5 software~

Natural fur GroRrechner

Operations

Version 4.2.6 fUr Grofrechner

Februar 2010

Natural



Dieses Dokument gilt fiir Natural fiir Grofsrechner ab Version 4.2.6 fiir Grofirechner.

Hierin enthaltene Beschreibungen unterliegen Anderungen und Erginzungen, die in nachfolgenden Release Notes oder Neuausgaben
bekanntgegeben werden.

Copyright © 1979-2010 Software AG, Darmstadt, Deutschland und/oder Software AG USA, Inc., Reston, VA, Vereinigte Staaten von
Amerika, und/oder ihre Lizenzgeber..

Der Name Software AG, webMethods und alle Software AG Produktnamen sind entweder Warenzeichen oder eingetragene Waren-
zeichen der Software AG und/oder der Software AG USA, Inc und/oder ihrer Lizenzgeber. Andere hier erwédhnte Unternehmens- und
Produktnamen kénnen Warenzeichen ihrer jeweiligen Eigentiimer sein.

Die Nutzung dieser Software unterliegt den Lizenzbedingungen der Software AG. Diese Bedingungen sind Bestandteil der Produkt-

dokumentation und befinden sich unter http://documentation.softwareag.com/legal/ und/oder im Wurzelverzeichnis des lizensierten
Produkts.

Diese Software kann Teile von Drittanbieterprodukten enthalten. Die Hinweise zu den Urheberrechten und Lizenzbedingungen der
Drittanbieter entnehmen Sie bitte den "License Texts, Copyright Notices and Disclaimers of Third Party Products". Dieses Dokument



Operations

ist Bestandteil der Produktdokumentation und befindet sich unter http://documentation.softwareag.com/legal/ und/oder im Wurzel-
verzeichnis des lizensierten Produkts.

Operations 3






Inhaltsverzeichnis

1 OPerations ......ccuiiiiiiiiiiiiici s 1
2 Configuring Natural ...........ccoiiiiiiiiiiiec 3
3 Linking Natural Objects to the Natural Nucleus ...........ccccoooiiiiiiiiiiiiniiis 5
Benefits ......ooiuiiiiiiii 6
ULDOBJ Uity ..oveiiiiiiiiiiicicccccc s 6
Using ULDOB] to Generate an Object Module .............ccocooiiiiiiiiiiiii 7
Additional Considerations for Linking Subroutines ............c.ccccccoevviniiiiiiniinnnennn. 9
Operating System Dependency of Object Module Generation .............ccccoveinennn. 9
Example of Linking a Natural Object to the Natural Nucleus .............c..c.cocein. 10
4 Natural User EXits .......cccooiiiiiiiiiiiiiiiiiicccccc 13
NATUEX1 - User Exit for Authorization Control ............cc.ccccoovviiiiniiii 14
NATSREX2 and NATSREX3 - User Exits for Sort Processing ...........ccccceceeeeueennnnne. 15
NATUSKnn - User Exit for Computation of Sort Keys ..........ccccoviiiiniiiiiiiinns 16
NATPM - User Exit for Inverted Output ..........cccoocviviiiiiiiiiiiiiii 17
NREXPG -User Exit for NATRJE ... 18
USRO0070P - User Exit for Editor Profiles .............cccccooiiiiiiiiiiis 19
USR2002P - User Exit for Help Window Text Strings .........cccccoeeiviiiiiiiiiiiiiiinnnnn 19
USR2003P - User Exit for Main Menu ..........ccccooviiiiiiiiiiiiiiiiiiiiceciceccc 19
5 Natural User Access Method for Print and Work Files ..........c.cccocoviiiiiniiine 21
NATAMUSR Module Description .........ccccoecuiiiiiiiiiiiiiiiiiiiiiiiiciciececciees 22
NATAMUSR Module Installation ...........cccccooiiiiiiiiiiiiiiic, 22
Invoking the Third Party Product ............ccooeiiiiiiiiiniiiiiiiiiic 22
6 Natural Scratch-Pad File ..........ccccooiiiiii 23
Purpose of a Natural Scratch-Pad File ..........ccocoiiiiiiiiniiiiiiiccee, 24
How to Define a Scratch-Pad File ..........ccccocoiiiiiiiiiiiis 24
What is Stored on the Scratch-Pad File and How to Size it ...........ccccociiiiiiiinniins 25
Scratch-Pad File Maintenance ...........cccccooviiiiiiiiiiiiiiiiiiicicec e 26
7 Natural Text Modules ..o 27
Function and Usage of Text Modules ...........c.cccccoeviiiiiiiiiiiiiiiiniiiiiicccecee, 28
NATTEXT ModUle ......ccccociiiiiiiiiiiiiiiiiiiiiic e 28
NATTXT2 MOAUIE ....ooviiiiiiiiiiiiiiic e 29
NATTXT3 MOAUILE ..ot 32
8 Natural Configuration Tables ...........ccccoeiiiiiiiiiiiiiiiieec e 35
NATCONEFG ModUule ......ccoooiiiiiiiiiiiiiiiiiccc s 36
General Overview of Macros Used by NATCONFG .........c.ccccoooiiiiiiiiiiiiiiis 37
NTDVCE - Terminal-Device Specification Table .............cccccoooiiiiiiiiiiniiniiinn, 38
NTMSG - Message Log Table Definitions ............ccccoovieviiiiiiiiiiiiiiiiccec, 38
NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus ............... 39
NTCPAGE - Code Page Definitions ...........ccccceeiiiiiiiiiiiiiiiiiiiiiiciceccec 39
Code Page SUPPOTL c...c.oiiiiiiiiiicee 40
Output Devices SUpported ..........cocovviiiiiiiiiiiiiiiiiii e 41
Specification of NTDVCE .........ccoooiiiiiiiiiii 42
Translation Tables ...........ccccccoiiiiiiiiiiiii 42




Operations

Upper-/Lower-Case Translation ............ccccoevuiiiiiiiiiiiiiiiiiicccccceeccc 45
CMULT ENELY oottt s 46
Output Translation ..........ccccceeviiiiiiiiiiiiii 46
Input Translation ..o 47
Code Translation of DBCS Data ..........ccccceevuiiiiiiiiiiiiiiiiiicccccc 47
NTTZ - Time Zone Definitions ..........ccccociiiiiiiiiiiiiiiiiiii s 48
9 Natural Storage Management .............cccoooiiiiiiiiiiiiiiiiii 51
Thread and Non-thread Environments ............c.ccccoooiiiiiiiiiiiiii, 52
BUSfer TYPES ...c.ooviiiiiiiii 52
Fixed BUfers ..o 53
Variable BUffers ..........ccccooiiiiiiiiii 53
Customization of Buffer Characteristics .............ccccoviiviiiiiiiiiiiiii, 54
10 Profile Parameter USAe ...........ccoevuiiiiiiiiiiiiiiicciccicccicec et 57
11 Natural Parameter Hierarchy ...........ccccoccoiiiiiiiiiiiiiic, 59
Natural Parameter Hierarchy Overview ...........cccccociiviiiiiiiiiiiiiiiiiiiiec 60
General Rules for Parameter Usage ............ccoocoovuiiiiiiiiiiiiiicc 60
Natural Standard Parameter Module ...........c.ccccooviiiiiiiiiiiii, 61
Alternative Parameter Module .............ccccooiiiiiii 61
Predefined Dynamic Parameter Sets ...........cocivviiiiiiiiiiiiiiiiiicieiccecccceee, 62
Predefined User Parameter Profiles ............c.cccccoooiiiiiiiiiiiiiiiiis 62
Dynamic Parameter Entry ... 62
Natural Security Definitions ...........ccccciiviiiiiiiiiiiiiiiiii 63
Session Parameter Settings ............c.coooevuiiiiiiiiiiiic 63
Program/Statement Level Settings ..........cccccovvviiviiiiiiiiiiiiiiiiiicccc, 63
Development Environment Settings ...........c.cocoviiiiiiiiiiiiiiic 64
Examples of Various Parameter Strings ...........cccccecieviiiiiiniiniiiniiiicecicece 64
12 Assignment of Parameter Values ............cccccocviiiiiiiiiiiiiiiiiiiii, 67
Sources for Parameter Value Assignment ...............ccooooviiiiiiiiiiii 68
Static Assignment of Parameter Values ............ccccccoeviiiiiiiiiiiiiiiiiiiiii, 69
Dynamic Assignment of Parameter Values ..............c.coccooiiiiiniii 70
Session Parameters for Runtime Assignment of Parameter Values ........................ 72
13 Profile Parameters Grouped by FUNCHON ........c.cccooiiiiiiiiiiiii 73
System Files ... 74
BUfer SIZes ......ooviiiiiiiiiiic 74
External SUbprograms ..o 75
Output Reports and Work Files .........cccccoooiiiiiiiiiiiiiiiiiiiiicicecce, 75
Date/Time Settings .......cccoovviiiiiiiiiiiiecec e 76
LAMUIES coviiiiiec e 77
Character ASSIgNMENES ........cccoiiiiiiiiiiiiiiic e 77
Terminal CommUNICAtION .....c.ooviiiiiiiiiiiiii 78
BUffer POOLS ......c.ooouiiiiiiiii 78
Translation Tables ... 79
Code Page and Unicode SUPPOTt .......cccuiiviiiiiiiiiiiiiiiiiiicicccc e 79
Usage of Profile Parameters ............ccoooveviiiiiiiiiiiiciccccccce 80
Compiler OPHIONS ......c.coiviiiiiiiiiiiiiii 80

vi

Operations



Operations

DebUZEZING ....voiiviiiiiiiiiiiic 80
Batch MOde .......ooiiiiiii 81
TP MONILOTS .ot 81
Database ACCESS .......c.cooiiiiiiiiiiiiiiii i 82
Natural with Adabas ..o 82
Natural with Other Software AG Products ...........ccccccoviiiiiiiiiiniiiiiiiii, 83
Miscellaneous Profile Parameters ............ccccocoviiiiiiiiiiiiiiiiiicccc, 85
Session Initialization and Termination ............cccccoviiiiiiiiiiiiiii, 86
Parameters Reserved for Internal Use ............cccociiiiiiiiiiiiiiiiiiiiii 87
14 Using a Natural Parameter Module ............cccccciiiiiiiiiiiiiiii 89
Using the Default Natural Parameter Module NATPARM .........ccccccooiiiiiiiinnnnnns 90
Creating a New Natural Parameter Module .............cccccooiiiiiiniiiini, 90
NTPRM Macro - Create a Natural Parameter Module .............c.ccocooviiiiiiinnnnnn. 90
Restricting the Use of a Parameter Module ..........c.ccocoiiiiiiiiiiiiiiiniiiee, 91
Using Macros in a Natural Parameter Module ..............cccooviiiiiiiiiiiiiiiinnne, 92
15 z/OS ENVITONIMENLE ....oouiiiiiiiiiiiiiiiii i 95
16 Natural under z/OS ..........ccoiiiiiiiiiii 97
Natural Subsystem ..o 98
Shared NUCIEUS ........cccccuiiiiiiiiiiiiic e 98
TP Monitor INterfaces .......c..oovvuiiiiiiiiiiiiiiiiceeccteeec e 98
Interfaces to Database Management Systems ............c.ccoceiviiiiiiiiiiiiiicicc, 99
Natural in Batch Mode under z/OS ...........ccccociiiiiiiiiiiiiiiii 99
Natural as a Server under z/OS ............cccoiiiiiiiiiiiiiiiii 99
17 Authorized Services Manager under z/OS ............ccccovviiiiiiiiiiiiiiiiice, 101
ASM OVEIVIEW ...ouviiiiiiiiiiiiiiiiiic i s 102
ASM System Requirements ...........ccceeiviiiiiiiiiiiiiiiiiiici 103
ASM OPeration ........ccccoviiiiiiiiiiiiiii 104
18 Natural Shared Nucleus under z/OS and z/VSE ...........ccccccociiviiiiniininiiiiiie, 109
Environment-Independent NUCleUS ..........ccccceeiiiiiiiiiiiiiiiiiii 110
Creating a Shared NUCIEUS .........c.ocooiiiiiiiii 113
Installing a Shared NUCIEUS ........ccccoociiiiiiiiiiiiiii e 114
Linking Subproducts to the Nucleus ...........c.cccccocooiiiiiiii 114
Single-Environment Shared Nucleus ............ccccccoiiiiiiiiiiiis 115
Environment-Dependent NUCIEUS ...........cccocuiiiiiiiiiiiiiiiiiii 116
Statically Linked Non-Natural Programs ...........cc.cccovviviiiiiiiiiiiiiiicccc 116
Dynamically Called Non-Natural Programs ............cccccceeviiiiiiiiiiiiinniniiiiniennen. 117
19 Natural Roll Server Functionality ............cccocoviiiiiinii 119
Natural Roll-Server OVerview ...........cccociiiiiiiiiiiiiiiiiiiicec 120
Roll Server in a Single z/OS System ..........ccccceviiiiiiiiiiiiiiiiiiiii 120
Roll Server in a z/OS Parallel Sysplex Environment ...........ccccocoovveiiiiiiiiincnnnnnn 122
Roll File and LRB ........cocoiiiiiiiiiiiiiiiiiii e 124
20 Natural Roll Server Operation ...........cccoceevviiiiiiiiiiiiie e, 127
Roll Server System Requirements ............cccceeviiiiiiiiiiiiiiiiiiiincccceccecee e, 128
Formatting the ROILFile ........c.ccooiiiiiii 129
Starting the ROIL SEIVET .........ccciiiiiiiiiiiiiiiiiccce e 133

Operations Vii



Operations

Roll Server Messages, Condition Codes and Abend Codes ............ccccocvviiiinnnnnnn. 136
Return Codes and Reason Codes of the Roll Server Request ..............c.cccevenrnenn. 137
Operating the ROIl SErver ..........cccooiiiiiiiiiiiiiiiiiiiii 137
Roll Server Performance TUNING ..........ccooiiiiiiiiiiiiiiicccc 138
Roll Server User EXits ........ccccooviiiiiiiiiiiiiiiiiiciiccieiccicc e 139
21 Z/VSE ENVITONITIOINT .ovvuniiiiiiiiiiiii ettt ettt e ettt e et e e e et e e e et e s eeaaanees 143
22 Natural under z/VSE ........c.ccoiiiiiiiiiiiiiiccc 145
Natural SUbSYSteM ........cocuiiiiiiiiiiiiiiiiii 146
Natural Shared NUCleus ..........ccccooviiiiiiiiiiii 146
TP Monitor INterfaces ..........ccocuiiiiiiiiiiiiiiicccc 146
Interfaces to Database Management Systems .............cccooceeviiiiiiiiiiiiciieccc, 146
Natural in Batch Mode under z/VSE ............ccccoooiiiiiiiiiiiiiii 147
23 Natural Shared Nucleus under z/OS and z/VSE ...........c.ccccoiviiiiniiiniiiiii 149
24 VM/CMS ENVIironment ..........ccccceovuiiiiiiiiiiiiiiiiiciicicceccesece e 151
25 Natural under VM/CMS ..o 153
Issuing CP and CMS Commands from Natural ...........c.ccccoeiiiiiiiii, 154
Reading the CMS Program Stack ..........ccccoeoviiiiiiiiiiiiiiiiiiiiiiiiccecce, 154
Hardcopy FUNCHON ......ooviiiiiiiicc 155
Applying Fixes to Natural ..........cccooviiiiiiiiiiiiiiiiiiicccccce e 155
Natural in Batch Mode under CMS ...........ccoiiiiiiiiiiiiiii, 155
Using TCP/IP CommuNication ..........ccociiiiiiiiiiiiiiicccccceeee 155
Calling Natural Subprograms from ReXX .........ccccoeciiiiiiiiiiiiiiiiiiiiiiiiiiiiinins 156
26 Print File and Work File SUpport ..o, 157
Defining Print Files and Work Files ..........cccccccciiiiiiiiiiiiiiiiiicee 158
Access Method STD ......cc.oooiiiiiiiiiiiiiiiii 158
Access Method CMS ... 158
27 BS2000/OSD ENVIrONmMent .........ccccieiiiiiiiiiiiiiieiciiccie e 161
Related TOPICS ...oovieiieiiiiiiiiccec e 162
Other Natural Functions for BS2000/OSD-Specific Purposes ..........ccccccceeueevneenen. 163
28 Natural Shared Nucleus under BS2000/OSD ..........ccccocuiiiiiiiiiiiiiiiiiiiiciecice, 165
Rules for Using a Natural Shared NUCleus ............ccoceeviiiiiiiiiniiiiiiiiiiceee, 166
29 Refresh of Natural Load Pool ...........cccociiiiiiiiiiiiiiiii e, 169
Prerequisites/ReStriCtions ..........cccccooviiiiiiiiiiiiiiiiiii 170
Procedure .........cccooiiiiiiiiiiiiiiccce s 170
Keyword Parameters for the Program PREFRESH ..............cccccooonini, 171
30 Optimization of Message Handling .............ccccoeviiiiiiiiiiiiniiiiiceeeee, 175
Screen Output Handling ..o 176
Restoring the Screen Content ...........cccoeciiiiiiiiiiiiiiiii e, 176
31 Siemens Terminal Types Supported by Natural ..........c.cccoooiiiiiiiii 177
TYPE D748 .o 178
9751 SETIES ..ovviiiiiiciiiet et 178
TYPE 9763M ... 179
32 Function Key Support with 9750 DeViCes .........ccceciiiiiiiiiiiiiiiiiiiiiieciecic s 181
Key ASSIgNmMEeNt ........ccoooiiiiiiiiii 182
Modes for Key ASSIGNIMENt ......ccccoevuiiiiiiiiiiiiiiiicicce e 182

viii

Operations



Operations

33 Common Memory Pools .........ccccoiiiiiiiiiiiiiiiii 185
Global Common Memory PoolSs ..o 186
Local Common Memory POolS .........cccoiviiiiiiiiiiiiiiiiiiii, 190

34 Calling Dynamically Reloadable 3GL Programs in a Natural Application .............. 197
Storage Allocation RUle ...........ccciiiiiiiiiiiiiiiiiiiic e 198
Thread-Creation RuUle ...........coooiiiiiiiiiiiiiiiiccccec e 198
Address-Mode Dependencies .............cooueiiiiiiiiiiiiiiniiiciece e 198

35 Print File/Work File Server NATPWSV2 ......cccooiiiiiiiiiiiiiiiiiiiiice, 201
SELUP v 202
OPeration ........coocuiiiiiiiiiiiiii 203

36 RPC Server Front-End .........ccccoiiiiiiiiiiiiiicccccee e 205
SELUP oo 206

37 Natural in Batch Mode ..........ccccooiiiiiiiiiiiiiiiii s 211

38 Natural in Batch Mode under z/OS ...........ccccooiiiiiiiniiiiie e 213
General Information about the Natural z/OS Batch Mode Interface ..................... 214
Natural z/OS Generation Parameters ............ccoceevveevienieriiienieeieseeeieesee e 214
Datasets Used by Natural in z/OS Batch Mode ..........cccccooiiiiiiiiiiiiiiiiniin, 217

39 Natural in Batch Mode under z/VSE ............cccoiiiiiiiiiiiii 223
NATVSE - Natural z/VSE Batch Mode Interface ..........ccccccoceeviiiiiiiiiininiiieenn. 224
NTVSE Macro - Generation Parameters for Natural under z/VSE ........................ 224
Natural Datasets Used under a z/VSE Batch Mode Session ............ccoceevueennennen. 230
NATVSE Print and Work File Support for z/VSE Library Members ..................... 235
NATVSE Dynamic Work File Allocation (DYNALLOC) Support .........c.ccceeevennene 237
Debugging Facilities for Natural under z/VSE ...........cccccooiiiiiiiniiiiiceen, 240
NATVSE Attention INterrupts .........cccooviiiiiiiiiiiiii 244

40 Natural in Batch Mode under CMS ..........c.cooiiiiiiiiiiiiicceeee e 245
Running Natural in Batch Mode under CMS ...........c.cccciiviiiiiniiiiiiii, 246

41 Natural in Batch Mode under BS2000/OSD .........ccocuiioiiiiiiiiiinieniieieeeieeiee s 247
Files and System Files Used by Natural in BS2000/OSD Batch Mode ................... 248
Keyword Parameters .............cccooiiiiiiiiiiiiiiccc 250
BS2000/OSD JOb Variables .........uuuuiuuiieiieieicceieeeeeeeeeeeeee e nnnn 259

42 Natural in Batch Mode (All ENvironments) ..........ccocceevcviiniiiiniieiniieiniicciee e 261
Adabas Datasets ...........cccociiiiiiiiiiiiii 262
SOrt Datasets ........cocviiiiiiiiiiiiii s 262
Subtasking Session Support for Batch Mode Environments ................c.ccoeenne 262

43 Natural Buffer POOIS ..........ccccoiiiiiiiiiiiiiiiiiiiic e 267

44 Natural Buffer Pool - General ............ccccoooiiiiiiiiiiiiiii 269
Natural Buffer Pool Principle of Operation ..........cccccceeveviiiiiiniiinieniiiieiieeeens 270
Buffer-Pool Monitoring and Maintenance .............cccccooviviiiiiiiiiiiici 275
Natural Global Buffer POOL ...........cociiiiiiiiiiiiiiiiiicceeee e 278

45 Natural Global Buffer Pool under z/OS ............ccccoociiiiiiiiiiiiiiiiiiiiiiciciis 281
Using a Natural Global Buffer Pool ..o 282
Operating the Natural Global Buffer Pool ..............ccccociiiiiniiiniiiiiiiiii 282
Sample NATGBPvr Execution JODS ........ccoooeviiiiiiiiiiiiie 284
LOoCaliZatiON ...oouviiiiiiiiiiii e 286

Operations iX



Operations

46 Natural Global Buffer Pool under Z/VSE ........cooooiiiiiiiieeeeeieeeeeee e 287
Using a Natural Global Buffer Pool ..............cccccoooiiiiiiiiii, 288
Operating the Natural Global Buffer Pool ..............ccccocoiiiiiiiiiiiiiiiiii, 289
Sample NATGBPvr Execution JODS ........cccoooiiiiiiiiiii 290
LoCaliZation ..........ccoiiiiiiiiiiiiiic 292

47 Common Natural GBP Operating Functions under z/OS and z/VSE ....................... 293
Global Buffer Pool Manager Parameter Module .............cccccooiiiiiiiiiniiiiiinnen. 294
Global Buffer Pool Operating FUNCHONS ...........cccciiiiiiiiiiiiiiiiiiiii, 294
Global Buffer Pool Function Parameters .............ccccccceviiiiiiiiiiiiiniiiiiicicc 296
Examples of NATBUFFER Specifications ............cccccovviiiiiiiiiiiiiiiiiiiiiciicee 301

48 Natural Global Buffer Pool under BS2000/OSD ...........ccccooiiiiiiiiiiiiiiiiiiiiiiicee 303
Using a Natural Global Buffer Pool under BS2000/OSD ...........ccccceviiiiiiiiinnnennen. 304
Establishing the Global Buffer Pool under BS2000/OSD ............ccccccoeiviiiiiiinnnnnnen. 304
Administering the Global Buffer Pool under BS2000/OSD ...........ccccccceiiiiiiiinnnnne 305

49 Natural Swap Po0l .......ccccooiiiiiiiiiiiiiii 307

50 Purpose of a Natural Swap Pool ..., 309
Purpose of a Natural Swap Pool ..........ccccoviiiiiiiiiiiiiiiie, 310
Benefits of Using a Natural Swap Pool ... 310
SWap POOL SEIUCLUTE .....ooouviiiiiiiiiiiicic e 311

51 Natural Swap Pool Operation ...........ccccooviiiiiiiiiiiiiiiiiiiii 313
Users are On their Way to Natural - No Session Start ............c.cocoeviiiiiinn, 314
Users are Returning from Natural ..........cccocoiiiiiiiiiiiiii, 314

52 Natural Swap Pool Initialization .............ccoecieiiiiiiiiiiiii 317
Swap Pool Initialization CONtrol ...........ccccceciiiiiiiiiiiiiiiiie, 318
Swap Pool Initialization Parameters ..............ccooeiiiiiiiiiiiiii 319

53 Dynamic Swap-Pool Reorganization .............cccceeeevieiiiiiiiiiiiiiiiiiciicicccceeceee 321
Requirements for Dynamic Swap-Pool Reorganization ............ccccocviviininnnn 322
Statistics Tables ........c.ccciiiiiiiiiiii 322
Swap-Pool-Reorganization Plus Table .............ccccooiiiiiiiiiiniiiiiiiiiiiie 322
Swap-Pool-Reorganization Minus Table ..............cccocooiiiiiiiiin, 323
Parameters for Swap-Pool Reorganization ...........cccccecieviiiiiiiiiiiiiniiiiiiiceee 323
Checking for the Necessity of Swap-Pool Reorganization .............ccccoeeveeieinienenn. 324
Flow of Dynamic Swap-Pool Reorganization .............ccccceevviviiiiiiiiiiniiniiiininne 324
Start of Dynamic Swap-Pool Reorganization ............ccccceveiiiiiiiiiiiiniiiiininnnnen. 325

54 Defining the Natural Swap Pool ..o, 327
Environment-Specific Requirements .............ccccoevviiiiiiiiiiiiiniiiniiiiiiceeen 328
Keyword Parameters of Macro NTSWPRM ..........cccocoiiiiiiiiniiiiic 328

55 Natural User Area Size Considerations ............cccccoevviiiiiiiiiiiiiiiiiiiiiiicc, 335
Using the MAXSIZE Parameter ...........cccccocviiiiiiiiiiiiiiiiiiicicicceccccn 336
Defining the Size of the Individual Natural Buffers ..............ccccoccoiin, 336
Possible Error MeSSAgesS .........ccccuiiiuiiiiiiiiiiiiiiiiciii i 336
Displaying the Aggregate Size of All Buffers .............c.occoooiiii 337
Calculating the Maximum SiZe .........cccocceiiiiiiiiiiiiiiiiiiiic e 337

56 Swap Pool Data Space .........ccccueviiiiiiiiiiic 339
Using ESA Data Space in Addition .........ccccceiiiiiiiiiiiiiiiiii 340

X Operations



Operations

ESA Data Space Slot Size Adjustment ...........c.cocooiiiiiiiiiiiiii 340
57 Global Restartable Swap Pool under UTM ..., 341
Purpose of a Natural Global Swap Pool under UTM .........cccocoeiviiiiiiiiiiniinnnnn. 342
Installing a Natural Global Swap Pool under UTM ............ccooiiiiiiiiiii 342
Starting a Natural Global Swap Pool under UTM ........c.ccceviiiiiiiiiiniiiiiinieen. 343
Displaying Information about the Global Swap Pool .............c.cccoeiiiiiiinn, 343
58 Terminating the Global Swap Pool under UTM ........cccccciiiiiiiiiiiiiiiiiiiiciiccee 345
Termination Using Console Commands ............cccceevvuiiiiiiiiiiiiniiiiiiiiiciicneee, 346
Abnormal Termination with Dump ... 346
Termination by Program ............ccccoiiiiiiiiiiiiiiiiiiiiic 347
59 Natural 3GL CALLNAT Interface ........ccccoocvviiiiiiiiiiiiiiiiiiiiciicceccececcc, 349
60 Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions ................. 351
Purpose of 3GL CALLNAT Interface ...........ccccooveviiiiiiiiiiiiiiicccccceecce 352
PrerequiSites ..ot 353
RESETICHONS ...veiiiiiiiiciicicc s 354
61 Natural 3GL CALLNAT Interface - Usage, Examples ...........c.ccoorniiiiiiininnnnn. 357
USAZE .ottt 358
Sample ENVIroNmMents ...........ccocviiiiiiiiiiiiiiiccccccccc e 361
62 Operating the Software AG Editor ..........ccccoeviiiiiiiiiiiiiiiiiiicce e 365
63 EAitor WOTK File ....cocoiiiiiiiiiiiiic e e 367
Editor Work File Structure ..........c.cccoiiiiiiiiiiii 368
Editor Work File under z/OS, z/VSE and BS2000/OSD ........covvviiiiiviiiiiiiniiiiiieeeeennnn 369
Using the Batch Format Utility ........c.cccooiiiiii, 370
Formatting during Initialization ............cccccoiiiiiiiiiiiiie 370
Maintaining the Editor Work File under z/OS and z/VSE .............ccccocooiinnnn. 370
Maintaining the Editor Work File under BS2000/OSD .......c.ccccceeeviiniiiiiiniinnenne. 371
Editor Work File under VM/CMS ..........cccooiiiiiiiiiiiiccc 372
Editor Work File under Complete/SMARTS ...........ccccooiiiiiiiniiiiiiieccce 372
64 Editor Buffer Pool ...........ccooiiiiiiii 373
Purpose of the Editor Buffer Pool ... 374
Obtaining Free BIOCKS ........cccoiiiiiiiiiiiiiiiiic e 375
Initializing the Editor Buffer Pool ............c.cocooiiiiiii 375
Restarting the Editor Buffer Pool ............ccccoiiiiiiiiiii, 376
Editor Buffer Pool Parameters ............ccccocoviiiiiiiiiiiiiiiiccccc 376
Buffer Pool Initialization for Multi-User Environments ............c.cccooviniiinnnnn. 376
65 Natural Net Data Interface NATNETTO ........ccooiiiiiiiiiiiiiiiiiiiiccc, 379
Natural Net Data Driver Functional Description .............cccocooviiiiiiiiiiiiic, 380
General Message Layout ........cccccociiiiiiiiiiiiiiiiiiiciccccccee e 381
Layout of Header ..........cccooouiiiiiiiiiiiiiiiiiiiic 381
Format Buffer Layout ........c.ccoooioiiiiiiiiccc 385
Value Buffer Layout .........cccccooviiiiiiiiiiiiiiiiii 390
Attribute Buffer ... 391
66 Natural as @ SEIVET .........ccoiiiiiiiiiiiiiiic s 393
67 Natural as a Server UNAETr Z/OS ...ttt eeaa 395
Functionality .......ccccoociiiiiiiiiiii 396

Operations Xi



Operations

Natural Nucleus Installation in a Server Environment .............ccccccoovviiiiinnnnnnn. 397
Print and Work File Handling with External Datasets in a Server
ENVIrONMENt .......ooooiiiiiiiii 397
68 Natural as a Server under z/VSE ............cccccciiiiiiiiiiiiiii, 399
FUNCHONALILY ..o 400
Natural Nucleus Installation in a Server Environment .............cccccccevviiiinnnnnn. 401
Print and Work File Handling with External Datasets in a Server
ENVITONmMEeNt .........ooooiiiiiiiii 401
69 Natural as a Server under CICS ............cccooiiiiiiiiii e, 403
FUNCHONALILY ..o 404
Natural CICS Interface Installation in a Server Environment .............c..cccccoeuenen. 404
ReSIICHONS .oeviiiiiiiciic 405
70 Natural Execution - Miscellaneous TOPics .........c.cccevuiiiiiiiiiiiiiiiiiiccccccce 407
71 Asynchronous Processing ............cccceviiiiiiiiiiiiiiiiiiiiiccicccccc 409
Identifying Asynchronous Natural Sessions ............ccccevviiiiiiiiiiiiiiiiiiiinininens 410
Handling Output of an Asynchronous Natural Session .............c.ccccoeviiiiinnnin. 410
Handling Unexpected or Unwanted Input ............ccceeviiiiiiiiiiiiiiinii. 411
Other Profile Parameter Considerations ............cccccuevviiiiiiiiiiiiiiiiiiiiicis 411
72 Double-Byte Character Sets ...........cccoouiiiiiiiiiiiiiiiiciiiiicccccec e 413
Natural Profile Parameter SOSI ...........ccccociiiiiiiiiiiiiiiiiiiic 414
Output Format Specification .............cocooiiiiiiiiiiiiii, 414
Parameter Definitions for DBCS SUpport ........cccccociiiiiiiiiiiiiiiiiiiiiiiicce 414
Editor Profile Options ..........ccoociiiiiiiiiiiiicec e 415
Input Data Check ........ccooiiiiiiiiiiiiiiii e 415
Output Data Adjustment .............ccoooviiiiiiiiiii 416
Natural Stack Data .........c.cccoiiiiiiiiiiiiiii 416
Application Programming Interfaces for DBCS Handling ............c.ccccoeiiiiiiiniins 416
73 Input/Output DeVICES ......c.coviiviiiiiiiiiiiciccccc 419
Terminal SUPPOTE ....cocviiiiiiiiiiii 420
Light Pen SUPPOIt .....ccvoiiiiiiiee 420
Printer SUPPOTt .....cccviiiiiiiiiiiii 422
74 Back-End Program Calling Conventions ............cccoceviiiiiiiiiiiiiiiicicccccicece 425
Back-End Program Calling Conventions (Batch Mode) ...........c.cccccoooiiiinnn. 426
Special Considerations under CICS ...........cccoooiiiiiiiiiiiiiiiiiiii, 427
Special Considerations under IMS TM ........c..cccooiiiiiiiiiiii 427
Sample Back-End Programs ...........cccccoiviiiiiiiiiiiiiiiiiiiiiic 427
75 Natural 31-Bit Mode SUPPOTt .......c.coviiiiiiiiiiiiiicec 429
76 LE SUDPIOZIAIMS ...ceiiiiiiiiiiiiiiiii ittt sttt s 431
Support of IBM LE Subprograms ...........ccccecvivviiiiiiiiiiiiiiiiiiciicc, 432
Enabling Natural Support of LE Subprograms .............cccocoevievviiiiviniiiiiiiecne, 432
Passing LE Runtime Options ..........cccceeiviiiiiiiiiiiiiiiiieciccicccc 432
LE Abend Handling ..........cccooiiiiiiiiiiii 434
77 External SORT ........cccooiiiiiiiiiiiiiiicc s 435
Support of External SORT ..........ccccoooiiiiiiiiiiiiiee 436
Special Considerations for Z/OS ...........cociiiiiiiiiiiiiiiieee e 436

Xii

Operations



Operations

Special Considerations for z/VSE ............c.cccccoiviiiiiiiiiiiiiiiiiin 436
Special Considerations for BS2000/OSD ..........c.ccccociiiiiiiiiiiiiiiccccccccccs 437
SHCNWOTITVEIZEICIINIS ...oevviiiieieieeieeeeeeee ettt e e e e et e e e e e e e e 439

Operations Xiii



Xiv



1

Operations

This documentation contains information for operating Natural in a mainframe environment
under various operating systems.

This documentation is organized under the following headings:

@ |Configuring Natural Describes how to link Natural objects to the Natural nucleus. Provides
information on Natural user exits, Natural user access method for print
and work files, Natural scratch-pad file, Natural text modules, Natural
configuration tables, and Natural storage management.

Q) |Profile Parameter Usage |Provides an overview of the hierarchical structure of the different levels

on which Natural parameters can be set. Explains how values can be
assigned to profile parameters statically, dynamically and at runtime,
provides an overview of the profile parameters available (grouped by
function). Describes how to use a Natural parameter module.

z/OS Environment

Contains an overview of special considerations that apply when you are
running Natural under z/OS online or in batch mode. Describes the
functions and the operation of the Authorized Services Manager (ASM).
Describes the function and the use of the Shared Natural nucleus. Explains
the functions of the Natural Roll Server. Provides information on the Roll
Server system requirements, operation, performance tuning and
restartability.

z/VSE Environment

Contains special considerations that apply when you are running Natural
under z/VSE online or in batch mode. Explains the function and the use
of the Shared Natural nucleus.

VM/CMS Environment

Explains topics such as issuing CP and CMS commands from Natural,
reading the CMS program stack, hardcopy function and applying fixes to
Natural. In addition, links are available to topics that apply when you are
using Natural under CMS in batch mode. Provides information on how
to define print files and work files in the Natural parameter module.

BS2000/0SD Environment

Contains special considerations that apply when running Natural under
the operating system B52000/OSD.




Operations

& |Natural in Batch Mode  |Contains considerations that apply when running Natural in batch (Adabas
datasets, sort datasets, subtasking session support for batch environments),
and specifically when running Natural in batch mode under z/OS, z/VSE,
VM/CMS and BS2000/0OSD.

@ |Natural Buffer Pools Contains information about the various storage management functions
that are available to a Natural administrator under the operating systems
z/OS, z/VSE and BS2000/0SD.

Natural Swap Pool Provides information on the Natural swap pool which is available when
you are using the TP monitor CICS or UTM.

Natural 3GL CALLNAT Contains information about the Natural 3GL CALLNAT Interface with which

Interface Natural enables 3GL programs to invoke and execute Natural
subprograms.

& |Operating the Software |Contains information on how to operate the Software AG Editor.

AG Editor
& |Natural Net Data Provides information on the Natural Net Data Interface and the net data
Interface NATNETTO protocol definition.
@ |Natural as a Server Describes the use of Natural as a Server and the Natural Server Monitor.
& |Natural Execution - Provides general information on Natural execution (asynchronous

Miscellaneous Topics

processing, double-byte character sets, input/output devices, back-end
program calling conventions, Natural 31-bit mode support, LE
subprograms, and external SORT.

Related Documents:

= Installation

" Messages and Codes

= Natural TP Monitor Interfaces

® Natural Remote Procedure Call

= Natural Utilities
= Software AG Editor

® Natural Security

® Natural for VSAM
® Natural for DB2

® Natural for DL/I

® Natural for SQL/DS

Operations



2 Configuring Natural

This part provides information on Natural configuration.

Linking Natural Objects to the Natural Nucleus
Natural User Exits

Natural User Access Method for Print and Work Files
Natural Scratch-Pad File

Natural Text Modules

Natural Configuration Tables

C L L L L oL L

Natural Storage Management

See also the following documents in the Utilities documentation:

= SYSCP Utility - Code Page Administration
® SYSEXT - Natural Application Programming Interfaces
® SYSAPI - APIs of Natural Add-On Products







3 Linking Natural Objects to the Natural Nucleus

L 20T | SO P PRSP 6
B ULDOBUY UHIY ..ttt 6
= Using ULDOBJ to Generate an Object MOQUIE ...........c.uuvieiiiiiii e 7
= Additional Considerations for LinKiNng SUDFOULINES ...........oviiiiiiiiiiiiiiici e 9
= QOperating System Dependency of Object Module GENEration .............cocvvvvieiiiiiiiiice e 9
= Example of Linking a Natural Object to the Natural NUCIEUS ...............oooiiiiiiiiiiic 10




Linking Natural Objects to the Natural Nucleus

The Natural nucleus is a collection of service programs such as memory administration, string
handling, operating system interfaces, the compiler and the runtime environment which comprise
the kernel of Natural. It is independent of the operating-system and the TP system.

This document describes the advantages of linking Natural objects to the Natural nucleus and
provides information on how to proceed.

The following topics are covered:

Benefits

Linking Natural objects to the Natural nucleus provides the following benefits:

* Better Performance
The objects are executed from the nucleus and not from the Natural buffer pool. This saves space
in the buffer pool and also results in fewer database calls. (If Natural cataloged objects are not
linked to the Natural nucleus, they are stored in a database file, for example Adabas, and the
actual code must be loaded from this file into the buffer pool before it can be executed.)

® Consistency
As an object which is linked to the Natural nucleus is always executed from the nucleus, there
is no effect if the cataloged object from which it was derived is deleted or changed in the Natural
system file. Thus, during each TP-monitor session, the status of the object remains unchanged.
A new version of an object which is linked to the nucleus can be obtained by unloading it with
ULDOBJ (see below), relinking the new version to the Natural nucleus and refreshing the Natural
module. (Refreshing implies that a new copy of a module is loaded into the TP monitor region.)

® Global Error Handling
If a cataloged object fetches another program to handle errors (for example, by using the Natural
system variable *ERROR-TA), and the error-handling program cannot be loaded into the buffer
pool, the original error might be missed and any subsequent error may mask the first error and
lead to confusion. To prevent this situation, you can link a user-written global error-handling
program to the nucleus.

ULDOBLJ Utility

You can use the ULDOBJ utility to link Natural cataloged objects to the Natural nucleus. With the
ULDOBJ utility, you generate an object module from a Natural cataloged object and write it to a
Natural work file. The generated object module is then processed by the linkage editor and linked
to the Natural nucleus.

Under z/OS and z/VSE: When a Natural shared nucleus is used, the generated object module has
to be linked to the environment-independent part of the nucleus.

6 Operations



Linking Natural Objects to the Natural Nucleus

Using ULDOBJ to Generate an Object Module

» To invoke the ULDOBJ utility

1  Log on to the library SYSMISC and issue the command ULDOBJ.

10:12:19 xxxx* NATURAL OBJECT MAINTENANCE ***xx 2005-01-05

User: XYZ - NATURAL ULDOBJ UTILITY - Library: SYSMISC
Opsys .. z/0S

Specify parameters below ....

Object ...... (Enter ".' to exit)
Library ..... SYSMISC_
0P System ...

2 Specify and confirm the following parameters:

Object The name of the cataloged object to be processed. The object can be a program,

subprogram, subroutine, helproutine or map.

Library |Thename of the library containing the cataloged object.
0P System

The name of the operating system for which the object module is to be generated. (Different
operating systems have different rules to which the object module must conform.) The
name of the operating system must be one of the following;:

z/OS  z/OS systems

z/VSE  z/VSE systems
BS2000 BS2000/OSD systems
CMS  VM/CMS systems

Operations



Linking Natural Objects to the Natural Nucleus

For each object processed, the ULDOBJ utility displays a report containing the following
information:

" the object type (Program, Subprogram, Subroutine, Helproutine, Map, Adapter);

* the name of the cataloged object processed;

* the programming mode ( S = structured mode, R = reporting mode)

® the name of the library containing the cataloged object;

* the name of the operating system for which the object deck was generated;

= the size of the cataloged object and optimized code (if applicable);

* the Natural version and system maintenance (SM) level of the cataloged object;

statistics about the last cataloging of the object, including user and terminal IDs.

ULDOBJ prompts for another object and library after the data from the initial input have been
processed. The operating system is not requested, because it does not make sense to generate
object modules for more than one operating system for the same Natural work file.

» To terminate the ULDOBJ utility

»  After the last cataloged object has been processed, enter a ,,.” in the first input field (Object)
and press ENTER.

The generated object module conforms to the format of the specified operating system. It is
in relocatable format with non-executable code and consists of:

" an external symbol directory (ESD),

" arelocation dictionary (RLD),

" text with the instructions and data corresponding to the program,

® an END statement (end-of-module indicator for the load module).

The generated object module is written to a Natural work file, which is used as input to a

linkage editor. (Depending on the operating system, it may be better to use ULDOBJ in batch
mode.)

The generated object module must be processed by the linkage editor of the corresponding
operating system before the code is executable as a load module (see the example given
below). Each load module is valid once it is linked to the Natural nucleus and defined by an
NTSTAT entry definition in the Natural configuration module NATCONFG (see Natural Configu-
ration Tables).

8 Operations



Linking Natural Objects to the Natural Nucleus

Additional Considerations for Linking Subroutines

Once a cataloged object has been unloaded by the ULD0BJ utility and linked to the Natural nucleus,
the cataloged object can be deleted from the Natural system file.

However, this is not true for an object of type ,,subroutine”. A subroutine has two names:

® the name specified in the statements PERFORM and DEFINE SUBROUTINE and
® the name of the object that contains the DEFINE SUBROUTINE statement.

Natural internally associates these two names, but this is possible only if the cataloged object still
exists on the Natural system file. If the cataloged object were deleted, this association would be
lost and the subroutine linked to the nucleus would not be executable.

Operating System Dependency of Object Module Generation

The object module is generated in different ways, according to the operating system. These diffe-
rences are listed below.

Platform: Requirement:

z/OS A NAME control statement is generated as the last card of the object module. It specifies the
replace function. For example:

NAME TEST (R)

TEST is the name of the cataloged object.

z/VSE The object module(s) will be in LIBR format. A CATALOG control statement is generated as
the first card and a ,,/*“ as the last card of the object module. For example:

CATALOG TEST.O0BJ REPLACE-YES
. object module ...
/+

TEST.OBJ is the name of the cataloged object.

When the LIBR utility is executed, assign SYSIPT to the work file written by the ULDOBJ
utility (ASSIGN SYSIPT=work-file-1I).

Operations 9



Linking Natural Objects to the Natural Nucleus

Platform: Requirement:

BS2000/OSD |The object module(s) will be in LMS format. An ADD control statement is generated as the first
card and an END statement as the last card of the object module. For example:

ADDR >TEST

. . object module ...
END
When the LMS utility is executed, assign SYSDTA to the work file written by the ULDOBJ utility

(SYSFILE SYSDTA=work-file-1I). The file name generated is Nvr.M0D, where vr stands
for the current Natural version and release number.

If multiple cataloged objects are unloaded during execution of the utility, the object decks
are appended to each other.

Example of Linking a Natural Object to the Natural Nucleus

If, for example, the objects LOGPROG and EDITPROG in the library SYSLIB are to be linked to the
Natural nucleus, the following steps could be taken:

1. Identify the cataloged objects to be linked.

Object Library
LOGPROG SYSLIB
EDITPROG SYSLIB

2. Setup the batch Natural job stream. Assuming a z/OS environment, include the following cards:

//CMWKFO1 DD DSN=ULD.NAT.PGMS,UNIT=SYSDA,DISP=(,KEEP),
// SPACE=(CYL, (3,1),,RLSE),VOL=SER=VVVVVV,
// DCB=(RECFM=FB,BLKSIZE=800, LRECL=80)
//CMSYNIN DD *

LOGON SYSMISC

ULDOBJ LOGPROG,SYSLIB,O0S

EDITPROG,SYSLIB

FIN

/%

10 Operations



Linking Natural Objects to the Natural Nucleus

3. Set up the linkage editor job stream.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X

7=

//* GENERATE O0S LOAD MODULE FROM ULDOBJ UTILITY

1=

//LINKI EXEC PGM=IEWL,PARM="LIST,LET,XREF,NCAL,RENT,REUS"
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))

//SYSPRINT DD SYSOUT=X

//SYSLIN DD DSN=NAT.ULD.PGMS,DISP=0LD,UNIT=SYSDA,VOL=SER=VVVVVYV
/*

This step places the load modules LOGPROG and EDITPROG in the NATURAL.USER. LOAD dataset.

With an additional link-edit job, these modules can be linked together as a single load module
before being linked to the nucleus in Step 5.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X

0 J*

//* OPTIONAL JOB TO LINK CATALOGED OBJECTS TOGETHER
0 h*

//LINK2 EXEC PGM=IEWL,PARM="LIST,LET,XREF,NCAL,RENT,REUS"
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//SYSUTL DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=X

//SYSLIN DD *

INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM

INCLUDE SYSLMOD(CEDITPROG) EDITOR NATURAL PGM

NAME XXXXXX(R)

/*

4. Define the statically linked Natural programs in source module NATCONFG in the NSTATIC table
for linked Natural programs:

NTSTAT INPL,TYPE=W

NTSTAT INPLLIB,TYPE=W

NTSTAT AERROR,TYPE=W

NTSTAT LOGPROG {==== your entries
NTSTAT EDITPROG =—==

TYPE=W means that a ,weak” external reference to the specified program is generated rather
than a normal one.

Operations 1



Linking Natural Objects to the Natural Nucleus

5.

Review the linkage editor job stream for the Natural nucleus and include the following:

/1%

//* INCLUDE DDNAME AND DSN OF DATASET WHERE OBJECTS RESIDE
/1*

//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR

//NATLIB DD DSN=NATURAL.VZ2.USER.LOAD,DISP=SHR//*

//SYSLIN DD*

INCLUDE MODULES FOR NUCLEUS
INCLUDE NATLIB(NATPARM) NATPARM MODULE
INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM
INCLUDE ENTRY AND NAME CARDS
/*
If the cataloged objects were linked together (as done optionally in Step 3), include this load
module instead of the individual load modules in the link of the nucleus.

12

Operations



4 Natural User Exits

= NATUEX1 - User Exit for Authorization CONtrol .............oeeiiiiiiiie e
= NATSREX2 and NATSREXS - User EXits for Sort ProCeSSING ........c.vvvieeiiiiiiieiiiiiie e

= NATUSKnn - User Exit for Computatio
= NATPM - User Exit for Inverted Output

NOF SOM KEYS ...

® NREXPG -User EXit for NATRUE .....oooeiiee et
= USROO70P - User Exit for EQItOr Profiles ........ ..o
= USR2002P - User Exit for Help Window Text StHNGS .......oovvviviiiiiiiiiiiie e

= USR2003P - User Exit for Main Menu

13



Natural User Exits

A Natural user exit is a programming object that is invoked by Natural, a subcomponent or a
subproduct. Usually, a sample user exit is delivered in source form. The instructions contained in
the user exit have to be written or adjusted by the user. The purpose of a user exit is to manipulate
data or make decisions. Most user exits take advantage of the Natural programming language; a
small subset has to be written in Assembler language.

This document describes the following Natural user exits:

Other Natural user exits and application programming interfaces are described in the relevant
places in the Natural subcomponent or subproduct documentation (Natural RPC, TP Monitor
Interfaces, Utilities, add-on products, etc.).

NATUEX1 - User Exit for Authorization Control

The user exit NATUEX1 is called whenever a user session is activated. It can be used to determine
whether or not the user is authorized to use Natural. The security data used to determine this can
be retrieved from the security system being used (for example, RACF or ACF2).

NATUEX1 is called using standard calling conventions:

Register |Contents

15|Entry address of NATUEX1
14 |Return address of Natural

13 |Address of a save area of 18 words

1{Address of a parameter list

The parameter list contains five addresses:

Address |Points to an 8-byte field containing the value which is used to fill the Natural system variable

*INIT-USER
*ETID
*INIT-ID
*INIT-PROGRAM

Q| x| W N[ =

*USER (Note that this system variable will be overwritten during a Natural Security logon.)

These five values can be modified by the user exit.

For normal completion, the user exit must return control with Register 15 set to 0. If Register 15
does not contain 0, the Natural session is terminated with the condition code equal to the value
in Register 15.

14 Operations



Natural User Exits

NATUEX1 can be linked to a shared nucleus or to an environment-independent nucleus. It is also
possible to link it to an alternative parameter module, or as a separate module if you are running
with profile parameter RCA.

An example of the user exit is available as member XNATUEX1 in the Natural source library.

For CICS: See also NCIUIDEX - User ID Exit Interface in the Natural TP Monitor Interfaces documen-
tation.

NATSREX2 and NATSREX3 - User Exits for Sort Processing

Natural provides two user exits for sort processing: NATSREX2 and NATSREX3.

The two user exits can be used with Natural's own sort program as well as with an external sort
program. The exits are activated automatically when they are linked to the nucleus and so their
addresses get resolved. Since, under z/OS and z/VSE, many external SORT programs already supply
several exit functions, the exits NATSREX2 and NATSREX3 may especially be used either with Natural's
internal sort program or with external SORT under BS2000/OSD.

NATSREX?2 is always called when Natural passes a record to the sort program. NATSREX3 is called
when the sort program, upon completion of the sort run, passes a record to Natural. The example
delivered shows how you can establish your own collating sequence for a SORT.

When the user exits are activated, the following register conventions must be adhered to:

Register |Contents

15|Entry addresses of NATSREX2 and NATSREX3
14 |Return address of Natural

13| Address of the 18-word save area

—_

Address of the sort record

[6V]

Length of the sort record

The user exits have to secure the Natural registers and restore them upon returning control to
Natural.

As the sort exit module is linked to the module NAT2SORT, programming has to be reentrant. The
format and structure of the sort records must not be modified.

Operations 15



Natural User Exits

NATUSKnn - User Exit for Computation of Sort Keys

Some national languages contain characters which are not sorted in the correct alphabetical order
by a sort program or database system. With the system function SORTKEY you can convert such
,incorrectly sorted” characters into other characters that are ,, correctly sorted” alphabetically.

When you use the SORTKEY function in a Natural program, the user exit NATUSKnn will be invoked
- nn being the current language code (that is, the current value of the system variable * LANGUAGE).

You can write a NATUSKnn user exit in any programming language that provides a standard CALL
interface. The character string specified with SORTKEY will be passed to the user exit. The user exit
has to be programmed so that it converts , incorrectly sorted” characters in this string into corre-
sponding , correctly sorted” characters. The converted character string is then used in the Natural
program for further processing.

For the conversion, NATUSKnn may use the translation table NTUTAB1 of the configuration module
NATCONFG; this means that NTUTAB1 may have to be adjusted accordingly.

NATUSKnn is called using standard calling conventions:

Register |Contents

15|Entry address of NATUSKnn
14 |Return address of Natural

13 |Address of a save area of 18 fullwords

1{Address of a parameter list

The parameter list contains the following addresses:

Offset |Address of

+0| The character string passed from Natural.

+4|The length of the character string (fullword).

+8|The character string resulting from the conversion.

+12|The length of the result string (fullword).
+16 | The translation table NTUTAB1I.

NATUSKnn has to to secure all registers, except 14 and 15, and restore them upon returning control
to Natural.

For normal completion, the user exit must return control with Register 15 set to Return Code 0. If
Register 15 does not contain "0", a corresponding Natural error will be issued.

16 Operations



Natural User Exits

Sample User Exit Programs

The following sample user exits are provided in source code form:

Program  |Function

NATUSKO1|Applies to English and converts all English lower-case letters in the character string to upper-case.

NATUSKOZ|Applies to German and converts the German umlauts &, 6, i, and £ into their corresponding
replacement characters ae, oe, ue, ss in order to provide a different sort sequence.

When a shared nucleus is used, NATUSKnn can be linked to the environment-independent part of
the nucleus.

It is also possible to link it to an alternative parameter module, or as a separate module if you
supply the name(s) of the invoked NATUSKnn module(s) with the profile parameter RCA.

For linkage and loading conventions, see also the CALL statement in the Natural Statements docu-
mentation.

NATPM - User Exit for Inverted Output

The NATPM module is used to support inverse direction terminals. It contains the user exit routine
for field and line conversion which is called by Natural at terminal I/Os if for some fields the print
mode (profile parameter PM) has been set to I.

PM=I indicates inverse direction and is used to support languages writing from right to left (for
example, bi-directional languages); see also the description of the profile parameter PM.

The module NATPM is delivered as a source module and can be modified if required.
Inversion Logic

Natural provides a user-exit routine which is called for each field where the resulting attribute is
PM=I and for each line to be printed via hardcopy, additional report and primary batch output.
This exit is called with three parameters:

= the source field to be inverted,

" the target field to receive the inverted data,

* alength field specifying the length of the source and target fields.

As this user exit routine is available in source code to all users, it might be used as an explicit field

exit triggered by the PM=I attribute. The user is then able to check and modify line contents or field
contents.

Operations 17



Natural User Exits

Field User Exit

The user exit in NATPM will be called for every field where the attribute PM=1 is set.

This attribute can be set by the Natural programmer, or is automatically set for numeric fields
when the global print mode is set to PM=I. It does not matter whether the output is generated for
the terminal, for hardcopy, for additional reports or for the primary output in batch.

For printing devices, Natural does not expect automatic inversion from the hardware, but calls
NATPM again for the complete line. This feature can be used in countries where the field inversion
is not required to establish interface logic with Natural based on a field attribute.

NREXPG -User Exit for NATRJE

NREXPG is a user exit for Natural Remote Job Entry (NATRJE). After the job is complete, each JCL
card is passed to the exit before it is submitted to the operating system. The following data are
available to the exit:

® the JCL card to be submitted,
B areturn code field,
® the name of the Natural program currently being executed,

= the Natural user identification,

a 240-byte work area.

After each call, the exit passes a return code to NATRJE indicating one of the following events:

Code |Explanation

0 Submission: the card is submitted; the exit may modify the card before submission.

4 Termination: the card is submitted; the exit is disabled for further cards of the current job.

8  |Insertion: the card is skipped based on the assumption that it contains only an insert character, for
example, the percent sign (%); additional specified cards are submitted.

10 [Deletion: the card is not submitted.

12 |The current job is flushed.

An example of the user exit, called NREXPG, is available as member XNATRJE in the Natural source
library. The exit can be assembled and linked according to the rules of programs specified as
CSTATIC. However, a CSTATIC entry for NREXPG is not required.

18 Operations



Natural User Exits

USRO0070P - User Exit for Editor Profiles

The user exit routine USR0070P enables you to modify the parameter settings for the Natural pro-
gram editor or data area editor in the default profile SYSTEM.

For further information on the editor profile, see General Information in the Editors documentation.
USR0070P provides a list of all parameters which are to receive a default setting.

With this user exit, you can also determine whether editor profiles are to be stored in the FNAT
system file, the FUSER system file or the scratch-pad file.

In addition, USR0070P considers DBCS support and sets the editor profile options Editing in
Lower Case and Dynamic Conversion of Lower Case correspondingly.

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text member USR0070T.

USR2002P - User Exit for Help Window Text Strings

The user exit routine USR2002P can be used to customize the text strings for the Current Natural
Message window that is invoked by pressing the Help key while the cursor is on the message
line.

The object USR2002P itself contains the text strings used within the Current Natural Message
window, for example, the window title and the descriptive texts, such as, the field names Sh (short
message), Tx (long message), Ex (explanation) and Ac (action).

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text member USR2002T.

USR2003P - User Exit for Main Menu

The user exit routine USR2003P can be used to customize the following settings for the Natural
Main Menu and its subordinate menus:

" position and color of the message line,

" position and color of the PF key lines.

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text member USR2003T.

Operations 19



20



5 Natural User Access Method for Print and Work Files

= NATAMUSR Module Description
= NATAMUSR Module Installation
= |nvoking the Third Party Product

21



Natural User Access Method for Print and Work Files

This document describes the Natural User Access Method which is an interface for third party
vendor products for Natural print and/or work file support.

The following topics are covered:

NATAMUSR Module Description

The NATAMUSR module provides an exit interface (entry point NATAMIEX) for software vendors to
handle Natural print and work files, that is, it actually consists of two parts:

= the Natural User Access Method stub NATAMUSR delivered with Natural and
® the Natural User Access Method exit NATAMIEX delivered by a software vendor.

NATAMUSR Module Installation

The NATAMUSR module (with the access method exit) may be installed in one of the following
ways:

= Jinked to the Natural nucleus,
* linked to the Natural driver (when driver and front-end are split),
® linked to an alternative Natural parameter module (as loaded via profile parameter PARM),

* linked as a separate module; in this case, the following Natural profile parameters are required:

RCA=(NATAM09) ,RCALIAS=(NATAMO9, xxx),

where xxx is the name of the separate module in the load library.

Invoking the Third Party Product

» To invoke the third party product for Natural print and/or work file processing

m  Specify AM=USER for the relevant files (see also NTPRINT and NTWORK).

For details about the Natural User Access Method exit installation and other information about
the third party exit handler, refer to the documentation of the relevant software vendor.

22 Operations



6 Natural Scratch-Pad File

= Purpose of a Natural Scratch-Pad File ..........................
= How to Define a Scratch-Pad File ..............cocvvviieieinn,

= \What is Stored on the Scratch-Pad File and How to Size it

= Scratch-Pad File Maintenance ...........ccooveieiiiiiiiinii,

23



Natural Scratch-Pad File

This document provides information on purpose, use and maintenance of a Natural scratch-pad
file.

The following topics are covered:

Purpose of a Natural Scratch-Pad File

What is it, what does it do?

The scratch-pad file is just another Natural system file like FNAT and FUSER, and has the same
physical file layout. It enables the storage of, for example, saved screen images and other types,
data which are not stored explicitly like Natural sources, objects (SAVE, CATALOG, STOW) and error
messages, on a file other than the system file FNAT or FUSER.

When do | need it?

In contrast to FNAT and FUSER, a scratch-pad file is not mandatory in a Natural session.

However, if you are working with read-only access to system files (profile parameter ROSY=0N),
you must define a scratch-pad file, because otherwise the above mentioned data could not be stored
and a corresponding error message (NAT0106) would be issued instead. The scratch-pad file is
excluded from read-only access.

How to Define a Scratch-Pad File

Like all other system files of Software AG products, the scratch-pad file is a logical file. The logical
file number of the scratch-pad file is 212.

Since there is no mnemonic for the scratch-pad file such as FNAT and FUSER or FDIC, it has to be
defined:

" either statically by using the macro NTLFILE in the Natural parameter module NATPARM or
® dynamically by using the profile parameter LFILE.

24 Operations



Natural Scratch-Pad File

Examples of NTLFILE and LFILE definition:

LFILE Parameter:
LFILE=(212,physical-dbid,physical-fnr,password,cipher-key)
NTLFILE Macro:

NTLFILE 212,physical-dbid,physical-fnr,password,cipher-key

What is Stored on the Scratch-Pad File and How to Size it

The objects that are stored on the scratch-pad file are:

® Recordings

® Screen Captures (NATPAGE utility)

As the amount of usage of the Recording Utility and the NATPAGE utility cannot be calculated
beforehand, a reasonable estimate about the related storage requirements is hardly possible.
However, the scratch-pad file size required at your site can be estimated with a better understanding
of the types of records that are stored on it.

Recordings

The Recording Utility is activated using terminal commands as described in the Utilities documen-
tation. Recordings are stored like Natural source programs (or other object types). The size of a
recording depends on how many screen inputs have been done during a recording session.
Recordings are like programs related to a library.

Currently, it is not possible to list recordings on the scratch-pad file by using the Natural LIST
system command. SYSMAIN can be used, though, to list and maintain the recordings stored on the
scratch-pad file. To store the recordings on the FNAT/FUSER file instead of on the scratch-pad file,
set the profile parameter RFILE.

Recordings which are being stored on the system file FNAT or FUSER are affected (interrupted) by
transaction backouts (BTs) which are issued in the user's application programs. This is a very
common problem encountered by users of the recording facility and it can be avoided by using
the scratch-pad file.

Operations 25



Natural Scratch-Pad File

Screen Captures - NATPAGE

The screen paging utility NATPAGE can be used to store screen images (in chronological sequence
of their appearance) on the scratch-pad file. NATPAGE can be activated with the terminal command
%P.From the moment %P is issued, all screens presented to the end user are stored onto the scratch-
pad file (if it has been defined for your session) until the terminal command %0 is entered. The
captured screens can be displayed using the terminal command %E.

For each screen image, the current content of the page buffer and the page attribute buffer is stored.
This means that the amount of data being stored depends on the settings of the profile parameters
PS/LS for the session and, of course, on the number of screen images. The number of possible

screens per user session depends on the profile parameter PD (default is 50; valid values are 0-255).

The size of the page buffer can be calculated as:
PS * LS

The size of the page attribute buffer is determined dynamically.

Scratch-Pad File Maintenance

The scratch-pad file does not need any maintenance, provided it is of sufficient size.

® Recordings on the scratch-pad file can be deleted, copied, moved and listed by using the utility
SYSMAIN.

® Captured screens can be deleted by using the %E terminal command.

" Saved screen images, however, cannot be maintained in Natural at all.

Space on the scratch-pad file can be reclaimed by refreshing it with Adabas utilities in times of
non-activity without affecting subsequent Natural sessions which are using the scratch-pad file.

26 Operations



7 Natural Text Modules

= Function and Usage of TEXE MOQUIES .......cceeiiiiiiiie it a e e e e

= NATTEXT Module
= NATTXT2 Module
= NATTXT3 Module

27



Natural Text Modules

This document describes the Natural text modules NATTEXT, NATTXT2 and NATTXT3. It covers the
following topics:

Function and Usage of Text Modules

All Natural keywords, alternative keywords and standard output text are contained in the
modules NATTEXT and NATTXT2. Natural system commands and alternate system commands are
also included as keywords and alternative keywords in these modules. Substitution text fragments
for Natural error messages are contained in module NATTXT3. The modules are contained in
source form in the Natural source library and in load module form in the Natural load library.

If necessary, you can modify Natural keywords, alternative keywords and text contained in these
modules. For example, Natural session termination messages can be changed from English to
another language, Natural keywords can be disabled, or synonyms can be added.

If any modifications are made to a NATTEXT, NATTXT2 or NATTXT3 module, each modified module
must be assembled, link-edited and included into the executable Natural module, refer to the
Natural Installation documentation.

NATTEXT Module

The NATTEXT module contains NTKEY and NTALT macros for each keyword and alternative keyword
to be recognized by Natural.

Modifying NATTEXT

@ Caution: Itis recommended that you modify the NATTEXT module for very important reasons

only, because once modified, it can no longer be properly maintained by Software AG
personnel.

The following rules apply:
® A keyword value for a NTKEY or NTALT macro can be changed by replacing the current keyword

value with the desired value.

" A keyword or alternative keyword can be disabled by replacing the keyword value with the
character "%".

® The position of each NTKEY and NTALT macro within the module is fixed and must not be shifted.
Additional NTKEY and NTALT macros must not be inserted.

® Synonyms can be assigned for any keyword or alternative keyword using the NTSYN macro. One
or more NTSYN macros can be inserted after a NTKEY or NTALT macro. The NTSYN macro includes

28 Operations



Natural Text Modules

one parameter, which is the value to be used as the synonym. If the synonym contains embedded
blanks, the entire value must be enclosed in apostrophes.

Example of Modifying the NATTEXT Module

The following example illustrates how a NATTEXT module is modified. In this example

® the synonym RECHERCHE is to be used for the keyword FIND;
" the synonym LISEZ is to be used for the alternative keyword BROWSE;
* the keywords GET and HISTOGRAM are to be disabled.

NATTEXT before modification:

STATNAM NTKEY FIND
NTALT BROWSE
NTALT GET
NTALT ACCEPT
NTALT REJECT
NTALT HISTOGRAM

NATTEXT after modification:

STATNAM NTKEY FIND
NTSYN RECHERCHE
NTALT BROWSE
NTSYN LISEZ
NTALT %
NTALT ACCEPT
NTALT REJECT
NTALT 7%

NATTXT2 Module

The NATTXT2 module contains the macros NTKEYT, NTALTT, NTSYNT and NTERMSG which define the
following:

= Standard Natural Output Texts
= Keywords and Alternative Keywords for Natural System Commands and Utilities

Operations 29



Natural Text Modules

= Natural Termination Messages and Return Codes
Standard Natural Output Texts

The module NATTXT2 contains the following standard Natural output texts, each of which can also
be displayed in another language if the language code is set accordingly (see also below):

* the literal Page used in the standard output page header;

" the name of each month as used in the Natural system variable *DATG (Gregorian date), date
edit masks (L), and the name of each day as used in date edit masks (N);

" the ENTER INPUT DATA message and the skeleton error messages for error numbers 1104, 1105
and 1106 (used during online input processing);

" the error message used for system file open failure (which cannot be retrieved from the system
file); an error number of the form NAT8xxx (where xxx is the decimal Adabas response code) is
added to this error message by Natural;

* the constants More, Top and Bottom used in windows for position information to be displayed
in text form;

* the table to define reports and report handling for reports greater than 33.

Any values contained in NATTXT2 can be modified by replacing the current text with the desired
text. If a month-name synonym exceeds nine characters, only the first nine positions are used by
the system variable *DATG.

NTSYNT macro statements can be added as described for module NATTEXT. However, with NATTXT2,
a second parameter can be specified. This parameter is optional and represents the language
indicator to be used for the synonym. When you specify the language indicator, Natural produces
message output resulting from the use of this synonym in the corresponding language. In addition,
if error message texts have been stored in the Natural system file using a language indicator other
than 1 (which is the default and stands for Eng11sh), error messages are returned in the correspon-
ding language. For information on which language code stands for which language, refer to the
profile parameter ULANG.

Keywords and Alternative Keywords for Natural System Commands and Utilities

The module NATTXT2 contains NTKEYT and NTALTT macros for each keyword and alternative keyword
to be recognized by Natural for the following Natural system commands and utilities, parameters
of commands and their values when applicable. Each of these can also be used in another language
if the language code is set accordingly (see also below):

* all Natural system commands in general;

® for the GLOBALS system command, the parameters and their values when applicable;

= for the COMPOPT system command, the parameters and their values when applicable;

30 Operations



Natural Text Modules

" public system commands (these system commands are permanently valid and cannot be disal-
lowed neither by means of Natural Security nor by the Natural profile parameter NC;

= Natural utilities

The NTKEYT and NTALTT macro statements can be used similar to the NTKEY and NTALT macro
statements as described for module NATTEXT.

The NTSYNT macro statements can be used as described under Standard Natural Output Texts.
Natural Termination Messages and Return Codes

Natural has a number of standard session termination messages (NAT99...) that are delivered in
macro NTERMSG and can be modified there (for example, to translate them it into another language).
The overall length of ID and text can be up to 72 characters. After the macro NTERMSG has been
modified, the Natural parameter module and if supplied in source code, the environment dependant
driver have to be re-assembled and linked.

Apart from the message ID and text, each standard termination message also includes one of the
following Natural system return codes, which are also defined within macro NTERMSG:

Code |Explanation

0 Normal termination.
4 Error occurred during execution/compilation (batch mode only).
8 Termination due to severe runtime error.

12 Session initialization failure.

16 Abnormal termination due to abend or severe environment failure..

User-written termination messages can be added to NATXT2 for all return codes (1 - 255) which
can be issued with a TERMINATE statement and which normally lead to the Natural termination
message NAT9987.

For user-written termination messages, the corresponding return code must be specified as the
second parameter.

With the profile parameter TS set to ON, the termination messages are translated to upper case
using the upper case translation table NTUTAB1 as supplied in the NATCONFG module before they
are displayed.

In addition to TS=0N, further parameters to provide for translation of messages into upper case
are provided by several Natural components. For further information, see Other Parameters to
Provide Upper Case Translation in the TS profile parameter description.

Operations 31



Natural Text Modules

Example of a User Termination Message:

NTERMSG 'USRO077 THIS IS A SAMPLE USER MESSAGE FOR RETURN CODE 77',77

NATTXT3 Module

The NATTXT3 module contains the macros to define the text fragments which will be used to sub-
stitute the :n: place holder in Natural error messages.

Each text fragment can be defined in various languages. For information on which language code

stands for which language, refer to the ULANG parameter.

The text fragments will be generated in EBCDIC and Unicode notation.

| Note: Toassemble the NATTXT3 module, a high level assembler must be used which supports

the macro function UPPER and the definition of unicode characters (DC CU’ unicode text’).

Example:

The text for Natural error NAT0082 (when trying to execute a non existing program) looks as fol-

lows:

Invalid command, or :1: :2: does not exist in Tibrary.

Trying to execute the object NOTEXIST leads to following result:

NAT0082 Invalid command, or Program NOTEXIST does not exist in Tibrary.

:2: was replaced by the object name (NOTEXIST).

:1: was replaced by the text fragment Program.

The text fragment was declared in module NATTXT3 as follows:

PROGRAM 0002
MSGSDEF &LC_PGM
SPACE
e L L L L o o o m s s e e e e e e e m m e e m e e e e e e e e e e e e e e — e = = o

MSGSLAN 01,Program 1 ENGLISH
MSGSLAN 02,Programm 2 GERMAN
MSGSLAN 03,programme 3 FRENCH
MSGSLAN 04 ,programma 4 SPANTISH

SPACE

32

Operations



Natural Text Modules

MSGSGEN

Text fragment values for additional languages may be entered by adding further MSGSLAN macros.

Operations 33



34



8 Natural Configuration Tables

NATCONFG MOGUIE ...ttt e e e et e e e e e e eneeas
General Overview of Macros Used by NATCONFG .........coouiiiiiiiiiiie et
NTDVCE - Terminal-Device Specification TabIe .............ccuvriiiiiiiiiiii e
NTMSG - Message Log Table Definitions .............ouviiiiiiiieiiii e

= NTSTAT - Definition of Natural Objects Linked to the Natural NUCIEUS ..............coooiiiiiiiiiiiiiiiiiiiiieccee,
= NTCPAGE - Code Page DefiNItiONS ..........vviiiiiiiieeii e
B COE PAGE SUPPOM ...ttt e e e e e e e e e e e e e e e e e
B QUEPUL DEVICES SUPPOMEA ...ttt et e e e e e e e e e e e nnes
m Specification Of NTDVCE .......ooiiiiie e e s
B TraNSIAtioN TADIES .......ooiiiiiiii e
m Upper-/Lower-Case TranSIation .............oooiiiiieiii ettt

= CMULT Entry

B QUEPUL TFANSIATION L. vttt ettt aeasseaeee e
B NPUE TranSIation .........oviiiiie
m Code Translation of DBCS Data ..........coovviuiiiiiiie e
B NTTZ - TiIMe Z0ONE DEfINILIONS ....veeiiee e e e

35



Natural Configuration Tables

This document provides general information on the Natural configuration tables which are con-
tained in the NATCONFG module.

The following topics are covered:
See also:

® Input/Output Devices Supported

NATCONFG Module

The NATCONFG module contains the Natural configuration tables.

(  Caution: In general, the default specifications in NATCONFG need not and should not be

modified. In particular, do not modify without prior consultation of Software AG support
any of the tables marked with an asterisk (*) in the list below.

For most of the tables, there are corresponding macros in the Natural parameter module NATPARM
as well as dynamic profile parameters. If you need to modify a NATCONFG table, use the correspon-
ding parameter-module macro, or dynamic profile parameter, to overwrite the table. (If you made
the modifications in the NATCONFG tables themselves, you would have to modify and reassemble
NATCONFG again with subsequent system maintenance (SM) releases.)

The NATCONFG module uses macros for the definition of the following Natural default configuration
tables.

In addition, it uses the following tables:

® The default attention identifier table. It defines the physical terminal keys to Natural (*).

® Various other tables (*).

36 Operations



Natural Configuration Tables

General Overview of Macros Used by NATCONFG

The following table provides a general overview of the macros used by the NATCONFG module for
the definition of the Natural default configuration tables:

Macro Purpose

NTDVCE * Table of terminal types. Used to specify the terminal driver to be used, see description
below, for details.
Do not modify an existing NTDVCE macro, rather create a new one.

NTMSG Message log table. Natural messages which shall be written to the job message log or
to the operator console.

NTSTAT Definition of Natural objects linked to the Natural nucleus.

NTCPAGE Code page definitions.

NTTAB Primary output translation table.

NTTAB1 NTTAB?

Secondary output/input translation tables.

NTUTABL NTUTAB?Z

Tables for translation between lower and upper case. These tables have to be modified,
for example, for the German character set.

NTTABAL NTTABAZ

Tables for translation of EBCDIC characters to ASCII characters and vice versa. These
tables are used by the Object Handler.

NTTABL SYS* translation table. Translates output from programs contained in Natural SYS. . .
libraries.

NTLANG * Language translation table. Contains a list of all available language codes defined to
Natural.

NTSCTAB Scanner character type table. Determines which characters are lower-case alphabetical,
upper-case alphabetical, numeric and special characters (applies to dynamic profile
parameters, MASK and SCAN options).

NTTZ Time zone definitions. The NTTZ macro enables specifications about zonetime and
automatic switching to and from summertime.

NTBUFID The parameters MIN and MAX of this macro can be used to change the buffer size limits

for variable buffers, see Customization of Buffer Characteristics.

Wichtig: The default values of the other parameters in this macro should not be

modified, because the results may be unpredictable.

* Do not modify without prior consultation of Software AG support any of the tables marked with
an asterisk (*) in this list.

For further details, see Translation Tables.

Operations

37



Natural Configuration Tables

NTDVCE - Terminal-Device Specification Table

For each terminal type supported by Natural, a terminal converter routine is provided. The corre-
sponding terminal drivers are responsible for the actual terminal I/Os. They build the physical
data stream from the screen buffer and the screen attribute buffer and place it in the terminal I/O
buffer.

In addition, the telex driver module NATTLX is provided for Con-nect in order to provide faster
telex, telefax and teletex communication from and to the TOPCALL system. NATTLX supports the
TOPCALL full-page protocol.

With the NTDVCE macro, it is possible to add new terminal drivers to Natural to specify modifica-
tions of the terminal-specific input/output or lower-to-upper case translation tables. Other infor-
mation which can be specified is the frame character, the position of the message line, whether
screen optimization is to be on or off, as well as various flags in the IOCB. In addition, the terminal
specification can be routed to an existing driver by using other translate tables or can hook into a
driver routine.

The NTDVCE macro is invoked by either the terminal command %7= from the Natural command
line or the SET CONTROL 'T=...' statement from within a Natural program. At the start of a
Natural session, the translation tables NTTAB, NTTAB1, NTTAB2, NTUTABL and NTUTAB2 are copied
from the NATCONFG module into the user area where they are modified by NTDVCE.

Note that the translation tables can be modified by the same macros dynamically or within the
NATPARM parameter module.

NTMSG - Message Log Table Definitions

The macro NTMSG is used to define Natural messages which shall be written to the operator console
or to the job message log (if available). A defined message will be written in addition, that is, the
usual Natural processing remains unchanged. To find the log message definition table, locate label
NATMSGT in NATCONFG. There you can add your NTMSG definitions on a one message per line basis.

NTMSG Macro Syntax

The syntax of the NTMSG macro is as follows:

NTMSG NATnnnn, logid

38 Operations



Natural Configuration Tables

NTMSG Macro Parameters

Parameter |Description

NATnnnn{nnnnis the Natural message number (mandatory).

Togid |Indicates the log destination, that is, the operator console or job message log or both.

Possible values: WTO, WTL or WTO+WTL

NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus

Any object to be linked to the Natural nucleus must be specified with an NTSTAT macro. When
searching for an object, Natural always scans this list first, regardless of the library specified. For
information on how to link Natural objects to the Natural nucleus, see the ULDOBJ utility in Linking
Natural Objects to the Natural Nucleus.

NTSTAT Macro Syntax
The syntax of the NTSTAT macro is as follows:
NTSTAT object-namel ,TYPE=W]

NTSTAT Macro Parameters

Parameter Description

object -name|Specifies the name of the object linked to the Natural nucleus.

TYPE=W Means that the entry point of the linked object is defined as a ,weak external” to the Natural

nucleus. This avoids a linkage editor error message in case of the object is not linked to the
Natural nucleus.

NTCPAGE - Code Page Definitions

All code pages to be used during a Natural session must be predefined in the source module
NATCONFG. For each code page to be defined, a specific macro NTCPAGE must be entered. During
session initialization, the code page specified by the profile parameters CP, CPOBJIN, CPSYNIN,
CPPRINT and the CP keyword subparameter of profile parameter PRINT or parameter macro NTPRINT
are verified. If this code page is not defined in NATCONFG, an error message is issued.

Operations 39



Natural Configuration Tables

NTCPAGE Macro Syntax

The syntax of the NTCPAGE macro is as follows:

CCSID=value

NTCPAGE IANA=va | ue, { COSN—value

} ,ALIAS=value PHC=value

NTCPAGE Macro Parameters

Parameter | Description

TANA The standard name of the code page. Maximum length: 64 characters. This parameter is mandatory.

CCSID  |Coded Character Set IDentification (IBM). A numeric value with up to 5 digits.

Examples:
1141 German EBCDIC code page
62243 Hebrew/Latin (ISO 8859) code page

CCSN Coded Character Set Name (Siemens BS2000/OSD). An alphanumeric string of up to 8 characters.

Examples:
EDF041 Latin code page for Western Europe
EDF045 Latin/Cyrillic code page

ALTIAS  |Alias code page name. Maximum length: 32 characters. This parameter is optional, not unique.

PHC Place Holder Character. Length: 2 byte hexadecimal. This parameter is optional

| Note: The parameters CCSID and CCSN are platform-specific (IBM/SNI) and mutually

exclusive.
Example:

NTCPAGE IANA=IBM819,CCSID=819,ALIAS="1S0-8859-1",PHC=003F

See also Configuration and Administration of the Unicode/Code Page Environment.

Code Page Support

By using the NTDVCE macro, different code pages can be defined and associated with a specific
terminal type and name. If Natural is then started with PM=C, all terminal I/O is translated on input
and retranslated on output. Thus, as long as the code pages are compatible, a common data
representation can still be maintained.

See also SYSCP Utility - Code Page Administration in the Utilities documentation.

40 Operations




Natural Configuration Tables

Output Devices Supported

Attribute control variables and formats define attributes to generate a certain representation on
the output device. Natural offers a wide range of possible attributes to allow the end user the best
use in designing maps and reports on the terminal.

Unfortunately not all terminals support all features available with Natural. These features are
mostly ignored on such devices or are simulated via other techniques. Basically there are two data
stream definitions in an IBM environment called standard data stream and extended data stream
and a multitude of data stream definitions in an SNI environment.

The following output devices are supported:

= Sequential Output Devices for Batch, Additional Reports
= Line-Oriented Online Terminals
= Block-Mode-Oriented Online Terminals

Sequential Output Devices for Batch, Additional Reports
The output data contain standard ASA control characters controlling the line advance and page-
eject facility of the given printer. This printer can be either the central printer in the computer

center supported by the online or batch spooling system or the SCS printer used as online terminal
printers.

The following devices can be used to print reports generated in this form:

Device Type

Impact printer |Standard central printer hardware

Laser printer |High-speed printer, terminal printer

Daisy printer |Terminal printer

Inkjet Terminal printer

Line-Oriented Online Terminals

Terminal Make | Description

TTY Data sent to TTY devices are generated using the standard formfeed, linefeed, etc. characters.

Operations 41



Natural Configuration Tables

Block-Mode-Oriented Online Terminals

Terminal Make | Description

IBM All models and sizes which support standard data stream and/or extended data stream.
SNI All 9750 and compatible monochrome devices and all 9763 and compatible color devices.
Wang All models.

PC All models and sizes which support standard data stream and/or extended data stream.

Specification of NTDVCE

For information on how the NTDVCE macro is specified and for descriptions of the individual
parameters, refer to the NTDVCE macro itself.

Example of NTDVCE macro:

NTDVCE TYP=EBSZ2,NAME=BS2CHAR,ENTRY=VC3270,WXTRN=0FF,RTAL=5,
FLAG1=CM3270,TCIO=(X'CO" ,X"FB",X"6A",X"4F',X'D0O",X'FD",
X"4A" ,X'BB',X"EQ",X'BC' ,X'5A" ,X"BD" ,X"ALl" ,X"FF' ,X"4F",
X'5A")

This sample macro converts internal SNI code pages to external IBM code pages. This enables you to

develop applications on IBM terminals, which internally work with SNI code pages to, for example, avoid
data collision when migrating from IBM to SNIL.

Translation Tables

All data printed, displayed or written by Natural programs are translated by Natural. This gua-
rantees that no illegal control characters can cause terminal I/O errors or display garbage informa-
tion on the terminal.

Another feature is the translation to and from character sets different from the Latin definition,
especially Arabic, Cyrillic, Greek and Hebrew characters.

This section describes all features and functions concerning field translations when data are written
to external devices such as CRT (screen terminals) or online and batch spooling systems.

The statements INPUT, DISPLAY, PRINT and WRITE write data to or read data from external devices
such as CRT, TTY or sequential files. All these statements use parameters such as constants,
variables, edit masks, attribute control variables and formats to control the output image and the
input representation. Constants and variables are generated by using their respective values in

42 Operations



Natural Configuration Tables

the output image. The representation of these values is then controlled by the attribute control
variables, formats, edit masks and translation tables.

Natural uses several translation tables and also provides the use of alternative translation tables,
all included in NATCONFG.

The following tables are provided:

Macro

Table

NATSCTU

Required scanner table for Unicode characters. It maps the properties of Unicode characters
of the Unicode Specification (as supported by the delivered ICU version) to be used by the
Natural nucleus.

Wichtig: This table must never be changed.

NATCPTAB

Optional single-byte code page conversion accelerator tables.

If the table is present, conversion from one code page to another code page will be faster since
it is performed via this table rather than by calling ICU functions.

The following code pages are supported by the delivered NATCPTAB:

IBMO1140
IBMO1141
IBM01145
IBMO1146
IBM01147
ASCII

It is possible to add new entries by using the NTCPCNV macro. For each conversion direction,
an entry is needed that contains the IANA name of the source code page, the JANA name of
the target code page and optionally a blank character, a substitution character and a place
holder character, followed by a complete list of character mappings.

NTSCTAB

The SCAN/MASK character table which defines the properties of each printable character for
the Natural mask definition function.

This table can be used to define upper-case attributes, lower-case attributes, special characters,
hexadecimal characters and numeric characters.

It can be modified by the user and the result can be used directly in the Natural MASK clause.

To modify this table, use the macro NTSCTAB in the Natural parameter module or the
corresponding dynamic profile parameter SCTAB.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is adjusted by ICU according to the code page used
at session start.

Operations

43



Natural Configuration Tables

Macro

Table

NTTAB

The standard (primary) output translation table used for screen or printer output.

Basically this table is used to translate all characters below X '40', that is from the space
character to the question mark (X' 00 ' is not translated). This guarantees that all terminal-control
characters are translated before output and no control escape sequences can influence the
screen output. Special characters (X' FE' and X' FF ") which could influence the screen output
are translated into question marks.

If nothing else is specified, all Natural output data are translated with NTTAB.

To modify this table, use the macro NTTAB in the Natural parameter module or the
corresponding dynamic profile parameter TAB.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is adjusted by ICU according to the code page used
at session start. Then, although Natural is running with a code page, the translation using this
table continues in order to avoid invalid, unprintable characters from the resulting output
data.

NTTAB1

The alternative (secondary) output translation table for the secondary character set used when
the Natural parameter PM is set to C.

The important aspect is the translation of all possible terminal-control characters. If PM=C is
specified, all Natural output data are translated with NTTAB1. A possible application of NTTAB1
is to avoid the translation of escape sequences for printer control.

To modify this table, use the macro NTTAB1 in the Natural parameter module or the
corresponding dynamic profile parameter TAB1.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

NTTAB?Z

The secondary input translation table used when the Natural parameter PM is set to "C". If
PM=C is specified, all Natural input data are translated with NTTABZ. Conversion between
different languages or code pages can be performed with this table together with NTTAB1.

To modify this table, use the macro NTTABZ in the Natural parameter module or the
corresponding dynamic profile parameter TABZ.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

NTTABS

This table defines all valid characters that can be used in Natural variable names; it is used for
the Natural syntax processor.

It also defines all valid characters that can be used in the first position of a Natural variable
name.

In addition, it defines whether the variable is a global variable, a non-database variable or a
source-code variable.

If a code page is specified using profile parameter CP (CP=0N, CP=AUTO or CP=code-page),
the table is adjusted by ICU according to the code page used at session start.

44

Operations



Natural Configuration Tables

Macro

Table

NTUTAB1

The sample user-specific translation table for input translation from lower to upper case.

In addition, this table performs the translation specified with the statement EXAMINE
TRANSLATE INTO UPPER CASE.

To modify this table, use the macro NTUTAB1 in the Natural parameter module or the
corresponding dynamic profile parameter UTAB1.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

NTUTABZ

The sample user-specific translation table which performs the translation specified with the
statement EXAMINE TRANSLATE INTO LOWER CASE.

To modify this table, you can use the macro NTUTABZ in the Natural parameter module or the
corresponding profile parameter UTAB2.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

NTLANG

The language-code table, which defines which language number is assigned to which language
code in the system variable *LANGUAGE.

NTTABL

The SYS* output translation table, which is controlled by the Natural profile parameter TS.
With TS=0N, this table is used to translate output produced by programs located in Natural
SYS* libraries (except modifiable fields) from Latin lower case to upper case.

This table allows the use of all upper- and lower-case characters in Latin oriented countries,
but still allows the use of these applications in countries where the lower-case characters have
been replaced with a native alphabet.

To modify this table, use the macro NTTABL in the Natural parameter module or the
corresponding dynamic profile parameter TABL.

If Natural is running with an MBCS code page (for example, CP="1BM-939"), the table is not
used, but translation is performed via ICU according to the current locale settings.

WRDFCUC1
WRDFCUC2
WRDFCSP2

The DBCS translation tables used to translate double-byte characters into Latin characters and
vice versa.

Wichtig: These tables have to be activated explicitly, for example, for Far East countries.

Upper-/Lower-Case Translation

For modifiable and input fields, upper- and lower-case translation can be specified. In general,
lower-case translation means that data are taken as they come in; no translation is performed. This
even makes it possible in batch mode, for instance, to read in hexadecimal data without translation.

Operations

45



Natural Configuration Tables

There are several ways of specifying upper-/lower-case translation:

LC=0FF Lower-case translation is switched off, which means that global upper-case translation
is in effect.

This profile parameter can be specified in the Natural parameter module or as dynamic
parameter. (Note that the session parameter LC has a completely different function.)

%U Upper-case translation is globally on.

On the field level, the attribute AD=T or AD=W can be specified. These attributes only
take effect when the global upper-case translation is deactivated (LC=0N, %L). Then it is
possible to control the translation on a field level from within a Natural program.

EXAMINE Upper-/lower-case translation can also be performed with the EXAMINE TRANSLATE
TRANSLATE statement.

By default, EXAMINE TRANSLATE translates to upper case by using the translation table
NTUTABI, and to lower case by using the translation table NTUTABZ2.

CMULT Entry

Itisno longer recommended to use the CMULT entry; use the EXAMINE TRANSLATE statement instead
(see above).

Output Translation

All fields, after having been formatted by possible edit masks, AL or NL parameter values, filling
characters, etc. are translated using a translation table. This ensures that no data can be sent to the
front-end printing device with embedded control information which is not explicitly generated
by Natural. This means that fields can be sent to a display device even if they contain hexadecimal
information which is identical to internal attributes. These attributes are translated before an output
operation and so Natural guarantees the screen layout as defined by the output statement.

There are several translation tables available. If nothing explicit is defined, the primary translate
table NTTAB is used.

If PM=C is specified, the secondary translation table NTTAB1 is used. For modifiable fields, PM=C also
means that the incoming data are translated again; that is, translated for output and retranslated
for input.

With this translation table logic it is possible, for example, to convert Arabic numerals to Latin
numerals. Arabic numerals have a different hexadecimal representation from the normal Latin
numerals on the terminal hardware. So on output, the Latin numerals can be translated into the
Arabic equivalent and on input, the Arabic numerals can be retranslated into Latin.

46 Operations



Natural Configuration Tables

Special considerations have to be made for the Natural system applications which use Latin lower-
case and upper-case characters. Especially on terminals supporting Arabic, Greek, Cyrillic, etc.,
the hardware can be switched to not display lower-case Latin characters, but rather the native
characters.

Unfortunately, Latin lower-case characters are crabbed when displayed in, for instance, Cyrillic.

So Natural can be used with the parameter TS=0N (translate system output). TS=ON translates ,, SYS**
libraries (not including library SYSTEM) and all Natural system commands by using a third trans-
lation table called NTTABL. By default, this translation table performs upper-case translation for all
lower-case Latin characters. Of course, only output data are treated this way. So this allows data
entry in the native character set even in Natural editors or system applications.

However, if Natural utilities are used to display data typed in the native character set, this results
in an upper-case translation even for data in, for example, Cyrillic representation. The result would
again be unreadable. So all Natural system utilities can use the format PM=C for fields containing
data entered in the native character set. In this case, neither the NTTABL translation table nor the
secondary translation table NTTAB1 is used. The data are simply translated by the primary transla-
tion table NTTAB.

For further information, see the profile parameters PM, and TS in the Parameter Reference documen-
tation.

Input Translation

The translation table NTUTAB1 is available to control translation from lower to upper case. This
might cause problems in countries where special characters are used which are not set up with
the simple logic that just one bit controls the status of this letter. This especially concerns German
umlauts or Danish special characters. In such cases, translation can only be achieved by customizing
the NTUTABI table, where for each character the corresponding lower-/upper-case character can be
specified.

If upper-case translation (%U) and PM=C is specified, first upper-case translation (using NTUTAB1)
and then the secondary input translation (using NTTAB2) is performed.

Code Translation of DBCS Data

So that double-byte character set (DBCS) data can be processed the user application programming
interface USR4213N is provided to translate double-byte characters into Latin characters, see Double-
Byte Character Sets (DBCS).

Operations 47



Natural Configuration Tables

NTTZ - Time Zone Definitions

The following topics are covered below:

= NTTZ Macro

= NTTZ Macro Syntax

= NTTZ Macro Parameters

m Restrictions of NTTZ Macro
= Example of NTTZ Macro

NTTZ Macro

The NTTZ macro enables specifications about zonetime and automatic switching to and from
summertime.

Time definitions are determined by the system administrator, and the user can reference these
definitions by using the Natural profile parameter TD=zonename. With this parameter, users from
different countries and time zones are able to select their own local time.

The NTTZ macro can be used on a minimal basis to define a time difference for a timezone. In
addition, an automatic switch to and from summertime can be specified, either as a fixed date or
in a more flexible definition like , first Sunday in April”. The automatic switch to and from sum-
mertime is processed during a running Natural session, without requiring any user interactions.
Predefined samples of NTTZ macro definitions are shipped with NATCONFG.

Reference point for automatic switching to and from summertime is the current machine time,
which is UTC (GMT) time. Depending on the time period the current machine time is in, the current
local time is determined. The support for automatic switching to and from summertime is
currently for years in the range from 2002 to 2041.

] Notes:

1. The Natural profile parameters DD and YD do not have any effect on the automatic switching to
and from summertime, since the switch is done on the basis of the current machine time. It is
recommended to avoid concurrent use of DD or YD with TD=zonename.

2. Concurrent use of TD=zonename and user exit CMCOTIME (override machine time) is not recom-
mended, because a change of machine time (TOD clock) may cause unpredictable results for
automatic switching invoked with TD=zonename.

48 Operations



Natural Configuration Tables

NTTZ Macro Syntax

The syntax of the NTTZ macro is as follows:

NTTZ ZONE=time-zone-name,TDON=+/-hh:mm:ss,
[TDOFF=+/-hh:mm:ss,SWTON=hh:mm:ss,
SWTOFF=hh:mm:ss,

DSTON=(L{FIRST

SECOND | THIRD | FOURTH | LAST},

{MONDAY | ... | SUNDAY},
{AFTER | BEFORE | IN}],
{JANUARY | ... | DECEMBER},

[,day-numberl),
DSTOFF=([{FIRST | SECOND | THIRD | FOURTH | LAST},

{MONDAY | ... | SUNDAY},
{AFTER | BEFORE | IN}],
{JANUARY | ... | DECEMBER)}

[,day-number])]

NTTZ Macro Parameters

NTTZ Macro Parameter Description

<time +/- hh:mm:ss>|The basic formatis <{+/ -} hh:mm:ss>ranging from 00:00:00 through
23:59:59; abbreviations are also allowed, like: <hh:mm> or simply <hh>. The
plus sign (+) is assumed by default, the minus sign (-) may be necessary with the
parameters TDON or TDOFF (see below).

time-zone-name The Software AG or user-defined time zone name which can be referenced with
the TD parameter. The first occurrence of a name will be selected. The maximum
length of a time zone name is 32 characters to allow for descriptive user defined
zone names, for example, the name of the capital city of a country.

TDON Denotes the difference of local daylight saving time (summertime) to UTC time
(formerly GMT). This parameter corresponds to the parameter SWTON.

If only the TDON parameter is defined, the user gets display of local time as his
zone time, without automatic switching to and from summertime.

TDOFF Denotes the difference of local zone time to UTC time (formerly GMT). This
parameter corresponds to the parameter SWTOFF.

SWTON Denotes the UTC point of time when daylight saving time (summertime) is
switched on.

SWTOFF Denotes the UTC point of time when daylight saving time is switched off.

DSTON Denotes the day when daylight saving time (summertime) is switched on.

DSTOFF Denotes the day when daylight saving time (summertime) is switched off.

day-number A valid day number for the respective month; the default for day -number being
1.

Operations 49



Natural Configuration Tables

Restrictions of NTTZ Macro

® LAST requires BEFORE or IN.
= If IN is specified, no day number must be specified.

| Note: In order to have a unique point of reference for the time switch, the NTTZ macro

parameters SWTON and SWTOFF are given in UTC time, whereas the weekday names and day
numbers in the NTTZ macro parameters DSTON and DSTOFF are specifications in local time.

Example of NTTZ Macro

For daylight saving time switching in Western Europe:

NTTZ ZONE=MEZ,
TDON=2,TDOFF=+01:00:00, SWTON=01:00:00, SWTOFF=01:00:00,
DSTON=(LAST, SUNDAY, IN,MARCH),
DSTOFF=CLAST, SUNDAY,IN,O0CTOBER)

Additional examples of different time zones (North and South America, Asia, etc.) can be found
in the Software AG-delivered NATCONFG.

50 Operations



9 Natural Storage Management

= Thread and Non-thread Environments
= Buffer Types .....cvevvvviiieiiiiieee,
® Fixed Buffers ........cccooeveveiiiiiiiinnnnnn,
= Variable Buffers ..........cccoooeeeiiiii.
= Customization of Buffer Characteristics

51



Natural Storage Management

This document describes how Natural allocates and uses main storage. A chunk of storage
requested by a Natural nucleus component is called a , buffer”.

The following topics are covered:

Thread and Non-thread Environments

There are two different types of storage environments:

® Thread storage environment (typical for multi-user environments, for example, CICS)

® Non-thread storage environment (typical for single-user environments, for example, batch)

In a thread environment, a big piece of storage called , thread” is pre-allocated for a session. The
thread size must be predefined by the system administrator. During a session each buffer alloca-
tion request (getmain) is satisfied within its thread by Natural itself. Free space due to release
buffer requests (freemain) can be reused.

Upon certain events (terminal I/Os and long waits), the thread storage may be compressed and
rolled out (or swapped out) to external storage (swap pool or roll file). The released thread can be
reused by other Natural sessions. When a suspended session is to be resumed, it is rolled in from
external storage into a free thread again.

The place on the swap pool or roll file where the compressed thread storage is stored, is called a
»slot”. The slot size has a fixed length and is defined by the system administrator. It must be large
enough to contain the largest compressed thread storage. In the worst case, it may be equal to the
thread size.

In a non-thread environment, all storage requests are directly passed to the operating (sub-)system.
No roll-out/roll-in is performed, that is, the buffers for a session are kept until session termination,
unless they were explicitly released before.

Buffer Types

There are three different types of buffers:

= fixed buffers

" variable buffers

® physical buffers

Fixed buffers and variable buffers have a 32-byte prefix with a common layout for all environments.

The buffer prefix starts with the buffer name followed by 5 buffer length fields (total, used low-
end, max. used, used high-end, max. used high-end). The used length fields are maintained by

52 Operations



Natural Storage Management

the buffer-owning components and are used for thread compression. Each buffer has a unique ID
number (1-255) and can exist only once. Some buffers are allocated during session initialization,
others are allocated when required. The system command BUS can be used to show information
about all fixed and variable buffers currently allocated. The characteristics of the buffers are defined
in the source module NATCONFG, which can be customized in exceptional cases (see Customization
of Buffer Characteristics below). The size of some buffers can be specified by a profile parameter.
For a complete list of such buffers, see the profile parameter DS.

Physical buffers are allocated outside the thread. They do not have a buffer prefix and they are not
unique. They are used in exceptional cases and temporarily only. Physical buffers are automatically
released at the next terminal I/O. It is possible to define work pools for physical buffers by profile
parameter WPSIZE.

Fixed Buffers

In a thread environment, fixed buffers are allocated from the low end of the thread only. In contrast
to variable buffers, fixed buffers cannot be moved relatively to the thread and their size cannot be
increased or decreased.

Variable Buffers

In a thread environment, variable buffers are allocated from the high end of the thread. If there is
no more space in the thread, variable buffers are allocated temporarily outside of the thread. Upon
thread compression, all buffer parts used are compressed into the thread. If they do not fit into
the thread, the session is terminated abnormally. This may happen especially when large dynamic
variables are used.

After thread decompression, the variable buffers may have been moved to a different place inside
or outside of the thread. Variable buffers can be increased or decreased in size on request by the
owning component. Some variable buffers are defined to be reduced or released automatically
during thread compression.

The total amount of storage allocated outside the thread can be limited by profile parameter 0VSIZE.

Operations 53



Natural Storage Management

Customization of Buffer Characteristics

All buffers are defined in the source module NATCONFG by NTBUFID macro definitions.

@ Caution: Please, do not change any buffer characteristics except the MIN, MAX and CMPR

parameter settings explained below, because the results may be unpredictable.

It is possible to change the buffer size limits by the parameters MIN and MAX of the macro NTBUFID.
This makes sense for variable buffers (TYPE=VAR) only. Limits for all buffers are defined either by
default (0 - 2097151 KB) or by the limits of the corresponding profile parameters. For further
information, see the profile parameter DS. The limits of the buffer size profile parameters in the
Natural parameter module (NATPARM) are not affected by the MIN and MAX parameters of NTBUFID,
but the limits for the dynamic profile buffer size parameters are overwritten by MIN and MAX.

Setting the MAX parameter to a value in KB means that the size of this buffer cannot exceed this
maximum during session execution. This may cause runtime errors if more buffer storage is
requested for the desired buffer.

Setting the MIN parameter to a value in KB means that the size of this buffer cannot be less than
this value during session execution. For example, in the case of the 3GL CALLNAT interface
(NAT3GCAN), the setting of a buffer minimum value makes sense for the following buffers, because
the sizes of these buffers may not be increased on a lower Natural program level called by a 3GL
program.

DATSIZE|Data areas
GLBTOOL |Utility GDA
GLBUSER|User GDA
GLBSYS |System GDA
ATVDAT |AIV area
CONTEXT |Context variables

The parameter CMPR of the macro NTBUFID defines the compression optimization algorithm for the
buffer. It corresponds to the profile parameter CMPR which defines the default. For more informa-
tion about the possible parameter values, see CMPR — General Default Compression Optimization
Algorithm in the Parameter Reference Documentation.

54 Operations



Natural Storage Management

Example of a buffer characteristics definition:

DATSIZE NTBUFID ID=GETMDATA,TYPE=VAR+INI,CMPR=0PTZ2,MAX=512

For further information on profile parameters affecting the buffer sizes, see Buffer Sizes.

Operations 55



56



10 Profile Parameter Usage

This part describes the fundamentals and rules that apply to the use of Natural profile parameters
in a mainframe environment.

& Natural Parameter Hierarchy ~ Provides an overview of the hierarchical structure of the different
levels on which Natural parameters can be set. Examples are
provided to illustrate the various scenarios.

Assignment of Parameter Values Explains how values can be assigned to profile parameters statically,
dynamically and at runtime.

Profile Parameters Grouped by Provides an overview of the profile parameters available, grouped

Function by function.
& Using a Natural Parameter Covers the following topics: assembling a Natural parameter
Module module, using the NATPARM default Natural parameter module,

creating the NTPRM macro, optional macros used in a Natural
parameter module.

For details of the individual profile parameters, see Profile Parameters documentation.

of



58



11 Natural Parameter Hierarchy

= Natural Parameter HIerarchy OVEIVIEW ...........c.uviiiiiiiiiiiiii e 60
= General Rules for Parameter USAQE ..........vvviiiiiiie et 60
= Natural Standard Parameter MOAUIE ...........ovviiii i 61
m Alternative Parameter MOUIE ...........oii et e e 61
= Predefined Dynamic Parameter SELS ..........coiiiiiiiiii e 62
= Predefined User Parameter Profiles ..........ooiviiiiiii e 62
B DynamiC Parameter ENTY .......eeviiieiiiiiiiiiiiiiii ettt 1a1a s 62
= Natural Security DEfiNItIONS ...........viiiiii s 63
m SesSioN Parameter SEHNGS .........vviiiiiiii 63
= Program/Statement LEVEl SEHINGS .....vviiiiiiii i 63
= Development ENVIFONMENT SEEINGS .......eviiiiiiiiiiiii e 64
= Examples of Various Parameter SINGS .....o..vvvvieiiiii i 64

59



Natural Parameter Hierarchy

This document describes the hierarchical structure of the different levels on which Natural profile
parameters can be set. Various examples are given to illustrate the scenario.

The following topics are covered:

For details of the individual profile parameters, refer to the Parameter Reference documentation.

Natural Parameter Hierarchy Overview

Natural profile parameters affect the appearance and the response of a Natural user's working
environment. These parameters are set at different hierarchically organized levels as illustrated
in the table below (priority from high to low).

Level Short Description/References to Detailed Descriptions

® Development Environment Settings
® Program/Statement Level Settings
During Session B Session Parameter Settings

® Natural Security Definitions

® Dynamic Parameter Entry
Dynamic during Session Start " Predefined User Parameter Profiles

B Predefined Dynamic Parameter Sets

® Alternative Parameter Module

Static ® Natural Standard Parameter Module

The hierarchically organized levels are discussed in the referenced sections, starting from the
lowest and ending with the highest priority.

General Rules for Parameter Usage

The following general rules apply:
" A parameter value set on a higher level overwrites the value defined on a lower level (exceptions:
PROFILE, SYS, DYNPARM and some other parameters that work by adding values).

® Dynamic parameters during session start have sequence priority, that is, they are evaluated
from left to right.

60 Operations



Natural Parameter Hierarchy

Example:

ESIZE=20,DATSIZE=60,ESIZE=100

The resulting value is ESIZE=100.

® Not all of the parameters available at a lower level can be defined on a higher level, too.

Natural Standard Parameter Module

Natural parameters are defined in the standard (default) parameter module which is linked to the
Natural nucleus. This module constitutes the bottom level of the Natural parameter hierarchy.

Special Case:

If a shared Natural nucleus is used, this parameter module must be linked to the environment-
dependent nucleus module. This parameter module then constitutes the second hierachical level and
overwrites all the parameters of the parameter module which is linked to the shared nucleus (if
any). Exception: the CSTATIC subprograms of the shared nucleus, see Statically Linked Non-
Natural Programs.

Alternative Parameter Module

In addition to the Natural standard parameter module, the Natural administrator can define any
number of additional (alternative) parameter modules. Such a module is stored in a TP or operating-
system library and can be used as alternative parameter module by the parameter PARM when
Natural is started.

These parameters cause the parameters of the standard parameter module to be completely
overwritten.

Exception: CSTATIC entries, see Statically Linked Non-Natural Programs.

A\ Important: PARM should appear as the first parameter in a dynamic parameter string,

because otherwise the alternative parameter module overwrites all parameter settings
previously entered in the dynamic parameter string.

You can use the macro NTUSER to restrict the use of an alternate parameter module to a certain
user or to several users.

Operations 61



Natural Parameter Hierarchy

Predefined Dynamic Parameter Sets

The Assembler macro NTSYS can be used to predefine parameter sets which are named in a Natural
parameter module. These sets can be addressed under their names when Natural is invoked,
provided that the corresponding parameter module is active.

When invoked, the predefined parameter sets react in the same way as dynamically entered
parameters in that position.

See also the profile parameter SYS.

Predefined User Parameter Profiles

You can use the Natural utility SYSPARM to create individual profiles which are stored in a system
file. Each profile is given a unique character name. You can set values for any dynamic Natural
parameters in such a profile.

The profiles created with the utility SYSPARM are activated by using the parameter PROFILE when
Natural is invoked.

You can use the profile parameter USER to restrict the use of a profile to a certain user or to several
users.

When invoked, the predefined parameter profiles behave in the same way as dynamically entered
parameters in that position.

Dynamic Parameter Entry

Almost all of the parameters can be dynamically overwritten when Natural is started. Dynamic
parameters are evaluated strictly sequential.

This general overwrite facility can, however, be limited generally or for certain parameters through
the use of the profile parameter DYNPARM (only dynamically, for instance in a profile).

You can use the macro NTDYNP in the parameter module NATPARM to make analog settings. This,
however, will prohibit the use of the profile parameter DYNPARM.

You can use the file CMPRMIN to define dynamic parameters in batch mode under z/OS, BS2000/OSD
and z/VSE, or in batch-like systems such as TSO, TIAM, CMS or BMP environments under IMS
™.

62 Operations



Natural Parameter Hierarchy

The advantage of this method is that you need not modify the JCL when you wish to change
Natural settings. In addition, it overcomes the length limitation of the parameter string (for
example, 100 characters under z/OS).

Natural Security Definitions

Apart from protecting the libraries, files and commands, Natural Security enables the setting of
certain session-relevant profile parameters.The definitions apply to the current library of the user.

The users can also define settings for their private or default libraries.

The current security settings (session parameters) can be displayed using the Natural system
command PROFILE.

The Natural Security parameter definitions are evaluated after the regular profile parameters, that
is, they can overwrite them.

Session Parameter Settings

The Natural system command GLOBALS or, in Reporting Mode, the Natural statement SET GLOBALS
can be used to display and to set (modify) certain session-relevant profile parameters within and
for the duration of a Natural session.

These definitions apply to the command mode and to all programs that are executed during the
current session.

See also Session Parameters for Runtime Assignment of Parameter Values or SET GLOBALS.

Program/Statement Level Settings

The Natural statement FORMAT can be used in a program to set parameter values which are valid
for that specific program.

In addition, it is possible to set certain parameters at statement level by a terminal command.

Operations 63



Natural Parameter Hierarchy

Development Environment Settings

You can use the Natural Main Menu option Development Environment Settings to invoke a submenu
which enables selection of the tools that are available for monitoring and setting up the Natural
development environment.

Examples of Various Parameter Strings

The examples below are based on the following parameter settings:

Parameter |Param. Module, |Param. Module |Alternative User Profile
(Sshaercei:II\lct;Zgus Front-End Param. Module MYPROF
P ALTPARM
DATSIZE |32 (default) 40 50 60
DSIZE 4 6 2 (default) Not specified
ESIZE 20 28 (default) [NTSYS A: 60|80
NTSYS A: 40
NTSYS B: 50

The following examples show the results for various dynamic parameter strings.

Example 1: No dynamic parameters

Resulting Values |Origin

DATSIZE 40 Front-end module
DSIZE 6 Front-end module
ESIZE 28 Front-end module
Others: Default |Front-end module

64 Operations



Natural Parameter Hierarchy

Example 2: PARM=ALTPARM

Resulting Values |Origin

DATSIZE 50 ALTPARM
Others: Default |ALTPARM

Example 3: SYS=A

Resulting Values |Origin

DATSIZE 40 Front-end module

DSIZE 6 Front-end module
ESIZE 40 NTSYS front-end module

Example 4: PARM=ALTPARM, SYS=A

Resulting Values |Origin

DATSIZE 50 ALTPARM
DSIZE 2 ALTPARM
ESIZE 60 NTSYS, ALTPARM

Example 5: PARM=ALTPARM, SYS=B

Resulting Values |Origin

Error

ALTPARM does not have a NTSYS B specification

Example 6: SYS=A,PROFILE=MYPROF

Resulting Values |Origin

DATSIZE 60 MYPROF

DSIZE 6 Front-end module
ESIZE 80 MYPROF
Operations

65



Natural Parameter Hierarchy

Example 7: SYS=A,PROFILE=MYPROF,ESIZE=100

Resulting Values |Origin

DATSIZE 60 MYPROF

DSIZE 6 Front-end module
ESIZE 100 Dynamic parameter
Example 8: PROFILE=MYPROF,SYS=A
Resulting Values |Origin
DATSIZE 60 MYPROF
DSIZE 6 Front-end module
ESIZE 40 NTSYS front-end module

Example 9: DSIZE=8,SYS=A,PROFILE=MYPROF, PARM=ALTPARM

Resulting Values |Origin

DATSIZE 50

ALTPARM

Others Default |ALTPARM

66

Operations



12 Assignment of Parameter Values

= Sources for Parameter Value ASSIGNMENT ...........uuiiiiiiiiii e 68
= Static Assignment of Parameter VAlUES ............oovviiiiiiiiiii e 69
= Dynamic Assignment of Parameter VAIUES ............cooiiiiiiiiii e 70
= Session Parameters for Runtime Assignment of Parameter Values ... 72

67



Assignment of Parameter Values

This document provides information on how values are assigned to profile parameters statically,
dynamically and at runtime.

The following topics are covered:

For details of the individual profile parameters, refer to the Parameter Reference documentation.

Sources for Parameter Value Assignment

The values for profile parameters are taken from three sources:

1.

Static assignments

Profile parameters specified by the macro NTPRM and other macros in the Natural parameter
source module (NATPARM). These macros are then assembled and linked with the Natural nucleus.
All parameters not specified are assigned their default values.

. Dynamic assignments

Parameters specified for the Natural session execution. These parameters override the static
assignments and are valid for the current Natural session. Dynamic parameters can be passed
by a front-end program, the parameter dataset (CMPRMIN), session-initialization JCL, terminal
input or Natural Security. In addition, it is possible to overwrite certain parameters by Natural
program statements.

Session parameters

Parameters specified with the system command GLOBALS (or a SET GLOBALS statement, in
Reporting mode) within the current Natural session. The parameters override static and dynamic
assignments.

[lustration of the Natural Parameter Assignment:

68

Operations



Assignment of Parameter Values

Terminal Input
ar
Job Cortrol Parameters

User Front End
Fragram
Farameters

ChFR RN
Parameter

Matural
Mucleus
o dule SYSPARM

Profiles

S

—
e ——

Matural

HATP AR Security
Static Farameters

Farametars

SRR ANy

Static Assignment of Parameter Values

The Natural parameter module NATPARM is used for the static assignment of profile parameters for
all Natural environments.

In the parameter module, you use the macro NTPRM, and several other macros, to specify the
parameters.

All parameter settings (except the parameter CSTATIC) made in the parameter module can be
overwritten dynamically at the start of a Natural session.

For technical reasons, for some profile parameters a corresponding macro is used for static assi-
gnment in the parameter module. Consequently, the syntax of the static and dynamic specifications
differs slightly, taking the following general form:

Static: MACRO-NAME KEYWORD1l=valuel,KEYWORD2=valueZ, ...

Dynamic:|PARAMETER-NAME=(KEYWORD1=valuel,KEYWORDZ2=valuez,...)

Example:

® Macro in the parameter module: NTSORT WRKSIZE=500, EXT=0N

® Equivalent dynamic profile parameters: SORT=(WRKSIZE=500, EXT=0N)

Operations 69



Assignment of Parameter Values

If there is a corresponding macro for a profile parameter, this is indicated in the parameter descrip-
tion.

For more details on static assignment, see Using a Natural Parameter Module.

Some Natural subproducts (for example, Natural for DL/I or Natural for DB2) use additional
parameter modules. These modules are described in the documentation of these subproducts.

Dynamic Assignment of Parameter Values

You can specify profile parameters dynamically at the start of a Natural session to override - for
the duration of a single Natural session - individual profile parameter settings of the Natural
parameter module NATPARM.

Example:

NUCNAME="'NATNUC#5" , IM=D, INTENS=1,DU=0FF, FUSER=(10,32),PROGRAM=" ",
WORK=((1),AM=STD,DEST=WORKI,OPEN=INIT),PS=60,LS=120

All profile parameters can be specified dynamically - except CSTATIC which can be specified stati-
cally in the Natural parameter module only:

The dynamic parameter assignments are separated by (one or more) commas or blanks. If the
value for a dynamic parameter contains non-alphanumeric or special characters, the value must
be specified enclosed in apostrophes. Which characters are special characters is defined in the
character table macro NTSCTAB of NATCONFG; see Natural Configuration Tables.

The use of dynamic parameters can be enabled/disabled by the macro NTDYNP or the corresponding
dynamic profile parameter DYNPARM.

For a more comfortable specification of sets of dynamic parameters, you can use the profile para-
meter PROFILE or SYS. In addition, it is possible to set a number of dynamic parameters in Natural
Security.

It is possible to insert comment strings within dynamic parameters. A comment starts with ,,/*”
and ends with ,*/” . If the comment string end delimiter is missing, an error message is issued
during session initialization.

70 Operations



Assignment of Parameter Values

Example:

PARM=MYPARMS /* my comment */ ADANAME=ADALNKR,PROFILE=MYPROF

The dynamic parameter settings are passed to Natural when the session is started. The method
used for passing the parameter values to Natural varies depending on the environment.

Example for z/OS in batch mode:

® The values are specified by the PARM keyword in the EXEC job control statement that initiates
Natural.

* In addition, dynamic parameters can be specified in the dataset CMPRMIN.

" Moreover, it is possible to write a front-end program which passes control to Natural with
dynamic parameters for the session according to z/OS standards.

Specifying Dynamic Parameters under z/VSE

The dynamic parameters can either be passed directly with a PARM specification in the JCL EXEC
statement:

// EXEC NATBATCH,PARM='dynamic parameters..."',SIZE=...
Or you can specify PARM="SYSRDR" to cause Natural to read the dynamic parameters from SYSRDR:

// EXEC NATBATCH,SIZE=...,PARM='SYSRDR'
dynamic parameters

/* END OF DYNAMIC PARAMETERS

If the PARM keyword is not specified in the JCL EXEC statement, the SYSPARM parameter of the JCL
OPTION statement is checked for compatibility reasons:

// OPTION SYSPARM='SYSRDR'
// EXEC NATBATCH,SIZE=...
dynamic parameters

/* END OF DYNAMIC PARAMETERS

Operations 71



Assignment of Parameter Values

Session Parameters for Runtime Assignment of Parameter Values

To some profile parameters a value can be assigned within a Natural session at runtime, using a
corresponding session parameter. The session parameter value will override the profile parameter
value.

If a corresponding session parameter exists for a profile parameter, this is indicated in the descrip-
tion of the profile parameter.

Session parameters are specified with the system command GLOBALS. Session parameters are des-
cribed in the Parameter Reference documentation. Further details on system commands can be found
in the Command Reference documentation.

Example:

GLOBALS SA=ON,IM=D

In reporting mode, session parameters can also be specified with the SET GLOBALS statement in a
program.

Some profile parameters can also be overridden within a Natural session by a terminal command.
If a corresponding terminal command exists for a profile parameter, this is indicated in the des-
cription of the profile parameter. Terminal commands are described in the Terminal Commands
documentation.

Example:

SET CONTROL 'T=3279'

The value of the profile parameter TTYPE is overwritten.

72 Operations



13 Profile Parameters Grouped by Function

SYSEBM FIIBS ..ttt 74
BUTTBE SIZES ...ttt et e e 74
EXIErNal SUDPIOGIAMS ... ettt e et 75
Output Reports and WOrK FIIES ........ueeiiiiiieee et 75
Date/TIME SEHINGS ©..vvveiieeiie e e e e e e e e e e e e e e e e e e e 76
[T 11 € 77
Character ASSIGNMENLS .......oiiiiiiie et e e e e e e e e et e e e e e e e 77
Terminal COMMUNICALION .. ...u..iee ittt e e e e e e e e e e e e e e e e e 78
BUFIEr POOIS ... 78
Translation TADIES ........uueiii e 79
Code Page and UniCOAE SUPPOI ... ....eiiiieieee ettt e e e eae s 79
Usage of Profile PArameters ...........ccooiiiiiiiiii e 80
(070] 4T L= R 0o 11o] L PR PPPPPRSR 80
DEDUGGING .o 80
o1 (ot 1Y (oo [ T 81
B (01111 (0 £ PR 81
DAtADASE ACCESS ... ..o 82
NatUral With AaDas ..........ooviiiie e et 82
Natural with Other Software AG ProdUCES ..........ooooiiiiii 83
Miscellaneous Profile Parameters ............oiiiiiiii e 85
Session Initialization and TErMINAtION .........ccooiiiiiiii 86
Parameters Reserved for INtErNal USE ............iiiiiiiii e 87

73



Profile Parameters Grouped by Function

To assist you as a Natural administrator in determining which parameters are applicable for your
site, this document provides an overview of the profile parameters that are available to you. The
parameters are grouped according to their functions:

For details of the individual profile parameters, refer to the Parameter Reference documentation.

System Files

Natural system files are used for the storage of various data and programs. See Natural System
Files in the Natural System Architecture documentation.

The following profile parameters apply to all system files:

Parameter |Short Description

DBID Default Database ID of Natural system files
FNR Default File Number of Natural system files

SYSPSW  |Default Password for Natural system files
SYSCIP |Default Cipher Key for Natural system files
ROSY Read-only access to system files (FNAT, FUSER and FSEC only)

With the following parameters, you can override the default values for individual system files:

Parameter |Short Description

FNAT Natural system file for system programs

FUSER Natural system file for user programs
FDIC Predict system file

FSEC Natural Security system file

FSPOOL [Natural Advanced Facilities spool file

Buffer Sizes

Natural uses several buffer areas to store programs and data. You may need to adjust the size of
one or more of these areas in order to achieve maximum buffer efficiency. If the specified space
is not available, the size of the requested buffer is set to zero.

74 Operations



Profile Parameters Grouped by Function

Parameter

Short Description

DATSIZE

Size of buffer for local data

DS

Size of storage buffer

DSIZE

Size of debug buffer area

ESIZE

Size of user buffer extension area

ISIZE

Size of initialization buffer

MONSIZE

Size of SYSTP monitor buffer

RDCSIZE

Size of buffer for the Natural data collector

RJESTZE

Initial Size of NATRJE buffer

RUNSTZE

Size of runtime buffer

WPSIZE

Sizes of Natural work pools

External Subprograms

The following parameters affect the dynamic loading and deletion of non-Natural programs:

Parameter |Short Description

CDYNAM  |Dynamic loading of non-Natural programs

CSTATIC |Programs statically linked to Natural

DELETE |Deletion of dynamically loaded non-Natural programs

LIBNAM  |Name of external program load library (BS2000/OSD, z/OS, TSO only)
RCA Resolve addresses of static non-Natural programs

RCALIAS |External name definition for non-Natural programs

Output Reports and Work Files

The following parameters control various standard attributes used during the creation of Natural

reports:

Parameter |Short Description

DL Display Length for Output

EJ Page Eject

FAMSTD  |Overwriting of Print and Work File Access Method Assignments
HCAM Hardcopy Access Method

HCDEST |Hardcopy Output Destination

Operations

75



Profile Parameters Grouped by Function

Parameter |Short Description

INTENS  |Printing of Intensified Fields

LS Line Size for Natural Records

MAINPR |Override Default Output Report Number
MP Maximum Number of Pages of a Report
PCNTRL  |Print Control Characters

PM Print Mode

PRINT Printer Assignments

PS Page Size for Natural Reports

SF Spacing Factor

TQ Translate Quotation Marks

TS Translate Output from Programs in System Libraries
WORK Work File Assignments

LP Zero Printing

Date/Time Settings

The following parameters affect the handling of date and time values by Natural as well as the
internal date/time used by Natural:

Parameter [Short Description
DD Day Differential
DFOUT Date Format for Output

DFSTACK

Date Format for Stack

DFTITLE

Date Format in Default Page Title

DTFORM |Date Format

STACKD  |Stack Delimiter Character

D Time Differential

YD Year Differential

YSLW Year Sliding Window

76 Operations



Profile Parameters Grouped by Function

Limits

The following parameters can be used to prevent a single program from consuming an excessive
amount of internal resources:

Parameter |Short Description

LE Reaction when Limit for Processing Loop Exceeded

LT Limit for Processing Loops

MADIO Maximum DBMS Calls between Screen I/O Operations

MAXCL Maximum Number of Program Calls

MAXYEAR [Maximum Year for Date/Time Values

MT Maximum CPU Time
OVSIZE |Storage Thread Overflow Size
PD Number of Pages captured by NATPAGE

Character Assignments

The following parameters can be used to change default character assignments:

Parameter |Short Description

CVMIN Control Variable Modified at Input

FC Filler Character for INPUT Statement

FCDP Filler Character for Dynamically Protected Input Fields
CF Character for Terminal Commands

DC Decimal Character

HI Help Character

IA Input Assign Character

ID Input Delimiter Character

SOSI Shift-Out/Shift-In Codes for Double-Byte Character Set
THSEPCH |Thousands Separator Character

Operations 77



Profile Parameters Grouped by Function

Terminal Communication

The following parameters affect the usage of Natural on video terminals:

Parameter |Short Description

ATTN Attention Key Interrupt Support

CLEAR Processing of CLEAR Key in NEXT Mode
DSC Data Stream Compression (for 3270-Type Terminals)
ESCAPE |Ignore Terminal Commands %% and %.
IKEY Processing of PA Keys and PF Keys

IM Input Mode

KEY Value Assignments to PA, PF, CLEAR Keys
LC Lower- to Upper-Case Translation

ML Position of Message Line

RM Retransmit Modified Fields

SA Sound Terminal Alarm

TMODEL  |IBM 3270 Terminal Model

TTYPE Terminal Type

Buffer Pools

The following parameters affect the Natural buffer pools:

Parameter |Short Description

BPCSIZE |Cache Size for Natural Buffer Pool

BPC64 Cache Size for Natural Buffer Pool

BPI Buffer Pool Initialization

BPLIST |Name of Preload List for Natural Buffer Pool
BPMETH  |Buffer Pool Space Search Algorithm

BPNAME |Name of Natural Global Buffer Pool

BPPROP  |Global Buffer Pool Propagation

BPSFI Object Search First in Buffer Pool

BPSIZE |Size of Natural Local Buffer Pool

BPTEXT |Size of Text Segments in Natural Buffer Pool
78 Operations



Profile Parameters Grouped by Function

Translation Tables

The following parameters can be used to overwrite various character translation tables used by

Natural:
Parameter |Short Description
CCTAB Printer Escape-Sequence Control Character

CP Code Page

SCTAB Scanner Character Type Table

TAB Standard Output Translation Table

TABAL EBCDIC to ASCII Translation Table

TABA?Z ASCII to EBCDIC Translation Table

TABL Translation Table for Output from "SYS" Libraries
TAB1 Alternative Output Translation Table

TAB2 Alternative Input Translation Table

UTABL Translation Table for Lower to Upper Case

UTAB2 Translation Table for Upper to Lower Case

Code Page and Unicode Support

Parameter

Short Description

CFICU

Unicode and Code Page Support

For an overview of other profile parameters involved in code page and Unicode support, refer to
Configuration and Administration of the Unicode/Code Page Environment, Profile Parameters in the
Unicode and Code Page Support document.

Operations

79



Profile Parameters Grouped by Function

Usage

of Profile Parameters

The following parameters affect the usage of Natural profile parameters:

Parameter |Short Description

DYNPARM |Control Use of Dynamic Parameters

PARM Alternative Parameter Module

PLOG Logging of Dynamic Parameters

PROFILE |Activate Dynamic Parameter Profile

SYS Activate Set of Dynamic Profile Parameters
USER Restrict the Use of Profile Parameters

Compiler Options

The following parameters can be used to control the Natural compiler:

Parameter |Short Description

CMPO Compilation Options

FS Default Format/Length Setting for User-Defined Variables
SM Programming in Structured Mode

XREF Activate Cross-Reference Feature

Debugging

The following parameters can be used for debugging purposes:

Parameter |Short Description
CANCEL  |Session Cancellation with Dump
DBGERR |Automatic Start of Debugger at Runtime Error
DU Dump Generation
DUE Dump for Specific Errors
ETRACE |External Trace Function
ITRACE |Internal Trace Function
RELO Storage Thread Relocation
80

Operations



Profile Parameters Grouped by Function

Parameter (Short Description

TRACE Define Components to be Traced
UPSI z/VSE User Program Switches

Batch Mode

The following parameters apply if Natural is used in batch mode:

Parameter |Short Description

cC Error Processing in Batch Mode

CPOBJIN |Code Page of Batch Input File.

CPPRINT |Code Page of Batch Output File.

CPSYNIN |Code Page of Batch Input File for Commands.

ECHO Control Printing of Input Data
OBJIN Use of CMOBJIN as Natural Input File
READER |System Logical Units for Input (z/VSE only)

TP Monitors

The following parameters apply if Natural is used with a TP monitor (Com-plete, CICS, CMS, IMS
™, UTM):

Parameter |Short Description

ASYNNAM |Output System ID for Asynchronous Processing (UTM)

OUTDEST |Output Destination for Asynchronous Processing (CICS, Com-plete, UTM)

PSEUDO |Pseudo-Conversational Mode (CICS)

SENDER  |Screen Output Destination for Asynchronous Processing (CICS, Com-plete, IMS TM, UTM)

SKEY Storage Protection Key
SUBSID |Subsystem ID

Operations 81



Profile Parameters Grouped by Function

Database Access

The following parameters determine how Natural handles the access to databases:

Parameter |Short Description

DB Database Types and Options

DBCLOSE |Database Close at Session End

DBOPEN |Database Open Without ETID

DBROLL |Database Calls Before Roll-Out

DBUPD Database Updating

ENDBT Issue BACKOUT TRANSACTION at Session End

ET Execution of END/BACKOUT TRANSACTION Statements
ETDB Database for Transaction Data

ETEOP Issue END TRANSACTION at End of Program

ETIO Issue END TRANSACTION upon Terminal I/O

ETSYNC |Issue Syncpoint upon End of Transaction/Backout Transaction
LFILE Dynamic Specification of Logical File

OPRB Database Open/Close Processing

RCFIND |Handling of Response Code 113 for FIND Statement
RCGET Handling of Response Code 113 for GET Statement

TF Translation of Databas ID/File Number

ubB User Database ID

Natural with Adabas

The following parameters apply if Natural is used with Adabas:

Parameter

Short Description

ADANAME

Name of Adabas Link Routine

ADAMODE

Adabas Interface Mode

ADAPRM

Review/DB Support

ADASBY

Adabas Security By Value

ETID Adabas User Identification

RI Release ISNs

WH Wait for Record in Hold Status
82 Operations



Profile Parameters Grouped by Function

Natural with Other Software AG Products

Adabas Text Retrieval

Parameter |Short Description

TSIZE Size of Buffer Area for Adabas Text Retrieval

Con-nect

Parameter (Short Description

CSIZE Size of Con-nect/Com-pose Buffer Area

EntireX Broker

Parameter |Short Description

BSIZE Size of EntireX Broker Buffer

Entire DB

Parameter |Short Description

/SI1ZE Size of Entire DB Buffer Area

Entire System Server

Parameter |Short Description

ASIZE Entire System Server Auxiliary Buffer

Operations 83



Profile Parameters Grouped by Function

Entire Transaction Propagator

The following parameter appies if you are using the Entire Transaction Propagator:

Parameter

Short Description

ETPSIZE

Size of Entire Transaction Propagator Buffer

Natural Advanced Facilities

The following parameters appy if you are using Natural Advanced Facilities:

Parameter

Short Description

NAFSIZE

Size of Buffer for Natural Advanced Facilities

NAFUPF

Natural Advanced Facilities User Profile

Natural Connection

The following parameters appy if you are using Natural Connection:

Parameter |Short Description
PC Control of Personal Computer Access Method (Natural Connection)
XSIZE Size of Buffer for User Subsystem

Natural Database Interfaces

The following parameters appy if you are using the database interfaces listed below:

Parameter

Short Description

DB2SIZE

Size of Buffer Area for Natural DB2 or SQL/DS interface

DLISIZE

Size of Buffer Area for Natural DL/I interface

VSIZE

Size of Buffer Area for Natural VSAM interface

84

Operations



Profile Parameters Grouped by Function

Natural Expert

Parameter |Short Description

EXCSIZE |Size of Buffer for Natural Expert C Interface

EXRSIZE |Size of Buffer for Natural Expert Rule Tables

Natural Optimizer Compiler

The following parameter applies if you are using the Natural Optimizer Compiler:

Parameter |Short Description

OPT Control of Natural Optimizer Compiler

Natural Workstation Interface

The following parameter applies if you are using the Natural Workstation Interface:

Parameter |Short Description

WSISIZE |Buffer for Natural Workstation Interface

Software AG Editor

The following parameter applies if you are using the Software AG Editor:

Parameter |Short Description

EDBP Software AG Editor Buffer Pool Definitions
EDPSIZE |Size of Software AG Editor Auxiliary Buffer Pool
SSIZE Size of Buffer for the Software AG Editor

Miscellaneous Profile Parameters

Parameter |Short Description

CM Command Mode
CPCVERR |Conversion Error
EMFM Edit Mask Free Mode

ETA Error Transaction Program

FREEGDA |Release GDA in Utility Mode

Operations 85



Profile Parameters Grouped by Function

Parameter |Short Description

MAXROLL |[Number of CMROLL Calls Before Roll-Out

MSGSF Display System Error Messages in Full

NC Use of Natural System Commands

OPF Overwriting of Protected Fields by Helproutines
PLUGIN |Enable the Natural Plug-In Components

P0S22 Version 2.2 Algorithm for POS System Function
RDCEXIT |Define Natural Data Collector User Exits

RECAT Dynamic Recataloging

REINP Issue Internal REINPUT Statement for Invalid Data
RFILE File for Recordings

RPC Remote Procedure-Call Settings

SI Shift-In Code for Double-Byte Character Set

SL Source-Line Length

SO Shift-Out Code for Double-Byte Character Set
SORT Control of Sort Program

SYNERR  |Control of Syntax Errors

ULANG User Language

D Zero-Division Check

Session Initialization and Termination

The following parameters have an influence on the initialization or termination of a Natural session:

Parameter

Short Description

AUTO

Automatic Logon

ENDMSG  |Display of Session-End Message
IMSG Session Initialization Error Messages
I[TERM Session Termination in Case of Initialization Error
MENU Menu Mode
NUCNAME |Name of Shared Nucleus
PROGRAM |Program to Receive Control after Natural Session
STACK Place Data/Commands on the Stack
STEPLIB |Additional Steplib Library
86 Operations



Profile Parameters Grouped by Function

Parameters Reserved for Internal Use

( Caution: The values of the following parameters must not be changed!

These parameters are reserved for internal use by Natural.

Parameter |Short Description

ASPSIZE |(Internal Use)
CFWSIZE |(Internal Use)
LOG (Internal Use)
NISN (Internal Use)
RDACT (Internal Use)
RDNODE  |(Internal Use)
RDPORT  |(Internal Use)
TPF (Internal Use)
USERBUF |(Internal Use)

Operations 87



88



14 Using a Natural Parameter Module

= Using the Default Natural Parameter Module NATPARM .........ooiiiiiiiiiiiie e 90
= Creating a New Natural Parameter MOUIE .............cooiuiiiiiiiiiiieeie e 90
= NTPRM Macro - Create a Natural Parameter Module ..............ooooiiiiiiiiiiiiiiicci e, 90
= Restricting the Use of a Parameter MOUIE .............cooiuiiiiiiiiiiii e 91
= Using Macros in a Natural Parameter MOUIE .............uvvvviviiiiriiiiiiiiiiiiviieiiiiieieieeeee e aeaeeeeeees 92

89



Using a Natural Parameter Module

This document provides information on how to assemble a Natural parameter module.
The following topics are covered:

For details of the individual profile parameters, refer to the Parameter Reference documentation.

Using the Default Natural Parameter Module NATPARM

The default Natural parameter module NATPARM contains a set of predefined parameters that are
sufficient for most environments. The module is delivered in source form to enable you to change
it according to your requirements.

Creating a New Natural Parameter Module

Instead of using or modifying the default Natural parameter module, you can create one or
several alternative Natural parameter modules for various purposes which can be loaded as
appropriate using the Natural profile parameter PARM and whose use can be restricted to certain
users (See Restricting the Use of a Parameter Module).

» To create a new (alternative) Natural parameter module

1  Assemble the macro NTPRM (see also Assembler Macro Coding Conventions below).

2 Add one or more of the optional parameter macros (see below).

If more than one parameter macro is specified, the NTPRM macro must be specified first; any other
macros after the NTPRM macro can be specified in any order.

| Note: Itisnotnecessary to create separate parameter modules for batch and teleprocessing

modes of operation. Those parameters which are not applicable to the environment in which
Natural is executed are ignored.

NTPRM Macro - Create a Natural Parameter Module

The NTPRM macro must be assembled in order to create a Natural parameter module.

Generally, you can use the default values of the profile parameters in the NTPRM macro. If any of
the default values do not suit your requirements, you can overwrite them with your own values.

For a description of the individual profile parameters, refer to Parameter Reference documentation.

90 Operations



Using a Natural Parameter Module

NTPRM Syntax

The syntax for this macro is:

NTPRM parameter=value,..

Assembler Macro Coding Conventions

Assembler macro coding conventions must be adhered to when changing parameter values, for
example,
* the first entry must begin in Column 2 or beyond and cannot extend beyond Column 71;

" continuation to another line is accomplished by placing a comma after the last entry, inserting
anon-blank character in Column 72 and continuing the entry on the next line starting in Column
16;

" a parameter and its value must always be entered on the same line.

Restricting the Use of a Parameter Module

You can add the macro NTUSER to a parameter module to restrict its use to certain users.

» To restrict the use of a parameter module

1 Add the macro NTUSER to the parameter module.
2 In this macro, define the IDs of those users who are to be enabled to use that parameter

module.

Only these users will be allowed to specify the name of that parameter module with the profile
parameter PARM.

Operations 91



Using a Natural Parameter Module

Using Macros in a Natural Parameter Module

A Natural parameter module contains the macro NTPRM in first place. In addition, you can specify

the following macros in any order.

Macro Function

NTALIAS |External names of non-Natural programs.

NTBPI Buffer pool initialization.

NTCCTAB |Printer escape sequence definition.

NTCFICU |Enables Unicode support for various Unicode settings.

NTCMPO  |Compilation options.

NTCSTAT |Programs statically linked to Natural.

NTDB Database types and options.

NTDS Define size of storage buffer

NTDYNP  |Control use of dynamic parameters.

NTEDBP |Software AG editor buffer pool definitions

NTFILE |See NTLFILE>OIld NTFILE Macro Syntax

NTLFILE |Specification of logical files.

NTOPRB |Database open/close processing.

NTOPT Control of Natural Optimizer Compiler.

NTPRINT |Print file assignments.

NTPRM Create a Natural Parameter Module

NTRPC Handling of remote procedure calls.

NTSCTAB |Scanner characters.

NTSORT  |Control of sort program.

NTSYS Define and activate a set of dynamic profile parameters.

NTTAB Standard output character translation.

NTTABA1 |EBCDIC-ASCII translation.

NTTABAZ2 |ASCII-EBCDIC translation.

NTTABL |,SYS” library output translation.

NTTAB1 |Alternative output translation.

NTTAB2 |Alternative input translation.

NTTF Translation of database ID/file number.

NTTRACE |Define components to be traced.

NTUSER  |Restrict use of profile parameter strings and modules.

NTUTAB1 |Lower-case/upper-case translation.

92

Operations



Using a Natural Parameter Module

Macro Function

NTUTAB2 |Upper-case/lower-case translation.

NTWEBIO |Enable or disable the rendering of certain features of the Natural Web 1/O Interface display.
NTWORK  |Work files assignments.
NTXML Activate PARSE XML and REQUEST DOCUMENT statements.

Operations 93



94



15 z/0S Environment

This part contains information about Natural under the operating system z/OS.

& Natural under z/OS Contains an overview of special considerations that apply when
you are running Natural under z/OS online or in batch mode.

@ Authorized Services Manager Describes the functionality and operation of the Authorized
Services Manager (ASM) which is available under z/OS.

& Natural Shared Nucleus under  Explains the function and the use of the Shared Natural nucleus.

z/OS and z/VSE

& Natural Roll Server Functionality Explains the functions of the Natural Roll Server in general, its
use in a single z/OS system and in a z/OS Parallel Sysplex
environment.

@ Natural Roll Server Operation Provides information on the roll server system requirements,

operation, performance tuning and restartability.

| Note: The codes that Natural may receive when the Roll Server is used during a Natural

session runtime are output by the corresponding teleprocessing interfaces (Natural under
CICS or Natural under IMS TM). For a list of these codes, refer to the Return Codes and Reason
Codes of the Roll Server Request in the Messages and Codes documentation.

95



96



16 Natural under z/0S

B NQLURAL SUDSYSTEM ... 98
B SharBA NUCIBUS ... 98
B TP MONIOr INEBITACES ... .ttt e e e e s 98
= |nterfaces to Database Management SYSIEMS .........cooiiiiiiiiiii e 99
= Natural in Batch Mode UNAEr Z/OS ... ...ttt nnnes 99
m Natural @s a Server UNder ZI0S ... e 99

97



Natural under z/OS

This document contains an overview of special considerations that apply when you are running
Natural under z/OS.

Natural Subsystem

A Natural subsystem under z/OS consists of the following components:

= one or more Global Buffer Pools,
® an Authorized Services Manager,
" a Roll Server.

The Natural subsystem is identified by the Natural profile parameter SUBSID and by corresponding
startup parameters for the components mentioned above. The default subsystem name is NATA4.

Via the Natural subsystem technique, multiple roll servers can be used simultaneously and mul-
tiple independent sets of global buffer pools can be created - in fact, multiple Natural runtime
environments can be created which will be totally independent of one another.

Shared Nucleus

The advantages of a Natural shared nucleus are explained in the section Natural Shared Nucleus
under z/OS and z/VSE.

TP Monitor Interfaces

For information on the TP monitor interfaces that are available with Natural under z/OS, refer to
the sections

® Natural under Com-plete

® Natural under CICS

® Natural under TSO

® Natural under IMS TM

in the Natural TP Monitor Interfaces documentation.

98 Operations



Natural under z/OS

Interfaces to Database Management Systems

Except for Software AG's database management system Adabas, all operations requiring database
interaction are performed by a corresponding Natural interface module.

For information on the database interfaces thta are available with Natural under z/OS, refer to the
relevant separate documentation:

® Natural for DB/2
® Natural for VSAM
® Natural for DL/I

Natural in Batch Mode under z/OS

See Natural in Batch Mode (All Environments) and Natural in Batch under z/OS.

Natural as a Server under z/OS

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. For detailed information, see Natural as a Server under z/OS.

Operations 99



100



17 Authorized Services Manager under z/OS

B ASM OVEIVIEW ..ttt o4t e s et e et e et e e 102
B ASM SyStem REGUIFEMENLS .....eeiviiiie ettt et e et e e et e e e e e e e e nteae e e 103
B ASIM OPEIALION ...ttt as 104

101



Authorized Services Manager under z/OS

This document describes functionality and operation of the Authorized Services Manager (ASM)
which is available with Natural under z/OS.

The following topics are covered:

ASM Overview

The Authorized Services Manager (ASM) provides authorized operating system functions to
Natural. These functions include writing SMF records and z/OS Parallel Sysplex communication
through the Coupling Facility (CF). The ASM provides its functions via PC routines and runs in
its own address space.

The following authorized functions are provided:

® communicating Natural buffer pool administration messages,
" write-access to global buffer pools in system key,

® writing SMF records,

holding Natural session information in the Session Information Pool (SIP).

The first three functions are always available, whereas the SIP is optional and can be made
available via startup parameter. For more information on starting the ASM, see Starting the ASM.

You must use the ASM in the following cases:
® The Natural profile parameter BPPROP is set to PLEX or GLOBAL or GPLEX (buffer pool propagation
is used).

® Natural global buffer pools are allocated in system key; see Installing the Natural GBP Operating
Program.

® Natural under CICS is used in a z/OS Parallel Sysplex (SIP function required).

® Natural under IMS TM is used in terminal-oriented, non-conversational mode (with the SIP
function).

® Natural under IMS TM is used, with the Accounting function writing SMF records.

The Session Information Pool (SIP) holds the Natural session information records. In terminal-
oriented non-conversational mode, the NCI and NII interfaces need these records to continue a
Natural session after a terminal I/O. When running in a z/OS Parallel Sysplex environment, the
SIP is created in the CF and a data space is used as an intermediate buffer to avoid unnecessary
access to the CF. Otherwise, the SIP is created in a data space.

If the ASM is used in a z/OS Parallel Sysplex environment, one ASM instance must be started in
each participating z/OS image.

102 Operations



Authorized Services Manager under z/OS

Note concerning Natural/CICS: The CICS System Recovery Table should include the z/OS system
abend code 0D6.

ASM System Requirements

APF Authorization

System Linkage Index

CF Structure
XCF Signalling Paths

APF Authorization

Link the modules NATASMvr (vr=version, release number) and NATBPMGR to an Authorized Program
Facility (APF) library, specifying IEWL parameter AC(1). Refer to Installation Procedure for Natural
under z/OS.

System Linkage Index (System LX)

As the ASM reserves one system linkage index (System LX), check whether there is a high enough
value of NSYSLX in member IEASYSxx of library SYS1.PARMLIB.

| Note: If you terminate the ASM, the address space ID is no longer available because a System

LX has been used. It becomes available again with the next IPL.

CF Structure

A CF structure is only used if you run the SIP in a z/OS Parallel Sysplex environment. The space
required can be calculated using the following formula:

30 KB + (SIP slot size in bytes + 165) * (number of SIP slots + 8)
For 500 SIP slots of 512 bytes each, define:

STRUCTURE NAME(NATASM) SIZE(380) PREFLIST(CFI1)

Operations 103



Authorized Services Manager under z/OS

XCF Signalling Paths

To propagate buffer pool administration messages in a z/OS Parallel Sysplex environment, the
XCF Signalling Services are used. The minimum message is 64 bytes long, the maximum is 2048
bytes. How often messages are sent depends on how often Natural objects are manipulated (with
the system command CATALOG, STOW or DELETE).

ASM Operation

The following is covered below:

= Starting the ASM

= ASM Messages, Condition Codes and Abend Codes
= ASM Operator Commands

Starting the ASM

You start the ASM either as a batch job or as a started task by executing module NATASM vr, where
vr stands for the current Natural version and release number. On the JCL EXEC statement, specify
as PARM the following parameters:

subsystem-id, XCF-group-name, CF-structure-name, number-of-SIP-slots,SIP-slot-size,message-case

All parameters are positional and must be separated by a comma; they are explained in the table

below:
Parameter Possible Values Default |Comment
subsystem-id 4-byte non-blank NATv |The specified value must match the value of the
string Natural profile parameter SUBSID (v=version).
Anmerkung: With Natural under CICS, refer to
the CICSPLX parameter in the NCMDIR macro for
setting the appropriate subsystem ID.
XCF-group-name any valid XCF group |none |The name of the XCF group for signalling services.
name
CF-structure-name |any valid CF none |Optional, only needed if SIP is used. The name of
structure name the CF structure used for the SIP function.
number-of-SIP-slots|l - 32767 none |Optional, only needed if SIP is used. The number

of slots to be allocated if the CF structure has not
yet been allocated. If omitted or specified as 0, the
entire structure will be used for as many slots as
it can hold.

104

Operations



Authorized Services Manager under z/OS

Parameter Possible Values Default |Comment
SIP-slot-size 256,512,1024,2048,|1024 |The specified value is ignored if a CF structure has
4096 already been allocated.
message-case UCTRAN or blank blank |Specify UCTRAN if the Authorized Services
Manager is to issue all its messages in upper case.

Examples:
//ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF,CFSIP,1500,512"

The subsystem ID is NAT v, the message group for buffer pool communication is NATXCF, the
structure for the Session Information Pool is CFSIP. 1500 SIP slots are to be used, each having a
size of 512 bytes.

//ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF,CFSIP"

Same as above, except SIP slots:

The ASM will use as many SIP slots as the CFSIP structure can hold, each having a size of 1024
bytes.

//ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF,,500,512"

The SIP service is not to use the Coupling Facility, but to build 500 SIP slots in storage, each having
a size of 512 bytes.

//ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF'

The SIP service will not be available.

ASM Messages, Condition Codes and Abend Codes

The ASM writes informational and error messages to JESMSGLG using the WT0 macro (ROUTCDE=11).
The messages are preceded by a message identifier and the ASM's job name, for example:

ASM0005 FBASMvr

In this example, Authorized Services Manager Version vrs (vr=version, release, system maintenance
level) is active

Operations 105



Authorized Services Manager under z/OS

The following condition codes are used:

Condition Code |Explanation

0 Normal completion

12 Wrong parameter input

16 Runtime error has occurred

20 Subtask has failed

24 Abend has occurred

>100 Working storage could not be allocated

The following user abend codes are used:

Abend Code |Reason Comment
u0100 IXCJOIN failed. Abend Register 14 contains the reason code.
u0101 IXCQUERY failed. Abend Register 14 contains the reason code.
uo103 Active member list full. Contact Software AG Support.
u0104 IXCMSGI failed. Abend Register 14 contains the reason code.
Uuol105 Message Exit could not obtain a Purge Task Contact Software AG Support.
Request Block.
uol06 Work Space for IXLCONN could not be obtained. |Contact Software AG Support.
U02xx DSPSERV CREATE failed. XX is the reason code.
U03xx ALESERV ADD failed. XX is the reason code.
U04 xx ALESERV ADD failed. XX is the reason code.
U05xx IXLCONN failed. XX is the reason code.
U06xx IXLLIST WRITE failed. XX is the reason code.

To find a description of reason codes, refer to Programming: Sysplex Services Reference (IBM docu-
mentation). If the error was environment-specific, and it is not clear what the reason was, contact
Software AG Support.

106 Operations



Authorized Services Manager under z/OS

ASM Operator Commands

The following commands can be passed to the ASM using the MODIFY command:

Command

Description

TERM

Terminates the ASM.

TRSTART

Debugging function, only to be used at Software AG's advice. Activates the Trace Task. If the
GTF is started and enabled for User Records 202, the trace records are written to the GTF.

TRSTOP  |Deactivates the Trace Task.
SNAP Debugging function. The ASM's address space is dumped to SYSUDUMP.
VLIST

Display name, version, and assembly time of modules that are linked to the ASM.

For a list of return codes and reason codes of the SIP Service, refer to SIP Service Return Codes and
Reason Codes in the Messages and Codes documentation.

Operations

107



108



18 Natural Shared Nucleus under z/OS and z/VSE

m Environment-Independent NUCIBUS ..........cooiiiiiiiiiie e e e 110
B Creating @ Shared NUCIBUS .........oviiiiiiiii et e e 113
® |nsStalling @ ShAred NUCIBUS ..........oeiiiiiiii e e 114
= Linking Subproducts 10 the NUCIBUS ............oiiiiiiiiiii e 114
= Single-Environment Shared NUCIBUS ...........vvviiiiiiiii i 115
® Environment-Dependent NUCIBUS ..........ooiiiiiiiiiiiie e e e e e e 116
= Statically Linked Non-Natural Programs ............eviiiiiiiiiiiiiie e 116
= Dynamically Called Non-Natural Programs ............ccueieiiiiiiiiiiiiie e 117

109



Natural Shared Nucleus under z/OS and z/VSE

This document refers to the Natural shared nucleus under z/OS and z/VSE only.

Environment-Independent Nucleus

Natural can be split into two functional parts: an environment-independent nucleus and an envi-
ronment-dependent nucleus.

The environment-independent part of the shared nucleus can reside in the shared area of the
operating system; that is,

" in z/OS environments: the link pack area (LPA) or extended link pack area (ELPA),

® in z/VSE environments: the shared virtual area (SVA).

By executing from these special areas of the operating system, the independent nucleus can be
commonly accessed (shared) by multiple address spaces (that is, regions or partitions), for example,
CICS, Com-plete, TSO and batch mode, within the same operating system.

Components of the Shared Nucleus

The following basic modules must be linked together to build the independent (shared) Natural
nucleus:

Module Function

NATSTUB Natural stub module.

NATURAL Natural compiler and runtime.

NATCONFG Natural configuration module.

NATCMOD Bundling module of C routines (server calls).

NATBPMGR Natural buffer pool manager.

NAT2SORT Natural Sort for all systems (if you wish to use a sort program, either Natural's internal

one or an external one). It is also possible to place NAT2SORT in a load library from
where it can be loaded dynamically at runtime; this requires that NAT2SORT is specified
with the profile parameter RCA.

NATRPCvr or NTRPC|Natural RPC runtime.

Anmerkung: If more than one version of this module is available, see the current

Natural Release Notes for the available Natural RPC versions. If only a single version
of this module is available, see the installation job to link a shared nucleus in the
Installation documentation for the actual module name.

NATEDIT Natural program editor and map editor.
NATTEXT Natural syntax.
NATTXT2 Natural keywords.

110 Operations



Natural Shared Nucleus under z/OS and z/VSE

Module Function

NATTXT3 Substitution fragments for Natural error messages.
NATPM Natural print mode.

INPL INPL module.

NATEDT Software AG Editor module.

NATLAST Final include.

Terminal Drivers and Batch Mode Modules

The following modules are optional:

Module |Function

NATTTY |Natural Teletype Support
NAT3270|3270 Terminal Support
NAT3279|3279 Terminal Support

NATWEB |Web I/O Terminal Converter; see Unicode Input/Output Handling in Natural Applications, Web I/O
Interface, in the Unicode and Code Page Support documentation.

NATBTCH|Natural Batch Module

Modules Required for Unicode and Code Page Support

For a list of the mainframe-specific modules to be linked for Unicode and Code Page Support,
refer to Configuration and Administration of the Unicode/Code Page Environment, ICU Library in the
Unicode and Code Page Support documentation.

Module Required for REQUEST DOCUMENT and PARSE XML Statement Support

Module |Function

NATXML |Nucleus Routine Module

For further information, see Installation Steps for REQUEST DOCUMENT and PARSE XML in the
Natural Installation documentation.

Operations 1M1



Natural Shared Nucleus under z/OS and z/VSE

Linking Additional Modules

Linking of additional modules may be required, for example, common user exits or user-defined
programs used by all Natural regions. The entry name of the linked module must be CMSTUB.

Benefits of a Shared Nucleus

The benefits of a shared nucleus are:

" virtual storage relief;
" less paging activity, as there is only one copy of the nucleus in the system;

* less maintenance, as Zaps must be applied only once.

By removing the environment-independent parts of Natural and placing them in the shared
nucleus, you achieve a significant reduction of the size of the environment-dependent nucleus,
since only the environment-dependent part is loaded into the batch or TP-monitor address space,
and the shared nucleus is accessed from the operating system's link pack area.

Since less storage is required by a Natural batch job, this results in less paging and better overall
performance of the operating system. The more batch jobs that concurrently access the shared
nucleus, the greater the savings.

As is the case with batch environments, Natural running in an online environment can also access
the same common nucleus. In production environments which, for example, run Natural under
multiple CICS regions, the savings in virtual storage can be substantial.

There are also benefits when you apply corrective fixes to the Natural nucleus, since you only
need to apply these ZAPs once to the shared nucleus, which is then accessed by the multiple
environments (for example, CICS, Com-plete, TSO and batch).

Additional benefits are possible if you use products such as Natural for VSAM, Natural for DB2,
Natural for DL/I or Natural Advanced Facilities, since these products are all eligible to execute
from the shared nucleus. When installing these products, you would simply place the INCLUDE
statements specific to these products into the link-edit of the shared nucleus.

112 Operations



Natural Shared Nucleus under z/OS and z/VSE

Administration Aspects

In any module installed in the LPA/ELPA or SVA, Zaps cannot be applied online, because the
LPA/ELPA or SVA is write protected. Under z/OS, you can use the operator command SETPROG
to load a new copy of the shared nucleus into the LPA/ELPA. However, to test corrective fixes in
a specific environment, it is recommended that you use one of the following methods which can
be adapted to suit your site-dependent needs:

Environment Requirement

Batch Mode  |Link-edit the shared nucleus to a load library which you add to the STEPLIB concatenation.
The operating system will access this copy of the shared nucleus instead of the copy in the
shared area.

CICS Link-edit the shared nucleus to a load library which you add to the DFHRPL concatenation
in the CICS startup procedure. This allows CICS to load the shared nucleus from your
DFHRPL library instead of from the shared area.

You need to modify the ALT (alternate load table) entry for the shared nucleus to read
SHR=NO so that CICS will access the DFHRPL libraries instead of the shared area.

Users of CICS Version 3.3.0 and above make this change to the PPT entry for the shared
nucleus instead, since the ALT has been eliminated in these releases of CICS:

Specify USELPACOPY (NO) in z/OS and USESVACOPY (NO) in z/VSE, respectively, for this
program definition.

Com-plete/TPF |Link the shared nucleus to your Com-plete user program library and add the shared nucleus
to the list of RESIDENTPAGE programs in your Com-plete SYSPARMs or load the shared
nucleus dynamically as RESIDENTPAGE.

TSO Link-edit the shared nucleus to the same load library that contains the TP-dependent
nucleus for Natural under TSO. When the CLIST is executed, the operating system will
access this copy of the shared nucleus instead of the copy in the shared area.

IMS TM Link-edit the shared nucleus to aload library which you add to the STEPLIB concatenation
in your procedure used for executing the IMS TM application region. When Natural is
started, the operating system will access the shared nucleus from STEPLIB instead of from
the shared area.

Creating a Shared Nucleus

The shared nucleus is created via the linkage editor in the SMA Job NATIO60 as an optional part
of the base Natural installation.

When setting up the linkage editor INCLUDE statements for the shared nucleus, it is important to
carefully follow the installation instructions outlined in the Natural Installation documentation.

Operations 113



Natural Shared Nucleus under z/OS and z/VSE

A common error is to omit or add link-edit INCLUDE statements to the shared and/or non-shared
nucleus, which can cause unpredictable results when you attempt to start a Natural session. If this
happens, please review the installation instructions and if necessary, call Software AG support
for assistance.

Installing a Shared Nucleus

The installation of the shared nucleus is described in the Natural Installation documentation in the
installation sections for the various Natural TP monitor interfaces included in the TP Monitor
Interfaces documentation. The following points should be noted in general:

® The shared nucleus is created by an additional link step. The target library for this link can be
any library, in which the operating system loader searches for executable modules. For test
purposes, it may be easier to first link the shared nucleus in one of the libraries in your STEPLIB
(or SEARCH chain) and later into an LPA (or SVA) library for production. To avoid confusion, you
should delete the module in the STEPLIB library when linking it into the LPA library.

® The name of the shared nucleus to be used is specified with the profile parameter NUCNAME in
the Natural parameter module when installing the environment-dependent part. It is possible
to specify NUCNAME as a dynamic parameter in the primary parameter input, but not in the
PROFILE or SYS parameter strings.

Linking Subproducts to the Nucleus

Most Software AG subproducts can be linked either to the environment-independent Natural
nucleus or to the environment-dependent part. Refer to the installation instructions of your sub-
products.

The following Natural subproduct, however, must be linked to the environment-dependent part
and cannot be linked to the shared nucleus:

® The Adabas link routine (ADALNK or ADAUSER)

For a few other products, separate portions need to be linked to the shared nucleus as well as to
the environment-dependent part. This is documented in detail with the respective subproducts.

114 Operations



Natural Shared Nucleus under z/OS and z/VSE

Single-Environment Shared Nucleus

Some subproducts of Natural require that TP-specific modules be included in the Natural nucleus.
In this case, you need to create one Single-Environment Shared Nucleus for each operating envi-
ronment (for example, one for batch mode, one for TSO and one for CICS.) The advantage is still
that all batch regions or all TSO users share their own Natural nucleus.

The following diagram shows an example for this situation:

Batch-dependent
Natural
Region 1

Batch-dependent
Natural
Region 2

TS0-dependent
MNatural
Uzer 1

TS0-dependent
Natural
User 1

As this concept of Single-Environment Shared Nuclei can always be installed, Software AG's
System Maintenance Aid (SMA) generates this type of shared nucleus if the parameter SHARED-NUC
issetto Y.

If all your single-environment shared nuclei are identical and do not contain TP-monitor-specific
modules, you can then go from a single-environment shared nucleus to a multi-environment
shared nucleus.

Operations 115



Natural Shared Nucleus under z/OS and z/VSE

Environment-Dependent Nucleus

In addition to the environment-independent part of the shared Natural nucleus, every single
Natural region runs one or more environment-dependent module(s), which differ(s) according to
the actual environment; that is, Com-plete, CICS, IMS TM, TSO, or batch mode. The environment-
dependent part receives control at the beginning of a session and checks whether the Natural
nucleus is linked. If not, the shared nucleus is loaded or located and communication is established.

The following modules must be linked together to build the dependent part of Natural specific to
each environment:

* the Natural environment-specific interface (that is, NCFNUC, NATCICS, NATIMS, NATTSO or
NATOS/NATVSE) together with other interface-related modules;
* the environment-specific Natural parameter module NATPARM;

® Natural subproduct modules with entries defined in the internal CSTATIC list via macro NTINV,
or specified as CSTATIC in the Natural parameter module;

® non-Natural programs defined as CSTATIC in the Natural parameter module.

® work-file and print-file modules for Com-plete, TSO or batch mode.

Statically Linked Non-Natural Programs

The Natural parameter module NATPARM contains the list of all non-Natural programs to be stati-
cally linked. This list consists of an internal part defined by the macro NTINV and an external part
defined by the CSTATIC parameter. Each entry of the list consists of a program name and a V-
constant which must be resolved by linking the corresponding module to the Natural parameter
module.

The internal list is permanently present in the NATCONFG module of the independent nucleus and
is used if no parameter module is linked to the independent module. If there are non-Natural
programs statically linked to the independent nucleus, a parameter module must be linked, too,
where all these programs are defined.

Optionally, an alternative parameter module can be specified via the PARM parameter. An alterna-
tive parameter module has precedence over a linked parameter module. At session initialization
time, up to three lists of statically linked programs are merged together. The base list for this
merge is that of the actual parameter module, which means that only its entries are used. V-constants
not resolved in this list are tried to be satisfied by the environment parameter module if an alter-
native parameter module is used. V-constants not resolved in the environment parameter module
are tried to be satisfied by the environment-independent nucleus.

116 Operations



Natural Shared Nucleus under z/OS and z/VSE

If anon-Natural program is to be statically linked to the independent nucleus, it must be specified
in a parameter module linked to the independent nucleus as well as in the parameter module
actually used for the session.

Additionally, "dynamic" linking of non-Natural programs defined for being statically linked is
possible during initialization of a Natural session. Refer to the description of the RCA profile
parameter for further details.

Dynamically Called Non-Natural Programs

Instead of statically linking a non-Natural program, you can also call it dynamically at execution
time by using the Natural CALL statement. In this case, however, the program must not be defined
as statically linked.

When the CALL statement is executed, Natural tries a dynamic load and call operation with the
help of the environment (sub)system (for example, with EXEC CICS LINK under CICS).

Operations 17



118



19 Natural Roll Server Functionality

B Natural ROI-SEIVEr OVEIVIEW .........eviiiiiiii et 120
m Roll Serverin @ Single Z/OS SYSIEM ....coiiiiiiieiiie e 120
= Roll Server in a z/OS Parallel Sysplex EnVIrONMENt ............ooiiiiiiiii e 122
B RO FIle @NA LRB ...t 124

19



Natural Roll Server Functionality

This document covers the following topics:

See also Natural Roll Server Operation.

Natural Roll-Server Overview

With the Natural Roll Server, Natural can execute in a multiple-address-space system like CICS
or IMS TM; these address spaces may be located in multiple z/OS images (z/OS Parallel Sysplex).
You can, of course, also use the Roll Server if you are running a single z/OS system.

When Natural performs terminal I/O, it must save the application's context data (the thread):
Before the terminal I/O is started, the thread is given to the Roll Server which keeps it in its Local
Roll Buffer, or in the roll file. When the terminal I/O is completed, Natural requests the thread
from the Roll Server, and continues the application. In a z/OS Parallel Sysplex environment, the
Roll Server keeps information about the threads (the roll file directory) in a data structure in the
Coupling Facility. Thus, it is possible for a Natural application to execute in different z/OS systems
at different times: A thread can be given to the Roll Server on one system, and requested back
from another system.

The Roll Server runs in its own address space. It provides its services as PC routines. In a z/OS
Parallel Sysplex environment, one instance of the Roll Server must be started in each participating
z/OS image.

A list of applied Roll Server Zaps is displayed by the Natural command DUMP ZAPS. In addition,
the list of applied Zaps is written to JESMSGLG during Roll Server startup.

Note concerning Natural under CICS: The CICS System Recovery Table should include the z/OS
system abend code 0D6.

Roll Server in a Single z/OS System

When the Roll Server receives a thread through a write request (before terminal output), it checks
whether enough space is available in the local roll buffer (LRB). If there is, the thread is copied to
the LRB. If not, the thread is written to the roll file. The thread is also written to the roll file if it is
larger than the LRB slot size. If the thread is larger than the roll file slot size, additional overflow
slots are allocated to accommodate the thread. Allocation of overflow slots is restricted to the roll
file that the Natural session was initially assigned to. If the roll file does not have enough free
space to allocate the necessary overflow slots, an error is generated and the requesting Natural
session terminates abnormally. Overflow slots are implicitely freed by a subsequent write request
with a smaller thread.

120 Operations



Natural Roll Server Functionality

When the Roll Server receives a read request for the thread (after terminal input), it tries to locate
the thread in the LRB. If the thread is found, it is copied from the LRB to the requestor's address
space. If not, the thread is read from the roll file and copied to the requestor's address space.

To ensure that the system performs well and that there is always enough space in the LRB, there
are ,water marks”. If the LRB's high water mark is reached, the staging task is activated and copies
the LRB content to the roll file until the low water mark is reached. Where the high water mark
and the low water mark are placed is therefore an important issue of performance tuning. For
more information on performance tuning, see the section Roll Server Performance Tuning.

Operations 121



Natural Roll Server Functionality

lllustration of the Roll Server in a Single z/OS System:

Roll Server

LRB
: . Roll File
‘:Ifg:er : < PC \Wite — —
= . ! Direct
Mark : (] eclory
. Sl White Task | . > Slf”
o PC Read c
Low :
Water “_ | ReadTask |4 :
Mark Slot :
Slot . p Staging Task | | p- 1
; Slot

RF Directory

Roll Server in a z/OS Parallel Sysplex Environment

In a z/OS Parallel Sysplex environment, the Roll Servers in the participating z/OS images commu-
nicate through the Coupling Facility's (CF) XCF Signaling Services, and the roll file directory
resides in a XES data structure.

When the Roll Server receives a thread through a write request (before terminal output), it checks
whether enough space is available in the local roll buffer (LRB). If there is enough space, the thread
is copied to the LRB, and written asynchronously from the LRB to the roll file. If there is not enough
space in the LRB, the thread is written directly to the roll file. The roll file directory in the CF
structure is updated accordingly. Thread overflow is handled as described under Roll Server in
a Single z/OS System.

122 Operations



Natural Roll Server Functionality

When the Roll Server receives a read request for a thread (after terminal input), and the last write
request was issued in the same z/OS image, the Roll Server copies the thread directly from the
LRB into the requestor's address space. If the last write request did not come from the same z/OS
image, the thread is read from the roll file and then copied into the requestor's address space.

Illustration of Roll Servers in a z/OS Parallel Sysplex Environment:

Roll Server Roll Server
LRB LRB
Slot

PC Write Coupling Facility PC Write ’

: - .
i > Wirite Task Wiite Task D
: ™ pC Read RF Directory PCRead |4 :

: C Read Task I Read Task ‘) :
) ] _ Roll File ) _ .
Slat I Staging Task - Staging Task & Slat

{ Directory -
Slot e Slat
Slot

Operations 123



Natural Roll Server Functionality

Roll File and LRB

The roll file is a BDAM file logically subdivided into a directory and fixed-length slots. The slot size
is a parameter of the roll-file formatting routine NATRSRFI. Slots must be larger than the largest
compressed Natural thread expected.

The roll file directory contains one entry for each active Natural session, together with a timestamp
of its last write request. In a single z/OS system, the directory resides in the Roll Server's address
space. In a z/OS Parallel Sysplex environment, it resides in the Coupling Facility. The directory is
written back to the roll file only when the Roll Server terminates or de-allocates its resources. Refer
to Roll Server Operation, DEAL and TERM commands.

The local roll buffer is contained in a data space or z/OS memory object and subdivided into fixed-
length slots. LRB slots may be smaller than roll-file slots. When a thread is larger than the LRB
slot size, it is written directly to the roll file. The number of LRB slots and their size are Roll Server
startup parameters; they are important factors in system performance.

The Roll Server can run with up to five different roll files. Each of these roll files is logically
connected to one local roll buffer. If there are five roll files, there are five corresponding LRBs.
Each roll file is accessed by its own dedicated read, write, and staging tasks. Thus, if the roll files
are created on different disks on different channels, the roll files can be accessed simultaneously.

Natural users are allocated to roll files according to the following algorithm:

RN := (first four bytes of roll-server-user-id interpreted as positive integer)
modulo number of roll files + 1
ALLOCNUM := 0
FOR' I = RN TO number of allocated roll files
IF ROLLFILE(CI) is not full THEN

ALLOCNUM := 1
ESCAPE BOTTOM
END-IF
END-FOR

IF ALLOCNUM = 0 THEN
FOR I =1 TO RN-1
IF ROLLFILE(CI) is not full
ALLOCNUM := 1
ESCAPE BOTTOM
END-IF
END-FOR
END-IF
IF ALLOCNUM = 0 THEN
Return 'roll file full' error
ELSE
Allocate userid to roll file number ALLOCNUM
END-IF

124 Operations



Natural Roll Server Functionality

where roll-server-user-idis a 16-byte, unique string provided by the Natural interface; for
more information, see the corresponding TP monitor interface section in this documentation.

Example:

® There are five roll files and the roil7-server-user-idis UF. Roll File 2 is full, but Roll File 3 has
free slots available:

E4C64040 - 80000000 = 64C64040
64C64040 modulo 5 =1

= Roll File 2 is the first file to be checked for a free slot. Since the check fails, Roll File 3 is tried
next, and a free slot is found.

= User UF is therefore allocated to Roll File 3.

If this algorithm does not guarantee that your user IDs are evenly distributed among the roll files,
the Roll Server's user exit NATRSU14 will help. This is especially relevant in server environments
(see Natural as a Server under z/OS), because the first eight bytes of the roll server user ID are
filled with the name of the server. For more information on this user exit, see Natural Roll Server
Operation, NATRSU14 User Exit.

To see how evenly your user IDs are distributed, display the Roll-Server statistics using the
Natural command SYSTP, selection "R".

Operations 125



126



20 Natural Roll Server Operation

= Roll Server System REQUIMEMENTS .......coiiuiiiiiiiiiie e 128
B Formatting the ROI FIIE ....eoo et a e 129
B SHArting the ROIN SEIVET ... e 133
= Roll Server Messages, Condition Codes and Abend COAES .........eveeiiiiiiiiiiiiiieee e 136
= Return Codes and Reason Codes of the Roll Server ReqUESt ............cooiviviiiiiiiiiiiii e, 137
m Operating the ROI SEIVET ..o 137
m Roll Server Performance TUNING ........ccoiiiiiiiiiiie e e e e e e e e e e e e 138
B RO SEIVEN USE EXIES ..vvvvviiieeeee ettt e et e e e et a e e e e e e e st raaeeeas 139

127



Natural Roll Server Operation

This document covers the following topics:

See also Natural Roll Server Functionality.

Roll Server System Requirements

This section describes the Roll Server system requirements.
The following topics are covered:

= APF Authorization

= System Linkage Index
= Virtual Storage

= CF Structure

= XCF Signalling Paths

APF Authorization

Link the module NATRSMvr (vr=version, release number) to an Authorized Program Facility (APF)
library, specifying IEWL parameter AC(1). Refer to Installation Procedure for Natural under z/OS.

System Linkage Index

As the Roll Server reserves one system linkage index (System LX), check whether there is a high
enough value of NSYSLX in member TEASYSxx of library SYS1.PARMLIB.

When the Roll Server terminates, its address space ID is no longer available because a System LX
has been used. It becomes available again with the next IPL.

To avoid this, deactivate the Roll Server with the DEAL operator command and restart it afterwards.

Once a System LX has been reserved, it is reused with every restart of the Roll Server until the
next IPL.

Virtual Storage

Storage Size

ECSA 84 bytes

Private program storage 30 KB above

Fixed subpool storage (incl. ELSQA): |10 KB below, 50 KB above
LRB directory 32+(64* number of LRB slots)
100 slots per roll file 4 KB above

128 Operations



Natural Roll Server Operation

Every additional roll file 30 KB above
Working storage depending on load, about 1 MB above
CF Structure

The space required is calculated using the following formula:

24 KB + (RFN + 1) * 1 KB + (RFS + 8) * 160 bytes

where RFN denotes the number of roll files and RFS denotes the total number of roll-file slots in
all roll files.

Example:

= There are five roll files with 1000 slots each.
24 KB + 6KB + 5008 * 160 bytes = 24 KB + 6 KB + 783 KB = 813 KB
® The CF structure should thus be defined with 820 KB:

STRUCTURE NAME(NATROLLS) SIZE(820) PREFLIST(CF1)

XCF Signalling Paths

In a z/OS Parallel Sysplex environment, the Roll Servers communicate via the XCF Signalling
Services. As the default XCF group name, the leftmost eight bytes of the CF structure name are
used.

If you want to specify your own XCF groupname, use the NATRSU24 user exit. For more information
on this user exit, see NATRSU24 User Exit.

Formatting the Roll File

To format the roll file, proceed as follows:

1. Allocate it as a physical, sequential dataset with a fixed-record format.

2. Format it using module NATRSRFI.
During formatting, the roll file is converted to BDAM format with a device-dependent block size.

| Note: If you plan to use an existing roll file of a previous version, it is sufficient to execute
the NATRSRFI RESET function.

Operations 129



Natural Roll Server Operation

To format, enter the following parameter string under the DD name RFIPARMS, or as PARM on the
JCL EXEC statement:

function,dd-name,slot-sizenumber-of-slots

All parameters are positional; they are explained in the table below:

Parameter Description

function FORMAT Format the roll file.

RESET All roll file slots are reset (marked as free). You
can only use this parameter value if the roll file
has already been formatted.

The only other parameter allowed is dd-name.

LIST Print a list of session-IDs contained in the roll file
and their last activity.

The only other parameter allowed is dd-name.

dd-name The name of the DD statement under which the roll file has been specified.

slot-size The size of a roll file slot in bytes. This size is rounded to the next higher multiple of
the block size used.

It is recommended to initially use a slot size equal to the size of the Natural thread.
Then look at the Roll Server statistics. They also show the largest occurrence of a thread
size. Use this value to reduce the slot size, if necessary.

number-of-silots|The number of roll file slots to be allocated. This number is the maximum number of
concurrently active users.

This parameter is optional. If omitted, the entire roll file, as allocated, will be formatted.

To calculate the required disk space in cylinders for a roll file (SPACE parameter of the DD statement),
use the following formula:

number-of-cylinders = ceiling (number-of-slots * slot-size / 30*block-size)

130 Operations



Natural Roll Server Operation

or in tracks

number-of-tracks = ceiling (number-of-slots * slot-size / 2*block-size)
The block size used is:

23476 for 3380 DASD

27998 for 3390 DASD

22928 for 9345 DASD

In addition, space is needed for the roll file directory header (40 bytes) and one directory entry
for each roll file slot (24 bytes). Thus, one additional block is needed for roughly 976 slots on 3380,
1164 slots on 3390, or 953 slots on 9345 DASD.

NATRSRFI Output
If a DD statement with ddname RFIPRINT is specified, NATRSRFI directs its output to this dataset.

When RFIPRINT is omitted, output is written to JESMSGLG using the WT0 macro (ROUTDCE=11). Note
that RFIPRINT must be specified for the LIST function.

NATRSRFI Conditon and Abend Codes:

The following condition codes are used:

0 |Normal completion.

4 |Number of slots formatted is less than requested.

20 |Parameter error.

The following user abend codes are used:

Abend Code |Cause

Uo100 Open for RFIPARMS or RFIPRINT failed.
Uo101 Open for roll file failed.

Operations 131



Natural Roll Server Operation

Example 1:

//FBRUNRFI
//FORMAT
//STEPLIB
//RF1
//RF2
//RFIPARMS

FORMAT,RF1,
FORMAT,RF2,

JOB  (FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
EXEC PGM=NATRSRFI

DD DISP=SHR,DSN=NATURAL.NATvr.LOAD

DD DISP=SHR,DSN=FB.SYSF.ROLLF1

DD DISP=SHR,DSN=FB.SYSF.ROLLF2

DD *

200000,1000

200000

where vrs = version, release, system maintenance level.

Excerpt from resulting JESMSGLG:

+FBRUNRFI :
+FBRUNRFI:
+FBRUNRFI :

IECO31I D37-04,IFGO554P,FBRUNRFI, FORMAT,RF1,305B,ADA002,FB.SYSF.ROLLF1

+FBRUNRFI :
+FBRUNRFI:
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :

IECO31I D37-04,IFG0554P,FBRUNRFI, FORMAT,RF2,020F,USRFO8,FB.SYSF.ROLLFZ

FORMAT,RF1,200000,1000
RF1: FB.SYSF.ROLLF1
Creation date: 2001/06/13 Volume: ADA002(3390)

Not enough space for 1000 slots.
60 Blocks written. Block size is 27998.
1 Directory block.
8 Blocks per slot. Slot size is 223984.
7 Slots initialized. Roll file version vrs.
3 Blocks unused.
FORMAT,RF2,200000
RF2: FB.SYSF.ROLLF?2
Creation date: 2001/06/08 Volume: USRF08(3380)

+FBRUNRFTI: 60 Blocks written. Block size is 2347/6.
+FBRUNRFTI: 1 Directory block.

+FBRUNRFTI: 9 Blocks per slot. Slot size is 211284.
+FBRUNRFI: 6 Slots initialized. Roll file version vrs.
+FBRUNRFI: 5 Blocks unused.

Example 2:

//FBRUNRFI JOB (FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
//FORMAT EXEC PGM=NATRSRFI,PARM='FORMAT,RF1,200000"
//STEPLIB DD DISP=SHR,DSN=NATURAL.NATvr.LOAD

//RF1 DD DISP=SHR,DSN=FB.SYSF.ROLLF1

//RFIPRINT DD SYSOUT=X

132 Operations



Natural Roll Server Operation

Resulting RFIPRINT:

Natural Roll Server - Roll File Utility Version
Vrs

FORMAT,RF1,200000

RF1: FB.SYSF.ROLLF1

Creation date: YYYY/MM/DD Volume: ADA002(3390)
60 Blocks written. Block size is 27998.

1 Directory block.

8 Blocks per slot. Slot size is 223984.

7 Slots initialized. Roll file version vrs.

3 Blocks unused.

Notes Concerning the Formatting or Resetting of Roll Files

" You can format or reset several roll files at once by specifying several parameter lines in RFIPARMS.
" You cannot format or reset a roll file while the roll server is active.

® When the roll file is formatted in a z/OS Parallel Sysplex environment, the roll server Coupling
Facility structure must also be cleared using the SETXCF operator command, for example:

SETXCF FORCE,STR,STRNAME=NATROLL1

Starting the Roll Server

You start the Roll Server either as a batch job or as a started task by executing module NATRSMv r.
The roll file(s) must be defined as DD statements with ddname ROLLF1 to ROLLF5.

On the JCL EXEC statement, specify as PARM the following parameters:
Sbgystan-id,nnber-of-rol 1-files,rumber-of-LR3-slats, LIB-sIat-size,(Fstnauretame, lovwatermark, ighater-mark, roactivity-tine, tieut-dek-tine lessaE-ae

All parameters are positional and must be separated by a comma. They are explained in the table
below:

Parameter Possible Values |Default |Comment

subsystem-id 4-byte NATv | The specified value must match the value of the Natural
non-blank profile parameter SUBSID (v = version number).
string

Anmerkung: With Natural under CICS, refer to the

ROLLSRV parameter in the NCMDIR macro for setting
the appropriate subsystem ID.

Operations 133



Natural Roll Server Operation

Parameter

Possible Values

Default

Comment

number-of-roll-files

0 -5

1

In a z/OS non-Parallel Sysplex system, the Roll Server
can operate without a roll file, using only the in-storage
Local Roll Buffer.

number-of-LRB-slots

1 - 32767

none

The number of LRB slots multiplied by the slot size
must not exceed 2 GB.

The same number of LRB slots is assigned for each LRB,
i.e. for each roll file used. The total number of LRB slots
is calculated by the formula:

number-of-roll-files * number-of-LRB-slots

LRB-slot-size

any numeric
value

roll file
slot size

Value in number of bytes.
This parameter must be specified if no roll file is used.

If roll files are used, this parameter is ignored and the
roll file slot size is used instead.

CF-structure-name

any valid
structure
name

none

If you specify less than 16 characters, blanks are
appended.

Only specify this parameter if you use the Coupling
Facility (with z/OS Parallel Sysplex).

low-water-mark

Specifies the low water mark in steps of ten percent of
the number of LRB slots.

This parameter is ignored in a z/OS Parallel Sysplex
environment.

high-water-mark

Analogous to low-water-mark parameter.

Value "10" means that the staging task will never be
activated. It is only recommended to specify "10" if the
LRB is large enough to serve all simultaneously active
Natural sessions.

This parameter is ignored in a z/OS Parallel Sysplex
environment.

non-activity-time

1 - 999999

none

Number of hours a session can be inactive before it is
deleted from the roll file.

If this time is exceeded, the session is deleted during
the next scheduled timeout check.

If this parameter is omitted, no timeout check will be
executed.

This parameter can be changed using operator
command TIMEOUT, see below.

134

Operations



Natural Roll Server Operation

Parameter Possible Values |Default |Comment

timeout-check-time |0000 - 2359 |none |The time of day that the timeout check is to be run.

Sessions will be deleted if they have been inactive
longer than the non-activity time specified by the
preceding parameter.

If this parameter is omitted, no timeout check will be
scheduled.

This parameter can be changed using operator
command TIMEOUT, see below.

message-case UCTRAN or blank |Specify UCTRAN if the Roll Server is to issue all its
blank messages in upper case.

Note: The Local Roll Buffer resides in a Memory Object , above the bar”. Use the MEMLIMIT

parameter on the EXEC statement to ensure enough memory can be allocated ,,above the
bar”.

Examples for Starting the Roll Server as a Batch Job

// EXEC PGM=NATRSMvr,PARM="NAvr,,1000"
//ROLLF1 DD DSN=SYSF.ROLLFILE

The subsystem ID is NAvr, one roll file is used (default), and the Local Roll Buffer has 1000 slots.
The slot size used is identical with the roll file's slot size. The low water mark is 70% (default), the
high water mark is 80% (default).

// EXEC PGM=NATRSMvr,PARM=',5,1000,150000,NATROLLL" ,MEMLIMIT=800M
//ROLLF1 DD DSN=DASDI.ROLLFILE
//ROLLFZ2 DD DSN=DASDZ2.ROLLFILE
//ROLLF3 DD DSN=DASD3.ROLLFILE
//ROLLF4 DD DSN=DASD4.ROLLFILE
//ROLLF5 DD DSN=DASD5.ROLLFILE

The subsystem ID is NAT v (default), five roll files are used, and each of the five Local Roll Buffers
has 1000 slots. The LRB slot size is 150000 bytes. The roll file directory resides in the Coupling
Facility structure NATROLL1. Low and high water marks are ignored, because every thread is
written to the roll file (see Natural Roll Server Functionality). Since this job is intended for z/OS,
the MEMLIMIT option specifies 800 Megabytes for the Local Roll Buffers.

. Note: The Roll Server will not start in the following cases:
® Another Roll Server is running with the same subsystem-id.

® Another Roll Server is accessing a roll file specified in its JCL

Operations 135



Natural Roll Server Operation

= A roll file has been reformatted without resetting the CF structure, using the SETXCF FORCE
command.

Roll Server Messages, Condition Codes and Abend Codes

The Roll Server writes informational and error messages to JESMSGLG using the WT0 macro
(ROUTCDE=11). The messages are preceded by a message identifier and the Roll Server's job name,
for example:

RSM0019 FBRSMvrs: Roll Server Version vrs is active

The messages are explained in the section Roll Server Messages in the Messages and Codes documen-
tation.

Condition Codes of the Roll Server Started Task

The following condition codes are used:

0 Normal completion
12 Wrong parameter input
16 Runtime error

20 Abend has occurred

>100 [|Initialization error

User Abend Codes

When an unexpected return code is issued by an XCF or XES Service Call, an abend with a dump
is forced. Register 14 of the abend register contains the reason code. To find a description of the
reason, refer to Programming: Sysplex Services Reference (IBM documentation). If the error was not
environment-specific, send the dump to Software AG support.

The following user abend codes are used:

Abend Code |Cause

Uu0200 IXLCONN failed
U0201 IXLFORCE failed
u0202 IXLLIST failed
U0203 IXLDISC failed
u0204 IXCLEAVE failed

136 Operations



Natural Roll Server Operation

Abend Code |Cause

U0301 IXLLIST failed
u0302 IXCMSGO failed
U0401 IXLLIST failed
U0501 IXLLIST failed

Return Codes and Reason Codes of the Roll Server Request

These are codes that Natural may receive from the Roll Server's PC services routines. They are
reported by the respective teleprocessing interfaces (Natural CICS or Natural IMS interface). For

a list of these codes,

refer to the Return Codes and Reason Codes of the Roll Server Request in the Mes-

sages and Codes documentation.

Operating the Roll Server

The following commands can be passed to the Roll Server via the MODIFY operator command:

Command

Description

DEAL

The Roll Server is stopped, but the address space is not terminated. The roll file
directory and all modified LRB slots are written to the roll file. In a de-allocated status,
the Roll Server can be restarted with new parameters and the old address space ID.
The roll files can be reformatted in de-allocated status. If you do that, however,
currently active Natural sessions are no longer restartable.

Statistics are written to JESMSGLG using the WTO macro (ROUTCDE=11). Statistics
include information about roll-out and roll-in activity, as well as roll file I/O.

DIAGNOSE

Debugging function, only to be used at Software AG's advice.

This command does not have any function. Its intended future use is in connection
with special Zaps to aid in diagnosing specific customer problems, as the need arises.

SNAP

Debugging function. The Roll Server's address space is dumped to SYSUDUMP.

START,parmstring

Reactivates the Roll Server with the specified parameters. You can only use this
command in deactivated status.

STATS

Write Roll Server statistics to JESMSGLG using the WTO macro (ROUTCDE=11). Statistics
include information about roll-out and roll-in activity, as well as roll file I/O.

Operations

137



Natural Roll Server Operation

Command Description

TERM Stops the Roll Server. The roll file directory and all modified LRB slots are written to
the roll file and the address space is terminated. The address space ID is no longer
available until the next IPL.

Statistics are written to JESMSGLG using the WTO macro (ROUTCDE=11). Statistics
include information about roll-out and roll-in activity, as well as roll file I/O.

TIMEQUT NAT nnn Specifies or replaces the non-activity time
parameter.
TOC hhmm Specifies or replaces the time of day of the
timeout check.
OFF Disables timeout checking.
ON Reinstates timeout checking.
NOW Starts an immediate timeout check. Normal

timeout check scheduling (if specified)
remains in effect.

?

(or no specification)

Displays current timeout settings. The
question mark (?) is optional and can be
omitted.

TRSTART Debugging function, only to be used at Software AG's advice. Activates the Trace
Task. If the General Trace Facility (GTF) is started and enabled for user records of
Type 200, trace records are written to the GTF.

TRSTOP Deactivates the Trace Task.

Roll Server Performance Tuning

As a general rule for Roll Server performance tuning, give the Roll Server a higher dispatching

priority than the address spaces where Natural runs.

To find out where the weaknesses in performance are, analyze the system performance using the
Natural Subsystems and Roll Server Information function of the SYSTP utility.

When looking at Roll-Server Statistics, keep an eye especially on the following values:

® The number of direct writes.

"Direct write" means that the Natural thread that was received was written to the roll file

directly.

There are two possible reasons:

1. No LRB slot available. Increase the LRB.

2. The compressed thread was larger than a single LRB slot. Increase the LRB slot size.

138

Operations



Natural Roll Server Operation

® The number of direct reads.

,Direct read” means that the requested thread was no longer in the LRB and had to be read
directly from the roll file.

If the ratio of direct reads to the total number of reads is very high in a single z/OS system, the
LRB is too small (increase it).

If the ratio of direct reads to the total number of reads is very high in a z/OS Parallel Sysplex
environment, this may also mean that there are many inter-system activities, which in turn
means that a Natural session changes z/OS images quite frequently during its lifetime.

® The number of staging waits (in a single z/OS environment).

A ,staging wait” is a situation where a write request had to wait until the Staging Task had
written the LRB slot to the roll file. If the ratio of staging waits to the total number of write
requests is very high, this indicates that the high and low water marks are set inappropriately
or that there is a bottleneck on the roll file device/roll file channel.

Based on experience with stress tests, the following is recommended:

If the ratio of maximal number of active users to number of LRB slots is very small, increase the
high water mark. If not, decrease the high water mark.

The difference between high water mark and low water mark should not be larger than three
(30%).

Ideally, if the number of LRB slots is definitely larger than the maximum number of concurrent
users, the high water mark should be set to 10.

Roll Server User Exits

The roll server has two user exits.

® NATRSU1l4
® NATRSU24

Sample source modules are delivered for these.

Operations 139



Natural Roll Server Operation

NATRSU14 User Exit

Specifies the roll file number to be used.
Entry calling conventions:

" Register 1 addresses the parameter list that is described by the following DSECT:

PLIST DSECT

PLRSVER DS CL4 Rol1l server version (= 'vrs')
PLNRF DS H Number of roll files

PLUID DS CL16 Userid

PLTSNUM1 DS H Total number of slots Roll file 1

Number of slots in use Roll file 1
Total number of slots Roll file 2

Number of slots in use Roll file 2
Total number of slots Roll file 3

Number of slots in use Roll file 3
Total number of slots Roll file 4

PLUSNUM4 DS Number of slots in use Roll file 4
PLTSNUM5S DS Total number of slots Roll file 5

PLUSNUM5S DS H Number of slots in use Roll file 5
PLISTL EQU *-PLIST

PLUSNUM1 DS
PLTSNUMZ DS
PLUSNUMZ DS
PLTSNUM3 DS
PLUSNUM3 DS
PLTSNUM4 DS

oI T T T T T T T

vrs stands for the current Natural version, release and system maintenance level.
" Register 13 points to a 36-fullword save area.
" Register 14 contains the return address.

" Register 15 contains the entry address of NATRSU14.
Return calling convention:
" Register 15 contains the number of the roll file in binary format.

Note: If access registers are modified within this user exit, these access registers must be

saved and restored on return. This user exit is called in primary addressing mode with pPsw
Key 8. Since it runs in cross-memory mode, no SVC except SVC 13 may be used.

NATRSU24 User Exit

Specifies the XCF group name to be used.
Entry calling conventions:

" Register 1 points to an 8-byte area in which the group name must be generated.
" Register 13 points to an 18-fullword save area.

" Register 14 contains the return address.

140 Operations



Natural Roll Server Operation

" Register 15 contains the entry address of NATRSU24.
As a group name default, the Roll Server will use the leftmost 8 bytes of the CF structure name.

This user exit is called in primary mode, PSW Key 8 and in task mode.

Operations 141



142



21 z/VSE Environment

This part contains information about Natural under the z/VSE operating system.

& Natural under z/VSE Contains special consideration that apply when you are running
Natural under z/VSE online or in batch mode.
Shared Natural Nucleus under Explains the function and the use of the Shared Natural nucleus.
z/VSE

143



144



22 Natural under z/VSE

B NTUTAL SUDSYSIEM ...ttt 146
B NGLUFAl SNAMEA NUCIBUS ......vvvieisieitieiieeiieeet ettt s s s ssnennnsnnnne 146
e o (o Tl [ (<Y g = Tot PP 146
= |nterfaces to Database Management SYSIEMS ........c.oouiiiiiiiiiiii e 146
= Natural in Batch MOde UNAET ZIVSE ........ovieieieieie e 147

145



Natural under z/VSE

This document contains an overview of special considerations that apply when you are running
Natural under z/VSE.

Natural Subsystem

A Natural subsystem under z/VSE consists of the following components:
" one or more global buffer pools.

The Natural subsystem is identified by the Natural profile parameter SUBSID and by corresponding
startup parameters for the components mentioned above. The default subsystem name is NATv,
where v is the product's version number.

Natural Shared Nucleus

The advantages of a Natural shared nucleus are explained in the section Natural Shared Nucleus
under z/OS and z/VSE.

TP Monitor Interfaces

For information on the TP monitor interfaces that are available with Natural under z/VSE, refer
to the sections

® Natural Com-plete Interface

= Natural CICS Interface

in the Natural TP Monitor Interfaces documentation.

Interfaces to Database Management Systems

Except for Software AG's database management system Adabas, all operations requiring database
interaction are performed by a corresponding Natural interface module.

For information on the database interfaces thta are available with Natural under z/VSE, refer to
the relevant separate documentation:

®= Natural for DB/2
= Natural for VSAM

146 Operations



Natural under z/VSE

® Natural for DL/I

Natural in Batch Mode under z/VSE

See Natural in Batch Mode (All Environments) and Natural in Batch under z/VSE.

Operations 147



148



23

Natural Shared Nucleus under z/OS and z/VSE

The function and the use of the shared nucleus are almost identical under the operating systems
z/OS and z/VSE.

To avoid redundant descriptions, reference is made to the corresponding document for the z/OS

environment. There, the following topics are covered:

Environment-Independent Nucleus
Creating a Shared Nucleus

Installing a Shared Nucleus

Linking Subproducts to the Nucleus
Single-Environment Shared Nucleus
Environment-Dependent Nucleus
Statically Linked Non-Natural Programs
Dynamically Called Non-Natural Program

149



150



24 VM/CMS Environment

This part contains information about Natural in a VM/CMS environment.

& Natural under VM/CMS  Explains topics such as issuing CP and CMS commands from Natural,
reading the CMS program stack, hardcopy function and applying fixes
to Natural. In addition, links are available to topics that apply when
you are using Natural under CMS in batch mode.

Print File and Work File Provides information on how to define print files and work files in the
Support Natural parameter module.

151



152



25 Natural under VM/CMS

= |ssuing CP and CMS Commands from Natural ..............coooiiiiiiiiiiiiii e 154
= Reading the CIMS Program SEACK ...........viiiiiiiiie oot 154
B HArACOPY FUNCHON ...ttt ettt e e e et ae e e e 155
® APPIYING FIXES 10 NGLUFAL .....ooiiiiiii e 155
= Natural in Batch Mode under CIMS ... ..o 155
= Using TCP/IP COMMUNICATION .....veeieeiiiet et 155
= Calling Natural Subprograms from REXX .......couuiiiiiiiiei it 156

153



Natural under VM/CMS

This document contains special considerations that apply when running Natural under VM/CMS.

The following topics are covered:

Issuing CP and CMS Commands from Natural

You can use the Natural system command CMS to issue CP and CMS commands; for example, CMS
FLIST * DATA Bor CMS CP SPOOL PRT *.

If you enter CMS without parameters, a menu prompts you for a CP/CMS command. To exit from
the menu enter a period (.) in the first position.

To issue CP or CMS commands from within a Natural program, code the following statement:

CALL 'CMS' command rc

where:

command is either an alphanumeric variable or a constant,

rc is a variable (format/length 14) which receives the return code from the CP or CMS com-
mand.

The second parameter (rc) is optional. Full command resolution is provided just as in normal
CMS interactive command mode.

Reading the CMS Program Stack

To read a line from the CMS program stack into a Natural variable, code the following;:

CALL 'CMSREAD' Tine
where 77ne is an alphanumeric variable.

The line read from the program stack is either truncated or padded with blanks to fit the length
of the variable.

If the program stack is empty, CMSREAD returns the character string *E0D*.

154 Operations



Natural under VM/CMS

Hardcopy Function

The hardcopy function of the Natural CMS Interface is enabled by specifying parameter

HCAM=CMS
either in NATPARM ASSEMBLE, or dynamically when invoking Natural.

The Natural terminal command %H sends output to your virtual printer. Specifying %HL produces
a file called NATURAL LISTING A.

Applying Fixes to Natural

Software AG provides fixes in the form of Zaps to remedy problems which are discovered after
your Natural installation tape was shipped.

" Before applying the Zaps, ensure that you have made backup copies of the files.
" Use the NATZAP facility to apply these Zaps to your Natural text files.

= After applying the Zaps, the Natural module and DCSS must be built anew. Use the NATBLDM
and NATBLDS commands respectively to do this.

For more information about NATZAP, type HELP NATZAP in the Natural installation user ID.

Natural in Batch Mode under CMS

See Natural in Batch Mode (All Environments) and Natural in Batch under CMS.

Using TCP/IP Communication

The Natural statement REQUEST DOCUMENT is used to connect to an http server to retrieve HTML
or XML files. The file TCPIP DATA contains configuration information for TCP/IP client programs.
This file resides on the TCP/IP client minidisk and is typically accessed by the command

Operations 155



Natural under VM/CMS

VMLINK TCPIP

If you are planning to use REQUEST DOCUMENT, include in a Rexx program to invoke Natural the
line:

EXEC VMLINK TCPIP

Calling Natural Subprograms from Rexx

In a Rexx program, you can use the CALLNAT function to execute a Natural subprogram and pass
parameters to it. The Rexx program must be executed while Natural is active, for example, by a
CALL statement in a Natural program:

CALL 'CMS" "EXEC MYREXX'
MYREXX can then execute a Natural subprogram with the CALLNAT function:

result = callnat("'MYNAT', parml,parm?2)

MYNAT should reside in the same Natural library as the Natural program that called the Rexx pro-
gram. Upon successful execution of MYNAT, the Rexx variable result will contain the name of the
called subprogram, padded with blanks to a length of 8 (that is, in this example:

result="MYNAT "). If an error was encountered, result will contain the Natural error number
prefixed with ,NAT”, for example: NAT(0082.

To exchange data between Rexx and Natural, you can use the statements READ WORK FILE and
WRITE WORK FILE, preceded by

DEFINE WORK FILE n 'STEM rexxstem.'

The work file must be declared using the parameter macro NTWORK or the profile parameter WORK
with AM=CMS. See also Print File and Work File Support.

156 Operations



26 Print File and Work File Support

= Defining Print Files and WOrK FIlES ........o.uuiiiiiiii e 158
B ACCESS MEINOA STD ...ttt e e et e e e et e e e e s e e e e nt e e e e e e eaeea e 158
B ACCESS MEthO CIMS ..t 158

157



Print File and Work File Support

This document describes special considerations on how to use print files and work files in Natural
for VM/CMS.

The following topics are covered:

Defining Print Files and Work Files

Print files and work files are defined in the Natural parameter module with the macros NTPRINT
and NTWORK. The corresponding dynamic parameters are PRINT and WORK.

In the following, the subparameters AM (access method) and DEST (destination) are described: They
are available both in NTPRINT and NTWORK.

For both print and work files, Natural/CMS provides two access methods: ,STD” and ,,CMS”.

Access Method STD

(AM=STD)

This access method uses the CMS simulation of the z/OS QSAM access method. Specify AM=STD if
you want to read or write tape or spool (RDR, PRT, PUN) files, or if you want to read work files
from z/OS-formatted disks.

A FILEDEF command must be issued before the corresponding print or work file is opened. The
DD name to be used in the FILEDEF command is the name specified in the subparameter DEST.

Access Method CMS

(AM=CMS)

This access method uses the standard CMS file system to read and write CMS files on accessed
mini disks and SFS directories.

The file names of the resulting CMS files are:

® CMPRTnn for print files,
" CMWKFnn for work files

where nn denotes the number of the file.

158 Operations



Print File and Work File Support

Their file type is the same as the name specified in the subparameter DEST. The filemode is always

”Al”.

Special Destination Names for AM=CMS

DEST=FD

Destination FD allows greater flexibility in assigning a CMS file to a Natural print or

work file. When Natural opens a print or work file with destination FD, it searches for
a FILEDEF for the DD name CMPRTnn or CMWKF nn, respectively (where nn denotes the
print or work file number). It then uses the CMS file ID given in the F I LEDEF command.

DEST=LISTING

This DEST setting applies to print files only.

When specifying this destination, the print file is written to the CMS disk that has the
most free space available. The CMS file ID is CMPRTnn LISTING mwhere mdenotes the
filemode of the mini disk that had the most free space.When the printer is closed, the
print file is printed on the virtual printer and subsequently deleted.

DEST=UEXXxxxxx

This DEST setting applies to print files only.

If you specify a destination that starts with UEX, the print file is treated as if LISTING
had been specified. In addition, a CMS command of this name is issued by Natural when
the printer is closed. The CMS command (for example, a Rexx procedure) receives the
CMS file ID of the print file as parameter.

Examples:

Example 1:

When the following FILEDEFs and NATPARM settings are in effect

FILEDEF CMWKFO5 CLEAR
FILEDEF CMPRTOL DISK MY REPORT D
FILEDEF CMPRT04 DISK MY REPORT A

NTWORK (1),AM=CMS,DEST=FRED
NTWORK (5),AM=CMS,DEST=FD
NTWORK (6),AM=CMS,DEST=PAUL
NTPRINT (1,4),AM=CMS,DEST=FD
NTPRINT (2),AM=CMS,DEST=LISTING
NTPRINT (5),AM=CMS,DEST=PAUL

Operations

159



Print File and Work File Support

the following CMS files are produced:

CMWKFO1 FRED Al
FILE CMWKFO5 Al
CMWKFO6 PAUL Al

MY REPORT D1
MY REPORT Al
CMWKFO5 PAUL Al

The temporary file CMPRT02 LISTING mis printed and subsequently deleted (where m denotes the
filemode of the minidisk that had the most free space).

Example 2:
NTPRINT (1),AM=CMS,DEST=UEXLOCAL
produces the CMS file:

CMPRTO1 UEXLOCAL m

and the CMS command UEXLOCAL is issued with the file ID as parameter. If, for example, a Rexx
procedure of this name exists, it can determine for which printer it was invoked by using arg fn
ft fm.

Example 3:

Destinations can also be defined dynamically using the DEFINE WORK FILE statement. In addition,
DEFINE WORK FILE can be used to specify input from, or output to, a Rexx stem:

DEFINE WORK FILE n 'STEM rexxstem.'

When opening an input file, Natural uses the value of rexxstem.0 to determine the number of
records to read. It then reads records from rexxstem.1 to rexxstem.max (with max =
rexxstem.0) before returning end-of-data.

For an output file, Natural writes rexxstem.1 to rexxstem.n, and sets rexxstem.0 to n when the
work file is closed.

160 Operations



27 BS2000/0SD Environment

m Related TOPICS ...vvvvviiiiiieeeiiiie e

= QOther Natural Functions for BS2000/0OSD-Specific Purposes

161



BS2000/0SD Environment

This part contains special considerations that apply when running Natural under the operating
system BS52000/OSD.

<@

¢ ¢ ¢ ¢ ¢ @

Natural Shared Nucleus under
BS2000/0SD

Refresh of Natural Load Pool

Explains the use of a common shared Natural nucleus, which
is possible batch mode and under the TP monitors TIAM and
UTM.

Explains the applicability and the use of the load-pool refresh
program.

Optimization of Message Handling Describes the screen output optimization method used by

Natural and the facilities to restore the most recent terminal
screen content.

Siemens Terminal Types Supported Provides information on the various types of Siemens terminals

Function Key Support with 9750
Devices

Common Memory Pools

Calling Dynamically Reloadable
3GL Programs

Print File/Work File Server
NATPWSV?2

RPC Server Front-End

Related Topics

that are supported by Natural under BS2000/0OSD

Describes the specific Natural function key assignments that are
supported for Siemens devices of type 9750.

Provides information on the global and local common memory
pools

Defines rules for address mode selection when calling
dynamically reloadable 3GL programs in a Natural application.

Describes the print file/work file server NATPWSV?2 for an RPC
batch server environment under BS2000/OSD.

Describes the RPC server front-end for an RPC batch server
environment under B52000/OSD with the print file/work file
server NATPWSV?2.

See also:

® Using Natural with TP Monitors
® Natural under UTM
® Natural under TTAM
® Natural in Batch Mode under BS2000/0OSD

162

Operations



BS2000/0SD Environment

Other Natural Functions for BS2000/0SD-Specific Purposes

Natural provides the following functions for BS2000/OSD-specific purposes:

= P-Key Utility
Supports the loading of programmable P keys on Siemens 975X terminals (under UTM and
TIAM).

® Swap Pool Manager
Controls the use of the Natural swap pool (under UTM and under CICS).

These functions are part of the Natural utility SYSTP.

Operations 163



164



28 Natural Shared Nucleus under BS2000/0SD

= Rules for Using a Natural Shared NUCIBUS ............coiiiiiiiiiiiii e 166

165



Natural Shared Nucleus under BS2000/0SD

This document contains the rules that apply when you use a Natural shared nucleus, which is
possible in Batch mode, under the TP monitors TIAM and/or UTM.

The following topic is covered:

Concerning UTMV, see also Several Applications with one Common Natural in the Natural TP Monitor
Interfaces documentation.

Rules for Using a Natural Shared Nucleus

With a Natural shared nucleus under BS2000/OSD, the rules given below apply:

1. The shared Natural nucleus is linked without the corresponding reentrant parts of the batch,
TIAM and UTM drivers (these modules must be linked to the front-end part of the corresponding
application).

Example: The name of the shared Natural nucleus is NATSHARE.

/EXEC $TSOSLNK

MOD NATSHARE,XREF=YES,MAP=Y,XDSEC=Y,SORT=Y
LINK-SYMBOLS *KEEP

INCLUDE NATINV, Tibname

INCLUDE NATURAL, 77ibname

INCLUDE NATLAST, Iibname
BIND

/SETSW ON=1

LIB NATURAL.USER.MOD,BOTH
PAR 0=Y

ADDR *OMF

END

/SETSW OFF=1

2. Batch, TIAM and UTM application-specific Natural parameter modules are also linked to the
front-end part of the corresponding application. In addition, the shared Natural nucleus can
contain a common Natural parameter module, for example, for CSTATIC entries. The name
chosen for the linked Natural nucleus is also identical with the name of the global common
memory pool into which Natural is loaded. This name is to be used as operand for the following
keyword parameters:

166 Operations



Natural Shared Nucleus under BS2000/0SD

NUCNAME |in the macros NAMBS2, NAMTIAM and NATUTM
NAME in CMPSTART and ADDON (BS2STUB)

Example:

NRTSTART NAMTIAM CODE=FRONT,
NUCNAME=NATSHARE
PARMODE=(31,ABOVE),

NUTFRONT NATUTM APPLNAM=NATUTM,

NUCNAME=NATSHARE
PARMODE=(31,ABOVE)

3. The shared Natural nucleus is started by the program CMPSTART.
Example:

/EXEC (CMPSTART,NATURAL.MOD)
NAME=NATSHARE,STZE=2MB,POSI=ABOVE,ADDR=250, SCOP=GLOBAL
PFIX=YES,LIBR=NATURAL.USER.MOD

4. The link to the shared Natural nucleus is created in the batch, TIAM or UTM applications
through the generation of the macro BS2STUB; refer to CMPSTART Program.

Example:

NRTSTUB BS2STUB PARMOD=31, PROGMOD=ANY
ADDON NAME=NATSHARE,
STAT=GLOBAL
NUTSTUB BS2STUB PARMOD=31,PROGMOD=ANY
ADDON NAME=NATSHARE,
STAT=GLOBAL

5. The front-end part of the applications must contain the reentrant part of the corresponding
driver (NAMBS2 CODE=RENT, NAMTIAM CODE=RENT or NURENT).

Operations 167



Natural Shared Nucleus under BS2000/0SD

Examples:
Front-end Part of NAMTIAM:

/EXEC $TSOSLNK /* Front part of NAMTIAM
PROG NATURAL,LOADPT=X"'1000000",XREF=YES
TRAITS RMODE=ANY,AMODE=31

INCLUDE NRTSTART, 7ibname /* Front part of NAMTIAM
INCLUDE NRTRENT, 77bname /* Reentrant part of NAMTIAM
INCLUDE NRTSTUB, 1ibname /* BS2STUB

INCLUDE NRTPARM, T7ibname /* Natural Parameter Module

UTM Front-end Part:

/EXEC $TSOSLNK /* UTM Front-end part
PROG NUTvrs,FILENAM=NATUTM, LOADPT=X"'1000000",XREF=YES
TRAITS RMODE=ANY,AMODE=31

INCLUDE KDCNUT, T7bname /* UTM KDCROOT

INCLUDE NUTSTART, /ibname /* NATUTM

INCLUDE NUTRENT, 7ibname /* NURENT

INCLUDE NUTSTUB, 71ibname /* BS2STUB

INCLUDE NUTPARM, 7ibname /* Natural Parameter Module
INCLUDE SWPPARM, T7ibname /* Swap Pool Parameter Module

where 7ibname is the name of the library and vrs stands for version, release and system main-
tenance level of the product.

168 Operations



29 Refresh of Natural Load Pool

B PrereqUISItES/RESITICHONS ...t e e e 170
B PIOCEAUIE ...ttt 170
= Keyword Parameters for the Program PREFRESH ... 171

169



Refresh of Natural Load Pool

This document describes the prerequisites, restrictions and procedures that are applicable for
refreshing a Natural load pool and contains a list of the keyword parameters provided in the
PREFRESH program.

The following topics are covered:

Prerequisites/Restrictions

* The Natural load pool must have been started with the keyword parameter ACCS=WRITE, using
the program CMPSTART.

" A Natural load pool which is also used by batch applications must not be refreshed while the
Natural batch applications are in operation. A refresh is admissible only with TIAM and UTM
applications.

® A new Natural nucleus can be loaded only into a global common memory pool.

Procedure

® When a new Natural nucleus is to be loaded into the common memory pool, the name of the
linked (reentrant) nucleus must be identical with the existing name. The name of the Natural
nucleus is equal to the name of the global common memory pool.

Example:

The existing Natural nucleus was started with the following parameters using the program
CMPSTART:

/EXEC (CMPSTART,NATURAL.MOD)
NAME=NATSHARE,POSI=ABOVE,ADDR=250,PFIX=YES,SIZE=2MB, ALNK=NO
ACCS=WRITE, LIBR=NATURAL.USER.MOD.A

® The newly linked Natural nucleus is to be loaded from the library NATURAL.USER.MOD. B into the
global common memory pool. This is accomplished with the program PREFRESH.

170 Operations



Refresh of Natural Load Pool

Example:

/ .PREFRESH LOGON

/OPTION DUMP=YES

/SYSFILE SYSOUT=LST.PREFRESH.NATSHARE
/SYSFILE SYSDTA=(SYSCMD)

/EXEC (PREFRESH,NATURAL.MOD)
NAME=NATSHARE, LIBR=NATURAL.USER.MOD.B
/LOGOFF N

or:

/1oad (prefresh,natural.mod) <enter>

% BLS0517 MODULE 'PREFRESH' LOADED

/r <enter>

*name=natshare,libr=natural.user.mod.b <enter>

* <enter>

REFRO50: LOAD POOL NATSHARE IS SUCCESSFULLY REFRESHED
/

® The successful loading of the new Natural nucleus is confirmed by the message:

REFR050: LOAD POOL name IS SUCCESSFULLY REFRESHED

Keyword Parameters for the Program PREFRESH

The program PREFRESH has the following keyword parameters:

NAME | LIBR | LOAD | ALNK | TIM1 | TIM2

The program PREFRESH has the following syntax (If available, default values are shown.):

REFRESH NAME=name, LIBR=Tibrary,LOAD=BIND,ALNK=NO,TIM1=10,TIM2=20 ‘

Operations 171



Refresh of Natural Load Pool

NAME - Common Memory Pool and Module Name

This parameter determines the name of the module and the name of the common memory pool.
The name must be specified. No default value exists.

NAME=XxXxXXXXXX | XXxxXxxxx: valid module and common memory pool name.

The name must be identical with the existing module/common memory pool name.

The maximum number of characters is 8.

LIBR - Load Library

This parameter determines from where the defined module is to be loaded. The name must be
specified. No default value exists.

LIBR=17ibrary |library isthe name of the load library.

LOAD - Module Load Method

This parameter determines which macro shall be used for loading a module into a common
memory pool.

LOAD=ASHARE|The macro ASHARE will be used.
LOAD=BIND |By default, the macro BIND will be used.

/) Important: When LOAD=ASHARE is defined, for the start of the common memory load pool
(with program CMPSTART), LOAD=ASHARE also must be defined.

ALNK - Activate AUTOLNK Function

This parameter determines whether the AUTOLNK function of the dynamic binder loader (DBL) is
activated.

ALNK=YES |The AUTOLNK function is activated.
ALNK=NO |By default, the AUTOLNK function is deactivated.

172 Operations



Refresh of Natural Load Pool

TIM1 - Wait Time in Seconds before the Load Pool Refresh is Started

This parameter determines the waiting time in seconds before the new Natural nucleus is loaded.
It serves to synchronize Natural sessions which are currently active in the nucleus.

TIMI=xx |xx mustbe in the range from 1 up to 99.
TIM1=10 |The default value is 10 seconds.

TIM2 - Wait Time in Seconds after the New Natural Nucleus was Loaded

This parameter determines the waiting time in seconds after the loading of the new Natural nucleus
is complete until the serialization identification for the corresponding application has been enabled.
It serves to synchronize the relativizing of all address constants in the newly loaded nucleus.

TIM2=xx |xx must be in the range from 1 up to 99.
TIM1=20 |The default value is 20 seconds.

Operations 173



174



30 Optimization of Message Handling

B Screen OUIPUE HANAING ...t 176
m Restoring the SCreen CONTENT .........oiiiiiiiie i e e 176

175



Optimization of Message Handling

The following topics are covered:

Screen Output Handling

Natural provides an extensive message optimization capability. Prior to sending an output screen,
Natural determines which portion of the screen has been modified; only data which have actually
been modified are sent.

This is to be considered when, between two successive terminal outputs, portions or the entire
terminal contents are changed

" by using the CLEAR key or

" by intervening dialog steps at system level (K2 interruption or similar interruption).

This is particularly true if a subprogram called from Natural by an external CALL interface produces
dialog output.

Restoring the Screen Content

In the above-mentioned cases, you can use one of the following methods to cause Natural to
restore the most recent terminal screen contents.

® Jssue the terminal command %R.

= Use the statement SET CONTROL 'R

176 Operations



31 Siemens Terminal Types Supported by Natural

B T DE 0748 oo e e e e et e e e e e e e e e e e e 178
B 070 SBIIES .. tieiee ettt ettt ettt ettt e e e ettt e et e e e et e e e e e et e e e 178
B TYPE OTB3M oottt s 179

177



Siemens Terminal Types Supported by Natural

This document contains information on how Natural supports Siemens terminal types.
The following types are supported:

= 974 n
= 975 n
= 976 n

= telex devices

Type 9748

At present, there are significantly different data stations of the type 9748. Depending on the age
of the device, better support can be provided in 9750, 9755 or 9756 mode. Devices from older series
of this type should be defined as 9750 because of the limited number of fields per line.

As various terminal types which were all defined as 9750 in PDN are often found in networks,
the terminal type can also be modified during a Natural session with the terminal command %T=
and thereby be made consistent with the device type currently in use.

975n Series

The various devices of the 975n series differ considerably (for example, possible number of field
separation characters per line, default brightness for protected blank lines, standard arrangement
of display characteristics to field properties, etc.).

Four terminal driver routines are provided which support these devices. This permits optimum
support of black/white devices of the type 9755 or 9756 with respect to their varying display cha-
racteristics. The different devices can be generated in PDN as 975n.

Some device types cannot be distinguished by an operating system inquiry (SVC 70). Therefore,
Natural permits these "logical terminal types" to be associated with various physical device types
during generation.

® Under TIAM, this is done with the parameter T975X.

® Under UTM, the parameter TERMN in the PTERM statement for the KDCDEF application generation
is used for this purpose.

178 Operations



Siemens Terminal Types Supported by Natural

Type 9763M

Terminals of type 9763M (monochrome) are treated like 9756-type terminals.

Operations 179



180



32 Function Key Support with 9750 Devices

B KEY ASSIGNIMENT ...ttt ettt
B Modes fOr KEY ASSIGNMENT ... .ooiiiiiie et e e e e e e e et e e e

181



Function Key Support with 9750 Devices

The following topics are covered:

Key Assignment

In Natural, function keys serve to transfer data together with specific command/execution infor-
mation to a program.

As current Siemens terminal device types only support the keys F1 to F5, the programmable P keys
(P1to P20) are used for this purpose. This means that these keys are assigned the function key values
PF1 to PF20 (in 3270 terminology).

The identification of the key pressed is made from Natural-loaded key assignments in connection
with the send-key code F5. This allows the distinction of similar data types which were sent using
DUEL. Using F5, Natural recognizes the function-key resolution and interprets the P-key value as
a code. In the other instance the data are transferred to the executing program.

The loading of keys is controlled by terminal commands or from the executing program using SET
CONTROL statements.

Modes for Key Assignment

There are three types of modes for key assignment:

KN |For terminal types 974n, 9750 - 9755, the literals %K1 to 4K20 are assigned to the keys (terminal command
%KN or statement SET CONTROL '"KN').

For terminal types 9756, 9758, 976, send-key codes F1 to F20 are loaded to the keys P1 to P20.

KO |The literals 01 to 20 and the send-key code F5 are assigned to the keys (terminal command %KO0 or
statement SET CONTROL 'KO").

KS |The literals A to T as well as the send-key code F5 are assigned to the keys (terminal command %KS or
statement SET CONTROL 'KS").

In KS mode, a dummy field is generated in the last two terminal positions of each output message.
This field is used for receiving and transferring the key value. Prior to data transfer the cursor is
moved in this field using the movement functions assigned to the keys.

If an N is specified after the respective terminal command (that is, ZKNN, ZKON or %KSN), only the
corresponding function-key mode is activated, but no values are loaded to the P keys.

For all modes, cursor-position-dependent key processing, according to current assignment, can
lead to differing results. For example, the help key, dependent on field assignment, can invoke

182 Operations



Function Key Support with 9750 Devices

either the global or local help processing for a particular field. Such functions should be controlled
using PF21 to PF23 interpreted keys (F1 to F3).

Operations 183



184



33 Common Memory Pools

= Global CommONn MEMOTY POOIS ........cciiiiiieiiiiiie e 186
m Local CommON MEMOIY POOIS ........uviieeiiiiie ettt ettt e e e e e e e e e e 190

185



Common Memory Pools

This document describes the programs that are provided to start and stop global common
memory pools in Natural under BS2000/OSD and the macros that enable you to define local (or
global) common memory pools in Natural under BS2000/OSD

The following topics are covered:

Global Common Memory Pools

The following programs are provided to start and stop global common memory pools in Natural
under BS2000/OSD:

® CMPSTART
= CMPEND

] Note: In the following, vrs stands for version, release, system maintenance level of the

product.
CMPSTART Program

The program CMPSTART does the following:

= It starts global common memory pools with its own start task.
* It loads a defined module into a global common memory pool.

® It initializes a global common memory pool.

The keyword parameters TXTSIZE and BPLIST (see below) are only valid for program CMPSTART
and when starting a Natural global buffer pool.

The keyword parameters JV and JVSUFX (see below) are only valid for program CMPSTART when
starting a global common memory pool.

All other keyword parameters are identical with the keyword parameters for the macro ADDON
used for generating the module BS2STUB.

The following keyword parameters are available:

TXTSIZE | BPLIST | JVv | JVSUFX

186 Operations



Common Memory Pools

TXTSIZE - Buffer-Pool Text-Record Size

This keyword parameter defines the Natural buffer-pool text-record size in KB.

TXTSIZE=xx |Possible values for xx are: 1,2, 4, 8,12, 16.
TXTSIZE=4 |By default, the Natural buffer pool has a text-record size of 4 KB.

BPLIST - Preload List For Global Buffer Pool

This keyword parameter defines the name of a preload list for a Natural global buffer pool. The
defined Natural programs of the preload list will be loaded into the Natural global buffer pool
when the first user logs on.

BPLIST=name|See the Natural profile parameter BPLIST.

JV - Create a Job Variable

This keyword parameter defines whether a job variable shall be created. This job variable enables
the status of the common memory pool to be controlled in the job control language.

0| The common memory pool is not ready (in creation mode).

1| The common memory pool is ready (successfully enabled and initialized).

The name of the job variable has 2 parts:

® Part 1 is the name of the common memory pool (operand of keyword parameter NAME)

® Part 2 is the operand of keyword parameter JVSUFX (see below).
Logic of Job Variable Navigation:

When the program CMPSTART has started, a check is made whether the job variable is available. If
so, the value of the job variable is set to "0". If not, the job variable is cataloged and its value is set
to "0". When the common memory pool was successfully enabled and initialized, the value of the
job variable is set to "1". When the global common memory pool is terminated, the job variable is
erased.

Operations 187



Common Memory Pools

JV=YES|A job variable shall be created.

JV=NO |By default, no job variable will be used.

JVSUFX - Suffix of the Job Variable Name

This keyword parameter defines the second part of the job variable name.

JVSUFX=xxxxxxxx |Maximally 8 characters for the second part of the job variable name.
JVSUFX=.SAG.JV |This is the default value.

Example:

NAME=EDTvrsGA,TYPE=EDT,JV=YES, JVSUFX=. SAGH#JIV .

The Jobvariable name is EDTvrsGA. SAGHHFIV.

Operator Commands

These operator commands terminate a global common memory pool:
/INTREsn,STOP

or

/INTREsn, END

This operator command displays the global common memory pool's name, position, address, size
and activation time on the console:

/INTRtsn,DPRM
This operator command terminates the global common memory pool's start task with a dump:

/INTRtsn,DUMP

Examples:

188 Operations



Common Memory Pools

® To start a global load pool (shared nucleus)

/ .NATSHRE LOGON

/OPTION DUMP=YES

/SYSFILE SYSDTA=(SYSCMD)

/SYSFILE SYSOUT=LST.NATSHARE

/EXEC (CMPSTART,NATvrs.MOD)
NAME=NATSHARE, STZE=2MB, POSI=ABOVE,ADDR=250, SCOP=GLOBAL

PFIX=YES,ALNK=NO, LIBR=NATvrs.USER.MOD

/SYSFILE SYSDTA=(PRIMARY)

/LOGOFF

/* NATSHARE IS THE NAME OF THE LINKED NATURAL REENTRANT MODULE. IT IS ALSO THE
/* NAME OF THE COMMON MEMORY POOL. THE ADDRESS OF THE GLOBAL NATURAL LOAD POOL
/* MUST BE DEFINED. THE ADDRESS MUST BE FIXED (PFIX=YES).

* To start a Natural global buffer pool

/.BPvrsGA LOGON

/OPTION DUMP=YES

/SYSFILE SYSDTA=(SYSCMD)

/SYSFILE SYSOUT=LST.BPvrsGA

/EXEC (CMPSTART,NATvrs.MOD)

NAME=BPvrsGA, TYPE=NAT,POSI=ABOVE,SIZE=2048KB, SCOP=GLOBAL

/SYSFILE SYSDTA=(PRIMARY)

/LOGOFF

/* FOR A NATURAL BUFFER POOL, THE OPERAND OF PARAMETER "TYPE" MUST BE DEFINED
/* AS "NAT'.

* To start a Natural global buffer pool with ESA data space

/.BPvrsA LOGON

/OPTION DUMP=YES

/SYSFILE SYSOUT=LST.BPvrsGA

/SYSFILE SYSDTA=(SYSCMD)

/EXEC (CMPSTART,NATvrs.BS2.MOD)

NAME=BP vrsGA,TYPE=NAT,POSI=ABOVE,SIZE=10MB,ADDR=260,DESA=YES
DATA=32MB

/SYSFILE SYSDATA=(PRIMARY)

/LOGOFF N

Operations 189



Common Memory Pools

CMPEND Program

Program CMPEND terminates the start tasks for all global common memory pools. The input for
CMPEND are the names of the global common memory pools.

Example:

/SYSFILE SYSDTA=(SYSCMD)

/EXEC (CMPEND,NATvrs.MOD)

NATSHARE ,BP vrsGA

/* THE DELIMITER FOR THE DEFINED NAMES IS ' " OR ','.

Local Common Memory Pools

The following section describes the macros that enable you to define local (or global) common
memory pools in Natural under BS2000/OSD:

= BS2STUB Macro

= ADDON Macro

= ADDEND Macro

= Example of Assembling Macro BS2STUB

BS2STUB Macro

The macro BS2STUB does the following;:

= Starts local common memory pools.

® Connects to a defined global common memory pool.

Loads a defined module into a local common memory pool.

Loads dynamically called 3GL programs.

The BS2STUB macro has the following parameters:

name BS2STUB PARMOD=nnPROGMOD=xxx

190 Operations



Common Memory Pools

name - CSECT Name

name Specifies the CSECT name. The first three characters must not contain the value NAT.
name BS2STUB |This is the default name.

PARMOD - 24/31 Bit Addressing Mode

This parameter specifies whether 24 or 31 bit addressing mode is to be used.

PARMOD=nn |Possible values for nn: 24 or 31 (bit).
PARMOD=31 |By default, the address mode setting is 31 bit.

PROGMOD - Loading above or below the 16-MB Line

This parameter specifies whether dynamically loaded programs are to be loaded above or below
the 16-MB line.

PROGMOD=ANY |ANY means that the module is loaded above or below the 16-MB line. This is the default
setting.

PROGMOD=24 |24 means that the module is loaded below the 16-MB line.

ADDON Macro

The macro ADDON defines a common memory pool in the ADDON table of program BS2STUB. It contains
the following keyword parameters which are also applicable to program CMPSTART:

ACCS | ADDR | ALNK | DATA | DESA | LIBR | LOAD | NAME | PFIX | POSI | SCOP | SIZE | STAT | TYPE |
WAIT

ACCS - Access To Common Memory Pool

This parameter determines how the common memory pool can be accessed.

ACCS=READ |This means the access is read-only (write-protected).

To be able to set ACCS=READ, the user ID must be authorized for the BS2000/OSD CSTMP
macro in the user catalog (JOIN command with C-M=YES).

ACCS=WRITE |By default, the common memory pool is write-enabled.

Operations 191



Common Memory Pools

ADDR - Size of Common Memory Pool Address

This parameter determines the number of megabytes for the defined address of the common
memory pool. The size must be specified. No default value exists.

ADDR=number |number must be >=0.

ALNK - Activate AUTOLNK Function

This parameter determines whether the AUTOLNK function of the dynamic binder loader (DBL) is
activated.

ALNK=NO  |The AUTOLNK function is deactivated.
ALNK=YES |By default, the AUTOLNK function is activated.

DATA - Size of Data Space Area

This parameter can be specified in conjunction with the DESA parameter and defines the size of
the data space area for the buffer pool or swap pool to be started. The following settings are pos-
sible:

DATA=nnnMB |Specifies the size of the data space area in Megabytes.

DATA=nnnKB |Specifies the size of the data space area in Kilobytes.

Using the DATA parameter in the ADDON macro

= To start a Natural local buffer pool you specify DESA=YES and use this parameter to determine
the size of the data space area in Megabytes/Kilobytes. The size must be specified, because no
default value exists.

® To connect a Natural global buffer pool or a global swap pool, you specify DESA=YES and omit
the DATA parameter, because it has been specified for the CMPSTART Program.
Using the DATA parameter for the CMPSTART program

To start a Natural global buffer pool you specify DESA=YES and use this parameter to determine the
size of the data space area in Megabytes/Kilobytes. The size must be specified, because no default
value exists.

192 Operations



Common Memory Pools

DESA - ESA Data Space Area

This parameter must be specified to determine whether or not an ESA data space area is to be
created for a Natural buffer pool or a Natural swap pool.

DESA=YES |An ESA data space area is to be created.

DESA=NO |By default, no ESA data space area is to be created.

" An ESA data space is only supported for buffer pools of TYPE=NAT or TYPE=SWP.

® The parameter DESA=YES is relevant only if a global common memory pool (CMPSTART having
its own start task) with ESA data space or a local common memory pool (BS2STUB/ADDON) with
ESA data space is to be created.

® For the connection (BS2STUB/ADDON) to an existing global common memoty pool, the parameter
DESA has no significance.

@ Caution: An ESA data space should be created only for one global common memory pool

which has its own start task. The ESA data space will no longer be available when the task
that created the ESA data space terminates normally or abnormally.

LIBR - Load Library

This parameter determines from where the defined module is to be loaded. No default value exists.
If the operand of parameter LIBR is not defined, only a common memory pool will be enabled
(ENAMP+REQMP).

LIBR=17ibrary |library isthe name of the load library.
LIBR=BLSLIB |The libraries with the link names BLSLIB and BLSLIBO1 to BLSLIB99 are to be used.

LIBR=CLASS-4 |Module is loaded as subsystem in class 4 memory.

LOAD - Method for Loading a Module into a Common Memory Pool

This parameter determines which macro shall be used for loading a module into a common
memory pool.

LOAD=ASHARE|The macro ASHARE will be used.

If ASHARE is defined, the operand of parameter PF X must be YES.
LOAD=BIND |By default, the macro BIND will be used..

Operations 193



Common Memory Pools

NAME - Common Memory Pool/Module Name

This parameter determines the name of the module and/or the name of the common memory pool.
The name must be specified. No default value exists.

NAME=name |name is a valid name of common memory pool or module.

The maximum number of characters in a name is:

8 characters |Module name (name of common memory pool); Natural buffer pool.

16 characters|All other common memory pools.

PFIX - Fixed Address

This parameter determines whether or not the common memory pool's address should be fixed.

PFIX=YES |The common memory pool's address should be fixed.

PFIX=NO |By default, the common memory pool's address should not be fixed.

For a global Natural load pool, this parameter must be set to YES.

POSI - Position Relative to 16-MB Line

This parameter determines the position of the common memory pool, which can be above or below
the 16-MB line.

POSI=ABOVE |The common memory pool is to be located above the 16-MB line.

POSI=BELOW |By default, the common memory pool is to be located below the 16-MB line.

SCOP - Scope of Common Memory Pool

This parameter determines the scope of the common memory pool.

SCOP=LOCAL |Forinformation on the scopes of a common memory pool, see the description of the ENAMP
SCOP=GROUP macro in the BS2000/0OSD documentation.
SCOP=GLOBAL

SCOP=GLOBAL |This is the default setting.

194 Operations



Common Memory Pools

SIZE - Size of Common Memory Pool

This parameter specifies the size of the common memory pool in Megabytes/Kilobytes.

SIZE=nKB |Specifies the size of the common memory pool in n Kilobytes or n Megabytes.
SIZE=nMB

SIZE=1IMB |By default, the common memory pool has a size of 1 Megabyte.

STAT - Status of Common Memory Pool

This parameter determines the status of the common memory pool.

STAT=GLOBAL |The status of the common memory pool is GLOBAL (started by CMPSTART).
STAT=LOCAL |The status of the common memory pool is LOCAL (started by BS2STUB).

By default, the status of the common memory pool is LOCAL.

| Note: The STAT parameter will be ignored when the program CMPSTART runs.
TYPE - Type of Common Memory Pool

This parameter determines the type of the common memory pool. The type must be specified. No
default value exists.

TYPE=COM|Natural DCOM pool
TYPE=EDT |Editor buffer pool

TYPE=MON |[Natural monitor pool (SYSMON)
TYPE=NAT |Natural buffer pool

TYPE=SRT |Sort buffer pool

TYPE=SWP |Natural swap pool

TYPE=USR |User buffer pool

Operations 195



Common Memory Pools

WAIT - Enabling or Waiting of Common Memory Pool During Application Startup

This parameter determines during startup of an application whether the common memory pool
is to be enabled at once or whether the common memory pool is to wait for a request from Natural
and is enabled then.

WAIT=YES | The common memory pool is to wait for a request from Natural and is enabled then.

WAIT=NO |By default, the common memory pool is to be enabled at once.

Note: The WAIT parameter will be ignored when the program CMPSTART runs.

ADDEND Macro
The macro ADDEND defines the end of macro ADDON's definitions. There are no parameters for ADDEND.

Example of Assembling Macro BS2STUB

BS2STUBA BS2STUB PARMOD=31,PROGMOD=24 31-BIT ADDRESSING MODE,
R LOAD 3GL PROGRAMS BELOW
B e +
* 1 Define the Natural global Toad pool with Name NATSHARE

E e +

*

+
|
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
1
|
1

+

I Define the Natural Tocal swap pool

T ADDON NANE-SUAPVrSLA . TYPE-SUP, STZE-16ME  STAT-LOCAL . POST-ABOVE
e T e +
* I Connecting a Natural global buffer pool with ESA data space
T I +
ADDON NAME=BPvrsGA,TYPE=NAT,STAT=GLOBAL
e e +
* I Creating/Connecting a Natural local buffer pool with ESA data space
e e e +

ADDON NAME=BPvrsLA,TYPE=NAT,POSI=ABOVE,SIZE=10MB,
STAT=LOCAL,SCOP=LOCAL,DESA=YES,DATA=32MB

ADDEND

END

196 Operations



34 Calling Dynamically Reloadable 3GL Programs in a Natural

Application

m Storage AllOCAION RUIE ........coiiiiii i 198
B Thread-Creation RUIE ..........oiiiiiiii et 198
® Address-Mode DEPENAENCIES .........coiuuiriiiiiiii e 198

197



Calling Dynamically Reloadable 3GL Programs in a Natural Application

This document contains rules for address mode selection that apply when dynamically reloadable
3GL programs are called in a Natural application.

The following topics are covered:

Storage Allocation Rule

Whether a dynamically reloadable 3GL program is loaded above or below the 16 MB line depends
on the keyword parameter PROGMOD for macro BS2STUB.

Parameter Explanation

PROGMOD=ANY |The program is loaded above or below the 16 MB line.

This depends on the application's address mode and on the possible existence of AMODE or
RMODE statements in the 3GL program to be loaded.

PROGMOD=24 |The 3GL program is always loaded below the 16 MB line.

Thread-Creation Rule

Whether the Natural user thread is created above or below the 16 MB line depends on the keyword
parameters NUAADDR for macro NATUTM and on REQMLOC for the macros NAMTIAM and NAMBS2.

Address-Mode Dependencies

The following paragraphs give you an overview of which address mode is used in which genera-
tion configuration to call dynamically reloadable 3GL programs.

1. Calling a 3GL program using the ILCS or CRTE interface

2. Calling of 3GL programs without using the ILCS or CRTE interface

3. Calling of UTM partial programs which are not 31-bit enabled from Natural/UTM driver via
PEND PR

198 Operations



Calling Dynamically Reloadable 3GL Programs in a Natural Application

1. Calling a 3GL program using the ILCS or CRTE interface
"TLCS=YES" or "ILCS=CRTE"

Case The application was generated with The 3GL program is called with

1 PARMOD=31 or PARMOD=(31,ABOVE) AMODE=31
2 PARMOD=24 AMODE=24

2. Calling of 3GL programs without using the ILCS or CRTE interface

"ILCS=NO"
Case The application was generated with The 3GL program
is called with
1 PARMOD=31 AMODE=31
The Natural user thread is located above the 16 MB line and the 3GL program is
loaded above or below the 16 MB line.
2 PARMOD=31 AMODE=24
The Natural user thread and the 3GL program are located below the 16 MB line.
3 PARMOD=(31,ABOVE) AMODE=31
The Natural user thread is located above the 16 MB line and the 3GL program is
loaded above or below the 16 MB line.
4 PARMOD=(31,ABOVE) AMODE=24
The Natural user thread is located below the 16 MB line and the 3GL program is
loaded below the 16 MB line.
1. The module BS2GLUE must be located in the same
library as the loaded 3GL program,
or the load module library for module BS2GLUE
must be defined as BLSLIB in the STARTJOB.
2. If such a configuration exists in the case of a
Natural/UTM application, the keyword
parameter KB has to be defined as KB=NO.
5 A Natural/UTM application was generated using PARMOD=31. AMODE=31

The Natural user thread is located below or above the 16 MB line and keyword
parameter CALLM31 for macro NURENT is defined as CALLM31=YES.

3. Calling of UTM Partial Programs which are not 31-bit enabled from Natural/UTM driver via
PEND PR

The application was generated using PARMOD=31 and the keyword parameter SWAMODE for macro
NATUM is defined as SWAMODE=YES:

Operations 199



Calling Dynamically Reloadable 3GL Programs in a Natural Application

Prior to each calling of the UTM KDCS interface, Natural switches back to the 24-bit address mode,
and when control is returned to the UTM driver, a switch-back occurs to the 31-bit address mode.

200 Operations



35

Print File/Work File Server NATPWSV2

= Setup .....

= Qperation

201



Print File/Work File Server NATPWSV?2

This document describes the print file/work file server NATPWSV?2 for the RPC batch server environ-
ment under BS2000/OSD that is started via the RPC Server Front-End.

The following topics are covered:

See also Print File/Work File Server NATPWSV?2 Error Messages in the Messages and Codes documen-
tation.

Setup

The print file/work file server NATPWSV2 communicates with the RPC batch server NATFSTB2 by
using the forward eventing method.

To setup the print file/work file server, perform the following steps:
® Link the module NATFSTB2 to the Natural nucleus. The module NATFSTB2 replaces the program

NATWKFB2.

® The module NATPWSV2 must be linked, together with an ADDON parameter definition, for the
common memory pool with the new pool type PWK (print file/work file control pool) in the
program BS2STUB. This common memory pool must be set up using a defined fixed address,
for example:

PWKSTUB BS2STUB PARMOD=31,PROGMOD=ANY,UNRES=*DBLOPT

ADDON NAME=PWK{fPOOL, NAME OF CONTROL POOL
TYPE=PWK, TYPE OF CONTROL POOL
SIZE=IMB, POOL SIZE IN MB
STAT=LOCAL, POOL STATUS IS LOCAL
SCOP=GLOBAL, SCOPE IS GLOBAL
POSI=ABOVE, POOL POSITION IS ABOVE
ADDR=19, ADDRESS IS X'1300000"
PFIX=YES, POOL ADDRESS IS FIXED
ACCS=WRITE NO POOL PROTECTION

ADDEND

The same ADDON parameter definition (except for ADDR=) must be contained in the program BS2STUB
which is linked to the front-end part of the RPC batch server.

202 Operations



Print File/Work File Server NATPWSV?2

Example of linking the print file/work file server:

/EXEC $TSOSLNK

PROG PWKSRV, FILENAM=E.NATPWSVZ, LOADPT=X"'1000000",XREF=YES
TRAITS RMODE=ANY,AMODE=31

INCLUDE NATPWSVZ,NATURAL.NATvrs.MOD

INCLUDE PWKSTUB,USERLIB

BIND

where:

vrs stands for the current version of Natural for Mainframes and

USERLIB stands for the user-specific library.

Operation

Data exchange between the print file/work file server and the RPC batch server takes place in the
print file/work file control pool (TYPE=PWK).

Starting the Print File/Work File Server

The print file/work file server has to be started before the RPC batch server.

The RPC batch server expects the presence of an initialized print file/work file control pool. This
initialization occurs when the print file/work file server is started.

A Natural RPC batch server communicates with exactly one print file/work file server and vice
versa (TSN1 <=>TSN2).

All print files and work files (link names P01 to P32 and W01 to W32) to be used have to be defined
by a FILE command in the print file/work file server's job control.

Example of a start job:

/ .PWKSRV LOGON

/ER LST.PWKSERVER.
/STEP

/OPTION DUMP=YES

/FILE WORK.WOI,LINK=WO1
/FILE WORK.WO02,LINK=WO02

/FILE PRINT.POL,LINK=PO1
/FILE PRINT.PO2,LINK=P0OZ

Operations 203



Print File/Work File Server NATPWSV?2

/EXEC (NATPWSVZ2,NATURAL.NATvrs.MOD)
/LOGOFF N

Terminating the Print File/Work File Server

The print file/work file server can be terminated by way of P1 eventing, using the program CMPEND.
The event name for terminating the print file/work file server is the name of the print file/work
file control pool.

Example of a print file/work file server termination procedure:

/BEGIN-PROCEDURE LOGGING COMMANDS

/ASSTGN-SYSDTA TO=*SYSCMD

/SET-J0OB-STEP

/START-PROGRAM FROM-FILE=*MODULE(LIBRARY=NATURAL.NATvrs.MOD, -

/ ELEMENT=CMPEND)

PWK#FPOOL <== name of the print file/work file control pool
/SET-J0OB-STEP

/ASSTIGN-SYSDTA TO=*PRIMARY

/EXIT-PROCEDURE

All error messages (abnormal termination of the print file/work file server) are written to SYSLST99
into the file LST. PWKSERVER. tsnn.

204 Operations



36 RPC Server Front-End

205



RPC Server Front-End

This document describes how to set up the RPC server front-end for an RPC batch server environ-
ment under BS2000/OSD with the print file/work file server NATPWSV?2.

The following topic is covered below:

Setup

For the generation of the Natural RPC batch server, the front-end part of the Natural batch driver
(macro NAMBS?) has to be assembled with the new keyword parameter SERVER=YES.

Example:

SERVFRNT NAMBS2 CODE=FRONT, -
APPLNAM=NATSERV, -
NUCNAME=RPCSERV, -

DYNPAR=SYSDTA, For server parameters -
SERVER=YES, Generate RPC server =
ROLLTSZ=384, Roll thread size in KB =

A1l other parameter definitions as for
the generation of the front-end part
of the Natural batch driver

END

For the generation of the reentrant part of the Natural RPC batch server, you can use the same
keyword parameter definitions as for the generation of the Natural batch driver.

For the generation of the module BS2STUB (front-end part of the RPC batch server), you have to
define the necessary common memory pools.

If you intend to use the print file/work file server NATPWSV?2, define a print file/work file control
pool and replace the module NATWKFB2 with the module NATFSTB2 in the Natural reentrant part.

RPCSTUB2 BS2STUB PARMODO031,PROGMOD=ANY ,UNRES=*DBLOPT
ADDON NAME=RPCSERV, Name of reentrant part (load pool)

ADDON definition for Natural Buffer Pool
ADDON definition for Natural Editor Pool
ADDON definition for Natural Swap Pool

ADDON NAME = PWK#POOL, Name of print file/work file control pool

206 Operations



RPC Server Front-End

TYPE=PWK, Pool type
7 SIZE=1MB, Pool size in MB
7 STAT=LOCAL, Pool status is local
7 SCOP=GLOBAL, Scope is global
_ POSI=ABOVE, Pool position is above
_ PFIX=YES, Pool address is fixed
_ ACCS=WRITE No pool protection

ADDEND

The Natural RPC batch server stores the different client context in user threads. These user threads
are managed either in the swap pool or in the Natural roll file. Hence, a Natural roll file and a
Natural swap pool is required.

For the processing of print files and work files, a print file/work file server has to be generated
(see Print File/Work File Server NATPWSV2), using the new type ,,PWK".

Data interchange between RPC batch server and print file/work file server takes place in a common
memory pool (print file/work file control pool), using the new type ,PWK".

Communication between RPC batch server (module NATFSTB2) and print file/work file server
(module NATPWSV?2) is accomplished by way of P1 forward eventing. If you intend to work with
the print file/work file server, then the module NATWKFB2 has to be replaced by the module NATFSTB2
in the link job for the reentrant part.

Example of linking the front-end part of the Natural RPC batch server:

/EXEC $TSOSLNK
PROG SERVER,FILENAM=BATCH.SERVER,LOADPT=X"'1000000",XREF=YES
TRAITS RMODE=ANY,AMODE=31

INCLUDE NATSFED2,NATvrs.MOD Must be bound as first module

INCLUDE RPCSFE,NATvrs.MOD RPC front-end stub

INCLUDE SERVFRNT,USERLIB Front-end part of Natural batch driver
INCLUDE SERVRENT,USERLIB Reentrant part of Natural batch driver
INCLUDE RPCSTUBZ,USERLIB BS2STUB (see above)

INCLUDE SWPRMSRV,USERLIB Swap pool parameter module

INCLUDE NATPRMSV,USERLIB Natural parameter module

INCLUDE ADAUSER,ADAvrs.MOD
INCLUDE SSFB2C,ADAvrs.MOD
BIND

where:

vrs stands for the current version of Natural for Mainframes or Adabas for Mainframes and

Operations 207



RPC Server Front-End

USERLIB stands for the user-specific library.

For information on how to generate the swap pool parameter module, refer to the section Defining

the Natural Swap Pool, Keyword Parameters of Macro NTSWPRM.

Example of linking the reentrant part of the Natural RPC batch server:

/EXEC $TSOSLNK

MOD RPCSERV,XREF=Y,MAP=Y,XDSEC=Y,SORT=YES
TRAITS RMODE=ANY, AMODE=ANY

LINK-SYMBOLS *NOESD

INCLUDE NATINV,NATvrs.MOD Must be bound as first module

INCLUDE NATURAL,NATvrs.MOD Natural nucleus
COMMENT NATWKFB2,NATvrs.MOD Is replaced by

INCLUDE NATFSTB2,NATvrs.MOD print file/work file server stub

A1l other
. moduls
INCLUDE NATLAST, ,NATvrs.MOD
BIND

where vrs stands for the current version of Natural for Mainframes.

Example of parameters for the Natural batch server:

AUTO=0N,

STACK=(LOGON DFSERVER),

RPC=(

SERVER=ON,
SRVNODE="10.20.91.202:3860:TCP"',SRVNAME=DFSRV1,
RPCSIZE=128 ,MAXBUFF=30,

TRACE=2

Do

RCA=BROKER,RCALIAS=(BROKER,BKIMBTIA),
MADIO=0,MAXCL=0,MT=0,MENU=0FF,
PRINT=((10),AM=STD),WORK=((1-10),AM=STD)

Example of parameters for the Natural RPC server client:

STACK=(LOGON DFCLIENT),

RPC=(
DFS=(DFSRV1,BKRO43,,,NOSERVDIR),
RPCSIZE=128 ,MAXBUFF=30,

AUTORPC=0ON, TRYALT=0FF

Do
RCA=BROKER,RCALIAS=(BROKER,BKIMBTIA),
MADIO=0,MAXCL=0,MT=0,ETID=" "

208

Operations



RPC Server Front-End

The Natural RPC batch server requires the file named P10 for the output of server messages. If
the print file/work file server is used, this file has to be defined using the FILE instruction in the
job control for the print file/work file server, unless it is defined in the job control of the Natural
RPC batch server.

Example of a start job:

/.SERVER LOGON

/SYSFILE SYSOUT=SERVER.OUT

/SYSFILE SYSLST=SERVER.LIST

/FILE NATvrs.EDIT.WORKFILE,LINK=CMEDIT

/FILE NATvrs.SERVER.ROLLFILE,LINK=PAMNAT, SHARUPD=YES
/FILE SERVER.MSG,LINK=P10 Is required for the server messages
/FILE ADAvrs.MOD,LINK=DDLIB

/FILE ADAPARM, LINK=DDLNKPAR

/FILE EXXvrs.LIB,LINK=BLSLIBO1 Broker

/FILE EXXvrs.LIB,LINK=ETBLIB Load library
/SYSFILE SYSDTA=SERVERPARMS

/EXEC BATCH.SERVER

/LOGOFF N

where vrs stands for the current version of Natural for Mainframes, Adabas for Mainframes or
EntireX Communicator.

For information on how to generate and start the EntireX Broker, refer to the EntireX Communi-
cator documentation.

Operations 209



210



37 Natural in Batch Mode

This part contains considerations that apply when running Natural in batch mode.

& Natural in Batch Mode under z/OS  Provides special considerations that refer to Natural in batch
mode under the operating system z/OS.
& Natural in Batch Mode under z/VSE Provides special considerations that refer to Natural in batch
mode under the operating system z/VSE.
& Natural in Batch Mode under CMS  Provides special considerations that refer to Natural in batch
mode under CMS.
& Natural in Batch Mode under Provides special considerations that refer to Natural in batch
BS2000/0SD mode under the operating system B52000/OSD.
& Natural in Batch Mode (All Contains general considerations that apply when running
Environments) Natural in batch: Adabas datasets, sort datasets, subtasking

session support for batch environments.

See also Batch Mode in the section Profile Parameters Grouped by Function for an overview of
the Natural profile parameters that apply if Natural is used in batch mode.

211



212



38 Natural in Batch Mode under z/0OS

= General Information about the Natural z/OS Batch Mode INterface .........co.uveeeeieie e 214
® Natural Z/OS Generation Parameters ........... e 214
= Datasets Used by Natural in Z/OS Batch MOGE .............ovviiiiiiiieiii e 217

213



Natural in Batch Mode under z/OS

This document contains special considerations that refer to Natural in batch mode under the
operating system z/OS.

The following topics are covered:
For considerations that refer to Natural in batch mode generally, see also:

= Adabas Datasets
= Sort Datasets

® Subtasking Session Support for Batch Mode Environments

General Information about the Natural z/OS Batch Mode Interface

The Natural z/OS batch mode interface NATOS consists of a number of service routines interfacing
with the z/OS operating system.

NATOS is supplied as a source module and can be customized to meet your requirements; see also
Installing Natural under z/OS. You can either assemble and link NATOS to the Natural nucleus or
you can run it separately, connecting with a shared nucleus.

NATOS is fully reentrant and can run above the 16 MB line. Multiple Natural sessions can be started
in parallel within one batch region; see Subtasking Session Support for Batch Environments.

Natural z/OS Generation Parameters

The NTOS macro contains several generation parameters to change Natural for z/OS batch mode
interface's internal defaults.

These parameters are: ABEXIT | LBPNAME | LE370 | SUBPOOL | TIOBSZ1 | TIOBSZ2 | USERID

214 Operations



Natural in Batch Mode under z/OS

ABEXIT - Abend Processing

This parameter specifies the mode of abend processing within Natural.

ABEXIT=ESTAE |Natural intercepts all abends and issues the appropriate error messages. This is the
default value.

ABEXIT=SPIE  |Only program checks (S0Cx abends) are intercepted as they used to be with Natural
Version 2.1.

ABEXIT=NONE |Natural does not intercept any abends or program checks at all. This value corresponds
to profile parameter DU=FORCE.

The setting ABEXIT=NONE is not recommended because some functions which require
the abend interception will not work any longer. The usage of profile parameter MT will
cause an abend U0322 instead of error NAT0953 when the CPU time limit is reached.

LBPNAME - Sharing of Local Buffer Pools

This parameter controls the sharing of the local buffer pools when running multiple Natural ses-
sions within the same region. It defines the name of the shared buffer pool environment and is
used to locate the shared local buffer pool.

LBPNAME=name |name can be 1-8 characters long.

LBPNAME= The default value is none, that is, the local buffer pools are not shared.

When running multiple Natural sessions in a z/OS batch or TSO environment concurrently, each
session allocates storage for a separate local buffer pool. Except for the Natural z/OS batch mode
server, the local buffer pools are not shared by default, that is, if the different sessions use the same
Natural objects, these have to be loaded once for each session separately. If name is specified, all
Natural sessions will share the same local buffer pool.

LE370 - Use of IBM Language Environment

This parameter specifies whether Natural is to run in the IBM Language Environment (LE).

LE370=YES You can call external subprograms according to the IBM calling conventions.

LE370=N0 You can only call main programs of the Language Environment. This is the default value.

This means a new LE enclave is created and terminated for each CALL statement.

LE370=P0SIX |You can call external subprograms according to the LE calling conventions with POSIX
semantics, that is, the LE is initialized with runtime option POSIX(ON).

Operations 215



Natural in Batch Mode under z/OS

LE370=AMODEZ24 |Support of external subprograms linked in addressing mode 24. LE is initialized with
options ALL31=(0FF) and STACK=(, ,BELOW).

Specify AMODEZ24 if one or more external subroutines are linked in AMODE 24. Parameter
value AMODEZ24 enables support for external subprograms linked in either AMODE 24 or
AMODE 31. If parameter value AMODEZ24 is omitted, an error is raised if an external
subprogram is to be called that is linked in AMODE 24.

LE370=NOHDLR |No setting of an LE error handler is done by Natural during the call of LE subprograms.
This means, if an unhandled error occurs during the execution of an LE subprogram, the
LE enclave is terminated and so the Natual session is lost.

Multiple parameter values are enclosed in brackets, for example:

LE370=(YES,POSIX,AMODEZ24)

For more information about Natural running with the IBM Language Environment, refer to
Natural Execution - Miscellaneous Topics, LE Subprograms.

SUBPOOL - Storage Subpool for GETMAIN Requests

This parameter defines the storage subpool for GETMAIN requests.

SUBPOOL=nnn |Possible value for nnn: "0" to "127".
SUBPOOL=0 The default value is "0".

TIOBSZ1 - Size of the Primary 1/0 Buffer for Batch Processing

This parameter specifies the size of the primary I/O buffer for batch processing. It will be allocated
below the 16 MB line. For server processing, parameter TI0BSZ2 is used instead.

TI0BSZ1=nnnn|nnnnis the size of the primary I/O buffer in bytes. Possible values: 4096 - 16777216.
The default value is 8192.

See also generation parameter TI0BSZ in Natural TSO Interface Generation Parameters in the TP
Monitor Interfaces documentation.

216 Operations



Natural in Batch Mode under z/OS

TIOBSZ2 - Size of the Primary 1/0 Buffer for Server Processing

This parameter specifies the size of the primary I/O buffer for server processing. It will be allocated
below the 16 MB line. For batch processing, parameter TI0BSZ1 is used instead.

TIOBSZZ2=nnnn|nnnn is the size of the primary I/O buffer in bytes. Possible values: 4096 - 16777216.
The default value is 65520.

See also generation parameter TI0BSZ in Natural TSO Interface Generation Parameters in the TP
Monitor Interfaces documentation.

USERID - Content of System Variable *INIT-USER

This parameter specifies the content of the system variable *INIT-USER.

USERID=YES |The variable is set to either the user ID from the security access control block (ACEE) if a
security package (as RACF or ACF2) is involved or the user parameter from the job card.

USERID=NO |The user ID is the job name. This is the default value.

The content of *INIT-USER can be changed by the user ID exit NATUEX1 during session initialization.

For more information, see Configuring Natural, Natural User Exits, NATUEX1 - User Exit for Aut-
horization Control.

Datasets Used by Natural in z/OS Batch Mode

The following datasets are required if certain functions are used during a Natural z/OS batch mode
session:

Dataset Explanation

CMEDIT |Software AG Editor Work File
CMHCOPY |Hardcopy Print Output
CMOBJIN |Input for Natural INPUT Statements

CMPLOG  |Dynamic Profile Parameter Report Output

CMPRINT |Primary Report Output

CMPRMIN

Dynamic Profile Parameter Input

CMPRTnn

Additional Reports 01-31

CMSYNIN

Primary Command Input

CMTRACE

External Trace Output

NATRJE

Job Submit Output

Operations

217



Natural in Batch Mode under z/OS

Dataset Explanation

STEPLIB |Load Library for External Modules
CMWKFnn |Work Files 01-32

These datasets are described below.
For sequential data output sets, the default DCB RECFM/LRECL information is as follows:

RECFM=FBA and LRECL=133
CMEDIT - Software AG Editor Work File

The Software AG Editor work file VSAM dataset is required if a local or global Software AG editor
buffer pool is to be used.

If not defined in the JCL, the name of the Editor work file specified by subparameter DSNAME of
profile parameter EDBP or parameter macro NTEDBP is used by Natural to do the dynamic allocation
for the Editor work file.

Alternatively, profile parameter EDPSIZE can be used to run with an auxiliary editor buffer pool,
which doesn't require an editor work file. For more information about the installation of the Soft-
ware AG editor, please refer to Installing the Software AG Editor in the Natural Installation documen-
tation.

CMHCOPY - Optional Report Output for Hardcopy

The default name of the hardcopy print output dataset is CMHCOPY. It can be changed by one of the
following:

the subparameter DEST of profile parameter PRINT for Print File 0,

the profile parameter HCDEST, which is an equivalent of PRINT=((0) ,DEST=...),

the setting of the system variable *HARDCOPY during the session,

the terminal command %H during the session.

The subparameters of the profile parameter PRINT for Print File 0 can be used to change the default
values for the hardcopy dataset. The default dataset name CMHCOPY implies CLOSE=FIN for the
hardcopy print dataset, that is, after the dataset has been opened for output, any subsequent change
of the hardcopy print output dataset name will not be honored. If a different name is defined at
open time, the hardcopy dataset will be closed according to subparameter CLOSE of profile para-
meter PRINT for Print File 0.

During the session, the hardcopy dataset can be released and reallocated (before open or after
close) by the by dynamic allocation (via application programming interface USR2021N, see SYSEXT
- Natural Application Programming Interfaces).

218 Operations



Natural in Batch Mode under z/OS

CMOBUJIN - Input for Natural INPUT Statements

This dataset can be used to read data by the Natural INPUT statement rather than from the primary
input dataset CMSYNIN.

The usage of CMOBJIN is controlled by the profile parameter 0BJIN. The input record data length
for Natural is determined by profile parameter SL. The maximum record length (LRECL) supported
is 255. The record format (RECFM) can be fixed or variable.

CMPLOG - Dynamic Profile Parameter Report Output

If profile parameter PLOG=0N is set and dataset CMPLOG is available, the evaluated dynamic profile
parameters are written to this dataset during session initialization. If dataset CMPLOG is not
available, the evaluated dynamic profile parameters are written to CMPRINT.

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

If not defined in JCL, CMPRINT will be allocated dynamically as

//CMPRINT DD SYSOUT=*

when the first record is to be written.
CMPRMIN - Dynamic Parameter Dataset

CMPRMIN can be used as a dynamic parameter dataset to overcome the length restriction for the
character string in the job control PARM keyword of the EXEC statement.

If available, this file is read during session initialization to get the dynamic profile parameters.

All input records from CMPRMIN are concatenated into one parameter string. Only the first 72
positions of each CMPRMIN record are significant. Trailing blanks at the end of each record are
truncated; if the last non-blank character is a comma, all trailing blanks are truncated, otherwise
just one blank is left as delimiter; no commas are inserted.

Additional dynamic parameters can be supplied using the job control PARM keyword. They are
concatenated at the end of the parameter string which was built from the input of CMPRMIN, that
is, these can be used to overwrite the parameters from CMPRMIN.

Operations 219



Natural in Batch Mode under z/OS

CMPRTnNn - Additional Reports 01 - 31

These datasets can be used by Natural print file statements like WRITE (nn). If no DCB information
(for example, RECFM, LRECL, BLKSIZE) is available, the defaults are defined by the PRINT profile
parameter or the NTPRINT macro in the Natural parameter module. The print file names can be
overwritten by subparameter DEST.

CMSYNIN - Primary Command Input

This dataset is used to read command input and data requested by the Natural INPUT statement.
The latter is controlled by the profile parameter 0BJIN (see also CMOBJIN).

The input record data length for Natural is determined by profile parameter SL. The maximum
record length (LRECL) supported is 255. The record format (RECFM) can be fixed or variable.

CMTRACE - Optional Report Output for Natural Tracing
If profile parameter ETRACE=0N is set or the equivalent terminal command %TRE+ was issued, any

Natural trace output during the session is written to the CMTRACE dataset. To define the Natural
components that are to be traced, the profile parameter TRACE is required.

If dataset CMTRACE is not available, it will be allocated dynamically as

//CMTRACE DD SYSOUT=*

when the first trace record is to be written.

NATRJE - Job Submit Output

This dataset is used for the Natural job submitting utility. If it is not defined, it will be allocated
dynamically as

//NATRJE DD SYSOUT=(A,INTRDR)

when the first job is submitted.

220 Operations



Natural in Batch Mode under z/OS

STEPLIB - Load Library for External Modules

STEPLIB is the default load library name for loading external modules, for example:

® the shared nucleus (profile parameter NUCNAME),
" aseparate Adabas link routine module (profile parameter ADANAME),
" the session back-end program (profile parameter PROGRAM),

" any external subprograms not linked to the Natural parameter module.

The load library name can be changed by profile parameter LIBNAM. The specified load library
name must be defined by a DD statement in the JCL.

CMWKFnn - Work Files 01-32

These datasets can be used by Natural work file statements like READ WORK nnand WRITE WORK nn.

If no DCB information (RECFM, LRECL, BLKSIZE, etc.) is available in the JCL or in the VTOC entry
for the dataset, the defaults are defined by the WORK profile parameter or the NTWORK macro in the
Natural parameter module.

The work file dataset names can be overwritten by subparameter DEST.

Operations 221



222



39 Natural in Batch Mode under z/VSE

= NATVSE - Natural z/VSE Batch Mode INTEIfaCe .........ccoiiiiiiiiiiiiiee e 224
= NTVSE Macro - Generation Parameters for Natural under z/VSE ..., 224
= Natural Datasets Used under a z/VSE Batch Mode SESSION ..........cccoiiiiiiiiiiiiiie e 230
= NATVSE Print and Work File Support for z/VSE Library Members ..o 235
= NATVSE Dynamic Work File Allocation (DYNALLOC) SUPPOM ......cooiiiiiiiiiiiiiieee e 237
= Debugging Facilities for Natural under Z/VSE ... 240
B NATVSE Atention INtEITUPLS ......vviiiiie e a e 244

223



Natural in Batch Mode under z/VSE

This document contains special considerations that refer to Natural in batch mode under the
operating system z/VSE.

The following topics are covered:
For considerations that refer to Natural in batch mode generally, see also:

® Adabas Datasets
® Sort Datasets
® Subtasking Session Support for Batch Mode Environments

NATVSE - Natural z/VSE Batch Mode Interface

The Natural z/VSE batch mode interface NATVSE consists of a number of service routines interfacing
with the z/VSE operating system.

NATVSE is supplied as a source module and can be customized to meet your requirements; see also
Installing Natural under z/VSE, where you can set the generation parameters. You can either
assemble and link it to the Natural nucleus or you can run it separately, connecting with a shared
nucleus.

NATVSE must run below the 16 MB line. Multiple sessions can be started in parallel within one
batch region; see Subtasking Session Support for Batch Mode Environments.

NTVSE Macro - Generation Parameters for Natural under z/VSE

The NTVSE macro contains several generation parameters (to be set in the NATVSE copy book) to
change the NATVSE internal defaults.

These parameters are:

NAME | BUFSIZE | CANCEL | DSECTS | FILEID | FILMNGR | FILSCAN | FLUSH | IDUMP | LE370 | LIBRID
| MAXABND | RCSIZE | RJEUSER | SEGMENT | THDSIZE | USERID | WAITIME

224 Operations



Natural in Batch Mode under z/VSE

NAME - Name of Relocatable Module

NAME specifies the name of the relocatable module to be created by the given assembly. Possible
values:

NAME=xxxxxX |xxxxxx=name of the relocatable module to be created.

Maximum length: 8 characters.

NAME=NATVSE |This is the default value.

BUFSIZE - Size of Natural I/0 Buffer

BUFSIZE specifies the size of the Natural I/O buffer which is used for all input and output operations.

BUFSIZE=nnnn |nnnn specifies the size of the Natural I/O buffer in KB.

Minimum value: 8 (KB).

BUFSIZE=8192 |This is the default value.

CANCEL - Session Termination

CANCEL specifies how the Natural z/VSE interface is to proceed at session termination. Possible
values:

CANCEL=YES |Thejob is cancelled by CANCEL or JDUMP macros, unless either Natural terminated normally
or the session was terminated by the Natural TERMINATE statement.

This is the default value.

CANCEL=NO  [NATVSE always terminates with RETURN or £E0J macros with a set return code (the same
effect is achieved when you set the Session Abend Flag UPST XXXXX1 XX).

| Note: CANCEL=YES is the default for compatibility reasons. However, it is recommended to
specify CANCEL=NO, particularly to take advantage of VSE conditional job control facilities.

Operations 225



Natural in Batch Mode under z/VSE

DSECTS - Listing of Operating System DSECTS

DSECTS specifies whether operating system DSECTS are to be listed. Possible values:

DSECTS=YES |Listing of operating system DSECTS takes place.

DSECTS=NO |Operating system DSECTS are not to be listed.

This is the default value.

FILEID - Check of Label Information

FILEID specifies a string of up to 8 characters which is checked against the start of a DLBL or TLBL
file ID. If it matches, this label information is ignored. Possible values:

FILEID=XXXXXXXX

XXxxxxxx=any character string which must be enclosed in apostrophes if it contains
special characters.

FILEID="IGNORE"

This is the default value.

This is particularly helpful when DLBL or TLBL statements for CMWKF nn* and/or CMPRT nn* are supplied
in the (partition) standard labels, but should not be used.

If, forexample,a // DLBL CMPRTO1,"'..." statementisfound, itis not possible to directa WRITE(1)
output to a printer SPOOL. To do so, use the JCS statement // DLBL CMPRTO1,'IGNORE' anda
suitable printer assignment of the relevant SYSnnn.

FILMNGR - Management of Print or Work File in Natural

FILMNGR specifies how a print or a work file is to be managed in Natural. Possible values:

FILMNGR=YES |The fact that there is label information for a print or a work file and the fact that
LABEL=0FF/ON is specified for an unlabelled work file indicates to Natural that this file
is available. In particular, this is relevant if the Natural print and work files are to be
managed by a file management system.

This is the default value.

FILMNGR=NO  |The logical unit number of the Natural print or work file must be assigned to the
appropriate device type.

226

Operations



Natural in Batch Mode under z/VSE

FILSCAN - Scanning of Print or Work Files

FILSCAN specifies whether print or work files are to be scanned. Possible values:

FILSCAN=YES |The Natural z/VSE interface scans the z/VSE label area for all Natural print and work files
for which no specific file access method has been defined via Natural session parameters,
as this may cause overhead.

This is the default value.

FILSCAN=NO  |Access to all Natural print and work files must be specified explicitly via session parameters
in order to be ,,available”. This concentrates all file access efforts on the defined files.

FLUSH - Flush Card Input Files until EOF

FLUSH specifies how the Natural z/VSE interface is to proceed at session termination with the
CMSYNIN/CMOBJIN card input files. Possible values:

FLUSH=YES |At session termination, the Natural z/VSE interface will read the SYSIN/SYSRDR/SYSIPT
card input file until EOF, unless EOF had been encountered by Natural; this means that when
driving the batch mode Natural session completely with STACK data, an extra ,,/*” has to be
provided in the JCL for a CMSYNIN/CMOBJIN null file.

This is the default.

FLUSH=NO |Noextra SYSIN/SYSRDR/SYSIPT card input (null) file is required, if the batch mode Natural
session is completely driven with STACK data; the SYSIN/SYSRDR/SYSIPT card input file is
then left as is, thus potentially resulting in INVALID STATEMENT operator prompts or job
cancellation due to INVALID STATEMENT, when the Natural CMSYNIN/CMOBJIN had notbeen
retrieved completely.

IDUMP - Dump Creation Mode

IDUMP specifies the kind of dump the Natural z/VSE interface is to produce.

Possible values:

IDUMP=YES|The Natural z/VSE interface will create dumps using the IDUMP macro.

This is the default value.

IDUMP=NO |The Natural z/VSE interface will create dumps using the SDUMP macro.

Operations 227



Natural in Batch Mode under z/VSE

LE370 - Use of IBM Language Environment

LE370 specifies whether Natural is to run in the IBM Language Environment. Possible values:

LE370=YES |The IBM Language Environment runtime environment is initialized on the initialization of
the Natural session. You must specify ,YES” if IBM Language Environment subroutine
programs (dynamic or static) are to be called via Natural.

LE370=NO |The IBM Language Environment runtime environment is not initialized on the initialization
of the Natural session.

This is the default value.

LIBRID - Check of DLBL File ID Information

LIBRID specifies a string of up to 8 characters which is checked against the start of a DLBL file ID.
If it matches, the remaining portion of that file ID is scanned for information specifying a library
member in a z/VSE library or library chain. Possible values:

LIBRID=xxxxxxxX | xxxxxxxx=any character string of 8 characters length; must be enclosed in quotes if

it contains any special characters.

LIBRID="'LIBR:"' |Thisis the default value.

MAXABND - Maximum Number of Abends

MAXABND specifies the maximum number of abends which NATVSE tolerates (thatis, NATVSE intercepts
the abend and invokes the Natural abend handler) until it assumes an unrecoverable abend
situation or abend loop and terminates the Natural session abnormally by itself. Possible values:

MAXABND=nnnn

nnnn=maximum number of abends.

MAXABND=16

This is the default value.

228

Operations




Natural in Batch Mode under z/VSE

RCSIZE - Default Roll Cache Size for a Server Environment

RCSIZE specifies the default roll cache size for a server environment for the case that the roll cache
size is not passed with the Initialize Environment request. Possible values:

RCSIZE=nnnnnnnnn{nnnnnnnnn = default roll cache size in KB.
RCSIZE=0 This is the default value.

RJEUSER - User ID for Submission via XPCC Macro Requests

RIEUSER defines which user ID is to be set for submission via XPCC macro requests. Possible values:

RJEUSER=YES or RJEUSER=YES is the default value. The system variable *INIT-USER is used as the
RJEUSER=(YES,VSE) |mandatory submission user ID.

RJEUSER=(YES,NAT) |The system variable *USER is used as the mandatory submission user ID.
RJEUSER=NO The user ID R000 is used.

SEGMENT - Behavior at Output Spool File Close

SEGMENT specifies how the Natural z/VSE interface is to behave at CLOSE of an output SPOOL file
(print or punch). Possible values:

SEGMENT=YES|A file close is accompanied by a POWER segment close unless CLOSE=F IN is in effect for that
file.

SEGMENT=NO |The SPOOL file is closed without closing the POWER segment.

This is the default value.

THDSIZE - Default Thread Size for a Server Natural Environment

THDSIZE specifies the default thread size for a server Natural environment for the case, that the
thread size is not passed with the Initialize Environment request. Possible values:

THDSIZE=nnnnnnnnn|{nnnnnnnnn = default thread size in KB.
THDSIZE=0 This is the default value.

Operations 229



Natural in Batch Mode under z/VSE

USERID - Content of System Variable *INIT-USER

This parameter specifies the contents of the system variable *INIT-USER. Possible values:

USERID=YES

The following logic applies: if a z/VSE user ID is specified in JCL (// ID USER=xxXx), this
user ID is taken; otherwise, ifa POWER from-user isspecified in JECL (* $$ JOB FROM=xxx),
this user id is taken; otherwise, the VSE job name is taken for the Natural user ID.

USERID=NO

The VSE job name is taken for the Natural user ID.

This is the default value.

WAITIME - Time Limit for Session Roll-Out

WAITIME specifies a time limit in milliseconds. It applies to the CMROLL call in a Natural server
environment: if the time interval passed in the CMROLL call is not less than the WAITIME interval,
the session is rolled-out and the its thread is released, while the session is waiting. Possible values:

WAITIME=nnnnn|nnnnn = time limit in milliseconds.

WAITIME=1000 |This is the default value.

Natural Datasets Used under a z/VSE Batch Mode Session

The following datasets are required if certain functions are used during a Natural z/VSE batch
mode session:

Dataset Explanation

CMEDIT Software AG Editor Work File

CMHCOPY  |Hardcopy Print Output

CMOBJIN  |Input for Natural INPUT Statements

CMPLOG Dynamic Profile Parameter Report Output

CMPRINT  |Primary Report Output

CMPRMIN  |Dynamic Profile Parameter Input

CMPRTnn |Additional Reports 01-31

CMSYNIN  |Primary Command Input

CMTRACE  |External Trace Output

CMWKFnn |Work Files 01-32

These datasets are described below.

230

Operations



Natural in Batch Mode under z/VSE

CMEDIT - Software AG Editor Work File

The Software AG Editor work file VSAM dataset is required if a local or global Software AG
editor buffer pool is to be used.

If not defined in the JCL, the name of the Editor work file specified by subparameter DSNAME of
profile parameter EDBP or parameter macro NTEDBP is used by Natural to do the dynamic allocation
for the Editor work file.

Alternatively, profile parameter EDPSIZE can be used to run with an auxiliary editor buffer pool,
which does not require an editor work file. For more information about the installation of the
Software AG editor, see Installing the Software AG Editor.

CMHCOPY - Optional Report Output for Hardcopy

The default name of the hardcopy print output dataset is CM\HCOPY. It can be changed by one of the
following:

* the subparameter DEST of profile parameter PRINT for Print File 0,

*® the profile parameter HCDEST, which is an equivalent of PRINT=((0) ,DEST=...),

" the setting of the system variable *HARDCOPY during the session,

® the terminal command %H during the session.

The subparameters of the profile parameter PRINT for Print File 0 can be used to change the default
values for the hardcopy dataset. The default dataset name CMHCOPY implies CLOSE=FIN for the
hardcopy print dataset, that is, after the dataset has been opened for output, any subsequent change
of the hardcopy print output dataset name will not be honored. If a different name is defined at

open time, the hardcopy dataset will be closed according to subparameter CLOSE of profile para-
meter PRINT for Print File 0.

By default, the CMHCOPY file is assigned to SYSLST and is processed via the macro DTFPR.

If appropriate label information is supplied for the file name CMHCOPY, the print output may also
be routed to disk or tape by using the z/VSE macro DTFSD or DTFMT with:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
member type is PRINT.

Operations 231



Natural in Batch Mode under z/VSE

CMOBUJIN - Input for Natural INPUT Statements

CMOBJIN is used for data intended to be read by Natural INPUT statements. This type of data can
alternatively be placed in the CMSYNIN input stream immediately following the relevant source
program or the relevant RUN or EXEC command.

When the setting for the profile parameter 0BJIN is N, Natural reads input from CMSYNIN. When
0BJIN is set to Y, Natural reads input from CMOBJIN. When 0BJIN is set to R, Natural determines
which option has been selected for a particular session depending upon the presence or absence
of a CMOBJIN label information.

By default, the CMOBJIN input file is assigned to SYSIPT. By using the profile parameter READER, it
can be assigned to SYSRDR.

Alternatively, a sequential disk or labeled tape file may be used rather than a real/logical (POWER)
reader file. In that case, you must supply appropriate label information for file name CMOBJIN.

Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

You must supply appropriate label information; for assignment, you have to use file names CMSYNIN
and /or CMOBJIN.

CMPLOG - Optional Report Output for Dynamic Parameters

If profile parameter PLOG=0N is set and dataset CMPLOG is available, the evaluated dynamic profile
parameters are written to this dataset during session initialization. If dataset CMPLOG is not
available, the evaluated dynamic profile parameters are written to CMPRINT.

By default, the CMPLOG file is assigned to SYSLST and is processed with the macro DTFPR.

If appropriate label information is supplied for the file name CMPLOG, the print output may also
be routed to disk or tape by using the z/VSE macros DTFSD or DTFMT with:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
member type is PRINT.

232 Operations



Natural in Batch Mode under z/VSE

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

By default, the CMPRINT file is assigned to SYSLST and is processed via the macro DTFPR.

If appropriate label information is supplied for the file name CMPRINT, the print output may also
be routed to disk or tape by using the z/VSE macro DTFSD or DTFMT with:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
file type is PRINT.

CMPRMIN - Dynamic Parameter Dataset

CMPRMIN can be used as a dynamic parameter dataset to overcome the length restriction for the
character string in the job control PARM keyword of the EXEC statement.

If available, this file is read during session initialization to get the dynamic profile parameters.

All input records from CMPRMIN are concatenated into one parameter string. Only the first 72
positions of each CMPRMIN record are significant. Trailing blanks at the end of each record are
truncated; if the last non-blank character is a comma, all trailing blanks are truncated, else just one
blank is left for delimiter; no commas are inserted.

Additional dynamic parameters can be supplied using the job control PARM keyword: if the PARM
keyword contains a dynamic parameter string, these profile parameters are concatenated at the
end of the parameter string which was built trom the input of CMPRMIN, i.e. these can be used to
overwrite the parameters from CMPRMIN. If the PARM keyword is specified as SYSRDR or SYSIPT,
Natural retrieves additional profile parameters from SYSRDR or SYSIPT respectively as a logical
extension of the CMPRMIN dataset, i.e. the same rules apply.

CMPRMIN is a sequential disk or a labelled tape dataset. Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

Operations 233



Natural in Batch Mode under z/VSE

CMPRTnNn - Additional Reports

CMPRTnnis used for each additional report referenced by any Natural program compiled or executed
during the session. "nn" must be a two-digit decimal number in the range 01-31 corresponding to
the report number used in a DISPLAY, PRINT or WRITE statement.

Instead of CMPRTnn, another file name may be used by setting the DEST subparameter of profile
parameter PRINT to an appropriate value, for example:

PRINT=C(nn), ..., DEST=PRNTFIL)

When supplying label information with file name CMPRTnn, the print output can be written to a
disk or tape. Natural treats this print file like an unblocked fixed-length work file. When ,, printing”
to disk or tape, the same logic as for work files applies (see below).

When mapped to a z/VSE library member, the record format is fix, the record length is 80 and the
default file type for these files is PRINT.

CMSYNIN - Primary Input

CMSYNIN is used for the primary input file that contains Natural commands, Natural source pro-
grams, and (optionally) data to be read by INPUT statements during the execution of Natural pro-
grams.

By default, the CMSYININ input file is assigned to SYSRDR. By using the profile parameter READER,
it may be assigned to SYSIPT.

Alternatively, a sequential disk or labeled tape file may be used rather than a real/logical (POWER)
reader file. In that case, you must supply appropriate label information for file name CMSYNIN.

Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

CMTRACE - Optional Report Output for Natural Tracing

If profile parameter ETRACE is set to "ON" or the equivalent terminal command %TRE+ was issued,
any Natural trace output during the session is written to the CMTRACE dataset. To define the
Natural components that are to be traced, the profile parameter TRACE is required.

By default, the CMTRACE file is assigned to SYSLST and is processed via the macro DTFPR.

234 Operations



Natural in Batch Mode under z/VSE

If appropriate label information is supplied for the file name CMTRACE, the print output may also
be routed to disk or tape by using the z/VSE macro DTFSD or DTFMT with:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
member type is PRINT.

CMWKFnn - Work Files 01-32

CMWKFnnis used for each Natural work file referenced by any Natural program compiled or executed
during the session. nn must be a two-digit decimal number in the range 01 - 32 corresponding to
the number used in a READ WORK FILEor WRITE WORK FILE statement.

Instead of CMWKF nn, another file name may be used by setting the DEST subparameter of profile
parameter WORK to an appropriate value.

If the Natural z/VSE generation parameter FILMNGR=YES is specified and there is label information
for a work file or if OFF or NOTM is specified for the LABEL subparameter of profile parameter WORK
for an unlabeled work file, Natural knows the file is available. Otherwise, the Natural work-file
logical-unit number must be assigned to the correct device type.

When mapped to a z/VSE library member, the record format is fix, the record length is 80 and the
default member type for these files is WORK.

If a Natural printer or work file is assigned IGN, all I/O requests for these files are treated as
dummy and no Natural error is generated. However, if there is no assignment or the printer/work
file is assigned UA, any attempt to use this file is treated as an error.

NATVSE Print and Work File Support for z/VSE Library Members

NATVSE supports access to z/VSE library members for input and/or output for all Natural datasets.
When a z/VSE library member is accessed, only ,,card image format” is supported, that is, a record
length of 80 bytes.

The access to a z/VSE library member is triggered via the file ID of an associated DLBL statement.
A special string (see LIBRID in NTVSE Generation Parameters) at the start of the file ID field in the
DLBL statement signals that the Natural dataset actually is a z/VSE library member which is spe-
cified in the remainder of the file ID field.

Operations 235



Natural in Batch Mode under z/VSE

The following specifications are possible:

C=chain Specifies a library concatenation chain defined in JCL.

S=library.sublib |Specifies a specific sublibrary in a specific library.

M=mbrname.mbrtype|Specifies a library member name and its type.

The following rules apply:

= All these possible specifications are optional.

® Each parameter may be specified only once.

® The parameters are separated by one ore more commas or blanks.

® Chain (C=) and sublibrary (S=) specifications are optional, but mutually exclusive when specified.

® If neither a chain (C=) nor a sublibrary (S=) is specified, a default of C=SOURCE is taken.

® If a library member (M=) is not specified, a default of M=f7iTename. type is taken, where
filename is the file name of the DLBL statement and
typeindicates the Natural file class, namely WORK for Natural work files, PRINT for Natural print

files and CARD for the Natural input files CMPRMIN, CMSYNIN and CMOBJIN (the relevant default
member type for every Natural dataset is mentioned below).

" An asterisk specified for any sub-parameter of the library member specification signals the
default to be taken; hence a specification of M=* . * has the same effect as omitting this parameter.

® Omitting the member type subparameter also means the default to be taken.
Example:

// LIBDEF PROC,SEARCH=(...)
// LIBDEF SOURCE,SEARCH=(...)
// DLBL CMWKFOL,'LIBR:M=FILE1.TEST S=SAGLIB.USRLIB'

// DLBL CMWKFO2,'LIBR: S=SAGLIB.USRLIB' ->  M=CMWKFO02.WORK
// DLBL CMWKFO3,'LIBR: M=TEST  C=PROC' ->  M=TEST.WORK

// DLBL CMPRTO4,'LIBR:M=*.LISTING,S=SAGLIB.USRLIB' ->  M=CMPRTO4.LISTING
// DLBL CMPRTO5, 'LIBR:" ->
M=CMPRTO5.PRINT,C=SOURCE

// DLBL CMPRTO6, 'LIBR:M=WORK" ->
M=WORK.PRINT,C=SOURCE

// DLBL CMWKFQ7,'LIBR: M=*_.DATA' ->
M=CMWKFO7.DATA,C=SOURCE

// DLBL CMPRMIN, 'LIBR:M=* *" ->

M=CMPRMIN.CARD,C=SOURCE

Notes:

1. When a chain is specified or defaulted for an output file, the output is written into the first
sublibrary specified in the chain.

236 Operations



Natural in Batch Mode under z/VSE

2. If a member with the same name and type already exists in a target sublibrary of a Natural
output file, this member is replaced unconditionally.

3. ThefileID field of a DLBL statement is just 44 characters in length, which is not enough to specify
all (sub)parameters in their full length. Therefore it is recommended to take advantage of the
defaults. Regarding the member name, there is also the option to specify the file name via the
DEST subparameter of the Natural profile parameter PRINT or WORK.

NATVSE Dynamic Work File Allocation (DYNALLOC) Support

Natural under z/VSE offers functionality to define work files dynamically, that is, these files need
not be predefined in JCL. This means that Natural under z/VSE adds labels into the partition's
temporary labels area for work files defined using a DEFINE WORK FILE statement.

In this respect Natural under z/VSE does not modify existing label information. All file labels
dynamically added by a Natural session are deleted at session termination.

The following topics are covered below:

= Prerequisites

= DEFINE WORK FILE Keyword Parameters

= Rules for Using the DEFINE WORK FILE Keyword Parameters
= Samples

Prerequisites

A disk file manager is required, as it is not feasable to have fix file extent information within
Natural application programs, particularly when these programs are executed in parallel in the
same partition or in several partitions. This is not a restriction, as at least VSAM/SAM is available
under z/VSE.

For dynamic allocation support by Natural under z/VSE, the following keyword subparameters
of Natural profile parameter WORK have been made sensitive:

® BLOCKS (Number of Storage Blocks)
® DISP (File Open Mode)

Operations 237



Natural in Batch Mode under z/VSE

DEFINE WORK FILE Keyword Parameters

The following keyword parameters are available for dynamic work files under VSE:

Keyword Parameter | Purpose

CAT=catalog |Triggers the usage for VSAM/SAM for the dynamic work file, where catalog is the 1 to
7 characters VSAM catalog file name. As this parameter is mandatory, if you want to
use VSAM/SAM, you have to specify a VSAM job catalog explicitely (CAT=1JSYSUC).

VOL=volser If specified a // EXTENT information is generated with that 1 to 5 characters volume
serial number; its content depends on the preceeding DLBL information, see below.

DSN=fileid Is the DSN to set the file ID (optional).

Rules for Using the DEFINE WORK FILE Keyword Parameters

Potential CAT or VOL parameters have to come first in the DEFINE WORK FILE string, as the end of
the parameter value can easily be found; the DSN=parameter must be specified as the last keyword
parameter.

In other words, if CAT or VOL parameters are specified, and the DSN keyword parameter is not
specified, all data in the DEFINE WORK FILE parameter string behind the last keyword parameter
is considered as file ID to be set.

For VSAM/SAM, NATVSE dynamically adds the following label information:

// DLBL xxyyyyz,'file-id',0,VSAM,CAT=catalog, +
RECORDS=nI1,RECSIZE=n2,DISP=(dspl,dsp2)
// EXTENT ,volser

optional

where:

XX is the partition's SYSLOG ID, for example BG, F4, etc.

yyyy yyyy is the edited z/VSE two-byte hexadecimal task number (to allow Natural
subtasks in the same partition).

z is the Natural work file number: "1" through "9" for files 1 to 9, "A" through "W" for
files 10 to 32.

nl is the value specified by the keyword subparameter BLOCKS of profile parameter
WORK.

n2 is the value specified by the keyword subparameter BLKSIZE of profile parameter
WORK.

dspl, dsp2 isthe value specified by the keyword subparameter DISP of profile parameter WORK.
catalog is the VSAM catalog which has to be set using a DEFINE WORK FILE statement.

238 Operations



Natural in Batch Mode under z/VSE

volser is the volume serial number on which the file is allocated.

Note that the EXTENT card is only generated when volser has been setin a DEFINE WORK FILE
statement in the Natural application.

For other disk file management systems, for example CA-DYNAM/D, NATVSE adds dynamically the
following label information:

// DLBL xxyyyyz,'file-id"',0

// EXTENTSsysnnn,volser,,,1,nl optional
where:
XX is the partition's SYSLOG ID, for example BG, F4, etc.

yyyy is the edited z/VSE two-byte hexadecimal task number (to allow Natural subtasks in the
same partition).

z is the Natural work file number: 1 through 9 for files 1 to 9, A through W for files 10 to
32.
nl is the value specified by the keyword subparameter BLOCKS of profile parameter WORK.

sysnnn is the value specified by the keyword subparameter SYSNR of profile parameter WORK.

volser 1isthe volume serial number on which the file is allocated.

Note that the EXTENT card is only generated when volser has been setin a DEFINE WORK FILE

statement in the Natural application. If n1 is zero, extent information (start track/block and number
of tracks/blocks) is omitted.

For Natural as a server the file name setup has the format:

XYyyyyz

where:

xyyyyy isthe server session number in hexadecimal format (edited) with the very first character
forced alphabetic by translation of 0 through F into A to P.

z is the Natural work file number, as for normal Natural under z/VSE batch operation.

Files to be dynamically allocated must have a Natural file name of *' set in keyword subparameter
DEST="*" of profile parameter WORK or a statement definition of DEFINE WORK FILE '*' to enable
Natural under z/VSE to create new file names as described above.

The file identification to be used also has to be set using a DEFINE WORK FILE statement.

The regular z/VSE restrictions for file IDs apply.

Operations 239



Natural in Batch Mode under z/VSE

In a Natural multitasking or server environment, it is recommended to provide some unique
information in the file ID to prevent ,equal file” conditions.

Samples

Natural parameters:

WORK=((1-6),AM=1,DEST="*",BLOCKS=100),WORK=((2),
DISP=(0LD,DELETE)),WORK=((6),BLOCKS=0)

Natural work file definition within application:

DEFINE WORK
DEFINE WORK
DEFINE WORK
DEFINE WORK
DEFINE WORK
DEFINE WORK

'CAT=IJSYSUC,VSAM.SAM.FILE"
"CAT=IJSYSCT,DSN=ANOTHER FILE"
"CAT=IJSYSUC,VOL=DOSRES,ONE MORE FILE'
'==.CATALOGED.FILE"
'VOL=POOLO1,DSN=FILE WITH EXTENT INFO'
"VOL=DOSRES,ANY FILE'

D O B~ W N

z/VSE labels generated:

// DLBL xxyyyyl,'VSAM.SAM.FILE',0,VSAM,CAT=IJSYSUC, +
RECORDS=100,RECSIZE=4628,DISP=(NEW,KEEP)

// DLBL xxyyyy2,'ANOTHER FILE',0,VSAM,CAT=IJSYSCT, +
RECORDS=100,RECSIZE=4628,DISP=(0LD,DELETE)

// DLBL xxyyyy3,'ONE NORE FILE',0,VSAM,CAT=IJSYSUC, +
RECORDS=100,RECSIZE=4628,DISP=(NEW, KEEP)

// EXTENT ,DOSRES

// DLBL xxyyyy4,'==.CATALOGED.FILE',0

// DLBL xxyyyy5,'FILE WITH EXTENT INFO',O

// EXTENT SYS005,P00LO1,,,1,100

// DLBL xxyyyy6,"ANY FILE',O

// EXTENT SYS006,DOSRES

Debugging Facilities for Natural under z/VSE

The Natural z/VSE batch mode interface contains some debugging facilities which can help you
to track down problems.

These facilities are controlled by the UPSI settings in the JCL.

Additionally, the UPST settings may also be specified as a Natural session parameter (UPSI=1XXXXXXJX,
for example). This is useful if UPST settings in JCL have produced side effects in the sense that they
have a different meaning for other programs such as for front-end Natural or for programs called
by Natural.

240 Operations



Natural in Batch Mode under z/VSE

There may be the following UPST settings:

UPSI Setting Meaning

UPST 1XXXXXXX |Dump Flag

UPST XIXXXXXX |Trace Flag

UPST XXX1XXXX |Storage Freeze Flag

UPST XXXXX1XX |Session Abend Flag

UPST XXXXXX1X |Abend Exit Flag

UPST XXXXXXX1 |Formatted Dump-Only Flag

These settings are described below. In addition, a sample job is given to show you how to obtain
documentation for debugging.

UPSI 1XXXXXXX - Dump Flag

When Natural encounters a problem, the corresponding job usually cancels without a dump,
unless an abend actually occurred. When this UPST flag is set, a dump is always created at the end
of the job when an error occurs, that is, when the Natural session termination message is other
than NAT9995.

UPSI X1XXXXXX - Trace Flag

When this flag is set, snapshots are taken of the register save area at some strategic points in
Natural.

| Note: Depending on the product sample output, setting this flag can lead to large output.

On entry of all NATVSE service routines, the name of this routine and the general registers 0 to 15
(GRGQG) are displayed.

| Note: You can identify the caller from Register 14.

On exit of all NATVSE service routines, the name of this routine, the current general registers (GRG)
and Registers 0 to 15 of the currently assigned save area (CSA) are displayed.

] Notes:

1. The contents of the CSA are returned to the caller of the service routine, except the Register 15
return code which is taken from the general registers.

2. The contents of the HSA are returned to the caller, which means that this save area contains
the return code in Register 15 if a return code was set at all.

Operations 241



Natural in Batch Mode under z/VSE

Whenever the GRG registers are set, the debugging trace program tries to determine the name of
the calling routine and the offset of the call from the beginning of the routine.

The SYSnnnnumber for the debugging trace print output is SYS040, as long as this SYSnnn number
is assigned to a printer device; otherwise SYSLST is used. This is of particular interest if debugging
trace output and other Natural print output are to be separated; to do so, assign SYS040 appropria-
tely and supply a POWER * $$ LST statement for this logical print unit.

UPSI XXX1XXXX - Storage Freeze Flag

On normal or abnormal session termination, Natural, by default, releases all its resources including
storage. Despite the setting of UPSI 1, a dump may be useless, because all relevant storage has
already been released during Natural termination. When this flag is set, no GETVIS storage acquired
earlier is ever released within this job; this applies to all external subroutine programs called by
Natural including the Natural nucleus (if not linked to NATVSE) and RCA=0N subproducts.

@ Caution: This flag should be handled carefully, because more partition GETVIS storage is

used, but jobs may still cancel due to failed GETVIS requests if the operating system storage
requests cannot be satisfied.

UPSI XXXXX1XX - Session Abend Flag

By default, a Natural session is cancelled if crucial errors have occurred (NAT9nnn termination
messages except NAT9995 and NAT9987). When this flag is set, Natural does not cancel, but ter-
minates ,normally” just passing the Natural return code to the job control.

UPSI XXXXXX1X - Abend Exit Flag

This flag may be helpful in the case of recurrent abends.

In batch mode, Natural usually has a check abend exit for active programs (STXIT PC) to recover
from program checks (NAT095n error messages). When DU=0N is specified, this exit creates a snap
dump and passes control to Natural for a clean session termination.

When this flag is set, the Natural session runs without any abend exit for active programs, which
means that all program checks are handled directly by the operating system.

If this flag is set, the dump flag, the storage freeze flag, the session abend flag and the formatted
dump-only flag are ignored.

242 Operations



Natural in Batch Mode under z/VSE

UPSI XXXXXXX1 - Formatted Dump-Only Flag

With DU=0N, the NATVSE abend exit routine creates a snap dump of the Natural session when a
program check abend occurs (and the UPST XXXXXX1X flag is not set).

* The failed instruction, the program check code (S0Cn), the general registers, the currently active
routine, the offset of the failed instruction within this routine and the absolute (PSW) address
are displayed together with Registers 0 to 15 of the currently assigned save area (CSA).

® In addition, the non-reentrant Natural z/VSE driver, all areas GETMAINed by Natural and all
Natural programs in the buffer pool are dumped.

® Then control is passed to Natural for a clean session termination.

® Finally the job terminates via a z/VSE JDUMP macro resulting in a dump containing the whole
partition.

Since in many cases the dynamic Natural session areas are relevant for debugging only, the dump
of the static session areas can be suppressed by setting this UPST flag.

Obtaining Documentation for Debugging

If a problem has to be analyzed, any information which might be relevant is important, in particular,
the executed JCS and the corresponding console log.

The following sample job is intended to show you how to obtain comprehensive documentation:

// JOB sampljob
// OPTION LOG,PARTDUMP to see JCL on printer
/* Library Definitions: labels and LIBDEFs

/* ADARUN Parameter Input Definition

// ASSGN SYS000,SYSRDR

/* Natural Work File Definitions

// DLBL CMWKFnn,'...",... disk work file

// EXTENT SYSnnn,volser,,,nn,mm

// ASSGN SYSnnn,DISK,VOL=volser,SHR

// TLBL CMWKFnn,'...',... Tabelled tape work file
// ASSGN SYSnnn,cuu assignment to tape unit

/* Natural Print File Definitions

// ASSGN SYSnnn,cuu assignment to print UR unit
// DLBL CMPRTnn,'...',... print file on disk

// EXTENT SYSnnn,volser,,,nn,mm

// ASSGN SYSnnn,DISK,VOL=volser,SHR

// TLBL CMPRTnn,'...',... print file on Tabelled tape
// ASSGN SYSnnn,cuu assignment to tape unit

/* Debugging Options

// ASSGN SYS040,SYSLST debugging trace unit

// UPST 1xxx00xx flags as discussed above

// EXEC Natural,SIZE=...

Operations 243



Natural in Batch Mode under z/VSE

. dynamic parameters
/* end of dynamic parameters
... ADARUN parameters
/* end of ADARUN parameters
... Natural input
/* end of Natural input
// EXEC LISTLOG print console messages
/& end of job

NATVSE Attention Interrupts

The Natural z/VSE batch mode interface (NATVSE) supports attention interrupts via the console
command MSG xx, where xx is the z/VSE partition ID a console operator can force on a NAT1016
attention interrupt event.

This special functionality is controlled by the Natural profile parameter ATTN.

244 Operations



40 Natural in Batch Mode under CMS

= Running Natural in Batch Mode under CMS ..o 246

245



Natural in Batch Mode under CMS

This document contains special considerations that refer to Natural in batch mode under the
operating system CMS.

For considerations that refer to Natural in batch mode generally, see:

® Adabas Datasets
® Sort Datasets

Running Natural in Batch Mode under CMS

If you invoke Natural with the dynamic parameter BATCH, batch mode is entered.

Natural does not communicate with the terminal, but takes its input from the dataset whose DD
name is CMSYNIN and sends its output to the dataset whose DD name is CMPRINT. These datasets
are described below.

FILEDEF commands for these DD names must be issued before invoking Natural in batch mode.

If BATCH is specified in combination with other dynamic parameters, BATCH must be the first para-
meter as shown in the example below:

FILEDEF CMPRINT PRINTER
FILEDEF CMSYNIN DISK BATCH INPUT A
NATvr BATCH,FNAT=(10,13),FUSER=(132,12)

In this example, vr stands for the current version and release number.

For more examples, see NATBATCH EXEC and NATINPL EXEC.
CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

CMSYNIN - Primary Input

CMSYNIN is used for the primary input file that contains Natural commands, Natural source pro-
grams, and (optionally) data to be read by INPUT statements during the execution of Natural pro-
grams.

The number of characters actually processed per line is determined by the current setting of the
profile parameter SL. This setting applies for both source statement and execution time input data.
This enables identification or sequence numbers to be placed in the rightmost columns of every
record if desired.

246 Operations



41 Natural in Batch Mode under BS2000/0SD

= Files and System Files Used by Natural in BS2000/0SD Batch Mode ...........cccoovvieiiiiiiiiiiiiiiieciiicce 248
B KEYWOI PAraMELEIS ... ettt ettt e e e e ettt e e e e e et e e e e e e 250
B BS2000/0SD JOb VariabIES .......vviiiieiiie i 259

247



Natural in Batch Mode under BS2000/0SD

This document contains special considerations that refer to Natural in batch mode under the
operating system B52000/OSD.

The following topics are covered:
See also Natural under BS2000/0SD Batch Mode Error Messages.
For considerations that refer to Natural in batch mode generally, see:

® Adabas Datasets
® Sort Datasets

® Subtasking Session Support for Batch Mode Environments

Files and System Files Used by Natural in BS2000/0SD Batch Mode

The following optional sequential files or system files are used during a Natural under BS2000/0SD
batch mode session:

Link Name | System File | Explanation

CMPRMIN Dynamic Parameter Dataset

SYSIPT |Dynamic Parameter Input

SYSDTA  |Dynamic Parameter Input
SYSDTA  |Primary Input and Input for Natural INPUT Statements

SYSLST  |Primary Report Output
SYSOUT  |Primary Report Output

SYSLSTnn|Optional Report Output for Natural Tracing

Pnn Additional Reports, nn is the report number

Wnn Natural Work Files, nn is the work file number

CMPRMIN - Dynamic Parameter File

CMPRMIN can be used as dynamic parameter file if the system files SYSIPT or SYSDTA shall not be
used or are not available to Natural. The parameter file must be of FCBTYPE SAM.

All input records from CMPRMIN are concatenated into one parameter string.Trailing blanks at the
end of each record are truncated; no commas are inserted.

For further information on reading dynamic parameters, see the keyword parameter DYNPAR for
macro NAMBS2 (see DYNPAR=FILE).

248 Operations



Natural in Batch Mode under BS2000/0SD

SYSIPT - Dynamic Parameter System File

The system file SYSIPT can be used as dynamic parameter file.

Allinput records from SYSIPT are concatenated into one parameter string. Only the first 72 positions
of each SYSIPT record are significant. Trailing blanks at the end of each record are truncated; no
commas are inserted.

For further information on reading dynamic parameters, see the keyword parameter DYNPAR for
macro NAMBS?2.

SYSDTA - Dynamic Parameter System File

The system file SYSDTA can be used as dynamic parameter file.

All input records from SYSDTA are concatenated into one parameter string. Trailing blanks at the
end of each record are truncated; no commas are inserted.

Note: If SYSDTA is assigned to SYSCMD, the parameter input has to be closed off by an /EOF

command to separate it from succeeding primary input data.

For further information on reading dynamic parameters, see the keyword parameter DYNPAR for
macro NAMBS?2 (see DYNPAR=FILE).

SYSDTA - Primary Input

The system file SYSDTA is used as the primary input file that contains Natural commands, Natural
source programs, and (optionally) data to be read by INPUT statements during the execution of
Natural programs.

The number of characters actually processed per line is determined by the current setting of the
profile/session parameter SL. This setting applies for both source statement and execution time
input data. This enables identification or sequence numbers to be placed in the rightmost columns
of every record, if desired.

SYSOUT, SYSLST - Primary Report Output

The system files SYSOUT or SYSLST are used for the primary output report, resulting from DISPLAY,
PRINT and WRITE statements in a Natural program.

The actually used system file depends on the value for the keyword parameter WRITE in the
assembly of the reentrant part of the Natural batch driver.

The system files SYSOUT or SYLST are also used as optional report output for dynamic parameters.
If the profile parameter PLOG is set to ON, all dynamic profile parameters are written to the same
destination as the primary report output.

Operations 249



Natural in Batch Mode under BS2000/0SD

SYSLSTnn - Optional Report Output for Natural Tracing

If profile parameter ETRACE is set to ON, all trace output is written to this file during the session.

Depending on the value for the keyword parameter TRACE in the assembly of the reentrant part
of the Natural batch driver, one of the alternate SYSLST system files SYLSTO01 - SYSLST99 is used as
destination for the trace records.

Pnn - Additional Reports 01-31
Pnnis used for each additional report referenced by any Natural program compiled or executed

during the session. nn must be a two-digit decimal number in the range 01-31, corresponding to
the report number used in a DISPLAY, PRINT and WRITE statement.

Instead of Pnn, any other link names may be used by setting the keyword subparameter DEST of
profile parameter PRINT to an appropriate value, for example:

PRINT=(Cnn), ..., DEST=PRNTnn)
Wnn - Natural Work Files 01-32
Wnn is used for each Natural work file referenced by any Natural program compiled or executed

during the session. nn must be a two-digit decimal number in the range 01 - 32, corresponding to
the number used in a READ WORK FILE or WRITE WORK FILE statement.

Instead of Wnn, any other link names may be used by setting the subparameter DEST of profile
parameter WORK to an appropriate value, for example:

WORK=((nn), ..., DEST=WRKnn)

Keyword Parameters

The Natural BS2000/OSD batch mode driver is generated by assembling the macro NAMBS2. For
the control of conditional assembly of the driver modules, the following keyword parameters are
available:

ADACOM | ADDBUFF | APPLNAM | CODE | DELETE | DYNPAR | TLCS | JV | LF | LINK | LINK2/LINK3/LINK4
| NUCNAME | PARMOD | REQMLOC | SYSDTA | TERM | TRACE | USERID | WRITE

250 Operations



Natural in Batch Mode under BS2000/0SD

ADACOM

Possible values:

ADACOM=ADAUSER, ADACOM=ADABAS, ADACOM=ADALNK

Default value:

ADACOM=ADALNK

This parameter applies to the generation of the front-end part. It determines which Adabas link
module is to be used. Possible values:

ADACOM=ADAUSER

The module ADAUSER is linked to the front-end part (Adabas versions lower than 7.1).

ADACOM=ADABAS

7.1 and higher).

The modules ADAUSER and SSFBZ2C are linked to the front-end part (Adabas Version

ADACOM=ADALNK

Version 7.1 and higher).

The module ADALNK is linked to the front-end part (Adabas versions lower than 7.1) or
the modules ADALNK, ADALZP and SSFB2C are linked to the front-end part (Adabas

ADDBUFF

Possible values:

1to8

Default value:

None

This parameter applies to the generation of the front-end part.

It determines the additional number of pages (4 KB units) for the terminal I/O buffer.

APPLNAM

Possible values:

name

Default value:

NATBS2

This parameter applies to the generation of the front-end part.

name is the name (maximum 8 characters) of the Natural batch application. This name is part of

the serialization

ID when the Natural batch task is initialized.

Operations

251



Natural in Batch Mode under BS2000/0SD

CODE

Possible values:

FRONT/RENT

Default value:

FRONT

This parameter applies to the generation of both the front-end and reentrant parts.

It determines which part of the Natural BS2000/OSD interface is to be generated.

CODE=FRONT |indicates the generation/assembly of the front-end part.

CODE=RENT  |indicates the generation/assembly of the reentrant part.

DELETE

Possible values:

ON/OFF

Default value:

ON

This parameter applies to the generation of the reentrant part.

DELETE=ON  |The setting of the profile parameter DELETE in the Natural parameter module determines
whether dynamically loaded non-Natural programs are unloaded at the end of the Natural
program in which they are loaded or whether they are unloaded when command mode is
entered.

DELETE=OFF |A dynamically loaded non-Natural program once loaded is kept for the duration of the
whole Natural session.

DYNPAR

Possible values:

SYSDTA/SYSIPT/FILE/NO

Default value:

NO

This parameter applies to the generation of the front-end part.

DYNPAR=NO

No dynamic parameters are read.

DYNPAR=SYSDTA

The dynamic parameters are read from SYSDTA. If SYSDTA is assigned to SYSCMD, at
least an /EOF card must follow the /EXEC Natural card.

Example:

252

Operations




Natural in Batch Mode under BS2000/0SD

/LOGON

/SYSFILE SYSDTA=(SYSCMD)

/EXEC NATBAT

/EOF * Null dynamic parameters
LOGON SYSEXTP

L**

FIN

/LOGOFF

DYNPAR=SYSIPT

The dynamic parameters are read from SYSIPT.

DYNPAR=FILE

The dynamic parameters are read from a sequential file. The input of this SAM file is
interpreted as one single text string, which means that the individual entries must be
separated from each other by a comma, even at the end of a line. Such a parameter file
must be defined with a FILE command by using the LINK parameter CMPRMIN.

Example:

/FILE NAT.PARAMS, LINK=CMPRMIN

ILCS

Possible values:

YES/NO/CRTE

Default value:

NO

This parameter applies to the generation of the reentrant part.

ILCS=CRTE |3GL subprograms are invoked with common runtime environment convention. For this to
be possible, the ILCS initialization routine I TOSL#f must be linked to the Natural front-end:

INCLUDE ITOSL#,SYSLNK.CRTE.010
RESOLVE,SYSLNK.CRTE.010

ILCS=YES 3GL subprograms are invoked with enhanced [ LCS linkage convention. For this to be possible,
the ILCS initialization routine I TOINITS must be linked to the Natural front-end:

INCLUDE ITOINITS,SYSLNK.ILCS
RESOLVE, SYSLNK.TILCS

ILCS=NO Standard processing applies.

Operations

253



Natural in Batch Mode under BS2000/0SD

JV

Possible values: |[ON/OFF
Default value: OFF

This parameter applies to the generation of the front-end part.

JV=0N  |The condition code created when the Natural session is terminated is passed to a job variable if
one has been declared with the link name *NATB2JV.

JV=0FF |If your BS2000/OSD installation does not include the Siemens product , Job Variables,” this
parameter must be set to OF F; otherwise assembly errors in the NAMBS2 compilation occur.

LF

Possible values: [X'Zzz'
Default value: X'25"

This parameter applies to the generation of the front-end part.

With this parameter, you specify the control character to be used for line advance when printing
on the local printer.

LINK

Possible values: |name
(name,name,...)

Default value: none

This parameter applies to the generation of the front-end part.

The name(s) of programs and modules that are called from Natural programs and linked with
the non-reentrant part must be specified with this parameter. Conversely, the programs and
modules whose names are specified must be linked with the non-reentrant part, otherwise the
application is put into status SYSTEMERROR and all users are rejected with an error message.

A , TABLE” macro call is performed for the specified programs and modules, which enters their
load addresses into the dynamic loader's link table. It is therefore not necessary to dynamically
load these programs when they are called by Natural programs. For dynamically loaded programs,
only the load library needs to be defined in the Natural parameter module.

254 Operations



Natural in Batch Mode under BS2000/0SD

Example:

LINK=PROG1
LINK=(PROGI,PROG2,MODULIII)

LINK2/LINK3/LINK4

Possible values: |name
(name,name,...)

Default value: none

These parameters apply to the generation of the front-end part.

The parameters LINK2, LINK3 and LINK4 are an extension of the LINK parameter. Since an operand
definition cannot be longer than 127 characters (including parentheses), these parameters are
provided for cases where the operand of parameter LINK would be too long. The syntax is analogous
to that of LINK.

Examples:

NAMBS2 LINK=(PROGI,PROGZ,...),
LINK2=(PROG54,...)
NAMBS2 LINK=(PROGI,PROGZ,PROG3,PROG4)

NUCNAME

Possible values: |name
Default value: NB2RENT

This parameter applies to the generation of the front-end part.

With this parameter, you specify the name of the bounded, reentrant Natural module. You must
use this name for the Natural pool and load information in macro ADDON (macro ADDON assembles
BS2STUB).

Operations 255



Natural in Batch Mode under BS2000/0SD

PARMOD

Possible values: |(n1n,70¢)

nn: 24/31
Joc: BELOW/ABOVE

Default values: |[(31,ABOVE)

This parameter applies to the generation of both the front-end and reentrant parts.

The first part of this parameter (nn) is used to define an addressing mode (24-bit or 31-bit mode)
for the Natural BS2000/OSD application.

31-bit mode is required if the Natural buffer pool, the reentrant part of the Natural BS2000/OSD
application, Adabas or the Adabas Fast Path pool is located above 16 MB.

The second part of this parameter (7oc) is used to define the front-end part location of the Natural
BS2000/OSD application. If you load the front-end part of the application above 16 MB, this must
be defined in the front-end part's link procedure as follows:

LOADPT=*XS

or
LOADPT=X"address"
Example:

/EXEC TSOLINK

PROG NAT230,FILENAM=NAT230, LOADPT=*XS, ...

TRAITS RMODE=ANY,AMODE=31

INCLUDE. ...

/* PARMOD=(nn, Toc) MUST BE IDENTICAL IN THE FRONT-END AND REENTRANT PARTS

REQMLOC

Possible values: |[RES/BELOW/ABOVE
Default value: RES

This parameter applies to the generation of both the front-end and reentrant parts in 31-bit mode
(PARMOD=31).

256 Operations



Natural in Batch Mode under BS2000/0SD

This parameter determines where the requested Natural work areas are to be allocated by the

system using

request memory.

REQMLOC=BEL

OW |All areas are requested below 16 MB.

REQMLOC=ABO

VE |All areas are requested above 16 MB.

REQMLOC=RES

All areas are requested depending on the location of the reentrant part.

The REQMLOC parameter corresponds to the LOC parameter of the BS2000/OSD system macro REQM.

SYSDTA

Possible values: |[PRIMARY/SYSCMD

Default value: PRIMARY

This parameter applies for the generation of the front-end part.

SYSDTA=PRIM

ARY | After reading of dynamic parameters from SYSDTA, SYSDTAissetto SYSFILE
SYSDTA=(PRIMARY).

SYSDTA=SYSC

MD |After reading of dynamic parameters from SYSDTA, SYSDTA is set to SYSFILE
SYSDTA=(SYSCMD).

TERM

Possible values: |pRGR/STEP

Default value:

PRGR

This parameter applies to the generation of the front-end part.

TERM=PRGR |The Natural batch application will be terminated.
TERM=STEP |The system additionally executes the next SET-J0B-STEP command.
TRACE

Possible values: |, 77

nn: 01 to 99
117:71 to 132

Default value:

99,71

This parameter applies to the generation of the reentrant part.

Operations

257



Natural in Batch Mode under BS2000/0SD

With this parameter, you specify the number of a trace file and the maximum length of a trace
print record. nnis the number for the SYSLSTnn trace file and 77 is the maximal length in characters
of a trace print record.

If any external Natural trace function is active, the trace records will be written to SYSLSTnn. In
this case, the Natural batch mode driver creates the following trace file:

Example:

NATURAL.TRACE.BTCH. TTTT,SPACE=(30,3)
SYSFILE SYSLSTnn=Natural.TRACE.BTCH.TTTT
/* TTTT is the task sequence number

Before the Natural batch mode session is terminated, the trace file will be closed as follows:

SYSFILE SYSLSTnn=(PRIMARY)

USERID

Possible values: |yrs/SYSTEM/NO/USER
Default value: USER

This parameter applies to the generation of the front-end part.

USERID=SYSTEM or USERID=YES | The Natural user ID is created by using the BS2000/OSD user ID.

USERID=USER or USERID=NO The Natural user ID is created by using the job name; that is, the

/. JOBNAME of the LOGON command. If no BS2000/OSD job name has
been specified with the LOGON command, the Natural user ID is created
as with USERID=SYSTEM or YES.

WRITE

Possible values: |SysoUT/SYSLST
Default value: SYSLST

This parameter applies to the generation of both the front-end and reentrant parts.

This parameter controls whether output produced by Natural is written to SYSOUT or SYSLST.

258 Operations



Natural in Batch Mode under BS2000/0SD

BS2000/0SD Job Variables

The Natural batch mode driver uses the BS2000/OSD facility ,Job Variables” to pass return codes
to the user or to subsequent jobs (steps). The return codes are created either by Natural itself (in
the range 1 to 31) or by the Natural application if a TERMINATE statement is used with the condition-
code option (the range to be used is 32 to 256).

The job variable which is to contain the return code has to be declared using the link name *NATB2JV.
The support of job variables depends on the setting of the SET parameter &JV in the Natural
BS2000/OSD batch mode driver NATBS2.

Example:

/LOGON

/DCLJV NATBJV,LINK=*NATB2JV
/EXEC NATnnnB

*TERMCC

/LOGOFF

To assign Return Code 36 to NATBJV, the Natural program TERMCC could be coded as follows:

ASSIGN CC(N8) = 36
TERMINATE CC
END

Operations 259



260



42 Natural in Batch Mode (All Environments)

B AJADAS DAIASELS ... v e e e e e e e 262
B SO DAASEES ...t et e et e e e e e 262
= Subtasking Session Support for Batch Mode Environments .............cccooiiiiiiiiii e 262

261



Natural in Batch Mode (All Environments)

This document contains general considerations that apply when running Natural in batch mode.

The following topics are covered:

Adabas Datasets

Adabas datasets must be specified only in single-user mode. They are identical to those required
for the execution of any normal application program using Adabas. See the relevant Adabas
documentation for detailed information on Adabas datasets.

Sort Datasets

Sort datasets must be specified if a Natural program containing a SORT statement is to be executed
during the Natural session.

The requirements are identical to those for execution of a normal COBOL or PL/1 application
program that invokes the operating system sort program and can vary according to the sort program
in use.

Natural does not require the intermediate datasets SORTIN and SORTOUT, but communicates with
the sort program via the £E15 and E35 user-exit routine interfaces.

Subtasking Session Support for Batch Mode Environments

= Purpose

= Prerequisites

= Functionality

= Starting a Natural Session

= Starting a Subtask

= Accessing the User Parameter Area

| Note: With Natural for CMS, subtasking is not supported.

262 Operations



Natural in Batch Mode (All Environments)

Purpose

With subtasking support, you can run multiple Natural batch mode sessions within one address
space. This allows parallel processing within one address space, rather than executing subsequent
job steps, and can increase throughput dramatically.

Typically, client/server applications and products would take advantage of this functionality, for
example, the Natural remote procedure call. Multiple server subtasks can be started to communi-
cate with remote clients.

Prerequisites

If you wish to restart the Natural nucleus, it must be linked as a reentrant module (linkage editor
option RENT).

The Adabas link routine (ADALNK) must be generated with reentrancy support.
Functionality

You start a subtask by issuing a CALL statement from a Natural program. The new Natural session
(,,subtask”) is started with an extended front-end parameter list. This list contains up to three
parameter sets:

® dynamic Natural profile parameters,

" startup parameters,

" user parameters.

Variable names for standard I/O datasets (for example CMPRINT) and other parameters for the batch
mode interface startup can be passed from the starting program in the startup parameter area.

Standard I/O datasets can be undefined or dummy datasets; they can be owned by one session or
shared by multiple sessions.

Furthermore, a CALL interface is provided for reading the user parameter area with a Natural
program.

Starting a Natural Session

= Extended Parameter List
= Startup Parameter Area

Operations 263



Natural in Batch Mode (All Environments)

= User Parameter Area
Extended Parameter List

The Natural batch mode interface without extended parameter list gets initial control from the
operating system using standard linkage call. Register 1 points to an address with high-order bit
on as the last address indicator. This address points to a halfword field containing the length of
the following parameter area.

The extended parameter list contains up to three parameter addresses. This is indicated by the

high-order bit in the last address which can be the first, second or third address. All parameter
addresses point to a halfword field containing the parameter length of the following parameter
area. Zero length indicates that there is no parameter area.

® The first parameter area contains the dynamic profile parameters for the Natural session.

® The second contains special startup parameters for the initialization of the batch mode interface.

® The third contains a user parameter area which can be accessed during the Natural session.
Startup Parameter Area

When multiple batch mode Natural (sub)tasks are running in the same region, by default these
sessions access the very same Natural standard I/O datasets (such as CMPRINT, CMSYNIN, etc), as
there are no Natural profile parameters available to set these file names. Also by default the
Natural system variables *INIT-1D and *INIT-USER are identical because of their definition for
batch mode.

In order to provide unique standard I/O dataset names and unique IDs for Natural subtask sessions
the startup parameters in the extented parameter list can be used to overwrite the Natural system
defaults. The Startup Parameter area is a table of pairs of 8-character fields:

® The first entry contains the 8-byte keyword to be replaced,

" the second entry contains the 8-byte replacement value.

Keywords and replacement values must be padded with trailing blanks, if necessary.

The following keywords are valid:

CMHCOPY  |Permanent hardcopy destination

CMSYNIN |Command input dataset name

CMOBJIN |Object input dataset name

CMPRINT |Standard output dataset name

CMPRMIN  |Dynamic parameter input dataset name

CMPLOG Dynamic parameter output dataset name

264 Operations



Natural in Batch Mode (All Environments)

CMTRACE  |Trace output dataset name

INITID Job step name (system variable *INIT-1D)

MSGCLASS |Spool class for dynamic allocation of CMPRINT and CMTRACE (z/OS only)

NATRJE Job submission dataset name (z/OS only)

STEPLIB |Program load library name (see also profile parameter L IBNAM, Name of Load Library, z/OS
only)

SUBPOOL  |z/OS storage subpool (0 - 127, right justified)

USERID Initial user identification (system variable *INIT-USER)

The usage of these entries is optional and no particular sequence is required. A blank value for a
dataset means that this dataset is not available or is empty.

Note concerning z/VSE:

By default, all print output (that is, the one resulting from CMPRINT, CMHCOPY, CMTRACE and CMPLOG)
is routed to SYSLST. An overwrite specification for these files starting with SYS is considered a
z/VSE system number overwrite. Possible format is SYSnnn where nnn is a three-digit number in
the range from 000 to 099; if you specify an invalid number nnn, it is ignored.

User Parameter Area

The format of the user parameter area is free. It can be accessed from any Natural program by a
special CALL interface see Accessing the User Parameter Area.

Starting a Subtask

The following call interface is supplied to be used by Natural programs to start a subtask in the
same address space.

PGMNAME

Natural nucleus name getting control (mandatory). To restart with the same nucleus, an asterisk
can be specified as the first character. The actual nucleus name is passed back in this field.

NATPARML

Natural dynamic parameter area

STRPARML

Startup parameter area

USRPARML

User parameter area

All parameter areas must start with the length of the following parameters. The following example
illustrates the usage of CMTASK.

Operations

265



Natural in Batch Mode (All Environments)

Example:

DEFINE DATA LOCAL

01
01
02
02
01
02
02
02
01
02
02

PGMNAME (A8) INIT <'*'>

PARM1

NATPARML (I2) INIT <30>

NATPARMS (A30) INIT <'INTENS=1,IM=D,STACK=MYPROG'>
PARM2

STRPARML (I2) INIT <32>

STRPARMI (A16) INIT <'CMPRINT SYSPRINT'>
STRPARMZ (A16) INIT <'CMPRMIN MYPARMS'>

PARM3

USRPARML (I2) INIT <80>

USRPARMS (A80) INIT <'special user parameters'>

END-DEFINE
CALL 'CMTASK" PGMNAME NATPARML STRPARML USRPARML

END

A sample program, ASYNBAT, can be found in library SYSEXTP.

Accessing the User Parameter Area

The user parameter area passed during startup can be read from any Natural program with the
following CALL statement:

CALL "CMUPARM' USRPARML USRPARMS

USRPARML is the length (12) of the USRPARMS area (before the call) and the length of the data returned
(after the call). USRPARMS is the parameter data area.

If the length of the data to be returned is greater than the area length, the data is truncated to the
area length. The following return codes are possible:

Data successfully moved

Data moved but truncated

No data available

12

Length value not positive

16

Insufficient number of parameters

A sample program, GETUPARM, can be found in library SYSEXTP.

266

Operations



43 Natural Buffer Pools

This part contains information about the various storage management functions that are available
to a Natural administrator under the operating systems z/OS, z/VSE and BS2000/OSD.

Natural Buffer Pool - General

Natural Global Buffer Pool under z/OS

Natural Global Buffer Pool under z/VSE

Common GBP Operating Functions under z/OS and z/VSE

Natural Global Buffer Pool under BS2000/0OSD

T T

For a functional overview of the Natural buffer pool, see Natural Buffer Pool in the Natural System
Architecture documentation.

For an overview of the Natural profile parameters that affect the Natural buffer pools, see Buffer
Pools in the section Profile Parameters Grouped by Function.

267



268



44 Natural Buffer Pool - General

= Natural Buffer Pool Principle of Operation ...............oooiiiiiiiiiiiiiiiee et 270
= Buffer-Pool Monitoring and MaiNteNaNCE ...........vvieiiiiiiieiiie e 275
= Natural Global BUFEr POOL ..........oeeiiiiiie e 278

269



Natural Buffer Pool - General

The buffer pool is a storage area into which Natural programs are placed in preparation for their
execution. Programs are moved into and out of the buffer pool as Natural users request Natural
objects. Conceptually, it serves a function similar to that of an operating system in loading programs
in and out of a reentrant area. The Natural buffer pool is an integral part of Natural in all supported
environments.

Natural Buffer Pool Principle of Operation

Natural generates reentrant Natural object code. A compiled program is loaded into the buffer
pool and executed from the buffer pool. Thus, it is possible that a single copy of a Natural program
can be executed by more than one user at the same time.

This section covers the following topics:

= Objects in the Buffer Pool

= Directory Entries

= Text Pool

= Buffer Pool Hash Table

= Buffer Pool Initialization

= Buffer Pool Search Methods
= | ocal and Global Buffer Pools
= Buffer Pool Cache

Objects in the Buffer Pool

Objects in the buffer pool can be programs, subprograms, maps and global data areas. Global data
areas are placed in the buffer pool only for compilation. In this case, two objects with the same
name are loaded in the buffer pool: the GDA itself and the corresponding symbol table.

Directory Entries

When a Natural object is loaded into the buffer pool, a control block called a directory entry is
allocated to this object.

A directory entry contains such information as the name of the object, what library it belongs to,
what database ID and Natural system file number the object was retrieved from, and some stati-
stical information (for example, the number of users who are concurrently executing the program
at a given point in time).

When a user executes a program, Natural checks the directory entries to see if the program has
already been loaded into the buffer pool. If it is not already in the buffer pool, a copy of the program
is retrieved from the appropriate Natural system file and loaded into the buffer pool.

270 Operations



Natural Buffer Pool - General

When an object is loaded in the buffer pool, one or more other Natural objects which are currently
not being executed may be deleted from the buffer pool in order to make room for the newly loaded
object. When the new object is loaded, a new directory entry is created in order to identify this
object.

When an object is deleted from the system file, it will also be deleted from the buffer pool as soon
as it is no longer being used. When an object is newly cataloged or stowed, its old version will
also be deleted from the buffer pool as soon as it is no longer being used; when it is requested for
execution again, the new version will then be loaded from the system file into the buffer pool.

Text Pool

The actual object code of a program that is loaded into the buffer pool is placed into an area called
the text pool and must be allocated as a contiguous piece of memory within this text pool. This
text pool is divided into a number of 4 KB buffers. This is an arbitrary size and can be changed at
the Natural administrator's discretion. When an object is loaded, one or more text buffers that are
contiguous to each other are allocated to store the object code of the object.

Buffer Pool Hash Table

This section applies to buffer pools of TYPE=NAT only.

To speed up the search time for looking up an object in the buffer pool directory, a hash table is
used. The number of entries in the hash table is twice the number of directory entries, rounded
up to the next prime number. This will ensure that only half of the table is filled at any point in
time and that the probability of collisions is near zero. As a consequence, the average number of
tests to find an existing object in the hash table is theoretically less than 2.

The hash criterion is the eight character long program name. If more than one program name is
hashed to the same location in the hash table, an overflow technique resolves the collisions.

The storage required for the hash table is roughly 16 bytes per text block. Thus, the available sto-
rage in the text pool is reduced by between 1.6% (1 KB text blocks) and 0.1% (16 KB text blocks).

Buffer Pool Initialization

In case of a global buffer pool the initialization occurs during start of the global buffer pool.
In case of a local buffer pool the initialization time varies depending on the environment.
® Inbatch mode, TSO, TIAM and VM/CMS, the initialization occurs when you begin the execution

of the Natural session.

® In a TP monitor environment, the initialization generally occurs when the first user invokes
Natural under this TP monitor. Under Com-plete and CICS, it is also possible to initialize the
local buffer pool when the TP monitor is started.

Operations 271



Natural Buffer Pool - General

Buffer Pool Search Methods

As mentioned earlier and explained below, there are different search methods for allocating space
in the buffer pool.

» To select a search method, use

= The Natural profile parameters BPMETH and BPI.
Or the macro NTBPI in the Natural parameter module.
Or the function parameter METHOD of the global buffer pool.

For a description of these parameters and the macro NTBPI refer to the Natural Parameter Reference
documentation.

Below is information on the search methods:

® METHOD=S
® METHOD=N
® Choosing Search Methods

METHOD=S

METHOD=S indicates that a selection process is used as search algorithm for allocating storage in
the buffer pool in order to obtain the space required to accomplish a new load.

The selection process used is a combination of search Algorithms 1 and Algorithm 2:

= Algorithm 1
Search Algorithm 1 attempts to find storage in the buffer pool that is either free space or space
occupied by an unused (active but not used) object.

If free space of the exact object size required is found, the selection process ends immediately.
Otherwise, the search continues by browsing the buffer pool from top to bottom and comparing
the entries in the buffer pool for best size fit. Additionally, in the case of unused objects, the
search also considers the last attached time of the object, that is, the time the object was last
referenced at a load or locate.

When the selection process has finished, either free space or the space of an unused object with
a size greater than or equal to the size requested is selected. The rule of precedence that applies
to the search is: free space is taken first and space of unused objects next. In the case of unused
objects, the oldest objects are removed first.

If the selection process of Algorithm 1 was not successful, Algorithm 2 is invoked.

272 Operations



Natural Buffer Pool - General

= Algorithm 2
Search Algorithm 2 starts if Algorithm 1 fails. Algorithm 2 starts searching from a position in
the buffer pool which is passed by Algorithm 1 and attempts to combine two or more entities
(free storage and/or space occupied by unused objects) in order to obtain the necessary storage
for a new load. However, the age of the object is not taken into account.

Algorithm 2 continues processing to the bottom of the text record section and, if necessary,
wraps around to the top of the text record section to make one final pass from top to bottom. If
space is still unavailable, Algorithm 2 fails, the object cannot be loaded and Natural issues a
corresponding error message.

METHOD=N

METHOD=N indicates that the next available free or unused space is used in order to obtain the space
required to accomplish a new load. Unused space is space that is occupied by an active but not
used object.

The search for the next available space starts from a pointer that moves through the buffer pool
in a wrap-around fashion. Any next available buffer pool entries that are free or contain unused
objects can be used and possibly chained together to obtain the amount of storage requested.

If the bottom of the buffer pool is reached during an allocation request, the pointer is wrapped
around to the top of the buffer pool and one final search is performed through the buffer pool
from top to bottom. If the bottom of the buffer pool is reached again and the object cannot be loaded,
the load fails and Natural issues a corresponding error message.

METHOD=N can especially be considered for large buffer pools in combination with the buffer pool
cache function. For details, see also Choosing Search Methods below.

Choosing Search Methods

By default, METHOD=S is used. The advantage of this method is, that a diligent search is performed
to allocate space, taking into account the size and the age of objects and guaranteeing that the most
dispensable unused objects are removed from the buffer pool to provide space for a new load.

A disadvantage of METHOD=S can be the high CPU time that is consumed by the selection process
when browsing the buffer pool from top to bottom.

The advantage of METHOD=N is the short selection process and, usually, little browsing that require
less CPU time for allocating space. This can be significant to large buffer pools.

The disadvantage of METHOD=N is that objects are selected less carefully for removal from the buffer
pool. To avoid an increase in Adabas I/Os for reloading removed objects, we recommend that you
use METHOD=N in combination with the buffer pool cache function.

Operations 273



Natural Buffer Pool - General

Local and Global Buffer Pools

Local Buffer Pool

Using Natural as supplied on the installation tape, you are running a local buffer pool. This is a
buffer pool area that is allocated in the same partition (or region or address space) of the particular
environment in use.

For example, in a batch, TSO or CMS environment, each user has his/her own local buffer pool.
In a TP monitor environment such as Com-plete, CICS or IMS TM, there is one buffer pool per TP
monitor from which all TP users execute.

Global Buffer Pool

In a z/OS environment, a global buffer pool is allocated from CSA or ECSA storage. In such an
environment, all TSO users, batch users and TP monitor users could be executing from one common
global area.

In a z/VSE environment, a global buffer pool is allocated from System GETVIS Area (below or
above). In such an environment, all batch users and TP monitor users could be executing from
one common global area.

In a VM/CMS environment, a global buffer pool can be installed as a writeable Discontiguous
Shared Segment that is dynamically attached to the user's virtual machine when Natural/CMS is
invoked; see also the sections Installing Natural under CMS and Preparing the VM System for Natural
in the Natural Installation documentation.

In a BS2000/OSD environment, a global buffer pool is a common memory pool, see Natural Global
Buffer Pool under BS2000/OSD.

For further information on the global buffer pool, see Natural Global Buffer Pool.
Buffer Pool Cache

This section applies to global buffer pools of TYPE=NAT and local buffer pools of TYPE=NAT or
TYPE=SWAP.

The buffer pool cache is available in conjunction with global and local buffer pools. It is not
available with z/VM. It is used only for Natural programming objects (programs, subprograms,
maps, etc.), whereas it is not used for example for objects generated by Natural for DL/I.

When a buffer pool is not large enough to take up all objects requested by the different users,
special overload strategies are used to replace existing objects with requested objects. The number
of overload situations has a direct relation to the efficiency of the buffer pool. The best and most
efficient way to reduce the disliked overloads, hence to improve the buffer pool performance, is
simply to increase its size.

274 Operations



Natural Buffer Pool - General

However, this choice is not applicable at most customer sites, due to a lack of available storage in
the primary address space and/or the z/OS (E)CSA, z/VSE system GETVIS area or BS2000/0OSD
Common Memory Pool.

In order to improve the situation described above, a buffer pool cache is used. The main purpose
of this mechanism is to prevent a loss of all objects which were deleted from the buffer pool due
to ,,short-on-buffer-pool-storage” situations. This means, that an object delete results in a ,,swap
out to buffer pool cache”. The intended benefit of this feature is a reduction of database calls used
for object loading and consequently a performance improvement.

Note for Global Buffer Pools:

The buffer pool cache area is allocated in a data space. When a data space is created for a buffer
pool (profile parameter BPCSIZE specified for z/OS or z/VSE, or DATA parameter specified for
BS2000/0OSD), the ownership is assigned to the creator task. If this task terminates, the system
automatically deletes the data space. Therefore, the creator task will stay alive in this case,
regardless of whether RESIDENT=Y has been set or not.

Note for Local Buffer Pools: (z/OS and z/VSE only, not for Com-plete and not for IMS TM)

The buffer pool cache is allocated in a data space or in a memory object "above the bar", that is, in
64-bit memory (z/OS only). When a data space or memory object is created for a buffer pool (see
profile parameters BPCSIZE and BPC64), the ownership is assigned to the creator task. If this task
terminates, the system automatically deletes the data space or the memory object.

Buffer-Pool Monitoring and Maintenance

The Natural utility SYSBPM (described in the Natural Utilities documentation) provides statistical
information on the current status of the buffer pool. SYSBPM also allows you to adjust the buffer
pool to your requirements.

The following topics are covered below:

= Preload List
= Blacklist
= Propagation of Buffer-Pool Changes

Operations 275



Natural Buffer Pool - General

= Performance Considerations
Preload List

A preload list is a list of objects that will be loaded into the buffer pool and remain there as resident.
When a user requests such an object for execution, it is always already in the buffer pool and need
not be loaded from the system file.

This may improve performance, may avoid buffer pool fragmentation, or may be useful to ensure
that central error transactions are always available, even if the database containing the system file
is not active.

At the start of the Natural session, Natural checks which of the objects on the preload list are
already in the buffer pool. Those which are not will then be loaded from the system file into the
buffer pool. This checking and loading is also performed whenever the buffer pool is connected,
re-connected and re-initialized using the SYSBPM utility. If a global buffer pool is re-initialized by
a REFRESH command, no checking takes place for existing Natural sessions. That is, as long as no
new Natural session is started that accesses this buffer pool, the objects on the preload list are not
loaded.

The load of the preload list is not serialized. That means, if multiple Natural sessions start con-
currently, each session tries to load all objects named in the preload list into the buffer pool. This
may lead to duplicate entries of the same Natural object in the buffer pool (see also hint below).

A preload list is identified by name, and is attached to a specific buffer pool by specifying its name
as startup parameter (for a global buffer pool) or in the NTBPI macro (for a local buffer pool). Thus,
a different preload list may be defined for each buffer pool; or the same preload list may be used
for different buffer pools.

If the specified preload list cannot be located, or if objects contained on the preload list cannot be
loaded, Natural will issue a corresponding warning message at session initialization. In either
case, the preloading will be repeated for each subsequent session initialization.

As the objects on the preload list are the first to be loaded, they are located at the beginning of the
buffer pool (except if the initial preloading could not load all objects, in which case the objects
may be located anywhere in the buffer pool).

To maintain preload lists, you use the SYSBPM utility, see SYSBPM - Preload List Maintenance in the
Natural Utilities documentation.

¢ Tip: To avoid problems with the load of the objects on a preload list by user sessions the

following procedure is recommended:

276 Operations



Natural Buffer Pool - General

* For a global buffer pool:
Immediately after the allocation or refresh of the global buffer pool, start a batch Natural session
that accesses the global buffer pool and that executes a FIN.

* For alocal buffer pool under CICS and Com-plete:
During startup of the TP system, start an asynchroneous Natural session that access the local
buffer pool, and put a FIN command on the Natural stack. Ensure that this Natural session
references the name of the preload list in its NTBPI macro.

Blacklist

To prevent a Natural object from being executed, you can put it on a so-called , blacklist”: the
object can then not be loaded into the buffer pool; and if it is already in the buffer pool, it cannot
be executed. A user requesting such an object to be executed will then receive an appropriate error
message.

You can put not only individual objects on the blacklist, but also entire libraries.

Examples:

= The blacklist may be useful, when you upgrade a Natural application and do not wish users to continue
to work with that application until you have finished the upgrade. Without the blacklist, a user might
execute a new module which in turn would invoke an old module - which might lead to an abnormal
termination of the Natural session. With the blacklist, the user can will receive a message that the requested
object can currently not be executed, and can then continue his/her Natural session.

= Performance aspects may be another reason for using the blacklist to prevent certain resource-consuming
objects from being executed in a specific environment.

® You may use the blacklist to prevent the execution of test programs in a production environment.

To maintain the blacklist, you use the SYSBPM utility. See SYSBPM - Blacklist Maintenance in the
Natural Utilities documentation.

Propagation of Buffer-Pool Changes

| Note: Under z/OS, the propagation of buffer-pool changes is always restricted to the

Natural subsystem in which the change has occurred (for details on the Natural subsystem,
see Natural Subsystem (z/OS) or Natural Subsystem (z/VSE). Thus, "all global buffer pools"
in this context means "all global buffer pools within the same subsystem".

In some environments, it is important that changes which occur in one (local or global) buffer pool
are also propagated to all other global buffer pools - that is, the same changes are also automati-
cally made in the other global buffer pool - so as to ensure the consistency of the buffer pools and
the Natural applications being used. This is particularly important in a z/OS Parallel Sysplex
environment.

Operations 277



Natural Buffer Pool - General

For example, if a Natural program is newly cataloged in one z/OS image, the propagation will
cause the program to be deleted from all other global buffer pools in the z/OS Parallel Sysplex
environment, so that its new version has to be loaded from the system file when the program is
to be executed again.

The following changes are propagated:

" an object is deleted from the buffer pool,
* the buffer pool's blacklist is modified,

* the buffer pool is re-initialized.

Changes can be propagated to all other global buffer pools within the current z/OS image, or
within the entire z/OS Parallel Sysplex environment, or all other global buffer pools of the same
name within the z/OS Parallel Sysplex environment.

The propagation does not affect those objects in another global buffer pool which are defined as
resident in that buffer pool.

The propagation is activated and its scope controlled by the Natural profile parameter BPPROP.

| Note: As the propagation is performed asynchronously and an object is only deleted from

a buffer pool when it is not longer being used, it may take some time until the current ver-
sion of an object is available in all buffer pools.

Propagation to other local buffer pools is not possible.
Performance Considerations

For general advice on performance-related issues regarding the buffer pool and the BP cache, see
Performance Considerations in the section SYSBPM of the Natural Utilities documentation.

Natural Global Buffer Pool

The Natural global buffer pool is an optional Natural component.
It is available for the following operating systems

= z/OS (refer to Global Buffer Pool under z/OS)
= z/VSE (refer to Global Buffer Pool under z/VSE)
® BS2000/OSD (refer to Global Buffer Pool under BS2000/OSD).

278 Operations



Natural Buffer Pool - General

Profile Parameters Used

The following Natural profile parameters are used to establish a global buffer pool:

BPNAME |Specifies the name of the global buffer pool (see BPNAME). BPNAME=" " (blank) is used to establish
a connection to the local buffer pool.

SUBSID |Specifies the ID of the Natural subsystem to be used (see profile parameter SUBSID; applies only
under z/OS and z/VSE).

During Natural startup, Natural attempts to locate the global buffer pool using these parameters.

Buffer Pool Opening / Closing Procedure

With the NTBPI macro of the Natural parameter module or the corresponding profile parameter
BPI, you can define more than one buffer pool.

At session initialization, Natural attempts to establish a connection to the first buffer pool defined.
If this fails, Natural attempts to establish a connection to the second buffer pool defined. If that
fails, too, it tries the next buffer pool defined, etc. Whenever an attempt to establish a connection
to a buffer pool fails, Natural will issue a corresponding message.

The same procedure applies when a buffer pool is stopped: if you close the currently connected
buffer pool while a Natural session is still active, Natural attempts to connect to another buffer
pool (in the order in which they are defined) and continue the session. Thus, it is possible for the
Natural administrator to close a global buffer pool without having to terminate all active Natural
sessions.

Operations 279



280



45 Natural Global Buffer Pool under z/OS

= Using a Natural Global BUFfEr POOI ........cooiiiiiiiiiie e 282
= Operating the Natural Global BUffer POOI ..............ooiiiiiiiiii e 282
= Sample NATGBPVI EXECULION JODS ......cooiiiiiiiiiiiicee e 284
B LOCANZALION ... e e e e et e aea e 286

281



Natural Global Buffer Pool under z/OS

This document describes purpose and usage of a Natural Global Buffer Pool (GBP) under the
operating system z/OS.

The following topics are covered:

Certain parts of the Natural global buffer pool are identical under z/OS and z/VSE. These parts
are concentrated in a separate section (see Common GBP Operating Functions under z/OS and
z/VSE) which covers the following topics:

® Global Buffer Pool Operating Functions
® Global Buffer Pool Function Parameters

® Examples of NATBUFFER Specifications
See also:

® Natural Global Buffer Pool Manager Messages in the Natural Messages and Codes documentation

Using a Natural Global Buffer Pool

Definition

The Natural global buffer pool is a segment of storage assigned from the z/OS extended common
system area (ECSA) above 16 MB (or from CSA storage below, if requested), used by Natural to
load and execute Natural programs.

Benefits

Using a global buffer pool, multiple Natural sessions under different TP monitors (multiple copies

of CICS, TSO, IMS TM, etc.) and/or in multiple batch sessions share the same area - thus requiring
less storage than would be required for a local buffer pool in each environment.

Operating the Natural Global Buffer Pool

The following topics are covered below:

= |nstalling the Natural GBP Operating Program
= Setting up the Natural Global Buffer Pool
= Starting the Natural GBP Operating Program

282 Operations



Natural Global Buffer Pool under z/OS

= Stopping the Natural GBP Operating Program
Installing the Natural GBP Operating Program

| Note: vrs stands for version, release and system maintenance level of the product.

The global buffer pool is operated by the program NATGBP vr which must be executed from an
authorized library.

During the installation of Natural, the modules NATGBP vris linked into an APF-authorized library.

If the z/OS parameter ALLOWUSERKEYCSA(YES) has explicitly been specified in
SYS1.PARMLIB(DIAGxx), a Natural global buffer pool is allocated in user key, so that Natural ses-
sions accessing a global buffer pool have write permission for that buffer pool.

If ALLOWUSERKEYCSA(NO) is in effect, a Natural global buffer pool is allocated in system key; there-
fore, Natural sessions accessing a global buffer pool do not have any write permission for that
buffer pool. These Natural sessions call the Authorized Services Manager (ASM) to perform all
buffer pool functions. As a consequence, installation of the Authorized Services Manager is
mandatory. The Authorized Services Mangager ist not only called to load a Natural object into
the buffer pool but also to maintain the use count of a Natural object if the execution of this
Natural object is started or terminated. The calls to the Authorized Services Manager will increase
Natural’s resource consumption. The overhead is hard to predict and depends on the application
profile (ratio of programm calls to program execution time).

Setting up the Natural Global Buffer Pool

The functions available from NATGBP vr are activated in that they are

® provided by a parameter card (PARM=),
" read from a file (see below)

® or supplied by the MODIFY operator command unless NATGBP vr has not been terminated.
NATGBP vr expects the first command in the parameter field (PARM=) of the EXEC statement.
You may enter:

® one of the functions (described in the section Common GBP Operating Functions under z/OS
and z/VSE)

" or a reference to an input file with CF=<dd-name>, where <dd-name> represents a DD name
defined in the JCL. Only , card image” files are supported, that is, RECFM=F, LRECL=80, and only
the first 72 bytes of the input record are honored. Every record included from the input file
represents a command. Blank records or records prefixed with an asterisk (*) are ignored. A file
is processed until End-Of-File (EOF). Example: PARM="CF=SYSIN1'

Operations 283



Natural Global Buffer Pool under z/OS

If the parameter field is not supplied or blank, the commands will be read from file SYSIN by
default.

It is only possible to enter one function at a time at the console or one function per line using the
command file, otherwise an error message will be returned.

Each command received, from the parameter card, from file input or from operator console input
is shown on the operator console.

Starting the Natural GBP Operating Program

To start program NATGBP vr, either start a started task or submit a job, which executes NATGBP v r.

A\ Important: To ensure that the global buffer pool is retained after a system failure, the global
buffer pool should be started automatically during machine IPL.

Stopping the Natural GBP Operating Program

After all commands are processed, NATGBP vr terminates, unless

" RESIDENT=Y was specified

® or a buffer pool with a cache was created.

NATGBP vr will return one of the following condition codes:

0 |All functions executed successfully.

20 |An error has occurred; see the message log for details.

Sample NATGBPvr Execution Jobs

The following examples show sample batch jobs for creating and terminating a global buffer pool.

In the following examples, the notation vrs or vr stands for the relevant version, release, system
maintenance level numbers. For further information on product versions, see Version in the
Glossary.

284 Operations



Natural Global Buffer Pool under z/OS

Example 1:

//GBPSTART JOB

I

//* Starts a global buffer pool with the name NATvrGBP, a size of 1 MB and

//* a text block size of 4 KB. The global buffer pool is allocated above 16 MB.
//* The subsystem used is NATv.

//* After the allocation, the job GBPSTART terminates.

1%

//STEP EXEC PGM=NATGBPvr,PARM="BPN=NATvrGBP,N=(1IM)"'

//SETPLIB DD DISP=SHR,DSN=USER.APF.LINKLIB

Example 2:

//GBPRES JOB

1%

//* Starts a global buffer pool with the name GBP, a default size of

//* 100 KB and a text block size of 1 KB. The global buffer pool is allocated
//* below 16 MB. The subsystem used is SAGS.

//* After the allocation, the job GBPRES will wait for further commands.

//* Further commands may be entered using the MODIFY operator command:

//* F GBPRES,command-string

¥

//STEP EXEC PGM=NATGBPvr,PARM='BPN=GBP,N=(,BL,1),S=SAGS,R=Y"

Example 3:

//GBPSTOP

VA

//* Stops the global buffer pool GPB if it contains no active objects. If it
//* does contain active objects, the operator console will prompt for a reply.
//* Depending on the reply, the shutdown will be forced (Y) or aborted (N).
//* The subsystem used is NATv.

/i

//STEP EXEC PGM=NATGBPvr,PARM='FSHUT,BPN=GPB"

Example 4:

//GBPSTRT?2

//* Read commands from SYSINI:

717

//* Start 3 global buffer pools (subsystem ID Nvrs) with name
Ji% NATGBP1 - size=1024KB and a cache with size 2048KB

e NATGBP2 - size=2048KB without cache

//* Display all buffer pools of subsystem ID "Nvrs".

VA

//* Note: The job does not terminate by itself, but stays resident and waits
e for operator commands, because it owns the data space allocated for
I buffer pool NATGBPI.

Operations 285



Natural Global Buffer Pool under z/OS

//*

//* 1f the buffer pools should shut down, send operator command MODIFY with

//* parameter "CF=SYSINZ2" to execute the corresponding FSHUTs.

/1*

//STEP EXEC PGM=NATGBPvr,PARM="'CF=SYSINI'

//SYSINI DD *

CREATE,BPN=NATGBP1,S=Nvrs,N=(1M),BPC=2M
CREATE,BPN=NATGBP2,S=Nvrs,N=(2M)

SHOWBP S=Nvrs

//SYSIN2 DD *
FSHUT,BPN=NATGBP1,S=Nvrs
FSHUT,BPN=NATGBP2,S=Nvrs
SHOWBP S=Nvrs

1%

Localization

The module NATGBPTX is delivered in source form. It contains all error messages in English in
mixed case. The messages can be translated into other languages as required. In this case, the

,hew” NATGBPTX source module has to be assembled and NATGBP vr has to be relinked.

To issue the global buffer pool messages including their variable parts in upper case, the global
buffer pool parameter module NATGBPRM has to be assembled with the UCTRAN parameter set to

YES, and NATGBP vr has to be relinked.

To relink NATGBP vr, use the following JCL:

//SYSLIN DD *

SETCODE AC(1)

SETOPT PARM(REUS=RENT)
INCLUDE NATLIB(NATGBPMG)
INCLUDE SMALIB(NATGBPRM)
INCLUDE SMALIB(NATGBPTX)
INCLUDE NATLIB(NATBPMGR)
NAME NATGBPvr(R)

/%

286

Operations



46 Natural Global Buffer Pool under z/VSE

= Using a Natural Global BUFfEr POOI ........cooiiiiiiiiiie e 288
= Operating the Natural Global BUffer POOI ..............ooiiiiiiiiii e 289
= Sample NATGBPVI EXECULION JODS ......cooiiiiiiiiiiiicee e 290
B LOCANZALION ... e e e e et e aea e 292

287



Natural Global Buffer Pool under z/VSE

This document describes purpose and usage of a Natural Global Buffer Pool (GBP) under the
operating system z/VSE.

The following topics are covered:

Certain parts of the Natural global buffer pool are identical under z/VSE and z/OS. These parts
are concentrated in a separate section (see Common GBP Operating Functions under z/OS and
z/VSE) which covers the following topics:

® Global Buffer Pool Operating Functions
® Global Buffer Pool Function Parameters

® Examples of NATBUFFER Specifications
See also:

® Natural Global Buffer Pool Manager Messages in the Natural Messages and Codes documentation

Using a Natural Global Buffer Pool

Definition

The Natural global buffer pool is a segment of storage assigned from the z/VSE system GETVIS
storage above 16 MB (or from storage below, if requested), used by Natural to load and execute
Natural programs. The Natural global buffer pool is allocated in storage key 9, so that all partici-
pating partitions have write-access to it.

Benefits

Using a global buffer pool, multiple Natural sessions under different TP monitors (multiple copies
of CICS, Com-plete, etc.) and/or in multiple batch sessions share the same area - thus requiring
less storage than would be required for a local buffer pool in each environment.

Prerequisites

A Natural global buffer pool under z/VSE requires the subsystem storage protection facility of an

ESA/390 or compatible processor. Consequently, it also requires a minimum operating system
level of z/VSE Version 2 Release 4 for support of this hardware feature.

288 Operations



Natural Global Buffer Pool under z/VSE

Operating the Natural Global Buffer Pool

Installing the Natural GBP Operating Program

No installation procedure required. The global buffer pool is operated by program NATGBPvr
which is contained in and executed from the Natural load library.

Setting Up the Natural Global Buffer Pool

The functions available from NATGBP vr are activated in that they are

® provided by a parameter card (PARM=),
" read from a file (see below)

® or supplied by the operator (AR command MSGxx with xx being the z/VSE partition ID) unless
NATGBP vr has not been terminated.

NATGBP v r expects the first command in the parameter field (PARM=) of the EXEC job control
statement.

You may enter:

® one of the functions described in the section Common GBP Operating Functions under z/OS and
z/VSE

" or a reference to an input file with CF=<d7b7-name>, where <d1b1-name> represents a DLBL
name defined in the JCL or the z/VSE (partition) standard labels. Only , card image” files are
supported, that is, RECFM=F, LRECL=80, and only the first 72 bytes of the input record are honored.
Every record included from the input file represents a command. Blank records or records pre-
fixed with an asterisk "*" are ignored. An asterisk (*) for <d7b7-name>indicates to NATGBP vr that
input has to be read from SYSIPT. A file is processed until End-Of-File (EOF).

Example: PARM="CF=SYSINI"

If the parameter field is not supplied or is blank, the commands will be read from SYSIPT by
default.

It is only possible to enter one function at a time at the console or one function per line using the
command file, otherwise an error message will be returned.

Each command received from the parameter card, from file input or from operator console input
is shown on the operator console and is logged to SYSLST.

Operations 289



Natural Global Buffer Pool under z/VSE

Starting the Natural GBP Operating Program

To start program NATGBP vr submit a job that executes NATGBP vr.

/) Important: To ensure that the global buffer pool is retained after a system failure, the global
buffer pool should be started automatically during machine IPL.

Stopping the Natural GBP Operating Program

After all commands are processed, NATGBP vr terminates unless

" RESIDENT=Y was specified or

® a buffer pool with a cache was created.

NATGBP vr will return one of the following condition codes:

0 |All functions executed successfully.

20 |An error has occurred; see the message log for details.

Sample NATGBPvr Execution Jobs

The following examples show sample batch jobs for creating and terminating a global buffer pool.

In the following examples, the notation vrs or vr stands for the relevant version, release, system
maintenance level numbers. For further information on product versions, see Version in the
Glossary.

Example 1:

// J0OB GBPSTART

/*

/* Starts a global buffer pool with the name NATvrGBP, a size of 1 MB and
/* a text block size of 4 KB. The global buffer pool is allocated above 16 MB.
/* The subsystem used is NATv.

/* After the allocation, the job GBPSTART terminates.

/*

// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB

// EXEC NATGBPvr,SIZE=NATGBPvr,PARM='BPN=NATvrGBP,N=(1000)"

/*

// EXEC LISTLOG

/&

290 Operations



Natural Global Buffer Pool under z/VSE

Example 2:

// J0B GBPRES

/*

/* Starts a global buffer pool with the name GBP, a default size of

/* 100 KB and a text block size of 1 KB. The global buffer pool is allocated
/* below 16 MB. The subsystem used is SAGS.

/* After the allocation, the job GBPRES will wait for further commands.
/* Further commands may be entered using AR command MSG partition-id:
/* the job GBPRES will then prompt for console input.

/*

// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB

// EXEC NATGBPvr,SIZE=NATGBPvr,PARM="BPN=GBP,N=(,BL,1),S=SAGS,R=Y"

/*

// EXEC LISTLOG

/&

Example 3:

// JOB GBPSTOP

/*

/* Stops the global buffer pool GPB if it contains no active objects. If it
/* does contain active objects, the operator console will prompt for a reply.
/* Depending on the reply, the shutdown will be forced (Y) or aborted (N).
/* The subsystem used is NATv.

/*

// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB

// EXEC NATGBPvr,SIZE=NATGBPvr,PARM="FSHUT,BPN=GBP"'

/*

// EXEC LISTLOG

/&

Example 4:

// JOB GBPSTRT2

/* Read commands from SYSIPT:

/*

/* Start 3 global buffer pools (subsystem id Nvrs) with name
/% NATGBP1 - size=1024KB and a cache with size 2048KB

/% NATGBP2 - size=2048KB without cache

/* Display all buffer pools of subsystem id "Nvrs".

/*

/* Note: The job does not terminate by itself, but stays resident and waits
s for operator commands, because it owns the data space allocated for
A buffer pool NATGBP1.

/*

/* 1If the buffer pools should shut down, wake up sleeping job by MSG partition-id
/* and enter parameter "CF=*" to execute the corresponding FSHUTs.

/*

// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB

Operations 291



Natural Global Buffer Pool under z/VSE

// EXEC NATGBPvr,SIZE=NATGBPvr
CREATE,BPN=NATGBP1,S=Nvrs,N=(1M),BPC=2M
CREATE,BPN=NATGBP2,S=Nvrs,N=(2M)

SHOWBP S=Nvrs

/*

FSHUT,BPN=NATGBP1,S=Nvrs
FSHUT,BPN=NATGBP2,S=Nvrs

SHOWBP S=Nvrs

/*

Localization

The module NATGBPTX is delivered in source form. It contains all error messages in English in
mixed case. The messages can be translated into other languages as required. In this case, the
,new” NATGBPTX source module has to be assembled and NATGBP vr has to be relinked.

To issue the global buffer pool messages including their variable parts in upper case, the global
buffer pool parameter module NATGBPRM has to be assembled with the UCTRAN parameter set to
YES, and NATGBP vr has to be relinked.

To relink NATGBP vr, use the following JCL:

// OPTION CATAL,LIST
ACTION NOAUTO, SMAP
PHASE NATGBPvr,*
INCLUDE NATGBPMG
INCLUDE NATGBPRM
INCLUDE NATGBPTX
INCLUDE NATBPMGR
ENTRY CMSTART

/*

292 Operations



47 Common Natural GBP Operating Functions under z/0S

and z/VSE

= Global Buffer Pool Manager Parameter MOUIE ..............cooiuiiiiiiiiiieiiiie e 294
= Global Buffer Pool Operating FUNCHONS .........covvviiiiiiii e 294
= Global Buffer Pool FUNCHON Parameters ...........vvvviiiiiiiiiiiiit et 296
= Examples of NATBUFFER SpecCifications ............ooiiiiiiiiiiiiii e 301

293



Common Natural GBP Operating Functions under z/OS and z/VSE

This document provides a summary of those operating functions of the Natural global buffer pool
which are identical under z/OS and z/VSE.

The following topics are covered:

Global Buffer Pool Manager Parameter Module

The global buffer pool parameter module NATGBPRM is used to set global processing options which
apply to all functions and buffer pools. The global buffer pool parameter module is delivered in
source and object form with all defaults set.

The following parameter is available:

= UCTRAN - Lower/Mixed Case Support

UCTRAN - Lower/Mixed Case Support

This parameter enables or disables the lower/mixed case support for the global buffer pool messages.

UCTRAN=NO |Lower/mixed case support is fully enabled.

This is the default value.

UCTRAN=YES |All global buffer pool messages are issued in upper case.

Global Buffer Pool Operating Functions

The following functions are available:

= ADDCACHE - Allocate Cache for an Existing Global Buffer Pool
= CREATE - Create Global Buffer Pool

= DELCACHE - Release Cache of a Global Buffer Pool

= FSHUT - Shut Down Global Buffer Pool

= GLOBALS - Show Global Parameter Settings

m | ISTCACHE - List All Global Buffer Pool Caches Owned by Job
= NOP - No-Operation

» REFRESH - Re-initialize Global Buffer Pool

= SHOWBP - Show Existing Buffer Pools

= TERMINATE - Terminate GBP Operating Program

294 Operations



Common Natural GBP Operating Functions under z/OS and z/VSE

= ZAPS - Display Zaps Applied to GBP

Note: If no function is specified, CREATE is assumed when the profile parameter BPNAME is

specified, otherwise NOP is assumed.
ADDCACHE - Allocate Cache for an Existing Global Buffer Pool
This function adds cache storage to an existing global buffer pool.
CREATE - Create Global Buffer Pool
This function creates a global buffer pool with the specified parameters.
DELCACHE - Release Cache of a Global Buffer Pool

This function removes the cache storage of a global buffer pool without shutting down the buffer
pool itself.

FSHUT - Shut Down Global Buffer Pool

The global buffer pool is shut down, and the storage area is released.
If there are no active objects in the buffer pool, FSHUT is executed immediately.

If there are still active objects in the buffer pool, this will be indicated to the operator. Depending
on the setting of the parameter CONFIRM, the operator is asked for a confirmation or FSHUT is exe-
cuted immediately.

GLOBALS - Show Global Parameter Settings

This function shows all global parameter settings, that is, parameters which do not only apply to
the statement for which they have been specified.

In addition, the storage key of the global buffer pool(s) is shown.
LISTCACHE - List All Global Buffer Pool Caches Owned by Job

This function lists all global buffer pool caches currently owned by the job.

Operations 295



Common Natural GBP Operating Functions under z/OS and z/VSE

NOP - No-Operation
This function code particularly can be used to set global parameters.
REFRESH - Re-initialize Global Buffer Pool

With the REFRESH command it is possible to re-initialize an already active buffer pool. As no storage
allocation takes place, the buffer pool size and location (above or below 16 MB) remain unchanged.
However, it is possible to change the text-block size (see NATBUFFER parameter).

You should use this function only if the Current Use Count (see Fields for Buffer Pool Objects in
SYSBPM Directory Information) is equal to zero (see warning below) or if the buffer pool has been
destroyed.

@ Caution: If you re-initialize the buffer pool while Natural objects are being executed by

active sessions in this buffer pool, the results of the active sessions are unpredictable and
Natural may even abend.

SHOWBP - Show Existing Buffer Pools
Displays all buffer pools currently existing.
TERMINATE - Terminate GBP Operating Program

The GBP operating program is terminated. This termination does not affect any active global buffer
pool.

ZAPS - Display Zaps Applied to GBP

Displays all Zaps applied to the global buffer pool operating program.

Global Buffer Pool Function Parameters

The functions of the Natural GBP operating program can be controlled with the aid of parameters.
These parameters can be specified in any sequence. They can be abbreviated so that they are still
unique.

Note: If you like to start multiple global buffer pools with an associated cache, you are
recommended to use a single job or (under z/OS only) a single started task and to supply
the different CREATE commands in an input dataset. See Example 4 in the section Natural
Global Buffer Pool under z/OS or Example 4 in the section Natural Global Buffer Pool under
z/VSE.

The following parameters are available:

296 Operations



Common Natural GBP Operating Functions under z/OS and z/VSE

= BPNAME - Name of Global Buffer Pool

= BPLIST - Name of Preload List

m BPCSIZE - Buffer Pool Cache Size

= CONFIRM - FSHUT Confirmation

® |DLE - Wait Time before Check

= METHOD - Search Algorithm for Allocating Space in Buffer Pool
= NATBUFFER - Buffer Size, Mode, Text Block Size

= RESIDENT - Behavior after Function Execution

= SUBSID - Natural Subsystem ID

= TYPE - Type of Buffer Pool

BPNAME - Name of Global Buffer Pool

This parameter is mandatory (except for the TERMINATE function). It specifies the name of the global
buffer pool to be created.

BPNAME=name |name is the 8-byte name of the global buffer pool. If the specified name is shorter than 8
bytes, blanks will be appended to it.

For the functions DELCACHE and FSHUT, you may supply a value of "*" to process all buffer pools
for the specified Natural subsystem.

BPLIST - Name of Preload List

This parameter specifies the name of the preload list.

BPLIST=name |name is the 8-byte name of the preload list. If the specified name is shorter than 8 bytes,
blanks will be appended to it.

BPCSIZE - Buffer Pool Cache Size

This parameter specifies the amount of storage (in KB) used to allocate a data space for the buffer
pool cache.

BPCSIZE=size |sizeis the amount of storage (in KB) used to allocate a data space for the buffer pool
cache. The valid range is 100 - 2097148.

The cache size can also be specified in units of MB or GB, e.g. by specifying 10M for 10
MB.

If the BPCSIZE parameter is omitted (or set to zero), the buffer pool is not supplied with
a cache.

Anmerkung: A cache is only supported for buffer pools of TYPE=NAT.

Operations 297



Common Natural GBP Operating Functions under z/OS and z/VSE

CONFIRM - FSHUT Confirmation

This parameter controls the FSHUT behavior if there are still active objects in the buffer pool.

CONFIRM=Y|A confirmation for the FSHUT function is required from the operator. The operator can decide
to abort or to force the FSHUT function.

This is the default value.

CONFIRM=N|FSHUT is forced without interaction with the operator.

This parameter is only valid for the FSHUT command it has been specified with, that is, CONFIRM
has to be specified with each FSHUT parameter, and it does not apply to subsequent FSHUT comman-
ds.

IDLE - Wait Time before Check

This parameter is ignored when the task does not own a buffer pool cache.

IDLE=nn |nnis the number of seconds to elapse before the GBP operating program checks for each buffer
pool cache if its associated buffer pool is still active; if not that buffer pool cache is released;
when the last buffer pool cache owned by the task has been released, the task terminates, unless
RESIDENT=Y has been specified.

The default setting is 60 seconds.

IDLE is a , global” parameter, i.e. once specified, IDLE will also apply to subsequent commands,
without your having to specify it again.

Note: Under z/OS, the GBP operating program also checks the specified IDLE time value

against the job's timeout value: the specified IDLE time value internally may reduce IDLE
to prevent timeout abends (5322).

METHOD - Search Algorithm for Allocating Space in Buffer Pool

This parameter controls which algorithm is to be used for allocating storage in the Natural buffer
pool.

METHOD=S |Indicates that a selection process is to be used for allocating storage. The selection process
consists of browsing the whole buffer pool directory and comparing different entries in order
to find a most suitable entry. This method was formerly known as algorithm 1+2.

This is the default value.

METHOD=N|Indicates that the next available unused or free space is to be used. The search for the next
available space is done from a pointer to directory entries which moves in a wrap-around
fashion. This method may be used in combination with a buffer pool cache.

298 Operations



Common Natural GBP Operating Functions under z/OS and z/VSE

This parameter is only valid for the CREATE function. If you want to change the allocation method,
restart the buffer pool.

NATBUFFER - Buffer Size, Mode, Text Block Size

This parameter specifies the size and the mode of the buffer pool, and the text block size.

NATBUFFER=(size,mode,tsize)|size is the amount of storage (in KB) to be allocated.

For the Natural buffer pool (TYPE=NAT), the default and
minimum possible size is 256 KB.

For the other buffer pools, the default and minimum
possible size is 100 KB.

The specified amount of storage is always rounded up
to a multiple of 4 KB.

The pool size can also be specified in units of MB or GB,
e.g. by specifying 10M for 10 MB.

Next to the storage specified by s7ze, one page (4 KB)
of write protected storage will be allocated for
administrative purposes.

mode determines if the global buffer pool is to be allocated
above or below 16 MB.

Possible values are: XA = above (default), BL = below.

tsize determines the text block size (in KB).

Possible values are: 1, 2, 4,8, 12, and 16. The default is 4.

size, mode and tsize have to be specified in the sequence shown above.

If NATBUFFER is not specified, the default values will be used. See also Examples of NATBUFFER
Specifications below.

Operations 299



Common Natural GBP Operating Functions under z/OS and z/VSE

RESIDENT - Behavior after Function Execution

This parameter specifies the behavior of the GBP operating program after the specified function
has been executed. The following values are possible:

RESIDENT=Y |The GBP operating program will remain active after executing the specified function and
await further commands. Once specified, RESIDENT=Y will also apply to subsequent
commands, without your having to specify it again. (To stop the GBP operating program,
you use the TERMINATE function.)

RESIDENT=N |The GBP operating program will terminate after executing the specified function, if no
further command is available. If the task owns a buffer pool cache, RESIDENT=N is ignored
and the task is not terminated.

RESIDENT=A |The GBP operating program automatically decides how to behave after having processed
all commands. It will terminate if

® no further command is available and

® no buffer pool with an associated cache exists that was created by this task.

In other words: If no buffer pool cache is owned by the task, RESIDENT=A works in the same
way as RESIDENT=N. When the task owns a buffer pool cache, RESIDENT=A works the same

way as RESIDENT=Y, but switches automatically to RESIDENT=N, when the last buffer pool
whose associated buffer pool cache was owned by this task has terminated.

This is the default setting.

RESIDENT is a ,,global” parameter, i.e. once specified, RESIDENT will also apply to subsequent
commands until explicitely specified/overwritten.

SUBSID - Natural Subsystem ID

This parameter specifies the ID of the Natural subsystem.

SUBSID=17d|7dis the 4-byte ID of the Natural subsystem.

Once specified, SUBSID will also apply to subsequent commands, without your having to
specify it again.

The default value is NAT v, where vis the first digit of the current Natural version.

SUBSID is a ,global” parameter, that is, once specified, SUBSID will also apply to subsequent com-
mands until explicitely specified/overwritten.

For the functions DELCACHE, FSHUT and SHOWBP, you may supply a value of "*" to process all buffer
pools for the specified Natural subsystem.

For further information on the Natural subsystem, see Natural Subsystem (z/OS) or Natural
Subsystem (z/VSE).

300 Operations



Common Natural GBP Operating Functions under z/OS and z/VSE

TYPE - Type of Buffer Pool

This parameter specifies the type of the buffer pool. Possible values are:

TYPE=NAT |Natural buffer pool (this is the default).
TYPE=SORT|Sort buffer pool.

TYPE=DLI |DL/I buffer pool.

TYPE=EDIT|Editor buffer pool.

TYPE=MON |Monitor buffer pool.

TYPE=RNM |Review Natural Monitor buffer pool.

Examples of NATBUFFER Specifications

The following examples refer to the NATBUFFER parameter which is used to set buffer size, mode
and text block size, the parameter name being abbreviated (N).

Example 1: To allocate a global buffer pool above 16 MB, with a size of 1 MB and a text block size
of 1 KB, you specify:

N=(1000,,1)
or
N=(IM,,1)

Example 2: To allocate a global buffer pool above 16 MB, with a size of 10 MB and a text block size
of 4 KB, you specify:

N=(10000)
or

N=(10M)

Operations 301



Common Natural GBP Operating Functions under z/OS and z/VSE

Example 3: To allocate a global buffer pool above 16 MB, with a size of 256 KB and a text block
size of 4 KB, you specify:

N=(,,)

This is equivalent to omitting the NATBUFFER parameter altogether, as it causes the default values
to apply.

302 Operations



48 Natural Global Buffer Pool under BS2000/0SD

= Using a Natural Global Buffer Pool under BS2000/0SD ............oiiiiiiiiiiiiiiiiieiiiie e 304
= Establishing the Global Buffer Pool under BS2000/0SD ..........cocoiiiiiieiiiiiiie e 304
= Administering the Global Buffer Pool under BS2000/0SD ...........ccouiiiiiiiiiiiie e 305

303



Natural Global Buffer Pool under BS2000/0SD

This document describes purpose and usage of a Natural Global Buffer Pool (GBP) under the
operating system B52000/OSD.

In the examples below, the notation vrs or vr stands for the relevant version, release, system
maintenance level numbers. For further information on product versions, see Version in the
Glossary.

The following topics are covered:

Using a Natural Global Buffer Pool under BS2000/0SD

The Natural global buffer pool is a common memory pool that can be used with BS2000 Version
10.0 and above.

On XS31 computers, it can be located either below 16 MB or in the extended address space above
16 MB. On non-XS31 computers, it can be located in the user address space below Class 4 storage
(whose size depends on how the operating system was generated).

The global buffer pool can be used by several Natural under TIAM, Natural under UTM and batch
applications simultaneously. It is possible to have more than one global buffer pool per operating
system.

The global buffer pool has to be activated before the first Natural application is started. It can
remain active as long as the operating system is active, even after the last Natural session has been
terminated. This means that the global buffer pool's contents are still available when a new session
is started and need not be loaded into the buffer pool again.

Establishing the Global Buffer Pool under BS2000/0SD

The global buffer pool is established by executing a batch job which starts the program CMPSTART.
The global buffer pool's name, size, virtual address, etc. are determined by parameters specified
in this job.

304 Operations



Natural Global Buffer Pool under BS2000/0OSD

Example of CMPSTART Job:

/SYSFILE SYSOUT.LST.BPvrsGA

/SYSFILE SYSDTA=(SYSCMD)

/EXEC (CMPSTART,$NATvrs.NATvrs.BS2.MOD)

NAME=BPvrsGA, TYPE=NAT,POSI=ABOVE,SIZE=2MB,ADDR=260,PFIX=N0O, SCOP=GLOBAL
/SYSFILE SYSDTA=(PRIMARY)

If the parameter values are invalid or do not match the BS2000/OSD environment, the buffer pool
task is terminated with an error message. The error message contains the reason for the termination
and (if applicable) the SVC return code. All error messages are output on SYSOUT. In the case of
grave errors, they are also displayed on the operator console.

Administering the Global Buffer Pool under BS2000/0SD

Once global buffer pool is active, it is administered via the operator console.

The following BS2000/OSD console commands are available (where tsn is the TSN of the buffer
pool task):

Command Function
/INTR tsn,DPRM Displays the current parameters settings and the start time of the
global buffer pool.

/INTR tsn,SHUT /INTR tsn,STOP |Terminates the buffer pool task normally.

/INTR tsn,DUMP Terminates the buffer pool task abnormally and produces a dump.

The termination of the buffer pool task does not necessarily mean the termination of the global

buffer pool, as the common memory pool remains active until the end of the last Natural applica-
tion.

So that you can terminate global buffer pools via a program, too, the program CMPEND is provided:
Example:

/PROC C

/SYSFILE SYSDTA=(SYSCMD)

/EXEC (CMPEND,NATvrs.MOD)

name /* name of the global buffer pool
/SYSFILE SYSDTA=(PRIMARY)

/ENDP

Operations 305



306



49 Natural Swap Pool

This part provides information on the Natural swap pool which is available when you are using
one of the following TP monitors:

® CICS (where the Natural swap pool is optional)

® UTM (where the Natural swap pool is necessary)

The behavior and the functionality of the Natural swap pool is to a large extent identical in these
environments. However, differences or TP-monitor-specific features exist. These are marked
accordingly in the following texts.

Purpose of a Natural Swap Pool
Natural Swap Pool Operation

Swap Pool Initialization

Dynamic Swap-Pool Reorganization
Defining the Natural Swap Pool
Natural User Area Size Considerations

Swap Pool Data Space

¢ ¢ © ¢ & ¢ ¢ @

Global Restartable Swap Pool under UTM

Terminating the Global Swap Pool

(¥

Related Topics:

® Natural Swap Pool under CICS in the Natural TP Monitor Interfaces documentation

= Using the Natural Swap Pool under CICS in the Natural TP Monitor Interfaces documentation

307



Natural Swap Pool

® Natural Swap Pool under UTM in the Natural TP Monitor Interfaces documentation

= Error Messages from the Natural Swap Pool Manager Valid under CICS and UTM in the Messages and
Codes documentation

308 Operations



50 Purpose of a Natural Swap Pool

® Purpose of @ Natural SWapP POOI .. .....iiiiiiiiii e 310
= Benefits of Using @ Natural SWap POO ..........cooiiiiiiiii e 310
B SWAP POOI STUCIUNE ...t et e et e e e 311

309



Purpose of a Natural Swap Pool

This document describes the purpose, benefits and structure of a Natural swap pool.

The following topics are covered:

Purpose of a Natural Swap Pool

A Natural user work area is required for each online Natural user. The size of this work area is
determined by the parameter MAXSIZE in the macro NTSWPRM.) The user work area must be in the
computer's main storage whenever the user initiates any form of dialog transaction.

In order to reduce the frequency with which the user work area is rolled out to the swap file (or
roll facility under CICS) and rolled in again, it is possible to set up a Natural swap pool.

For more details, refer to Natural Swap Pool Theory of Operation.

Benefits of Using a Natural Swap Pool

The user work areas are held in the Natural swap pool in compressed form as much as possible.
The amount by which disk swapping is reduced depends upon the size of the swap pool, the size
of each compressed Natural user work area and the number of online users.

If the user work areas of all the online users can be kept resident in the swap pool, no disk swapping
takes place.

TP Monitor: |Comment:

CICS The size, name and cache size of the swap pool are specified using profile parameter BPI or
the corresponding macro NTBPI in the Natural parameter module NATPARM, thatis, the (NT)BP 1
settings in effect for the Natural session initializing the Natural CICS environment are taken.

UTM The size of the Natural swap pool is specified with the keyword parameter SIZE in the macro
ADDON or by program CMPSTART (see also the keyword parameters DATA and DESA for the
generation of swap pool data space).

310 Operations



Purpose of a Natural Swap Pool

Swap Pool Structure

The physical swap pool is made up of the following parts:

® Main directory
* Logical swap pools with
® Subdirectories

® Swap pool slots
Swap Pool Main Directory

The swap pool main directory refers to the entire swap pool. Up to 15 logical swap pools can be
defined.

Subdirectories
Each logical swap pool has its own subdirectory.
Swap Pool Slots

In the swap pool slots, the Natural user work areas are held in compressed form.

For the first initialization of the swap pool, the number of logical swap pools and the size of their
slots can be defined with the parameter SWPSLSZ in the macro NTSWPRM to generate the swap pool
parameter module.

Logical Swap Pools

Each logical swap pool contains a subdirectory and a guest table.

Each swap pool directory entry used is chained to its predecessor entry and successor entry. This
is also true for the entries in the guest table. In this way, the most recent and the oldest swap pool
users/guests are always known.

To define a guest in a logical swap pool, proceed as in the following example:
There is a swap pool with three logical swap pools (LSPs).

= LSP 1 has a slot size of 62 KB.
= [SP 2 has a slot size of 72 KB.
= LSP 3 has a slot size of 82 KB.

Operations 311



Purpose of a Natural Swap Pool

The size of the compressed Natural user work area is 60 KB and therefore, this user work area
should be compressed into a slot of the logical swap pool 1. If LSP 1 is currently full (which is the
case in the above example) and LSP 2 contains a free slot, the user work area will be compressed
into LSP 2; if it is full, and LSP 3 contains a free slot, the user work area will be compressed into
LSP 3. A user work area in LSP 2 or 3 is a guest in these LSPs because its own LSP was full.

TP Monitor: |Comment:

CICS The Natural swap pool is optional under CICS. Due to CICS command-level overhead, swapping
into or from the swap pool is faster than expensive roll I/Os. Nevertheless, if virtual storage is
a bottleneck, the installation of a swap pool may lead to performance degradations due to
paging overhead; see also Natural Swap Pool under CICS and Using the Natural Swap Pool under
CICS in the Natural TP Monitor Interfaces documentation.

UT™M The Natural swap pool is necessary under UTM. See also Natural Swap Pool under UTM

312 Operations



51 Natural Swap Pool Operation

= Users are On their Way to Natural - No Session Start ..........coovviiiiiiiiiii e 314
= Users are Returning from NAUTal ..........oouiiiiiii e 314

313



Natural Swap Pool Operation

The following situations are explained:

Users are On their Way to Natural - No Session Start

If the user's work area is held in the swap pool, the corresponding slot is read and decompressed
into the Natural user thread. The corresponding swap pool directory entry is unlinked from the
directory chain and declared as a free entry. If it was a guest, the guest table will be updated.

If the user's work area is not held in the swap pool, it is read and decompressed from the Data
Space or from the swap file (or roll facility under CICS) into the Natural user thread.

Natural is activated.

Users are Returning from Natural

Natural checks whether the compressed length of the user work area exceeds the highest slot size
of the logical swap pools.

If it exceeds the highest slot size, the user work area is compressed and written asynchronously
to the swap file (or rolled to the roll facility, which is associated with the session under CICS).

If it does not exceed the highest slot size, Natural finds out whether there is a free slot in the user
work area's own swap pool:

= If there is a free slot, the user work area is compressed into this slot. The corresponding directory
entry is linked into the directory chain as latest entry.

= If there is no free slot, Natural finds out whether there are guests in the user work area's own
logical swap pool.

If there are one or more guests, a slot is made available: The oldest guest-table entry is unlinked
from the guest table and the until then second oldest is made oldest guest. The adequate direc-
tory entry is unlinked from the directory chain.

If there are no guests, a slot is made available: The oldest directory entry is unlinked from the
directory chain and the until then second oldest is made oldest.

" If ESA Data Space is generated and there is a free slot available, this slot will be used before a
thread will be rolled out into a swap file.

The compressed user area of the unlinked user is transferred to the write buffer and written
asynchronously to the swap file (or rolled synchronously to the roll facility, which is associated
with the session under CICS). The current user's work area is compressed into the slot which has
become available. The corresponding directory entry is linked to the directory chain as latest entry.

314 Operations



Natural Swap Pool Operation

The statistics tables for swap pool reorganization and slot size calculation are updated.

Operations 315



316



52 Natural Swap Pool Initialization

m Swap Pool INitialization CONLIOL ...........oeiiiiiiiie e e e ae e e e e 318
= Swap Pool Initialization Parameters ............cooiiiuiiiiiii e 319

317



Natural Swap Pool Initialization

This document describes how to control the initialization of a Natural swap pool and contains an
overview of the keyword parameters available for initialization in the macro NTSWPRM.

The following topics are covered:

Swap Pool Initialization Control

The parameter SWPINIT in the macro NTSWPRM controls the initialization of the swap pool.
If You Set SWPINIT=AUTO

® The swap pool manager tries to read the swap pool initialization data with the swap pool name
as key from the Natural system file FNAT or FUSER (see keyword parameters SWPFILE of macro
NTSWPRM). If it finds data, they are used and the corresponding parameters in the macro NTSWPRM
are ignored. If it does not find data, the operand(s) of the keyword parameter SWPSLSZ in the
macro NTSWPRM will be used for initializing the swap pool.

= If the parameter SWPSLSZ contains only one slot size definition, the swap pool is initialized with
one logical swap pool. In the specified time interval (see parameter SWPTIMI in the macro
NTSWPRM), the swap pool manager controls whether the swap pool needs to be reorganized or
optimized (see also the section Dynamic Swap-Pool Reorganization). If the swap pool was
reorganized, the newly calculated initialization data for the swap pool are stored in the Natural
system file for the next initialization. If the swap pool's reorganization has resulted in more than
one logical swap pool, there will be no further dynamic swap pool reorganization.

® Dynamic swap pool reorganization is not possible when the swap pool contains more than one
logical swap pool.

® Further swap pool optimizations can be explicitly initialized with the following Natural SYSTP
utility functions:

® Slot Size Calculation,

® Swap Pool Parameter Service (modification of the swap pool initialization data in the Natural
system file),

® Deactivate the Swap Pool and Activate the Swap Pool.

® The maximum number of logical swap pools for dynamically reorganizing or optimizing the
swap pool can be defined in the operand of the keyword parameter SWPLSWP in macro NTSWPRM.

318 Operations



Natural Swap Pool Initialization

If You Set SWPINIT=

® No swap poolinitialization data in the Natural system file will be read or stored. The operand(s)
of the keyword parameter SWPSLSZ in the macro NTSWPRM will be used for initializing the swap

pool.

® The rules for dynamically reorganizing or optimizing the swap pool are the same as described
under SWPINIT=AUTO above, except that no initialization data will be stored in the Natural system

file.

Swap Pool Initialization Parameters

The following is an overview of the keyword parameters that are available for initialization in the
macro NTSWPRM.

Parameter

Explanation

SWPSLSZ

Defines the number of logical swap pools, their slot sizes and the numerical relation between
slot number and logical swap pools.

SWPINIT

Defines the access to the swap pool initialization data through the Natural system file.

SWPLSWP

Defines the maximum number of logical swap pools for reorganizing swap pools dynamically.

SWPSDIF

Defines the even-numbered minimum difference between the slot sizes of the different logical
swap pools. This value will be controlled during slot-size calculation and dynamic swap-pool
reorganization.

The following TP-monitor-specific requirements apply:

® Under UTM:
The size of the swap pool must be specified in the operand of keyword parameter SIZE for macro
ADDON or program CMPSTART.

® Under CICS:
The size, name and cache size of the swap pool are specified using profile parameter BPI or the
corresponding macro NTBPI in the Natural parameter module NATPARM, that is, the (NT)BPI set-
tings in effect for the Natural session initializing the Natural CICS environment are taken.

Operations

319



320



53 Dynamic Swap-Pool Reorganization

= Requirements for Dynamic Swap-Pool Reorganization ..o 322
B SHASHCS TADIES ....vveieee it e e e s 322
= Swap-Pool-Reorganization PIUS TabIE ............uviiiiiiiiieiii e 322
= Swap-Pool-Reorganization MiNUS TabIE .............coiiiiiiiiiiii e 323
= Parameters for Swap-Pool REOrganization ................ooiiiiiiiiiiiiiec e 323
= Checking for the Necessity of Swap-Pool Reorganization ...............cccooiiiiiiiiiiiiiiiiic e 324
= Flow of Dynamic Swap-Pool REOrganization ...............ccooiiiiiiiiiiii e 324
= Start of Dynamic Swap-Pool Reorganization ................oooiiiiiiiiiiiiiie e 325

321



Dynamic Swap-Pool Reorganization

This document describes the prerequistes, process, control and start of a dynamic swap pool
reorganization.

The following topics are covered:

Requirements for Dynamic Swap-Pool Reorganization

Dynamic swap pool reorganization is only possible when the physical swap pool contains only
one logical swap pool. In this case, the swap pool slots are all of the same size. If necessary, the
number of logical swap pools and the slot sizes can be adjusted to meet the requirements. Slot
sizes are adjusted by reorganizing the swap pool dynamically.

Statistics Tables

The statistical area of the swap pool directory contains two statistics tables which are used for
swap pool reorganization:

" swap-pool-reorganization plus table

" swap-pool-reorganization minus table

Swap-Pool-Reorganization Plus Table

The swap-pool-reorganization plus table contains information on the Natural user areas which
could not be placed into the swap pool because their compressed length exceeded the swap-pool
slot size.

The table contains 11 entries:
® The first 9 entries count the number of user areas whose length exceeded the slot size by 1 to 9

units.

® The 10th entry counts the number of user areas whose length exceeded the slot size by more
than 9 units.

® The 11th entry contains the average length of those user areas counted by the 10th entry.

322 Operations



Dynamic Swap-Pool Reorganization

Swap-Pool-Reorganization Minus Table

The swap-pool-reorganization minus table contains information on the Natural user areas whose
compressed length was smaller than the swap-pool slot size.

The table contains 11 entries:

® The first 9 entries count the number of user areas whose length was smaller than the slot size
by 1to 9, units”.

® The 10th entry counts the number of user areas whose length was smaller than the slot size by
more than 9 units.

® The 11th entry contains the average length of those user areas counted by the 10th entry.

The size of a ,,unit” is defined with the keyword parameter SWPFACT.

Parameters for Swap-Pool Reorganization

Dynamic swap-pool reorganization is controlled via the following keyword parameters in the
macro NTSWPRM.

Parameter |Specifies

SWPSLSZ |the slot size for the first initialization of the swap pool. The default size is 62 KB.

SWPTFIX |if the slot size is to be fixed or dynamic. With fixed slot size, there is no dynamic swap pool
reorganization. If the slot size is defined as not fixed, the swap pool is dynamically reorganized
when necessary (this is the default).

SWPTIM1 [the time interval at which a check is to be performed to ascertain whether a swap pool
reorganization is necessary. By default, the check is performed every 30 minutes.

SWPTIMZ |the time to elapse after the check for the necessity of a swap pool reorganization is performed
and before the reorganization is to be started. By default, a reorganization is started 2 minutes
after a check has proved a reorganization to be necessary.

SWPUSER [the rate of compressed user threads (in percent) which are too long for the actual SWP slot
length. If this value is reached and the physical SWP contains only one logical swap pool, an
SWP reorganization will be announced.

SWPFACT |the factor for a ,unit” in the swap pool reorganization plus table and minus table.

There is no need to change the default values for any of these parameters (unless you feel that slot
size optimization is not performed efficiently enough).

For testing and optimizing, you can dynamically change the values for these parameters online
using the Natural Swap Pool Manager, which is part of the Natural utility SYSTP.

Operations 323



Dynamic Swap-Pool Reorganization

Checking for the Necessity of Swap-Pool Reorganization

The check is based on:

® the overall number of dialog steps during the time between two checks;

" the percentage defined with the SWPUSER parameter;

* the maximum number of logical swap pools defined with the SWPLSWP parameter;
® the minimum difference of slot sizes for different logical swap pools;

*® the values of the swap-pool reorganization plus and minus tables (these tables are influenced
by the setting of the SWPFACT parameter);

* the total size of the physical swap pool.

The number of necessary logical swap pools with the corresponding slot sizes will be computed
if the number of user areas whose compressed length was greater or smaller (by at least one unit)
than the current slot size is more than n percent of the number of dialog steps (n being the value
of the SWPUSER parameter).

When the swap pool is reorganized, the new logical swap pools are used. If the physical swap
pool contains more than one logical swap pool after the reorganization, there will be no further
dynamic swap-pool reorganization.

Flow of Dynamic Swap-Pool Reorganization

Natural will only check whether the swap pool needs to be reorganized if the physical swap pool
contains no more than one logical swap pool.

Once the time specified with the SWPTIM1 parameter has elapsed, a check is performed to determine
whether a swap-pool reorganization is necessary.

® If swap-pool reorganization is not necessary, the timer set with the SWPTIM1 parameter (time
interval between checks) is activated again.

® If swap-pool reorganization is found necessary, the timer set with the SWPTIM2 parameter (time
interval between end of check and start of reorganization) is activated: no further user areas can
be placed in the swap pool; user areas held in the swap pool can still be used and read into the
user thread. Once this second time interval has elapsed, swap-pool reorganization is started.

324 Operations



Dynamic Swap-Pool Reorganization

Start of Dynamic Swap-Pool Reorganization

After the time specified with the SWPTIM2 parameter has elapsed, the swap pool is reorganized
while the current online session continues:

1. The compressed user areas which are still held in the swap pool are written to the swap file (or
roll facility under CICS).

2. The contents of the swap-pool-reorganization statistics tables are written to SYSLST and then
deleted from the tables.

3. The swap-pool is re-initialized with the newly computed values.
4. The timer set with the SWPTIM1 parameter (time interval between checks) is activated again.
The Natural swap-pool manager, which is part of the Natural utility SYSTP (see the Natural Utilities

documentation), can be used to obtain information on swap pool statistical data, sizes of Natural
buffers and user threads.

Operations 325



326



54 Defining the Natural Swap Pool

= Environment-Specific REQUIFEMENTS ... ..coiiiiiiiii et e e a e 328
= Keyword Parameters of Macro NTSWPRM .........ooiiiiiiiiiiii e 328

327



Defining the Natural Swap Pool

This document describes the TP monitor environment-specific requirements that apply and the
keyword parameters can be used to define the Natural swap pool.

The following topics are covered:

Environment-Specific Requirements

The following environment-specific requirements apply:

® Under UTM:
The Natural swap pool is defined by specifying macro NTSWPRM for assembling the Natural swap-
pool parameter module.

® Under CICS:
The Natural swap pool is defined by specifying NTSWPRMin the NCISCPCB environment definition
module.

Keyword Parameters of Macro NTSWPRM

The following keyword parameters can be used to define the Natural swap pool details:

LABEL | DSPCONT | DSPLIFE | SWPFILE | MAXSIZE | SWPFACT | SWPINIT | SWPLSWP | SWPPWRD | SWPSDIF
| SWPSLSZ | SWPTFIX | SWPTIM1 | SWPTIM2 | SWPUSER | NOVPA | NOVPW | WAITMS | WRITMS |

LABEL - Name of Swap-pool Parameter Module

This parameter defines the CSECT name of the swap-pool parameter module.

LABEL=nnnnnnnn |The name nnnnnnnnmay be 8 characters at maximum.

LABEL=NATSWPRM |The default setting is the name of macro NTSWPRM.

DSPCONT - Minutes for Data Space Slot Control

This parameter defines the time (in minutes) after which data space control takes place when the
ESA Data Space area is full. When this time has elapsed, the slots in the Data Space are checked
for whether their threads' life time has expired. If so, the compressed Natural user thread of each
affected slot is rolled out into the roll file.

328 Operations



Defining the Natural Swap Pool

DSPCONT=nnn |nnnmust be in the range of 1 to 480.
DSPCONT=10 |The default value is 10 (minutes).

DSPLIFE - Life Time in Minutes for a Thread in the ESA Data Space

This parameter defines the life time for a compressed Natural user thread in a slot of the ESA Data
Space. When the data space slots control logic becomes active, the thread is rolled out if its life
time has elapsed. The life time of a thread starts when the thread is written to the ESA Data Space.

DSPLIFE=nn |nnmustbe in the range of 1 to 60.
DSPCONT=5 |The default value is 5 (minutes).

SWPFILE - Location of Swap Pool Initialization Data

This parameter defines whether the swap-pool initialization data are stored in the Natural system
file FNAT or FUSER when the function SWPINIT=AUTO is used.

SWPFILE=FNAT/FUSER|File definition for the swap pool initialization data.
SWPFILE=FNAT The default value is FNAT.

MAXSIZE - Size of Natural User Threads

This parameter defines the size nnn of the Natural user threads in KB. For information on how to
determine this size, see Using the MAXSIZE Parameter.

MAXSIZE=nnn |nnn must be in the range of 64 to 32768.
MAXSIZE=400 |The default setting is 400 (KB).

Under CICS, this parameter specification is ignored, because the Natural CICS interface will
automatically take the size of the largest thread for this parameter.

Operations 329



Defining the Natural Swap Pool

SWPFACT - Size of Unit in Reorganization Tables

The factor n you specify with this parameter determines the size of a ,,unit” in the swap-pool
reorganization plus tables and minus tables.

SWPFACT=n |Possible values for n are 0 to 4. n determines the size of a ,,unit” as follows:

0 corresponds to 2 KB.
1 corresponds to 4 KB.
2 corresponds to 8 KB.
3 corresponds to 16 KB.

4 corresponds to 32 KB.
SWPFACT=1 | The default setting is 4 KB.

These tables are used to calculate slot sizes, to dynamically reorganize the swap pool and to get
swap-pool statistics see Dynamic Swap-Pool Reorganization.

SWPINIT - Access to Swap-Pool Initialization Data

This parameter specifies the access to the swap-pool initialization data through the Natural system
file.

SWPINIT= Blank, as described above under Swap Pool Initialization, see If You Set SWPINIT=.

SWPINIT=AUTO |This is the default setting. The swap-pool initialization data are to be read from/stored
in the Natural system file. See also Swap Pool Initialization, If You Set SWPINIT=AUTO.

For more information on how to use this parameter, see Swap Pool Initialization.

SWPLSWP - Number of Logical Swap Pools

This parameter defines the maximum number n of logical swap pools to be used.

SWPLSWP=n |Possible values for n are 0 to 15.
SWPLSWP=0 |[See Note 3 below.

Notes:

1. The minimum size of a logical swap pool is 64 KB.

2. The value defined must not be smaller than the number of slot sizes defined in the parameter
SWPSLSZ.

330 Operations



Defining the Natural Swap Pool

3. If the default value 0 is used, the swap-pool manager will compute the maximum number of
logical swap pools.

4. This parameter will be ignored if the swap-pool initialization data could be read from the
Natural system file.

SWPPWRD - Administration Password

With this parameter, you specify the password for the administration of the swap-pool reorgani-
zation control data and the Buffer Usage Statistics in the swap-pool manager subsystem of the
Natural utility SYSTP.

SWPPWRD=password |The password canbe up to 4 characters long.
SWPPWRD=ADMI This is the default value.

SWPSDIF - Minimum Difference of Slot Sizes

With this parameter, you specify the minimum difference of the slot sizes in the logical swap pools.

SWPSDIF= nn |nnmustbe an even number and specifies the number of kilobytes (KB). nn must be in the
range of 2 to 98.

SWPSDIF=8 The default value is 8 KB.

| Note: This parameter will be ignored if the swap-pool initialization data could be read from
the Natural system file.

SWPSLSZ - Number of Logical Swap Pools, Slot Sizes

This parameter determines the number of logical swap pools, the slot sizes and the relation of slot
numbers between the different logical swap pools. Possible values are:

SWPSLSZ=Cnn, fC,nn, f...)) nn Determines the slot size of a logical swap pool in
SWPSLSZ=(nn(,nn...),f(,f...)) kilobytes (must be an even number). nn must be
SWPSLSZ=(nn(, nn...)) in the range of 20 to 998.

f Determines the relation in terms of a numerical

factor between the slot numbers of the different
logical swap pools. f must be in the range of 1 to
9.

SWPSLSZ=(62,1) The default slot size is 62 KB. The default relation is 1.

Operations 331



Defining the Natural Swap Pool

Examples:

SWPLSZ=(44,1,62,2)

/* SWAP POOL SIZE IS 2048 KB

/* THERE WILL BE TWO LOGICAL SWAP POOLS, RELATION BETWEEN THEM IS 1:2
/* 1 LOGICAL SWAP POOL WITH 12 (1) 44-KB SLOTS

/* 1 LOGICAL SWAP POOL WITH 24 (2) 62-KB SLOTS<

SWPLSZ=(64,80,96)

/* SWAP POOL SIZE IS 8 MB

/* THERE WILL BE THREE LOGICAL SWAP POOLS, RELATION BETWEEN THEM IS 1:1:1
/* 1 LOGICAL SWAP POOL WITH 34 (1) 64-KB SLOTS

/* 1 LOGICAL SWAP POOL WITH 34 (1) 80-KB SLOTS

/* 1 LOGICAL SWAP POOL WITH 34 (1) 96-KB SLOTS

This parameter will be ignored if the swap-pool initialization data could be read from the Natural
system file.

SWPTFIX - Fixed Slot Size

This parameter determines if the size of the swap pool slots is to be fixed or not. Possible values
are:

SWPTFIX=Y |The slot size defined with the SWPSLSZ parameter (see above) is taken as a fixed size and no
reorganization of the swap pool takes place.

SWPTFIX=N |This is the default value. The slot size defined with the SWPSLSZ parameter (see above) is
not taken as a fixed size and the swap pool is reorganized when necessary; that is, the size
of the slots is dynamically adjusted to meet the actual requirements.

| Note: This parameter will be ignored if the physical swap pool contains more than one
logical swap pool.

SWPTIM1 - Time Interval for Reorganization Check

With this parameter, you specify the time interval nnn at which a check is to be performed to
ascertain whether a swap-pool reorganization is necessary. Possible values are:

SWPTIMI=nnn nnn must be in the range from 1 to 540 (minutes).

SWPTIM1=(nnn,RESET) |The contents of the swap-pool-reorganization statistics tables are deleted after
the check (normally, they are only deleted after a swap-pool reorganization).

SWPTIMI=30 The default value is 30 (minutes).

For details on how the check and a possible swap pool reorganization are performed, see Dynamic
Swap-Pool Reorganization.

332 Operations



Defining the Natural Swap Pool

/A Important: If the parameter SWPTFIX is set to Y or if the physical swap pool contains more
than than one logical swap pool, the SWPTIM1 parameter does not apply.

SWPTIM2 - Lapse of Time Before Start of Reorganization

With this parameter, you can specify the time nn to elapse after the check for the necessity of a
swap-pool reorganization is performed and before the actual reorganization is to be started.

SWPTIM2=nn |nn must be in the range from 1 to 99 (minutes)
SWPTIM2=2 |The default value is 2 (minutes).

During this time, no further user areas can be placed in the swap pool, while user areas still held
in the swap pool can still be used and read in the Natural user thread.

For details on how the check and a possible swap-pool reorganization are performed, see Dynamic
Swap-Pool Reorganization.

If the parameter SWPTFIX is set to Y or if the physical swap pool contains more than than one
logical swap pool, the SWPTIM2 parameter does not apply.

SWPUSER - Condition for Swap Pool Reorganization

With this parameter you can define which condition has to be met for a swap-pool reorganization
to take place.

SWPUSER=nn |nn must be in the range from 1 to 99.
SWPUSER=20 |The default value is 20 (percent).

You can define a percentage value nn which determines the percentage of dialog steps of all users
where the length of the compressed user areas was 1 or more units larger (or 1 or more units
smaller) than the current slot size. If a check establishes that this percentage is reached, a swap-
pool reorganization takes place.

For details on how the check is performed, see Dynamic Swap-Pool Reorganization.

If the parameter SWPTFIX is set to Y or if the physical swap pool contains more than than one
logical swap pool, the SWPUSER parameter does not apply.

Operations 333



Defining the Natural Swap Pool

NOVPA - Number of Waits for Completed Asynchronous Write

This parameter determines the number of waits for a completed asynchronous write.

NOVPA=nnn

nnn must be in the range of 1 to 999.

NOVPA=20

The default value is 20 (waits).

NOVPW - Number of Waits for Unlocked Swap Pool

This parameter determines the number of waits for an unlocked swap pool.

NOVPW=nnn

nnn must be in the range of 1 to 999.

NOVPW=15

The default value is 15 (waits).

WAITMS - Wait Time for Unlocked Swap Pool

This parameter determines the number of milliseconds for one wait of an unlocked swap pool.

WAITMS=nnn

nnn must be in the range of 1 to 999.

WATTMS=h

The default value is 5 (milliseconds).

WRITMS - Wait Time for Completed Asynchronous Write

This parameter determines the number of milliseconds for one wait of a completed asynchronous

write.

WRITMS=nnn |nnn must be in the range of 1 to 999.

WRITMS=10 |The default value is 10 ( milliseconds).

334 Operations



55 Natural User Area Size Considerations

m USing the MAXSIZE Parameter ..........c.uiiiiiiiiiiceei e 336
= Defining the Size of the Individual Natural BUfers ............coooviiiiiiii e 336
B POSSIDIE EITOr MESSAUES ...ttt ettt e 336
= Displaying the Aggregate Size of All BUFEFS ..........ooiiiiiiii e 337
= Calculating the MaXimum SiZE .........cooiiiiiiiiiiie e 337

335



Natural User Area Size Considerations

This document describes how to manage the size of the Natural user area and the size of the
individual Natural buffers.

The following topics are covered:

Using the MAXSIZE Parameter

The overall size of the Natural user area is determined by the MAXSIZE parameter in the swap-pool
parameter module. Therefore the MAXSIZE must be set large enough to contain the aggregate size
of all buffers that are required by Natural and also by possibly used subsystems (Con-nect, TRS,
etc.). The buffer requirements of Natural and subsystems are met by the TP driver. When a
Natural application is started, a user thread with a size of MAXSIZE is created. This is done by a
physical request memory to the operating system.

The buffer requests of Natural to the TP driver cause only , logical” GETMAINS; that is, the Natural
user thread is then divided into ,logical” units: the Natural buffers.

Defining the Size of the Individual Natural Buffers

The size of the individual Natural buffers is either explicitly defined in the Natural parameter
module (with the parameters ESIZE (size of user-buffer extension area), CSIZE (size of Con-nect
buffer area), etc.) or is implicitly determined by the definitions of the parameters PS (page size for
Natural reports), LS (line size), etc.

The maximum sizes of the Natural buffers can be displayed with the function Buffer Usage Statistics
of the Natural utility SYSTP. SYSTP also offers functions for ascertaining the overall maximum
Natural buffer sizes used for all users of a specific application.

Possible Error Messages

When the Natural error message NOT ENOUGH MEMORY or BUFFER SIZES EXCEED MAXSIZE appears,
this indicates that the MAXSIZE parameter value has not been defined large enough.

336 Operations



Natural User Area Size Considerations

Displaying the Aggregate Size of All Buffers

The aggregate size of all buffers requested by Natural (that is, the amount of MAXSIZE actually
used by the users of an application) can be obtained via the Natural Swap Information function of
the SYSTP utility.

Calculating the Maximum Size

A standard way of calculating the MAXSIZE is:

Add all explicitly defined buffer sizes (for example, ESIZE) and 40 KB (the sum of the internal
Natural buffer sizes).

This gives you roughly the required size for MAXSIZE.

Operations 337



338



56 Swap Pool Data Space

m Using ESA Data Space in AQItION ........ooiiiiiiiii e 340
= ESA Data Space Slot Size AJUSIMENT ........oiiiiiiiiiee e 340

339



Swap Pool Data Space

This document describes how to extend the Natural Swap Pool capacity by generating ESA Data
Space.

The following topics are covered:

Using ESA Data Space in Addition

To achieve a further reduction of the swap I/O operations, you can use the keyword parameters
DATA and DESA of the CMPSTART program to extend the Natural Swap Pool capacity by generating
ESA Data Space. This Data Space will be available to store compressed Natural user threads
whenever the Swap Pool runs out of space.

When this Data Space has been also consumed, a check occurs whether it is necessary to write
user threads from the Data Space to the roll file, because their life time has ended (see the keyword
parameters DSPCONT and DSPLIFE of macro NTSWPRM).

If there is no free storage space in the Data Space, the swap pool logic will cause the oldest inactive
user thread to be written from the swap pool to the roll file.

ESA Data Space Slot Size Adjustment

The generated ESA Data Space is divided into slots of equal size.

= If you are using the TP monitor UTM, you can define the slot size by setting the NATUTM macro
keyword parameter ROLLTSZ adequately.

= If you are using the TP monior CICS, the Data Space slot size will automatically take the size of
the longest thread.

The size, name and cache size of the swap pool are specified using profile parameter BPI or the
corresponding macro NTBPI in the Natural parameter module NATPARM, thatis, the (NT)BPI settings
in effect for the Natural session initializing the Natural CICS environment are taken.

340 Operations



57 Global Restartable Swap Pool under UTM

= Purpose of a Natural Global Swap Pool under UTM .........cooiiiiiiiiiei e 342
= |nstalling a Natural Global Swap Pool under UTM ...........ooiiiiiiiiiiic e 342
= Starting a Natural Global Swap Pool under UTM ............oiiiiii e 343
= Displaying Information about the Global Swap POOI .............ccviiiiiiiii 343

341



Global Restartable Swap Pool under UTM

This document describes how to install and operate a Natural global swap pool in a Natural under
UTM environment.

The following topics are covered:

Purpose of a Natural Global Swap Pool under UTM

If all tasks of a Natural under UTM application are terminated abnormally, the contents of a local
Natural swap pool are deleted. Consequently, when a task is started again, a new swap pool is
initialized and all users affected by the abnormal termination must start their Natural sessions
again.

To avoid this situation, a global (that is, restartable) swap pool can be used: after an abnormal
termination of the Natural under UTM application, when the users log on to the application again,
the last screen displayed before the termination is sent again and the users can resume their session
at the point where they were interrupted.

Installing a Natural Global Swap Pool under UTM

The following prerequisites are required for the installation of a global swap pool:

If a global swap pool is to be used, a global buffer pool must also be used. Before the restart of a
Natural under UTM application, the global buffer pool must have been initialized; that is, at least
one user must have used this buffer pool by normally starting a new Natural session.

If a new global buffer pool is started before an abnormally terminated Natural under UTM appli-
cation is restarted, a new global swap pool must also be started. However, if a new global swap
pool is started, a new global buffer pool need not be started as well.

The relation between the swap pool and the swap file is as follows: When the first UTM task uses
a newly started swap pool, the swap file is opened with OPEN 'OUTIN', which means that the
contents of the swap file are deleted. When a subsequent UTM task uses an already used (initialized)
swap pool, the swap file is opened with OPEN ' INOUT', which means that the contents of the swap
file can still be used.

342 Operations



Global Restartable Swap Pool under UTM

Starting a Natural Global Swap Pool under UTM

A Natural global swap pool must be started with program CMPSTART. It can be used from a maxi-
mum of five Natural under UTM applications.

Displaying Information about the Global Swap Pool

To obtain information on the current parameters settings of the global swap pool, as well as the
date and time of its start,

Issue the console command:

/INTRtsn,DPR

Operations 343



344



58 Terminating the Global Swap Pool under UTM

= Termination Using Console COMMANGS .........coiuuriiieiiiiiiis it 346
= Abnormal Termination With DUMP .......ue s 346
m Termination DY Program ... 347

345



Terminating the Global Swap Pool under UTM

This document describes the ways in which a Natural global swap pool can be terminated under

UTM.

The following topics are covered:

@y Caution: Before the swap pool is terminated, the Natural under UTM application that uses

it must be terminated.

Termination Using Console Commands

» To terminate the global swap pool normally

1 Issue the console command:
/INTRtsn,STOP
2 orissue the console command:

/INTRtsn,END

Abnormal Termination with Dump

» To terminate the global swap pool abnormally, producing a dump

m  Issue the console command:

/INTRtsn, DUMP

The swap pool is terminated abnormally and a dump is produced.

346

Operations



Terminating the Global Swap Pool under UTM

Termination by Program

» To terminate the global swap pool normally, using the program CMPEND

»  Issue the following command:

/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPEND,NAT230,MOD) name

Operations 347



348



59 Natural 3GL CALLNAT Interface

This part contains information about the Natural 3GL CALLNAT Interface with which Natural
enables 3GL programs to invoke and execute Natural subprograms.

@ Natural 3GL CALLNAT Interface - Purpose, Prerequistes, Restrictions

@ Natural 3GL CALLNAT Interface - Usage, Examples

349



350



60 Natural 3GL CALLNAT Interface - Purpose, Prerequisites,

Restrictions

® Purpose 0f 3GL CALLNAT INTEITACE .....ocoiiiiiiiit e e e 352
B PIErEQUISIEES ..o 353
L - 14 o SO PPPPPPPRRP 354

351



Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

This document describes the purpose of the 3GL CALLNAT interface and its prerequisites and
restrictions.

The following topics are covered:

Purpose of 3GL CALLNAT Interface

With the 3GL CALLNAT interface, Natural enables 3GL programs to invoke and execute Natural
subprograms.

The 3GL can be any programming language which supports the standard linkage call interface.
In most cases this will be a COBOL program, but the functionality can also be used by, for example,
PL/1, FORTRAN, C or Assembler programs.

Under CMS, Natural provides the function CALLNAT to execute Natural subprograms from a Rexx
program. For details, refer to Natural under VM/CMS.

Availability

The interface is available in batch mode under the following operating systems:

= z/OS,

= z/VSE,

= z/VM,

= BS2000/0OSD;

and for the following TP-monitor environments:

= CICS,

® Com-plete,
= IMSTM,

= TIAM,

= TSO,

= UTM.

352 Operations



Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Prerequisites

This section describes the prerequisites to execute a Natural subprogram from a 3GL program,
using an internal CALLNAT statement To achieve the desired functionality, a Natural environment
must be set up before you execute the CALLNAT interface from your 3GL program.

Space Requirements

The mechanism of parameter addressing in a Natural program requires that the parameters passed
reside in an area allocated by Natural, that is, in any of its sizes. The 3GL program, however,
allocates the storage for its variables somewhere in the address space of the task. To make
addressing still successful, a , call-by-value” mechanism is used for those variables which do not
already reside in a Natural area. This means that, prior to invoking the Natural subprogram, the
parameters to be passed are transferred into a Natural area, namely the DATSIZE buffer.

In addition to the storage used for the contents of the variables, additional storage will be needed
depending on the number of parameters. The total amount of space required is approximately the
same as the space that would be needed in the DATSIZE buffer if the subprogram-invoking program
were coded in Natural.

Linking

To invoke the Natural subprogram, the 3GL program must call the CALLNAT interface. Depending
on the power and functionality of the call interface of the 3GL programming language, the CALLNAT
interface can be either placed in an accessible load library for dynamic loading or linked to the
3GL program. In most cases, it is neccessary to link the 3GL program to the interface module (for
example, NATXCAL; see below).

The samples XNATGC2 and XNATGCP2 are provided to elucidate the technique of dynamically loading
and calling the CALLNAT interface from COBOL or PL/I, respectively.

| Note: Check with the responsible system programmer for the best solution in your environ-

ment.

Operations 353



Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Environment Dependencies

The foreign 3GL module can be either linked to Natural as a CSTATIC module and then invoked
via a branch and link instruction, or loaded dynamically and invoked via a TP-dependent link

method.

In the latter case, the 3GL module is written in a TP-specific way and the CALLNAT interface must
be adapted accordingly. For this purpose, multiple TP-specific interface modules are provided:

NATXCAL

To be used if the 3GL module is either linked to Natural or loaded dynamically and then
invoked by a branch and link instruction (batch, CMS, Com-plete, IMS TM, TIAM, TSO, UTM).

NATXCAL4

To be used if the 3GL module is called via the INTERFACE4 option of the CALL statement. It
provides the INTERFACE4 Natural Callnat Interface as well as the INTERFACE4 Callback
Functions. For further information on the INTERFACE4 functionality, see the CALL statement
documentation

NCIXCALL

To be used in a CICS environment if the 3GL module has been invoked using EXEC CICS
LINK; NCIXCALL is delivered in source code to be compiled with your CICS macros. See also
Installing the Natural CICS Interface in the Natural Installation documentation.

NCIXCPRM

To be used in a CICS environment to build the parameter address list used as COMMAREA for
the subsequent EXEC CICS LINK command.

Restrictions

Terminating a Natural Subprogram

The invoked Natural subprogram should be terminated with a return to the calling program.

Inadmissible Natural Statements

The following statements must not be used.

® FETCH
"= RUN
= STOP

® TERMINATE

When used in the invoked Natural subprogram they will bring about an appropriate Natural
runtime error (NAT0967).

354

Operations



Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Parameter Values Passed by the 3GL Program

The parameter values passed by the 3GL program must not reside in a write-protected storage
area.

Dynamic Arrays
Arrays with dynamic ranges are not possible.
TP-Monitor-Specific Restrictions

® Under CICS
For CICS environments, the 3GL program that uses the Natural 3GL CALLNAT interface must
be written for conversational mode. The 3GL program runs on the second CICS program level
and pseudo-conversational program technique can therefore not be used.

® Under IMS TM and UTM
IMS TM and UTM environments running Natural can use the 3GL CALLNAT interface only if
both the 3GL program and the Natural subprogram do not issue any terminal I/O; when DISPLAY,
INPUT and WRITE are used in the invoked Natural subprogram they will bring about an appro-
priate Natural runtime error (NAT0967).

Operations 355



356



61 Natural 3GL CALLNAT Interface - Usage, Examples

LU o OO PSP UPPPTPPPRPPPPPRS 358
B SamMPple ENVIFONMENES ...ttt e e e e e e e e 361

357



Natural 3GL CALLNAT Interface - Usage, Examples

This section describes the usage of the 3GL CALLNAT interface and describes a number of sample
3GL CALLNAT environments.

The following topics are covered:

Usage

The following topics are covered:

= Qverview
= Call Structure
= Parameter Handling

Overview

When you invoke a Natural subprogram from a 3GL program, a Natural session must be active,
i.e. the 3GL program itself must be called by Natural.

Therefore you must take special precautions if you do not want the Natural layer to show up. The
following figure is intended to give you an overview of how an application using the Natural 3GL
CALLNAT interface may be designed in such a case:

COBOL
Front-End Program

k.

NATI1 STACK=CALLCOB ..

CALLCOB COEOL

COBFGM

[

CALL'COBPGM

7

END CALL'MATXCAL
USIMG natpgrm

k

|
NATPGM

The necessary environment is established by first invoking a Natural start-up program. By using
the Natural CALL statement, this start-up program can then invoke a 3GL program from where
you can invoke the CALLNAT interface.

358 Operations



Natural 3GL CALLNAT Interface - Usage, Examples

Call Structure

The Natural main program is very simple; it only calls, for example, a COBOL program:

CALL 'cobpgm'
END

The CALL statement of the 3GL programming language (for example, COBOL) must have access
to the Natural 3GL CALLNAT interface, which then invokes the Natural subprogram:

CALL "interface' USING natpgm pl ... pn

The parameter interface is environment-dependent (for example, NATXCAL) and linked to the
calling program. The parameter natpgmmust be an alphanumeric variable of 8 bytes that contains
the name of the Natural subprogram to be invoked. The parameters pI ... pnare passed to the
Natural subprogram.

Example (for all environments except CICS):

The COBOL program cobpgm could contain coding similar to the following one:

MOVE "FINDNPGM' TO natpgm

CALL 'interface' USING natpgm number name
IF natpgm NE 'FINDNPGM'

THEN GOTO error_handling_1

The invoked Natural subprogram natpgm calculates the number of persons in the file EMPLOYEES
with name equal to a value passed from the COBOL program:

DEFINE DATA

PARAMETER

1 pnumber (P10)

1 pname (A20)

LOCAL

1 emp VIEW OF employees
END-DEFINE

*

RESET presp

FIND NUMBER emp WITH name=pname
MOVE *NUMBER TO pnumber
ESCAPE ROUTINE

Operations 359



Natural 3GL CALLNAT Interface - Usage, Examples

If an error occurs while the subprogram is executed, information about this error will be returned
in the variable natpgmin the form *NATnnnn, where nnnn is the corresponding Natural error
number.

Example (for CICS only):

Under CICS, the call of a Natural subroutine from, for example, COBOL should be as follows:

WORKING STORAGE SECTION

01 PARM-LIST PIC X(132).

01 NATPGM PIC X(8).

01 NUMBER PIC 9(10) comp-3.
01 NAME PIC X(20).

PROCEDURE DIVISION

MOVE 'FINDNPGM' TO NATPGM

CALL "NCIXCPRM' USING PARM-LIST NATPGM NUMBER NAME ...
EXEC CICS LINK PROGRAM('NCIXCALL")

COMMAREA(PARM-LIST) LENGTH(132) END-EXEC.

The called subroutine NCIXCPRM builds the parameter address list used as COMMAREA in the subse-
quent EXEC CICS LINK command.

Parameter Handling

There is no format and length checking. It is the caller's responsibility to pass a correct parameter
list. The number, format and length of the parameters are defined by the invoked Natural subpro-
gram.

When you are passing parameters, group arrays should not be passed, since they are resolved as
individual arrays:

Example of Invalid Syntax:

01 GROUP (1:2)
02 F1
02 F2

360 Operations



Natural 3GL CALLNAT Interface - Usage, Examples

Example of Valid Syntax:

01 F1 (1:2)
01 F2 (1:2)

Arrays with dynamic ranges are not possible.

Sample Environments

The objective for the sample 3GL CALLNAT environments below is to demonstrate how a COBOL
routine can call a Natural subprogram under specific TP-monitor systems or in batch mode, and
to give system-specific instructions to create such environments.

The following topics are covered:

= Sample Environment for CICS
= More Samples
= Sample for Any Other Supported Environment

Sample Environment for CICS
Perform the following steps to create a sample Natural 3GL CALLNAT environment under CICS:
Step 1: Create the Environment Initialization

" Set up the front-end program that initializes the 3GL CALLNAT environment.

® Use the COBOL front-end XNCIFRCX in the Natural/CICS source library. It starts Natural, stacks
LOGON YOURLIB and executes the program TSTC0B, which initializes the Natural 3GL CALLNAT
environment.

® Locate the string NC v in the source code and replace it with the valid transaction ID for Natural.

® Compile and link-edit the COBOL program and define program to CICS via CEDA DEFINE
PROGRAM.

Operations 361



Natural 3GL CALLNAT Interface - Usage, Examples

Step 2: Install the Sample COBOL Call

Provided in the Natural/CICS source library NCI.SRCE is the sample member XNCI3GC1, which
contains a default call to the Natural subprogram MYPROG.

= For test purposes, create the following program in the library SYSTEM and stow it as:

WRITE 'BEFORE PGM EXECUTION'
CALL "COBNAT'

WRITE '"AFTER PGM EXECUTION'
END

® Look at the XNCI3GC1 source and review the CALL and LINK. Compile and link as COBNAT with
the following CICS INCLUDE directives or use Step 2 of the Sample Job NCTI070:

INCLUDE CICSLIB(DFHECI)

INCLUDE XNCI3GC1 <= output from translator and compiler
INCLUDE NCILIB(NCIXCPRM)

ENTRY XNCI3GC1

NAME COBNAT(R)

Step 3: Create a Sample Natural Subprogram

By default, the source member XNCI3GC1 is set up to call the Natural subprogram MYPROG in the
library YOURLIB. The program TSTCOB, as mentioned above, starts up the process by calling COBNAT
that contains the actual call to the Natural subprogram MYPROG.

® Create the subprogram MYPROG to demonstrate the executing Natural subprogram.

DEFINE DATA PARAMETER
01 PARMI (A18)
01 PARMZ (A18)
01 PARM3 (A18)
END-DEFINE
*
MOVE 'PARAMO1' TO PARMI
MOVE 'PARAMOZ2" TO PARMZ
MOVE 'PARAMO3' TO PARM3
END

362 Operations



Natural 3GL CALLNAT Interface - Usage, Examples

Step 4: Verify the CICS Resources

" Use the job NCII005 for a guide to defining the CICS resources (PPT and PCT).
® Define the required CICS resources (PPT and PCT).

Step 5: Test the Environment

Test the environment by using the NCYC default transaction. Use CEDF to monitor the program
control and observe the data areas in use.

[\  Important: Since Natural is at the top of the CICS program hierarchy, any COBOL subprogram

issuing terminal I/Os must run in conversational mode. Pseudo-conversational programs
would need to be modified, and any new development using the Natural 3GL CALLNAT
interface should be done in conversational mode.

More Samples

XNCI3GC2|COBOL sample with same functionality as XNCI3GC1, but accepting parameters from the calling
Natural program.

XNCI3GP1|PL/I sample with same functionality as COBOL sample XNCI3GC1.

XNCI3GP2|PL/I sample with same functionality as XNCI3GC1, but accepting parameters from the calling
Natural program.

More Non-CICS Samples

XNAT3GC2|COBOL sample with same functionality as CICS sample XNCI3GC2.
XNAT3GP2|PL/I sample with same functionality as CICS sample XNCI3GP2.

Sample for Any Other Supported Environment
Perform the following steps to create a sample Natural 3GL CALLNAT:
Step 1: Assemble and Link ASMNAT

The sample Assembler routine XNAT3GA1 contains a basic example to access the CALLNAT interface.
The register calling conventions are in the source of this program.

Link NATXCAL with XNAT3GA1 with entry point ASMNAT.

Operations 363



Natural 3GL CALLNAT Interface - Usage, Examples

Step 2: Start the Natural Session

Start a Natural session stacking a program that calls the ASMNAT program which in turn calls the
Natural subroutine ASMNAT.

364 Operations



62 Operating the Software AG Editor

This part contains information on how to operate the Software AG Editor.

The Software AG Editor is a feature that represents basic functionality within Natural, exclusively
used by several Natural subproducts and other Software AG products.

[ Editor Work File

Y Editor Buffer Pool

See also:

= SYSEDT Utility in the Natural Utilities documentation
* Installing the Software AG Editor in the Natural Installation documentation

" Software AG Editor in the Natural Editors documentation

365



366



63 Editor Work File

B EItOr WOrK File SEUCIUIE ....viiei et e et e e e e e aeeeas 368
= Editor Work File under z/OS, z/VSE and BS2000/0SD .......coummieiie e 369
= Using the Batch Format ULIlItY ...........ooooiiiii e 370
= Formatting during INIAIZATION ..........ooiii e 370
= Maintaining the Editor Work File under Z/OS and z/VSE .............c.oooiiiiiiiiiii e 370
= Maintaining the Editor Work File under BS2000/0SD ...........uuviiiiiiiiiieiiiieie e 371
= Editor Work File under VIMICIMS ... 372
= Editor Work File under Complete/SMARTS ......eiiiiieeeie e e e 372

367



Editor Work File

This document describes structure, use and maintenance of the editor work file under the various
operating systems. The following topics are covered:

See also:

SYSEDT Utility in the Natural Utilities documentation

Installing the Software AG Editor in the Natural Installation documentation.

EDBP - SAG Editor Buffer Pool Definitions in the Natural Parameter Reference documentation

Software AG Editor in the Natural Editors documentation

Editor Work File Structure

The editor work file is a relative record dataset with fixed length records. It is divided into three
parts:

= Control Record
= Work Record
= Recovery Records

| Note: If you use an editor auxiliary buffer pool defined by the profile parameter EDPSIZE,
no editor work file is required.

Control Record

The control record contains buffer pool control information including the buffer pool parameters.

During the first initialization of the work file or during a buffer pool cold start (triggered by editor
buffer pool subparameter COLD), the values defined in the editor buffer pool parameter EDBP and/or
in the corresponding macro NTEDBP are saved in the work file control record.

You can modify the control record by using the Generation Parameters function of the SYSEDT
Utility.

For buffer pool warm restarts, the parameters are read from the control record.

368 Operations



Editor Work File

Work Record

The work records contain logical file records which have been moved out of the buffer pool due
to a lack of free buffer pool blocks.

Logical work file records are lost during a restart of the buffer pool or if a timeout occurs for the
logical file.

Recovery Records

The recovery records hold checkpoint information of editor sessions. If the system terminates
abnormally, this information can be used by the editor recovery facility to recover logical files.
Recovery records are lost during a cold restart of the buffer pool.

The recovery facility is used by Natural ISPF only. If you do not intend to use this product, you
can run without the recovery part by defining the editor buffer pool subparameter PWORK=100.

Editor Work File under z/OS, z/VSE and BS2000/0SD

One editor work file corresponds to one Editor Buffer Pool. If you intend to use a global editor
buffer pool, the editor work file must be shared by all users using the same global editor buffer
pool.

The editor work file must be large enough to contain the editor sessions of all users. A minimum
number of 100 records per editor user is recommended. The record length of the work file must
be fixed, can be defined from 504 to 16384 bytes, and must be a multiple of 8.

Note: The record length of datasets or PDS members, which will be edited with Natural
ISPF, cannot be larger as the record length of this editor work file.

The size of a work file record is specified either when allocating the editor work file (under z/OS
and z/VSE; default size is 4088) or by definition in the buffer pool parameter macro (under
BS2000/0OSD; default size is 4096).

The total number of editor work file records depends on the allocated dataset space for the editor
work file.

There are two alternative ways of formatting the editor work file:

= offline by using the batch format utility,

* online during buffer pool initialization.

Operations 369



Editor Work File

Using the Batch Format Utility

This method is to be preferred, because no online user has to wait until formatting is finished.
Optionally, the Natural parameter module may be assembled and linked to the batch format uti-
lity to specify editor buffer pool parameters by means of macro NTEDBP. Otherwise, the default
parameter values apply.

During reformatting, however, the work file must not be in use, which means that the system(s)
using the corresponding buffer pool have been terminated before reformatting.

Formatting during Initialization

When the editor buffer pool is in uninitialized or terminated state, then during the first session
which uses the Software AG editor, a "buffer pool cold start" is performed on one of the following
conditions:

1. if the work file has not been formatted yet,

2. if the control record indicates ,,cold start” (which can also be specified by using the Editor
Buffer Pool Administration utility SYSEDT),

3. if the buffer pool subparameter COLD=0N was specified.

Otherwise, a buffer pool warm start is performed if a valid control record is found during buffer
pool initialization. In this case, all buffer pool parameters are taken from the work file control
record and no records are formatted.

Maintaining the Editor Work File under z/OS and z/VSE

If you want to change the size of the editor work file (for example, because it is too small), the
COPY function of the Editor Work File Batch Utility can be used to avoid a buffer pool cold start;
that is, the loss of the recovery records.

To copy an existing editor work file, perform the following steps:
1. Modify any buffer pool parameters by using the SYSEDT utility, for example, PWORK if you want

to change the percentage of work records in the file.

2. Terminate the editor buffer pool by using the System Administration Facilities of the SYSEDT uti-
lity and ensure that no Natural session is using the editor after the buffer pool termination.

3. Close (if necessary) and deallocate the editor work file.

4. Rename the editor work file by using the VSAM utility IDCAMS (ALTER command).

370 Operations



Editor Work File

5.

Define a new editor work file with the original name and possibly a different size, but with the
same record length.

Run the Editor Work File Batch Utility with the new file after having added:

PARM=COPY

in the EXEC JCL card and a
//CMCOPY DD. .. under z/0S or
//DLBL CMCOPY... under z/VSE

card for the renamed editor work file CMCOPY to be copied into the new work file CMEDIT.
Check the job log for potential errors.
Reallocate and (if necessary) reopen the editor work file.

Use the SYSEDT utility (see the Natural Utilities documentation) to check if the buffer pool and
the work file have been restarted successfully.

/) Important: All Natural sessions must be restarted if you want them to use the editor after

the buffer pool restart.

Maintaining the Editor Work File under BS2000/0SD

If you want to change the size of the editor work file, format a new editor work file and copy the
recovery records from the old work file into the new one as follows:

A e

Shutdown all systems that use the editor.

Terminate the editor buffer pool.

Rename the current editor work file.

Create a new editor work file with the original name.

Execute the editor work file formatting program (see also Installing the Software AG Editor in the
Natural Installation documentation) with the COPY instead of the FORMAT function after having
added:

Operations 371



Editor Work File

Example:

/CAT NATEDT.WORKFILE,NATEDT.COPYFILE

/FILE NATEDT.WORKFILE,LINK=CMEDIT,SPACE=nnn
/LOGON

/FILE NATEDT.COPYFILE,LINK=CMCOPY

/FILE NATEDT.WORKFILE,LINK=CMEDIT

/SYSFILE SYSLST=LST.NATEDFMZ2

/SYSFILE SYSDTA=(SYSCMD)

/EXEC (NATEDFM2,NATvrs.MOD)

COPY

/LOGOFF N

Editor Work File under VM/CMS

One editor work file corresponds to one VM/CMS user. A work file is created during the first
editor initialization and has the default name CMEDIT DATA AL.

It must be large enough to contain the editor sessions of the VM/CMS user. Name, size and number
of work file records are specified in the editor buffer pool parameter EDBP or by macro NTEDBP in
the Natural parameter module NATPARM. For optimum performance, a multiple of 800 is recommen-
ded.

Editor Work File under Complete/SMARTS

SMARTS work files are located in the SMARTS Portable File System. The path must be specified
with the SMARTS environment variable $NAT_WORK_ROOT. The name of the editor work file is
specified with the EDBP subparameter DDNAME.

Formatting of an editor work file is only possible during buffer pool initialization (online). There
is currently no tool under SMARTS to format an editor work file offline.

372 Operations



64 Editor Buffer Pool

m Purpose of the Editor BUFET POOI .........ooiiiiiii e 374
B ObtaINING FrEe BIOCKS .......viiieeiie et 375
= |nitializing the Editor BUffer POOL .............ooiiii s 375
= Restarting the Editor BUfer POOI ...........ouiiiii e 376
= Editor Buffer POOI Parameters ...........cooiiiiiiiiiiiie e 376
= Buffer Pool Initialization for Multi-User ENVIFONMENES ...........oviiiiiiiiiiii e 376

373



Editor Buffer Pool

This document describes purpose, use and operation of the Editor Buffer Pool which is an inter-
mediate main storage area used by the Software AG Editor.

The following topics are covered:

Purpose of the Editor Buffer Pool

The editor buffer pool can be seen as an extension of the editor buffer (SSIZE). It is an intermediate
main storage area used by the Software AG Editor to maintain its logical files.

Alogical file consists of one or more logical records and contains the data of an object (for example,
a file member) maintained by the editor. As a user can work with more than one object at the same
time, several logical files can exist concurrently for each user.

The number of logical files (as well as the percentage of recovery records in the Editor Work File
is defined in the buffer pool parameter macro.

The editor buffer pool can be defined as a local or a global (z/OS and BS2000/OSD only) or an
auxiliary (EDPSIZE) buffer pool. In multi-user environments (CICS, IMS TM, UTM), the editor
buffer pool is shared by all editor users of either the same region (local pool) or more than one
region (global pool). Under CMS, the buffer poolis always a local one. A global buffer pool cannot
be shared by Com-plete and other regions due to the separate SD editor work file under Com-
plete.

The editor buffer pool contains various control tables and a number of data blocks:

Area Size

Main control block 500 bytes

Logical file table 20 bytes per logical file

Work file table 4 bytes per record

Recovery file table 16 bytes per record
Buffer pool block table |28 bytes per block

Buffer pool blocks see text below

As the size of a buffer pool block is equal to the size of a work file record, one buffer pool block
can contain one logical file record.

The buffer pool is initialized by the first editor user. During warm start buffer pool initialization,
all recovery records are checked to build the recovery file table.

Several functions are provided to access the buffer pool (for example, functions to allocate, read,
write or delete a record).

374 Operations



Editor Buffer Pool

Obtaining Free Blocks

If the buffer pool becomes full, buffer pool blocks have to be moved to an external dataset, the
editor work file, to obtain free blocks.

In such a situation, the editor checks all logical files for their timeout value and deletes any logical
file which has not been accessed within the specified time. This means that all its buffer pool blocks
and work file records are freed, and the logical file is lost.

If there is still no buffer pool block available, the editor moves the oldest block to the work file,
according to the specified timeout parameter values (see the Generation Parameters function of
the SYSEDT utility in the Natural Utilities documentation).

Initializing the Editor Buffer Pool

An uninitialized editor buffer pool is initialized when the Software AG editor is called for the first
time. Then the various control blocks are created. There are two different modes of buffer pool
and work file initialization: ,,cold start” and ,, warm start”.

Buffer Pool Cold Start

A buffer pool cold start can be triggered by the editor buffer pool subparameter COLD or by the
Editor Buffer Pool Administration utility SYSEDT or automatically (if the editor work file is unfor-
matted).

During a buffer pool cold start, the values of the editor buffer pool parameter EDBP or the corre-
sponding macro NTEDBP are stored into the work file control record and all work file recovery
records are cleared.

Buffer Pool Warm Start

During a buffer pool warm start, the buffer pool parameters are read from the work file control
record and all work file recovery records are read to build the recovery file table in the buffer pool.

Operations 375



Editor Buffer Pool

Restarting the Editor Buffer Pool

The SYSEDT utility can be used to terminate the editor buffer pool, that is, to set it to the unitialized
state. This avoids the restart of the TP system or of the global buffer pool.

If SYSEDT is not available due to buffer-pool problems, the program BPTERM can be used to termi-
nate the buffer pool.

A\ Important: All Natural sessions must be restored if you want them to use the editor after

buffer-pool restart.

Editor Buffer Pool Parameters

The editor buffer pool parameter EDBP or the corresponding macro NTEDBP in the Natural parameter
module NATPARM is required to define parameters for the operation of the editor buffer pool.

When the editor work file is formatted, these parameters are stored into the work file control
record while all other records are cleared. Thus, reformatting a work file that has been previously
used, means that all editor checkpoint and recovery information is lost.

Some of these parameters can be modified dynamically during execution of the buffer pool by
using the Editor Buffer Pool Administration utility SYSEDT.

Buffer Pool Initialization for Multi-User Environments

During the buffer pool initialization, all recovery records are read from the editor work file. The-
refore, the first users have to wait for a long time or even receive a timeout message until the editor
buffer pool initialization is finished.

For this reason, a special Natural program has been supplied to trigger the buffer pool initialization
before the first user becomes active. This program can be activated either during the startup of
the TP monitor, or by a batch job if a global buffer pool is used.

376 Operations



Editor Buffer Pool

The session must then be started with the session parameter:

STACK=(LOGON SYSEDT,user,password;BPINIT;FIN)

Under CICS: If the session runs asynchronously, SENDER=CONSOLE must be specified to obtain any
error messages issued during initialization. The source program FRONTPLT is supplied as a sample
program to show you how to start an asynchronous Natural session during CICS startup via PLTPI.

Operations 377



378



65 Natural Net Data Interface NATNETTO

= Natural Net Data Driver Functional DESCIPHON ........cooiiiiiiiiiiie e 380
B General MESSAQE LAYOUL .......coiiiiieeiiiie ettt et e e e e e s 381
B L AYOUL OF HEAAET ...t e 381
B FOrmat BUFET LAYOUL ..o 385
B VAlUE BUIFEI LAYOUL ....eeeiiec e 390
B AIOULE BUIEE . e 391

379



Natural Net Data Interface NATNETTO

This document provides information on the Natural Net Data Interface and the net data protocol
definition.

See also Installing the Natural Net Data Interface in the Installation documentation.

Natural Net Data Driver Functional Description

The Natural Net Data Driver NATNETTO is a component that was introduced to support the EntireX
CICS 3270 Bridge and similar client/server solutions in message oriented server environments,
that is, TP monitors.

NATNETTO implements a protocol driver, which allows program-to-program communication with
Natural (legacy) applications from client applications, using a net-data protocol. One typical sce-
nario is a desktop client (for example, built with Natural for Windows or VBA) accessing a Natural
application that runs under a TP monitor such as CICS, IMS TM or UTM.

"Net data" means, that the protocol neither contains format data such as text constants nor any
device-dependent control sequences. All data is communicated in printable format. This implies
that eventually necessary marshaling and unmarshaling of non-alpha fields has to be done by the
clients.

Basically, the protocol consists of two parts:

® A header or control block and a value buffer which contains the raw net data. This part is
mandatory. The header contains control, environment and session information and maintains
pointers to the other parts of the data buffer. The value buffer contains the actual net data which
is to be exchanged between client and server.

® In addition, optional variable parts are available: format buffer and/or attribute buffer. The
optional format buffer has an entry with descriptive data for each field in the value buffer. The
attribute buffer consists of one byte with a preset value of 0 for each field in the value buffer.
The client has to switch this value to 1 for each modified field, if the appropriate option is set,
thus emulating the setting of mdt bits.

Header, value buffer and attribute buffer are parts of outbound and inbound messages; only the
format buffer may occur in the outbound message only. The header maintains a transaction
number which has to be mirrored by the client for flow-control purposes. Since legacy applications
are mostly designed to be driven from block mode terminals, the protocol supports 3270 like
functionality such as PF keys and cursor position.

380 Operations



Natural Net Data Interface NATNETTO

General Message Layout

The following parts of the general message layout are mandatory:

® Header (the first two rows in the table below)

® Value buffer
The following parts are optional:

= Format buffer

= Attribute buffer

"FSCB" |Value Buffer Offset Format Buffer Offset
Attribute Buffer Offset |Aid Char. |Cursor Pos.|...

Value Buffer

Format Buffer

Attribute Buffer

For detailed information on the layout parts, refer to Table 1.

Layout of Header

Table 1: Control Block - Fixed Part

Field Format |Scope Meaning

Eyecatcher A4  |FSCB Eyecatcher

Product code A3 |- Product identification

Protocol version N2 |01-99 Version for specific product

Value bulffer offset N10 |calculated Value buffer offset from start of message
Format buffer offset  |[N10 |calculated Format buffer offset from start of message
Total message length |N10 |calculated Cumulated length of all buffers

Message number N6  |incremented by 1 every call | Echoed by communication partner

Block number N5  |01-99 (normaly 01) For block splitting within one message
Number of parameters N5  |calculated Number of parameters in VB

Session token A32 Security token

Message format Al see Table 2 Mode of field separation within value buffer
Delimiter character Al -

Operations 381



Natural Net Data Interface NATNETTO

Field Format |Scope Meaning

Architecture A2 see Table 3 Archictecture of sending partner

Call type A2 see Table 4 Type of current call

Response code N4 |0001 - 9999 Response code from client

Block status Al LorN Block is last one of msg or a next one follows
Server name / TAC A8 |- TP transaction code or name of server

Aid character A2  |see Table 5 Aid character depressed or generated on client
Cursor line N3  |1-max phys. line on client|Cursor line or 000 *)

Cursor column N3  |1-max phys. col. on client |Cursor column or cursor field number *)
Attribute buffer offset |[N10 |calculated AB offset from start of message
Timestamp Al6 |generic Store clock value: map stow time hex printable
DBID N5 1-32767 DBID of FNAT on server

File number N5 1-32767 File number of FNAT on server

Date form Al I,G E U Date format according to Natural
Decimal character Al - Natural delimiter character on server
Input delimiter char. |Al - Natural input delimiter character (server)
Control character Al - Natural control character (server)
Language code N2 [01-99 Natural language code (server)
Application ID A8 |- Natural application ID

Program name / map |A8 - Program in execution / map or format name
Error number N5 00001 - 99999 Natural error number

Line number N4  |0001 - 9999 Line number of current I/O statement
Error state Al - Status byte

Error program A8 - Object causing an error

Error level N2 [01-15 Subroutine level of object in error
Message type Al see Table 6 Type of message

Option flag 1 Al see Table 7 Control flag

Option flag 2 Al see Table 7 Control flag

Option flag 3 Al see Table 7 Control flag

Option flag 4 Al see Table 7 Control flag

Option flag 5 Al see Table 7 Control flag

Option flag 6 Al see Table 7 Control flag

Option flag 7 Al see Table 7 Control flag

Option flag 8 Al see Table 7 Control flag

*) If the cursor field number notation is set in NATCONFG, the cursor line will always be 000 and the
cursor column will contain the absolute number of the field, where the cursor shall be placed

(outbound) or was located at send time (inbound).

382

Operations




Natural Net Data Interface NATNETTO

| Note: Not all header fields are currently used!

Table 2: Modes of Field Separation

Format Al

Value |Meaning

D Delimited mode

F Fixed format mode

L Length field precedes field (N3)

Table 3: Architecture of Sending Partner

Mask in Format A2

Value |Meaning

Mask for low order byte first (Vax)

Unused

Mask for EBCDIC architecture

1
2
- 14
8

Mask for ASCII 8 architecture

1 |- |Mask for float representation VAX

2 |-

Mask for float representation IEEE

Table 4: Call Type

Format A2
Type of Communication | Value |Meaning
Natural net data/3GL|MD  |Map data (net data using format)
ND |Net data
CM  |Command mode (server)
FD  |Map-format download
IP  |Normal input statement
CS |Close session termination message
Operations 383



Natural Net Data Interface NATNETTO

Table 5: Aid Character Table

Format A2
Aid Char. |PF Key
EN Enter
CL Clear
Pl PA1
P2 PA2
P3 PA3
01 PF1
02 PF2
03 PF3
47 PF47
48 PF48
CS Close Session

] Note: CS - Close Session - allows clients to enforce an immediate close of the server session.

Therefore, it is in fact not a real PF key, but a command code for the server.

Table 6: Message Type

Value |Meaning

D Dialog message
A Async. message
P Printout message

Table 7: Option Flags for Natural Net-Data Communication

All flags are of format Al.
Flag Values |Meaning
Option 1|F Message includes format buffer (fb-option).
Option 2|S Net data is generated from screen buffer.
p Net data is generated from page buffer.
Option 3|A Message includes attribute buffer (ab-option).
Option 4|P Data in VB is in presentation format (printable).
I Data in VB is in internal format of sender.

384 Operations



Natural Net Data Interface NATNETTO

Flag Values [Meaning

A Data is in internal format converted to alpha.

Option 5 Outbound message contains overlay part.

M
Option 6|1 Extended format buffer option 1.
2 Extended format buffer option 2.

Option 7 For future use.

Option 8 For future use.

Format Buffer Layout

Base Part

Each format buffer entry is a variable length string consisting of four elements:

= Jdentifier
® Protection indicator
® Format indicator

® Printable field length

Table 8: Format Buffer Entry

Element Value Meaning
Identifier |F Field
S Subfield
Protection |M Modifiable field
0 Output only field, protected field
Format A Alpha
N Numeric
Field length|L - LLL,L|Length specification according to Natural standard

Operations 385



Natural Net Data Interface NATNETTO

Examples:

FMA20  Field, modifiable, format aplha 20
SMN12,4 Subfield, modifiable, format numeric 12.4
0 Output only field, protected field

. Note: The precision part of a numeric length is always separated by a comma (,), regardless

of the current values of delimiter and decimal character profile parameters! For alpha type
fields the precision part is omitted.

Subfields are used to determine fields which had been separated out of a base field using the
Natural dynamic attribute facility. If a field is dynamically divided into various subfields, this is
marked as follows:

The first subfield is marked with identifier F as usual, all other subfields are identified by S.
Extension 1

The following figure shows a part of a dsect, which describes layout of the Natural internal screen
attribute buffer. If the format buffer extension option 1 is set, for each field those attribute bytes
(PATTRI - PATTR4) will be brought into printable format and added to the approriate fields format
buffer entry. The extension is separated by a "/" (slash) from the base format entry.

PATTR1 DS X ATTRIBUTE BYTE 1

P1TMP EQU X'80" 1000 0000 TEMPORARY PROTECTED (ONLY
PAGE)

PIEXTLNG [EQU X'80" 1000 0000 EXTENDED LENGTH (ONLY
SCREEN)

P1RPA EQU X'40" 0100 0000 FIELD CAN BE REPEATED

P1PROT EQU X'20' 0010 0000 FIELD IS PROTECTED

386 Operations



Natural Net Data Interface NATNETTO

PINUM EQU X'10' 0001 0000 FIELD IS NUMERIC

P1SKIP EQU P1PROT+PINUM FIELD WILL BE SKIPPED
(X'30") AUTOMATICALLY

PIHIGH EQU X'08' 0000 1000 FIELD IS HIGHLIGHTED

PIBLINK EQU X'04" 0000 0100 FIELD IS BLINKING

PINOND EQU PIHIGH+P1BLINK FIELD IS NON-DISPLAY
(X'0C")

PINHC EQU X'02' 0000 0010 FIELD MAY NOT BE PRINTED

PICURS EQU X'01' 0000 0001 SET CURSOR HERE (ONLY

UNPROT)
SPACE

PATTR2 DS X ATTRIBUTE BYTE 2

P2ITAL EQU X'80" 1000 0000 ITALIC/CURSIVE

P2MAND EQU X'40" 0100 0000 INPUT MANDATORY

PZMFILL EQU X'20" 0010 0000 MANDATORY FILL

P2LC EQU X'10' 0001 0000 DO NOT TRANSLATE (LOWER

CASE)

Operations

387



Natural Net Data Interface NATNETTO

P2CS?2 EQU X'08" 0000 1000 SECOND CHARACTER SET
P2UL EQU X'04"' 0000 0100 UNDERLINED
P2RVID EQU X'02' 0000 0010 REVERSED VIDEO
P2RL EQU X'01' 0000 0001 RIGHT-LEFT
SPACE
PATTR3 DS X COLOR ATTRIBUTE |ATTRIBUTE BYTE 3
P3TP EQU X'80" 1000 0000 TERMINAL PROGRAM AVATLABLE
P3PFK EQU X'40"' 0100 0000 *COM FIELD
P3NUM EQU X'20" 0010 0000 NUMERIC FIELDS
P3HELPR EQU X'10" 0001 0000 HELP ROUTINE AVAILABLE
P3FRAME EQU X'08' 0000 1000 FRAME ATTRIBUTE
P3NEUTR EQU X'07" 0000 0111 NEUTRAL
P3YELL EQU X'06" 0000 0110 YELLOW
P3TURQ EQU X'05" 0000 0101 TURQUOISE
388 Operations



Natural Net Data Interface NATNETTO

P3GREEN EQU X'04" 0000 0100 GREEN

P3PINK EQU X'03" 0000 0011 PINK

P3RED EQU X'02' 0000 0010 RED

P3BLUE EQU X'01" 0000 0001 BLUE

R FBI (DB) (FIELD PROCESSING
INFORMATION)

SPACE

PATTR4 DS X INTERNAL PROCESSING
ATTRIBUTES

PATEXT EQU X'80" 1000 0000 FIELD IS TEXT CONSTANT

P4SAME EQU X'40" 0100 0000 SAME ATTRIBUTE AS BEFORE

PANATTR EQU X'20' 0010 0000 FIELD NEW ATTRIBUTE

i PAGE BUFFER, DYNAMIC
ATTRIBUTE

P40VL EQU X'10" 0001 0000 FIELD BELONGS TO OVERLAY
BUFFER

PAMDT EQU X'08" 0000 1000 FIELD HAS BEEN MODIFIED

Operations

389



Natural Net Data Interface NATNETTO

PAMDTH EQU X'04" 0000 0100 UPDATE FROM HELP (PAGE
BUFFER)

PANFLD EQU X'04' 0000 0100 FIELD NEW ON SCREEN

o IF SET FOR OVL, NEW LINE

P4CONT EQU X'02' 0000 0010 FIELD IS CONT OF BEFORE

P4LAST EQU X'01' 0000 0001 LAST ATTRIBUTE IN BUFFER

**PAHELP  |EQU PATEXT+PAMDT HELP REQUEST FOR THIS FIELD

Example:

An extended format buffer entry 18820300 means, the field is numeric and shall be presented
highlighted italic in reversed video mode. The color of the field is pink!

Value Buffer Layout

Three modes of value buffer structure are possible:

* Fixed Format
All parameters are simply concatenated without any delimitation. This means, that the single
parameters have to be separated either according to the format description in the format buffer

or by covering them with a C-structure, a data area or a dsect.

" Delimited Format

The parameters are separated by an configurable delimiter character.

* Length Preceded Format
Each parameter is preceded by a length field of format N3. The length notation is explicit.

390

Operations



Natural Net Data Interface NATNETTO

Attribute Buffer

The attribute buffer is optional. It consists of a one-byte entry for each parameter field, which
represents the mdt flag. The mdt has to be set by the client for each modified field. The value of
this flag is "0" or "1". A value of 1 means the mdt is set.

Example:

This example shows the screen image of a 3270 format in Figure 1 and the generated net-data
stream for the same format in Figure 2. The name of the Natural map is NETM002.

TESTMAP NWI

AL20.0 ABCDEFGHIJKLMNOPQRST
NL20.0 1234567890

NL10.4 0000001234.5678
AL20C AAAAABBBBBCCCCDDDDDZ
N20.0 999999999999999999

Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12-
Help - + %%

Figure 1: NETM002 on a 3270 Device

FSCBNAT010000000206000000038000000004710000120000100006
F 04MDOOOOLNATvrsXSENOOOOO10000000465B3E0C25ATAIDE4000000000000T. ,%0LNETT
0 NETMOOZ2 000000170 D FSAP 1 ABCDEFGHIJKLMNOPQRST1234567890
0000001234.5678AAAAABBBBBCCCCDDDDDZ999999999999999999
FMA20/08100024F0A20/
38102024FMA15/08102024F0A20/38101624F0A20/38102024F0A79/70000035.000000

Figure 2: Net-Data Stream Generated from NETM002 Execution

Where NATvrs stands for version, release, system maintenance level of the current Natural
version.

Configuration Settings: Fixed format, format buffer + extended format buffer, attribute buffer
option, cursor position represented as field number.

Operations 391



392



66 Natural as a Server

This part describes the use of Natural as a Server under the operating systems z/OS and z/VSE in
batch mode, and under the TP monitor CICS.

Natural as a Server under z/OS Explains how Natural can act as a server in a client/server
environment under z/OS in batch mode.

Natural as a Server under Explains how Natural can act as a server in a client/server
z/VSE environment under z/VSE in batch mode.

Natural as a Server under CICS Explains how Natural can act as a server in a client/server
environment under the TP monitor CICS; describes the functionality
and the installation of the Natural CICS interface in a server
environment and informs about restrictions that apply in such an
environment.

393



394



67 Natural as a Server under z/OS

B FUNCHONAIIEY ...ttt 396
= Natural Nucleus Installation in @ Server ENVIronment .............cccoooiiiiiiiiiii e 397
= Print and Work File Handling with External Datasets in a Server Environment .............ccccceviiiieiiiineeee, 397

395



Natural as a Server under z/OS

This document applies under z/OS only. It covers the following topics:

Functionality

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. Part of the server
functionality is the enhanced batch driver. There are a lot of underlying protocols for the client/ser-
ver communication, such as the execution of stored procedures for DB2 and the execution of
remote procedure calls, see the Natural Remote Procedure Call (RPC) documentation.

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example,
for DB2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server frontend.

There are different server stubs for DB2, for Natural RPC and for others.
Natural Batch Driver

The Natural batch driver (that is, for example, NATOS under z/OS) has been enhanced to act as the
environment-specific interface component which maintains the Natural server sessions and supplies
environment-specific services to Natural. It can be linked to the server stub module or loaded by
the server stub as a separate module.

The batch driver is able to create and to control multiple sessions by using storage threads including
functionality for thread storage compression, decompression and rollout to external storage
devices.

When the batch driver is called by the server stub for the first time (during server initialization),
the storage threads are created in main storage. The number and size of the storage threads is
determined by the server stub. Then a static Natural session is initialized. This includes profile
parameter evaluation and the allocation of static storage buffers. The resulting pre-initialized
storage thread is saved in main storage separately. For every new Natural session, this initial
'session clone' is copied into the thread.

When decided by the server stub, a session can be rolled out to be resumed at a later point of time.
The Natural Roll Server is used by the driver to save the compressed thread storage of a session.
As an alternative, main storage can be used to save the compressed thread storage. In this case,
the number of sessions in rolled-out state is limited by the region size.

396 Operations



Natural as a Server under z/OS

Natural Nucleus Installation in a Server Environment

The Natural nucleus and its batch driver are designed to support both, server and non-server
environments. For the server-specific definitions and requirements, please refer to the specific
documentation (for example, to the Natural Remote Procedure Call (RPC) documentation or to the
Natural for DB2 documentation).

If the number of sessions is not limited to a small number and if the server type supports session
rollout, the Natural Roll Server must be installed and be started before the server initializes. To
do this, ensure that the SUBSID parameter in the Natural parameter module is set to the correct
value. For the server, the Adabas link interface (ADALNK) must be generated so that ADALNK is also
reentrant, in addition to the server.

You can use a local or a global Natural buffer pool. If you define a local buffer pool, it will be
shared by all sessions within the server region.

If alogical print or work file number is to be used for processing within any server session, it must
be associated with an access method at session start time. This can be done in NATPARM with the
macros NTWORK and NTPRINT, as in the following example, if you want to allow the full range of
all print and work file numbers possible:

NTPRINT (1-31),AM=STD,0PEN=ACC,DEST=*
NTWORK (1-32),AM=STD,0PEN=ACC,DEST=*

The subparameter DEST=* defines generic DD name generation during the first DEFINE WORK FILE
or DEFINE PRINTER statement, OUTPUT clause (see below). Subparameter OPEN=ACC avoids pre-
opening of the files at program start time. The open is issued upon the first access of the file.

Print and Work File Handling with External Datasets in a Server Environment

When running many concurrent sessions in one region, there may be resource conflicts with
external print and work files. The logical names (DD names) for print and work files are defined
by the subparameter DEST of macro NTPRINT, respectively NTWORK or its dynamic equivalents, PRINT
or WORK (defaults CMPRTnn and CMWKF nn). For normal Natural batch processing, these files are
defined in JCL by a logical (DD) and a physical dataset name.

However, DD names are reserved by the operating system for exclusive use by one task, respec-
tively session, that is, if CMWKFO1 is opened by one session for processing, no other session could
use this file until it is closed again. Other sessions would get an error if they would try to open it.

In a server environment, all print and work file requests are handled by a dedicated I/O subtask.
This ensures dataset integrity and avoids resource contention. It enables the shared usage of print

Operations 397



Natural as a Server under z/OS

and work files accross Natural session boundaries, that is, multiple sessions can access the same
file concurrently. This is true only for print and work files whose DD-name starts with CM. All
other files are considered as exclusive and cannot be shared.

For exclusive usage of print and work files, Natural offers the following two features to support
print and workfiles in a server environment (both require a special implementation within the
Natural application programs for the server environment):

® DEFINE WORK FILE or DEFINE PRINTER statements, OUTPUT clause and

® dynamic dataset allocation (application programming interface USR2021N, see SYSEXT - Natural
Application Programming Interfaces).

The DEFINE WORK FILE and the DEFINE PRINTER statement OUTPUT clause can be used

" to define the logical DD name for a work or print file, or
" to define the physical dataset name, or

" to define an output spool class.

If a DD name is specified, the access method checks whether the dataset is allocated. If not, an
error is issued. The dataset can be allocated by any Natural program using the USR2021N subprogram
supplied in library SYSEXT.

If a physical dataset name or a spool file class is specified, the access method itself allocates the
dataset dynamically during the execution of the DEFINE ... statement. To ensure an unique DD
name name is used, DEST=* should be predefined in the NATPARM file. This avoids any DD name
conflicts.

If the application is using the application programming interface USR2021N, it may specify an
asterisk value for the DD name variable to get back a unique DD name from the access method.
This DD name can be used for a subsequent DEFINE ... statement.

By default, the access properties of the server job are used for print and work files. Some server
types, for example, Natural Development Server and Natural RPC, support impersonation, that
is, the access properties of the individual client account is used for exclusive print and work files.
For more information, refer to the corresponding section in your server documentation.

398 Operations



68 Natural as a Server under z/VSE

B FUNCHONAIIEY ...ttt 400
= Natural Nucleus Installation in @ Server ENVIronment .............cccoooiiiiiiiiiii e 401
= Print and Work File Handling with External Datasets in a Server Environment .............ccccceviiiieiiiineeee, 401

399



Natural as a Server under z/VVSE

This document applies under z/VSE only. It covers the following topics:

Functionality

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. Part of the server
functionality is the enhanced batch driver. There are a lot of underlying protocols for the client/ser-
ver communication, such as the execution of stored procedures for DB2 and the execution of
remote procedure calls, see the Natural Remote Procedure Call (RPC) documentation.

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example
for DB2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server frontend.

There are different server stubs for DB2, for RPC and for others.
Natural Batch Driver

The Natural batch driver (that is, for example, NATVSE under z/VSE) has been enhanced to act as
the environment-specific interface component which maintains the Natural server sessions and

supplies environment-specific services to Natural. It can be linked to the server stub module or

loaded by the server stub as a separate module.

The batch driver is able to create and to control multiple sessions by using storage threads including
functionality for thread storage compression, decompression and rollout to external storage
devices.

When the batch driver is called by the server stub for the first time (during server initialization),
the storage threads are created in main storage. The number and size of the storage threads is
determined by the server stub. Then a static Natural session is initialized. This includes profile
parameter evaluation and the allocation of static storage buffers. The resulting pre-initialized
storage thread is saved in main storage separately. For every new Natural session, this initial
'session clone' is copied into the thread.

When decided by the server stub, a session can be rolled out to be resumed at a later point of time.
A roll cache is used by the driver to save the compressed thread storage of a session.

400 Operations



Natural as a Server under z/VSE

Natural Nucleus Installation in a Server Environment

The Natural nucleus and its batch driver are designed to support both, server and non-server
environments. For the server-specific definitions and requirements, please refer to the specific
documentation (for example to the Natural Remote Procedure Call (RPC) documentation or to the
Natural for DB2 documentation).

You can use a local or a global Natural buffer pool. If you define a local buffer pool, it will be
shared by all sessions within the server region.

If alogical print or work file number is to be used for processing within any server session, it must
be associated with an access method at session start time. This can be done in NATPARM with the
macros NTWORK and NTPRINT, as in the following example, if you want to allow the full range of
all print and work file numbers possible:

NTPRINT (1-31),AM=STD,OPEN=ACC,DEST=*
NTWORK (1-32),AM=STD,0PEN=ACC,DEST=*

The subparameter DEST=* defines generic DD name generation during the first DEFINE WORK FILE
or DEFINE PRINTER statement, OUTPUT clause (see below). Subparameter OPEN=ACC avoids pre-
opening of the files at program start time. The open is issued upon the first access of the file.

Print and Work File Handling with External Datasets in a Server Environment

When running many concurrent sessions in one region, there may be resource conflicts with
external print and work files. The logical names (DD names) for print and work files are defined
by the subparameter DEST of macro NTPRINT orNTWORK, or its dynamic equivalents PRINT or WORK
(defaults CMPRTnn and CMWKFnn). For normal Natural batch processing, these files are defined in
JCL by a logical file and a physical dataset name.

However, DD names are reserved by the operating system for exclusive use by one task, respec-
tively session, that is, if CMWKFO01 is opened by one session for processing, no other session could
use this file until it is closed again. Other sessions would get an error if they would try to open it.

In a server environment, all print and work file requests are handled by a dedicated I/O subtask.
This ensures dataset integrity and avoids resource contention. It enables the shared usage of print
and work files accross Natural session boundaries, that is, multiple sessions can access the same
file concurrently.

For exclusive usage of print and work files, Natural offers the following feature to support print
and work files in a server environment (both require a special implementation within the Natural
application programs for the server environment):

Operations 401



Natural as a Server under z/VVSE

B DEFINE WORK FILE or DEFINE PRINTER statements, OUTPUT clause
The OUTPUT clause of these statements can be used

" to define the logical file name for a work or print file, or
" to define the physical dataset name.
If a physical dataset name or a spool file class is specified, the access method itself allocates the

dataset dynamically during the execution of the DEFINE ... statement. To ensure an unique file
name is used, DEST=* should be predefined in the NATPARM file. This avoids any file name conflicts.

402 Operations



69 Natural as a Server under CICS

B FUNCHONAIIEY ...ttt 404
= Natural CICS Interface Installation in @ Server EnVIrONmMENt ........coovreieeie e 404
B R S IOt 0N et 405

403



Natural as a Server under CICS

This document applies under CICS only. It covers the following topics:
See also:

® Natural under CICS
= Natural Remote Procedure Call (RPC)

Functionality

Natural as a Server

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. There are a lot of

underlying protocols for the client/server communication, such as the execution of stored proce-
dures for DB2 and the execution of remote procedure calls (see Natural Remote Procedure Call (RPC)).

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example
for DB2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server frontend.

There are different server stubs for DB2, for RPC and for others.

Natural CICS Interface Installation in a Server Environment

There is nothing specific to define when installing the Natural CICS interface in order to serve as
a Natural server envionment. There are no requirements on thread type or type of rolling (CICS
roll facilities or roll server).

Actually, Natural server sessions may share a Natural under CICS environment with "normal”,
for example, terminal bound Natural sessions. The difference is that, in case of a Natural server
session, the Natural CICS interface does not deal with a principal facility, such as a terminal or
printer, but with a server stub. In terms of CICS, a Natural server session is a series of asynchronous
CICS tasks, and the session context (session restart data) is maintained by the server stub using a
unique 8-byte session ID.

404 Operations



Natural as a Server under CICS

Restrictions

The following restrictions apply when Natural is used as a server under CICS:

1.

Natural server sessions under CICS can only run in pseudo-conversational mode. A Natural
server session cannot run in conversational mode, as the Natural CICS interface always has to
pass control back to the server stub; therefore PSEUDO=0N is forced for Natural server sessions
under CICS. Because of the same reason REL0=0N is forced for Natural server sessions using
TYPE=GETM threads.

3GL programs called by Natural should be aware of the fact that Natural server sessions are
running asynchronously in CICS, that is, no CICS terminal (TCTTE) is available.

The profile parameter ADAMODE should be set to 1 or 2, otherwise Adabas may build a different
UQE ID for each dialog step of the Natural server session.

The profile parameter PROGRAM or equivalend backend program settings by Natural are not
honored, as the logic flow at session termination from the Natural CICS interface to the server
stub must not be interrupted and/or falsified by a potential backend program.

Care should be taken when using the NCIPARM terminal ID variable &TID in the file name setting
for Natural print and work files: As a Natural server session runs asynchronously, there is no
(unique) terminal ID or other unique four-character session identifier to insert. In CICS/TS 1.3
and above, the CICS interface internally uses the QNAME option when dealing with CICS tempo-
rary storage for such Natural print and work files, that is internally a 16-byte temporary storage
queue name is used (the 8-byte unique server session ID is appended to the file's DEST specifi-
cation). This means on the other hand that such CICS temporary storage queues can only be
accessed by the originating session.

Operations 405



406



70 Natural Execution - Miscellaneous Topics

This part provides general information on Natural execution.

Asynchronous Processing

Double-Byte Character Sets
Input/Output Devices

Back-End Program Calling Conventions
Natural 31-Bit Mode Support

LE Subprograms

C L L L L oL L

External SORT

For an explanation of the terms used in this document, see the Glossary.

407



408



71 Asynchronous Processing

= |dentifying ASynchronous Natural SESSIONS ...........ccuiiiiiiiiiiiii e 410
= Handling Output of an Asynchronous Natural SESSION ..........c.uviiiiiiiiiiiiii e 410
= Handling Unexpected or Unwanted INPUL ............oeiiiiii e 411
= QOther Profile Parameter ConSIiderations ..............cooouiiiiiiiiiii i 411

409



Asynchronous Processing

This document describes asynchronous Natural processing, a method which is available under
all TP monitors supported by Natural.

An asynchronous Natural session is a session which is not associated with any terminal and the-
refore cannot interact with a terminal user. It can be used to execute a time-consuming task "in
the background" without the user having to wait for the task to finish.

The following topics are covered:
Related Topics:

" Asynchronous Natural Processing under CICS
= Asynchronous Natural Processing under Com-plete/ SMARTS

" Asynchronous Transaction Processing under UTM

Identifying Asynchronous Natural Sessions

To identify a session as being asynchronous, the Natural system variable *DEVICE is assigned the
value ASYNCH.

Note: The value of *DEVICE may be modified by the Natural profile parameter TTYPE and

by any SET CONTROL 'T=xxxx' statement; see also profile parameter TTYPE in the Parameter
Reference documentation and terminal command %T= in the Terminal Command documenta-
tion.

Handling Output of an Asynchronous Natural Session

As an asynchronous session is a session that is not associated with any terminal, this means that
any output produced by the session cannot simply be displayed on the screen; instead, you have
to explicitly specify an output destination. You specify this destination with the Natural profile
parameter SENDER when invoking Natural. The SENDER destination applies to hardcopy output
and primary reports; any additional reports are sent to the destinations specified with the DEFINE
PRINTER statement, just as in a synchronous online session.

As an asynchronous session can also cause a Natural error, the destination to which any Natural
error message is to be sent must also be specified; this is done with the Natural profile parameter
OUTDEST. This parameter also provides an option to have error messages sent to the operator con-
sole. After an error message has been sent, Natural terminates the asynchronous session.

The profile parameters SENDER and OUTDEST should be set accordingly to be prepared for unexpected
output by the asynchronous Natural session; otherwise, the asynchronous Natural session may
abend in such a scenario.

410 Operations



Asynchronous Processing

Handling Unexpected or Unwanted Input

An asynchronous Natural session only has the Natural stack to enter the name of Natural programs
and Natural system commands to be executed. If a Natural program or a Natural system command
fails with an unhandled Natural error or if the entire Natural stack is exhausted and NEXT mode

would be entered, the asynchronous Natural session is terminated with termination message
NAT9943.

Depending on the TP monitor in use and depending on the TTYPE setting, either the CLEAR key or
the EOF indicator is passed back to Natural on an INPUT request by default. This measure helps to
prevent error loop situations if a program unintentionally executes an INPUT statement. To pass
the ENTER key indicator back, you can issue a SET CONTROL 'N' statement prior to the INPUT
statement.

¢ Tip: You can make your application compatible with asynchronous sessions by evaluating
the system variable *SCREEN-I0 accordingly.

Other Profile Parameter Considerations

The following Natural profile parameters should be considered in the case of an asynchronous
Natural session:

Profile Parameter |Comment

AUTO Asynchronous sessions may have non-alphabetical user IDs. In this case, AUT0=0N will
fail.

CM An unwanted input situation may happen if the Natural session accidentally falls onto
the NEXT level. Setting CM=0FF will terminate the session immediately in such a
situation.

In asynchronous mode, the setting of this parameter is forced to OF F to avoid problems
when changing over to NEXT mode.

ENDMSG The NAT9995 (normal) termination message can be suppressed by specifying
ENDMSG=0FF.

IMSG Natural initialization error messages and warnings can be suppressed by specifying
IMSG=0FF.

MENU Asynchronous sessions only have the Natural stack for command inputs; therefore, it
is recommended to specify MENU=0F F and to navigate through Natural by using direct
commands.

In asynchronous mode, the setting of this parameter is forced to OF F to avoid problems
when changing over to NEXT mode.

Operations 411



Asynchronous Processing

PC In asynchronous mode, the setting of this parameter is forced to OFF to avoid problems.

PLOG Dynamic parameter logging is executed by sending all parameters line by line to the
SENDER destination.

PROGRAM If a standard backend program/transaction is defined in your installation, it should be
checked if this program can run asynchronously or if it is desired to deal with
terminal-bound sessions only. Specifying PROGRAM=0 bypasses the backend logic.

412 Operations



72 Double-Byte Character Sets

= Natural Profile Parameter SOSI ... ...ooiiiiiiii et 414
m Qutput Format SPeCIfiCation ...........uvviiiiiiiiii e 414
= Parameter Definitions for DBCS SUPPOI ......couieiieeiiiiii e 414
B EIHOr Profile OPtONS ... ..o 415
B NPUE DAt CRECK ... e e 415
m Qutput Data AJUSIMENL ... 416
B NQLUFAI SEACK DAA ... 416
= Application Programming Interfaces for DBCS Handling ...........ccooiiiriiiiiiiiiiiiie e 416

413



Double-Byte Character Sets

This document is only relevant for Asian countries which use double-byte character sets. It describes
all features implemented in Natural to support DBCS terminals and printers and covers the follo-
wing topics:

Natural Profile Parameter SOSI

In alphanumeric fields with SBCS and DBCS characters mixed, the DBCS character strings are
separated from the SBCS strings by shift codes called SO (shift-out) and SI (shift-in). The Natural
profile parameter SOSI is used to pass the values of the shift-in and shift-out codes used in the
current environment to Natural.

It is strongly recommended to use the IBM characters X'0E"' and X' 0F " internally. With this tech-
nique, all applications and data can be handled in a compatible manner, which means that a network
supporting different mainframe types can still use the same Natural applications and process the
same data.

For detailed information on this parameter, see S0SI.

Output Format Specification

The Natural session parameter PM=D is used to define DBCS-only fields. A DBCS-only field must
contain only valid DBCS characters; shift-out/shift-in characters (SO/SI) are not allowed within
such a field. To display a field with the session parameter PM=D specified, the screen attribute
X'43F8" is added for IBM terminals; for Fujitsu terminals, the field content is enclosed in the
required shift-out/shift-in characters (SO/SI).

Parameter Definitions for DBCS Support

The following parameters must be specified in the setup for Natural for the support of double-
byte character sets:

Parameter Explanation

TS=0N If Latin lower-case characters are not available, this parameter translates all
Natural system output using the translation table defined by the macro NTTABL
in the NATCONFG module.

SOSI=(0E,0E,0F,0F,1) |Defines the DBCS shift-out and shift-in values for IBM hardware.
S0S1=(28,28,29,29,0) |Defines the DBCS shift-out and shift-in values for Fujitsu hardware.

414 Operations



Double-Byte Character Sets

Parameter Explanation
LC=ON Does not translate all input data to uppercase, which again would destroy
possible DBCS input data.

In addition to TS=0N, further parameters to provide for translation of messages into upper case
are provided by several Natural components. For detailed information, see Other Parameters to
Provide Upper Case Translation in the TS profile parameter documentation.

Editor Profile Options

If you want to enter DBCS or half-width Katakana characters in one of the Natural editors, the
following editor general default options should be set in the editor profile to avoid that character
constants or field names containing DBCS or half-width Katakana characters are unintentionally
converted to upper case:

Option Value |Explanation

Editing in Lower Case Y Lower-case characters in the source code are not automatically
converted to upper case. This option is required if you are using
DBCS or half-width Katakana characters.

Dynamic Conversion of Lower |N Any source code remains as you enter it. This option is required if
Case you are using half-width Katakana characters.

For detailed information on the editor general default options, see General Defaults. For detailed
information on the editor profile, see Editor Profile in the Editors documentation. To avoid the need
to change these options for every user, you can modify the default profile for your installation by
means of the user exit routine USR0070P, which also supports DBCS; see USR0070P - User Exit for
Editor Profiles in the section Configuring Natural.

Input Data Check

If the session parameter PM=D is set for a field, it is verified that the input data

" contains an even number of bytes,
® contains only valid DBCS characters,
® does not contain shift-out/shift-in characters (SO/SI).

Because the detection of non-DBCS characters requires ICU, this check will not be performed if
ICU is not available (that is, if the profile parameter CFICU=0FF has been set).

Operations 415



Double-Byte Character Sets

Output Data Adjustment

If a window is to be displayed for user interaction, the window might overlay DBCS characters
that are already displayed, or the window might itself contain DBCS characters which are truncated
because of the window size. An overlay may also occur if the NO ERASE option is used with an

INPUT statement. In order to prevent screen corruption in case of such an overlay, the following

actions are performed to adjust the output data, if necessary:

if the session parameter PM=D is set for a field, an orphan byte (that is, a single byte left at the
beginning or end of the data to be displayed as a result of a partial overlay of a DBCS character)
is replaced by an attribute; this operation assures that only valid DBCS characters are displayed;

if the profile parameter SOSI has been set, the field contents of an alphanumeric field for which
PM=D is not specified is examined for shift-out/shift-in characters (SO/SI); if a shift-out character
(SO) is found for which the correlating shift-in character (SI) is missing, either the last character
of the output data is replaced by a shift-in character (SI) or the last two characters are replaced
by a shift-in character (SI) followed by a blank; if a shift-in character (SI) is found for which the
correlating shift-out character (SO) is missing, either the first character of the output data is
replaced by a shift-out character (SO) or the leading two characters are replaced by a blank fol-
lowed by a shift-out character (SO); this operation assures that DBCS characters are enclosed
properly by shift-out/shift-in characters (SO/SI).

Natural Stack Data

To avoid unintentional interpretation of DBCS characters as delimiter or control characters, the
FORMATTED option of the STACK statement should be used if the data to be placed on the Natural
stack contains DBCS characters.

See the Statements documentation for further information on the STACK statement.

See the Programming Guide for further information on the Natural Stack.

Application Programming Interfaces for DBCS Handling

The following user application programming interfaces (API) are available to support DBCS
handling:

= USR4211N - Get DBCS Characters

416 Operations



Double-Byte Character Sets

= USR4213N - String Handling for DBCS Support

These APIs are contained as subprograms in the Natural library SYSEXT. Detailed information on
how to use an API is included in the corresponding text member (USRxxxxT). See also SYSEXT
Utility - Natural Application Programming Interfaces in the Utilities documentation.

USR4211N - Get DBCS Characters

The application programming interface USR4211N can be used to obtain information on the
availability of DBCS support and the defined SOSI characters.

USR4213N - String Handling for DBCS Support

The application programming interface USR4213N can be used to perform the following functions:

® Convert a normal Latin character string into the corresponding DBCS character string.

® Convert a DBCS character string that contains Latin data only into a single-byte character string.
" Add the current shift codes at the beginning and at the end of a character string.

® Remove leading and trailing shift codes from a character string.

The last two functions can be used to either produce native DBCS strings or generate mixed-mode
data out of native DBCS strings.

Operations 417



418



73 Input/Output Devices

B TEIMINGL SUPPOM ...ttt e e e e e ettt et e e e e e e ettt e e e e ee e e sttt reeeeaeae s 420
B LIGNE PEN SUPPOM ...ttt e et e e e e e e e e 420
L 101 T TV o] oo PP UPPSR 422

419



Input/Output Devices

This document provides some additional information on input/output devices supported by
Natural.

The following topics are covered:

Terminal Support

Natural supports a wide variety of terminal types for the use with IBM and Siemens mainframe
computers. In TP monitor environments in which the terminal type information is not supplied
automatically to Natural, you can use the Natural profile parameter TTYPE so that Natural can
activate the appropriate converter routine to operate a specific type of terminal.

Links to related topics:

® NTDVCE - Terminal-Device Specification Table

® Parameters Affecting Terminal Communication

® NATCONFG Module (various I/O translation topics)
= Siemens Terminal Types Supported by Natural

Natural Terminal Commands

Light Pen Support

The support of light pens has been enhanced by the terminal command %RM. This command causes
all light-pen-sensitive fields on the screen to be made write-protected; that is, the user can select
them with a light pen, but cannot overwrite their contents.

For a field to be light-pen sensitive, it must be displayed intensified (session parameter AD=I) or
blinking (AD=B), and the first character of the field must be a light-pen designator character (see
below). Selecting a field with a light pen causes the designator character to be changed; therefore,
you can make the processing of fields selected with a light pen dependent on the values of the
designator characters.

420 Operations



Input/Output Devices

The following designator characters are available:

Character Meaning

? You can select multiple fields before pressing ENTER.

> It was selected and if it is selected again, it becomes a question mark ?; the characters ? and
> will toggle.

& You can select only one field and it will be as an ENTER for both the field and the MDT
(modified data tag).

" ' (blank) |You can select only one field and you will only see the MDT.

As designator characters, you have to distinguish selection fields (?, >) and attention fields (&,
blank or null). Selection fields do not start an immediate data transmission, so you are able to
select more than one field. Attention fields result in an immediate action.

The SELECT CURSOR key emulates a light-pen selection. If you move the cursor to the field you want
to select and press SELECT CURSOR, this field will be selected.

Sample Natural Program for Light Pen Usage

RESET #FIELD-1 (A8)
ffFIELD-2 (A8) #fFIELD-3 (A8) #CV-1 (C) #CV-2 (C) #CV-3 (C)
SET KEY ALL
/* SET CONTROL 'RM' IS A TOGGLE. AFTER IT IS EXECUTED ONCE MAKE IT A
/* COMMENT, SO THAT YOU DO NOT TOGGLE IT 'OFF'.
**SET CONTROL 'RM'
REPEAT
IF *PF-KEY NOT = 'ENTR' AND *PF-KEY NOT = 'PEN' ESCAPE BOTTOM
MOVE (AD=I CD=YE) TO #CV-1
MOVE (AD=I CD=RE) TO #CV-2
MOVE (AD=I CD=BL) TO #CV-3
MOVE ' FIELD-1' TO #FIELD-1
MOVE '&FIELD-2' TO #FIELD-2
MOVE '?FIELD-3' TO #FIELD-3
INPUT (SG=0FF IP=0FF)
01/01 #FIELD-1 (CV=f#fCV-1 AD=M)
03/01 #FIELD-2 (CV=ffCV-2 AD=M)
05/01 #FIELD-3 (CV=4#fCV-3 AD=M)
WRITE 'PF-KEY =' *PF-KEY
IF #CV-1 MODIFIED WRITE '#CV-1 MODIFIED' fFIELD-1
IF #fCV-2 MODIFIED WRITE '#CV-2 MODIFIED' #FIELD-2
IF #CV-3 MODIFIED WRITE '#CV-3 MODIFIED' #FIELD-3
LOOP
END

Operations 421



Input/Output Devices

Printer Support

The following topics are covered:

= Printer-Advance Control Characters
= Natural Laser-Printer Support

Printer-Advance Control Characters

Printer-advance control characters can be generated within a Natural program by using the DEFINE
PRINTER statement as follows:

DEFINE PRINTER (n) QUTPUT 'name'
DEFINE PRINTER (n+1) OUTPUT 'CCONTROL'

Both DEFINE PRINTER statements work together so that all Natural output for the printer (n) follows
the normal Natural report-output rules and all Natural output for the printer (n+1) is also written
to the printer (n). Natural does not generate a printer-advance control character for this report.
Therefore, the first character in the output variable is the control character.

With this method, it is possible to merge control characters for laser-printer systems and channel-
advance characters for line printers in a normal Natural output report.

Sample Natural Program for Printer-Advance Control Character

DEFINE PRINTER (1) QUTPUT 'CMPRTOI'

DEFINE PRINTER (2) OUTPUT 'CCONTROL'

WRITE (1) 'TEST '

WRITE (2) NOTITLE '+TEST'

MOVE H'5A" TO A(CAl) WRITE (2) A (PM=C) '....'

The corresponding hexadecimal data in the spool file starting from column 0 are:

422 Operations



Input/Output Devices

I..r..1..1..1..1..1..I..T..I..I..I..1..1..1
F1 E3 C5 E2 E3

1 TEST

4E E3 C5 E2 E3

+ T ES T 5A ..

Ue .

CCONTROL is the name of a special printer control table associated to the printer n-1; it must not be
modified.

Natural Laser-Printer Support

Natural supports IBM 3800 laser-printer systems.

The DEFINE PRINTER statement is used to control and allocate a report for the 3800 printer system.
With this statement, you can specify that the Natural print output for report 1 is routed to a 3800
printer system.

DEFINE PRINTER (1) QUTPUT 'LAS3800'
I T =>1-31 for CMPRTOl to CMPRT31

Depending on the setting of the INTENS parameter, Natural repeats each line up to four times and
recognizes the Natural attributes AD=D, AD=I, AD=C and AD=V (see session parameter AD).

The first line contains the ASA control code in the first column and the 3800-font control character
(hexadecimal F0) for the first font in the second column. The columns 2 to nnn contain the print
data which are not flagged with the attribute AD=I, AD=C or AD=V.

The second line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F1) for the second font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=I.

The third line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F2) for the third font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=C.

The fourth line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F3) for the fourth font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=V.

If INTENS is specified with a value less than 4, all non-supported fonts are printed with hexadecimal
FO.

Operations 423



Input/Output Devices

Sample Natural Program for Laser Printer Usage

DEFINE PRINTER (1) QUTPUT 'LAS3800'

WRITE (1) "FIRST' 'SECOND' (AD=I) 'THIRD' (AD=C) 'FOURTH' (AD=V)

The corresponding hexadecimal data in the spool file starting from column 0 are:

r..r..r..r..r..r..r..r..r..r..r.o oo 1o T L0 L LT LT T LT

.1

40 FO C6 C9 D9 E2 E3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 (hex)

0 FIRST

4E F1 40 40 40 40 40 40 E2 C5 C3 E4 D5 C4 C4 40 40 40 40 40 40 40 (hex)

+ 1 SECOND

4E F2 40 40 40 40 40 40 40 40 40 40 40 40 40 E3 C8 C9 D9 D4 40 40 (hex)

+ 2 THIRD

AE F3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 C5 (hex)

+ 3

Sample JCL for Laser Printer Usage

//0UT1 OUTPUT PAGEDEF=XXXX,FORMDEF=XXXX,TRC=0N
I I
I I => 3800 form definition
I
. [ => 3800 page definition
//CMPRTO1 DD SYSOUT=Y
// DCB=(RECFM=FBA,LRECL=133),0UTPUT=*,0UT1
// CHARS=(WWWW, XXXX,YYYY, ZZ77)
I
I => IBM font names

F

424

Operations



74 Back-End Program Calling Conventions

= Back-End Program Calling Conventions (Batch MOde) .............cooiiiiiiiiiiiiiiiiicc e 426
= Special Considerations UNAEr CICS ... ...oooiiiiiiiii e 427
= Special Considerations UNder IMS TIM ... 427
= Sample BaCk-ENd PrOGramS .........veiiiiiiii ettt 427

425



Back-End Program Calling Conventions

This document describes the conventions that apply to invoking a back-end program.
Notes:

* This section does not apply to BS2000/OSD; refer to Calling Non-Natural Programs and Calling
UTM Chained Partial Programs in the Natural TP Monitor Interfaces documentation, section
Natural under UTM.

® Except under z/OS in batch mode, a specified back-end program is not invoked if the Natural
session is executing on a Natural Development Server.

The following topics are covered:

Back-End Program Calling Conventions (Batch Mode)

If the profile parameter PROGRAM is specified (or set dynamically during a Natural session by calling
the subprogram CMPGMSET in the library SYSEXTP), a back-end program is invoked, regardless of
whether the session terminated normally or abnormally. The back-end program is called using
standard OS linkage conventions and must return the control to its caller.

If a back-end program is available, Natural does not issue any session termination messages. Non-
zero user return codes, specified via operandI of the Natural TERMINATE statement, are indicated
by the Natural error message NAT9987.

A parameter area containing the following information is passed to the back-end program:

® afullword that holds the Natural system or user return code,

® a Natural termination message of 72 characters,

® afullword that holds the length of the Natural termination data (or zero),

" the termination data passed by operand? of the TERMINATE statement (if any).

The back-end program parameter area is at least 80 bytes long. The macro NAMBCKP, which contains

a DSECT layout of the back-end program parameter area, is supplied in the Natural source library
and can be used by Assembler back-end programs.

426 Operations



Back-End Program Calling Conventions

Special Considerations under CICS

Under CICS, the back-end program parameter data are passed in the COMMAREA and in the
TWA. In the TWA, only 80 bytes are passed, containing return code and message, while the length
field contains an address that points to the full back-end program parameter area. The same TWA
is also provided if Natural has been invoked via EXEC CICS LINK; see also Natural under CICS,
Front-End Invoked via LINK in the Natural TP Monitor Interfaces documentation.

If parameter COMAMSG=NO is set in the Natural/CICS generation macro (NCIPARM), only the termina-
tion data are passed in the COMMAREA.

Special Considerations under IMS TM

Under IMS TM, the calling conventions for a back-end program are different in a dialog-oriented
environment. There, the back-end program is called by a program-to-program switch and the
name of the back-end program is used as an IMS TM transaction code. In this case, the Natural
environment is terminated before the program-to-program switch takes place; see Natural under
IMS TM, Support of Natural Profile Parameter PROGRAM in the Natural TP Monitor Interfaces
documentation.

Sample Back-End Programs

The following table contains a number of sample programs:

Sample Back-end Program for Batch and TSO Environments in COBOL:

LINKAGE SECTION

01 BACKEND-PARM-AREA.

02 TERMINATION-RETURN-CODE PIC S9(8) COMP.
02 TERMINATION-MESSAGE PIC X(72).

02 TERMINATION-DATA-LENGTH PIC S9(8) COMP.
02 TERMINATION-DATA PIC X(100)

PROCEDURE DIVISION USING BACKEND-PARM-AREA

Sample Back-end Program for Batch and TSO Environments in Assembler:

Operations 427



Back-End Program Calling Conventions

BACKPROG CSECT
SAVE (14,12)

LR 11,15
USING BACKPROG, 11
L 2,0(1)

USING BCKPARM, 2

RETURN (14,12)
BCKPARM NAMBCKP
END

Sample Back-end Program for CICS in Assembler:

L 2,DFHEICAP
USING BCKPARM, 2

BCKPARM  NAMBCKP
END

Sample Back-end Program XNATBACK for Batch Mode (z/OS and z/VSE):

A sample program for batch mode is supplied as XNATBACK in the Natural source library. This program
issues the Natural termination message on both SYSPRINT (z/OS)/ SYSLST (z/VSE) and the operator console;
potential termination data are printed on SYSPRINT/SYSLST in dump format.

428 Operations



75 Natural 31-Bit Mode Support

In general, Natural runs with the following settings:
AMODE=31

RMODE=ANY

Exceptions to this are described with the corresponding environment documentation.

429



430



76 LE Subprograms

m Support of IBM LE SUDPIOGIAMS ......eieeeiiiiiiiii ettt e et e e e e et aa e e e e e e e 432
= Enabling Natural Support of LE SUDProOgrams ............ocuuiiiiiiiiiii et 432
® Passing LE RUNIME OPLIONS .......eeiiiiiiiiie it 432
B LE ADEND HANAING ... 434

431



LE Subprograms

This document applies to z/OS batch mode, z/VSE batch mode, IMS TM and TSO. It provides
information on how Natural supports IBM Language Environment (LE) subprograms.

The following topics are covered:

Support of IBM LE Subprograms

To support IBM Language Environment (LE) subprograms, Natural must be prepared for the CALL
statement to be able to call LE subprograms. LE subprograms can be static (profile parameters
CSTATIC and RCA) or dynamic subprograms of Natural.

Dynamic subprograms of Natural (LE and non-LE) are loaded via LE services (CEEFETCH or CEELOAD
macro). All dynamic subprograms loaded during a Natural session are deleted upon LE environ-
ment termination, i.e. during termination of the Natural session. That is, the profile parameter
DELETE does not have any effect.

Enabling Natural Support of LE Subprograms

The following is required to be able to call LE subprograms from Natural:

1. When installing Natural, the corresponding driver must be generated with option LE370=YES.
For LE enablement of Natural under CICS, see Natural under CICS, Natural CICS Interface and
IBM Language Environment (LE) (in the Natural TP Monitor Interfaces documentation).

2. The IBM LE runtime modules must automatically be included from the IBM LE library during
the linkage editor step. There must not be any unresolved externals starting with ,,CEE.” Do
not set the linkage editor option NCAL for z/OS or NOAUTO for z/VSE.

3. Under z/OS batch, IMS TM and TSO, Natural can also call LE main programs, but only as
dynamic subprograms. If an LE main program is to be called dynamically, this has to be indi-
cated by specifying SET CONTROL 'P=L"' before the CALL statement. Otherwise, the LE environ-
ment created by Natural will be terminated by the LE main program.

Passing LE Runtime Options

= Passing LE Runtime Options under z/OS Batch and TSO
= Passing LE Runtime Options under z/VSE Batch

432 Operations



LE Subprograms

= Passing LE Runtime Options under IMS TM
Passing LE Runtime Options under z/0OS Batch and TSO

You have two options:
1. You can pass LE run-time options by using the PARM= parameter in your JCL. The following
applies:

® The run-time options that are passed to the main routine must be followed by a slash (/) to
separate them from the Natural parameters.

® If you want to use a slash within your Natural parameters, then your Natural parameters
must begin with a slash.

Example:
PARM="/1D=/,..."

2. You can pass LE run-time options by using the CEEOPTS input data set in your JCL. With the
use of CEEOPTS the LE run-time options are also available to all subtasks. The use of CEEOPTS is
especially required with a Natural RPC server in batch mode.

Example:

//CEEOPTS DD  *
POSIX(ON)
/*

Passing LE Runtime Options under z/VSE Batch

You can pass LE run-time options by using the PARM=parameter in your JCL. The following applies:
® The run-time options that are passed to the main routine must be followed by a slash (/) to
separate them from the Natural parameters.

® If you want to use a slash within your Natural parameters, then your Natural parameters must
begin with a slash.

Operations 433



LE Subprograms

Example:
PARM="/1D=/,..."
Passing LE Runtime Options under IMS TM

You can pass LE run-time options by providing the region-specific run-time options load module
CEEROPT in your STEPLIB concatenation. In addition, the LE library routine retention initialization
routine CEELRRIN must be present on the PREINIT list of your region JCL.

The following is a sample definition of a CEEROPT load modul that allows the execution of AMODE (24)
subprograms:

CEEROPT CSECT
CEEROPT AMODE ANY
CEEROPT RMODE ANY
CEEXOPT ALL31=((OFF),QVR), X
STACK=((128K,128K,BELOW,KEEP,512K,128K),0VR)
END  CEEROPT

LE Abend Handling

Natural supports the LE-specific user error handling, that is, if an LE subprogram has defined a
user error handler, this handler gets control when an abend, a program check or any other LE
error condition occurs in the subprogram. If no LE user error handler has been defined, Natural
reacts according to the setting of the DU profile parameter.

In this case, a special error message (NAT0950 if DU=0FF or NAT9967 if DU=0N) is issued which
indicates the LE error number. In addition, the corresponding LE error message is issued on CEEMSG
and an LE snap dump is written to CEEDUMP according to LE run-time option TERMTHDACT.

Note: In case of DU=FORCE, the abend handling of Natural is disabled and the LE error

handling takes place even if no LE subprogram is active at the time of the abend. In this
case, it is strongly recommended to specify the LE run-time option TERMTHDACT (UAIMM) to
get all required diagnostic informations.

434 Operations



77 External SORT

B SUPPOTt OF EXIEINAl SORT ...ttt e e e e e e e e e e e re e e e e e e 436
= Special Considerations for Z/OS .........cooiiiiiii e 436
= Special Considerations fOr Z/VSE .........ooiiii e 436
= Special Considerations for BS2000/OSD ...........uiiiiiiiiiiiii e 437

435



External SORT

This document provides information on using external SORT programs with Natural.

The following topics are covered:

Support of External SORT

The Natural SORT statement may optionally invoke an external SORT program that carries out the
actual sorting. An external SORT program is used if the keyword subparameter EXT of the macro
NTSORT is set to ON.

Natural supports all external SORT programs that comply with the SORT interface documented in
the relevant IBM manuals (for z/OS, z/VSE and CMS) and Siemens manuals (for BS2000/OSD).

The requirements (for example, space and datasets) are identical to those for the execution of a
3GL (for example, COBOL, PL/I) application program that invokes the operating system SORT
program and can vary according to the external SORT program in use.

The communication with the external SORT program is via the E15 and E35 user-exit routines. As
a consequence, Natural does not require the datasets SORTIN and SORTOUT.

Special Considerations for z/0S

All external SORT programs supporting the extended parameter list can be used.

Special Considerations for z/VSE

The external SORT program is loaded into the partition program area. For this reason, you must
add round about 200 KB additional storage to the size requirements of the Natural batch nucleus
specified in the SIZE parameter of the EXEC statement.

Example:

// EXEC <natural>,SIZE(<natural>,200K)

where <natural> is the name of your Natural phase.

436 Operations



External SORT

Special Considerations for BS2000/0SD

The external SORT program is called using the level 1 interface. That is, Natural passes all SORT
control statements to the external SORT program and dataset SYSDTA is not used for input.

The external SORT program is searched for in the following libraries:

" User TASKLIB concatenated with the BLSLIB chain, if a User TASKLIB was specified,
" System TASKLIB ($TSOS.TASKLIB) concatenated with the BLSLIB chain.

Operations 437



438



Stichwortverzeichnis

439



440



	Operations
	Inhaltsverzeichnis
	1 Operations
	2 Configuring Natural
	3 Linking Natural Objects to the Natural Nucleus
	Benefits
	ULDOBJ Utility
	Using ULDOBJ to Generate an Object Module
	Additional Considerations for Linking Subroutines
	Operating System Dependency of Object Module Generation
	Example of Linking a Natural Object to the Natural Nucleus

	4 Natural User Exits
	NATUEX1 - User Exit for Authorization Control
	NATSREX2 and NATSREX3 - User Exits for Sort Processing
	NATUSKnn - User Exit for Computation of Sort Keys
	NATPM - User Exit for Inverted Output
	Inversion Logic
	Field User Exit

	NREXPG -User Exit for NATRJE
	USR0070P - User Exit for Editor Profiles
	USR2002P - User Exit for Help Window Text Strings
	USR2003P - User Exit for Main Menu

	5 Natural User Access Method for Print and Work Files
	NATAMUSR Module Description
	NATAMUSR Module Installation
	Invoking the Third Party Product

	6 Natural Scratch-Pad File
	Purpose of a Natural Scratch-Pad File
	What is it, what does it do?
	When do I need it?

	How to Define a Scratch-Pad File
	What is Stored on the Scratch-Pad File and How to Size it
	Recordings
	Screen Captures - NATPAGE

	Scratch-Pad File Maintenance

	7 Natural Text Modules
	Function and Usage of Text Modules
	NATTEXT Module
	Modifying NATTEXT
	Example of Modifying the NATTEXT Module

	NATTXT2 Module
	Standard Natural Output Texts
	Keywords and Alternative Keywords for Natural System Commands and Utilities
	Natural Termination Messages and Return Codes

	NATTXT3 Module

	8 Natural Configuration Tables
	NATCONFG Module
	General Overview of Macros Used by NATCONFG
	NTDVCE - Terminal-Device Specification Table
	NTMSG - Message Log Table Definitions
	NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus
	NTCPAGE - Code Page Definitions
	Code Page Support
	Output Devices Supported
	Sequential Output Devices for Batch, Additional Reports
	Line-Oriented Online Terminals
	Block-Mode-Oriented Online Terminals

	Specification of NTDVCE
	Translation Tables
	Upper-/Lower-Case Translation
	CMULT Entry
	Output Translation
	Input Translation
	Code Translation of DBCS Data
	NTTZ - Time Zone Definitions
	NTTZ Macro
	NTTZ Macro Syntax
	NTTZ Macro Parameters
	Restrictions of NTTZ Macro
	Example of NTTZ Macro


	9 Natural Storage Management
	Thread and Non-thread Environments
	Buffer Types
	Fixed Buffers
	Variable Buffers
	Customization of Buffer Characteristics

	10 Profile Parameter Usage
	11 Natural Parameter Hierarchy
	Natural Parameter Hierarchy Overview
	General Rules for Parameter Usage
	Natural Standard Parameter Module
	Alternative Parameter Module
	Predefined Dynamic Parameter Sets
	Predefined User Parameter Profiles
	Dynamic Parameter Entry
	Natural Security Definitions
	Session Parameter Settings
	Program/Statement Level Settings
	Development Environment Settings
	Examples of Various Parameter Strings

	12 Assignment of Parameter Values
	Sources for Parameter Value Assignment
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Specifying Dynamic Parameters under z/VSE

	Session Parameters for Runtime Assignment of Parameter Values

	13 Profile Parameters Grouped by Function
	System Files
	Buffer Sizes
	External Subprograms
	Output Reports and Work Files
	Date/Time Settings
	Limits
	Character Assignments
	Terminal Communication
	Buffer Pools
	Translation Tables
	Code Page and Unicode Support
	Usage of Profile Parameters
	Compiler Options
	Debugging
	Batch Mode
	TP Monitors
	Database Access
	Natural with Adabas
	Natural with Other Software AG Products
	Adabas Text Retrieval
	Con-nect
	EntireX Broker
	Entire DB
	Entire System Server
	Entire Transaction Propagator
	Natural Advanced Facilities
	Natural Connection
	Natural Database Interfaces
	Natural Expert
	Natural Optimizer Compiler
	Natural Workstation Interface
	Software AG Editor

	Miscellaneous Profile Parameters
	Session Initialization and Termination
	Parameters Reserved for Internal Use

	14 Using a Natural Parameter Module
	Using the Default Natural Parameter Module NATPARM
	Creating a New Natural Parameter Module
	NTPRM Macro - Create a Natural Parameter Module
	NTPRM Syntax
	Assembler Macro Coding Conventions

	Restricting the Use of a Parameter Module
	Using Macros in a Natural Parameter Module

	15 z/OS Environment
	16 Natural under z/OS
	Natural Subsystem
	Shared Nucleus
	TP Monitor Interfaces
	Interfaces to Database Management Systems
	Natural in Batch Mode under z/OS
	Natural as a Server under z/OS

	17 Authorized Services Manager under z/OS
	ASM Overview
	ASM System Requirements
	APF Authorization
	System Linkage Index (System LX)

	CF Structure
	XCF Signalling Paths


	ASM Operation
	Starting the ASM
	ASM Messages, Condition Codes and Abend Codes
	ASM Operator Commands


	18 Natural Shared Nucleus under z/OS and z/VSE
	Environment-Independent Nucleus
	Components of the Shared Nucleus
	Linking Additional Modules
	Benefits of a Shared Nucleus
	Administration Aspects

	Creating a Shared Nucleus
	Installing a Shared Nucleus
	Linking Subproducts to the Nucleus
	Single-Environment Shared Nucleus
	Environment-Dependent Nucleus
	Statically Linked Non-Natural Programs
	Dynamically Called Non-Natural Programs

	19 Natural Roll Server Functionality
	Natural Roll-Server Overview
	Roll Server in a Single z/OS System
	Illustration of the Roll Server in a Single z/OS System:

	Roll Server in a z/OS Parallel Sysplex Environment
	Roll File and LRB

	20 Natural Roll Server Operation
	Roll Server System Requirements
	APF Authorization
	System Linkage Index
	Virtual Storage
	CF Structure
	XCF Signalling Paths

	Formatting the Roll File
	NATRSRFI Output
	Notes Concerning the Formatting or Resetting of Roll Files

	Starting the Roll Server
	Examples for Starting the Roll Server as a Batch Job

	Roll Server Messages, Condition Codes and Abend Codes
	Condition Codes of the Roll Server Started Task
	User Abend Codes

	Return Codes and Reason Codes of the Roll Server Request
	Operating the Roll Server
	Roll Server Performance Tuning
	Roll Server User Exits
	NATRSU14 User Exit
	NATRSU24 User Exit


	21 z/VSE Environment
	22 Natural under z/VSE
	Natural Subsystem
	Natural Shared Nucleus
	TP Monitor Interfaces
	Interfaces to Database Management Systems
	Natural in Batch Mode under z/VSE

	23 Natural Shared Nucleus under z/OS and z/VSE
	24 VM/CMS Environment
	25 Natural under VM/CMS
	Issuing CP and CMS Commands from Natural
	Reading the CMS Program Stack
	Hardcopy Function
	Applying Fixes to Natural
	Natural in Batch Mode under CMS
	Using TCP/IP Communication
	Calling Natural Subprograms from Rexx

	26 Print File and Work File Support
	Defining Print Files and Work Files
	Access Method STD
	Access Method CMS
	Special Destination Names for AM=CMS
	Examples:


	27 BS2000/OSD Environment
	Related Topics
	Other Natural Functions for BS2000/OSD-Specific Purposes

	28 Natural Shared Nucleus under BS2000/OSD
	Rules for Using a Natural Shared Nucleus

	29 Refresh of Natural Load Pool
	Prerequisites/Restrictions
	Procedure
	Keyword Parameters for the Program PREFRESH
	NAME - Common Memory Pool and Module Name
	LIBR - Load Library
	LOAD - Module Load Method
	ALNK - Activate AUTOLNK Function
	TIM1 - Wait Time in Seconds before the Load Pool Refresh is Started
	TIM2 - Wait Time in Seconds after the New Natural Nucleus was Loaded


	30 Optimization of Message Handling
	Screen Output Handling
	Restoring the Screen Content

	31 Siemens Terminal Types Supported by Natural
	Type 9748
	975n Series
	Type 9763M

	32 Function Key Support with 9750 Devices
	Key Assignment
	Modes for Key Assignment

	33 Common Memory Pools
	Global Common Memory Pools
	CMPSTART Program
	TXTSIZE - Buffer-Pool Text-Record Size
	BPLIST - Preload List For Global Buffer Pool
	JV - Create a Job Variable
	JVSUFX - Suffix of the Job Variable Name

	Operator Commands
	CMPEND Program

	Local Common Memory Pools
	BS2STUB Macro
	name - CSECT Name
	PARMOD - 24/31 Bit Addressing Mode
	PROGMOD - Loading above or below the 16-MB Line

	ADDON Macro
	ACCS - Access To Common Memory Pool
	ADDR - Size of Common Memory Pool Address
	ALNK - Activate AUTOLNK Function
	DATA - Size of Data Space Area
	DESA - ESA Data Space Area
	LIBR - Load Library
	LOAD - Method for Loading a Module into a Common Memory Pool
	NAME - Common Memory Pool/Module Name
	PFIX - Fixed Address
	POSI - Position Relative to 16-MB Line
	SCOP - Scope of Common Memory Pool
	SIZE - Size of Common Memory Pool
	STAT - Status of Common Memory Pool
	TYPE - Type of Common Memory Pool
	WAIT - Enabling or Waiting of Common Memory Pool During Application Startup

	ADDEND Macro
	Example of Assembling Macro BS2STUB


	34 Calling Dynamically Reloadable 3GL Programs in a Natural Application
	Storage Allocation Rule
	Thread-Creation Rule
	Address-Mode Dependencies

	35 Print File/Work File Server NATPWSV2
	Setup
	Operation
	Starting the Print File/Work File Server
	Terminating the Print File/Work File Server


	36 RPC Server Front-End
	Setup

	37 Natural in Batch Mode
	38 Natural in Batch Mode under z/OS
	General Information about the Natural z/OS Batch Mode Interface
	Natural z/OS Generation Parameters
	ABEXIT - Abend Processing
	LBPNAME - Sharing of Local Buffer Pools
	LE370 - Use of IBM Language Environment
	SUBPOOL - Storage Subpool for GETMAIN Requests
	TIOBSZ1 – Size of the Primary I/O Buffer for Batch Processing
	TIOBSZ2 – Size of the Primary I/O Buffer for Server Processing
	USERID - Content of System Variable *INIT-USER

	Datasets Used by Natural in z/OS Batch Mode
	CMEDIT - Software AG Editor Work File
	CMHCOPY - Optional Report Output for Hardcopy
	CMOBJIN - Input for Natural INPUT Statements
	CMPLOG - Dynamic Profile Parameter Report Output
	CMPRINT - Primary Report Output
	CMPRMIN - Dynamic Parameter Dataset
	CMPRTnn - Additional Reports 01 - 31
	CMSYNIN - Primary Command Input
	CMTRACE - Optional Report Output for Natural Tracing
	NATRJE - Job Submit Output
	STEPLIB - Load Library for External Modules
	CMWKFnn - Work Files 01-32


	39 Natural in Batch Mode under z/VSE
	NATVSE - Natural z/VSE Batch Mode Interface
	NTVSE Macro - Generation Parameters for Natural under z/VSE
	NAME - Name of Relocatable Module
	BUFSIZE - Size of Natural I/O Buffer
	CANCEL - Session Termination
	DSECTS - Listing of Operating System DSECTS
	FILEID - Check of Label Information
	FILMNGR - Management of Print or Work File in Natural
	FILSCAN - Scanning of Print or Work Files
	FLUSH - Flush Card Input Files until EOF
	IDUMP - Dump Creation Mode
	LE370 - Use of IBM Language Environment
	LIBRID - Check of DLBL File ID Information
	MAXABND - Maximum Number of Abends
	RCSIZE - Default Roll Cache Size for a Server Environment
	RJEUSER - User ID for Submission via XPCC Macro Requests
	SEGMENT - Behavior at Output Spool File Close
	THDSIZE - Default Thread Size for a Server Natural Environment
	USERID - Content of System Variable *INIT-USER
	WAITIME - Time Limit for Session Roll-Out

	Natural Datasets Used under a z/VSE Batch Mode Session
	CMEDIT - Software AG Editor Work File
	CMHCOPY - Optional Report Output for Hardcopy
	CMOBJIN - Input for Natural INPUT Statements
	CMPLOG - Optional Report Output for Dynamic Parameters
	CMPRINT - Primary Report Output
	CMPRMIN - Dynamic Parameter Dataset
	CMPRTnn - Additional Reports
	CMSYNIN - Primary Input
	CMTRACE - Optional Report Output for Natural Tracing
	CMWKFnn - Work Files 01-32

	NATVSE Print and Work File Support for z/VSE Library Members
	NATVSE Dynamic Work File Allocation (DYNALLOC) Support
	Prerequisites
	DEFINE WORK FILE Keyword Parameters
	Rules for Using the DEFINE WORK FILE Keyword Parameters
	Samples

	Debugging Facilities for Natural under z/VSE
	UPSI 1XXXXXXX - Dump Flag
	UPSI X1XXXXXX - Trace Flag
	UPSI XXX1XXXX - Storage Freeze Flag
	UPSI XXXXX1XX - Session Abend Flag
	UPSI XXXXXX1X - Abend Exit Flag
	UPSI XXXXXXX1 - Formatted Dump-Only Flag
	Obtaining Documentation for Debugging

	NATVSE Attention Interrupts

	40 Natural in Batch Mode under CMS
	Running Natural in Batch Mode under CMS
	CMPRINT - Primary Report Output
	CMSYNIN - Primary Input


	41 Natural in Batch Mode under BS2000/OSD
	Files and System Files Used by Natural in BS2000/OSD Batch Mode
	CMPRMIN - Dynamic Parameter File
	SYSIPT - Dynamic Parameter System File
	SYSDTA - Dynamic Parameter System File
	SYSDTA - Primary Input
	SYSOUT, SYSLST - Primary Report Output
	SYSLSTnn - Optional Report Output for Natural Tracing
	Pnn - Additional Reports 01-31
	Wnn - Natural Work Files 01-32

	Keyword Parameters
	ADACOM
	ADDBUFF
	APPLNAM
	CODE
	DELETE
	DYNPAR
	ILCS
	JV
	LF
	LINK
	LINK2/LINK3/LINK4
	NUCNAME
	PARMOD
	REQMLOC
	SYSDTA
	TERM
	TRACE
	USERID
	WRITE

	BS2000/OSD Job Variables

	42 Natural in Batch Mode (All Environments)
	Adabas Datasets
	Sort Datasets
	Subtasking Session Support for Batch Mode Environments
	Purpose
	Prerequisites
	Functionality
	Starting a Natural Session
	Extended Parameter List
	Startup Parameter Area
	User Parameter Area

	Starting a Subtask
	Accessing the User Parameter Area


	43 Natural Buffer Pools
	44 Natural Buffer Pool - General
	Natural Buffer Pool Principle of Operation
	Objects in the Buffer Pool
	Directory Entries
	Text Pool
	Buffer Pool Hash Table
	Buffer Pool Initialization
	Buffer Pool Search Methods
	METHOD=S
	METHOD=N
	Choosing Search Methods

	Local and Global Buffer Pools
	Local Buffer Pool
	Global Buffer Pool

	Buffer Pool Cache

	Buffer-Pool Monitoring and Maintenance
	Preload List
	Blacklist
	Propagation of Buffer-Pool Changes
	Performance Considerations

	Natural Global Buffer Pool
	Profile Parameters Used
	Buffer Pool Opening / Closing Procedure


	45 Natural Global Buffer Pool under z/OS
	Using a Natural Global Buffer Pool
	Definition
	Benefits

	Operating the Natural Global Buffer Pool
	Installing the Natural GBP Operating Program
	Setting up the Natural Global Buffer Pool
	Starting the Natural GBP Operating Program
	Stopping the Natural GBP Operating Program

	Sample NATGBPvr Execution Jobs
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Localization

	46 Natural Global Buffer Pool under z/VSE
	Using a Natural Global Buffer Pool
	Definition
	Benefits
	Prerequisites

	Operating the Natural Global Buffer Pool
	Installing the Natural GBP Operating Program
	Setting Up the Natural Global Buffer Pool
	Starting the Natural GBP Operating Program
	Stopping the Natural GBP Operating Program

	Sample NATGBPvr Execution Jobs
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Localization

	47 Common Natural GBP Operating Functions under z/OS and z/VSE
	Global Buffer Pool Manager Parameter Module
	UCTRAN - Lower/Mixed Case Support

	Global Buffer Pool Operating Functions
	ADDCACHE - Allocate Cache for an Existing Global Buffer Pool
	CREATE - Create Global Buffer Pool
	DELCACHE - Release Cache of a Global Buffer Pool
	FSHUT - Shut Down Global Buffer Pool
	GLOBALS - Show Global Parameter Settings
	LISTCACHE - List All Global Buffer Pool Caches Owned by Job
	NOP - No-Operation
	REFRESH - Re-initialize Global Buffer Pool
	SHOWBP - Show Existing Buffer Pools
	TERMINATE - Terminate GBP Operating Program
	ZAPS - Display Zaps Applied to GBP

	Global Buffer Pool Function Parameters
	BPNAME - Name of Global Buffer Pool
	BPLIST - Name of Preload List
	BPCSIZE - Buffer Pool Cache Size
	CONFIRM - FSHUT Confirmation
	IDLE - Wait Time before Check
	METHOD - Search Algorithm for Allocating Space in Buffer Pool
	NATBUFFER - Buffer Size, Mode, Text Block Size
	RESIDENT - Behavior after Function Execution
	SUBSID - Natural Subsystem ID
	TYPE - Type of Buffer Pool

	Examples of NATBUFFER Specifications

	48 Natural Global Buffer Pool under BS2000/OSD
	Using a Natural Global Buffer Pool under BS2000/OSD
	Establishing the Global Buffer Pool under BS2000/OSD
	Administering the Global Buffer Pool under BS2000/OSD

	49 Natural Swap Pool
	50 Purpose of a Natural Swap Pool
	Purpose of a Natural Swap Pool
	Benefits of Using a Natural Swap Pool
	Swap Pool Structure
	Swap Pool Main Directory
	Subdirectories
	Swap Pool Slots
	Logical Swap Pools


	51 Natural Swap Pool Operation
	Users are On their Way to Natural - No Session Start
	Users are Returning from Natural

	52 Natural Swap Pool Initialization
	Swap Pool Initialization Control
	If You Set SWPINIT=AUTO
	If You Set SWPINIT=

	Swap Pool Initialization Parameters

	53 Dynamic Swap-Pool Reorganization
	Requirements for Dynamic Swap-Pool Reorganization
	Statistics Tables
	Swap-Pool-Reorganization Plus Table
	Swap-Pool-Reorganization Minus Table
	Parameters for Swap-Pool Reorganization
	Checking for the Necessity of Swap-Pool Reorganization
	Flow of Dynamic Swap-Pool Reorganization
	Start of Dynamic Swap-Pool Reorganization

	54 Defining the Natural Swap Pool
	Environment-Specific Requirements
	Keyword Parameters of Macro NTSWPRM
	LABEL - Name of Swap-pool Parameter Module
	DSPCONT - Minutes for Data Space Slot Control
	DSPLIFE - Life Time in Minutes for a Thread in the ESA Data Space
	SWPFILE - Location of Swap Pool Initialization Data
	MAXSIZE - Size of Natural User Threads
	SWPFACT - Size of Unit in Reorganization Tables
	SWPINIT - Access to Swap-Pool Initialization Data
	SWPLSWP - Number of Logical Swap Pools
	SWPPWRD - Administration Password
	SWPSDIF - Minimum Difference of Slot Sizes
	SWPSLSZ - Number of Logical Swap Pools, Slot Sizes
	Examples:

	SWPTFIX - Fixed Slot Size
	SWPTIM1 - Time Interval for Reorganization Check
	SWPTIM2 - Lapse of Time Before Start of Reorganization
	SWPUSER - Condition for Swap Pool Reorganization
	NOVPA - Number of Waits for Completed Asynchronous Write
	NOVPW - Number of Waits for Unlocked Swap Pool
	WAITMS - Wait Time for Unlocked Swap Pool
	WRITMS - Wait Time for Completed Asynchronous Write


	55 Natural User Area Size Considerations
	Using the MAXSIZE Parameter
	Defining the Size of the Individual Natural Buffers
	Possible Error Messages
	Displaying the Aggregate Size of All Buffers
	Calculating the Maximum Size

	56 Swap Pool Data Space
	Using ESA Data Space in Addition
	ESA Data Space Slot Size Adjustment

	57 Global Restartable Swap Pool under UTM
	Purpose of a Natural Global Swap Pool under UTM
	Installing a Natural Global Swap Pool under UTM
	Starting a Natural Global Swap Pool under UTM
	Displaying Information about the Global Swap Pool

	58 Terminating the Global Swap Pool under UTM
	Termination Using Console Commands
	Abnormal Termination with Dump
	Termination by Program

	59 Natural 3GL CALLNAT Interface
	60 Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions
	Purpose of 3GL CALLNAT Interface
	Availability

	Prerequisites
	Space Requirements
	Linking
	Environment Dependencies

	Restrictions
	Terminating a Natural Subprogram
	Inadmissible Natural Statements
	Parameter Values Passed by the 3GL Program
	Dynamic Arrays
	TP-Monitor-Specific Restrictions


	61 Natural 3GL CALLNAT Interface - Usage, Examples
	Usage
	Overview
	Call Structure
	Parameter Handling

	Sample Environments
	Sample Environment for CICS
	Step 1: Create the Environment Initialization
	Step 2: Install the Sample COBOL Call
	Step 3: Create a Sample Natural Subprogram
	Step 4: Verify the CICS Resources
	Step 5: Test the Environment

	More Samples
	Sample for Any Other Supported Environment
	Step 1: Assemble and Link ASMNAT
	Step 2: Start the Natural Session



	62 Operating the Software AG Editor
	63 Editor Work File
	Editor Work File Structure
	Control Record
	Work Record
	Recovery Records

	Editor Work File under z/OS, z/VSE and BS2000/OSD
	Using the Batch Format Utility
	Formatting during Initialization
	Maintaining the Editor Work File under z/OS and z/VSE
	Maintaining the Editor Work File under BS2000/OSD
	Editor Work File under VM/CMS
	Editor Work File under Complete/SMARTS

	64 Editor Buffer Pool
	Purpose of the Editor Buffer Pool
	Obtaining Free Blocks
	Initializing the Editor Buffer Pool
	Buffer Pool Cold Start
	Buffer Pool Warm Start

	Restarting the Editor Buffer Pool
	Editor Buffer Pool Parameters
	Buffer Pool Initialization for Multi-User Environments

	65 Natural Net Data Interface NATNETTO
	Natural Net Data Driver Functional Description
	General Message Layout
	Layout of Header
	Table 1: Control Block - Fixed Part
	Table 2: Modes of Field Separation
	Table 3: Architecture of Sending Partner
	Table 4: Call Type
	Table 5: Aid Character Table
	Table 6: Message Type
	Table 7: Option Flags for Natural Net-Data Communication

	Format Buffer Layout
	Base Part
	Table 8: Format Buffer Entry
	Examples:

	Extension 1

	Value Buffer Layout
	Attribute Buffer
	Example:


	66 Natural as a Server
	67 Natural as a Server under z/OS
	Functionality
	Natural Server Stub
	Natural Batch Driver

	Natural Nucleus Installation in a Server Environment
	Print and Work File Handling with External Datasets in a Server Environment

	68 Natural as a Server under z/VSE
	Functionality
	Natural Server Stub
	Natural Batch Driver

	Natural Nucleus Installation in a Server Environment
	Print and Work File Handling with External Datasets in a Server Environment

	69 Natural as a Server under CICS
	Functionality
	Natural as a Server
	Natural Server Stub

	Natural CICS Interface Installation in a Server Environment
	Restrictions

	70 Natural Execution - Miscellaneous Topics
	71 Asynchronous Processing
	Identifying Asynchronous Natural Sessions
	Handling Output of an Asynchronous Natural Session
	Handling Unexpected or Unwanted Input
	Other Profile Parameter Considerations

	72 Double-Byte Character Sets
	Natural Profile Parameter SOSI
	Output Format Specification
	Parameter Definitions for DBCS Support
	Editor Profile Options
	Input Data Check
	Output Data Adjustment
	Natural Stack Data
	Application Programming Interfaces for DBCS Handling
	USR4211N - Get DBCS Characters
	USR4213N - String Handling for DBCS Support


	73 Input/Output Devices
	Terminal Support
	Light Pen Support
	Sample Natural Program for Light Pen Usage

	Printer Support
	Printer-Advance Control Characters
	Sample Natural Program for Printer-Advance Control Character

	Natural Laser-Printer Support
	Sample Natural Program for Laser Printer Usage
	Sample JCL for Laser Printer Usage



	74 Back-End Program Calling Conventions
	Back-End Program Calling Conventions (Batch Mode)
	Special Considerations under CICS
	Special Considerations under IMS TM
	Sample Back-End Programs

	75 Natural 31-Bit Mode Support
	76 LE Subprograms
	Support of IBM LE Subprograms
	Enabling Natural Support of LE Subprograms
	Passing LE Runtime Options
	Passing LE Runtime Options under z/OS Batch and TSO
	Passing LE Runtime Options under z/VSE Batch
	Passing LE Runtime Options under IMS TM

	LE Abend Handling

	77 External SORT
	Support of External SORT
	Special Considerations for z/OS
	Special Considerations for z/VSE
	Special Considerations for BS2000/OSD

	Stichwortverzeichnis

