
Some Background Information
This chapter covers the following topics:

Name Binding between Controls and Adapter

Data Exchange at Runtime

Files and their Locations

Name Binding between Controls and Adapter
Which are the critical parts when building the "Hello World!" application?

The NATPAGE control in the layout points to the name of the adapter object (property
natsource).

The FIELD control in the layout points to the property name of the adapter (property valueprop).

The BUTTON control in the layout points to the event sayHello() of the adapter (property
method).

There is a name binding between the layout definition and its corresponding adapter. This is the simple
and effective approach of the Application Designer’s development process: The adapter represents a
logical abstraction of what the page displays. All layout definitions are kept in the page - all the logic is
kept in the adapter. (Or better: behind the adapter. The adapter itself should only be a facade to the "real"
application logic.)

Data Exchange at Runtime
What happens at runtime?

When the user starts a Natural session from the logon page, the Natural program that the user
specified in the command line is started.

The Natural program executes a PROCESS PAGE statement, using an adapter.

The PROCESS PAGE statement passes the name of the HTML page to be used and the initial page
data to the browser.

The browser displays the page. JavaScript code on the page distributes the initial data to the controls.

The user provides some input, for example, enters the name. The content change is stored inside the
page. The Natural program is not yet involved.

The user does something which causes a flush of the changes (for example, the user chooses a
button). Therefore, all registered data changes are packaged and are sent through the adapter to the
Natural program, including the information which event has been raised.

1

Some Background InformationSome Background Information

The Natural program receives the modified data.

The system variable *PAGE-EVENT receives the name of the raised event.

The event handler in the Natural program modifies the data and resends it to the page using a
PROCESS PAGE UPDATE statement.

And so forth.

With a standard HTTP connection, only the changed content of the screen is passed when operating on
one page. The layout is kept stable in the browser. Consequently, there is no flickering of the page due to
page reloading.

All steps described in the list above are done completely transparent to your adapter; i.e. you do not have
to cope with session management, stream parsing, error management, building up HTML on the server,
etc. You just have to provide an intelligent HTML page by defining it in the Layout Painter and an adapter
object.

Files and their Locations
Have a look at the files created for your "Hello World!" application and take notice of the directory in
which they are located.

All files are located in the directory <installdir>/cisnatural/cisnatfirst. The <installdir>/cisnatural
directory is the directory of the web application instance. The <installdir>/cisnatural/cisnatfirst directory
is the directory that has been created for your new project.

The XML layout definition is kept in the <installdir>/cisnatural/cisnatfirst/xml directory.

The generated HTML page is kept directly in the project directory. There are also some other files
inside this directory that start with "ZZZZ". These files are temporary files used when previewing
pages inside the Layout Painter.

The generated Natural adapters are kept in the directory <installdir>/cisnatural/cisnatfirst/nat.

In the directory <installdir>/cisnatural/cisnatfirst/accesspath, "access restriction" files are generated.
If you view these files inside a normal text editor (such as Notepad), you see that one file is
maintained for each page; it holds the information about which properties are accessed by the page.

2

Files and their LocationsSome Background Information

	Some Background Information
	Name Binding between Controls and Adapter
	Data Exchange at Runtime
	Files and their Locations

