINPEX parameter in macro NURENT is activated after a terminal
message has been sent. By default, this user exit is INPSCR.

Natural under UTM passes the following parameters to the user exit:

Address (Format/Length) Contents

1st Address Address input buffer.

2nd Address (B2) Address message length.

UOUTEX - Macro NURENT

The user exit specified with the UOUTEX parameter in macro NURENT is activated before a terminal
message is to be sent. By default, this user exit is OUTSCR.

Natural under UTM passes the following parameters to the user exit:

Address (Format/Length) Contents

1st Address Address output buffer.

2nd Address (B2) Address message length.

3

Natural under UTM - Part 3SHUTLST - Macro NATUTM

UVGEXIT - Macro NATUTM

The user exit UVGEXIT is activated at the start, restart and end (normal or abnormal) of a UTM DC
transaction. The current task ID (Vorgangskennzeichen, KCKNZVG) is passed to the user exit routine.

WHCEXT - Macro NURENT

The user exit WHCEXT can be used to modify an output which is to be printed before it is passed by FPUT
to UTM. When WHCEXT is called, Register 9 contains the address of the output to be printed and Register
13 the address of the save area.

WHCEXT must be reentrant and it must be linked to the reentrant part of the Natural UTM application. For
further information, please refer to the source listing of the assembled macro NURENT (Label ’NUWHC’).

Asynchronous Transaction Processing under UTM
To start an asynchronous transaction, the service routine NATASYN in the Natural UTM Interface has to
be called.

The start of an asynchronous transaction in a Natural program is done by passing dynamic parameters
according to the following pattern:

...
COMPRESS dynamic parameters INTO field
CALL ’NATASYN’[parameter area
SET CONTROL ’H’
WRITE NOTITLE NOHDR field
[WRITE ...]
INPUT ’text’ ifield (A1)
END

If the length of the dynamic parameters exceeds 250 bytes (that is, if more than one WRITE statement is
required), a parameter area has to be passed with the CALL ’NATASYN’ statement.

The parameter area is also required if the asynchronous transaction is to be started with UTM DPUT; that
is, at a specific time. The aggregate length of the dynamic parameters must not exceed 3750 bytes. The
parameter area for the CALL ’NATASYN’ has the following structure:

4

Asynchronous Transaction Processing under UTMNatural under UTM - Part 3

Bytes Contents

01-02 Number of WRITE statements.

03 DPUT time indicator:

R a relative time,

A an absolute time

blank FPUT

04-06 Day of the year.

07-08 Hours.

09-10 Minutes.

11-12 Seconds.

For the contents of Bytes 03 - 12, the same rules apply as described for DPUT calls in the respective
Siemens UTM documentation. Natural programming examples can be found in the Natural library
SYSEXTP (programs STARTAS1, ASYNMULT, STARTAS, READAUTO, AWINDOW1, AWINDOW2).

For asynchronous transaction processing, KDCROOT, KDCDEF and the UTM startup job must be modified
as necessary (see the Siemens UTM documentation).

All UTM TACs for asynchronous transactions must begin with the character sequence which is defined as
a unique identifier for asynchronous TACs in parameter ASYNTAC of macro NATUTM. Conversely, the
first five characters of UTM TACs for synchronous transactions must not be this character string.

Mixed transaction processing (that is, both within a single UTM application and between two UTM
applications) is not possible.

Asynchronous Processing within a Natural UTM Application

If transactions are to be processed asynchronously within a Natural UTM application, the operands of the
parameters SYAPPLI and ASAPPLI of macro NATUTM must be set to NO (this is the default value).

Example:

This is an example of a Natural program that initializes an asynchronous transaction within a Natural
UTM application.

* STARTAS - EXAMPLE OF THE INITIALIZATION FOR ASYNCHRONOUS
* TRANSACTION WORKING WITHIN ONE UTM APPLICATION
* PARMS ARE SEPARATED BY ’,’
* SUBLIST IN STACK IS SEPARATED BY ’;’
FORMAT LS=145
RESET PARM1(A144) PRDEST(A8) LTDEST(A8)
MOVE ’PRINTER1’ TO PRDEST /* --> Note 1
MOVE *INIT-ID TO LTDEST /* --> Note 2
COMPRESS ’SENDER=’ PRDEST ’,OUTDEST=’ LTDEST ’,’
’MENU=F,STACK=(LOGON APPL1;READAUTO)’
INTO PARM1 LEAVING NO /* --> Note 3
CALL ’NATASYN’ /* --> Note 4

5

Natural under UTM - Part 3Asynchronous Processing within a Natural UTM Application

SET CONTROL ’H’ /* --> Note 5
WRITE NOTITLE NOHDR PARM1 /* --> Note 6
INPUT ’ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1) /* --> Note 7
END

Note

1 The name (dummy) of a printer is moved into field PRDEST.

2 The logical name of the UTM terminal is moved into field LTDEST.

3 The message that is to be sent and processed by Natural is assembled, with the following
information:

the printer name (in this example, an arbitrary 8-character name),

the logical name (KCLOGTER) of the terminal to which the message is to be sent,

suppression of the main menu (this must be specified),

the application name (Natural logon ID),

the name of the program to be started and to be run in an asynchronous UTM transaction
(READAUTO in the example).

4 When the subroutine NATASYN (in macro NATUTM) is called, a marker is set to indicate that an
asynchronous transaction is to be initialized. The subroutine NATASYN conforms to the
conventions for calling non-Natural programs.

5 The Natural offline report is activated.

6 The message (PARM1) is output by FPUT as an asynchronous transaction.

7 The Natural offline report is "switched off" by means of an INPUT statement that must have at
least one input field.

An example of the program that is to be executed asynchronously:

* READAUTO - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING
READ (75) AUTOMOBILES BY MAKE
WRITE MAKE MODEL HORSEPOWER YEAR
LOOP
ON ERROR DO /* --> Note 1
 ERRNO(A4) = *ERROR
 WRITE ’**’
 /’ERROR NO.: ’ ERRNO ’ IN ASYNCHRONOUS PROGRAM ’ *PROGRAM
 /’**’
 TERMINATE
 DOEND
TERMINATE /* --> Note 2
END

6

Asynchronous Processing within a Natural UTM ApplicationNatural under UTM - Part 3

Note

1 An ON ERROR routine must be defined in each program that is to be executed asynchronously.
The routine must end with a TERMINATE statement.

2 Each program that is to be executed asynchronously must end with a TERMINATE statement.

Logic of an Asynchronous Transaction within one Natural UTM Application:

Asynchronous Processing between two Natural UTM Applications

When processing transactions asynchronously between two Natural UTM applications, the logical UTM
terminal name (LTERM name) of the synchronous application must be defined with the parameter
SYAPPLI of macro NATUTM, and the logical UTM terminal name (LTERM name) of the asynchronous
application must be defined with the parameter ASAPPLI of macro NATUTM.

7

Natural under UTM - Part 3Asynchronous Processing between two Natural UTM Applications

Warning:
KDCROOT and KDCDEF must be generated as appropriate for both
applications.

Example:

NUSTART NATUTM SYAPPLI=LNATUTM,ASAPPLI=LNATASY,...
ASYNDRV NATUTM SYAPPLI=LNATUTM,ASAPPLI=LNATASY,...

Example of Synchronous Application:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATS
ROOT.KDCNATS
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=520
MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX TASKS=10,ASYNTASKS=5
.
.
EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT
.
.
DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART
PROGRAM FREXIT
PROGRAM NUERROR
.
.
DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,ADMIN=NO,TIME=0
TAC NAT1,ADMIN=NO,TIME=0
.
.
DEFAULT TAC TYPE=A,PROGRAM=NUSTART,EXIT=NUERROR,CALL=FIRST,...
TAC NATSY
TAC NATAS
.
.
PTERM NATASY,PRONAM=HOST,PTYPE=APPLI,TERMN=A1,LTERM=LNATASI
DEFAULT PTERM PRONAM=PCDF,PTYPE=T9750,TERMN=FE,CONNECT=N,STATUS=ON
PTERM DFDSS001,LTERM=DF97501
PTERM DFDSS002,LTERM=DF97502
.
.
LTERM LNATASY
DEFAULT LTERM USAGE=D,STATUS=ON,ANNOAMSG=Y,RESTART=YES
LTERM DF97501
LTERM DF97502
.
.
SFUNC F1,RET=21Z
.
.
END

8

Asynchronous Processing between two Natural UTM ApplicationsNatural under UTM - Part 3

Example of Asynchronous Application:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATA
ROOT.KDCNATA
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=520
MAX APPLINAME=NATASY,APPLIMODE=S,KDCFILE=(NATASY,S)
MAX TASKS=10,ASYNTASKS=5
.
.
EXIT PROGRAM=ASYNDRV,USAGE=START
EXIT PROGRAM=ASYNDRV,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT
.
.
DEFAULT PROGRAM COMP=ASSEMB
PROGRAM ASYNDRV
PROGRAM FREXIT
PROGRAM NUERROR
.
.
DEFAULT TAC TYPE=D,PROGRAM=ASYNDRV,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,ADMIN=NO,TIME=0
TAC NAT1,ADMIN=NO,TIME=0
.
.
DEFAULT TAC TYPE=A,PROGRAM=ASYNDRV,EXIT=NUERROR,CALL=FIRST,...
TAC NATSY
TAC NATAS
.
.
PTERM NATUTM,PRONAM=HOST,PTYPE=APPLI,TERMN=A1,LTERM=LNATUTM
DEFAULT PTERM PRONAM=PCDF,PTYPE=T9750,TRMN=FE,CONNECT=N,STATUS=ON
PTERM DFDSS001,LTERM=97501
PTERM DFDSS002,LTERM=97502
.
.
LTERM LNATUM
DEFAULT LTERM USAGE=D,STATUS=ON,ANNOAMSG=Y,RESTART=YES
LTERM DF97501
LTERM DF97502
.
.
SFUNC F1,RET=21Z
.
.
END

Please see also the Siemens UTM documentations. If the asynchronous application is primarily intended
for processing asynchronous transactions, storage can be saved by generating this application with a small
(local) Natural swap pool of about 64 KB.

Important:
The TAC that was defined with the parameter SYNTAC (the default value is NATSY) must always be
defined for KDCDEF with TYPE=A; this is an exception to the rules for naming UTM TACs. If, in
addition, the synchronous application uses the UTM TACCLASS concept, an asynchronous TAC class
must also be allocated to this TAC

9

Natural under UTM - Part 3Asynchronous Processing between two Natural UTM Applications

Example of a Natural Program to Initialize an Asynchronous Transaction between two
Natural UTM Applications:

* ASYNAPPL - EXAMPLE OF INITIALIZATION FOR ASYNCHRONOUS
* TRANSACTION WORKING BETWEEN TWO UTM APPLICATIONS
FORMAT LS=145
RESET PARM1(A144) PRDEST(A8) LTDEST(A8) ASYNTAC(A8)
MOVE ’PRINTER1’ TO PRDEST /* --> Note 1
MOVE *INIT-ID TO LTDEST /* --> Note 2
MOVE ’NATSY’ TO ASYNTAC /* --> Note 3
COMPRESS ’NATAS’ ’ SENDER=’ PRDEST ’,OUTDEST=’ LTDEST
 ’,ASYNNAME=’ ASYNTAC ’,’
 ’MENU=F,STACK=(LOGON APPL1;READAUTO)’
 INTO PARM1 LEAVING NO /* --> Note 4
CALL ’NATASYN’ /* --> Note 5
SET CONTROL ’H’ /* --> Note 6
WRITE NOTITLE NOHDR PARM1 /* --> Note 7
INPUT ’ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1) /* --> Note 8
END

10

Asynchronous Processing between two Natural UTM ApplicationsNatural under UTM - Part 3

Notes

1 The name of a printer (simulation) is moved into the field PRDEST.

2 The logical name of the UTM terminal (KCLOGTER) is moved into the field LTDEST.

3 The standard TAC for sending "free-running" messages from the asynchronous application to the
synchronous application is put in the field ASYNTAC. See also the description of the parameter
SYNTAC of macro NATUTM.

4 The message that is to be sent and processed by Natural is assembled, with the following
information:

transaction code for the asynchronous transaction (NATAS),

printer name (in this example, an arbitrary 8-character string),

the logical name (KCLOGTER) of the terminal to which the message is to be sent,

the name of the standard TAC for sending free-running messages from the asynchronous
application to the synchronous application,

main menu suppression (this must be specified),

the name of the application (Natural logon ID),

the name of the Natural program to be started and to be run in the asynchronous
transaction/application (in this example, READAUTO).

5 When subroutine NATASYN (in macro NATUTM) is called, a marker for the initialization of an
asynchronous transaction is set. The subroutine conforms to the conventions for calling
non-Natural programs.

6 The Natural offline report is activated.

7 The message (PARM1) is output with FPUT as an asynchronous transaction.

8 The Natural offline report is "switched off" by means of an INPUT statement with at least one
input field.

The program to be executed asynchronously (READAUTO) must conform to the conventions that apply to
asynchronous transaction processing within one Natural UTM application.

Logic of Asynchronous Transaction between two Natural UTM Applications:

11

Natural under UTM - Part 3Asynchronous Processing between two Natural UTM Applications

Printing under UTM
The following topics are covered:

Using Local Non-Spooled Printers

Using NATSPOOL (Natural Advanced Facilities)

12

Printing under UTMNatural under UTM - Part 3

Other Spooling Systems

Using Local Non-Spooled Printers

A Natural program that wishes to use local printers without spooling (that is, with FPUT via UTM),
should proceed as shown in the following example.

Example:

* TESTPRNT - TEST FOR THE Natural OFFLINE REPORT
RESET PARAM(A9)
REDEFINE PARAM (PARAM1(A1) PARAM2(A8))
MOVE ’H’ TO PARAM1 /* --> Note 1
MOVE ’PRINTER1’ TO PARAM2 /* --> Note 2
SET CONTROL PARAM /* --> Note 3
READ (50) AUTOMOBILES BY MAKE
WRITE NOTITLE NOHDR MAKE MODEL HORSEPOWER YEAR /* --> Note 4
LOOP
EJECT
INPUT ’PRINT ORDER WAS EXECUTED’ IFELD(A1) /* --> Note 5
END

Notes

1 The Natural offline report is activated by putting an H in the first position of the field PARAM.

2 The logical UTM printer name is defined starting at the second position of the field PARAM.

3 The SET CONTROL statement, together with the content of the field PARAM, activates the Natural
offline report and specifies the name of the printer. To ensure compatibility for existing programs
written using Natural Version 1, the programs CMLIST and NATPRNT continue to be available;
see Utility Programs for Use with Natural under UTM.

4 The print records are passed to UTM from the Natural UTM Interface using FPUT.

5 The INPUT statement (which must have at least one input field) deactivates the Natural offline
report.

All the necessary steps for using local printers must have been taken when generating UTM; for further
details, please refer to the Siemens UTM documentation. The appropriate UTM administration commands
can be used to verify that a connection to the defined printers exists.

Using NATSPOOL (Natural Advanced Facilities)

The parameter SPOOL of macro NATUTM is provided for using NATSPOOL under UTM. Further details
are given in the section Parameters of Macro NATUTM. Please refer also to the BS2000/OSD-specific
installation information in the Natural Advanced Facilities documentation.

If in an asynchronous UTM transaction printing is to be done with NATSPOOL, the TERMINATE
statement must be preceded by an END OF TRANSACTION statement.

13

Natural under UTM - Part 3Using Local Non-Spooled Printers

Other Spooling Systems

The User Exit RP2PRNT is provided for interfacing to other spooling systems. This user exit is activated
if REPRO-2000 is specified with the parameter SPOOL in macro NURENT. (This value should be used
for all spooling systems.)

Since it must be linked with the reentrant part of the Natural UTM application, the user exit routine
RP2PRNT must be reentrant.

The logic of the transfer of print records from Natural, buffer processing, etc., can be seen in macro
NURENT (labels CMWTERM and CMWHC) and the appropriate routines in macro NATUTM.

As an alternative, it is possible to use the User Exit RMSPOOL; see section User Exits above.

Software AG does not provide support for this interface to other spooling systems except as described in
the preceding paragraphs.

Calling Non-Natural Programs
Non-Natural programs are called using the standard register conventions for inter-program
communication. If the program to be called is reentrant (uses shared code), it can be defined with the
profile parameter CSTATIC in the Natural parameter module (macro NTPRM) and linked with the
reentrant part of the UTM application. Otherwise, one of the following procedures can be used:

The programs can be dynamically loaded at runtime. To do this, the programs must be in the library
defined with the profile parameter LIBNAM in the Natural parameter module or in the BLSLIB
libraries specified in the UTM start job;

The programs can be linked with the front-end part of the Natural UTM application. To do this, the
names of the programs must be defined in the operand of the parameter LINK , LINK2 , LINK3 or
LINK4 of macro NATUTM. This procedure is always necessary for programs that contain an EXTRN
reference to an ENTRY that is already present in the front-end part of the Natural UTM Interface. The
Natural UTM Interface executes a TABLE macro call for the programs that have been defined in this
way. This makes an entry in the dynamic loader’s LINK table, indicating that it is not necessary to
dynamically load the programs when they are called by the Natural program.

In both cases, the maximum number of called non-Natural programs must be defined with the parameter
CDYNAM of macro NATUTM; see Parameters of Macro NATUTM.

Note:
If parameter KB in macro NATUTM is set to YES, Natural always passes the address of the UTM
communication area KB (Kommunikationsbereich) as the first parameter address. This does not apply to
programs which are defined with profile parameter CSTATIC.

Calling UTM Chained Partial Programs
Several methods are provided for ending a Natural session (FIN or TERMINATE) with a PEND
PR(OGRAM) instead of a PEND FI(NISH) , so that another UTM partial program is called:

14

Calling Non-Natural ProgramsNatural under UTM - Part 3

The UTM TAC for the UTM partial program that is to be called can be passed using the Natural
dynamic parameter PROGRAM at the start of the Natural session, for example:

STACK=(LOGON APPL1;MENU),PROGRAM=NAT10

The UTM TAC for the UTM partial program that is to be called can be defined in the operand of the
parameter PENDPR of macro NATUTM, for example:

NATUTM PENDPR=’NAT10’

The utility program TACSWTCH can be used.

In all cases, the Natural UTM Interface would execute a PEND PR(OGRAM) with the UTM TAC NAT10
at the end of the Natural session, which means that the UTM partial program associated with this TAC
would be started.

Another way to execute a PEND PR(OGRAM) is by activating the function key defined for this purpose,
which suspends, but not terminates, the Natural session. On return from the UTM partial program with
PEND PR(OGRAM), the Natural session can be continued from the point at which it has been suspended;
see also the parameter PRKEY. If the function key for PEND PR(OGRAM) is activated without a UTM
TAC for another UTM partial program being defined, an appropriate error message is displayed.

Note:
The programs NUEXAMPL, UTMNAV and UTMCOB show examples of the logic necessary in a UTM partial
program that wishes to communicate with the Natural UTM Interface (and therefore with Natural itself) -
see the descriptions of programs UTMCOB and UTMNAV in the section Software Exchange.

Calling Adabas from Non-Natural Programs in a Natural
UTM Application
If a Natural program calls a non-Natural program that also includes Adabas calls, the appropriate field in
the Adabas control block must be supplied with the current Adabas user ID. In this case, generate the
CSECT ADACALL in the Natural UTM Interface.

ADACALL contains an entry which is defined with the parameter ADACALL in macro NATUTM (the
default value of this parameter is ADABAS).

This entry is activated for every CALL [ADABAS] USING The current Adabas user ID is passed
to the field ADDITIONS2 of the Adabas command block, and subsequent processing of the Adabas call is
passed to the Adabas interface module ADALNN; see also the parameter ADACALL.

Terminating a UTM Task Abnormally
The Natural session (and thereby also the UTM task) can be abnormally terminated by entering the
CANCEL parameter’s value of the Natural parameter module (default is *CANCEL in upper-case letters).

15

Natural under UTM - Part 3Calling Adabas from Non-Natural Programs in a Natural UTM Application

	Natural under UTM - Part 3
	User Exits
	ACCEXIT - Macro NATUTM
	ACCINIT - Macro NATUTM
	INPTEX - Program FREXIT
	RP2PRNT - Macro NURENT
	RMSPOOL - Macros NATUTM and NURENT
	SHUTALL - Macro NATUTM
	SHUTLST - Macro NATUTM
	STRTALL - Macro NATUTM
	STRTFST - Macro NATUTM
	TRMIOEX - Program FREXIT
	UINPEX - Macro NURENT
	UOUTEX - Macro NURENT
	UVGEXIT - Macro NATUTM
	WHCEXT - Macro NURENT

	Asynchronous Transaction Processing under UTM
	Asynchronous Processing within a Natural UTM Application
	Example:
	Logic of an Asynchronous Transaction within one Natural UTM Application:

	Asynchronous Processing between two Natural UTM Applications
	Example:
	Example of Synchronous Application:
	Example of Asynchronous Application:
	Example of a Natural Program to Initialize an Asynchronous Transaction between two Natural UTM Applications:
	Logic of Asynchronous Transaction between two Natural UTM Applications:

	Printing under UTM
	Using Local Non-Spooled Printers
	Example:

	Using NATSPOOL (Natural Advanced Facilities)
	Other Spooling Systems

	Calling Non-Natural Programs
	Calling UTM Chained Partial Programs
	Calling Adabas from Non-Natural Programs in a Natural UTM Application
	Terminating a UTM Task Abnormally

