
COMPOPT
COMPOPT [option=value ...]

This system command is used to set various compilation options. The options are evaluated when a
Natural programming object is compiled.

If you enter the COMPOPT command without any options, a screen is displayed where you can enable or
disable the options described below.

The default settings of the individual options are set with the corresponding keyword subparameters of the
parameter macro NTCMPO in the Natural parameter module or in the profile parameter CMPO. When you
change the library, the COMPOPT options are reset to their default values.

This chapter covers the following topics:

Syntax Explanation

Specifying Compiler Keyword Parameters

General Compilation Options

Compilation Options for Ensuring Version Compatibility

Syntax Explanation

COMPOPT If you issue the COMPOPT system command without options, the
Compilations Options screen appears. The keywords available there are
described below.

COMPOPT
option=value

The keywords for the individual options are described below.

The setting assigned to a compiler option is in effect until you issue the
next LOGON command to another library. At LOGON, the default settings
set with the macro NTCMPO and/or profile parameter CMPO will be
resumed.

Specifying Compiler Keyword Parameters
You can specify compiler keyword parameters on different levels:

1. The default settings of the individual keyword parameters are specified in the macro NTCMPO in the
Natural parameter module NATPARM.

2. At session start, you can override the compiler keyword parameters with the profile parameter CMPO.

3. During an active Natural session, there are two ways to change the compiler keyword parameters
with the COMPOPT system command: either directly using command assignment (COMPOPT
option=value) or by issuing the COMPOPT command without keyword parameters which

1

COMPOPTCOMPOPT

displays the Compilation Options screen. The settings assigned to a compiler option are in effect
until you issue the next LOGON command to another library. At LOGON, the default settings set with
the macro NTCMPO and/or the profile parameter CMPO (see above) will be resumed. Example:

OPTIONS KCHECK=ON
DEFINE DATA LOCAL
1 #A (A25) INIT <’Hello World’>
END-DEFINE
WRITE #A
END

4. In a Natural programming object (for example: program, subprogram), you can set compiler
parameters (options) with the OPTIONS statement. Example:

OPTIONS KCHECK=ON
WRITE ’Hello World’
END

The compiler options defined in an OPTIONS statement will only affect the compilation of this
programming object, but do not update settings set with the command COMPOPT.

General Compilation Options
The following options are available:

KCHECK - Keyword Checking

PCHECK - Parameter Checking for Object Calling Statements

DBSHORT - Interpretation of Database Short Field Names

PSIGNF - Internal Representation of Positive Sign of Packed Numbers

TSENABL - Applicability of TS Profile Parameter

GFID - Generation of Global Format IDs

LOWSRCE - Allow Lower-Case Source

TQMARK - Translate Quotation Mark

THSEP - Dynamic Thousands Separator

CPAGE - Code Page Support for Alphanumeric Constants

DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements

CHKRULE - Validate INCDIR Statements in Maps

These options correspond to the keyword subparameters of the CMPO profile parameter and/or the
NTCMPO parameter macro.

2

General Compilation OptionsCOMPOPT

KCHECK - Keyword Checking

ON Field declarations in a programming object will be checked against a set of critical Natural
keywords. If a variable name defined matches one of these keywords, a syntax error is
reported when the programming object is checked or cataloged.

OFF No keyword check is performed. This is the default value.

The section Performing a Keyword Check (in the Programming Guide) contains a list of the keywords
that are checked by the KCHECK option.

The section Alphabetical List of Natural Reserved Keywords (in the Programming Guide) contains an
overview of all Natural keywords and reserved words.

PCHECK - Parameter Checking for Object Calling Statements

3

COMPOPTKCHECK - Keyword Checking

ON The compiler checks the number, format, length and array index bounds of the parameters
that are specified in an object calling statement, such as CALLNAT, PERFORM, INPUT
USING MAP, PROCESS PAGE USING, helproutine call. Also, the OPTIONAL feature of
the DEFINE DATA PARAMETER statement is considered in the parameter check.

The parameter check is based on a comparison of the parameters of the object calling
statement with the DEFINE DATA PARAMETER definitions for the object to be invoked.

It requires that

the name of the object to be called is defined as an alphanumeric constant (not as an
alphanumeric variable),

the object to be called is available as a cataloged object.

Otherwise, PCHECK=ON will have no effect.

Problems in Using the CATALL Command with PCHECK=ON

When a CATALL command is used in conjunction with PCHECK=ON, you should consider
the following:

If a CATALL process is invoked, the order in which the programming objects are compiled
depends primarily on the type of the object and secondarily on the alphabetical name of the
object. The object type sequence used is: GDAs, LDAs/PDAs, external subroutines,
subprograms, helproutines, maps/adapters, programs/classes. Within objects of the same
type, the alphabetical order of the name determines the sequence in which they are
cataloged.

As mentioned above, the parameters of the object calling statement are checked against the
compiled form of the called object. If the calling object (the one which is being compiled
and includes the object calling statement) is cataloged before the invoked object, the
PCHECK result may be wrong if the parameters in the invoking statement and in the called
object were changed. In this case, the new object image of the called object has not yet been
produced by the CATALL command.

This causes the new parameter layout in the object calling statement to be compared with
the old parameter layout of the DEFINE DATA PARAMETER statement of the called
subprogram.

Solution:

Set compiler option PCHECK to OFF.

Perform a general compile with CATALL on the complete library, or if just one or a
few objects were changed, perform a separate compile on these objects.

Set compiler option PCHECK=ON.

On the complete library, perform a general compile with CATALL, selecting function
CHECK.

OFF No parameter check is performed. This is the default value.

4

PCHECK - Parameter Checking for Object Calling StatementsCOMPOPT

DBSHORT - Interpretation of Database Short Field Names

A database field defined in a DDM is described by two names:

the short name with a length of 2 characters, used by Natural to communicate with the database
(especially with Adabas);

the long name with a length of 3-32 characters (1-32 characters, if the underlying database type
accessed is DB2/SQL), which is supposed to be used to reference the field in the Natural
programming code.

Under special conditions, you may reference a database field in a Natural program with its short name
instead of the long name. This applies if running in Reporting Mode without Natural Security and if the
database access statement contains a reference to a DDM instead of a view.

The decision if a field name is regarded as a short-name reference depends on the name length. When the
field identifier consists of two characters, a short-name reference is assumed; a field name with another
length is considered as a long-name reference. This standard interpretation rule for database fields can
additionally be influenced and controlled by setting the compiler option DBSHORT to ON or OFF:

ON The usage of a short name is allowed for referencing a database field.

However, a data base short name is not permitted in general (even if DBSHORT=ON)

for the definition of a field when a view is created;

when a view field is used in the programming code;

when a DEFINE DATA LOCAL statement was previously used to defines variables;

when running under Natural Security.

This is the default value.

OFF A database field may only be referenced via its long name. Every database field identifier is
considered as a long-name reference, regardless of its length.

If a two character name is supplied which can only be found as a short name but not as a
long name, syntax error NAT0981 is raised at compile time.

This makes it possible to use long names defined in a DDM with 2-byte identifier length.
This option is essential if the underlying database you access with this DDM is SQL (DB2)
and table columns with a two character name exist. For all other database types (for
example, Adabas), however, any attempt to define a long-field with a 2-byte name length
will be rejected at DDM generation.

Moreover, if no short-name references are used (what can be enforced via DBSHORT=OFF),
the program becomes independent of whether it is compiled under Natural Security or not.

5

COMPOPTDBSHORT - Interpretation of Database Short Field Names

Examples:

Assume the following data base field definition in the DDM EMPLOYEES:

Short Name Long Name

AA PERSONNEL-ID

Example 1:

OPTIONS DBSHORT=ON
READ EMPLOYEES
 DISPLAY AA /* data base short name AA is allowed
END

Example 2:

OPTIONS DBSHORT=OFF
READ EMPLOYEES
 DISPLAY AA /* syntax error NAT0981, because DBSHORT=OFF
END

Example 3:

OPTIONS DBSHORT=ON
DEFINE DATA LOCAL
1 V1 VIEW OF EMPLOYEES
 2 PERSONNEL-ID
END-DEFINE
READ V1 BY PERSONNEL-ID
 DISPLAY AA /* syntax error NAT0981, because PERSONNEL-ID is defined in view;
 /* (even if DBSHORT=ON)
END-READ
END

PSIGNF - Internal Representation of Positive Sign of Packed Numbers

ON The positive sign of a packed number is represented internally as H’F’. This is the default
value.

OFF The positive sign of a packed number is represented internally as H’C’.

TSENABL - Applicability of TS Profile Parameter

This option determines whether the profile parameter TS (translate output for locations with non-standard
lower-case usage) is to apply only to Natural system libraries (that is, libraries whose names begin with
"SYS", except SYSTEM) or to all user libraries as well.

Natural objects cataloged with TSENABL=ON determine the TS parameter even if they are located in a
non-system library.

ON The profile parameter TS applies to all libraries.

OFF The profile parameter TS only applies to Natural system libraries. This is the default value.

6

PSIGNF - Internal Representation of Positive Sign of Packed NumbersCOMPOPT

GFID - Generation of Global Format IDs

This option allows you to control Natural’s internal generation of global format IDs so as to influence
Adabas’s performance concerning the re-usability of format buffer translations.

ON Global format IDs are generated for all views. This is the default value.

VID Global format IDs are generated only for views in local/global data areas, but not for views
defined within programs.

OFF No global format IDs are generated.

For details on global format IDs, see the Adabas documentation.

Rules for Generating GLOBAL FORMAT-IDs in Natural

For Natural nucleus internal system-file calls:

GFID=abccddee

where equals

a x’F9’

b x’22’ or x’21’ depending on DB statement

cc physical database number (2 bytes)

dd physical file number (2 bytes)

ee number created by runtime (2 bytes)

For user programs or Natural utilities:

GFID=abbbbbbc for file number less than or equal to 255 and Adabas Version lower than 6.2
(see NTDB macro).

where equals

a x’F8’ or x’F7’ or x’F6’

bbbbbb bytes 1-6 of STOD value

c physical file number

GFID=axbbbbbc for file number greater than 255 and Adabas Version lower than 6.2.

7

COMPOPTGFID - Generation of Global Format IDs

where equals

a x’F8’ or x’F7’ or x’F6’

x physical file number - high order byte

bbbbb Bytes 2-6 of STOD value

c physical file number - low order byte

GFID=abbbbbb for Adabas Version 6.2 or higher.

where equals

a x’F8’ or x’F7’ or x’F6’

where:

F6=UPDATE SAME
F7=HISTOGRAM
F8=all others

bbbbbbb bytes 1-7 of STOD value

Note:
STOD is the return value of the store clock machine instruction (STCK).

LOWSRCE - Allow Lower-Case Source

This option supports the use of lower or mixed-case program sources on mainframe platforms. It
facilitates the transfer of programs written in mixed/lower-case characters from other platforms to a
mainframe environment.

ON Allows any kind of lower/upper-case characters in the program source.

OFF Allows upper-case mode only. This requires keywords, variable names and identifiers to be
defined in upper case. This is the default value.

When you use lower-case characters with LOWSRCE=ON, consider the following:

The syntax rules for variable names allow lower-case characters in subsequent positions. Therefore,
you can define two variables, one written with lower-case characters and the other with upper-case
characters.

Example:

DEFINE DATA LOCAL
1 #Vari (A20)
1 #VARI (A20)

With LOWSRCE=OFF, these variables are treated as different variables.

With LOWSRCE=ON, the compiler is not case sensitive and does not make a distinction between
lower/upper-case characters. This will lead to a syntax error because a duplicate definition of a
variable is not allowed.

8

LOWSRCE - Allow Lower-Case SourceCOMPOPT

Using the session parameter EM (Edit Mask) in an I/O statement or in a MOVE EDITED statement,
there are characters which influence the layout of the data setting assigned to a variable (EM control
characters), and characters which insert text fragments into the data setting.

Example:

#VARI :=’1234567890’
 WRITE #VARI (EM=XXXXXxxXXXXX)

With LOWSRCE=OFF, the output is "12345xx67890", because for alpha-format variables only
upper-case X, H and circumflex accent (ˆ) sign can be used.

With LOWSRCE=ON, the output is "1234567890", because an x character is treated like an upper-case
X and, therefore, interpreted as an EM control character for that field format. To avoid this problem,
enclose constant text fragments in apostrophes (’).

Example:

WRITE #VARI(EM=XXXXX’xx’XXXXX)

The text fragment is not considered an EM control character, regardless of the LOWSRCE settings.

Since all variable names are converted to upper-case characters with LOWSRCE=ON, the display of
variable names in I/O statements (INPUT, WRITE or DISPLAY) differs.

Example:

MOVE ’ABC’ to #Vari
 DISPLAY #Vari

With LOWSRCE=OFF, the output is:

 #Vari

 ABC

With LOWSRCE=ON, the output is:

 #VARI

 ABC

TQMARK - Translate Quotation Mark

ON Each double quotation mark within a text constant is output as a single apostrophe. This is
the default value.

OFF Double quotation marks within a text constant are not translated; they are output as double
quotation marks.

Example:

9

COMPOPTTQMARK - Translate Quotation Mark

RESET A(A5)
A:= ’AB"CD’
WRITE ’12"34’ / A / A (EM=H(5))
END

With TQMARK ON, the output is:

12’34
AB’CD
C1C27DC3C4

With TQMARK OFF, the output is:

12"34
AB"CD
C1C27FC3C4

THSEP - Dynamic Thousands Separator

This option can be used to enable or disable the use of thousands separators at compilation time. See also
the profile and session parameter THSEPCH and the section Customizing Separator Character Displays
(in the Programming Guide).

ON Thousands separator used. Every thousands separator character that is not part of a string
literal is replaced internally with a control character.

OFF Thousands separator not used, i.e. no thousands separator control character is generated by
the compiler. This is the compatibility setting.

CPAGE - Code Page Support for Alphanumeric Constants

The CPAGE option can be used to activate a conversion routine which translates all alphanumeric
constants (from the code page that was active at compilation time into the code page that is active at
runtime) when the object is started at runtime.

See also CPAGE Compiler Option in the Unicode and Code Page Support documentation.

ON Code page support for alpha strings is enabled.

OFF Code page support for alpha strings is disabled. This is the default value.

DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements

The DB2ARRY option can be used to activate retrieval and/or insertion of multiple rows from/into DB2 by
a single SQL SELECT or INSERT statement execution. This allows the specification of arrays as
receiving fields in the SQL SELECT and as source fields in the SQL INSERT statement. If DB2ARRY is
ON, it is no longer possible to use Natural alphanumeric arrays for DB2 VARCHAR/GRAPHIC columns.
Instead of these, long alphanumeric Natural variables have to be used.

ON DB2 array support is enabled.

OFF DB2 array support is not enabled. This is the default value.

10

THSEP - Dynamic Thousands SeparatorCOMPOPT

CHKRULE - Validate INCDIR Statements in Maps

The CHKRULE option can be used to enable or disable a validation check during the catalog process for
maps.

ON INCDIR validation is enabled. If the file (DDM) or field referenced in the INCDIR control
statement does not exist, syntax error NAT0721 is raised at compile time.

When a Natural map is created, you may include fields which are already defined inside
another existing programming object. This works with nearly all kinds of objects which
allow you to define variables and also with DDMs. When the included field is a database
variable, it is a map editor built-in behavior to automatically add (besides the included field)
an additional INCDIR statement in the map statement body to trigger a Predict rule upload
and incorporation when the map is compiled (STOW).

The function is similar to what is happening when an INCLUDE statement is processed.
However, instead of getting the source lines from a copycode object, they are received from
Predict. The search key to find the rule(s) are the DDM name (which is regarded as the file
name) and the field name. Both are indicated in the INCDIR statement. An INCDIR rule
requested at compile time has not got to be found on Predict, as there is absolutely no
requirement for its existence. That implies, it is by no means an error situation if a searched
rule is not found.

When fields are incorporated from a DDM into a map, the corresponding INCDIR
statements are created, including the current DDM and field name as "search key" to request
existent rules from Predict. However, if the DDM is renamed after the copy process, the old
DDM name (which is not valid anymore) still continues to be used in the INCDIR
statement. This causes that no rule is loaded and the programmer is not informed about this.
Moreover, it is not only a DDM rename causing this situation. The more likely situation
effecting this consequence is to have a wrong FDIC file assigned, by any mistake. In this
case, the DDM name is valid, but it cannot be found on the current Predict system file. Then
the result is same as when the DDM does not exist at all; the processing rules supposed to
be added from Predict are not included.

OFF INCDIR validation is disabled. This is the default value.

Compilation Options for Ensuring Version Compatibility
The following options are available:

FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

MASKCME - MASK Compatible with MOVE EDITED

NMOVE22 - Assignment of Numeric Variables of Same Length and Precision

V41COMP - Disable New Version 4.2 Syntax

These options correspond to the keyword subparameters of the CMPO profile parameter and/or the
NTCMPO parameter macro.

11

COMPOPTCompilation Options for Ensuring Version Compatibility

FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

With Natural Version 2.3, the comparison logic for multiple-setting fields in the WITH clause of the FIND
statement has been changed. This means that when Version 2.2 programs containing certain forms of
FIND statements are compiled under Version 3.1, they will return different results. This option can be
used to search for FIND statements whose WITH clauses use multiple-setting fields in a way that is no
longer consistent with the enhanced Version 3.1 comparison logic.

ON Error NAT0998 will be returned for every FIND statement of such form detected at
compilation.

OFF No search for such FIND statements will be performed. This is the default value.

The comparison logic for multiple-value fields in the WITH clause of the FIND statement has been
changed with Natural Version 2.3 so as to be in line with the comparison logic in other statements (e.g.
IF).

Four different forms of the FIND statement can be distinguished (the field MU in the following examples
is assumed to be a multiple-value field):

1.

FIND XYZ-VIEW WITH MU = ’A’

With Version 2.2 and above, this statement returns records in which at least one occurrence of MU has
the value "A".

2.

FIND XYZ-VIEW WITH MU NOT EQUAL ’A’

With Version 2.2, this statement returns records in which no occurrence of MU has the value "A"
(same as 4.). With Version 2.3 and above, this statement returns records in which at least one
occurrence of MU does not have the value "A".

3.

FIND XYZ-VIEW WITH NOT MU NOT EQUAL ’A’

With Version 2.2, this statement returns records in which at least one occurrence of MU has the value
"A" (same as 1.). With Version 2.3 and above, this statement returns records in which every
occurrence of MU has the value "A".

4.

FIND XYZ-VIEW WITH NOT MU = ’A’

With Version 2.2 and above, this statement returns records in which no occurrence of MU has the
value "A". This means that if you newly compile under Version 2.3 existing Version 2.2 programs
containing FIND statements of the forms 2. and 3., they will return different results.

If you specify FINDMUN=ON, error NAT0998 will be returned for every FIND statement of form 2. or 3.
detected at compilation.

12

FINDMUN - Detect Inconsistent Comparison Logic in FIND StatementsCOMPOPT

Should you in these cases wish to continue to get the same results as with Version 2.2, you have to change
the statements as follows:

In Form 2:

FIND XYZ-VIEW WITH MU NOT EQUAL ’A’

into

FIND XYZ-VIEW WITH NOT MU = ’A’

In Form 3:

FIND XYZ-VIEW WITH NOT MU NOT EQUAL ’A’

into

FIND XYZ-VIEW WITH MU = ’A’

MASKCME - MASK Compatible with MOVE EDITED

ON The range of valid year values that match the YYYY mask characters is 1582 - 2699 to
make the MASK option compatible to MOVE EDITED. If the profile parameter MAXYEAR is
set to 9999, the range of valid year values is 1582 - 9999.

OFF The range of valid year values that match the YYYY mask characters is 0000 - 2699. This is
the default value. If the profile parameter MAXYEAR is set to 9999, the range of valid year
values is 0000 - 9999.

NMOVE22 - Assignment of Numeric Variables of Same Length and Precision

ON Assignments of numeric variables where source and target have the same length and
precision is performed as with Natural Version 2.2.

OFF Assignments of numeric variables where source and target have the same length and
precision is performed as with Natural Version 2.3 and above, that is they are processed as
if source and target would have different length or precision. This is the default value.

V41COMP - Disable New Version 4.2 Syntax

Important:
This compiler option will be available only with Natural Version 4.2 to allow a smooth transition. It will
be removed again with a subsequent release of Natural after Version 4.2.

A number of functions and programming features introduced with Natural Version 4.2 would give rise to
problems when a program developed and compiled with Version 4.2 is to be recompiled for putting into
operation in a Version 4.1 environment. The relevant functions or features are listed below.

The V41COMP option has been provided to detect such incompatibilities and trigger an error message that
supplies a reason code for why the recompilation failed. The following values are possible:

13

COMPOPTMASKCME - MASK Compatible with MOVE EDITED

ON When a program is compiled under Version 4.2, every attempt to use a syntax construction
that is supported by Version 4.2, but not by Version 4.1, is rejected and a NAT0647 syntax
error and a corresponding reason code (see below) will be output.

OFF A test for Version 4.1 compatibility is not performed. This is the default value.

Compilation Relevant Differences between Version 4.2 and 4.1

The following table gives an overview of the compilation relevant differences between Version 4.2 and
4.1 and indicates the reason code that will be supplied when incompatible syntax is detected:

Function or Feature Version 4.2 Version 4.1 Reason Code

New format U (Unicode) possible unknown 001

Array with variable number of occurences

X-array, for example:

DEFINE DATA LOCAL
1 #ARR (A10/1:*)

possible unknown 002

Possible length of alpha and literals (constants) 1 byte - 1 GB 1 byte - 253
bytes
(NAT0264)

003

New compiler parameters:

THSEP Thousands separator character in
edit mask

CPAGE Make alphunmeric constants
sensitive for code page translation

possible unknown 004

New statements:

MOVE NORMALIZED
MOVE ENCODED
PARSE
REQUEST DOCUMENT
EXPAND / REDUCE / RESIZE ARRAY

possible unknown 005

Statement SET GLOBALS:

session parameter CPCVERR=ON/OFF

allowed when in structured mode (SM=ON)

possible unknown 006

14

V41COMP - Disable New Version 4.2 SyntaxCOMPOPT

Function or Feature Version 4.2 Version 4.1 Reason Code

New system variables:

*PARSE-COL
*PARSE-LEVEL
*PARSE-NAMESPACE-URI
*PARSE-ROW
*PARSE-TYPE
*CODEPAGE
*LOCALE
*TYPE
*CURRENT-UNIT
*UBOUND
*LBOUND

possible unknown 007

Not used - - 008

Length and type of source parameters supplied
with INCLUDE

Example:

INCLUDE COPY01 ’WRITE *LINE’
 ’WRITE *PROGRAM’

any length and
format U
(Unicode)
allowed

only alpha with
a length of
max. 80 bytes

009

Definition of an Adabas LA-field in a data view

with a size greater than 253 bytes or

of type DYNAMIC

possible unknown 010

15

COMPOPTV41COMP - Disable New Version 4.2 Syntax

	COMPOPT
	Syntax Explanation
	Specifying Compiler Keyword Parameters
	General Compilation Options
	KCHECK - Keyword Checking
	PCHECK - Parameter Checking for Object Calling Statements
	DBSHORT - Interpretation of Database Short Field Names
	Examples:

	PSIGNF - Internal Representation of Positive Sign of Packed Numbers
	TSENABL - Applicability of TS Profile Parameter
	GFID - Generation of Global Format IDs
	Rules for Generating GLOBAL FORMAT-IDs in Natural

	LOWSRCE - Allow Lower-Case Source
	TQMARK - Translate Quotation Mark
	THSEP - Dynamic Thousands Separator
	CPAGE - Code Page Support for Alphanumeric Constants
	DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements
	CHKRULE - Validate INCDIR Statements in Maps

	Compilation Options for Ensuring Version Compatibility
	FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
	In Form 2:
	In Form 3:

	MASKCME - MASK Compatible with MOVE EDITED
	NMOVE22 - Assignment of Numeric Variables of Same Length and Precision
	V41COMP - Disable New Version 4.2 Syntax
	Compilation Relevant Differences between Version 4.2 and 4.1

