
Defining Parameter Data
General syntax of DEFINE DATA PARAMETER:

PARAMETER USING parameter-data-area

parameter-data-definition

This chapter covers the following topics:

Function

Restrictions

Syntax Description

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function
The DEFINE DATA PARAMETER statement is used to define the data elements that are to be used as
incoming parameters in a Natural subprogram, external subroutine or helproutine. These parameters can
be defined within the statement itself (see Parameter Data Definition below); or they can be defined
outside the program in a parameter data area (PDA), with the statement referencing that data area.

Restrictions
Parameter data elements must not be assigned initial or constant values, and they must not have edit
mask (EM), header (HD) or print mode (PM) definitions (see also EM, HD, PM Parameters for
Field/Variable).

The parameter data area and the objects which reference it must be contained in the same library (or
in a steplib).

Syntax Description

USING
parameter-data-area

The name of the parameter-data-area that contains data elements which
are used as parameters in a subprogram, external subroutine or dialog.

parameter-data-definition Instead of defining a parameter data area, parameter data can also be
defined directly within a program or routine; see Parameter Data
Definition below.

END-DEFINE The Natural reserved word END-DEFINE must be used to end the
DEFINE DATA statement.

1

Defining Parameter Data Defining Parameter Data

Parameter Data Definition

For direct parameter data definition, the following syntax applies:

level group-name [(array-definition)]

redefinition

 (format-length[/array-definition])

variable-name [BY VALUE [RESULT]] [OPTIONAL] A
U
B

[(array-definition)] DYNAMIC

parameter-handle-definition [BY VALUE [RESULT]] [OPTIONAL]

Syntax Element Description:

level Level number is a 1- or 2-digit number in the range from 01 to 99 (the
leading zero is optional) used in conjunction with field grouping. Fields
assigned a level number of 02 or greater are considered to be a part of
the immediately preceding group which has been assigned a lower level
number.

The definition of a group enables reference to a series of fields (may
also be only 1 field) by using the group name. With certain statements
(CALL, CALLNAT, RESET, WRITE, etc.), you may specify the group
name as a shortcut to reference the fields contained in the group.

A group may consist of other groups. When assigning the level numbers
for a group, no level numbers may be skipped.

group-name The name of a group. The name must adhere to the rules for defining a
Natural variable name. See also the following sections:

Naming Conventions for User-Defined Variables in the Using
Natural documentation.

Qualifying Data Structures in the Programming Guide.

array-definition With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition. See Array Dimension Definition and
Variable Arrays in a Parameter Data Area.

redefinition A redefinition may be used to redefine a group or a single field/variable
(that is a scalar or an array). See Redefinition.

Note:
In a parameter-data-definition, a "redefinition" of groups is only
permitted within a REDEFINE block.

variable-name The name to be assigned to the variable. Rules for Natural variable
names apply. For information on naming conventions for user-defined
variables, see Naming Conventions for User-Defined Variables in the
Using Natural documentation.

2

Parameter Data DefinitionDefining Parameter Data

format-length The format and length of the field. For information on format/length
definition of user-defined variables, see Format and Length of
User-Defined Variables in the Programming Guide.

A, U or B Data type: alphanumeric (A), Unicode (U) or binary (B) for dynamic
variable.

DYNAMIC A parameter may be defined as DYNAMIC. For more information on
processing dynamic variables, see Introduction to Dynamic Variables
and Fields.

 Call Mode:

Depending on whether call-by-reference, call-by-value or
call-by-value-result is used, the appropriate transfer mechanism is
applicable. For further information, see the CALLNAT statement.

(without BY VALUE) Call-by-reference:

Call-by-reference is active by default when you omit the BY VALUE
keywords. In this case, a parameter is passed to a
subprogram/subroutine by reference (that is, via its address); therefore a
field specified as parameter in a CALLNAT/PERFORM statement must
have the same format/length as the corresponding field in the invoked
subprogram/subroutine.

BY VALUE Call-by-value:

When you specify BY VALUE, a parameter is passed to a
subprogram/subroutine by value; that is, the actual parameter value
(instead of its address) is passed. Consequently, the field in the
subprogram/subroutine need not have the same format/length as the
CALLNAT/PERFORM parameter. The formats/lengths must only be data
transfer compatible. For data transfer compatibility, the Rules for
Arithmetic Assignment/Data Transfer apply (see Programming Guide).

BY VALUE allows you, for example, to increase the length of a field in
a subprogram/subroutine (if this should become necessary due to an
enhancement of the subprogram/subroutine) without having to adjust
any of the objects that invoke the subprogram/subroutine.

Example of BY VALUE:

* Program
DEFINE DATA LOCAL
1 #FIELDA (P5)
...
END-DEFINE
...
CALLNAT ’SUBR01’ #FIELDA
...

* Subroutine SUBR01
DEFINE DATA PARAMETER
1 #FIELDB (P9) BY VALUE
END-DEFINE
...

3

Defining Parameter DataParameter Data Definition

BY VALUE RESULT Call-by-value-result:

While BY VALUE applies to a parameter passed to a
subprogram/subroutine, BY VALUE RESULT causes the parameter to
be passed by value in both directions; that is, the actual parameter value
is passed from the invoking object to the subprogram/subroutine and, on
return to the invoking object, the actual parameter value is passed from
the subprogram/subroutine back to the invoking object.

With BY VALUE RESULT, the formats/lengths of the fields concerned
must be data transfer compatible in both directions.

OPTIONAL For a parameter defined without OPTIONAL (default), a value must be
passed from the invoking object.

For a parameter defined with OPTIONAL, a value can, but need not be
passed from the invoking object to this parameter.

In the invoking object, the notation nX is used to indicate parameters
which are skipped, that is, for which no values are passed.

With the SPECIFIED option you can find out at run time whether an
optional parameter has been defined or not.

parameter-handle-definition See the section Parameter Handle Definition below.

Parameter Handle Definition

Syntax of parameter-handle-definition:

handle-name [(array-definition)] HANDLE OF OBJECT

Syntax Element Description:

handle-name The name to be assigned to the handle; the naming conventions for
user-defined variables apply; see Naming Conventions for User-Defined
Variables in the Using Natural documentation..

HANDLE OF
OBJECT

Is used in conjunction with NaturalX as described in the section NaturalX
of the Programming Guide.

array-definition With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition. See Array Dimension Definition.

4

Parameter Handle DefinitionDefining Parameter Data

	 Defining Parameter Data
	Function
	Restrictions
	Syntax Description
	Parameter Data Definition
	Parameter Handle Definition

