
Editor Buffer Pool
This document describes purpose, use and operation of the Editor Buffer Pool which is an intermediate
main storage area used by the Software AG Editor. 

The following topics are covered:

Purpose of the Editor Buffer Pool

Obtaining Free Blocks

Initializing the Editor Buffer Pool

Restarting the Editor Buffer Pool

Editor Buffer Pool Parameters

Buffer Pool Initialization for Multi-User Environments

Purpose of the Editor Buffer Pool 
The editor buffer pool can be seen as an extension of the editor buffer (SSIZE ). It is an intermediate main
storage area used by the Software AG Editor to maintain its logical files. 

A logical file consists of one or more logical records and contains the data of an object (for example, a file
member) maintained by the editor. As a user can work with more than one object at the same time, several
logical files can exist concurrently for each user. 

The number of logical files (as well as the percentage of recovery records in the Editor Work File is
defined in the buffer pool parameter macro. 

The editor buffer pool can be defined as a local or a global (z/OS and BS2000/OSD only) or an auxiliary 
(EDPSIZE) buffer pool. In multi-user environments (CICS, IMS TM, UTM), the editor buffer pool is
shared by all editor users of either the same region (local pool) or more than one region (global pool).
Under CMS, the buffer pool is always a local one. A global buffer pool cannot be shared by Com-plete
and other regions due to the separate SD editor work file under Com-plete. 

The editor buffer pool contains various control tables and a number of data blocks: 

Area Size 

Main control block 500 bytes 

Logical file table 20 bytes per logical file 

Work file table 4 bytes per record 

Recovery file table 16 bytes per record 

Buffer pool block table 28 bytes per block 

Buffer pool blocks see text below 

1

Editor Buffer PoolEditor Buffer Pool



As the size of a buffer pool block is equal to the size of a work file record, one buffer pool block can
contain one logical file record. 

The buffer pool is initialized by the first editor user. During warm start buffer pool initialization, all
recovery records are checked to build the recovery file table. 

Several functions are provided to access the buffer pool (for example, functions to allocate, read, write or
delete a record). 

Obtaining Free Blocks 
If the buffer pool becomes full, buffer pool blocks have to be moved to an external dataset, the editor
work file, to obtain free blocks. 

In such a situation, the editor checks all logical files for their timeout value and deletes any logical file
which has not been accessed within the specified time. This means that all its buffer pool blocks and work
file records are freed, and the logical file is lost. 

If there is still no buffer pool block available, the editor moves the oldest block to the work file, according
to the specified timeout parameter values (see the Generation Parameters function of the SYSEDT Utility
in the Natural Utilities documentation). 

Initializing the Editor Buffer Pool 
An uninitialized editor buffer pool is initialized when the Software AG editor is called for the first time.
Then the various control blocks are created. There are two different modes of buffer pool and work file
initialization: "cold start" and "warm start". 

Buffer Pool Cold Start

A buffer pool cold start can be triggered by the editor buffer pool subparameter COLD or by the Editor
Buffer Pool Services utility SYSEDT or automatically (if the editor work file is unformatted). 

During a buffer pool cold start, the values of the editor buffer pool parameter EDBP or the corresponding
macro NTEDBP are stored into the work file control record and all work file recovery records are cleared. 

Buffer Pool Warm Start

During a buffer pool warm start, the buffer pool parameters are read from the work file control record and
all work file recovery records are read to build the recovery file table in the buffer pool. 

Restarting the Editor Buffer Pool 
The SYSEDT utility can be used to terminate the editor buffer pool, that is, to set it to the unitialized state.
This avoids the restart of the TP system or of the global buffer pool. 

If SYSEDT is not available due to buffer-pool problems, the program BPTERM can be used to terminate
the buffer pool. 

2

Obtaining Free BlocksEditor Buffer Pool



Important:
All Natural sessions must be restored if you want them to use the editor after buffer-pool restart. 

Editor Buffer Pool Parameters 
The editor buffer pool parameter EDBP or the corresponding macro NTEDBP in the Natural parameter
module NATPARM is required to define parameters for the operation of the editor buffer pool. 

When the editor work file is formatted, these parameters are stored into the work file control record while
all other records are cleared. Thus, reformatting a work file that has been previously used, means that all
editor checkpoint and recovery information is lost. 

Some of these parameters can be modified dynamically during execution of the buffer pool by using the
Editor Buffer Pool Services utility SYSEDT. 

Buffer Pool Initialization for Multi-User Environments 
During the buffer pool initialization, all recovery records are read from the editor work file. Therefore, the
first users have to wait for a long time or even receive a timeout message until the editor buffer pool
initialization is finished. 

For this reason, a special Natural program has been supplied to trigger the buffer pool initialization before
the first user becomes active. This program can be activated either during the startup of the TP monitor, or
by a batch job if a global buffer pool is used. 

The session must then be started with the session parameter:

STACK=(LOGON SYSEDT,user, password;BPINIT;FIN)

Under CICS: If the session runs asynchronously, SENDER=CONSOLE must be specified to obtain any
error messages issued during initialization. The source program FRONTPLT is supplied as a sample
program to show you how to start an asynchronous Natural session during CICS startup via PLTPI . 

3

Editor Buffer PoolEditor Buffer Pool Parameters


	Editor Buffer Pool
	Purpose of the Editor Buffer Pool
	Obtaining Free Blocks
	Initializing the Editor Buffer Pool
	Buffer Pool Cold Start
	Buffer Pool Warm Start

	Restarting the Editor Buffer Pool
	Editor Buffer Pool Parameters
	Buffer Pool Initialization for Multi-User Environments


