
FIND
FIND ALL

(operand1)
FIRST
NUMBER
UNIQUE

[MULTI-FETCH-clause] [RECORDS] [IN] [FILE] view-name

 [PASSWORD=operand2]

 [CIPHER=operand3]

 [WITH] [[LIMIT] (operand4)] basic-search-criterion

 [COUPLED-clause] 4/42

 [STARTING WITH ISN= operand5]

 [SORTED-BY-clause]

 [RETAIN-clause]

 [WHERE-clause]

 [IF-NO-RECORDS-FOUND-clause]

 statement

END-FIND (structured mode only)

[LOOP] (reporting mode only)

This chapter covers the following topics:

Function

Restrictions

Syntax Description

Examples

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA |
BACKOUT TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION |
FIND | GET | GET SAME | GET TRANSACTION | HISTOGRAM | LIMIT | PASSW | PERFORM
BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

1

FINDFIND

Function
The FIND statement is used to select a set of records from the database based on a search criterion
consisting of fields defined as descriptors (keys).

This statement causes a processing loop to be initiated and then executed for each record selected. Each
field in each record may be referenced within the processing loop. It is not necessary to issue a READ
statement following the FIND in order to reference the fields within each record selected.

See also FIND Statement (in the Programming Guide).

Database-Specific Considerations

DL/I When accessing a field starting after the last byte of the given segment
occurrence, the storage copy of this field is filled according to its format
(numeric, blank, etc.). The term segment occurrences should be substituted for
the term records as used in this description of the FIND statement.

VSAM The FIND statement is only valid for key-sequenced (KSDS) and
entry-sequenced (ESDS) VSAM datasets. For ESDS, an alternate index for
the base cluster must be defined.

SQL FIND FIRST as well as the PASSWORD, CIPHER, COUPLED and RETAIN
clauses are not permitted.

FIND UNIQUE is not permitted. (Exception: FIND UNIQUE can be used for
primary keys; however, this is only permitted for compatibility reasons and
should not be used.)

The SORTED BY clause corresponds with the SQL clause ORDER BY.

The basic search criterion for an SQL-database table may be specified in the
same manner as for an Adabas file. The term record used in this context
corresponds with the SQL term "row".

System Variables with the FIND Statement

The Natural system variables *ISN , *NUMBER, and *COUNTER are automatically created for each FIND
statement issued. A reference number must be supplied if the system variable was referenced outside the
current processing loop or through a FIND UNIQUE , FIND FIRST , or FIND NUMBER statement. The
format/length of each of these system variables is P10; this format/length cannot be changed.

2

FunctionFIND

*ISN Adabas *ISN contains the Adabas internal
sequence number (ISN) of the record
currently being processed. *ISN is not
available for the FIND NUMBER
statement.

VSAM See *ISN for VSAM in the System
Variables documentation.

DL/I and SQL *ISN is not available.

Entire System Server *ISN is not available.

*NUMBER Adabas *NUMBER contains the number of
records which satisfied the basic search
criterion specified in the WITH clause.

VSAM See *NUMBER for VSAM in the System
Variables documentation.

DL/I See *NUMBER for DL/I in the System
Variables documentation.

Entire System Server *NUMBER is not available.

*COUNTER The system variable *COUNTER contains the number of times the processing
loop has been entered.

See also Example 13 - Using System Variables with the FIND Statement.

Issuing Multiple FIND Statements

Multiple FIND statements may be issued to create nested loops whereby an inner loop is entered for each
record selected in the outer loop.

See also Example 14 - Multiple FIND Statements.

Restrictions
With Entire System Server, FIND NUMBER and FIND UNIQUE as well as the PASSWORD, CIPHER,
COUPLED and RETAIN clauses are not permitted.

Syntax Description
Operand Definition Table:

3

FINDRestrictions

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S N P I B* yes no

operand2 C S A yes no

operand3 C S N yes no

operand4 C S N P I B* yes no

operand5 C S N P I B* yes no

* Format B of operand1, operand4 and operand5 may be used only with a length of less than or equal to
4.

Syntax Element Description:

ALL/ operand1 Processing Limit:

The number of records to be processed from the selected set
may be limited by specifying operand1 either as a numeric
constant (in the range from 0 to 4294967295) or as the name of
a numeric variable enclosed in parentheses.

ALL may be optionally specified and emphasizes that all
selected records are to be processed.

If you specify a limit with operand1, this limit applies to the
FIND loop being initiated. Records rejected for processing by
the WHERE clause are not counted against this limit.

FIND (5) IN EMPLOYEES WITH ...

MOVE 10 TO #CNT(N2)
FIND (#CNT) EMPLOYEES WITH ...

For this statement, the specified limit has priority over a limit
set with a LIMIT statement.

If a smaller limit is set with the LT parameter, the LT limit
applies.

Notes:

1. If you wish to process a 4-digit number of records, specify
it with a leading zero: (0nnnn); because Natural interprets
every 4-digit number enclosed in parentheses as a
line-number reference to a statement.

2. operand1 has no influence on the size of an ISN set that is
to be retained by a RETAIN clause. operand1 is evaluated
when the FIND loop is entered. If the value of operand1 is
modified within the FIND loop, this does not affect the
number of records processed.

4

Syntax DescriptionFIND

FIND FIRST | FIND NUMBER |
FIND UNIQUE

These options are used

to select the first record of a selected set (see FIND
FIRST),

to determine the number of records in a selected set (see
FIND NUMBER), or

to ensure that only one record satisfies a selection criterion
(see FIND UNIQUE).

For a detailed description of these options, see below.

MULTI-FETCH-clause For Adabas databases, Natural offers a MULTI-FETCH clause,
that allows one to read more than one record per database
access. For further information, see MULTI-FETCH Clause.

view-name The name of a view as defined either within a DEFINE DATA
block or in a separate global or local data.

In reporting mode, view-name is the name of a DDM if no
DEFINE DATA LOCAL statement is used.

PASSWORD=operand2 PASSWORD Clause:

The PASSWORD clause applies only for Adabas or VSAM
databases. This clause is not permitted with Entire System
Server.

The PASSWORD clause is used to provide a password
(operand2) when reading/writing data from an Adabas or
VSAM file which is password protected. If you require access
to a password-protected file, contact the person responsible for
database security concerning password usage/assignment.

If the password is specified as a constant, the PASSWORD
clause should always be coded at the very beginning of a
source-code line; and there should be no blank between the
keyword PASSWORD and the equal sign; this ensures that the
password is not visible/displayable in the source code of the
program.

In TP mode, you may enter the PASSWORD clause invisible by
entering the terminal command %* before you type in the
PASSWORD clause.

If the PASSWORD clause is omitted, the default password
specified with the PASSW statement applies.

The password value must not be changed during the execution
of a processing loop.

See also Example 1 - PASSWORD Clause.

5

FINDSyntax Description

CIPHER=operand3 CIPHER Clause :

The CIPHER clause only applies to Adabas databases. This
clause is not permitted with Entire System Server.

The CIPHER clause is used to provide a cipher key (operand3)
when retrieving data from Adabas files which are enciphered.
If you require access to an enciphered file, contact the person
responsible for database security concerning cipher key
usage/assignment.

The cipher key may be specified as a numeric constant with 8
digits or as a user-defined variable with format/length N8.

If the cipher key is specified as a constant, the CIPHER clause
should always be coded at the very beginning of a source-code
line; this ensures that the cipher key is not visible/displayable
in the source code of the program. In TP mode, you may enter
the CIPHER clause invisible by entering the Natural terminal
command %* before you type in the CIPHER clause.

The value of the cipher key must not be changed during the
processing of a loop initiated by a FIND statement.

See also Example 2 - CIPHER Clause.

6

Syntax DescriptionFIND

WITH LIMIT operand4
basic-search-criterion

WITH Clause:

The WITH clause is required. It is used to specify the
basic-search-criterion (see Search Criterion for Adabas
Files) consisting of key fields (descriptors) defined in the
database.

The following database-specific considerations apply:

For
Adabas
files:

You may use Adabas descriptors,
subdescriptors, superdescriptors,
hyperdescriptors, and phonetic descriptors
within a WITH clause. A non-descriptor (that
is, a field marked in the DDM with N) can also
be specified.

For DL/I
files:

You may only use key fields marked with D in
the DDM.

For
VSAM
files:

You may use VSAM key fields only.

The number of records to be selected as a result of a WITH
clause may be limited by specifying the keyword LIMIT
together with a numeric constant or a user-defined variable,
enclosed within parentheses, which contains the limit value
(operand4). If the number of records selected exceeds the
limit, the program will be terminated with an error message.

Note:
If the limit is to be a 4-digit number, specify it with a
leading zero: (0nnnn); because Natural interprets every
4-digit number enclosed in parentheses as a line-number
reference to a statement.

COUPLED-clause This clause may be used used to specify a search which
involves the use of the Adabas coupling facility. See
COUPLED Clause.

STARTING WITH ISN= operand5 This clause may be used for repositioning within a FIND loop
whose processing has been interrupted. See STARTING WITH
Clause.

SORTED-BY-clause This clause may be used to cause Adabas to sort the selected
records based on the sequence of one to three descriptors. See
SORTED BY Clause.

RETAIN-clause This clause may be used to retain the result of an extensive
search in large files for further processing. See RETAIN Clause.

WHERE-clause This clause may be used to specify an additional selection
criterion (logical-condition). See WHERE Clause.

7

FINDSyntax Description

IF-NO-RECORDS-FOUND-clause This clause may be used to cause a processing loop initiated
with a FIND statement to be entered in the event that no
records meet the selection criteria specified in the WITH clause
and the WHERE clause. See IF NO RECORDS FOUND Clause.

END-FIND The Natural reserved keyword END-FIND must be used to end
the FIND statement.

FIND FIRST

The FIND FIRST statement may be used to select and process the first record which meets the WITH
and WHERE criteria.

For Adabas databases, the record processed will be the record with the lowest Adabas ISN from the set of
qualifying records.

This statement does not initiate a processing loop.

Restrictions

FIND FIRST can only be used in reporting mode.

FIND FIRST is not available for DL/I and SQL databases.

The IF NO RECORDS FOUND clause must not be used in a FIND FIRST statement.

System Variables with FIND FIRST

The following Natural system variables are available with the FIND FIRST statement:

*ISN The system variable *ISN contains the Adabas ISN of the selected record. *ISN will
be zero if no record is found after the evaluation of the WITH and WHERE criteria.

*ISN is not available for VSAM databases or with Entire System Server.

*NUMBER The system variable *NUMBER contains the number of records found after the
evaluation of the WITH criterion and before evaluation of any WHERE criterion.
*NUMBER will be zero if no record meets the WITH criterion.

*NUMBER is not available with Entire System Server.

*COUNTER The system variable *COUNTER contains 1 if a record was found; contains 0 if no
record was found.

Example of FIND FIRST Statement: See the Program FNDFIR (reporting mode)

FIND NUMBER

The FIND NUMBER statement is used to determine the number of records which satisfy the
WITH/WHERE criteria specified. It does not result in the initiation of a processing loop and no data fields
from the database are made available.

8

FIND FIRSTFIND

Note:
Use of the WHERE clause may result in significant overhead.

Restrictions

The SORTED BY clause and the IF NO RECORDS FOUND clause must not be used with the FIND
NUMBER statement.

The WHERE clause cannot be used in structured mode.

FIND NUMBER is not available for DL/I databases or with Entire System Server.

System Variables with FIND NUMBER

The following Natural system variables are available with the FIND NUMBER statement:

*NUMBER The system variable *NUMBER contains the number of records found after the
evaluation of the WITH criterion.

*COUNTER The system variable *COUNTER contains the number of records found after the
evaluation of the WHERE criterion.

*COUNTER is only available if the FIND NUMBER statement contains a WHERE
clause.

Example for FIND NUMBER: See the Program FNDNUM (reporting mode).

FIND UNIQUE

The FIND UNIQUE statement may be used to ensure that only one record is selected for processing. It
does not result in the initiation of a processing loop. If a WHERE clause is specified, an automatic internal
processing loop is created to evaluate the WHERE clause.

If no records or more than one record satisfy the criteria, an error message will be issued. This condition
can be tested with the ON ERROR statement.

System Variables with FIND UNIQUE

*ISN The system variable *ISN contains the unique ISN number of the record, which itself
must be unique.

*NUMBER The system variable *NUMBER always contains 1 for a valid FIND UNIQUE
execution.

*NUMBER may contain any other positive value (=0 or >= 2) if an error has occurred.
This error condition may be used by the ON ERROR statement. *NUMBER is not
allowed if the WHERE clause is missing.

*COUNTER The system variable *COUNTER contains the number of records found after the
evaluation of the WHERE criterion. *COUNTER is not allowed if the WHERE clause is
missing.

9

FINDSystem Variables with FIND NUMBER

Restrictions with FIND UNIQUE

FIND UNIQUE can only be used in reporting mode.

FIND UNIQUE is not available for DL/I databases or with Entire System Server.

For SQL databases, FIND UNIQUE cannot be used. (Exception: On mainframe computers, FIND
UNIQUE can be used for primary keys; however, this is only permitted for compatibility reasons and
should not be used.)

The SORTED BY and IF NO RECORDS FOUND clauses must not be used with the FIND
UNIQUE statement.

Example for FIND UNIQUE : See the Program FNDUNQ (reporting mode).

MULTI-FETCH Clause

Note:
This clause can only be used for Adabas or DB2 databases.

MULTI-FETCH ON
OFF
OF multi-fetch-factor

For more information, see the section Multi-Fetch Clause (Adabas) in the Programming Guide or
Multiple Row Processing (SQL) in the Natural for DB2 part in the Database Managment System
Interfaces documentation.

Search Criterion for Adabas Files

10

MULTI-FETCH ClauseFIND

1 descriptor [(i)] EQ
=
EQUAL
EQUAL TO

value OR EQ
=
EQUAL
EQUAL TO

value

THRU value [BUT NOT value [THRU value]]

2 descriptor [(i)] EQ
=
EQUAL
EQUAL TO
NE

 =
<>
NOT =
NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL TO
LT
LESS THAN
<
GE
GREATER EQUAL
>=
NOT <
NOT LT
GREATER THAN
>
LE
LESS EQUAL
<=
NOT >
NOT GT

value

3 set-name

Operand Definition Table:

11

FINDSearch Criterion for Adabas Files

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

descriptor S A A N P I F B D T L no no

value C S A N P I F B D T L yes no

set-name C S A no no

Syntax Element Description:

descriptor Adabas descriptor, subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor.
A field marked as non-descriptor in the DDM can also be specified.

(i) A descriptor contained within a periodic group may be specified with or without an index.
If no index is specified, the record will be selected if the value specified is located in any
occurrence. If an index is specified, the record is selected only if the value is located in the
occurrence specified by the index. The index specified must be a constant. An index range
must not be used.

No index must be specified for a descriptor which is a multiple-value field. The record
will be selected if the value is located in the record regardless of the position of the value.

value Search value. The formats of the descriptor and the search value must be compatible.

set-name Identifies a set of records previously selected with a FIND statement in which the
RETAIN clause was specified. The set referenced in a FIND must have been created from
the same physical Adabas file. set-name may be specified as a text constant (maximum 32
characters) or as the content of an alphanumeric variable. set-name cannot be used with
Entire System Server.

See also:

Example 3 - Basic Search Criterion in WITH Clause

Example 4 - Basic Search Criterion with Multiple-Value Field

Search Criterion with Null Indicator

null-indicator =
EQ
EQUAL
[TO]

value

Operand Definition Table:

12

Search Criterion for Adabas FilesFIND

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

null-indicator S I no no

value C S N P I F B yes no

Syntax Element Description:

null-indicator The null indicator.

value Possible Value:

-1 The corresponding field contains no value.

0 The corresponding field does contain a value.

Connecting Search Criteria (for Adabas Files)

Basic-search-criteria can be combined using the Boolean operators AND, OR, and NOT. Parentheses
may also be used to control the order of evaluation. The order of evaluation is as follows:

1. (): Parentheses

2. NOT: Negation (only for a basic-search-criterion of form [2]).

3. AND: AND connection

4. OR: OR connection

Basic-search-criteria may be connected by logical operators to form a complex search-expression. The
syntax for such a complex search-expression is as follows:

[NOT] basic-search-criterion
(search-expression)

OR
AND

search-expression

See also Example 5 - Various Samples of Complex Search Expression in WITH Clause.

Descriptor-Key Usage

Adabas users may use database fields which are defined as descriptors to construct basic search criteria.

Subdescriptors, Superdescriptors, Hyperdescriptors and Phonetic Descriptors

With Adabas, subdescriptors, superdescriptors, hyperdescriptors and phonetic descriptors may be used to
construct search criteria.

A subdescriptor is a descriptor formed from a portion of a field.

A superdescriptor is a descriptor whose value is formed from one or more fields or portions of fields.

13

FINDSearch Criterion for Adabas Files

A hyperdescriptor is a descriptor which is formed using a user-defined algorithm.

A phonetic descriptor is a descriptor which allows the user to perform a phonetic search on a field
(for example, a person’s name). A phonetic search results in the return of all values which sound similar to
the search value.

Which fields may be used as descriptors, subdescriptors, superdescriptors, hyperdescriptors and phonetic
descriptors with which file is defined in the corresponding DDM.

Values for Subdescriptors, Superdescriptors, Phonetic Descriptors

Values used with these types of descriptors must be compatible with the internal format of the descriptor.
The internal format of a subdescriptor is the same as the format of the field from which the subdescriptor
is derived. The internal format of a superdescriptor is binary if all of the fields from which it is derived are
defined with numeric format; otherwise, the format is alphanumeric. Phonetic descriptors always have
alphanumeric format.

Values for subdescriptors and superdescriptors may be specified in the following ways:

Numeric or hexadecimal constants may be specified. A hexadecimal constant must be used for a
value for a superdescriptor which has binary format (see above).

Values in user-defined variable fields may be specified using the REDEFINE statement to select the
portions that form the subdescriptor or superdescriptor value.

Using Descriptors Contained within a Database Array

A descriptor which is contained within a database array may also be used in the construction of basic
search criterion. For Adabas databases, such a descriptor may be a multiple-value field or a field contained
within a periodic group.

A descriptor contained within a periodic group may be specified with or without an index. If no index is
specified, the record will be selected if the value specified is located in any occurrence. If an index is
specified, the record is selected only if the value is located in the occurrence specified by the index. The
index specified must be a constant. An index range must not be used.

No index must be specified for a descriptor which is a multiple-value field. The record will be selected if
the value is located in the record regardless of the position of the value.

See also Example 6 - Various Samples Using Database Arrays.

Search Criterion for VSAM Files - basic-search-criterion

14

Search Criterion for VSAM Files - basic-search-criterionFIND

1 descriptor EQ
=

EQUAL
EQUAL TO

NE
 =

<>
NOT =

NOT EQ
NOTEQUAL

NOT EQUAL
NOT EQUAL TO

LT
LESS THAN

<
GE

GREATER EQUAL
>=

NOT <
NOT LT

GT
GREATER THAN

>
LE

LESS EQUAL
<=

NOT >
NOT GT

value

2 descriptor EQ
=
EQUAL
EQUAL TO

value THRU value

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

descriptor S A A N P B no no

value C S A N P B yes no

Syntax Element Description:

15

FINDSearch Criterion for VSAM Files - basic-search-criterion

descriptor The descriptor must be defined in a VSAM file as a VSAM key field and is marked in the
DDM with P for primary key or A for alternate key.

value The search value.

The formats of the descriptor and the search value must be compatible.

Search Criterion for DL/I Files - basic-search-criterion

1 descriptor EQ
=

EQUAL
EQUAL TO

NE
 =

<>
NOT =

NOT EQ
NOTEQUAL

NOT EQUAL
NOT EQUAL TO

LT
LESS THAN

<
GE

GREATER EQUAL
>=

NOT <
NOT LT

GT
GREATER THAN

>
LE

LESS EQUAL
<=

NOT >
NOT GT

value

2 descriptor EQ
=
EQUAL
EQUAL TO

value THRU value [BUT NOT value]

Operand Definition Table:

16

Search Criterion for DL/I Files - basic-search-criterionFIND

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

descriptor S A A N P B no no

value C S A N P B yes no

Syntax Element Description:

descriptor The descriptor must be a field defined in DL/I and is marked in the DDM with D.

value The search value.

For HDAM databases, only the following basic-search-criterion is possible:

descriptor EQ
=
EQUAL
[TO]

value

Connecting Search Criteria - for DL/I Files

[NOT] basic-search-criterion
(search-expression)

OR
AND

search-expression

basic-search-criteria that refer to different segment types must not be connected with the OR logical
operator.

Examples:

FIND COURSE WITH COURSEN > 1
FIND COURSE WITH COURSEN > 1 AND COURSEN < 100
FIND OFFERING WITH (COURSEN-COURSE > 1 OR TITLE-COURSE = ’Natural’)
 AND LOCATION = ’DARMSTADT’

Invalid example:

FIND OFFERING WITH COURSEN-COURSE > 1 OR LOCATION = ’DARMSTADT’

COUPLED Clause

This clause only applies to Adabas databases.

This clause is not permitted with Entire System Server.

17

FINDCOUPLED Clause

AND
OR

COUPLED [TO] [FILE] view-name

 VIA descriptor1 EQ
=
EQUAL
EQUAL TO

descriptor2

 [WITH] basic-search-criteria

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

descriptor1 S A A N P B no no

descriptor2 S A A N P B no no

Note:
Without the VIA clause, the COUPLED clause may be specified up to 4 times; with the VIA clause, it may
be specified up to 42 times.

The COUPLED clause is used to specify a search which involves the use of the Adabas coupling facility.
This facility permits database descriptors from different files to be specified in the search criterion of a
single FIND statement.

The same Adabas file must not be used in two different FIND COUPLED clauses within the same FIND
statement.

A set-name (see RETAIN Clause) must not be specified in the basic-search-criteria .

Database fields in a file specified within the COUPLED clause are not available for subsequent reference
in the program unless another FIND or READ statement is issued separately against the coupled file.

Note:
If the COUPLED clause is used, the main WITH clause may be omitted. If the main WITH clause is
omitted, the keywords AND/OR of the COUPLED clause must not be specified.

Physical Coupling without VIA Clause

The files used in a COUPLED clause without VIA must be physically coupled using the appropriate
Adabas utility (as described in the Adabas documentation).

See also Example 7 - Using Physically Coupled Files.

The reference to NAME in the DISPLAY statement of the above example is valid since this field is
contained in the EMPLOYEES file, whereas a reference to MAKE would be invalid since MAKE is
contained in the VEHICLES file, which was specified in the COUPLED clause.

18

COUPLED ClauseFIND

In this example, records will be found only if EMPLOYEES and VEHICLES have been physically
coupled.

Logical Coupling - VIA Clause

The option VIA descriptor1 = descriptor2 allows you to logically couple multiple Adabas
files in a search query, where:

descriptor1 is a field from the first view.

descriptor2 is a field from the second view.

The two files need not be physically coupled in Adabas. This COUPLED option uses the soft-coupling
feature of Adabas Version 5 and above, as described in the Adabas documentation.

See also Example 8 - VIA Clause.

STARTING WITH Clause

This clause applies only to Adabas and VSAM databases; for VSAM, it is only valid for ESDS.

You can use this clause to specify as operand5 an Adabas ISN (internal sequence number) or VSAM
RBA (relative byte address) respectively, which is to be used as a start value for the selection of records.

This clause may be used for repositioning within a FIND loop whose processing has been interrupted, to
easily determine the next record with which processing is to continue. This is particularly useful if the
next record cannot be identified uniquely by any of its descriptor values. It can also be useful in a
distributed client/server application where the reading of the records is performed by a server program
while further processing of the records is performed by a client program, and the records are not processed
all in one go, but in batches.

Note:
The start value actually used will not be the value of operand5, but the next higher value.

Example:

See the program FNDSISN in the library SYSEXSYN.

SORTED BY Clause

This clause only applies to Adabas and SQL databases.

This clause is not permitted with Entire System Server.

SORTED [BY] descriptor 3 [DESCENDING]

The SORTED BY clause is used to cause Adabas to sort the selected records based on the sequence of one
to three descriptors. The descriptors used for controlling the sort sequence may be different from those
used for selection.

19

FINDSTARTING WITH Clause

By default, the records are sorted in ascending sequence of values; if you want them to be in descending
sequence, specify the keyword DESCENDING. The sort is performed using the Adabas inverted lists and
does not result in any records being read.

Note:
The use of this clause may result in significant overhead if any descriptor used to control the sort sequence
contains a large number of values. This is because the entire value list may have to be scanned until all
selected records have been located in the list. When a large number of records is to be sorted, you should
use the SORT statement.

Adabas sort limits (see the ADARUN LS parameter in the Adabas documentation) are in effect when the
SORTED BY clause is used.

A descriptor which is contained in a periodic group must not be specified in the SORTED BY clause. A
multiple-value field (without an index) may be specified.

Non-descriptors may also be specified in the SORTED BY clause. However, this function is not available
on mainframes.

If the SORTED BY clause is used, the RETAIN clause must not be used.

See also Example 9 - SORTED BY Clause.

Considerations for Combined Use of STARTING WITH and SORTED BY
Clauses

If both the STARTING WITH and the SORTED BY clause are used in the same FIND statement and the
underlying database is Adabas, the following should be considered.

With Adabas for Mainframes

On Adabas for Mainframes, the FIND statement is executed in the following steps:

1. All records matching the search criterion are gathered and put in ISN sequence.

2. The records are sorted by the descriptor specified in the SORTED BY clause.

3. The record whose ISN value is specified in the STARTING WITH clause is positioned in the
"sorted-by-descriptor" record list.

4. The records following the record found under Step 3 are returned in the FIND loop.

With Adabas for OpenSystems

On Adabas for OpenSystems (UNIX, OpenVMS, Windows) the same statement is executed as follows:

1. All records matching the search criterion are gathered and put in ISN sequence.

2. The record whose ISN value is specified in the STARTING WITH clause is positioned in the
"sorted-by-ISN" record list.

20

Considerations for Combined Use of STARTING WITH and SORTED BY ClausesFIND

3. All records following the record found under Step 2 are sorted by the descriptor specified in the
SORTED BY clause and returned in the FIND loop.

Example:

If the following program is executed with Adabas Version 8 for mainframes and Adabas Version 6.1 for
UNIX/OpenVMS/Windows:

DEFINE DATA LOCAL
1 V1 VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
1 #ISN (I4)
END-DEFINE
FORMAT NL=5 SG=OFF PS=43 AL=15
*
PRINT ’FIND’ (I)
FIND V1 WITH NAME = ’B’ THRU ’BALBIN’
 RETAIN AS ’SET1’
 IF *COUNTER = 4 THEN
 #ISN := *ISN
 END-IF
 DISPLAY *ISN V1
END-FIND
*
PRINT / ’FIND .. SORTED BY NAME’ (I)
FIND V1 WITH ’SET1’
 SORTED BY NAME
 DISPLAY *ISN V1
END-FIND
*
PRINT / ’FIND .. STARTING WITH ISN = ’ (I) #ISN (AD=I)
FIND V1 WITH ’SET1’
 STARTING WITH ISN = #ISN
 DISPLAY *ISN V1
END-FIND
*
PRINT / ’FIND .. STARTING WITH ISN = ’ (I) #ISN (AD=I)
 ’ .. SORTED BY NAME’ (I)
FIND V1 WITH ’SET1’
 STARTING WITH ISN = #ISN
 SORTED BY NAME
 DISPLAY *ISN V1
END-FIND
END

The result is as follows:

21

FINDConsiderations for Combined Use of STARTING WITH and SORTED BY Clauses

Results on Natural for Mainframes (Adabas Version 8) Results on Natural for OpenSystems (Adabas Version 6.1)

ISN NAME FIRST-NAME CITY
----- --------------- --------------- ---------------

FIND V1 WITH NAME = ’B’ THRU ’BALBIN’
 12 BAILLET PATRICK LYS LEZ LANNOY
 58 BAGAZJA MARJAN MONTHERME
 351 BAECKER JOHANNES FRANKFURT
 355 BAECKER KARL SINDELFINGEN
 370 BACHMANN HANS MUENCHEN
 490 BALBIN ENRIQUE BARCELONA
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY

FIND .. SORTED BY NAME
 370 BACHMANN HANS MUENCHEN
 351 BAECKER JOHANNES FRANKFURT
 355 BAECKER KARL SINDELFINGEN
 58 BAGAZJA MARJAN MONTHERME
 12 BAILLET PATRICK LYS LEZ LANNOY
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY
 490 BALBIN ENRIQUE BARCELONA

FIND .. STARTING WITH ISN = 355
 370 BACHMANN HANS MUENCHEN
 490 BALBIN ENRIQUE BARCELONA
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY

FIND .. STARTING WITH ISN = 355 .. SORTED BY NAME
 58 BAGAZJA MARJAN MONTHERME
 12 BAILLET PATRICK LYS LEZ LANNOY
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY
 490 BALBIN ENRIQUE BARCELONA

ISN NAME FIRST-NAME CITY
----- --------------- --------------- ---------------

FIND V1 WITH NAME = ’B’ THRU ’BALBIN’
 12 BAILLET PATRICK LYS LEZ LANNOY
 58 BAGAZJA MARJAN MONTHERME
 351 BAECKER JOHANNES FRANKFURT
 355 BAECKER KARL SINDELFINGEN
 370 BACHMANN HANS MUENCHEN
 490 BALBIN ENRIQUE BARCELONA
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY

FIND .. SORTED BY NAME
 370 BACHMANN HANS MUENCHEN
 351 BAECKER JOHANNES FRANKFURT
 355 BAECKER KARL SINDELFINGEN
 58 BAGAZJA MARJAN MONTHERME
 12 BAILLET PATRICK LYS LEZ LANNOY
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY
 490 BALBIN ENRIQUE BARCELONA

FIND .. STARTING WITH ISN = 355
 370 BACHMANN HANS MUENCHEN
 490 BALBIN ENRIQUE BARCELONA
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY

FIND .. STARTING WITH ISN = 355 .. SORTED BY NAME
 370 BACHMANN HANS MUENCHEN
 650 BAKER SYLVIA OAK BROOK
 913 BAKER PAULINE DERBY
 490 BALBIN ENRIQUE BARCELONA

A FIND statement with at most one of these options (SORTED BY or STARTING WITH ISN) always
returns the same records in the same sequence, regardless under which system the statement is executed.
If, however, both clauses are used together, the result returned dependends on which Adabas platform is
used to serve the database statement.

Therefore, if a Natural program is intended to be used on multiple platforms, the combination of a
SORTED BY and STARTING WITH ISN clause in the same FIND statement should be avoided.

RETAIN Clause

This clause only applies to Adabas databases.

This clause is not permitted with Entire System Server.

RETAIN AS operand6

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand6 C S A yes no

22

RETAIN ClauseFIND

Syntax Element Description:

RETAIN
AS

By using the RETAIN clause, the result of an extensive search in large files can be
retained for further processing.

The selection is retained as an ISN-set in the Adabas work file. The set may be used
in subsequent FIND statements as a basic search criterion for further refinement of the
set or for further processing of the records.

The set created is file-specific and may only be used in another FIND statement that
processes the same file. The set may be referenced by any Natural program.

operand6 Set Name:

The set name is used to identify the record set. It may be specified as an alphanumeric
constant or as the content of an alphanumeric user-defined variable. Duplicate set
names are not checked; consequently, if a duplicate set name is specified, the new set
replaces the old set.

See also Example 10 - RETAIN Clause.

Releasing Sets

There is no specific limit for the number of sets that can be retained or the number of ISNs in a set. It is
recommended that the minimum number of ISN sets needed at one time be defined. Sets that are no longer
needed should be released using the RELEASE SETS statement.

If they are not released with a RELEASE statement, retained sets exist until the end of the Natural session,
or until a logon to another library, when they are released automatically. A set created by one program
may be referenced by another program for processing or further refinement using additional search
criteria.

Updates by Other Users

The records identified by the ISNs in a retained set are not locked against access and/or update by other
users. Before you process records from the set, it is therefore useful to check whether the original search
criteria which were used to create the set are still valid: This check is done with another FIND statement,
using the set name in the WITH clause as basic search criterion and specifying in a WHERE clause the
original search criterion (that is, the basic search criteria as specified in the WITH clause of the FIND
statement which was used to create the set).

Restriction

If the RETAIN clause is used, the SORTED BY clause must not be used.

WHERE Clause

WHERE logical-condition

23

FINDWHERE Clause

The WHERE clause may be used to specify an additional selection criterion (logical-condition) which is
evaluated after a value has been read and before any processing is performed on the value (including the
AT BREAK evaluation).

The syntax for a logical-condition is described in the section Logical Condition Criteria (in the
Programming Guide).

If a processing limit is specified in a FIND statement containing a WHERE clause, records which are
rejected as a result of the WHERE clause are not counted against the limit. These records are, however,
counted against a global limit specified in the Natural session parameter LT, the GLOBALS command, or
LIMIT statement.

See also Example 11 - WHERE Clause.

IF NO RECORDS FOUND Clause

Structured Mode Syntax

IF NO [RECORDS] [FOUND]

 ENTER
statement

END-NOREC

Reporting Mode Syntax

IF NO [RECORDS] [FOUND]

ENTER
statement
DO statement DOEND

The IF NO RECORDS FOUND clause may be used to cause a processing loop initiated with a FIND
statement to be entered in the event that no records meet the selection criteria specified in the WITH clause
and the WHERE clause.

If no records meet the specified WITH and WHERE criteria, the IF NO RECORDS FOUND clause causes
the FIND processing loop to be executed once with an "empty" record. If this is not desired, specify the
statement ESCAPE BOTTOM within the IF NO RECORDS FOUND clause.

If one or more statements are specified with the IF NO RECORDS FOUND clause, the statements will be
executed immediately before the processing loop is entered. If no statements are to be executed before
entering the loop, the keyword ENTER must be used.

See also Example 12 - IF NO RECORDS FOUND Clause.

24

IF NO RECORDS FOUND ClauseFIND

Database Values

Unless other value assignments are made in the statements accompanying an IF NO RECORDS FOUND
clause, Natural will reset to empty all database fields which reference the file specified in the current loop.

Evaluation of System Functions

Natural system functions are evaluated once for the empty record that is created for processing as a result
of the IF NO RECORDS FOUND clause.

Restriction

This clause cannot be used with FIND FIRST , FIND NUMBER and FIND UNIQUE .

Examples
Example 1 - PASSWORD Clause

Example 2 - CIPHER Clause

Example 3 - Basic Search Criterion in WITH Clause

Example 4 - Basic Search Criterion with Multiple-Value Field

Example 5 - Various Samples of Complex Search Expression in WITH Clause

Example 6 - Various Samples of Using Database Arrays

Example 7 - Using Physically Coupled Files

Example 8 - VIA Clause

Example 9 - SORTED BY Clause

Example 10 - RETAIN Clause

Example 11 - WHERE Clause

Example 12 - IF NO RECORDS FOUND Clause

Example 13 - Using System Variables with the FIND Statement

Example 14 - Multiple FIND Statements

See also the example for FIND NUMBER: program FNDNUM.

Example 1 - PASSWORD Clause
** Example ’FNDPWD’: FIND (with PASSWORD clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 PERSONNEL-ID
*

25

FINDExamples

1 #PASSWORD (A8)
END-DEFINE
*
INPUT ’ENTER PASSWORD FOR EMPLOYEE FILE:’ #PASSWORD (AD=N)
LIMIT 2
*
FIND EMPLOY-VIEW PASSWORD = #PASSWORD
 WITH NAME = ’SMITH’
 DISPLAY NOTITLE NAME PERSONNEL-ID
END-FIND
*
END

Output of Program FNDPWD:

ENTER PASSWORD FOR EMPLOYEE FILE:

Example 2 - CIPHER Clause
** Example ’FNDCIP’: FIND (with PASSWORD/CIPHER clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 PERSONNEL-ID
*
1 #PASSWORD (A8)
1 #CIPHER (N8)
END-DEFINE
*
LIMIT 2
INPUT ’ENTER PASSWORD FOR EMPLOYEE FILE: ’ #PASSWORD (AD=N)
 / ’ENTER CIPHER KEY FOR EMPLOYEE FILE: ’ #CIPHER (AD=N)
*
FIND EMPLOY-VIEW PASSWORD = #PASSWORD
 CIPHER = #CIPHER
 WITH NAME = ’SMITH’
 DISPLAY NOTITLE NAME PERSONNEL-ID
END-FIND
*
END Output of Program FNDCIP:

ENTER PASSWORD FOR EMPLOYEE FILE:
ENTER CIPHER KEY FOR EMPLOYEE FILE:

Example 3 - Basic Search Criterion in WITH Clause
FIND STAFF WITH NAME = ’SMITH’
FIND STAFF WITH CITY NE ’BOSTON’
FIND STAFF WITH BIRTH = 610803
FIND STAFF WITH BIRTH = 610803 THRU 610811
FIND STAFF WITH NAME = ’O HARA’ OR = ’JONES’ OR = ’JACKSON’
FIND STAFF WITH PERSONNEL-ID = 100082 THRU 100100
 BUT NOT 100087 THRU 100095

26

Example 2 - CIPHER ClauseFIND

Example 4 - Basic Search Criterion with Multiple-Value Field

When the descriptor used in the basic search criterion is a multiple-value field, basically four different
kinds of results can be obtained (the field MU-FIELD in the following examples is assumed to be a
multiple-value field):

FIND XYZ-VIEW WITH MU-FIELD = ’A’

This statement returns records in which at least one occurrence of MU-FIELD has the value A.

FIND XYZ-VIEW WITH MU-FIELD NOT EQUAL ’A’

This statement returns records in which at least one occurrence of MU-FIELD does not have the value A.

FIND XYZ-VIEW WITH NOT MU-FIELD NOT EQUAL ’A’

This statement returns records in which every occurrence of MU-FIELD has the value A.

FIND XYZ-VIEW WITH NOT MU-FIELD = ’A’

This statement returns records in which none of the occurrences of MU-FIELD has the value A.

Example 5 - Various Samples of Complex Search Expression in WITH Clause
FIND STAFF WITH BIRTH LT 19770101 AND DEPT = ’DEPT06’

FIND STAFF WITH JOB-TITLE = ’CLERK TYPIST’
 AND (BIRTH GT 19560101 OR LANG = ’SPANISH’)

FIND STAFF WITH JOB-TITLE = ’CLERK TYPIST’
 AND NOT (BIRTH GT 19560101 OR LANG = ’SPANISH’)

FIND STAFF WITH DEPT = ’ABC’ THRU ’DEF’
 AND CITY = ’WASHINGTON’ OR = ’LOS ANGELES’
 AND BIRTH GT 19360101

FIND CARS WITH MAKE = ’VOLKSWAGEN’
 AND COLOR = ’RED’ OR = ’BLUE’ OR = ’BLACK’

Example 6 - Various Samples of Using Database Arrays

The following examples assume that the field SALARY is a descriptor contained within a periodic group,
and the field LANG is a multiple-value field.

FIND EMPLOYEES WITH SALARY LT 20000

Results in a search of all occurrences of SALARY.

FIND EMPLOYEES WITH SALARY (1) LT 20000

Results in a search of the first occurrence only.

FIND EMPLOYEES WITH SALARY (1:4) LT 20000 /* invalid

A range specification must not be specified for a field within a periodic group used as a search criterion.

27

FINDExample 4 - Basic Search Criterion with Multiple-Value Field

FIND EMPLOYEES WITH LANG = ’FRENCH’

Results in a search of all values of LANG.

FIND EMPLOYEES WITH LANG (1) = ’FRENCH’ /* invalid

An index must not be specified for a multiple-value field used as a search criterion.

Example 7 - Using Physically Coupled Files
** Example ’FNDCPL’: FIND (using coupled files)
** NOTE: Adabas files must be physically coupled when using the
** COUPLED clause without the VIA clause.
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
1 VEHIC-VIEW VIEW OF VEHICLES
 2 MAKE
END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = ’FRANKFURT’
 AND COUPLED TO
 VEHIC-VIEW WITH MAKE = ’VW’
 DISPLAY NOTITLE NAME
END-FIND
*
END

Example 8 - VIA Clause
** Example ’FNDVIA’: FIND (with VIA clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = ’ADKINSON’
 AND COUPLED TO VEHIC-VIEW
 VIA PERSONNEL-ID = PERSONNEL-ID WITH MAKE = ’VOLVO’
 DISPLAY PERSONNEL-ID NAME FIRST-NAME
END-FIND
*
END

Output of Program FNDVIA:

Page 1 05-01-17 13:18:22

PERSONNEL NAME FIRST-NAME
 ID
--------- -------------------- --------------------

20011000 ADKINSON BOB

28

Example 7 - Using Physically Coupled FilesFIND

Example 9 - SORTED BY Clause
** Example ’FNDSOR’: FIND (with SORTED BY clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
END-DEFINE
*
LIMIT 10
FIND EMPLOY-VIEW WITH CITY = ’FRANKFURT’
 SORTED BY NAME PERSONNEL-ID

 DISPLAY NOTITLE NAME (IS=ON) FIRST-NAME PERSONNEL-ID
END-FIND
*
END

Output of Program FNDSOR:

 NAME FIRST-NAME PERSONNEL
 ID
-------------------- -------------------- ---------

BAECKER JOHANNES 11500345
BECKER HERMANN 11100311
BERGMANN HANS 11100301
BLAU SARAH 11100305
BLOEMER JOHANNES 11200312
DIEDRICHS HUBERT 11600301
DOLLINGER MARGA 11500322
FALTER CLAUDIA 11300311
 HEIDE 11400311
FREI REINHILD 11500301

Example 10 - RETAIN Clause
** Example ’RELEX1’: FIND (with RETAIN clause and RELEASE statement)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 BIRTH
 2 NAME
*
1 #BIRTH (D)
END-DEFINE
*
MOVE EDITED ’19400101’ TO #BIRTH (EM=YYYYMMDD)
*
FIND NUMBER EMPLOY-VIEW WITH BIRTH GT #BIRTH
 RETAIN AS ’AGESET1’
IF *NUMBER = 0
 STOP
END-IF
*
FIND EMPLOY-VIEW WITH ’AGESET1’ AND CITY = ’NEW YORK’
 DISPLAY NOTITLE NAME CITY BIRTH (EM=YYYY-MM-DD)

29

FINDExample 9 - SORTED BY Clause

END-FIND
*
RELEASE SET ’AGESET1’
*
END

Output of Example 10:

 NAME CITY DATE
 OF
 BIRTH
-------------------- -------------------- ----------

RUBIN NEW YORK 1945-10-27
WALLACE NEW YORK 1945-08-04

Example 11 - WHERE Clause
** Example ’FNDWHE’: FIND (with WHERE clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 CITY
END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = ’PARIS’
 WHERE JOB-TITLE = ’INGENIEUR COMMERCIAL’
 DISPLAY NOTITLE
 CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND
*
END

Output of Program FNDWHE:

 CITY CURRENT PERSONNEL NAME
 POSITION ID
-------------------- ------------------------- --------- --------------------

PARIS INGENIEUR COMMERCIAL 50007300 CAHN
PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
PARIS INGENIEUR COMMERCIAL 50004700 FAURIE
PARIS INGENIEUR COMMERCIAL 50004400 VALLY
PARIS INGENIEUR COMMERCIAL 50002800 BRETON
PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX
PARIS INGENIEUR COMMERCIAL 50000400 KORAB-BRZOZOWSKI

Example 12 - IF NO RECORDS FOUND Clause
** Example ’FNDIFN’: FIND (using IF NO RECORDS FOUND)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID

30

Example 11 - WHERE ClauseFIND

 2 MAKE
END-DEFINE
*
LIMIT 15
EMP. READ EMPLOY-VIEW BY NAME STARTING FROM ’JONES’
 /*
 VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)

 IF NO RECORDS FOUND
 MOVE ’*** NO CAR ***’ TO MAKE
 END-NOREC
 /*
 DISPLAY NOTITLE
 NAME (EMP.) (IS=ON)
 FIRST-NAME (EMP.) (IS=ON)
 MAKE (VEH.)
 END-FIND
 /*
END-READ
END

Output of Program FNDIFN:

 NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

JONES VIRGINIA CHRYSLER
 MARSHA CHRYSLER
 CHRYSLER
 ROBERT GENERAL MOTORS
 LILLY FORD
 MG
 EDWARD GENERAL MOTORS
 MARTHA GENERAL MOTORS
 LAUREL GENERAL MOTORS
 KEVIN DATSUN
 GREGORY FORD
JOPER MANFRED *** NO CAR ***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL *** NO CAR ***
JUNG ERNST *** NO CAR ***
JUNKIN JEREMY *** NO CAR ***
KAISER REINER *** NO CAR ***

Example 13 - Using System Variables with the FIND Statement
** Example ’FNDVAR’: FIND (using *ISN, *NUMBER, *COUNTER)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 CITY
END-DEFINE
*
LIMIT 3
FIND EMPLOY-VIEW WITH CITY = ’MADRID’
 DISPLAY NOTITLE PERSONNEL-ID NAME
 *ISN *NUMBER *COUNTER
END-FIND
*
END

31

FINDExample 13 - Using System Variables with the FIND Statement

Output of Program FNDVAR

PERSONNEL NAME ISN NMBR CNT
 ID
--------- -------------------- ----------- ----------- -----------

60000114 DE JUAN 400 41 1
60000136 DE LA MADRID 401 41 2
60000209 PINERO 405 41 3

Example 14 - Multiple FIND Statements

In the following example, first all people named SMITH are selected from the EMPLOYEES file. Then
the PERSONNEL-ID from the EMPLOYEES file is used as the search key for an access to the
VEHICLES file.

** Example ’FNDMUL’: FIND (with multiple files)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
END-DEFINE
*
LIMIT 15
EMP. FIND EMPLOY-VIEW WITH NAME = ’SMITH’
 /*
 VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = EMP.PERSONNEL-ID
 IF NO RECORDS FOUND
 MOVE ’*** NO CAR ***’ TO MAKE
 END-NOREC
 DISPLAY NOTITLE
 EMP.NAME (IS=ON)
 EMP.FIRST-NAME (IS=ON)
 VEH.MAKE
 END-FIND
END-FIND
END

Output of Program FNDMUL:

The resulting report shows the NAME and FIRST-NAME (obtained from the EMPLOYEES file) of all
people named SMITH as well as the MAKE of each car (obtained from the VEHICLES file) owned by
these people.

 NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

SMITH GERHARD ROVER
 SEYMOUR *** NO CAR ***
 MATILDA FORD
 ANN *** NO CAR ***
 TONI TOYOTA
 MARTIN *** NO CAR ***
 THOMAS FORD
 SUNNY *** NO CAR ***

32

Example 14 - Multiple FIND StatementsFIND

 MARK FORD
 LOUISE CHRYSLER
 MAXWELL MERCEDES-BENZ
 MERCEDES-BENZ
 ELSA CHRYSLER
 CHARLY CHRYSLER
 LEE *** NO CAR ***
 FRANK FORD

33

FINDExample 14 - Multiple FIND Statements

	FIND
	Function
	Database-Specific Considerations
	System Variables with the FIND Statement
	Issuing Multiple FIND Statements

	Restrictions
	Syntax Description
	FIND FIRST
	Restrictions
	System Variables with FIND FIRST

	FIND NUMBER
	Restrictions

	System Variables with FIND NUMBER
	FIND UNIQUE
	System Variables with FIND UNIQUE
	Restrictions with FIND UNIQUE

	MULTI-FETCH Clause
	Search Criterion for Adabas Files
	Search Criterion with Null Indicator
	Connecting Search Criteria (for Adabas Files)
	Descriptor-Key Usage
	Subdescriptors, Superdescriptors, Hyperdescriptors and Phonetic Descriptors
	Values for Subdescriptors, Superdescriptors, Phonetic Descriptors
	Using Descriptors Contained within a Database Array

	Search Criterion for VSAM Files - basic-search-criterion
	Search Criterion for DL/I Files - basic-search-criterion
	Connecting Search Criteria - for DL/I Files
	Examples:
	Invalid example:

	COUPLED Clause
	Physical Coupling without VIA Clause
	Logical Coupling - VIA Clause

	STARTING WITH Clause
	Example:

	SORTED BY Clause
	Considerations for Combined Use of STARTING WITH and SORTED BY Clauses
	With Adabas for Mainframes
	With Adabas for OpenSystems

	RETAIN Clause
	Releasing Sets
	Updates by Other Users
	Restriction

	WHERE Clause
	IF NO RECORDS FOUND Clause
	Structured Mode Syntax
	Reporting Mode Syntax
	Database Values
	Evaluation of System Functions
	Restriction

	Examples
	Example 1 - PASSWORD Clause
	Output of Program FNDPWD:

	Example 2 - CIPHER Clause
	Example 3 - Basic Search Criterion in WITH Clause
	Example 4 - Basic Search Criterion with Multiple-Value Field
	Example 5 - Various Samples of Complex Search Expression in WITH Clause
	Example 6 - Various Samples of Using Database Arrays
	Example 7 - Using Physically Coupled Files
	Example 8 - VIA Clause
	Output of Program FNDVIA:

	Example 9 - SORTED BY Clause
	Output of Program FNDSOR:

	Example 10 - RETAIN Clause
	Output of Example 10:

	Example 11 - WHERE Clause
	Output of Program FNDWHE:

	Example 12 - IF NO RECORDS FOUND Clause
	Output of Program FNDIFN:

	Example 13 - Using System Variables with the FIND Statement
	Output of Program FNDVAR

	Example 14 - Multiple FIND Statements
	Output of Program FNDMUL:

