
NSB - Interface Subprograms
Several Natural subprograms are available to provide you with either internal information from the
Natural SQL Gateway or specific functions that are not available within the interface itself.

This section covers the following topics:

Natural Subprograms

Natural Subprograms
The following Natural subprograms are available:

Subprogram Function

NDBERR Provides diagnostic information on the most recently executed SQL call.

NDBISQL Executes SQL statements in dynamic mode.

NDBNOERR Suppresses normal Natural error handling.

NDBNROW Obtains the number of rows affected by a Natural SQL statement.

All these subprograms are provided in the Natural system library SYSTEM in the FNAT system file. In
addition, the Natural library SYSTEM in the FNAT system file contains the subprogram DBTLIB2N and
the subroutine DBDL219S. They are used by NDBDBRM and NDBDBR2. The corresponding parameters
must be defined in a DEFINE DATA statement.

The Natural subprograms NDBBRM, NDBDBR2, NDBDBR3 allow the optional specification of the database
ID, file number, password and cipher code of the library file containing the program to be examined.

If these parameters are not specified, either the actual FNAT file or the FUSER file is used to locate the
program to be examined depending on whether the library name begins with SYS or the library name does
not begin with SYS.

Programs invoking NDBBRM, NDBDBR2, NDBDBR3 without these parameters will also work as before this
change as the added parameters are declared as optional.

NDBERR Subprogram

The Natural subprogram NDBERR replaces function E of the DB2SERV interface, which is still provided
but no longer documented. It provides diagnostic information on the most recent SQL call. It also returns
the database type which returned the error. NDBERR is typically called if a database call returns a non-zero
SQL code.

A sample program called CALLERR is provided on the installation tape; it demonstrates how to invoke
NDBERR. A description of the call format and of the parameters is provided in the text member
NDBERRT.

1

NSB - Interface SubprogramsNSB - Interface Subprograms

The calling Natural program must use the following syntax:

CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBTYPE

The various parameters are described in the following table:

Parameter Format/Length Explanation

SQLCODE I4 Returns the SQL return code.

SQLSTATEA5 Returns a return code for the output of the most recently executed SQL
statement.

SQLCA A136 Returns the SQL communication area of the most recent SQL access.

DBTYPE B1 Returns the identifier (in hexadecimal format) for the currently used
database.

X’04’ identifies access via Natural SQL Gateway (NSB)

X’02’ identifies access via Natural for DB2 (NDB).

NDBISQL Subprogram

The Natural subprogram NDBISQL is used to execute SQL statements in dynamic mode. The SELECT
statement and all SQL statements which can be prepared dynamically can be passed to NDBISQL.

A sample program called CALLISQL is provided on the installation tape; it demonstrates how to invoke
NDBISQL. A description of the call format and of the parameters is provided in the text member
NDBISQLT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBISQL’#FUNCTION #TEXT-LEN #TEXT (*) #SQLCA #RESPONSE #WORK-LEN #WORK (*)

The various parameters are described in the following table:

2

NDBISQL SubprogramNSB - Interface Subprograms

Parameter Format/Length Explanation

#FUNCTION A8 For valid functions, see below.

#TEXT-LEN I2 Length of the SQL statement or of the buffer for the return area.

#TEXT A1(1:V) Contains the SQL statement or receives the return code.

#SQLCA A136 Contains the SQLCA.

#RESPONSEI4 Returns a response code.

#WORK-LENI2 Length of the workarea specified by #WORK (optional).

#WORK A1(1:V) Work area used to hold SQLDA/SQLVAR and auxiliary fields across
calls (optional).

#DBTYPE I2 Database type (optional).

0 Default

2 DB2

4 CNX

Valid functions for the #FUNCTION parameter are:

Function Parameter Explanation

CLOSE Closes the cursor for the SELECT statement.

EXECUTE#TEXT-LEN
#TEXT (*)

Executes the SQL statement.
Contains the length of the statement.
Contains the SQL statement.
The first two characters must be blank.

FETCH #TEXT-LEN
#TEXT (*)

Returns a record from the SELECT statement.
Size of #TEXT (in bytes).
Buffer for the record.

TITLE #TEXT-LEN
#TEXT (*)

Returns the header for the SELECT statement.
Size of #TEXT (in bytes);
receives the length of the header (= length of the record).
Buffer for the header line.

The #RESPONSE parameter can contain the following response codes:

3

NSB - Interface SubprogramsNDBISQL Subprogram

Code Function Explanation

5 EXECUTE The statement is a SELECT statement.

6 TITLE , FETCH Data are truncated; only set on first TITLE or FETCH call.

100 FETCH No record / end of data.

-2 Unsupported data type (for example, GRAPHIC).

-3 TITLE , FETCH No cursor open;
probably invalid call sequence or statement other than SELECT.

-4 Too many columns in result table.

-5 SQL code from call.

-6 Version mismatch.

-7 Invalid function.

-8 Error from SQL call.

-9 Workarea invalid (possibly relocation).

-10 Interface not available.

-11 EXECUTE First two bytes of statement not blank.

Call Sequence

The first call must be an EXECUTE call. NDBISQL has a fixed SQLDA AREA holding space for 50
columns. If this area is too small for a particular SELECT, it is possible to supply an optional work area on
the calls to NDBISQL by specifying #WORK-LEN (I2) and #WORK(A1/1:V) .

This workarea is used to hold the SQLDA and temporary work fields like null indicators and auxiliary
fields for numeric columns. Calculate 16 bytes for SQLDA header and 44 bytes for each result column
and 2 bytes null indicator for each column and place for each numeric column, when supplying
#WORK-LEN and #WORK(*) during NDBISQL calls. If these optional parameters are specified on an
EXECUTE call they have also to be specified on any following call.

If the statement is a SELECT statement (that is, response code 5 is returned), any sequence of TITLE and
FETCH calls can be used to retrieve the data. A response code of 100 indicates the end of the data.

The cursor must be closed with a CLOSE call.

Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE call
for a SELECT statement.

In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE ,
FETCH or CLOSE call that refers to the same statement.

NDBNOERR Subprogram

The Natural subprogram NDBNOERR is used to suppress Natural NAT3700 errors caused by the next SQL
call. This allows a program controlled continuation if an SQL statement produces a non-zero SQL code.
After the SQL call has been performed, NDBERR is used to investigate the SQL code.

4

NDBNOERR SubprogramNSB - Interface Subprograms

A sample program called CALLNOER is provided on the installation tape; it demonstrates how to invoke
NDBNOERR. A description of the call format and of the parameters is provided in the text member
NDBNOERT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNOERR’

There are no parameters provided with this subprogram.

Note:
Only NAT3700 errors (that is, non-zero SQL response codes) are suppressed, and also only errors caused
by the next following SQL call.

Restrictions with Database Loops

If NDBNOERR is called before a statement that initiates a database loop and an initialization error
occurs, no processing loop will be initiated, unless the IF NO RECORDS FOUND clause has been
specified.

If NDBNOERR is called within a database loop, it does not apply to the processing loop itself, but
only to the SQL statement subsequently executed inside this loop.

NDBNROW Subprogram

The Natural subprogram NDBNROW is used to obtain the number of rows affected by the Natural SQL
statements Searched UPDATE, Searched DELETE, and INSERT. The number of rows affected is read
from the SQL communication area (SQLCA). A positive value represents the number of affected rows,
whereas a value of minus one (-1) indicates that all rows of a table in a segmented tablespace have been
deleted.

A sample program called CALLNROW is provided on the installation tape; it demonstrates how to invoke
NDBNROW. A description of the call format and of the parameters is provided in the text member
NDBNROWT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNROW’ #NUMBER

The parameter #NUMBER (I4) contains the number of affected rows.

5

NSB - Interface SubprogramsNDBNROW Subprogram

	NSB - Interface Subprograms
	Natural Subprograms
	NDBERR Subprogram
	NDBISQL Subprogram
	Call Sequence

	NDBNOERR Subprogram
	Restrictions with Database Loops

	NDBNROW Subprogram

