COMPOPT COMPOPT

COMPOPT

COMPOPT [option=value ...]

This system command is used to set various compilation options. The options are evaluated when a
Natural programming object is compiled.

If you enter theCOMPOPTommand without any options, a screen is displayed where you can enable or
disable the options described below.

The default settings of the individual options are set with the corresponding keyword subparameters of the
parameter macrNTCMP@n the Natural parameter module or in the profile paran@#@POWhen you
change the library, theOMPOP®ptions are reset to their default values.

This chapter covers the following topics:
e Syntax Explanation
e Specifying Compiler Keyword Parameters
® General Compilation Options

® Compilation Options for Ensuring Version Compatibility

Syntax Explanation

COMPOPT If you issue theCOMPOP$ystem command without options, the
Compilations Options screen appears. The keywords available there|are
described below.

COMPOPT The keywords for the individual options are described below.
option=value
The setting assigned to a compiler option is in effect until you issue the
nextLOGONommand to another library. ADGONthe default settings
set with the macrdlTCMP@nd/or profile paramet&MPQuwill be
resumed.

Specifying Compiler Keyword Parameters
You can specify compiler keyword parameters on different levels:

1. The default settings of the individual keyword parameters are specified in theNaivPn the
Natural parameter moduMATPARM

2. At session start, you can override the compiler keyword parameters with the profile paCanider

3. During an active Natural session, there are two ways to change the compiler keyword parameters
with the COMPOP3$ystem command: either directly using command assignt@&iPOPT
opti on=val ue) or by issuing th€ OMPOPTommand without keyword parameters which

COMPOPT General Compilation Options

displays theCompilation Options screen. The settings assigned to a compiler option are in effect
until you issue the neXtOGONommand to another library. ADGONthe default settings set with
the macrdNTCMP@nd/or the profile paramet€@MPJsee above) will be resumed. Example:

OPTIONS KCHECK=0ON
DEFINE DATA LOCAL

1 #A (A25) INIT <’Hello World'>
END-DEFINE

WRITE #A

END

In a Natural programming object (for example: program, subprogram), you can set compiler
parameters (options) with tt@PTIONSstatement. Example:

OPTIONS KCHECK=0ON
WRITE 'Hello World’
END

The compiler options defined in @PTIONSstatement will only affect the compilation of this
programming object, but do not update settings set with the comG@RNIPORT

General Compilation Options

The following options are available:

KCHECK - Keyword Checking

PCHECK - Parameter Checking for Object Calling Statements
DBSHORT - Interpretation of Database Short Field Names

PSIGNF - Internal Representation of Positive Sign of Packed Numbers
TSENABL - Applicability of TS Profile Parameter

GFID - Generation of Global Format IDs

LOWSRCE - Allow Lower-Case Source

TQMARK - Translate Quotation Mark

THSEP - Dynamic Thousands Separator

CPAGE - Code Page Support for Alphanumeric Constants

DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements

CHKRULE - Validate INCDIR Statements in Maps

These options correspond to the keyword subparameters ©MR€profile parameter and/or the
NTCMP@arameter macro.

KCHECK - Keyword Checking COMPOPT

KCHECK - Keyword Checking

ON Field declarations in a programming object will be checked against a set of critical Nelatural
keywords. If a variable name defined matches one of these keywords, a syntax errorjis
reported when the programming object is checked or cataloged.

OFF No keyword check is performed. This is the default value.

The sectiorPerforming a Keyword Check (in theProgramming Guide) contains a list of the keywords
that are checked by theCHECKoption.

The sectiorAlphabetical List of Natural Reserved Keywords (in theProgramming Guide) contains an
overview of all Natural keywords and reserved words.

PCHECK - Parameter Checking for Object Calling Statements

COMPOPT

PCHECK - Parameter Checking for Object Calling Statements

ON

The compiler checks the number, format, length and array index bounds of the parar
that are specified in an object calling statement, su€Aas NAT PERFORMNPUT
USING MAP, PROCESS PAGE USINGhelproutinecall. Also, theOPTIONALfeature of
the DEFINE DATA PARAMETERstatement is considered in the parameter check.

The parameter check is based on a comparison of the parameters of the object callir
statement with thBEFINE DATA PARAMETERIefinitions for the object to be invoked

It requires that

e the name of the object to be called is defined as an alphanumeric constant (not
alphanumeric variable),

® the object to be called is available as a cataloged object.
Otherwise PCHECK=0OMiill have no effect.
Problemsin Using the CATALL Command with PCHECK=0ON

When aCATALLcommand is used in conjunction wWRICHECK=0ON/ou should consider
the following:

If a CATALL process is invoked, the order in which the programming objects are com
depends primarily on the type of the object and secondarily on the alphabetical namsg
object. The object type sequence used is: GDAs, LDAs/PDAs, external subroutines,
subprograms, helproutines, maps/adapters, programs/classes. Within objects of the
type, the alphabetical order of the name determines the sequence in which they are
cataloged.

As mentioned above, the parameters of the object calling statement are checked aga
compiled form of the called object. If the calling object (the one which is being compi
and includes the object calling statement) is cataloged before the invoked object, the
PCHECHKesult may be wrong if the parameters in the invoking statement and in the ¢
object were changed. In this case, the new object image of the called object has not
produced by th€ ATALLcommand.

This causes theew parameter layout in the object calling statement to be compared w
theold parameter layout of tHeEFINE DATA PARAMETERstatement of the called
subprogram.

Solution:
® Set compiler optioPCHECKo OFF

e Perform a general compile wi®ATALL on the complete library, or if just one or a
few objects were changed, perform a separate compile on these objects.

® Set compiler optioPCHECK=0ON

® On the complete library, perform a general compile WIBTALL, selecting function
CHECK

neters

g

AS an

piled
p of the

same

inst the
ed

alled
yet been

ith

OFF

No parameter check is performed. This is the default value.

DBSHORT - Interpretation of Database Short Field Names COMPOPT

DBSHORT - Interpretation of Database Short Field Names
A database field defined in a DDM is described by two names:

e the short name with a length of 2 characters, used by Natural to communicate with the database
(especially with Adabas);

e the long name with a length of 3-32 characters (1-32 characters, if the underlying database type
accessed is DB2/SQL), which is supposed to be used to reference the field in the Natural
programming code.

Under special conditions, you may reference a database field in a Natural program with its short name
instead of the long name. This applies if running in Reporting Mode without Natural Security and if the
database access statement contains a reference to a DDM instead of a view.

The decision if a field name is regarded as a short-name reference depends on the name length. When the
field identifier consists of two characters, a short-name reference is assumed; a field name with another
length is considered as a long-name reference. This standard interpretation rule for database fields can
additionally be influenced and controlled by setting the compiler optiBBHORTo ONor OFF

ON The usage of a short name is allowed for referencing a database field.
However, a data base short nameaispermitted in general (even DBSHORT=0ON
e for the definition of a field when a view is created;
® when a view field is used in the programming code;
e when aDEFINE DATA LOCAL statement was previously used to defines variablgs;
e when running under Natural Security.

This is the default value.

OFF A database field may only be referenced via its long name. Every database field identifier is
considered as a long-name reference, regardless of its length.

If a two character name is supplied which can only be found as a short name but not|as a
long name, syntax error NAT0981 is raised at compile time.

This makes it possible to use long names defined in a DDM with 2-byte identifier length.

This option is essential if the underlying database you access with this DDM is SQL (DB2)
and table columns with a two character name exist. For all other database types (for
example, Adabas), however, any attempt to define a long-field with a 2-byte name lepgth
will be rejected at DDM generation.

Moreover, if no short-name references are used (what can be enfor&RISHEORT=0BRF
the program becomes independent of whether it is compiled under Natural Security @r not.

COMPOPT PSIGNF - Internal Representation of Positive Sign of Packed Numbers

Examples:

Assume the following data base field definition in the DEMPLOYEES

Short Name Long Name
AA PERSONNEL-ID
Example 1:

OPTIONS DBSHORT=0ON
READ EMPLOYEES

DISPLAY AA [* data base short name AA is allowed
END

Example 2:

OPTIONS DBSHORT=0OFF
READ EMPLOYEES

DISPLAY AA /* syntax error NAT0981, because DBSHORT=0OFF
END

Example 3:

OPTIONS DBSHORT=0ON
DEFINE DATA LOCAL
1V1VIEW OF EMPLOYEES
2 PERSONNEL-ID
END-DEFINE
READ V1 BY PERSONNEL-ID
DISPLAY AA /* syntax error NAT0981, because PERSONNEL-ID is defined in view;
/* (even if DBSHORT=0N)
END-READ
END

PSIGNF - Internal Representation of Positive Sign of Packed Numbers

ON The positive sign of a packed number is represented internally as H’'F’. This is the dgfault
value.

OFF The positive sign of a packed number is represented internally as H'C'.

TSENABL - Applicability of TS Profile Parameter

This option determines whether the profile paramgg(translate output for locations with non-standard
lower-case usage) is to apply only to Natural system libraries (that is, libraries whose names begin with
"SYS", excepSYSTENIor to all user libraries as well.

Natural objects cataloged wiltfSENABL=ONMNletermine thd'S parameter even if they are located in a
non-system library.

ON The profile paramet€erS applies to all libraries.

OFF The profile paramet€erS only applies to Natural system libraries. This is the default va’ue.

GFID - Generation of Global Format IDs COMPOPT

GFID - Generation of Global Format | Ds

This option allows you to control Natural’s internal generation of global format IDs so as to influence
Adabas’s performance concerning the re-usability of format buffer translations.

ON Global format IDs are generated for all views. This is the default value.

VID Global format IDs are generated only for views in local/global data areas, but not for yviews
defined within programs.

OFF No global format IDs are generated.

For details on global format IDs, see the Adabas documentation.

Rulesfor Generating GLOBAL FORMAT-IDsin Natural

® For Natural nucleusinternal system-file calls:

GFl D=abccddee
where equals
a xX'F9’
b X'22" or x'21’ depending on DB statement
cc physical database number (2 bytes)
dd physical file number (2 bytes)
ee number created by runtime (2 bytes)

® For user programsor Natural utilities:

O GFID=abbbbbbc for file number less than or equal to 255 and Adabas Version lower than 6.2

(seeNTDBmacro).

where equals

a x’F8 or X’F7’ or X'F6’
bbbbbb bytes 1-6 of STOD value
c physical file number

O GFID=axbbbbbc for file number greater than 255 and Adabas Version lower than 6.2.

COMPOPT LOWSRCE - Allow Lower-Case Source

where equals

a X'F8’ or X’F7’ or X'F6’

X physical file number - high order byte
bbbbb Bytes 2-6 of STOD value

c physical file number - low order byte

O GFID=abbbbbb for Adabas Version 6.2 or higher.

where equals
a X'F8 or X'F7' or X'F6’
where:

F6=UPDATE SAME
F7=HISTOGRAM
F8=all others

bbbbbbb bytes 1-7 of STOD value

Note:
STOD is the return value of the store clock machine instruction (STCK).

LOWSRCE - Allow L ower -Case Sour ce

This option supports the use of lower or mixed-case program sources on mainframe platforms. It
facilitates the transfer of programs written in mixed/lower-case characters from other platforms to a
mainframe environment.

ON Allows any kind of lower/upper-case characters in the program source.

OFF Allows upper-case mode only. This requires keywords, variable names and identifierg to be
defined in upper case. This is the default value.

When you use lower-case characters WithWSRCE=QMNonsider the following:

® The syntax rules for variable names allow lower-case characters in subsequent positions. Therefore,
you can define two variables, one written with lower-case characters and the other with upper-case
characters.

Example:

DEFINE DATA LOCAL
1 #Vari (A20)
1 #VARI (A20)

With LOWSRCE=0Fkhese variables are treated as different variables.

With LOWSRCE=0QMhe compiler isiot case sensitive and does not make a distinction between
lower/upper-case characters. This will lead to a syntax error because a duplicate definition of a
variable is not allowed.

TQMARK - Translate Quotation Mark COMPOPT

® Using the session paramekVI(Edit Mask) in an I/O statement or ilBOVE EDITEDstatement,
there are characters which influence the layout of the data setting assigned to a &iviabidr(l
characters), and characters which insert text fragments into the data setting.

Example:

#VARI :="1234567890’
WRITE #VARI (EM=XXXXXXXXXXXX)

With LOWSRCE=OFkhe output is "12345xx67890", because for alpha-format variables only
upper-case X, H and circumflex accent () sign can be used.

With LOWSRCE=0mhe output is "1234567890", because an x character is treated like an upper-case
X and, therefore, interpreted asENcontrol character for that field format. To avoid this problem,
enclose constant text fragments in apostrophes ().

Example:

WRITE #VARI(EM=XXXXX XX XXXXX)
The text fragment isot considered akEMcontrol character, regardless of tH@WSRCEettings.

® Since all variable names are converted to upper-case characterOWBRCE=QMhe display of
variable names in 1/O statemenifiSRPUT, WRITEor DISPLAY) differs.

Example:

MOVE "ABC’ to #Vari
DISPLAY #Vari

With LOWSRCE=OFEhe output is:

ABC

TOMARK - Trandate Quotation Mark

ON Each double quotation mark within a text constant is output as a single apostrophe. This is
the default value.

OFF Double quotation marks within a text constant are not translated; they are output as ¢louble
quotation marks.

Example:

COMPOPT THSEP - Dynamic Thousands Separator

RESET A(A5)

A:='AB"CD’

WRITE '12"34’ / A/ A (EM=H(5))
END

With TOQOMARK ONthe output is:

12’34
AB'CD
C1C27DC3C4

With TQOMARK OFFthe output is:

12"34
AB"CD
C1C27FC3C4

THSEP - Dynamic Thousands Separ ator

This option can be used to enable or disable the use of thousands separators at compilation time. See also
the profile and session parametétSEPCHand the sectio@ustomizing Separator Character Displays
(in theProgramming Guide).

ON Thousands separator used. Every thousands separator character that is not part of g string
literal is replaced internally with a control character.

OFF Thousands separator not used, i.e. no thousands separator control character is gengrated by
the compiler. This is the compatibility setting.

CPAGE - Code Page Support for Alphanumeric Constants

The CPAGHEoption can be used to activate a conversion routine which translates all alphanumeric
constants (from the code page that was active at compilation time into the code page that is active at
runtime) when the object is started at runtime.

See alsdCPAGE Compiler Option in theUnicode and Code Page Support documentation.

ON Code page support for alpha strings is enabled.

OFF Code page support for alpha strings is disabled. This is the default value.

DB2ARRY - Support DB2 Arraysin SQL SELECT and INSERT Statements

The DB2ARRYoption can be used to activate retrieval and/or insertion of multiple rows from/into DB2 by
a single SQLSELECTor INSERT statement execution. This allows the specification of arrays as
receiving fields in the SQEELECTand as source fields in the SQNSERT statement. IDB2ARRYs

ON it is no longer possible to use Natural alphanumeric arrays for DB2 VARCHAR/GRAPHIC columns.
Instead of these, long alphanumeric Natural variables have to be used.

ON DB2 array support is enabled.

OFF DB2 array support is not enabled. This is the default value.

10

Compilation Options for Ensuring Version Compatibility COMPOPT

CHKRULE - Validate INCDIR Statementsin Maps

The CHKRULBbption can be used to enable or disable a validation check during the catalog process for
maps.

ON INCDIR validation is enabled. If the file (DDM) or field referenced inIREDIR control
statement does not exist, syntax error NAT0721 is raised at compile time.

When a Natural map is created, you may include fields which are already defined ingide
another existing programming object. This works with nearly all kinds of objects which
allow you to define variables and also with DDMs. When the included field is a databpse
variable, it is a map editor built-in behavior to automatically add (besides the included field)
an additionalNCDIR statement in the map statement body to trigger a Predict rule upload
and incorporation when the map is compil8T QW

The function is similar to what is happening whenM@LUDE statement is processed.
However, instead of getting the source lines from a copycode object, they are receiveéd from
Predict. The search key to find the rule(s) are the DDM name (which is regarded as the file

name) and the field name. Both are indicated inN@&DIR statement. ARNCDIR rule
requested at compile time has not got to be found on Predict, as there is absolutely no
requirement for its existence. That implies, it is by no means an error situation if a seprched
rule is not found.

When fields are incorporated from a DDM into a map, the correspoid@igIR
statements are created, including the current DDM and field name as "search key" tq request
existent rules from Predict. However, if the DDM is renamed after the copy process, he old
DDM name (which is not valid anymore) still continues to be used iNG®IR
statement. This causes that no rule is loaded and the programmer is not informed aljout this.
Moreover, it is not only a DDM rename causing this situation. The more likely situatign
effecting this consequence is to have a wriebC file assigned, by any mistake. In this
case, the DDM name is valid, but it cannot be found on the current Predict system file. Then
the result is same as when the DDM does not exist at all; the processing rules suppdsed to
be added from Predict are not included.

OFF INCDIR validation is disabled. This is the default value.

Compilation Optionsfor Ensuring Version Compatibility
The following options are available:

e FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

® MASKCME - MASK Compatible with MOVE EDITED

® NMOVE22 - Assignment of Numeric Variables of Same Length and Precision

® V41COMP - Disable New Version 4.2 Syntax

These options correspond to the keyword subparameters ©MR€profile parameter and/or the
NTCMP@arameter macro.

11

COMPOPT FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

FINDMUN - Detect I nconsistent Comparison Logicin FIND Statements

With Natural Version 2.3, the comparison logic for multiple-setting fields imthieH clause of thé&IND
statement has been changed. This means that when Version 2.2 programs containing certain forms of
FIND statements are compiled under Version 3.1, they will return different results. This option can be
used to search f&fIND statements who3#&/1TH clauses use multiple-setting fields in a way that is no
longer consistent with the enhanced Version 3.1 comparison logic.

ON Error NAT0998 will be returned for eveBIND statement of such form detected at
compilation.

OFF No search for sucRIND statements will be performed. This is the default value.

The comparison logic for multiple-value fields in MBTH clause of thé&IND statement has been
changed with Natural Version 2.3 so as to be in line with the comparison logic in other statements (e.g.
IF).

Four different forms of thEIND statement can be distinguished (the fidldin the following examples
is assumed to be a multiple-value field):

1.
FIND XYZ-VIEWWITH M = ' A
With Version 2.2 and above, this statement returns records in which at least one occuvéigicasof
the value "A".

2.
FIND XYZ-VIEW WITH MJ NOT EQUAL ' A
With Version 2.2, this statement returns records in which no occurreitighzfs the value "A"
(same as 4.). With Version 2.3 and above, this statement returns records in which at least one
occurrence oMUdoes not have the value "A".

3.
FIND XYZ-VIEW WITH NOT MJ NOT EQUAL ' A
With Version 2.2, this statement returns records in whidbast one occurrence of MUhas the value
"A" (same as 1.). With Version 2.3 and above, this statement returns records irevehych
occurrence of MUhas the value "A".

4.

FIND XYZ-VIEW WITH NOT MJ = ' A

With Version 2.2 and above, this statement returns records in wiiatcurrence of MUhas the
value "A". This means that if you newly compile under Version 2.3 existing Version 2.2 programs
containingFIND statements of the forms 2. and 3., they will return different results.

If you specifyFINDMUN=ON error NAT0998 will be returned for eveRIND statement of form 2. or 3.
detected at compilation.

12

MASKCME - MASK Compatible with MOVE EDITED COMPOPT

Should you in these cases wish to continue to get the same results as with Version 2.2, you have to change
the statements as follows:

In Form 2;

FIND XYZ-VIEW WITH MJ NOT EQUAL ' A
into
FIND XYZ-VIEW WITH NOT MJ = ' A’

In Form 3:

FIND XYZ-VIEW WITH NOT MJ NOT EQUAL ' A’
into

FIND XYZ-VIEW WITH MJ = ' A

MASKCME - MASK Compatiblewith MOVE EDITED

ON The range of valid year values that match the YYYY mask characters is 1582 - 2699(to
make theVIASKoption compatible ttdOVE EDITED If the profile parametdflAXYEARS
set to 9999, the range of valid year values is 1582 - 9999.

OFF The range of valid year values that match the YYYY mask characters is 0000 - 2699 This is
the default value. If the profile paramelMAXYEARS set to 9999, the range of valid yeaf
values is 0000 - 9999.

NMOVE22 - Assignment of Numeric Variables of Same Length and Precision

ON Assignments of numeric variables where source and target have the same length ang
precision is performed as with Natural Version 2.2.

OFF Assignments of numeric variables where source and target have the same length anfd
precision is performed as with Natural Version 2.3 and above, that is they are procegsed as
if source and target would have different length or precision. This is the default value

V41COMP - Disable New Version 4.2 Syntax

Important:
This compiler option will be available only with Natural Version 4.2 to allow a smooth transition. It will
be removed again with a subsequent release of Natural after Version 4.2.

A number of functions and programming features introduced with Natural Version 4.2 would give rise to
problems when a program developed and compiled with Version 4.2 is to be recompiled for putting into
operation in a Version 4.1 environment. The relevant functions or features arbdisted

TheV41COMPoption has been provided to detect such incompatibilities and trigger an error message that
supplies a reason code for why the recompilation failed. The following values are possible:

13

COMPOPT

V41COMP - Disable New Version 4.2 Syntax

ON When a program is compiled under Version 4.2, every attempt to use a syntax const
that is supported by Version 4.2, but not by Version 4.1, is rejected AT @647 syntax
error and a corresponding reason code ljsémn) will be output.

OFF A test for Version 4.1 compatibility is not performed. This is the default value.

Compilation Relevant Differences between Version 4.2 and 4.1

uction

The following table gives an overview of the compilation relevant differences between Version 4.2 and

4.1 and indicates the reason code that will be supplied when incompatible syntax is detected:

® session paramet@PCVERR=0ON/OFF

® allowed when in structured modeNI=0O\

Function or Feature Version 4.2 Version 4.1 Reason Code
New format U (Unicode) possible unknown 001
Array with variable number of occurences possible unknown 002
X-array, for example:
DEFINE DATA LOCAL
1 #ARR (A10/1:¥)
Possible length of alpha and literals (constants| 1 byte - 1 GB |1 byte - 253 003
bytes
(NATO0264)
New compiler parameters: possible unknown 004
THSEP Thousands separator character in
edit mask
CPAGE Make alphunmeric constants
sensitive for code page translation

New statements: possible unknown 005
MOVE NORMALIZED
MOVE ENCODED
PARSE
REQUEST DOCUMENT
EXPAND / REDUCE / RESIZE ARRAY
StatemenSET GLOBALS possible unknown 006

14

V41COMP - Disable New Version 4.2 Syntax

COMPOPT

Function or Feature

Version 4.2

Version 4.1

Reason Code

New system variables:

*PARSE-COL
*PARSE-LEVEL
*PARSE-NAMESPACE-URI
*PARSE-ROW
*PARSE-TYPE
*CODEPAGE
*LOCALE

*TYPE
*CURRENT-UNIT
*UBOUND
*LBOUND

possible

unknown

007

Not used

008

with INCLUDE

Example:

INCLUDE COPYO01 '"WRITE *LINE’
'WRITE *PROGRAM’

Length and type of source parameters supplieg

any length and
formatU
(Unicode)
allowed

only alpha with
a length of
max. 80 bytes

009

e of typeDYNAMIC

Definition of an Adabas LA-field in a data view

e with a size greater than 253 bytes or

possible

unknown

010

15

	COMPOPT
	Syntax Explanation
	Specifying Compiler Keyword Parameters
	General Compilation Options
	KCHECK - Keyword Checking
	PCHECK - Parameter Checking for Object Calling Statements
	DBSHORT - Interpretation of Database Short Field Names
	Examples:

	PSIGNF - Internal Representation of Positive Sign of Packed Numbers
	TSENABL - Applicability of TS Profile Parameter
	GFID - Generation of Global Format IDs
	Rules for Generating GLOBAL FORMAT-IDs in Natural

	LOWSRCE - Allow Lower-Case Source
	TQMARK - Translate Quotation Mark
	THSEP - Dynamic Thousands Separator
	CPAGE - Code Page Support for Alphanumeric Constants
	DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements
	CHKRULE - Validate INCDIR Statements in Maps

	Compilation Options for Ensuring Version Compatibility
	FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
	In Form 2:
	In Form 3:

	MASKCME - MASK Compatible with MOVE EDITED
	NMOVE22 - Assignment of Numeric Variables of Same Length and Precision
	V41COMP - Disable New Version 4.2 Syntax
	Compilation Relevant Differences between Version 4.2 and 4.1

