
Arrays
Natural supports the processing of arrays. Arrays are multi-dimensional tables, that is, two or more
logically related elements identified under a single name. Arrays can consist of single data elements of
multiple dimensions or hierarchical data structures which contain repetitive structures or individual
elements.

This chapter covers the following topics:

Defining Arrays

Initial Values for Arrays

Assigning Initial Values to One-Dimensional Arrays

Assigning Initial Values to Two-Dimensional Arrays

A Three-Dimensional Array

Arrays as Part of a Larger Data Structure

Database Arrays

Using Arithmetic Expressions in Index Notation

Arithmetic Support for Arrays

Defining Arrays
In Natural, an array can be one-, two- or three-dimensional. It can be an independent variable, part of a
larger data structure or part of a database view.

Important:
Dynamic variables are not allowed in an array definition.

 To define a one-dimensional array

After the format and length, specify a slash followed by a so-called "index notation", that is, the
number of occurrences of the array.

For example, the following one-dimensional array has three occurrences, each occurrence being of
format/length A10:

DEFINE DATA LOCAL
1 #ARRAY (A10/1:3)
END-DEFINE
...

 To define a two-dimensional array

1

Arrays Arrays

Specify an index notation for both dimensions:

DEFINE DATA LOCAL
1 #ARRAY (A10/1:3,1:4)
END-DEFINE
...

A two-dimensional array can be visualized as a table. The array defined in the example above would
be a table that consists of 3 "rows" and 4 "columns":

Initial Values for Arrays
To assign initial values to one or more occurrences of an array, you use an INIT specification, similar to
that for "ordinary" variables, as shown in the following examples.

Assigning Initial Values to One-Dimensional Arrays
The following examples illustrate how initial values are assigned to a one-dimensional array.

To assign an initial value to one occurrence, you specify:

1 #ARRAY (A1/1:3) INIT (2) <’A’>

A is assigned to the second occurrence.

To assign the same initial value to all occurrences, you specify:

1 #ARRAY (A1/1:3) INIT ALL <’A’>

A is assigned to every occurrence. Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT (*) <’A’>

To assign the same initial value to a range of several occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (2:3) <’A’>

A is assigned to the second to third occurrence.

To assign a different initial value to every occurrence, you specify:

1 #ARRAY (A1/1:3) INIT <’A’,’B’,’C’>

A is assigned to the first occurrence, B to the second, and C to the third.

To assign different initial values to some (but not all) occurrences, you specify:

2

 Initial Values for ArraysArrays

1 #ARRAY (A1/1:3) INIT (1) <’A’> (3) <’C’>

A is assigned to the first occurrence, and C to the third; no value is assigned to the second occurrence.

Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT <’A’,,’C’>

If fewer initial values are specified than there are occurrences, the last occurrences remain empty:

1 #ARRAY (A1/1:3) INIT <’A’,’B’>

A is assigned to the first occurrence, and B to the second; no value is assigned to the third occurrence.

Assigning Initial Values to Two-Dimensional Arrays
This section illustrates how initial values are assigned to a two-dimensional array. The following topics
are covered:

Preliminary Information

Assigning the Same Value

Assigning Different Values

Preliminary Information

For the examples shown in this section, let us assume a two-dimensional array with three occurrences in
the first dimension ("rows") and four occurrences in the second dimension ("columns"):

1 #ARRAY (A1/1:3,1:4)

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

The first set of examples illustrates how the same initial value is assigned to occurrences of a
two-dimensional array; the second set of examples illustrates how different initial values are assigned.

In the examples, please note in particular the usage of the notations * and V. Both notations refer to all
occurrences of the dimension concerned: * indicates that all occurrences in that dimension are initialized
with the same value, while V indicates that all occurrences in that dimension are initialized with different
values.

Assigning the Same Value

To assign an initial value to one occurrence, you specify:

3

ArraysAssigning Initial Values to Two-Dimensional Arrays

1 #ARRAY (A1/1:3,1:4) INIT (2,3) <’A’>

 A

To assign the same initial value to one occurrence in the second dimension - in all occurrences of the
first dimension - you specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,3) <’A’>

 A

 A

 A

To assign the same initial value to a range of occurrences in the first dimension - in all occurrences of
the second dimension - you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,*) <’A’>

A A A A

A A A A

To assign the same initial value to a range of occurrences in each dimension, you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <’A’>

A A

A A

To assign the same initial value to all occurrences (in both dimensions), you specify:

1 #ARRAY (A1/1:3,1:4) INIT ALL <’A’>

A A A A

A A A A

A A A A

Alternatively, you could specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,*) <’A’>

4

Assigning the Same ValueArrays

Assigning Different Values

1 #ARRAY (A1/1:3,1:4) INIT (V,2) <’A’,’B’,’C’>

 A

 B

 C

1 #ARRAY (A1/1:3,1:4) INIT (V,2:3) <’A’,’B’,’C’>

 A A

 B B

 C C

1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’,’C’>

A A A A

B B B B

C C C C

1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,,’C’>

A A A A

C C C C

1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’>

A A A A

B B B B

1 #ARRAY (A1/1:3,1:4) INIT (V,1) <’A’,’B’,’C’> (V,3) <’D’,’E’,’F’>

5

ArraysAssigning Different Values

A D

B E

C F

1 #ARRAY (A1/1:3,1:4) INIT (3,V) <’A’,’B’,’C’,’D’>

A B C D

1 #ARRAY (A1/1:3,1:4) INIT (*,V) <’A’,’B’,’C’,’D’>

A B C D

A B C D

A B C D

1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (*,2) <’B’> (3,3) <’C’> (3,4) <’D’>

 B

A B

 B C D

1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (V,2) <’B’,C’,D’> (3,3) <’E’> (3,4) <’F’>

 B

A C

 D E F

A Three-Dimensional Array
A three-dimensional array could be visualized as follows:

6

 A Three-Dimensional ArrayArrays

The array illustrated here would be defined as follows (at the same time assigning an initial value to the
highlighted field in Row 1, Column 2, Plane 2):

DEFINE DATA LOCAL
1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
 5 #FIELD2 (P3) INIT (1,2,2) <100>
END-DEFINE
...

If defined as a local data area in the data area editor, the same array would look as follows:

I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- ---------------------------------
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
I 5 #FIELD2 P 3

Arrays as Part of a Larger Data Structure
The multiple dimensions of an array make it possible to define data structures analogous to COBOL or
PL1 structures.

7

ArraysArrays as Part of a Larger Data Structure

Example:

DEFINE DATA LOCAL
1 #AREA
 2 #FIELD1 (A10)
 2 #GROUP1 (1:10)
 3 #FIELD2 (P2)
 3 #FIELD3 (N1/1:4)
END-DEFINE
...

In this example, the data area #AREA has a total size of:

10 + (10 * (2 + (1 * 4))) bytes = 70 bytes

#FIELD1 is alphanumeric and 10 bytes long. #GROUP1 is the name of a sub-area within #AREA which
consists of 2 fields and has 10 occurrences. #FIELD2 is packed numeric, length 2. #FIELD3 is the
second field of #GROUP1 with four occurrences, and is numeric, length 1.

To reference a particular occurrence of #FIELD3 , two indices are required: first, the occurrence of
#GROUP1 must be specified, and second, the particular occurrence of #FIELD3 must also be specified.
For example, in an ADD statement later in the same program, #FIELD3 would be referenced as follows:

ADD 2 TO #FIELD3 (3,2)

Database Arrays
Adabas supports array structures within the database in the form of multiple-value fields and periodic
groups. These are described under Database Arrays.

The following example shows a DEFINE DATA view containing a multiple-value field:

DEFINE DATA LOCAL
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD
END-DEFINE
...

The same view in a local data area would look as follows:

I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- ---------------------------------
 V 1 EMPLOYEES-VIEW EMPLOYEES
 2 NAME A 20
 M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation
A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

8

 Database ArraysArrays

MA (I:I+5) Values of the field MA are referenced, beginning with value I and ending with
value I+5 .

MA (I+2:J-3) Values of the field MA are referenced, beginning with value I+2 and ending with
value J-3 .

Only the arithmetic operators plus (+) and minus (-) may be used in index expressions.

Arithmetic Support for Arrays
Arithmetic support for arrays include operations at array level, at row/column level, and at individual
element level.

Only simple arithmetic expressions are permitted with array variables, with only one or two operands and
an optional third variable as the receiving field.

Only the arithmetic operators plus (+) and minus (-) are allowed for expressions defining index ranges.

Examples of Array Arithmetics

The following examples assume the following field definitions:

DEFINE DATA LOCAL
01 #A (N5/1:10,1:10)
01 #B (N5/1:10,1:10)
01 #C (N5)
END-DEFINE
...

1.

ADD #A(*,*) TO #B(*,*)

The result operand, array #B, contains the addition, element by element, of the array #A and the
original value of array #B.

2.

ADD 4 TO #A(*,2)

The second column of the array #A is replaced by its original value plus 4.

3.

ADD 2 TO #A(2,*)

The second row of the array #A is replaced by its original value plus 2.

4.

ADD #A(2,*) TO #B(4,*)

The value of the second row of array #A is added to the fourth row of array #B.

5.

9

ArraysArithmetic Support for Arrays

ADD #A(2,*) TO #B(*,2)

This is an illegal operation and will result in a syntax error. Rows may only be added to rows and
columns to columns.

6.

ADD #A(2,*) TO #C

All values in the second row of the array #A are added to the scalar value #C.

7.

ADD #A(2,5:7) TO #C

The fifth, sixth, and seventh column values of the second row of array #A are added to the scalar
value #C.

10

Examples of Array ArithmeticsArrays

	 Arrays
	Defining Arrays
	 Initial Values for Arrays
	Assigning Initial Values to One-Dimensional Arrays
	Assigning Initial Values to Two-Dimensional Arrays
	Preliminary Information
	Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

	Assigning the Same Value
	Assigning Different Values

	 A Three-Dimensional Array
	Arrays as Part of a Larger Data Structure
	
	Example:

	 Database Arrays
	Using Arithmetic Expressions in Index Notation
	Arithmetic Support for Arrays
	Examples of Array Arithmetics

