
Dynamic SQL Support
This section describes the dynamic SQL support provided by Natural SQL Gateway. Natural SQL
Gateway does not support static SQL.

SQL Support - General Information

Internal Handling of Dynamic Statements

NSB - Statements and System Variables

NSB - Natural DML Statements

Natural SQL Statements

SQL Support - General Information
The SQL support of Natural SQL Gatewayprovides the flexibility of dynamic SQL support.

In contrast to static SQL support, the Natural dynamic SQL support does not require any special
consideration with regard to the operation of the SQL interface. All SQL statements required to execute an
application request are generated automatically and can be executed immediately with the Natural RUN
command. Before executing a program, you can look at the generated SQL code, using the LISTSQL
command.

Internal Handling of Dynamic Statements
Natural automatically provides for the preparation and execution of each SQL statement and handles the
opening and closing of cursors used for scanning a table.

1

Dynamic SQL SupportDynamic SQL Support

Statement Table

If possible, an SQL statement is only prepared once and can then be executed several times if required.
For this purpose, Natural internally maintains a table of all SQL statements that have been prepared. In
addition, this table maintains the cursors used by the SQL statements SELECT, FETCH, UPDATE
(positioned), and DELETE (positioned).

Each SQL statement is uniquely identified by:

the name of the Natural program that contains this SQL statement,

the line number of the SQL statement in this program,

the name of the Natural library, into which this program was stowed,

the time stamp when this program was stowed.

Once a statement has been prepared, it can be executed several times with different variable values, using
the dynamic SQL statement EXECUTE USING DESCRIPTOR or OPEN CURSOR USING
DESCRIPTOR respectively.

When the full capacity of the statement table is reached, the entry for the next prepared statement
overwrites the entry for a free statement whose latest execution is the least recent one.

When a new SELECT statement is requested, a free entry in the statement table with the corresponding
cursor is assigned to it and all subsequent FETCH, UPDATE, and DELETE statements referring to this
SELECT statement will use this cursor. Upon completion of the sequential scanning of the table, the
cursor is released and free for another assignment. While the cursor is open, the entry in the statement
table is marked as used and cannot be reused by another statement.

If the number of nested FIND (SELECT) statements reaches the number of entries available in the
statement table, any further SQL statement is rejected at execution time and a Natural error message is
returned.

Since the statement table is contained in the SQL buffer area, the DB2SIZE parameter (see Natural
Parameter Modification for Natural SQL Gateway in Installing Natural SQL Gateway) may not be
sufficient and may need to be increased.

NSB - Statements and System Variables
This section contains special considerations concerning Natural DML statements, Natural SQL
statements, and Natural system variables when used with SQL.

It mainly consists of information also contained in the Natural documentation set where each Natural
statement and variable is described in detail.

For an explanation of the symbols used in this section to describe the syntax of Natural statements, see
Syntax Symbols in the Natural Statements documentation.

This section covers the following topics:

2

NSB - Statements and System VariablesDynamic SQL Support

NSB Special Register Consideration

NSB Special Register Consideration

Natural SQL Gateway supports the following special registers, which can be set via the PROCESS SQL
statement:

SCHEMA

The SCHEMA special register determines the implicitly first level qualifier of table names, that is, the
schema or creator name of the table, if the first qualifier is not explicitly specified. The SCHEMA special
register could be set by PROCESS SQL ddm-name << SET SCHEMA = : hv>>, where ddm-name
denotes the DDM whose DBID is mapped to type CNX and : hv denotes an alphanumeric variable
containing the first level qualifier.

The SCHEMA special register cannot be retrieved or interrogated by SQL statements.

CATALOG

The CATALOG special register determines the implicitly second level qualifer of table names, that is, the
location or database name of the table, if the second level qualifier is not explicitly specified. The
CATALOG special register could be set by PROCESS SQL ddm-name << SET CATALOG =
: hv>>, where ddm-name denotes DDM whose DBID is mapped to type CNX and : hv denotes a
alphanumeric variable containing the second level qualifier.

The CATALOG special register could not be retrieved or interrogated by SQL statements.

RCI_VERSION

The RCI_VERSION is an alphanumeric character string containing the version of the remote client
interface used to communicate with the CONNX JDBC server. The RCI_VERSION is a read-only special
register which could be retrieved by PROCESS SQL ddm-name <<GET : hv = RCI_VERSION>> ,
where ddm-name denotes a DDM whose DBID is mapped to type CNX and :hv denotes a alphanumeric
variable. The RCI_VERSION string has the following format:

RCI: 4.1.1 CONNX 10.5 SP2 (build 7294)

NSB - Natural DML Statements
This section summarizes particular points you have to consider when using Natural DML statements with
SQL. Any Natural statement not mentioned in this section can be used with SQL without restriction.

BACKOUT TRANSACTION

DELETE

END TRANSACTION

FIND

GET

3

Dynamic SQL SupportNSB - Natural DML Statements

HISTOGRAM

READ

STORE

UPDATE

BACKOUT TRANSACTION

This statement undoes all database modifications made since the beginning of the last logical transaction.
Logical transactions can start either after the beginning of a session or after the last SYNCPOINT, END
TRANSACTION, or BACKOUT TRANSACTION statement.

How the statement is translated and which command is actually issued depends on the TP-monitor
environment:

In batch mode and under TSO, the BACKOUT TRANSACTION statement is translated into an SQL
ROLLBACK command.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the BACKOUT TRANSACTION
statement for the external program.

If a program tries to backout updates which have already been committed, for example by a terminal I/O,
a corresponding Natural error message (NAT3711) is returned.

DELETE

The DELETE statement is used to delete a row from an SQL table which has been read with a preceding
FIND, READ, or SELECT statement. It corresponds to the SQL statement DELETE WHERE CURRENT
OF cursor-name, which means that only the row which was read last can be deleted.

Example:

FIND EMPLOYEES WITH NAME = ’SMITH’
 AND FIRST_NAME = ’ROGER’
DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR
SELECT FROM EMPLOYEES
 WHERE NAME = ’SMITH’ AND FIRST_NAME = ’ROGER’
DELETE FROM EMPLOYEES
 WHERE CURRENT OF CURSOR1

4

BACKOUT TRANSACTIONDynamic SQL Support

Both the SELECT and the DELETE statement refer to the same cursor.

Natural translates a DML DELETE statement into an SQL DELETE statement in the same way it
translates a FIND statement into an SQL SELECT statement.

A row read with a FIND SORTED BY cannot be deleted due to SQL restrictions explained with the
FIND statement. A row read with a READ LOGICAL cannot be deleted either.

DELETE when using the File Server

If a row rolled out to the file server is to be deleted, Natural rereads automatically the original row from
the database to compare it with its image stored in the file server. If the original row has not been
modified in the meantime, the DELETE operation is performed. With the next terminal I/O, the transaction
is terminated, and the row is deleted from the actual database.

If the DELETE operates on a scrollable cursor, the row on the file server is marked as DELETE hole and is
deleted from the base table.

However, if any modification is detected, the row will not be deleted and Natural issues the NAT3703
error message for non-scrollable cursors.

Since a DELETE statement requires that Natural rereads a single row, a unique index must be available for
the respective table. All columns which comprise the unique index must be part of the corresponding
Natural view.

END TRANSACTION

This statement indicates the end of a logical transaction and releases all SQL data locked during the
transaction. All data modifications are committed and made permanent.

How the statement is translated and which command is actually issued depends on the TP-monitor
environment:

In batch mode and under TSO, the END TRANSACTION statement is translated into an SQL
COMMIT WORK command.

An END TRANSACTION statement must not be placed within a database loop, since all cursors are
closed when a logical unit of work ends. Instead, it has to be placed outside such a loop or after the
outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program issues
database calls, too. The calling Natural program must issue the END TRANSACTION statement for the
external program.

Note:
Transaction data cannot be written to SQL databases.

5

Dynamic SQL SupportEND TRANSACTION

FIND

The FIND statement corresponds to the SQL SELECT statement.

Example:

Natural statements:

FIND EMPLOYEES WITH NAME = ’BLACKMORE’
 AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent SQL statements:

SELECT PERSONNEL_ID, NAME, AGE
 FROM EMPLOYEES
 WHERE NAME = ’BLACKMORE’
 AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement as described in Processing
of SQL Statements Issued by Natural in the section Internal Handling of Dynamic Statements. The
SELECT statement is executed by an OPEN CURSOR statement followed by a FETCH command. The
FETCH command is executed repeatedly until either all records have been read or the program flow exits
the FIND processing loop. A CLOSE CURSOR command ends the SELECT processing.

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The
basic search criterion for an SQL table can be specified in the same way as for an Adabas file. This
implies that only database fields which are defined as descriptors can be used to construct basic search
criteria and that descriptors cannot be compared with other fields of the Natural view (that is, database
fields) but only with program variables or constants.

Note:
As each database field (column) of an SQL table can be used for searching, any database field can be
defined as a descriptor in a Natural DDM.

The WHERE clause of the FIND statement is evaluated by Natural after the rows have been selected via
the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields can be
compared with other database fields.

Note:
SQL tables do not have sub-, super-, or phonetic descriptors.

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT(*) clause. The
number of rows found is returned in the Natural system variable *NUMBER as described in the Natural
System Variables documentation.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing. If the
FIND UNIQUE statement is referenced by an UPDATE statement, a non-cursor (searched) UPDATE
operation is generated instead of a cursor-oriented (positioned) UPDATE operation. Therefore, it can be
used if you want to update an SQL primary key. It is, however, recommended to use Natural SQL
Searched UPDATE statement to update a primary key.

6

FINDDynamic SQL Support

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated into a SELECT
SINGLE statement as described in the section Natural SQL Statements.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN clauses
cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY
clause, which follows the search criterion. Because this produces a read-only result table, a row read with
a FIND statement that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation time. If this limit is exceeded,
a Natural error message is returned.

FIND when Using the File Server

As far as the file server is concerned, there are no programming restrictions with selection statements. It
is, however, recommended to make yourself familiar with its functionality considering performance and
file server space requirements.

GET

This statement is ISN-based and therefore cannot be used with SQL tables.

HISTOGRAM

The HISTOGRAM statement returns the number of rows in a table which have the same value in a specific
column. The number of rows is returned in the Natural system variable *NUMBER as described in Natural
System Variables documentation.

Example:

Natural statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent SQL statements:

SELECT COUNT(*), AGE FROM EMPLOYEES
 WHERE AGE > -999
 GROUP BY AGE
 ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the
control flow is similar to the flow explained for the FIND statement.

READ

The READ statement can also be used to access SQL tables. Natural translates a READ statement into an
SQL SELECT statement.

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN , however, cannot be used, as
there is no SQL equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used either.

7

Dynamic SQL SupportGET

Since a READ LOGICAL statement is translated into a SELECT ... ORDER BY statement - which
produces a read-only table -, a row read with a READ LOGICAL statement cannot be updated or deleted
(see Example 1). The start value can only be a constant or program variable; any other field of the Natural
view (that is, any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and
can therefore be updated or deleted (see Example 2).

Example 1:

Natural statements:

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent SQL statements:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
 WHERE NAME >= ’ ’
 ORDER BY NAME

Example 2:

Natural statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent SQL statements:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor after the
rows have been selected according to the descriptor value(s) specified in the search criterion.

READ when using the File Server

As far as the file server is concerned there are no programming restrictions with selection statements. It is,
however, recommended to make yourself familiar with its functionality considering performance and file
server space requirements.

STORE

The STORE statement is used to add a row to an SQL table. The STORE statement corresponds to the
SQL statement INSERT.

8

STOREDynamic SQL Support

Example:

Natural statements:

STORE RECORD IN EMPLOYEES
 WITH PERSONNEL_ID = ’2112’
 NAME = ’LIFESON’
 FIRST_NAME = ’ALEX’

Equivalent SQL statements:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
 VALUES (’2112’, ’LIFESON’, ’ALEX’)

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses cannot be used.

UPDATE

The Natural DML UPDATE statement updates a row in an SQL table which has been read with a
preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement UPDATE WHERE
CURRENT OF cursor-name (positioned UPDATE), which means that only the row which was read
last can be updated.

UPDATE when using the File Server

If a row rolled out to the file server is to be updated, Natural automatically rereads the original row from
the database to compare it with its image stored in the file server. If the original row has not been
modified in the meantime, the UPDATE operation is performed. With the next terminal I/O, the transaction
is terminated and the row is definitely updated on the database.

If the UPDATE operates on a scrollable cursor, the row on the file server and the row in the base table are
updated. If the row no longer qualifies for the search criteria of the related SELECT statement after the
update, the row is marked as UPDATE hole on the file server.

However, if any modification is detected, the row will not be updated and Natural issues the NAT3703
error message.

Since an UPDATE statement requires rereading a single row by Natural, a unique index must be available
for this table. All columns which comprise the unique index must be part of the corresponding Natural
view.

UPDATE with FIND/READ

As explained with the FIND statement, Natural translates a FIND statement into an SQL SELECT
statement. When a Natural program contains a DML UPDATE statement, this statement is translated into
an SQL UPDATE statement and a FOR UPDATE OF clause is added to the SELECT statement.

9

Dynamic SQL SupportUPDATE

Example:

FIND EMPLOYEES WITH SALARY < 5000
 ASSIGN SALARY = 6000
 UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR
SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
 FOR UPDATE OF SALARY
UPDATE EMPLOYEES SET SALARY = 6000
 WHERE CURRENT OF CURSOR1

Both the SELECT and the UPDATE statement refer to the same cursor.

Due to SQL logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF clause;
otherwise updating this column (field) is rejected. Natural includes automatically all columns (fields) into
the FOR UPDATE OF clause which have been modified anywhere in the Natural program or which are
input fields as part of a Natural map.

However, an SQL column is not updated if the column (field) is marked as "not updateable" in the Natural
DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any warning or error
message. The columns (fields) contained in the FOR UPDATE OF list can be checked with the LISTSQL
command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

10

UPDATEDynamic SQL Support

Short-Name
Range

Type of Field

AA - N9 non-key field that can be updated.

Aa - Nz non-key field that can be updated.

OA - O9 primary key field.

PA - P9 ascending key field that can be updated.

QA - Q9 descending key field that can be updated.

RA - X9 non-key field that cannot be updated.

Ra - Xz non-key field that cannot be updated.

YA - Y9 ascending key field that cannot be updated.

ZA - Z9 descending key field that cannot be updated.

1A - 9Z non-key field that cannot be updated.

1a - 9z non-key field that cannot be updated.

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can only
be updated by using a non-cursor UPDATE operation (see also UPDATE in the section Natural SQL
Statements).

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to SQL
limitations as explained with the FIND statement). A row read with a READ LOGICAL cannot be
updated either (as explained with the READ statement).

If a column is to be updated which is redefined as an array, it is strongly recommended to update the
whole column and not individual occurrences; otherwise, results are not predictable. To do so, in reporting
mode you can use the OBTAIN statement (as described in the Natural Statements documentation), which
must be applied to all field occurrences in the column to be updated. In structured mode, however, all
these occurrences must be defined in the corresponding Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT WORK)
or BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

Note:
If a length indicator field or NULL indicator field is updated in a Natural program without updating the
field (column) it refers to, the update of the column is not generated for SQL and thus no updating takes
place.

UPDATE with SELECT

In general, the DML UPDATE statement can be used in both structured and reporting mode. However,
after a SELECT statement, only the syntax defined for Natural structured mode is allowed:

UPDATE [RECORD] [IN] [STATEMENT] [(r)]

This is due to the fact that in combination with the SELECT statement, the DML UPDATE statement is
only allowed in the special case of:

11

Dynamic SQL SupportUPDATE

 ...
SELECT ...
 INTO VIEW view-name
 ...

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
END-DEFINE

SELECT *
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE NAME LIKE ’S%’

 IF NAME = ’SMITH’
 ADD 1 TO AGE
 UPDATE
 END-IF

END-SELECT
 ...

In combination with the DML UPDATE statement, any other form of the SELECT statement is rejected
and an error message is returned.

In all other respects, the DML UPDATE statement can be used with the SELECT statement in the same
way as with the Natural FIND statement described earlier in this section and in the Natural Statements
documentation.

Natural SQL Statements
This section covers points you have to consider when using Natural SQL statements with Natural SQL
Gateway. These SQL specific points mainly consists in syntax restrictions or enhancements which belong
to the Extended Set of Natural SQL syntax. The Extended Set is provided in addition to the Common Set
to support database specific features.

This section covers the following topics:

Syntactical Items

COMMIT

DELETE

INSERT

12

Natural SQL StatementsDynamic SQL Support

PROCESS SQL

ROLLBACK

SELECT

Natural System Variables

Error Handling

Syntactical Items

The following common syntactical items are either Natural SQL Gateway (NSB) specific and do not
conform to the standard SQL syntax definitions (that is, to the Common Set of Natural SQL syntax) or
impose restrictions when used with Natural SQL Gateway (see also SQL Statements in the Natural
Statements documentation).

This section covers the following topics:

atom
factor
scalar-function
column-function
scalar-operator
special-register
case-expression

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant.

factor

The following factors are specific to Natural SQL Gateway and belong to the Natural Extended Set:

special-register
scalar-function (scalar-expression, ...)
case-expression

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to Natural SQL Gateway and belong to the Natural Extended
Set.

See the CONNX Users Guide for available scalar functions.

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar
expressions depends upon the scalar function. Multiple scalar expressions must be separated from one
another by commas.

13

Dynamic SQL SupportSyntactical Items

Example:

SELECT NAME
 INTO NAME
 FROM SQL-PERSONNEL
 WHERE SUBSTR (NAME, 1, 3) = ’Fri’
 ...

column-function

A column function returns a single-value result for the argument it receives. The argument is a set of like
values, such as the values of a column. Column functions are also called aggregating functions.

The following column functions conform to standard SQL.

AVG
COUNT
MAX
MIN
SUM

scalar-operator

The concatenation operator (CONCAT or "||") does not conform to standard SQL and belongs to the
Natural Extended Set.

special-register

The following special registers do not conform to standard SQL and belong to the Natural Extended Set:

USER

A reference to a special register returns a scalar value.

case-expression

CASE searched-when-clause ...
simple-when-clause

ELSE NULL
scalar expression

END

Case-expressions do not conform to standard SQL and are therefore supported by the Natural SQL
Extended Set only.

Example:

 DEFINE DATA LOCAL
 01 #EMP
 02 #EMPNO (A10)
 02 #FIRSTNME (A15)
 02 #MIDINIT (A5)
 02 #LASTNAME (A15)
 02 #EDLEVEL (A13)
 02 #INCOME (P7)
 END-DEFINE
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 (CASE WHEN EDLEVEL < 15 THEN ’SECONDARY’
 WHEN EDLEVEL < 19 THEN ’COLLEGE’

14

Syntactical ItemsDynamic SQL Support

 ELSE ’POST GRADUATE’
 END) AS EDUCATION, SALARY + COMM AS INCOME
 INTO
 #EMPNO, #FIRSTNME, #MIDINIT, #LASTNAME,
 #EDLEVEL, #INCOME
 FROM DSN8510-EMP
 WHERE (CASE WHEN SALARY = 0 THEN NULL
 ELSE SALARY / COMM
 END) > 0.25
 DISPLAY #EMP
 END-SELECT
 END

COMMIT

The SQL COMMIT statement indicates the end of a logical transaction and releases all SQL data locked
during the transaction. All data modifications are made permanent.

COMMIT is a synonym for the Natural END TRANSACTION statement as described in the section Natural
DML Statements.

No transaction data can be provided with the COMMIT statement.

If the file server is used, an implicit end-of-transaction is issued after each terminal I/O.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program issues
database calls, too. The calling Natural program must issue the COMMIT statement for the external
program.

Further details and syntax: COMMIT in SQL Statements in the Natural Statements documentation.

DELETE

Both the cursor-oriented or positioned DELETE, and the non-cursor or searched DELETE SQL statements
are supported as part of Natural SQL Gateway; the functionality of the positioned DELETE statement
corresponds to that of the Natural DML DELETE statement.

With Natural SQL Gateway, a table name in the FROM clause of a searched DELETE statement can be
assigned a correlation-name. This does not correspond to the standard SQL syntax definition and therefore
belongs to the Natural Extended Set.

The searched DELETE statement must be used, for example, to delete a row from a self-referencing table,
since with self-referencing tables a positioned DELETE is not allowed by Natural SQL Gateway.

Further details and syntax: DELETE in SQL Statements in the Natural Statements documentation.

INSERT

The INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the NSB specific syntactical items
described above apply.

15

Dynamic SQL SupportCOMMIT

Further details and syntax: INSERT in SQL Statements in the Natural Statements documentation.

PROCESS SQL

The PROCESS SQL statement is used to issue SQL statements to the underlying database. The statements
are specified in a statement-string, which can also include constants and parameters.

The set of statements which can be issued is also referred to as Flexible SQL and comprises those
statements which can be issued with the SQL statement EXECUTE.

In addition, Flexible SQL includes the following Natural SQL Gateway specific statements:

CONNECT
SET CATALOG
SET SCHEMA
GET host-variable = RCI_VERSION

CONNECT

The CONNECT statement establishes a connection to the CONNX JDBC server. It has to be executed
before any SQL statement is issued against the CONNX JDBC server.

Syntax

PROCESS SQL ddm << CONNECT TO :U: server USER :U: user PASSWORD :U:password >>

Parameter Format/Length Explanation

ddm Constant 1-32
characters

Specifies the name of a DDM whose DBID is mapped by NTDBID to type SQL
and mapped by NTDBID to type CNX.

server A1 to A128 Specifies a string addressing the CONNX JDBC server , the port number the server
listens to and the CDD to be used to access the RDBMS.

The string has to have the following format:

GATEWAY=location-name;PORT=number;DD=cdd-registered-name

location-name denotes the the TCP/IP name of the location where the
CONNX JDBC server resides.

number denotes the port number the CONNX JDBC server listens to.

Default port number is 7500.

cdd-registered-name denotes the CDD to be used for this connection. It is a
registry name entry, which is mapped to file name in the registry.

user A1 to A32 Denotes the user ID to logon to the CONNX JDBC server or RDBMS.

password A1 to A32 Denotes the password to logon to the CONNX JDBC server or RDBMS.

16

PROCESS SQLDynamic SQL Support

SET CATALOG

Syntax

PROCESS SQL ddm << SET CATALOG :U: catalog >>

The SET CATALOG statement sets the default catalog to the catalog identified by catalog. The default
catalog will be used to identify the database system to be accessed, if the database system is not explicitly
specified as first qualifier of a table name in the SQL syntax and if the CDD contains definitions of more
than one database system.

Parameter Format/Length Explanation

ddm Constant 1-32
characters

Specifies the name of a DDM whose DBID is mapped by NTDBID to
type SQL and mapped by NTDBID to type CNX.

catalog A1 to A32 Denotes the catalog name to be used as default catalog.

SET SCHEMA

Syntax

PROCESS SQL ddm << SET SCHEMA :U: schema >>

The SET SCHEMA statement sets the default schema to the schema identified by schema. The default
schema will be used to identify the schema to be accessed, if the schema is not explicitly specified as
qualifier of a table name in the SQL syntax and if the CDD contains definitions of more than one schema.

Parameter Format/Length Explanation

ddm Constant 1-32
characters

Specifies the name of a DDM whose DBID is mapped by NTDBID to
type SQL and mapped by NTDBID to type CNX.

schema A1 to A32 Denotes the schema name to be used as default schema.

GET host-variable = RCI_VERSION

Syntax

PROCESS SQL ddm << GET:G: version = RCI_VERSION >>

The GET RCI_VERSION statement retrieves the version of the CONNX client software used in the
actual session. It could be executed before any connection is established.

Parameter Format/Length Explanation

ddm Constant 1-32
characters

Specifies the name of a DDM whose DBID is mapped by NTDBID to
type SQL and mapped by NTDBID to type CNX.

version A1 to A128 Receives the version string of the CONNX client software. It looks
like the following: RCI: 4.1.1 CONNX 10.5 SP3 (build
8003) .

17

Dynamic SQL SupportPROCESS SQL

To avoid transaction synchronization problems between the Natural environment and SQL, the COMMIT
and ROLLBACK statements must not be used within PROCESS SQL.

Further details and syntax:PROCESS SQL in Natural SQL Statements in the Natural Statements
documentation.

ROLLBACK

The SQL ROLLBACK statement undoes all database modifications made since the beginning of the last
logical transaction. Logical transactions can start either after the beginning of a session or after the last
COMMIT/END TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records held
during the transaction are released.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION as described in the
section Natural DML Statements.

However, if the file server is used, only changes made to the database since the last terminal I/O are
undone.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be placed
within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the ROLLBACK statement for the
external program.

Further details and syntax: ROLLBACK in Natural SQL Statements in the Natural Statements
documentation.

SELECT

This section covers the following topics:

Function
Syntax Description
SELECT - Cursor-Oriented
SELECT SINGLE - Non-Cursor-Oriented
NSB - UPDATE

See also the following sections in the Database Management System Interfaces documentation:

SELECT SINGLE - Non-Cursor-Oriented in the Natural for DB2 part.

SELECT in the Natural for SQL/DS part.

Function

The SELECT statement supports both the cursor-oriented selection that is used to retrieve an arbitrary
number of rows and the non-cursor selection (singleton SELECT) that retrieves at most one single row.

18

ROLLBACKDynamic SQL Support

Syntax Description

The syntax description of the SQL SELECT statement could be found here: SELECT - SQL.

SELECT - Cursor-Oriented

Like the Natural FIND statement, the cursor-oriented SELECT statement is used to select a set of rows
(records) from one or more SQL tables, based on a search criterion. Since a database loop is initiated, the
loop must be closed by a LOOP (in reporting mode) or END-SELECT statement (in structured mode).
With this construction, Natural uses the same loop processing as with the FIND statement.

In addition, no cursor management is required from the application program; it is automatically handled
by Natural.

SELECT SINGLE - Non-Cursor-Oriented

The Natural statement SELECT SINGLE provides the functionality of a non-cursor selection (singleton
SELECT); that is, a select expression that retrieves at most one row without using a cursor.

Since SQL supports the singleton SELECT command in static SQL only, in dynamic mode, the Natural
SELECT SINGLE statement is executed in the same way as a set-level SELECT statement, which results
in a cursor operation. However, Natural checks the number of rows returned by SQL. If more than one
row is selected, a corresponding error message is returned.

Further details and syntax:See also the SELECT statement for a cursor-oriented selection of rows.

NSB - UPDATE

Both the cursor-oriented or positioned UPDATE, and the non-cursor or Searched UPDATE SQL statements
are supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With SQL, the name of a table or Natural view to be referenced by a searched UPDATE can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore belongs to
the Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since SQL
does not allow updating of columns of a primary key by using a positioned UPDATE statement.

Note:
If you use the SET * notation, all fields of the referenced Natural view are added to the FOR UPDATE
OF and SET lists. Therefore, ensure that your view contains only fields which can be updated; otherwise,
a negative SQLCODE is returned by SQL.

Further details and syntax: UPDATE in Natural SQL Statements in the Natural Statements
documentation.

Natural System Variables

When used with Natural SQL Gateway, there are restrictions for the following Natural system variables:

*ISN
*NUMBER

19

Dynamic SQL SupportNatural System Variables

*ISN

As there is no SQL equivalent of Adabas ISNs, the system variable *ISN is not applicable to SQL tables.

*NUMBER

When used with a FIND NUMBER or HISTOGRAM statement, *NUMBER contains the number of rows
actually found.

When applied to data from an SQL table in any other case, the system variable *NUMBER only indicates
whether any rows have been found. If no rows have been found, *NUMBER is 0. Any value other than 0
indicates that at least one row has been found; however, the value contained in *NUMBER has no relation
to the number of rows actually found.

The reason is that if *NUMBER were to produce a valid number, Natural would have to translate the
corresponding FIND statement into an SQL SELECT statement including the special function
COUNT(*) ; however, a SELECT containing a COUNT function would produce a read-only result table,
which would not be available for updating. In other words, the option to update selected data was given
priority in Natural over obtaining the number of rows that meet the search criteria.

To obtain the number of rows affected by the Natural SQL statements Searched UPDATE, Searched
DELETE and INSERT, the Natural subprogram NDBNROW is provided. Alternatively, you can use the
Natural system variable *ROWCOUNT as described in the Natural System Variables documentation.

Error Handling

In contrast to the normal Natural error handling, where either an ON ERROR statement is used to intercept
execution time errors or standard error message processing is performed and program execution is
terminated, the enhanced error handling of Natural SQL Gateway provides an application controlled
reaction to the encountered SQL error.

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error
handling and to check the encountered SQL error for the returned SQL code.

For further information on Natural subprograms provided for SQL, see the section Natural Subprograms.

20

Error HandlingDynamic SQL Support

	Dynamic SQL Support
	SQL Support - General Information
	Internal Handling of Dynamic Statements
	Statement Table

	NSB - Statements and System Variables
	NSB Special Register Consideration

	NSB - Natural DML Statements
	BACKOUT TRANSACTION
	DELETE
	Example:
	DELETE when using the File Server

	END TRANSACTION
	FIND
	Example:
	FIND when Using the File Server

	GET
	HISTOGRAM
	Example:

	READ
	Example 1:
	Example 2:
	READ when using the File Server

	STORE
	Example:

	UPDATE
	UPDATE when using the File Server
	UPDATE with FIND/READ
	Example:
	UPDATE with SELECT
	Example:

	Natural SQL Statements
	Syntactical Items
	atom
	factor
	scalar-function
	Example:
	column-function
	scalar-operator
	special-register
	case-expression
	Example:

	COMMIT
	DELETE
	INSERT
	PROCESS SQL
	CONNECT
	Syntax
	SET CATALOG
	Syntax
	SET SCHEMA
	Syntax
	GET host-variable = RCI_VERSION
	Syntax

	ROLLBACK
	SELECT
	Function
	Syntax Description
	SELECT - Cursor-Oriented
	SELECT SINGLE - Non-Cursor-Oriented
	NSB - UPDATE

	Natural System Variables
	*ISN
	*NUMBER

	Error Handling

