
Statements for Internet and XML Access
This chapter gives a functional overview of the Natural statements for internet and XML access, specifies
the general prerequisites for using these statements in a mainframe environment, informs about
restrictions that apply and contains a list of further references. To take full advantage of these statements,
a thorough knowledge of the underlying communication standards is required.

The following topics are covered:

Statements Available

General Prerequisites

HTTPS Support for the REQUEST DOCUMENT Statement under z/OS

Restriction Concerning IMS TM

Preconditions for the Support of XML-Related Statements under openUTM

Sample Program

Frequently Asked Questions

References

Statements Available
The following Natural statements are available for access to the internet and to XML documents:

REQUEST DOCUMENT

PARSE XML

REQUEST DOCUMENT

Functionality

This statement enables you to use the Hypertext Transfer Protocol (HTTP) and - under z/OS only - the
Hypertext Transfer Protocol Secure (HTTPS) in order to access documents on the web with a given
Uniform Resource Identifier (URI) or Uniform Resource Locator (URL), that is, the internet or intranet
address of a web site.

REQUEST DOCUMENT implements an HTTP client at Natural statement level, which allows applications
to access any HTTP server on either the intranet or the internet. The statement has a set of operands,
which allows it to formulate HTTP requests according to the needs of the user application. For example,
using outbound operands it is possible to send user-defined HTTP headers, form data, or entire documents
to a HTTP server. The inbound operands can be used to retrieve a document from the server, to view the
entire HTTP header block returned from the server, or to return the values of dedicated headers, etc. Via
binary format operands, binary objects such as gif files can be exchanged with the http server as well. For
basic authorization purposes, user ID and password operands can be specified. The content of this operand
is sent with base64 encoding over the line, according to HTTP standards.

1

Statements for Internet and XML AccessStatements for Internet and XML Access

Natural supports the following request methods:

GET - retrieve a document and HTTP headers,

HEAD - retrieve HTTP headers only,

POST - transfer form data to an HTTP server,

PUT - upload a file to an HTTP server.

The request method is normally evaluated automatically, based on the operands coded for the executed
REQUEST DOCUMENT statement. However, the predetermined request method can be overwritten by an
explicit user specification of a request method header.

Data transfer with the REQUEST DOCUMENT statement normally does not involve any code page
conversion. If you want to have the outgoing and/or incoming data encoded in a specific code page, you
can use the DATA ALL clause and/or the RETURN PAGE clause of the REQUEST DOCUMENT statement
to specify this.

In order to simplify data exchange from EBCDIC-based mainframes with HTTP servers, which in most
cases work with UTF-8 or ISO-8859-1 encoded data, the statement provides ENCODED clauses to allow
implicit or automatic conversion of outbound and inbound document data.

Technical Implementation

The implementation of the REQUEST DOCUMENT statement mainly consists of two layers:

an independent runtime layer, where the entire HTTP processing, URL analysis, data conversion,
etc., is executed; and

a layer where an environment-dependent routine processes the TCP/IP communication between
Natural and the HTTP server. This layer is implemented based on LE (Language environment)
sockets for z/OS, VSE, and VM/CMS; SMARTS sockets for Com-plete and Natural Development
Server; and CRTE sockets for BS2000/OSD. For CICS, the appropriate socket library is included
into the build process.

Natural for Mainframes supports the HTTP protocol version 1.0 only, meaning that no persistent
connection to the server is maintained. Since virtually every corporate network processes access to the
internet via a proxy server from the client, Natural can be configured with the adequate settings for the
proxy server and the port on which the proxy server runs. Moreover, it is possible to specify local domain
name suffixes (intranet sites), which shall be accessed directly instead via the proxy server. See also
Overview of Applicable Natural Parameters.

The proxy server, which is located between client (user) and internet, serves the following purposes: It
receives the request from the clients, forwards it to the target server, caches the returned document and
forwards it to the client. A proxy server is advantageous because of its improved performance, which is
due to the caching, and because it helps to avoid security issues (most proxy servers are working as
firewall as well).

The following is an example of how the REQUEST DOCUMENT statement can be used to access an
externally-located document:

2

REQUEST DOCUMENTStatements for Internet and XML Access

REQUEST DOCUMENT FROM
"http://bolsap1:5555/invoke/sap.demo/handle_RFC_XML_POST"
WITH
USER #User PASSWORD #Password
DATA
NAME ’XMLData’ VALUE #Queryxml
NAME ’repServerName’ VALUE ’NT2’
RETURN
PAGE #Resultxml
RESPONSE #rc

Syntax

The syntax of the REQUEST DOCUMENT statement and detailed application hints are to be found in the
Statements documentation.

Platform Support for REQUEST DOCUMENT

The REQUEST DOCUMENT statement is supported on the following mainframe platforms:

z/OS: Batch, TSO, CICS, Com-plete, IMS TM

z/VSE: Batch, Com-plete, CICS

VM/CMS

BS2000/OSD: Batch, TIAM, openUTM *

* See also Preconditions for the Support of XML-Related Statements under openUTM below.

Moreover this statement is available on all OpenSystems platforms that are supported by Natural.

PARSE XML

Functionality

The PARSE XML statement allows you to parse XML documents from within a Natural program.

The PARSE XML statement integrates a full XML parser into Natural, thus allowing Natural applications
to parse XML documents in order to easily process their content. The PARSE XML statement opens a
processing loop and returns, whenever one of a list of events occurs during the parse process, the
respective path through the document, name and value of parsed elements together with some parser status
system variables.

Technical Implementation

For parsing XML documents the following parsing strategies or models are most common:

DOM (Document Object Model), an object oriented approach

SAX (Simple Access to XML), a stream-oriented parsing method

The implementation of the PARSE XML statement in Natural for Mainframes is based on the SAX
method, using a mainframe port of version 2.0.0 of the (open source) SAX parser EXPAT.

3

Statements for Internet and XML AccessPARSE XML

Parsing is processed internally on a UTF-16 encoded image of the document to parse, that is, if the
document is not delivered in this encoding, an internal conversion to UTF-16 is performed before the
parsing starts. This has to be considered at Natural installation time, for example, when the thread size for
the TP environment is evaluated.

The encoding of the document to parse is checked automatically.

1. A check for a BOM (Byte Order Mark), which marks the document’s encoding, is done.

2. If no BOM is found, a check for ASCII, EBCDIC, or UTF-16 (BE or LE: big endian or little endian)
is done.

3. If an EBCDIC or ASCII encoding is identified, a search for an encoding processing instruction is
performed.

If no encoding can be identified, an adequate error message is issued and the parse process is
terminated. Internally, the parser works with UTF-16BE, so the document to parse is always
converted to this encoding before it is passed to the EXPAT parser.

4. If an encoding PI (Processing Instruction) is found, the following defaults apply:

for ASCII, UTF-8 is assumed as encoding

for EBCDIC, the Natural default code page (see system variable *CODEPAGE) is assumed as
encoding

The parse process itself consists of two phases.

In the first phase, the parser is called repeatedly to announce a well-defined set of callback entries.
Those entries are entered by the parser whenever a corresponding element is encountered in the
current parsed document. The occurrence of a start tag is, for instance, such an event which triggers a
callback to the corresponding entry. The callback entries expose the Natural runtime logic for the
execution of the parse process.

The second phase is the actual parse process. The parser is called with the document to parse as input
operand. Now, each element is parsed, and for each element type its corresponding callback routine
is called. The Natural runtime then processes the returned element, updates the return operands, and
enters the parse loop for processing those operands. Then the parser is restarted to continue the parse
process. The parse process is finished either if the document is completely parsed or if an XML
syntax error occurs in the current document, meaning the document is not well formed.

Note:
For technical reasons, nested parse loops are not supported in Natural for Mainframes.

Processing of XML Whitespace Characters and Predefined Entities

As of Natural Version 4.2.5, parsing of character data does not cause a break or a loop path if the parsed
string contains whitespace characters or predefined XML entities. This problem with Natural versions
prior to Version 4.2.5 has been solved. With Natural Version 4.2.5, parsing of character data is compatible
with Natural for Windows, UNIX and Linux.

4

PARSE XMLStatements for Internet and XML Access

The outputs from the following sample program show the difference between Version 4.2.5 and its
predecessors.

DEFINE DATA
LOCAL
1 PAGE (A) DYNAMIC
1 #PATH (A200)
1 #NAME (A) DYNAMIC
1 #VALUE (A40)
1 #CMX (A) DYNAMIC
1 #CMP (A) DYNAMIC
END-DEFINE
FORMAT PS=60 LS=80
COMPRESS ’ A<B ’ H’0D0D’ ’ B<C’ INTO #CMX LEAVING NO
MOVE ALL #CMX TO #CMP UNTIL 16
COMPRESS
’<?xml version="1.0" ?>’
’<character-data-sample>’
’<string_with_whitespace_and_predefined_entity>’ #CMX
’</string_with_whitespace_and_predefined_entity>’
’</character-data-sample>’
 INTO PAGE LEAVING NO
PARSE XML PAGE INTO PATH #PATH NAME #NAME VALUE #VALUE
PRINT #PATH / ’NA=’ #NAME / ’VA=’ #VALUE
LOOP
END

Output if the program is executed in Natural versions below Version 4.2.5:

Page 1 08-11-04 14:39:51

character-data-sample
NA= character-data-sample
VA=
character-data-sample/string_with_whitespace_and_predefined_entity
NA= string_with_whitespace_and_predefined_entity
VA=
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= A
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= <
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= B
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= ?
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= ?
NA=
VA= B
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= ?
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= ?
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=

5

Statements for Internet and XML AccessPARSE XML

VA= B
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= <
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= C
character-data-sample/string_with_whitespace_and_predefined_entity//
NA= string_with_whitespace_and_predefined_entity
VA=
character-data-sample//
NA= character-data-sample
VA=
MORE

Output if the program is executed in Natural Version 4.2.5 (or higher):

Page 1 08-11-04 13:41:34

character-data-sample
NA= character-data-sample
VA=
character-data-sample/string_with_whitespace_and_predefined_entity
NA= string_with_whitespace_and_predefined_entity
VA=
character-data-sample/string_with_whitespace_and_predefined_entity/$
NA=
VA= A<B?? B<C
character-data-sample/string_with_whitespace_and_predefined_entity//
NA= string_with_whitespace_and_predefined_entity
VA=
character-data-sample//
NA= character-data-sample
VA=

MORE

Syntax

The syntax of the PARSE XML statement and detailed application hints are to be found in the Statements
documentation.

Platform Support for PARSE XML

The PARSE XML statement is supported on the following mainframe platforms:

z/OS: Batch, TSO, CICS, Com-plete, IMS TM *

z/VSE: Batch, Com-plete, CICS

VM/CMS

BS2000/OSD: Batch, TIAM, openUTM **

* See Restriction Concerning IMS TM below.

6

PARSE XMLStatements for Internet and XML Access

* * See also Preconditions for the Support of XML-Related Statements under openUTM below.

Moreover this statement is available on all Open Systems platforms that are supported by Natural.

General Prerequisites
This section describes the general prerequisites that apply if you wish to use the Natural statements
REQUEST DOCUMENT and PARSE XML.

Installation Prerequisites

Profile Settings

Activation/Deactivation

Unicode Support

Installation Prerequisites

To enable the use of the Natural statements REQUEST DOCUMENT and PARSE XML, the installation
steps described in the Installation documentation must be performed; Installation Steps for REQUEST
DOCUMENT and PARSE XML.

Since REQUEST DOCUMENT as well as PARSE XML, at least internally, always have to convert data
from one encoding to another, Natural has to be driven with active ICU support. Therefore, the ICU
library must be installed.

If REQUEST DOCUMENT or PARSE XML is to be executed, the following prerequisites must be fulfilled:

a TCP/IP stack must be available and enabled for the execution environment,

a DNS (Domain Name System) server or DNS services must be available in the execution
environment to resolve internet address resolution requests (gehthostbyname function),

a Natural driver must be installed LE enabled (in IBM environments) or CRTE enabled (in
BS2000/OSD environments),

support of HTTPS under Com-plete requires APS Version 2.7.2 Patch Level 16.

Profile Settings

Overview of Applicable Natural Parameters

The following is an overview of Natural profile and/or session parameters that enable/disable or influence
the support of the statements REQUEST DOCUMENT and/or PARSE XML:

7

Statements for Internet and XML AccessGeneral Prerequisites

Parameter Purpose

XML This Natural profile parameter and/or the corresponding parameter macro NTXML in
conjunction with their keyword subparameters are used to activate/deactivate the
statements REQUEST DOCUMENT and PARSE XML.

In addition, there are various options that can be set with the keyword subparameters of
NTXML and XML, such as separate enabling/disabling of support of the REQUEST
DOCUMENT and PARSE XML statements, name of the default code page, URL of the
(intranet) proxy server, port number of the proxy, URL and port number of the (intranet)
SSL proxy server, and name(s) local domain(s) which are to be addressed directly.

As a prerequisite for using the XML profile parameter, the profile parameter CFICU must
be set to ON.

CFICU This Natural profile parameter and/or the corresponding parameter macro NTCFICU in
conjunction with their keyword subparameters are used to enable Unicode and code page
support.

CP This Natural profile parameter defines the default code page for Natural data and Natural
sources.

CPCVERRThis Natural profile and session parameter specifies whether a conversion error that
occurs when converting results in a Natural error or not.

Activation/Deactivation

 To activate the support of the statements REQUEST DOCUMENT and PARSE XML for the current
session

1. To activate both statements together, set the Natural profile parameter XML (or the corresponding
parameter macro NTXML) and also its keyword subparameters RDOC and PARSE to ON.

Or:
To activate the support individually, set only the corresponding XML/NTXML keyword subparameter
to ON:

RDOC to enable support of REQUEST DOCUMENT

PARSE to enable support of PARSE XML

2. If the installation platform operates behind an internet firewall or if the internet traffic is routed via a
proxy server, the XML/NTXML keyword subparameters for proxy and proxyport have to be specified
accordingly.

 To activate the support of the statements REQUEST DOCUMENT and PARSE XML for all sessions

Ask your system administrator to add the parameters and/or macros listed in the Overview of
Applicable Natural Parameters to the Natural parameter module NATPARM and to set the values
correspondingly.

 To deactivate the support of the statements REQUEST DOCUMENT and PARSE XML

8

Activation/DeactivationStatements for Internet and XML Access

To activate both statements together, set the Natural profile parameter XML or the parameter macro
NTXML to OFF.

Or:
To deactivate the support individually, set only the corresponding XML/NTXML keyword
subparameter to OFF:

RDOC to disable support of REQUEST DOCUMENT

PARSE to disable support of PARSE XML

For information, see XML - Activate PARSE XML and REQUEST DOCUMENT Statements in the
Parameter Reference documentation

Unicode Support

 To enable Unicode support

Set the profile parameter CFICU must be set to ON.

For information on the various options that can be set with the keyword subparameters of profile
parameter CFICU, see CFICU - Unicode Support in the Parameter Reference documentation.

See also the paragraphs relating to the statements PARSE XML and REQUEST DOCUMENT in the section
Statements, which is part of the section Unicode and Code Page Support in the Natural Programming
Language in the Unicode and Code Page Support documentation.

HTTPS Support for the REQUEST DOCUMENT Statement
under z/OS

Short Introduction to HTTPS

HTTPS over AT-TLS

Maintenance of Certificates under z/OS

Using RACF Key Rings

Using Key Databases

Short Introduction to HTTPS

HTTPS, short for Hypertext Transfer Protocol Secure, is an additional security layer between HTTP and
the TCP/IP protocol stack:

9

Statements for Internet and XML AccessHTTPS Support for the REQUEST DOCUMENT Statement under z/OS

Layer Protocol

Application layer HTTP(S)

Security layer TLS/SSL

Transport layer TCP

Network layer IP

It was introduced to enable encryption and communication partner authentication for a secure data
communication over the internet.

The HTTPS URI scheme is used to indicate, that the HTTP communication is secured. For the encryption
of the data the SSL (Secure Socket Layer) protocol or its successor TLS (Transport Layer Security) is
used. Authentication is hereby provided by the exchange of certificates, which guarantee the identity of
the communication partners.

In most cases of HTTPS communication, however, only the server identifies itself with a certificate
against the client. Client authentication with a client certificate occurs quite seldom.

SSL communication is established in several steps:

It starts with identification and authentication of the communication partners over the so called SSL
handshake protocol (Client Hello, Server Hello).

The handshake is followed by the exchange of a symmetric session key via asymmetric encryption
(private – public key proceeding). The public key, which is hereby used by the client, is an essential
part of the server certificate.

After the handshake and key exchange have been performed, the encrypted payload request messages
are communicated. The symmetric session key, which was negotiated in the preceding steps, is used
for the encryption/decryption of those messages.

The HTTPS protocol uses port numbers which differ from the standard HTTP port numbers. While HTTP
normally uses port 80, the default port number for HTTPS is 443.

HTTP access to the internet from a client, which is connected to a LAN (Local Area Network), is
normally processed via special HTTP servers, so called proxies. Proxies are gateways to the internet from
the LAN, which perform security policies, provide caches and validation routines or filter functions and
act as firewalls. HTTPS secured internet access is most often performed over a proxy server of its own,
which maintains the connections to the remote servers. This proxy is also known as "SSL proxy".

Certificates are binary documents, which contain, among other information items, information about the
owner and the issuer of the certificate, the public key for the encryption of the session key data, an
expiration date and a digital signature. The certificates, which are presented by HTTPS servers, are
normally the lowest link of an entire chain of certificates. Such a certificate chain is called a Public Key
Infrastructure (PKI). The certificate on top of such a chain is called a root certificate. Root certificates are
generally issued by special organizations, named Certificate Authorities (CA). Root certificates, which are
issued and signed by a CA are also called CA (root) certificates. For further information, see HTTP
Developers Manual and other sources in the internet.

10

Short Introduction to HTTPSStatements for Internet and XML Access

HTTPS over AT-TLS

HTTPS support for the Natural REQUEST DOCUMENT statement is based on the z/OS Communication
Server component AT-TLS (Application Transparent-Transport Layer Security).

AT-TLS provides TLS/SSL encryption as a configurable service for sockets applications. It is realized as
an additional layer on top of the TCP/IP protocol stack, which exploits the SSL functionality in nearly or
even fully transparent mode to sockets applications. AT-TLS offers three modes of operation. See z/OS
Communications Server, IP Programmer’s Guide and Reference. Version 1, Release 9, Chapter 15, IBM
manual SC31-8787-09).

These modes are:

Basic

The sockets application runs without modification in transparent mode, unaware of performing
encrypted communication via AT-TLS. Thus legacy applications can run in secured mode without
source code modification.

Aware

The application is aware of running in secured mode and is able to query TLS status information.

Controlling

The sockets application is aware of AT-TLS and controls the use of AT-TLS encryption services
itself. This means, the application is able to switch between secured and non secured communication.

Natural for Mainframes uses Controlling mode to switch on secured mode for HTTPS requests only,
while HTTP requests remain unencrypted.

Maintenance of Certificates under z/OS

Certificates, which are to be used with AT-TLS, can be maintained in two ways under z/OS. They are
stored in RACF key rings or in key databases, which are located in the z/OS UNIX file system. Which of
these proceedings actually applies is defined in the AT-TLS Policy Agent Configuration file for the z/OS
TCP/IP stack, which is used by the Natural HTTPS client.

IBM delivers a set of commonly used CA root certificates with each z/OS system delivery. If key rings are
going to be used to hold server certificates, those root certificates must be manually imported into the key
rings by the system administrator. If IBM delivers newer replacements for expired root certificates, all
affected key rings have to be updated accordingly.

Unlike key rings, key databases contain the current set of root certificates automatically after they have
been newly created. However, the need for maintaining always the latest set of root certificates applies to
the key database alternative as well.

Certificates to be used by the Natural HTTPS client, must be flagged as trusted. If they are part of a Public
Key Infrastructure, the corresponding CA root certificate has to be flagged as trusted.

11

Statements for Internet and XML AccessHTTPS over AT-TLS

Using RACF Key Rings

In RACF, digital certificates are stored in so called key rings. The RACF command RACDCERT is used to
create and maintain key rings and certificates, which are contained in those key rings.

See z/OS Security Server RACF Security Administrator’s Guide, IBM manual SA22-7683-11, and z/OS
Security Server RACF Command Language Reference, IBM manual SA22-7687-11.

Using Key Databases

Alternatively to RACF, certificates can be kept in key databases, which reside in the z/OS UNIX services
file system. For the creation and maintenance of key databases, the GSKKYMAN utility has to be used.

See z/OS Cryptographic Services PKI Services Guide and Reference, IBM manual SA22-7693-10.

Restriction Concerning IMS TM
The following restriction applies if you wish to use the Natural statements REQUEST DOCUMENT and
PARSE XML in an IMS TM environment:

The PARSE XML statement can be executed under the TP monitor IMS TM with the restriction that
no I/O statement is allowed within an active PARSE loop. If an I/O occurs within a PARSE loop,
error NAT0967 is issued.

For further restrictions, see the corresponding notes in the statement descriptions.

Preconditions for the Support of XML-Related Statements
under openUTM
During an active parse loop with I/Os, the UTM function call PGWT must be used. This means:

1. The UTM application must be started with not less than 2 tasks, otherwise a UTM error K319 with
subsequent dump will occur.

2. PGWT conditions must be defined for the KDCDEF.

1. Define the maximum wait time (in seconds) for input messages during a PGWT call.

Example:

MAX PGWTTIME=60

2. Define the maximum number of UTM tasks for PGWT calls.

Example:

MAX TASKS-IN-PGWT=1

3. PGWT can be controlled using either the TAC-PRIORITIES instruction or the TACCLASS
concept:

12

Restriction Concerning IMS TMStatements for Internet and XML Access

Control of PGWT using the TAC-PRIORITIES instruction:

Example:

DEFAULT TAC TYPE=D,PROGRAM=NATUTM,.
TAC NAT,ADMIN=NO,TIME=(0,0),PGWT=YES,TACCLASS=1
TAC-PRIORITIES DIAL-PRIO=EQ

Control of PGWT using the TACCLASS concept:

Example:

DEFAULT TAC TYPE=D,PROGRAM=NATUTM,.
TAC NAT,ADMIN=NO,TIME=(0,0),TACCLASS=1
TAC NAT1,ADMIN=NO,TIME=(0,0),TACCLASS=2
TACCLASS 1,TASKS=2
TACCLASS 2,TASKS=1,PGWT=YES

3. The keyword subparameter ILCS of parameter macro NURENT must be set to ILCS=CRTE.

Sample Program
The following sample program shows the usage of the REQUEST DOCUMENT and the PARSE XML
statement.

Further sample programs are provided at the end of the description of each statement and in the Natural
library SYSEXV.

DEFINE DATA
LOCAL
1 #FROM (A) DYNAMIC
1 #HEADER (A) DYNAMIC
1 #PAGE (A) DYNAMIC
1 #RC (I4)
1 #COL (N8)
1 #COL1 (I4)
1 #COL2 (I4)
1 #COL3 (I4)
1 #LOC (A30)
1 #CP (A) DYNAMIC
1 #PATH (A) DYNAMIC
1 #NAME (A) DYNAMIC
1 #VALUE (A) DYNAMIC
1 #RTERR (I4)
END-DEFINE
*
ASSIGN #FROM = ’HTTP://SI15.HQ.SAG/autos6.xml’
**
REQUEST DOCUMENT FROM #FROM
RETURN
HEADER ALL #HEADER
PAGE #PAGE ENCODED FOR TYPES ’TEXT/XML’
 CODEPAGE ’ ’
RESPONSE #RC
GIVING #RTERR
**
IF #RC NE 200 /* TEST FOR HTTP RESPONSE 200 = ’OK’
WRITE ’HTTP RESPONSE’ #RC ’RECEIVED’
ESCAPE ROUTINE

13

Statements for Internet and XML AccessSample Program

END-IF
EJECT
PRINT #HEADER
/ ’_’(79)
PRINT #PAGE
/ ’_’(79)
/ ’_’(79)
ASSIGN #CP = *CODEPAGE
EXAMINE #PAGE FOR ’encoding’ GIVING POSITION #COL1
 IF #COL1 GT 0
 EXAMINE #PAGE FOR ’?>’ GIVING POSITION #COL3
 IF #COL3 GT #COL1
 EXAMINE #PAGE FOR ’ISO-8859-1’ GIVING POSITION #COL2
 END-IF
 IF #COL2 GT #COL1 AND #COL2 LT #COL3
 EXAMINE #PAGE FOR ’ISO-8859-1’ REPLACE #CP
 END-IF
 END-IF
PRINT #PAGE
/ ’_’(79)
EJECT
PARSE XML #PAGE INTO PATH #PATH NAME #NAME VALUE #VALUE
 PRINT #PATH / ’NAME=’ #NAME / ’VALUE=’ #VALUE / ’_’(79)
END-PARSE
END

Note:
The URL accessed in the above program addresses an intranet site and cannot be accessed from the
internet.

Output of the sample program:

HTTP/1.1 200 OK?Date: Thu, 10 Aug 2006 16:26:22 GMT?Server: Apache/1.3.19 (
BS2000)?Last-Modified: Thu, 27 Jul 2006 16:44:42 GMT?ETag: "2602c-111-44c8ed7a"
?Accept-Ranges: bytes?Content-Length: 273?Connection: close?Content-Type: text/
xml??

<?xml version="1.0" encoding="ISO-8859-1" ?><autos>?<make></make>?<make>Ford</
make>?<model>Thunderbird</model>?<make>Merceds-Benz</make><model>S400</model><
make>BWM</make><model version="latest">330I</model>?<make><label><company>
Mercedes</company></label></make>?</autos>?

<?xml version="1.0" encoding="IBM01140" ?><autos>?<make></make>?<make>Ford</
make>?<model>Thunderbird</model>?<make>Merceds-Benz</make><model>S400</model><
make>BWM</make><model version="latest">330I</model>?<make><label><company>
Mercedes</company></label></make>?</autos>?

MORE

autos
Name= autos
Value=

autos/$
Name=
Value= ?

autos/make
Name= make
Value=

14

Sample ProgramStatements for Internet and XML Access

autos/make//
Name= make
Value=

autos/$
Name=
Value= ?

autos/make
Name= make
Value=
VVVV
Name= autos
Value=

autos/$
Name=
Value= ?

autos/make
Name= make
Value=

Frequently Asked Questions
Why needs code page support to be enabled?

How to use the XML keyword subparameters (e.g. RDP and RDNOP)

How to determine proxy server, port number and HTTP server at a site?

How to decide if a problem is a TCP/IP or HTTP issue or if it is a Natural issue?

How can I check if I can reach a website from my mainframe without using Natural?

Is NAT2TCP correctly loaded?

I get a message "unsupported coding"

How to avoid Natural error NAT3411 with REQUEST DOCUMENT?

Can I use self-signed certificates?

Which is the preferable method for maintaining certificates?

How to configure TCP/IP for AT-TLS?

How to verify AT-TLS configuration?

Is there more information about problem determination?

How to switch on P-agent trace?

15

Statements for Internet and XML AccessFrequently Asked Questions

Error at connection establishment

Why needs code page support to be enabled?

Documentation for Natural on mainframe states that "The Natural ICU handler must be linked to the
Natural nucleus".

PARSE XML statement

The codepage support is needed, as on mainframe platforms, the document to be parsed is always
internally converted to UTF-16 (if the document is not already encoded in UTF-16). In most cases the
document is not in UTF-16 and a conversion will take place. For more detailed information, see the
PARSE XML statement documentation and PARSE XML in the Unicode and Code Page Support
documentation.

REQUEST DOCUMENT statement

The ICU library is needed to interpret incoming HTTP headers and convert outgoing HTTP headers.
Typically the incoming headers are ISO 8859-1 encoded and on mainframe always have to be converted
to the Natural default codepage (see also system variable *CODEPAGE) - on PC a conversion is not
always necessary.

How to use the XML keyword subparameters (e.g. RDP and RDNOP)

On the PC, the REQUEST DOCUMENT statement executes the Internet Explorer and uses the settings as
defined there.

On the mainframe, the URL of the (intranet) proxy server through which all requests have to be routed has
to be specified with the NTXML/XML keyword subparameter RDP. With the keyword subparameter
RDNOP, local domain(s) which are to be addressed directly, not via the proxy server can be defined.

How to determine proxy server, port number and HTTP server at a site?

Information about proxy server, port number and HTTP server at a site has to be provided by the network
administrator.

You can also look into your browser which proxy server is defined for your site.

For example, in the Internet Explorer under: Tools > Internet Options > Lan Settings > Advanced

You can also search the web for tools which provide such information. For example (untested):
http://www.sharewareconnection.com/titles/proxy-settings.htm

How to decide if a problem is a TCP/IP or HTTP issue or if it is a Natural
issue?

HTTP response codes

HTTP response is returned via the RESPONSE clause in operand16. An Overview of Response Numbers
for HTTP/HTTPs Requests is available in the Statements documentation.

16

Why needs code page support to be enabled?Statements for Internet and XML Access

http://www.sharewareconnection.com/titles/proxy-settings.htm

TCP/IP errors

The range for these errors is 8300 ff.

Especially error NAT8304 gives more detailed information about a failing HTTP request.

As the TCP/IP error number may be different depending on the installed environment, the text returned by
NAT8304 is the best reference.

Additional information:

See buffer RDOCWA at Offset 480

Quite often these errors are ICU errors: Recommendation is to set profile or session parameter
CPCVERR to OFF.

How can I check if I can reach a website from my mainframe without using
Natural?

To determine if a problem is related to the Natural installation or if there is a more general problem, you
can do a PING from within TSO.

For example, in the TSO command shell enter:

TSO PING www.google.com

This returns:

CS V1R9: Pinging host WWW.GOOGLE.COM (66.249.91.99)
Ping #1 response took 0.018 seconds.

From within the Natural session you then can test the access to this website with the following small
program.

For example, start Natural with:

NATvr CFICU=ON
XML=(ON,RDOC=ON,PARSE=ON,RDP=’HTTPPROX.HQ.SAG’,RDPPORT=8080,RDNOP=’*.EUR.AD.SAG;
.HQ.SAG;.SOFTWAREAG.COM’)

where vr stands for the Natural release and version number.

These values from an internal environment and a profile were used to store it. You have to get your
settings for the keyword subparameters RDP, RDPPORT and RDNOP from your network administrator, or
try the values as defined in your browser (Internet Explorer).

Execute:

17

Statements for Internet and XML AccessHow can I check if I can reach a website from my mainframe without using Natural?

DEFINE DATA LOCAL
1 #RESULTXML (A) DYNAMIC
1 #RC (I4)
END-DEFINE
REQUEST DOCUMENT FROM "HTTP://WWW.GOOGLE.DE"
RETURN HEADER ALL #HEADER RESPONSE #RC
WRITE #RC
WRITE #HEADER (AL=79)
END

Is NAT2TCP correctly loaded?

You can check this with the SYSPROD utility.

In SYSPROD, enter the command SC (Display subcomponents) for product Natural. When you
scroll through the installed subcomponents, you should find an entry for Nat Request Document
(Product ID TCP).

I get a message "unsupported coding"

This is a frequent user error: An XML document is converted implicitly or explicitly from one code page
to another, for example, from ISO-8859-1 to the code page found in system variable *CODEPAGE. The
document’s encoding PI encoding="ISO-8859-1" , however, has not been not adapted to the
changed encoding. In this case, the parser terminates with an error already on the first character of the
document to parse.

How to avoid Natural error NAT3411 with REQUEST DOCUMENT?

Set session parameter CPCVERR to OFF.

Can I use self-signed certificates?

Self-signed certificates can be used on an intranet server for test purposes, using the open ssl sdk. After
these certificates have been imported into a key database or a RACF key ring, they must be flagged as
trusted.

Which is the preferable method for maintaining certificates?

The necessary effort for the RACF key ring approach seems to be much higher than for using key
databases. Key rings must be created for every user who wants to access a HTTPS server, whereas key
databases can be shared by multiple users.

How to configure TCP/IP for AT-TLS?

Proceed as follows:

1. In the TCP/IP configuration file, set the option TTLS in the TCPCONFIG statement.

2. Configure and start the AT-TLS Policy Agent. This agent is called by TCP/IP on each new TCP
connection to check if the connection is SSL.

18

Is NAT2TCP correctly loaded?Statements for Internet and XML Access

3. Create the Policy Agent file containing the AT-TLS rules. The Policy Agent file contains the rules to
stipulate which connection is SSL.

See also z/OS Communications Server: IP Configuration Guide, Chapter 18 Application Transparent
Transport Layer Security (AT-TLS) data protection.

The Sample Policy Agent file defines all outgoing connections as application controlled TLS. This should
not affect any other TCP/IP application except the Natural REQUEST DOCUMENT support, because the
rule is defined as application controlled. That means the application is allowed to set the connection status
as SSL. As long as the application does not set this status, it is not affected. However, the Policy Agent
file allows also to restrict the application controlled SSL connections to particular ports, users or address
spaces. The sample expects the certificate database on the HFS file / u/admin/CERT.kdb .

TTLSRule ConnRule01~1
{
 LocalAddrSetRef addr1
 RemoteAddrSetRef addr1
 LocalPortRangeRef portR1
 Direction Outbound
 Priority 255
 TTLSGroupActionRef gAct1~AllUsersAsClient
 TTLSEnvironmentActionRef eAct1~AllUsersAsClient
 TTLSConnectionActionRef cAct1~AllUsersAsClient
}
TTLSGroupAction gAct1~AllUsersAsClient
{
 TTLSEnabled On
 Trace 6
}
TTLSEnvironmentAction eAct1~AllUsersAsClient
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSKeyringParmsRef keyR1
}
TTLSConnectionAction cAct1~AllUsersAsClient
{
 HandshakeRole Client
 TTLSCipherParmsRef cipher1~AT-TLS__Silver
 TTLSConnectionAdvancedParmsRef cAdv1~AllUsersAsClient
 Trace 0
}
TTLSConnectionAdvancedParms cAdv1~AllUsersAsClient
{
 ApplicationControlled On
}
TTLSKeyringParms keyR1
{
 Keyring /u/admin/CERT.kdb
 KeyringStashFile /u/admin/CERT.sth
}
TTLSCipherParms cipher1~AT-TLS__Silver
{
 V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
 V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
 V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
}
IpAddrSet addr1
{
 Prefix 0.0.0.0/0

19

Statements for Internet and XML AccessHow to configure TCP/IP for AT-TLS?

}
PortRange portR1
{
 Port 1024-65535
}

How to verify AT-TLS configuration?

Check Policy-Agent job output JESMSGLG for:

EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR <your TCP/IP address space>: TTLS

This message indicates a successful initialization.

Check Policy-Agent job output JESMSGLG for:

EZZ8438I PAGENT POLICY DEFINITIONS CONTAIN ERRORS FOR <your TCP/IP address space>: TTLS

This message indicates errors in the configuration file. Check the syslog.log file for further
information.

Does the configuration rule cover the client?

Check syslog.log for:

EZD1281I TTLS Map CONNID: 00002909 LOCAL: 10.20.91.61..1751 REMOTE: 10.20.91.117..443
JOBNAME: KSP USERID: KSP TYPE: OutBound STATUS: Appl Control RULE: ConnRule01
ACTIONS: gAct1 eAct1 AllUsersAsClient

The above entry indicates that the connection to Port 443 by user KSP is application controlled.

Is there more information about problem determination?

See also z/OS V1R8.0 Comm Svr: IP Diagnosis Guide: 3.23, Chapter 29 Diagnosing Application
Transparent Transport Layer Security (AT-TLS)

How to switch on P-agent trace?

See Comm Svr: IP Configuration Reference, Chapter 20 Syslog deamon and Comm Svr: IP Configuration
Guide, Chapter 1.5.1 Configuring the syslog daemon (syslogd)

Error at connection establishment

Find return code RC and corresponding GSK_ function name in P-agent trace.

See System SSL Programming and locate the RC in Chapter 12.1 SSL Function Return Codes.

Sample trace with trace=255 :

EZD1281I TTLS Map CONNID: 00002909 LOCAL: 10.20.91.61..1751 REMOTE: 10.20.91.117..443 JOBNAME: KSP USERID: KSP TYPE: OutBound STATUS: A
EZD1283I TTLS Event GRPID: 00000003 ENVID: 00000000 CONNID: 00002909 RC: 0 Connection Init
EZD1282I TTLS Start GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 Initial Handshake ACTIONS: gAct1 eAct1 AllUsersAsClient HS-Client
EZD1284I TTLS Flow GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 0 Call GSK_SECURE_SOCKET_OPEN - 7EE4F718
EZD1284I TTLS Flow GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 0 Set GSK_SESSION_TYPE - CLIENT
EZD1284I TTLS Flow GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 0 Set GSK_V3_CIPHER_SPECS - 090A2F
EZD1284I TTLS Flow GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 0 Set GSK_FD - 00002909
EZD1284I TTLS Flow GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 0 Set GSK_USER_DATA - 7EEE9B50
EZD1284I TTLS Flow GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 435 Call GSK_SECURE_SOCKET_INIT - 7EE4F718
EZD1283I TTLS Event GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 435 Initial Handshake 00000000 7EEE8118
EZD1286I TTLS Error GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 JOBNAME: KSP USERID: KSP RULE: ConnRule01 RC: 435 Initial Handshake
EZD1283I TTLS Event GRPID: 00000003 ENVID: 00000002 CONNID: 00002909 RC: 0 Connection Close 00000000 7EEE8118

20

How to verify AT-TLS configuration?Statements for Internet and XML Access

References
Below is a list of resources that you may find useful.

Training Courses

Useful Links

Training Courses

Software AG’s Corporate University offers special training courses on this subject. See the Corporate
University offerings on ServLine24 at http://servline24.softwareag.com/public/.

Or, ask your local Software AG representative for the availability of special on-site training courses at
your location.

Useful Links

Below is a collection of links that may be of interest.

World Wide Web Consortium (W3C): http://www.w3.org/

Extensible Markup Language (XML): http://www.w3.org/XML/

HyperText Markup Language (HTML) Home Page: http://www.w3.org/MarkUp/

W3 Schools: http://www.w3schools.com/

21

Statements for Internet and XML AccessReferences

http://servline24.eur.ad.sag/public/
http://www.w3.org/
http://www.w3.org/XML/
http://www.w3.org/MarkUp/
http://www.w3schools.com/

	Statements for Internet and XML Access
	Statements Available
	REQUEST DOCUMENT
	Functionality
	Technical Implementation
	Syntax
	Platform Support for REQUEST DOCUMENT

	PARSE XML
	Functionality
	Technical Implementation
	Processing of XML Whitespace Characters and Predefined Entities
	Syntax
	Platform Support for PARSE XML

	General Prerequisites
	Installation Prerequisites
	Profile Settings
	Overview of Applicable Natural Parameters

	Activation/Deactivation
	Unicode Support

	HTTPS Support for the REQUEST DOCUMENT Statement under z/OS
	Short Introduction to HTTPS
	HTTPS over AT-TLS
	Maintenance of Certificates under z/OS
	Using RACF Key Rings
	Using Key Databases

	Restriction Concerning IMS TM
	Preconditions for the Support of XML-Related Statements under openUTM
	Sample Program
	Frequently Asked Questions
	Why needs code page support to be enabled?
	PARSE XML statement
	REQUEST DOCUMENT statement

	How to use the XML keyword subparameters (e.g. RDP and RDNOP)
	How to determine proxy server, port number and HTTP server at a site?
	How to decide if a problem is a TCP/IP or HTTP issue or if it is a Natural issue?
	HTTP response codes
	TCP/IP errors

	How can I check if I can reach a website from my mainframe without using Natural?
	Is NAT2TCP correctly loaded?
	I get a message "unsupported coding"
	How to avoid Natural error NAT3411 with REQUEST DOCUMENT?
	Can I use self-signed certificates?
	Which is the preferable method for maintaining certificates?
	How to configure TCP/IP for AT-TLS?
	How to verify AT-TLS configuration?
	Is there more information about problem determination?
	How to switch on P-agent trace?
	Error at connection establishment

	References
	Training Courses
	Useful Links

