
COMPUTE
Structured Mode Syntax

COMPUTE [ROUNDED] { operand1 [:]= } arithmetic-expression

ASSIGN operand2

{ operand1 := } arithmetic-expression

operand2

Reporting Mode Syntax

COMPUTE [ROUNDED] { operand1 [:]= } arithmetic-expression

ASSIGN operand2

This chapter covers the following topics:

Function

Syntax Description

Result Precision of a Division

SUBSTRING Option

Examples

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ADD | COMPRESS | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY |
RESET | SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function
The COMPUTE statement is used to perform an arithmetic or assignment operation.

A COMPUTE statement with multiple target operands (operand1) is identical to the corresponding
individual COMPUTE statements if the source operand (operand2) is not an arithmetic expression.

#TARGET1 := #TARGET2 := #SOURCE

is identical to

1

COMPUTECOMPUTE

#TARGET1 := #SOURCE
#TARGET2 := #SOURCE

Example:

DEFINE DATA LOCAL
1 #ARRAY(I4/1:3) INIT <3,0,9>
1 #INDEX(I4)
1 #RESULT(I4)
END-DEFINE
*
#INDEX := 1
*
#INDEX := /* #INDEX is 3
#RESULT := /* #RESULT is 9
#ARRAY(#INDEX)
*
#INDEX := 2
*
#INDEX := /* #INDEX is 0
#ARRAY(3) := /* returns run time error NAT1316
#ARRAY(#INDEX)
END

If the source operand is an arithmetic expression, the expression is evaluated and its result is stored in a
temporary variable. Then the temporary variable is assigned to the target operands.

#TARGET1 := #TARGET2 := #SOURCE1 + 1
is identical to
#TEMP := #SOURCE1 + 1
#TARGET1 := #TEMP
#TARGET2 := #TEMP

Example:

DEFINE DATA LOCAL
1 #ARRAY(I4/1:3) INIT <2, 0, 9>
1 #INDEX(I4)
1 #RESULT(I4)
END-DEFINE
*
#INDEX := 1
*
#INDEX := /* #INDEX is 3
#RESULT := /* #RESULT is 3
#ARRAY(#INDEX) + 1
*
#INDEX := 2
*
#INDEX := /* #INDEX is 0
#ARRAY(3) := /* returns run time error NAT1316
#ARRAY(#INDEX)
END

For further information, see Rules for Arithmetic Assignment in the Programming Guide and particularly
the following sections:

Arithmetic Operations with Arrays

2

FunctionCOMPUTE

Data Transfer (for information on data transfer compatibility and the rules for data transfer)

Syntax Description
Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 S A M A U N P I F B D T L C G O yes yes

operand2 C S A N E A U N P I F B D T L C G O yes no

Syntax Element Description:

COMPUTE
ASSIGN [:]=

This statement may be issued in short form by omitting the statement
keyword COMPUTE (or ASSIGN).

In structured mode, when the statement keyword COMPUTE (or ASSIGN) is
omitted, the equal sign (=) must be preceded by a colon (:).

However, when the ROUNDED option is used, the statement keyword
COMPUTE (or ASSIGN) must be specified.

ROUNDED If you specify the keyword ROUNDED, the value will be rounded before it is
assigned to operand1. For information on rounding, see Rules for Arithmetic
Assignments, Field Truncation and Field Rounding in the Programming
Guide.

operand1 Result Field:

operand1 will contain the result of the arithmetic/assignment operation.

For the precision of the result, see Precision of Results for Arithmetic
Operations in the Programming Guide.

If operand1 is a database field, the field in the database is not updated.

If operand1 is a dynamic variable, it is filled with exactly the data and length
of operand2 or the length of the result of the arithmetic-operation, including
trailing blanks. The current length of a dynamic variable can be obtained by
using the system variable *LENGTH.

For general information on dynamic variables, see Using Dynamic and Large
Variables.

3

COMPUTESyntax Description

arithmetic-expression An arithmetic expression consists of one or more constants, database
fields, and user-defined variables.

Natural mathematical functions (described in the System Functions
documentation) may also be used as arithmetic operands.

Operands used in an arithmetic expression must be defined with format N,
P, I, F, D, or T.

As for the formats of the operands, see also Performance Considerations
for Mixed Formats in the Programming Guide.

The following connecting operators may be used:

Operator Symbol

Parentheses ()

Exponentiation **

Multiplication *

Division /

Addition +

Subtraction -

Each operator should be preceded and followed by at least one blank so as
to avoid any conflict with a variable name that contains any of the above
characters.

The processing order of arithmetic operations is:

1. Parentheses

2. Exponentiation

3. Multiplication/division (left to right as detected)

4. Addition/subtraction (left to right as detected)

operand2 Source Field:

operand2 is the source field. If operand1 is of format C, operand2 may also
be specified as an attribute constant (see User-Defined Constants in the
Programming Guide).

4

Syntax DescriptionCOMPUTE

Result Precision of a Division
The precision (number of decimal positions) of the result of a division in a COMPUTE statement is
determined by the precision of either the first operand (dividend) or the first result field, whichever is
greater.

For a division of integer operands, however, the following applies: For a division of two integer constants,
the precision of the result is determined by the precision of the first result field; however, if at least one of
the two integer operands is a variable, the result is also of integer format (that is, without decimal
positions, regardless of the precision of the result field).

SUBSTRING Option
If the operands are of alphanumeric, Unicode or binary format, you may use the SUBSTRING option in
the same manner as described for the MOVE statement to assign a part of operand2 to operand1.

Examples
Example 1 - ASSIGN Statement

Example 2 - COMPUTE Statement

Example 1 - ASSIGN Statement
** Example ’ASGEX1S’: ASSIGN (structured mode)
**
DEFINE DATA LOCAL
1 #A (N3)
1 #B (A6)
1 #C (N0.3)
1 #D (N0.5)
1 #E (N1.3)
1 #F (N5)
1 #G (A25)
1 #H (A3/1:3)
END-DEFINE
*
ASSIGN #A = 5 WRITE NOTITLE ’=’ #A
ASSIGN #B = ’ABC’ WRITE ’=’ #B
ASSIGN #C = .45 WRITE ’=’ #C
ASSIGN #D = #E = -0.12345 WRITE ’=’ #D / ’=’ #E
ASSIGN ROUNDED #F = 199.999 WRITE ’=’ #F
#G := ’HELLO’ WRITE ’=’ #G
#H (1) := ’UVW’
#H (3) := ’XYZ’ WRITE ’=’ #H (1:3)
*
END

Output of Program ASGEX1S:

#A: 5
#B: ABC
#C: .450
#D: -.12345

5

COMPUTEResult Precision of a Division

#E: -0.123
#F: 200
#G: HELLO
#H: UVW XYZ

Equivalent reporting-mode example: ASGEX1R.

Example 2 - COMPUTE Statement
** Example ’CPTEX1’: COMPUTE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 SALARY (1:2)
*
1 #A (P4)
1 #B (N3.4)
1 #C (N3.4)
1 #CUM-SALARY (P10)
1 #I (P2)
END-DEFINE
*
COMPUTE #A = 3 * 2 + 4 / 2 - 1
WRITE NOTITLE ’COMPUTE #A = 3 * 2 + 4 / 2 - 1’ 10X ’=’ #A
*
COMPUTE ROUNDED #B = 3 -4 / 2 * .89
WRITE ’COMPUTE ROUNDED #B = 3 -4 / 2 * .89’ 5X ’=’ #B
*
COMPUTE #C = SQRT (#B)
WRITE ’COMPUTE #C = SQRT (#B)’ 18X ’=’ #C
*
LIMIT 1
READ EMPLOY-VIEW BY PERSONNEL-ID STARTING FROM ’20017000’
 WRITE / ’CURRENT SALARY: ’ 4X SALARY (1)
 / ’PREVIOUS SALARY:’ 4X SALARY (2)
 FOR #I = 1 TO 2
 COMPUTE #CUM-SALARY = #CUM-SALARY + SALARY (#I)
 END-FOR
 WRITE ’CUMULATIVE SALARY:’ #CUM-SALARY
END-READ
*
END

Output of Program CPTEX1:

COMPUTE #A = 3 * 2 + 4 / 2 - 1 #A: 7
COMPUTE ROUNDED #B = 3 -4 / 2 * .89 #B: 1.2200
COMPUTE #C = SQRT (#B) #C: 1.1045

CURRENT SALARY: 34000
PREVIOUS SALARY: 32300
CUMULATIVE SALARY: 66300

6

Example 2 - COMPUTE StatementCOMPUTE

	COMPUTE
	
	
	Structured Mode Syntax
	Reporting Mode Syntax

	Function
	Syntax Description
	Result Precision of a Division
	SUBSTRING Option
	Examples
	Example 1 - ASSIGN Statement
	Output of Program ASGEX1S:

	Example 2 - COMPUTE Statement
	Output of Program CPTEX1:

