
Multiple Row Processing 
This document covers the multiple row functionality for DB2 databases. 

You have to operate against DB2 for z/OS Version 8 or higher to use these features. 

Natural for DB2 provides two kinds of multiple row processing features: 

Standard multiple row processing

This feature does not influence the program logic. Although the Natural native DML and Natural
SQL DML provide clauses for specification of the multi-fetch-factor, the Natural program operates
with one database row and from the program point of view only one row is received from or is send
to the database. 

Advanced multiple row processing

This feature has a lot of impact on the program logic, as it allows the retrieval of multiple rows from
the database into the program storage by a single Natural SQL SELECT statement into a set of
arrays. Additionally it is possible to insert multiple rows into the database from a set of arrays by the
Natural SQL INSERT statement. 

The following topics are covered:

Purpose of Multi-Fetch Feature

Considerations for Multi-Fetch Usage

Size of the Multi-Fetch Buffer

Support of TEST DBLOG Q

Multiple rows to program (Advanced)

Multiple rows from program (Advanced)

Purpose of Multi-Fetch Feature 
In standard mode, Natural does not read multiple records with a single database call; it always operates in
a one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large
number of database records are being processed. 

To improve the performance of those programs, you can use the Multi-Fetch Clause in the FIND, READ
or HISTOGRAM statements. This allows you to specify the number of records read per database access. 

FIND MULTI-FETCH ON 

READ OFF 

HISTOGRAM OF multi-fetch-factor 

1

Multiple Row ProcessingMultiple Row Processing



Where the multi-fetch-factor is either a constant or a variable with a format integer (I4). 

To improve the performance of the Natural SQL SELECT statements, you can use the
With_Rowset_Positioning Clause to specify a multi-fetch-factor. 

WITH ROWSET POSITIONING FOR [:] row_hv ROWS 

integer 

At statement execution time, the runtime checks if a multi-fetch-factor greater than 1 is supplied for the
database statement. 

If the multi-fetch-factor is 

less than or equal to 1the database call is continued in the usual one-record-per-access mode. 

greater than 1 the database call is prepared dynamically to read multiple records (e.g. 10) with a
single database access into an auxiliary buffer (multi-fetch buffer). If successful,
the first record is transferred into the underlying data view. Upon the execution of
the next loop, the data view is filled directly from the multi-fetch buffer, without
database access. After all records are fetched from the multi-fetch buffer, the next
loop results in the next record set being read from the database. If the database
loop is terminated (either by end-of-records, ESCAPE, STOP, etc.), the content
of the multi-fetch buffer is released. 

Considerations for Multi-Fetch Usage 
The program does not receive "fresh" records from the database for every loop, but operates with
images retrieved at the most recent multi-fetch access. 

If a dynamic direction change (IN DYNAMIC...SEQUENCE) is coded for a READ / HISTOGRAM
statement, the multi-fetch feature is not possible and leads to a corresponding syntax error at
compilation. 

The size occupied by a database loop in the multi-fetch buffer is determined according to the rule: 

header + sqldaheader + columns*(sqlvar+lise) + mf*(udind + sum(collen) + sum(LF(columns) + sum(nullind)) 

= 

32 + 16 + columns*(44+12) + mf*(1 + sum(collen) + sum(LF(column)) + sum(2)) 

where

header denotes the length of the header of a entry in the DB2 multifetch buffer, i.e. 32 

sqldaheader denotes the length of the header of a sqlda, i.e. 16

columns denotes the number of receiving fields of a SQL request

2

Considerations for Multi-Fetch UsageMultiple Row Processing



sqlvar denotes the length of a sqlvar, i.e. 44

lise denotes the length of a NDB specific sqlvar extension

mf denotes the multifetch factor, i.e. the number of rows fetched by one database call 

collen denotes the length of the receiving field

LF(column) denotes the size of the length field of the receiving field, i.e. 0 for fixed length fields, 2
for variable length fields, and 4 for large object columns (LOBs) 

nullind denotes the length of a null indicator, i.e. 2

Size of the Multi-Fetch Buffer 
The multifetch buffer is released at terminal i/o in pseudo conversional mode. Therefore there is no size
limitation for the DB2 multifetch buffer (DB2SIZE6). The buffer will be automatical enlarged if
necessary. 

Support of TEST DBLOG Q 
When multi-fetch is used, real database calls are only submitted to get a new set of records. 

The TEST DBLOG Q facility is also called from the NDB multi fetch handler for every rowset fetch from
DB2 and for every record moved from the multi fetch buffer to the program storage. The events are
distinguished by the literal "MULTI FETCH .." and "<BUFF FETCH ..." 

Example: TEST DBLOG List Break-Out

10:51:57              ***** NATURAL Test Utilities *****             2006-01-27
User HGK                        - DBLOG Trace -                Library NDB42
M No   R SQL Statement (truncated)     CU SN SREF M Typ SQLC/W Program  Line LV
_    1   SELECT EMPNO,FIRSTNME,LASTNAM 01 01 0260 D DB2        MF000001 0260 01
_    2     MULTI FETCH  NEX            01 01 0260 D DB2        MF000001 0260 01
_    3     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_    4     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_    5     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_    6     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_    7     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_    8     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_    9     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   10     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   11     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   12     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   13     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   14     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   15     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   16     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
_   17     <BUFF FETCH  NEX            00 00 0260 D DB2        MF000001 0260 01
Command ===>

where column No represents the following:

3

Multiple Row ProcessingSize of the Multi-Fetch Buffer



1 is a open cursor DB2 call. 

2 is a "real" database call that reads a set of records via multi-fetch (see " MULTI FETCH NEX " in
column SQL Statement). 

3-17 are "no real" database calls, but only entries that document that the program has received these
records from the 
multi-fetch buffer (see " <BUFF FETCH NEX " in column SQL Statement). 

Multiple rows to program (Advanced) 
The feature allows programs to retrieve multiple rows from DB2 into arrays. 

This feature is only available with the SELECT statement. 

Prerequisites

In order to use this feature you have to

set the compiler option DB2ARRY=ON (either via OPTIONS statement or COMPOPT command or
CMPO profile parameter). 

specify a list of receiving arrays in the INTO Clause of the SELECTstatement. 

specify the number of rows to be retrieved from the database by a single FETCH operation via the
WITH ROWSET POSITIONING Clause. 

Specify a variable receiving the number of rows retrieved from the database via the
ROWS_RETURNED Clause. 

DB2ARRY=ON

DB2ARRY=ON is necessary to allow the specification of arrays in the INTO Clause. DB2ARRY=ON
also prevents the usage of arrays as sending or receiving fields for DB2 CHAR/VARCHAR
/GRAPHIC/VARGRAPHIC columns. Instead Natural scalar fields with the appropriate length have to be
used. 

INTO Clause

Each array specified in the INTO Clause has to be contiguous (one occurrence following immediately by
another, this is expected by DB2) and has to be one-dimensional. The arrays are filled from the first
occurrence (low) to last occurrence (high). The first array occurrences compose the first row of the
received rowset, the second array occurrences compose the second row of the received rowset. The array
occurrences of the nth index compose the nth row returned from DB2. If a LINDICATOR or
INDICATOR Clauses are used in the INTO Clause for arrays, the specified length indicators or null
indicators have also to be arrays. The number of occurrences of LINDICATOR and INDICATOR arrays
have to equal or greater than the number of occurrences of the master array. 

4

Multiple rows to program (Advanced)Multiple Row Processing



WITH ROWSET POSITIONING Clause 

The WITH_ROWSET_POSITIONING Clause is used to specify the number of rows to be retrieved from
the database by one processing cycle. The specified number has to be equal or smaller than the minimum
of occurrences of all specified arrays. If a variable, not a constant, is specified the actual content of the
variable will be used during each processing cycle. The specified number has to be greater 0 and smaller
than 32768. 

ROWS_RETURNED Clause

The ROWS_RETURNED Clause is used to specify a variable, which will contain the number of rows
read from the database during the actual fetch operation. The format of the variable has to be I4. 

Restrictions and Constraints

Natural Views

It is not possible to use Natural arrays of views in the INTO clause, i.e. the use of keyword VIEW is not
possible. 

File Server usage and positioned UPDATE and DELETE 

The purpose of this feature is to reduce the number of database and database interface calls for bulk batch
processing. Therefore it is not recommended to use this kind of programming in online CICS or IMS
environments, when terminal I/Os occur within open cursor loops, i.e. the file server is used. A fortiori it
is not possible to perform a positioned UPDATE or DELETE statement after terminal I/O. 

Example:

5

Multiple Row ProcessingWITH ROWSET POSITIONING Clause



DEFINE DATA LOCAL                                                  
01 NAME            (A20/1:10)                                      
01 ADDRESS         (A100/1:10)                                     
01 DATEOFBIRTH     (A10/1:10)                                      
01 SALARY          (P4.2/1:10)                                     
01 L$ADDRESS       (I2/1:10)                                       
01 ROWS            (I4)                                            
01 NUMBER          (I4)                                            
01 INDEX           (I4)                                            
END-DEFINE                                                         
OPTIONS DB2ARRY=ON                                                 
ASSIGN NUMBER := 10                                                
SEL.                                                               
SELECT NAME, ADDRESS , DATEOFBIRTH, SALARY                         
       INTO  :NAME(*),                             /* <-- ARRAY    
             :ADDRESS(*) LINDICATOR :L$ADDRESS(*), /* <-- ARRAY    
             :DATEOFBIRTH(1:10),                   /* <-- ARRAY    
             :SALARY(01:10)                        /* <-- ARRAY    
      FROM NAT-DEMO                                                
      WHERE NAME > ’ ’                                             
      WITH ROWSET POSITIONING FOR :NUMBER ROWS     /* <-- ROWS REQ 
      ROWS_RETURNED :ROWS                          /* <-- ROWS RET 
  IF ROWS > 0                                                      
    FOR INDEX = 1 TO  ROWS STEP 1                                  
      DISPLAY                                                      
              INDEX (EM=99) *COUNTER (SEL.) (EM=99) ROWS (EM=99)   
              NAME(INDEX)                                          
              ADDRESS(INDEX) (AL=20)                               
              DATEOFBIRTH(INDEX)                                   
              SALARY(INDEX)                                        
    END-FOR                                                        
  END-IF                                                           
END-SELECT                                                         
END

Multiple rows from program (Advanced) 
The feature allows programs to insert multiple rows into a DB2 table from arrays. 

This feature is only available with the INSERT statement. 

Prerequisites

In order to use this feature you have to

set the compiler option DB2ARRY=ON (either via OPTIONS statement or COMPOPT command or
CMPO profile parameter). 

specify a list of sending arrays in the VALUES Clause of the INSERT statement. 

specify the number of rows to be inserted into the database by a single INSERT statement via the
FOR n ROWS Clause. 

6

Multiple rows from program (Advanced)Multiple Row Processing



DB2ARRY=ON

DB2ARRY=ON is necessary to allow the specification of arrays in the VALUES Clause. DB2ARRY=ON
also prevents the usage of arrays as sending or receiving fields for DB2 CHAR/VARCHAR
/GRAPHIC/VARGRAPHIC columns. Instead Natural scalar fields with the appropriate length have to be
used. 

VALUES Clause

Each array specified in the VALUES Clause has to be contiguous (one occurrence following immediately
by another, this is expected by DB2) and has to be one-dimensional. The arrays are read from the first
occurrence (low) to last occurrence (high). The first array occurrences compose the first row inserted into
the database, the second array occurrences compose the second row inserted into the database. The array
occurrences of the nth index compose the nth row inserted into the database. If a LINDICATOR or
INDICATOR Clauses are used in the VALUES Clause for arrays, the specified length indicators or null
indicators have also to be arrays. The number of LINDICATOR and INDICATOR array occurrences has
to be equal or greater than the number of occurrences of the master array. 

FOR n ROWS Clause

The FOR n ROWS Clause is used to specify how many rows are to be inserted into the database table by
one INSERT statement. The specified number has to be equal or smaller than the minimum of occurrences
of all specified arrays in the VALUES clause. The specified number has to be greater 0 and smaller than
32768. 

Restrictions and Constraints

Natural Views

It is not possible to use Natural arrays of views in the VALUES clause, i.e. the use of keyword VIEW is
not possible. 

Static execution

Due to DB2 restrictions it is not possible to execute multiple row inserts in static mode. Therefore
multiple row inserts are not generated static and are always dynamically prepared and executed by Natural
for DB2. 

It is not possible to use Natural arrays of views in the INTO clause, i.e. the use of keyword VIEW is not
possible. 

Example:

7

Multiple Row ProcessingDB2ARRY=ON



DEFINE DATA LOCAL                                                       
01 NAME        (A20/1:10)  INIT <’ZILLER1’,’ZILLER2’,’ZILLER3’,’ZILLER4’
                                ,’ZILLER5’,’ZILLER6’,’ZILLER7’,’ZILLER8’
                                ,’ZILLER9’,’ZILLERA’>                   
01 ADDRESS     (A100/1:10) INIT <’ANGEL STREET 1’,’ANGEL STREET 2’      
                                ,’ANGEL STREET 3’,’ANGEL STREET 4’      
                                ,’ANGEL STREET 5’,’ANGEL STREET 6’      
                                ,’ANGEL STREET 7’,’ANGEL STREET 8’      
                                ,’ANGEL STREET 9’,’ANGEL STREET 10’>    
01 DATENATD (D/1:10)  INIT <D’1954-03-27’,D’1954-03-27’,D’1954-03-27’   
                            ,D’1954-03-27’,D’1954-03-27’,D’1954-03-27’  
                            ,D’1954-03-27’,D’1954-03-27’,D’1954-03-27’  
                            ,D’1954-03-27’>                             
01 SALARY      (P4.2/1:10) INIT <1000,2000,3000,4000,5000               
                                ,6000,7000,8000,9000,9999>              
01 SALARY_N    (N4.2/1:10) INIT <1000,2000,3000,4000,5000               
                                ,6000,7000,8000,9000,9999>              
01 L§ADDRESS   (I2/1:10) INIT <14,14,14,14,14,14,14,14,14,15>           
01 N§ADDRESS   (I2/1:10) INIT <00,00,00,00,00,00,00,00,00,00>           
01 ROWS        (I4)                                                     
01 INDEX       (I4)                                                     
01 V1 VIEW OF NAT-DEMO_ID                                               
02 NAME                                                                 
02 ADDRESS     (EM=X(20))                                               
02 DATEOFBIRTH                                                          
02 SALARY                                                               
01 ROWCOUNT  (I4)                                                       
END-DEFINE                                                              
OPTIONS DB2ARRY=ON                  /* <-- ENABLE DB2 ARRAY             
ROWCOUNT := 10                                                          
INSERT INTO NAT-DEMO_ID                                                 
       (NAME,ADDRESS,DATEOFBIRTH,SALARY) 
       VALUES                                                     
       (:NAME(*),                   /* <-- ARRAY                  
        :ADDRESS(*)                 /* <-- ARRAY                  
        INDICATOR :N§ADDRESS(*)     /* <-- ARRAY                  
        LINDICATOR :L§ADDRESS(*),   /* <-- ARRAY DB2 VCHAR        
        :DATENATD(1:10),            /* <-- ARRAY NATURAL DATES    
        :SALARY_N(01:10)            /* <-- ARRAY NATURAL NUMERIC  
       )                                                          
       FOR :ROWCOUNT ROWS                                         
SELECT * INTO VIEW V1 FROM NAT-DEMO_ID WHERE NAME > ’Z’           
DISPLAY V1                          /* <-- VERIFY INSERT          
END-SELECT                                                        
BACKOUT                                                           
END

8

Restrictions and ConstraintsMultiple Row Processing


	Multiple Row Processing
	Purpose of Multi-Fetch Feature
	Considerations for Multi-Fetch Usage
	Size of the Multi-Fetch Buffer
	Support of TEST DBLOG Q
	Example: TEST DBLOG List Break-Out

	Multiple rows to program (Advanced)
	Prerequisites
	DB2ARRY=ON
	INTO Clause
	WITH ROWSET POSITIONING Clause
	ROWS_RETURNED Clause
	Restrictions and Constraints
	Natural Views

	File Server usage and positioned UPDATE and DELETE
	Example:


	Multiple rows from program (Advanced)
	Prerequisites
	DB2ARRY=ON
	VALUES Clause
	FOR n ROWS Clause
	Restrictions and Constraints
	Natural Views
	Static execution
	Example:




