
Accessing Data in an Adabas Database
This chapter describes various aspects of accessing data in an Adabas database with Natural.

The following topics are covered:

Data Definition Modules - DDMs

Database Arrays

DEFINE DATA Views

Statements for Database Access

Multi-Fetch Clause

Database Processing Loops

Database Update - Transaction Processing

Selecting Records Using ACCEPT/REJECT

AT START/END OF DATA Statements

Unicode Data

See also Natural with Adabas (in the Operations documentation) for an overview of the Natural profile
parameters that apply when Natural is used with Adabas.

Data Definition Modules - DDMs
For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definition module (DDM).

This section covers the following topics:

Use of Data Definition Modules

Maintaining DDMs

Listing/Displaying DDMs

Use of Data Definition Modules

The data definition module contains information about the individual fields of the file - information which
is relevant for the use of these fields in a Natural program. A DDM constitutes a logical view of a physical
database file.

For each physical file of a database, one or more DDMs can be defined. And for each DDM one or more
data views can be defined (see View Definition in the DEFINE DATA statement documentation).

1

Accessing Data in an Adabas Database Accessing Data in an Adabas Database

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with the
corresponding Natural function).

Maintaining DDMs

Use the system command SYSDDM to invoke the SYSDDM utility. The SYSDDM utility is used to
perform all functions needed for the creation and maintenance of Natural data definition modules.

For further information on the SYSDDM utility, see the section SYSDDM Utility in the Editors
documentation.

For each database field, a DDM contains the database-internal field name as well as the "external" field
name, that is, the name of the field as used in a Natural program. Moreover, the formats and lengths of the
fields are defined in the DDM, as well as various specifications that are used when the fields are output
with a DISPLAY or WRITE statement (column headings, edit masks, etc.).

For the field attributes defined in a DDM, refer to Using the DDM Editor Screen in the section SYSDDM
Utility of the Editors documentation.

Listing/Displaying DDMs

If you do not know the name of the DDM you want, you can use the system command LIST DDM to get
a list of all existing DDMs that are available in the current library. From the list, you can then select a
DDM for display.

To display a DDM whose name you know, you use the system command LIST DDM ddm-name.

For example:

LIST DDM EMPLOYEES

2

Maintaining DDMsAccessing Data in an Adabas Database

A list of all fields defined in the DDM will then be displayed, along with information about each field. For
the field attributes defined in a DDM, refer to SYSDDM Utility in the Editors documentation.

Database Arrays
Adabas supports array structures within the database in the form of multiple-value fields and periodic
groups.

This section covers the following topics:

Multiple-Value Fields

Periodic Groups

Referencing Multiple-Value Fields and Periodic Groups

Multiple-Value Fields within Periodic Groups

Referencing Multiple-Value Fields within Periodic Groups

Referencing the Internal Count of a Database Array

Multiple-Value Fields

A multiple-value field is a field which can have more than one value (up to 65534, depending on the
Adabas version and definition of the FDT) within a given record.

Example:

3

Accessing Data in an Adabas Database Database Arrays

Assuming that the above is a record in an employees file, the first field (Name) is an elementary field,
which can contain only one value, namely the name of the person; whereas the second field (Languages),
which contains the languages spoken by the person, is a multiple-value field, as a person can speak more
than one language.

Periodic Groups

A periodic group is a group of fields (which may be elementary fields and/or multiple-value fields) that
may have more than one occurrence (up to 65534, depending on the Adabas version and definition of the
FDT) within a given record.

The different values of a multiple-value field are usually called "occurrences"; that is, the number of
occurrences is the number of values which the field contains, and a specific occurrence means a specific
value. Similarly, in the case of periodic groups, occurrences refer to a group of values.

Example:

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which
contains the name of a person; Cars is a periodic group which contains the automobiles owned by that
person. The periodic group consists of three fields which contain the registration number, make and model
of each automobile. Each occurrence of Cars contains the values for one automobile.

4

Periodic GroupsAccessing Data in an Adabas Database

Referencing Multiple-Value Fields and Periodic Groups

To reference one or more occurrences of a multiple-value field or a periodic group, you specify an "index
notation" after the field name.

Examples:

The following examples use the multiple-value field LANGUAGES and the periodic group CARS from the
previous examples.

The various values of the multiple-value field LANGUAGES can be referenced as follows.

Example Explanation

LANGUAGES (1) References the first value (SPANISH).

LANGUAGES (X) The value of the variable X determines the value to be referenced.

LANGUAGES (1:3) References the first three values (SPANISH, CATALAN and FRENCH).

LANGUAGES (6:10) References the sixth to tenth values.

LANGUAGES (X:Y) The values of the variables X and Y determine the values to be referenced.

The various occurrences of the periodic group CARS can be referenced in the same manner:

Example Explanation

CARS (1) References the first occurrence (B-123ABC/SEAT/IBIZA).

CARS (X) The value of the variable X determines the occurrence to be referenced.

CARS
(1:2)

References the first two occurrences (B-123ABC/SEAT/IBIZA and
B-999XYZ/VW/GOLF).

CARS
(4:7)

References the fourth to seventh occurrences.

CARS
(X:Y)

The values of the variables X and Y determine the occurrences to be referenced.

Multiple-Value Fields within Periodic Groups

An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Example:

5

Accessing Data in an Adabas DatabaseReferencing Multiple-Value Fields and Periodic Groups

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which
contains the name of a person; Cars is a periodic group which contains the automobiles owned by that
person. The periodic group consists of three fields which contain the registration number, servicing dates
and make of each automobile. Within the periodic group Cars, the field Servicing is a multiple-value field,
containing the different servicing dates for each automobile.

Referencing Multiple-Value Fields within Periodic Groups

To reference one or more occurrences of a multiple-value field within a periodic group, you specify a
"two-dimensional" index notation after the field name.

Examples:

The following examples use the multiple-value field SERVICING within the periodic group CARS from
the example above. The various values of the multiple-value field can be referenced as follows:

Example Explanation

SERVICING (1,1) References the first value of SERVICING in the first occurrence of CARS
(31-05-97).

SERVICING (1:5,1) References the first value of SERVICING in the first five occurrences of
CARS.

SERVICING
(1:5,1:10)

References the first ten values of SERVICING in the first five
occurrences of CARS.

6

Referencing Multiple-Value Fields within Periodic GroupsAccessing Data in an Adabas Database

Referencing the Internal Count of a Database Array

It is sometimes necessary to reference a multiple-value field or a periodic group without knowing how
many values/occurrences exist in a given record. Adabas maintains an internal count of the number of
values in each multiple-value field and the number of occurrences of each periodic group. This count may
be read in a READ statement by specifying C* immediately before the field name.

The count is returned in format/length N3. See Referencing the Internal Count for a Database Array for
further details.

Example Explanation

C*LANGUAGES Returns the number of values of the multiple-value field LANGUAGES.

C*CARS Returns the number of occurrences of the periodic group CARS.

C*SERVICING
(1)

Returns the number of values of the multiple-value field SERVICING in the first
occurrence of a periodic group (assuming that SERVICING is a multiple-value
field within a periodic group.)

DEFINE DATA Views
To be able to use database fields in a Natural program, you must specify the fields in a view.

This section covers the following topics:

Use of Database Views

Defining a Database View

Use of Database Views

To be able to use database fields in a Natural program, you must specify the fields in a view.

In the view, you specify

the name of the data definition module (DDM) from which the fields are taken, and

the names of the database fields themselves (that is, their long names, not their database-internal
short names).

Defining a Database View

You define such a database view either

within the DEFINE DATA statement of the program, or

in a local data area (LDA) or a global data area (GDA) outside the program, with the DEFINE
DATA statement referencing that data area (as described in the section Defining Fields.

At Level 1, you specify the view name as follows:

7

Accessing Data in an Adabas Database DEFINE DATA Views

1 view-name VIEW OF ddm-name

where view-name is the name you choose for the view, ddm-name is the name of the DDM from which the
fields specified in the view are taken.

At Level 2, you specify the names of the database fields from the DDM.

In the illustration below, the name of the view is ABC, and it comprises the fields NAME, FIRST-NAME
and PERSONNEL-ID from the DDM XYZ.

The format and length of a database field need not be specified in the view, as these are already defined in
the underlying DDM.

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view need not
be the same as in the underlying DDM.

The view name is used in database access statements to determine which database is to be accessed, as
described in Statements for Database Access.

Statements for Database Access
To read data from a database, the following statements are available:

Statement Meaning

READ Select a range of records from a database in a specified sequence.

FIND Select from a database those records which meet a specified search
criterion.

HISTOGRAM Read only the values of one database field, or determine the number
of records which meet a specified search criterion.

8

Statements for Database AccessAccessing Data in an Adabas Database

READ Statement

The following topics are covered:

Use of READ Statement
Basic Syntax of READ Statement
Example of READ Statement
Limiting the Number of Records to be Read
STARTING/ENDING Clauses
WHERE Clause
Further Example of READ Statement

Use of READ Statement

The READ statement is used to read records from a database. The records can be retrieved from the
database

in the order in which they are physically stored in the database (READ IN PHYSICAL
SEQUENCE), or

in the order of Adabas Internal Sequence Numbers (READ BY ISN), or

in the order of the values of a descriptor field (READ IN LOGICAL SEQUENCE).

In this document, only READ IN LOGICAL SEQUENCE is discussed, as it is the most frequently used
form of the READ statement.

For information on the other two options, please refer to the description of the READ statement in the
Statements documentation.

Basic Syntax of READ Statement

The basic syntax of the READ statement is:

READ view IN LOGICAL SEQUENCE BY descriptor

or shorter:

READ view LOGICAL BY descriptor

- where

view is the name of a view defined in the DEFINE DATA statement (as explained in
DEFINE DATA Views).

descriptor is the name of a database field defined in that view. The values of this field determine
the order in which the records are read from the database.

9

Accessing Data in an Adabas DatabaseREAD Statement

If you specify a descriptor, you need not specify the keyword LOGICAL:

READ view BY descriptor

If you do not specify a descriptor, the records will be read in the order of values of the field defined as
default descriptor (under Default Sequence) in the DDM. However, if you specify no descriptor,
you must specify the keyword LOGICAL:

READ view LOGICAL

Example of READ Statement

** Example ’READX01’: READ
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 PERSONNEL-ID
 2 JOB-TITLE
END-DEFINE
*
READ (6) MYVIEW BY NAME
 DISPLAY NAME PERSONNEL-ID JOB-TITLE
END-READ
END

Output of Program READX01:

With the READ statement in this example, records from the EMPLOYEES file are read in alphabetical
order of their last names.

The program will produce the following output, displaying the information of each employee in
alphabetical order of the employees’ last names.

Page 1 04-11-11 14:15:54

 NAME PERSONNEL CURRENT
 ID POSITION
-------------------- --------- -------------------------

ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order by date of
birth, the appropriate READ statement would be:

READ MYVIEW BY BIRTH

You can only specify a field which is defined as a "descriptor" in the underlying DDM (it can also be a
subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor or a non-descriptor).

10

READ StatementAccessing Data in an Adabas Database

Limiting the Number of Records to be Read

As shown in the previous example program, you can limit the number of records to be read by specifying
a number in parentheses after the keyword READ:

READ (6) MYVIEW BY NAME

In that example, the READ statement would read no more than 6 records.

Without the limit notation, the above READ statement would read all records from the EMPLOYEES file in
the order of last names from A to Z.

STARTING/ENDING Clauses

The READ statement also allows you to qualify the selection of records based on the value of a descriptor
field. With an EQUAL TO/STARTING FROM option in the BY or WITH clause, you can specify the
value at which reading should begin. By adding a THRU/ENDING AT option, you can also specify the
value in the logical sequence at which reading should end.

For example, if you wanted a list of those employees in the order of job titles starting with TRAINEE and
continuing on to Z, you would use one of the following statements:

READ MYVIEW WITH JOB-TITLE = ’TRAINEE’
READ MYVIEW WITH JOB-TITLE STARTING from ’TRAINEE’
READ MYVIEW BY JOB-TITLE = ’TRAINEE’
READ MYVIEW BY JOB-TITLE STARTING from ’TRAINEE’

Note that the value to the right of the equal sign (=) or STARTING FROM option must be enclosed in
apostrophes. If the value is numeric, this text notation is not required.

If a BY option is used, a WITH option cannot be used and vice versa.

The sequence of records to be read can be even more closely specified by adding an end limit with a
THRU or ENDING AT clause.

To read just the records with the job title TRAINEE, you would specify:

READ MYVIEW BY JOB-TITLE STARTING from ’TRAINEE’ THRU ’TRAINEE’
READ MYVIEW WITH JOB-TITLE EQUAL TO ’TRAINEE’
 ENDING AT ’TRAINEE’

To read just the records with job titles that begin with A or B, you would specify:

READ MYVIEW BY JOB-TITLE = ’A’ THRU ’C’
READ MYVIEW WITH JOB-TITLE STARTING from ’A’ ENDING AT ’C’

The values are read up to and including the value specified after THRU/ENDING AT. In the two
examples above, all records with job titles that begin with A or B are read; if there were a job title C, this
would also be read, but not the next higher value CA.

WHERE Clause

The WHERE clause may be used to further qualify which records are to be read.

11

Accessing Data in an Adabas DatabaseREAD Statement

For instance, if you wanted only those employees with job titles starting from TRAINEE who are paid in
US currency, you would specify:

READ MYVIEW WITH JOB-TITLE = ’TRAINEE’
 WHERE CURR-CODE = ’USD’

The WHERE clause can also be used with the BY clause as follows:

READ MYVIEW BY NAME
 WHERE SALARY = 20000

The WHERE clause differs from the BY/WITH clause in two respects:

The field specified in the WHERE clause need not be a descriptor.

The expression following the WHERE option is a logical condition.

The following logical operators are possible in a WHERE clause:

EQUAL EQ =

NOT EQUAL TO NE ¬=

LESS THAN LT <

LESS THAN OR EQUAL TO LE <=

GREATER THAN GT >

GREATER THAN OR EQUAL TO GE >=

The following program illustrates the use of the STARTING FROM, ENDING AT and WHERE clauses:

** Example ’READX02’: READ (with STARTING, ENDING and WHERE clause)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:2)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
END-DEFINE
*
READ (3) MYVIEW WITH JOB-TITLE
STARTING FROM ’TRAINEE’ ENDING AT ’TRAINEE’
 WHERE CURR-CODE (*) = ’USD’
 DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
 SKIP 1
END-READ
END

Output of Program READX02:

 NAME INCOME
 CURRENT
 POSITION CURRENCY ANNUAL BONUS
 CODE SALARY
------------------------- -------- ---------- ----------

12

READ StatementAccessing Data in an Adabas Database

SENKO USD 23000 0
TRAINEE USD 21800 0

BANGART USD 25000 0
TRAINEE USD 23000 0

LINCOLN USD 24000 0
TRAINEE USD 22000 0

Further Example of READ Statement

See the following example program:

READX03 - READ statement

FIND Statement

The following topics are covered:

Use of FIND Statement
Basic Syntax of FIND Statement
Limiting the Number of Records to be Processed
WHERE Clause
Example of FIND Statement with WHERE Clause
IF NO RECORDS FOUND Condition
Further Examples of FIND Statement

Use of FIND Statement

The FIND statement is used to select from a database those records which meet a specified search
criterion.

Basic Syntax of FIND Statement

The basic syntax of the FIND statement is:

FIND RECORDS IN view WITH field = value

or shorter:

FIND view WITH field = value

- where

view is the name of a view defined in the DEFINE DATA statement (as explained in DEFINE DATA
Views).

field is the name of a database field defined in that view.

13

Accessing Data in an Adabas DatabaseFIND Statement

You can only specify a field which is defined as a "descriptor" in the underlying DDM (it can also be a
subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor).

For the complete syntax, refer to the FIND statement documentation.

Limiting the Number of Records to be Processed

In the same way as with the READ statement described above, you can limit the number of records to be
processed by specifying a number in parentheses after the keyword FIND:

FIND (6) RECORDS IN MYVIEW WITH NAME = ’CLEGG’

In the above example, only the first 6 records that meet the search criterion would be processed.

Without the limit notation, all records that meet the search criterion would be processed.

Note:
If the FIND statement contains a WHERE clause (see below), records which are rejected as a result of the
WHERE clause are not counted against the limit.

WHERE Clause

With the WHERE clause of the FIND statement, you can specify an additional selection criterion which is
evaluated after a record (selected with the WITH clause) has been read and before any processing is
performed on the record.

Example of FIND Statement with WHERE Clause

** Example ’FINDX01’: FIND (with WHERE)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 CITY
END-DEFINE
*
FIND MYVIEW WITH CITY = ’PARIS’
 WHERE JOB-TITLE = ’INGENIEUR COMMERCIAL’
 DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND
END

Note:
In this example only those records which meet the criteria of the WITH clause and the WHERE clause are
processed in the DISPLAY statement.

Output of Program FINDX01 :

14

FIND StatementAccessing Data in an Adabas Database

 CITY CURRENT PERSONNEL NAME
 POSITION ID
-------------------- ------------------------- --------- --------------------

PARIS INGENIEUR COMMERCIAL 50007300 CAHN
PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
PARIS INGENIEUR COMMERCIAL 50004700 FAURIE
PARIS INGENIEUR COMMERCIAL 50004400 VALLY
PARIS INGENIEUR COMMERCIAL 50002800 BRETON
PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX
PARIS INGENIEUR COMMERCIAL 50000400 KORAB-BRZOZOWSKI

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified in the WITH and WHERE clauses, the
statements within the FIND processing loop are not executed (for the previous example, this would mean
that the DISPLAY statement would not be executed and consequently no employee data would be
displayed).

However, the FIND statement also provides an IF NO RECORDS FOUND clause, which allows you to
specify processing you wish to be performed in the case that no records meet the search criteria.

Example:

** Example ’FINDX02’: FIND (with IF NO RECORDS FOUND)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
END-DEFINE
*
FIND MYVIEW WITH NAME = ’BLACKSMITH’
 IF NO RECORDS FOUND
 WRITE ’NO PERSON FOUND.’
 END-NOREC
 DISPLAY NAME FIRST-NAME
END-FIND
END

The above program selects all records in which the field NAME contains the value BLACKSMITH. For
each selected record, the name and first name are displayed. If no record with NAME = ’BLACKSMITH’
is found on the file, the WRITE statement within the IF NO RECORDS FOUND clause is executed.

Output of Program FINDX02 :

Page 1 04-11-11 14:15:54

 NAME FIRST-NAME
-------------------- --------------------

NO PERSON FOUND.

15

Accessing Data in an Adabas DatabaseFIND Statement

Further Examples of FIND Statement

See the following example programs:

FINDX07 - FIND (with several clauses)

FINDX08 - FIND (with LIMIT)

FINDX09 - FIND (using *NUMBER, *COUNTER, *ISN)

FINDX10 - FIND (combined with READ)

FINDX11 - FIND NUMBER (with *NUMBER)

HISTOGRAM Statement

The following topics are covered:

Use of HISTOGRAM Statement
Syntax of HISTOGRAM Statement
Limiting the Number of Values to be Read
STARTING/ENDING Clauses
WHERE Clause
Example of HISTOGRAM Statement

Use of HISTOGRAM Statement

The HISTOGRAM statement is used to either read only the values of one database field, or determine the
number of records which meet a specified search criterion.

The HISTOGRAM statement does not provide access to any database fields other than the one specified in
the HISTOGRAM statement.

Syntax of HISTOGRAM Statement

The basic syntax of the HISTOGRAM statement is:

HISTOGRAM VALUE IN view FOR field

or shorter:

HISTOGRAM view FOR field

- where

view is the name of a view defined in the DEFINE DATA statement (as explained in DEFINE DATA
Views).

field is the name of a database field defined in that view.

16

HISTOGRAM StatementAccessing Data in an Adabas Database

For the complete syntax, refer to the HISTOGRAM statement documentation.

Limiting the Number of Values to be Read

In the same way as with the READ statement, you can limit the number of values to be read by specifying
a number in parentheses after the keyword HISTOGRAM:

HISTOGRAM (6) MYVIEW FOR NAME

In the above example, only the first 6 values of the field NAME would be read.

Without the limit notation, all values would be read.

STARTING/ENDING Clauses

Like the READ statement, the HISTOGRAM statement also provides a STARTING FROM clause and an
ENDING AT (or THRU) clause to narrow down the range of values to be read by specifying a starting
value and ending value.

Examples:

HISTOGRAM MYVIEW FOR NAME STARTING from ’BOUCHARD’
HISTOGRAM MYVIEW FOR NAME STARTING from ’BOUCHARD’ ENDING AT ’LANIER’
HISTOGRAM MYVIEW FOR NAME from ’BLOOM’ THRU ’ROESER’

WHERE Clause

The HISTOGRAM statement also provides a WHERE clause which may be used to specify an additional
selection criterion that is evaluated after a value has been read and before any processing is performed on
the value. The field specified in the WHERE clause must be the same as in the main clause of the
HISTOGRAM statement.

Example of HISTOGRAM Statement

** Example ’HISTOX01’: HISTOGRAM
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
END-DEFINE
*
LIMIT 8
HISTOGRAM MYVIEW CITY STARTING FROM ’M’
 DISPLAY NOTITLE CITY ’NUMBER OF/PERSONS’ *NUMBER *COUNTER
END-HISTOGRAM
END

In this program, the system variables *NUMBER and *COUNTER are also evaluated by the HISTOGRAM
statement, and output with the DISPLAY statement. *NUMBER contains the number of database records
that contain the last value read; *COUNTER contains the total number of values which have been read.

Output of Program HISTOX01:

17

Accessing Data in an Adabas DatabaseHISTOGRAM Statement

 CITY NUMBER OF CNT
 PERSONS
-------------------- ----------- -----------

MADISON 3 1
MADRID 41 2
MAILLY LE CAMP 1 3
MAMERS 1 4
MANSFIELD 4 5
MARSEILLE 2 6
MATLOCK 1 7
MELBOURNE 2 8

Multi-Fetch Clause
This section covers the multi-fetch record retrieval functionality for Adabas databases.

The multi-fetch functionality described in this section is only supported for Adabas. For information on
the multi-fetch record retrieval functionality for DB2 databases, see also Multiple Row Processing in the
Natural for DB2 part of the Database Management System Interfaces documentation.

The following topics are covered:

Purpose of Multi-Fetch Feature

Considerations for Multi-Fetch Usage

Size of the Multi-Fetch Buffer

TEST DBLOG Support for Multi-Fetch

Purpose of Multi-Fetch Feature

In standard mode, Natural does not read multiple records with a single database call; it always operates in
a one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large
number of database records are being processed.

To improve the performance of those programs, you can use the Multi-Fetch Clause in the FIND, READ
or HISTOGRAM statements. This allows you to define the Multi-Fetch-Factor, a numeric value that
specifies the number of records read per database access.

FIND MULTI-FETCH ON

READ OFF

HISTOGRAM OF multi-fetch-factor

Where the multi-fetch-factor is either a constant or a variable with a format integer (I4).

At statement execution time, the runtime checks if a multi-fetch-factor greater than 1 is supplied for the
database statement.

18

 Multi-Fetch ClauseAccessing Data in an Adabas Database

If the multi-fetch-factor is:

a
negative
value

a runtime error is raised.

0 or 1 the database call is continued in the usual one-record-per-access mode.

2 or
greater

the database call is prepared dynamically to read multiple records (for example, 10) with a
single database access into an auxiliary buffer (multi-fetch buffer). If successful, the first
record is transferred into the underlying data view. Upon the execution of the next loop, the
data view is filled directly from the multi-fetch buffer, without database access. After all
records have been fetched from the multi-fetch buffer, the next loop results in the next
record set being read from the database. If the database loop is terminated (either by
end-of-records, ESCAPE, STOP, etc.), the content of the multi-fetch buffer is released.

Considerations for Multi-Fetch Usage

A multi-fetch access is only supported for a browse loop; in other words, when the records are read
with "no hold".

The program does not receive "fresh" records from the database for every loop, but operates with
images retrieved at the most recent multi-fetch access.

If a loop repositioning is triggered for a READ / HISTOGRAM statement, the content of the
multi-fetch buffer at that point is released.

If a dynamic direction change (IN DYNAMIC...SEQUENCE) is coded for a READ / HISTOGRAM
statement, the multi-fetch feature is not possible and leads to a corresponding syntax error at
compilation.

The first record of a FIND loop is retrieved with the initial S1 command. Since Adabas multi-fetch is
just defined for all kinds of Lx commands, it first can be used from the second record.

The size occupied by a database loop in the multi-fetch buffer is determined according to the rule:

((record-buffer-length + isn-buffer-entry-length) * multi-fetch-factor) + 4 + header-length

=

((size-of-view-fields + 20) * multi-fetch-factor) + 4 + 128

In order to keep the required space small, the multi-fetch factor is automatically reduced at runtime,
if

the "loop-limit" (e.g. READ (2) ..) is smaller, but only if no WHERE clause is involved;

the "ISN quantity" (for FIND statement only) is smaller;

the resulting size of the record buffer or ISN buffer exceeds 32KB.

19

Accessing Data in an Adabas DatabaseConsiderations for Multi-Fetch Usage

Moreover, the multi-fetch option is completely ignored at runtime, if

the multi-fetch factor contains a value less equal 1;

the multi-fetch buffer is not available or does not have enough free space (for more details, refer
to Size of the Multi-Fetch Buffer below.

Size of the Multi-Fetch Buffer

In order to control the amount of storage available for multi-fetch purposes, you can limit the maximum
size of the multi-fetch buffer.

Inside the NATPARM definition, you can make a static assignment via the parameter macro NTDS:

NTDS MULFETCH,nn

At session start, you can also use the profile parameter DS:

DS=(MULFETCH,nn)

where nn represents the complete size allowed to be allocated for multi-fetch purposes (in KB). The value
may be set in the range (0 - 1024), with a default value of 64. Setting a high value does not necessarily
mean having a buffer allocated of that size, since the multi-fetch handler makes dynamic allocations and
resizes, depending on what is really needed to execute a multi-fetch database statement. If no multi-fetch
database statement is executed in a Natural session, the multi-fetch buffer will never be created, regardless
of which value was set.

If value 0 is specified, the multi-fetch processing is completely disabled, no matter if a database access
statement contains a MULTI-FETCH OF .. clause or not. This allows to completely switch off all
multi-fetch activities when there is not enough storage available in the current environment or for
debugging purposes.

Note:
Due to existing Adabas limitations, you may not have a record buffer or ISN buffer larger than 32 KB.
Therefore you need only a maximum of 64 KB space in the multi-fetch buffer for a single FIND, READ or
HISTOGRAM loop. The required value setting for the multi-fetch buffer depends on the number of nested
database loops you want to serve with multi-fetch.

TEST DBLOG Support for Multi-Fetch

For information on how Multi-Fetch related database calls are supported by TEST DBLOG, see DBLOG
Utility , Displaying Adabas Commands that use MULTI-FETCH in the Utilities documentation.

Database Processing Loops
This section discusses processing loops required to process data that have been selected from a database as
a result of a FIND, READ or HISTOGRAM statement.

The following topics are covered:

20

 Database Processing LoopsAccessing Data in an Adabas Database

Creation of Database Processing Loops

Hierarchies of Processing Loops

Example of Nested FIND Loops Accessing the Same File

Further Examples of Nested READ and FIND Statements

Creation of Database Processing Loops

Natural automatically creates the necessary processing loops which are required to process data that have
been selected from a database as a result of a FIND, READ or HISTOGRAM statement.

Example:

In the following exampe, the FIND loop selects all records from the EMPLOYEES file in which the field
NAME contains the value ADKINSON and processes the selected records. In this example, the processing
consists of displaying certain fields from each record selected.

** Example ’FINDX03’: FIND
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
END-DEFINE
*
FIND MYVIEW WITH NAME = ’ADKINSON’
 DISPLAY NAME FIRST-NAME CITY
END-FIND
END

If the FIND statement contained a WHERE clause in addition to the WITH clause, only those records that
were selected as a result of the WITH clause and met the WHERE criteria would be processed.

The following diagram illustrates the flow logic of a database processing loop:

21

Accessing Data in an Adabas DatabaseCreation of Database Processing Loops

Hierarchies of Processing Loops

The use of multiple FIND and/or READ statements creates a hierarchy of processing loops, as shown in
the following example:

Example of Processing Loop Hierarchy

** Example ’FINDX04’: FIND (two FIND statements nested)
**
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
1 AUTOVIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 2 MODEL
END-DEFINE
*

22

Hierarchies of Processing LoopsAccessing Data in an Adabas Database

EMP. FIND PERSONVIEW WITH NAME = ’ADKINSON’
 VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
 DISPLAY NAME MAKE MODEL
 END-FIND
END-FIND
END

The above program selects from the EMPLOYEES file all people with the name ADKINSON. Each record
(person) selected is then processed as follows:

1. The second FIND statement is executed to select the automobiles from the VEHICLES file, using as
selection criterion the PERSONNEL-IDs from the records selected from the EMPLOYEES file with
the first FIND statement.

2. The NAME of each person selected is displayed; this information is obtained from the EMPLOYEES
file. The MAKE and MODEL of each automobile owned by that person is also displayed; this
information is obtained from the VEHICLES file.

The second FIND statement creates an inner processing loop within the outer processing loop of the first
FIND statement, as shown in the following diagram.

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example
program:

23

Accessing Data in an Adabas DatabaseHierarchies of Processing Loops

Example of Nested FIND Loops Accessing the Same File

It is also possible to construct a processing loop hierarchy in which the same file is used at both levels of
the hierarchy:

** Example ’FINDX05’: FIND (two FIND statements on same file nested)
**
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES
 2 NAME

24

Example of Nested FIND Loops Accessing the Same FileAccessing Data in an Adabas Database

 2 FIRST-NAME
 2 CITY
1 #NAME (A40)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED
 ’PEOPLE IN SAME CITY AS:’ #NAME / ’CITY:’ CITY SKIP 1
*
FIND PERSONVIEW WITH NAME = ’JONES’
 WHERE FIRST-NAME = ’LAUREL’
 COMPRESS NAME FIRST-NAME INTO #NAME
 /*
 FIND PERSONVIEW WITH CITY = CITY
 DISPLAY NAME FIRST-NAME CITY
 END-FIND
END-FIND
END

The above program first selects all people with name JONES and first name LAUREL from the
EMPLOYEES file. Then all who live in the same city are selected from the EMPLOYEES file and a list of
these people is created. All field values displayed by the DISPLAY statement are taken from the second
FIND statement.

Output of Program FINDX05 :

PEOPLE IN SAME CITY AS: JONES LAUREL
CITY: BALTIMORE

 NAME FIRST-NAME CITY
-------------------- -------------------- --------------------

JENSON MARTHA BALTIMORE
LAWLER EDDIE BALTIMORE
FORREST CLARA BALTIMORE
ALEXANDER GIL BALTIMORE
NEEDHAM SUNNY BALTIMORE
ZINN CARLOS BALTIMORE
JONES LAUREL BALTIMORE

Further Examples of Nested READ and FIND Statements

See the following example programs:

READX04 - READ statement (in combination with FIND and the system variables *NUMBER and
*COUNTER)

LIMITX01 - LIMIT statement (for READ, FIND loop processing)

Database Update - Transaction Processing
This section describes how Natural performs database updating operations based on transactions.

The following topics are covered:

Logical Transaction

25

Accessing Data in an Adabas Database Database Update - Transaction Processing

Record Hold Logic

Backing Out a Transaction

Restarting a Transaction

Example of Using Transaction Data to Restart a Transaction

Logical Transaction

Natural performs database updating operations based on transactions, which means that all database
update requests are processed in logical transaction units. A logical transaction is the smallest unit of work
(as defined by you) which must be performed in its entirety to ensure that the information contained in the
database is logically consistent.

A logical transaction may consist of one or more update statements (DELETE, STORE, UPDATE)
involving one or more database files. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a record is put on "hold"; Natural does this automatically when the
record is read for updating, for example, if a FIND loop contains an UPDATE or DELETE statement.

The end of a logical transaction is determined by an END TRANSACTION statement in the program. This
statement ensures that all updates within the transaction have been successfully applied, and releases all
records that were put on "hold" during the transaction.

Example:

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
END-DEFINE
FIND MYVIEW WITH NAME = ’SMITH’
 DELETE
 END TRANSACTION
END-FIND
END

Each record selected would be put on "hold", deleted, and then - when the END TRANSACTION
statement is executed - released from "hold".

Note:
The Natural profile parameter ETEOP, as set by the Natural administrator, determines whether or not
Natural will generate an END TRANSACTION statement at the end of each Natural program. Ask your
Natural administrator for details.

Example of STORE Statement:

The following example program adds new records to the EMPLOYEES file.

** Example ’STOREX01’: STORE (Add new records to EMPLOYEES file)
*
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOYEE-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID(A8)

26

Logical TransactionAccessing Data in an Adabas Database

 2 NAME (A20)
 2 FIRST-NAME (A20)
 2 MIDDLE-I (A1)
 2 SALARY (P9/2)
 2 MAR-STAT (A1)
 2 BIRTH (D)
 2 CITY (A20)
 2 COUNTRY (A3)
*
1 #PERSONNEL-ID (A8)
1 #NAME (A20)
1 #FIRST-NAME (A20)
1 #INITIAL (A1)
1 #MAR-STAT (A1)
1 #SALARY (N9)
1 #BIRTH (A8)
1 #CITY (A20)
1 #COUNTRY (A3)
1 #CONF (A1) INIT <’Y’>
END-DEFINE
*
REPEAT
 INPUT ’ENTER A PERSONNEL ID AND NAME (OR ’’END’’ TO END)’ //
 ’PERSONNEL-ID : ’ #PERSONNEL-ID //
 ’NAME : ’ #NAME /
 ’FIRST-NAME : ’ #FIRST-NAME
 /***
 /* validate entered data
 /***
 IF #PERSONNEL-ID = ’END’ OR #NAME = ’END’
 STOP
 END-IF
 IF #NAME = ’ ’
 REINPUT WITH TEXT ’ENTER A LAST-NAME’
 MARK 2 AND SOUND ALARM
 END-IF
 IF #FIRST-NAME = ’ ’
 REINPUT WITH TEXT ’ENTER A FIRST-NAME’
 MARK 3 AND SOUND ALARM
 END-IF
 /***
 /* ensure person is not already on file
 /***
 FIP2. FIND NUMBER EMPLOYEE-VIEW WITH PERSONNEL-ID = #PERSONNEL-ID
 /*
 IF *NUMBER (FIP2.) > 0
 REINPUT ’PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS’
 MARK 1 AND SOUND ALARM
 END-IF
 /***
 /* get further information
 /***
 INPUT
 ’ENTER EMPLOYEE DATA’ ////
 ’PERSONNEL-ID :’ #PERSONNEL-ID (AD=IO) /
 ’NAME :’ #NAME (AD=IO) /
 ’FIRST-NAME :’ #FIRST-NAME (AD=IO) ///
 ’INITIAL :’ #INITIAL /
 ’ANNUAL SALARY :’ #SALARY /
 ’MARITAL STATUS :’ #MAR-STAT /
 ’DATE OF BIRTH (YYYYMMDD) :’ #BIRTH /
 ’CITY :’ #CITY /

27

Accessing Data in an Adabas DatabaseLogical Transaction

 ’COUNTRY (3 CHARS) :’ #COUNTRY //
 ’ADD THIS RECORD (Y/N) :’ #CONF (AD=M)
 /***
 /* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
 /***
 IF #SALARY < 10000
 REINPUT TEXT ’ENTER A PROPER ANNUAL SALARY’ MARK 2
 END-IF
 IF NOT (#MAR-STAT = ’S’ OR = ’M’ OR = ’D’ OR = ’W’)
 REINPUT TEXT ’ENTER VALID MARITAL STATUS S=SINGLE ’ -
 ’M=MARRIED D=DIVORCED W=WIDOWED’ MARK 3
 END-IF
 IF NOT(#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
 REINPUT TEXT ’ENTER CORRECT DATE’ MARK 4
 END-IF
 IF #CITY = ’ ’
 REINPUT TEXT ’ENTER A CITY NAME’ MARK 5
 END-IF
 IF #COUNTRY = ’ ’
 REINPUT TEXT ’ENTER A COUNTRY CODE’ MARK 6
 END-IF
 IF NOT (#CONF = ’N’ OR= ’Y’)
 REINPUT TEXT ’ENTER Y (YES) OR N (NO)’ MARK 7
 END-IF
 IF #CONF = ’N’
 ESCAPE TOP
 END-IF
 /***
 /* add the record with STORE
 /***
 MOVE #PERSONNEL-ID TO EMPLOYEE-VIEW.PERSONNEL-ID
 MOVE #NAME TO EMPLOYEE-VIEW.NAME
 MOVE #FIRST-NAME TO EMPLOYEE-VIEW.FIRST-NAME
 MOVE #INITIAL TO EMPLOYEE-VIEW.MIDDLE-I
 MOVE #SALARY TO EMPLOYEE-VIEW.SALARY (1)
 MOVE #MAR-STAT TO EMPLOYEE-VIEW.MAR-STAT
 MOVE EDITED #BIRTH TO EMPLOYEE-VIEW.BIRTH (EM=YYYYMMDD)
 MOVE #CITY TO EMPLOYEE-VIEW.CITY
 MOVE #COUNTRY TO EMPLOYEE-VIEW.COUNTRY
 /*
 STP3. STORE RECORD IN FILE EMPLOYEE-VIEW
 /*
 /***
 /* mark end of logical transaction
 /***
 END OF TRANSACTION
 RESET INITIAL #CONF
END-REPEAT
END

Output of Program STOREX01:

ENTER A PERSONNEL ID AND NAME (OR ’END’ TO END)

PERSONNEL ID :

NAME :
FIRST NAME :

28

Logical TransactionAccessing Data in an Adabas Database

Record Hold Logic

If Natural is used with Adabas, any record which is to be updated will be placed in "hold" status until an
END TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time limit is
exceeded.

When a record is placed in "hold" status for one user, the record is not available for update by another
user. Another user who wishes to update the same record will be placed in "wait" status until the record is
released from "hold" when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session parameter WH (Wait for Record in Hold
Status) can be used (see the Parameter Reference).

When you use update logic in a program, you should consider the following:

The maximum time that a record can be in hold status is determined by the Adabas transaction time
limit (Adabas parameter TT). If this time limit is exceeded, you will receive an error message and all
database modifications done since the last END TRANSACTION will be made undone.

The number of records on hold and the transaction time limit are affected by the size of a transaction,
that is, by the placement of the END TRANSACTION statement in the program. Restart facilities
should be considered when deciding where to issue an END TRANSACTION. For example, if a
majority of records being processed are not to be updated, the GET statement is an efficient way of
controlling the "holding" of records. This avoids issuing multiple END TRANSACTION statements
and reduces the number of ISNs on hold. When you process large files, you should bear in mind that
the GET statement requires an additional Adabas call. An example of a GET statement is shown
below.

The placing of records in "hold" status is also controlled by the profile parameter RI (Release ISNs),
as set by the Natural administrator.

Example of Hold Logic:

** Example ’GETX01’: GET (put single record in hold with UPDATE stmt)
**
** CAUTION: Executing this example will modify the database records!

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1)
END-DEFINE
*
RD. READ EMPLOY-VIEW BY NAME
 DISPLAY EMPLOY-VIEW
 IF SALARY (1) > 1500000
 /*
 GE. GET EMPLOY-VIEW *ISN (RD.)
 /*
 WRITE ’=’ (50) ’RECORD IN HOLD:’ *ISN(RD.)
 COMPUTE SALARY (1) = SALARY (1) * 1.15
 UPDATE (GE.)
 END TRANSACTION
 END-IF
END-READ
END

29

Accessing Data in an Adabas DatabaseRecord Hold Logic

Backing Out a Transaction

During an active logical transaction, that is, before the END TRANSACTION statement is issued, you can
cancel the transaction by using a BACKOUT TRANSACTION statement. The execution of this statement
removes all updates that have been applied (including all records that have been added or deleted) and
releases all records held by the transaction.

Restarting a Transaction

With the END TRANSACTION statement, you can also store transaction-related information. If
processing of the transaction terminates abnormally, you can read this information with a GET
TRANSACTION DATA statement to ascertain where to resume processing when you restart the
transaction.

Example of Using Transaction Data to Restart a Transaction

The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the user
is informed of the last EMPLOYEES record successfully processed. The user can resume processing from
that EMPLOYEES record. It would also be possible to set up the restart transaction message to include the
last VEHICLES record successfully updated before the restart operation.

** Example ’GETTRX01’: GET TRANSACTION
*
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
01 PERSON VIEW OF EMPLOYEES
 02 PERSONNEL-ID (A8)
 02 NAME (A20)
 02 FIRST-NAME (A20)
 02 MIDDLE-I (A1)
 02 CITY (A20)
01 AUTO VIEW OF VEHICLES
 02 PERSONNEL-ID (A8)
 02 MAKE (A20)
 02 MODEL (A20)
*
01 ET-DATA
 02 #APPL-ID (A8) INIT <’ ’>
 02 #USER-ID (A8)
 02 #PROGRAM (A8)
 02 #DATE (A10)
 02 #TIME (A8)
 02 #PERSONNEL-NUMBER (A8)
END-DEFINE
*
GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM
 #DATE #TIME #PERSONNEL-NUMBER
*
IF #APPL-ID NOT = ’NORMAL’ /* if last execution ended abnormally
AND #APPL-ID NOT = ’ ’
 INPUT (AD=OIL)
 // 20T ’*** LAST SUCCESSFUL TRANSACTION ***’ (I)
 / 20T ’***********************************’
 /// 25T ’APPLICATION:’ #APPL-ID
 / 32T ’USER:’ #USER-ID
 / 29T ’PROGRAM:’ #PROGRAM
 / 24T ’COMPLETED ON:’ #DATE ’AT’ #TIME

30

 Backing Out a TransactionAccessing Data in an Adabas Database

 / 20T ’PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
END-IF
*
REPEAT
 /*
 INPUT (AD=MIL) // 20T ’ENTER PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
 /*
 IF #PERSONNEL-NUMBER = ’99999999’
 ESCAPE BOTTOM
 END-IF
 /*
 FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER
 IF NO RECORDS FOUND
 REINPUT ’SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.’
 END-NOREC
 FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
 IF NO RECORDS FOUND
 WRITE ’PERSON DOES NOT OWN ANY CARS’
 ESCAPE BOTTOM
 END-NOREC
 IF *COUNTER (FIND2.) = 1 /* first pass through the loop
 INPUT (AD=M)
 / 20T ’EMPLOYEES/AUTOMOBILE DETAILS’ (I)
 / 20T ’----------------------------’
 /// 20T ’NUMBER:’ PERSONNEL-ID (AD=O)
 / 22T ’NAME:’ NAME ’ ’ FIRST-NAME ’ ’ MIDDLE-I
 / 22T ’CITY:’ CITY
 / 22T ’MAKE:’ MAKE
 / 21T ’MODEL:’ MODEL
 UPDATE (FIND1.) /* update the EMPLOYEES file
 ELSE /* subsequent passes through the loop
 INPUT NO ERASE (AD=M IP=OFF) //////// 28T MAKE / 28T MODEL
 END-IF
 /*
 UPDATE (FIND2.) /* update the VEHICLES file
 /*
 MOVE *APPLIC-ID TO #APPL-ID
 MOVE *INIT-USER TO #USER-ID
 MOVE *PROGRAM TO #PROGRAM
 MOVE *DAT4E TO #DATE
 MOVE *TIME TO #TIME
 /*
 END TRANSACTION #APPL-ID #USER-ID #PROGRAM
 #DATE #TIME #PERSONNEL-NUMBER
 /*
 END-FIND /* for VEHICLES (FIND2.)
 END-FIND /* for EMPLOYEES (FIND1.)
END-REPEAT /* for REPEAT
*
STOP /* Simulate abnormal transaction end
END TRANSACTION ’NORMAL ’
END

Selecting Records Using ACCEPT/REJECT
This section discusses the statements ACCEPT and REJECT which are used to select records based on
user-specified logical criteria.

31

Accessing Data in an Adabas Database Selecting Records Using ACCEPT/REJECT

The following topics are covered:

Statements Usable with ACCEPT and REJECT

Example of ACCEPT Statement

Logical Condition Criteria in ACCEPT/REJECT Statements

Example of ACCEPT Statement with AND Operator

Example of REJECT Statement with OR Operator

Further Examples of ACCEPT and REJECT Statements

Statements Usable with ACCEPT and REJECT

The statements ACCEPT and REJECT can be used in conjunction with the database access statements:

READ

FIND

HISTOGRAM

Example of ACCEPT Statement
** Example ’ACCEPX01’: ACCEPT IF
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
ACCEPT IF SALARY (1) >= 40000
 DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of Program ACCEPX01:

 Page 1 04-11-11 11:11:11

 NAME CURRENT ANNUAL
 POSITION SALARY
 -------------------- ------------------------- ----------

 ADKINSON DBA 46700
 ADKINSON MANAGER 47000
 ADKINSON MANAGER 47000
 AFANASSIEV DBA 42800
 ALEXANDER DIRECTOR 48000
 ANDERSON MANAGER 50000
 ATHERTON ANALYST 43000
 ATHERTON MANAGER 40000

32

 Statements Usable with ACCEPT and REJECTAccessing Data in an Adabas Database

Logical Condition Criteria in ACCEPT/REJECT Statements

The statements ACCEPT and REJECT allow you to specify logical conditions in addition to those that
were specified in WITH and WHERE clauses of the READ statement.

The logical condition criteria in the IF clause of an ACCEPT / REJECT statement are evaluated after the
record has been selected and read.

Logical condition operators include the following (see Logical Condition Criteria for more detailed
information):

EQUAL EQ :=

NOT EQUAL TO NE ¬=

LESS THAN LT <

LESS EQUAL LE <=

GREATER THAN GT >

GREATER EQUAL GE >=

Logical condition criteria in ACCEPT / REJECT statements may also be connected with the Boolean
operators AND, OR, and NOT. Moreover, parentheses may be used to indicate logical grouping; see the
following examples.

Example of ACCEPT Statement with AND Operator

The following program illustrates the use of the Boolean operator AND in an ACCEPT statement.

** Example ’ACCEPX02’: ACCEPT IF ... AND ...
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
ACCEPT IF SALARY (1) >= 40000
 AND SALARY (1) <= 45000
 DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of Program ACCEPX02:

33

Accessing Data in an Adabas DatabaseLogical Condition Criteria in ACCEPT/REJECT Statements

Page 1 04-12-14 12:22:01

 NAME CURRENT ANNUAL
 POSITION SALARY
-------------------- ------------------------- ----------

AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

Example of REJECT Statement with OR Operator

The following program, which uses the Boolean operator OR in a REJECT statement, produces the same
output as the ACCEPT statement in the example above, as the logical operators are reversed.

** Example ’ACCEPX03’: REJECT IF ... OR ...
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
REJECT IF SALARY (1) < 40000
 OR SALARY (1) > 45000
 DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of Program ACCEPX03:

Page 1 04-12-14 12:26:27

 NAME CURRENT ANNUAL
 POSITION SALARY
-------------------- ------------------------- ----------

AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

Further Examples of ACCEPT and REJECT Statements

See the following example programs:

ACCEPX04 - ACCEPT IF ... LESS THAN ...

ACCEPX05 - ACCEPT IF ... AND ...

ACCEPX06 - REJECT IF ... OR ...

34

Example of REJECT Statement with OR OperatorAccessing Data in an Adabas Database

AT START/END OF DATA Statements
This section discusses the use of the statements AT START OF DATA and AT END OF DATA .

The following topics are covered:

AT START OF DATA Statement

AT END OF DATA Statement

Example of AT START OF DATA and AT END OF DATA Statements

Further Examples of AT START OF DATA and AT END OF DATA

AT START OF DATA Statement

The AT START OF DATA statement is used to specify any processing that is to be performed after the
first of a set of records has been read in a database processing loop.

The AT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be output before the first field
value. By default, this output is displayed left-justified on the page.

AT END OF DATA Statement

The AT END OF DATA statement is used to specify processing that is to be performed after all records
for a database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be output after the last field value.
By default, this output is displayed left-justified on the page.

Example of AT START OF DATA and AT END OF DATA Statements

The following example program illustrates the use of the statements AT START OF DATA and AT END
OF DATA.

The Natural system variable *TIME has been incorporated into the AT START OF DATA statement to
display the time of day.

The Natural system function OLD has been incorporated into the AT END OF DATA statement to display
the name of the last person selected.

** Example ’ATSTAX01’: AT START OF DATA
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:1)
 3 CURR-CODE

35

Accessing Data in an Adabas DatabaseAT START/END OF DATA Statements

 3 SALARY
 3 BONUS (1:1)
END-DEFINE
*
WRITE TITLE ’XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT’ /
READ (3) MYVIEW BY CITY STARTING FROM ’E’
 DISPLAY GIVE SYSTEM FUNCTIONS
 NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)
 /*
 AT START OF DATA
 WRITE ’RUN TIME:’ *TIME /
 END-START
 AT END OF DATA
 WRITE / ’LAST PERSON SELECTED:’ OLD (NAME) /
 END-ENDDATA
END-READ
*
AT END OF PAGE
 WRITE / ’AVERAGE SALARY:’ AVER (SALARY(1))
END-ENDPAGE
END

The program produces the following output:

 XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

 NAME CURRENT INCOME
 POSITION
 CURRENCY ANNUAL BONUS
 CODE SALARY
--------------- --------------- -------- ---------- ----------

RUN TIME: 12:43:19.1

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE USD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333

Further Examples of AT START OF DATA and AT END OF DATA

See the following example programs:

ATENDX01 - AT END OF DATA

ATSTAX02 - AT START OF DATA

WRITEX09 - WRITE (in combination with AT END OF DATA)

Unicode Data
Natural enables users to access wide-character fields (format W) in an Adabas database.

36

Unicode DataAccessing Data in an Adabas Database

The following topics are covered:

Data Definition Module

Access Configuration

Restrictions

Data Definition Module

Adabas wide-character fields (W) are mapped to Natural format U (Unicode).

The length definition for a Natural field of format U corresponds to half the size of the Adabas field of
format W. An Adabas wide-character field of length 200 is, for example, mapped to (U100) in Natural.

Access Configuration

Natural receives data from Adabas and sends data to Adabas using UTF-16 as common encoding.

This encoding is specified with the OPRB parameter and sent to Adabas with the open request. It is used
for wide-character fields and applies to the entire Adabas user session.

Restrictions

Collating descriptors are not supported.

For further information on Adabas and Unicode support refer to the specific Adabas product
documentation.

37

Accessing Data in an Adabas DatabaseData Definition Module

	 Accessing Data in an Adabas Database
	Data Definition Modules - DDMs
	Use of Data Definition Modules
	Maintaining DDMs
	Listing/Displaying DDMs

	 Database Arrays
	Multiple-Value Fields
	Example:

	Periodic Groups
	Example:

	Referencing Multiple-Value Fields and Periodic Groups
	Examples:

	Multiple-Value Fields within Periodic Groups
	Example:

	Referencing Multiple-Value Fields within Periodic Groups
	Examples:

	Referencing the Internal Count of a Database Array

	 DEFINE DATA Views
	Use of Database Views
	Defining a Database View

	Statements for Database Access
	READ Statement
	Use of READ Statement
	Basic Syntax of READ Statement
	Example of READ Statement
	Limiting the Number of Records to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Further Example of READ Statement

	FIND Statement
	Use of FIND Statement
	Basic Syntax of FIND Statement
	Limiting the Number of Records to be Processed
	WHERE Clause
	Example of FIND Statement with WHERE Clause
	IF NO RECORDS FOUND Condition
	Further Examples of FIND Statement

	HISTOGRAM Statement
	Use of HISTOGRAM Statement
	Syntax of HISTOGRAM Statement
	Limiting the Number of Values to be Read
	STARTING/ENDING Clauses
	Examples:
	WHERE Clause
	Example of HISTOGRAM Statement

	 Multi-Fetch Clause
	Purpose of Multi-Fetch Feature
	Considerations for Multi-Fetch Usage
	Size of the Multi-Fetch Buffer
	TEST DBLOG Support for Multi-Fetch

	 Database Processing Loops
	Creation of Database Processing Loops
	Example:

	Hierarchies of Processing Loops
	Example of Processing Loop Hierarchy

	Example of Nested FIND Loops Accessing the Same File
	Further Examples of Nested READ and FIND Statements

	 Database Update - Transaction Processing
	Logical Transaction
	Example:
	Example of STORE Statement:

	Record Hold Logic
	Example of Hold Logic:

	 Backing Out a Transaction
	Restarting a Transaction
	Example of Using Transaction Data to Restart a Transaction

	 Selecting Records Using ACCEPT/REJECT
	 Statements Usable with ACCEPT and REJECT
	Example of ACCEPT Statement
	Logical Condition Criteria in ACCEPT/REJECT Statements
	Example of ACCEPT Statement with AND Operator
	Example of REJECT Statement with OR Operator
	Further Examples of ACCEPT and REJECT Statements

	AT START/END OF DATA Statements
	AT START OF DATA Statement
	AT END OF DATA Statement
	Example of AT START OF DATA and AT END OF DATA Statements
	Further Examples of AT START OF DATA and AT END OF DATA

	Unicode Data
	Data Definition Module
	Access Configuration
	Restrictions

