
NSQ - Statements and System Variables
This section contains special considerations concerning Natural DML statements, Natural SQL statements
and Natural system variables when used with SQL/DS.

It mainly consists of information also contained in the Natural documentation set where each Natural
statement and system variable is described in detail.

This section covers the following topics:

Natural DML Statements

Natural SQL Statements

Natural System Variables

Error Handling

Natural DML Statements
Summarized below are particular points you have to consider when using Natural DML statements with
SQL/DS.

Any Natural statement not mentioned in this section can be used with SQL/DS without restriction.

BACKOUT TRANSACTION

DELETE

END TRANSACTION

FIND

GET

HISTOGRAM

READ

STORE

UPDATE

BACKOUT TRANSACTION

This statement undoes all database modifications made since the beginning of the last logical transaction.
Logical transactions can start either after the beginning of a session or after the last SYNCPOINT, END
TRANSACTION or BACKOUT TRANSACTION statement.

1

NSQ - Statements and System VariablesNSQ - Statements and System Variables

Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS ROLLBACK
command. However, in pseudo-conversational mode, only changes made to the database since the last
terminal I/O are undone. This is due to CICS-specific transaction processing.

Note:
Be aware that with terminal input in SQL/DS database loops, Natural switches to conversational mode.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement
must not be placed within a database loop; instead, it has to be placed outside such a loop or after the
outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program should not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program should issue the BACKOUT TRANSACTION
statement on behalf of the external program.

DELETE

The DELETE statement is used to delete a row from an SQL/DS table which has been read with a
preceding FIND, READ or SELECT statement. It corresponds to the SQL statement DELETE WHERE
CURRENT OF cursor-name, which means that only the row which was read last can be deleted.

Example:

 FIND EMPLOYEES WITH NAME = ’SMITH’
 AND FIRST_NAME = ’ROGER’
 DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR 1 CURSOR FOR
SELECT FROM EMPLOYEES
 WHERE NAME = ’SMITH’ AND FIRST_NAME = ’ROGER’
DELETE FROM EMPLOYEES
 WHERE CURRENT OF CURSOR1

Both the SELECT and the DELETE statement refer to the same cursor.

Natural translates a DML DELETE statement into an SQL DELETE statement in the same way it
translates a FIND statement into an SQL SELECT statement.

A row read with a FIND SORTED BY cannot be deleted due to SQL/DS restrictions explained with the
FIND statement. A row read with a READ LOGICAL cannot be deleted either.

END TRANSACTION

This statement indicates the end of a logical transaction and releases all SQL/DS data locked during the
transaction. All data modifications are made permanent.

Under CICS, the END TRANSACTION statement is translated into an EXEC CICS SYNCPOINT
command.

2

DELETENSQ - Statements and System Variables

As all cursors are closed when a logical unit of work ends, the END TRANSACTION statement must not
be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program should not contain its own COMMIT command if the Natural program
issues database calls, too. The calling Natural program should issue the END TRANSACTION statement
on behalf of the external program.

Note:
With SQL/DS, the END TRANSACTION statement cannot be used to store transaction data.

FIND

The FIND statement corresponds to the SQL SELECT statement.

Example:

Natural statements:

FIND EMPLOYEES WITH NAME = ’BLACKMORE’
 AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent SQL statement:

SELECT PERSONNEL_ID, NAME, AGE
 FROM EMPLOYEES
 WHERE NAME = ’BLACKMORE’
 AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement. The SELECT statement is
executed by an OPEN CURSOR command followed by a FETCH command. The FETCH command is
executed repeatedly until either all records have been read or the program flow exits the FIND processing
loop. A CLOSE CURSOR command ends the SELECT processing; See Processing of SQL Statements
Issued by Natural.

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The
basic search criterion for a SQL/DS table can be specified in the same way as for an Adabas file. This
implies that only database fields which are defined as descriptors can be used to construct basic search
criteria and that descriptors cannot be compared with other fields of the Natural view (that is, database
fields) but only with program variables or constants.

Note:
As each database field (column) of a SQL/DS table can be used for searching, any database field can be
defined as a descriptor in a Natural DDM.

The WHERE clause of the FIND statement is evaluated by the Natural processor after the rows have been
selected via the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields
can be compared with other database fields.

Note:
SQL/DS does not have sub-, super-, or phonetic descriptors.

3

NSQ - Statements and System VariablesFIND

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT(*) clause. The
number of rows found is returned in the Natural system variable *NUMBER.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing. If the
FIND UNIQUE statement is referenced by an UPDATE statement, a non-cursor ("searched") UPDATE
operation is generated instead of a cursor-oriented (positioned) UPDATE operation. Therefore, it can be
used if you want to update an SQL/DS primary key. It is, however, recommended to use Natural SQL
("searched" UPDATE statement) to update a primary key.

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated into a SELECT
SINGLE statement.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN
clauses cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY clause,
which follows the search criterion. Because this produces a read-only result table, a row read with a FIND
statement that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation. If this limit is exceeded, a
Natural error message is returned.

GET

This statement is ISN-based and, therefore, cannot be used with SQL/DS tables.

HISTOGRAM

The HISTOGRAM statement returns the number of rows in a table which have the same value in a
specific column. The number of rows is returned in the Natural system variable *NUMBER.

Example:

Natural statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent SQL statement:

SELECT COUNT(*), AGE FROM EMPLOYEES
 WHERE AGE > -999
 GROUP BY AGE
 ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the
control flow is similar to the flow explained for the FIND statement.

READ

The READ statement can also be used to access SQL/DS tables. Natural translates a READ statement into
an SQL SELECT statement.

4

GETNSQ - Statements and System Variables

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN, however, cannot be used, as
there is no SQL/DS equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used
either.

Since a READ LOGICAL statement is translated into a SELECT ... ORDER BY statement - which
produces a read-only table -, a row read with a READ LOGICAL statement cannot be updated or deleted
(see Example 1 below). The start value can only be a constant or program variable; any other field of the
Natural view (that is, any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and
can, therefore, be updated or deleted (see Example 2 below).

Example 1:

Natural statements:

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent SQL statement:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
 WHERE NAME >= ’ ’
 ORDER BY NAME

Example 2:

Natural statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent SQL statement:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor after
the rows have been selected according to the descriptor value(s) specified as search criterion.

STORE

The STORE statement is used to add a row to an SQL/DS table. The STORE statement corresponds to the
SQL statement INSERT.

Example:

Natural statement:

STORE RECORD IN EMPLOYEES
 WITH PERSONNEL_ID = ’2112’
 NAME = ’LIFESON’
 FIRST_NAME = ’ALEX’

Equivalent SQL statement:

5

NSQ - Statements and System VariablesSTORE

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
 VALUES (’2112’, ’LIFESON’, ’ALEX’)

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses cannot be used.

UPDATE

The Natural DML UPDATE statement updates a row in an SQL/DS table which has been read with a
preceding FIND, READ or SELECT statement. It corresponds to the SQL statement UPDATE WHERE
CURRENT OF cursor-name (positioned UPDATE), which means that only the row which was read last
can be updated.

UPDATE with FIND/READ

As explained with the FIND statement, Natural translates a FIND statement into an SQL SELECT
statement. When a Natural program contains a DML UPDATE statement, this statement is translated into
an SQL UPDATE statement and a FOR UPDATE OF clause is added to the SELECT statement.

Example:

FIND EMPLOYEES WITH SALARY < 5000
 ASSIGN SALARY = 6000
 UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR
SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
 FOR UPDATE OF SALARY
UPDATE EMPLOYEES SET SALARY = 6000
 WHERE CURRENT OF CURSOR1

Both the SELECT and the UPDATE statement refer to the same cursor.

Due to SQL/DS logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF
clause; otherwise updating this column (field) is rejected. Natural includes automatically all columns
(fields) into the FOR UPDATE OF clause which have been modified anywhere in the Natural program or
which are input fields as part of a Natural map.

However, an SQL/DS column is not updated if the column (field) is marked as "not updateable" in the
Natural DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any warning
or error message. The columns (fields) contained in the FOR UPDATE OF list can be checked with the
LISTSQL command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

6

UPDATENSQ - Statements and System Variables

Short-Name Range Type of Field

AA - N9 non-key field that can be updated

Aa - Nz non-key field that can be updated

OA - O9 primary key field

PA - P9 ascending key field that can be updated

QA - Q9 descending key field that can be updated

RA - X9 non-key field that cannot be updated

Ra - Xz non-key field that cannot be updated

YA - Y9 ascending key field that cannot be updated

ZA - Z9 descending key field that cannot be updated

1A - 9Z non-key field that cannot be updated

1a - 9z non-key field that cannot be updated

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can only
be updated by using a non-cursor UPDATE operation.

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to SQL/DS
limitations as explained with the FIND statement). A row read with a READ LOGICAL cannot be
updated either (as explained with the READ statement).

If a column is to be updated which is redefined as an array, it is strongly recommended to update the
whole column and not individual occurrences; otherwise, results are not predictable. To do so, in reporting
mode you can use the OBTAIN statement (as described in the Natural Statements documentation), which
must be applied to all field occurrences in the column to be updated. In structured mode, however, all
these occurrences must be defined in the corresponding Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT
WORK) or BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

Note:
If a length indicator field or null indicator field is updated in a Natural program without updating the field
(column) it refers to, the update of the column is not generated for SQL/DS and thus no updating takes
place.

UPDATE with SELECT

In general, the DML UPDATE statement can be used in both structured and reporting mode. However,
after a SELECT statement, only the syntax defined for Natural structured mode is allowed:

UPDATE [RECORD] [IN] [STATEMENT] [(r)]

This is due to the fact that in combination with the SELECT statement the DML UPDATE statement is
only allowed in the special case of:

7

NSQ - Statements and System VariablesUPDATE

 ...
SELECT ...
 INTO VIEW view-name
 ...

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
END-DEFINE
...
SELECT *
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE NAME LIKE ’S%’
 ...
 IF NAME = ’SMITH’
 ADD 1 TO AGE
 UPDATE
 END-IF
 ...
END-SELECT
 ...

In combination with the DML UPDATE statement, any other form of the SELECT statement is rejected
and an error message is returned.

In all other respects, the DML UPDATE statement can be used with the SELECT statement in the same
way as with the Natural FIND statement described in the Natural Statements documentation.

Natural SQL Statements
Summarized in the following section are particular points you have to consider when using Natural SQL
statements with SQL/DS. These SQL/DS-specific points partly consist in syntax enhancements which
belong to the Extended Set of Natural SQL syntax. The Extended Set is provided in addition to the
Common Set to support database-specific features. It also includes features not supported by SQL/DS.

Common Syntactical Items

COMMIT

DELETE

INSERT

PROCESS SQL

ROLLBACK

SELECT

8

Natural SQL StatementsNSQ - Statements and System Variables

UPDATE

Common Syntactical Items

The following syntactical items are either SQL/DS-specific and do not conform to the standard SQL
syntax definitions (that is, to the Common Set of Natural SQL syntax) or impose restrictions when used
with SQL/DS (see also SQL Statements in the Natural Statements documentation).

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant.
When running dynamically, however, the use of host variables is restricted by SQL/DS. For further
details, refer to the relevant literature on SQL/DS.

comparison

The comparison operators specific to DB2 belong to the Natural Extended Set. For a description, refer to
Comparison Predicate in Search Conditions, Natural SQL Statements (Statements Grouped by Functions,
Natural Statements documentation).

factor

The following factors are specific to SQL/DS and belong to the Natural Extended Set:

special-register
scalar-function (scalar-expression, ...)
scalar-expression unit
case-expression

scalar-function

A scalar-function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to SQL/DS and belong to the Natural Extended Set.

The following scalar functions are supported:

CHAR
DATE
DAY
DAYS
DECIMAL
DIGITS
FLOAT
HEX
HOUR
INTEGER
LENGTH
MICROSECOND
MINUTE
MONTH
SECOND

9

NSQ - Statements and System VariablesCommon Syntactical Items

STRIP
SUBSTR
TIME
TIMESTAMP
TRANSLATE
VALUE
VARGRAPHIC
YEAR

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar
expressions depends upon the scalar function. Multiple scalar expressions must be separated from one
another by commas.

Example:

SELECT
 NAME INTO NAME FROM SQL-PERSONNEL WHERE SUBSTR (NAME, 1, 3) = ’Fri’ ...

scalar-operator

The concatenation operator (CONCAT or "||") does not conform to standard SQL. It is specific to SQL/DS
and belongs to the Natural Extended Set.

special-register

The following special registers do not conform to standard SQL. They are specific to SQL/DS and belong
to the Natural Extended Set:

USER
CURRENT TIMEZONE
CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP

A reference to a special register returns a scalar value.

units

Units, also called "durations", are specific to SQL/DS and belong to the Natural Extended Set.

The following units are supported:

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND

10

Common Syntactical ItemsNSQ - Statements and System Variables

SECONDS
MICROSECOND
MICROSECONDS

COMMIT

The SQL COMMIT statement indicates the end of a logical transaction and releases all SQL/DS data
locked during the transaction. All data modifications are made permanent.

COMMIT is a synonym for the Natural END TRANSACTION statement.

As all cursors are closed when a logical unit of work ends, the COMMIT statement must not be placed
within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program should not contain its own COMMIT command if the Natural program
issues database calls, too. The calling Natural program should issue the COMMIT statement on behalf of
the external program.

DELETE

Both the "cursor-oriented" or "positioned" and the "non-cursor" or "searched" SQL DELETE statement
are supported as part of Natural SQL; the functionality of the "positioned" DELETE statement
corresponds to that of the Natural DML DELETE statement.

With SQL/DS, a table name in the FROM clause of a "searched" DELETE statement can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore belongs
to the Natural Extended Set.

INSERT

The INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the SQL/DS Common Syntactical Items
described above apply.

PROCESS SQL

The PROCESS SQL statement is used to issue SQL statements to the underlying database. The statements
are specified in a statement-string, which can also include constants and parameters.

The set of statements which can be issued is also referred to as Flexible SQL and comprises those
statements which can be issued with the SQL statement "EXECUTE".

In addition, Flexible SQL includes the SQL/DS-specific statement CONNECT.

With the PROCESS SQL statement you can also specify the statement-string SQLDISCONNECT to
release the connection to your SQL/DS application server. SQLDISCONNECT is transformed into the
SQL/DS ROLLBACK WORK RELEASE command.

11

NSQ - Statements and System VariablesCOMMIT

Execution of SQLDISCONNECT is only allowed if no transaction (logical unit of work) is open.
Therefore, an explicit COMMIT (END TRANSACTION) or ROLLBACK (BACKOUT
TRANSACTION) statement is required before executing SQLDISCONNECT, otherwise an error
message is returned.

Note:
To avoid transaction synchronization problems between the Natural environment and SQL/DS, the
COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

ROLLBACK

The SQL ROLLBACK statement undoes all database modifications made since the beginning of the last
logical transaction. Logical transactions can start either after the beginning of a session or after the last
COMMIT/END TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records
held during the transaction are released.

ROLLBACK is a synonym for the Natural BACKOUT TRANSACTION statement.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement
must not be placed within a database loop; instead, it has to be placed outside such a loop or after the
outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program should not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program should issue the ROLLBACK statement on behalf
of the external program.

SELECT

Cursor-Oriented Selection

Like the Natural FIND statement, the cursor-oriented SELECT statement is used to select a set of rows
(records) from one or more SQL/DS tables, based on a search criterion. Since a database loop is initiated,
the loop must be closed by a LOOP (reporting mode) or END-SELECT statement. With this construction,
Natural uses the same database loop processing as with the FIND statement.

In addition, no cursor management is required from the application program; it is automatically handled
by Natural.

Non-Cursor Selection - SELECT SINGLE

The Natural SELECT SINGLE statement provides the functionality of a non-cursor selection (singleton
SELECT); that is, a select expression that retrieves at most one row without using a cursor.

Since SQL/DS supports the singleton SELECT command in static SQL only, in dynamic mode, the
Natural SELECT SINGLE statement is executed like a set-level SELECT statement, which results in a
cursor operation. However, Natural checks the number of rows returned by SQL/DS. If more than one row
is selected, a corresponding error message is returned.

12

ROLLBACKNSQ - Statements and System Variables

UPDATE

Both the cursor-oriented or positioned and the non-cursor or searched UPDATE SQL statement are
supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With SQL/DS, the name of a table or Natural view to be referenced by a searched UPDATE can be
assigned a correlation-name. This does not correspond to the standard SQL syntax definition and,
therefore, belongs to the Natural Extended Set.

The searched UPDATE statement must be used, for example, to update a primary key field, since SQL/DS
does not allow updating of columns of a primary key by using a positioned UPDATE statement.

Note:
If you use the SET * notation, all fields of the referenced Natural view are added to the FOR UPDATE
OF and SET lists. Therefore, ensure that your view contains only fields which can be updated; otherwise a
negative SQLCODE is returned by SQL/DS.

Natural System Variables
When used with SQL/DS, the following restrictions apply to the following Natural system variables:

*ISN

*NUMBER

*ISN

As there is no SQL/DS equivalent to Adabas ISNs, the system variable *ISN in not applicable to SQL/DS
tables.

*NUMBER

When used with a FIND NUMBER or HISTOGRAM statement, *NUMBER contains the number of rows
actually found.

When applied to data from an SQL/DS table in any other case, the system variable *NUMBER only
indicates whether any rows have been found. If no rows have been found, *NUMBER is "0". Any value
other than "0" indicates that at least one row has been found; however, the value contained in *NUMBER
has no relation to the number of rows actually found.

The reason is that if *NUMBER was to produce a valid number, Natural would have to translate the
corresponding FIND statement into an SQL SELECT statement including the special function
COUNT(*); however, a SELECT containing a COUNT function would produce a read-only result table,
which would not be available for updating. In other words, the option to update selected data was given
priority in Natural over obtaining the number of rows that meet the search criteria.

To obtain the number of rows affected by the Natural SQL statements "searched" UPDATE, "searched"
DELETE and INSERT, the Natural subprogram NDBNROW is provided. Or you can use the Natural
system variable *ROWCOUNT as described in the Natural System Variables documentation.

13

NSQ - Statements and System VariablesNatural System Variables

Error Handling
In contrast to the normal Natural error handling, where either an ON ERROR statement is used to
intercept runtime errors or standard error message processing is performed and program execution is
terminated, the enhanced error handling of Natural for SQL/DS provides an application-controlled
reaction to the encountered SQL error.

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error
handling and to check the encountered SQL error for the returned SQL code. This functionality replaces
the "E" function of the DB2SERV interface, which is still provided but no longer documented.

See further information on Natural subprograms provided for SQL/DS.

Example:

DEFINE DATA LOCAL
01 #SQLCODE (I4)
01 #SQLSTATE (A5)
01 #SQLCA (A136)
01 #DBMS (B1)
END-DEFINE
*
* Ignore error from next statement
*
CALLNAT ’NDBNOERR’
*
* This SQL statement produces an SQL error
*
INSERT INTO SYSIBH-SYSTABLES (CREATOR, NAME, COLCOUNT)
 VALUES (’SAG’, ’MYTABLE’, ’3’)
*
* Investigate error
*
CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBMS
*
IF #DBMS NE 3 /* not SQL/DS
 MOVE 3700 TO *ERROR-NR
END-IF
*
DECIDE ON FIRST VALUE OF #SQLCODE
 VALUE 0, 100 /* successful execution
 IGNORE
 VALUE -803 /* duplicate row
 /* UPDATE existing record
 /*
 IGNORE
 NONE VALUE
 MOVE 3700 TO *ERROR-NR
END-DECIDE
*
END

14

Error HandlingNSQ - Statements and System Variables

	NSQ - Statements and System Variables
	Natural DML Statements
	BACKOUT TRANSACTION
	DELETE
	Example:

	END TRANSACTION
	FIND
	Example:

	GET
	HISTOGRAM
	READ
	STORE
	Example:

	UPDATE
	UPDATE with FIND/READ
	Example:
	UPDATE with SELECT
	Example:

	Natural SQL Statements
	Common Syntactical Items
	atom
	comparison
	factor
	scalar-function
	scalar-operator
	special-register
	units

	COMMIT
	DELETE
	INSERT
	PROCESS SQL
	ROLLBACK
	SELECT
	Cursor-Oriented Selection
	Non-Cursor Selection - SELECT SINGLE

	UPDATE

	Natural System Variables
	*ISN
	*NUMBER

	Error Handling
	
	Example:

