Accessing Data in an Adabas Database Accessing Data in an Adabas Database

Accessing Data in an Adabas Database

This chapter describes various aspects of accessing data in an Adabas database with Natural.
The following topics are covered:
® Data Definition Modules - DDMs
® Database Arrays
o DEFINE DATA Views
® Statements for Database Access
® Multi-Fetch Clause
e Database Processing Loops
® Database Update - Transaction Processing
® Selecting Records Using ACCEPT/REJECT
® AT START/END OF DATA Statements
® Unicode Data

See alsdNatural with Adabagin theOperationsdocumentation) for an overview of the Natural profile
parameters that apply when Natural is used with Adabas.

Data Definition Modules- DDM s

For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definition module (DDM).

This section covers the following topics:
® Use of Data Definition Modules
® Maintaining DDMs

e Listing/Displaying DDMs

Use of Data Definition M odules

The data definition module contains information about the individual fields of the file - information which
is relevant for the use of these fields in a Natural program. A DDM constitutes a logical view of a physical
database file.

For each physical file of a database, one or more DDMs can be defined. And for each DDM one or more
data views can be defined (séiew Definitionin theDEFINE DATA statement documentation).

Accessing Data in an Adabas Database Maintaining DDMs

[2
Physical file
in database - [
|

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with the
corresponding Natural function).

Maintaining DDMs

Use the system commafy SDDMo invoke the SYSDDM utility. The SYSDDM utility is used to
perform all functions needed for the creation and maintenance of Natural data definition modules.

For further information on the SYSDDM utility, see the sec8M8DDM Utilityin the Editors
documentation.

For each database field, a DDM contains the database-internal field name as well as the "external” field
name, that is, the name of the field as used in a Natural program. Moreover, the formats and lengths of the
fields are defined in the DDM, as well as various specifications that are used when the fields are output
with aDISPLAY or WRITEstatement (column headings, edit masks, etc.).

For the field attributes defined in a DDM, refeldsing the DDM Editor Screein the sectior8YSDDM
Utility of theEditorsdocumentation.

Listing/Displaying DDMs

If you do not know the name of the DDM you want, you can use the system corbt8andDM to get
a list of all existing DDMs that are available in the current library. From the list, you can then select a
DDM for display.

To display a DDM whose name you know, you use the system coma@hdDM ddm nane.

For example:

LIST DDM EMPLOYEES

Database Arrays Accessing Data in an Adabas Database

A list of all fields defined in the DDM will then be displayed, along with information about each field. For
the field attributes defined in a DDM, refer$ SDDM Utilityin the Editors documentation.
Database Arrays

Adabas supports array structures within the database in the form of multiple-value fields and periodic
groups.

This section covers the following topics:
® Multiple-Value Fields
® Periodic Groups

e Referencing Multiple-Value Fields and Periodic Groups

Multiple-Value Fields within Periodic Groups
® Referencing Multiple-Value Fields within Periodic Groups

® Referencing the Internal Count of a Database Array

Multiple-Value Fields

A multiple-value field is a field which can have more than one value (up to 65534, depending on the
Adabas version and definition of the FDT) within a given record.

Example:
BARREDA SPANISH
Marme Languages
(elementary fisld) (multiple-value field)

Accessing Data in an Adabas Database Periodic Groups

Assuming that the above is a record in an employees file, the first field (Name) is an elementary field,
which can contain only one value, namely the name of the person; whereas the second field (Languages),
which contains the languages spoken by the person, is a multiple-value field, as a person can speak more
than one language.

Periodic Groups

A periodic group is a group of fields (which may be elementary fields and/or multiple-value fields) that
may have more than one occurrence (up to 65534, depending on the Adabas version and definition of the
FDT) within a given record.

The different values of a multiple-value field are usually called "occurrences"; that is, the number of
occurrences is the number of values which the field contains, and a specific occurrence means a specific
value. Similarly, in the case of periodic groups, occurrences refer to a group of values.

Example:

RODRIGUEZ B-123ABC SEAT IBIZA

Name Reg. No. Make Model
(elementary field)

Cars
(periodic group)

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which
contains the name of a person; Cars is a periodic group which contains the automobiles owned by that
person. The periodic group consists of three fields which contain the registration number, make and model
of each automobile. Each occurrence of Cars contains the values for one automobile.

Referencing Multiple-Value Fields and Periodic Groups Accessing Data in an Adabas Database

Referencing Multiple-Value Fields and Periodic Groups

To reference one or more occurrences of a multiple-value field or a periodic group, you specify an "index
notation" after the field name.

Examples:

The following examples use the multiple-value fieNGUAGE&nd the periodic groupARSfrom the
previous examples.

The various values of the multiple-value fiklANGUAGESan be referenced as follows.

Example Explanation
LANGUAGES (1) References the first valuBRANISH).
LANGUAGES (X) The value of the variable X determines the value to be referenced.

LANGUAGES (1:3) References the first three valuS&P@ANISH CATALANandFRENCH
LANGUAGES (6:10) |References the sixth to tenth values.
LANGUAGES (X:Y) |The values of the variablésandY determine the values to be referencegd.

The various occurrences of the periodic gr@4RScan be referenced in the same manner:

Example Explanation
CARS (1) References the first occurren@ 123ABC/SEATI/IBIZA).

CARS (X) | The value of the variablé determines the occurrence to be referenced.

CARS References the first two occurrencBsl23ABC/SEAT/IBIZA and

(1:2) B-999XYZ/VW/GOLF).

CARS References the fourth to seventh occurrences.

4:7)

CARS The values of the variablesandY determine the occurrences to be referenced.
xY)

Multiple-Value Fields within Periodic Groups

An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Example:

Accessing Data in an Adabas Database Referencing Multiple-Value Fields within Periodic Groups

RODRIGUEZ B-123ABC 31-05-67 SEAT ‘
Name Reg. No. Servicing Make
(elementary field) (multiple-value
field)
Cars

(periodic group)

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which
contains the name of a person; Cars is a periodic group which contains the automobiles owned by that
person. The periodic group consists of three fields which contain the registration number, servicing dates
and make of each automobile. Within the periodic group Cars, the field Servicing is a multiple-value field,
containing the different servicing dates for each automobile.

Referencing Multiple-Value Fields within Periodic Groups

To reference one or more occurrences of a multiple-value field within a periodic group, you specify a
"two-dimensional” index notation after the field name.

Examples:

The following examples use the multiple-value fiSERVICING within the periodic grougARSfrom
the example above. The various values of the multiple-value field can be referenced as follows:

Example Explanation

SERVICING (1,1) References the first value SERVICING in the first occurrence €€ARS
(31-05-97).

SERVICING (1:5,1) References the first value SERVICING in the first five occurrences of
CARS

SERVICING References the first ten valuesSERVICING in the first five

(1:5,1:10) occurrences o€ARS

DEFINE DATA Views Accessing Data in an Adabas Database

Referencing the Internal Count of a Database Array

It is sometimes necessary to reference a multiple-value field or a periodic group without knowing how
many values/occurrences exist in a given record. Adabas maintains an internal count of the number of
values in each multiple-value field and the number of occurrences of each periodic group. This count may
be read in &READstatement by specifyin@* immediately before the field name.

The count is returned in format/length N3. &sferencing the Internal Count for a Database Arfiay
further details.

Example Explanation
C*LANGUAGES | Returns the number of values of the multiple-value iddlGUAGES

C*CARS Returns the number of occurrences of the periodic gBARS

C*SERVICING |Returns the number of values of the multiple-value f&HRVICING in the first
Q) occurrence of a periodic group (assuming 8aRVICING is a multiple-value
field within a periodic group.)

DEFINE DATA Views
To be able to use database fields in a Natural program, you must specify the fialgsnin a
This section covers the following topics:

® Use of Database Views

® Defining a Database View

Use of Database Views
To be able to use database fields in a Natural program, you must specify the fialgsnin a
In the view, you specify

e the name of thdata definition moduléDDM) from which the fields are taken, and

e thenames of the database fieltiemselves (that is, their long names, not their database-internal
short names).

Defining a Database View
You define such a database view either
e within theDEFINE DATA statement of the program, or

® in alocal data are@_DA) or aglobal data are6GDA) outside the program, with tiEEFINE
DATAstatement referencing that data area (as described in the gafiiting Fields

At Level 1, you specify the view name as follows:

Accessing Data in an Adabas Database Statements for Database Access

1 vi ew nane VIEW OF ddm nane

whereview-namds the name you choose for the viegldm-names the name of the DDM from which the
fields specified in the view are taken.

At Level 2, you specify the names of the database fields from the DDM.

In the illustration below, the name of the viewABC and it comprises the fieldlAMEFIRST-NAME
andPERSONNEL-IDfrom the DDMXYZ

Fhysical File In Databass DDM Xy View
Fields: Fields. DEFINE DATA LOCAL
AA AAPERSONMEL-ID |18 1 ABC VIEW OF xX¥2Z
BB BB MAME AZ0 2 NAME
cC CC FIRST-NAME A20 2 FIRST-NAME
Do > DD BIRTH N8 | > 2 PERSONNEL-ID
BE EE JOB-TITLE AZ25 EMD-DEFINE

The format and length of a database field need not be specified in the view, as these are already defined in
the underlying DDM.

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view need not
be the same as in the underlying DDM.

The view name is used in database access statements to determine which database is to be accessed, as
described irBtatements for Database Access

Statementsfor Database Access

To read data from a database, the following statements are available:

Statement Meaning

READ Select a range of records from a database in a specified sequefce.

FIND Select from a database those records which meet a specified sgarch
criterion.

HISTOGRAM Read only the values of one database field, or determine the nymber
of records which meet a specified search criterion.

READ Statement Accessing Data in an Adabas Database

READ Statement

The following topics are covered:

Use of READ Statement

Basic Syntax of READ Statement

Example of READ Statement

Limiting the Number of Records to be Read
STARTING/ENDING Clauses

WHERE Clause

Further Example of READ Statement

Use of READ Statement

The READstatement is used to read records from a database. The records can be retrieved from the
database

e in the order in which they are physically stored in the datafiEAD IN PHYSICAL
SEQUENCK or

e in the order of Adabas Internal Sequence NumbREAD BY ISN), or
® in the order of the values of a descriptor fidREAD IN LOGICAL SEQUENCE).

In this document, onlREAD IN LOGICAL SEQUENCE s discussed, as it is the most frequently used
form of theREADstatement.

For information on the other two options, please refer to the description RE#hBstatement in the
Statementslocumentation.

Basic Syntax of READ Statement

The basic syntax of tHREADstatement is:

READviewIN LOGICAL SEQUENCE BY descriptor

or shorter:

READviewLOGICAL BY descriptor

- where

Vi ew is the name of a view defined in tBEFINE DATA statement (as explained in
DEFINE DATA Views

descri pt or |is the name of a database field defined in that view. The values of this field detgermine
the order in which the records are read from the database.

Accessing Data in an Adabas Database READ Statement

If you specify a descriptor, you need not specifykbgwordLOGICAL

READviewBY descriptor

If you do not specify a descriptor, the records will be read in the order of values of the field defined as
default descriptor (undévefault Sequence) in theDDM. However, if you specify no descriptor,
you must specify thkeywordLOGICAL

READview LOGICAL

Example of READ Statement

** Example 'READX01": READ
kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkkkkkkhkkkkhkkkhkkkkhkkkkkkkkhkkkkkkkkk
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME

2 PERSONNEL-ID

2 JOB-TITLE
END-DEFINE
*

READ (6) MYVIEW BY NAME

DISPLAY NAME PERSONNEL-ID JOB-TITLE
END-READ
END

Output of ProgranREADX01

With theREADstatement in this example, records fromEMPLOYEESIe are read in alphabetical
order of their last names.

The program will produce the following output, displaying the information of each employee in
alphabetical order of the employees’ last names.

Page 1 04-11-11 14:15:54
NAME PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order by date of
birth, the appropriatREADstatement would be:

READ MYVIEW BY BIRTH

You can only specify a field which is defined as a "descriptor" in the undeiDfig (it can also be a
subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor or a non-descriptor).

10

READ Statement Accessing Data in an Adabas Database

Limiting the Number of Recordsto be Read

As shown in the previous example program, you can limit the number of records to be read by specifying
a number in parentheses after the keywiERND

READ (6) MYVIEW BY NAME
In that example, thREADstatement would read no more than 6 records.

Without the limit notation, the abo\READstatement would reall records from thEMPLOYEESIe in
the order of last names frofto Z.

STARTING/ENDING Clauses

The READstatement also allows you to qualify the selection of records basedailubef a descriptor
field. With anEQUAL TO/STARTING FROMoption in theBY or WITH clause, you can specify the
value at which reading should begin. By adding8RU/ENDING AT option, you can also specify the
value in the logical sequence at which reading should end.

For example, if you wanted a list of those employees in the order of job titles startifgRMtNEE and
continuing on t&Z, you would use one of the following statements:

READ MYVIEW WITH JOB-TITLE = 'TRAINEE’

READ MYVIEW WITH JOB-TITLE STARTING from 'TRAINEE'’

READ MYVIEW BY JOB-TITLE = "'TRAINEE’
READ MYVIEW BY JOB-TITLE STARTING from 'TRAINEE’

Note that the value to the right of the equal sign (3 DARTING FROMbption must be enclosed in
apostrophes. If the value is numeric, tieist notationis not required.

If a BY option is used, ®WITH option cannot be used and vice versa.

The sequence of records to be read can be even more closely specified by adding an end limit with a
THRUor ENDING AT clause.

To read just the records with the job tifIRAINEE, you would specify:
READ MYVIEW BY JOB-TITLE STARTING from 'TRAINEE’ THRU 'TRAINEE’

READ MYVIEW WITH JOB-TITLE EQUAL TO 'TRAINEE’
ENDING AT 'TRAINEE’

To read just the records with job titles that begin witbr B, you would specify:

READ MYVIEW BY JOB-TITLE ="A’ THRU 'C’
READ MYVIEW WITH JOB-TITLE STARTING from 'A’ ENDING AT 'C’

The values are read up to and including the value specifiedl&fRU/ENDING AT. In the two
examples above, all records with job titles that begin it B are read; if there were a job itk this
would also be read, but not the next higher vélde

WHERE Clause

The WHERElause may be used to further qualify which records are to be read.

11

Accessing Data in an Adabas Database READ Statement

For instance, if you wanted only those employees with job titles startinglfiRAMINEE who are paid in
US currency, you would specify:

READ MYVIEW WITH JOB-TITLE = 'TRAINEFE’
WHERE CURR-CODE = 'USD’

The WHERIElause can also be used with B¥éclause as follows:

READ MYVIEW BY NAME
WHERE SALARY = 20000

TheWHEREIlause differs from thBY/WITH clause in two respects:
e The field specified in th&VHERElause need not be a descriptor.
® The expression following thé&/HERBption is a logical condition.

The following logical operators are possible W& ERElause:

EQUAL EQ =
NOT EQUAL TO NE =
LESSTHAN LT <
LESS THAN OR EQUAL TO LE <=
GREATER THAN GT >
GREATER THAN OR EQUAL TO GE >=

The following program illustrates the use of BIFARTING FROMENDING AT andWHERI[Elauses:

** Example 'READX02": READ (with STARTING, ENDING and WHERE clause)

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 INCOME (1:2)
3 CURR-CODE
3 SALARY
3BONUS (1:1)
END-DEFINE
*
READ(3) MYVIEW WITH JOB-TITLE
STARTING FROMTRAINEE’ ENDING AT 'TRAINEE’
WHEREURR-CODE (*) = 'USD’
DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
SKIP 1
END-READ
END

Output of ProgranREADX02

NAME INCOME
CURRENT
POSITION CURRENCY ANNUAL BONUS

CODE SALARY

12

FIND Statement Accessing Data in an Adabas Database

SENKO uUsD 23000 0
TRAINEE usD 21800 0
BANGART usD 25000 0
TRAINEE usD 23000 0
LINCOLN usD 24000 0
TRAINEE usD 22000 0

Further Example of READ Statement
See the following example program:

® READXO3 - READ statement

FIND Statement

The following topics are covered:

e Use of FIND Statement

Basic Syntax of FIND Statement

Limiting the Number of Records to be Processed
WHERE Clause

Example of FIND Statement with WHERE Clause
IF NO RECORDS FOUND Condition

Further Examples of FIND Statement

Use of FIND Statement

TheFIND statement is used to select from a database those records which meet a specified search
criterion.

Basic Syntax of FIND Statement

The basic syntax of tHeIND statement is:

FIND RECORDS IN viewWITHfield = value

or shorter:

FIND viewWITHfield = value

- where

view| is the name of a view defined in tBEFINE DATA statement (as explainediEFINE DATA
Views.

field |is the name of a database field defined in that view.

13

Accessing Data in an Adabas Database FIND Statement

You can only specify field which is defined as a "descriptor" in the underyi¥igM (it can also be a
subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor).

For the complete syntax, refer to tR.ND statement documentation.
Limiting the Number of Recordsto be Processed

In the same way as with tiREADstatement describexbove you can limit the number of records to be
processed by specifying a number in parentheses after the kdyiivd

FIND (6) RECORDS IN MYVIEW WITH NAME = 'CLEGG’
In the above example, only the first 6 records that meet the search criterion would be processed.
Without the limit notation, all records that meet the search criterion would be processed.

Note:
If the FIND statement containsMdHERI[Elause (see below), records which are rejected as a result of the
WHERIEElause ar@ot counted against the limit.

WHERE Clause

With theWHEREIlause of th&IND statement, you can specify an additional selection criterion which is
evaluatedafter a record (selected with th&ITH clause) has been read dreforeany processing is
performed on the record.

Example of FIND Statement with WHERE Clause

** Example 'FINDXO01': FIND (with WHERE)

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2CITY
END-DEFINE
*
FIND MYVIEW WITHCITY = 'PARIS’
WHERBOB-TITLE ='INGENIEUR COMMERCIAL’
DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND
END

Note:
In this example only those records which meet the criteria dMifi# clauseandthe WHERIElause are
processed in thBISPLAY statement.

Output of ProgranFINDX01:

14

FIND Statement Accessing Data in an Adabas Database

CITY CURRENT PERSONNEL NAME
POSITION ID

PARIS INGENIEUR COMMERCIAL 50007300 CAHN
PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
PARIS INGENIEUR COMMERCIAL 50004700 FAURIE
PARIS INGENIEUR COMMERCIAL 50004400 VALLY
PARIS INGENIEUR COMMERCIAL 50002800 BRETON
PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX
PARIS INGENIEUR COMMERCIAL 50000400 KORAB-BRZOZOWSKI

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified Wiite¢ andWHERI[Elauses, the

statements within thEIND processing loop are not executed (for the previous example, this would mean
that theDISPLAY statement would not be executed and consequently no employee data would be
displayed).

However, the=FIND statement also provides BFhNO RECORDS FOUNDclause, which allows you to
specify processing you wish to be performed in the case that no records meet the search criteria.

Example:

** Example 'FINDX02': FIND (with IF NO RECORDS FOUND)

*kkk *kkk

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

*

FIND MYVIEW WITH NAME = 'BLACKSMITH’
IF NO RECORDS FOUND
WRITE 'NO PERSON FOUND.’
END-NOREC
DISPLAY NAME FIRST-NAME
END-FIND
END

The above program selects all records in which the R<M Econtains the valuBLACKSMITH For
each selected record, the name and first name are displayed. If no recoé\MiEh= "'BLACKSMITH’
is found on the file, thBVRITE statement within tht= NO RECORDS FOUNDclause is executed.

Output of ProgranfFINDX02:
Page 1 04-11-11 14:15:54

NAME FIRST-NAME

NO PERSON FOUND.

15

Accessing Data in an Adabas Database HISTOGRAM Statement

Further Examples of FIND Statement
See the following example programs:
® FINDXO7 - FIND (with several clauses)
® FINDXO8 - FIND (with LIMIT)
® FINDXO09 - FIND (using *NUMBER, *COUNTER, *ISN)
® FINDX10 - FIND (combined with READ)

® FINDX11 - FIND NUMBER (with *NUMBER)

HISTOGRAM Statement

The following topics are covered:

® Use of HISTOGRAM Statement

Syntax of HISTOGRAM Statement
Limiting the Number of Values to be Read
STARTING/ENDING Clauses

WHERE Clause

Example of HISTOGRAM Statement

Useof HISTOGRAM Statement

The HISTOGRAMtatement is used to either read only the values of one database field, or determine the
number of records which meet a specified search criterion.

The HISTOGRAMtatement does not provide access to any database fields other than the one specified in
the HISTOGRAMtatement.

Syntax of HISTOGRAM Statement

The basic syntax of thdlSTOGRAMtatement is:

HISTOGRAM VALUE IN view FORfield

or shorter:

HISTOGRAMiewFORfield

- where

view| is the name of a view defined in tBEFINE DATA statement (as explainediEFINE DATA
Views.

field|is the name of a database field defined in that view.

16

HISTOGRAM Statement Accessing Data in an Adabas Database

For the complete syntax, refer to tHESTOGRAMtatement documentation.
Limiting the Number of Valuesto be Read

In the same way as with tREADstatement, you can limit the number of values to be read by specifying
a number in parentheses after the keywdSTOGRAM

HISTOGRAM (6) MYVIEW FOR NAME
In the above example, only the first 6 values of the fiddViEwvould be read.
Without the limit notation, all values would be read.

STARTING/ENDING Clauses

Like theREADstatement, thelISTOGRAMtatement also providesSTARTING FROMclause and an
ENDING AT (or THRU) clause to narrow down the range of values to be read by specifying a starting
value and ending value.

Examples:

HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD’
HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD’ ENDING AT 'LANIER’
HISTOGRAM MYVIEW FOR NAME from 'BLOOM’ THRU 'ROESER’

WHERE Clause

The HISTOGRAMtatement also providesMHERIElause which may be used to specify an additional
selection criterion that is evaluatefier a value has been read deforeany processing is performed on
the value. The field specified in tNeHERElause must be the same as in the main clause of the
HISTOGRAMtatement.

Example of HISTOGRAM Statement

** Example 'HISTOX01: HISTOGRAM

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2CITY
END-DEFINE
*
LIMIT 8
HISTOGRAM MYVIEW CITY STARTING FROM'M’
DISPLAY NOTITLE CITY 'NUMBER OF/PERSONS’ *NUMBER *COUNTER
END-HISTOGRAM
END

In this program, the system variabi®JMBERand*COUNTERare also evaluated by thcB<STOGRAM
statement, and output with tBBSPLAY statement*NUMBERcontains the number of database records
that contain the last value rea@OUNTERcontains the total number of values which have been read.

Output of PrograntISTOXO01.:

17

Accessing Data in an Adabas Database Multi-Fetch Clause

CITY NUMBER OF CNT
PERSONS

MADISON 3 1
MADRID 41 2
MAILLY LE CAMP 1 3
MAMERS 1
MANSFIELD 4 5
MARSEILLE 2
MATLOCK 1
MELBOURNE 2 8

Multi-Fetch Clause

This section covers the multi-fetch record retrieval functionality for Adabas databases.

The multi-fetch functionality described in this section is only supported for Adabas. For information on
the multi-fetch record retrieval functionality for DB2 databases, seévaliiple Row Processing the
Natural for DB2part of theDatabase Management System Interfad@sumentation.

The following topics are covered:
® Purpose of Multi-Fetch Feature
e Considerations for Multi-Fetch Usage
® Size of the Multi-Fetch Buffer

e TEST DBLOG Support for Multi-Fetch

Pur pose of M ulti-Fetch Feature

In standard mode, Natural does not read multiple records with a single database call; it always operates in
a one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large
number of database records are being processed.

To improve the performance of those programs, you can use the Multi-Fetch ClaugelNXhBREAD
or HISTOGRAMtatements. This allows you to define the Multi-Fetch-Factor, a numeric value that
specifies the number of records read per database access.

FIND MULTI-FETCH | ON
READ OFF
HISTOGRAM OFmulti-fetch-factor

Where themulti-fetch-factoris either a constant or a variable with a format integer (14).

At statement execution time, the runtime checkanifudti-fetch-factorgreater than 1 is supplied for the
database statement.

18

Considerations for Multi-Fetch Usage Accessing Data in an Adabas Database

If the multi-fetch-factoris:

a a runtime error is raised.
negative
value

Oorl |the database call is continued in the usual one-record-per-access mode.

2or the database call is prepared dynamically to read multiple records (for example, 10){with a
greater |single database access into an auxiliary buffer (multi-fetch buffer). If successful, thelfirst
record is transferred into the underlying data view. Upon the execution of the next Iqop, the
data view is filled directly from the multi-fetch buffer, without database access. After|all
records have been fetched from the multi-fetch buffer, the next loop results in the ngxt
record set being read from the database. If the database loop is terminated (either Qy
end-of-recordsESCAPESTOR etc.), the content of the multi-fetch buffer is released.

Considerationsfor Multi-Fetch Usage

® A multi-fetch access is only supported for a browse loop; in other words, when the records are read
with "no hold".

® The program does not receive "fresh" records from the database for every loop, but operates with
images retrieved at the most recent multi-fetch access.

e |f a loop repositioning is triggered folREAD/ HISTOGRAMtatement, the content of the
multi-fetch buffer at that point is released.

e |f a dynamic direction changd\ DYNAMIC...SEQUENCE) is coded for &EAD/ HISTOGRAM
statement, the multi-fetch feature is not possible and leads to a corresponding syntax error at
compilation.

® The first record of &IND loop is retrieved with the initigsl command. Since Adabas multi-fetch is
just defined for all kinds dfx commands, it first can be used from the second record.

® The size occupied by a database loop in the multi-fetch buffer is determined according to the rule:

((record-buffer-length + isn-buffer-entry-length) * multi-fetch-factor) + 4 + header-length

((size-of-view-fields + 20) * multi-fetch-factor) + 4 + 128

In order to keep the required space small, the multi-fetch factor is automatically reduced at runtime,
if

O the "loop-limit" (e.g.READ (2) ..) is smaller, but only if n&VHERElause is involved;
O the "ISN quantity" (folrIND statement only) is smaller;

O the resulting size of the record buffer or ISN buffer exceeds 32KB.

19

Accessing Data in an Adabas Database Database Processing Loops

Moreover, the multi-fetch option is completely ignored at runtime, if
O the multi-fetch factor contains a value less equal 1;

O the multi-fetch buffer is not available or does not have enough free space (for more details, refer
to Size of the Multi-Fetch Bufférelow.

Size of the M ulti-Fetch Buffer

In order to control the amount of storage available for multi-fetch purposes, you can limit the maximum
size of the multi-fetch buffer.

Inside theNATPARNMIefinition, you can make a static assignment via the parameter MaDI®

NTDS MULFETCHnn

At session start, you can also use the profile parab&er

DS=(MULFETCHnn)

wherenn represents the complete size allowed to be allocated for multi-fetch purposes (in KB). The value
may be set in the range { 1024), with a default value of 64. Setting a high value does not necessarily
mean having a buffer allocated of that size, since the multi-fetch handler makes dynamic allocations and
resizes, depending on what is really needed to execute a multi-fetch database statement. If no multi-fetch
database statement is executed in a Natural session, the multi-fetch buffer will never be created, regardless
of which value was set.

If value 0 is specified, the multi-fetch processing is completely disabled, no matter if a database access
statement containsMULTI-FETCH OF .. clause or not. This allows to completely switch off all
multi-fetch activities when there is not enough storage available in the current environment or for
debugging purposes.

Note:

Due to existing Adabas limitations, you may not have a record buffer or ISN buffer larger than 32 KB.
Therefore you need only a maximum of 64 KB space in the multi-fetch buffer for a BINgle READor
HISTOGRAMoop. The required value setting for the multi-fetch buffer depends on the number of nested
database loops you want to serve with multi-fetch.

TEST DBLOG Support for Multi-Fetch

For information on how Multi-Fetch related database calls are supporideSly DBLOG seeDBLOG
Utility, Displaying Adabas Commands that use MULTI-FETi€kheUtilities documentation.

Database Processing L oops

This section discusses processing loops required to process data that have been selected from a database as
a result of &IND, READor HISTOGRAMtatement.

The following topics are covered:

20

Creation of Database Processing Loops Accessing Data in an Adabas Database

e Creation of Database Processing Loops
e Hierarchies of Processing Loops
o Example of Nested FIND Loops Accessing the Same File

® Further Examples of Nested READ and FIND Statements

Creation of Database Processing L oops

Natural automatically creates the necessary processing loops which are required to process data that have
been selected from a database as a resulFN@, READor HISTOGRAMtatement.

Example:

In the following exampe, thEIND loop selects all records from tB81PLOYEESIe in which the field
NAMEcontains the valuADKINSONand processes the selected records. In this example, the processing
consists of displaying certain fields from each record selected.

** Example 'FINDXO03': FIND

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY

END-DEFINE

*

FIND MYVIEW WITH NAME ="ADKINSON’
DISPLAY NAME FIRST-NAME CITY

END-FIND
END

If the FIND statement containedvVHERElause in addition to th&/ITH clause, only those records that
were selected as a result of iIM¢TH clauseand met theWHERIEriteria would be processed.

The following diagram illustrates the flow logic of a database processing loop:

21

Accessing Data in an Adabas Database Hierarchies of Processing Loops

|
select records | E |

LJ

| no
read records | [

¥

A Processing
Loop

v ves

process records | E |

v

i

v
Exit Processing Loop

Hierarchies of Processing L oops

The use of multipl&IND and/orREADstatements creates a hierarchy of processing loops, as shown in
the following example:

Example of Processing Loop Hierarchy

** Example 'FINDXO04’: FIND (two FIND statements nested)
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
1 AUTOVIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
2 MODEL
END-DEFINE
*

22

Hierarchies of Processing Loops Accessing Data in an Adabas Database

EMP. FIND PERSONVIEW WITH NAME = 'ADKINSON’
VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
DISPLAY NAME MAKE MODEL
END-FIND
END-FIND
END

The above program selects from EdPLOYEE$le all people with the nam&DKINSON Each record
(person) selected is then processed as follows:

1. The secon®IND statement is executed to select the automobiles froMERBCLES file, using as
selection criterion theERSONNEL-IBs from the records selected from EiRIPLOYEE$le with
the firstFIND statement.

2. TheNAMEof each person selected is displayed; this information is obtained fraeMBEOYEES
file. The MAKEandMODEIlof each automobile owned by that person is also displayed; this
information is obtained from tRéEHICLESfile.

The secondFIND statement creates an inner processing loop within the outer processing loop of the first
FIND statement, as shown in the following diagram.

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example
program:

23

Accessing Data in an Adabas Database Example of Nested FIND Loops Accessing the Same File

select records from
EMPLOYEES file

Y

yes
- Exit

Outer read records
Loop

¥

select records from
VEHICLES file

Y

yes

[nner
no Loop
b

read record

¥

display data

h 4

Example of Nested FIND L oops Accessing the Same File

It is also possible to construct a processing loop hierarchy in which the same file is used at both levels of
the hierarchy:

** Example 'FINDXO05': FIND (two FIND statements on same file nested)
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES

2 NAME

24

Database Update - Transaction Processing Accessing Data in an Adabas Database

2 FIRST-NAME
2 CITY
1 #NAME (A40)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED
'PEOPLE IN SAME CITY AS:’ #NAME / 'CITY: CITY SKIP 1
*
FIND PERSONVIEW WITH NAME = 'JONES’
WHERE FIRST-NAME = 'LAUREL’
COMPRESS NAME FIRST-NAME INTO #NAME
/*
FIND PERSONVIEW WITH CITY = CITY
DISPLAY NAME FIRST-NAME CITY
END-FIND
END-FIND
END

The above program first selects all people with nd®SEESand first namé AURELfrom the
EMPLOYEESle. Then all who live in the same city are selected fronEf@LOYEESIe and a list of
these people is created. All field values displayed byt LAY statement are taken from the second
FIND statement.

Output of ProgranFINDX05:

PEOPLE IN SAME CITY AS: JONES LAUREL
CITY: BALTIMORE

NAME FIRST-NAME CITY
JENSON MARTHA BALTIMORE
LAWLER EDDIE BALTIMORE
FORREST CLARA BALTIMORE
ALEXANDER GIL BALTIMORE
NEEDHAM SUNNY BALTIMORE
ZINN CARLOS BALTIMORE
JONES LAUREL BALTIMORE

Further Examples of Nested READ and FIND Statements

See the following example programs:

® READXO04 - READ statement (in combination with FIND and the system variables *NUMBER and
*COUNTER)

® LIMITXO1 - LIMIT statement (for READ, FIND loop processing)

Database Update - Transaction Processing
This section describes how Natural performs database updating operations based on transactions.
The following topics are covered:

® |ogical Transaction

25

Accessing Data in an Adabas Database Logical Transaction

Record Hold Logic

Backing Out a Transaction

Restarting a Transaction

o Example of Using Transaction Data to Restart a Transaction

Logical Transaction

Natural performs database updating operations based on transactions, which means that all database
update requests are processed in logical transaction units. A logical transaction is the smallest unit of work
(as defined by you) which must be performed in its entirety to ensure that the information contained in the
database is logically consistent.

A logical transaction may consist of one or more update statenideitETE STOREUPDATE
involving one or more database files. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a record is put on "hold"; Natural does this automatically when the
record is read for updating, for example, FI&ID loop contains alPDATEor DELETEstatement.

The end of a logical transaction is determined bizldD TRANSACTIONstatement in the program. This
statement ensures that all updates within the transaction have been successfully applied, and releases all
records that were put on "hold" during the transaction.

Example:

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME

END-DEFINE

FIND MYVIEW WITH NAME ="'SMITH’
DELETE
END TRANSACTION

END-FIND

END

Each record selected would be put on "hold", deleted, and then - WHENEh@RANSACTION
statement is executed - released from "hold".

Note:

The Natural profile paramet&TEOR as set by the Natural administrator, determines whether or not
Natural will generate aBND TRANSACTIONstatement at the end of each Natural program. Ask your
Natural administrator for details.

Example of STORE Statement:

The following example program adds new records t&tM@LOYEESIe.
** Example 'STOREX01": STORE (Add new records to EMPLOYEES file)

** CAUTION: Executing this example will modify the database records!

DEFINE DATA LOCAL
1 EMPLOYEE-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID(A8)

26

Logical Transaction

2NAME (A20)

2 FIRST-NAME (A20)
2 MIDDLE-l (A1)

2 SALARY (P9/2)

2 MAR-STAT (A1)
2BIRTH (D)
2CITY (A20)

2 COUNTRY (A3)

*

1 #PERSONNEL-ID (A8)
1 #NAME (A20)

1 #FIRST-NAME (A20)
1#NITIAL (Al

1 #MAR-STAT (A1)

1 #SALARY (N9)
1#BIRTH (A8)

1 #CITY (A20)

1 #COUNTRY (A3)
1 #CONF (A1) INIT <Y'>
END-DEFINE

*

REPEAT

INPUT 'ENTER A PERSONNEL ID AND NAME (OR "END” TO END)’ //

'PERSONNEL-ID :* #PERSONNEL-ID //
'NAME :#NAME /
'FIRST-NAME :’ #FIRST-NAME

I' * * * * * *

/* validate entered data

I' * * * * * *

IF #PERSONNEL-ID = 'END’ OR #NAME = 'END’
STOP
END-IF
IF #NAME ="’
REINPUT WITH TEXT 'ENTER A LAST-NAME’
MARK 2 AND SOUND ALARM
END-IF
IF #FIRST-NAME ="’
REINPUT WITH TEXT 'ENTER A FIRST-NAME’
MARK 3 AND SOUND ALARM
END-IF

I' * * * * * *

[* ensure person is not already on file

I' * * * * * *

Accessing Data in an Adabas Database

FIP2. FIND NUMBER EMPLOYEE-VIEW WITH PERSONNEL-ID = #PERSONNEL-ID

/*
IF *NUMBER (FIP2.) > 0

REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS’

MARK 1 AND SOUND ALARM
END-IF

I' * * * * * *

[* get further information

I' * * * * * *

INPUT
'ENTER EMPLOYEE DATA’ 1
'PERSONNEL-ID ' #PERSONNEL-ID (AD=IO) /
'NAME T #NAME (AD=10) /
'FIRST-NAME ” #FIRST-NAME (AD=I0) /I
'INITIAL T #INITIAL /
"ANNUAL SALARY ! #SALARY /
'"MARITAL STATUS 7 #MAR-STAT /
'DATE OF BIRTH (YYYYMMDD) ;" #BIRTH
'CITY THCITY /

27

Accessing Data in an Adabas Database

'COUNTRY (3 CHARS) : #COUNTRY Il
'ADD THIS RECORD (Y/N) ' #CONF (AD=M)

I' * * * *

/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
IF #SALARY < 10000
REINPUT TEXT 'ENTER A PROPER ANNUAL SALARY’ MARK 2
END-IF
IF NOT (#MAR-STAT ='S’ OR ='M’' OR ='D’ OR ='W’
REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -
'M=MARRIED D=DIVORCED W=WIDOWED' MARK 3

END-IF
IF NOT#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
REINPUT TEXT 'ENTER CORRECT DATE’' MARK 4
END-IF
IF#CITY ="
REINPUT TEXT 'ENTER A CITY NAME’ MARK 5
END-IF
IF #COUNTRY ="
REINPUT TEXT 'ENTER A COUNTRY CODE’ MARK 6
END-IF
IF NOT (#CONF =’N’ OR="Y")
REINPUT TEXT 'ENTER Y (YES) OR N (NO)’ MARK 7

END-IF

IF #CONF ="N’
ESCAPE TOP

END-IF

I' * * * * * * *

/* add the record with STORE

MOVE #PERSONNEL-ID TO EMPLOYEE-VIEW.PERSONNEL-ID

MOVE #NAME TO EMPLOYEE-VIEW.NAME

MOVE #FIRST-NAME TO EMPLOYEE-VIEW.FIRST-NAME

MOVE #INITIAL TO EMPLOYEE-VIEW.MIDDLE-I

MOVE #SALARY TO EMPLOYEE-VIEW.SALARY (1)

MOVE #MAR-STAT TO EMPLOYEE-VIEW.MAR-STAT

MOVE EDITED #BIRTH TO EMPLOYEE-VIEW.BIRTH (EM=YYYYMMDD)
MOVE #CITY TO EMPLOYEE-VIEW.CITY

MOVE #COUNTRY TO EMPLOYEE-VIEW.COUNTRY

/*

STP3. STORE RECORD IN FILE EMPLOYEE-VIEW

/*

[x** * * * * * *

/* mark end of logical transaction
I' * * * * * * *
END OF TRANSACTION
RESET INITIAL #CONF
END-REPEAT
END

Output of Prograns TOREX01
ENTER A PERSONNEL ID AND NAME (OR ’END’ TO END)
PERSONNEL ID :

NAME
FIRST NAME

28

Logical Transaction

Record Hold Logic Accessing Data in an Adabas Database

Record Hold Logic

If Natural is used with Adabas, any record which is to be updated will be placed in "hold" status until an
END TRANSACTIONr BACKOUT TRANSACTIOMNtatement is issued or the transaction time limit is
exceeded.

When a record is placed in "hold" status for one user, the record is not available for update by another
user. Another user who wishes to update the same record will be placed in "wait" status until the record is
released from "hold" when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session pardfiéait for Record in Hold
Status) can be used (see Baameter Referenye

When you use update logic in a program, you should consider the following:

e The maximum time that a record can be in hold status is determined by the Adabas transaction time
limit (Adabas parametérT). If this time limit is exceeded, you will receive an error message and all
database modifications done since theE$D TRANSACTIONvill be made undone.

e The number of records on hold and the transaction time limit are affected by the size of a transaction,
that is, by the placement of tBD TRANSACTIONstatement in the program. Restart facilities
should be considered when deciding where to isslENG TRANSACTIONFor example, if a
majority of records being processed aotto be updated, th@ETstatement is an efficient way of
controlling the "holding" of records. This avoids issuing multipdD TRANSACTIONstatements
and reduces the number of ISNs on hold. When you process large files, you should bear in mind that
the GETstatement requires an additional Adabas call. An exampl&&fTastatement is shown
below.

® The placing of records in "hold" status is also controlled by the profile paraRie{Release ISNs),
as set by the Natural administrator.

Example of Hold Logic:

** Example 'GETXO01: GET (put single record in hold with UPDATE stmt)

*%

** CAUTION: Executing this example will modify the database records!

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 SALARY (1)
END-DEFINE
*
RD. READ EMPLOY-VIEW BY NAME
DISPLAY EMPLOY-VIEW
IF SALARY (1) > 1500000
/*
GE. GET EMPLOY-VIEW *ISN (RD.)
/*
WRITE '=’ (50) '/RECORD IN HOLD:’ *ISN(RD.)
COMPUTE SALARY (1) = SALARY (1) * 1.15
UPDATE (GE.)
END TRANSACTION
END-IF
END-READ
END

29

Accessing Data in an Adabas Database Backing Out a Transaction

Backing Out a Transaction

During an active logical transaction, that is, beforeBEN® TRANSACTIONstatement is issued, you can
cancel the transaction by usinACKOUT TRANSACTIOMNtatement. The execution of this statement
removes all updates that have been applied (including all records that have been added or deleted) and
releases all records held by the transaction.

Restarting a Transaction

With theEND TRANSACTIONstatement, you can also store transaction-related information. If
processing of the transaction terminates abnormally, you can read this informatiorGiith a
TRANSACTION DATAstatement to ascertain where to resume processing when you restart the
transaction.

Example of Using Transaction Datato Restart a Transaction

The following program updates tEMPLOYEE&ndVEHICLESfiles. After a restart operation, the user

is informed of the ladEMPLOYEE®ecord successfully processed. The user can resume processing from
thatEMPLOYEES®ecord. It would also be possible to set up the restart transaction message to include the
lastVEHICLES record successfully updated before the restart operation.

** Example 'GETTRX01": GET TRANSACTION
*

** CAUTION: Executing this example will modify the database records!

DEFINE DATA LOCAL
01 PERSON VIEW OF EMPLOYEES
02 PERSONNEL-ID (A8)

02 NAME (A20)

02 FIRST-NAME (A20)
02 MIDDLE-I (A1)

02 CITY (A20)

01 AUTO VIEW OF VEHICLES
02 PERSONNEL-ID (A8)

02 MAKE (A20)
02 MODEL (A20)
*
01 ET-DATA

02 #APPL-ID (A8) INIT <’ ">
02 #USER-ID (A8)
02 #PROGRAM (A8)
02 #DATE (A10)
02 #TIME (A8)
02 #PERSONNEL-NUMBER (A8)
END-DEFINE
*
GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM
#DATE #TIME #PERSONNEL-NUMBER
*
IF #APPL-ID NOT ='NORMAL’ /* if last execution ended abnormally
AND #APPL-ID NOT ="’
INPUT (AD=0IL)
/I 20T *** L AST SUCCESSFUL TRANSACTION *** (1)

! 20T *

/l1 25T 'APPLICATION:" #APPL-ID

! 32T 'USER:’ #USER-ID

! 29T 'PROGRAM:’ #PROGRAM

| 24T ’'COMPLETED ON: #DATE 'AT’ #TIME

30

Selecting Records Using ACCEPT/REJECT Accessing Data in an Adabas Database

/20T 'PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
END-IF
*
REPEAT
/*
INPUT (AD=MIL) // 20T 'TENTER PERSONNEL NUMBER:" #PERSONNEL-NUMBER
/*
IF #PERSONNEL-NUMBER = '99999999’
ESCAPE BOTTOM
END-IF
/*
FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
REINPUT 'SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.’
END-NOREC
FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
WRITE 'PERSON DOES NOT OWN ANY CARS’
ESCAPE BOTTOM

END-NOREC
IF *COUNTER (FIND2.) =1 /*first pass through the loop
INPUT (AD=M)
/ 20T 'EMPLOYEES/AUTOMOBILE DETAILS’ (1)
/ 20T’ ’

/Il 20T 'NUMBER:’ PERSONNEL-ID (AD=0)

/ 22T 'NAME: NAME '’ FIRST-NAME '’ MIDDLE-I

[/ 22T 'CITY! CITY

[/ 22T 'MAKE: MAKE

/ 21T 'MODEL: MODEL

UPDATE (FIND1.) [* update the EMPLOYEES file
ELSE /* subsequent passes through the loop
INPUT NO ERASE (AD=M IP=0OFF) /Il 28T MAKE / 28T MODEL
END-IF
/*
UPDATE (FIND2.) /* update the VEHICLES file
/*
MOVE *APPLIC-ID TO #APPL-ID
MOVE *INIT-USER TO #USER-ID
MOVE *PROGRAM TO #PROGRAM
MOVE *DAT4E TO #DATE
MOVE *TIME TO #TIME
/*
END TRANSACTION #APPL-ID #USER-ID #PROGRAM
#DATE #TIME #PERSONNEL-NUMBER

/*

END-FIND /* for VEHICLES (FIND2.)
END-FIND /* for EMPLOYEES (FINDL1.)
END-REPEAT /* for REPEAT
*
STOP /* Simulate abnormal transaction end
END TRANSACTION 'NORMAL "’
END

Selecting Records Using ACCEPT/REJECT

This section discusses the statem&@&EPTandREJECTwhich are used to select records based on
user-specified logical criteria.

31

Accessing Data in an Adabas Database Statements Usable with ACCEPT and REJECT

The following topics are covered:
e Statements Usable with ACCEPT and REJECT
® Example of ACCEPT Statement
® [ogical Condition Criteria in ACCEPT/REJECT Statements
e Example of ACCEPT Statement with AND Operator
e Example of REJECT Statement with OR Operator

e [urther Examples of ACCEPT and REJECT Statements

Statements Usable with ACCEPT and REJECT

The statementA CCEPTandREJECTcan be used in conjunction with the database access statements:
e READ
e FIND
e HISTOGRAM

Example of ACCEPT Statement

** Example '"ACCEPX01": ACCEPT IF

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
*

READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’
ACCEPT IF SALARY (1) >= 40000
DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of ProgramACCEPX01

Page 1 04-11-11 11:11:11
NAME CURRENT ANNUAL
POSITION SALARY
ADKINSON DBA 46700
ADKINSON MANAGER 47000
ADKINSON MANAGER 47000
AFANASSIEV DBA 42800
ALEXANDER DIRECTOR 48000
ANDERSON MANAGER 50000
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

32

Logical Condition Criteriain ACCEPT/REJECT Statements Accessing Data in an Adabas Database

Logical Condition Criteriain ACCEPT/REJECT Statements

The statementa CCEPTandREJECTallow you to specify logical conditions in addition to those that
were specified iWITHandWHERElauses of th&READstatement.

The logical condition criteria in th& clause of alCCEPT REJECTstatement are evaluatatter the
record has been selected and read.

Logical condition operators include the following ($@gical Condition Criteriafor more detailed
information):

EQUAL EQ =
NOT EQUAL TO NE ~=
LESS THAN LT <
LESS EQUAL LE <=
GREATER THAN GT >
GREATER EQUAL GE >=

Logical condition criteria iMCCEPT REJECTstatements may also be connected with the Boolean
operatorsAND OR andNOT Moreover, parentheses may be used to indicate logical grouping; see the
following examples.

Example of ACCEPT Statement with AND Operator

The following program illustrates the use of the Boolean opefdi®in anACCEP Tstatement.

** Example '"ACCEPX02': ACCEPT IF ... AND ...

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
*

READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’
ACCEPT IF SALARY (1) >= 40000
AND SALARY (1) <= 45000
DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of ProgramdACCEPX02

33

Accessing Data in an Adabas Database Example of REJECT Statement with OR Operator

Page 1 04-12-14 12:22:01
NAME CURRENT ANNUAL
POSITION SALARY
AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

Example of REJECT Statement with OR Operator

The following program, which uses the Boolean oper@®mn aREJECTstatement, produces the same
output as thCCEPTstatement in the example above, as the logical operators are reversed.

** Example '"ACCEPX03": REJECT IF ... OR ...

*% * *kkkhkkkkkkkkk *% *% * *kkkhkkkhkkkkk *% *% *

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME

2 JOB-TITLE

2 CURR-CODE (1:1)

2 SALARY (1:1)
END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’
REJECT IF SALARY (1) < 40000

OR SALARY (1) > 45000

DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of ProgramACCEPX03

Page 1 04-12-14 12:26:27
NAME CURRENT ANNUAL
POSITION SALARY
AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

Further Examples of ACCEPT and REJECT Statements
See the following example programs:

e ACCEPX04 - ACCEPT IF ... LESS THAN ...

® ACCEPXO05 - ACCEPT IF ... AND ...

e ACCEPXO06 - REJECT IF ... OR ...

34

AT START/END OF DATA Statements Accessing Data in an Adabas Database

AT START/END OF DATA Statements
This section discusses the use of the staterAan&START OF DATA andAT END OF DATA.
The following topics are covered:

o AT START OF DATA Statement

e AT END OF DATA Statement

e Example of AT START OF DATA and AT END OF DATA Statements

o Further Examples of AT START OF DATA and AT END OF DATA

AT START OF DATA Statement

The AT START OF DATA statement is used to specify any processing that is to be performed after the
first of a set of records has been read in a database processing loop.

TheAT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be oulhediore the first field
value By default, this output is displayed left-justified on the page.

AT END OF DATA Statement

The AT END OF DATA statement is used to specify processing that is to be performed after all records
for a database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be oufifiietr the last field value
By default, this output is displayed left-justified on the page.

Exampleof AT START OF DATA and AT END OF DATA Statements

The following example program illustrates the use of the staterA@n& ART OF DATA andAT END
OF DATA

The Natural system variabt@IME has been incorporated into th& START OF DATA statement to
display the time of day.

The Natural system functidbLDhas been incorporated into th& END OF DATA statement to display
the name of the last person selected.

** Example '"ATSTAXO01: AT START OF DATA

*% *% *% * *%

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 JOB-TITLE
2 INCOME (1:1)
3 CURR-CODE

35

Accessing Data in an Adabas Database Unicode Data

3 SALARY
3 BONUS (1:1)
END-DEFINE
*
WRITE TITLE '’XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT’ /
READ (3) MYVIEW BY CITY STARTING FROM 'E’
DISPLAY GIVE SYSTEM FUNCTIONS
NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)
/*
AT START OF DATA
WRITE 'RUN TIME? *TIME /
END-START
AT END OF DATA
WRITE /'LAST PERSON SELECTED:’ OLD (NAME) /
END-ENDDATA
END-READ
*
AT END OF PAGE
WRITE /’AVERAGE SALARY:’ AVER (SALARY(1))
END-ENDPAGE
END

The program produces the following output:
XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

NAME CURRENT INCOME
POSITION
CURRENCY ANNUAL BONUS
CODE SALARY

RUN TIME: 12:43:19.1

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE usD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333

Further Examplesof AT START OF DATA and AT END OF DATA

See the following example programs:
e ATENDXO1 - AT END OF DATA
® ATSTAXO02 - AT START OF DATA

e WRITEXO09 - WRITE (in combination with AT END OF DATA)

Unicode Data

Natural enables users to access wide-character fields (format W) in an Adabas database.

36

Data Definition Module Accessing Data in an Adabas Database

The following topics are covered:
e Data Definition Module
® Access Configuration

® Restrictions

Data Definition Module
Adabas wide-character fields (W) are mapped to Natural format U (Unicode).

The length definition for a Natural field of format U corresponds to half the size of the Adabas field of
format W. An Adabas wide-character field of leng00 is, for example, mapped (@100) in Natural.

Access Configuration
Natural receives data from Adabas and sends data to Adabas using UTF-16 as common encoding.

This encoding is specified with tii@PRBparameter and sent to Adabas with the open request. It is used
for wide-character fields and applies to the entire Adabas user session.

Restrictions
Collating descriptors are not supported.

For further information on Adabas and Unicode support refer to the specific Adabas product
documentation.

37

	 Accessing Data in an Adabas Database
	Data Definition Modules - DDMs
	Use of Data Definition Modules
	Maintaining DDMs
	Listing/Displaying DDMs

	 Database Arrays
	Multiple-Value Fields
	Example:

	Periodic Groups
	Example:

	Referencing Multiple-Value Fields and Periodic Groups
	Examples:

	Multiple-Value Fields within Periodic Groups
	Example:

	Referencing Multiple-Value Fields within Periodic Groups
	Examples:

	Referencing the Internal Count of a Database Array

	 DEFINE DATA Views
	Use of Database Views
	Defining a Database View

	Statements for Database Access
	READ Statement
	Use of READ Statement
	Basic Syntax of READ Statement
	Example of READ Statement
	Limiting the Number of Records to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Further Example of READ Statement

	FIND Statement
	Use of FIND Statement
	Basic Syntax of FIND Statement
	Limiting the Number of Records to be Processed
	WHERE Clause
	Example of FIND Statement with WHERE Clause
	IF NO RECORDS FOUND Condition
	Further Examples of FIND Statement

	HISTOGRAM Statement
	Use of HISTOGRAM Statement
	Syntax of HISTOGRAM Statement
	Limiting the Number of Values to be Read
	STARTING/ENDING Clauses
	Examples:
	WHERE Clause
	Example of HISTOGRAM Statement

	 Multi-Fetch Clause
	Purpose of Multi-Fetch Feature
	Considerations for Multi-Fetch Usage
	Size of the Multi-Fetch Buffer
	TEST DBLOG Support for Multi-Fetch

	 Database Processing Loops
	Creation of Database Processing Loops
	Example:

	Hierarchies of Processing Loops
	Example of Processing Loop Hierarchy

	Example of Nested FIND Loops Accessing the Same File
	Further Examples of Nested READ and FIND Statements

	 Database Update - Transaction Processing
	Logical Transaction
	Example:
	Example of STORE Statement:

	Record Hold Logic
	Example of Hold Logic:

	 Backing Out a Transaction
	Restarting a Transaction
	Example of Using Transaction Data to Restart a Transaction

	 Selecting Records Using ACCEPT/REJECT
	 Statements Usable with ACCEPT and REJECT
	Example of ACCEPT Statement
	Logical Condition Criteria in ACCEPT/REJECT Statements
	Example of ACCEPT Statement with AND Operator
	Example of REJECT Statement with OR Operator
	Further Examples of ACCEPT and REJECT Statements

	AT START/END OF DATA Statements
	AT START OF DATA Statement
	AT END OF DATA Statement
	Example of AT START OF DATA and AT END OF DATA Statements
	Further Examples of AT START OF DATA and AT END OF DATA

	Unicode Data
	Data Definition Module
	Access Configuration
	Restrictions

