5 software~

Natural fur GroRrechner

Natural for Ajax

Version 4.2.6 fUr Grofrechner

Februar 2010

Natural

Dieses Dokument gilt fiir Natural fiir Grofsrechner ab Version 4.2.6 fiir Grofirechner.

Hierin enthaltene Beschreibungen unterliegen Anderungen und Erginzungen, die in nachfolgenden Release Notes oder Neuausgaben
bekanntgegeben werden.

Copyright © 1979-2010 Software AG, Darmstadt, Deutschland und/oder Software AG USA, Inc., Reston, VA, Vereinigte Staaten von
Amerika, und/oder ihre Lizenzgeber..

Der Name Software AG, webMethods und alle Software AG Produktnamen sind entweder Warenzeichen oder eingetragene Waren-
zeichen der Software AG und/oder der Software AG USA, Inc und/oder ihrer Lizenzgeber. Andere hier erwédhnte Unternehmens- und
Produktnamen kénnen Warenzeichen ihrer jeweiligen Eigentiimer sein.

Die Nutzung dieser Software unterliegt den Lizenzbedingungen der Software AG. Diese Bedingungen sind Bestandteil der Produkt-

dokumentation und befinden sich unter http://documentation.softwareag.com/legal/ und/oder im Wurzelverzeichnis des lizensierten
Produkts.

Diese Software kann Teile von Drittanbieterprodukten enthalten. Die Hinweise zu den Urheberrechten und Lizenzbedingungen der
Drittanbieter entnehmen Sie bitte den "License Texts, Copyright Notices and Disclaimers of Third Party Products". Dieses Dokument

Natural for Ajax

ist Bestandteil der Produktdokumentation und befindet sich unter http://documentation.softwareag.com/legal/ und/oder im Wurzel-
verzeichnis des lizensierten Produkts.

Natural for Ajax 3

Inhaltsverzeichnis

1 Natural fOr AJaXcoocviiiiiiiiiiiiiiii s 1
2 INErOAUCHON ..ot 3
What is a Rich Internet Application?ccccoeviiiiiiiiiiiiiiiiiii 4
Rich Internet Applications with Naturalcccocooii 4
Mixed APPLCAtIONSooovviiiiiiiiiiiii e 5
B INStallationcocviiiiiiiiiiiiii 7
PrerequiSitesccociiiiiiiiiiiiii 8
License Key File Handlingccccocoiiiiiiiiiiiiiiiiiiiii, 11
Installing Natural for Ajax on JBoss Application Servercccoccoeviiiiiiiiennnnn, 11
Installing Natural for Ajax on Sun Java System Application Server 15
Verifying the Installationccooiiiiiiiii 18
4 Setting Up Your ENvironmentcccoooiiiiiiiiiiiiiiiiiiiiiiccce 19
Setting Up Application Designercccocooviiiiiiiiiiiiiiiccccec 20
Setting Up Your Development Environment for Naturalc..ccccooiinn, 20
Setting Up Your Runtime Environment for Naturalccccocoiviiiiiiiinne 21
5 FIISt STEPS woiviiiiiiicec s 25
6 About this Tutorialcccooiiiiiiiiii 27
7 Starting the Development Workplacecccooooiiiiiiiiiii 31
8 Creating a Projectcccoiviiiiiiiiiiiiiii 33
9 Getting Started with the Layout Painter ... 35
Creating a New Layout ... 36
Elements of the Layout Painter Screenccccooviiiiiiiiiiiiiiiiiiiiiicee, 38
Previewing the Layoutccoccooiiiiiiiii 39
Viewing the XIML COodecccooiiiiiiiiiiiiiiiiiiiiicccee e 40
10 Writing the GUI Layoutccccccviiiiiiiiiiiiiiiiiiiicicc 43
Specifying the Properties for the Natural Pageccccccocieviiiiiiiiiiiiiniiiicne 44
Specifying a Name for the Title Barccccoccoviiiiiiiiiiiiiii, 45
Using the Property Editor ..., 46
Specifying a Name and Method for the Buttonccccoooiiiiiiiiniiiie 48
Adding the Input and Output Areasc.cccoevieiiiiiiiiicic 48
Adding the IMagecccoooiiiiiiiii 52
Adding a Horizontal Distancec.coccoviiiiiiiiiiiiiiiccccece 52
Adding an Instructional Textccccccoviiiiiiiiiiiiiiii 53
Adding a Vertical Distancecccccooviiiiiiiiiiiiiiiiiii 54
Saving Your Layoutc.ccooviiiiiiiiii 54
11 Setting Up Your Development and Runtime Environment for Natural 57
12 Creating the Natural Codeccoviiiiiiiiiii 59
Importing the Adapter into Naturalccccoiiiiiiiiiiiniiie, 60
Creating the Main Programcccccoviiiiiiiiiiiiiiii 61
Testing the Completed Applicationccooiiiiiiiiiiiiii 64
13 Some Background Informationccceeiiiiiiiiiiiiiiiiiiiii 67
Name Binding between Controls and Adapterccooooiiiiiiiiiiii, 68
Data Exchange at RUNtimecccoooiiiiiiiiiiiiic 68

Natural for Ajax

Files and their Locationsccccooviiiiiiiiiiiiiiiiic 69
14 Developing the User Interfaceccccocevieiiiiiiiiiiiiicce 71
Starting the Development Workplacecccociiiiiiiiiiiiiiiiiiiiiiiic, 72
Creating an Application Designer Projectcccoccooiiiiiiiiiiiii, 73
Creating a Natural Pagec.ccocovviiiiiiiiiiiiiiicccccc 73
Specifying Properties for the Natural Pageccooeviiiiiiiiiniiii 74
Designing the Pagecccoooiiiiiiiiiiiiiicc e 75
Binding Properties and Methodscccccooiiiiiiiiiiiiiiii, 76
Previewing the Layoutc.ccooiiiiiiii 76
Viewing the Protocolcccccooiiiiiiiiiiiiiiiiiii i 77
Saving the Layoutc.coooiiiiiiiiic 77
Generating the Adapterc..coooiiiiiiiiiiiiii e 77
Data Type Mappingcccooouiiiiiiiiiiiii 78
15 Developing the Application Codecccoooiiiiiiiiiiiiiiii 79
Importing the Adaptercccooviiiiiiiiiiiiii 80
Creating the Main Programc.cccooiiiiiiiiiiiii 84
Structure of the Main Programccccoecviiiiiiiiiiiiiiiiiiiccccceecce e 86
Handling Page EVeNtscccocoiiiiiiiiiiic e 86
Built-in Events and User-defined Eventsccccoccooviiiiiiiiiiii 87
Sending Events to the User Interfaceccccocoeviiiiiiiiiiiiiii, 87
Using Pop-Up WINAOWSccoiiiiiiiiiiiic 88
Using Natural Mapscccociiiiiiiiiiiiiiiiiiiiici e 90
Navigating between Pages and Mapsc.cccooiiiiiiiiiiiiiiii 90
Using Pages and Maps Alternativelycccccooeiiiiiiiiiiiiiiiiiiiicicce 91
Starting a Natural Application from the Logon Pagecccocoviiiiniinnnns 92
Starting a Natural Application with a URLc.cccccciiiiiiiiiiiicece 92
16 Deploying the APplicationccccovcuiiiiiiiiiiiiiiiiiiiiiiic e 93
Components of a Natural for Ajax Applicationcccocoovveiiiiiiiiiiiiie, 94
Unloading the Natural Modulesccccciiiiiiiiiiiiiiiiiiicce 94
Installing the Natural Modulesc.cccooiiiiiiiiii 94
Unloading the User Interface Componentsccccceeeviiiiiiiiiniiiinieniiecieceeeee, 94
Installing the User Interface Componentscccocceeviiiiiiiiiiiiiiiiiicccc 95
Packaging and Deployment as a Web Applicationc.cccoeviiiiiiiniinnn 95
17 Natural Parameters and System Variablescccccooiiiiiiiiiiiiiiiniii 99
18 Usage of Edit Masksccooiiiiiiiiiic 101
General Informationcccociviiiiiiiiiii 102
Data Types with Edit Maskscccooviiiiiiiiiii 102
Characters Used in Edit Masksccccccoiiiiiiiiiiiiiiii, 102
Specifying Edit Masks in Layoutscccccoviiiiiiiiiiiiiiiicce 103
Static versus Dynamic Validationc.coccooiiiiiiii 105
19 Multi Language Managementcccccoeuviiiiiiiiiiiiiiiiiiiiiciccccec e 107
20 Support of Right-to-Left Languagescccoccooviiiiiiiiini, 109
21 Server-Side Scrolling and SOTtINGccccoevviiiiiiiiiiiiiiiiiiiii 111
General Informationcccceoiiiiiiiiiiiiiii 112
Variants of Server-Side Scrolling and Sortingccccecevvieiiiiiiiniiiiiinicceeene 112

vi

Natural for Ajax

Natural for Ajax

Controls that Support Server-Side Scrolling and Sortingc.cccocveviiiiiiinnnnne. 116
Data Structures for Server-Side Scrolling and Sortingcccocevveviiiiiiiinnnenn 116
Server-Side Scrolling and Sorting in Treesccccccevviiiiiiiiiiiiiiiiiiiicc, 118
Events for Server-Side Scrolling and Sorting ..o 119
22 Application Modernizationcceciiviiiiiiiiiiiiiiiiiiiiici e 121
23 Overview of CONVersion StePSccvieiiiiiiiiiiiiiciccce e 123
24 Map EXtractioncoooviiiiiiiiiiiiiiiiiiicc 125
General Information ... 126
Using Natural for Ajax TOOISccooiiiiiiiiiiii 126
Using the Mass FUNCHONcccovviiiiiiiiiiiiiiiicc 126
Location of the Filesccccoooiiiiiiiiiiii 126
25 Map CONVETSIONuviiiiiiiiiiiiiiiie it enaee s 129
General INformationccccoiiiiiiiiiiiiiii 130
FIrst StEPS ..vviiiiiiiiiiiiiic 131
Using the Map CONVETrtercccocuiiiiiiiiiiiiiiiiiiiiic e 139
Using the Editor EXtensionc.ccccooiiiiiiiiiiii 143
Using the Conversion Rules TOO!ccccociiiiiiiiiiiiiiiiiiiicc, 146
Using the Conversion Logs TOOLccoceiiiiiiiiiiiiccccc 148
26 Customizing the Map Conversion Processcccccoouiviiiiiiiiiiniiiiiieiiicicseeeees 151
Map Converter Processingcccceiviiiiiiiiiiiiiiiiiciiiccicceiiccce e 152
Conversion RULESociiiiiiiiiiii 156
TemPlatesoooviiiiiiiiiiii e 166
Tag CONVEILOrSooviiiiiiiciiec e 169
27 Code CONVETSIONcouiiuiiiiiiiiiiiiiiieicec et 171
General Informationcccoiiiiiiiiiiiiiii 172
Generating AdapPterscooiiiiiiiiiiiiii e 172
Structure of a Map-Based Applicationcccceeviiiiiiiiiiiiiiiiiiiiiiic, 172
Structure of a Natural for Ajax Application ..., 173
Tasks of the Code CONVEISIONccoiiiiiiiiiiiiiiiiiiiicc 174
DEFINE DATA Statementccccccoiviiiiiiiiiiiiiiiiiiiiiiiiiececi e 174
INPUT Statementcccooiiiiiiiiiiiiiiiicccce e 175
REINPUT Statementcccceeoiiiiiiiiiiiiiiiiiiiiiciccicce e 176
PF-Key Event Handlingccccccoiiiiiiiiiiiiiiiccc 178
SET KEY Statementccooiiiiiiiiiiiiiiiic e 179
Processing RUIES ... 183
System Variablescccccoooiiiiiiiiiiiiii 183
Variable Names Containing Special Characterscccocveviiviiiiniiiiicnn 184
28 Working with Containersccccevviiiiiiiiiiiiiiiiccc e 187
29 Positioning of Controls inside a Containercccccoeviiiiiiiiiiiiiiiiiiiiee 189
Row Types - TR and ITRccooiiiiiiiii 190
Some More Details on ITRcccooiiiiiiiiiiiiic 191
TR PrOPerti€sccoiiiiiiiiiiii e 193
ITR PIOPETIHIES ...eeiiiiiiiiiiiiiiiiiciciiicc e 194
30 Defining the Width of Controls inside a Containercccocoeiiiiiiiniiiinnnnn. 197
Controlling the Width of CONntrolsccccceeiiiiiiiiiiiiiiiiiiicccee 198

Natural for Ajax vii

Natural for Ajax

HDIST and VDIST CONLIOISeieiiiiiiiiiiiiiiiiiiiceiiecciicesiecesiee e 200
HDIST Properti€sccooieiiiiiiiiiiiiicciccie et 202
VDIST Propertiescooouiiiiiiiiiiiiiiiiiiiiiiiccic e 203
rowspan and colspan Definitionsc.cccooviiiiiiiiiiii 204
CELLSPAN CONtrolccoiiiiiiiiiiiiiiiiiiciciccicicccc 204
CELLSPAN Propertiesccccciiiiiiiiiiiiiiiiiiiiciici e 206
Rules for Positioning Controls inside Containersccccoeeveviiiiieniiiiiiennennen. 208
31 Vertical Sizing of Containers and Controlsccccociiviiiiiiiiiiiiiiniiii, 209
Vertical Pixel SIZINGc.coiiviiiiiiiiiicc 210
Vertical Percentage SiZingccociiiiiiiiiiiiiiiiiiiiiiiicic e, 211
Finishing the Examplec.ccccoiiiiiiiiiie 214
32 Overview of Different Containerscccoeiiiiiiiiiiiiiiiiii e, 217
Different Kind of Containersccccovviiiiiiiiiiiiiiiiiiiiciic e, 218
ROW CONAINETSoocviiiiiiiiiiiiiiiicciccc e 218
Column CONtaINeTrsccoivuiiiiiiiiiii e 219
Row and Column Containers in Combinationcccccocivviiiiiiiiiiiiiininn. 220
Nesting CONtainerscccccviiiiiiiiiiiiiiiiii 221
33 ROWAREA and COLAREAcccoiiiiiiiiiiiiiicccc e 223
ROWAREA Propertiescccccoviiiiiiiiiiiiiiiiiiiiiiiiiiceciic e 224
COLAREA Propertiesccciiiiiiiiiiiiiiiiciiiccciiccciec e 231
34 ROWAREAWITHHEADERc.ccciiiiiiiiiiiiiiiiicii e 237
Simple EXamPeocoiviiiiiiiiiiiiiiiic 238
ROWAREAWITHHEADER Propertiesccccocciiiiiiiiiiiiiiiiiiiiiciccieccee 239
ROWAREAHEADER Propertiescccocciiiiiiiiiiiiiiiiiiiiiiiiicciicciec s 241
ROWAREABODY Propertiescccoceeiiiiiiiiiiiiiiiiiiiiciiciccccccceescenees 242
35 ROWTABAREA and COLTABAREAccccoiiiiiiiiiiiiiiiccc 245
ROWTABAREA Propertiescccccoovuiiiiiiiiiiiiiiiiiiiiccicciecc 247
COLTABAREA Propertiescccooviiiiiiiiiiiiiiiicciccicece e 260
TABPAGE Propertiescccviiiiiiiiiiiiiiiiiiciiccicccicc e 268
The Most Common EITOrcccoviiiiiiiiiiiiiiii 269
Example: Controlling which Tab is displayed by the Server Adapter 269
Example: Controlling the Visibility of Tab Pagesc.ccccooiiiiiiiiiiiiiiie, 270
36 ROWTABLEO and COLTABLEDccccooiiiiiiiiiiiiiiicicccicccc e 273
ROWTABLEOQ Propertiescccocuiiiiiiiiiiiiiiiiiiicciiiccecciccicee e 275
COLTABLEQ Propertiesccoooiiiiiiiiiiiiiciieccice e 276
37 ROWDYNAVIS and COLDYNAVISccoioiiiiiiiiiiiiiccc 279
ROWDYNAVIS Propertiescccoueeiiiiiiiiiiiiiiciceiiceiece e 281
COLDYNAVIS Propertiescccccovcuiiiiiiiiiiiiiiiiiiiicciiccceceieccee e 282
Some Comments on Controlling the Visibility of Controlsc.cccccecveiiiiiniin. 284
38 ROWDIV and INNERDIVccccooiiiiiiiiiiiiiiiicc s 285
When to Use ROWDIV and INNERDIV Containerscccccoeiiiiiiniiiicinnennnn. 288
ROWDIV Properti€scccoiiiiiiiiiiiiiiiiciec e 289
INNERDIV Properties ...t 290
39 ROWSCROLLAREA ...ttt 293
ROWSCROLLAREA Propertiescccccovvuiiiiiiiiiiiiiiiiiiiiciiiccciccice e 295

viii

Natural for Ajax

Natural for Ajax

40 HSPLIT and VSPLITccccooiiiiiiiiiiiiiiiiieetcce e 299
Example for HSPLITccocoiiiiiiiiiiccciccc e 300
Example for VSPLITcocoiiiiiiiiiiiiiiiiiiciicicciii e 302
HSPLIT Propertiescoocueiuiiiiiiiciieieeccieecte et 303
VSPLIT Propertiesccccovoiiiiiiiiiiiiiiiiiiiiicciicciic e 304
SPLITCELL Propertiescccoooiiiiiiiiiiiiiiiicci e 305
Defining the Split SiZeccciiiiiiiiiiiiiii e 306

41 HLINE and VLINE ..o 307
VLINE PrOperti€sccooiiiiiiiiiiiiiii i 309
HLINE Properties ..o 310

42 Performance Optimization with Containerscccocooviiiiiiiiii 311

43 Working with CONtrolsccocoiiiiiiiiiiiiiiiii e 315

44 Some Common Rules for all Controlsccceivviiiiiiiiiiiiiii, 319
Name and Text IDcccooiiiiiiiiiii 320
Table, Row, Colum, CONIOLo.uuiiiiiieiiiiiiee ettt ettt e eva e enaas 320
Explicit AIgNMENtccoooviiiiiii 320
Binding to Adapter Parametersc.ccccevviiiiiiiiiiiiiiiiiii 321
Directly Influencing the Control Styleccocoiiiiiiii 321
Dynamically Controlling the Visibility and the Display Status of Controls 322
Focus Managementccocoiiiiiiiiiiiiiiiiic 323
Flushing of INPULSccccooiiiiiiiiii 324
Tab SEqUENCEc..ooiiiiiiiiiiiiii 324
TOOHPS e 326

45 BREADCRUMBooiiiiiiiiiiiiccccc s 327
EXamPle ..ooooiiiiiiiii 328
Adapter INterfaceoooviiiiiiiiiiiiiie e 328
Built-in EVENtScoooiiiiii 328
PrOPerti€soouiiiiiiiiiii 329

46 BUTTON ...ooiiiiiiiiiiicicc et 331
Example: Simple BUutton ... 332
Example: Button with Imagecccccociiiiiiiiiiiiiii, 333
Hiding and Disabling Buttonscccocoviiiiiiiiiiii 333
PIOPETHIES ..o 333

47 BUTTONLISTooiiiiiiiieece et 339
Adapter INterfaceccooioiiiiii 340
PIOPertiescooiiiiiiiiiiiiiii 340

48 CHECKBOX ...ttt s 343
PIOperties ... 344

49 COMBODYN2 ..ottt e e s s 349
Adapter Interfaceccocooiiiiiiiii 350
PIOPertiescoouiiiiiiiiiiii 350

50 COMBOFIXoouiiiiiiiiiiiiicc e e 355
COMBOFIX Propertiescccciiiiuiiiiiiiiiiiiiiiiciiiic i 356
COMBOOPTION Propertiesccceevuiiiiiiiiiiiiiiiiiciiciccie e 359

51 DATEINDPUT ...oooiiiiiiiiiiici s s 361

Natural for Ajax iX

Natural for Ajax

EXamPle ..ooiiiiiiiiiii 362
PrOPerti€sc.oioiiiiiiiiiii 362
52 DROPICON ..ottt 369
EXAMPIE ..ooviiiiicc 370
PIOpertiesccuiiiiiiiiiiiiii 370
B3 FIELD ..oiiiiiiiiiiiiiiccc s 375
Built-in EVeNts ..o 376
Propertiescooiiiiiiiiiiiiiiic 376
54 FILEUPLOAD/FILEUPLOAD?Zccccciiiiiiiiiiiiiiiiiciicc e 387
FILEUPLOADoootiiiiiii e 388
FILEUPLOADZoooiiiiiiiiiiiiiii i 390
FILEUPLOAD Propertiescccooiiiiiiiiiiiiiiiiiiiiicciiie e 391
FILEUPLOAD2Z Propertiesccccoviiiiiiiiiiiiiiiiiiiiciiciiiecec e 394
55 TICON L. 397
EXamPIe ..oooiiiiiiiii s 398
PrOPerti€soouiiiiiiiiiii 398
56 TCONLIST ..ot 403
Adapter Interfaceccooieiiiiiii 404
Built-in EVeNts ..o 404
PrOPertiesc.coiiiiiiiiiiiiiiic 404
57 THTML ..o 407
PIOPertiescooouiiiiiiiiiiiiii 408
58 IMAGEQOUT ..ottt 411
PIOPertiescccouiiiiiiiiiiiiiii 412
BILABEL ..o s 415
EXQMIPLE .o e 417
Aligning the Text ..o 417
PrOPerti€soouiiiiiiiiiii 418
60 MENUBUTTONcccoiiiiiiiiiiii e 423
EXAMPIE ..ooviiiiiiie s 424
MENUBUTTON Propertiesccccciiiiiiiiiiiiiiiiiiiciiiiccieccciccseccec e 425
MENUITEM Propertiesc.cccoiiiiiiiiiiiiiiiiiccie e 427
61 METHODLINKoooiiiiiiiiic s 429
PrOpertiescoouiiiiiiiiiiiiii i 430
62 MULTISELECT ...cooiiiiiiiiiiiiiiicice e 435
EXamMPLe ..o 436
Adapter Interfacecc.ooioiiiiiiii 436
PIOperties ... 436
63 NEWSFEEDooiiiiiiiiiiiiiiiiii e 441
EXamPle .oooiiiii 443
Built-in EVENtSooiiiiiiiiii 444
PrOPerti€soouiiiiiiiiiii 444
64 RADIOBUTTONooiiiiiiiiiiiiiiicccecee v 445
PrOPeItiescuiiiiiiiiiiiii e 446
65 SCHEDULELINEcccoiiiiiiiiiiiccc e 451

X Natural for Ajax

Natural for Ajax

PrOPertiescc.ooiviiiiiiiiiiiii 452
06 SLIDERooiiiiiiiiiiiiiie s 457
EXamPIe .ooiiiiiiii s 458
Adapter INterface ..o 459
PIOpertiesccuiiiiiiiiiiiiii 459
67 STRIPSELccooiiiiiiiiiiiiiiiiiici e 465
EXQMIPLE ..o e 466
Propertiesc..oooiiiiiiiiiiiiic 466
68 SUBPAGEcooiiiiiiiiicc 471
PIOpertiesccouiiiiiiiiiiiicc 472
09 TABSELooiiiiiiiiii 475
Adapter INterfacecooiiiiiiiiiiiiii 476
Built-in EVENtSccciiiiiiiiiiiiiii 477
PIOPETHIES ..o 477
70 TABSTRIP2oviiiiiiiiiee ettt 479
EXAMPIE ..ooviiiiiiici 480
Adapter INterfacecocooviiiiiiiiiiiiii 480
Built-in EVENtScccoiiiiiiiiiiii 480
PIoperties ... 481
71 TAGCLOUD ..ottt s s 483
EXamPle .ooooiiiii 484
Adapter INterfaceccccovviiiiiiiiiiiiii 485
Built-in EVeNts ..o 485
PIOPertiescccoiiiiiiiiiiiiiii 485
T2 TEXT oo s 489
PIOperties ...t 490
73 TEXTOUT ..o 497
EXAMPIE ..ceviiiiii 498
Propertiesccouiiiiiiiiiiii 498
74 TOGGLEcoiiiiiiiiiiiiicic s 505
PIOperties ... 506
75 ACTIVEX L.oiiiiiiiiiiiiii s 511
PIOPETHIES ..o 512
76 GOOGLEMARPoooiiiiiiiiic ettt 515
Before You Start ... 516
EXamMPLe ..o 517
Typical Problemscccooiiiiiiiiiiic 518
PIOperties ... 519
77 NETMEETINGoooiiiiiiiiiiiiiiiiii s 521
EXAMPIE ©.ooviiiiiii 522
PIOPertiescoouiiiiiiiiiiii 522
78 SKYPECALL ..ot 525
EXaMPLE ..o e 527
PrOPerti®scuiiiiiiiiiiiiii 527
79 NJX:BUTTONITEMLISTocoviiiiiiiiiiiiiiiicccceccccce e 529

Natural for Ajax Xi

Natural for Ajax

EXamPle ..ooiiiiiiiiiii 531
Adapter Interfaceccocoiiiiiiiiiiiiiii 531
Built-in EVENtScooiiiiiiiii 532
PrOPerti€sc.ooouiiiiiiiiii 532
80 NJX:BUTTONITEMccuiiiiiiiiiiiiiiiiciccicciciec et 533
EXamPle ...ooiiiiiiiiii 534
Built-in EVeNts ..o 534
Propertiescooiiiiiiiiiiiiiiic 535
81 NJX:BUTTONITEMLISTEIXc.cccoiiiiiiiiiiiiiiiiiiiiicic e 539
EXamPIe ..o 540
Adapter Interfaceccooioiiiiiiii 540
Built-in EVENtsocoiiiiiiiiii 541
PrOPeIti®s ...ccviiiiiiiiiiiici e 541
82 NJX:BUTTONITEMEIXccviiiiiiiiiiiiiiiiiiiicciccc e 543
EXamPIe ..oooiiiiiiiii s 544
Built-in EVENtScccoiiiiiiiiii 544
PIoperties ... 545
83 NJXFIELDLIST ..ottt 551
EXQMPLE ..o 553
Adapter INterfaceccccoviiiiiiiiiiiiiii 554
Built-in EVeNtsccooiiiiiii 554
PIOPertiescooouiiiiiiiiiiiiii 554
84 NJX:FIELDITEMooiiiiiiiiiiiiiiiiiiiicicc s 557
EXaMPLE ..o 559
Adapter Interfaceccooioiiiiiiiiii 560
Built-in EVeNts ..o 560
PrOpertiesooviiiiiiiiiiiiiic 560
85 NJX:FIELDVALUEc.ocoiiiiiiiiiiiiiiiiiicicc s 571
EXamMPIe ..o 573
Adapter Interfaceccoooioiiiiiiii 573
Built-in EVENtsoccoiiiiiiiiiii 573
PrOPeIti®s ...couviiiiiiiiiiiicci e 574
86 NJX:NJXVARIABLEcccoiiiiiiiiiiiiiiiiiiiccc s 583
EXamPle ..oooiiiiiiiii 584
PrOPerti€soouiiiiiiiiiiii 584
87 NJX:EVENTDATAoooiiiiiiiiiieieeccce e 585
EXAMPIE ..coviiiiiiiciicc 587
Adapter INterfacecocuiiiiiiiiiiiiic 588
88 NATPAGE ..ot s 589
PrOPerti€sooouiiiiiiiiii 590
89 Working with Gridscccoociiiiiiiiiiiiiiiiiii 597
90 BASICS ..vvieiuviiiciiiicctec e 599
91 TEXTGRIDZooiiiiiiiiiiiiiiccei e 601
A Simple EXampleccoooviiiiiiiiiii 602
Adapter INterfacec.cocviiiiiiiiiiiii e 603

Xii

Natural for Ajax

Natural for Ajax

Selecting Rows in @ TEXTGRID2cccccooiiiiiiiiiiiiiiiii i 603
TEXTGRID2 Propertiescccoovviiiiiiiiiiiiiiiieciceiec e 604
COLUMN Propertiescoccuiiiiiiiiiiiiiiiiciiiccciiccciiceciec e 610
Dynamic Setting of Text Styles in TEXTGRID2ccccoviiiiniiiiiiiiiic, 614
92 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrollingcccccoeovivviiniiincnnn. 615
Performance Considerationscccociiiiiiiiiiiiiiiiiiiii 616
EXQMIPLE ..o e 616
Adapter INterfaceccccooviiiiiiiiiiiiii 618
Using Server-Side Scrollingccooiiiiiiiiiiiiiiiiiecce 618
Using Server-Side SOTtNGcccccoviviiiiiiiiiiiiiiiiiiiiiicicc 619
TEXTGRIDSSS2 PrOPertiesc.ccouiiuiiiuiiiiiiiiiiiicciieciceceee et 619
93 ROWTABLEAREA? - The Flexible Control Gridccccccovviiiiiiiiiiiiiiiiiii, 627
EXamPle ...oooiiiiiiiiii s 628
Adapter Interfaceccocoiiiiiiiiiiiiiii 630
Built-in EVENtSooiiiiiiiii 630
Making Grids Look like Gridsc.cocooviiiiiiiiiiiiiicce 631
ROWTABLEAREA2 Propertiesccccceiviiiiiiiiiiiiiiiiiiiiicciicciecciec e 632
STR Propertiesccc.ooiiiiiiiiiiiiii e 638
94 MGDGRID - Managing the Gridcccccoeviiiiiiiiiiiiiiiiicicecece 641
EXamPle ..oooiiiiiiiiiii 643
Adapter Interfaceccocooiiiiiiiiiii 644
Built-in EVENtS ...coooiiiiiiii 645
MGDGRID Propertiesccoceiieiiiiiiiiiiciiccccci e 645
ROWINSERT Propertiesccccoiviiiiiiiiiiiiiiiiiiiiiicciiccieciccciece e 649
ROWCOPY Propertiesccceoiiiiiiiiiiiiiiiie i 650
ROWDELETE Propertiesccccciiiiiiiiiiiiiiiiiiiiiiiicccieccciec e 651
95 GRIDCOLHEADER - Flexible Column Headersccccoccoiviiiiiiniiiniiiinnnnn. 653
Flexible Column SizZinNgccooiiiiiiiiiiiiiiicc e 654
Flexible Colummn SOTtiNgcccociiiiiiiiiiiiiiiiiiici e 657
GRIDCOLHEADER Propertiesc.ccccooiiiiiiiiiiiiiiiiiicieccc e 658
Smart Selection of Rows - SELECTOR Controlcccocoviiiiiiiiiiiiiiiiiie 661
SELECTOR Propertiescccoooiiiiiiiiiiiiiiciceieicce e 662
96 Working wWith Treesccccooiiiiiiiiiiiiii 665
97 BASICS ..vveuvietiieitiecie et 667
TYPES Of TIEES .cuveieeee 668
When to Use Which TyPecccooviiiiiiiiiiiiiiiiiiicccc e 669
98 TREENODES3 in Control Grid (ROWTABLEAREA2)ccccciiiiiiiiiiiiiiiiiciie, 671
EXQMIPLE ..o e 672
Adapter INterfacecccooviiiiiiiiiiiiiii 673
Built-in EVeNtscccoiiiiiii 673
PIOPertiescoouiiiiiiiiiiii 673
99 CLIENTTREEcciiiiiiiiiiiiiiiciei e 679
EXaMPLE ..o e 680
Adapter Interfaceccooioiiiiiiiii 681
Built-in EVeNts ..o 681

Natural for Ajax Xiii

Natural for Ajax

PrOPertiescc.ooiviiiiiiiiiiiii 681
100 Working with MenUSccocciiiiiiiiii 685
101 TyPpes Of MENUScoouiiiuiiiiiiiiiiiiiiic it 687
102 MENU ..ot 689
EXaMPLE ..o 690
Adapter Interfaceccooioiiiiiiii 691
Built-in EVeNts ..o 691
Propertiescooiiiiiiiiiiiiiiic 692
103 DLMENU ..ottt 695
EXamPIe ..o 696
Adapter Interfaceccooioiiiiiiii 697
Built-in EVENtsocoiiiiiiiiii 697
PrOPeIti®s ...ccviiiiiiiiiiiici e 698
104 XCIPOPUPMENU - Enable Context Menuscc.ccceoviiiiiiiiiiiiiiiiiiicicce, 699
EXamPIe ..oooiiiiiiiii s 700
Adapter INterfacec..ooioiiiiiii 701
Built-in EVENtSc.ooiiiiiiiii 702
105 Non-Visual Controls and Hot Keyscccoooviiiiiiiiiii 703
106 TIMERoooviiiiiiiiiiiiiiec e 705
EXamPle ..o.ooiiiiiiiiiii 706
PrOPerti€sooouiiiiiiiiii 707
107 XCIDATADEF - Data Definitioncccccovviiiiiiiiiiiiiiiiiciiceccccccecn 709
EXAMPIE ..coviiiiiici 710
PIOPertiescccouiiiiiiiiiiiiiii 713
108 Extended Hot Key Managementcccoceeviiiiiiiiiiiiiiiccicceccccc 717
Direct Hot Key Definitions with Certain Controlscccccoceeviiiiiiniiiiinnnnen. 718
Hot Key Definitions for Certain Controlscccocceiviiiiiiiiiiiiiiiiiiiii, 718
109 Function Key Handlingcccooooiiiiiiiii 721
110 Working with WOTKplacesccccoeviiiiiiiiiiiiiiiiiiiiiiicicicce e 723
111 What are Multi Frame Pages?cccccooviiiiiiiiiii 725
112 Definition of Multi Frame Pagesccccccooiiiiiiiiiiiiiiiiiiciiiccccec 727
MEPAGE ..o e 728
MEFCISFRAMEooiiiiiiiiiiiiiicc s 730
MFHTMLERAMEc.oooiiiiiiiiiic e 732
MFFRAMESETociiiiiiiiiiii i 733
113 Application Designer Workplace Frameworkcccoccceeviiiiiiiiiiiiiniiiiinnnnn. 735
Framework OVerview ... 737
Functions Frame: MEWPFUNCTIONScccccooiiiiiiiiiicc 738
Active Functions Frame: MFWPACTIVEFUNCTIONScccccociiiiiiiiiiiniiiienens 740
Content Frame: MEWPCONTENTccccoooiiiiiiiiic 741
Filling the MEWPFUNCTIONS Frame Initially: MEWPBOOTSTRAPINFO 743
Session Management inside the Workplacecccocooiiiiiiiii 752
Workplace API for Dynamic Manipulationccccccevviiiiiniiniiiiiiiiiicceen, 753
114 NJX:XCIWPINFO2Z ... 755
EXQMIPLE ..o e 756

Xiv

Natural for Ajax

Natural for Ajax

Adapter INterfaceccccooviiiiiiiiiiiiii 756
115 NJX:XCIWPFUNCTIONS ... 761
EXamPIe .ooiiiiiiii s 762
Adapter INterface ..o 762
116 NJX:XCIACCESS2 ...ttt 767
EXamPle ...ooiiiiiiiiii 768
Adapter INterfaceoooviiiiiiiiiiiic e 768
StichwOortverzeichniscocviiiiiiiiiiiiiiii 771

Natural for Ajax XV

XVi

1

Natural for Ajax

This documentation explains how to create rich internet applications which use the Ajax (Asyn-
chronous JavaScript and XML) technology.

This documentation is organized under the following headings:

Using Natural for Ajax

Variables

[Introduction What is Natural for Ajax?

<@ Installation How to install Natural for Ajax on the supported
application servers.

[Setting Up Your Environment |How to set up Application Designer, your development
environment for Natural, and your runtime environment
for Natural.

[First Steps How to create a ,, Hello World!” application.

[Developing the User Interface |How to develop the user interface using Application
Designer.

[Developing the Application How to develop the application code using Natural

Code Studio or Natural for Eclipse.

[Deploying the Application How to unload and install the Natural modules and user
interface components.

[Natural Parameters and System |Gives an overview of the Natural parameters and system

variables that are evaluated in Natural for Ajax
applications and sent to Application Designer.

Usage of Edit Masks

Describes how Natural for Ajax supports the Natural
edit mask concept.

Multi Language Management

Describes aspects to be considered for
internationalization.

Support of Right-to-Left
Languages

Describes how Natural for Ajax supports right-to-left
languages and bidirectional text.

Natural for Ajax

[Server-Side Scrolling and Describes how Natural for Ajax supports the concept of
Sorting server-side scrolling and sorting.
[Application Modernization How to convert a character-based Natural application
to a Natural for Ajax application.
Application Designer Reference (adapted to Natural for Ajax)
[Working with Containers Shows you how to work with containers - containers are
areas on the page that can hold controls.
[Working with Controls Shows you how to work with the elements that are
placed into containers - the controls.
[Working with Grids Explains what grids are and how to use them.
[Working with Trees Explains the basic types of trees and how to use them.
[Working with Menus Shows you how to arrange a number of functions in a
structured way.
[Non-Visual Controls and Hot |Describes how to develop controls that do not have visual
Keys effects.
[Working with Workplaces Deals with applications that organize multiple pages in
so-called workplaces.

Note: This documentation describes the Application Designer controls that are mapped to

Natural and are verified for the use with Natural. Application Designer controls that are
not contained here have either no mapping to Natural or their usability with Natural is not

verified.

See also Configuring the Client in the Natural Web 1/O Interface documentation. There, you will learn
how to

= start a Natural application from the logon page or with a URL,

manage the configuration file for the session using the configuration tool,

* modify the style sheet which controls the font, the color and the representation of the PF keys,

" activate the preconfigured security settings of Natural for Ajax and to adapt them to your

requirements,

" create your own trust files for a secure connection between the Natural Web I/O Interface server

and Natural for Ajax,

" enable logging in the case of problems with Natural for Ajax.

Natural for Ajax

2 Introduction

® What is a Rich Internet APPlICALIONTooiiiiiiiiii e 4
= Rich Internet Applications With NatUFalovvviiiiiiiiiiii e 4
B MIXEd APPLICALIONS ... e

Introduction

Using Natural for Ajax, you can create rich internet applications which use the Ajax (Asynchronous
JavaScript and XML) technology. This enables Natural users on Windows, UNIX and mainframe
platforms to develop and use Natural applications with a browser-based user interface, similar
to GUI desktop applications.

What is a Rich Internet Application?

Classical HTML- and browser-based applications suffer from known disadvantages. The server
responds to each user interaction with a new page. This may lead to long response times and new
rendering in the browser and thus to a discontinuous workflow for the user. The possibilities
offered by DHTML overcome these disadvantages, but they are complicated to use and make it
hard to build a comfortable user interface. The user interface is therefore often simpler and less
comfortable than users are accustomed to from their experience with desktop applications. Although
itis possible to provide complex controls and features like drag-and-drop, this is hard to implement
- especially if compatibility with all commonly used browsers is required. Classical GUI applications
also have the disadvantage that a client component of the application must be installed on each
client machine.

Rich internet applications that use the Ajax technology overcome these disadvantages by combining
the reachability of browser-based applications with the rich user interface of GUI applications.
Software AG provides support for the development of rich internet applications with Application
Designer. Natural for Ajax combines the user interface capabilities of Application Designer with
the application development capabilities of Natural.

Rich Internet Applications with Natural

At runtime, a rich internet application with Natural has the following structure:

® A Natural host session on a Windows, UNIX or mainframe server runs the application code.
Other than with a map application, the application does not deal with user interface issues. It
contains only the application logic and communicates with the user interface layer by sending
and receiving data. The data is displayed in page in a web browser. Events - such as button
clicks - that the user raises in the web browser are passed back to the application code. Along
with an event, the application code receives also the data that the user modified in the web
browser. It processes the event and the data and returns modified data back to the web browser

page.

® Natural for Ajax, which is running on an application server, merges the data received from the
Natural application into a DHTML page and delivers the page to the web browser. In the
inverse direction, Natural for Ajax forwards events that the user raised in the web browser along
with the modified data to the Natural application.

4 Natural for Ajax

Introduction

" A web browser renders the DHTML page. JavaScript code on the page processes local user
interaction and exchanges data with Natural for Ajax as needed. It uses Ajax technology to
exchange data with the Natural application in the background without having to re-render the
page as a whole.

At development time, a rich internet application is created with Natural in the following way:

® Application Designer is used to develop the user interface layout of a web page and to bind the
controls on the page to data elements in the application. Application Designer is contained in
the Natural for Ajax module running on the application server.

® When the user saves the page layout, a Natural module of type ,,Adapter” is generated. The
adapter serves as an interface between the application code and the page layout. It contains:

" A data structure that describes the data that the Natural application has to deliver to the
application server in order to populate the web page.

® The Natural code necessary to transfer the data structure to the user interface and to receive
modified data back.

" A code skeleton, in the form of comment lines, that contains handlers for the expected events.
The application programmer can copy this code skeleton into the main program to implement
the event handlers.

® Then a main program is implemented that exchanges data with the web page using the adapter
and handles the events. The event handler code has no knowledge of the web page layout, but
operates only on the page data that is sent and received through the adapter.

® The navigation between different pages is implemented. A rich internet application navigates
between pages in the same way as a map application would navigate between maps.

Mixed Applications

With the support of Unicode, Natural has introduced the Natural Web I/O Interface which renders
Natural maps in a web browser. Typically, if you are running map-oriented applications and wish
to change them to rich internet applications, you will do this gradually. In certain parts of an
application, maps might be replaced by rich GUI pages, other parts will possibly be left unchanged.
Therefore, Natural supports running mixed applications which consist of both maps and rich GUI
pages. With maps, the application controls the page layout, and the rendering mechanism there-
fore respects the layout information that the application provides. With rich GUI pages, the appli-
cation does not control the layout; the layout is controlled by Application Designer. However, for
the users of an application the switch between maps and rich GUI pages is seamless.

Natural for Ajax 5

3 Installation

B PIEIBGUISIEES . oeeeit ittt ettt e e ettt et e oottt e e oot e e e e e ettt et e e e e et e e e e e e e e a bt e e e eaeaan e 8
B License Key File HanINGoooiiiii e 11
= |nstalling Natural for Ajax on JBosS AppliCation SEIVEToiiiiiiiiieiiiiei e 1
= |nstalling Natural for Ajax on Sun Java System Application SErver ... 15
m Verifying the INSAlIAtoN ..o 18

Installation

Natural for Ajax consists of a J2EE enterprise application (njx12.ear) and a J2EE resource adapter
(njx12ra.rar). Both components are to be deployed on a J2EE server. Natural for Ajax receives data
from Natural applications running on a Windows, UNIX or mainframe host and delivers web
pages to the user's web browser.

This chapter describes the installation of Natural for Ajax on application servers on Windows or
UNIX. It does not describe the installation of the additionally required Natural components on a
Windows, UNIX or mainframe host, but refers to the corresponding installation documents.

For information on how to activate the preconfigured security settings of Natural for Ajax and
how to adapt them to your requirements, see Configuring Security in the Configuring the Client part
of the Natural Web 1/0 Interface documentation.

Prerequisites

The following topics are covered below:

= Java

= J2EE Server

= Apache Ant

= Natural for Mainframes

= Natural for UNIX

= Natural for Windows

= Support for Special Features
= Development Servers

= Development Clients

= Browser Prerequisites

Java
JDK 1.5.0_12 or above is required.

J2EE Server

The following application servers are supported. The application servers are not delivered with
Natural for Ajax. They can be obtained from the locations indicated below, according to their
respective license terms.

® JBoss Application Server 4.0.5 and 4.2.2 (see http://www.jboss.org/).
" Sun Java System Application Server 8.1, 8.2 and 9.1 (see http://developers.sun.com/).

8 Natural for Ajax

http://www.jboss.org/
http://developers.sun.com/

Installation

Apache Ant

Apache Ant 1.6.5 or above is required to perform the deployment on JBoss Application Server.
This tool is freely available on http://ant.apache.org/.

Natural for Mainframes

If you want to use Natural for Ajax with Natural for Mainframes, the following must be installed:

" Natural for Mainframes Version 4.2.3 or above, and

= the Natural Web I/O Interface server.
For detailed information, see:

® the Installation documentation which is provided with Natural for Mainframes;

* the section Installing and Configuring the Natural Web I/O Interface Server in the version of the
Natural Web 1I/O Interface documentation which is provided for Natural for Mainframes.

Natural for UNIX

If you want to use Natural for Ajax with Natural for UNIX, the following must be installed:

® Natural for UNIX Version 6.3.1 or above, and
= the Natural Web I/O Interface daemon.

For detailed information, see:

* the Installation documentation which is provided for Natural for UNIX;

* the section Installing and Configuring the Natural Web 1/O Interface Server in the version of the
Natural Web 1/O Interface documentation which is provided for Natural for UNIX.

Natural for Windows

If you want to use Natural for Ajax with Natural for Windows, the following must be installed:

" Natural for Windows Version 6.3.3 or above, and

® the Natural Web I/O Interface server (which is implemented as a service).
For detailed information, see:

® the Installation documentation which is provided for Natural for Windows;

* the section Installing and Configuring the Natural Web 1/O Interface Server in the version of the
Natural Web I/O Interface documentation which is provided for Natural for Windows.

Natural for Ajax 9

http://ant.apache.org/

Installation

Support for Special Features

If you want to use the Natural parameters DC and DTFORM in a Natural for Ajax application, the
following versions are required:

® Natural for Mainframes Version 4.2.5 or above,
= Natural for UNIX Version 6.3.5 or above,

® Natural for Windows Version 6.3.5 or above.

If you want to use the workplace example mentioned in Application Designer Workplace Frame-
work, the following versions are required:

= Natural for Mainframes Version 4.2.6 or above,
® Natural for UNIX Version 6.3.6 or above,

= Natural for Windows Version 6.3.6 or above.

If you want to use the example on control variables mentioned in XCIDATADEF - Data Definition
or the Natural system variable *CURS - FIELD in a Natural for Ajax application, the following versions
are required:

= Natural for Mainframes Version 4.2.6 or above,
® Natural for UNIX Version 6.3.7 or above,

= Natural for Windows Version 6.3.7 or above.
Development Servers

The following development servers support the remote development of Natural for Ajax applica-
tions:

® Natural Development Server for Mainframes Version 2.2.3 or above.
® Natural Development Server for UNIX Version 2.2.3 or above.

® Natural Development Server for Windows Version 2.2.4 or above.
Development Clients

The following development clients support the remote development of Natural for Ajax applica-
tions:

® Natural for Windows (Natural Studio) Version 6.3.1 or above.
® Natural for Eclipse Version 3.2.1 or above.

= NaturalONE Version 8.1 or above.

10 Natural for Ajax

Installation

Browser Prerequisites

Supported browsers in this version are:

® Internet Explorer 6.0 through 8.0.
" Mozilla Firefox 3.0 through 3.5.

A\ Important: Cookies and JavaScript must be enabled in the browser.

License Key File Handling

A valid license key file is required during the installation. The license key file is an XML file which
is usually supplied along with the product. Alternatively, you can obtain a license key file from
Software AG via your local distributor.

Installing Natural for Ajax on JBoss Application Server

Only one version of the Natural Web I/O Interface client or one version of Natural for Ajax can
be installed on the same JBoss Application Server.

You can either install the Natural Web I/O Interface client or Natural for Ajax on the same JBoss
Application Server, not both.

It is assumed that <jboss> is the directory of your JBoss Application Server installation.
The following topics are covered below:

= First-time Installation
= Update Installation

First-time Installation

» To install Natural for Ajax

1 Install Apache Ant (you need Apache Ant to deploy Natural for Ajax to the JBoss Application
Server; see the Prerequisities above for the required version number):

1. Download and unzip Apache Ant (from http://ant.apache.org/) into an installation direc-
tory of your choice. Avoid a directory name that contains blanks.

2. Let the environment variable ANT_HOME point to the directory <ant> (where <ant> is the
directory of your Ant installation).

Natural for Ajax "

http://ant.apache.org/

Installation

3. Add <ant>/bin to your PATH environment variable.

2 Deploy Natural for Ajax to JBoss Application Server:

1. Copy the Natural for Ajax distributables to a directory on a disk drive.

2. In the directory that contains the Natural for Ajax distributables, there is an Ant script
named jbossdeploy.xml. Edit this script and change the setting

<{property name="jbosshome" value=""/>
to

<{property name="jbosshome" value="<jboss>"/>
where <jboss> is your JBoss Application Server installation directory.

[\, Important: Take care to use forward slashes (also on Windows) when specifying the
directory path.

3. Execute the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml

Wait for the message ,BUILD SUCCESSFUL”. This indicates that the deployment was
successful.

3 Copy the license file into the directory <jboss>/server/default/deploy/njx<nn>.ear/cisnatu-
ral.war/cis/licensekey.

4 Edit the file <jboss>/server/default/deploy/jbossjca-service.xml and change the setting

{!-- Enable connection close debug monitoring -->
<attribute name="Debug">true</attribute>

to

{!-- Enable connection close debug monitoring -->
<attribute name="Debug">false</attribute>

12 Natural for Ajax

Installation

5 JBoss Application Server 4.0.5 only: Edit the file <jboss>/server/default/deploy/njx<nn>.ear/cis-
natural.war/WEB-INF/web.xml and uncomment the section

<= -

Uncomment the next lines, in case the configuration tool is installed on a JBOSS
4.0.5.GA

{listener>

<listener-class>org.apache.myfaces.webapp.StartupServietContextlListener</Tistener-class>
</listener>
==

so that it looks as follows:

{listener>

<listener-class>org.apache.myfaces.webapp.StartupServietContextlListener</Tistener-class>
</listener>

/), Important: For JBoss Application Server 4.2, you must not remove this comment.

6 Start JBoss Application Server.

Update Installation

» To update Natural for Ajax

1 Shut down JBoss Application Server.
2 Deploy Natural for Ajax to JBoss Application Server:

1. Copy the Natural for Ajax distributables to a directory on a disk drive.

2. In the directory that contains the Natural for Ajax distributables, there is an Ant script
named jbossdeploy.xml. Edit this script and change the setting

<property name="jbosshome" value=""/>

Natural for Ajax 13

Installation

to

<property name="jbosshome" value="<jboss>"/>
where <jboss> is your JBoss Application Server installation directory.

[\ Important: Take care to use forward slashes (also on Windows) when specifying the
directory path.

3. In order to upgrade an existing Natural for Ajax 1.2.<n> installation to version 8.1<m>,
execute the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml upgrade

Wait for the message ,BUILD SUCCESSFUL". This indicates that the deployment was
successful.

4. In order to update an existing Natural for Ajax 8.1.<n> installation to the newest update
package (8.1<m>), execute the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml redeploy

Wait for the message ,BUILD SUCCESSFUL”. This indicates that the deployment was
successful.

Copy the Natural for Ajax 8.1 license file into the directory <jboss>/ser-
ver/default/deploy/njx<nn>.ear/cisnatural.war/cis/licensekey.

5. The update installation creates two backup directories, backup and backupsys, in the JBoss
Application Server installation directory. These directories contain a backup of the user
project directories and some configuration files. Should the update installation fail for some
reason, these directories can be used to restore the the backed up user data in a fresh
installation. After a successful update installation, these directories can be removed.

3 Make sure that the file <jboss>/server/default/deploy/jbossjca-service.xml contains the same settings
as described for a first-time installation.

4 JBoss Application Server 4.0.5 only: Make sure that the file <jboss>/ser-
ver/default/deploy/njx<nn>.ear/cisnatural.war/WEB-INF/web.xml contains the same settings as
described for a first-time installation.

5 Regenerate the HTML pages of the projects that you have created with an earlier release of
Natural for Ajax. For each project to regenerate, execute the script jbossdeploy.xml by entering
the following command:
ant -f jbossdeploy.xml regenerate -Dnjxproj=<projectname>
Wait for the message ,, BUILD SUCCESSFUL”. This indicates that the generation was successful.

6 Start JBoss Application Server.

14 Natural for Ajax

Installation

Installing Natural for Ajax on Sun Java System Application Server

Natural for Ajax is installed using the Administration Console of Sun Java System Application
Server.

The following is assumed:

® <host> is the name of the machine on which the application server is installed.

" <port>isthe name of the port where the application server is installed. In a default installation,
this is port 8080.

® <adminport>is the name of the port where the Administration Console is installed. In a default
installation, this is port 4848.

® <sunas> is the path to the directory in which the application server is installed. In a default
installation on Windows, this is C:/Sun/AppServer.

The following topics are covered below:

= First-time Installation
= Update Installation

First-time Installation

» To install Natural for Ajax
1 Edit the file <sunas>/domains/domainl/config/server.policy and add the following settings:

// Allow Application Designer to create an own class loader
grant {

permission java.lang.RuntimePermission "createClasslLoader";
b

// Allow Application Designer to modify its own project directories

grant {

permission java.io.FilePermission
"${com.sun.aas.instanceRoot}${/}applications${/}j2ee-apps${/Injx<nn>${/}cisnatural_war${/}-",
"read,write,delete";

b

// Enable the Java Logging API

grant {

permission java.util.logging.lLoggingPermission "control";
b

Natural for Ajax 15

Installation

/) Important: If you do not enable the Java Logging API, the resource adapter will not start
and Natural for Ajax will therefore be inoperative.

2 Start the application server.
3 Open your web browser and enter the following URL:
http://<host>:<adminport>
This opens the Administration Console.
4 Deploy the resource adapter njx<nn>ra.rar:
1. Open the tree node Applications > Connector Modules.
2. Choose Deploy.
3. Select njx<nn>ra.rar as the package file to be uploaded to the application server.
4. Choose Next. "njx<nn>ra" is automatically included as the application name.
5. Choose Finish.
5 Define the JNDI name for the resource adapter:
1. Open the tree node Resources> Connectors >Connector Connection Pools.
2. Choose New.
3. Enter "NatPool" (the name is arbitrary) as the name.
4. Select njx<nn>ra as the resource adapter.
5. Each connection to a Natural host results in a new connection being made. Since each user
requires a unique host session, connection pooling cannot be used. Therefore, you should
make sure there are enough sessions for your users. The default maximum number is "32".
6. Choose Next.
7. Choose Next.
8. Choose Finish.
9. Open the tree node Resources> Connectors >Connector Resources.
10. Choose New.
11. Enter "eis/NaturalUnicodeRA" as the JNDI name.
12 Select NatPool (or whatever name you specified previously) as the pool name.
13. Choose OK.
6 Deploy the enterprise application njx<nn>.ear:
1. Open the tree node Applications > Enterprise Applications.
16 Natural for Ajax

Installation

2. Choose Deploy.
3. Select njx<nn>.ear as the file to upload.
4. Choose Next.

5. Choose OK. The deployment may take several minutes.

Copy the license file into the directory <sunas>/domains/domainl/applications/j2ee-
apps/njx<nn>/cisnatural_war/cis/licensekey (you have to create the directory if it does not yet
exist).

Restart the application server.

Update Installation

» To update Natural for Ajax

1
2

10
11
12
13
14

Shut down the application server.

Create a backup copy of your sessions.xml file, which is located in <sunas>/domains/domain1/app-
lications/j2ee-apps/njx <nn>/cisnatural_war/WEB-INF.

Create a backup copy of your license file, which is located in <sunas>/domains/domain1/appli-
cations/j2ee-apps/njx<nn>/cisnatural_war/cis/licensekey.

Create backup copies of all modified configuration files, which are located in <sun-
as>/domains/domainl/applications/j2ee-apps/njx<nn>/cisnatural_war/cis/config.

Create backup copies of previously created projects, which are located in <sun-
as>/domains/domainl/applications/j2ee-apps/njx<nn>/cisnatural_war.

Start the application server.

Start a web browser and enter the following URL:

http://<host>:<adminport>

This opens the Administration Console.

Undeploy the resource adapter njx<nn>ra.rar.

Undeploy the enterprise application njx<nn>.ear.

Deploy the new version of Natural for Ajax as in a first-time installation.
Shut down the application server.

Restore the files that you have backed up in steps 2, 3, 4 and 5.

Start the application server.

Start a web browser and enter the following URL:

http://<host>:<port>/cisnatural/index.html

Natural for Ajax 17

Installation

This opens the Application Designer development workplace.
15 In the Development Tools node of the navigation frame, choose Layout Manager.

16 For each application project that you have created with an earlier release of Natural for Ajax,
select the layout definitions and from the Operations on multiple Items menu, choose
(Re)Generate HTML Pages.

Verifying the Installation

It is assumed that http://<host>:<port>is the URL of your application server.

» To verify the installation
1 Enter the following URL in your web browser:
http://<host>:<port>/cisnatural/index.html

This opens the Application Designer development workplace.

2 Enter the following URL in your web browser:

http://<host>:<port>/cisnatural/serviet/StartCISPage?PAGEURL=/cisnatural/NatLogon.htm]

This opens the Natural logon page. The installation is now complete.

18 Natural for Ajax

4 Setting Up Your Environment

B Setting Up ApPlICAtION DESIGNETvviieeeeei ittt e e e e et e e e e e
= Setting Up Your Development Environment for Naturalcoooiiiiiiiiiiiii e
= Setting Up Your Runtime Environment for Naturalcccvvviiiiiiiiiii e

19

Setting Up Your Environment

Before you start developing and executing Natural for Ajax applications, you have to make specific
definitions in your environment.

Setting Up Application Designer

Currently, there is nothing to configure for Natural pages.

Setting Up Your Development Environment for Natural

If you are practising remote development with Natural's Single Point of Development (SPoD), a
Natural Development Server must be installed and activated on the remote machine.

* Mainframe
When your Natural Development Server is located on a mainframe, see the Natural Development
Server documentation.

* UNIX
When your Natural Development Server is located on UNIX, see Activating the Natural Develop-
ment Server on UNIX in the Installation documentation which is provided with Natural for UNIX.

* Windows
When your Natural Development Server is located on Windows, the Web 1/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural.
See the Installation documentation which is provided with Natural for Windows.

» To set up Natural Studio

1 Ask your administrator for the host name and the port number of the Natural Development
Server.

2 Connect to the Natural Development Server. See Accessing a Remote Development Environment
in the Remote Development Using SPoD documentation which is provided with Natural for
Windows.

3 Itisrecommended that you create a new Natural library for each Application Designer project.

» To set up Natural for Eclipse

1 Ask your administrator for the host name and the port number of the Natural Development
Server.

2 Map a Natural server in Natural for Eclipse, using this host name and port number. For further
information, see the Natural for Eclipse documentation.

20 Natural for Ajax

Setting Up Your Environment

3

When creating a Natural project, assign this server in the project properties.

Setting Up Your Runtime Environment for Natural

The following must be installed on the remote machine where you are going to test and execute
the Natural code:

Mainframe

When your Natural Development Server is located on a mainframe, the Natural Web I/O
Interface server must be installed and started. For detailed information, see Installing and Confi-
guring the Natural Web 1/O Interface Server in the Natural Web 1/O Interface documentation which
is provided for Natural for Mainframes.

UNIX
On UNIX, the Natural Web I/O Interface server is implemented as a daemon.

When your Natural Development Server is located on UNIX, the Natural Web I/O Interface
daemon must be installed and activated. For detailed information, see Installing and Configuring
the Natural Web I/O Interface Server in the Natural Web 1/O Interface documentation which is pro-
vided for Natural for UNIX.

Windows
On Windows, the Natural Web I/O Interface server is implemented as a service.

When your Natural Development Server is located on Windows, the Web 1/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural
Runtime. See the Installation documentation which is provided with Natural for Windows.

See also Installing and Configuring the Natural Web 1/O Interface Server in the Natural Web 1/0
Interface documentation which is provided for Natural for Windows.

» To set up the runtime environment for Natural for Mainframes

1

Ask your administrator for the host name and the port number of the Natural Web I/O
Interface server.

Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

Natural for Ajax 21

Setting Up Your Environment

Add a new session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number|The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name and port number) that match your environment. Remove the
dummy setting for the application (which is "script-name").

Then you will be able to execute the examples from the logon page.

Restart the application server.

» To set up the runtime environment for Natural for UNIX

Ask your administrator for the host name and the port number of the Natural Web I/O
Interface server and the name of the script that is used to start up Natural sessions. A sample
shell script for starting up Natural (nwo.sh) is delivered with Natural for UNIX; see also nwo.sh
- Shell Script for Starting Natural in the Natural Web I/O Interface documentation.

Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

Add a new session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number | The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Application |The name of the script that is used to start up Natural sessions. Enter the value that you
have received from your administrator.

In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This

22

Natural for Ajax

Setting Up Your Environment

session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Edit this session and enter the settings (host name, port number and the name of the Natural
startup script) that match your environment. Then you will be able to execute the examples
from the logon page.

5 Restart the application server.

» To set up the runtime environment for Natural for Windows

1 Ask your administrator for the host name and the port number of the Natural Web I/O
Interface server and the name of the batch file that is used to start up Natural sessions. A
sample batch file for starting up Natural (nwo.bat) is delivered with Natural for Windows;
see also Batch File for Starting Natural in the Natural Web 1/O Interface documentation.

2 Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configquration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

3 Add anew session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number |The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Application |The name of the batch file that is used to start up Natural sessions. Enter the value that
you have received from your administrator.

4 In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name, port number and the name of the Natural startup batch file)
that match your environment. Then you will be able to execute the examples from the logon

page.

5 Restart the application server.

Natural for Ajax 23

24

5 First Steps

This part is organized under the following headings:

About this Tutorial

Starting the Development Workplace
Creating a Project

Getting Started with the Layout Painter
Writing the GUI Layout

Setting Up Your Development and Runtime Environment for Natural

C L L L L oL L

Creating the Natural Code

& Some Background Information

It is important that you work through the exercises in the same sequence as they appear in this

tutorial. Problems may occur if you skip an exercise.

25

26

6 About this Tutorial

This tutorial provides an introduction to working with Natural for Ajax. It explains how to create
a ,,Hello World!” application. This covers all basic steps you have to perform when creating pages
with Natural for Ajax: you create a layout file, you create an adapter and a main program, and
you run the application.

When you have completed all steps of this tutorial, the page for your , Hello World!” application
will look as follows:

27

About this Tutorial

(Preview &
‘Hello World! X

Say Hello

Input Area -
Your Marme | |
‘output Area
Result | |

Input your name and press the 'Say Hello' button,

Your application will act in the following way: When you enter a name in the Your Name field
and choose the Say Hello button, the Result field displays "Hello World" and the name you have
entered.

To reach this goal, you will proceed as follows:

1. You will first create a new Application Designer project.

2. You will then use Application Designer's Layout Painter to create the following layout:

28 Natural for Ajax

About this Tutorial

- natpage
- [T titlebar (Hello Woaorld!)
- [header
= button (Say Hella)
- pagebody
=FIIlitr
=+ hdist (100%.)
2] icon
=" rowarea (Input Area)
= IIlitr
A label (Your Nare, 100)
I field (name, 200)
=" rowarea (Output Area)
=Ll
A label (Result, 100}
T field (result, 200}
1 wvdist (100)
LIt
A label (Input your name and press the 'Say Hello' button.)

statushar

This corresponds to the following XML layout:

<?xml version="1.0" encoding="UTF-8"7>
<natpage natsource="HELLO-A">
<titlebar name="Hello World!">
</titlebar>
<header withdistance="false">
<button name="Say Hello" method="sayHello">
</button>
<{/header>
<pagebody>
<Gtr takefullwidth="true">
<hdist width="100%">

</hdist>
<icon image="../cisdemos/images/hello.gif">
</icon>
</itr>
<rowarea name="Input Area">
Gitr>
<Tabel name="Your name" width="100">
</label>
<field valueprop="name" width="200">
</field>
</itr>
{/rowarea>
<rowarea name="Qutput Area">
<Gtr>

Natural for Ajax 29

About this Tutorial

<label name="Result" width="100">
</label>
<field valueprop="result" width="200" displayonly="true">
</field>
</itr>
</rowarea>
<vdist pixelheight="100">
</vdist>
<Gtr>
<label name="Input your name and press the 'Say Hello'
button." asplaintext="true">
</Tabel>
</itr>
</pagebody>
{statusbar withdistance="false">
<{/statusbar>
</natpage>

When you save your layout for the first time, an intelligent HTML page and the Natural adapter
for this page are generated.

. Before you can start coding, you have to make specific definitions in your development envi-

ronment (this tutorial assumes that you are using Natural Studio as your development environ-
ment).

. You will import the generated Natural adapter into your Natural library.

. You will then create the main program which will use the adapter to display the page and which

will handle the events that occur on the page, for example, when you choose the Say Hello
button of your application.

You can now proceed with your first exercise: Starting the Development Workplace.

30

Natural for Ajax

7 Starting the Development Workplace

This tutorial assumes that you have installed Natural for Ajax as described in the Installation sec-
tion.

» To start the development workplace

1 Make sure that your application server is running.

2 Invoke your browser and start the development workplace with the following URL:

http://<host>:<port>/cisnatural/index.html

where <host> is the name of the machine on which your application server is installed and
<port>is the port number of your application server.

] Note: If you have not defined another port number during installation, the default port

number is "8080".

The development workplace is now shown in your browser.

31

Starting the Development Workplace

Application Designer

r. 3
f‘ Development Workplace

0 OmEE

| Tools & Dacumentation

-] Developrnent Toaols
= Project Manager
=] Layout Manager
= style Sheet Editor
] Language Manager
|:| Literal Trars|stor
= war Packager
=] Cantral Editar
] Manitering
= Layout Check

={] Maturs| Tools APPLICATION DESIGNER
5] Map Convertar
[l Map Convartar Extension AP
I-..| Caonversion Rules

X Copymight © 2006 - 2008 Softwars AG, Darmstadt, Germany
[Conversion Logs andior Soltware AG USA, Inc., Restan, VA, Usited States of America,
= Parformance Tools and./or thew suppliers,
5] Start/Stop Trace All rights ressrved,
= Execute Trace
- Developar Docurnents
I:‘ Online Documentation

HTMLBasedGUL
njzdemos
njEMMapconyerter

You can now proceed with the next exercise: Creating a Project.

32 Natural for Ajax

8 Creating a Project

In the Application Designer environment, layouts are structured in so-called application projects.
In the development workplace, you see the existing projects on the left. For each project, there is
a tree of layout definitions that you can display when you choose the button containing the project

name. For example:

Tools & Documentation
cisdernos
cisnatural

HTMLE asedGUI

njxdemos

D Mew Layout...

Refresh View

) Preferences

-1 Lavaouts
=[] {default package)

O-menu
calculator
complexData
ctrlactivex
ctributtonlist
ctrlclienttree
ctrlcombodyn
ctrlcontrolgrid
ctridlimenu

For this tutorial, you will now create a project with the name "cisnatfirst".

33

Creating a Project

» To create a project

Choose Tools & Documentation to display the list of development tools.

Choose Project Manager in the tree.

A list of existing application projects is now shown on the right.

Choose the New button which is located below the list of application projects.

The following is now shown:

Create Mew Application Project -
Application Project

Create

Please note: you have to create a context root inside your servlet
engine! The name of the context root is the name of the application
project. In the native Application Designer environment this is done
automatically by restarting the Server.

Enter "cisnatfirst" as the name of your project and choose the Create button.
Your new project is now shown in the list of existing application projects on the right.

The left side, which shows buttons for all existing projects, now also shows a button for your
new project.

You can now proceed with the next exercise: Getting Started with the Layout Painter.

34

Natural for Ajax

9 Getting Started with the Layout Painter

= Creating a New Layout

= Elements of the Layout Painter SCrEENcouiiiiiiiii e

= Previewing the Layout
= Viewing the XML Code

35

Getting Started with the Layout Painter

The Layout Painter, which can be accessed from the development workplace, is used to write the

page layout. This is an Application Designer application itself.

Creating a New Layout

You will now create a layout which is stored in the project you have previously created.

» To choose a layout template

1 Choose the button for the project cisnatfirst.

The list of layout nodes inside the tree will be empty at the beginning:

cisnatfirst

D New Layout,.,
Refresh View
{3 Preferences
- |:| Layouts
-] (default package)

2 Choose New Layout... in the tree.

The following dialog appears.

-- Web Page Dialog

Login Online Help | | Absence
Page Popup Request

Invoice

HTHML Page

1)

36

Natural for Ajax

Getting Started with the Layout Painter

3 Enter "helloworld.xml" in the Name text box.

This is the name of your layout definition.

4 Select the Natural Page tab at the bottom of the dialog.

-- Web Page Dialog

Hame helloworld.=ml

[@ Natural || =% Natural
Map Converker

Matural Page
Al i

HTML Page Workplace WSDL Page XCI Page Natural Page PDF Output 4)

5 Select the template for the Natural page (when you move the mouse over this template, the
tool tip "Natural Page" appears).

The main screen of the Layout Painter appears:

Natural for Ajax 37

Getting Started with the Layout Painter

Layout: helloworld. xml

Horme Edit Insart

L:-J Savem Ax 7
File

- [[natpage
+ T titlebar (Mew Matural Page)
+ = header
+ [pagebady
.| statuzhar

‘3

=3
=5

Proparties

_

Tools

- ., ills.
New Form = Open ¥ Protocol =
L
Sarver Log ¥

Log

2~

& | &

Log = AML Schema (H50)

Extensions

Praferences ™
Configuration
Praview

m Controls

Page
:.= Title Bar —
[Page Header
:_. Page Body
'E_- Status Bar

= pouble Line Menu
47 EBbrip Selection
" Tab Strip Selection

Tab Selection

% Timer

L Internal Popup Fag

Containar

Contrals

Grids/Trees

Wab 2.0/ H.:hup

Advancad

Matural Extensions

Warkplace

| Note: The file helloworld.xml is stored in the /xml directory of your project.

Elements of the Layout Painter Screen

The Layout Painter screen is divided into several areas:

* Layout Area (left side)

This area consists of a layout tree and a properties area.

The layout tree contains the controls that represent the XML layout definition. You drag these
controls from the controls palette into the layout tree. Each node in the layout tree represents

an XML tag.

In the properties area below the layout tree, you specify the properties for the control which is

currently selected in the layout t

ree.

38

Natural for Ajax

Getting Started with the Layout Painter

" Preview Area (middle)
The preview area shows the HTML page which is created using the controls in the layout area.
This page is refreshed each time, you choose the preview button (see below).

® Controls Palette (right side)
Each control is represented by an icon. A tool tip is provided which appears when you move
the mouse pointer over the control. This tool tip also displays the XML tag which will be used
in the XML layout. The palette is structured into sections, where each section represents certain
types of controls.

Previewing the Layout

The layout tree inside the Layout Painter already contains some nodes that were copied from the
template that you chose in the dialog in which you specified the name of the page. To see what
the page looks like, preview the layout as described below.

The preview area is a sensitive area. When you select a control in the preview area (for example,
the title bar), this control is automatically selected in the layout tree.

» To preview the layout

= Choose the following button which is shown at the top of the Layout Painter.
e

The preview area is updated and you see the page. The page already contains a title bar, a
header containing an Exit button, the page body and a status bar.

Natural for Ajax 39

Getting Started with the Layout Painter

(Preview &
Mew Matural Page &3

Viewing the XML Code

When creating the layout, you can view the currently defined XML code.

» To view the XML code

s From the Edit tab of the Layout Painter, choose XML.

A dialog box appears. At this stage of the tutorial, it contains the following XML layout defi-
nition for the nodes which were copied from the template.

<natpage natsinglebyte="true"
xmins:njx="http://www.softwareag.com/njx/njxMapConverter">
<titTebar name="New Natural Page">
</titlebar>
<header withdistance="false">
<pbutton name="Exit" method="onExit">
</button>
<{/header>
<pagebody>
</pagebody>
{statusbar withdistance="false">

40 Natural for Ajax

Getting Started with the Layout Painter

</statusbar>
</natpage>

You can now proceed with the next exercise: Writing the GUI Layout.

Natural for Ajax 41

42

10 Writing the GUI Layout

= Specifying the Properties for the Natural Pageoooiiiiiiiiii e 44
= Specifying @ Name for the Title Barooviiiiiiie s 45
B UsINg the Property EItOr ... 46
= Specifying a Name and Method for the BUtONeeiiiiiiiiii 48
= Adding the INput and QUIPUL AFBAScoiiiiiiiie e 48
B AAAING T8 IMBGE ..t 52
m Adding @ HOMZONTAl DISTANCEuuviiiiiiiiii s 52
m Adding an INSErUCHIONEI TEXEoeiiiiiiiee e 53
® Adding @ VertiCal DISTANCEviiiiiiiie e 54
B SAVING YOUE LAYOULeeiiiiiec ettt e ettt e e e e et e e e e e e e s st raaeeeae s 54

43

Writing the GUI Layout

You will now create the layout for your ,,Hello World!” application. When you have completed
all exercises in this chapter, the layout should look as shown below and the XML code should be
the same as shown in the section About this Tutorial.

- @ natpage
- [ttebar (Hello Warld!)
- header
= button (Say Hello)
-] pagebaody
LIt
=+ hdist {100%)
=l icon
=" rowarea (Input Area)
- Lititr
A label (Your Name, 100)
T field (name, 200)
- rowarea (Output Area)
|
A label (Result, 1007
I field (result, 200}
1 wdist (100)
=FIIlitr
A label (Input your name and press the 'Say Hello' button)
[| statusbar

@ Tip: Preview the layout and view the XML code each time you have completed an exercise.

If the system finds some wrong or missing definitions while generating the preview page,
there will be a corresponding message in the status bar. From the Home tab of the Layout
Painter, choose Protocol to get more information about these problems.

Specifying the Properties for the Natural Page

You will now specify the following for the Natural page:

® Name for the Natural Adapter (natsource)
The value in the property natsource defines the name of the adapter. The adapter is a Natural
object that your application will use to communicate with the page. It will be generated when
you save the page layout.

If you do not specify a value for natsource, the name that you have specified for the layout
(without the extension ".xml") will be used as the name for the Natural adapter. If you want to
use the adapter in a development environment other than Natural for Eclipse, you must make
sure that the resulting name matches the naming conventions for Natural object names.

44 Natural for Ajax

Writing the GUI Layout

* Handling of Strings (natsinglebyte)
Using the property natsinglebyte, you can specify how the strings displayed on this page are
to be handled in the Natural application. Natural knows two types of strings: Unicode strings
(format U) and code page strings (format A). By default, the strings displayed in web pages are
mapped to Unicode strings in Natural. For this tutorial, you will specify that code page strings
are to be used. Therefore, you will set the property natsinglebyte to "true".

If you do not specify a value for natsinglebyte or when you set it to "false", Unicode strings
will be used.

» To specify the properties for the Natural page

1 In the layout tree, select the node natpage.

The properties for this control are now shown in the properties area at the bottom.

2 Specify the following properties:

Property Value

natsource HELLO-A

natsinglebyte|true

Specifying a Name for the Title Bar

You will now specify the string "Hello World!" which is to appear in the title bar of your applica-
tion.

» To specify the name for the title bar

1 Inthelayout tree, select the node titlebar (New Natural Page).

The properties for this control are now shown in the properties area at the bottom. You can
see the default entry "New Natural Page" for the name property.

Natural for Ajax 45

Writing the GUI Layout

2 Specify the following property:

Property | Value

name |Hello World!

When you click on the layout tree, the node in the layout tree changes to titlebar (Hello
World!).

| Note: Properties that are left blank are not shown in the XML code.

Using the Property Editor

You can also specify the property values using the Property Editor. In this case, you can access
detailed help information on each property.

» To use the Property Editor

1 Select the control in the layout tree for which you need help, for example, the titlebar (Hello
World!) node.

_

- IE| natpage
+ | titlebar (Hello warld!)
+ = header
+ | pagebody
| statusbar

< L)
Trdd

2 From the Edit tab of the Layout Painter, choose Property Editor.

46 Natural for Ajax

Writing the GUI Layout

The following dialog appears.

<3 TITLEBAR

Basic
Basic properties for this control,

-- Web Page Di... E4

name Hello \World! fd
textid W
withclose N
align o
image

helpid

titlestyle b
pizelheight b
straighttext A
closetitle

Click onto a name of an property to see a help text

Basic
Binding

Erack MNext

Finish || Cancel

The properties of the control are listed.

Click on the name of a property to display detailed information on this property. This infor-

mation is shown below the list of properties.

Choose the Finish button to close the dialog.

Any changes you have applied in the dialog will be saved.

Natural for Ajax

47

Writing the GUI Layout

Specifying a Name and Method for the Button

You will now specify the string "Say Hello" which is to appear on the button. And you will specify
the name of the method that is to be invoked when the user chooses this button.

» To specify the name and the method for the button

1 In the layout tree, open the header node.

. Note: By clicking the icon of a node, you hide or expand the node's subnodes.

You can now see the entry for the button with the default name "Exit".
2 Select the node button (Exit).
3 Specify the following properties:

Property |Value

name |Say Hello

method |sayHello

The method needs to be programmed in the adapter. This will be explained later in this
tutorial.

Adding the Input and Output Areas

The input and output areas in this tutorial are created using Row Area controls. These controls
can be found in the Container section of the controls palette.

Each row area will contain an Independent Row control which in turn contains a Label and a
Field control. These controls can be found in the Controls section of the controls palette.

For adding controls to your layout, you drag them from the controls palette onto the corresponding
tree node in the layout tree. This is explained below.

» To create the input area

1 Open the Container section of the controls palette.

48 Natural for Ajax

Writing the GUI Layout

When you move the mouse over a control, a tool tip appears which also displays the control
name which will be used in the XML layout. For example:

Page
Container
Independent Row =
Table Row
#=+ Horizontal Distance
:I: WVertical Distance

Eow Area

- Collpow Area (ROWAREA)
“% Row Area With Hea

il gras Header

Area Body

2 Drag the Row Area control from the controls palette onto the pagebody node in the layout
tree.

The row area is added as a subnode of the pagebody node. The new subnode is automatically
selected so that you can maintain the properties of the row area directly in the properties area.

3 Specify the following property:

Property | Value

name |Input Area

4 Drag the Independent Row control from the controls palette onto the rowarea (Input Area)
node in the layout tree.

Natural for Ajax 49

Writing the GUI Layout

When you drop information into the tree, the system will sometimes respond by offering a
context menu with certain options about where to place the control. In this case, the following
context menu appears.

-] pagebody
= Add as Subnode

1

sta

[

&dd as preceding Node
+ Add as subseqguent Mode

| Note: When you move the mouse outside the context menu, the context menu disap-
pears. The control is not inserted in this case.

5 Choose the Add as Subnode command.

The control is now inserted below the rowarea (Input Area) node. The new node is shown
as itr.

6 Open the Controls section of the controls palette.

7 Drag the Label control from the controls palette onto the itr node you have just inserted and
specify the following properties:

Property | Value

name |Your Name
width (100

8 Drag the Field control from the controls palette onto the itr node you have previously inserted.

A context menu appears and you have to specify where to place the control.

- pagebody

- rowarea (Input Area)l
=22 Add as first Subnode

. Ba Add as last Subnode
L statu=oan

9 From the context menu, choose the Add as last Subnode command.

50 Natural for Ajax

Writing the GUI Layout

10 Specify the following properties for the field:

Property Value

valueprop|name

width 200

» To create the output area

Create the output area in the same way as the input area (add it as the last subnode of the
pagebody node), with the following exceptions:

Row Area

Specify a different value for the following property:

Property | Value

name |Output Area

Label

Specity a different value for the following property:

Property | Value

name |Result

Field

Specify different values for the following properties:

Property Value

valueprop |result

displayonly|true

Note: To display the displayonly property, choose the Appearance tab at the bottom

of the properties area. You can then select the required value from a drop-down
list box.

Natural for Ajax

51

Writing the GUI Layout

Adding the Image

You will now add the image which is to be shown above the input area. To do so, you will use
the Icon control which can be found in the Controls section of the controls palette.

| Note: The image is provided in Application Designer's /cisdemos/images directory.

» To add the image

1 Drag the Icon control from the controls palette onto the pagebody node in the layout tree.

The icon is added as the last subnode of the pagebody node. It is automatically placed into
an itr (independent row) node.

2 Specify the following property for the icon:

Property | Value

image |../cisdemos/images/hello.gif

3 Select the itr node containing the icon and choose the following button below the layout tree:
T

The selected node is now moved up so that it appears as the first subnode of the pagebody
node.

4 Specify the following property for the itr node:

Property Value

takefullwidth|true

Adding a Horizontal Distance

When you preview the layout, you will see that the image you have just added appears centered.

You will now move the image to the right side of the page. To do so, you will use the Horizontal
Distance control which can be found in both the Controls section and the Container section of
the controls palette.

52 Natural for Ajax

Writing the GUI Layout

» To add the horizontal distance

1 Drag the Horizontal Distance control from the controls palette onto the itr node containing
the icon.

2 From the resulting context menu, choose the Add as first Subnode command.

The node hdist is inserted into the tree.

3 Specify the following property:

Property | Value

width [100%

Adding an Instructional Text

You will now enter a text which is to appear below the output area and which tells the user what
to do.

To do so, you will once again use the Independent Row control into which you will insert a Label
control.

. Note: The Independent Row control can be found in both the Controls section and the
Container section of the controls palette.

» To add the independent row with the label

1 Drag the Independent Row control from the controls palette onto the pagebody node in the
layout tree.

2 From the resulting context menu, choose the Add as last Subnode command.

The node itr is inserted into the tree.

3 Drag the Label control from the controls palette onto the itr node you have just created.

Natural for Ajax 53

Writing the GUI Layout

4 Specify the following properties for the label:

Property Value

name Input your name and press the '‘Say Hello' button.

asplaintext|true

| Note: Go to the Appearance tab to display the property asplaintext.

Adding a Vertical Distance

When you preview the layout, you will see that the text you have just added appears directly
below the output area. You will now move the text 100 pixels to the bottom.

To do so, you will use the Vertical Distance control which can be found in both the Controls
section and the Container section of the controls palette.

» To add the vertical distance

1 Drag the Vertical Distance control from the controls palette onto the itr node containing the
label.

2 From the resulting context menu, choose the Add as preceding Node command.

The node vdist is inserted into the tree.

3 Specify the following property:

Properties |Value

height (100

Saving Your Layout

If you have not already done so, you should now save your layout.

When you save a layout for the first time, an HTML file is generated (in addition to the XML file)

which is placed into the root directory of your application project. This HTML file is updated each
time you save the layout.

54 Natural for Ajax

Writing the GUI Layout

The Natural adapter is also created when you save your layout for the first time. Later in this
tutorial, you will import this adapter into your Natural library. Your application program will use
the adapter to communicate with the page.

» To save the layout

= Choose the following button which is shown at the top of the Layout Painter.
=l

You can now proceed with the next exercise: Setting Up Your Development and Runtime Environ-
ment for Natural.

Natural for Ajax 95

56

11 Setting Up Your Development and Runtime Environment

for Natural

Before you start coding, you have to make specific definitions in your Natural environment.

» To set up your Natural environment

m Setup your Natural development and runtime environment for the required platform as
described in Setting Up Your Environment previously in this documentation.

This tutorial assumes that you use Natural Studio as your development environment.
Make sure to use the names mentioned below.

* Development Environment
Create a new Natural library with the name CISHELLO.

* Runtime Environment
When you add the new entry to the configuration file, specify "Execute samples" as the
session name:

{session id="Execute samples" trace="false">

"Execute samples" is the entry that will later be available for selection in the logon page.

You can now proceed with the next exercise: Creating the Natural Code.

of

58

12 Creating the Natural Code

= |mporting the Adapter into Natural

= Creating the Main Program

= Testing the Completed Application

59

Creating the Natural Code

Importing the Adapter into Natural

You will now import the generated adapter into Natural to make it available to your application.

When you saved your page layout, Application Designer created the Natural adapter HELLO-A for
your page. This is the name that you have specified earlier in this tutorial. Your application program
will use the adapter to communicate with the page. The adapter has been generated into the follo-
wing directory:

<installdir>/cisnatfirst/nat

Note: The location of <installdir>depends on your application server environment.

» To import the adapter

Import the adapter source into the Natural library CISHELLO which you have created earlier
in this tutorial. To do so, use either drag-and-drop or the import function of the SYSMAIN uti-
lity.

The adapter code looks as follows:

* PAGELl: PROTOTYPE --- CREATED BY Application Designer --- /*<R0>>
* PROCESS PAGE USING "XXXXXXXX' WITH
* NAME RESULT
DEFINE DATA PARAMETER
1 NAME (U) DYNAMIC
1 RESULT (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/cisnatfirst/helloworld" WITH
PARAMETERS
NAME U'name'
VALUE NAME
NAME U'result'
VALUE RESULT
END-PARAMETERS
*
* T0DO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end'
/* Page closed.
IGNORE
VALUE U'sayHello'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL

b S S e

60

Natural for Ajax

Creating the Natural Code

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
/*/*) END-HANDLER
*

*
*
*
*

END /*<<RO>

Stow the adapter.

Creating the Main Program

You will now create the main program which uses the adapter to display the page and which
handles its events. The name of the program will be HELLO- P and you will store it in the library
CISHELLO.

This description assumes that you are working with Natural Studio.

» To create the main program

1
2

Make sure that the library CISHELLO is selected.
From the Object menu, choose New > Program.

Enter a DEFINE DATA statement:

DEFINE DATA LOCAL
END-DEFINE

Import the adapter interface into the DEFINE DATA statement:

Place the cursor in END-DEFINE.

From the Program menu, choose Import.

In the resulting dialog box, select the Adapter option button.
Select the object HELLO-A.

Select all importable data fields.

AN

Choose the Import button.

Natural for Ajax 61

Creating the Natural Code

The result is your completed DEFINE DATA statement:

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC

END-DEFINE
5 Enter the PROCESS PAGE statement. The statement uses the page adapter to display the page
in the web browser and to pass data to the controls on the page:
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT
6 Initialize the page data. In the page layout definition, the property name has been bound to
the FIELD control with the label Your Name. For the property name, a parameter NAME has
been generated into the parameter data area of the adapter. Thus, in order to preset the FIELD
control, we will preset the variable NAME with the value "Application Designer".
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := 'Application Designer'
PROCESS PAGE USING "HELLO-A'
WITH NAME RESULT
7 Handle the events that can occur on the page. A template for the event handler code has been
generated as a comment block into the page adapter HELLO- A. List the adapter HELLO-A and
copy this comment block into your main program and terminate the program with an END
statement:
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := "Application Designer'
PROCESS PAGE USING '"HELLO-A"
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT
VALUE 'nat:page.end’
62 Natural for Ajax

Creating the Natural Code

/* Page closed.
IGNORE
VALUE 'sayHello'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

After the page has been displayed, the user raises events on the page by using the controls.
The name of the raised event is then contained in the system variable *PAGE - EVENT. Depending
on the event, the program modifies the page data, resends it to browser with a PROCESS PAGE
UPDATE FULL statement and waits for the next event to occur.

The predefined event nat : page. end is raised when the user closes the page. The event sayHel10
is raised when the user chooses the Say Hello button. Previously in this tutorial, you have
bound the event sayHel1o to this button while designing the page. The NONE VALUE block
should always be defined as above. It contains the default handling of all events that are not
handled explicitly.

8 When the event sayHel10 occurs, we want to display a greeting in the FIELD control with
the label Result. Therefore, we modify the variable RESULT (which is bound to the correspon-
ding FIELD control in the page layout) accordingly before we resend the page data.

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := "Application Designer'
PROCESS PAGE USING 'HELLO-A"'
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT
VALUE 'nat:page.end’
/* Page closed.
IGNORE
VALUE 'sayHello'
/* TODO: Implement event code.

COMPRESS 'Hello, ' NAME '!' TO RESULT
PROCESS PAGE UPDATE FULL
NONE VALUE

/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Natural for Ajax 63

Creating the Natural Code

The main program is now complete.

If you have not yet saved the program, save or stow it now with the name "HELLO-P".

9 Catalog all modules in the library CISHELLO.

Testing the Completed Application

You will now run the application in your web browser and check whether it provides the desired
result.

The generated HTML file helloworld.html (which is updated each time you save your layout) can
be found within the root of your application project, that is in <instal1dir>/cisnatfirst.

This HTML page has some prerequisites concerning the browser workplace in which it is running.
Therefore, it is per se not usable as a directly accessible page but needs to be embedded into a
frame providing a defined set of functions.

It is necessary to logon to Natural before starting an application. Therefore, Natural applications
are started using a logon page.

» To test the application

1 Enter the following URL inside your browser:

http://1localhost:8080/cisnatural/servlet/StartCISPage?PAGEURL=/cisnatural/NatLogon.htm]

The logon page should now appear.

64 Natural for Ajax

Creating the Natural Code

Connection details

Session ID: IExecute Samples LI
Host name: Port;
Llser name: Password:

MHatural application:

Matural parameter:

Language: |Eng|i5h ;l

rChange Password -

Mew password:

Fepeat new
password:

Conneckt

If the logon page is not displayed, check the following:

® URLs are case-sensitive. Double-check your input.

® Check whether the file NatLogon.html is available in the directory cisnatural.

2 Onthelogon page, select the entry Execute samples from the Session ID drop-down list box.
You have prepared this entry earlier in this tutorial when you have set up the runtime envi-
ronment.

3 Provide your user ID and password valid for the machine on which the Natural application
will be running.

4 In the Natural application text box, enter the following information, depending on your
Natural platform:

* Natural for Mainframes
Enter the name of the Natural program that is to be started. In our case, this is HELLO-P.

* Natural for UNIX
Enter the name of the UNIX shell script that is used to start Natural. By default, this is
nwo.sh.

* Natural for Windows
Enter the name of the Windows command file (.bat) that is used to start Natural. By default,
this is nwo.bat.

5 In the Natural parameters text box, enter the following information, depending on your
Natural platform:

Natural for Ajax 65

Creating the Natural Code

® Natural for Mainframes
Enter the dynamic Natural profile parameters that are necessary to start your application:

STACK=(LOGON CISHELLO)

| Note: With Natural for Mainframes, is recommended to specify the Natural program

that starts the application in the Natural application text box instead of passing it
with the profile parameter STACK.

* Natural for UNIX and Natural for Windows
Enter the Natural command line that is necessary to start your application:

STACK=(LOGON CISHELLO;HELLO-P)

6 Choose the Connect button.

Your application should be started now.

7 Enter your name and choose the Say Hello button.

The page should now successfully , talk” to your adapter.

rInput Area -
Your Mame Jo

rDutput Area -
Result Hello Wwarld, Jo 1111

You have now completed this tutorial. See the remaining section of these First Steps for some
background information.

66 Natural for Ajax

13 Some Background Information

= Name Binding between Controls and AdapLerco.vviiiiiiiii
® Data EXchange at RUNTIME ... et e e e e

= Files and their Locations

67

Some Background Information

Name Binding between Controls and Adapter

Which are the critical parts when building the ,,Hello World!” application?

® The NATPAGE control in the layout points to the name of the adapter object (property
natsource).

® The FIELD control in the layout points to the property name of the adapter (property valueprop).

® The BUTTON control in the layout points to the event sayHel10() of the adapter (property
method).

There is a name binding between the layout definition and its corresponding adapter. This is the
simple and effective approach of the development process: The adapter represents a logical
abstraction of what the page displays. All layout definitions are kept in the page - all the logic is
kept in the adapter. (Or better: behind the adapter. The adapter itself should only be a facade to
the ,real” application logic.)

Data Exchange at Runtime

What happens at runtime?

® When the user starts a Natural session from the logon page, the Natural program that the user
specified in the command line is started.

® The Natural program executes a PROCESS PAGE statement, using an adapter.

" The PROCESS PAGE statement passes the name of the HTML page to be used and the initial page
data to the browser.

® The browser displays the page. JavaScript code on the page distributes the initial data to the
controls.

® The user provides some input, for example, enters the name. The content change is stored inside
the page. The Natural program is not yet involved.

® The user does something which causes a flush of the changes (for example, the user chooses a
button). Therefore, all registered data changes are packaged and are sent through the adapter
to the Natural program, including the information which event has been raised.

® The Natural program receives the modified data.
" The system variable *PAGE - EVENT receives the name of the raised event.

® The event handler in the Natural program modifies the data and resends it to the page using a
PROCESS PAGE UPDATE statement.

®" And so forth.

68 Natural for Ajax

Some Background Information

With a standard HTTP connection, only the changed content of the screen is passed when operating
on one page. The layout is kept stable in the browser. Consequently, there is no flickering of the
page due to page reloading.

All steps described in the list above are done completely transparent to your adapter; i.e. you do
not have to cope with session management, stream parsing, error management, building up HTML
on the server, etc. You just have to provide an intelligent HTML page by defining it in the Layout
Painter and an adapter object.

Files and their Locations

Have a look at the files created for your , Hello World!” application and take notice of the directory
in which they are located.

All files are located in the directory <installdir>/cisnatural/cisnatfirst. The <installdir>/cisnatural
directory is the directory of the web application instance. The <instal1dir>/cisnatural/cisnatfirst
directory is the directory that has been created for your new project.

® The XML layout definition is kept in the <instal1dir>/cisnatural/cisnatfirst/xml directory.

® The generated HTML page is kept directly in the project directory. There are possibly also some
other files inside this directory that start with "ZZZZ". These files are temporary files used when
previewing pages inside the Layout Painter.

® The generated Natural adapters are kept in the directory <instal1dir>/cisnatural/cisnatfirst/nat.

® Inthe directory <installdir>/cisnatural/cisnatfirst/accesspath, , access restriction” files are gene-
rated. If you view these files inside a normal text editor (such as Notepad), you see that one file
is maintained for each page; it holds the information about which properties are accessed by
the page.

Natural for Ajax 69

70

14 Developing the User Interface

= Starting the Development WOTKPIACEcoiiiiiiiiii e 72
= Creating an Application Designer ProJECtoiiiiiiiiieiiii e 73
B Creating @ NatUrAl PAgeooiiiiiiie i s 73
= Specifying Properties for the Natural Pageccooiiiiiiiiiii e 74
B DESIGNING T8 PAJEivviiiiiiiieeeeieeee ettt 75
= Binding Properties and MethOdScuuiiiiiii e 76
L oo Yo = = o T | PP 76
B VIEWING the PIOTOCOL ...ttt 77
B SAVING T8 LAYOUL ...ttt 77
B Generating the AaDIer ... e 7
B DAta TYPE MAPPING ...ttt ettt e oottt e e e e e ettt e e e e e et e e e e e e aeea s 78

7"

Developing the User Interface

In the First Steps tutorial, you have developed a small rich internet program step by step. In this
tutorial, you have already performed most of the steps required to develop a rich internet applica-
tion.

The general procedure to develop a rich internet application with Natural for Ajax is as follows:

1. Use Application Designer to design the web pages that form the user interface of your applica-
tion.

2. Generate a Natural adapter for each page (by saving the page). The adapter is a Natural object
that forms the interface between the application code and the web page.

3. Use one of the Natural tools (Natural Studio or Natural for Eclipse) to write the Natural appli-
cation programs that contain the business logic and use adapters to exchange data with the
web pages.

In this chapter, the first two steps (design and adapter) are explained in more detail. Step 3 (business
logic) is described in the section Developing the Application Code which also addresses advanced
topics that are not covered in the tutorial.

For detailed information on how to use the Application Designer development workplace, see
Development Workplace in the Application Designer documentation. The latest version of the
Application Designer documentation is available at http://documentation.softwareag.com/webme-
thods/cit_reroute.htm. The information which is provided below describes the most important
differences which pertain to Natural for Ajax.

Starting the Development Workplace

The Application Designer development workplace is the central point for starting tools for layout
development.

» To start the development workplace
1 Make sure that your application server is running.

2 Invoke your browser and start the development workplace with the following URL:

http://<host>:<port>/cisnatural/index.html

where <host> is the name of the machine on which your application server is installed and
<port>is the port number of your application server.

| Note: If you have not defined another port number during installation, the default port
number is "8080".

72 Natural for Ajax

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Creating an Application Designer Project

First you create an Application Designer project using the Project Manager. The project contains
the layouts of the web pages you design, the files that are generated from the layouts and are
required to run your application and additional files that make your application multi language
capable and supply help information. See also Creating a Project in the tutorial.

| Note: Detailed information on the Project Manager is provided in the Application Designer
documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

All files in your Application Designer project are stored in one directory on the application server
where Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server:

* JBoss Application Server
<installdir>/server/default/deploy/njx<nnn>.ear/cisnatural.war

" Sun Java System Application Server
<installdir>/domains/domainl/applications/j2ee-apps/njx<nnn>.ear/cisnatural_war

where <installdir>isthe directory in which your application server is installed and <nnn>is the
current Natural for Ajax version.

Creating a Natural Page

In order to create the layout of your web pages, you use Application Designer's Layout Painter.

Add a page layout to your project as described in Creating a New Layout in the tutorial (select
the template for the Natural page).

Natural for Ajax 73

http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Marme mypage.:ml

[Natural

-- Web Page Dialog

<H
:: Natural
Map Converker

Kl

2]

HTML Page Workplace WSDL Page ¥CI Page MNatural Page PDF Output 4 b

] Note: More detailed information on creating a layout is provided in the Application Designer
documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Specifying Properties for the Natural Page

In order to specify generation options for the new page, you specify values for certain properties
that are specific for Natural pages.

To define properties, you select the node natpage in the layout tree of the Layout Painter. The
properties for this control are then shown in the properties area at the bottom. When you select
the Natural tab in the properties area, you can see the Natural-specific properties.

74

Natural for Ajax

http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

_

= El natpage
+-[| titlebar (New Natural Page)
header
+-= pagebody
[_| statusbar

I8 e ik

Tt dd
F‘rnperﬁﬁ
natsource
natsinglebyte true v
natrecursion W
natdc b
natsss b
natcy
xmlns: njx http:/fwww.soft

#

Basic Natural Popup Occupied 4)p

For information on the properties that are available for a Natural page, see NATPAGE.

Designing the Page

Design your Natural page by dragging controls and containers from the controls palette onto the
corresponding node in the layout tree or to the HTML preview. This has already been explained
in the section Writing the GUI Layout of the tutorial.

| Note: More detailed information on defining the layout is provided in the Application

Designer documentation at http://documentation.softwareag.com/webmethods/cit_rerou-
te.htm.

Natural for Ajax 75

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Binding Properties and Methods

Many of the controls you use on your page have properties that can be controlled by the applica-
tion. Also the controls can raise events that your application may wish to handle. The next step is
therefore assigning identifiers to each of these properties and events under which your application
can later address them. This procedure is called ,binding”.

To get an overview which properties and events are bindable to application variables and events,
select a control in the layout tree and open the Event Editor as described in the Application Designer
documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

The Event Editor displays only those properties of controls that can be bound to application
variables and events. It indicates also which properties must be bound mandatorily. The usage
and meaning of each of the properties and events is described for each control in the following
sections of this Natural for Ajax documentation:

® Working with Containers

® Working with Controls

® Working with Grids

® Working with Trees

® Working with Menus

® Non-Visual Controls and Hot Keys

® Working with Workplaces
As an example for property and event binding, see the following sections in the First Steps tutorial:

® Using the Property Editor
® Specifying a Name and Method for the Button

Previewing the Layout

To find out how the current layout definitions are rendered on the page, preview the layout as
described in the Application Designer documentation at http://documentation.softwareag.com/web-
methods/cit_reroute.htm.

76 Natural for Ajax

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Viewing the Protocol

The protocol contains warnings and error messages that might occur while you design and preview
your page. For further information, see the Application Designer documentation at http://docu-
mentation.softwareag.com/webmethods/cit_reroute.htm.

Saving the Layout

Save the page layout as described in Saving Your Layout in the tutorial.

Other than with Java adapters (which are described in the Application Designer documentation),
you do not use the Code Assistant (which is part of the Layout Painter) to generate adapter code
interactively. For Natural pages the adapter code is generated completely from the page properties
and the property and event bindings that you specified previously. An adapter is generated
automatically when you save the layout for the first time. It is updated each time you save the
layout.

Generating the Adapter

When you save the layout, a Natural adapter is generated according to the following rules:

Location The adapter is generated into the subdirectory nat of your project directory.

The name of the project directory corresponds to the project name. The location of the directory
depends on the application server. See Creating an Application Designer Project.

Name The name of the adapter is determined by the properties you have set. See Specifying
Properties for the Natural Page.

Property For each control property that has been bound to an identifier (as described in Binding

identifiers Properties and Methods) a parameter in the parameter data area of the adapter is

generated.The identifier is therefore validated against the Natural naming conventions for
user-defined variables and translated to upper-case. If an identifier does not comply to these
rules, a warning is generated into the protocol and as a comment into the adapter code.
Additionally, the name must comply to the naming conventions for XML entities. This means
especially that the name must start with a character.

To achieve uniqueness within 32 characters, the last four characters are (if necessary) replaced
by an underscore, followed by a three-digit number.

Event For each event that can be raised by a control on the page, an event handler skeleton is
identifiers generated as a comment into the adapter.

Natural for Ajax 77

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Vorsicht: Some controls raise events whose names are dynamically constructed at runtime.

For these events, no handler skeleton can be generated. The control reference contains
information about these additional events.

The event identifiers are not validated.

Data Type Mapping

Several Application Designer controls have properties for which a data type can be specified. An
example is the FIELD control. It has a valueprop property which can be restricted to a certain data
type. The data type is used at runtime to validate user input. At generation time (that is, when a
Natural adapter is generated for the page), the data type determines the Natural data format of
the corresponding adapter parameter.

The following table lists the data types used in Application Designer and the corresponding
Natural data formats.

Application Designer

Natural

color A or U (depending on the NATPAGE property natsinglebyte). The string must contain
an RGB value, for instance "#FF0000" for the color red.

date D (YYYYMMDD)

float F4

int 14

long P19

time T (HHIISS)

timestamp T (YYYYMMDDHHIISST)

N n.n Nn.n

Pn.n Pn.n

string (default)

A or U dynamic (depending on the NATPAGE property natsinglebyte).

string n Anor Un (depending on the NATPAGE property natsinglebyte).
xs:double F8

xs:byte 11

xs:short 12

78

Natural for Ajax

15 Developing the Application Code

B MPOMtNG the AQADIET ... e 80
m Creating the Main PrOGramc..uiiiiiiiee ettt e e e e e et e e e et e e e neeee s 84
= Structure of the Main PrOGramooiiiiiiiiii et 86
B HaNANG PaGE EVENLS ... 86
= Built-in Events and User-defined EVENLS ... 87
= Sending Events t0 the USer INterfaceoovviiiiiiiii e 87
B USING POP-UP WINGOWS ...ttt nnsnnes 88
B USING NGLUFAI MBDS ...t 90
= Navigating between Pages and Mapscoouuiiiiiiiiiiii e 90
= Using Pages and Maps AREIMALIVEIYvuuerieiieiiiiiiiiiiiiiiviieieie et aeeneeeeee e 91
= Starting a Natural Application from the LOgon Pageocouviiiiiiiiiiiii e 92
= Starting a Natural Application With @ URLooiiiiiiiii e 92

79

Developing the Application Code

Natural for Ajax Tools, which is an optional plug-in for Natural Studio, allows you to use some
of the Natural for Ajax functionality which is described in this chapter directly from within
Natural Studio. For further information, see Natural for Ajax Tools in the Natural Studio Extensions
documentation which is provided for Natural for Windows.

Importing the Adapter

After having generated the adapter, the next step is making it available to your Natural development
project.

As described previously, the adapter code is generated into a directory in your application server
environment. The way you access the adapter depends on the Natural development tool you use.

The following topics are covered below:

= |mporting the Adapter Using Natural Studio
= |mporting the Adapter Using Natural for Eclipse

Importing the Adapter Using Natural Studio

It is assumed that your development library is located on a Natural development server and that
you have mapped this development server in Natural Studio.

» To import the adapter from a remote environment

» Use drag-and-drop.
Or:

Remote UNIX environment only: Use the import function of SYSMAIN.
Importing the Adapter Using Natural for Eclipse

It is assumed that you have

* installed Natural for Eclipse,
* installed Application Designer's Eclipse plug-in,
" created a Natural project in Eclipse,

® defined a Natural server for the Natural project.

80 Natural for Ajax

Developing the Application Code

The Navigator view will then look similar to the following;:

= havigator x -

m- A CisHelo -=sunnate 3 (2) K
B0 CisNatural ->sunnats3 (25) ~%
EIE'; MyPrioject -=sunnats3 (D)
@@ sre-natural

..... = .T-I-Elt‘path

| 2 E project
-8 Mixdemos -»sunnats3 (39) 2k

» To import the adapter from a remote environment

1 Proceed as described below to create the Page Layouts folder in your Natural project. This is
the folder where you edit your page layouts with Application Designer.

1. Invoke the Properties dialog for your Natural project.

Natural for Ajax

81

Developing the Application Code

2. Set the Application Designer properties as follows:

Option Description

Layout Folder Specify the application server directory in which the page layouts of your
project are stored.

Web Server Connection |Specify host name and port number of your application server.

Web Application Specify "cisnatural”.

& properties for MyProject - = ||:||5|
| type fiter tex | Application Designer Loty
- Info
- Application Designer
- Blilders [v Enable Application Designer Access
- Matural Project Prop
~Matural Source Folde| Layout Folder: | al.war\MyProjectiml| browse... |
~Project References _
Yieb Server Connection: | localhost:B080
YWeb Application: | cismatural
Display Mode: C HTML & SWT
q | LI Restore Defaults Apply |

o Cancel |

2 Proceed as described below to create an additional folder in your Natural project. This is the
folder in which the generated adapters are located.

1. Select your Natural project, invoke the context menu and choose New > Natural Folder.

82 Natural for Ajax

Developing the Application Code

2. Expand the resulting dialog by choosing the Advanced button.

3. Specity a folder name of your choice (for example, "Adapters").

4. Enable the Link to folder in the file system check box and specify the application server
directory in which the generated adapters of your project are stored.

Now you have access to your page layouts and adapters in your Natural project.

3 Copy or move the generated adapter from the new folder you have just created into your
Natural source folder.

The Navigator view should now look similar to the following (with the new folders for the
page layouts and adapters, and with your adapter in the Natural source folder).

- e x N =

F-5 CisHello - (2)

B CisNatural -= (25) %

=B MyProject -»sunnate3 (1) 7

: EI.,:‘“E Adapters

LB = mypagde N5

EI E,_—. Page Layouts

: 5 mypage.xm

EI ﬁr sro-natural ~#

TR page NSE (3

..... : Hat—patl’l

fo |_] project
et Wjxdemos -= (35

(|
i |

Natural for Ajax 83

Developing the Application Code

4 Catalog or stow the adapter in the Natural source folder. To do so, you have to upload and
compile the adapter with Natural for Eclipse.

Creating the Main Program

After you have imported the adapter, you create a program that calls the adapter to display the
page and handles the events that the user raises on the page. This program can be a Natural pro-
gram, subprogram, subroutine or function. We use a Natural program as example.

The adapter already contains the data structure that is required to fill the page. It contains also a
skeleton with the necessary event handlers. You can therefore create a program with event handlers
from an adapter in a few steps.

Open or list the adapter in the development tool of your choice (Natural Studio or Natural for
Eclipse).

* PAGEI: PROTOTYPE --- CREATED BY Application Designer ---
* PROCESS PAGE USING "XXXXXXXX' WITH
* FIELD1 FIELD?
DEFINE DATA PARAMETER
1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/MyProject/mypage' WITH
PARAMETERS
NAME U'fieldl"’
VALUE FIELDI
NAME U'field2’
VALUE FIELDZ2
END-PARAMETERS
*
* TO0DO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
/*/*) END-HANDLER

o R T R

84 Natural for Ajax

Developing the Application Code

*

END
Create a new program, copy the adapter source into the program and then proceed as follows:

= Remove the comment lines in the header.
= ChangeDEFINE DATA PARAMETER into DEFINE DATA LOCAL.

" Replace the PROCESS PAGE statement with a PROCESS PAGE USING operand4 statement, where
operand4 stands for the name of your adapter.

" Remove the comment lines that surround the DECIDE block.

® Uncomment the DECIDE block.
Your program should now look as follows:

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Stow the program with a name of your choice. The resulting program can be executed in a browser
where it displays the page. However, it does not yet do anything useful, because it handles the
incoming events only in a default way and contains no real application logic.

Natural for Ajax 85

Developing the Application Code

Structure of the Main Program

The main program that displays the page and handles its events has the following general structure:

" A PROCESS PAGE USING statement with the page adapter. The PROCESS PAGE statement displays
the page in the user's web browser and fills it with data. Then, it waits for the user to modify
the data and to raise an event.

" A DECIDE block with a VALUE clause for each event that shall be explictly handled.

® A default event handler for all events that shall not be explicitly handled.
Each event handler does the following;:

= It processes the data the has been returned from the page in the user's web browser.

" It performs a PROCESS PAGE UPDATE FULL statement to re-execute the previous PROCESS PAGE
USING statement with the modified data and to wait for the next event.

The default event handler does not modify the data. It does the following:

® It performs a PROCESS PAGE UPDATE statement to re-execute the previous PROCESS PAGE USING
statement and to wait for the next event.

Handling Page Events

When the PROCESS PAGE statement receives an event, the data structure that was passed to the
adapter is filled with the modified data from the page and the system variable *PAGE-EVENT is
filled with the name of the event. Now, the corresponding VALUE clause in the DECIDE statement
is met and the code in the clause is executed.

The application handles the event by processing and modifying the data and resending it to the
page witha PROCESS PAGE UPDATE FULL statement. Alternatively, it uses the PROCESS PAGE UPDATE
statement without the FULL clause in order to resend the original (not modified) data.

86 Natural for Ajax

Developing the Application Code

Built-in Events and User-defined Events

There are built-in events and user-defined events.
Built-in Events
The following built-in events can be received from the page:

nat:page.end
This event is raised when the user closes the page with the Close button in the upper right
corner of the page, opens another page or closes the web browser.

nat:page.default
This event is sent if the Natural for Ajax client needs to synchronize the data displayed on the
page with the data held in the application. It is usually handled in the default event handler
and just responded with a PROCESS PAGE UPDATE.

Other built-in events can be sent by specific controls. These events are described in the control
reference.

User-defined Events

User-defined events are those events that the user has assigned to controls while designing the
page layout with the Layout Painter. The names of these events are freely chosen by the user. The
meaning of the events is described in the control reference.

Sending Events to the User Interface

The PROCESS PAGE UPDATE statement can be accompanied by a SEND EVENT clause. With the SEND
EVENT clause, the application can trigger certain events on the page when resending the modified
data.

The following events can be sent to the page:

Natural for Ajax 87

Developing the Application Code

nat:page.message

This event is sent to display a text in the status bar of the page. It has the following parameters:

Name (Format |Value

type |A or U|Sets the icon in the status bar ("S"=success icon, "W"=warning icon, "E"=error icon).

short|A or U|Short text.

lTong |A or U|Long text.

nat:page.valueList

This event is sent to pass values to a FIELD control with value help on request (see also the
description of the FIELD control in the control reference). It has the following parameters:

Name |Format |Value

id |A or U|A list of unique text identifiers displayed in the FIELD control with value help. The list
must be separated by semicolon characters.

text|A or U|A list of texts displayed in the FIELD control with value help. The list must be separated
by semicolon characters.

nat:page.xmlDataMode
This event is sent to switch several properties of controls on the page in one call to a predefined
state. The state must be defined in an XML file that is expected at a specific place. See the
information on XML property binding in the Application Designer documentation for further
information.

Name |Format |Value

data|A or U|Name of the property file to be used.

Using Pop-Up Windows

A rich GUI page can be displayed as a modal pop-up in a separate browser window. A modal
pop-up window can open another modal pop-up window, thus building a window hierarchy. If
a PROCESS PAGE statement and its corresponding event handlers are enclosed within a PROCESS
PAGE MODAL block, the corresponding page is opened as a modal pop-up window.

The application can check the current modal pop-up window level with the system variable
*PAGE-LEVEL. *PAGE-LEVEL = 0 indicates that the application code is currently dealing with the
main browser window. *PAGE-LEVEL > 0 indicates that the application code is dealing with a
modal pop-up window and indicates the number of currently stacked pop-up windows.

88 Natural for Ajax

Developing the Application Code

In order to modularize the application code, it makes sense to place the code for the handling of
a modal pop-up window and the enclosing PROCESS PAGE MODAL block in a separate Natural
module, for instance, a subprogram. Then the pop-up window can be opened with a CALLNAT
statement and can thus be reused in several places in the application.

Example program MYPAGE - P:

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE-A'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onPopup'
/* Open a pop-up window with the same fields.
CALLNAT 'MYPOP-N' FIELD1 FIELDZ?
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END
Example subprogram MYPOP - N:

DEFINE DATA PARAMETER

1 FIELDI (U) DYNAMIC

1 FIELDZ (U) DYNAMIC

END-DEFINE

*

/* The following page will be opened as pop-up.
PROCESS PAGE MODAL

*

PROCESS PAGE USING 'MYPOP-A'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

Natural for Ajax 89

Developing the Application Code

END-PROCESS

*

END

Using Natural Maps

Rich internet applications written with Natural for Ajax need not only consist of rich GUI pages,
but may also use classical maps. This is especially useful when an application that was originally
written with maps shall only be partly changed to provide a rich GUL. In this case the application
can run under Natural for Ajax from the very beginning and can then be , GUIfied” step by step.

Navigating between Pages and Maps

Due to the similar structure of programs that use maps and programs that use adapters, it is easy
for an application to leave a page and open a map, and vice versa. For each rich GUI page, you
write a program that displays the page and handles its events. For each map, you write a program
that displays the map and handles its events. In an event handler of the page, you call the program
that handles the map. In an ,,event handler” of the map, you call the program that handles the

page.
Example for program MYPAGE - P:

DEFINE DATA LOCAL
1 FIELDI (U20)

1 FIELDZ (U20)
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onDisplayMap'
/* Display a Map.
FETCH 'MYMAP-P'
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

90

Natural for Ajax

Developing the Application Code

Example for program MYMAP - P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELDZ2 (U20)
END-DEFINE
*
SET KEY ALL
INPUT USING MAP 'MYMAP'
*
DECIDE ON FIRST *PF-KEY
VALUE 'PF1'
/* Display a rich GUI page.
FETCH 'MYPAGE-P'
NONE VALUE
REINPUT WITH TEXT
'Press PF1 to display rich GUI page.'
END-DECIDE

*

END

Using Pages and Maps Alternatively

An application can also decide at runtime whether to use maps or rich GUI pages, depending on
the capabilities of the user interface. The system variable *BROWSER- 10 lets the application decide
if it is running in a web browser at all. If this is the case, the system variable tells whether the
application has been started under Natural for Ajax and may thus use both maps and pages, or
whether it has been started under the Natural Web I/O Interface and may thus use only maps.

Example:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
IF *BROWSER-I0 = 'RICHGUI'
/* If we are running under Natural for Ajax,
/* we display a rich GUI page.
PROCESS PAGE USING "'MYPAGE'
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

Natural for Ajax N

Developing the Application Code

END-DECIDE
ELSE
/* Otherwise we display a map.
SET KEY ALL
INPUT USING MAP 'MYMAP'
DECIDE ON FIRST *PF-KEY
VALUE 'PF1"
/* Map closed.
IGNORE
NONE VALUE
REINPUT WITH TEXT
'"Press PF1 to terminate.'
END-DECIDE
END-IF

*

END

Starting a Natural Application from the Logon Page

In order to start a Natural application from the logon page, you proceed as described in Configuring
the Client which is part of the Natural Web I/O Interface documentation.

Starting a Natural Application with a URL

See Starting a Natural Application with a URL and Wrapping a Natural for Ajax Application as a Servlet
in the section Configuring the Client which is part of the Natural Web I/O Interface documentation.

92 Natural for Ajax

16

Deploying the Application

Components of a Natural for Ajax Application

Unloading the Natural Modules
Installing the Natural Modules
Unloading the User Interface Components ...
Installing the User Interface Components

Packaging and Deployment as a Web Applicationoviiiiiiiiii e

93

Deploying the Application

Components of a Natural for Ajax Application

A Natural for Ajax application consists of two parts that are usually installed on two different
machines.

On one hand, there are Natural modules (adapters, programs, subprograms and other Natural
objects) that are installed on a Natural server. On the other hand, there are page layouts of rich
GUI pages and related files that are installed in a Natural for Ajax environment on an application
server.

Unloading the Natural Modules

The Natural modules that belong to your application are contained in one or several Natural
libraries in your Natural development environment. Unload them into a file, using the Object
Handler.

Installing the Natural Modules

In order to install the Natural modules in the production environment, load them with the Object
Handler.

Unloading the User Interface Components

The user interface components of your application are contained in one or several Application
Designer projects in your Natural for Ajax development environment on your development app-
lication server.

All files in your Application Designer project are stored in one directory on the application server
on which Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server:

® JBoss Application Server
<installdir>/server/default/deploy/njx<nnn>.ear/cisnatural.war
" Sun Java System Application Server

<installdir>/domains/domainl/applications/j2ee-apps/njx<nnn>.ear/cisnatural_war

where <installdir>is the directory in which your application server is installed and <nnn>is the
current Natural for Ajax version.

94 Natural for Ajax

Deploying the Application

The project directory contains a number of subdirectories, only some of which need to be
deployed to the production environment. <projectdir> in the table below stands for the name
of your project directory. Pack the following files and subdirectories into an archive, using an
archiving tool like WinZip or tar.

File Description
<projectdir>/*.html Generated HTML pages.
<projectdir>/xml/** Page layouts.
<projectdir>wsdl/** Page data schemas.
<projectdir>laccesspath/*.* Page data access definitions.
<projectdir>/multilanguage/*.* | Language-dependent strings.
<projectdir>/help/** Language-dependent help texts.

Installing the User Interface Components

In order to install the user interface components, unpack the previously created archive into a
corresponding project directory in your Natural for Ajax production environment on your produc-
tion application server.

Packaging and Deployment as a Web Application

On Apache Tomcat and IBM WebSphere, Natural for Ajax is delivered as a web application (.war
file), in contrast to a J2EE enterprise application (.ear file). This allows for packaging and deploying
also your own applications (more exactly: the user interface components thereof) as self-contained
web applications.

» To package your application as a web application

1 Invoke the Application Designer development workplace.

2 In the Development Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose WAR Packager.

3 In the resulting dialog, make sure that the Deployment Scenario tab is selected.

4 Define the generation type by selecting one of the following option buttons: with file system
reference or fully clusterable. See the Application Designer documentation for detailed
information on these generation types.

Note: The option fully clusterable applies only for web applications written in Java,

not for those written in Natural. This is because a Natural-written application runs on

Natural for Ajax 95

Deploying the Application

a Natural server and therefore needs to keep a TCP/IP connection to the server, while
Java applications are executed on the web container itself.

If you selected with file system reference, enable the Switch off Design Time check box.
Select the Project Selection tab.

Select the project directories that you want to include in your web archive. These must be at
least the following;:

Directory Description
cis Application Designer configuration files.
cisnatural Natural for Ajax logon page and related pages.

HTMLBasedGUI|HTML user interface.

images Application Designer image files.

META-INF Standard directory in a web application.

resources Natural Web I/O Interface style sheets and related files.

scripts Natural Web I/O Interface JavaScript files.
SWTBasedGUI |SWT user interface.

WEB-INF Standard directory in a web application.

In addition, you have to select your own project directories.

In the text box WAR File to be created, specify a path and name for the web application to
be created.

Choose the Create WAR button.

The web application (.war file) is created.

» To deploy your application

1 You deploy your web application in the same way as you deployed Natural for Ajax itself
(see Installation).

2 After you have deployed your web application, you can use the configuration tool to specify
the configuration for this specific application. For detailed information on this tool, see Using
the Configuration Tool in the Natural Web 1/O Interface documentation.

Start the configuration tool with the following URL:

http://<host>:<port>/<webcontext>/conf_index.jsp

The logon page of the application can be found here:

http:// <host>:<port>/<webcontext>/serviet/StartCISPage?PAGEURL=/cisnatural/NatLogon.html
96 Natural for Ajax

Deploying the Application

| Note: <webcontext> denotes the web context of your application. On Apache Tomcat,

this is the name of the .war file, without the extension .war. On IBM WebSphere, this
is the value you specified as the web context during the deployment.

Natural for Ajax 97

98

17 Natural Parameters and System Variables

The following Natural parameters and system variables are evaluated in Natural for Ajax applica-
tions and sent to Application Designer:

DC

The character assigned to the DC parameter is used in the representation of decimal fields in
Application Designer.

DTFORM

This parameter is used for all date fields in Application Designer pages. In your application,
the date is shown according to the setting of the DTFORM parameter.

*CURS-FIELD

Identify the operand that represents the value of the control that has the input focus. When the

Natural system function P0S is applied to a Natural operand that represents the value of a control,
it yields the identifier of that operand.

*LANGUAGE

Change the language while an application is running. See also Multi Language Management.

See also Support for Special Features.

99

100

18 Usage of Edit Masks

B General INFOrMELIONoiiiiiii e et e e a e e e e 102
m Data Types With Edit MASKSeeeeiiee e e e e 102
B Characters Used in Edit MASKSviiiiiiiiiiiiie e a e e 102
= Specifying Edit Masks in LAYOULScoouuriiiiiiiic e 103
= Static versus Dynamic Validationooiiiiiiiiiiii e 105

101

Usage of Edit Masks

General Information

Natural for Ajax supports a subset of the Natural edit mask concept, in order to support output
formatting and input validation of numeric fields.

If an edit mask is specified for a numeric field, the field content is rendered according to the edit
mask. Input to this field is validated against a regular expression that corresponds to this edit

mask. The regular expression is automatically generated from the edit mask, so that by defining
the edit mask, the user controls at design time the formatting of the field as well as the validation.

During the output formatting and input validation for numeric fields with edit masks, the Natural
parameters DC, THSEPCH and EMFM are supported.

Data Types with Edit Masks

In all controls that support the property datatype, an edit mask can be specified for the following
data types:

" N n.n
" P n.n
" q9int

" float

" xs:short

" xs:decimal

Characters Used in Edit Masks

The following characters can be used in edit masks:

Character | Function

9 Decimal digit or digit.

Z Zero-suppressed digit.

+ Preceding/following sign.

- Preceding/following sign if the value is negative.

102 Natural for Ajax

Usage of Edit Masks

Character

Function

7

Thousands separator character.

Anmerkung: The actual character used as the thousands separator can be either a comma (,) or a

period (.). This depends on the setting of the parameter THSEPCH in Natural.

Decimal separator character.

Anmerkung: The actual character used as the decimal separator can be either a period (.) or a

comma (,). This depends on the setting of the parameter DC in Natural.

Specifying Edit Masks in Layouts

An edit mask is added to a numeric data type in the following way (the edit mask is separated
from the data type by a semicolon):

digits

datatype M 5.4,22,229.99
validationrules

validation

validationprop

validationuserhint

validationuserhintprop

digitsprop -
nce Binding Walidation Valuehelp onlinehelp 4

Application Designer generates a regular expression from the edit mask and adds it as a value for
the validation property. This regular expression is used to validate the value on the client side
when the user changes the field. This is done in the same way as if the user had specified the
regular expression directly in the validation property.

Natural for Ajax

103

Usage of Edit Masks

The generated regular expression can be seen in the generation protocol. For the above example,
it is shown as follows:

Id o [Tag o [Type o [Message

20 itr
21 label name/MN 5.4,727,779.99 width;/150
22 field valueprop/thdecsepfield width/200 flush/server datatype/N 5.4,77,779.99

Info Validation added [0-9,.0{1,6}[.,]{1}+[0-9]1{1,2}
The validation takes place after the modification of a field value, that is: when the focus has left
the field. This means that the validation does not take place with every key pressed. The user can

enter invalid values as long as the input focus is in the field.

Input Rendering

For 77,779.99 of the above example, the user can enter a valid value even without entering the
thousands separator character:

Edit Masks With Decimal Separator -
M 5.4;27,££9,99 12345.??|

Since the value itself is correct, it is accepted. Ideally, the value should be rendered according to
the precise edit mask when the focus of the field is left. This can be easily achieved by setting the
flush property to "server". This will trigger a server roundtrip and since output rendering takes
place with each server roundtrip, the rendering is done automatically.

Edit Masks With Decimal Separator -
M 5.4,77,779,99 12.345,77

Input Completion

Application Designer does some input completion, for example, when working with float data
types. An example for this is adding "0" decimal digits.

104 Natural for Ajax

Usage of Edit Masks

Edit Masks With Decimal Separator -
M 5.4;7Z,279.99 12.345|

For the above input, Application Designer will do the following input completion:

Edit Masks With Decimal Separator -

M 5.4,22,229.99 12.245,00|

Static versus Dynamic Validation

At design time, the characters that will actually be used for DC and THSEPCH are not yet known.
Therefore, when the regular expression for validation is already generated at design time, both
characters must be considered as possible DC or THSEPCH characters. In consequence, the validation
is more tolerant than it should be.

To achieve a more stringent validation, the regular expression can also be dynamically generated
at runtime. This is achieved by appending the literal "dynamic" to the edit mask, separated by a
semicolon. In this case, the runtime settings of DC and THSEPCH are evaluated during the validation.
Example:

datatype="N 5.4;+77,999.99;dynamic"

If the parameter EMFM is to be evaluated, the validation expressions must be generated dynamically,
because at design time, it is not yet known whether the application will run in free mode or not.
Statically generated validations always behave as in free mode. That is: they do not force the user
to enter plus or minus signs or the thousands separator character.

Natural for Ajax 105

106

19 Multi Language Management

The multi language management is responsible for changing the text IDs into strings that are
presented to the user.

There are two translation aspects:

= Allliterals in the GUI definitions of a layout are replaced by strings which are language-specific.
This is based on the multi language management of Application Designer.

| Note: Detailed information on the multi language management is provided in the Appli-

cation Designer documentation at http://documentation.softwareag.com/webme-
thods/cit_reroute.htm.

* Literals that are contained in your application code are handled with the language management
of Natural.

In a Natural for Ajax application, both language management systems are related by common
language codes. The language codes used are those that are defined for the Natural profile para-
meter ULANG and the system variable * LANGUAGE.

The Application Designer documentation describes how the text files containing the language-
dependent texts are created and maintained (see the information on writing multi language layouts
at the above URL). For a multi-lingual Natural for Ajax application, the names of the directories
that contain the text files should be chosen according to the Natural language codes, for instance
/multilanguage/4 for Spanish texts.

When an application is started from the Natural logon page (see Starting a Natural Application
from the Logon Page), the user can select the language to be used. Depending on the selected
language, the same (Natural) language code is set up both in Application Designer and in the
Natural session, so that both language management systems are then configured to use the same
language.

107

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Multi Language Management

| Note: The language for a session can also be defined in the configuration file sessions.xml,

with the element Tanguage. See Managing the Configuration File for the Session in the Natural
Web I/O Interface documentation.

It is also possible to change the language while an application is running. This is done by setting
the Natural system variable *LANGUAGE in the Natural program. Each time this system variable is

changed, Natural for Ajax changes the language code for the web pages when the next update of
the page occurs.

For compatibility with the predefined multi language directories in Application Designer, the
English and German texts need not be stored in /multilanguage/1 and /multilanguage/2, but can be
contained in /multilanguage/en and /multilanguage/de.

108 Natural for Ajax

20 Support of Right-to-Left Languages

Natural for Ajax supports right-to-left languages and bidirectional text without specific actions

taken by the application. The browser displays and accepts bidirectional text always in the
expected order.

Applications can use the same page layouts both in left-to-right and in right-to-left screen direction.
To switch the screen direction, the statement SET CONTROL is used as follows:

Statement Description

SET CONTROL 'VON' |Sets the screen direction to right-to-left.

SET CONTROL 'VOFF"|Sets the screen direction to left-to-right.
SET CONTROL 'V'

Switches from left-to-right to right-to-left screen direction and vice versa.

109

110

21 Server-Side Scrolling and Sorting

B General INFOrMELIONoiiiiiii e et e e a e e e e 112
= Variants of Server-Side Scrolling and SOrtNGccuviiiiiiiii e 112
= Controls that Support Server-Side Scrolling and SOMINGvviiiiiiie e 116
= Data Structures for Server-Side Scrolling and SOMINGovviiiiiiiiiii e 116
= Server-Side Scrolling and SOMNG iN TrEESvvviviiei i 118
= Events for Server-Side Scrolling and SOMINGooiiiiiiiiii e 119

M

Server-Side Scrolling and Sorting

General Information

It is often the case that a web application has to display an arbitrary amount of data in a grid
control, for instance, the records from a database table. In these cases, it is mostly not efficient to
send all data as a whole to the web client. Instead, it will be intended to display a certain amount
of data to begin with and to send more data as the user scrolls through the page. To support this,
the grid controls in Natural for Ajax support the concept of server-side scrolling and sorting.

Variants of Server-Side Scrolling and Sorting

The following graphic illustrates the different types of server-side scrolling and sorting that are
supported by Natural for Ajax.

Web Server
Web Client Matural
(Browser) - S55_ W > with - 8555 N > Server
Matural
for Ajax

With respect to server-side scrolling and sorting, the following options can be used:

® No Server-Side Scrolling and Sorting
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) as a whole.

Advantage: Neither the web server nor the Natural application are involved in the process of
scrolling and sorting. As long as the user only scrolls and sorts, no round trip from the web client
to the web server or to the Natural server is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

112 Natural for Ajax

Server-Side Scrolling and Sorting

" Web Server-Side Scrolling and Sorting (SSS_W)
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) in portions.

Advantage: The Natural application is not involved in the process of scrolling and sorting. As
long as the user only scrolls and sorts, no round trip from the web server to the Natural server
is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

® Natural Server-Side Scrolling and Sorting (SSS_N)
The Natural application sends the grid data to the web server in portions. The web server sends
the grid data to the web client (browser) in portions.

Advantage: A round trip between web server and Natural application passes only the visible
data portion.

Disadvantage: The Natural application must support the process of scrolling and sorting with
a specific application logic.

The decision between these options will often depend on the expected data volume. The applica-
tion can decide dynamically at runtime which option to use.

The following topics show the difference between these three options

= No Server-Side Scrolling and Sorting
= Web Server-Side Scrolling and Sorting
= Natural Server-Side Scrolling and Sorting

No Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of twenty. The Natural application
sends twenty rows and indicates that no further rows are to be expected (SIZE=0).

Web Web
Browser Server

20 [20

Matural

Natural for Ajax 13

Server-Side Scrolling and Sorting

Step 2: When you scroll up and down, no server round trips to the web server or to the Natural
application are performed.

Web Web

Matural
Browser Server

Web Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
twenty rows and indicates that no further rows are to be expected (SIZE=0).

Web Web

Browser | ¥ S55_W » gerver Natural

20

Step 2: When you scroll up and down, the web browser requests additional records from the web
server There are no server round trips to Natural.

114 Natural for Ajax

Server-Side Scrolling and Sorting

Web Web

Browser | SS5_W > Server Natural

Natural Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
five rows and indicates that further rows are to be expected (SIZE=20).

Web Web

Browser || S85_W * cover [> Natural

Step 2: When you scroll up and down, the web browser requests additional records from the web
server. The web server requests additional records from the Natural application.

Web
Browser

Web

n SS5_W > server §85_N > Natural

Natural for Ajax 115

Server-Side Scrolling and Sorting

The Natural application can dynamically decide at runtime which option of server-side scrolling
and sorting it wants to use. This can depend on the number of records contained in a search result.

= If the application does not want to use server-side scrolling and sorting at all, it sends as many
rows to the web browser as the grid is configured to hold, or it sends fewer rows.

= If the application wants to use web server-side scrolling and sorting, it sends all available rows
and sets the SIZE parameter to zero in the data structure that represents the grid in the applica-
tion.

= If the application wants to use Natural server-side scrolling and sorting, it sends only part of
the available rows and indicates in the SIZE parameter how many rows are to be expected
altogether.

Controls that Support Server-Side Scrolling and Sorting

The following controls support server-side scrolling and sorting:

®" TEXTGRIDSSS2
" ROWTABLEAREA2
" MGDGRID

| Note: For compatibility reasons with earlier versions of Natural for Ajax, you have to set

the natsss property of NATPAGE to true in order to activate server-side scrolling and
sorting for the controls ROWTABLEAREA2 and MGDGRID. If this property is set to true,
for all instances of these grid controls on a page, the necessary data structures are generated
into the Natural adapter interface.

Data Structures for Server-Side Scrolling and Sorting

If you use the TEXTGRIDSSS2 control or if you use the ROWTABLEAREA2 or MGDGRID control
and have set the property natsss to true for the page, the following additional data structure is
generated into the adapter interface for each instance of these controls. This data structure is used
to control the scroll and sort behavior at runtime.

116 Natural for Ajax

Server-Side Scrolling and Sorting

LINESINFO

ROWCOUNT (I4)

SIZE (I4)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC
TOPINDEX (I4)

N W WM NN

The name of the data structure is derived from the name of the variable that is bound to the grid.
In this example, the variable LINES had been bound to the grid. Therefore, the name LINESINFO
was generated.

With each event that is related to scrolling and sorting, the application receives the information
how many rows it should deliver at least (ROWCOUNT) and the index of the first record to be delivered
(TOPINDEX).

In SORTPROPS, the application receives the information in which sort sequence the records should
be delivered and by which columns the records should be sorted.

On the other hand, the application itself can specify a sort sequence (also using multiple sort criteria)
and indicate this sort sequence by filling the structure with the desired sort criteria.

= If web server-side scrolling and sorting is used, the specified sort sequence is automatically
created on the web server.

® If Natural server-side scrolling and sorting is used, the application itself must provide the records
in the specified sort sequence.

® With the TEXTGRIDSSS2 control, the first three specified sort criteria are automatically indicated
in the column headers of the grid.

® With the ROWTABLEAREA2 control, the first specified sort criterion is automatically indicated
in the column headers of the grid. If more sort criteria are to be be indicated, the application
should provide custom grid headers.

In SIZE, the application can indicate whether the delivered amount of rows represents all available
data (SIZE=0, no Natural server-side scrolling), or whether there are more rows to come
(SIZE=total-number-of-records, Natural server-side scrolling).

When Natural server-side scrolling is used, the application will, for instance, hold the available
rows (mostly the result of a database search) in an X-array, sort this X-array as requested and
deliver the requested portion of rows. However, other implementations and optimizations are
possible, depending on the needs and possibilities of the application.

Natural for Ajax 17

Server-Side Scrolling and Sorting

Server-Side Scrolling and Sorting in Trees

The ROWTABLEAREA2 control can also be configured as a tree control, where each row represents
a tree node. In this case, the data structure that supports server-side scrolling contains one more
field, DSPINDEXFIRST.

LINESINFO
DSPINDEXFIRST (I4)
ROWCOUNT (I4)

SIZE (14)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC
TOPINDEX (I4)

DWW NN

The need for this additional control field comes from the fact that a tree can contain hidden items.

The rows sent by the Natural application must always start with an item at level one. The additional
field DSPINDEXFIRST is provided because the visible part of the tree can start at a node with a level
greater than one (a subnode). In DSPINDEXFIRST, the application must indicate the index of the
first visible row within the rows sent from Natural.

118 Natural for Ajax

Server-Side Scrolling and Sorting

Example
-
1 toptext_0 lineirfa_o
. childtext_0.0 childlineinfo_
=y childtext_0.1 childlineinfo_
4 childtext_0.2 childhinemfo_
5 childtext_0.3 childlineinfa_ = |

The top nodes of the tree are open and the user scrolls down as shown below:

L4 chideext 0.2 | childiineinfo_ |
3 childvext_0.3 childlineinfo_
& childtext_0.4 childlineinfo_
T toptext_1 lineinfa_1
2] . childtext_1.0 rhlldllnemfu_j

The Natural application is supposed to send data starting with a top node. In our example, this
is the node named toptext_0. But the first visible child node would be childtext_0.2. This means
that among the sent items, the first three items are hidden. The application sets the value for
DSPINDEXFIRST to "3" when sending the data.

Events for Server-Side Scrolling and Sorting

In order to support server-side scrolling and sorting, an application must handle a number of
related events properly. The events are described with the corresponding controls. Examples on
how to handle the events are provided in the library SYSEXNJX.

Natural for Ajax 119

120

22 Application Modernization

This part describes how to convert a character-based Natural application to a Natural for Ajax
application.

The information in this part is organized under the following headings:

Overview of Conversion Steps

Map Extraction

Map Conversion

Customizing the Map Conversion Process

Code Conversion

¢ € & ¢ @

121

122

23 Overview of Conversion Steps

The conversion of a character-based Natural application to a Natural for Ajax application consists
of several steps as illustrated in the following graphic:

Matural !

Maps

Map Extract ‘.|3 > Natural for Ajax
Files | Map Conversion Pages

" Step 1: Map Extraction
Extracts from each Natural map the information that is required to create a corresponding
Natural for Ajax page. For each map, a map extract file is created. This file is intended as input
for the map conversion.

Required tool: Natural Studio which is part of Natural for Windows.

See Map Extraction for further information.

123

Overview of Conversion Steps

= Step 2: INPUT Statement Extraction
This step is required for Natural applications that do not use maps, but use INPUT statements
for the dynamic specification of the screen layouts.

Extracts from each INPUT statement in the source code the information that is required to create
a corresponding Natural for Ajax page. For each INPUT statement, a map extract file is created.
This file has the same format as a map extract file created by the map extraction process, and it
is also intended as input for the map conversion.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.
= Step 3: Map Conversion

Processes the map extract files and creates the corresponding Natural for Ajax pages.

Required tool: Map Converter which is part of the Application Designer development workplace
contained in Natural for Ajax.

See Map Conversion and Customizing the Map Conversion Process for further information.

" Step 4: Code Conversion
This step requires that the Natural for Ajax pages have already been created.

Modifies the application code in such as way that it can use the newly created Natural for Ajax
pages. The application can still run in a terminal, in the Natural Web I/O Interface client or in
batch as before. But it can now also run in a Natural for Ajax session with the new Natural for
Ajax pages.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.
Code conversion can also be performed manually. See Code Conversion for further information.

The resulting Natural for Ajax application mimics the character-based application. The user
interface is not restructured in the sense that several maps are combined into a single page or that
complex maps are split into several separate pages. This kind of restructuring is not part of the
conversion, but of the normal development of a Natural for Ajax application.

124 Natural for Ajax

24 Map Extraction

B GENeral INfOrMELIONeeiie e ettt 126
m Using Natural for AJaX TOOISceivieiieeiiiii ettt e e e e e e e e e nnaee e e e 126
B USING the MASS FUNCHON ...t 126
B LOCAtON OF tNE FIIES ... e 126

125

Map Extraction

General Information

The Map Extractor is the first tool that is used in the process of converting a map-based application
to a Natural for Ajax application. It analyzes the code of a Natural map and creates from each map
a file that contains information about the map, the so-called , map extract file”.

The map extract files have the extension .njx and are not human-readable. They are intended as
input for the second step of the process, the map conversion.

The Map Extractor is used only to process character maps. GUI elements contained in maps are
not extracted.

Using Natural for Ajax Tools

The map extract files can be created using Natural for Ajax Tools, which is an optional plug-in for
Natural Studio. See Using the Map Extractor in the Natural Studio Extensions documentation which
is provided for Natural for Windows.

Using the Mass Function

For mass processing of maps, the Natural program MAP2NJX is provided. The program is delivered
in the plug-in library SYSPLNJX.

MAP2NJX is working only on the local environment. It is called in the following way:

MAP2NJX Tibrary-name map-name

In the parameter map -name, the asterisk (*) notation can be used.

Location of the Files

The location of the map extract files depends on the settings in the configuration file ConfigNJX-
PLG.dat (see Configuring the Servers in the Natural Studio Extensions documentation which is provided
for Natural for Windows).

If an application server and a Natural Web I/O Interface server has been specified for the active
environment, and if a file-system path to the application server environment has been specified,
and if an Application Designer project has been created for the current library, and if this Applica-

126 Natural for Ajax

Map Extraction

tion Designer project contains a nat subdirectory, then the Map Extractor writes the resulting map
extract files to the nat subdirectory of this Application Designer project.

If the above information is not available for the active environment, the Map Extractor stores the
files as follows:

= If the active environment is the local environment, the files are stored in the res subdirectory of
the current library.
= If the active environment is a remote environment, the extraction fails.

The names of the map extract files are derived from the map names (for example, MYMAP . NSM results
in MYMAP . NJX).

If the function is applied to several maps and the extraction fails for some of them, a log is displayed
and is stored at the location described below:

= If the above path information is available and valid, the log file is written to the nat subdirectory
of the corresponding Application Designer project.

= If the above path information is available, but not valid, the log file is written to the res subdirec-
tory of the user's library in the local environment.

= If the above path information is not available and the active environment is a remote environment,
the log file is written to the res subdirectory of the user's library in the local environment.

® If the above path information is not available and the active environment is the local environment,
the log file is written to the res subdirectory of the current library.

Natural for Ajax 127

128

25 Map Conversion

B General INFOrMELIONoiiiiiii e et e e a e e e e 130
I 1] oSO RSOOR TP PPPPP 131
B USING the MaP CONVEIET ...t e 139
B Using the EdItor EXIENSIONeeiiiii ittt a e 143
m Using the Conversion RUIES TOOIcoiiiiiiiiiiiiie e 146
= Using the Conversion LOGS TOOIuuiiiiiiiiie et 148

129

Map Conversion

General Information

After the Map Extractor or the INPUT Extractor has been used to create extract files from maps,
the Map Converter is the next tool used in the process of converting a map-based application into
a Natural for Ajax application. The Map Converter processes the map extract files that were created
by the Map Extractor or the INPUT Extractor. It analyzes the map extract files and creates a Natural
for Ajax page layout from each map extract file. Controls on the map are converted to controls on
the page. Many features of the original map are converted to features of the page.

By default, the Map Converter uses a predefined set of page templates and conversion rules that
control the conversion process. The templates and the conversion rules can be modified or extended
to adapt the converter to the requirements of a specific conversion project. With the advanced
option to program own conversion handlers, the Map Converter provides additional flexibility
and extensibility.

The Application Designer development workplace contained in Natural for Ajax provides addi-
tional Natural tools for map conversion:

Tools & Documentation

+ 7 Development Tools

-] Matural Tools
Map Converter
Map Conwerter Extension API
Conversion Rules
Conversion Logs

+ [Performance Tools

The following Natural tools can be invoked from the navigation frame:

" Map Converter
This tool is used for mass generation of layouts. For quick start with this tool, see First Steps
below. For detailed information on all options of this tool, see Using the Map Converter.

You can also generate a single layout while designing a page in the Layout Painter. An editor
extension is available for this purpose. See Using the Editor Extension for further information.

® Conversion Rules
You can use this tool to copy the conversion rules from other projects to the current project. See
Using the Conversion Rules Tool for further information.

130 Natural for Ajax

Map Conversion

® Conversion Logs
You can use this tool to view or delete the log files that have been created during the conversion.
See Using the Conversion Logs Tool for further information.

First Steps

We start with a simple map like the one below and we suppose that you have already created a
map extract file with the Map Extractor. The map is contained in a Natural library named TESTCONV.
The map extract file has been stored in the nat subdirectory of an Application Designer project
with the corresponding name testconv.

= NAMES-M [TESTCONV - NATOSAO1L (2700)] - Map - 10| x|
TY-MM-DD txr Omlmspt Employes *E Tr=TraET

First name: [XXIXXLIXXX

Last names: |XKEHRXKKIKKXHHXKKEXR
Company: XXX XX XXX AL XL LK

Birth date: |[YT-ME-DD

F3 Exit
F4 Delete
F5 Save

» To create a Natural for Ajax page layout from an extract file

1 Open the Application Designer development workplace.

2 Inthe Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Map Converter.

Natural for Ajax 131

Map Conversion

The Map Converter is opened.

i-m 3

Map Conversion Conversion Rules Conversion Logs View

"Select Project =
Project lteatcumr EI
'Select Conversion Rules I -

¥ Use default rules © Use project nules

Rules | convrulesDefault. xmi =1

| Select Natural Maps 2 .
;ﬂnpm D:/1Boss/IBoss4 22 /server/default)./deg
Select map |NAMES-M.NIX =]

3 Select the project in which you want to store the page layouts that are to be generated. That
is, select your project testconv.

4 Select the conversion rules file to be used. That is, stick with the rules file convrulesDefault.xml
to begin with.

5 Select the map input folder, that is, the folder in which your map extract files are stored.
6 Select a map extract file.

7 From the Map Conversion menu, choose Show Map to display the content of the map extract
file in XML format.

Or:

Choose the icon that is shown in the Select Natural Maps header.

132 Natural for Ajax

Map Conversion

= MAP XML x|

<7¥ml version="1.0" encoding="UTF-8" 7> a
«l-- Generator: MAP2NIX for version NIX120 --»
<me:map xsi:schemalocation="http://www.softwareag.com/nat/mapextractor/naturalmap.xsd’
amins:me="http:/fwww.softwareag.com/nat/mapextractor’
wmins:xsi="http:/fwww.w3.0rgf2001/¥ML5chema-instance'
«me:identity>
<me:idDBID=99 </me:dDBID >
<me:idFNR>101</meidFNR >
<me:idLibrary>TESTCONV </me:idLibrary >
cme:idName>NAMES-M </me:idName>»
</me:identity =
zme:define=
cme:difield>
«me:dfLevel>1</me: dfLevels
zme:diName =2 COMPANY </me:dfName=
<me;dfformat=A20</me:dfFormat
</me:dfField>
<me:dfField=
zme;diLevel>=1</me:dfiLavel>
<me;dffame:>»#FIRST </me:dfName>
<me:dfFormat>A16</me: dfFormat>
</me:difield=
<me; difield>
<me:df_evel>1</me: dfiLevel=
zme:diNames>£LAST</me:dfName=
<me:diformat>A20</me:dfFormat=
</me:dfField>
<me;dfField>
<me:dfiLevel>1</me: dfiLevel=
cme:diName>BIRTH</me:diMame>
<me:dfformat>D</me: dfformat>
</me:dfField=
</me:define: ﬂ

8 From the Map Conversion menu, choose Preview Page Layout to display the resulting page
layout as it would turn out using the selected conversion rules file.

The right side shows a preview of the generated page layout. The Conversion Results area
shows a status message which informs either about successful conversion or an error that has
occurred.

Natural for Ajax 133

Map Conversion

Map Conversion Conversion Rules Conversion Logs View

* Use default rules © Use project rules

| convrulesDefautt, xmi i |
First name:
Last name:
D:jJEnssﬂBussdEzjsewu'f;lefamﬂded
| NAMES-p _NIX = Company:]
Birth date:

«" XML Layout created /serviet/StantDynamicPage?PAGENAME=PAGES4&SESSIONID=CASA3_1221210506283

9 From the Map Conversion menu, choose Preview in Browser to display the resulting page
layout in a separate browser window.

134 Natural for Ajax

Map Conversion

Exit

F4 Delete
F5 Save

First name:

Lazt name:

Company:

Birth date:

10 After having previewed the conversion result for one or several maps in your project, choose
Generate All Layouts from the Map Conversion menu to generate page layouts for all map
extract files contained in the selected folder.

Natural for Ajax

135

Map Conversion

B .

Map Conversion Conversion Rules Conversion Logs View

m|

Project |testcony =1

e |

% Use default rules © Use project rules

| Rules | convrulesDefault.xml =1

Map input D:/1Boss/MBoss422/server/default/. /deg
Select map [NAMES-M.NIX =l

T R —

Layout Generation for NAMES-M.NIX.. FINISHED

i B

" Layout generation finished.

11 For now close the Map Converter and switch to the project testconv to continue working on
the generated page layout.

136 Natural for Ajax

Map Conversion

Layout: MAMES-M.xmil £3
Haiia Edik Insert Tools Extensiosns I"_-l.. ._'J
L] New Form = [Open ~ Protocol - Log = | XML Schema (XSD)
i Save As = Server Log - Prefarences =
_ Proview - & Controks
P
= [natpage Select Employee = =g B'"
+ [titlebar [Select Em _|| I Title Bar
+] pagebody 21| [Page Header
[] statusbar _ Page Body
.. Status Bar

T Double Line Menu
- Strip Selection
= Tab Strip Selectio

£l | v I “I Tab Selection
ol First name: [
m_ %, Timer
natsource MNAMES-A : Intemal Popup Pad
Last name:
natsinglebyte true b S a
natrecursion b r Tl CIS Sub Paga
ok . Wp— 1 Sub Page
Contalnar
b i Birth date: w Controls
xmilns:npe hitp:/ ferwie . Grids/ Traas
| I J Wab 2.0 f Mashup
4] | ¥ Aduancad
_] Hatural Extanzions
: Matural Popup Occupier 4B warkplacs

+" Layout was refreshed

12 You might wish to assign a different name for the adapter to be generated for the page, change
other properties or modify the layout in any other way. Then save the layout and generate
the adapter as usual.

When you import the adapter into your Natural library, you will notice that the parameter
data area is the same as in the original map. This is the case even though the map uses system
variables and variables with special characters. The necessary translation is done inside the
generated adapter code and does not influence the application code.

13 Now create a main program for the adapter and run it in the browser.

Natural for Ajax 137

Map Conversion

-|0] x|
£3
08-09-12 09:00:36

/& Date Input

September
First name: Mg Tu We Th Fr S3 Su
1 2 3 4 1 6 ¥
Last name:
B o 10 11 12 13 14
R i5 16 17 18 19 20 B
Birth date: s 22 23 24 25 26 327 S

29 30

2008

F3| Exit
F4| Delete
Fa Save

You may have noticed the following effects of the applied conversion rules:

® The title in the first row of the map has been placed into the caption of the page and the
asterisks have been stripped off. Your application will quite surely have a different layout
of the map titles. The conversion rules can therefore be adapted to accommodate the needs
of your application, and the rule that identifies the title and places it into the caption is just
a simple application of customizing the conversion rules.

® The literals such as "F4 Delete" on the map have each been turned into a button control and
a label. This is also due to a sample conversion rule contained in the default conversion
rules.

* The date field has been converted to a field control with the data type "date". This enables
the user to select the date with the Date Input dialog box.

The full concept of customizing the Map Converter is described in Customizing the Conver-
sion Process.

138

Natural for Ajax

Map Conversion

Using the Map Converter

The Map Converter is used for mass generation of layouts.

In the First Steps, you have already learned how to use the Map Converter. The topics below
provide detailed descriptions of the different options and menu commands that are available in
the Map Converter:

= |nvoking the Map Converter

= Setting the Conversion Options

= Previewing/Generating a Single Layout
= Generating All Layouts

= \iewing the Conversion Results

= Refreshing the Display

Invoking the Map Converter

When you invoke the Map Converter, the following dialog appears.

Natural for Ajax 139

Map Conversion

Map Converter

Map Conversion Conversion Rules Conversion Logs View

[Select Project -

Project |testcany =]

[Select Conversion Rules = -

* Uge default rules Use project rules

Fules | convrulesDefault xml =]

[Select Natural Maps 2 -

rﬂ?dﬂelpnur D:/test/tomeats webapps/casnatural/te

Select map [MDISLONG.NIX =

rcnnwrﬂm Results =

» To invoke the Map Converter

= In the Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Map Converter.

Setting the Conversion Options

In order to start the generation, you have to select a project, a conversion rules file and the folder
containing your map extract files. The following options are available for this purpose:

Project
This drop-down list box provides for selection all Application Designer projects that are
currently defined.

Select the project in which you want to store the page layouts that are to be generated.

Use default rules
When this option button is selected, the default conversion rules and related templates are
used. These rules are stored in the subdirectory convrules of the project directory njxmapconverter.

140 Natural for Ajax

Map Conversion

Use project rules
When this option button is selected, the project-specific conversion rules are used. These rules
are contained in the subdirectory convrules of your project directory.

When your project does not yet have any project rules and you select this option button, the
Conversion Tool is automatically shown in a dialog. You can then copy the default conversion
rules and templates to the currently selected project. It is recommended that you copy all or
part of the default rules and related templates into your project and adapt the copies to the
requirements of your application. See Using the Conversion Rules Tool for further information.

You can also invoke the Conversion Tool manually. To do so, you choose Copy Rules from
the Conversion Rules menu.

Rules
This drop-down list box provides for selection all available conversion rules files. When the
Use default rules option button is selected, the default rules files are shown. When the Use
project rules option button is selected, the rules files in the project directory are shown.

Select the conversion rules file that is to be used.

You can display the XML code of the selected conversion rules file in a dialog. To do so, you
either choose the icon that is shown in the Select Conversion Rules header or you choose
Show Rules from the Conversion Rules menu.

Map input folder
Specity the folder which contains the map extract files that are to be processed.

Select map
Optional. This drop-down list box provides for selection all map extract files that are stored
in the currently selected map input folder.

For mass generation, it is not required that you select a map. However, you can select a map,
for example, if you want preview the layout of the resulting Application Designer page as it
would turn out using the selected conversion rules file.

You can display the XML code of the selected map extract file in a dialog. To do so, you either
choose the icon that is shown in the Select Natural Maps header or you choose Show Map
from the Map Conversion menu.

Natural for Ajax 141

Map Conversion

Previewing/Generating a Single Layout

When you choose one of the following commands from the Map Conversion menu, the currently
selected conversion rules file and the currently selected map extract file are used for preview or
generation of a single layout from a single map extract file:

Preview Page Layout
Shows a single page layout in the preview area of the Map Converter (on the right side).

Preview in Browser
Shows a preview of a single page layout in a separate browser window.

Generate Selected Layout
Generates a single page layout. The resulting file is stored in the currently selected project.

Generating All Layouts

When you choose the following command from the Map Conversion menu, the currently selected
conversion rules file and all map extract files in the selected map input folder are used as input
for the mass generation:

Generate All Layouts
Generates all page layouts (mass generation). The resulting files are stored in the currently
selected project.

Viewing the Conversion Results

After a preview or generation, you can either choose the icon that is shown in the Conversion
Results header or you choose the following command from the Map Conversion menu:

Show Layout XML Definition
Shows the XML layout definition for the page which was last generated or previewed in a
dialog.

When the last generation was a mass generation, an additional drop-down list box is shown
under Conversion Results. This drop-down list box provides for selection the names of all
generated page layouts. When you choose the Show Layout XML Definition command (or
the corresponding icon), the XML layout definition for the page which is currently selected in
the drop-down list box is shown in a dialog.

142 Natural for Ajax

Map Conversion

)
Conversion Results P -

MDISLONG.xm |

Layout Generation for MDISLOMNG.MNIK...FINISHED
Layout Generation for MODISSHOR.MIK. ..FINISHED
Layout Generation for MMEMNULMNIX...FINISHED
Layout Generation for NAMES-M.NIX...FINISHED

After a mass generation, an additional icon for previewing a generated page layout is shown
in the Conversion Results header. When you choose this icon, the layout for the page which
is currently selected in the drop-down list box is shown in the preview area of the Map Con-
verter (on the right side).

When you choose the Show Logs command from the Conversion Logs menu, the Conversion
Logs tool is shown in a dialog. For further information on the options in this dialog, see Using the
Conversion Logs Tool.

Refreshing the Display
For example, when you have created a new project which is not yet visible in the Map Converter,

you can choose the Refresh command from the View menu of the Map Converter. This reloads
all projects, conversion rules and map extract files and resets the contents of the dialog.

Using the Editor Extension

An editor extension, the Map Conversion Assistant, is used to generate a single layout while
designing a page in the Layout Painter. In this case, you fill an empty layout with the information
from a map extract file.

Natural for Ajax 143

Map Conversion

» To add a map to an empty layout using the editor extension

1 Create a new layout using the Natural Map Converter template.

-- Web Page Dialog

MNarme few 1.xml

[@ Natural || % Natural

Map Converker

il

2

HTHML Page Workplace WSDLPage =CI Page Natural Page PDF Output 4)

2 From the Extensions tab of the Layout Painter, choose Map Conversion Assistant.

The following area is now shown in the Layout Painter.

144

Natural for Ajax

Map Conversion

Map Conversion Assistant

& Use default rules " Use project rules o
Rules ||:|:|mrruI95DefauIt.me Il
Show Rules
Copy Rules
Eﬁe'ﬁpm d:jfomcataclusterfworkerl/webapps/foisnaturalftest/na
Select map | Il
&dd to Page
Show Log
(8 e [e |

Mo Map selected for preview

-
4] | E

° Please select a map file.

Map Conversion Assistant ip

Select either the Use default rules option button or the Use project rules option button. See
Setting the Conversion Options for information on these option buttons.

Optional. When you choose the Copy Rules button, you can copy the default conversion rules
and templates to the current project. In this case, the Conversion Rules tool is shown in a
dialog. For further information on the options in this dialog, see Using the Conversion Rules
Tool.

From the Rules drop-down list box, select the conversion rules file that is to be used. The
rules files that are provided for selection in this drop-down list box depend on the setting of
the option buttons (either the default rules or the project rules are shown).

Optional. When you choose the Show Rules button, the XML code of the selected conversion
rules file is shown in a dialog.

Natural for Ajax 145

Map Conversion

10

11

In the Map input folder text box, specify the folder which contains the map extract files.
From the Select map drop-down list box, select the map that is to be used.

The XML layout definition of the selected map is now shown at the bottom of the Map Con-
version Assistant.

Choose the Add to Page button.

The map description is converted to the corresponding layout elements and these elements
are added to the current layout, which is now shown in the preview area.

The Add to Page button is now dimmed. If you want to remove the elements you have added
to the page, you can choose the Undo Add button.

Optional. When you choose the Show Log button, the Conversion Logs tool is shown in a
dialog. For further information on the options in this dialog, see Using the Conversion Logs
Tool.

Modify the layout as usual.

Using the Conversion Rules Tool

Using this tool you can copy the default conversion rules and templates to a selected project for
modification.

| Conversion Rules
‘select Project -
Select the conversion rules you would like to copy to the selected project.
Project Copy Selected Rules [T Overwrite existing files
‘Select Conversion Rules and Templates -
Conversion Rules ‘Templates
onvrulesDefault.xm ' BUTTON_TEMPLATE.xml =
anvrulesSButtonhst 33 BUTTOMNITEM_TEMPLATE.xr 3
anvrulesSNoGrids BUTTOMLIST_TEMPLATE.¥n | *
CHECKBOY_TEMPLATE.xmil
? EMPTYROW_TEMPLATE .xm
FIELDSEQ_TEMPLATE .xmi
L GRID_TEMPLATE .xml £
GRIDHEADER_TEMPLATE.x
{4 GRIDITEM_TEMPLATE.xml <<
TETEI M TN ATE wesl
1] |]

146

Natural for Ajax

Map Conversion

» To invoke the Conversion Rules tool

In the Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Conversion Rules.

Or:

When the Map Converter is currently shown, choose Copy Rules from the Conversion Rules
menu.

Or:

When the editor extension is currently shown, choose the Copy Rules button.

» To copy the conversion rules

1

From the Project drop-down list box, select the project into which you want to copy the con-
version rules.

In the Conversion Rules box, select the rules file(s) that you want to copy and choose the >
button.

Or:

If you want to copy all files, choose the >> button.

The selected files are shown on the right side of the Conversion Rules box.

To deselect one or more files, you can use the < or << button.

For each selected rules file, the templates that are used in the rules file are automatically
selected in the Templates box, so that always a consistent set of rules and templates is selected
for copying.

Optional. If you want to overwrite any existing rules and templates files with the same names
in the selected project, activate the Overwrite existing files check box.

Choose the Copy Selected Rules button to copy the rules and templates files to the selected
project.

Natural for Ajax 147

Map Conversion

Using the Conversion Logs Tool

Using this tool you can view the log files that have been created during the conversion of Natural
maps to Natural for Ajax layouts. You can also delete these log files.

i Conversion Logs £3 |

[Select Project and Log Files B

Select the project containing the conversion logs,

Praject |nJ:-cmar:u:|:|nu erter El [nJK_Eﬂ.DE.EﬂDEI-DEIl? ID.Iugzl

Load Log File View Test Delete Log Files
[Log File -
=t | =

Mo map conversion selected

[ITEM JROW JCOL _INAME____________RULES |

» To invoke the Conversion Logs tool

In the Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Conversion Logs.

Or:

When the Map Converter is currently shown, choose Show Log from the Conversion Logs
menu.

Or:

When the editor extension is currently shown, choose the Show Log button.

148

Natural for Ajax

Map Conversion

» To view a log file

1

From the Project drop-down list box, select the project for which you want to view a log file.

The log files contained in this project are shown in the drop-down list box to the right.
Select the log file that you want to view.

Choose the Load Log File button.

Log lines for the selected log file are now shown at the bottom of the tool. Each log file contains
the conversion results of one or several maps. The log lines that are shown belong to an

individual map; this is the map that is selected in the Logged map conversions drop-down
list box.

Optional. Select a different map from the Logged map conversions drop-down list box.
The conversion result of the newly selected map is immediately shown at the bottom of the
tool.

Optional. Choose the View Text button to display the content of the selected log file as a CSV
file in a dialog. This shows the conversion results for all maps.

» To delete log files

Select the project for which you want to delete the log files.
Choose the Delete Log Files button.

A dialog appears asking to confirm the deletion.

Choose the Yes button to delete all log files in the selected project.

Natural for Ajax 149

150

26 Customizing the Map Conversion Process

B MaP CONVEIET PrOCESSING ..ottt ettt e e e s 152
B CONVETSION RUIBS ...ttt 156
B TEMPIAEES ..ttt e e e e 166
B TAG CONVEILETS ...ttt ettt e oottt et e e e oo oottt e e e e e e e ettt e e e e e e e e et eaeeeeas 169

151

Customizing the Map Conversion Process

Map Converter Processing

The map conversion process reads a map extract file created by the Map Extractor or the INPUT
Extractor and transforms it into a corresponding Natural for Ajax page layout file. The conversion
process is controlled by rules and templates.

Extend/Customize
Canversion rput
Map Extract File
Templates .
XML Files
-
.
H'H
- v
H'H
ik
Tag Converters [Map Converter
Java Files
T
Conversion Rules
XML File L J

Conversion Oubput

Page Layout File

The Map Converter ships with a default set of conversion rules and corresponding template files.
This set allows for default map conversions without changing rules or templates. In most cases,
you will add or modify some conversion rules and/or templates to customize the conversion
according to the requirements of your application.

For advanced customizations, there is also the possibility to plug own Java-written conversion
classes (the so-called , tag converters”) into the conversion processing. But you should only do
this in very rare cases.

152

Natural for Ajax

Customizing the Map Conversion Process

The following topics are covered below:

= Processing of Rows and Columns
= Processing of Sequence and Grid Areas
= Summary: Processing Steps of the Map Converter

Processing of Rows and Columns

By default, for each row and column in a map, a corresponding row and column is generated in
the layout. By default, the Map Converter inserts the converted rows and columns at a defined
position within a corresponding page template. Template and insert position can be defined by
the user. Skipping or different handling of specific rows and columns can be defined via correspon-
ding conversion rules.

The following sections describe the default processing for rows and columns in case no specific
rules for different insert positions are specified:

= Rows
= Columns

Rows

For each row in a map, the Map Converter generates an ITR (independent table row) control with
the default settings. For empty rows, an ITR control containing the control defined in the
EMPTYROW_TEMPLATE is generated.

Columns

The fields and literals within a row are aligned to columns according to the following rules:

® Column Start Position
If an absolute column start position is defined for a field or literal in the map, the corresponding
control in the page layout is aligned so that it starts exactly with the specified column. This is
done by inserting a HDIST (horizontal distance) control with a corresponding width as a filler.

® Conversion Rules
If no absolute column start position is defined for a field or literal in the map, a HDIST control
is not added as a filler by default. In this case, the field or literal is simply appended as the last
subnode of the current ITR control. In many cases, this would result in a layout that requires
additional manual adding of fillers. This is because appending two field controls without adding
any HDIST control often does not look as intended. Therefore, the Map Converter includes
default conversion rules for filler settings. You can modify the default conversion rules or add
your own conversion rules to fine-tune this behavior. For more information, see Conversion
Rules.

Natural for Ajax 153

Customizing the Map Conversion Process

* Column Width

A character map has a fixed number of rows and columns. For the literal "ABCD", this means
that it uses exactly 4 columns. Calculating the correct width and height of field on a web page
is more complex. The width of "ABCD" will most likely be greater than the width of "llll". Very
short fields (with a length of one or two characters) should have a minimum width so that the
content is fully visible. You can fine-tune the width by adapting the predefined conversion rule
variable $$widthfactor$$ or by adding your own conversion rules. For more information, see
Conversion Rules.

Processing of Sequence and Grid Areas

The map extract file also contains information about arrays. With Application Designer, arrays
are usually rendered as grid controls. Application Designer provides a couple of grid controls:

TEXTGRID?2 - a grid containing text.

TEXTGRIDSSS2 - a text grid with server-side scrolling.
ROWTABLEAREAZ2 - a grid containing other controls.
MGDGRID - a managed grid.

The Map Converter tries to convert arrays into suitable grid controls. Before the real conversion
of arrays to grid controls can be done, the Map Converter must first identify the sequence and
grid areas on the map. During this process of area identification, the Map Converter groups literals
and fields together into sequences and areas. Whether the corresponding fields or literals are
actually converted into a grid depends on the conversion rules that are executed after this area
identification step.

This process of area identification is simply a kind of marking. The corresponding sequence and
area objects can be used as source in the conversion rules to define the actual controls.

154 Natural for Ajax

Customizing the Map Conversion Process

Row 1
Row 2
Row 3
Row 4
Row &
|dentification of grid area

v

Row 1
Row 2
Row 3 Grid area
Row 4
Row &

Legend:
Literal
Field

Summary: Processing Steps of the Map Converter

The conversion is done in several steps:

1. The map extract file is loaded and the corresponding rows and columns are collected.
2. The sequence and grid areas are identified.

3. For each row, the list of items in this row is processed, according to the column order. An item
can be one of the following: a simple literal, a field or an area. For each found item, the corre-
sponding conversion rules are executed.

Natural for Ajax 155

Customizing the Map Conversion Process

Conversion Rules

Different conversion projects have different requirements to the conversion process. The Map
Converter is driven by conversion rules and thus allows for flexible control of the conversion
process. Conversion rules define how source items (items from a given map extract file) are mapped
to target items (items in the page layout to be created) and under which conditions a certain
source item shall be converted to a certain target item. The Map Converter is delivered with a
default set of conversion rules contained in the file convrulesDefault.xml in the subdirectory convrules
in the Application Designer project njxmapconverter. A more application-specific conversion can
be achieved by copying and modifying the default set of rules or by adding own rules.

Each set of conversion rules is defined in an XML file according to the XML schema convrules.xsd
in the subdirectory convrules in the Application Designer project njxmapconverter. Each individual
conversion rule consists of a name, a description, a source and a target. The source identifies an
element in the map extract file. The target identifies controls and attributes to be generated in the
page layout.

The conversion rules make often use of regular expressions and so-called capture groups. For
more information about regular expressions, see for instance the web site http://www.regular-
expressions.info.

The following topics are covered below:

= Conversion Rules Examples

= Default Conversion Rules File

= Conversion Rules that Often Need to be Adapted
= Writing Your Own Conversion Rules

Conversion Rules Examples

The following examples are provided:

= Example 1
= Example 2

156 Natural for Ajax

http://www.regular-expressions.info/
http://www.regular-expressions.info/

Customizing the Map Conversion Process

= Example 3

Example 1

The following example rule (contained in the default conversion rules file) defines that fields in
the map extract file with the qualification AD=0 shall be converted to field controls with the property
displayonly="true".

<convrule rulename="0field_rule">
<description>Defines the control template to be used for input fields
which are specified as output only.</description>
<{source>
<sourceitem>ifField</sourceitem>
{sourcecond>
<condattr>//ifAD</condattr>
<condvalue>.*0.*</condvalue>
</sourcecond>
</source>
{target>
<targetitem>$0FIELD_TEMPLATE</targetitem>
<{/target>
</convrule>

The source element specifies that this rule applies to fields (element ifField) that have an AD
parameter (element i fAD) that contains a letter "O" (matching the regular expression .*0.*). The
target element specifies that these fields are to be converted to whatever is contained in the tem-
plate file OFIELD_TEMPLATE.xml. This template file must be contained in the same directory as
the conversion rules file.

The template file contains the detailed specification of the field to be generated. The file
OFIELD_TEMPLATE.xml delivered with the map converter contains, for instance, the following:

<?xml version="1.0" encoding="UTF-8"7>
<field valueprop="$$" width="$$" noborder="true" displayonly="true"/>

That is, the resulting field is generated without a border (noborder="true") and as a display-only
field (displayonly="true"). The valueprop and width to be assigned ($$) are not determined by
this rule, but are left under the control of other rules.

Natural for Ajax 157

Customizing the Map Conversion Process

Example 2

The following example rule (contained in the default conversion rules file) defines that for all
fields that are defined with the format An in the map extract file, an attribute datatype="string
n" shall be added to the element that is generated into the page layout.

<convrule rulename="AfixType_rule">
<description>Al1l Natural "An" dfFields are converted to the
Application Designer datatype "string n". Example: "AIQ" is
converted to "string n".</description>
<{source>
<sourceitem>dfField</sourceitem>
{selection>
{selectattr>dfFormat</selectattr>
<{selectval>A([0-9]+)</selectval>
</selection>
</source>
{target>
<targetitem>$$</targetitem>
{targetattr>
<attrname>datatype</attrname>
<attrvalue>string $1</attrvalue>
</targetattr>
<{/target>
</convrule>

The source element specifies that this rule applies to fields that have in the field definition (element
dfField) a format (element dfFormat) of An (matching the regular expression A([0-91+)). The
target element specifies that for whatever element is generated into the page layout for this kind
of fields, an attribute datatype="string $1" shall be added. In terms of regular expressions, $1
refers to the contents of the first ,capture group” of the regular expression A([0-91+). In case of
aformat A20, $1 will evaluate to 20 and thus an attribute datatype="string 20" will be generated.

The control to be generated into the page layout (<targetitem>$$</targetitem>)isnot determined
by this rule, but is left under the control of other rules.

Summary: The combination of the two rules in example 1 and 2 makes sure that output fields, for
example, of format A20 are converted to field controls with displayonly="true" and
datatype="string 20".

158 Natural for Ajax

Customizing the Map Conversion Process

Example 3

The following more advanced rule was created for the use of a specific conversion project. The
following task had to be achieved: A literal of the format "F10 Change" shall be converted to a
button that is named "F10", is labeled "Change" and raises an event named "PF10". With the
explanations from the examples above, the rule should be nearly self-explanatory.

Note that according to the rules of regular expressions, the variable $ 1 refers to the string matched
by the expression part in the first pair of parentheses (the first ,,capture group”), that is for
instance "F10", and the variable $3 refers to the string matched by the expression part in the third
pair of parentheses (the third ,capture group”), that is for instance "Change".

<convrule rulename="Function_rule" lone="true">
<description>Generates a button from specific literals.</description>
<{source>
<sourceitem>1tlLiteral</sourceitem>
{selection>
<selectattr>1tName</selectattr>
<selectval>(F[0-91+)(\p{Space})(.*)</selectval>
</selection>
</source>
{target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$1</attrvalue>
{/targetattr>
{targetattr>
<attrname>method</attrname>
<attrvalue>P$1</attrvalue>
{/targetattr>
</target>
{target>
{targetitem>hdist</targetitem>
{targetattr>
<attrname>width</attrname>
<attrvalue>4</attrvalue>
{/targetattr>
</target>
{target>
{targetitem>Tabel</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$3</attrvalue>
{/targetattr>
{/target>
</convrule>

Natural for Ajax 159

Customizing the Map Conversion Process

Default Conversion Rules File

The Map Converter is delivered with a default set of conversion rules contained in the file convru-
lesDefault.xml in the subdirectory convrules in the Application Designer project njxmapconverter. A
more application-specific conversion can be achieved by copying and modifying the default set
of rules or by adding own rules.

The following topics are covered below:

= Root Rule
= Data Type Conversion Rules
= QOther Default Conversion Rules

Root Rule

Like every conversion rules file, the file contains exactly one "Root_rule". The root rule specifies
the template file to be used for the overall page layout. In this template file, the application-specific
page layout can be defined, using company logos, colors, fonts, etc. The root rule must always
have "map" as the source item and must refer to some variable defined in the page template file
as the target item. The place of that variable specifies where in the page template the converted
map items are placed. See for instance the root rule from the default conversion rules:

<convrule rulename="Root_rule">
<description>Exactly one rule with the sourceitem "map" is required.
This rule must define the natpage template and insert position of
the conversion result.</description>
{source>
<sourceitem>map</sourceitem>
<{/source>
{target>
<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
<{/target>
</convrule>

The rule refers to a page layout template NATPAGE_TEMPLATE.xml and refers to a variable
defined in that template where the converted map elements shall be placed. Here is the correspon-
ding content of the page layout template NATPAGE_TEMPLATE.xml:

<?xml version="1.0" encoding="UTF-8"7>

<natpage xmlins:njx=http://www.softwareag.com/njx/njxMapConverter
natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>

<pagebody>
<njx:njxvariable name="MAPROOT"/>
</pagebody>
{statusbar withdistance="false"/>
</natpage>

160 Natural for Ajax

Customizing the Map Conversion Process

This template specifies the following:

® The overall page layout shall consist of the elements titlebar, pagebody and statusbar.
® The converted map elements shall be placed into the pagebody.

® The name of the Natural adapter to be generated from that page layout shall be determined by
arule (natsource="$$NATSOURCE$$"). There must be a corresponding rule that yields a value
for the variable $ SNATSOURCE$$, for instance derived from the map name. We shall see later how
to define such a rule.

= All strings in the page layout shall be mapped to Natural variables of type A in the adapter
interface (natsinglebyte="true").

® The text displayed in the title bar shall be determined by a rule (name="$$TITLEVAR$$"). There
must be a corresponding rule that yields a value for the variable $$TITLEVAR$S, for instance
derived from a literal in the first row in the map. We shall see later how to define such a rule.

Data Type Conversion Rules

The default conversion rules file contains a set of rules that control the conversion of data types:
from Natural data types in the map to corresponding Application Designer data types in the page
layout. An example was given above in Example 2. Usually, these rules need not be adapted. They
have been chosen in such a way that the process of extracting maps, converting them to layouts
and generating Natural adapters for these usually yields the same data types in the adapter
interface as in the map interface.

Other Default Conversion Rules

Other default conversion rules define a default mapping for literals, modifiable fields, output
fields, modifiable grids, output grids, system variables and fields with special characters like "#"
in their names. These rules need only be adapted in special cases.

Conversion Rules that Often Need to be Adapted

Some conversion rules need to be adapted in nearly all conversion projects. These rules are contai-
ned in the section "APPLICATION SPECIFIC RULES" in the default conversion rules file.

The following topics are covered below:

= Naming of Adapters

Natural for Ajax 161

Customizing the Map Conversion Process

= Setting the Title of a Map
Naming of Adapters

Each application has a different naming convention for Natural objects. There is a rule (it is named
"Natsource_rule" in the default conversion rules file) that controls how adapter names are derived
from map names. The rule replaces the first letter "M" in the map name with an "A" and places
the resulting string into the variable NATSOURCE. Remember that in the default page template, the
natsource property of NATPAGE (which defines the adapter name to generated) is preset with
the variable reference $ $NATSOURCE$$. Thus, a map with the name TESTMI results in an adapter
named TESTAL. Other naming conventions for maps will require a more sophisticated adapter
naming rule.

Setting the Title of a Map

Each application has a different way of showing titles in a map. Often, the title string shall be
placed into the title bar of the resulting page layout during conversion. There is a rule (in the
default conversion rules file, it is named "Titlevar_rule") that controls how the title string in a map
is recognized. The rule searches in the first row of a map for a literal enclosed in "***" and places
the resulting string into the variable TITLEVAR. Remember that in the default page template, the
name property of the titlebar element (which defines the string to be shown in the title bar) is
preset with the variable reference $$TITLEBAR$$. So this rule takes care that the found literal is
placed into the tit1ebar element of the page. Other conventions for map titles will require a more
sophisticated rule.

Writing Your Own Conversion Rules

When writing your own conversion rules, you can use the default rules as examples. In order to
write rules from scratch, you need to know the elements of the map that can be referred to as
source items and the full syntax of the rule definition.

® The XML schema of the map extract files is contained in the file naturalmap.xsd in the subdirec-
tory convrules in the Application Designer project njxmapconverter.

" As described in Processing of Sequence and Grid Areas, one step in the map conversion is the
detection of sequence and grid areas in the map. Conversion rules can also refer to the detected
sequence and grid areas. The XML schema of the map extract files after the detection of sequence
and grid areasis described in the extended XML schema naturalmapxml_extended.xsd in the same
directory.

" The syntax of the conversion rules is described by the XML schema convrules.xsd in the same
directory.

162 Natural for Ajax

Customizing the Map Conversion Process

The basic structure of a conversion rule is as follows:

<convrule rulename="...">
{description>...</description>
<source>...</source>
{target>...</target>
<target>...</target>

</convrule>

This means, a conversion rule consists of one source element and (optionally) one or several
target elements. The source element identifies an item from the map. The target elements specify
the conversion output. If no target elements are specified, nothing is generated from the identified
source element.

The basic structure of a source element is as follows (example):

<source>
<sourceitem>1tLiteral</sourceitem>
{selection>
<selectattr>ltName</selectattr>
<selectval >\F\F*(, %)\ ***<{/selectval>
{/selection>
{sourcecond>
<condattr>1tRow</condattr>
<condvalue>1</condvalue>
</sourcecond>
</source>

The sourceitem element refers to a specific kind of item on a map, such as a literal (1tLiteral),
a defined field (dfField), an input field (i fField) or the identifier of the map (identity). The
elements that can be used here are specified by the XML schema that describes the map extract
after the detection of sequence and grid areas (naturalmapxml_extended.xsd). Therefore, the elements
sequenceArea and gridArea, which are only known after this processing, can also be used here.

The selectattr and selectval elements are used to match an element of a specific kind by its
attribute values. The selectval element uses regular expressions to perform a match. Capturing
groups such as (.*) can be used here, so that the target part of the conversion rule can later refer
to parts of the matched value.

Finally, there can be zero, one or several sourcecond elements, which allow to define further to
which map items the rule applies. If several sourcecond elements are specified, the rule is triggered
only if all conditions match (logical AND).

Natural for Ajax 163

Customizing the Map Conversion Process

The basic structure of a target element is as follows:

{target>
{targetitem>...</targetitem>
{targetattr>

<attrname>...</attrname>
<attrvalue>...</attrvalue>
<{/targetattr>
{targetattr>

{/targetattr>
</target>
In detail, there are several different options to specify a target item:

® Specify the root element name of an Application Designer control, along with its attributes and
attribute values. The attribute value can be a constant, a variable or a reference to a capturing
group from a regular expression in a sourcecond element of the same rule. In this case, the
corresponding control is generated during conversion.

{target>
{targetitem>label</targetitem>
{targetattr>
<attrname>height</attrname>
<attrvalue>l0</attrvalue>

{/targetattr>

{targetattr>
<attrname>width</attrname>
<attrvalue>$$width$s</attrvalue>

{/targetattr>

{targetattr>
<attrname>name</attrname>
<attrvalue>$l</attrvalue>

</targetattr>

</target>

" Specity the name of a variable that is defined in the conversion rules file in a convvariable
element.

{target>
<{targetitem>$$name$$</targetitem>
{/target>

164 Natural for Ajax

Customizing the Map Conversion Process

" Refer to the name of a template file, optionally along with attribute names and values. In this
case, whatever is contained in the template file will be generated. Attribute definitions in the
template file are replaced.

<{target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$l</attrvalue>
{/targetattr>
{targetattr>
<attrname>method</attrname>
<attrvalue>P$1</attrvalue>
</targetattr>
</target>

" Refer to the name of a template variable and the name of a template file, separated by a dot. In
this case, the template variable is replaced with whatever is contained in the template file.

{target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>
{/target>

® Only in the root rule: Specify the name of a template file and the name of a template variable
that is contained in this file, separated by a dot. In this case, the template variable is replaced
with the entire result of the map conversion.

{target>
<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
</target>

" Specify "3" as the target item. This is useful when writing a more general rule that is to apply
after another more specific rule has already created a target item. The attributes specified along
with the target item "$$" are applied to the already created target item, whatever this target item
was.

{target>
{targetitem>$$</targetitem>
{targetattr>
<attrname>datatype</attrname>
<attrvalue>xs:double</attrvalue>
</targetattr>
{/target>

Natural for Ajax 165

Customizing the Map Conversion Process

" Specity "$." as the target item. This refers to the template that is currently being processed. The
attributes specified along with the target item "$." are applied to the current template.

{target>
{targetitem>$.</targetitem>
{targetattr>
<attrname>$$NATSOURCE$$</attrname>
<attrvalue>$l-A</attrvalue>
{/targetattr>
{/target>

Templates

The Map Converter assembles page layouts from templates. Which templates are used, how they
are assembled and how variables in templates are filled is controlled by the conversion rules.

A template file describes the general layout of an entire Application Designer page layout or of
an individual Application Designer control. A template can contain variables and references to
other templates. During conversion, the Map Converter resolves the structure of the templates
and fills the variables with specific values, depending on the contents of the map.

A template file can describe a simple control such as a FIELD control or a more complex control
such as a TEXTGRIDSSS2 control. For the same control, multiple templates may exist. For example,
an ofield_TEMPLATE and an ifield_TEMPLATE may both be templates for the FIELD control. The
ofield_TEMPLATE would be used for output fields, the ifield_ TEMPLATE for modifiable fields.
Which template is used for which subset of fields of the map is specified in the conversion rules.

Template files are well-formed XML files which contain control definitions. They are placed in
the folder convrules of your Application Designer project directory. The file name must end with
"_TEMPLATE.xml". The Map Converter ships with a set of default template files.

The following topics are covered below:

= Variables in Templates
= Templates in Templates

166 Natural for Ajax

Customizing the Map Conversion Process

= Editing Templates

Variables in Templates

As already seen in the examples above, templates can contain variables. Variables can be freely
defined by the user. Example:

<?xml version="1.0" encoding="UTF-8"7>

<natpage xmins:njx=http://www.softwareag.com/njx/njxMapConverter
natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>

<pagebody>
<njx:njxvariable name="MAPROOT"/>
</pagebody>
{statusbar withdistance="false"/>
</natpage>

" Variables as placeholders for the property values of controls
An example is the variable $$TITLEVAR$$ in the template above. If a template contains a variable
such as name="$$TITLEVAR$$", there must be a corresponding rule that yields a value for the
variable $$TITLEVAR$$. The Map Converter replaces the variable with this value.

The built-in variable $$ has a specific meaning. If it occurs as a property value, there is no spe-
cific rule needed to produce the value. Instead, the Map Converter receives the value from a so-
called tag converter. Tag converters are Java classes that are delivered with the Map Converter.
Exchanging or writing your own tag converters is an advanced way of extending the Map
Converter and is usually not required. See Tag Converters for further information.

" Variables as placeholders for controls and containers
An example is the variable MAPROOT in the template above. Such a variable is defined by inserting
an NJX:NJXVARIABLE control (from the controls palette of the Layout Painter) into a template.
As long as the XML of the template is well-formed, an NJX:NJXVARIABLE control can be
inserted at any place in the template. Conversion rules refer to this variable as $MAPROOT. Notice
that the value in the name property of an NJX:NJXVARIABLE control does not start with $. Ins-
tead, the NJX:NJXVARIABLE control itself defines that it is a variable. The NJX:NJXVARIABLE
control is a special control in the Natural Extensions section of the Layout Painter's controls
palette.

Natural for Ajax 167

Customizing the Map Conversion Process

Templates in Templates

Templates can refer to other templates. This can be done via adding variables. The variable can
serve as a placeholder for another template. The template name is defined via a corresponding
rule.

Example (GRID_TEMPLATE.xml):

<?xml version="1.0" encoding="UTF-8"7>
<rowtablearea?2 withborder="false" griddataprop="$$gridnames" rowcount="§$" >
<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDHEADER" />
</tr>
<repeat>
<Er>
<hdist></hdist>
<njx:njxvariable name="GRIDITEM" />
</tr>
<{/repeat>
</rowtablearea2>

This means: A conversion rule like the following maps a grid area detected in the map to a
ROWTABLEAREA? control and formats the header and rows as specified in the templates
GRIDHEADER_TEMPLATE.xml and GRIDITEM_TEMPLATE.xml.

<convrule rulename="Griditem_rule">
<description>Mapping rule for the items of grid.</description>
<{source>
<sourceitem>gridArea//ifField</sourceitem>
<{/source>
{target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>
</target>
{target>
<targetitem>$GRIDHEADER.$GRIDHEADER_TEMPLATE</targetitem>
<{/target>
</convrule>

168 Natural for Ajax

Customizing the Map Conversion Process

Editing Templates
Only NATPAGE templates (like the default NATPAGE template NATPAGE_TEMPLATE.xml) can

be edited with the Layout Painter. Templates for individual controls must currently be edited
using a text editor.

Tag Converters

A template must be a valid XML document. The root element must correspond to the root element
of a valid Application Designer control. Templates can contain variables. A special variable is the
variable $$.

Example:

<?xml version="1.0" encoding="UTF-8"7>
<button name="$$" method="$$"></button>

Each template is processed by a so-called tag converter. Tag converters are in charge of resolving
the variable $$. A tag converter is a Java class that must support a specific interface and be
available in the class path of the Map Converter. Which tag converter is used depends on the root
element of the template.

In the above example, the root element is the BUTTON control. The following rule applies:

® If a Java class with the name
com.softwareag.natural.mapconverter.converters.BUTTONConverter is found in the Java
class path, this Java class is used as the tag converter.

® QOtherwise, the class com.softwareag.natural.mapconverter.converters.DEFAULTConverter
is used as the tag converter.

In the above example, the Map Converter tries to find the class BUTTONConverter first. Since a
specific tag converter for the BUTTON control is not delivered with the Map Converter, the class
DEFAULTConverter is used as the tag converter.

In order to supply a custom tag converter for the BUTTON control, for instance, you would have
to create a Java class BUTTONConverter that belongs to the package
com.softwareag.natural.mapconverter.converters and make it available in the Java class path
of the Map Converter.

Detailed information on how to write your own tag converters is provided in the Application
Designer development workplace as Javadoc; see Map Converter Extension API in the Natural
Tools node of the navigation frame (under Tools & Documentation).

Natural for Ajax 169

170

27 Code Conversion

B General INFOrMELIONoiiiiiii e et e e a e e e e 172
B GENErAtiNG AGAPIETS ..ottt ettt et e et e e e e et e e s 172
= Structure of @ Map-Based APPlICAtIONcooiiiiiiiii e 172
= Structure of a Natural for Ajax ApPIICALIoNueeiiiiiee e 173
m Tasks Of the COAE CONVEISIONeviiiiiiiii ettt e e e e e e et e e e e 174
B DEFINE DATA SEAIEMENT ...t e et a e e e 174
B INPUT SEAEBMENT ...ttt e e ettt e e et e e e ettt e e e e st e e e e nnnneeeeas 175
B REINPUT SEAIEMENT ...ttt e e e e e e e e e e e aeeee e e 176
B PE-Key EVENEHANAING ... 178
B SETKEY SEAEMENT ...t e e e e 179
B PrOCESSING RUIBS ...ttt 183
B SYSIEM VAMADIESoieiiiiec e 183
= Variable Names Containing Special CharaCterscooiiiiiiiiiiiiii e 184

171

Code Conversion

General Information

After the Map Converter has been used to create page layouts from map extract files, the last step
in the conversion process is adapting the application code to the new user interface. This step can
either be performed manually or, with Natural Engineer, partly automatically. In the following,
the manual code conversion is described.

Generating Adapters

First of all, it is necessary to generate HTML code and Natural adapters from the page layouts
that have been created by the Map Converter. This is the same procedure as with page layouts
that have been created manually with the Layout Painter. Then, the adapters are imported into
the Natural development environment.

Structure of a Map-Based Application

In this context, we need not consider the application code as a whole, but only the layer that
handles the user interface. Often, the user interface handling part of a map-based application is
structured in the following way:
" DEFINE DATA
*® Initialization
= REPEAT
® INPUT [USING MAP map-name]
* Includes client-side validations (processing rules)
= Server-side validations
® REINPUT or ESCAPE TOP
® DECIDE ON *PF-KEY
* Function key handler 1
" Processing
® REINPUT or ESCAPE TOP
® Function key handler 2
® Processing

® REINPUT or ESCAPE TOP

172 Natural for Ajax

Code Conversion

* Function key handler n
" Processing
® ESCAPE BOTTOM
-
® END-DECIDE
® END-REPEAT
® Cleanup

= END
In practice,

" the REPEAT loop might or might not be there, and

" there might not be a clean DECIDE structure for the function key handlers. Instead, checks for
the pressed function key might be spread all over the code.

However, accepting these differences, the above structure should match a large number of appli-
cations.

Structure of a Natural for Ajax Application

The corresponding part of a Natural for Ajax application looks as follows:

" DEFINE DATA
" Initialization
= REPEAT
® PROCESS PAGE USING adapter-name
* Includes client-side validations
" Server-side validations
® PROCESS PAGE UPDATE FULL
" DECIDE ON *PAGE-EVENT
" Event handler 1
® Processing
® PROCESS PAGE UPDATE FULL or ESCAPE TOP
" Event handler 2
® Processing

" PROCESS PAGE UPDATE FULL or ESCAPE TOP

Natural for Ajax 173

Code Conversion

® Event handler n
" Processing
® ESCAPE BOTTOM
-
® END-DECIDE
® END-REPEAT
® Cleanup
" END

Tasks of the Code Conversion

The code conversion should achieve the following;:

= Jt should be minimal invasive.
*® It should not duplicate business code.

® The converted application should be able to run not only with the new user interface, but also
in a terminal session, in a Natural Web I/O Interface session and in batch, if it did so before the
code conversion.

In detail, the code conversion needs to deal with the statements and constructs mentioned below.

DEFINE DATA Statement

The DEFINE DATA statement must be extended because the data structures exchanged between a
program and map are not fully identical to those exchanged between a program and the correspon-
ding adapter.

The default conversion rules delivered with the Map Converter perform a data type mapping that
tries to ensure that the data elements in the map interface are mapped to data elements of the same
type and name in the adapter interface.

The Application Designer controls are usually not only bound to business data elements, but also
to additional control fields. Which control fields these are depends on the way in which the elements
of a map are mapped to Application Designer controls by the Map Converter rules. For instance,
astatusprop canbe assigned to a field, which results in an additional parameter in the parameter
data area of the adapter. An array on a map can have been converted to a grid control with server-
side scrolling. In this case, the additional data structures needed to control server-side scrolling
need to be added to the DEFINE DATA statement.

174 Natural for Ajax

Code Conversion

statusprop

The statusprop is needed to control the error status or focus of a FIELD control dynamically (see
example 3 for the REINPUT statement below where it is used to replace the MARK *field-name
clause). The default conversion rules contain a rule that creates a statusprop property for each
map field that is controlled by a control variable. The adapter generator creates from this property

a corresponding status variable and a comment line that identifies the status variable as belonging
to the field.

Example
The parameter data area of the map contains:

01 LIB-NAME (A8)
01 LIB-NAME-CV (C)

The parameter data area of the adapter will then contain:

* statusprop= STATUS_LIB-NAME-CV
01 LIB-NAME (A8)
01 STATUS_LIB-NAME-CV (A) DYNAMIC

The variable STATUS_LIB-NAME-CV is not yet known to the main program and must be defined
there.

INPUT Statement

The replacement for the INPUT statement is the PROCESS PAGE statement. In its simplest form, the
INPUT statement just references the map. In this case, it is just replaced by a PROCESS PAGE statement
with the corresponding adapter.

Example 1
Main program before conversion:

INPUT USING MAP "MMENU'

Natural for Ajax 175

Code Conversion

Main program after conversion:

IF *BROWSER-I0 NE 'RICHGUI'
INPUT USING MAP "MMENU'
ELSE
PROCESS PAGE USING '"AMENU'
END-IF

The INPUT statement can come with a message text that is displayed in the status bar. There is no
direct replacement for this construction because the PROCESS PAGE statement (in contrast to the
PROCESS PAGE UPDATE statement) does not support the SEND EVENT clause.

Example 2

Main program before conversion:

INPUT WITH TEXT MSGO1 USING MAP "MMENU'

Main program after conversion (no message will be displayed):

IF *BROWSER-I0 NE 'RICHGUI'

INPUT WITH TEXT MSGO1 USING MAP "MMENU'
ELSE

PROCESS PAGE USING "AMENU'
END-IF

REINPUT Statement

The replacement for the REINPUT statement is the PROCESS PAGE UPDATE statement. In its simplest
form, the REINPUT statement comes with a message text that is displayed in the status bar. In the
converted code, this is handled by the SEND EVENT clause of the PROCESS PAGE UPDATE statement.

Example 1
Main program before conversion:

REINPUT [FULL] WITH TEXT MSGO1

176 Natural for Ajax

Code Conversion

Main program after conversion:

IF *BROWSER-IO NE "RICHGUI'
REINPUT [FULL] WITH TEXT MSGO1
ELSE
PROCESS PAGE UPDATE [FULLI]
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSGO1
END-PARAMETERS
END-IF

The REINPUT statement can come with a message number and replacements. In this case, the
message must be created from number and replacements before it is sent to the status bar with
the SEND EVENT clause.

Example 2

This example uses a subprogram GETMSTXT that builds the message text from number and replace-
ments.

Main program before conversion:
REINPUT [FULL] WITH TEXT *MSGNR, REPLI, REPLZ
Main program after conversion:

IF *BROWSER-IO NE '"RICHGUI'
REINPUT [FULL] WITH TEXT *MSGNR, REPLI, REPL2
ELSE
CALLNAT 'GETMSTXT' MSTEXT MSGNR REPLI REPLZ?
PROCESS PAGE UPDATE [FULLI]
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSTEXT
END-PARAMETERS
END-IF

Example 3

The REINPUT statement can come with a MARK clause in order to put the focus on a field. This case
requires that a statusprop property is created for the field during map conversion. The variable
bound to the statusprop property is then used before the PROCESS PAGE UPDATE statement to set
the FOCUS to the field.

Natural for Ajax 177

Code Conversion

Main program before conversion:

REINPUT [FULL] WITH TEXT MSGO1 MARK *LIB-NAME

Main program after conversion:

01 STATUS_LIB-NAME-CV (A) DYNAMIC

IF *BROWSER-IO NE 'RICHGUI'

REINPUT [FULL] WITH TEXT MSGO1 MARK *LIB-NAME

ELSE

STATUS_LIB-NAME-CV := "FOCUS'
PROCESS PAGE UPDATE FULL
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE "W’
NAME 'short' VALUE MSGO1
END-PARAMETERS

END-IF

PF-Key Event Handling

The original application might contain checks for the content of the system variable *PF-KEY at
arbitrary places in the code. In order to handle function key events correctly in the converted
application, several things need to be achieved:

In response to the function keys, the converted application must raise events that are named
like the possible contents of *PF-KEY. This can be achieved by using a page template such as
NATPAGEHOTKEYS_TEMPLATE.xml which contains the required hot key definitions.

A common local variable must be set up right after the INPUT or PROCESS PAGE statement that
contains either the value *PF-KEY or *PAGE-EVENT, depending on the execution environment.
The name of the variable can be freely chosen. In the example below, the name XEVENT is used.

The event nat:page.end must be handled in such a way so that the program terminates. This
event is raised when the user leaves the page or closes the browser session.

A default event handler must be set up that takes care of the values of *PAGE-EVENT that are not
expected by the original application code. These unexpected events are simply replied with a
PROCESS PAGE UPDATE FULL statement.

178 Natural for Ajax

Code Conversion

Example

01 XEVENT (U) DYNAMIC
PROCESS PAGE USING ...

IF *BROWSER-I0O = 'RICHGUI'
DECIDE FOR FIRST CONDITION
WHEN *PAGE-EVENT = 'nat:page.end’
STOP
WHEN *PAGE-EVENT = MASK ('PF'*) OR = MASK ('PA'*)
OR = "ENTR"'" OR = 'CLR"
XEVENT := *PAGE-EVENT
WHEN NONE
PROCESS PAGE UPDATE FULL
END-DECIDE
ELSE
XEVENT := *PF-KEY
END-IF

All references to *PF-KEY in the code must then be replaced by references to XEVENT.

SET KEY Statement

Natural for Ajax provides two controls (NJX:BUTTONITEMLIST and NJX:BUTTONITEMLIST-
FIX) that represent a row of buttons. These controls can be used to replace the visual representation
of the function keys from the original application. If the page template NATPAGEPFKEYS_TEM-
PLATE.xml or a similar individually adapted template is used during map conversion, each
resulting page will contain a row of function key buttons. The subject of this section is how the
converted application can control the labeling and the program-sensitivity of the function keys
with only little code changes.

Natural controls the labeling and program-sensitivity of the function keys in a highly dynamic
way. The corresponding application code (SET KEY statements) can be distributed across program
levels and can be lexically separated from the corresponding INPUT statements. Also, the SET KEY
statement has several flavors, some affecting all keys and others affecting only individual keys.
As aresult, the status of the function keys at a given point in time can only be determined at
application runtime.

Therefore, the following approach is chosen: Natural provides the application programming
interface (API) USR4005 that reads the current function key naming and program-sensitivity at
runtime. During code conversion, a call to this APl is inserted after each SET KEY statement or into
each round trip. This call reads the function key status and passes it to the user interface.

Natural for Ajax 179

Code Conversion

Example

Main program before conversion:

SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'

PF3 NAMED 'Modify"' PF4 NAMED 'Delete' PF5 NAMED 'F5'

PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display'

PF9 NAMED 'F9' PFI0 NAMED 'F10' PFI11 NAMED 'FI11' PF12 NAMED 'F12'

*

INPUT USING MAP "KEYS-M"

*

END
Map before conversion:

* kK PF’KeyS K’k Kk

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Enter F1 F2 Modif Delet F5 F6 Creat Displ F9 F10 F11 Fl2

180 Natural for Ajax

Code Conversion

Main program after conversion:

DEFINE DATA LOCAL
PFKEY (1:%)
METHOD (A) DYNAMIC
NAME (A) DYNAMIC
TITLE (A) DYNAMIC
VISIBLE (L)
METHODS (A4/13) CONST <'ENTR','PF1','PF2','PF3','PF4',
"PF5','PF6','PF7','PF8",'PF9",'PF10", 'PF11", PF12'>
END-DEFINE
*
SET KEY ENTR NAMED 'Enter' PFL NAMED 'F1' PF2 NAMED 'F2’
PF3 NAMED 'Modify' PF4 NAMED 'Delete' PF5 NAMED 'F5'
PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display’
PF9 NAMED 'F9' PF10 NAMED 'F10' PF1l NAMED 'F11' PF12 NAMED 'F12'
*
IF *BROWSER-10 NE "RICHGUI"
INPUT USING MAP "KEYS-M"
ELSE
EXPAND ARRAY PFKEY TO (1:13)
METHOD(1:13) := METHODS (*)
CALLNAT "GETKEY-N" PFKEY (*)
PROCESS PAGE USING "KEYS-A"
END-IF

*

END

R NN NN

Page after conversion:

Natural for Ajax 181

Code Conversion

PF-EKeys

F1 F2 | Modify| Dalsta FS & | Create| Display. Fo | F10 | F11 | F12

Explanation

The structure PFKEY is generated into the Natural adapter of the page as the application interface
to the BUTTONITEMLISTFIX control.

The subprogram GETKEY -N is a convenience wrapper for the API subprogram USR4005. It uses
USR4005 to determine the labeling and the program-sensitivity status for a given list of function
keys. Each function key is identified by the *PF-KEY value it raises. GETKEY - N returns the function
key information in a data structure suitable for the application interface of the BUTTONITEMLIST-
FIX control. The subprogram is delivered in the library SYSEXNJX in source code and can be
adapted to the needs of the application.

182 Natural for Ajax

Code Conversion

Processing Rules

The Natural maps in the application to be converted may contain processing rules. In the sense
of a Natural for Ajax application, the processing rules are server-side validations because they are
executed on the Natural server side of the application.

In order to extract processing rules from the maps and to turn them into server-side validations
in the converted application, the Natural Engineer function , Separate Processing Rules from
Maps” can be used.

There is currently no function available that automatically turns processing rules into client-side
validations in Application Designer.

System Variables

If a map displays a system variable (for example, *DATX), a specific default conversion rule takes
care that the necessary code for handling the system variable is generated into the Natural adapter
of the resulting page layout.

Example 1

The map displays the contents of the system variables *DATX and *TIMX. The contents of these
system variables are not modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XDATX (A8)
01 XTIMX (A8)

The body of the adapter will then contain:

XDATX *DATX

XTIMX := *TIMX

*

PROCESS PAGE ... WITH
PARAMETERS

NAME U'XDATX'
VALUE XDATX

NAME U'XTIMX'
VALUE XTIMX

END-PARAMETERS

Natural for Ajax 183

Code Conversion

The main program needs no special adaptation.
Example 2

The map displays the content of the system variable *CODEPAGE. The content of this system variables
is modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XCODEPAGE (A64)

The body of the adapter will then contain:

XCODEPAGE := *CODEPAGE

*

PROCESS PAGE ... WITH
PARAMETERS

NAME U’ XCODEPAGE’
VALUE XCODEPAGE

END-PARAMETERS
*

*CODEPAGE := XCODEPAGE

The main program needs no special adaptation.

Variable Names Containing Special Characters

A similar procedure applies to special characters contained in variable names. These are the follo-
wing special characters:

P U e ™~ = +

Note: The hash (#) can occur only as the first character.

Variables names containing these special characters cannot be directly bound to Application
Designer control attributes. A specific default conversion rule replaces the names containing these

184 Natural for Ajax

Code Conversion

special characters with configurable replacements. The original field name is generated into the
parameter data area of the Natural adapter and a corresponding mapping is generated into the
PROCESS PAGE statement of the adapter.

Example

The map displays the variables #FIRST and #LAST.

The DEFINE DATA statement of the adapter will then contain:

DEFINE DATA PARAMETER
1 #FIRST (A16)
1 JFLAST (A20)

The body of the adapter will then contain:

PROCESS PAGE ... WITH
PARAMETERS

NAME U"HFIRST'
VALUE #FIRST
NAME U'HLAST'
VALUE #LAST

END-PARAMETERS

The main program needs no special adaptation.

Natural for Ajax 185

186

28

Working with Containers

Containers are areas on your screen that can hold controls (such as fields, labels, etc.) or other
container(s). Containers are the preferred way to structure elements inside your page body.

The information provided in this part is organized under the following headings:

L L S e . "I "I T T T

Positioning of Controls inside a Container

Defining the Width of Controls inside a Container

Vertical Sizing of Containers and Controls
Overview of Different Containers
ROWAREA and COLAREA
ROWAREAWITHHEADER
ROWTABAREA and COLTABAREA
ROWTABLEO and COLTABLEO
COLDYNAVIS and ROWDYNAVIS
ROWDIV and INNERDIV
ROWSCROLLAREA

HSPLIT and VSPLIT

HLINE and VLINE

Performance Optimization with Containers

187

188

29 Positioning of Controls inside a Container

B ROW TYPES - TR ANA ITR .. 190
= Some More Details 0N ITR ... 191
B TR PIOPEITIES ...ttt ettt e et e e e e e e 193
B TR PIOPEITIES .ottt ettt ettt e e e oo ettt e e e e e e ettt e e e e e e aaeeeas 194

189

Positioning of Controls inside a Container

Containers internally build an HTML table in which you place rows. Inside each row you place

the controls - or again container(s).

Row Types - TR and ITR

There are two types of rows:

® The TR row is a normal table row. If you place more table rows - one under the other - inside
one container, the columns inside the table row are all synchronized. See the example below in

order to understand what , synchronized” means.

Since controls are placed into columns, all controls are positioned in a synchronized way.

® The ITR row is a special table row. If you place more ITR table rows - one under the other -
inside one container, each row has an independent set of columns; i.e. columns are not synchro-

nized.
Have a look at the following XML layout description:

<rowarea name="With TR">
<tr>
<Tabel name="First Name" width="100">
</label>
<field valueprop="fname" width="200">
</field>
</t
<tr>
<Tabel name="Last Name" width="200">
</label>
<field valueprop="1Iname" width="200">
</field>
<Jtr>
{/rowarea>
<{rowarea name="With ITR">
<tr takefullwidth="true">
<label name="First Name" width="100px">
</label>
<field valueprop="fname" width="200">
</field>
</itrd>
<itr takefullwidth="true">
<Tabel name="Last Name" width="200">
</Tabel>
<field valueprop="1Iname" width="200" Tength="20">
</field>
</itr>
{/rowarea>

190

Natural for Ajax

Positioning of Controls inside a Container

Note that each control (label, button, fields, etc.) is placed into one column of its own. If you have
many controls inside one row - and have several rows one below the other - synchronized columns
(using TR rows) sometimes cause funny results.

What is better, TR or ITR? Of course, it depends. The recommendation is:

® Use ITR as default. Using ITR, each row is defined independently from other rows that are
positioned in the same container. You can change the number of controls (i.e. you internally
change the number of managed columns) in one row without interdependencies to other rows.

® Only use TR if you really want to synchronize columns. A typical area of usage is inside the
grid management (ROWTABLEAREA?2 control): in a grid you explicitly desire to have synchro-
nized columns inside the grid's table.

Some More Details on ITR

There are two ROWAREA containers. The first one uses TR rows, the second one uses ITR rows.
The label for First Name has a width of 100 pixels, the label for Last Name has a width of 200
pixels. Now look at the result:

“with TR -

First Marme

Last Mame

‘with ITR -

First Mame

Last Mame

Inside the TR rows, all columns are synchronized - while in the ITR rows, each row is individually
arranged.

How does the ITR control work internally? For each row, an individual table is opened with one
row. Example: you define the following area in the XML layout definition:

Natural for Ajax 191

Positioning of Controls inside a Container

<area>
Gtr>

</itr>
Gtr>

</itr>
</area>

The generated HTML looks like this:

<table>
<tr>
<td colspan="100">
{table>
<tr>

</t
</table>
</td>
</tr>
<tr>
<td colspan="100">
{table>
<tr>

</tr>
</table>
</td>
</tr>
</table>

Inside each row there is a table definition of its own, holding exactly one row.

You can define a takefullwidth property with the ITR definition, defining the width of the
internal table of an ITR tag. If the takefullwidth property is set to "true", this means that the
internal table that is kept per row is internally opened to use 100% of the available width. Without
any definition, the table will be as big as it is required by its content.

192 Natural for Ajax

Positioning of Controls inside a Container

TR Properties

Basic

visibleprop Name of the adapter parameter that provides the Optional
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence 200
the height of the control will follow the height of its
content. 250
(B) Pixel sizing: just input a number value (e.g. "20"). 300

Please note: the row content may overrule this setting.

The height setting "100px" of an embedded textbox will 250
beat a row height of "50px". 400
(C) Percentage sizing: input a percantage value (e.g. 50%
"50%"). Pay attention: percentage sizing will only bring

up correct results if the parent element of the control 100%

properly defines a height this control can reference. If
you specify this control to have a height of 50% then
the parent element may itself define a height of "100%".
If the parent element does not specify a width then the
rendering result may not represent what you expect.

withalterbackground |Flag that indicates if the grid line shows alternating |Optional |true
background color (like rows within a textgrids). Default
is false. Please note: controls inside the row must have false
transparent background. In case of the FIELD control
simply set property TRANSPARENTBACKGROUND

to true.

trstyle CSS style definition that is directly passed into this |Optional |background-color:
control. #FF0000
With the style you can individually influence the color: #0000FF
rendering of the control. You can specify any style sheet '
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Natural for Ajax 193

Positioning of Controls inside a Container

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source” function.

comment Comment without any effect on rendering and Optional
behaviour. The comment is shown in the layout editor's
tree view.
ITR Properties
Basic
takefullwidth |If set to "true" then the control takes all available horizontal |Optional|true
width as its width. If set to "false" then the control does not
have a predefined width but grows with its content. false
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the height 250
of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 50%
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a height of "100%". If the parent element does
not specify a width then the rendering result may not represent
what you expect.
align Alignment of the content of the ITR row. Optional |left
Background: the ITR as independent table row renders a table center
into its content area. Inside this table a row is opened in which .
the controls are placed. right
This table normally is starting on the left of the ITR row. With
this ALIGN property you can explicitly define the alignement
of the table.
valign Vertical alignment of control in its column. Optional |top
194 Natural for Ajax

Positioning of Controls inside a Container

Each control is "packaged" into a column. The column itself is middle
part of arow (e.g. ITR or TR). Sometimtes the size of the column
is bigger than the size of the control. In this case the "align" bottom
property specify the position of the control inside the column.

fixlayout The fixlayout property is important for saving rendering Optional |true
performance inside your browser. To become effective it
requires to have specified the height and the width (if available false

as property) of the control.

If setting fixlayout to "true" then the control's area is defined

as area which is not sized dependent on its content (as normally
done with table rendering). Instead the size is predefined from
outside without letting the browser "look" into the content of
the area. If the content is not fitting into the area then it is cut.

You typically use this control if the content of the control's area
is flexibly sizable. E.g. if the content (e.g. a TEXTGRID control)
is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Visibility

visibleprop [Name of the adapter parameter that provides the information|Optional
if this control is displayed or not. As consequence you can
control the visibility of the control dynamically.

Appearance

itrstyle CSS style definition that is directly passed into this control. |Optional|background-color:

#FF0000
With the style you can individually influence the rendering of

the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have alook into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source” or "View frame's source" function.

itrclass CSS style class definition that is directly passed into this control. |Optional

Natural for Ajax 195

Positioning of Controls inside a Container

The style class can be either one which is part of the "normal"
CIS style sheet files (i.e. the ones that you maintain with the
style sheet editor) - or it can be one of an other style sheet file
that you may reference via the ADDSTYLESHEET property
of the PAGE tag.

tablestyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

itrstyleprop

$en/popupwizard/njx__attr_itrstyleprop$

‘ Optional ‘

196

Natural for Ajax

30 Defining the Width of Controls inside a Container

= Controlling the Width of CONIOISciiiiiiiiii e 198
B HDIST @nd VDIST CONIOIS ...ttt 200
B HDIST PrOPEIIES ...t eieiiii ettt ettt ettt e ettt e et e e e e e 202
B V/DIST PrOPEIHES ...ttt ettt e e e e et e e e e e e eeas 203
= rowspan and colspan DEfiNItIONSciiiiiiiiii e 204
B CELLSPAN CONMOL ...ttt ettt et et e e e e e 204
B CELLSPAN PrOPEITIESeeiiiiiiiiiiitie oottt ettt e e e e e e e e et e e e e e e e e a e e e e e e e e 206
= Rules for Positioning Controls inside CONTAINETSeiiiiiiiie i 208

197

Defining the Width of Controls inside a Container

As mentioned in the previous section, each control is automatically embedded into a column.
Consequently, the width of the control is, on the one hand, determined by the size of the control
itself - on the other hand, the column is part of a table row and also follows the table row's sizing.

Controlling the Width of Controls

Every control that allows width sizing offers a corresponding width property. In this property,
put either an absolute pixel (width="100") or a percentage value (width="50%"). The rendering
follows the strategy:

= If the width of a control is specified as a pixel value, the width is fixed: if the browser screen is
too small to display all controls, the controls will not be reduced but keep their pixel size.
Depending on your settings in the PAGEBODY tag (hscrol1 property), the displayed elements
will be cut off or will be accessible by a scroll bar.

= If the width of a control is defined as a percentage value (width="50%"), HTML renders the
control accordingly. If the screen is too small to show all controls, the browser will try to reduce
elements according to the table rendering rules.

If you define the width of a control as a percentage value, the width relates to

® the width of the area in case of using TR rows, or to

* the width definition of the ITR row if using ITR rows. This width definition can either be abso-
lute or percentage-based.

The following example shows a page in which controls hold absolute width values:

<tr takefullwidth="true">
<Tabel name="Factorl" width="20%">
</Tabel>
<field valueprop="factorl" width="80%">
</field>

</itr>

<itr takefullwidth="true">
<Tabel name="Factor2" width="20%">

</label>

<field valueprop="factor2" width="60%">
</field>

<hdist width="20%">

</hdist>

198 Natural for Ajax

Defining the Width of Controls inside a Container

For two different screen sizes, the HTML page looks as follows:

First Mame

Last Mame

Factarl
Factorz2

The size of the controls changes according to their percentage definition.
A similar screen is now built using absolutely defined pixel sizes:

<tr takefullwidth="false">
<Tabel name="Factorl" width="100">
</label>
<field valueprop="factorl" width="200">
</field>

</litrd

<tr takefullwidth="true">
<lTabel name="Factor2" width="100">
</label>
<field valueprop="factor2" width="150">
</field>

</itr>

In the ITR definition, there is no width specification - therefore, the controls will occupy exactly
the space they require. The result looks as follows:

Factorl O
Factorz O

The size of the controls will not change when changing the screen size.

Pay attention to what was said previously: Controls are placed into columns; columns are placed
into table rows; and table rows are placed into containers. If you place a control into a row and
define this control to have a width of 100%, then the elements ,,above” have to take care of providing
the space to which the control relates its "100%". More concrete: If you place a FIELD control with
a width of 100% into an ITR row that does not provide for a width of 100% itself (using the property
takefullwidth), then the result will be a minimum-width field (100% of nothing).

Pixel sizing represents a bottom-up sizing approach: a control defines its width - all the other
controls around (e.g. the container in which the control is placed) have as a consequence to adapt

Natural for Ajax 199

Defining the Width of Controls inside a Container

to the control's size: if the control is defined to occupy more space, then the container has to follow
and provide for the space.

Percentage sizing represents a top-down sizing approach: the inner control tells how many per-
centages of the space that is granted from the outer control is occupied. As a consequence the outer
control needs to define its size properly. Either the outer control itself defines a pixel size or it
itself defines a percentage size - thus passig the respsonsibility to the next higher level. This might
end up in a casacading defintion of , percentage sizing” - up to the PAGEBODY control, which is
the outer-most container of a page.

There are four commonly used properties for sizing:

" width/height - this is the quite obvious definition as explained in this section.

" takefullwidth/takefullheight - this is an equivalent to width="100%" and height="100%".

HDIST and VDIST Controls

HDIST means , horizontal distance”. VDIST means ,,vertical distance”.
HDIST Control

The HDIST control represents a distance to be placed between controls. The distance itself holds
a certain width that again can either be a pixel width or a percentage width.

The following example shows a table row into which a town and a zip code is put:

HDIST Example -
Zip Code [Town

Between the two FIELD controls, you see a small distance that separates the fields from one another.
The corresponding XML layout definition is:

<rowarea name="HDIST Example">
<Gtr>

<label name="Zip Code / Town" width="120">
</label>
<field valueprop="zipcode" width="80">
</field>
<hdist width="5">
</hdist>
<field valueprop="town" width="200">
</field>

200 Natural for Ajax

Defining the Width of Controls inside a Container

[ARAD:
{/rowarea>

The HDIST control is also very useful for percentage-based sizing of widths. If you want a control
to occupy 50% of the available width, you have to ,fill the gap” in the following way:

HDIST Example -

First Mare

The corresponding XML layout definition is:

<rowarea name="HDIST Example">
<itr height="100%">
<label name="First Name" width="120">
</label>
<field valueprop="fname" width="50%">
</field>
<hdist width="50%">
</hdist>
</itr>
</rowarea>

Pay attention: when using percentage sizing, then you should take care of filling the "100%" by
the controls inside the row. Otherwise, the browser will distribute the remaining space to its
columns - i.e. the controls will not be positioned the way you expect.

VDIST Control

The VDIST control is the counterpart of the HDIST control - in vertical direction. The following
example shows a scenario in which the line containing the BUTTON control keeps a vertical
distance of 10 pixels from the lines containing the FIELD controls:

'¥DIST Example -

First Marme

Last Mame

Search

Natural for Ajax 201

Defining the Width of Controls inside a Container

The layout definition is:

<rowarea name="VDIST Example">

<itr height="100%">
<Tabel name="First Name" width="120">
</Tabel>
<field valueprop="fname" width="200">
</field>

</litrd

<tr height="100%">
<Tabel name="Last Name" width="120">
</label>
<field valueprop="1Iname" width="200">
</field>

</itr>

<vdist height="10">

</vdist>

<Gtr>
<hdist width="120">
</hdist>
<button name="Search" method="onSearch">
</button>

/it

</rowarea>

Note that an HDIST control is used in the line containing the BUTTON control to align the button
to the fields.

HDIST Properties

Basic

width Width of the HDIST control, either in pixels or as percentage value. Optional 100
If no width is defined then a default width of 2 pixels is assigned. 120
140
160
180
200
50%

100%

202 Natural for Ajax

Defining the Width of Controls inside a Container

comment |Comment without any effect on rendering and behaviour. The comment is |Optional
shown in the layout editor's tree view.

Binding

visibleprop |[Name of the adapter parameter that provides the information if this control |Optional
is displayed or not. As consequence you can control the visibility of the control
dynamically.

VDIST Properties

Basic

height Height of the VDIST control, either in pixels or as Optional |100
percentage value. If no width is defined then a default

width of 3 pixels is assigned. 150

200
250
300
250
400
50%

100%

backgroundstyle | CSS style definition that is directly passed into this control. |Optional |background-color:

#FF0000
With the style you can individually influence the rendering

of the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

comment Comment without any effect on rendering and behaviour.|Optional
The comment is shown in the layout editor's tree view.

Natural for Ajax 203

Defining the Width of Controls inside a Container

rowspan and colspan Definitions

Each control has a colspan and rowspan property that is "1" by default. This definition is directly
transferred to the column definition that is placed around the control.

Example:

<tr>
<control colspan="2">
</control>

</tr>

If you specify the above definition, the created HTML code looks like this:

<tr>
<td colspan="2" rowspan="1">
. control-specific HTML code ...
</td>
</tr>

The usage of rowspan and colspan only makes sense in scenarios in which you define multiple
rows inside one container and if you use TR rows at the same time. You do not have to pay
attention to them if working in ITR rows.

Again: first check if the TR way of arranging controls is really the best approach - compared to
the ITR approach. Using TR means you have to , fight” with colspan and rowspan definitions in
order to properly lay out your controls. With ITR, each row is independently defined from its
neighbor rows.

CELLSPAN Control

Inside one row, you can place controls or nested containers. Containers again allow you to specify
new rows inside the container.

There is a special control, the CELLSPAN control. With the CELLSPAN control, you can quickly
define one cell inside a row of a container to place other controls. The CELLSPAN control has a
width property to specify the width of its inner content.

204 Natural for Ajax

Defining the Width of Controls inside a Container

Have a look at the following example:

<rowarea name="Cellspan Example">

<Er>
<label name="Factor 1" width="25%">
</label>
<field valueprop="factorl" width="25%">
</field>
<hdist></hdist>

<cellspan width="50%">
<label name="Factor 1" width="50%">
</label>
<field valueprop="factorl" width="50%">
</field>
</cellspan>
</tr>
<tr>
<label name="Factor 2" width="25%">
</Tabel>
<field valueprop="factor2" width="25%">
</field>
<hdist></hdist>
<cellspan width="50%">
<checkbox valueprop="activated" width="10%">
</checkbox>
<label name="Activated" width="40%" asplaintext="true">
</label>
<checkbox valueprop="generated" width="10%">
</checkbox>
<lTabel name="Generated" width="40%" asplaintext="true">
</label>
</cellspan>
</tr>
</rowarea>

Each TR row contains one CELLSPAN definition with a width of 50%. The inner content of the
CELLSPAN definitions is completely different between the rows:

Cellspan Example -
Factar 1] Factar 1 0
Factor 2] [T Activated [Generated

You could add controls to the CELLSPAN definition in the first row without any implications
inside the second row. The CELLSPAN control internally operates similar to the ITR control: it
builds a table on its own and decouples its content from the surrounding table rendering.

Natural for Ajax 205

Defining the Width of Controls inside a Container

CELLSPAN Properties

Basic
width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width 140
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 160
by it tent.
y its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%").
. iy . . 50%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 100%
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%").
. iy . . 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.
206 Natural for Ajax

Defining the Width of Controls inside a Container

titletextid Text ID that is passed to the multi lanaguage management |Optional
- representing the tooltip text that is used for the control.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 1
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
colspanprop $en/popupwizard/njx__attr_colspanprop$ Optional
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
cellstyle CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.

Natural for Ajax 207

Defining the Width of Controls inside a Container

backgroundclass

CSS style class definition that is directly passed into this
control.

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that you maintain
with the style sheet editor) - or it can be one of an other
style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

Optional

Rules for Positioning Controls inside Containers

This is a collection of rules you should consider when positioning controls inside containers:

" Make up your mind where to use relative percentage values or absolute pixel definitions.

® Do not mix percentage and pixel values inside one container.

* Internally, Application Designer controls are mapped to the HTML tags TABLE, TR and TD. When
developing, you should have in mind the normal HTML table management.

® Structure your container not as one big container holding one complex table, each row holding
a lot of controls. Instead, use the possibility to define nested containers or CELLSPAN controls
in order to structure your layout.

208

Natural for Ajax

31 Vertical Sizing of Containers and Controls

B VEICAI PIXEl SIZING ...t 210
B Vertical Percentage SiZiNGcoiieiiieiiiii e 211
B Finishing the EXAMPIE ..ot 214

209

Vertical Sizing of Containers and Controls

Nearly all controls which can be sized offer vertical sizing by a corresponding height property.
You can set the value of this property either as a pixel value or as a percentage value.

Vertical Pixel Sizing

This is the default. Controls either occupy their standard height or the height is explicitly defined
in pixels. The whole page is sized from the bottom to the top.

Look at the following example:

<pagebody>
<rowarea name="Comment Input">
<Gtr>
{Tabel name="Text" width="100">
</label>
<text valueprop="comment" width="200" height="200">
</text>
</itr>
<vdist>
</vdist>
<Gtr>
<hdist width="100">
</hdist>
<pbutton name="Clear" method="onClear">
</button>
</itr>
{/rowarea>
</pagebody>

The corresponding screen looks as follows:

210 Natural for Ajax

Vertical Sizing of Containers and Controls

Vertical Sizing *x
Exit
rCnmment Input -
Text j
Clear

The vertical size of the ROWAREA is exactly as big as required by its content. The TEXT control
is defined to be 200 pixels high.

Vertical Percentage Sizing

Use the same example, but this time the size of the TEXT control should be as big as possible -
depending on the size of the browser window. It should take the full available height.

Natural for Ajax 21

Vertical Sizing of Containers and Controls

The XML layout definition looks as follows:

<pagebody takefullheight="true">
<rowarea name="Comment Input" height="100%">
<itr height="100%">
<{label name="Text" width="100">
</label>
<text valueprop="comment" width="200" height="100%">
</text>
</itrd>
<vdist>
</vdist>
<Gtr>
<hdist width="100">
</hdist>
<button name="Clear" method="onClear">
</button>
</itr>
{/rowarea>
<vdist>
</vdist>
</pagebody>

The TEXT control now occupies a height of 100%. However, the definition of the whole size of the
page is passed down from the PAGEBODY to the control:

® In the PAGEBODY, the property takefullheight is set to "true". This means that the content
of the page body gets passed 100% of the available height.

® On the next level, the ITR row - in which the TEXT control is placed - is defined to have a height
of "100%". This means it tries to grab as much height as possible. On the same level, there is also
a VDIST (vertical distance) control and another ITR row - with no height defined. This means
that these controls get as much height as they require due to their content - but the whole
remaining vertical space is assigned to the first ITR row with the HEIGHT of "100%".

The result page looks as follows:

212 Natural for Ajax

Vertical Sizing of Containers and Controls

Vertical Sizing
Exit

Comment Input

Text

Clear

By changing the size of the browser window, the height of the whole control arrangement will
follow accordingly.

You see that sizing by percentage values means that you have to think from top to bottom - just
the opposite direction as you think with pixel values. This is nothing new for you if you are used
to work with normal HTML tables - in fact, everything that is done below the diverse container
controls is done by table rendering.

Conclusion: The example shows you that the height property of controls can be defined as a
percentage value - but needs an outside reference to depend on. Some of the controls, such as the

Natural for Ajax 213

Vertical Sizing of Containers and Controls

PAGEBODY, do not offer explicitly a height property but only a property takefullheight that
can be set to "true". This is equivalent to a definition of HEIGHT="100%".

Finishing the Example

This has nothing to do with vertical sizing, but with horizontal sizing. We cannot finish the
example without having changed it also in a way that it occupies the full available horizontal
width. The layout definition now looks as follows:

<{pagebody takefullheight="true">
<rowarea name="Comment Input" height="100%">
<itr takefullwidth="true" height="100%">
<{label name="Text" width="100">
</label>
<text valueprop="comment" width="100%" height="100%">
</text>
/it
<vdist>
</vdist>
tr>
<hdist width="100">
</hdist>
<button name="Clear" method="onClear">
</button>
</itr>
</rowarea>
<vdist>
</vdist>
</pagebody>

The width property of the TEXT control is set to "100%". Similar to the vertical height management,
the available width is passed from the ITR row definition above - which occupies 100% of the
available width inside the ROWAREA. The ROWAREA always occupies the whole available width
- it does not require an explicit width definition.

The result is now:

214 Natural for Ajax

Vertical Sizing of Containers and Controls

Text

Natural for Ajax 215

216

32 Overview of Different Containers

m Different Kind of CONTAINETSiiiiiiii et aaaias 218
L (T 731 7= 1< 218
L 070 (VT4 o T 0] 1 =114 T £ TP 219
= Row and Column Containers in Combinationuuiiiiiiii e 220
B NESHNG CONTAINETS ..ottt e e e et e e e e e e e e s e e e e e e e e e 221

217

Overview of Different Containers

Different Kind of Containers

Currently, there are the following types of containers:

ROWAREA and COLAREA
These are containers holding a title. The graphic area represented by the container is surrounded
by aborder. The content of the area container can be reduced by clicking on the title - and resized
by clicking again on the title.

ROWTABAREA and COLTABAREA
These are containers holding different pages (TABPAGE elements) which can be toggled.

ROWTABLEO and COLTABLEO
These are containers you do not see; i.e. a container does not have any borders or any special
coloring. Use it just for arranging elements inside the container.

ROWDYNAVIS and COLDYNAVIS

This is a container that is the same as the ROWTABLEO or COLTABLEO container but with an
additional feature: You can control the visibility of the whole container dynamically by an
adapter property. Use this container if you want to display or hide a certain area of your screen
depending on some business logic.

A typical example is an address management: the user enters an address located in the United
States. Therefore, an additional area has to appear in which the user enters the state information.
For other countries, this area is not required and should not be visible.

Row Containers

The containers have a row implementation and a column implementation.

Row containers occupy the whole available width they can obtain. They are placed directly in
other containers. You can place several row containers inside one container. Therefore, they are
arranged one below the other.

Example:

<pagebody>

<{rowarea name="Area 1">
{/rowarea>
<{rowarea name="Area 2">
{/rowarea>
<{rowarea name="Area 3">
{/rowarea>

</pagebody>

218 Natural for Ajax

Overview of Different Containers

The above XML layout produces the following HTML page:

r.Flrlaﬂ 1 -
rnrea 2 e
r.Flrlaﬂ 3 -

Column Containers

Column containers are placed inside rows, i.e. into TR rows or ITR rows. You can place several
column containers inside one row. Therefore, they are arranged in a way that one column container
follows the other horizontally.

Example:

<pagebody>

<itr

</it
</pagebo

The above XML layout produces the following HTML page:

width="100%">

<colarea name="Area 1" width="33%">
<{/colarea>

<hdist>

</hdist>

<colarea name="Area 2" width="33%">
{/colarea>

<hdist>

</hdist>

<colarea name="Area 3" width="33%">
{/colarea>

r>

dy>

{nrea 1

I{MEH 2

(nrea 3

With column containers, you have to specify the width (either as a pixel value or as a percentage
value) of the container. Note that - if using percentage widths - you have to place them into an
ITR row that itself occupies the whole available width (itr width="100%").

Natural for Ajax

219

Overview of Different Containers

Row and Column Containers in Combination

It is possible to use row and column containers in combination. The following example combines

the two examples shown above.

<pagebody>
<{rowarea name="Areal">
{/rowarea>
<{rowarea name="Area 2">
{/rowarea>
<rowarea name="Area 3">
</rowarea>
<itr width="100%">
<colarea name="Area
</colarea>
<hdist>
</hdist>
<colarea name="Area
<{/colarea>
<hdist>
</hdist>
<colarea name="Area
</colarea>
</itr>
</pagebody>

1" width="33%">

2" width="33%">

3" width="33%">

The HTML page looks as follows:

rlltre.a 1 -
rlltrea 2 -
rlltrea 3 -
rlltrleel 1 [Area 2 [nrea 3

220 Natural for Ajax

Overview of Different Containers

Nesting Containers

It is possible to nest containers - one into another - in any way. Example:

<pagebody>
<{rowarea name="lLevel 1">
<{rowarea name="Level 2">
<rowarea name="lLevel 3">
<itr width="100%">
<colarea name="Left" width="50%">
</colarea>
<hdist>
</hdist>
<colarea name="Right" width="50%">
</colarea>
</itr>
<{/rowarea>
{/rowarea>
</rowarea>
</pagebody>

The above XML code produces the following HTML page:

Lewel1

m

Natural for Ajax 221

222

33 ROWAREA and COLAREA

B ROWAREA PIOPEITIESeeeeeiiiiiiiiiit ittt e ettt e e e e e e ettt e e e e e e e e et aaaeeeaaas 224
B COLAREA PIOPEIIES ...eeiitiieeeittte ettt ettt ettt e et e et e e et e e e ettt e e e e ettt e e e e enneeas 231

223

ROWAREA and COLAREA

The ROWAREA or COLAREA container represents an area surrounded by a border and which
may have a title text. By clicking on the title of such a control, the inner content is hidden (the
ROWAREA or COLAREA is ,folded”).

ROWAREA Properties

Basic

name

Text that is displayed inside the control. Please
do not specify the name when using the multi
language management - but specify a "textid"
instead.

Sometimes

obligatory

textid

Multi language dependent text that is displayed
inside the control. The "textid" is translated into
a corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

Sometimes
obligatory

nameprop

$en/popupwizard/njx__attr_nameprop$

Optional

height

Height of the control.
There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the control will be rendered with
its default height. If the control is a container
control (containing) other controls then the
height of the control will follow the height of its
content.

(B) Pixel sizing: just input a number value (e.g.
H20").

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing
will only bring up correct results if the parent
element of the control properly defines a height
this control can reference. If you specify this
control to have a height of 50% then the parent
element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

Optional

100
150
200
250
300
250
400
50%

100%

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

224

Natural for Ajax

ROWAREA and COLAREA

Visibility

foldable

The "folding"-function that is available by
clicking on the title of the area can be switched
off ("false"). "True" is the default.

Optional

true

false

foldableprop

Name of the adapter parameter that
dynamically controls whether clicking on the
title of the area will fold/unfoald this area.

Valid values provided by the adapter parameter
are TRUE (=foldable) and FALSE(=not foldable).

Optional

foldedprop

$en/popupwizard/njx_area_attr_foldedprop$

Optional

visibleprop

Name of the adapter parameter that provides
the information if this control is displayed or
not. As consequence you can control the
visibility of the control dynamically.

Optional

flush

Flushing behaviour of the input control.

By default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is
set to FLUSH="server" then you can specify an
explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

Optional

Appearance

Natural for Ajax

225

ROWAREA and COLAREA

image

URL of image that is displayed inside the
control. Any image type (.gif, jpg, ...) that your
browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

imageprop

$en/popupwizard/njx__attr_titleimageprop$

Optional

withtoppadding

The control by default renders some blank
vertical space (2 pixels) on top of its area.
Reason: if you vertically arrange one
ROW/COLAREA after the other then
automatically some distance is put between.

By specifying "false” you can avoid this
behaviour. "

Optional

true

false

withleftborder

The control normally renders a black border
around its area. With the properties
WITHLEFTBORDER, WITHRIGHTBORDER
and WITHBOTTOMBORDER you can avoid
this.

Reason behing: somtimes you want a
ROWAREA/COLAREA to be used as
"neighbour” of other ROWAERA/COLAREA
controls. In this case one of the "neighbours" has
to avoid the rendering of border lines -
otherwise two border lines will be rendered.

Optional

true

false

withtopborder

See description of WITHLEFTBORDER
property.

Optional

true

false

withrightborder

See description of WITHLEFTBORDER
property.

Optional

true

false

withbottomborder

See description of WITHLEFTBORDER
property.

Optional

true

false

226

Natural for Ajax

ROWAREA and COLAREA

paddingleft Number of pixels between the left border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
paddingright Number of pixels between the right border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
areastyle CSS style definition that is directly passed into |Optional |background-color:
this control. #FF0000
With the style you can individually influence color: #0000FF
the rendering of the control. You can specify .
any style sheet expressions. Examples are: font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source” function.
contenttablestyle CSS style definition that is applied to the content|Optional |background-color:
part of the ROWAREA control. #FF0000
color: #0000FF
font-weight: bold
notabstop The title of the area by default can be used by |Optional |true
the user to hide/show the area's content. In order
false

to also reach this title with the tab-key is is part
of the normal tab-sequence of a page.

Set this property to "true" if you do not want to
make the title reachable by tab-key. As
consequnece hiding/showing will only be
available by mouse-clicking on the title.

Natural for Ajax

227

ROWAREA and COLAREA

fixlayout

The fixlayout property is important for saving
rendering performance inside your browser. To
become effective it requires to have specified
the height and the width (if available as
property) of the control.

If setting fixlayout to "true" then the control's
area is defined as area which is not sized
dependent on its content (as normally done with
table rendering). Instead the size is predefined
from outside without letting the browser "look"
into the content of the area. If the content is not
fitting into the area then it is cut.

You typically use this control if the content of
the control's area is flexibly sizable. E.g. if the
content (e.g. a TEXTGRID control) is following
the size of the container.

When using vertical percentage based sizing
you should pay attention to set the
fixlayout-property to "true" as often as possible.
- The browser as consequence will be much
faster in doing its rendering because a screen
consists out of "building blocks" with simple to
calculate sizes.

Optional

true

false

tabindex

Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional

1
—_

10

32767

withcontenttoppadding

The control by default renders some blank
vertical space (3 pixels) on bottom of the content
area.

By specifying "false” you can avoid this
behaviour.

Optional

true

false

withcontentbottompadding

The control by default renders some blank
vertical space (3 pixels) on bottom of the content
area.

Optional

true

false

228

Natural for Ajax

ROWAREA and COLAREA

By specifying "false” you can avoid this
behaviour.

withfadedtoggling

The animation of the controls can be switched
off! Please take a look in your cisconfig.xml file.
Set animatecontrols="true" (default) if you

generally want to animate all of your controls.

The rowarea control has a seperate switch
(withfadedtoggling = true/false) to (de)activate
the 'FadedToggling' animation especially for
this single rowarea control.

Notice: Entering true or false into the
withfadedtoggling attribute overwrites the
general animatecontrols setting !

Optional

true

false

stylevariant

Some controls offer the possibility to define style
variants. By this style variant you can address
different styles inside your style sheet definition
file (.css). If not defined "normal” styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the
style sheet defintion and use them multiple
times by addressing them via the "stylevariant"
property. CIS currently offerst two variants
"VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional

titlerowontop

Default value is 'true'. If set to 'false' the titlerow
is rendered at the bottom of this area.

Optional

true

false

toggleimgtitle

A text that is displayed as tooltip of the toggle
image.

Optional

toggleimgtitletextid

Multi language dependent text that is displayed
as tooltip of the toggle image.

Do not specify a "toogleimagetitle” inside the
control if specifying a "toggleimagetextid".

Optional

Online Help

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

Natural for Ajax

229

ROWAREA and COLAREA

Natural

njx:mnatstringtype

If the control shall be bound to a Natural system
variable of string format with the attribute
njx:natsysvar, this attribute indicates the format
of the string, A (code page) or U (Unicode). The
default is A.

Optional

njx:natsysio

If the control shall be bound to a Natural system
variable with the attribute njx:natsysvar, this
attribute indicates if the system variable is
modifiable. The default is false.

Optional

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance 4FIELD1)
shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.
If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter.

Optional

njx:natsysvar

If the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

Optional

njx:natcomment

The value of this attribute is generated as
comment line into the parameter data area of
the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

Optional

njxmatcv

Name of a Natural control variable that shall be
assigned to the control. The control variable
must be defined in a Data Definition
(XCIDATADEEF) control on the same page. The
application can use the control variable to check
the modification status of the control.

Optional

230

Natural for Ajax

ROWAREA and COLAREA

COLAREA Properties

The properties of COLAREA are very similar to those of ROWAREA.

Basic

name

Text that is displayed inside the control. Please
do not specify the name when using the multi
language management - but specify a "textid"
instead.

Sometimes
obligatory

textid

Multi language dependent text that is displayed
inside the control. The "textid" is translated into
a corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

Sometimes
obligatory

nameprop

$en/popupwizard/njx__attr_nameprop$

Optional

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case
the width of the control will either be a default
width or - in case of container controls - it will
follow the width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g.
l|100||)‘

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

Sometimes
obligatory

100
120
140
160
180
200
50%

100%

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

Appearance

takefullheight

Indicates if the content of the control's area gets
the full available height.

Optional

true

false

Natural for Ajax

231

ROWAREA and COLAREA

If you use percentage sizing inside the control's
area then this property must be switched to
'true'. If you use no explicit vertical sizing at all
- or you use vertical pixel sizing for your
controls - the property must be switched to
'false’.

Background information: container control's
internally open up a table in which you place
rows (ITR/TR) which then hold controls (e.g.
LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with
its content as consequence. By specifying
"takefullheight=true" the table itself is sized to
fill the maximum height of the available area.

image

URL of image that is displayed inside the
control. Any image type (.gif, .jpg, -..) that your
browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../[HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

imageprop

$en/popupwizard/njx__attr_titleimageprop$

Optional

fixlayout

The fixlayout property is important for saving
rendering performance inside your browser. To
become effective it requires to have specified
the height and the width (if available as
property) of the control.

If setting fixlayout to "true" then the control's
area is defined as area which is not sized
dependent on its content (as normally done with
table rendering). Instead the size is predefined
from outside without letting the browser "look"
into the content of the area. If the content is not
fitting into the area then it is cut.

You typically use this control if the content of
the control's area is flexibly sizable. E.g. if the
content (e.g. a TEXTGRID control) is following
the size of the container.

Optional

true

false

232

Natural for Ajax

ROWAREA and COLAREA

When using vertical percentage based sizing
you should pay attention to set the
fixlayout-property to "true" as often as possible.
- The browser as consequence will be much
faster in doing its rendering because a screen
consists out of "building blocks" with simple to
calculate sizes.

withleftborder The control normally renders a black border |Optional [true
around its area. With the properties
WITHLEFTBORDER, WITHRIGHTBORDER false
and WITHBOTTOMBORDER you can avoid
this.
Reason behing: somtimes you want a
ROWAREA/COLAREA to be used as
"neighbour” of other ROWAERA/COLAREA
controls. In this case one of the "neighbours" has
to avoid the rendering of border lines -
otherwise two border lines will be rendered.
withtopborder See description of WITHLEFTBORDER Optional |true
property.
false
withrightborder See description of WITHLEFTBORDER Optional |true
property.
false
withbottomborder See description of WITHLEFTBORDER Optional |true
property.
false
paddingleft Number of pixels between the left border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
paddingright Number of pixels between the right border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
areastyle CSS style definition that is directly passed into |Optional |background-color:

this control.

#FF0000

Natural for Ajax

233

ROWAREA and COLAREA

With the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

color: #0000FF

font-weight: bold

contenttablestyle CSS style that is applied to the content are of |Optional |background-color:
the COLAREA control. #FF0000
color: #0000FF
font-weight: bold
withcontenttoppadding The control by default renders some blank Optional |true
vertical space (3 pixels) on bottom of the content
area. false
By specifying "false" you can avoid this
behaviour.
withcontentbottompadding | The control by default renders some blank Optional [true
vertical space (3 pixels) on bottom of the content
area. false
By specifying "false” you can avoid this
behaviour.
titlerowontop Default value is 'true'. If set to 'false’ the titlerow |Optional |true
is rendered at the bottom of this area.
false
stylevariant Some controls offer the possibility to define style |Optional
variants. By this style variant you can address
different styles inside your style sheet definition
file (.css). If not defined "normal” styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.
Purpose: you can set up style variants in the
style sheet defintion and use them multiple
times by addressing them via the "stylevariant”
property. CIS currently offerst two variants
234 Natural for Ajax

ROWAREA and COLAREA

"VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

withtoppadding

The control by default renders some blank
vertical space (2 pixels) on top of its area.
Reason: if you vertically arrange one
ROW/COLAREA after the other then
automatically some distance is put between.

By specifying "false" you can avoid this
behaviour. "

Optional

true

false

Online Help

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

Natural for Ajax

235

236

34 ROWAREAWITHHEADER

B SIMPIE EXAMIPIE .ottt e e et e e e e e e e e e e e e 238
8 ROWAREAWITHHEADER PrOPEIHIESvveeeiiiiie ettt e e 239
® ROWAREAHEADER PrOPEITIESvieeieeiiiii ettt ettt et e et e e nneee e 241
® ROWAREABODY PIOPEIHES ... eeeeeeeeiiiiieiit ettt e ettt e e e et e e e e e e e 242

237

ROWAREAWITHHEADER

This container represents an area surrounded by a border which may have a title text. By clicking
on the title, the inner content is hidden (the container is ,folded”). You can place icons (ICON,
ICONLIST) into the header line (ROWAREAHEADER). Other content is placed into the ROWA-
REABODY container.

Simple Example

{rowareawithheader>
{rowareaheader name="Note">

<hdist width="20">

</hdist>

<{icon image="../HTMLBasedGUI/images/cut.gif" method="onCut">
</icon>

<hdist width="6">

</hdist>

<icon image="../HTMLBasedGUI/images/copy.gif" method="onCopy">
</icon>

<hdist width="6">

</hdist>

<icon image="../HTMLBasedGUI/images/paste.gif" method="onPaste">
</icon>

{/rowareaheader>
{rowareabody>

<itr takefullwidth="true">
{text valueprop="text" width="100%" rows="5">
</text>

</itrd

</rowareabody>
<{/rowareawithheader>

The above XML layout produces a page which looks as follows:

rr"--mte

& B 3

There are three icons within the header line (ROWAREAHEADER). The text box is placed into
the body container (ROWAREABODY).

238

Natural for Ajax

ROWAREAWITHHEADER

ROWAREAWITHHEADER Properties

Basic

height

Height of the control.
There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control will
be rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow
the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control can
reference. If you specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a height of "100%".
If the parent element does not specify a width then the rendering result
may not represent what you expect.

Optional

100
150
200
250
300
250
400
50%

100%

comment

Comment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

Optional

Visibility

foldable

The "folding"-function that is available by clicking on the title of the
area can be switched off ("false"). "True" is the default.

Optional

true

false

foldableprop

Name of the adapter parameter that dynamically controls whether
clicking on the title of the area will fold/unfoald this area.

Valid values provided by the adapter parameter are TRUE (=foldable)
and FALSE(=not foldable).

Optional

foldedprop

$en/popupwizard/njx_area_attr_foldedprop$

Optional

visibleprop

Name of the adapter parameter that provides the information if this
control is displayed or not. As consequence you can control the visibility
of the control dynamically.

Optional

Appearance

height

(already explained above)

withleftborder

The control normally renders a black border around its area. With the
properties WITHLEFTBORDER, WITHRIGHTBORDER and
WITHBOTTOMBORDER you can avoid this.

Reason behing: somtimes you want a ROWAREA/COLAREA to be
used as "neighbour" of other ROWAERA/COLAREA controls. In this

Optional

true

false

Natural for Ajax

239

ROWAREAWITHHEADER

case one of the "neighbours" has to avoid the rendering of border lines
- otherwise two border lines will be rendered.

withtopborder See description of WITHLEFTBORDER property. Optional |true
false
withrightborder |See description of WITHLEFTBORDER property. Optional |true
false
withbottomborder|See description of WITHLEFTBORDER property. Optional |true
false

withtoppadding |The control by default renders some blank vertical space (2 pixels) on |Optional |true
top of its area. Reason: if you vertically arrange one ROW/COLAREA
after the other then automatically some distance is put between. false

1

By specifying "false" you can avoid this behaviour. '

image URL of image that is displayed inside the control. Any image type (.gif, | Optional
jpg, ...) that your browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../[HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

imageprop $en/popupwizard/njx__attr_titleimageprop$ Optional
nameprop $en/popupwizard/njx__attr_nameprop$ Optional
fixlayout The fixlayout property is important for saving rendering performance |Optional |true
inside your browser. To become effective it requires to have specified
the height and the width (if available as property) of the control. false

If setting fixlayout to "true" then the control's area is defined as area
which is not sized dependent on its content (as normally done with
table rendering). Instead the size is predefined from outside without
letting the browser "look" into the content of the area. If the content is
not fitting into the area then it is cut.

You typically use this control if the content of the control's area is
flexibly sizable. E.g. if the content (e.g. a TEXTGRID control) is following
the size of the container.

240 Natural for Ajax

ROWAREAWITHHEADER

When using vertical percentage based sizing you should pay attention
to set the fixlayout-property to "true" as often as possible. - The browser
as consequence will be much faster in doing its rendering because a

screen consists out of "building blocks" with simple to calculate sizes.

ROWAREAHEADER Properties

Basic

name Text that is displayed inside the control. Please do not specify the name when |Optional
using the multi language management - but specify a "textid" instead.

textid Multi language dependent text that is displayed inside the control. The "textid" |Optional
is translated into a corresponding string at runtime.

Do not specify a "name" inside the control if specifying a "textid".

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Online Help

title Text that is shown as tooltip for the control. Optional

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid | Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

Appearance

align Horizontal alignment of the controls inside the header line. Optional |left
center
right

notabstop | The title of the area by default can be used by the user to hide/show the area's |Optional |true
content. In order to also reach this title with the tab-key is is part of the normal
tab-sequence of a page. false

Set this property to "true" if you do not want to make the title reachable by
tab-key. As consequnece hiding/showing will only be available by
mouse-clicking on the title.

tabindex |Index that defines the tab order of the control. Controls are selected in increasing |Optional |-1
index order and in source order to resolve duplicates.
0
1
2

Natural for Ajax 241

ROWAREAWITHHEADER

10

32767

ROWAREABODY Properties

this control.

With the style you can individually influence
the rendering of the control. You can specify any
style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source” function.

Basic
paddingleft Number of pixels between the left border and |Optional|1l
the area's content. Default is 5 pixels.
2
3
int-value
paddingright Number of pixels between the right border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
bodystyle CSS style definition that is directly passed into |Optional |background-color:

#FF0000
color: #0000FF

font-weight: bold

withcontenttoppadding

The control by default renders some blank
vertical space (3 pixels) on bottom of the content
area.

Optional

true

false

242

Natural for Ajax

ROWAREAWITHHEADER

By specifying "false” you can avoid this
behaviour.

withcontentbottompadding

The control by default renders some blank
vertical space (3 pixels) on bottom of the content
area.

By specifying "false” you can avoid this
behaviour.

Optional

true

false

Natural for Ajax

243

244

35 ROWTABAREA and COLTABAREA

B ROWTABAREA PrOPEITIESveieiiieeeeee ettt ettt e e e e et e e e e e e e e et raeeeeaee e 247
B COLTABAREA PIOPEITIESveeeeitettee ettt e et e e e e et e e e et e e e e e e e e nnee e e e e e 260
B TABPAGE PrOPEITIESeeeeieeieee ittt ettt et e e e e 268
B The MOSt COMMON EFTOToiiii ittt e et e e e e et eaeaaae e 269
= Example: Controlling which Tab is displayed by the Server Adapterccccooiiiiiiiii e 269
= Example: Controlling the Visibility 0f Tab Pagesvvviiiiiiiiiiiii e 270

245

ROWTABAREA and COLTABAREA

The ROWTABAREA or COLTABAREA container is the representation of a tab control. A tab area
consists of the ROWTABAREA or COLTABAREA definition. Inside this definition, you define
TABPAGE containers representing the individual pages between which you can navigate.

Example:

<pagebody>
<rowtabarea height="200" namel="Left Tab" pagel="LEFT" name2="Right Tab"
page2="RIGHT">
{tabpage id="LEFT" takefullheight="true">
</tabpage>
<tabpage id="RIGHT" takefullheight="true">
</tabpage>
</rowtabarea>
<{/pagebody>

The above XML layout produces the following page:

Left Tab Right Tab

Inside the ROWTABAREA definition, specify the name and the ID of each area you want to display.
Pay attention to the naming of the page* properties: the name must not contain any blank spaces
or non-alphanumeric characeters. Start the page* values with a character, not with a number.

Specify the individual toggle areas - by the TABPAGE definition. Each TABPAGE holds an ID
which must be equal to the definition on ROWTABAREA level. Each TABPAGE has a display
property which is set to "none" for all TABPAGE definitions except the first one.

Each TABPAGE is a container itself - i.e. inside the TABPAGE, place controls (or containers) by
adding ITR or TR rows and place elements into these rows.

246 Natural for Ajax

ROWTABAREA and COLTABAREA

ROWTABAREA Properties

Basic
height Height of the control. Obligatory |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%").
: . . . 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
leftindent Inserts a horizontal distance left of the first "tab" and shifts |Optional |1
the "tabs" to the right as consequence. The value you may
define represents the number of pixels that are inserted. 2
3
int-value
scrollable If set to "true" then small icons will appear on the right border |Optional |true
of the control. If the size of the "tabs" is too big and some
tabs are cut as consequence then you can use these icons for false
scrolling left and right.
namel Text that is shown in the corresponding "tab". Either define |Sometimes
the text as NAME or as language dependent TEXTID. obligatory
textidl Text ID that is transferred in a corresponding literal at Sometimes
runtime by the multi language management. obligatory
pagel Id of the TABPAGE that is defined as child of the TABAREA. |Obligatory

Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Natural for Ajax

247

ROWTABAREA and COLTABAREA

withclosel Id of the TABPAGE that is defined as child of the TABAREA.|Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and false

without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

name2 Text that is shown in the corresponding "tab". Either define |Optional
the text as NAME or as language dependent TEXTID.

textid2 Text ID that is transferred in a corresponding literal at Optional
runtime by the multi language management.

page2 Id of the TABPAGE that is defined as child of the TABAREA. |Optional

Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

withclose2 Id of the TABPAGE that is defined as child of the TABAREA. |Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and false

without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

name3 Text that is shown in the corresponding "tab". Either define |Optional
the text as NAME or as language dependent TEXTID.

textid3 Text ID that is transferred in a corresponding literal at Optional
runtime by the multi language management.

page3 Id of the TABPAGE that is defined as child of the TABAREA. |Optional

Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

withclose3 Id of the TABPAGE that is defined as child of the TABAREA. |Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and false

without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

248 Natural for Ajax

ROWTABAREA and COLTABAREA

name4

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid4

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

page4

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

withclose4

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

nameb

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid5

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pageb

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

withclose5

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

nameb

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid6

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pageb

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a

Optional

Natural for Ajax

249

ROWTABAREA and COLTABAREA

"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

withclose6 Id of the TABPAGE that is defined as child of the TABAREA. |Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and false

without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

name7 Text that is shown in the corresponding "tab". Either define |Optional
the text as NAME or as language dependent TEXTID.

textid7 Text ID that is transferred in a corresponding literal at Optional
runtime by the multi language management.

page? Id of the TABPAGE that is defined as child of the TABAREA. |Optional

Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

withclose7 Id of the TABPAGE that is defined as child of the TABAREA. |Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

false

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

name8 Text that is shown in the corresponding "tab". Either define |Optional
the text as NAME or as language dependent TEXTID.

textid8 Text ID that is transferred in a corresponding literal at Optional
runtime by the multi language management.

page8 Id of the TABPAGE that is defined as child of the TABAREA. |Optional

Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

250 Natural for Ajax

ROWTABAREA and COLTABAREA

withclose8 Id of the TABPAGE that is defined as child of the TABAREA.|Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and false

without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

name9 Text that is shown in the corresponding "tab". Either define |Optional
the text as NAME or as language dependent TEXTID.

textid9 Text ID that is transferred in a corresponding literal at Optional
runtime by the multi language management.

page9 Id of the TABPAGE that is defined as child of the TABAREA. |Optional

Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

withclose9 Id of the TABPAGE that is defined as child of the TABAREA. |Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and false

without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

namel0 Text that is shown in the corresponding "tab". Either define |Optional
the text as NAME or as language dependent TEXTID.

textid10 Text ID that is transferred in a corresponding literal at Optional
runtime by the multi language management.

pagel0 Id of the TABPAGE that is defined as child of the TABAREA. |Optional

Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

withclosel0 Id of the TABPAGE that is defined as child of the TABAREA. |Optional |true
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and false

without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Natural for Ajax 251

ROWTABAREA and COLTABAREA

namell

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid11

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pagell

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

withclosell

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

namel2

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid12

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pagel2

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

withclose12

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

namel3

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid13

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pagel3

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a

Optional

252

Natural for Ajax

ROWTABAREA and COLTABAREA

"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

withclosel3

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

namel4

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid14

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pagel4

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

withclosel4

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

namelb

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid15

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pagelb

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

Natural for Ajax

253

ROWTABAREA and COLTABAREA

withclosel5

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

namelé6

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid16

Text ID that is transferred in a corresponding literal at
runtime by the multi language management.

Optional

pagel6

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

withclosel6

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a
"healthy" id: starting with characters, without blanks and
without "strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

true

false

Binding

openedindexprop

$en/popupwizard/njx_rowtabarea_attr_openedindexprop$

Optional

openmethod

$en/popupwizard/njx_rowtabarea_attr_openmethod$

Optional

visibleprop1

Name of property that defines if the corresponding tag is
visible or not.

Optional

visibleprop2

Name of property that defines if the corresponding tag is
visible or not.

Optional

visibleprop3

Name of property that defines if the corresponding tag is
visible or not.

Optional

visibleprop4

Name of property that defines if the corresponding tag is
visible or not.

Optional

visibleprop5

Name of property that defines if the corresponding tag is
visible or not.

Optional

visibleprop6

Name of property that defines if the corresponding tag is
visible or not.

Optional

visibleprop?7

Name of property that defines if the corresponding tag is
visible or not.

Optional

254

Natural for Ajax

ROWTABAREA and COLTABAREA

visibleprop8 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop9 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop10 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop11 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop12 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop13 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop14 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop15 Name of property that defines if the corresponding tag is |Optional
visible or not.

visibleprop16 Name of property that defines if the corresponding tag is |Optional
visible or not.

Appearance

withleftborder If specified as "false" then no left border will be drawn. Optional |true

false

withrightborder If specified as "false" then no right border will be drawn. |Optional |true

false

withbottomborder If specified as "false" then no bottom border will be drawn. |Optional |true

false

stylevariant Some controls offer the possibility to define style variants. |Optional |VARI1
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

1
—_

tabindex Index that defines the tab order of the control. Controls are |Optional
selected in increasing index order and in source order to
resolve duplicates. 0

Natural for Ajax 255

ROWTABAREA and COLTABAREA

1
2
5
10
32767
withtoppadding The control by default renders some blank vertical space (2 |Optional |true
pixels) on top of its area. Reason: if you vertically arrange
one ROW/COLAREA after the other then automatically some false
distance is put between.
By specifying "false” you can avoid this behaviour. "
tabpagepaddingleft Number of pixels between the left border and the area's Sometimes |1
content. Default is 5 pixels. obligatory
2
3
int-value
tabpagepaddingright |Number of pixels between the right border and the area's |Optional |1
content. Default is 5 pixels.
2
3
int-value
tabpagepaddingtop Number of pixels between the top border and the area's |Optional |1
content. Default is 5 pixels.
2
3
int-value
tabpagepaddingbottom |Number of pixels between the bottom border and the area's|Optional |1
content. Default is 5 pixels.
2
3
int-value
withflash Adds animation effects when the user uses the control. Optional
Online Help
titlel Tooltip text that appears on the corresponding tab. Optional
256 Natural for Ajax

ROWTABAREA and COLTABAREA

title2 Tooltip text that appears on the corresponding tab. Optional
title3 Tooltip text that appears on the corresponding tab. Optional
title4 Tooltip text that appears on the corresponding tab. Optional
title5 Tooltip text that appears on the corresponding tab. Optional
title6 Tooltip text that appears on the corresponding tab. Optional
title7 Tooltip text that appears on the corresponding tab. Optional
title8 Tooltip text that appears on the corresponding tab. Optional
title9 Tooltip text that appears on the corresponding tab. Optional
title10 Tooltip text that appears on the corresponding tab. Optional
title11 Tooltip text that appears on the corresponding tab. Optional
title12 Tooltip text that appears on the corresponding tab. Optional
title13 Tooltip text that appears on the corresponding tab. Optional
title14 Tooltip text that appears on the corresponding tab. Optional
title15 Tooltip text that appears on the corresponding tab. Optional
title16 Tooltip text that appears on the corresponding tab. Optional
titletextid1 Text ID for the tooltip of the corresponding "tab". At runtime|Optional

the multi language management replaces the textid with a
language dependent literal.

titletextid2 Text ID for the tooltip of the corresponding "tab". At runtime|Optional
the multi language management replaces the textid with a
language dependent literal.

titletextid3 Text ID for the tooltip of the corresponding "tab". At runtime|Optional
the multi language management replaces the textid with a
language dependent literal.

titletextid4 Text ID for the tooltip of the corresponding "tab". At runtime |Optional
the multi language management replaces the textid with a
language dependent literal.

titletextid5 Text ID for the tooltip of the corresponding "tab". At runtime |Optional
the multi language management replaces the textid with a
language dependent literal.

titletextid6 Text ID for the tooltip of the corresponding "tab". At runtime|Optional
the multi language management replaces the textid with a
language dependent literal.

titletextid7 Text ID for the tooltip of the corresponding "tab". At runtime|Optional
the multi language management replaces the textid with a
language dependent literal.

titletextid8 Text ID for the tooltip of the corresponding "tab". At runtime|Optional
the multi language management replaces the textid with a
language dependent literal.

Natural for Ajax 257

ROWTABAREA and COLTABAREA

titletextid9

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid10

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid11

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid12

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid13

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid14

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid15

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid16

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

Comment

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Miscellaneous

testtoolid1

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid2

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid3

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid4

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid5

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

258

Natural for Ajax

ROWTABAREA and COLTABAREA

testtoolid6

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid7

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid8

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid9

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid10

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid11

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid12

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid13

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid14

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid15

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

testtoolid16

Use this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

Optional

Natural for Ajax

259

ROWTABAREA and COLTABAREA

COLTABAREA Properties

The properties of COLTABAREA are very similar to those of ROWTABAREA.

Basic
width Width of the control. Obligatory 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of 140
the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 160
by it tent.
y its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 50%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 100%
width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does
not specify a width then the rendering result may not
represent what you expect.
leftindent Inserts a horizontal distance left of the first "tab" and shifts |Optional 1
the "tabs" to the right as consequence. The value you may
define represents the number of pixels that are inserted. 2
3
int-value
scrollable If set to "true" then small icons will appear on the right border |Optional true
of the control. If the size of the "tabs" is too big and some tabs
are cut as consequence then you can use these icons for false
scrolling left and right.
namel Text that is shown in the corresponding "tab". Either define |Sometimes
the text as NAME or as language dependent TEXTID. obligatory
textid1 Text ID that is transferred in a corresponding literal at runtime |Sometimes
by the multi language management. obligatory
pagel Id of the TABPAGE that is defined as child of the TABAREA.|Obligatory
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.
260 Natural for Ajax

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

name2

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid2

Text ID that s transferred in a corresponding literal at runtime
by the multi language management.

Optional

page2

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

name3

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid3

Text ID that s transferred in a corresponding literal at runtime
by the multi language management.

Optional

page3

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and thatis a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

name4

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid4

Text ID that s transferred in a corresponding literal at runtime
by the multi language management.

Optional

page4

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

nameb

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid5

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pageb

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"

Optional

Natural for Ajax

261

ROWTABAREA and COLTABAREA

id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

nameb

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid6

Text ID that s transferred in a corresponding literal at runtime
by the multi language management.

Optional

pageb

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

name?7

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid?7

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

page7

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

names

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid8

Text ID that s transferred in a corresponding literal at runtime
by the multi language management.

Optional

page8

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

name9

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid9

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

262

Natural for Ajax

ROWTABAREA and COLTABAREA

page9

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

namelO

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid10

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pagel0

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

namell

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid11

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pagell

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

namel2

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid12

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pagel2

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

namel3

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

Natural for Ajax

263

ROWTABAREA and COLTABAREA

textid13

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pagel3

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

namel4

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid14

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pagel4

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

namelb

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid15

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pagel5

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

namelé6

Text that is shown in the corresponding "tab". Either define
the text as NAME or as language dependent TEXTID.

Optional

textid16

Text ID that is transferred in a corresponding literal at runtime
by the multi language management.

Optional

pagel6

Id of the TABPAGE that is defined as child of the TABAREA.
Use an id that is unique within the page and that is a "healthy"
id: starting with characters, without blanks and without
"strange" characters.

For each "tab" of the TABAREA you have to create one
corresponding TABPAGE below - holding exactly the id that
is defined in the PAGE property.

Optional

264

Natural for Ajax

ROWTABAREA and COLTABAREA

Binding

openedindexprop |$en/popupwizard/njx_rowtabarea_attr_openedindexprop$ |Optional

openmethod $en/popupwizard/njx_rowtabarea_attr_openmethod$ Optional

visiblepropl Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop2 Name of property that defines if the corresponding tag is |Optional
visible or not.

visibleprop3 Name of property that defines if the corresponding tag is |Optional
visible or not.

visibleprop4 Name of property that defines if the corresponding tag is |Optional
visible or not.

visibleprop5 Name of property that defines if the corresponding tag is |Optional
visible or not.

visibleprop6 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop?7 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop8 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop9 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop10 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop11 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop12 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop13 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop14 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop15 Name of property that defines if the corresponding tagis |Optional
visible or not.

visibleprop16 Name of property that defines if the corresponding tagis |Optional
visible or not.

Appearance

withleftborder If specified as "false" then no left border will be drawn. Optional

withrightborder |If specified as "false" then no right border will be drawn. Optional

withbottomborder|If specified as "false" then no bottom border will be drawn. |Optional

stylevariant Some controls offer the possibility to define style variants. By |Optional VAR1
this style variant you can address different styles inside your

Natural for Ajax 265

ROWTABAREA and COLTABAREA

style sheet definition file (.css). If not defined "normal” styles
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.
Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!
tabindex Index that defines the tab order of the control. Controls are |Optional -1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
Online Help
titlel Tooltip text that appears on the corresponding tab. Optional
title2 Tooltip text that appears on the corresponding tab. Optional
title3 Tooltip text that appears on the corresponding tab. Optional
title4 Tooltip text that appears on the corresponding tab. Optional
title5 Tooltip text that appears on the corresponding tab. Optional
title6 Tooltip text that appears on the corresponding tab. Optional
title7 Tooltip text that appears on the corresponding tab. Optional
title8 Tooltip text that appears on the corresponding tab. Optional
title9 Tooltip text that appears on the corresponding tab. Optional
title10 Tooltip text that appears on the corresponding tab. Optional
title11 Tooltip text that appears on the corresponding tab. Optional
title12 Tooltip text that appears on the corresponding tab. Optional
title13 Tooltip text that appears on the corresponding tab. Optional
title14 Tooltip text that appears on the corresponding tab. Optional
title15 Tooltip text that appears on the corresponding tab. Optional
title16 Tooltip text that appears on the corresponding tab. Optional
titletextid1 Text ID for the tooltip of the corresponding "tab". At runtime |Optional
the multi language management replaces the textid with a
language dependent literal.

266 Natural for Ajax

ROWTABAREA and COLTABAREA

titletextid2

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid3

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid4

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid5

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid6

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid7

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid8

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid9

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid10

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid11

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid12

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid13

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid14

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

titletextid15

Text ID for the tooltip of the corresponding "tab". At runtime
the multi language management replaces the textid with a
language dependent literal.

Optional

Natural for Ajax

ROWTABAREA and COLTABAREA

titletextid16 Text ID for the tooltip of the corresponding "tab". At runtime |Optional
the multi language management replaces the textid with a
language dependent literal.

Comment

comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.

TABPAGE Properties

Basic

id

Id of the TABPAGE. Each page has a certain id that reference to the PAGE1 |Obligatory

.. PAGE9 deifnition you do inside the ROW/COLTABAREA control that
contains the TABPAGE. If clicking onto a "tab" then the TABPAGE with
the associated id is displayed as consequence.

display

Initial display status of the TABPAGE. The first TABPAGE inside the Sometimes
ROW/COLTABAREA control must be set to "". All others need to be set |obligatory

ot "none". - If a ROW/COLTABAREA should show up with two or more
pages being visible one below the other then check the setting of this

property!"

takefullheight

Indicates if the content of the control's area gets the full available height. |Optional |true

If you use percentage sizing inside the control's area then this property
must be switched to 'true’. If you use no explicit vertical sizing at all - or
you use vertical pixel sizing for your controls - the property must be
switched to 'false'.

Background information: container control's internally open up a table in
which you place rows (ITR/TR) which then hold controls (e.g.
LABEL/FIELD). The table that is opened up normally has no explicit height
and grows with its content as consequence. By specifying
"takefullheight=true" the table itself is sized to fill the maximum height of
the available area.

false

fixlayout

The fixlayout property is important for saving rendering performance |Optional |true

inside your browser. To become effective it requires to have specified the
height and the width (if available as property) of the control.

If setting fixlayout to "true" then the control's area is defined as area which
is not sized dependent on its content (as normally done with table
rendering). Instead the size is predefined from outside without letting the
browser "look" into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the control's area is flexibly
sizable. E.g. if the content (e.g. a TEXTGRID control) is following the size
of the container.

false

268

Natural for Ajax

ROWTABAREA and COLTABAREA

When using vertical percentage based sizing you should pay attention to
set the fixlayout-property to "true" as often as possible. - The browser as
consequence will be much faster in doing its rendering because a screen
consists out of "building blocks" with simple to calculate sizes.

comment Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.

The Most Common Error

Do you receive errors when clicking in the tabs? Then take a further look at the ID assignments
in the ROWTABAREA or COLTABAREA control on the one hand, and in the TABPAGE control
on the other hand: each page* property of a ROWTABAREA or COLTABAREA defines an ID that
must exactly match an id property of TABPAGE.

If you have more than one ROWTABAREA or COLTABAREA inside your page: do not use the
same IDs - each ID must be unique throughout one page.

Example: Controlling which Tab is displayed by the Server Adapter

The following example demonstrates the usage of the property openedindexprop on ROWTABA-
REA level:

FD','namic setting of index inTABAREA -

Ihdex

f First Second Third

The user selects the value of the property index using the combo control. The index property
controls also which tab is displayed inside the ROWTABAREA control.

Natural for Ajax 269

ROWTABAREA and COLTABAREA

The layout definition is as follows:

<pagebody>
<{rowarea name="Dynamic setting of index in TABAREA">
Gtr>

{tabpage id="FIRST">

</tabpage>
<tabpage id="SECOND">
</tabpage>
{tabpage id="THIRD">
</tabpage>

<{label name="Index"

</label>
<combofix valueprop="index" size="1" flush="server">
<combooption name="First (=0)"

</combooption>

width="100">

<combooption name="Second (=1)"

</combooption>

value="0">

value="1">

<combooption name="Third (=2)" value="2">

</combooption>

</combofix>
</itr>
<{/rowarea>
<rowtabarea height="200" openedindexprop="index"
namel="First" pagel="FIRST"
name2="Second" page2="SECOND"
name3="Third" page3="THIRD">

<{/rowtabarea>
</pagebody>

Example: Controlling the Visibility of Tab Pages

For each individual tab page, you can control at runtime whether it is visible or not. The following
example allows the user to control the visibility of tabs using check boxes:

Rich User Intefaces for Business Applications
Rich
“visibility -
V¥ Rich W User [Interfaces W for W Business W Applications
270 Natural for Ajax

ROWTABAREA and COLTABAREA

The XML layout is:

<rowtabarea height="100" namel="Rich" pagel="RICH" visiblepropl="pagelVisibility"
name2="User" page2="USER" visibleprop2="page2Visibility"
name3="Intefaces" page3="INTERFACES"
visibleprop3="page3Visibility"
name4="for" page4="FOR" visibleprop4="pagedVisibility"
nameb="Business" pageb="BUSINESS"
visiblepropb5="pagebVisibility"
name6="Applications" page6="APPLICATIONS"
visibleprop6="page6Visibility">
{tabpage id="RICH">
<vdist height="20">
</vdist>
<Gtr>
<hdist width="60">
</hdist>
<label name="Rich" asplaintext="true" textalign="center">
</Tabel>
</itr>
</tabpage>
<tabpage id="USER">

</tabpage>

{rowarea name="Visibility">
<tr>

<checkbox valueprop="pagelVisibility" flush="server">
</checkbox>
<hdist>
</hdist>
<Tabel name="Rich" asplaintext="true">
</label>
<hdist width="10">
</hdist>
<checkbox valueprop="page2Visibility" flush="server">
</checkbox>
<hdist>
</hdist>
<label name="User" asplaintext="true">
</Tabel>
<hdist width="10">
</hdist>
<checkbox valueprop="page3dVisibility" flush="server">
</checkbox>
<hdist>
</hdist>
<label name="Interfaces" asplaintext="true">
</label>

Natural for Ajax 271

ROWTABAREA and COLTABAREA

<hdist width="10">

</hdist>

<checkbox valueprop="paged4Visibility" flush="server">
</checkbox>

<hdist>

</hdist>

<label name="for" asplaintext="true">

</label>

<hdist width="10">

</hdist>

<checkbox valueprop="pagebVisibility" flush="server">
</checkbox>

<hdist>

</hdist>

<Tabel name="Business" asplaintext="true">

</label>

<hdist width="10">

</hdist>

<checkbox valueprop="page6Visibility" flush="server">
</checkbox>

<hdist>

</hdist>

<label name="Applications" asplaintext="true">
</label>

<hdist width="10">

</hdist>

</itr>

{/rowarea>

You see that the definition of the properties that control the visibility of tab pages is done in the
ROWTABAREA (not on TABPAGE level). The check boxes reference the same adapter properties
as used on ROWTABAREA level.

Note: In the previous example, the openedindexprop property of the ROWTABAREA was

used. Be aware of the fact that each tab page still keeps its stable index position - no matter
whether it is displayed or not.

272

Natural for Ajax

36 ROWTABLEO and COLTABLEQ

B ROWTABLEQD PrOPEIIES ...ttt ettt e et e e e e e e s ba e e e e e e e 275
B COLTABLED PrOPEIIESvveeeitiieeeeiiiit e ettt ettt ettt e et e e ettt e e et e e e et e e e e et e e e e nnteee e 276

273

ROWTABLEO and COLTABLEO

The ROWTABLEO or COLTABLEQ container is not visible. Normally, it is just used for arranging
controls. The following example shows how to define two columns - inside a ROWAREA - to
arrange controls:

<{pagebody>
<rowarea name="Area 1">
<tr takefullwidth="true">
<coltableO width="50%" takefullheight="true">
<Gtr>
<lTabel name="Factor 1" width="100">
</label>
<field valueprop="factorl" length="5">
</field>
</itr>
</coltable0>
<coltable0 width="50%" takefullheight="true">
<Gtr>
<{label name="Factor 2" width="100">
</Tabel>
<field valueprop="factor2" length="5">
</field>
</itr>
</coltablel>
</itr>
{/rowarea>
</pagebody>

The result looks as follows:

Area 1 -

Factar 1 O Factar 2 O

Inside the ROWAREA, two COLTABLEQ tags are placed - each occupying 50% of the width. Each
COLTABLEQ area builds - independently from the other - its own table rows (ITR rows in the
example).

All complex field arrangements should be done by using ROWTABLEO/COLTABLEOQ tags as
shown in the example.

274 Natural for Ajax

ROWTABLEO and COLTABLEO

ROWTABLEO Properties

Basic
height |Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. . . ; . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
align Alignment of the content of the ITR row. Optional |left
Background: the ITR as independent table row renders a table into center
its content area. Inside this table a row is opened in which the '
controls are placed. right
This table normally is starting on the left of the ITR row. With this
ALIGN property you can explicitly define the alignement of the
table.
valign |Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is part middle
of a row (e.g. ITR or TR). Sometimtes the size of the column is
bigger than the size of the control. In this case the "align" property bottom
specify the position of the control inside the column.
fixlayout |The fixlayout property is important for saving rendering Optional [true
performance inside your browser. To become effective it requires
false

to have specified the height and the width (if available as property)
of the control.

If setting fixlayout to "true" then the control's area is defined as
area which is not sized dependent on its content (as normally done
with table rendering). Instead the size is predefined from outside
without letting the browser "look" into the content of the area. If
the content is not fitting into the area then it is cut.

Natural for Ajax

275

ROWTABLEO and COLTABLEO

You typically use this control if the content of the control's area is
flexibly sizable. E.g. if the content (e.g. a TEXTGRID control) is
following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as possible.
- The browser as consequence will be much faster in doing its
rendering because a screen consists out of "building blocks" with
simple to calculate sizes.

tablestyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

comment | Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
flashprop |$en/popupwizard/njx__attr_flashprop$ Optional

COLTABLEO Properties

The properties for COLTABLEQ are very similar to those of ROWTABLEQ.

Basic
width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of 140
the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 160
by it tent.
y its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
276 Natural for Ajax

ROWTABLEO and COLTABLEO

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a
width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does
not specify a width then the rendering result may not represent
what you expect.

50%

100%

widthprop

$en/popupwizard/njx_coltableQ_attr_widthprop$

Optional

takefullheight

Indicates if the content of the control's area gets the full
available height.

If you use percentage sizing inside the control's area then this
property must be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false’.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then hold
controls (e.g. LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with its content as
consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available area.

Optional

true

false

fixlayout

The fixlayout property is important for saving rendering
performance inside your browser. To become effective it
requires to have specified the height and the width (if available
as property) of the control.

If setting fixlayout to "true" then the control's area is defined
as area which is not sized dependent on its content (as
normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into the
area then it is cut.

You typically use this control if the content of the control's
area is flexibly sizable. E.g. if the content (e.g. a TEXTGRID
control) is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

Optional

true

false

tablestyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

Optional

background-color:
#FF0000

color: #0000FF

Natural for Ajax

277

ROWTABLEO and COLTABLEO

border: 1px solid #FF0000 font-weight: bold
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

278 Natural for Ajax

37 ROWDYNAVIS and COLDYNAVIS

B ROWDYNAVIS PrOPEIIES ...ttt ettt e e e e e e e e e e e et reeaeaeae s 281
B COLDYNAVIS PrOPEIESveieiitit etttk 282
= Some Comments on Controlling the Visibility of CONrolsccooiiiiiiiiii e 284

279

ROWDYNAVIS and COLDYNAVIS

The ROWDYNAVIS or COLDYNAVIS container is used to add dynamic reaction to your layout.

The container is not visible - similar to the TABLEO container. What is the difference? You control
the appearance of the container by an adapter property. Have a look at the following example.

Address Input -

Country Germany

If you enter "United States" as a country, the input line for the state will appear under the input
line for the country:

Address Input -
Courntry United States
State California

The XML code looks as follows:

<rowarea name="Address Input">
Gitr>
{label name="Country" width="100">
</Tabel>
<field valueprop="country" flush="true" length="30">
</field>
</itr>
<rowdynavis valueprop="visible">
<Gtr>
<{lTabel name="State" width="100">
</label>
<field valueprop="state" length="30">
</field>
</itr>
</rowdynavis>
{/rowarea>

A ROWDYNAVIS container is placed inside the ROWAREA container.

280 Natural for Ajax

ROWDYNAVIS and COLDYNAVIS

ROWDYNAVIS Properties

Basic
valueprop |$en/popupwizard/njx_dynavis_attr_valueprop$ Obligatory
height Height of the control. Optional |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a
container control (containing) other controls then the height of 250
the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. . . . ; 400
attention: percentage sizing will only bring up correct results if
the parent element of the control properly defines a height this 50%
control can reference. If you specify this control to have a height
of 50% then the parent element (e.g. an ITR-row) may itself 100%
define a height of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.
style CSS style definition that is directly passed into this control. Optional |background-color:
#FF0000
With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.
comment |Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
fixlayout |The fixlayout property is important for saving rendering Optional |true
performance inside your browser. To become effective it requires
false

to have specified the height and the width (if available as
property) of the control.

Natural for Ajax

281

ROWDYNAVIS and COLDYNAVIS

If setting fixlayout to "true" then the control's area is defined as
area which is not sized dependent on its content (as normally
done with table rendering). Instead the size is predefined from
outside without letting the browser "look" into the content of
the area. If the content is not fitting into the area then it is cut.

You typically use this control if the content of the control's area
is flexibly sizable. E.g. if the content (e.g. a TEXTGRID control)
is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

COLDYNAVIS Properties

The properties of COLDYNAVIS are very similar to those of ROWDYNAVIS.

container controls - it will follow the width that is occupied
by its content.

Basic
valueprop $en/popupwizard/njx_dynavis_attr_valueprop$ Obligatory
width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width 140
of the control will either be a default width or - in case of
160

If you use percentage sizing inside the control's area then
this property must be switched to 'true'. If you use no explicit

180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 50%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 100%
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
takefullheight|Indicates if the content of the control's area gets the full Optional |true
available height.
false

282

Natural for Ajax

ROWDYNAVIS and COLDYNAVIS

vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false’.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then
hold controls (e.g. LABEL/FIELD). The table that is opened
up normally has no explicit height and grows with its content
as consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available
area.

style

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

fixlayout

The fixlayout property is important for saving rendering
performance inside your browser. To become effective it
requires to have specified the height and the width (if
available as property) of the control.

If setting fixlayout to "true" then the control's area is defined
as area which is not sized dependent on its content (as
normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the control's
area is flexibly sizable. E.g. if the content (e.g. a TEXTGRID
control) is following the size of the container.

When using vertical percentage based sizing you should
pay attention to set the fixlayout-property to "true" as often
as possible. - The browser as consequence will be much faster
in doing its rendering because a screen consists out of
"building blocks" with simple to calculate sizes.

Optional

true

false

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Natural for Ajax

283

ROWDYNAVIS and COLDYNAVIS

Some Comments on Controlling the Visibility of Controls

ROWDYNAVIS and COLDYNAVIS are container controls that are explicitly defined to provide
an area which can be explicitly switched on and off. In addition you will later on see that many
controls can control their visiblity and their input status by themselves. For example, a FIELD
control can specify if it is invisible, editable, holding an error input etc. in a dynamic way. You
may also have noticed that an ITR row definition has an associated visibleprop property - linking
to a data property that dynamically controls the visibility of the row at runtime.

Use ROWDYNAVIS and COLDYNAVIS for explicitly defining container areas to be switched
on/off. Use the control's binding to properties to do the fine-granular control of visibility inside
one container.

A bad example of usage would be if you place a COLDYNAVIS container around each FIELD
that you want to control in means of visibility. Use the FIELD's statusprop property instead.

284 Natural for Ajax

38 ROWDIV and INNERDIV

= When to Use ROWDIV and INNERDIV CONAINETSovueeee et 288
B ROWDIV PrOPEITIESvvieiiieii ittt e ettt e e e e e e e e e e ettt e e e e e e e e e et aeeeeee e 289
B INNERDIV PrOPEITIESceeeiiiiiiiti ittt ettt e e et e e e e 290

285

ROWDIV and INNERDIV

The ROWDIV container represents an area with a defined size. Inside this area you can arrange
INNERDIV containers. The INNERDIV containers have a defined x-, y- and z-position inside the
ROWDIV area, and they have a defined width and height. INNDERDIV containers can overlap;
by using the z-position, you can define which INNERDIV container is on top of which other
INNERDIV container. Inside an INNERDIV container, you can arrange any other container or
control - just as with normal containers.

Have a look at the following example:

Example

Row Area

Row Area

Rov: Area

Inside a ROWAREA container, a ROWDIV container is arranged. Inside the ROWDIV container,
three INNERDIV containers are arranged - each one holding a ROWAREA.

286 Natural for Ajax

ROWDIV and INNERDIV

The XML layout definition looks as follows:

<rowarea name="Example" height="100%">
<rowdiv height="100%" style="background-color: #FFFFCO">
<innerdiv width="200" height="200" zindex="99" Teft="150" top="150"
style="background-color: #C0COCO">
<rowarea name="Row Area" height="100%" withtoppadding="false">
{/rowarea>
</innerdiv>
<innerdiv width="200" height="200" zindex="98" lTeft="50" top="50"
style="background-color: #C0COCO">
<rowarea name="Row Area" height="100%" withleftborder="true"
withtopborder="true"
withrightborder="true" withbottomborder="true"
withtoppadding="false">
{/rowarea>
</innerdiv>
<innerdiv width="200" height="200" zindex="100" Teft="300" top="75"
style="background-color: #C0COCO">
<rowarea name="Row Area" height="100%" withtoppadding="false">
{/rowarea>
</innerdiv>
</rowdiv>
</rowarea>

If the ROWDIV area is too small to hold the INNERDIV containers, then the ROWDIV area starts
scrolling:

Natural for Ajax 287

ROWDIV and INNERDIV

Example

Row Area

Fow Area

Row Area

-
1| b

When to Use ROWDIV and INNERDIV Containers

The typical usage scenarios of ROWDIV and INNERDIV containers is:

® when you want to place a certain area at a certain position on the screen - without wanting to
explicitly define VDIST/HDIST elements;

® when you want to explicitly work with overlapping areas.

Note that the parallel usage of pixel and percentage sizing is not supported with ROWDIV and
INNERDIV in the same way as supported with normal containers (for example, ROWAREA and
COLAREA). With normal containers, you can specify scenarios like the following: the left container
occupies 200 pixels, the right container occupies 100%. The table rendering is clever enough to
render the result accordingly. With INNERDIV containers, the percentage definitions are always
in relation to the height and width of the surrounding ROWDIV control.

288 Natural for Ajax

ROWDIV and INNERDIV

Consequence: Do not use ROWDIV and INNERDIV for the basic structuring of containers inside
your page, but only use them for the two usage aspects mentioned before.

ROWDIV Properties

Basic

height |Height of the control. Obligatory |100

There are three possibilities to define the height: 150

(A) You do not define a height at all. As consequence the control will be 200
rendered with its default height. If the control is a container control (containing)
other controls then the height of the control will follow the height of its content. 250

(B) Pixel sizing: just input a number value (e.g. "20"). 300

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 250
percentage sizing will only bring up correct results if the parent element of

the control properly defines a height this control can reference. If you specify
this control to have a height of 50% then the parent element (e.g. an ITR-row) 50%
may itself define a height of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect. 100%

400

style CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the control. You
can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them with a
semicolon.

Sometimes it is useful to have a look into the generated HTML code in order
to know where direct style definitions are applied. Press right mouse-button
in your browser and select the "View source" or "View frame's source” function.

divclass |CSS style class definition that is directly passed into this control. Optional

The style class can be either one which is part of the "normal" CIS style sheet
files (i.e. the ones that you maintain with the style sheet editor) - or it can be
one of an other style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

comment|Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Natural for Ajax 289

ROWDIV and INNERDIV

INNERDIV Properties

Basic
width Width of the control. Obligatory|100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the 509
parent element of the control properly defines a width this control ?
can reference. If you specify this control to have a width of 50% then 100%
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Obligatory|100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control will 250
follow the height of i .
ollow the height of its content 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. L . . . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define a height of 100%
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
left Left position of control. Either define a pixel value ("100") or a Obligatory
percentatge value ("30%").
top Top position of control. Either define a pixel value ("100") or a Obligatory
percentatge value ("30%").
zindex Z-index of the control. If two controls overlap then the one with the |Optional |1
higher z-index is drawn in front of the other one.
2
3

290 Natural for Ajax

ROWDIV and INNERDIV

int-value
comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.
Appearance
leftdistance If set to "true" then a small distance (3px) is kept between the left |Optional |true
border of the control and its content. Default is "false".
false
rightdistance |If set to "true" then a small distance (3px) is kept between the right |Optional |true
border of the control and its content. Default is "false".
false
style CSS style definition that is directly passed into this control. Optional
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating them
with a semicolon.
Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.
Binding
widthprop Name of adapter parameter that dynamically prvides the width of |Optional
the control. Must return a valid width.
leftprop Name of adapter parameter that dynamically provides the left Optional
position of the control. Must return a valid value for 'left position'.
dropwidthprop |[Name of the adapter parameter that dynamically provides the width|Optional
of the drop target.
dropoffsetprop |Name of the adapter parameter that dynamically provides the offset | Optional
used for the drop target.
dropmethod |Name of the event that is sent to the adapter when the user is Optional
dragging another DROPICON control over this control and drops
it there. Do not use this parameter if this control should not accept
other DROPICON controls within a drag and drop process (i.e. is
not a drop target).
Natural for Ajax 291

292

39 ROWSCROLLAREA

® ROWSCROLLAREA PrOPEIIES ...ttt 295

293

ROWSCROLLAREA

The ROWSCROLLAREA represents a container area with a certain size. The container is not visible.
If the contents of the container area exceed the size of the container area, then scroll bars are added
accordingly.

Have a look at the following example:

Test -
arname —l
Yorname o
Yorname -

Inside a normal ROWAREA with the title "Test", a ROWSCROLLAREA is positioned. Inside the
ROWSCROLLAREA, a number of lines is arranged so that the total height of the lines exceeds the
height of the ROWSCROLLAREA. Consequently, a vertical scroll bar is shown on the right.

The XML layout looks as follows:

{rowarea name="Test" height="100">
<rowscrollarea height="100%">

<Gitr>
<Tabel name="Vorname" width="100">
</Tabel>
<field valueprop="firstname" width="200">
</field>

</itr>

<Gitr>
<Tabel name="Vorname" width="100">
</Tabel>
<field valueprop="firstname" width="200">
</field>

</itr>

Gitr>
<Tabel name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

</itr>

<Gtr>
<Tabel name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

</itr>

<Gitr>
<Tabel name="Vorname" width="100">

294 Natural for Ajax

ROWSCROLLAREA

</Tabel>
<field valueprop="firstname" width="200">
</field>

</itr>

<Gitr>
<Tabel name="Vorname" width="100">
</Tabel>
<field valueprop="firstname" width="200">
</field>

[ARAD

</rowscrollarea>
</rowarea>

ROWSCROLLAREA Properties

Basic

height Height of the control. Obligatory|100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%

ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

takefullheight |Indicates if the content of the control's area gets the full Optional |true

available height.
false

If you use percentage sizing inside the control's area then
this property must be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false’.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then

hold controls (e.g. LABEL/FIELD). The table that is opened
up normally has no explicit height and grows with its content
as consequence. By specifying "takefullheight=true" the table

Natural for Ajax 295

ROWSCROLLAREA

itself is sized to fill the maximum height of the available
area.

takefullwidth

If set to "true" then the control takes all available horizontal
width as its width. If set to "false" then the control does not
have a predefined width but grows with its content.

Optional

true

false

areastyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

areaclass

CSS style class definition that is directly passed into this
control.

The style class can be either one which is part of the "normal"
CIS style sheet files (i.e. the ones that you maintain with the
style sheet editor) - or it can be one of an other style sheet
file that you may reference via the ADDSTYLESHEET
property of the PAGE tag.

Optional

fixlayout

The fixlayout property is important for saving rendering
performance inside your browser. To become effective it
requires to have specified the height and the width (if
available as property) of the control.

If setting fixlayout to "true" then the control's area is defined
as area which is not sized dependent on its content (as
normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the control's
area is flexibly sizable. E.g. if the content (e.g. a TEXTGRID
control) is following the size of the container.

When using vertical percentage based sizing you should
pay attention to set the fixlayout-property to "true" as often
as possible. - The browser as consequence will be much faster

Optional

true

false

296

Natural for Ajax

ROWSCROLLAREA

in doing its rendering because a screen consists out of
"building blocks" with simple to calculate sizes.

comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
hscroll Definition of the horizontal scrollbar's appearance. Optional |auto
You can define that the scrollbars only are shown if the scroll
content is exceeding the control's area ("auto"). Or scrollbars
hidden

can be shown always ("scroll"). Or scrollbars are never shown
- and the content is cut ("hidden").

Default is "auto".

Natural for Ajax

297

298

40 HSPLIT and VSPLIT

B EXAMPIE FOr HOPLIT L. ettt e e e e e e et e e e e e e e aaeeeas 300
B EXAMPIE TOr VSPLIT L. et e e e a e e e 302
B HSPLIT PROPEITIESeeeeeiee ettt ettt e et e e e e e e e 303
B V/SPLIT PrOPEITIES ..ottt ettt e e e e e e et e e e e e e e e eaeeea e 304
B SPLITCELL PrOPEIES vttt eeeeeeite ettt e e et e e e e e e e s raae e 305
® Defining the SPlit SIZeoviiei 306

299

HSPLIT and VSPLIT

HSPLIT or VSPLIT allows to define a container area that is subdivided into two split cells. Between
the split cells there is a border. By dragging and dropping the border, you can change the size of

the split cells. Each split cell itself is a container that can be used just as normal.

While an HSPLIT control subdivides an area into two split cells by a horizontal line, VSPLIT uses

a vertical line.

Example for HSPLIT

The following example shows the usage of the HSPLIT control:

HSPLIT Contral

Set Top Heght

w]H]

The split area is divided into two cells: a green cell and a red cell. In addition, there is a line at the
bottom in which you can provide the split factor.

300

Natural for Ajax

HSPLIT and VSPLIT

The XML layout definition is:

<rowarea name="HSPLIT Control" height="100%">
<hsplit height="100%" heighttopprop="heighttop" hsplitstyle="border:1 solid
#000000" >
<splitcell takefullheight="true" cellstyle="background-color: #00FF00">
<tr height="100%">
<label name="Top Split Cell" asplaintext="true">
</Tabel>
</tr>
</splitcell>
<splitcell takefullheight="true" cellstyle="background-color: #FF0000">
<tr height="100%">
<label name="Bottom Split Cell" asplaintext="true">
</label>
</tr>
</splitcell>
</hsplit>
<vdist>
</vdist>
<Gtr>
<hdist width="100%">
</hdist>
<label name="Set Top Height" width="100">
</Tabel>
<field valueprop="heighttop" width="100" flush="server" validation="[0-9%]+"
validationuserhint="100, 200, 500, 30%, 50%">
</field>
</itr>
<{/rowarea>

You see that the vertical split area consists of

= one VSPLIT definition, and
= two SPLITCELL definitions.

It is not allowed to have more than two split cells inside one HSPLIT container.

The sizing of the split cells can be done by using a property that is referenced by the HSPLIT
property heighttopprop. The property must return either a percentage value or a pixel value.
When the user changes the size by moving the line between the split cells, then the current new
pixel width of the left split cell is written back into the property.

Natural for Ajax 301

HSPLIT and VSPLIT

Example for VSPLIT

The VSPLIT control is defined in the same way as the HSPLIT control - but now transferred to
vertical dimension. It looks like:

"VSPLIT Control -

Set Left Width [30%

The VSPLIT part of the XML layout definition is:

<vsplit height="200" widthleftprop="widthleft" vsplitstyle="border: 1 solid #000000">
<{splitcell takefullheight="true" cellstyle="background-color:#00FF00">
<Gtrd>
<label name="Left Split Cell" asplaintext="true">
</Tabel>
</itr>
</splitcell>
<splitcell takefullheight="true" cellstyle="background-color: #FF0000">
<itr>
<label name="Right Split Cell" asplaintext="true">
</Tabel>
<itr>
</splitcell>
</vsplit>

302 Natural for Ajax

HSPLIT and VSPLIT

HSPLIT Properties

Basic
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 50%
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a height of "100%". If the parent element does
not specify a width then the rendering result may not
represent what you expect.
heighttop Definition of the initial height of the top split area. Optional |1
The height either is a pixel value ("100") or a percentage value 2
(HSO%H)‘
3
You can also define the height dynamically by your adapter _
- see documentation for HEIGHTTOPPROP property. int-value
heighttopprop |$en/popupwizard/njx_hsplit_attr_heighttopprop$ Optional
hsplitstyle CSS style definition that is directly passed into this control. |Optional|background-color:

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have alook into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

#FF0000
color: #0000FF

font-weight: bold

Natural for Ajax

303

HSPLIT and VSPLIT

comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
vscroll Definition of the vertical scrollbar's appearance. Optional |auto
You can define that scrollbars only are shown if the content scroll
is exceeding the control's area ("auto"). Or scrollbars can be '
shown always ("scroll"). Or scrollbars are never shown - and hidden
the content is cut ("hidden").
Default is "auto".
VSPLIT Properties
Basic
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the height 250
of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 50%
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a height of "100%". If the parent element does
not specify a width then the rendering result may not represent
what you expect.
widthleftprop |$en/popupwizard/njx_vsplit_attr_widthleftprop$ Optional
vsplitstyle CSS style definition that is directly passed into this control. |Optional|background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
304 Natural for Ajax

HSPLIT and VSPLIT

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

overflow

Definition of the vertical scrollbar's appearance.

You can define that the scrollbars only are shown if the content
is exceeding the control's area ("auto"). Or scrollbars can be
shown always ("scroll"). Or scrollbars are never shown - and
the content is cut ("hidden").

Default is "auto".

Optional

auto

scroll

hidden

SPLITCELL Properties

Basic

takefullheight

Indicates if the content of the control's area gets the full
available height.

If you use percentage sizing inside the control's area then this
property must be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false’.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then hold
controls (e.g. LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with its content as
consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available area.

Optional

true

false

cellstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Natural for Ajax

305

HSPLIT and VSPLIT

applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

Defining the Split Size

The split size of HSPLIT and VSPLIT can be set in the following ways:

® Fixed definition if initial split size: by using the HSPLIT property heighttop and the VSPLIT
property widthleft, you can preset the size in a ,hard way”. The value will be used as the

initial size.

® By using the HSPLIT property heighttopprop and the VSPLIT property widthleftprop, the
size can be defined by a server side property. Maybe you have some personalization in which
the size is kept for every split area - and proposed the next time the user visits the page.

306

Natural for Ajax

41 HLINE and VLINE

B VLINE PIOPEIHIES ...ttt e e e e e et e e e e e e e e aa e 309
B HLINE PrOPEITIES ... e 310

307

HLINE and VLINE

Both controls are actually not container controls, but they are typically used for structuring content
- this is the reason why they are mentioned here. The controls are rather simple: they represent
lines. HLINE represents a horizontal line and VLINE represents a vertical line.

Have a look at this demo:

"HLINE -

Mow a horizontal line default attributes ...

Mow a horizontal line, 15px height, red colar ...

VLINE -

vertical line, 15px

vertical line, default ... width, green ...

The corresponding XML layout definition is:

<rowarea name="HLINE">
<itr>
<label name="Now a horizontal line default attributes ..." asplaintext="true">
</label>
</itr>
<hTine>
</hTine>
<tr>
<Tabel name="Now a horizontal line, 15px height, red color ...
asplaintext="true">
</label>
</itr>
<hline height="15" color="4#FF0000">
</hline>
</rowarea>
<rowarea name="VLINE" height="150">
<itr height="100%">

<label name="Vertical Tine, default ..." width="150" asplaintext="true">
</label>

<vline>

</vline>

<label name="Vertical Tine, 1bpx width, green ..." width="150"

308 Natural for Ajax

HLINE and VLINE

asplaintext="true">
</label>
<vline width="15" color="4#00FF00">
</vline>
</itr>
{/rowarea>

For each line, you can define its width/height and its color.

VLINE Properties

Basic

width |Width of the control. Optional

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of
the control properly defines a width this control can reference. If you specify
this control to have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

color Color of the control. Value must follow format "#rrggbb", e.g. #000000 for |Optional |#FF0000
black.

#00FF00

#0000FF

#FFFFFF

#808080

#000000

comment|Comment without any effect on rendering and behaviour. The comment is |Optional
shown in the layout editor's tree view.

Natural for Ajax 309

HLINE and VLINE

HLINE Properties

Basic

height |Height of the control. Optional
There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control will be rendered
with its default height. If the control is a container control (containing) other controls
then the height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: percentage
sizing will only bring up correct results if the parent element of the control properly
defines a height this control can reference. If you specify this control to have a height
of 50% then the parent element (e.g. an ITR-row) may itself define a height of "100%".
If the parent element does not specify a width then the rendering result may not
represent what you expect.

color Color of the control. Value must follow format "#rrggbb", e.g. #000000 for black. Optional

comment |Comment without any effect on rendering and behaviour. The comment is shown |Optional
in the layout editor's tree view.

310 Natural for Ajax

42 Performance Optimization with Containers

Containers internally use HTML table rendering for arranging their content: inside a container
there are rows, inside the rows there are columns and inside the columns there are controls.

HTML table rendering is very powerful: if you have already written pages on your own using an
HTML editor, then you know that you can size the container in the following way:

{table width="100%"'>

<tr>
<td width="100"'>Hallo</td>
<td width="100%"'>Hello world!</td>
<td></td>

</tr>

</table>

During rendering time, the browser tries to optimize the table rendering. The browser knows that
inside the definitions there is one column that wants to occupy the whole width, one column that
wants to have a width of 100 pixels and one column that holds an image. Consequently, it somehow
renders the table so that the best result is rendered. This optimization is quite expensive - especi-
ally if you have tables nested in tables nested in tables etc.

In nested table scenarios, every little change in one table can have the consequence that the whole
HTML table is optimized again.

3N

Performance Optimization with Containers

Since the optimization now happens on several levels, the browser uses a lot of resources to do
so. This can be noticed especially if you render pages with a height of 100%: the page is not built
by appending one information after the other - but you tell that the controls occupy a certain per-
centage based height of the whole page.

How can you find that out? If you have got the feeling that a page behaves in a slow way and you
are not sure whether it is your server side application or the browser side rendering, then there
are two ways to easily find out:

® Look into the Application Designer log file. Each server side request is recorded with its con-
sumption of milliseconds on server side.

" Resize the page in the browser: if this is not fast but takes time, then this is an indicator for bad
rendering performance - or in other words: for a lot of optimization that is happening behind
the curtain.

But: there are nice ways to speed up the rendering - and to build optimization limits for the
browser. Internally, the ways are quite simple, but the consequence can be dramatic.

Most containers support a fixlayout property: the possible values are "true" or "false" - "false"
being the default. When switching the fixlayout property to "true", then the content area of the
container is internally arranged in such a way that the area always determines its size from its
own width and height specification. The browser does not look into the contents of the area in
order to try to optimize the size of the area, but always follows the width and height that you
define.

What happens if the controls inside your container area do not fit into the area? What does not fit
inside the container area, is cut.

312 Natural for Ajax

Performance Optimization with Containers

Setting fixlayout to "true" means that the browser only optimizes table rendering inside the
container - but never outside - because the container has a certain size:

Follow the rules:

" Every time the size of a container area is not determined by its content but is explicitly set by
you, switch the fixlayout flag to "true".

* The flag only has consequences if you define the width and height of the corresponding container.
In cases in which the width is defined by the control (for example, ROWAREA always has a
width of 100%), you have to define the height. The height is either defined by a corresponding
height property or by a takefullheight property.

Natural for Ajax 313

314

43

Working with Controls

Controls are the elements that are placed inside containers. This part first gives some common

rules that are valid for all controls, then describes the controls in more detail.

The information provided in this part is organized under the following headings:

L L S e . "I "I T T T

Some Common Rules for all Controls

BREADCRUMB

BUTTON

BUTTONLIST

CHECKBOX

COMBODYN2

COMBOFIX

DATEINPUT

DROPICON

FIELD

FILEUPLOAD/FILEUPLOAD?2

ICON

ICONLIST

IHTML

315

Working with Controls

IMAGEOUT

LABEL

MENUBUTTON

METHODLINK

MULTISELECT

NEWSFEED

RADIOBUTTON

SCHEDULELINE

SLIDER

STRIPSEL

SUBPAGE

TABSEL

TABSTRIP2

TAGCLOUD

TEXT

TEXTOUT

L N S T S e N T "I " " "

3 TOGGLE

Special Controls:

2 ACTIVEX
2 GOOGLEMAP2
2 NETMEETING
2 SKYPECALL

Natural for Ajax Controls:

9 NJX:BUTTONITEMLIST
9 NJX:BUTTONITEM
9 NJX:BUTTONITEMLISTFIX

316

Natural for Ajax

Working with Controls

NJX:BUTTONITEMFIX
NJX:FIELDLIST
NJX:FIELDITEM
NJX:FIELDVALUE

NJX:NJXVARIABLE

C L L L L L

NJX:EVENTDATA

Natural Page:
9 NATPAGE

Natural for Ajax 317

318

44 Some Common Rules for all Controls

B NAME ANA TEXEID ...t e e e e e e e a e e e 320
m Table, ROW, COIUMN, CONIONe e e e, 320
B EXPICIE AIGNMENT ... e ettt e e 320
= Binding to Adapter Parametersooiiiiiiiiiii e 321
= Directly Influencing the Control STYIEooiiiiiiii e 321
= Dynamically Controlling the Visibility and the Display Status of Controlsccccoeiiiiiiiiiiie 322
B FOCUS MANAGEMENT ...eeiiiiiiiieee e 323
B FJUSHING OF INPULS ...t 324
B TAD SEOUEINCE ...ttt e e e e 324
[T o 326

319

Some Common Rules for all Controls

Name and Text ID

Every time a control needs a static text definition (the name of a button or the name of a label),
there are always two possibilities to define this text:

" Specify a name directly.

" Specify a text ID. This is a literal replaced with a string that is determined inside the multi lan-
guage management at runtime.

Table, Row, Column, Control

Most controls that allow dynamic sizing offer the following properties:

" colspan - number of columns occupied by the control.
" rowspan - number of rows occupied by the control.

" width - width.

" height - height.

These properties influence the way how controls are placed into container rows.

Explicit Alignment

Controls are put into table columns. If the column is wider or higher than the control itself, then
you can explicitly control the vertical and horizontal alignment of the control inside the columns.

Most controls offer two properties:

" valign
Specifies the vertical alignment. Valid values are "top", "middle", "bottom". "middle" is the default
value.

" align
Specifies the horizontal alignment. Valid values are "left", "center", "right". The default value
depends on the control. For example, labels are aligned "left" by default, the default for radio
buttons is "center".

Pay attention: valign and al1ign only affect the position of the control inside the column in which
it is positioned if the column is larger than the control. If the column is exactly as wide and high
as the control itself, which is the typical case, then they do not have any visual effects - and also
need not be defined.

320 Natural for Ajax

Some Common Rules for all Controls

align/valign do not affect the control's internal alignment.

Binding to Adapter Parameters

Most controls provide properties to specify the binding to the adapter processing. There is a naming
convention, which is:

® The names of the properties which specify the binding to an adapter parameter end with "prop".

® The names of the properties which specify the binding to an event end with "method".
The type of the adapter parameter which is referenced by a control depends on the control itself:

" Most controls directly bind to scalar adapter parameters.

® More complex controls bind to an array of group structures.

The type of adapter parameter is described with each control.

Directly Influencing the Control Style

All controls that incorporate textual information - such as labels, buttons or fields - offer the pos-
sibility to influence directly the style that is used for displaying the information.

The normal style is derived from the definition inside a cascading style definition file (file layout.css
inside the html/general directory of the server). Overwrite or enhance this style information for
your controls by passing the style information inside the corresponding style properties.

The properties specifying the style information end with the suffix "style", e.g. there is a property
Tabelstyle for the label tag. The value of the property can be any kind of a valid HTML style
specification. If you want to change the display style of a label to be large and blue, define the
label in the following way:

<{label name="Test" width="150" labelstyle="font-size: 24pt; color: #0000FF">
</Tabel>

Natural for Ajax 321

Some Common Rules for all Controls

Dynamically Controlling the Visibility and the Display Status of Controls

It is possible to influence the visibility of all input controls (FIELD, BUTTON, etc.) by adapter
parameters.

For some of these controls there is a property visibleprop, specifying an adapter parameter that
returns "true" or "false". By this, you can control whether you want to display the control within
the client or not.

Input controls support a property statusprop and a property displayprop. Using the corresponding
adapter parameters, you can dynamically control the display status of the input control. The
adapter parameter for the statusprop can contain the following values:

INVISIBLE

ERROR
ERROR_NO_FOCUS
FOCUS

The adapter parameter for the displayprop specifies whether the control is display-only (TRUE)
or whether it can be edited (FALSE). The adapter parameter can contain the values "TRUE" and
"FALSE".

The combination of these two parameter values dynamically defines how the controls are rendered
at runtime. The following table defines the rendering of the control for the different combinations:

displayprop [statusprop Control Status
FALSE (default) EDIT

FALSE (default) |[INVISIBLE INVISIBLE

FALSE (default) | ERROR ERROR

FALSE (default) [ERROR_NO_FOCUS|ERROR_NO_FOCUS
FALSE (default) [FOCUS FOCUS

TRUE DISPLAY

TRUE INVISIBLE INVISIBLE

TRUE ERROR ERROR_DISPLAY
TRUE ERROR_NO_FOCUS |ERROR_DISPLAY
TRUE FOCUS DISPLAY

For all other controls - and for more complex manipulations of what is visible and not - use the
possibility to be able to control the visibility of rows (ITR, TR) or containers (ROWAREA, ROW-
TABLEO): these controls provide for a visibility parameter and consequently can be switched on
and off.

322 Natural for Ajax

Some Common Rules for all Controls

There is an extended management of what the control status "INVISIBLE" means. Most input
controls (FIELD, CHECKBOX, etc.) supporting a statusprop ora visibleprop also support a
property invisiblemode. The allowed values of invisiblemode are:

* invisible
The corresponding control is completely removed. The horizontal space it occupied before is
taken out.

" cleared
The corrresponding control is not visible but still occupies its horizontal space.

= disabled
The corresponding control is displayed with a disabled state. This state is only allowed with a
certain number of controls (e.g. button and icon).

Focus Management

Sometimes you want to control the keyboard focus inside a page. Here are the internal rules how
a page finds out where to put the focus on.

The default reaction is - if a page is displayed for the first time - to put the focus on the first input
control (FIELD, CHECKBOX, RADIOBUTTON, etc.) that is available inside a page. After that, you
can navigate through the input controls - and the focus is kept stable when interacting with the
server.

With statusprop - as mentioned in the previous section - you can interrupt this default reaction;
there are two possibilities:

= If an input control is set to status "ERROR", it requests the focus automatically. The purpose is
to guide the user automatically to those fields that are not correctly entered.
® If an input control is set to status "FOCUS", it is editable - just as normal - and also requests the

focus.

If several input controls are requesting the focus at the same time, the focus is put on the first
corresponding input control.

Natural for Ajax 323

Some Common Rules for all Controls

Flushing of Inputs

Most input controls (FIELD, CHECKBOX, RADIOBUTTON, COMBOFIX, etc.) support a property
named f1lush. This property controls whether data input from a user causes an immediate syn-
chronisation with the server or whehter data input from a user is stored internally within the client
and is synchronized with the next flushing event (e.g. when choosing a button).

There are three different values that can be specified with the f1ush property:

= ""(blank)

The data is not synchroized after leaving the control. This is the default.

" server
The data is synchronized with the server immediately when the data has been entered, i.e. when
the user has left the corresponding input field.

" screen
The data is synchronized within the controls of the screen. This means - if you have two fields
displaying the same property - you can synchronize the fields immediately, without interacting
with the server.

() Tip: On the one hand, it is useful to flush information in a very fine granular way; you can
react on wrong entered data immediately - on the other hand, you have to remember that
each flush causes network traffic. The screen's data is sent to the server side processing and
the screen waits for the response of the server. During this time, the page is blocked for
input and the user sees an hour glass popping up in the left top corner of the screen.

Tab Sequence

By default, the tab sequence of the controls of a page is defined by the order of the controls inside
the page's XML layout definition. Using the property tabindex, this order can be overridden and
the order of the tab index can be explicitly defined.

The following example shows a page with three fields and one button with an explicitly defined
tab sequence:

324 Natural for Ajax

Some Common Rules for all Controls

Simple Tab Sequence -

First Second
Third Ik,

The XML layout definition is:

<rowarea name="Simple Tab Sequence">
<itr takefullwidth="true">
<coltableQ width="50%">
<Gitr>
<Tabel name="First" width="120">
</Tabel>
<field valueprop="first" width="120" tabindex="1">
</field>
</itr>
Gitr>
<Tabel name="Third" width="120">
</label>
<field valueprop="third" width="120" tabindex="3">
</field>
</itr>
</coltable0>
<coltable0 width="50%">
<Gtr>
<Tabel name="Second" width="120">
</label>
<field valueprop="second" width="120" tabindex="2">
</field>
</itr>
Gitr>
<hdist width="120">
</hdist>
<button name="0K" method="on0OK" tabindex="4">
</button>
</itr>
</coltablel>
</itr>
</rowarea>

According to the sequence of controls inside the layout definition, the default tab sequence would
be: field First, field Third, field Second and button OK.

Due to explicitly defining the tabindex property for the fields and the button, the tab sequence is
now correct: field First, field Second, field Third and button OK.

Pay attention:

Natural for Ajax 325

Some Common Rules for all Controls

" Once having started to explicitly set the tab index in a page, you must consequently continue
with all controls of the page. Adding new controls without tab index, is internally interpreted
as if these controls were defined with tab index "0".

® Equal tab indices in controls are allowed. In this case, the sequence of the controls inside the
layout definition defines the tab sequence among the controls with an equal index.

® Moving controls from one location to the other within a page typically means that you have to
adapt the tab sequence accordingly.

The tab index usually is a positive integer value. You may define tab index "-1" for excluding certain
controls from the tab sequence at all. In this case, the corresponding controls may only be reached
by mouse clicking.

Conclusion:

* In typical pages, you do not have to take care of the tab sequence at all because the default (tab
sequence by order of controls in page layout) is adequate to the user's experience.

® Only use the explicit definition of the tab sequence if really it is required - the effort for maintaing
each tab index with each control should not be underestimated.

Tooltips

Tooltips can be applied to many controls. If the user hovers with the mouse cursor over a control
for some seconds, a small yellow box appears showing some more detailed explanation.

The corresponding controls offer two properties:

" title
Here you can specify a hard-coded text that is used as the tooltip.

" titletextid
Here you specify a text ID that is passed to the multi language management..

326 Natural for Ajax

45 BREADCRUMB

L 11T o] (- ST SPPPPTPPRR 328
B AQAPIEr INEEITACE .. .uviiii e 328
B BUIE-IN EVENES L. 328
LI (L= T SRS PPRR 329

327

BREADCRUMB

The BREADCRUMB control represents a horizontal list of links. The number of links and the name
of each link is dynamically controlled by the application.

The control always occupies 100% of the given width.

Example

Bread Crumbs... -

Books F Computers F Ajax

The XML layout definition is:

<rowarea name="Bread Crumbs...">
<breadcrumb breadcrumbprop="items">
</breadcrumb>

<{/rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 ITEMS (1:*)

2 STYLE (U) DYNAMIC

2 TEXT (U) DYNAMIC

2 TOOLTIP (U) DYNAMIC
1 ITEMSINFO

2 SELECTEDITEM (I4)
END-DEFINE

Built-in Events

value-of-breadcrumbprop.onSelect

328 Natural for Ajax

BREADCRUMB

Properties

Basic

breadcrumbprop

Name of the adapter parameter that represents the control
in the adapter.

Obligatory

breadcrumbstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

pixeldistance

Pixel distance between the links that are rendered.

Optional

2

3

int-value

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Natural for Ajax

329

330

46

BUTTON

Example: Simple Button

Example: BUEON WIth IMAGEeeieieeii et e e e
Hiding and Disabling BUONSoiiiiiiii e

Properties

331

BUTTON

The BUTTON control represents a button. Within the definition, specify an event that is sent to
the adapter when choosing the button.

Example: Simple Button

Buttons -

Sawve &s .., Refresh

The XML layout definition is:

<{rowarea name="Buttons">
<Gtr>
<button name="Save As ..." method="saveAs">
</button>
<hdist>
</hdist>
<button name="Refresh" method="refresh">
</button>
</itr>
<{/rowarea>

332 Natural for Ajax

BUTTON

Example: Button with Image

Buttons -

| save 2 Remove

The XML layout definition is:

<{rowarea name="Buttons">
<Gtr>
<pbutton name="Save" method="onSave" image="../HTMLBasedGUI/images/save.gif">
</button>
<hdist>
</hdist>
<button name="Remove" method="onRemove"
image="../HTMLBasedGUI/images/remove.gif">
</button>
/it
</rowarea>

Hiding and Disabling Buttons

Buttons (like many other controls) can be dynamically hidden by using the visibleprop property
- and referencing to a server side property that decides whether to hide a button or not.

There are two modes of hiding that can be controlled by using the property invisiblemode:

" If set to "disabled", the button is grayed and is not selectable anymore.

= Jf set to "invisible", the button is hidden.

Properties

Basic

name Text that is displayed inside the control. Please do not Sometimes
specify the name when using the multi language obligatory
management - but specify a "textid" instead.

textid Multi language dependent text that is displayed inside the|Sometimes
control. The "textid" is translated into a corresponding string | obligatory
at runtime.

Natural for Ajax 333

BUTTON

Do not specify a "name" inside the control if specifying a
"textid".

method

Name of the event that is sent to the adapter when the user
presses the button.

Obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

name

(already explained above)

textid

(already explained above)

image

URL of image that is displayed inside the control. Any
image type (.gif, jpg, ...) that your browser does understand
is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUl/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
pg

jpeg

invisiblemode

This property has three possible values:

(1) "invisible": the button is not visible without occupying
any space.

(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies
space.

Optional

invisible

disabled

cleared

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an

Optional

100

120

140

160

180

200

50%

100%

334

Natural for Ajax

BUTTON

ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
textstyle CSS style definition that is directly passed into the text of |Optional [background-color:
this control. #FF0000
With the style you can individually influence the text of the color: #0000FF
button. You can specify any style sheet expressions.
Examples are: font-weight: bold
font-weight: bold
color: #FF0000
buttonstyle |CSS style definition that is directly passed into this control. |Optional |background-color:

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions

#FF0000
color: #0000FF

font-weight: bold

Natural for Ajax

335

BUTTON

are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

stylevariant

Some controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style

definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional

VARI1

VAR2

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the
column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the
align control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Optional

top
middle

bottom

colspan

Column spanning of control.

If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to
span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are
explicitly not synched.

Optional

5

50

int-value

rowspan

Row spanning of control.

Optional

336

Natural for Ajax

BUTTON

If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span 3
over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
imagedisabled |URL of image that is displayed if the control is disabled. |Optional |gif
Use properties VISIBLEPROP and INVISIBLEMODE to .
disable the control. P8
jpeg
submitbutton |Set this property to true and the button will work asan |Optional |true
'Submitbutton', that is neccessary if you want to transfer
and/or save form values. false
i.e. password and username or complete search forms
Default value is false.
You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.
tabindex Index that defines the tab order of the control. Controls are|Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
Binding
method (already explained above)
visibleprop |Name of the adapter parameter that provides the Optional
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.
nameprop Name of an adapter parameter that provides the text to be|Optional

displayed inside the button. Typically buttons have static
texts either defined by the property "name" or "textid". Via

Natural for Ajax

337

BUTTON

"nameprop" you can dynamically set the button's text by
your application. Use the nameprop in cases the button's
text should change dependent on your logic.

Example: you may want to define the button's text to reflect
the next status the user can set to a business object.

titleprop Name of the adapter parameter that dynamically defines |Optional
the title of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

Online help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.

titleprop (already explained above)

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that can|Optional
be later on used within your test tool in order to do the
object identification

338 Natural for Ajax

47 BUTTONLIST

B AQAPIET INEEITACE .. . v e aa e 340
B PIOPEITIES oo 340

339

BUTTONLIST

The button list represents a vertical arrangement of buttons. The number of buttons and the name
on each button are dynamically controlled by the application.

The controls always occupy 100% of the given width and occupy the height required by the buttons.

Adapter Interface

DEFINE DATA PARAMETER
1 BUTTONLIST (1:%*)

2 ID (U) DYNAMIC

2 IMAGEURL (U) DYNAMIC
2 METHOD (U) DYNAMIC

2 STYLE (U) DYNAMIC

2 TEXT (U) DYNAMIC
END-DEFINE

Properties

Basic

buttonlistprop |[Name of the adapter parameter that represents the control |Obligatory
in the adapter.

—_

pixeldistance |Pixel distance between the buttons that are rendered. Optional
2
3

int-value

buttonstyle |CSS style definition that is directly passed into this control. |Optional |background-color:

#FF0000
With the style you can individually influence the rendering

of the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions

340 Natural for Ajax

BUTTONLIST

are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
tabindex Index that defines the tab order of the control. Controls are|Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
comment Comment without any effect on rendering and behaviour. |Optional

The comment is shown in the layout editor's tree view.

Natural for Ajax

341

342

48 CHECKBOX

LI (] L= T SRS PPPPUPRRR 344

343

CHECKBOX

The CHECKBOX control displays a check box. It represents a boolean value in the application.

Properties

Basic

valueprop

Name of the adapter parameter that represents the control
in the adapter.

Obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional

100

120

140

160

180

200

50%

100%

displayonly

If set to true, the FIELD will not be accessible for input. It
is just used as an output field.

Optional

true

false

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size
of the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.

Optional

left
center

right

344

Natural for Ajax

CHECKBOX

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom
case the "align" property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By defaultitis "1" - but you may want to define the control 3
to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
invisiblemode |If the visibility of the control is determined dynamically |Optional |invisible
by an adapter property then there are two rendering modes
if the visibility is "false": cleared
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: itis "grayed" and
does not show any roll over effects any more.
tabindex Index that defines the tab order of the control. Controls |Optional |-1
are selected in increasing index order and in source order
to resolve duplicates. 0
1

Natural for Ajax

345

CHECKBOX

10

32767

Label

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Optional

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Optional

hdistpixelwidth

Witdh of the distance between checkbox and label in pixel.

Optional

labelstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

valueprop

(already explained above)

displayprop

Name of the adapter parameter that dynamically passes
information whether the field is displayonly(true) or not
(false).

Optional

statusprop

Name of the adapter parameter that dynamically passes
information how the control should be rendered and how
it should act. Use DISPLAYPROP to dynamically define
whether the field is displayonly.

Optional

flush

Flushing behaviour of the input control.

Optional

screen

server

346

Natural for Ajax

CHECKBOX

By default an input into the control is registered within
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

flushmethod |When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to
be sent when the user updates the content of the control.
By doing so you can distinguish on the server side from
which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in |Optional
case the user presses F1 on the control.

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that |Optional

can be later on used within your test tool in order to do
the object identification

Typically, the CHECKBOX is followed by a LABEL control naming the displayed check box. In
the LABEL definition, set the property asplaintext to "true".

Natural for Ajax

347

348

49 COMBODYN2

B AQAPIET INEEITACE .. . v e aa e 350
B PIOPEITIES oo 350

349

COMBODYN2

The COMBODYN control is the dynamic counterpart of the COMBOFIX control. Whereas the
selection options inside the COMBOFIX control are defined in a fixed way inside the page defini-
tion, the COMBODYN?2 control offers the possibility to control the selection options dynamically
in the application.

Adapter Interface

DEFINE DATA PARAMETER

1 COSTCENTER (U) DYNAMIC
1 VALIDCOSTCENTERS (1:%*)
2 1D (U) DYNAMIC

2 NAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

Properties

Basic

valueprop Name of the adapter parameter that provides the content of the|Obligatory
control.

validvaluesprop Name of the adapter parameter that provides the valid values |Obligatory
that are available as selectable options.

width Width of the control. Sometimes |100
obligatory

There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of 140
the control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200

attention: percentage sizing will only bring up correct results if
the parent element of the control properly defines a width this
control can reference. If you specify this control to have a width 100%
of 50% then the parent element (e.g. an ITR-row) may itself
define a width of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.

50%

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Appearance

350 Natural for Ajax

COMBODYN2

width (already explained above)
size Number of rows that are displayed inside the control. If specified | Optional
as "1" (default) then the control is rendered as combo box - if
">1" then the control is rendered as multi line selection.
displayonly If set to true, the FIELD will not be accessible for input. It is just|Optional
used as an output field.
align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself is center
part of arow (e.g. ITR or TR). Sometimes the size of the column)
is bigger than the size of the control itself. In this case the "align" right
property specifies the position of the control inside the column.
In most cases you do not require the align control to be explicitly
defined because the size of the column around the controls
exactly is sized in the same way as the contained control.
If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which
you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is middle
part of arow (e.g. ITR or TR). Sometimtes the size of the column
is bigger than the size of the control. In this case the "align" bottom
property specify the position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By default
itis "1" - but you may want to define the control to span over 3
more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default it
is "1" - but you may want to define the control two span over 3
more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50

explicitly not synched.

Natural for Ajax

351

COMBODYN2

int-value

renderasfield

If set to "true" then the combo box is rendered like a FIELD
control that offers valid value support.

Default is "false".

The normal translation of COMBODYN2 into HTML renders
an HTML-select control. This control has certain limitations
inside Internet Explorer: it only offers a very reduced set of styles
to manipulate its look and feel and - much worse: it always
occupies z-index "0" i.e. if you other areas overlapping the
COMBODYN?2 area then COMBODYN?2 is always on the top.
This is quite ugly if e.g. a menu is opened and parts of the menu
overlap a COMBODYN?2 control.

Optional

true

false

allowmultiselection

If set to true then multiple selections are allowed.

Optional

true

false

combostyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source” or "View frame's source" function.

Optional

invisiblemode

If the visibility of the control is determined dynamically by an
adapter property then there are two rendering modes if the
visibility is "false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and does
not show any roll over effects any more.

Optional

invisible

cleared

tabindex

Index that defines the tab order of the control. Controls are
selected in increasing index order and in source order to resolve
duplicates.

Optional

1
—_

352

Natural for Ajax

COMBODYN2

10

32767

Binding

valueprop

(already explained above)

validvaluesprop

(already explained above)

displayprop

Name of the adapter parameter that dynamically passes
information whether the field is displayonly(true) or not (false).

Optional

statusprop

Name of the adapter parameter that dynamically passes
information how the control should be rendered and how it
should act. Use DISPLAYPROP to dynamically define whether
the field is displayonly.

Optional

titleprop

Name of the adapter parameter that dynamically defines the
title of the control. The title is displayed as tool tip when ther
user moves the mouse onto the control.

Optional

flush

Flushing behaviour of the input control.

By default an input into the control is registered within the
browser client - and communicated to the server adapter object
when a user e.g. presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly after changing
the input a synchronization with the server adapter is triggered.
As consequence you directly can react inside your adapter logic
onto the change of the corresponding value. - Please be aware
of that during the synchronization always all changed properties
- also the ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if
you want to pass one changed value to all its representaion
directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be
sent when the user updates the content of the control. By doing
so you can distinguish on the server side from which control
the flush of data was triggered.

Optional

Online Help

helpid

Help id that is passed to the online help management in case
the user presses F1 on the control.

Optional

Natural for Ajax

353

COMBODYN2

titleprop (already explained above)

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that can be |Optional

later on used within your test tool in order to do the object
identification

354 Natural for Ajax

50 COMBOFIX

B COMBOFIX PIOPEIIES ...ttt ettt e e ettt e e e e e e ettt a e e e e e e s ettt e aeeeaae e e 356
B COMBOOPTION PrOPEILIESeeeieiiiie ettt ettt e et e et e e et e e e et e e e e e nneeeea e 359

355

COMBOFIX

The COMBOFIX control is a selection control. Depending on its configuration, it is either displayed
as a combo box or as a selection list.

The COMBOFIX control allows specifying a defined set of values which can be selected. This set
of values is defined as part of the layout definition - it cannot be controlled dynamically by the

application.

| Note: If you want to use dynamic selection, there are two possibilities. Either use the
COMBODYN control which has the same look and feel as the COMBOFIX control, but
where the selectable values are not specified as part of the page definition and are controlled
by the application. Or use the value help popup dialogs.

COMBOFIX Properties

Basic

valueprop

Name of the adapter parameter that provides the content of the
control.

Obligatory

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional

100
120
140
160
180
200
50%

100%

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

Appearance

width

(already explained above)

size

Number of rows that are displayed inside the control. If specified as
"1" (default) then the control is rendered as combo box - if ">1" then
the control is rendered as multi line selection.

Optional

displayonly

If set to true, the FIELD will not be accessible for input. It is just used
as an output field.

Optional

align

Horizontal alignment of control in its column.

Optional

left

356

Natural for Ajax

COMBOFIX

Each control is "packaged" into a column. The column itself is part of center
arow (e.g. ITR or TR). Sometimes the size of the column is bigger)
than the size of the control itself. In this case the "align" property right
specifies the position of the control inside the column. In most cases
you do not require the align control to be explicitly defined because
the size of the column around the controls exactly is sized in the same
way as the contained control.
If you want to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align
the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is part of middle
arow (e.g. ITR or TR). Sometimtes the size of the column is bigger
than the size of the control. In this case the "align" property specify bottom
the position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of columns your control occupies. By default it is "1" - but
you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of rows your control occupies. By default it is "1" - but you
may want to define the control two span over more than one columns. 3
The property only makes sense in table rows that are snychronized 4
within one container (i.e. TR, STR table rows). It does not make sense 5
in ITR rows, because these rows are explicitly not synched.
50
int-value
combostyle |CSS style definition that is directly passed into this control. Optional
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:
border: 1px solid #FF0000
Natural for Ajax 357

COMBOFIX

background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

invisiblemode |If the visibility of the control is determined dynamically by an adapter|Optional |invisible
property then there are two rendering modes if the visibility is "false":

cleared
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: it is "grayed" and does not
show any roll over effects any more.
tabindex Index that defines the tab order of the control. Controls are selected |Optional |-1
in increasing index order and in source order to resolve duplicates.
0
1
2
5
10
32767
Binding
valueprop (already explained above)
displayprop |Name of the adapter parameter that dynamically passes information|Optional
whether the field is displayonly(true) or not (false).
statusprop Name of the adapter parameter that dynamically passes information|Optional
how the control should be rendered and how it should act. Use
DISPLAYPROP to dynamically define whether the field is displayonly.
flush Flushing behaviour of the input control. Optional |screen
By default an input into the control is registered within the browser server

client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the input
a synchronization with the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of
the corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that

358 Natural for Ajax

COMBOFIX

were changed before - are transferred to the adapter object, not only
the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if you want to pass one

changed value to all its representaion directly after changing the value.

on used within your test tool in order to do the object identification

flushmethod |When the data synchronization of the control is set to FLUSH="server" |Optional
then you can specify an explicit event to be sent when the user updates
the content of the control. By doing so you can distinguish on the
server side from which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in case the user|Optional
presses F1 on the control.

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that can be later |Optional

COMBOOPTION Properties

Basic

name Name that is displayed as selectable option. Either use the NAME property to specify |Optional
the text in a "hard" way or use the TEXTID property to define the text in a language
dependent way.

textid Text ID that is used for this option. The text id is passed to the multi language Optional
management in order to find a language dependent text.

value Actual value of the option that is passed into the adapter property specified by Optional
VALUEPROP inside the COMBOFIX control.

comment |Comment without any effect on rendering and behaviour. The comment is shown [Optional
in the layout editor's tree view.

Natural for Ajax 359

360

51

DATEINPUT

= Example ..

= Properties

361

DATEINPUT

The DATEINPUT control is used to input a date or a date with time. The input can be done both
with the keyboard or by opening a popup in which the user can browse through a calendar. The
calendar can be controlled by server side processing in the following way:

" You can define a valid-from and a valid-to date. Thus, the control will not allow the user to
input an invalid date.

® You can explicitly control the color and the tooltip information inside the calendar. For example,
you may set up a calendar in which vacation times are hightlighted in a certain way.

Example

The most simple usage scenario is to just use the DATEINPUT control in the following way:

<rowarea name="Dateinput">
<Gtr>
<label name="Order Date" width="120">
</label>
<dateinput valueprop="orderDate" width="120">
</dateinput>
</itr>
</rowarea>

The corresponding screen looks like this:

Dateinput -
Order Date A
Properties
Basic
valueprop Name of the adapter parameter that provides the |Optional
content of the control.
width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the 140
width of the control will either be a default width or
- in case of container controls - it will follow the 160
width that is occupied by its content.

362 Natural for Ajax

DATEINPUT

(B) Pixel sizing: just input a number value (e.g. "100"). 180

(C) Percentage sizing: input a percantage value (e.g. 200
"50%"). Pay attention: percentage sizing will only
bring up correct results if the parent element of the 50%
control properly defines a width this control can
reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent
element does not specify a width then the rendering
result may not represent what you expect.

100%

datatype By default, the DATEINPUT control is managing a |Optional |date
day. By explicitly setting a datatype you can define
that the control is managing a day and time. In the datetime
first use type CDATE within your adapter program
- in the second case use type CTIMESTAMP.

comment Comment without any effect on rendering and Optional
behaviour. The comment is shown in the layout
editor's tree view.

Binding

valueprop (already explained above)

fromprop Name of the adapter parameter that provides a lower|Optional
limit for the value of the control. The value is used
for client side validation of user input.

toprop Name of the adapter parameter that providesan |Optional
upper limit for the value of the control. The value is
used for client side validation of user input.

infoprop Name of the adapter parameter that provides style |Optional
information that is used inside the date popup.

secondsvisprop Name of the adapter parameter that provides a Optional
boolean that indicates if to show additional seconds.
This property make sense only if property
DATATYPE is set to "daytime".

statusprop Name of the adapter parameter that dynamically |Optional
passes information how the control should be
rendered and how it should act. Use DISPLAYPROP
to dynamically define whether the field is
displayonly.

flush Flushing behaviour of the input control. Optional [screen

By default an input into the control is registered server
within the browser client - and communicated to the
server adapter object when a user e.g. presses a
button. By using the FLUSH property you can
change this behaviour.

Natural for Ajax 363

DATEINPUT

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly
can react inside your adapter logic onto the change
of the corresponding value. - Please be aware of that
during the synchronization always all changed
properties - also the ones that were changed before
- are transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed
value is populated inside the page. You use this
option if you have redundant usage of the same
property inside one page and if you want to pass
one changed value to all its representaion directly
after changing the value.

flushmethod

When the data synchronization of the control is set
to FLUSH="server" then you can specify an explicit
event to be sent when the user updates the content
of the control. By doing so you can distinguish on
the server side from which control the flush of data
was triggered.

Optional

Appearance

invisiblemode

If the visibility of the control is determined
dynamically by an adapter property then there are
two rendering modes if the visibility is "false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed"
and does not show any roll over effects any more.

Optional

invisible

cleared

displayonly

If set to true, the FIELD will not be accessible for
input. It is just used as an output field.

Optional

true

false

align

Horizontal alignment of control in its column.

Each control is "packaged” into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the size
of the column around the controls exactly is sized in
the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit

Optional

left
center

right

364

Natural for Ajax

DATEINPUT

property "textalign" in which you align the control's
contained text.

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than the bottom
size of the control. In this case the "align" property
specify the position of the control inside the column.
inputstyle CSS style definition that is directly passed into this |Optional |background-color:
control. #FF0000
With the style you can individually influence the color: #0000FF
rendering of the control. You can specify any style .
sheet expressions. Examples are: font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes 2
want to control the number of rows your control
occupies. By default it is "1" - but you may want to 3
define the control two span over more than one 4
columns.
The property only makes sense in table rows that >
are snychronized within one container (i.e. TR, STR 50
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes 2
want to control the number of columns your control
occupies. By default it is "1" - but you may want to 3
define the control to span over more than one 4
columns.
5

Natural for Ajax

365

DATEINPUT

The property only makes sense in table rows that 50
are snychronized within one container (i.e. TR, STR .
table rows). It does not make sense in ITR rows, int-value
because these rows are explicitly not synched.
noborder Boolean value defining if the control has a border. |Optional|true
Default is "false".
false
transparentbackground |Boolean value defining if the control is rendered |Optional |true
with a transparent background. Default is "false".
false
tabindex Index that defines the tab order of the control. Optional |-1
Controls are selected in increasing index order and
in source order to resolve duplicates. 0
1
2
5
10
32767
Valuehelp
popupicon URL of image that is displayed inside the right Optional | gif
corner of the field to indicate to the user that there _
is some value help available.. Any image type (.gif,) %)
jpg, ...) that your browser does understand is valid. ipeg
J
Use the following options to specify the URL:
(A) Define the URL relative to your page. Your page
is generated directly into your project's folder.
Specifiying "images/xyz.gif" will point into a
directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to
an image of a neighbour project.
(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".
popupinputonly Boolean property that control if a field with Optional |true
POPUPMETHOD defined is still usable for keyboard
input. If "false" (= default) then the user can input a false
value either directly via keyboard or by using the
popupmethod's help. If set to "true" then no
keyboard input is possible - but only selection from
the popup-method's help.
366 Natural for Ajax

DATEINPUT

popuponalt40

Value help in a field is triggered either by clicking
with the mouse or by pressing a certain key inside
the field. The "traditional" keys are "cusrsor-down",
"F7" or "F4". Sometimes you do not want to mix other
"cursor-down" behaviour (e.g. scrolling in lists) with
the value help behaviour. In this case switch this
property to "true” - and the value help will only come
up anymore when "alt-cursor-down" is pressed.

Optional

true

false

Online Help

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to define
a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that is
used for the control.

Optional

titleprop

Name of the adapter parameter that dynamically
defines the title of the control. The title is displayed
as tool tip when ther user moves the mouse onto the
control.

Optional

helpid

Help id that is passed to the online help management
in case the user presses F1 on the control.

Optional

Natural

njx:natstringtype

If the control shall be bound to a Natural system
variable of string format with the attribute
njx:natsysvar, this attribute indicates the format of
the string, A (code page) or U (Unicode). The default
is A.

Optional

njx:natsysio If the control shall be bound to a Natural system |Optional
variable with the attribute njx:natsysvar, this
attribute indicates if the system variable is
modifiable. The default is false.

njx:natname If a Natural variable with a name not valid for Optional

Application Designer (for instance #FIELD1) shall
be bound to the control, a different name (for
instance HFIELD1) can be bound instead. If the
original name (in this case #FIELD1) is then specified
in this attribute, the original name is generated into
the parameter data area of the Natural adapter and
a mapping between the two names is generated into
the PROCESS PAGE statement of the Natural
adapter.

njx:natsysvar

If the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

Optional

Natural for Ajax

367

DATEINPUT

njx:natcomment

The value of this attribute is generated as comment
line into the parameter data area of the Natural
adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

Optional

njx:mnatcv

Name of a Natural control variable that shall be
assigned to the control. The control variable must
be defined in a Data Definition (XCIDATADEF)
control on the same page. The application can use
the control variable to check the modification status
of the control.

Optional

368

Natural for Ajax

52 DROPICON

L 11T o] (- ST SPPPPTPPRR 370
B PIOPEITIES oo 370

369

DROPICON

The DROPICON control is an icon that can be used in order to build drag-and-drop scenarios. A
DROPICON can be defined as the starting point of a drag-and-drop operation or as the target
point of a drag-and-drop operation.

Example

Have a look at the following screen:

P
Demo -

The user can click the left mouse button on the left icon (drag), move the mouse to the right icon
and then release the mouse button (drop).

The configuration of drag and drop is quite simple: the icon that is used for starting drag-and-
drop operations leaves a certain drag information - a plain string. The receiving icon, on which
the user performs the drop operation, receives both an event and the string which was left by the
icon from where the operation was started.

Properties

Basic

image URL that points to the image that is shown as icon. Obligatory |gif
The URL either is an absolute URL or a relative URL. If using irg
a relative URL then be aware of that the generated page is)
located directly inside your project's directory. Jpeg
Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.

370 Natural for Ajax

DROPICON

"../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

draginfo

String containing any kind of application data to identify
the source DROPINFO control within a drag and drop
process. Use property DROPINFOPROP to return this data
on runtime.

Optional

draginfoprop

Name of the adapter parameter that provides for information
that is passed to the adapter when dropping this control
over another DROPICON. Do not use this property (or
property DROPINFO respectively) if you do not want the
user to drag this control.

Optional

dropinfoprop

Name of the adapter parameter to that the "drag info" of the
dragged DROPICON control is set. Do not use this property
if this control should not accept other DROPICON controls
within a drag and drop process (i.e. is not a drop target).

Optional

dropmethod

Name of the event that is sent to the adapter when the user
is dragging another DROPICON control over this control
and drops it there. Do not use this parameter if this control
should not accept other DROPICON controls within a drag
and drop process (i.e. is not a drop target).

Sometimes
obligatory

method

Name of the event that is sent to the adapter when clicking
on the control.

Sometimes
obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Binding

draginfoprop

(already explained above)

dropinfoprop

(already explained above)

dropmethod

(already explained above)

imageprop

Name of adapter parameter that provides as value the URL
of the image that is shown inside the control.

Optional

method

(already explained above)

visibleprop

Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Optional

titleprop

Name of the adapter parameter that dynamically defines
the title of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

Optional

Appearance

image

(already explained above)

invisiblemode

If the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

Optional

invisible

cleared

Natural for Ajax

371

DROPICON

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

imageinactive

If the visibility is dynamically controlled by using the
INVISIBLEPROP then there are two ways the icon reacts if
the corresponding property passes back "false".

If you want the icon to switch into an inactive status then
define inside this property the URL of the image that is the
inactive counter part to the normal icon image. Maybe the
image is a grayed version of the normal icon image.

If you do not define a value for this property then the icon
is made invisible.

Optional

imagewidth

Pixel width of the image that is shown inside the icon. If not
defined then the icon is rendered with its normal width.

Optional

imageheight

Pixel height of the image that is shown inside the icon. If
not defined then the icon is rendered with its normal height.

Optional

withdistance

If set to "true" then 2 pixels of distance are kept on the left
and on the right of the icon.

Reason behing: if arranging several icons inside one table
row (ITR, TR) then a certain distance is kept between the
icons when this property is set to "true".

Optional

true

false

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the
column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Optional

top
middle

bottom

372

Natural for Ajax

DROPICON

colstyle CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source” or "View frame's source” function.
spanstyle CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source” or "View frame's source” function.
tabindex Index that defines the tab order of the control. Controls are |Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
Online Help
title Text that is shown as tooltip for the control. Optional

Natural for Ajax

373

DROPICON

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management |Optional
- representing the tooltip text that is used for the control.
titleprop (already explained above)
374 Natural for Ajax

53 FIELD

B BN BV NS .ot 376
B PIOPEITIES oo 376

375

FIELD

The FIELD control is used for entering data. It provides the following features:

® Normal input/output of text.

® Password input.

® Dynamic control if input is allowed.

® Dynamic highlighting of field in case of errors.

® Flush the input directly to the server when leaving the field.

" Raise an event on pressing F4 or F7 or on click - useful for value help popup dialogs

® Adapt the output to a data type (e.g. transfer "YYYYMMDD" to a visible date field)

Built-in Events

findValid ValuesForXXX

Properties

Basic

valueprop Name of the adapter parameter that provides |Obligatory
the content of the control.

width Width of the control. Sometimes 100

obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g.
0" 200
100").
o 50%

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

376 Natural for Ajax

FIELD

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
width (already explained above)
length Width of FIELD in amount of characters. Optional |5
WIDTH and LENGTH should not be used
together. Note that the actual size of the control 10
depends on the font definition if using the 15
LENGTH property.
20
int-value
maxlength Maximum number of characters that a user may |Optional |5
enter into this FIELD. This property is not
depending on the LENGTH property - please 10
do not get confused by the similar naming. 15
MAXLENGTH has nothing to do with the
optical sizing of the control but only with the 20
number of characters you may input.
int-value
textalign Alignment of text inside the control. Optional |left
center
right
password If set to "true", each entered character is Optional |true
displayed as a *'.
false
displayonly If set to true, the FIELD will not be accessible |Optional |true
for input. It is just used as an output field.
false
uppercase If "true" then all input is automatically Optional [true
transferred to upper case characters.
false
align Horizontal alignment of control in its column. |Optional |left
Each control is "packaged” into a column. The center
column itself is part of a row (e.g. ITR or TR). .
Sometimes the size of the column is bigger than right

the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do

Natural for Ajax

377

FIELD

not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign” in which you align
the control's contained text.

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged” into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than bottom
the size of the control. In this case the "align”
property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of
columns your control occupies. By default it is 3
"1" - but you may want to define the control to 4
span over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of rows
your control occupies. By default it is "1" - but 3
you may want to define the control two span 4
over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
fieldstyle CSS style definition that is directly passed into |Optional |background-color: #FF0000
this control.
color: #0000FF
With the style you can individually influence _
the rendering of the control. You can specify font-weight: bold
any style sheet expressions. Examples are:
378 Natural for Ajax

FIELD

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

noborder

Boolean value defining if the control has a
border. Default is "false".

Optional

true

false

transparentbackground

Boolean value defining if the control is rendered
with a transparent background. Default is
"false".

Optional

true

false

bgcolorprop

Name of the adapter parameter that provides
the background color of the control.

Optional

fgcolorprop

Name of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The
color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPRORP to choose both - text and
background color.

Optional

invisiblemode

If the visibility of the control is determined
dynamically by an adapter property then there
are two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

Optional

invisible

cleared

tabindex

Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional

1
—_

Natural for Ajax

379

FIELD

10

32767

Binding

valueprop

(already explained above)

flush

Flushing behaviour of the input control.

By default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is
set to FLUSH="server" then you can specify an
explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

Optional

displayprop

Name of the adapter parameter that
dynamically passes information whether the
field is displayonly(true) or not (false).

Optional

statusprop

Name of the adapter parameter that
dynamically passes information how the control
should be rendered and how it should act. Use
DISPLAYPROP to dynamically define whether
the field is displayonly.

Optional

valuetextprop

Name of the adapter parameter that provides a
"human understandable" description for the
value: in some cases you enter an id into a

Optional

380

Natural for Ajax

FIELD

FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined into
one text (string) that is returned into the FIELD.

textidmode

If using property "valuetextprop" then a field
knows an id and a text for a certain value. There
are three types of display: either both are shown
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

Optional

titleprop

Name of the adapter parameter that
dynamically defines the title of the control. The
title is displayed as tool tip when ther user
moves the mouse onto the control.

Optional

bgcolorprop

(already explained above)

fgcolorprop

(already explained above)

autocallpopupmethod

Name of the adapter parameter that controls
that the field's value help event is sent to the
adapter with a certain offset (milliseconds) after
last key down event.

Optional

true

false

maxlengthprop

Name of the adapter parameter that provides
the maximum number of characters that a user
may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Optional

Validation

datatype

By default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field
with datatype "int" then a corresponding error
message will popup when the user leaves the
field.

...will format the data coming from the server
or coming form the user input: if the field has
datatype "date" and the user inputs "010304"
then the input will be translated into
"01.03.2004" (or other representation, dependent
on date format settings).

Optional

date

float

int

long

time
timestamp
color
xs:decimal
xs:double

xs:date

Natural for Ajax

381

FIELD

In addition valeu popups are offered for the
user automatically for some datatypes: e.g. when
specifying datatype "date" the automatically the
field provides a calendar input popup.

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be
a float value, but also can be a double or a
BigDecimal property.

xs:dateTime

xs:time

Nnn
Pnn
string n
xs:byte

xs:short

validationrules

Contains information used for Data Validation.

Use the Validation Rules Editor to make
changes!

Optional

validation

Regular expression against which the content
of the field is checked on client side when the
user changes the field. If the validation fails then
an error message popup up and informs the
user about the wrong input.

Optional

[a-zA-Z0-9_.-]
{11\ \@[a-zA-Z0-9_.-]
(LN A\ w{2,3\ \ d{5}

[0-9)(-/+1+

validationprop

Name of the adapter parameter that provides a
regular expression for the validation of the field.
Works the same way as VALIDATION but in a
dynamic way.

Optional

validationuserhint

If a client side validation fails due to wrong user
input then an error popup is opened. If you
define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

Optional

validationuserhintprop

If using validation expressions (either property
"validation" or "validationprop") then a popup
comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

Optional

digits

Number that specifiies how many digits are to
be displayed (ie digits before the comma). If

using this feature then the DATATYPE property
must be set to 'float’. See also DECIMALDIGITS.

Optional

382

Natural for Ajax

FIELD

3
int-value
digitsprop Name of the adapter parameter that provides |Optional
information how many digits are to be displayed
(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'".
decimaldigits Number that specifiies how many decimal digits |Optional |1
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float'. 2
3
int-value
decimaldigitsprop Name of the adapter parameter that provides |Optional
information how many decimal digits are to be
displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float'.
spinrangemin An integer value which defines the lower bound |Optional |1
of the value range.
2
3
int-value
spinrangemax An integer value which defines the upper bound |Optional |1
of the value range.
2
3
int-value
Valuehelp
popupmethod Name of the event that is sent to the adapter |Optional |openldValueCombo
when the user requests value help by pressing
F4 or F7 or by clicking into the FIELD with the openldValueHelp
right mouse button. See at chapter 'Popup
Dialog Management' for more details. If the openldValueComboOrPopup
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.
popupinputonly Boolean property that control if a field with ~ |Optional |true
POPUPMETHOD defined is still usable for
false

keyboard input. If "false" (= default) then the

Natural for Ajax

383

FIELD

user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

popupprop

Name of the adapter parameter that provides
the information whether a POPUPMETHOD is
available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

Optional

popuponalt40

Value help in a field is triggered either by
clicking with the mouse or by pressing a certain
key inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to
"true" - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

Optional

true

false

popupcombowidth

Pixel width of the standard
"openldValueCombo" popup dialog. Default is
field width or at least 150 pixel.

Optional

2

3

int-value

popupicon

URL of image that is displayed inside the right
corner of the field to indicate to the user that
there is some value help available.. Any image
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../[HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
P8

jpeg

touchpadinput

Boolean property that decides if touch pad
support is offered for the FIELD control. The
default is "false". If switched to "true" then you
can input data into the field via a touch pad. As

Optional

true

false

384

Natural for Ajax

FIELD

consequence you can use this control for making
inputs through a touch terminal.

onlinehelp

helpid

Help id that is passed to the online help
management in case the user presses F1 on the
control.

Optional

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

formula

Contains information used by the Formula
Editor.

Use the Formula Editor to make changes!

Optional

Hot Keys

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.
Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Optional

Natural

njx:natstringtype

If the control shall be bound to a Natural system
variable of string format with the attribute
njx:natsysvar, this attribute indicates the format
of the string, A (code page) or U (Unicode). The
default is A.

Optional

njx:natsysio

If the control shall be bound to a Natural system
variable with the attribute njx:natsysvar, this
attribute indicates if the system variable is
modifiable. The default is false.

Optional

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1)

shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.

Optional

Natural for Ajax

385

FIELD

If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter.

njx:natsysvar

If the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

Optional

njx:natcomment

The value of this attribute is generated as
comment line into the parameter data area of
the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

Optional

njx:natcv

Name of a Natural control variable that shall be
assigned to the control. The control variable
must be defined in a Data Definition
(XCIDATADEEF) control on the same page. The
application can use the control variable to check
the modification status of the control.

Optional

Miscellaneous

testtoolid

Use this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

Optional

autocallpopupmethodoffset

The offset (milliseconds) after the last key down
event for calling the
AUTOCALLPOPUPMETHOD. Makes only
sense if an AUTOCALLPOPUPMETHOD is
specified.

Optional

2

3

int-value

386

Natural for Ajax

54 FILEUPLOAD/FILEUPLOAD2

B FILEUPLOAD ...ttt 388
B FILEUPLOADZ ...ttt 390
B FILEUPLOAD PIOPEITIES ... vttt et e et e et e e e e 391
B FILEUPLOADZ PrOPEITIESeeeitieieeiitt ettt ettt ettt 394

387

FILEUPLOAD/FILEUPLOAD2

The file upload controls simplify the process of uploading files from the client to the server. Two
types are available:

* The FILEUPLOAD control is represented by a button. When you choose the button, a dialog
appears showing the file upload form (field input and a file selection button).

® With the FILEUPLOAD?2 control, you embed the file upload form into your page.

Both types have the program binding, i.e. you can switch between the two types without touching
your code.

FILEUPLOAD

The FILEUPLOAD control simplifies the process of uploading files from the client to the server.
Look at the following example:

rFiIE upload -

Upload File ...

Client file name

Server file name

The control - from the look-and-feel perspective - is a button with some special reaction. When
you choose the button, the following dialog appears:

3 File Upload - Web Page Dialog [? |[X]
File Upload

Durchsuchen...

Upload

388 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

Speichern unter,

Speichern in: | i§ tubeitsplatz v| o2 mE
L S System (22
i L DVD-RW-Laufwerk (D:)
Zuletzt

verwendete D
=
Desktop

A

Eigene Dateien

Arbeitzplatz

" D ateinarme: | V| [Speichern]

Netzwe:rkumgeb D ateityp: | vl [Abbrechen]

After choosing the Upload button, the first screen looks as follows:

rFiIe upload -
Upload File ... |

Client file name C:faaaa.doc

Server file name C:fCISftempfFRE0837 729837837 3/aaa

Natural for Ajax 389

FILEUPLOAD/FILEUPLOAD2

FILEUPLOAD2

With the FILEUPLOAD?2 control, you embed the file upload form into your page.

Uﬂ'ﬂﬂﬂ... -
Browse...

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

- Choose file @

Lok jr: IE My Pictures j - ¥ B3~
wieeen | [
Documents
G i
Desktop

iSample Pictures:

¥
"
-
(%

by Documents

ty Compuiter

e

—

My Metwork File name: IimageDDE.png j Open
Places

Files of type: | &1l Files ") | Cancel

7 |

390 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

After choosing the file, the screen looks as follows:

Upload... -
C:\Temp'log.txt Browse...

FILEUPLOAD Properties

Basic

name Text that is displayed inside the control. Please do not specify the |Sometimes
name when using the multi language management - but specify a |obligatory
"textid" instead.

textid Multi language dependent text that is displayed inside the control. |Sometimes
The "textid" is translated into a corresponding string at runtime. obligatory

Do not specify a "name" inside the control if specifying a "textid".

cfileprop Name of the adapter parameter in which the client file name is passed |Obligatory
at upload time.

sfileprop Name of the adapter parameter in which at upload time the name of |Obligatory
the target file is written, which is a copy of the client file in the server
file system. Note that this file name is not the same as the client file
name.

method Name of the event that is sent to the adapter when a file is uploaded. |Obligatory
The file data is available on the server at the point of time this method
is called.

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Appearance

image URL of image that is displayed inside the control. Any image type |Optional |gif
(-.gif, jpg, -..) that your browser does understand is valid. _
) %)
Use the following options to specify the URL: '
Jpeg
(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

width Width of the control. Optional 100

Natural for Ajax 391

FILEUPLOAD/FILEUPLOAD2

There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
. . . 50%
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% then 100%
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will 200
be rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow 250
the height of it tent.
e height of its conten 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. iy .) . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define a height of 100%
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
visibleprop |Name of the adapter parameter that provides the information if this |Optional
control is displayed or not. As consequence you can control the
visibility of the control dynamically.
invisiblemode|This property has three possible values: Optional |invisible
(1) "invisible": the button is not visible without occupying any space. cleared
(2) "disabled": the button is deactivated: it is "grayed" and does not
show any roll over effects any more.
(3)"cleared": the button is not visible but it still occupies space.
buttonstyle |CSS style definition that is directly passed into this control. Optional
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:
border: 1px solid #FF0000
392 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself is part center
of arow (e.g. ITR or TR). Sometimes the size of the column is bigger
than the size of the control itself. In this case the "align" property right
specifies the position of the control inside the column. In most cases
you do not require the align control to be explicitly defined because
the size of the column around the controls exactly is sized in the same
way as the contained control.
If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which you
align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged” into a column. The column itself is part middle
of arow (e.g. ITR or TR). Sometimtes the size of the column is bigger
than the size of the control. In this case the "align" property specify bottom
the position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1" -
but you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default it is "1" - but
you may want to define the control two span over more than one 3
columns. 4

Natural for Ajax

393

FILEUPLOAD/FILEUPLOAD2

The property only makes sense in table rows that are snychronized 5

within one container (i.e. TR, STR table rows). It does not make sense

in ITR rows, because these rows are explicitly not synched. 50
int-value

Binding

cfileprop (already explained above)

sfileprop (already explained above)

method (already explained above)

visibleprop |(already explained above)

Online Help

title Text that is shown as tooltip for the control. Optional

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

titletextid Text ID that is passed to the multi lanaguage management - Optional
representing the tooltip text that is used for the control.

FILEUPLOAD?2 Properties

Basic

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if 509
the parent element of the control properly defines a width this ?
control can reference. If you specify this control to have a width 100%
of 50% then the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

cfileprop Name of the adapter parameter in which the client file name is |Optional
passed at upload time.

sfileprop Name of the adapter parameter in which at upload time the name|Optional
of the target file is written, which is a copy of the client file in the

394 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

server file system. Note that this file name is not the same as the
client file name.

method Name of the event that is sent to the adapter when a file is Optional
uploaded. The file data is available on the server at the point of
time this method is called.
withsubmitbutton |If set to "TRUE" adds an additional button to the control to start |Optional |true
the file upload.
false
submitbuttonname | The name of the submit button in case WITSUBMITBUTTON is |Optional
set to "true".
submitbuttontextid |"Textid" for the name of the submitbutton if Optional
WITHSUBMITBUTTON is set to "true".
comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
Binding
cfileprop (already explained above)
sfileprop (already explained above)
method (already explained above)
visibleprop Name of the adapter parameter that provides the information if |Optional
this control is displayed or not. As consequence you can control
the visibility of the control dynamically.
invisiblemode If the visibility of the control is determined dynamically by an |Optional |invisible
adapter property then there are two rendering modes if the]
visibility is "false": disabled
(1) "invisible": the control is not visible. cleared
(2) "disabled": the control is deactivated: it is "grayed" and does
not show any roll over effects any more.
Appearance
invisiblemode (already explained above)
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By defaultitis "1" - but
you may want to define the control two span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.
50
int-value

Natural for Ajax

395

FILEUPLOAD/FILEUPLOAD2

colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than 3
one columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
darkbackground |Normally the background is in light colour but the CIS style sheets |Optional |true
also have a dark(er) grey colour to be used.
false
If DARKBACKGROUND is set to true then the darker background
colour is chosen. This property typically is used to integrate light
coloured controls into darker container areas.
396 Natural for Ajax

55 icon

L 11T o] (- ST SPPPPTPPRR 398
B PIOPEITIES oo 398

397

ICON

The ICON control is similar to the BUTTON control, but it uses an image to display its function.
When chosen, it sends an event to the adapter.

Example

Icons -

XK HIE

The XML layout definition is:

{rowarea name="Icons">

<dtrd>
<icon image="../HTMLBasedGUI/images/remove.gif" method="remove"
title="Remove">
<{/icon>
<icon image="../HTMLBasedGUI/images/cut.gif" method="cut" withdistance="true"
title="Cut">
</icon>
<icon image="../HTMLBasedGUI/images/paste.gif" method="paste" title="Paste">
</icon>
<Jitrd
<{/rowarea>
Properties
Basic
image URL that points to the image that is shown as icon.|Obligatory |gif
The URL either is an absolute URL or a relative URL. ipg
If using a relative URL then be aware of that the .
generated page is located directly inside your Jpeg
project's directory.
Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.
"../HTMLBasedGUI/images/new.gif" point to a URL
that is located inside a different project.
imagertl URL that points to the image that is shown as icon.|Optional |gif
The URL either is an absolute URL or a relative URL. irg
If using a relative URL then be aware of that the .
Jpeg

398 Natural for Ajax

ICON

generated page is located directly inside your
project's directory.

Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.
"../HTMLBasedGUI/images/new.gif" point to a URL
that is located inside a different project.

method

Name of the event that is sent to the adapter when
clicking on the control.

Obligatory

name

Text that is displayed inside the control. Please do
not specify the name when using the multi language
management - but specify a "textid" instead.

Optional

textid

Multi language dependent text that is displayed
inside the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

Optional

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

Appearance

imagewidth

Pixel width of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal width.

Optional

imageheight

Pixel height of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal height.

Optional

textsize

The HTML font size of the text. Corresponding to
the HTML definition "1" means "smallest” and "6"
means "biggest".

Optional

imageinactive

If the visibility is dynamically controlled by using
the INVISIBLEPROP then there are two ways the
icon reacts if the corresponding property passes
back "false".

If you want the icon to switch into an inactive status
then define inside this property the URL of the
image that is the inactive counter part to the normal

Optional

gif
pg

jpeg

Natural for Ajax

399

ICON

icon image. Maybe the image is a grayed version of
the normal icon image.

If you do not define a value for this property then
the icon is made invisible.

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged"” into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than the
size of the control. In this case the "align" property
specify the position of the control inside the column.

Optional

top
middle

bottom

withdistance

If set to "true" then 2 pixels of distance are kept on
the left and on the right of the icon.

Reason behing: if arranging several icons inside one
table row (ITR, TR) then a certain distance is kept
between the icons when this property is set to "true".

Optional

true

false

colstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

400

Natural for Ajax

ICON

style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

spanstyle CSS style definition that is directly passed into this |Optional |background-color:
control. #FF0000
With the style you can individually influence the color: #0000FF
rendering of the control. You can specify any style)
sheet expressions. Examples are: font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.
invisiblemode If the visibility of the control is determined Optional |invisible
dynamically by an adapter property then there are
two rendering modes if the visibility is "false": cleared
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.
tabindex Index that defines the tab order of the control. Optional |-1
Controls are selected in increasing index order and
in source order to resolve duplicates. 0
1
2
5
10
32767
nameposition Position of the (optional) text to the icon. Aside or |Optional |aside
below, default is aside.
below

Set the corresponding text in the name or the text
id property.

Natural for Ajax

401

ICON

displaymenuindicator|If set to true a small indicator signals that there is a|Optional |true
corresponding menu 'behind this icon'. Default is
false. false
Binding
method (already explained above)
visibleprop Name of the adapter parameter that provides the |Optional
information if this control is displayed or not. As
consequence you can control the visibility of the
control dynamically.
titleprop Name of the adapter parameter that dynamically |Optional
defines the title of the control. The title is displayed
as tool tip when ther user moves the mouse onto
the control.
Online Help
title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.
titletextid Text ID that is passed to the multi lanaguage Optional
management - representing the tooltip text that is
used for the control.
titleprop (already explained above)
Miscellaneous
testtoolid Use this attribute to assign a fixed control identifier | Optional
that can be later on used within your test tool in
order to do the object identification
402 Natural for Ajax

56 ICONLIST

B AQAPIET INEEITACE .. . v e aa e 404
B B U EVENES e a e e 404
LI (] 1= PSPPSR 404

403

ICONLIST

The ICONLIST is very similar to the BUTTONLIST, representing a list of items instead of a list of
buttons. The list can either be a vertical list or a horizontal list.

Adapter Interface

DEFINE DATA PARAMETER
1 ICONLIST (1:%)

2 DRAGINFO (U) DYNAMIC
2 DROPINFO (U) DYNAMIC
2 1D (U) DYNAMIC

2 IMAGEURL (U) DYNAMIC
2 METHOD (U) DYNAMIC

2 NAME (U) DYNAMIC
2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-iconlistprop.onDrop
value-of-iconlistprop.onSelect

Properties

Basic

iconlistprop Name of the adapter parameter that represents the |Obligatory
control in the application.

vertical Direction of the icon list. Optional |true
If not specified (or set to "true") then the icons are false
arranged in one column, one below the other. If
specified as "false" then the icons are arrange in one
row, one aside the other.

cellspacing Anicons of the ICONLIST control is embedded into |Optional |1
an internal cell. The CELLSPACING property
defined the number of pixels that are kept between 2
the icon an the border of this cell. 3
Use the CELLSPACING in order to define a certain .

. . . int-value

distance each icon keeps from the next item.

404 Natural for Ajax

ICONLIST

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

Appearance

imagewidth

Pixel width of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal width.

Optional

imageheight

Pixel height of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal height.

Optional

align

Horizontal alignment of control in its column.

Each control is "packaged” into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

Optional

left
center

right

tablestyle

Style definition (following CSS style sheet
definitions) that is used for the background area of
the ICONLIST control.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

cellstyle

Style definition (following CSS style sheet
definitions) that is used for each cell area of the
ICONLIST control in which an icon is kept.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

displaymenuindicator

If set to true a small indicator signals that there is a
corresponding menu 'behind this icon'. Default is
false.

Optional

true

false

additionaltextposition

Position of the text that is displayed inside the
control. Use method ICONLISTItem.setName to set
the text.

Optional

aside

below

Natural for Ajax

405

ICONLIST

textsize The HTML font size of the text. Corresponding to |Optional |1
the HTML definition "1" means "smallest" and "6"
means "biggest". 2
3
4
5
6
withrightpadding Flag (boolean) that indicates whether to inserta |Optional |true
padding right hand of the last icon. This attribute
does apply for horizontal ICONLIST only (see false
attribute VERTICAL). Default is true.
406 Natural for Ajax

57 IHTML

LI (] L= T SRS PPPPUPRRR 408

407

IHTML

The IHTML control is used to embed server side generated HTML inside a page that is provided
by the application. The IHTML control is very flexible on the one hand. On the other hand, you
have to take care about what is defined inside the IHTML area.

Use this control if you have, for example, a server side report generation program already producing
HTML as output which you want to include into your pages, etc.

Properties

Basic

valueprop |Name of the adapter parameter that provides the content of the |Optional
control.

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if 509
the parent element of the control properly defines a width this 7
control can reference. If you specify this control to have a width 100%
of 50% then the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay

. . : . . 400

attention: percentage sizing will only bring up correct results if
the parent element of the control properly defines a height this 50%
control can reference. If you specify this control to have a height
of 50% then the parent element (e.g. an ITR-row) may itself define 100%
a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

408 Natural for Ajax

[HTML

colspan |Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than 3
one columns. A
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan |Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By defaultitis "1" - but
you may want to define the control two span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
ihtmlstyle |CSS style definition that is directly passed into this control. Optional |background-color:
#FF0000
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples color: #0000FF
are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating them
with a semicolon.
Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source” or "View frame's source" function.
comment |Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is part middle
of arow (e.g. ITR or TR). Sometimtes the size of the column is
bottom

Natural for Ajax

409

IHTML

bigger than the size of the control. In this case the "align" property
specify the position of the control inside the column.

410

Natural for Ajax

58

IMAGEOUT

= Properties

411

IMAGEOUT

The IMAGEOUT control is used to present images inside a page. The name of the image is not
statically defined inside the layout but is controlled by the application through an adapter para-
meter.

Properties

Basic

valueprop |Name of the adapter parameter that provides as value the URL of the image |Optional
that is shown inside the control.

titleprop |Name of the adapter parameter that dynamically defines the title of the control. |Optional
The title is displayed as tool tip when ther user moves the mouse onto the

control.

width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the control will 140
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 200

percentage sizing will only bring up correct results if the parent element of the
control properly defines a width this control can reference. If you specify this
control to have a width of 50% then the parent element (e.g. an ITR-row) may 100%
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

50%

height Height of the control. Optional
There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control will be rendered
with its default height. If the control is a container control (containing) other
controls then the height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the
control properly defines a height this control can reference. If you specify this
control to have a height of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

colspan |Column spanning of control. Optional

412 Natural for Ajax

IMAGEOUT

If you use TR table rows then you may sometimes want to control the number
of columns your control occupies. By default it is "1" - but you may want to
define the control to span over more than one columns.

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

rowspan

Row spanning of control.

If you use TR table rows then you may sometimes want to control the number
of rows your control occupies. By default it is "1" - but you may want to define
the control two span over more than one columns.

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

Optional

comment

Comment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

Optional

Natural for Ajax

413

414

59 LABEL

L 11T o] (- ST SPPPPTPPRR 417
B AIGNING TN X et e e e e e e e e e 417
LI (] 1= PSPPSR 418

415

LABEL

The LABEL control is a static text. The tag has different properties to control the design of the
label. It can be used to display plain text or as a headline of a grid.

By default, the label is rendered with a white line under the text. The default is suitable if a FIELD
control follows the label.

416 Natural for Ajax

LABEL

Example

Label Controls -

MNarrow \Wide Plain

The XML layout definition is:

<rowarea name="Label Controls">

<tr>
<Tabel name="Narrow" width="50">
</label>
<hdist>
</hdist>
<{lTabel name="Wide" width="150">
</Tabel>
<hdist>
</hdist>
<label name="Plain" width="100" asplaintext="true">
</Tabel>
<hdist>
</hdist>
<Tabel name="Headline" width="100" asheadline="true">
</label>

</itrd

<vdist>

</vdist>

{/rowarea>

For a better separation between the LABEL controls, horizontal distances (HDIST) were added.

Aligning the Text

Use the property textalign in order to align the label's text. Do not use the a11gn property.
textalign refers to the text inside the control, a1ign refers to the position of the control inside the
surrounding cell - if the cell is larger than the control.

Natural for Ajax 417

LABEL

Properties

Basic

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Sometimes
obligatory

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Sometimes
obligatory

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

Sometimes
obligatory

100
120
140
160
180
200
50%

100%

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

nowrap

If the textual content of the control exceeds the size of the
control then the browser automatically breaks the line and
arranges the text accordingly.

You can avoid this behaviour by setting NOWRAP to "true".
No line break will be performed by the browser.

Optional

true

false

width

(already explained above)

height

Height of the control.

There are three possibilities to define the height:

Optional

100

150

200

418

Natural for Ajax

LABEL

(A) You do not define a height at all. As consequence the 250
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 300
height of the control will follow the height of its content. 250
(B) Pixel sizing: just input a number value (e.g. "20"). 400
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 50%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 100%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
asheadline If set to true, the label has a dark background and the text |Optional |true
is written in white (if using the standard style sheet).
false
You may use this rendering style is you use labels as
headlines of control grids (ROWTABLEAREA2 control).
asplaintext If set to true, no white line is drawn under the label text (if |Optional |true
using the standard style sheet).
false
You may use this rendering style if the label is used to name
a RADIOBUTTON control or a CHECKBOX control.
textalign Horizontal alignment of the text that is shown. Optional |left
center
right
cuttext Boolean property defining the rendering if the text of the |Optional |true
label does not fit into the defined width. If "true" then the
text is cut - the part that does not fit is hidden. If "false" then false
the browser opens a second line.
Default is "false".
labelstyle CSS style definition that is directly passed into this control.|Optional |background-color:

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

#FF0000
color: #0000FF

font-weight: bold

Natural for Ajax

419

LABEL

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source” function.

labelstyleclass

CSS style class used for rendering.

Optional

stylevariant

Some controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined "normal”
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional

VAR1

VAR2

VAR3

VAR4

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the
column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Optional

top
middle

bottom

colspan

Column spanning of control.

If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to
span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are
explicitly not synched.

Optional

5

50

int-value

420

Natural for Ajax

LABEL

rowspan

Row spanning of control.

If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span
over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are
explicitly not synched.

Optional

5

50

int-value

invisiblemode

If the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

Optional

invisible

cleared

Binding

visibleprop

Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Optional

Online Help

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

Optional

Natural for Ajax

421

422

60 MENUBUTTON

L 11T o] (- ST SPPPPTPPRR 424
B MENUBUTTON PrOPEIIESveiiiiiieiii ettt 425
B MENUITEM PrOPEITIES ...ttt e e e e e 427

423

MENUBUTTON

The MENUBUTTON control offers the possibility to arrange buttons in a hierarchy.

Example

In the following example, there are two menu buttons which act differently when they are selected:

rnemn -
Below
Shove
rDemu -
Below
Mew...
Cpen... Ahove
rDemn -
Below
Save..
E Save 3s ...

The XML code for the example looks as follows:

<rowarea name="Demo">
<tr takefullwidth="true">
<coltableO width="50%" takefullheight="true">

<tr>
<menubutton name="Below" menuposition="below">
<menuitem name="New..." method="newFile" pixelwidth="150">
</menuitem>
<menuitem name="0pen..." method="openFile" pixelwidth="150">
</menuitem>
</menubutton>
</itr>

</coltable0>
<coltable0 width="50%">

424 Natural for Ajax

MENUBUTTON

<vdist height="50">

</vdist>
<Gtr>
<menubutton name="Above" menuposition="above">
<menuitem name="Save..." method="saveFile" pixelwidth="150">
</menuitem>
<menuitem name="Save as ..." method="saveAsFile" pixelwidth="150">
</menuitem>
</menubutton>
</itr>
</coltable0>
</itr>
</rowarea>

In the definition of a menu item, an event that is to be sent to an adapter is exactly defined like
with a normal button.

MENUBUTTON Properties

Basic

name Text that is displayed inside the control. Please do not specify the |Sometimes
name when using the multi language management - but specify a |obligatory
"textid" instead.

textid Multi language dependent text that is displayed inside the control. |Sometimes
The "textid" is translated into a corresponding string at runtime. |obligatory
Do not specify a "name" inside the control if specifying a "textid".

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Appearance

menuposition |above if the menu should popup above the base menu button - below |Optional ~ |above
if the menu should popup below the base menu button.

below

The default is below.

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the 509

Natural for Ajax 425

MENUBUTTON

parent element of the control properly defines a width this control 100%
can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

visibleprop |Name of the adapter parameter that provides the information if this |Optional
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

colspan Column spanning of control. Optional |1

If you use TR table rows then you may sometimes want to control 2

the number of columns your control occupies. By default it is "1" -

but you may want to define the control to span over more than one 3

columns.
4

The property only makes sense in table rows that are snychronized 5

within one container (i.e. TR, STR table rows). It does not make sense

in ITR rows, because these rows are explicitly not synched. 50
int-value

rowspan Row spanning of control. Optional |1

If you use TR table rows then you may sometimes want to control 2

the number of rows your control occupies. By default it is "1" - but

you may want to define the control two span over more than one 3

columns.
4

The property only makes sense in table rows that are snychronized 5

within one container (i.e. TR, STR table rows). It does not make sense

in ITR rows, because these rows are explicitly not synched. 50
int-value

buttonstyle |CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

426 Natural for Ajax

MENUBUTTON

MENUITEM Properties

Basic

name Text that is displayed inside the control. Please do not specify the name|Sometimes
when using the multi language management - but specify a "textid" |obligatory
instead.

textid Multi language dependent text that is displayed inside the control. The|Sometimes
"textid" is translated into a corresponding string at runtime. obligatory
Do not specify a "name" inside the control if specifying a "textid".

method Name of the event that is sent to the adapter when clicking on the Obligatory
control.

pixelwidth |Width of the control in pixels. Obligatory

comment |Comment without any effect on rendering and behaviour. The comment|Optional
is shown in the layout editor's tree view.

Appearance

pixelheight|Height of the control in pixels. Optional

itemstyle |CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source” function.

Natural for Ajax

427

428

61 METHODLINK

LI (] L= T SRS PPPPUPRRR 430

429

METHODLINK

The METHODLINK is a control that renders a text that is dynamically provided by the application
through an adapter parameter. The text is rendered as a hyperlink. When clicking on the hyperlink,
an event is sent to the adapter. It is used in scenarios in which users are in the habit of following

links instead of choosing buttons or icons.

Properties

Basic

name Text that is displayed inside the control. Please do |Optional
not specify the name when using the multi
language management - but specify a "textid"
instead.

textid Multi language dependent text that is displayed |Optional
inside the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

method Name of the event that is sent to the adapter when |Obligatory
clicking on the control.

valueprop Name of the adapter parameter that provides the |Obligatory
text that is shown as link.

width Width of the control. Sometimes|100

obligatory
There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160

follow the width that is occupied by its content. 180

(B) Pixel sizing: just input a number value (e.g.

”100”). 200

O,
(C) Percentage sizing: input a percantage value 50%
(e.g. "50%"). Pay attention: percentage sizing will 100%
only bring up correct results if the parent element
of the control properly defines a width this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

430 Natural for Ajax

METHODLINK

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.

Appearance

width (already explained above)

straighttext If the text of the control contains HTML tags then |Optional |true
these are by default interpreted by the browser.
Specifiying STRAIGHTTEXT as "true” means that false
the browser will directly render the characters
without HTML interpretation.

Example: if you want to output the source of an
HTML text then STRAIGHTTEXT should be set to
"true".

MOZILLA: this property is not available in Mozilla!

linkstyle CSS style definition that is directly passed into this |Optional |background-color:
control. #FF0000

With the style you can individually influence the color: #0000FF
rendering of the control. You can specify any style .
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

linkclass CSS style class definition that is directly passed |Optional
into this control.

The style class can be either one which is part of
the "normal" CIS style sheet files (i.e. the ones that
you maintain with the style sheet editor) - or it can
be one of an other style sheet file that you may
reference via the ADDSTYLESHEET property of
the PAGE tag.

align Horizontal alignment of control in its column. |Optional |left

Each control is "packaged" into a column. The center
column itself is part of a row (e.g. ITR or TR). '
Sometimes the size of the column is bigger than right

Natural for Ajax 431

METHODLINK

the size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an explicit
property "textalign" in which you align the
control's contained text.

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than bottom
the size of the control. In this case the "align”
property specify the position of the control inside
the column.
nowrap If the textual content of the control exceeds the size|Optional |true
of the control then the browser automatically
breaks the line and arranges the text accordingly. false
You can avoid this behaviour by setting NOWRAP
to "true". No line break will be performed by the
browser.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes 2
want to control the number of columns your
control occupies. By default it is "1" - but you may 3
want to define the control to span over more than 4
one columns.
The property only makes sense in table rows that >
are snychronized within one container (i.e. TR, STR 50
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes 2
want to control the number of rows your control
occupies. By default it is "1" - but you may want 3
to define the control two span over more than one 4
columns.
The property only makes sense in table rows that >
are snychronized within one container (i.e. TR, STR 50
432 Natural for Ajax

METHODLINK

table rows). It does not make sense in ITR rows, int-value
because these rows are explicitly not synched.

Binding

valueprop (already explained above)

method (already explained above)

titleprop Name of the adapter parameter that dynamically [Optional
defines the title of the control. The title is displayed
as tool tip when ther user moves the mouse onto
the control.

linkstatusprop Name of the adapter parameter that dynamically |Optional

defines how the link should be rendered and how
it should act. Valid values are "DISPLAY" and
"EDIT".

oncontextmenumethod |Name of the event that is sent to the adapter when |Optional
the user presses the right mouse button in an
empty area.

Natural for Ajax 433

434

62 MULTISELECT

L 11T o] (- ST SPPPPTPPRR 436
B AQAPIEr INEEITACE .. .uviiii e 436
LI (] 1= PSPPSR 436

435

MULTISELECT

The MULTISELECT control allows comfortable input of multiple selections of items from a defined
number of items.

Example

Sevilla Lebrija
Carmona Malaga
Cadiz ? 7| Bilbaa
Valencla
Madrid »
Salamanca
Barcelona <
Granada

<<

The available items are rendered on the left and are brought to the right by choosing the correspon-
ding button. There are buttons to bring all items from the left to the right, and back.

Adapter Interface

DEFINE DATA PARAMETER
1 TOWNS (1:%*)

2 1D (U) DYNAMIC

2 SELECTED (L)

2 TEXT (U) DYNAMIC

END-DEFINE

Properties

Basic

valueprop |Name of the adapter parameter representing this control in the Obligatory
application.

width Width of the control. Obligatory|100
There are three possibilities to define the width: 120

140

436 Natural for Ajax

MULTISELECT

(A) You do not define a width at all. In this case the width of the control 160
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 50%
attention: percentage sizing will only bring up correct results if the
. . . 100%
parent element of the control properly defines a width this control can
reference. If you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a width of "100%".
If the parent element does not specify a width then the rendering result
may not represent what you expect.
height Height of the control. Obligatory|100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will 200
be rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow 250
the height of it tent.
e height of its conten 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. iy . . . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control can 50%
reference. If you specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a height of "100%". 100%
If the parent element does not specify a width then the rendering result
may not represent what you expect.
comment Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.
Appearance
displayonly |If set to true, the FIELD will not be accessible for input. It is just used |Optional |true
as an output field.
false
withupdown |If set to true, corresponding up and down arrows appear on the right|Optional |true
hand side. These arrows allow for changing the order of the selected
items. false
align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself is part of center
arow (e.g. ITR or TR). Sometimes the size of the column is bigger than)
the size of the control itself. In this case the "align" property specifies right

the position of the control inside the column. In most cases you do not
require the align control to be explicitly defined because the size of the

Natural for Ajax

437

MULTISELECT

column around the controls exactly is sized in the same way as the
contained control.

If you want to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align the
control's contained text.

valign Vertical alignment of control in its column. Optional |top

Each control is "packaged"” into a column. The column itself is part of middle
arow (e.g.ITR or TR). Sometimtes the size of the column is bigger than

the size of the control. In this case the "align" property specify the bottom
position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of columns your control occupies. By defaultitis "1" - but you
may want to define the control to span over more than one columns. 3
The property only makes sense in table rows that are snychronized 4
within one container (i.e. TR, STR table rows). It does not make sense
. . 5
in ITR rows, because these rows are explicitly not synched.
50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of rows your control occupies. By default it is "1" - but you
may want to define the control two span over more than one columns. 3
The property only makes sense in table rows that are snychronized 4
within one container (i.e. TR, STR table rows). It does not make sense
. . 5
in ITR rows, because these rows are explicitly not synched.
50
int-value

msstyle CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

438 Natural for Ajax

MULTISELECT

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

Binding

valueprop |(already explained above)

flush Flushing behaviour of the input control. Optional |screen
By default an input into the control is registered within the browser server

client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the input
a synchronization with the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that were
changed before - are transferred to the adapter object, not only the one
that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if you want to pass one changed
value to all its representaion directly after changing the value.

flushmethod |When the data synchronization of the control is set to FLUSH="server"|Optional
then you can specify an explicit event to be sent when the user updates
the content of the control. By doing so you can distinguish on the server
side from which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in case the user |Optional
presses F1 on the control.

Natural for Ajax 439

440

63 NEWSFEED

L 11T o] (- ST SPPPPTPPRR 443
B B U EVENES e a e e 444
LI (] 1= PSPPSR 444

441

NEWSFEED

The NEWSFEED control is a simple-to-use ,newsreader” within the Application Designer pages.
It offers the possibility to read news feeds (RSS feeds and Atom feeds).

/\ Important: In order to use the NEWSFEED control, you have to specify a valid RSS or Atom

feed URL (for example http://news.cnet.com/2547-1001_3-0-5.xml). If necessary, you also
have to specify your proxy server settings (host, port, user name, password).

442 Natural for Ajax

http://news.cnet.com/2547-1001_3-0-5.xml

NEWSFEED

Example

rNEWSfEEd Control

B 15.04-16:39 &nti-Krebs-Impfung - Aufgeputschie Kdrperabwehr J
18.04-16:332 Bundesverfassungsgericht - Linke verschlaft Tornado-Gerichtstermin
158.04-16:00 Bombenterror - Uber 100 Tate bei Anschldgen in Bagdad
18.04-15:25 Raketenabwehr - USA planen Zusarmmenarbeit mit Russland
12.04-15:21 Gradengesuch - Klar erldutert umstrittenes Grufwiort
18.04-15:17 Telefon und Internet - Zypries weitet Uberwachung aus
18.04-15:14 Azteken - Die mysteridsen Toten der Mandpyramide
18.04-14:59 Tirkei - Deutscher bei Uberfall auf Bibel-verlag getdtet
128.04-14:51 Us5-Waffendiskussion - Letzte Bastion gegen Revolverhelden
18.04-14:47 EM-Vergahe - Paolitik, Platini und Pelzmantel
18.04-14:41 Bundeskabinett - Yorratsdatenspeicherung beschlossen
18.04-13:13 Journalisten-attacken - ARD und ZDF protestieren bei Putin

« o

The XML layout definition is:

<rowarea name="Newsfeed Control" width="560">
<newsfeed infoprop="newsfeedinfoprop" width="550" height="450">
</newsfeed>

{/rowarea>

Natural for Ajax 443

NEWSFEED

Built-in Events

value-of-infoprop.onOpenLink
value-of-infoprop.onOpenLinkNewTarget

Properties

Basic

infoprop |Name of the adapter parameter that represents the control in the adapter. |Obligatory

height |Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will be 200
rendered with its default height. If the control is a container control (containing)
other controls then the height of the control will follow the height of its content. 250
(B) Pixel sizing: just input a number value (e.g. "20"). 300
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 250
percentage sizing will only bring up correct results if the parent element of

. j . . 400
the control properly defines a height this control can reference. If you specify
this control to have a height of 50% then the parent element (e.g. an ITR-row) 50%
may itself define a height of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect. 100%

splitstyle | By default the newsfeed control appears within a vsplit control. Headers on |Optional |vsplit
plitstyle By pp P P p

the left and content on the right. Set this value to hsplit and the control appears .
within a hsplit control. Headers on top, content on the bottom. hsplit

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

444 Natural for Ajax

64 RADIOBUTTON

LI (] L= T SRS PPPPUPRRR 446

445

RADIOBUTTON

The RADIOBUTTON control displays the radio button. Radio buttons can be grouped together
so that a group of RADIOBUTTON controls manipulates one adapter parameter. Each RADIO-
BUTTON instance represents one value for the adapter parameter.

Properties

Basic

valueprop

Name of the adapter parameter that provides the content
of the control.

Obligatory

value

Value that represents this instance of the RADIOBUTTON
control.

The value is set into the adapter property that is defined
by the VALUEPROP property when the user clicks onto
the control. - Vice versa: the control is switched to
"marked" when the adapter property holds the value
defined.

Optional

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional

100

120

140

160

180

200

50%

100%

displayonly

If set to true, the FIELD will not be accessible for input. It
is just used as an output field.

Optional

true

false

align

Horizontal alignment of control in its column.

Optional

left

446

Natural for Ajax

RADIOBUTTON

Each control is "packaged" into a column. The column center
itself is part of a row (e.g. ITR or TR). Sometimes the size
of the column is bigger than the size of the control itself. right
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.
If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom
case the "align" property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By defaultitis "1" - but you may want to define the control 3
to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
invisiblemode |If the visibility of the control is determined dynamically |Optional |invisible
by an adapter property then there are two rendering modes
cleared

if the visibility is "false":

(1) "invisible": the control is not visible.

Natural for Ajax

447

RADIOBUTTON

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

tabindex

Index that defines the tab order of the control. Controls
are selected in increasing index order and in source order
to resolve duplicates.

Optional

1
—_

10

32767

Label

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Optional

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Optional

hdistpixelwidth

Witdh of the distance between checkbox and label in pixel.

Optional

labelstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source” function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

valueprop

(already explained above)

displayprop

Name of the adapter parameter that dynamically passes
information whether the field is displayonly(true) or not
(false).

Optional

448

Natural for Ajax

RADIOBUTTON

statusprop Name of the adapter parameter that dynamically passes |Optional
information how the control should be rendered and how
it should act. Use DISPLAYPROP to dynamically define
whether the field is displayonly.

flush Flushing behaviour of the input control. Optional |screen

By default an input into the control is registered within server
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen” means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

flushmethod |When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to
be sent when the user updates the content of the control.
By doing so you can distinguish on the server side from
which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in |Optional
case the user presses F1 on the control.

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that |Optional

can be later on used within your test tool in order to do
the object identification

The RADIOBUTTON control is typically followed by a label explaining its meaning.

Natural for Ajax 449

450

65

SCHEDULELINE

= Properties

451

SCHEDULELINE

The SCHEDULELINE control is used to define screens like the following:

rEmpIu',ree'S schedules -
Ermployee Schedule
.00 9. 00 10:00 11:00
Alan Sales Meeting Team meeting (Joan, Jim, HuPresentation
Barny Sales Meeting
Joan Team meeting (Joan, Jirm, Hu
Kirsten Budget Meeting Interyiew
Michael
Ricky Fepair PC
Fohert Sales Meeting Team meeting (Joan, Jim, HuPresentation
2:00 Q.00 10:00 11:00
"Selection -
Item

You can display a certain sequence of items, each item holding a text, a color value, a size and an
identifier. When clicking on an item, a certain event is sent to your adapter and the ID of the
selected item is returned to perform activities in your program.

Properties

Basic

valueprop Name of the adapter parameter that represents the control | Obligatory
in the adapter.

It returns a semicolon separated list of schedule items.
Each item is represented by a color, a width, a text and
a selection id. The width is not a pixel width but
represents a "portion” that this schedule item represents.

Example: #FF0000\ "1000;Text 1,;1;#00FF00;500;Text 2;2

The total "logical width" is 1500. The firts item occupies
2/3 of the width, the right item occupies 1/3 of the width.

The selection is required in case you want to react on user
selections. If a user clicks onto one schedule item then
the adapter is notified by a certain event - the id of the
schedule item is passed as reference. Please have a look
into the corresponding property descriptions.

452 Natural for Ajax

SCHEDULELINE

width Width of the control. Obligatory|100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width 140
of the control will either be a default width or - in case
of container controls - it will follow the width that is 160
ied by it tent.
occupied by its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g.
" o/ " . o . . . 50%
50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control 100%
properly defines a width this control can reference. If you
specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.
pixelheight Height of the control in pixels. Optional
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
width (already explained above)
pixelheight (already explained above)
pixelsizemode |A schedule line consists of sections, each one rendered |Optional |true
with a certain width. By default the width does not
represent a pixel value but represents a logical size. The false
width of the section depends on the logical size of one
section compared with the logical size of the other
sections.
When switching this property to "true" then the size of
the sections are interpreted as real pixel values.
cellalign Horizontal alignment of the text inside the control's Optional |left
schedule items.
center
right
cellvalign Vertical alignement of the text inside the control's Optional |top
schedule items.
middle
bottom
cellstyle Style that is used inside the schedule item cells. Can be |Optional |background-color:

any CSS style.

#FF0000

Natural for Ajax

453

SCHEDULELINE

color: #0000FF

font-weight: bold

cellnowrap If switched to "true" then the text inside the schedule item |Optional |true
cells is not broken if exceeding the size of the control -
the text is cut instead. false

Default is "false".

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom

case the "align" property specify the position of the
control inside the column.

colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By default it is "1" - but you may want to define the 3
control to span over more than one columns. 4
The property only makes sense in table rows that are 5

snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.

int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5

snychronized within one container (i.e. TR, STR table
rows). [t does not make sense in ITR rows, because these 50
rows are explicitly not synched.

int-value
crosslineids Flag (true | false) that indicates that cells of different lines |Optional |true
(within ROWTABLEAREA?2) does not have same ids. If
set to false the control is able to detect and skip false
unnecessary re-draws (performance).
tablestyle CSS style definition that is directly passed into this Optional |background-color:
control. #FF0000

454 Natural for Ajax

SCHEDULELINE

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

color: #0000FF

font-weight: bold

Binding

valueprop

(already explained above)

selectmethod

Name of the event that is sent to the adapter when the
user selects one schedule item with the mouse.

Optional

selscheduleprop

Name of an adapter parameter in which the id of the
selected schedule item is passed.

Optional

seltypeprop

Name of an adapter parameter that is used in the
following way:

If the user selects an item it can also be determined, if the
item is selected by the left or by the right mouse button.
In case the user uses the left mouse button, the value
LEFT is passed into the property, which is referenced by
the SELTYPEPROP property. In case the user uses the
right mouse button, the value RIGHT is passed.

Optional

preselectmode

If set to "true" then schedule items holding an id can be
"preselected": the user can click on a schedule item and
it is "grayed" as consequence - without directly calling
the selection method. The selection method is called when
double clicking onto the schedule item.

Default is "false".

The reaction of the control when clicking with the right
mouse button remains untouched: still the selection
method is called by a single right mouse button click.

Optional

true

false

Vertical

verticalschedule

Flag that indicates if the line is rendered vertically.
Default is false.

Optional

true

false

Natural for Ajax

455

SCHEDULELINE

tooltipprop

Name of an adapter parameter that contains the comma
separated list of help texts that are displayed on mouse
over (tooltip).

Optional

imageprop

Name of an adapter parameter that returns a comma
separated string of image URLs. An URL either is an
absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located
directly inside your project's directory.

Example: "images/green.gif;;red.gif"

Optional

imageorientation

Flag that indicates to render the image at the left or right
hand of the text.

Optional

left

right

dropinfoprop

Name of the adapter parameter to that the id of the
dragged cell is set. Do not use this property if you do not
want to support drag and drop within the
SCHEDULELINE. The server side property needs to be
of type "String".

Optional

onmovemethod

Name of the event that is sent to the adapter on drop of
one cell (source) over another cell (target). Use property
DROPINFOPROP to get the id of the dragged cell
(source). Use SELSCHEDULEPRORP to get the id of the
cell that got the drop (target).

Optional

controlkeyprop

Name of an adapter parameter to that the information is
set whether the user pressed the CTRL key when selecting
a cell.

Optional

456

Natural for Ajax

66 SLIDER

L 11T o] (- ST SPPPPTPPRR 458
B AQAPIEr INEEITACE .. .uviiii e 459
LI (] 1= PSPPSR 459

457

SLIDER

The SLIDER control represents a slider. The main use of the slider is to limit the user input to
specific values. It uses a number representation for its values, but the numbers can also be used
to express string values.

Example

13 - &0

The XML layout definition is:

<rowarea name="Number Qutput">
<Gitr>
<sTider valueprop="sliderl"™ from="13" to="60" showrange="true"
showcurrentvalue="false">
</slider>
</itr>
</rowarea>

The control can be customized by setting its start value, end value and a step. The start and end

values form a closed interval. The step defines the distance between two valid values represented
by the slider in this interval.

How old are you?

O—= (O

=tart

step step = 1

i3 “ &0 |

In the above example, the value for the step is the default value "1". The possible values represented
by the slider are the integers from "13" to "60". It is possible to specify a floating-point number as
a step, for example "0,25". The slider can be further customized by setting the properties showrange
and showcurrentvalue which show the range (start and end value) and the current value of the
slider while the user is moving it. The width and height of the slider point is adjustable. The slider
point is the element which the user drags and drops. The colors, the borders of the slider, the point,
the line, the range and the current value can also be customized.

458 Natural for Ajax

SLIDER

Customized

it b current value

Adapter Interface

DEFINE DATA PARAMETER

1 SLIDER

2 DISPLAYONLY (L)

2 FROM (F4)

2 SLIDERVALUE (F4)

2 STEP (F4)

2 T0 (F4)

END-DEFINE

Properties

Basic

valueprop Name of the adapter parameter that provides |Obligatory

the content of the control.
Appearance
width Width of the slider. Can be given in pixels or |Optional |100
percentage.

120
140
160
180
200
50%

Natural for Ajax

459

SLIDER

100%
displayonly If set to true, the SLIDER will not be accessible |Optional |true
for input. It is just used as an output.
false
showrange Boolean value. Whether to show the range of |Optional |true
the slider. The range is the "from" and "to"
values. false
showcurrentvalue [Boolean value. Whether to show the current |Optional |true
value of the slider while it is moving.
false
mainbgcolor Background color of the slider container. Optional |#FF0000
This should be a valid CSS color value. For #00FF00
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF
#FFFFFF
#808080
#000000
mainbordercolor |Border color of the slider container. Optional |#bbb #666 #666 #bbb
This should be a valid CSS border-color value. #BFCFFT #00248F #00248F
You can specify a different color for the top, #BFCFFF
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB
mainborderwidth |Border width of the slider container. Optional |thin
medium
thick
1px
2px
5px
10px
pointbgcolor Background color of the slider point. Optional |#FF0000
This should be a valid CSS color value. For #00FF00
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF
460 Natural for Ajax

SLIDER

#FFFFFF
#808080
#000000
pointbordercolor |Border color of the slider point. Optional |#bbb #666 #666 #bbb
This should be a valid CSS border-color value. #BFCFFF #00248F #00248F
You can specify a different color for the top, #BFCFFF
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB
pointborderwidth |Border width of the slider point. Optional |thin
medium
thick
1px
2px
5px
10px
pointwidth Width of the slider point in pixels. The value |Optional |10
must be an integer value.
20
40
100
300
pointheight Height of the slider point in pixels. The value |Optional |10
must be an integer value.
20
40
100
300
linebgcolor Background color of the slider line. Optional |#FF0000
This should be a valid CSS color value. For #00FF00
example a name(blue, red), a hexadecimal
#0000FF

value(#99CCFF) or others.

Natural for Ajax

461

SLIDER

#FFFFFF

#808080

#000000

linebordercolor

Border color of the slider line.

This should be a valid CSS border-color value.

You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

Optional

#bbb #666 #666 #bbb

#BFCFFF #00248F #00248F
#BFCFFF

lineborderwidth

Border width of the slider line.

Optional

thin
medium
thick
1px

2px

5px

10px

rangefontsize

Font size of the slider range.

Optional

xx-small
x-small
small
medium
large
x-large
xx-large
smaller
larger

150%

valuebgcolor

Background color of the slider current value
which is shown if the "showcurrentvalue"
property is set to true.

Optional

#FF0000

#00FF00

#0000FF

462

Natural for Ajax

SLIDER

This should be a valid CSS color value. For #FFFFFF
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #808080
#000000
valuebordercolor |Background color of the slider current value |Optional |#bbb #666 #666 #bbb

which is shown if the "showcurrentvalue"
property is set to true.

#BFCFFF #00248F #00248F

#BFCFFF

This should be a valid CSS border-color value.

You can specify a different color for the top,

right, bottom and left border in this sequence.

For example: #bbb #666 #666 #bbb

valueborderwidth |Border width of the slider current value which |Optional |thin

is shown if the "showcurrentvalue" property is)

set to true. medium
thick
1px
2px
5px
10px

valuefontsize Font size of the slider current value whichis |Optional |xx-small

shown if the "showcurrentvalue" property is set

to true. x-small
small
medium
large
x-large
xx-large
smaller
larger
150%

Natural for Ajax

463

464

67 STRIPSEL

L 11T o] (- ST SPPPPTPPRR 466
B PIOPEITIES oo 466

465

STRIPSEL

The STRIPSEL control is very similar to the TABSTRIP2 control: the user selects one option out of
many.

The STRIPSEL control is typically located somewhere at the top of a page, but it can also be posi-
tioned anywhere else.

Example

Programming a STRIPSEL control is the same as programming the TABSTRIP2 control - just the
rendering of the control differs:

STRIPSEL Control £:3

First Second Third Fourth

rTest -

Selection First

rCumpﬂrisun with TABSTRIP Control -
First Second Third Fourth

In this example, the STRIPSEL control is the control below the titlebar. For comparison, the TAB-
STRIP2 control has also been added.

Properties

Basic

tabstripprop Name of the adapter parameter that represents the Optional
control in the adapter.

align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column center
itself is part of arow (e.g.ITR or TR). Sometimes the size .
of the column is bigger than the size of the control itself. right

In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is
sized in the same way as the contained control.

466 Natural for Ajax

STRIPSEL

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained
text.

scrollable

Flag that indicates if the control shows scroll icons on
the right upper corner. Default is true

Optional

true

false

backgroundstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source” function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

scrolllefttitle

Help text that is displayed if the user moves the mouse
of the scroll to left icon.

Optional

scrolllefttitletextid

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

scrollrighttitle

Help text that is displayed if the user moves the mouse
of the scroll to right icon.

Optional

scrollrighttitletextid

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

scrollleftimage

URL of image that is displayed inside the control. Any
image type (.gif, .jpg, -..) that your browser does
understand is valid.

Use the following options to specify the URL:

Optional

gif
g

jpeg

Natural for Ajax

467

STRIPSEL

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

scrollleftimagertl |URL of image that is displayed inside the control. Any |Optional |gif
image type (.gif, .jpg, -..) that your browser does .
understand is valid. P8

Use the following options to specify the URL: jpeg

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

scrollrightimage |URL of image that is displayed inside the control. Any |Optional |gif
image type (.gif, .jpg, ...) that your browser does _
understand is valid. P8

Use the following options to specify the URL: jpeg

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

scrollrightimagertl |URL of image that is displayed inside the control. Any |Optional|gif
image type (.gif, jpg, ...) that your browser does .
understand is valid.) %)

Use the following options to specify the URL: jpeg

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying

468 Natural for Ajax

STRIPSEL

"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

Optional

Natural for Ajax

469

470

638

SUBPAGE

= Properties

471

SUBPAGE

The SUBPAGE control defines an area in which an HTML page is shown. The URL of the page is

not statically defined, but is dynamically controlled by the application.

Due to the browser's capability to embed installed plug-ins, you can use non-HTML objects to be
called - and which the browser is able to understand. For example, if you have Microsoft Office

installed (or the viewers for Microsoft Office documents) and you pass the name of a Word
document as the URL, the Word document will be embedded into the page.

Properties

Basic

valueprop |Name of the adapter parameter that provides the URL to be displayed |Obligatory
inside the SUBPAGE control.
Please note: the SUBPAGE control only re-renders its inner content if the
URL provided by the property really changes. The SUBPAGE control
does not "know" if something changed inside the contained page and that
it has to redraw the page. - If you want to refresh the inner page explicitly
append some random number to your URL, e.g.:
http://...url...?2RANDOM=45435. By changing the number the browser will
reload the URL.

width Width of the control. Sometimes |100

obligatory

There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the control 140
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 200
percentage sizing will only bring up correct results if the parent element 509
of the control properly defines a width this control can reference. If you ?
specify this control to have a width of 50% then the parent element (e.g. 100%
an ITR-row) may itself define a width of "100%". If the parent element
does not specify a width then the rendering result may not represent what
you expect.

height Height of the control. Sometimes |100

obligatory

There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will be 200
rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow the 250
height of its content. 300

472 Natural for Ajax

SUBPAGE

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element
of the control properly defines a height this control can reference. If you
specify this control to have a height of 50% then the parent element (e.g.
an ITR-row) may itself define a height of "100%". If the parent element
does not specify a width then the rendering result may not represent what
you expect.

250
400
50%

100%

comment

Comment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

Optional

Appearance

width

(already explained above)

height

(already explained above)

scrolling

Definition of the scrollbar's appearance.

You can define that the scrollbars only are shown if the content is
exceeding the control's area ("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and the content is cut ("hidden").

Default is "auto".

Optional

auto

yes

no

pagestyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the control.
You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them with a
semicolon.

Sometimes it is useful to have a look into the generated HTML code in
order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source” or "View
frame's source" function.

Optional

colspan

Column spanning of control.

If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns.

The property only makes sense in table rows that are snychronized within
one container (i.e. TR, STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not synched.

Optional

5

50

int-value

Natural for Ajax

473

SUBPAGE

rowspan |Row spanning of control. Optional |1

If you use TR table rows then you may sometimes want to control the 2

number of rows your control occupies. By default it is "1" - but you may

want to define the control two span over more than one columns. 3

The property only makes sense in table rows that are snychronized within 4

one container (i.e. TR, STR table rows). It does not make sense in ITR 5

rows, because these rows are explicitly not synched.
50
int-value

Binding

valueprop |(a1ready explained above)

474 Natural for Ajax

69 TABSEL

B AQAPIET INEEITACE .. . v e aa e 476
B B U EVENES e a e e 477
LI (] 1= PSPPSR 477

475

TABSEL

The TABSEL control looks as shown in the following example:

Second | Third | Fourth | Fifth | Sixth | Seventh
Second | Third | Fourth | Fifth | Sizth | Seventh
First
Command
First
Command

The number of tabs is dynamically defined at runtime. There are various output options:

= With/without a horizontal line below the control.

® Normal or reverse coloring.

Like the TABSTRIP control, the TABSEL control does not provide internal containers that are
switched when selecting tabs. It just represents one tab line.

Adapter Interface

DEFINE DATA PARAMETER
1 TABS

2 SELECTEDITEM (I4)
2 TSITEMS (1:%)

3 ID (U) DYNAMIC

3 NAME (U) DYNAMIC
3 TITLE (U) DYNAMIC
END-DEFINE

476

Natural for Ajax

TABSEL

Built-in Events

value-of-tabselprop.onSelect

Properties

Basic

tabselprop |Name of the adapter parameter that represents the control in the Obligatory
adapter.

bottomborder |If set to "true" then a bottom border is rendered below the tab selection.|Optional |true

If set to "false" then no bottom border will be drawn.
false

reversecolors |Reverses the color scheme of the TABSEL control. Optional |true

false

leftindent Inserts a horizontal distance left of the first "tab" and shifts the "tabs" |Optional |1
to the right as consequence. The value you may define represents the

number of pixels that are inserted. 2
3
int-value
comment Comment without any effect on rendering and behaviour. The Optional

comment is shown in the layout editor's tree view.

Natural for Ajax 477

478

70 TABSTRIP2

L 11T o] (- ST SPPPPTPPRR 480
B AQAPIEr INEEITACE .. .uviiii e 480
B BUIE-IN EVENES L. 480
LI (L= T SRS PPRR 481

479

TABSTRIP2

The TABSTRIP2 control is used to navigate through certain aspects of your application. The way
you navigate depends completely on your implementation.

Example

The control looks as follows:

Simple programming of tab-strip-controls 3
First Second Third
Exit

Selection -

Selected tab First

For each aspect, there is one tab holding a name and an index. The left-most tab holds index 1, the
next one 2, etc.

Adapter Interface

DEFINE DATA PARAMETER
1 TABS

2 SELINDEX (I4)

2 TSITEMS (1:%)

3 NAME (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-tabstripprop.onSelect

480 Natural for Ajax

TABSTRIP2

Properties
Basic
tabstripprop Name of the adapter parameter that represents the control |Optional
in the adapter.
align Horizontal alignment of the control's content. Optional |left
center
right
scrollable If set to "true" then small icons will appear on the right |Optional |true
border of the control. If the size of the "tabs" is too big and
some tabs are cut as consequence then you can use these false
icons for scrolling left and right.
backgroundstyle | CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.
comment Comment without any effect on rendering and behaviour. |Optional

The comment is shown in the layout editor's tree view.

Natural for Ajax

481

482

71 TAGCLOUD

L 11T o] (- ST SPPPPTPPRR 484
B AQAPIEr INEEITACE .. .uviiii e 485
B BUIE-IN EVENES L. 485
LI (L= T SRS PPRR 485

483

TAGCLOUD

The TAGCLOUD control represents a collection of tags. A tag is a keyword assigned to an infor-
mation resource (picture, video clip or others). In a tag cloud, the tags are mainly shown by their
popularity.

computer technology ja\fa
books drinks MUSIC people
germany summer flowers
kids holiday semantic micro
Dirthday animals jokes email

virus university city water
clouds september Science mowvie

software ag google

apache networking library
news sky EC|IDSE brasil

iapple piano biology Xml
iart

As you can see, different tags can be added to a tag cloud. They differ by their popularity. The
most popular tags are those with a bigger font size.

484 Natural for Ajax

TAGCLOUD

The XML layout definition is:

<Gtr>
<tagcloud tagcloudprop="tagCloud"
width="300" height="350"
borderstyle="dotted" borderwidth="1px"
bordercolor="#f0000FF" backgroundcolor="#E6E6FA"
textcolor="#0000FF">
</tagcloud>
</itrd

The tag cloud can be customized by defining a background color.

Adapter Interface

DEFINE DATA PARAMETER
1 TAGCLOUD

2 TCLITEM (1:%)

3 ID (U) DYNAMIC

3 POPULARITY (I4)

3 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-tagcloudprop.onSelect

Properties

Basic

tagcloudprop |Name of the adapter parameter that represents the control in the |Obligatory
adapter.

width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180

Natural for Ajax 485

TAGCLOUD

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a width this control 50%
can reference. If you specify this control to have a width of 50% 1002
then the parent element (e.g. an ITR-row) may itself define a width ?
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
borderstyle Choose the style the controls border. Optional |solid
double
groove
dotted
dashed
inset
outset
ridge
hidden
borderwidth Border size of control in pixels. Specify "0" not to render Optional |thin
any border at all. medium
thick
1px
2px

486 Natural for Ajax

TAGCLOUD

5px

10px

bordercolor

Sets the border color of the control.

Optional

#FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

backgroundcolor

Sets the background color of the control.

Optional

#FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

textcolor

Sets the text color of the control.

Optional

#FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

Natural for Ajax

487

488

72 TEXT

LI (] L= T SRS PPPPUPRRR 490

489

TEXT

The TEXT control represents a multi line text edit control. It represents the value of an adapter
parameter.

Properties
Basic
valueprop Name of the adapter parameter that provides the content of the |Obligatory
control.
width Width of the control. Sometimes |100
obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
. . . 50%
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. . ;] . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
flush Flushing behaviour of the input control. Optional |screen
By default an input into the control is registered within the browser server
client - and communicated to the server adapter object when a user

490 Natural for Ajax

TEXT

e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the
input a synchronization with the server adapter is triggered. As
consequence you directly can react inside your adapter logic onto
the change of the corresponding value. - Please be aware of that
during the synchronization always all changed properties - also
the ones that were changed before - are transferred to the adapter
object, not only the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if you
want to pass one changed value to all its representaion directly
after changing the value.

flushmethod When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to be sent
when the user updates the content of the control. By doing so you
can distinguish on the server side from which control the flush of
data was triggered.

datatype By default, the control is managing its content as string. By Optional
explicitly setting a datatype you can define that the control will
format the data coming from the server: if the field has datatype
"date" and the user inputs "010304" then the input will be translated
into "01.03.2004" (or other representation, dependent on date format
settings).

Please note: the datatype "float" is named a bit misleading - it
represents any decimal format number. The server side
representation may be a float value, but also can be a double or a
BigDecimal property.

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Appearance
width (already explained above)
displayonly If set to true, the FIELD will not be accessible for input. Itisjust |Optional |true
used as an output field.
false
direction Presets the default(BiDi) direction of the control. Use black string |Optional |rtl
in order to have the default value.
ltr
displayprop Name of the adapter parameter that dynamically passes Optional
information whether the field is displayonly(true) or not (false).
statusprop Name of the adapter parameter that dynamically passes Optional

information how the control should be rendered and how it should

Natural for Ajax 491

TEXT

act. Use DISPLAYPROP to dynamically define whether the field
is displayonly.

wrap

Specifies the line wrapping inside the control. By default a line that
exceeds the width of the control is broken automatically.

You may define this property to not wrap at all ("off") - in this case
the text control offers horizontal scroll bars to scroll the text.

There are two styles of wrapping "soft" and "hard". The difference
between "soft" and "hard" is the way the text is - if changed by the
user - passed back to the adapter property: when specifying "soft"
then line breaks which are caused by wrapping are not sent to the
server, when specifying "hard" then line breaks caused by wrapping
are sent as carriage return/ line feed. - Be carefule when specifying
"hard" as consequence!

Optional

soft

hard

off

TOWS

Height of control specified by number of rows. Either define the
height by the HEIGHT property or by the ROWS property. Do not
specify both!

When specifying the height by ROWS then be aware of that the
height depends from the font size used inside the control (that is
defined in the styles sheet definition).

Optional

cols

Width of control specified by number of characters. Either define
the width by the WIDTH property or by the COLS property. Do
not specify both!

When specifying the width by COLS then be aware of that the
width depends from the font size used inside the control (that is
defined in the styles sheet definition).

Optional

colspan

Column spanning of control.

If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than
one columns.

The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

Optional

5

50

int-value

maxlength

Maximum number of characters that a user may enter into this
FIELD. This property is not depending on the LENGTH property
- please do not get confused by the similar naming. MAXLENGTH
has nothing to do with the optical sizing of the control but only
with the number of characters you may input.

Optional

10

15

20

492

Natural for Ajax

TEXT

int-value

maxlengthprop

Name of the adapter parameter that provides the maximum
number of characters that a user may enter into this FIELD.
Consider to use MAXLENGTH to define this number in a static
way.

Optional

rowspan

Row spanning of control.

If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By defaultitis "1" - but
you may want to define the control two span over more than one
columns.

The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

Optional

5

50

int-value

textareastyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

Optional

titleprop

Name of the adapter parameter that dynamically defines the title
of the control. The title is displayed as tool tip when ther user
moves the mouse onto the control.

Optional

scroll

Definition of the scrollbar's appearance.

You can define that the scrollbars only are shown if the content is
exceeding the control's area ("auto"). Or scrollbars can be shown

Optional

auto

scroll

hidden

Natural for Ajax

493

TEXT

always ("scroll"). Or scrollbars are never shown - and the content
is cut ("hidden").

Default is "auto".

parameter data area of the Natural adapter, before the field name.
The Map Converter, for instance, uses this attributes to indicate
for a generated statusprop variable to which field the statusprop
belongs.

tabindex Index that defines the tab order of the control. Controls are selected |Optional -1
in increasing index order and in source order to resolve duplicates.
0
1
2
5
10
32767
Online Help
helpid Help id that is passed to the online help management in case the |Optional
user presses F1 on the control.
title (already explained above)
titletextid (already explained above)
titleprop (already explained above)
Natural
njx:natstringtype |If the control shall be bound to a Natural system variable of string|Optional
format with the attribute njx:natsysvar, this attribute indicates the
format of the string, A (code page) or U (Unicode). The default is
A.
njx:natsysio If the control shall be bound to a Natural system variable with the |Optional
attribute njx:natsysvar, this attribute indicates if the system variable
is modifiable. The default is false.
njx:natname If a Natural variable with a name not valid for Application Designer|Optional
(for instance #FIELD1) shall be bound to the control, a different
name (for instance HFIELD1) can be bound instead. If the original
name (in this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area of the
Natural adapter and a mapping between the two names is
generated into the PROCESS PAGE statement of the Natural
adapter.
njx:natsysvar If the control shall be bound to a Natural system variable, this ~ |Optional
attribute specifies the name of the system variable.
njx:natcomment |The value of this attribute is generated as comment line into the |Optional

494

Natural for Ajax

TEXT

njx:natcv Name of a Natural control variable that shall be assigned to the |Optional
control. The control variable must be defined in a Data Definition
(XCIDATADEEF) control on the same page. The application can use
the control variable to check the modification status of the control.

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that canbe |Optional

later on used within your test tool in order to do the object
identification

Natural for Ajax

495

496

73 TEXTOUT

L 11T o] (- ST SPPPPTPPRR 498
B PIOPEITIES oo 498

497

TEXTOUT

The TEXTOUT control is used to display plain text. The text is not statically defined (as a label)
but is controlled by an adapter property.

Example

Textouts

200

w om0 500

The XML layout definition is:

<{rowarea name="Textouts">

<Gtrd>
<textout valueprop="factorl" width="100">
<{/textout>
{textout valueprop="factorl" width="100" textsize="1">
</textout>
<{textout valueprop="factorl" width="100" textsize="3">
</textout>
<textout valueprop="factorl" width="100" textsize="6">
</textout>
</itr>
</rowarea>
Properties
Basic
width Width of the control. Sometimes|100
obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width 140
of the control will either be a default width or - in case
of container controls - it will follow the width that is 160
ied by it tent.
occupied by its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. 509
"50%"). Pay attention: percentage sizing will only bring ?
up correct results if the parent element of the control 100%
properly defines a width this control can reference. If you
498 Natural for Ajax

TEXTOUT

specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

valueprop Name of the adapter parameter that provides the content|Obligatory
of the control.
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
width (already explained above)
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the
control is a container control (containing) other controls 250
then the height of the control will follow the height of its 300
content.
. L iy 250
(B) Pixel sizing: just input a number value (e.g. "20").
(C) Percentage sizing: input a percantage value (e.g. 400
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control
properly defines a height this control can reference. If 100%
you specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.
nowrap If the textual content of the control exceeds the size of the |Optional |true
control then the browser automatically breaks the line
and arranges the text accordingly. false
You can avoid this behaviour by setting NOWRAP to
"true". No line break will be performed by the browser.
textsize The HTML font size of the text. Corresponding to the |Optional |1
HTML definition "1" means "smallest" and "6" means
"biggest". 2
3
4
5
6

Natural for Ajax

499

TEXTOUT

textcolor Colour of the text. Input a value like "#FF0000". Optional [#FF0000
#00FF00
#0000FF
#FFFFFF
#808080
#000000
datatype By default, the control is managing its content as string. |Optional |date
By explicitly setting a datatype you can define that the
control will format the data coming from the server: if float
the field has datatype "date" and the user inputs "010304" -
then the input will be translated into "01.03.2004" (or other m
representation, dependent on date format settings). long
Please note: the datatype "float" is named a bit misleading time
- it represents any decimal format number. The server
side representation may be a float value, but also can be timestamp
a double or a BigDecimal property.
color
xs:decimal
xs:double
xs:date
xs:dateTime
xs:time
Nnn
Pnn
string n
xs:byte
xs:short
straighttext If the text of the control contains HTML tags then these |Optional |true
are by default interpreted by the browser. Specifiying
STRAIGHTTEXT as "true" means that the browser will false
directly render the characters without HTML
interpretation.
500 Natural for Ajax

TEXTOUT

Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column center
itself is part of a row (e.g. ITR or TR). Sometimes the size
of the column is bigger than the size of the control itself. right
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.
If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom
case the "align" property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By default it is "1" - but you may want to define the 3
control to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value

Natural for Ajax

501

TEXTOUT

bgcolorprop

Name of an adapter parameter that passes back a color
value (e.g. "#FF0000" for red color). The color value is
used as background color in the control. The color of the
text color is automatically chosen dependent from the
background color: for light background colors the text
color is black, for dark background colors the color is
white. Use FGCOLORPROP to choose the text color on
your own.

Optional

fgcolorprop

Name of an adapter parameter that passes back a color
value (e.g. "#FF0000" for red color). The color value is
used as text color in the control. The background color
is automatically chosen dependent from the text color:
for dark text colors the background color is transparent
(default), for light text colors the color is black. Use
BGCOLORPRORP to choose both - the text and
background color.

Optional

textoutstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

textoutclass

CSS style class definition that is directly passed into this
control.

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that you
maintain with the style sheet editor) - or it can be one of
an other style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

Optional

stylevariant

Some controls offer the possibility to define style variants.
By this style variant you can address different styles
inside your style sheet definition file (.css). If not defined
"normal” styles are chosen, if defined (e.g. "VAR1") then
other style definitions (xxxVAR1xxx) are chosen.

Optional

VARI1

VAR2

VAR3

VAR4

502

Natural for Ajax

TEXTOUT

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently offerst
two variants "VAR1" and "VAR2" but does not predefine
any semantics behind - this is up to you!

Binding
valueprop (already explained above)
titleprop Name of the adapter parameter that dynamically defines |Optional
the title of the control. The title is displayed as tool tip
when ther user moves the mouse onto the control.
bgcolorprop (already explained above)
fgcolorprop (already explained above)
visibleprop Name of the adapter parameter that provides the Optional
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.
invisiblemode |If the visibility of the control is determined dynamically |Optional |invisible
by an adapter property then there are two rendering
modes if the visibility is "false": cleared
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: it is "grayed"
and does not show any roll over effects any more.
Natural

njx:natstringtype

If the control shall be bound to a Natural system variable
of string format with the attribute njx:natsysvar, this
attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

Optional

njx:natsysio

If the control shall be bound to a Natural system variable
with the attribute njx:natsysvar, this attribute indicates
if the system variable is modifiable. The default is false.

Optional

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name (in
this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area
of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement
of the Natural adapter.

Optional

njx:natsysvar

If the control shall be bound to a Natural system variable,
this attribute specifies the name of the system variable.

Optional

njx:natcomment

The value of this attribute is generated as comment line
into the parameter data area of the Natural adapter,

Optional

Natural for Ajax

503

TEXTOUT

before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

njx:natcv Name of a Natural control variable that shall be assigned |Optional
to the control. The control variable must be defined in a
Data Definition (XCIDATADEF) control on the same
page. The application can use the control variable to check
the modification status of the control.
504 Natural for Ajax

74 TOGGLE

LI (] L= T SRS PPPPUPRRR 506

505

TOGGLE

The TOGGLE control is used to display and to edit a selection status. In principle, it acts similar
to a CHECKBOX control, but it

® allows to define different icon images for the "true" and "false" representations;

* allows being informed when the user presses the CTRL or SHIFT key when clicking the icon. With
this information, you can react on a combination of sHIFT and click in a different way than to a
normal click or a combination of CTRL and click. This is especially useful inside grid processing
when you want to allow the user to do mass selections.

Properties
Basic
valueprop Name of the adapter parameter that represents the value of the |Obligatory
control.
trueimage Image URL that is shown if the corresponding property value is |Obligatory|gif
"true”. _
P8
jpeg
falseimage Image URL that is shown if the corresponding property value is |Obligatory|gif
"true". .
P8
jpeg
comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
Appearance
width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the 509
parent element of the control properly defines a width this control ?
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

506 Natural for Ajax

TOGGLE

height Height of the control. Optional
There are three possibilities to define the height:
(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.
(B) Pixel sizing: just input a number value (e.g. "20").
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
partialimage Image URL that is shown if the corresponding property value is |Optional
"null".
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1" -
but you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default itis "1" - but
you may want to define the control two span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
tabindex Index that defines the tab order of the control. Controls are selected |Optional |-1
in increasing index order and in source order to resolve duplicates.
0

Natural for Ajax

507

TOGGLE

10

32767

backgroundclass | CSS style class definition that is directly passed into this control. |Optional

The style class can be either one which is part of the "normal" CIS
style sheet files (i.e. the ones that you maintain with the style sheet
editor) - or it can be one of an other style sheet file that you may
reference via the ADDSTYLESHEET property of the PAGE tag.

Binding

valueprop (already explained above)

statusprop Name of the adapter parameter that dynamically passes information |Optional
how the control should be rendered and how it should act. Use
DISPLAYPROP to dynamically define whether the field is
displayonly.

shiftmethod Name of the event that is sent to the adapter when the user clicks |Optional
on the toggle control and presses the Shift-key the same time.

controlmethod |Name of the event that is sent to the adapter when the user clicks |Optional
on the toggle control and presses the Ctrl-key the same time.

flush Flushing behaviour of the input control. Optional |screen

By default an input into the control is registered within the browser server
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the
input a synchronization with the server adapter is triggered. As
consequence you directly can react inside your adapter logic onto
the change of the corresponding value. - Please be aware of that
during the synchronization always all changed properties - also
the ones that were changed before - are transferred to the adapter
object, not only the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if you
want to pass one changed value to all its representaion directly
after changing the value.

flushmethod When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to be sent

508 Natural for Ajax

TOGGLE

when the user updates the content of the control. By doing so you
can distinguish on the server side from which control the flush of
data was triggered.

Online Help
title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.
titletextid Text ID that is passed to the multi lanaguage management - Optional

representing the tooltip text that is used for the control.

Natural for Ajax

509

510

75

ACTIVEX

= Properties

511

ACTIVEX

This is a ,hot topic”: embedding ActiveX controls in pages. Before telling you what the control
does, let us explain why we do it:

Of course, the client integration of ActiveX controls has - from browser or SWT perspective - only
disadvantages:

" ActiveX controls are not secure: you decide to run one control or not. But do not have a ,,sandbox”
as you have with JavaScript or with applets. Using an ActiveX control means that this contol -
once running - has native access to your computer, just as any other native program.

" ActiveX controls are bound to the Microsoft Windows platform.

" ActiveX controls need to be explicitly installed on the client side - maybe automated in some
way, but still an explicit installation is necessary.

But - and this is why we support them - in some cases, they are a nice way to integrate other soft-
ware which runs out of the scope of the browser.

Example: you may want to integrate your user interface with a barcode reader which is connected
to your client via a serial interface. In this case, there is no way to access this barcode reader via
JavaScript. You need to use an ActiveX control (or a signed applet) to connect to the serial device.

There is a simple interface between HTML/JavaScript and ActiveX, and vice versa. ActiveX controls
can be embedded into an HTML page and it is possible to directly access properties of the ActiveX
control from JavaScript. This interface was used for building the ACTIVEX control that you can
use as an Application Designer control.

Properties
Basic
classid Class id of the ActiveX control. A string in the format Optional

"8E27C92B-1264-101C-8A2F-040224009C02" representing the UUID of the
ActiveX component. The CLASSID is used inside the HIML client to reference
the ActiveX control.

progid The unique program identifier which has been registered for this ActiveX |Optional
Control like "Shell. Explorer"

xinitparams|Init parameters that are used for creating an instance of the ActiveX control. |Optional
Values are passed as semicolon separated string: property;value;property;value
etc.

The property is the name of the ActiveX control's property that is initialized
with the corresponding value.

setxparams |Same as GETXPARAMS but now the other direction. Adapter properties that| Optional
are transferred (on change) into corresponding ActiveX properties with each

512 Natural for Ajax

ACTIVEX

repsonse. The string format is the same:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.

getxparams |Semicolon separated list of which ActiveX control are linked with which Optional
adapter properties. The format is:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.
With each request send from the browser the ActiveX properties are collected
in from the ActiveX control and are transferred (if they have changed) into
the corresponding adapter properties.activex_attr_progid"Program id of the
ActiveX control. E.g. "MSCAL.Calendar" for the Microsoft calendar. The
PROGID is used inside the SWT client to access the ActiveX control.

width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the control will 140
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 200
percentage sizing will only bring up correct results if the parent element of 50%
the control properly defines a width this control can reference. If you specify ?
this control to have a width of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a width of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

height Height of the control. Optional {100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will be 200
rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow the height 250

f it tent.
of its conten 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
o . ; . 400

percentage sizing will only bring up correct results if the parent element of
the control properly defines a height this control can reference. If you specify 50%
this control to have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element does not specify a 100%
width then the rendering result may not represent what you expect.

reloadprop |Name of the adapter parameter that indicates that the ActiveX control is Optional
reloaded with every response from the server that changed data of the ActiveX
control.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional

shown in the layout editor's tree view.

Natural for Ajax

513

514

76 GOOGLEMAP2

B BEfOrE YOU SHAM ... e e e 516
B EXAMPIE oo 517
B TYPICAI PrODIBIMS ...t 518
LI (L= T SRS PPRR 519

515

GOOGLEMAP2

The GOOGLEMAP?2 control is used to provide for Google Maps support within Application
Designer pages. The control internally makes use of the Google Maps APL. In order to use the
control on your site, you need to sign up for a Google Maps API key at http://code.goo-
gle.com/apis/maps/signup.html. Make sure that you agree with the Google Maps API Terms of
Use (http://code.google.com/apis/maps/terms.html).

Before You Start

In order to use the GOOGLEMAP2 control, you need to sign up for a Google Maps API key. A
key is valid for a single ,,directory” on your web server only, i.e. you sign up for a URL like
http:/lwww.mysite.com/mywebapp/myproject. With a standard installation of Application Designer
on localhost, you may sign up for the URL http://localhost:8080/mywebapp/myproject. Typically, you
develop your Application Designer web application not on the site on which you run it later in
productive mode. Therefore, you may sign up for two different sites (development and production
site).

Required Steps

1. Choose the project directory that keeps the layouts using the GOOGLEMAP2 control.

2. Sign up for a Google Maps API key at http://code.google.com/apis/maps/signup.html for this
project directory (e.g. http://localhost:8080/mywebapp/myproject).

3. Create the API key page. Store the key page in the registered project directory. You are free in
naming the file (the file extension must be "html"). The GOOGLEMAP2 control embeds your
API key as a subpage. The subpage must have the following minimum structure:

<html>
<head>
<script src="
http://maps.google.com/maps?file=api&v=2.x&key=YOUR_API_KEY"></script>
{script src="../HTMLBasedGUI/general/googlemapsscript.js"></script>
</head>
<body>
<div id="map" style="position:absolute; topO; left:0;"></div>
</body>
</html>

You see that the page includes two JavaScript libraries. The first line refers to the Google Maps
API. Replace the placeholder "YOUR_API_KEY" with your Google Maps API key. With the
second line, the page includes the control's scripting (calls from Application Designer to the
Google Maps). The page body is quite simple: it contains a single div tag with the ID "map".
This div is used as an anchor to insert Google Maps controls dynamically.

516 Natural for Ajax

http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/terms.html
http://code.google.com/apis/maps/signup.html

GOOGLEMAP2

Example

= General Usage

General Usage

The map options are taken from the property infoprop. On this object, you may set the address
(or latitude and longitude), the zoom level and the map size as well as the map type.

] Note: The usage of address or longitude/latitude is mutually exclusive.

Street: |
City:
Country:
Go to Address

|Hotel Mathildenhahe =l

Remove all Hotels
Show all Hatels

- Remove selected Hotel

Flace™ new Hotel

*select place by clicking an the map

Natural for Ajax

517

GOOGLEMAP2

Typical Problems

= (Google Map API Key
= Map Remains Gray

Google Map API Key

Your Google Maps API key is bound to a directory on a certain web server (i.e. you sign up for
the URL http://mycomputer.mydomain.com:8080/mywebapp/myproject). If you use your key for another
URL, Google shows an error message:

Microsoft Internet Explorer

L] Thes Googls Maps AP key used on thes web sbe was regatersd for & different web site. You can generabe & nisw key For this web site at
. hittpe: [eseees poogle , comyfapis fmaps) .

Reasons that cause the error:

" You have registered your computer using the computer's name (e.g. http://mycomputer...). But
the Application Designer development workplace is started using the URL http://localhost....

Solution: start the Application Designer workplace with http://mycomputer....

® The registered directory (e.g. .../mywebapp/myproject) does not match your installation (either a
mistake in writing when signing up for the key or you have renamed the web application or
project after registration).

Solution: rename your web application or project to match the registered names. Or sign up for
a new key and insert the new key into the API key page. In the latter case, delete the content of
the browser's cache. Otherwise, the browser will use the former API key page (and thus the old

key).
Map Remains Gray
If you use longitude and latitude for placing the marker on the map, their values may exceed the

map top (or bottom) border. If you are able to find the map by scrolling down (or up), then this
is the case. Check the values for longitude and latitude in this case.

518 Natural for Ajax

GOOGLEMAP2

Properties
Basic
infoprop Name of adapter parameter that represents the control in the Obligatory
adapter.
apikeypagename |Name of the Maps API Key page. Example: Obligatory
mygooglemapsapikey.html. Keep this file within the project
directory (directory within the CIS HTML pages are kept). The
GOOGLEMAP-control expects this file within certain Javascript
includes and content. Have look into chapter "Google Map - Before
You Start" within the Developers Guide
width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
; . . 50%
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional |100
There are three possibilities to define the height: 150
A) You do not define a height at all. As consequence the control 200
(A) 8 q
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%

of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

Natural for Ajax

519

GOOGLEMAP2

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
Appearance
pagestyle CSS style definition that is directly passed into this control. Optional
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating them
with a semicolon.
Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By defaultitis "1" - but
you may want to define the control two span over more than one 3
1 .
columns 4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than 3
one columns. 4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
520 Natural for Ajax

77

NETMEETING

= Example ..

= Properties

521

NETMEETING

The NETMEETING control allows you to start NetMeeting sessions within your Application
Designer pages.

Example

MNetMeeting Testpage £3

The XML layout definition is:

<pagebody>
<Gitr>
<netmeeting calltoprop="callto" modeprop="modep" width="300">
<{/netmeeting>
</itr>
</pagebody>

Properties

Basic

calltoprop |Name of the adapter parameter that provides the contact data of the 'contact’ |Optional
that should be called.

The data has to have the following semantics.

ILS Server/email adress e.g. ils.netmeeting.de/contact@testmail.com

modeprop |Name of the adapter parameter that holds the mode of the control. Optional

522 Natural for Ajax

NETMEETING

Possible are:

FULL, PREVIEWONLY, PREVIEWNOPAUSE, REMOTEONLY,
REMOTENOPAUSE, DATAONLY

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the
control properly defines a width this control can reference. If you specify this
control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

Optional

100
120
140
160
180
200
50%

100%

Natural for Ajax

523

524

7 8 SKYPECALL

L 11T o] (- ST SPPPPTPPRR 527
B PIOPEITIES oo 527

525

SKYPECALL

The SKYPECALL control allows you to start the Skype client with given contact data from your
Application Designer pages.

A\ Important: In order to use the SKYPECALL control you need to have a valid Skype account
and the Skype client must be installed. For further information, see http://www.skype.com/.

526 Natural for Ajax

http://www.skype.com/

SKYPECALL

skmm“: | skype" - shype e ‘Jﬂ.ﬂ
Click on the link bo start the Skype dient:¥ alidsivpaID Dabsi Arsicht Kontakbs Akbonen Ancf Hife
o skevpe
= -,‘_'.:, ':_5| e'ﬂilldikﬁhﬂd
i -
Annfer mzufugen Extras
waliclskyprid
|
(400 i+
Vearbancdungs sfe
(IR L &
Ilr_h\‘ e
e]
.
-y
war B 2 usldskypesid vrd sngerufen, . 5,797,663 Kork..,

The XML layout definition is:

<{pagebody>
<tr>
<label name="Click on the link to start the Skype client: "
asplaintext="true"></label>

<skypecall valueprop="skypecall"></skypecall>
</itr>

</pagebody>

Properties

Basic

valueprop |Name of the adapter parameter that contains the phone number or the Skype ID |Obligatory
of the person that should be called. It is also possible to set some parameters.

For further information, see the Skype APL

Note: The Skype client must be installed if you want to use this control.

Natural for Ajax 527

528

79 NJX:BUTTONITEMLIST

L 11T o] (- ST SPPPPTPPRR 531
B AQAPIEr INEEITACE .. .uviiii e 531
B BUIE-IN EVENES L. 532
LI (L= T SRS PPRR 532

529

NJX:BUTTONITEMLIST

The NJX:BUTTONITEMLIST control is used to arrange buttons in a horizontal line. In contrast to
the NJX:BUTTONITEMLISTFIX control, the number of buttons in an NJX:BUTTONITEMLIST
control can be changed dynamically (up to an upper limit defined at design time), but the layout
of the buttons cannot be configured individually. Instead, all buttons in the list are configured
with the same layout.

530 Natural for Ajax

NJX:BUTTONITEMLIST

Example

r[l*yrﬂanrnﬁwt: Buttonlist: Processing Samples -

Init 4 Buttons _1 add 2 More | Hide 2 + 3 - Show 2 + 3

r[]ﬂl.ll'namlliut: Buttonlist =
Button1 | | Button 2 Button 3 Button 4

The XML code for the example looks as follows:

<{rowarea name="Dynamic Buttonlist">
<Gtr>
<njx:buttonitemlist buttonlistprop="dynbuttons"
buttoncount="10" hdist="10">
<njx:buttonitem width="100">
</njix:buttonitem>
</njx:buttonitemlist>
</itr>
</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 DYNBUTTONS (1:%*)

2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC

2 TITLE (A) DYNAMIC
2 VISIBLE (L)
END-DEFINE

Natural for Ajax 531

NJX:BUTTONITEMLIST

Built-in Events

The buttons in the NJX:BUTTONITEMLIST control (NJX:BUTTONITEM controls) behave like

BUTTON controls.
Properties
Basic
buttonlistprop [Name of the adapter parameter that represents the control in the adapter. |Obligatory
buttoncount |Maximum count of buttons in the buttonlist. Optional
If no buttoncount is defined then a default of 10 is assigned.
hdist Horizontal distance between the buttons. Can be specified either in pixels or|Optional
as percentage value.
If no width is defined then a default width of 2 pixels is assigned.
532 Natural for Ajax

80 NJX:BUTTONITEM

L 11T o] (- ST SPPPPTPPRR 534
B B U EVENES e a e e 534
LI (] 1= PSPPSR 535

533

NJX:BUTTONITEM

The NJX:BUTTONITEM control is used to configure the buttons in an NJX:BUTTONITEMLIST
control. Only one NJX:BUTTONITEM control is needed in an NJX:BUTTONITEMLIST control.

This NJX:BUTTONITEM control is used to configure all buttons in the same way.

Example

r[hrnam?c Buttonlist: Processing Samples

Init 4 Buttons add 2 More | Hide 2 + 3 - Show 2 + 3

r[hmamic Buttonlist

Button 1 | | Button 2 Button 3 Button 4

The XML code for the example looks as follows:

<rowarea name="Dynamic Buttonlist">
<Gtr>
<njx:buttonitemlist buttonlistprop="dynbuttons"
buttoncount="10" hdist="10">
<njx:buttonitem width="100">
</njx:buttonitem>
</njix:buttonitemlist>
</itr>
{/rowarea>

Built-in Events

The NJX:BUTTONITEM control behaves like a BUTTON control.

534

Natural for Ajax

NJX:BUTTONITEM

Properties
Basic
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
image URL of image that is displayed inside the control. Any image |Optional | gif
type (.gif, .jpg, ...) that your browser does understand is valid. .
P8
Use the following options to specify the URL: .
Jpeg
(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUl/images/new.gif" will
point to an image of a neighbour project.
(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".
invisiblemode | This property has three possible values: Optional |invisible
(1) "invisible": the button is not visible without occupying any disabled
space.
cleared
(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.
(3)"cleared": the button is not visible but it still occupies space.
width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of 140
the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 160
by it tent.
y its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 50%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 100%

width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does
not specify a width then the rendering result may not
represent what you expect.

Natural for Ajax

535

NJX:BUTTONITEM

height Height of the control. Optional |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%").
. o . . 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 50%
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a height of "100%". If the parent element
does not specify a width then the rendering result may not
represent what you expect.
imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
textstyle CSS style definition that is directly passed into the text of this |Optional |background-color:
control. #FF0000
With the style you can individually influence the text of the color: #0000FF
button. You can specify any style sheet expressions. Examples
are: font-weight: bold
font-weight: bold
color: #FF0000
buttonstyle |CSS style definition that is directly passed into this control. |Optional|background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.
stylevariant |Some controls offer the possibility to define style variants. By |Optional | VAR1
this style variant you can address different styles inside your
536 Natural for Ajax

NJX:BUTTONITEM

style sheet definition file (.css). If not defined "normal" styles VAR2
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.
Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!
align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself center
is part of a row (e.g. ITR or TR). Sometimes the size of the .
column is bigger than the size of the control itself. In this case right
the "align" property specifies the position of the control inside
the column. In most cases you do not require the align control
to be explicitly defined because the size of the column around
the controls exactly is sized in the same way as the contained
control.
If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign" in
which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself middle
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the bottom
"align" property specify the position of the control inside the
column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 1
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span 3
over more than one columns. 4

Natural for Ajax

537

NJX:BUTTONITEM

The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
licitly not hed.
explicitly not synche int-value
imagedisabled |URL of image that is displayed if the control is disabled. Use|Optional | gif
properties VISIBLEPROP and INVISIBLEMODE to disable .
the control. P8
jpeg
submitbutton |Set this property to true and the button will work as an Optional |true
'Submitbutton’, that is neccessary if you want to transfer
and/or save form values. false
i.e. password and username or complete search forms
Default value is false.
You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.
tabindex Index that defines the tab order of the control. Controls are |Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
Miscellaneous
testtoolid Use this attribute to assign a fixed control identifier that can |Optional
be later on used within your test tool in order to do the object
identification
538 Natural for Ajax

81 NJX:BUTTONITEMLISTFIX

L 11T o] (- ST SPPPPTPPRR 540
B AQAPIEr INEEITACE .. .uviiii e 540
B BUIE-IN EVENES L. 541

541

LI (L= T SRS PPRR

539

NJX:BUTTONITEMLISTFIX

The NJX:BUTTONITEMLISTFIX control is used to arrange buttons in a horizontal line. In contrast
to the NJX:BUTTONITEMLIST control, the number of buttons in an NJX:BUTTONITEMLIST
control cannot be changed dynamically, but the layout of the buttons can be configured individually.

Example
rF'tx Buttonlist: Processing Samples -
........ Init Buttons i Toggle Visible

'Fix Buttonlist -
Button 1 Button 2

The XML code for the example looks as follows:

<{rowarea name="Fix Buttonlist">
<Gtr>
<njx:buttonitemlistfix buttonlistprop="fixbuttons" hdist="4">
<njx:buttonitemfix method="onButtonl"
invisiblemode="cleared" width="300">
</njix:buttonitemfix>
<njx:buttonitemfix method="onButton2"
invisiblemode="disabled" width="100">
</njx:buttonitemfix>
</njx:buttonitemlistfix>
</itr>
{/rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 FIXBUTTONS (1:%*)

2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC

2 TITLE (A) DYNAMIC

2 VISIBLE (L)
END-DEFINE

540 Natural for Ajax

NJX:BUTTONITEMLISTFIX

Built-in Events

The buttons in the NJX:BUTTONITEMLISTFIX control (NJX:BUTTONITEMFIX controls) behave
like BUTTON controls.

Properties

Basic

buttonlistprop [Name of the adapter parameter that represents the control in the adapter. |Obligatory

hdist Horizontal distance between the buttons. Can be specified either in pixels or|Optional
as percentage value.

If no width is defined then a default width of 2 pixels is assigned.

Natural for Ajax 541

542

82 NJX:BUTTONITEMFIX

L 11T o] (- ST SPPPPTPPRR 544
B B U EVENES e a e e 544
LI (] 1= PSPPSR 545

543

NJX:BUTTONITEMFIX

The NJX:BUTTONITEMFIX control is used to configure the individual buttons in an NJX:BUTTO-
NITEMLISTFIX control. For each button in the NJX: BUTTONITEMLISTFIX control, one
NJX:BUTTONITEMFIX control is needed.

Example
rF'tx Buttonlist: Processing Samples -
........ Init Buttons | Toggle Visible
Fix Buttonlist —
Button 1 Button 2

The XML code for the example looks as follows:

<{rowarea name="Fix Buttonlist">
<Gtr>
<njx:buttonitemlistfix buttonlistprop="fixbuttons" hdist="4">
<njx:buttonitemfix method="onButtonl"
invisiblemode="cleared" width="300">
</njx:buttonitemfix>
<njx:buttonitemfix method="onButton2"
invisiblemode="disabled" width="100">
</njx:buttonitemfix>
</njx:buttonitemlistfix>
</itrd>
{/rowarea>

Built-in Events

The NJX:BUTTONITEMFIX control behaves like a BUTTON control.

544 Natural for Ajax

NJX:BUTTONITEMFIX

Properties

Basic

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Sometimes
obligatory

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Sometimes
obligatory

method

Name of the event that is sent to the adapter when the user
presses the button.

Obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

image

URL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does understand
is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
jpg

jpeg

invisiblemode

This property has three possible values:

(1) "invisible": the button is not visible without occupying
any space.

(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies
space.

Optional

invisible

disabled

cleared

width

Width of the control.

There are three possibilities to define the width:

Optional

100

120

140

Natural for Ajax

545

NJX:BUTTONITEMFIX

(A) You do not define a width at all. In this case the width 160
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 180
by its content. 200
(B) Pixel sizing: just input a number value (e.g. "100"). 50%
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 100%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
textstyle CSS style definition that is directly passed into the text of |Optional |background-color:
this control. #FF0000
With the style you can individually influence the text of the color: #0000FF
button. You can specify any style sheet expressions.
Examples are: font-weight: bold
font-weight: bold
color: #FF0000
546 Natural for Ajax

NJX:BUTTONITEMFIX

buttonstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

stylevariant

Some controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style

definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional

VARI1

VAR2

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the
column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the
align control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Optional

top
middle

bottom

colspan

Column spanning of control.

Optional

Natural for Ajax

547

NJX:BUTTONITEMFIX

If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span 3
over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
imagedisabled |URL of image that is displayed if the control is disabled. |Optional |gif
Use properties VISIBLEPROP and INVISIBLEMODE to .
disable the control.)22
jpeg
submitbutton |Set this property to true and the button will work asan |Optional |true
'Submitbutton’, that is neccessary if you want to transfer
and/or save form values. false
i.e. password and username or complete search forms
Default value is false.
You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.
tabindex Index that defines the tab order of the control. Controls are|Optional -1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
548 Natural for Ajax

NJX:BUTTONITEMFIX

32767
Binding
method (already explained above)
Online help
title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.
titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.
Miscellaneous
testtoolid Use this attribute to assign a fixed control identifier that can|Optional
be later on used within your test tool in order to do the
object identification

Natural for Ajax 549

550

83 NJX:FIELDLIST

L 11T o] (- ST SPPPPTPPRR 553
B AQAPIEr INEEITACE .. .uviiii e 554
B BUIE-IN EVENES L. 554
LI (L= T SRS PPRR 554

551

NJX:FIELDLIST

The NJX:FIELDLIST control is used to arrange fields or groups of fields in a horizontal line. The

difference of using the NJX:FIELDLIST control instead of individual fields is that the NJX:FIELDLIST
control binds the contained fields to an array or array group in the application, while individual
fields are bound to individual variables.

552 Natural for Ajax

NJX:FIELDLIST

Example

Complex Field List -
111100102 _11100105 | 111100106 _1110010? | 111100108
|Schindler Schirm |Schmitt Schmidt |Schneider

Edgar Christian Reiner Helga Wolfgang
'Simple Field List -

Schindle|Schirm | Schmitt Schmidt|Schneic Schneic Bunged|Thiele | Thoma |[Treiber

The XML code for the example looks as follows:

<rowarea name="Complex Field List">
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="60">
<njx:fielditem valueprop="id" width="80"
invisiblemode="cleared">

</njx:fielditem>

</njx:fieldlist>

</itr>

<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="10">

<njx:fielditem valueprop="last" width="130"
invisiblemode="invisible">
</njx:fielditem>

</njx:fieldlist>

<litr>

<itr>
<njx:fieldlist fieldlistprop="columns™ fieldcount="5"
hdist="40">

<njx:fielditem valueprop="first" width="100"
invisiblemode="invisible">
<njx:fielditem>
</njx:fieldlist>
</itr>
<{/rowarea>
<rowarea name="Simple Field List">
<Gtr>
<njx:fieldlist fieldlistprop="simple"” fieldcount="10">
<njx:fieldvalue width="50">
</njx:fieldvalue>
</njx:fieldlist>
</itr>
</rowarea>

Natural for Ajax 553

NJX:FIELDLIST

Adapter Interface

DEFINE DATA PARAMETER

1 COLUMNS (1:%*)

2 FIRST (A) DYNAMIC

2 ID (A) DYNAMIC

2 LAST (A) DYNAMIC

2 STATUS (A) DYNAMIC

1 SIMPLE (A/1:*) DYNAMIC
END-DEFINE

For all NJX:FIELDLIST controls that are bound to the same valuein field1istprop (here: columns),
one common structure array is generated (here: COLUMNS).

For each NJX:FIELDITEM control, an element in the structure is generated according to the value
bound in valueprop (here: FIRST, ID and LAST).

For each occurrence of the structure array, a parameter with the fixed name STATUS is generated.
This parameter can be used to control the status of the elements in a similar way as it is done with
the statusprop of the FIELD control.

For a simple field list (one that contains an NJX:FIELDVALUE control), a simple array is generated
according to the value bound in valueprop (here: SIMPLE).

Built-in Events

The fields in the NJX:FIELDLIST control (NJX:FIELDITEM controls or N]JX:FIELDVALUE controls)
behave like FIELD controls.

Properties

Basic

fieldlistprop Name of the adapter parameter that represents the control in the adapter. |Obligatory

fieldcount Maximum count of fields in the fieldlist. If no fieldcount is defined then a |Optional
default of 10 is assigned.

hdist Horizontal distance between the fields Can be specified either in pixels or |Optional
as percentage value.

If no width is defined then a default width of 2 pixels is assigned.

554 Natural for Ajax

NJX:FIELDLIST

njx:natname If a Natural variable with a name not valid for Application Designer (for |Optional
instance #FIELD1) shall be bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name (in this case #FIELD1)
is then specified in this attribute, the original name is generated into the
parameter data area of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement of the Natural
adapter.

njx:natcomment | The value of this attribute is generated as comment line into the parameter |Optional
data area of the Natural adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a generated statusprop variable
to which field the statusprop belongs.

Natural for Ajax 555

556

84 NJX:FIELDITEM

L 11T o] (- ST SPPPPTPPRR 559
B AQAPIEr INEEITACE .. .uviiii e 560
B BUIE-IN EVENES L. 560
LI (L= T SRS PPRR 560

557

NJX:FIELDITEM

The NJX:FIELDITEM control is used to configure the individual fields in an NJX:FIELDLIST
control in order to create a complex field list. The fields of a complex field list are mapped to a
group array in the Natural application. For each field in the NJX:FIELDLIST control, one
NJX:FIELDITEM control is needed. The NJX:FIELDITEM controls are used to configure the fields
in the list independently.

558 Natural for Ajax

NJX:FIELDITEM

Example
"Complex Field List -
11100102 11100105 11100106 (11100107 11100108
Schindler Schirm Schmitt Schmidt Schneider
Edgar Christian Reiner Helga Wolfgang
The XML code for the example looks as follows:
<rowarea name="Complex Field List">
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="60">
<njx:fielditem valueprop="id" width="80"
invisiblemode="cleared">
</njx:fielditem>
</njx:fieldlist>
</itr>
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="10">
<njx:fielditem valueprop="last™ width="130"
invisiblemode="1invisible">
</njx:fielditem>
<njx:fieldlist>
</itr>
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="40">
<njx:fielditem valueprop="first" width="100"
invisiblemode="1invisible">
</njx:fielditem>
<Injx:fieldlist>
</itr>
</rowarea>
Natural for Ajax 559

NJX:FIELDITEM

Adapter Interface

DEFINE DATA PARAMETER

1 COLUMNS (1:*)

2 FIRST (A) DYNAMIC
2 1D (A) DYNAMIC

2 LAST (A) DYNAMIC

2 STATUS (A) DYNAMIC

END-DEFINE

For all NJX:FIELDLIST controls that are bound to the same valuein fieldlistprop (here: columns),
one common structure array is generated (here: COLUMNS).

For each NJX:FIELDITEM control, an element in the structure is generated according to the value
bound in valueprop (here: FIRST, ID and LAST).

For each occurrence of the structure array, a parameter with the fixed name STATUS is generated.
This parameter can be used to control the status of the elements in a similar way as it is done with
the statusprop of the FIELD control.

Built-in Events

The fields in the NJX:FIELDLIST control (NJX:FIELDITEM controls or N]JX:FIELDVALUE controls)
behave like FIELD controls.

Properties

Basic

valueprop Name of the adapter parameter that provides |Obligatory
the content of the control.

width Width of the control. Sometimes |100

obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g.
" 0" 200
100").
560 Natural for Ajax

NJX:FIELDITEM

(C) Percentage sizing: input a percantage value 50%
(e.g. "50%"). Pay attention: percentage sizing
will only bring up correct results if the parent 100%
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.
comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
width (already explained above)
length Width of FIELD in amount of characters. Optional |5
WIDTH and LENGTH should not be used
together. Note that the actual size of the control 10
depends on the font definition if using the 15
LENGTH property.
20
int-value
maxlength Maximum number of characters that a user may |Optional |5
enter into this FIELD. This property is not
depending on the LENGTH property - please 10
do not get confused by the similar naming. 15
MAXLENGTH has nothing to do with the
optical sizing of the control but only with the 20
number of characters you may input.
int-value
textalign Alignment of text inside the control. Optional |left
center
right
password If set to "true", each entered character is Optional [true
displayed as a "'.
false
displayonly If set to true, the FIELD will not be accessible |Optional |true
for input. It is just used as an output field.
false

Natural for Ajax

561

NJX:FIELDITEM

uppercase If "true" then all input is automatically Optional |true
transferred to upper case characters.
false
align Horizontal alignment of control in its column. |Optional |left
Each control is "packaged" into a column. The center
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than right
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.
If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged” into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than bottom
the size of the control. In this case the "align"
property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of
columns your control occupies. By default it is 3
"1" - but you may want to define the control to 4
span over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of rows
your control occupies. By default it is "1" - but 3
you may want to define the control two span 4
over more than one columns.
562 Natural for Ajax

NJX:FIELDITEM

The property only makes sense in table rows
that are snychronized within one container (i.e.
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not
synched.

5

50

int-value

fieldstyle CSS style definition that is directly passed into |Optional |background-color: #FFO000
this control.
color: #0000FF
With the style you can individually influence)
the rendering of the control. You can specify font-weight: bold
any style sheet expressions. Examples are:
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source” function.
noborder Boolean value defining if the control has a Optional [true
border. Default is "false".
false
transparentbackground | Boolean value defining if the control is rendered |Optional |true
with a transparent background. Default is
"false". false
invisiblemode If the visibility of the control is determined Optional |invisible
dynamically by an adapter property then there
are two rendering modes if the visibility is cleared
"false":
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.
tabindex Index that defines the tab order of the control. |Optional |-1
Controls are selected in increasing index order
and in source order to resolve duplicates. 0
1
2
5

Natural for Ajax

563

NJX:FIELDITEM

10

32767

Binding

valueprop (already explained above)

flush Flushing behaviour of the input control. Optional |screen

By default an input into the control is registered server
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

flushmethod When the data synchronization of the control is |Optional
set to FLUSH="server" then you can specify an
explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

valuetextprop Name of the adapter parameter that provides a|Optional
"human understandable" description for the
value: in some cases you enter an id into a
FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined into
one text (string) that is returned into the FIELD.

textidmode If using property "valuetextprop” then a field |Optional
knows an id and a text for a certain value. There
are three types of display: either both are shown

564 Natural for Ajax

NJX:FIELDITEM

together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

titleprop

Name of the adapter parameter that
dynamically defines the title of the control. The
title is displayed as tool tip when ther user
moves the mouse onto the control.

Optional

bgcolorprop

Name of the adapter parameter that provides
the background color of the control.

Optional

fgcolorprop

Name of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The
color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPROP to choose both - text and
background color.

Optional

autocallpopupmethod

Name of the adapter parameter that controls
that the field's value help event is sent to the
adapter with a certain offset (milliseconds) after
last key down event.

Optional

true

false

maxlengthprop

Name of the adapter parameter that provides
the maximum number of characters that a user
may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Optional

Validation

datatype

By default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field
with datatype "int" then a corresponding error
message will popup when the user leaves the
field.

..will format the data coming from the server
or coming form the user input: if the field has
datatype "date" and the user inputs "010304"
then the input will be translated into
"01.03.2004" (or other representation, dependent
on date format settings).

Optional

date

float

int

long

time
timestamp
color
xs:decimal
xs:double

xs:date

Natural for Ajax

565

NJX:FIELDITEM

In addition valeu popups are offered for the
user automatically for some datatypes: e.g. when
specifying datatype "date" the automatically the
field provides a calendar input popup.

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be
a float value, but also can be a double or a
BigDecimal property.

xs:dateTime

xs:time

Nnn
Pnn
string n
xs:byte

xs:short

validationrules

Contains information used for Data Validation.

Use the Validation Rules Editor to make
changes!

Optional

validation

Regular expression against which the content
of the field is checked on client side when the
user changes the field. If the validation fails then
an error message popup up and informs the
user about the wrong input.

Optional

[a-zA-Z0-9_.-]
{11\ \@[a-zA-Z0-9_.-]
(LN A \W{2,1\ \d{5}

[0-9)(-/+1+

validationprop

Name of the adapter parameter that provides a
regular expression for the validation of the field.
Works the same way as VALIDATION but in a
dynamic way.

Optional

validationuserhint

If a client side validation fails due to wrong user
input then an error popup is opened. If you
define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

Optional

validationuserhintprop

If using validation expressions (either property
"validation" or "validationprop") then a popup
comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

Optional

digits

Number that specifiies how many digits are to
be displayed (ie digits before the comma). If

using this feature then the DATATYPE property
must be set to 'float’. See also DECIMALDIGITS.

Optional

566

Natural for Ajax

NJX:FIELDITEM

3

int-value

digitsprop

Name of the adapter parameter that provides
information how many digits are to be displayed
(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'.

Optional

decimaldigits

Number that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float’.

Optional

2

3

int-value

decimaldigitsprop

Name of the adapter parameter that provides
information how many decimal digits are to be
displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float’".

Optional

spinrangemin

An integer value which defines the lower bound
of the value range.

Optional

spinrangemax

An integer value which defines the upper bound
of the value range.

Optional

Valuehelp

popupmethod

Name of the event that is sent to the adapter
when the user requests value help by pressing
F4 or F7 or by clicking into the FIELD with the
right mouse button. See at chapter 'Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

Optional

openldValueCombo
openldValueHelp

openldValueComboOrPopup

popupinputonly

Boolean property that control if a field with
POPUPMETHOD defined is still usable for
keyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

Optional

true

false

popupprop

Name of the adapter parameter that provides
the information whether a POPUPMETHOD is
available or not. This feature is used in scenarios

Optional

Natural for Ajax

567

NJX:FIELDITEM

in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

popuponalt40

Value help in a field is triggered either by
clicking with the mouse or by pressing a certain
key inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to
"true” - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

Optional

true

false

popupcombowidth

Pixel width of the standard
"openldValueCombo" popup dialog. Default is
field width or at least 150 pixel.

Optional

2

3

int-value

popupicon

URL of image that is displayed inside the right
corner of the field to indicate to the user that
there is some value help available.. Any image
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUl/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
jpg

jpeg

touchpadinput

Boolean property that decides if touch pad
support is offered for the FIELD control. The
default is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

Optional

true

false

onlinehelp

helpid

Help id that is passed to the online help
management in case the user presses F1 on the
control.

Optional

title

Text that is shown as tooltip for the control.

Optional

568

Natural for Ajax

NJX:FIELDITEM

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

formula

Contains information used by the Formula
Editor.

Use the Formula Editor to make changes!

Optional

Hot Keys

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.
Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Optional

Natural

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1)
shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.
If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter.

Optional

njx:natcomment

The value of this attribute is generated as
comment line into the parameter data area of
the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

Optional

Miscellaneous

testtoolid

Use this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

Optional

Natural for Ajax

569

570

85 NJX:FIELDVALUE

L 11T o] (- ST SPPPPTPPRR 573
B AQAPIEr INEEITACE .. .uviiii e 573
B BUIE-IN EVENES L. 573
LI (L= T SRS PPRR 574

571

NJX:FIELDVALUE

The NJX:FIELDVALUE control is used to configure the fields in an NJX:FIELDLIST control in
order to create a simple field list. The fields of a simple field list are mapped to an array in the
Natural application. Only one NJX: FIELDVALUE control is needed in an NJX: FIELDLIST control.
This NJX:FIELDVALUE control is used to configure all fields in the list in the same way.

572 Natural for Ajax

NJX:FIELDVALUE

Example

Simple Field List =
Schindlg|Schirm | Schmitt|| Schmidt Schneig|Schneig Bungeri Thiele | Thoma | Treiber

The XML code for the example looks as follows:

<rowarea name="Simple Field List">
<Gtr>
<njx:fieldlist fieldlistprop="simple" fieldcount="10">
<njx:fieldvalue width="50">
</njix:fieldvalue>
</njx:fieldlist>
</itr>
</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 SIMPLE (A/1:*) DYNAMIC
END-DEFINE

For a simple field list (one that contains an NJX:FIELDVALUE control), an array is generated
according to the value bound in valueprop (here: SIMPLE).

Built-in Events

The NJX:FIELDVALUE control behaves like a FIELD control.

Natural for Ajax 573

NJX:FIELDVALUE

Properties
Basic
width Width of the control. Sometimes |100
obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g.
"0 200
100").
N 50%
(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.
comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
width (already explained above)
length Width of FIELD in amount of characters. Optional |5
WIDTH and LENGTH should not be used
together. Note that the actual size of the control 10
depends on the font definition if using the 15
LENGTH property.
20
int-value
maxlength Maximum number of characters that a user may [Optional |5
enter into this FIELD. This property is not
depending on the LENGTH property - please 10
do not get confused by the similar naming. 15
MAXLENGTH has nothing to do with the
optical sizing of the control but only with the 20
number of characters you may input.
574 Natural for Ajax

NJX:FIELDVALUE

int-value
textalign Alignment of text inside the control. Optional |left
center
right
password If set to "true", each entered character is Optional [true
displayed as a *'.
false
displayonly If set to true, the FIELD will not be accessible |Optional |true
for input. It is just used as an output field.
false
uppercase If "true" then all input is automatically Optional |true
transferred to upper case characters.
false
align Horizontal alignment of control in its column. |Optional |left
Each control is "packaged” into a column. The center
column itself is part of a row (e.g. ITR or TR). .
Sometimes the size of the column is bigger than right
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.
If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than bottom
the size of the control. In this case the "align"
property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of
3

columns your control occupies. By default it is

Natural for Ajax

975

NJX:FIELDVALUE

"1" - but you may want to define the control to 4
span over more than one columns.
5
The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in tval
ITR rows, because these rows are explicitly not mbvatie
synched.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of rows
your control occupies. By default it is "1" - but 3
you may want to define the control two span 4
over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
fieldstyle CSS style definition that is directly passed into |Optional |background-color: #FFO000
this control.
color: #0000FF
With the style you can individually influence)
the rendering of the control. You can specify font-weight: bold
any style sheet expressions. Examples are:
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source” function.
noborder Boolean value defining if the control has a Optional [true
border. Default is "false".
false
transparentbackground | Boolean value defining if the control is rendered | Optional |true
with a transparent background. Default is
"false". false
invisiblemode If the visibility of the control is determined Optional |invisible
dynamically by an adapter property then there
576 Natural for Ajax

NJX:FIELDVALUE

are two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

cleared

tabindex

Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional

1
—_

10

32767

Binding

flush

Flushing behaviour of the input control.

By default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is
set to FLUSH="server" then you can specify an

Optional

Natural for Ajax

orT

NJX:FIELDVALUE

explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

textidmode

If using property "valuetextprop” then a field
knows an id and a text for a certain value. There
are three types of display: either both are shown
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

Optional

bgcolorprop

Name of the adapter parameter that provides
the background color of the control.

Optional

fgcolorprop

Name of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The
color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPRORP to choose both - text and
background color.

Optional

autocallpopupmethod

Name of the adapter parameter that controls
that the field's value help event is sent to the
adapter with a certain offset (milliseconds) after
last key down event.

Optional

true

false

maxlengthprop

Name of the adapter parameter that provides
the maximum number of characters that a user
may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Optional

Validation

datatype

By default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field
with datatype "int" then a corresponding error
message will popup when the user leaves the
field.

..will format the data coming from the server
or coming form the user input: if the field has
datatype "date" and the user inputs "010304"
then the input will be translated into

Optional

date

float

int

long

time
timestamp
color

xs:decimal

578

Natural for Ajax

NJX:FIELDVALUE

"01.03.2004" (or other representation, dependent
on date format settings).

In addition valeu popups are offered for the
user automatically for some datatypes: e.g. when
specifying datatype "date" the automatically the
field provides a calendar input popup.

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be
a float value, but also can be a double or a
BigDecimal property.

xs:double

xs:date

xs:dateTime

xs:time

Nnn
Pnn
string n
xs:byte

xs:short

validationrules

Contains information used for Data Validation.

Use the Validation Rules Editor to make
changes!

Optional

validation

Regular expression against which the content
of the field is checked on client side when the
user changes the field. If the validation fails then
an error message popup up and informs the
user about the wrong input.

Optional

[a-zA-Z0-9_.-]
(L \@[a-zA-Z0-9_-]
LANAw{2]\ \d{5)

[0-9)(-/+1+

validationuserhint

If a client side validation fails due to wrong user
input then an error popup is opened. If you
define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

Optional

validationuserhintprop

If using validation expressions (either property
"validation" or "validationprop") then a popup
comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

Optional

digits

Number that specifiies how many digits are to
be displayed (ie digits before the comma). If

using this feature then the DATATYPE property
must be set to 'float’. See also DECIMALDIGITS.

Optional

Natural for Ajax

579

NJX:FIELDVALUE

int-value

digitsprop

Name of the adapter parameter that provides
information how many digits are to be displayed
(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'".

Optional

decimaldigits

Number that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float'.

Optional

2

3

int-value

decimaldigitsprop

Name of the adapter parameter that provides
information how many decimal digits are to be
displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float".

Optional

spinrangemin

An integer value which defines the lower bound
of the value range.

Optional

spinrangemax

An integer value which defines the upper bound
of the value range.

Optional

Valuehelp

popupmethod

Name of the event that is sent to the adapter
when the user requests value help by pressing
F4 or F7 or by clicking into the FIELD with the
right mouse button. See at chapter Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

Optional

openldValueCombo
openldValueHelp

openldValueComboOrPopup

popupinputonly

Boolean property that control if a field with
POPUPMETHOD defined is still usable for
keyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

Optional

true

false

popupprop

Name of the adapter parameter that provides
the information whether a POPUPMETHOD is
available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

Optional

580

Natural for Ajax

NJX:FIELDVALUE

popuponalt40

Value help in a field is triggered either by
clicking with the mouse or by pressing a certain
key inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to
"true” - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

Optional

true

false

popupcombowidth

Pixel width of the standard
"openldValueCombo" popup dialog. Default is
field width or at least 150 pixel.

Optional

2

3

int-value

popupicon

URL of image that is displayed inside the right
corner of the field to indicate to the user that
there is some value help available.. Any image
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUl/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
jpg

Jpeg

touchpadinput

Boolean property that decides if touch pad
support is offered for the FIELD control. The
default is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

Optional

true

false

onlinehelp

helpid

Help id that is passed to the online help
management in case the user presses F1 on the
control.

Optional

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

Natural for Ajax

581

NJX:FIELDVALUE

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

formula

Contains information used by the Formula
Editor.

Use the Formula Editor to make changes!

Optional

Hot Keys

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.
Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Optional

Miscellaneous

testtoolid

Use this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

Optional

582

Natural for Ajax

86 NJX:NJXVARIABLE

L 11T o] (- ST SPPPPTPPRR 584
B PIOPEITIES oo 584

583

NJX:NJXVARIABLE

The NJX:NJXVARIABLE control is used in Natural Map Converter templates in order to define a
placeholder that is replaced during map conversion. For further information, see Templates in the
section Customizing the Map Conversion Process of the Application Modernization part.

Example

The Map Converter template NATPAGE_TEMPLATE contains a variable MAPROOT that receives the
result of the map conversion process. As a result, the converted Natural map content is placed
into the pagebody of the resulting page layout.

<?xml version="1.0" encoding="UTF-8"7>
<natpage xmins:njx="http://www.softwareag.com/njx/njxMapConverter"
natsource="$$NATSOURCE$$" natsinglebyte="true">

<titlebar name="$$TITLEVAR$$" align="center">

</titlebar>

<pagebody>

<njx:njxvariable name="MAPROOT"/>

</pagebody>

{statusbar withdistance="false"/>
</natpage>

Properties

Basic

name | The name of the variable. ‘Optional‘

584 Natural for Ajax

87 NJX:EVENTDATA

L 11T o] (- ST SPPPPTPPRR 587
B AQAPIEr INEEITACE .. .uviiii e 588

585

NJX:EVENTDATA

The NJX:EVENTDATA control supplies additional information related to specific events. With
some events, the application needs additional information to handle the event properly. Only one
instance of the control needs to be added to the page. This instance provides the event data for all
events of other controls on the page that supply additional data. If the page does not contain an
instance of the NJX:EVENTDATA control, no additional event data is supplied to the application.

586 Natural for Ajax

NJX:EVENTDATA

Example
" Event Data Example £3
'Event Data =
(T eliast olmest oA
ID Last First
ID Last First
kID Last First
ID Last First
D Last First
ID Last First ﬂ

+" Event lines.onClick in line 3 raised.

The XML layout definition is:

<?xml version="1.0" encoding="UTF-8"7>
<natpage natsource="CTREVD-A" natsinglebyte="true"
xmlns:njx="http://www.softwareag.com/njx/njxMapConverter">
<titlebar name="Event Data Example">
</titlebar>
<{pagebody takefullheight="true">
{rowarea name="Event Data" height="100%">
<tr height="100%">
<textgrid2 griddataprop="1lines" width="100%"
height="100%" selectprop="selected"
onclickmethod="Tines.onClick">
<column name="ID" property="id" width="100">
</column>
<column name="lLast" property="last">
</column>
<column name="First" property="first">
</column>
</textgrid2>
</itr>
</rowarea>
</pagebody>
{statusbar withdistance="false">
</statusbar>
<njx:eventdata>
</njx:eventdata>
<{/natpage>

Natural for Ajax 587

NJX:EVENTDATA

Adapter Interface

DEFINE DATA PARAMETER
1 LINES (1:%)

2 FIRST (A) DYNAMIC
2 ID (A) DYNAMIC

2 LAST (A) DYNAMIC
2 SELECTED (L)

1 XCIEVENTDATA

2 XCIINDEX (I4)
END-DEFINE

If a left click is applied to the grid, the index of the line is contained in XCIEVENTDATA.XCIINDEX.

Note that in order to receive the event data, the click event must refer to a specific control. In this
example, it must therefore be named 1ines.onC11ick, not just onC1ick.

588 Natural for Ajax

8 8 NATPAGE

LI (] L= T SRS PPPPUPRRR 590

589

NATPAGE

The NATPAGE control is always the top node of a Natural page's layout definition. The Natural
page, on the one hand, generates the visible container in which all the contained elements are
placed; on the other hand, some Natural-specific settings are defined on page level.

Properties

Basic

translationreference

This is the "translation reference" that is passed to the
multi language management.

The "tranlation reference" is a logical term representing a
group of textids together with their translation. If using
the standard file based multi language management that
comes with CIS as default then a "translation reference”
represents one file containing text-ids and translations in
a comma separated format.

Translation information is loaded by the multi language
management "per translation reference". Le. if a page links
to a certain translation reference then all the translation
information that is avaible through this reference is loaded
in one step and is also buffered.

You can set up different scenarios: either each page may
address an own translation reference. E.g. if your page is
named "abc.xml" then it references to "abc" - as
consequence there is (per language) one abc.csv file
holding translation information for this page. If you have
a second page "def.xml" then you may define "def"
accordingly. In this case each page is independent from
the other. - On the other side you are required to translate
certain "common text-ids" mulitple times.

If you on the other hand define one translation reference
for multiple pages then you can share text-ids throughout
the various pages.

Please set up a strategy for using translation references
when starting using the multi language management. The
strategy should also include a structured way of naming
text-ids. Text-ids may only be shared in an efficient way
if it is clear what they stand for. E.g. you may names of
buttons in the following way: "btn_save" and "btn_saveas".

Sometimes

obligatory

stylesheetfile

URL of a style sheet file used for control rendering.

Typically the style sheet file used for control rendering is
set dynamically e.g. the style depends on the user who is

Optional |css

590

Natural for Ajax

NATPAGE

currently logged on. When defining the style sheet file by
this property, the style sheet file is not set dynamically
but defined in a fix way for this page.

The style sheet file must be defined as URL, relative to the
generated page. A valid value may be
"../softwareag/styles/CIS_DEFAULT.css".

If not using the "hard setting" of the style sheet file via this
property then the style sheet is determined by the runtime
in the following way:

(1) The adapter object provides for a "String getStyle()"
method that return the URL. You can override the default
method and pass back your own URL.

(2) When using the default implementation derived from
com.softwareag.cis.server.Model then the getStyle()
method accesses the CIS session context. You can set the
session's style by calling "find CISessionContext()" in your
adapter and calling "setStyle()" in the session context's
object.

addstylesheetfile URL of an additional style sheet file. Optional |css

You may use this additional style sheet file in order to
define more styles than are provided in the "normal" style
sheet file. Typical situations are:

(A) Some controls offer the possibility to render defined
content by style-class definitions (e.g. inside a TEXTGRID
you can dynamically define which style-class is used for
a certain cell).

(B) If you define own controls by using the control
extension framework and if these controls require own
style classes then these style classes may be provided
inside the additional style sheet file.

By using the additional style sheet file you are able to
avoid doing manipulations to the "normal" style sheet
files that come from CIS or that are generated inside the
tool "Style Sheet Editor".

imagestopreload Semicolon separated list of image-URLSs that are directly |Optional
preloaded in an invisible area of the page. If images are
used inside a tree or a text grid then they are loaded by
dynamically generated HTML that is placed into a
corresponding area of the page. In order to optimise the
loading you can preload such images by listing them in
this property.

Natural for Ajax 591

NATPAGE

The URL of the images must be relative to your generated
HTML page.

Example: if your page has a tree with certain node images
then you may define: "images/nodeopened.gif"
images/nodeclosed.gif; images/nodeendnode.gif".

darkbackground

Normally a page background is in light colour (white if
using CIS_DEFAULT style sheet). CIS style sheets also
have a dark(er) grey colour to be used.

If DARKBACKGROUND is set to true then the darker
background colour is chosen. This property typically is
used if using the SUBCISPAGE tag or
ROWTABSUBPAGES tag to seamlessly integrate inner
pages into darker container areas.

Optional

true

false

helpid

This is the id that is passed into the help management for
the page.

If a user clicks F1 inside the page and if there is no specific
context sensitive control help available (e.g. help for field)
then the help for the page is popped up.

Optional

visiblevalueifundefined

Several CIS controls support a VISIBLEPROP property.
The VISIBLEPROP contains the binding to an adapter
property that decides at runtime if a control is visible or
not.

This property defines how these controls behave if there
is no implementation available for the property.

Example: the VISIBLEPROP of a CHECKBOX is binding
to a property "cbvisible" but there is not corresponding
implementation "getCbvisible". If set to "true" then all
controls with undefined visibility are displayed. If set to
"false" then they are hidden.

Optional

true

false

contextmenumethod

Name of the event that is sent to the adapter when the
user clicks into the page with the right mouse button and
no other control (e.g. texgrid, tree,...) handled the click so
far.

Optional

immediatedisplay

Flag that indicates if the screen is visible within the initial
loading phase. Default is false. When using the default
you see a light HTML page showing a "just loading"
image. Use property "justloadingurl” to specify a page of
choice.

Optional

true

false

addjavascriptlibs

Comma separated list of URLs of additional javascript
libraries. Example: "../yourproject/js/yourlib.js". Used to
include non-CIS javascript. Example of Usage: with the
DATEINPUT control you can run own rules to convert
and validate user input.

Optional

592

Natural for Ajax

NATPAGE

flushmethod

Name of the event that is sent to the adapter in case the
page loses the focus.

Optional

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

adapterlisteners

Semicolon separated list of classes which connect to the
server side adapter processing as adapter listeners (each
one supporting the interface IAdapterListener).

Optional

framebufferpriority

Priority (integer) that is used to manage the page within
the CIS frame buffer. Use value "-1" to indicate that the
page should not be buffered at all (typically used when
having a FILEUPLOAD?2 control on the page). Default is
"0". Use any other integer value to indicate higher priority.

Optional

centralcontextmenu

If set to 'true’ then the context menu is rendered in a
central frame. This central frame can be specified via the
"popupdivframe” setting in cisconfig.

Optional

true

false

usexmlhttprequest

By default CIS framework is using hidden frame
communication (asynchronous server communication).
Use this attribute in order to use "XMLHTTPRequests".
Typical usage is with timer pages (to avoid seeing ongoing
communication to server on browser's statusbar).

Optional

withownborder

If set to "true" the page will be surrounded by an
additional border.

Optional

true

false

userinputprop

Name of the adapter parameter which will have a value
of "true" if some userinput in the page or one of its
subpages has been done since the last server-roundtrip.

Optional

Natural

natsource

Specifies a name for the Natural adapter object that will
later be generated from your page layout. During adapter
generation, this name is checked to match the Natural
naming conventions for objects. If you do not specify a
name here, the adapter name is taken from the layout
name. This might result in names that are not valid for
Natural objects. These adapters can only be used in
Natural for Eclipse.

Optional

natsinglebyte

Specifies whether string properties of the page are to be
mapped to Unicode strings (U) or code page strings (A)
in Natural. The value "true" means code page strings. The
value "false" means Unicode strings (default).

Optional

true

false

natrecursion

Properties of controls used in the page might have a
recursive structure. These structures are mapped to
multi-dimensional arrays in the Natural adapter. Natural
arrays are limited to three dimensions. Therefore, the

Optional

Natural for Ajax

593

NATPAGE

recursion depth of these structures can be limited using
this property.

int-value

natdc

Specifies the character that is to be used as the decimal
character in the format specifications of variables with
decimal format in the parameter data area of the Natural
adapter. For example, if a comma (,) is specified, "(N7,2)"
is generated. If a period (.) is specified, "(N7.2)" is
generated. The default is the period (.).

Optional

natsss

The controls ROWTABLEAREA2 and MGDGRID support
server-side scrolling and sorting. The corresponding data
structures are generated into the parameter data area of
the Natural adapter only if this attribute has been set to
true. The default is false. This is for compatibility with
earlier versions. For the control TEXTGRIDSSS2, the
server-side scrolling data structures are always generated.

Optional

true

false

natcv

Name of a Natural control variable that shall be assigned
to the page. The control variable must be defined in a Data
Definition (XCIDATADEF) control on the same page. The
application can use the control variable to check the
modification status of the page.

Optional

xmlns:njx

Internal use only. Do not modify this.

Optional

Popup

popupwidth

Each CIS page can be opened as a popup dialog. This
properties define the pixel width preferred for the page.
- See the property "popupheight” for more information.

Optional

100px
200px
300px

400px

popupheight

Each CIS page can be opened as a popup dialog. This
property defines the pixel height preferred for the page.

A popup is typically opened by calling the
"openPopup"-method in your adapter code. If no further
definition is done then the popup will open in the height
that is defined by this value. You can also dynamically
manipulate the size and position of the popup by using
the Model-method "setPopupFeatures" - please read
corresponding documentation inside the Java API
documentation.

Optional

100px
200px
300px

400px

popupfeatures

In addition to POPUPWIDTH and POPUPHEIGHT you
can control the appearance of the popup dialog in which
the current page may be displayed. You define a string to
maintain different feature aspects, separated by
semi-colon.

Optional

dialogLeft:
200px

dialogTop:
100px

594

Natural for Ajax

NATPAGE

center:yes |no
edge:sunken | raised
resizable:yes|no
scroll:yes Ino

status:yes|no (to display or hide a status bar)

1

An example string looks as follows: "dialogLeft:100px'

There is one special function built in by which you can
position a popup relative to its caller's window (the
dialogLeft and dialogTop definition normally refer to
absolute coordinates of the screen): by specifying
"dialogLeft: SCRX(100)px" you define that the position is
100 pixels right from the left top corner of the current
window. - Use "dialogTop: SCRY(100)px" in the same way
for vertical positioning.

"

Please also pay attention to the methods "setPopupTitle()
and "setPopupPageFeatures()" in the
com.casabac.server.Model class. By using these method
you can define popup parameters in a dynamic way inside
your adapter implementation.

edge:
sunken

resizable:
yes

status: no

Occupied

occupiedimage

URL of the image that is displayed to indicate that the
screen is just communicating to the server. This is the
image that is located in the top left corner and which by
default is a flashing hour glass.

You can specify any image, e.g. also animated GIF files.
If you want your image not to be visible in the top left
corner but "somewhere" in the screen then draw an image
with some transparent area on the left and above the image
that you want to show.

Optional

occupiedpixelheight

When the screen is busy, because the client is exchanging
information with the server, an hour glass image is
displayed at the top left corner. With this property you
define the pixel height of this hour glass image.

Optional

occupiedpixelwidth

When the screen is busy, because the client is exchanging
information with the server, an hour glass image is
displayed at the top left corner. With this property you
define the pixel width of this hour glass image.

Optional

Hot Keys

hotkeys

Comma separated list of hot keys. A hotkey consists of a
list of keys and a method name. Separate the keys by "-"
and the method name again with a comma

Optional

Natural for Ajax

595

NATPAGE

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter ...defines two hot keys.
Method onCtrlAltA is invoked if the user presses
Ctrl-Alt-A. Method "onEnter" is called if the user presses
the ENTER key.

Use the popup help within the Layout Painter to input
hot keys.

Loading
justloadingurl URL of the page that is displayed to indicate that screen |Optional
is just loading. Typically this is a light HTML page
showing a loading image of choice. Use plain HTML - not
a generated CIS page.
596 Natural for Ajax

89 Working with Grids

This part shows you how to deal with grids. Working with grids is as simple as working with
singular properties because the grid management adapts seamlessly into the normal processing
of the Application Designer environment.

The information provided in this part is organized under the following headings:

Basics

TEXTGRID2

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling
ROWTABLEAREA? - The Flexible Control Grid

MGDGRID - Managing the Grid

C L L L L L

GRIDCOLHEADER - Flexible Column Headers

597

598

90 Basics

It is quite simple: ,normal” controls refer to an adapter and are bound to adapter parameters. Grid
controls refer to an adapter as well - but are bound to a group array. Each array element provides
group elements to access its content.

Two types of grid controls are available:

® The TEXTGRID2 control is a control that displays grid data - but does not allow any change to
the data. You can select grid rows and colorize them in different ways. Change the order of
columns dynamically and sort columns by clicking into the title row of the grid.

There is a TEXTGRIDSSS?2 control that is a certain variant of the TEXTGRID2 control.

® The ROWTABLEAREAZ2 is a container that internally allows you to use any normal control to
be embedded inside a grid. Therefore, you can place normal FIELD controls, CHECKBOX controls
etc. inside the ROWTABLEAREA2 container.

Use the TEXTGRID2 controls for displaying and selecting data. Use ROWTABLEAREA?2 for
entering data inside a grid.

599

600

91 TEXTGRID2

B A SIMPIE EXAMPIE ..ottt e e e e e e e e e e 602
B AQAPIEr INEEITACE .. .uviiii e 603
m Selecting ROWS iN @ TEXTGRIDZooiiiiiiieeiice e 603
B TEXTGRIDZ PrOPEITIES ... e eeeeeeeteeiiieet ettt ettt e e e e ettt e e e e e e e et eeaeeeeas 604
B COLUMN PIOPEIES ...ttt e e e et e e e e e a e e e e e e 610
= Dynamic Setting of Text Styles in TEXTGRIDZoviiiiiiiiiiii e 614

601

TEXTGRID2

A Simple Example

The following example shows a TEXTGRID2 control:

rTllaa-:tgrild -
|« |FirstName o [Last Name o [
First O Last O
First 1 Last 1
First 2 Last 2
First 3 Last 3
First 4 Last 4
First 5 Last 5
First & Last 6
First 7 Last 7
First 8 Last 8
JFir*—‘.f u] | Ast Q f

There are two columns which hold data. There is one column at the very left which displays a
selection icon - in addition to a yellow background for a selected line. Even and odd lines are dis-
played in slightly different colors. At the very right of each title column, there is a symbol which
indicates the sorting status; if you double-click on this symbol, the column is sorted first in
ascending direction and, when clicking again, in descending direction. Change the sequence of
columns by dragging the title of a column and dropping it on another column's title. Depending
from where you drop, the column is either moved left or right.

The asterisk in the upper left corner of the grid is used to select/deselect all lines in the grid. The
behavior depends on the setting of the singleselect property which determines whether multiple
lines can be selected in the grid (default) or whether only one line can be selected:

" Multiple Line Selection Mode
When you choose the asterisk for the first time, all lines are selected. When you choose the
asterisk a second time, all lines are deselected.

® Single Line Selection Mode
When you choose the asterisk (no matter how often), an existing selected line is deselected.

602 Natural for Ajax

TEXTGRID2

The XML layout definition is:

{rowarea name="Textgrid">
<tr takefullwidth="true" fixlayout="true">
<textgrid2 griddataprop="lines" width="100%" height="200"
selectprop="selected"
hscroll="true">
<column name="First Name" property="firstName" width="50%">
</column>
<column name="lLast Name" property="lastName" width="50%">
</column>
</textgride>
</itr>
<vdist height="5">
</vdist>
</rowarea>

The TEXTGRID?2 definition is bound to a grid data property 1ines.

Inside the TEXTGRID?2 control definition there are two columns. These columns are bound to the
properties firstName and TastName.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER

1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

Selecting Rows in a TEXTGRID2

Maybe you wonder why thereis a selected field in the adapter parameter data area of the previous
example.

This field is required for indicating which lines are currently selected and which are not. Each line
which is displayed in the TEXTGRID2 control is represented in the adapter by an array occurrence
of the array LINES. Therefore, the selection status of the grid (which lines are selected and which
lines are not) is mirrored by the corresponding selected field of each array occurrence.

Natural for Ajax 603

TEXTGRID2

TEXTGRID2 Properties

Basic

griddataprop Name of the adapter parameter that represents the |Obligatory
grid in the adapter.

width Width of the control. Obligatory [100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the 140
width of the control will either be a default width or -
in case of container controls - it will follow the width 160
that i ied by it tent.

at is occupied by its conten 180

(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. 509
"50%"). Pay attention: percentage sizing will only bring ?
up correct results if the parent element of the control 100%
properly defines a width this control can reference. If
you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

height Height of the control. Obligatory [100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence 200
the control will be rendered with its default height. If
the control is a container control (containing) other 250
controls then the height of the control will follow the 300
height of its content.
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. 400
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control
properly defines a height this control can reference. If 100%
you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

604 Natural for Ajax

TEXTGRID2

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

Optional

Selection

selectableprop

Name of the adapter parameter that specifies wether
a row in the grid is selectable (=true) or not (=false).
The default is selectable.

Optional

selectprop

Name of the adapter parameter that is used to mark if
an individual row of the text grid is selected.

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

Optional

singleselect

If set to "true" then only one row can be selected inside
the text grid. - If set to "false" then multiple lines can
be selected by using Ctrl- and Shift-key during mouse
selection.

Default is "false".

Optional

true

false

singleselectprop

Name of an adapter parameter that dynamically
defines whether SINGLESELECT is true or false.

Optional

onclickmethod

Name of the event that is sent to the adapter when the
user selects a row.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

Optional

ondblclickmethod

Name of the event that is sent to the adapter when the
user selects a row by a double click.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

Optional

withselectioncolumn

When defining a SELECTPROP property then
automatically a selection column is added as first left
column of the grid. Inside the column an icon inidicates
if a row is currently selected.

Set this property to "false" in order to avoid the
selection column.

Optional

true

false

withselectioncolumnicon

Flag that indicates whether the selection column shows
a "select all" icon on top. Default is true.

Optional

true

false

fgselect

if switched to true then an additional "graying" of
selected lines will be activated. Switch this property
to "true" if you have coloured textgrid cells: the

Optional

true

false

Natural for Ajax

605

TEXTGRID2

selection colour will not override the colour of each
cell, as consequence you require an additional effect
in order to make the user see which row is selected.

focusedprop Name of an adapter parameter that is used to mark if |Optional
an individual row of the text grid should receive the
focus.
If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.
Right Mouse Button
oncontextmenumethod [Name of the event that is sent to the adapter when the|Optional
user clicks with the right mouse button onto an empty
area of the grid.
singleselectcontextmenu | With SHIFT and CTRL key the user can select multiple |Optional |true
lines (use property SINGLESELECT to suppress this
feature). Use this property to ensure that the context false
menu is requested only for a single line. .
noselection
Default is "false".
enabledefaultcontextmenu |Use this property to enable the default context menu |Optional |true
of the browser within the textgrid. Please note: do not
enable the browser's context menu if your application false
itself provides for a context menu.
Default is "false".
Appearance
width (already explained above)
height (already explained above)
minapparentrows Number of rows that are displayed independent of the |Optional |1
size of the server side collection.
2
3
int-value
hscroll Definition of the horizontal scrollbar's appearance. |Sometimes|auto
obligatory
You can define that the scrollbars only are shown if scroll
the content is exceeding the control's area ("auto"). Or _
scrollbars can be shown always ("scroll"). Or scrollbars hidden
are never shown - and the content is cut ("hidden").
Default is "auto".
withtitlerow If defined as "false" then no top title row is shown. |Optional |true
"True" is default. false
606 Natural for Ajax

TEXTGRID2

colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control
occupies. By default it is "1" - but you may want to 3
define the control to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because 50
these rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies.
By default it is "1" - but you may want to define the 3
control two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because 50
these rows are explicitly not synched.
int-value
personalizable If defined to "false" then no re-arranging of columns |Optional |true
is offered to the user.
false
Default is "true". This means: if using COLUMN
controls inside the grid definition then the user can
re-arrange the sequence of columns by dragging and
dropping them within the top title row.
stylevariant Some controls offer the possibility to define style Optional |VARI1
variants. By this style variant you can address different
styles inside your style sheet definition file (.css). If not VAR2
defined "normal" styles are chosen, if defined (e.g.
"VAR1") then other style definitions (xxxVAR1xxx) are
chosen.
Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently
offerst two variants "VAR1" and "VAR2" but does not
predefine any semantics behind - this is up to you!
backgroundstyle CSS style definition that is directly passed into this |Optional

control.

Natural for Ajax

607

TEXTGRID2

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

vscroll

Definition of the vertical scrollbar's appearance.

You can define that scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or
scrollbars can be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut ("hidden").

Default is "auto".

Optional

auto

scroll

hidden

withrollover

The textgrid controls provide for a so called "roll over"
effect. The row that is currently below the mouse
pointer is highlighted in a certain way. Use this
property to disable the roll over effect (Default is
TRUE).

Optional

true

false

fixedcolumnsizes

When switching the FIXEDCOLUMNSIZES property
to value "true" then internally the grid is arranged in
a way that the area always determines its size out of
the width specification of the COLUMN controls. The
browser does not look into the column contents in
order to try to optimise the size of the area - but always
follows the width that you define.

Optional

true

false

requiredheight

Minimum height of the control in pixels. Use this
property to ensure a minimum height if the overall
control's height is a percentage of the available space
- i.e. if value of property HEIGHT is a percentage (e.g.
100%).

Please note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the
required height the end of the control is just cut off.

Optional

2

3

int-value

disablecolumnresizing

Flag that indicates if the user can change the width of
the grid columns. Default is false.

Optional

true

false

608

Natural for Ajax

TEXTGRID2

disablecolumnmoving

Flag that indicates if the user can change the order of
grid columns. Default is false.

Optional

true

false

tabindex

Index that defines the tab order of the control. Controls
are selected in increasing index order and in source
order to resolve duplicates.

Optional

0
—_

10

32767

Drag And Drop

draginfoprop

Name of the row item property that passes back the
line's "drag info". When using this attribute the grid
lines can be dragged onto "drop targets" (e.g.
DROPICON control). The dragged line is identified
by its "drag info". Use any string/information
applicable.

Optional

Natural

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name
(in this case #FIELD1) is then specified in this attribute,
the original name is generated into the parameter data
area of the Natural adapter and a mapping between
the two names is generated into the PROCESS PAGE
statement of the Natural adapter.

Optional

njx:natcomment

The value of this attribute is generated as comment
line into the parameter data area of the Natural
adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

Optional

Deprecated

directselectevent

Use ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

Optional

ondblclick

onclick

directselectmethod

Use ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

Optional

Natural for Ajax

609

TEXTGRID2

COLUMN Properties

The COLUMN tag is the typical tag that is placed inside a TEXTGRID2 definition. The COLUMN
definition defines a column with its binding to a property of the collection elements.

Basic

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Sometimes
obligatory

textid

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a corresponding
string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Sometimes
obligatory

property

Property of the row item object that represents the
column's content.

The content typically is straight text but can also be
"complex HTML".

Obligatory

width

Width of the control.
There are two possibilities to define the width:
(A) Pixel sizing: just input a number value (e.g. "100").

(B) Percentage sizing: input a percentage value (e.g.
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element (textgrid2,
textgridsss2) of the control properly defines a width this
control can reference.

Obligatory

100

120

140

160

180

200

50%

100%

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

datatype

By default, the control is managing its content as string.
By explicitly setting a datatype you can define that the
control will format the data coming from the server: if
the field has datatype "date" and the user inputs "010304"
then the input will be translated into "01.03.2004" (or
other representation, dependent on date format settings).

Optional

date
float
int

long

610

Natural for Ajax

TEXTGRID2

Please note: the datatype "float" is named a bit misleading time

- it represents any decimal format number. The server

side representation may be a float value, but also can be timestamp
a double or a BigDecimal property.

8 Property color
xs:decimal
xs:double
xs:date

xs:dateTime

xs:time
N n.n
Pnn
string n
xs:byte
xs:short
align Horizontal alignment of the control's content. Optional |left
center
right
straighttext If the text of the control contains HTML tags then these |Optional |true
are by default interpreted by the browser. Specifiying
STRAIGHTTEXT as "true" means that the browser will false
directly render the characters without HTML
interpretation.

Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

convertspaces |If switched to "true" then all spaces inside the text that is|Optional |true
rendered into the column are converted to non breakable
spaces (andnbsp\"). false

Use this option if you have "meaningful” spaces inside
the values you return from the server adapter object, e.g.
if outputting some ASCII protocol inside a column.

Natural for Ajax 611

TEXTGRID2

cuttextline

If switched to "false" then the content of the column is
broken if it excceeds the column's width definition.
Defaultis "true" i.e. if the content is too big for the column
cell then it is cut.

Optional

true

false

withsorticon

Flag that indicates if a small sort indicator is shown
within the right corner of the control. Default is TRUE.

Optional

true

false

headerimage

URL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

Binding

property

(already explained above)

textstyleprop

Name of the adapter parameter that provides a
style-string that is used for rendering the column's
content.

As consequence you can indiviudally assign a CSS-style
to each cell of your text grid.

Optional

textclassprop

Name of the adapter parameter that provides a style class
to be used for rendering the content.

You can set up a limited number of style classes inside
your style sheet definition - and dynamically reference
them per grid cell.

Optional

imageprop

Name of the adapter parameter that provides an image
URL. The image is rendered at the very left of the
column's area - in front of the text (PROPERTY property
definition).

Optional

linkmethod

Name of the event that is sent to the adapter if user clicks
the column's text.

Optional

celltitleprop

Name of the adapter parameter that provides the tooltip
of this cell.

Optional

Online help

title

Text that is shown as tooltip for the control.

Optional

612

Natural for Ajax

TEXTGRID2

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid

Text ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

Optional

sorttitle

Text that is shown as tooltip for the sort indicator.

Either input text by using this SORTTITLE property - or
use the SORTTITLETEXTID in order to define a language
dependent literal.

Optional

sorttitletextid

Text ID that is passed to the multi lanaguage management
- representing the tooltip text for the sort indicator.

Optional

celltitleprop

(already explained above)

Natural

njx:natstringtype

If the control shall be bound to a Natural system variable
of string format with the attribute njx:natsysvar, this
attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

Optional

njx:natsysio

If the control shall be bound to a Natural system variable
with the attribute njx:natsysvar, this attribute indicates
if the system variable is modifiable. The default is false.

Optional

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name (in
this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area
of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement
of the Natural adapter.

Optional

njx:mnatsysvar

If the control shall be bound to a Natural system variable,
this attribute specifies the name of the system variable.

Optional

njx:natcomment

The value of this attribute is generated as comment line
into the parameter data area of the Natural adapter,
before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

Optional

njx:natcv

Name of a Natural control variable that shall be assigned
to the control. The control variable must be defined in a
Data Definition (XCIDATADEF) control on the same
page. The application can use the control variable to check
the modification status of the control.

Optional

Natural for Ajax

613

TEXTGRID2

Dynamic Setting of Text Styles in TEXTGRID2

The example from the previous sections will now be enhanced in order to demonstrate how to
control the style of cells inside a TEXTGRID2 control dynamically:

rTextgrid -
L [FirstName o [LastName o [
First 0 Last 0
First 1 Last 1
First 2 Last 2
First 3 Last 3
First 4 Last 4
First 5 Last 5
First & Last G
First 7 Last 7
First & Last 8
JFir*—ﬂ' q | A=t A f
Remove Selected Items

Some of the cells in the TEXTGRID2 control are rendered with a different style than the normal
one. Each COLUMN definition has the property textstyleprop:

<{rowarea name="Textgrid">
<tr takefullwidth="true" fixlayout="true">
<textgrid2 griddataprop="lines" width="100%" height="200"
selectprop="selected"
hscroll="true">
<column name="First Name" property="firstName" width="50%"
textstyleprop="firstNameStyle">
</column>
<column name="lLast Name" property="lastname" width="50%"
textstyleprop="TastNameStyle">
</column>
</textgride>
</itrd>
<vdist height="5">
</vdist>
<Gtr>
<pbutton name="Remove Selected Items" method="onRemoveSelectedItems">
</button>
</itr>
</rowarea>

614 Natural for Ajax

92 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

B Performance CONSIAEIAtIONSuveiiiiee it e e e e e e e e a e e e e e 616
B EXAMPIE oo 616
B AJAPLEr INEEITACE ... e 618
m USiNG Server-Side SCrOllNGvviiiiiiiii e 618
B USING SEIVEr-SIde SOMING ... ittt e e e e e e e 619
B TEXTGRIDSSS2 PrOPEITIESeeeiiiiiie ettt ettt et e ettt e e e e e e et e e e e e taaeee e e 619

615

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

The TEXTGRIDSSS2 control is a variant of the TEXTGRID2 control which is explained in the
previous section. "SSS" is the abbreviation for "server-side scrolling”. What this means is described
in this chapter.

Performance Considerations

The TEXTGRID2 control fetches all items belonging to the grid and renders them according to its
layout definition. If there are more items available than the grid can display, a vertical scroll bar
is displayed and you can scroll through the list.

From scrolling perspective, this is very effective - the browser is very fast when scrolling is needed.
But there are two disadvantages, especially for long lists:

® All the data that are to be displayed inside the grid must be available on the client side. There-
fore, the data must be transferred from the server to the client at least one time. Imagine you
have a grid of 10,000 lines: even if Application Designer transfers only ,net data” and even if
this happens in , delta transfer mode”, it must be transferred.

® Inaddition, the grid must be built completely in order to allow fast scrolling. This means - taking
the above example - that 10,000 lines have to be rendered before the grid can be displayed. Table
rendering is time-consuming and needs a lot of the client's CPU performance.

Consequence: text grids of the TEXTGRID2 control are easy to use, but they have their limitations
in terms of scalability. You should use it only if a limited amount of information is to be displayed.

Example

The TEXTGRIDSSS2 is very similar to the TEXTGRID2 control. However, some special behavior
has been built in. The main differences are ,,in the background”. The TEXTGRIDSSS2 control only
receives the data of the visible items. In this example, only the data of the first 20 items are returned
and rendered. When scrolling down, the next 20 items are fetched and rendered. This means: the
control requests always the data which are currently displayed.

616 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

#TextgridSSSE -
|« |FirstName oflastName o[
First O Last O
B First 1 Last 1
P First 2 Last 2
First 3 Last 3
First 4 Last <
First 5 Last 5
First 6 Last 6
B First 7 Last 7]
First 8 Last 8
First 9 Last 9
First 10 Last 10
P First 11 Last 11
First 12 Last 12
First 13 Last 13
First 14 Last 14
B First 15 Last 15
Firct 16 Lact 16
First 17 Last 17
First 18 Last 18
JFirSt 19 Last 19 JJ

Consequence: every scrolling step requires an interaction with the server. However, only a small
amount of data - which is visible - is requested, not the data of all available items. The performance
of the grid does not change with the number of items which are available. There is no time difference
in rendering a text grid containing 100 or 10,000 items.

The layout definition is:

<{rowarea name="Textgridsss2">

Gtr>

<textgridsss2 griddataprop="lines" rowcount="20" width="100%"

selectprop="selected" singleselect="false" hscroll="true"
directselectmethod="onDirectSelection"
directselectevent="ondb1Click">

<column name="First Name" property="firstname" width="50%">

</column>

<column name="Last Name" property="lastname" width="50%">

</column>

<{/textgridsss2>

[ARAD
{/rowarea>

Natural for Ajax

617

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)

1 LINESINFO

2 ROWCOUNT (I4)

2 SIZE (I4)

2 SORTPROPS (1:*)

3 ASCENDING (L)

3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)
END-DEFINE

The parameters are nearly the same as for the TEXTGRID2 control. In addition, thereisa LINESINFO
structure. This structure is used to control the server-side scrolling and the server-side sorting.

Using Server-Side Scrolling

In the adapter parameters that represent the TEXTGRIDSSS2 control in the application, there are
three parameters that control the server-side scrolling:

® TOPINDEX

" ROWCOUNT

" SIZE

In TOPINDEX and ROWCOUNT, the application receives the information how many items it should

deliver to the page with the next scroll event and with which item the delivered amount should
start.

In SIZE, the application returns the total number of items available. The client uses this information
to set up the scroll bar correctly.

618 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Using Server-Side Sorting

In the adapter parameters that represent the TEXTGRIDSSS2 control in the application, there is a
substructure that controls the server-side sorting: SORTPROPS. With the information in this structure,
the client tells the application by which sort criteria and in which order the client expects the items
to be sorted.

TEXTGRIDSSS2 Properties

Basic

griddataprop Name of the adapter parameter that represents the |Obligatory
grid in the adapter.

rowcount Number of rows that is renderes inside the control. |Obligatory

There are two ways of using this property - dependent
on whether you in addition define the HEIGHT

property:

If you do NOT define the HEIGHT property then the
control is rendered with exactly the number of rows
that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the maximum
number of rows that is picked from the server. You
should define this value in a way that it is not too low
- otherwise your grid will not be fully filled. On the
other hand it should not be defined too high ("100")
because this causes more communication traffic and
more rendering effort inside the browser.

width Width of the control. Obligatory |100

There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case the 140
width of the control will either be a default width or -
in case of container controls - it will follow the width 160

that i ied by it tent.
at is occupied by its conten 180

(B) Pixel sizing: just input a number value (e.g. "100").

200

Natural for Ajax 619

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control
properly defines a width this control can reference. If
you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

50%

100%

height

Height of the control.
There are three possibilities to define the height:

(A) You do not define a height at all. As consequence
the control will be rendered with its default height. If
the control is a container control (containing) other
controls then the height of the control will follow the
height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control
properly defines a height this control can reference. If
you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

Optional

100
150
200
250
300
250
400
50%

100%

onloadbehaviour

Loading behaviour of the items into the client.

"block" (=default) means that the client always requests
the currently visible items from the server (=Server
Side Scrolling).

"collection" means that the client requests all items at
the beginning from the server. The client itself
implements the scrolling in the JavaScript/SWT.

Optional

block

collection

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

Optional

Selection

selectableprop

Name of the adapter parameter that specifies wether
a row in the grid is selectable (=true) or not (=false).
The default is selectable.

Optional

selectprop

Name of the adapter parameter that is used to mark if
an individual row of the text grid is selected.

Optional

620

Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

singleselect

If set to "true" then only one row can be selected inside
the text grid. - If set to "false" then multiple lines can
be selected by using Ctrl- and Shift-key during mouse
selection.

Default is "false".

Optional

true

false

singleselectprop

Name of an adapter parameter that dynamically
defines whether SINGLESELECT is true or false.

Optional

onclickmethod

Name of the event that is sent to the adapter when the
user selects a row.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

Optional

ondblclickmethod

Name of the event that is sent to the adapter when the
user selects a row by a double click.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

Optional

withselectioncolumn

When defining a SELECTPROP property then
automatically a selection column is added as first left
column of the grid. Inside the column an icon inidicates
if a row is currently selected.

Set this property to "false" in order to avoid the
selection column.

Optional

true

false

withselectioncolumnicon

Flag that indicates whether the selection column shows
a "select all" icon on top. Default is true.

Optional

true

false

fgselect

if switched to true then an additional "graying" of
selected lines will be activated. Switch this property
to "true" if you have coloured textgrid cells: the
selection colour will not override the colour of each
cell, as consequence you require an additional effect
in order to make the user see which row is selected.

Optional

true

false

focusedprop

Name of an adapter parameter that is used to mark if
an individual row of the text grid should receive the
focus.

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

Optional

Right Mouse Button

Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

oncontextmenumethod |Name of the event that is sent to the adapter when the |Optional
user clicks with the right mouse button onto an empty
area of the grid.

singleselectcontextmenu | With SHIFT and CTRL key the user can select multiple |Optional |true
lines (use property SINGLESELECT to suppress this
feature). Use this property to ensure that the context false
menu is requested only for a single line. .

noselection

Default is "false".

enabledefaultcontextmenu |Use this property to enable the default context menu |Optional |true
of the browser within the textgrid. Please note: do not
enable the browser's context menu if your application false
itself provides for a context menu.
Default is "false".

Appearance

width (already explained above)

height (already explained above)

hscroll Definition of the horizontal scrollbar's appearance. |Optional |auto
You can define that the scrollbars only are shown if scroll
the content is exceeding the control's area ("auto"). Or .
scrollbars can be shown always ("scroll"). Or scrollbars hidden
are never shown - and the content is cut ("hidden").
Default is "auto".

vscroll Definition of the vertical scrollbar's appearance. Optional |auto
You can define that scrollbars only are shown if the scroll
content is exceeding the control's area ("auto"). Or .
scrollbars can be shown always ("scroll"). Or scrollbars hidden
are never shown - and the content is cut ("hidden").
Default is "auto".

touchpadinput Boolean property that decides if touch pad support is|Optional |true
offered for the TEXTGRID control. The default is
"false". If switched to "true" then you can scroll the grid false
via a touch pad. As consequence you can use this
control for making inputs through a touch terminal.

withtitlerow If defined as "false" then no top title row is shown. |Optional |true
"True" is default. false

colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control

3
622 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

occupies. By default it is "1" - but you may want to 4
define the control to span over more than one columns. 5
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 50
rows). It does not make sense in ITR rows, because .
these rows are explicitly not synched. int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies.
By default it is "1" - but you may want to define the 3
control two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because 50
these rows are explicitly not synched.
int-value
personalizable If defined to "false" then no re-arranging of columns |Optional |true
is offered to the user.
false
Default is "true". This means: if using COLUMN
controls inside the grid definition then the user can
re-arrange the sequence of columns by dragging and
dropping them within the top title row.
stylevariant Some controls offer the possibility to define style Optional |VAR1
variants. By this style variant you can address different
styles inside your style sheet definition file (.css). If not VAR2
defined "normal" styles are chosen, if defined (e.g.
"VAR1") then other style definitions (xxxVAR1xxx) are
chosen.
Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently
offerst two variants "VAR1" and "VAR2" but does not
predefine any semantics behind - this is up to you!
backgroundstyle CSS style definition that is directly passed into this |Optional

control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

Natural for Ajax

623

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source” function.
withblockscrolling If switched to "true" then the grid will show small scroll|Optional |true
icons by which the user can scroll the grid's content.
Scrolling typically is done by using the grid's scrollbar false
- the scroll icons that are switched on by this property
are an additional possibility to scroll.
withrollover The textgrid controls provide for a so called "roll over"|Optional |true
effect. The row that is currently below the mouse
pointer is highlighted in a certain way. Use this false
property to disable the roll over effect (Default is
TRUE).
fixedcolumnsizes When switching the FIXEDCOLUMNSIZES property |Optional |true
to value "true" then internally the grid is arranged in
a way that the area always determines its size out of false
the width specification of the COLUMN controls. The
browser does not look into the column contents in
order to try to optimise the size of the area - but always
follows the width that you define.
requiredheight Minimum height of the control in pixels. Use this Optional |1
property to ensure a minimum height if the overall
control's height is a percentage of the available space 2
-1.e. if value of property HEIGHT is a percentage (e.g. 3
100%).
Please note:You must not use FIXLAYOUT at the int-value
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the
required height the end of the control is just cut off.
minapparentrows Minimum number of apparent rows. Insert a valid |Optional |1
number to make sure that (e.g. 10) rows are shown for
sure. 2
3
int-value
disablecolumnresizing Flag that indicates if the user can change the width of|Optional |true
the grid columns. Default is false.
false
disablecolumnmoving Flag that indicates if the user can change the order of |Optional |true
grid columns. Default is false.
624 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

false
tabindex Index that defines the tab order of the control. Controls|Optional |-1
are selected in increasing index order and in source
order to resolve duplicates. 0
1
2
5
10
32767
showemptylines If set to false, no empty line will be rendered. By Optional |true
default empty lines are shown.
false
withsliderfreeze Setting this to "true" prevents unwisched slider jumps |Optional |true
while scrolling up/down in a grid with a huge number
of lines (for example 20000). false
Drag And Drop
draginfoprop Name of the row item property that passes back the |Optional
line's "drag info". When using this attribute the grid
lines can be dragged onto "drop targets" (e.g.
DROPICON control). The dragged line is identified by
its "drag info". Use any string/information applicable.
Natural
njx:natname If a Natural variable with a name not valid for Optional
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name
(in this case #FIELD1) is then specified in this attribute,
the original name is generated into the parameter data
area of the Natural adapter and a mapping between
the two names is generated into the PROCESS PAGE
statement of the Natural adapter.
njx:natcomment The value of this attribute is generated as comment |Optional

line into the parameter data area of the Natural
adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

Deprecated

Natural for Ajax

625

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

directselectmethod Use ONCLICKMETHOD and ONDBLCLICKMETHOD | Optional
instead.
directselectevent Use ONCLICKMETHOD and ONDBLCLICKMETHOD |Optional |ondblclick
instead.
onclick

Inside the TEXTGRIDSSS2 definitions, COLUMN tags are also used to define its content. There
is no difference in COLUMN tag usage between TEXTGRIDSSS2 and TEXTGRID2 definition.

626

Natural for Ajax

93 ROWTABLEAREAZ2 - The Flexible Control Grid

L 11T o] (- ST SPPPPTPPRR 628
B AQAPIEr INEEITACE .. .uviiii e 630
B BUIE-IN EVENES L. 630
m Making Grids LOOK [IKE GrIAScooiiiiiiiiiiii e 631
® ROWTABLEAREAZ PrOPEILIESeeeeeiiiiiiee ettt ettt e e e e e e e e e e 632
B STR PIOPEITIES ... veieieeee ettt et e e e ettt e et e e e e ettt e e e e e e et a e e e e e e 638

627

ROWTABLEAREAZ - The Flexible Control Grid

The ROWTABLEAREAZ? is a container control that allows other controls to be arranged inside its
grid management.

The ROWTABLEAREAZ2 control supports server-side scrolling and sorting. This concept is
explained in Server-Side Scrolling and Sorting. An example for the usage of server-side scrolling
and sorting with the ROWTABLEAREA2 control is contained in the example library SYSEXNJX.

Example

There is a grid that contains a header row and 10 lines. Each line contains one check box and two
fields. Some of the lines are highlighted.

Gl -

Frstame JLositomo.
[First 1 Last 1 |
First 2 \Last 2 |
First 3 Last 2

Add new Line Femove selaected Lines

The XML layout definition is:

{rowarea name="Grid">
<rowtablearea2 griddataprop="1lines" rowcount="10" width="100%" withborder="true">
<tro>

<hdist>
</hdist>
<label name="First Name" asheadline="true">
</label>
<label name="Last Name" asheadline="true">
</label>

628 Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

</tr>
{repeat>
<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="30">
</checkbox>
<field valueprop="firstname" width="50%">
</field>
<field valueprop="Tastname" width="50%">
</field>
</str>
<{/repeat>
</rowtableareaz2>
<vdist height="10">
</vdist>
<Gtr>
<putton name="Add new Line" method="onAddLine">
</button>
<hdist>
</hdist>
<button name="Remove selected Lines" method="onRemovelLines">
</button>
</itr>

{/rowarea>

Note the following:

There is a ROWTABLEAREA?2 definition with the property griddataprop="1ines". Thereis a
rowcount definition of "10". This is the same as for the text grid processing: the grid container
is bound to a server-side collection. Similar to the TEXTGRIDSSS2 definition, there is a row
count that defines the number of lines.

Inside the ROWTABLEAREAZ2 definition, there is first the definition of a normal table row (TR)
in which a distance and two labels are defined. The labels are rendered with asheadline="true".

Inside the REPEAT definition, there is a special table row definition "STR" (selectable table row)
that itself contains one CHECKBOX and two FIELD definitions. CHECKBOX and FIELDs are
bound to properties themselves.

After the ROWTABLEAREA?2 definition, there is a vertical distance and a row that contains two
buttons with which a user can manipulate the grid.

The content of the REPEAT block is repeated as many times as defined inside the rowcount defi-
nition of ROWTABLEAREA?2. The content holds a table row (STR) - therefore the result is a grid.

Natural for Ajax 629

ROWTABLEAREAZ - The Flexible Control Grid

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER

1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

If the grid has been configured for server-side scrolling and sorting, the data structure contains
additional fields that control server-side scrolling and sorting (see below). In order to use server-
side scrolling and sorting, set the property natsss in NATPAGE to "true".

DEFINE DATA PARAMETER
1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)

1 LINESINFO

2 ROWCOUNT (I4)

2 SIZE (14)

2 SORTPROPS (1:*)

3 ASCENDING (L)

3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)
END-DEFINE

Built-in Events

value-of-griddataprop.onCtrlSelect
value-of-griddataprop.onSelect
value-of-griddataprop.onShiftSelect
value-of-griddataprop.onSort
value-of-griddataprop.onTopindexChanged

630 Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

Making Grids Look like Grids

Fields typically contain a high number of FIELD controls. Typically, a FIELD control has a certain
rendering that renders a field with a border and with a certain background color.

Be aware that inside the FIELD definition, there are two important properties:

" noborder - if set to "true”, no border will be drawn
" transparentbackground - if set to "true", the field will always take over the background of the

controls in which it is positioned (e.g. STR row).

Have a look at the difference between the following screens. One screen uses the properties, the
other screen does not use them.

This is a grid:
Tl pricol
|:| Article 1 0,99

|:| Article 2 1.93

|:| Article 3 2,97

[] article 4 3.96

|:| article 5 4,96 —
[] article & 0.94

|:| article 7 6.93

|:| Article B F.92

|:| Article 9 8.92
|:|.-'1'-.r‘tiI:|E 10 Q.QIj

Natural for Ajax 631

ROWTABLEAREAZ - The Flexible Control Grid

This is collection of fields:

T prcd

[lrticle 1
[] article 2
[] article 3
[] Article 4
[] article 5
[] article 6
[] article 7
[] article 8
[] article 9
[] article 10

ROWTABLEAREAZ2 Properties

0,99
1.93
2.97
2.96
4,96 —
0.94
6.93
792

=2.92

9.91;'

Basic

griddataprop

Name of the adapter parameter that
represents the control in the adapter.

Obligatory

rowcount

Number of rows that is renderes inside
the control.

There are two ways of using this
property - dependent on whether you in
addition define the HEIGHT property:

If you do NOT define the HEIGHT
property then the control is rendered
with exactly the number of rows that is
defined as ROWCOUNT value.

If a HEIGHT value is defined an addition
(e.g. as percentage value "100%") then
the number of rows depends on the
actual height of the control. The
ROWCOUNT value in this case indicates

Optional

632

Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

the maximum number of rows that is
picked from the server. You should
define this value in a way that it is not
too low - otherwise your grid will not be
fully filled. On the other hand it should
not be defined too high ("100") because
this causes more communication traffic
and more rendering effort inside the
browser.

height Height of the control. Optional 100
There are three possibilities to define the 150
height:

200
(A) You do not define a height at all. As
consequence the control will be rendered 250
with its default height. If the control is a
. - 300
container control (containing) other
controls then the height of the control 250
will follow the height of its content.
400
(B) Pixel sizing: just input a number
value (e.g. "20"). 50%
(C) Percentage sizing: input a percantage 100%
value (e.g. "50%"). Pay attention:
percentage sizing will only bring up
correct results if the parent element of
the control properly defines a height this
control can reference. If you specify this
control to have a height of 50% then the
parent element (e.g. an ITR-row) may
itself define a height of "100%". If the
parent element does not specify a width
then the rendering result may not
represent what you expect.
width Width of the control. Sometimes |100
obligatory
There are three possibilities to define the 120
width:
140
(A) You do not define a width at all. In
this case the width of the control will 160
either be a default width or - in case of 180
container controls - it will follow the
width that is occupied by its content. 200
(B) Pixel sizing: just input a number 50%
value (e.g. "100").
100%

Natural for Ajax

633

ROWTABLEAREAZ - The Flexible Control Grid

(C) Percentage sizing: input a percantage
value (e.g. "50%"). Pay attention:
percentage sizing will only bring up
correct results if the parent element of
the control properly defines a width this
control can reference. If you specify this
control to have a width of 50% then the
parent element (e.g. an ITR-row) may
itself define a width of "100%". If the
parent element does not specify a width
then the rendering result may not
represent what you expect.

firstrowcolwidths

If set to "true" then the grid is sized
according to its first row. This first row
typically is a header-TR-row in which
GRIDCOLHEADER controls are used as
column headers for the subsequent rows.

Default is "false", i.e. the grid is sized
according to its "whole content".

Please note: when using the
GRIDCOLHEADER control within the
header-TR-row this property must be set
to "true" - otherwise column resizing (by
drag and drop) does not work correctly.

Sometimes
obligatory

true

false

onloadbehaviour

Loading behaviour of the items into the
client.

"block" (=default) means that the client
always requests the currently visible
items from the server (=Server Side
Scrolling).

"collection" means that the client requests
all items at the beginning from the server.
The client itself implements the scrolling
in the JavaScript/SWT.

Optional

block

collection

comment

Comment without any effect on
rendering and behaviour. The comment
is shown in the layout editor's tree view.

Optional

Appearance

withborder

If set to "false" then no thin border is
drawn around the controls that are
contained in the grid.

Default is "true".

Optional

true

false

634

Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

hscroll

Definition of the horizontal scrollbar's
appearance.

You can define that the scrollbars only
are shown if the content is exceeding the
control's area ("auto"). Or scrollbars can
be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut
("hidden").

Default is "auto".

Optional

auto

scroll

hidden

vscroll

Definition of the vertical scrollbar's
appearance.

You can define that scrollbars only are
shown if the content is exceeding the
control's area ("auto"). Or scrollbars can
be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut
("hidden").

Default is "auto".

Optional

auto

scroll

hidden

firstrowcolwidths

(already explained above)

clipboardaccess

If switched to true then the content of the
grid can be selected and exported into
the client's clipboard.

Optional

true

false

withblockscrolling

If switched to "true" then the grid will
show small scroll icons by which the user
can scroll the grid's content. Scrolling
typically is done by using the grid's
scrollbar - the scroll icons that are
switched on by this property are an
additional possibility to scroll.

Optional

true

false

touchpadinput

If set to "true" then touch screen icons for
scrolling are displayed in addition.

Default is "false".

Optional

true

false

requiredheight

Minimum height of the control in pixels.
Use this property to ensure a minimum
height if the overall control's height is a
percentage of the available space - i.e. if
value of property HEIGHT is a
percentage (e.g. 100%).

Please note:You must not use
FIXLAYOUT at the surrounding row
container (ITR and ROWAREA).
Otherwise: if the available space is less

Optional

1
2
3

int-value

Natural for Ajax

635

ROWTABLEAREAZ - The Flexible Control Grid

than the required height the end of the
control is just cut off.

tablestyle

CSS style definition that is directly
passed into this control.

With the style you can individually
influence the rendering of the control.
You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by
appending and separating them with a
semicolon.

Sometimes it is useful to have a look into
the generated HTML code in order to
know where direct style definitions are
applied. Press right mouse-button in
your browser and select the "View
source" or "View frame's source"
function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

darkbackground

Normally the background is in light
colour but the CIS style sheets also have
a dark(er) grey colour to be used.

If DARKBACKGROUND is set to true
then the darker background colour is
chosen. This property typically is used
to integrate light coloured controls into
darker container areas.

Optional

true

false

invisiblemodeincompletelastrow

If set to "invisible" an incomplete last row
is not shown.

Optional

invisible

visible

withsliderfreeze

Setting this to "true" prevents unwisched
slider jumps while scrolling up/down in
a grid with a huge number of lines (for
example 20000).

Optional

true

false

Binding

oncontextmenumethod

Name of the event that is sent to the
adapter when the user presses the right
mouse button in the grid, but not on an
existing row, but in an empty area of the
grid.

Optional

636

Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

fwdtabkeymethod

Name of the event that is sent to the
adapter when the user presses the TAB
key within the very last cell of the grid
(last cell within the last line). Use
property FWDTABKEYFILTER to
associate this call with a grid column.

Optional

fwdtabkeyfilter

By default the FWDTABKEYMETHOD
is called if the user presses the TAB key
within the veryfirst cell of the grid. Input
the name of a cell's VALUEPROP to
associate the method call with any other
column.

Optional

bwdtabkeymethod

Name of the event that is sent to the
adapter when the user presses SHIFT and
TAB keys within the first cell of a grid
line. Use property BWDTABKEYFILTER
to associate this call with a cell of choice.

Optional

bwdtabkeyfilter

By default the BWDTABKEYMETHOD
is called if the user presses the SHIFT and
TAB keys within the very first cell of the
grid. Input the name of a cell's
VALUEPROP to associate the method
call with any other column.

Optional

Hot Keys

hotkeys

Comma separated list of hot keys. A
hotkey consists of a list of keys and a
method name. Separate the keys by "-"
and the method name again with a
comma

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter
...defines two hot keys. Method
onCtrlAltA is invoked if the user presses
Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout
Painter to input hot keys.

Optional

Natural

njx:natname

If a Natural variable with a name not
valid for Application Designer (for
instance #FIELD1) shall be bound to the
control, a different name (for instance
HFIELD1) can be bound instead. If the
original name (in this case #FIELD1) is

Optional

Natural for Ajax

637

ROWTABLEAREAZ - The Flexible Control Grid

then specified in this attribute, the
original name is generated into the
parameter data area of the Natural
adapter and a mapping between the two
names is generated into the PROCESS
PAGE statement of the Natural adapter.

njx:natcomment The value of this attribute is generated |Optional
as comment line into the parameter data
area of the Natural adapter, before the
field name. The Map Converter, for
instance, uses this attributes to indicate
for a generated statusprop variable to
which field the statusprop belongs.

STR Properties

STR (selectable table row) is a normal table row (TR) that highlights its background depending
on an adapter property.

Basic

valueprop Name of the adapter parameter that defines if the row is selected |Obligatory
or not.

withalterbackground |Flag that indicates if the grid line shows alternating background |Optional |true
color (like rows within a textgrids). Default is false. Please note:
controls inside the row must have transparent background. In case false
of the FIELD control simply set property
TRANSPARENTBACKGROUND to true.

showifempty Flag that indicates if an unused row is visible. Example: if set to |Optional |true
false a grid with rowcount ten and a server side collection size of
seven will hide the three remaining rows. false

Default is false.

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Binding

valueprop (already explained above)

onclickmethod Name of the event that is sent to the adapter when the user clicks|Optional

a line.

ondblclickmethod Name of the event that is sent to the adapter when the user double |Optional
clicks a line.

contextmenumethod |Name of the event that is sent to the adapter when the user presses|Optional
the right mouse button in an empty area.

638 Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

proprefprop Name of the adapter parameter that is filled when the user clicks |Optional
a FIELD control. The VALUEPROP of the clicked field control will
passed.

backgroundcolorprop [Name of the adapter parameter that dynamically provides the |Optional
background color for this control.

Natural for Ajax 639

640

94 MGDGRID - Managing the Grid

o 1110 S PSPPSR
AdAPLEr INEBITACE
BUI-IN EVENES <.
MGDGRID PIOPEIIES ...ttt ettt e e e ettt e e e e e ettt e e e e e e e e et eaeeens
ROWINSERT PIOPEIHEScciiiiitiiiiie et e et e e e e a e e e e e
ROWCOPY PrOPEITIES ... eeeeeeeeeeiiteie ettt e ettt e e e e e e ettt e e e e e e e e e aeeeens
ROWDELETE PrOPEITIESvvvieeieieiiiitittiie ettt e e et e e e e e e e aaaeeas

641

MGDGRID - Managing the Grid

The MGDGRID control is an extension of the ROWTABLEAREA2 control. It allows to insert, copy
and delete rows of the grid.

Like the ROWTABLEAREA?2 control, the MGDGRID control supports server-side scrolling and
sorting. This concept is explained in Server-Side Scrolling and Sorting. An example for the usage of
server-side scrolling and sorting with the ROWTABLEAREAZ2 control is contained in the example
library SYSEXNJX. The same example can be used to illustrate the usage of server-side scrolling
and sorting with the MGDGRID control.

See also STR Properties which are described with the ROWTABLEAREAZ2 control.

642 Natural for Ajax

MGDGRID - Managing the Grid

Example
rI"ﬂeuneu;ua Grid Demo -
Teiame | istame | 2|8
1 Firsthamel Last Mamel X
2 FirstMarmeZz Last MameZ X
3 |FirstMame3 Last Mame3 X
4 FirstMarme4 Last Name4 X
3 |FirstMames Last Mames X
& Firstharmes Last Mamet X
7 |FirstMame?7 Last Mame7 X
8 FirstMarmed Last Mame& X
8 |FirstMame9 Last Mamed X
10 FirstMame10 Last Mame10 X J

D Insert a new line Copy selected line

There is a grid that contains a header row and 10 lines. Each line contains two fields and a ,, delete
row” control.

Each of the function controls (insert, copy, delete) can be added at the top of the MGDGRID, below
the MGDGRID or within the lines of the MGDGRID.

Look at the corresponding layout definition:

{rowarea name="Manage Grid Demo">
<mgdgrid griddataprop="mglines" rowcount="10" width="100%" firstrowcolwidths="true">
<tro>
<label name="
</label>
<gridcolheader name="First Name" width="50%">
</gridcolheader>
<gridcolheader name="Last Name" width="50%" >
</gridcolheader>
<{gridcolheader width="20">
</gridcolheader>
<hdist></hdist>
</tr>
{repeat>
<str valueprop="selected" showifempty="true">
<{selector valueprop="selected" singleselect="true">
<{/selector>
<field valueprop="fname" width="100%">

" width="25" asheadline="true">

Natural for Ajax 643

MGDGRID - Managing the Grid

</field>
<field valueprop="1Iname" width="100%">
</field>
<rowdelete>
</rowdelete>
</str>
{/repeat>
<mgdfunctions>
<rowinsert title="Insert a new line">
</rowinsert>
<rowcopy title="Copy selected line">
</rowcopy>
</mgdfunctions>
</mgdgrid>
{/rowarea>

The MGDGRID control is an extension to the ROWTABLEAREA2 control. See the description of
the ROWTABLEAREAZ2 control for further information.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 MGLINES (1:*)

2 FNAME (U) DYNAMIC

2 LNAME (U) DYNAMIC

2 SELECTED (L)
END-DEFINE

If the grid has been configured for server-side scrolling and sorting, the data structure contains
additional fields that control server-side scrolling and sorting (see below). In order to use server-
side scrolling and sorting, set the property natsss in NATPAGE to "true".

DEFINE DATA PARAMETER
MGLINES (1:%*)

FNAME (U) DYNAMIC
LNAME (U) DYNAMIC
SELECTED (L)
LINESINFO

ROWCOUNT (I4)

SIZE (1I4)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC

W WM NN N

644 Natural for Ajax

MGDGRID - Managing the Grid

2 TOPINDEX (I4)
END-DEFINE

Built-in Events

value-of-griddataprop.onCtrlSelect
value-of-griddataprop.onSelect
value-of-griddataprop.onShiftSelect
value-of-griddataprop.onSort
value-of-griddataprop.onTopindexChanged

MGDGRID Properties

Basic

griddataprop

Name of the adapter parameter that represents the
control in the adapter.

Obligatory

rowcount

Number of rows that is renderes inside the control.

There are two ways of using this property -
dependent on whether you in addition define the
HEIGHT property:

If you do NOT define the HEIGHT property then
the control is rendered with exactly the number of
rows that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the
maximum number of rows that is picked from the
server. You should define this value in a way that
it is not too low - otherwise your grid will not be
fully filled. On the other hand it should not be
defined too high ("100") because this causes more
communication traffic and more rendering effort
inside the browser.

Optional

height

Height of the control.
There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the control will be rendered with its
default height. If the control is a container control

Optional

100

150

200

250

Natural for Ajax

645

MGDGRID - Managing the Grid

(containing) other controls then the height of the
control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g.
"20")'

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element
of the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

300
250
400
50%

100%

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case
the width of the control will either be a default
width or - in case of container controls - it will
follow the width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g.
"100").

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element
of the control properly defines a width this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

Sometimes

obligatory

100
120
140
160
180
200
50%

100%

firstrowcolwidths

If set to "true" then the grid is sized according to
its first row. This first row typically is a
header-TR-row in which GRIDCOLHEADER
controls are used as column headers for the
subsequent rows.

Default is "false", i.e. the grid is sized according to
its "whole content".

Please note: when using the GRIDCOLHEADER
control within the header-TR-row this property

Sometimes
obligatory

true

false

646

Natural for Ajax

MGDGRID - Managing the Grid

must be set to "true" - otherwise column resizing
(by drag and drop) does not work correctly.

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
withborder If set to "false" then no thin border is drawn around |Optional |true
the controls that are contained in the grid.
false
Default is "true".
hscroll Definition of the horizontal scrollbar's appearance. |Optional |auto
You can define that the scrollbars only are shown scroll
if the content is exceeding the control's area)
("auto"). Or scrollbars can be shown always hidden
("scroll"). Or scrollbars are never shown - and the
content is cut ("hidden").
Default is "auto".
vscroll Definition of the vertical scrollbar's appearance. |Optional |auto
You can define that scrollbars only are shown if scroll
the content is exceeding the control's area ("auto").)
Or scrollbars can be shown always ("scroll"). Or hidden
scrollbars are never shown - and the content is cut
("hidden").
Default is "auto".
firstrowcolwidths (already explained above)
clipboardaccess If switched to true then the content of the grid can|Optional |true
be selected and exported into the client's clipboard.
false
withblockscrolling If switched to "true" then the grid will show small |Optional |true
scroll icons by which the user can scroll the grid's
content. Scrolling typically is done by using the false
grid's scrollbar - the scroll icons that are switched
on by this property are an additional possibility to
scroll.
touchpadinput If set to "true" then touch screen icons for scrolling|Optional |true
are displayed in addition.
false
Default is "false".
requiredheight Minimum height of the control in pixels. Use this |Optional |1
property to ensure a minimum height if the overall
control's height is a percentage of the available 2
space - i.e. if value of property HEIGHT is a 3

percentage (e.g. 100%).

Natural for Ajax

647

MGDGRID - Managing the Grid

Please note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the
required height the end of the control is just cut
off.

int-value

tablestyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

oncontextmenumethod

Name of the event that is sent to the adapter when
the user presses the right mouse button in the grid,
but not on an existing row, but in an empty area
of the grid.

Optional

fwdtabkeymethod

Name of the event that is sent to the adapter when
the user presses the TAB key within the very last
cell of the grid (last cell within the last line). Use
property FWDTABKEYFILTER to associate this
call with a grid column.

Optional

fwdtabkeyfilter

By default the FWDTABKEYMETHOD is called if
the user presses the TAB key within the veryfirst
cell of the grid. Input the name of a cell's
VALUEPROP to associate the method call with
any other column.

Optional

bwdtabkeymethod

Name of the event that is sent to the adapter when
the user presses SHIFT and TAB keys within the
first cell of a grid line. Use property
BWDTABKEYFILTER to associate this call with a
cell of choice.

Optional

bwdtabkeyfilter

By default the BWDTABKEYMETHOD is called if
the user presses the SHIFT and TAB keys within
the very first cell of the grid. Input the name of a

Optional

648

Natural for Ajax

MGDGRID - Managing the Grid

cell's VALUEPROP to associate the method call
with any other column.

Hot Keys

hotkeys Comma separated list of hot keys. A hotkey Optional
consists of a list of keys and a method name.

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter ...defines two hot
keys. Method onCtrlAltA is invoked if the user
presses Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout Painter to
input hot keys.

Natural

njx:natname If a Natural variable with a name not valid for ~ |Optional
Application Designer (for instance #FIELD1) shall
be bound to the control, a different name (for
instance HFIELD1) can be bound instead. If the
original name (in this case #FIELD1) is then
specified in this attribute, the original name is
generated into the parameter data area of the
Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE
statement of the Natural adapter.

njx:natcomment The value of this attribute is generated as comment |Optional
line into the parameter data area of the Natural
adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

ROWINSERT Properties

Basic

image URL that points to the image that is shown as icon.

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Obligatory

Natural for Ajax

649

MGDGRID - Managing the Grid

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Binding

visibleprop |[Name of the adapter parameter that provides the information if this control is | Optional
displayed or not. As consequence you can control the visibility of the control
dynamically.

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid | Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

ROWCOPY Properties

Basic

image URL that points to the image that is shown as icon. Obligatory
The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.
Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Binding

visibleprop |[Name of the adapter parameter that provides the information if this control is|Optional
displayed or not. As consequence you can control the visibility of the control
dynamically.

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid |Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

650 Natural for Ajax

MGDGRID - Managing the Grid

ROWDELETE Properties

Basic

image URL that points to the image that is shown as icon. Obligatory

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Binding

visibleprop [Name of the adapter parameter that provides the information if this control is|Optional
displayed or not. As consequence you can control the visibility of the control
dynamically.

Online Help

title Text that is shown as tooltip for the control. Optional

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid |Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

Natural for Ajax 651

652

95 GRIDCOLHEADER - Flexible Column Headers

B Flexible COIUMN SIZINGveiee ettt 654
B Flexible ColUMN SOMING ...t et e e et e e e e e et e e e 657
® GRIDCOLHEADER PrOPEIIESeeeeiiiiiieeiit ettt e 658
= Smart Selection of Rows - SELECTOR CONrOlccouiiiiiiiiiiiiei e 661
B SELECTOR PIOPEIES ...ttt ettt e e e et e e e e e e s et e e e e e e e e 662

653

GRIDCOLHEADER - Flexible Column Headers

In the example introducing the ROWTABLEAREAZ2 control, the header of the grid was built by
arranging certain LABEL controls, where the LABEL controls where rendered as headers:

<rowtablearea?2 griddataprop="lines" rowcount="10" withborder="true" width="100%">
<tr>

{label name="First Name" asheadline="true">
</label>

</tr>
{repeat>

It is also possible to use the GRIDCOLHEADER control in order to define the header of a grid.
The advantages are:

® GRIDCOLHEADER controls are automatically rendered in , header style”.
® GRIDCOLHEADER controls allow to sort the grid content.
* GRIDCOLHEADER controls allow to resize a grid.

Flexible Column Sizing

Let us have a look on the following grid definition:

<rowarea name="Grid Col Header Example">
<rowtablearea?2 griddataprop="lines" rowcount="10" width="100%" withborder="true"
hscroll="true" firstrowcolwidths="true">
<Er>
{gridcolheader name=" " width="30">
</gridcolheader>
<gridcolheader name="First Name" width="150">
</gridcolheader>
{gridcolheader name="Last Name" width="150">
</gridcolheader>
<hdist>
</hdist>
</tr>
{repeat>
<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="100%"
align="center">
</checkbox>
<field valueprop="firstName" width="100%" noborder="true"
transparentbackground="true">

654 Natural for Ajax

GRIDCOLHEADER - Flexible Column Headers

</field>
<field valueprop="lastName" width="100%" noborder="true"
transparentbackground="true">

</field>
<hdist>
</hdist>
</str>
</repeat>
<{/rowtablearea2>
</rowarea>
You see:

® The ROWTABLEAREAZ2 definition was set to always follow the column widths of the first row.
The first row of the grid is the row containing the GRIDCOLHEADER controls, this means that
this row defines the column sizing for the whole grid.

® The header row of the grid is built out of GRIDCOLHEADER controls, each one specifying a
name and a width.

® The header row is closed with an horizontal distance.This is quite important: if your column
widths do not horizontally fill the grid, then the remaining space is typically equally distributed
among the columns. Even if GRIDCOLHEADER specifies a certain width, this may still be
overridden by the browser. A horizontal distance control (HDIST) at the end makes the browser
assign the remaining space to the distance control, not to the GRIDCOLHEADER controls.

When the user moves the mouse over the border of the header columns, then the cursor will change
and the user can change the width of the columns:

Natural for Ajax 655

GRIDCOLHEADER - Flexible Column Headers

"Grid Col Header Example

First Name Last Mame

Last Mame O Last Mame O
D Last Mame 1 Last Mame 1
[] Last Mame 2 Last Mame 2
[] LastMame = Last Mame 3
[] LastMame ¢ Last Mame 4
[l Last Mame 5 Last Mame 5
[] LastMame & Last Mame 6
[] LastMame 7 Last Mame 7
[l Last Mame & Last Mame 8
[] LastMame 9 Last Mame 9

Kl

|

"Grid Col Header Example

First MName
Last Mame 0O

Last Mame 1
Last Mame 2
Last Mame 3
Last Mame 4
Last Mame 5
Last Mame &
Last Mame 7
Last Mame 2
Last Mame 9

O 0O000000o 0 n

Fs

Last Mame
Last Mame 0O

Last Mame 1
Last Mame 2
Last Mame 3
Last Mame 4
Last Mame 3
Last Mame &
Last Mame 7
Last Mame 2
Last Mame 9

656

Natural for Ajax

GRIDCOLHEADER - Flexible Column Headers

Flexible Column Sorting

The GRIDCOLHEADER allows to bind to a property which is used for sorting. The XML definition
of the previous example was extended to demonstrate this:

<rowarea name="Grid Col Header Example">
<rowtablearea? griddataprop="lines" rowcount="10" width="100%" withborder="true"
hscroll="true" firstrowcolwidths="true">
<tr>
<gridcolheader name=" " width="30" propref="selected">
</gridcolheader>
<gridcolheader name="First Name" width="150" propref="firstName">
</gridcolheader>
<gridcolheader name="Last Name" width="150" propref="TastName">
</gridcolheader>
<hdist>
</hdist>
</tr>
{repeat>
<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="100%"
align="center">
</checkbox>
<field valueprop="firstName" width="100%" noborder="true"
transparentbackground="true">
</field>
<field valueprop="lastName" width="100%" noborder="true"
transparentbackground="true">
</field>
<hdist>
</hdist>
</str>
</repeat>
</rowtablearea2>
</rowarea>

Each GRIDCOLHEADER control now points to the property that is referenced in the subsequent
FIELD/CHECKBOX definition. The control now displays small sort icons. The user can sort the
information by choosing the icon.

Natural for Ajax 657

GRIDCOLHEADER - Flexible Column Headers

I T T

[] LastMame 0 Last Mame 0
[] LastMame 1 Last Mame 1
[] LastMame 2 Last Mame 2

GRIDCOLHEADER Properties

Basic

name Text that is displayed inside the control. Please do not specify the |Sometimes
name when using the multi language management - but specify a |obligatory
"textid" instead.

textid Multi language dependent text that is displayed inside the control. |[Sometimes
The "textid" is translated into a corresponding string at runtime. |obligatory

Do not specify a "name" inside the control if specifying a "textid".

width Width of the control. Obligatory |100

There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

(B) Pixel sizing: just input a number value (e.g. "100"). 180

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% then 100%
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

50%

propref If the grid column visualizes data input the name of the property |Optional
here. This property is located within the row item class. Example: if
you use a FIELD or CHECKBOX control input the value of property
VALUEPROP here. If the grid column does not visualize any data
(e.g. youuse a BUTTON control) input an unique column identifier.
The PROPREF property is used as key when flushing 'column change
events' to the application.

Appearance

title Text that is shown as tooltip for the control. Optional

658 Natural for Ajax

GRIDCOLHEADER - Flexible Column Headers

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

titletextid

Text ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

Optional

withsorticon

Flag that indicates if a small sort indicator is shown within the right
corner of the control. Default is TRUE.

Optional

true

false

image

URL of image that is displayed inside the control. Any image type
(-.gif, jpg, -..) that your browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

stylevariant

Some controls offer the possibility to define style variants. By this
style variant you can address different styles inside your style sheet
definition file (.css). If not defined "normal" styles are chosen, if
defined (e.g. "VAR1") then other style definitions (xxxVAR1xxx) are
chosen.

Purpose: you can set up style variants in the style sheet defintion
and use them multiple times by addressing them via the
"stylevariant” property. CIS currently offerst two variants "VAR1"
and "VAR2" but does not predefine any semantics behind - this is
up to you!

Optional

VAR1

VAR2

VAR3

VAR4

sorttitle

Text that is shown as tooltip for the sort indicator.

Either input text by using this SORTTITLE property - or use the
SORTTITLETEXTID in order to define a language dependent literal.

Optional

sorttitletextid

Text ID that is passed to the multi lanaguage management -
representing the tooltip text for the sort indicator.

Optional

textalign

Alignment of text inside the control.

Optional

left
center

right

tabindex

Index that defines the tab order of the control. Controls are selected
in increasing index order and in source order to resolve duplicates.

Optional

-1

0

1

Natural for Ajax

659

GRIDCOLHEADER - Flexible Column Headers

2
5
10
32767
rowspan Row spanning of control. Optional 1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default it is "1" - but
you may want to define the control two span over more than one 3
1 .
columns 4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50
int-value
colspan Column spanning of control. Optional 1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1" -
but you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50
int-value
Binding
visibleprop |Name of the adapter parameter that provides the information if the | Optional
column is displayed or not.
Comment
comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.
660 Natural for Ajax

GRIDCOLHEADER - Flexible Column Headers

Smart Selection of Rows - SELECTOR Control

By using the SELECTOR control in combination with the STR control, you can build nice looking
grids in which the user can select rows. Have a look at the following screen:

"o TFisthame o[Lasthame o

B Last Mame 0 Last Mame 0
Last Mame 1 Last Mame 1
Last Mame 2 Last Marme 2

The SELECTOR control is typically is used in the leftmost column. The user can select the control
with the mouse or keyboard. In case of using the control for multiple selections, the user can select
mulitple rows using a combination of CTRL and click or sHIFT and click.

The SELECTOR control references a boolan property inside a row object that is representing the
selection state. The XML layout definition looks as follows:

<rowtablearea?2 griddataprop="lines" rowcount="10" width="100%" withborder="true"
hscroll="true" firstrowcolwidths="true">
<tr>
<gridcolheader name=" " width="30" propref="selected">
</gridcolheader>
<gridcolheader name="First Name" width="150" propref="firstName">
</gridcolheader>
<gridcolheader name="Last Name" width="150" propref="TastName">
</gridcolheader>
<hdist>
</hdist>
</tr>
{repeat>
<str valueprop="selected">
<selector valueprop="selected" width="30" withlinenum="false"
singleselect="false">
<{/selector>
<field valueprop="firstName" width="100%" noborder="true"
transparentbackground="true">
</field>
<field valueprop="1lastName" width="100%" noborder="true"
transparentbackground="true">
</field>
<hdist>
</hdist>
</str>

Natural for Ajax 661

GRIDCOLHEADER - Flexible Column Headers

</repeat>
{/rowtablearea?z>

You see the following;:

® STR and SELECTOR are referencing the same property selected so that selections done by the
SELECTOR control are automatically reflected in the selections of the row.

® SELECTOR is switched to allow multiple selections.
" By using the property with1inenum, you specify that inside the selector no line number is output.

Instead, the SELECTOR is left empty if not selected, or it displays an icon if selected.

The selector simplifies programming of the grid selection a lot. When clicking the selector control,
it automatically manages the referenced selection property of all rows that are managed inside
the corresponding grid collection.

SELECTOR Properties

Basic

valueprop $en/popupwizard/njx_selector_attr_valueprop$ Optional

width Width of the control. Optional {100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the control 140
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 200
percentage sizing will only bring up correct results if the parent element 509,
of the control properly defines a width this control can reference. If you ’
specify this control to have a width of 50% then the parent element (e.g. 100%
an ITR-row) may itself define a width of "100%". If the parent element
does not specify a width then the rendering result may not represent
what you expect.

singleselect Indicates if the multiple lines can be selected ("false") or only one line |Optional |true
can be selected ("true"). Default is "true".

false

comment Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.

Binding

valueprop (already explained above) ‘ |

662 Natural for Ajax

GRIDCOLHEADER - Flexible Column Headers

Appearance
withlinenum There are two usage variants: either the line number of the corresponding|Optional |true
row is shown as content of the SELECTOR control ("true") - or nothing
is shown inside ("false"). false
In case of selecting "true" then the line number is automatically retrieved,
i.e. you do not have to specify a property on adapter side to indicate the
value of the line number.
image If specifying WITHLINENUM to be "false" then a small arrow iconis |Optional
shown inside the control if selecting a corresponding row. Input the URL
of the icon to be shown if you do not want to use the default icon.
If specifying WITHLINENUM to be "true" then the line number of
selected lines is output in bold font.
imageprop $en/popupwizard/njx_selector_attr_imageprop$ Optional
alwaysshowicon |Flag that indicates if the selector shows its image - independent from |Optional |true
whether the corresponding line is selected or not. With
ALWAYSHOWICON you can show icons on unselected lines, too. For false
that specify WITHLINENUM to be "false” and use IMAGEPROP.
Default is "false".
tabindex Index that defines the tab order of the control. Controls are selected in |Optional |-1
increasing index order and in source order to resolve duplicates.
0
1
2
5
10
32767
Miscellaneous
testtoolid Use this attribute to assign a fixed control identifier that can be later on |Optional
used within your test tool in order to do the object identification
Natural for Ajax 663

664

96 Working with Trees

This part shows you how to work with trees and tree nodes. The information is organized under
the following headings:

5 Basics
Y TREENODES3 in Control Grid (ROWTABLEAREA?2)

@ CLIENTTREE

665

666

97 Basics

B T DS O THBES ittt ettt ettt e e ettt e e e e e e e e e e e e e e et e e e e e e n et aaaeaaa s 668
B When 10 USe WHICh TYPE ..ot e e e e 669

667

Basics

Types of Trees

The following controls are available for building trees:

* TREENODE3
This control displays a single tree node. It can be put into the normal control grid (ROWTABLEA-
REA2), and can consequently be combined with any other control (for example, FIELD, TEX-
TOUT, etc.).

-
Tree -

Tree Node Toggle Count Select Count
= Top O
[Sub 1
= Sub 2
- &1 5ub 2-1
[5ub 2-1-1
[5ub 2-1-2
+[5ub 2-2
[Sub 3

[B B I R e =
o o o o o o o &

Kl

Of course, you do not have to combine it with other controls. You can also use it ,,stand-alone”
inside a ROWTABLEAREA?2 grid:

=[] page
+ | titlebar (Template)
- header
= button (Save)
+] pagebody
|| statusbar

As with the normal ROWTABLEAREA2 management, only these items are transferred from
the server to the client which are currently visible. Items which are collapsed or which are not
in the visible area of the client, are not transferred.

All scrolling of items and all toggling of items (opening/collapsing) goes through the server.

668 Natural for Ajax

Basics

* CLIENTTREE
This control represents a whole tree. You cannot add further controls into the tree node lines.

+

1 Mormal Contrals
Mesting Pages

[simple

4 Advanced
1 Absolute Positioning
wvector Controls

[4 Bar Chart Demo

[3 Pie Chart Demo
Mini Application

[Address Manager

+

The data which is displayed inside the tree is transferred from the server to the client in one
step - always the whole tree. The data is transferred when opening a page or when the tree data
in the server is updated.

All scrolling of items and all toggling of items (opening/collapsing) is done in the client without
going back to the server.

When to Use Which Type

Use the TREENODES3 control inside the control grid ROWTABLEAREA?2 in the following cases:

® High number of tree nodes.
® Tree nodes are not loaded from the beginning, but step by step.

® Data in the tree is exchanged/updated quite often.
Use the CLIENTTREE control in the following cases:

® Low number of tree nodes (100).
® High interactivity requirements for toggling nodes.
® Data in the tree is rather static. It is loaded once into the client, and afterwards it is not changed

anymore.

Example: in the Application Designer environment, the tree controls are used in the following
way:

Natural for Ajax 669

Basics

® Inthe workplace, a CLIENTTREE is loaded: the number of nodes is quite low, the tree represents
a menu which is rather static.

* Inthe Layout Painter,a TREENODE2 in a ROWTABLEAREA?2 is used for representing the XML
control tree: the number of items can be quite high, the update rate of the tree data is very high.

670 Natural for Ajax

98 TREENODES3 in Control Grid (ROWTABLEAREA2)

L 11T o] (- ST SPPPPTPPRR 672
B AQAPIEr INEEITACE .. .uviiii e 673
B BUIE-IN EVENES L. 673
LI (L= T SRS PPRR 673

671

TREENODES in Control Grid (ROWTABLEAREA2)

Example

The following

image shows an example for a tree management:

a
a
1
a
i
1}
a
1

The grid contains three columns: the first column shows the tree node, the other two columns
display some text information.

The XML layout definition is:

{rowarea name="Tree">

<rowtablearea?2 griddataprop="treeGridInfo" rowcount="8" width="500"

withborder="
<tr>

false">

<Tabel name="Tree Node" width="200" asheadline="true">

</label>

{label name="Toggle Count" width="100" asheadline="true
labelstyle="text-align:right">

</label>

<{label name="Select Count" width="100" asheadline="true"
labelstyle="text-align:right">

</label>
</tr>
{repeat>
<tr>
<treenode3d width="200" withplusminus="true"
imageopened="1images/fileopened.gif"
imageclosed="images/fileclosed.gif"
imageendnode="1images/fileendnode.gif">
<{/treenode3>
{textout valueprop="toggleCount" width="100" align="right">
<{/textout>
{textout valueprop="selectCount" width="100" align="right">
<{/textout>
</tr>
<{/repeat>
<{/rowtablearea?z2>
</rowarea>
672

Natural for Ajax

TREENODES in Control Grid (ROWTABLEAREA2)

You see that the TREENODES3 control is placed inside the control grid just as a normal control.
There are certain properties available which influence the rendering: in the example, the name of
the tree node images is statically overwritten. The flag withplusminus is set to true - consequently,
small "+"/"-" icons are placed in front of the node.

Adapter Interface

In the parameter data area of the adapter, the tree data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 TREEGRIDINFO (1:%*)

2 DRAGINFO (U) DYNAMIC

2 DROPINFO (U) DYNAMIC

2 LEVEL (I4)

2 OPENED (I4)

2 SELECTCOUNT (U) DYNAMIC
2 TEXT (U) DYNAMIC

2 TOGGLECOUNT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-griddataprop.reactOnSelect
value-of-griddataprop.reactOnToggle

Properties
Basic
width Width of the control. Optional |1
There are three possibilities to define the width: 2
(A) You do not define a width at all. In this case the width of 3
the control will either be a default width or - in case of container)
controls - it will follow the width that is occupied by its content. int-value

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

Natural for Ajax 673

TREENODES in Control Grid (ROWTABLEAREA2)

the parent element of the control properly defines a width this
control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row) may itself
define a width of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

Appearance

withplusminus

If set to "true"” then +/- Icons will be rendered in front of the tree
items.

Optional

true

false

withlines

If set to "true" then the tree elements are connected with one
another by gray lines.

Please pay attention: if switching this property to "true" then
you have to create the instance of your server side
TREECollection object with a special constructor:

Example:

TREECollection m_tree = new TREECollection(true)

Optional

true

false

withtooltip

If set to "true" then the text of an item is also available as tool
tip. Use this option in case you expect that the horizontal space
of the item will not be sufficient to display the whole text of the
item.

Optional

true

false

withtextinput

If set to "true" then the tree node can also be edited. Editing is
started when the user double clicks the node.

The text that is input is passed into the property "text" which is
implemented in the default NODEInfo implementation.

Optional

true

false

imageopened

Image of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by this
property or also may be defined dynamically - see the
corresponding properties defined with this control.

Optional

imageclosed

Image of a tree node that has subnodes and that is currently not
showing its nodes. The image either is defined statically by this
property or also may be defined dynamically - see the
corresponding properties defined with this control.

Optional

imageendnode

Image of a tree node that is an end node (leaf node). The image
either is defined statically by this property or also may be
defined dynamically - see the corresponding properties defined
with this control.

Optional

singleselect

If set to "true" then only one item can be selected. If set to "false"
then multiple icons can be selected.

Optional

true

false

674

Natural for Ajax

TREENODES in Control Grid (ROWTABLEAREA2)

directselectevent Event that represents a tree node selection. A tree node selection |Optional |ondblclick
is done when the user clicks/doubleclicks on the tree node text. '
In this case the select() method is called in the corresponding onclick
node object on server side.
directselectelement |If set to "textonly" only user clicks on the tree node text will |Optional |textonly
select the node. If set to "allspace" also user clicks outside the
area occupied by the node text will select the node. allspace
selectionstylevariant|Some controls offer the possibility to define style variants. By |Optional|VAR1
this style variant you can address different styles inside your
style sheet definition file (.css). If not defined "normal" styles VAR2
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.
Purpose: you can set up style variants in the style sheet defintion
and use them multiple times by addressing them via the
"stylevariant” property. CIS currently offerst two variants
"VAR1" and "VAR2" but does not predefine any semantics
behind - this is up to you!
textstylevariant Some controls offer the possibility to define style variants. By |Optional|VAR1
this style variant you can address different styles inside your
style sheet definition file (.css). If not defined "normal" styles VAR2
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.
Purpose: you can set up style variants in the style sheet defintion
and use them multiple times by addressing them via the
"stylevariant” property. CIS currently offerst two variants
"VAR1" and "VAR2" but does not predefine any semantics
behind - this is up to you!
pixelshift Number of pixels that each hierarchy level is indented. If not |Optional|l
defined then a standard is used.
2
3
int-value
pixelshiftendnode |Number of pixels that end nodes are indented. If not defined |Optional|l
then a standard is used.
2
3
int-value
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By default
Natural for Ajax 675

TREENODES in Control Grid (ROWTABLEAREA2)

itis "1" - but you may want to define the control to span over 3
more than one columns.
4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default it
is "1" - but you may want to define the control two span over 3
more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
pixelheight Height of the control in pixels. Optional |1
2
3
int-value
tabindex Index that defines the tab order of the control. Controls are |Optional |-1
selected in increasing index order and in source order to resolve
duplicates. 0
1
2
5
10
32767
Binding
imageprop Name of an adapter parameter that provides for a image for the |Optional
tree node.
Each node may provide for its own image, e.g. dependent on
the type of node.

676 Natural for Ajax

TREENODES in Control Grid (ROWTABLEAREA2)

If the adapter property passes back an empty string, then the
image is taken from the static definitions that you may parallely
do by using the properties IMAGEOPENED, IMAGECLOSED
and IMAGEENDNODE.

focusedprop

Name of the adapter parameter that indicates if the row receives
the keyboard focus.

If more than one lines are returning "true", the first of them is
receiving the focus.

Optional

flush

Flush behaviour when using the possibility of having editable
tree nodes. If double clicking on the tree node then you can edit
its content. The FLUSH property defines how the browser
behaves when leaving the tree node's input field:

If not defined (") then nothing happens - the changed tree node
text is communicated to the server side adapter object with the
next roundtrip.

If defined as "server" then immediately when leaving the field
a roundtrip to the server is initiated - in case you want your
adapter logic to directly react on the item change.

If defined as "screen" then the changed tree node text is
populated inside the page inside the front end.

Optional

screen

server

flushmethod

When the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be
sent when the user updates the content of the control. By doing
so you can distinguish on the server side from which control
the flush of data was triggered.

Optional

tooltipprop

Name of the adapter parameter that provides for a text that is
shown if the user moves the mouse over the tree item (tooltip).

Optional

validdraginfosprop

Name of an adapter parameter that contains a comma separated
list of valid drag informations.

Optional

Drag and Drop

enabledrag

If set to true then drag and drop is enabled within the tree.

Optional

true

false

Natural for Ajax

677

678

99 CLIENTTREE

L 11T o] (- ST SPPPPTPPRR 680
B AQAPIEr INEEITACE .. .uviiii e 681
B BUIE-IN EVENES L. 681
LI (L= T SRS PPRR 681

679

CLIENTTREE

Example

The following example shows a simple client tree:

p
Clienttree -

- [&] File
+_ Mew
Ol Close
(1 Close Al
[l 5ave
(1 save all
[Exit
01 Exit
- [&] Edit
() Unda

The XML layout definition is:

<rowarea name="Clienttree">
<clienttree treecollectionprop="tree" height="200" withplusminus="true"
treestyle="background-color:#FEFEEE">
</clienttree>
<{/rowarea>

In this example, the client tree is directly put as row into the ROWAREA container. The property
treecollectionprop contains a reference to the property tree which contains the net data of the
tree. With the property treestyle, an explicit background color is set.

680 Natural for Ajax

CLIENTTREE

Adapter Interface

In the parameter data area of the adapter, the tree data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 TREE (1:%)

2 LEVEL (I4)

2 OPENED (I4)

2 SELECTED (L)

2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-treecollectionprop.reactOnContextMenuRequest
value-of-treecollectionprop.reactOnSelect
value-of-treecollectionprop.reactOnToggle

Properties

Basic

treecollectionprop Name of the adapter parameter that represents the control |Optional
in the adapter.

height Height of the control. Optional {100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%

ITR-row) may itself define a height of "100%". If the parent

Natural for Ajax 681

CLIENTTREE

element does not specify a width then the rendering result
may not represent what you expect.

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

withplusminus

If set to "true" then +/- Icons will be rendered in front of the
tree items.

Optional

true

false

withtooltip

If set to "true" then the text of an item is also available as tool
tip. Use this option in case you expect that the horizontal
space of the item will not be sufficient to display the whole
text of the item.

Optional

true

false

selectionvisible

If set to "true" then the clicked item will also marked with a
certain background color. The background color is defined
by the style sheet settings.

Optional

true

false

singleselect

If set to "true" then only one item can be selected. If set to
"false" then multiple icons can be selected.

Optional

true

false

imageopened

Image of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by
this property or also may be defined dynamically - see the
corresponding properties defined with this control.

Optional

imageclosed

Image of a tree node that has subnodes and that is currently
not showing its nodes. The image either is defined statically
by this property or also may be defined dynamically - see
the corresponding properties defined with this control.

Optional

imageendnode

Image of a tree node that is an end node (leaf node). The
image either is defined statically by this property or also may
be defined dynamically - see the corresponding properties
defined with this control.

Optional

treestyle

Style (following cascading style sheet definitions) that is
directly passed to the background area of the client tree. You
can manipulate e.g. the colour of the tree's background.

The style can also be set dynamically by specifying the
property TREESTYLEPROP.

Optional

selectionstylevariant

Some controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them

Optional

VAR1

VAR2

682

Natural for Ajax

CLIENTTREE

via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

hscroll Definition of the horizontal scrollbar's appearance. Optional |auto
You can define that the scrollbars only are shown if the scroll
content is exceeding the control's area ("auto"). Or scrollbars .
can be shown always ("scroll"). Or scrollbars are never shown hidden
- and the content is cut ("hidden").
Default is "auto".
pixelshift Number of pixels that each hierarchy level is indented. If not|Optional |1
defined then a standard is used.
2
3
int-value
pixelshiftendnode Number of pixels that end nodes are indented. If not defined | Optional | 1
then a standard is used.
2
3
int-value
tabindex Index that defines the tab order of the control. Controls are |Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
withleftpadding Flag that indicates if the control has a 10 pixel padding on |Optional [true
left side. Default is true.
false
Binding
treecollectionprop (already explained above)
dynamicloading If set to "true" then you indicate to the tree control that not |Optional true
all tree information may be loaded when initializing the tree
(i.e. the tree collection on server side). As consequence the false
Natural for Ajax 683

CLIENTTREE

tree control will pass the "toggle-event" to the server - in case
the subnodes of a certain nodes are not yet loaded.

In the case the toggle event is passed to the server, the method
onToggle() is called inside the tree item.

imageopenedprop

Name of the adapter parameter that provides the image URL
which is shown for opened tree nodes or end tree nodes. The
value may be different from tree node to tree node. Each tree
node may have an own image.

Optional

imageclosedprop

Name of the adapter parameter that provides for the image
URL which is shown for closed tree nodes. The value may
be different from tree node to tree node. Each tree node may
have an own image.

Optional

treestyleprop

name of the adapter parameter that dynamically provides
for a style value that is passed to the control's area
(background of the client tree). You can as consequence e.g.
define the background-colour of the tree dependent on your
server side logic.

Optional

treeclassprop

Name of the adapter parameter that passes back the name
of a style sheet class that is taken to render the client tree's
background area. - Similar to the property TREESTYLEPROP,
but now a style class is passed, not the style itself.

Optional

tooltipprop

Name of the adapter parameter that provides for a text that
is shown if the user moves the mouse over the tree item
(tooltip).

Optional

oncontextmenumethod

Name of the event that is sent to the adapter when the user
presses the right mouse button in an empty area of the client
tree.

Optional

directselectevent Event that represents a tree node selection. A tree node Optional ondblclick
selection is done when the user clicks/doubleclicks on the '
tree node text. In this case the select() method is called in the onclick
corresponding node object on server side.
focusedprop Name of the adapter parameter that indicates if the row Optional
receives the keyboard focus.
If more than one lines are returning "true", the first of them
is receiving the focus.
Drag and Drop
enabledrag If set to true then drag and drop is enabled within the tree. |Optional |true
false
684 Natural for Ajax

100 Working with Menus

Menus are used to arrange a number of functions in a structured way.
The information provided in this part is organized under the following headings:

Types of Menus
MENU

DLMENU

C e oL L

XCIPOPUPMENU - Enable Context Menus

685

686

101 Types of Menus

The following menu controls are available:

* MENU
This is the typical drop-down menu:

File Edit Help
- EI Mamwe ..,
EH save
Save as...
Fermove
Exit
= DLMENU

This is a double-line menu representing a two-level hierarchy. It can be found quite often in
web applications.

When clicking an item in the first line, the corresponding subitems are shown in the second line.

687

Types of Menus

® Context Menu
This is a menu which appears in certain controls (tree controls, grid controls) when the user
presses the right mouse button.

4 13_Ros o 200¢
“{f 14_ﬂhc (— Qpen in Layout Painter 5008
:{f 14 _Acc &y Generate Adapter Code | opps
& 14 _pre Maintain Literals 200
A0 14 _Col 200t
! 14 o) x Remove (<ML 2 HTML) S0
& 14 CaontrollibraryDyn.xml 2001

All menu controls are dynamically configured by the application. This means:

® The structure of the menu and its menu nodes is not statically defined but is dynamically con-
trolled by the application through adapter parameters. For example, you can build a personalized
menu taking the user's rights into consideration.

® Menu information can be dynamically updated during runtime.

688 Natural for Ajax

102 MENU

L 11T o] (- ST SPPPPTPPRR 690
B AQAPIEr INEEITACE .. .uviiii e 691
B BUIE-IN EVENES L. 691
LI (L= T SRS PPRR 692

689

MENU

Example

The example looks as follows:

Menu Demo e

File Edit Help

] (1 Mew...
E save

Save as...

Femove

Exit

When clicking on a menu item for which a function has been defined, then the name of the function
is displayed in the status bar.

690 Natural for Ajax

MENU

The XML layout definition is:

<page model="Menue_01_Adapter">
<titlebar name="Menu Demo">
</titlebar>
<header align="left" withdistance="false">
<menu menucollectionprop="menuData" width="100">
</menu>
</header>
<{pagebody>
</pagebody>
{statusbar withdistance="false">
<{/statusbar>
</page>

In this example, the menu is embedded in the header. By the property menucollectionprop, itis

bound to the adapter property menuData.

Adapter Interface

DEFINE DATA PARAMETER
1 MENUDATA (1:*)

2 1D (U) DYNAMIC

2 IMAGEURL (U) DYNAMIC
2 LEVEL (I4)

2 METHOD (U) DYNAMIC
2 OPENED (I4)

2 TEXT (U) DYNAMIC

1 SELMENUITEM (U) DYNAMIC
END-DEFINE

Built-in Events

items.reactOnSelect

Natural for Ajax

691

MENU

Properties

Basic

menucollectionprop [Name of the adapter parameter that represents the control in the |Obligatory
adapter.

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Appearance

width Width of the control. Optional |100

There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

(B) Pixel sizing: just input a number value (e.g. "100"). 180

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

50%

height Height of the control. Optional
There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

toggleimage URL of the image that is shown on the right end of a menu item, if| Optional
this item contains subitems. If not explicitly defined then a default
icon is used.

692 Natural for Ajax

MENU

toggleimageprop

Name of the adapter parameter that provides a URL that defines
the toggle image. The toggle icon is shown on the right end of a
menu item that has subitems.

Optional

menustyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source”
or "View frame's source" function.

Optional

menustyleprop

Name of the adapter parameter that dynamically provides explicit
style information for the control.

Optional

Natural for Ajax

693

694

103 DLMENU

L 11T o] (- ST SPPPPTPPRR 696
B AQAPIEr INEEITACE .. .uviiii e 697
B BUIE-IN EVENES L. 697
LI (L= T SRS PPRR 698

695

DLMENU

Example

The example looks as follows:

' Save as... { Remove

A double-line menu is displayed. When selecting a menu item, then its text is written to the status
bar.

696 Natural for Ajax

DLMENU

The XML layout definition is:

<page model="menue_02_d1_Adapter">
<titlebar name="Double Line Menu">
</titlebar>
<dlmenu menuprop="menuData">
</dTmenu>
<header withdistance="false">
<button name="Save">
</button>
</header>
<{pagebody>
<{/pagebody>
{statusbar withdistance="false">
</statusbar>
</page>

The DLMENU control is positioned directly following the title bar. In its property menuprop, it
holds a binding to the property menuData.

Adapter Interface

DEFINE DATA PARAMETER
1 ITEMS (1:*)

2 LEVEL (I4)

2 METHOD (U) DYNAMIC
2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

items.onSelectSubltem

Natural for Ajax 697

DLMENU

Properties
Basic
menuprop Name of the adapter parameter that represents the control in the = |Obligatory
adapter.
textid Multi language dependent text that is displayed inside the control. |Optional
The "textid" is translated into a corresponding string at runtime.
Do not specify a "name" inside the control if specifying a "textid".
align Horizontal alignment of the control's content. Optional |left
center
right
onlyoneline If set to "true" then the DLMENU control only contains its top line - |Optional |true
there is no second line below. Default is "false".
false
cellseparatoronly |If set to "true" then only a very thin cell separator is added between |Optional |true
two menu items. Otherwise the separation is rendered explicitely.
false
comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

698 Natural for Ajax

104 XCIPOPUPMENU - Enable Context Menus

L 11T o] (- ST SPPPPTPPRR 700
B AQAPIEr INEEITACE .. .uviiii e 701
B BUIE-IN EVENES L. 702

699

XCIPOPUPMENU - Enable Context Menus

With an XCIPOPUPMENU control, you enable the usage of context menus on a page. The appli-
cation creates the contents of the context menus dynamically at execution time, in response to
certain events. There is only one instance of XCIPOPUPMENU needed in each page.

Context menus are supported on the page level and by the following controls:

TEXTGRID2
TEXTGRIDSSS2
TREENODE2
CLIENTTREE

The following events are raised when the user right-clicks in corresponding areas of the page:

® When the user right-clicks in a non-empty line in a grid or tree, the event
value-of-griddataprop.reactOnContextMenuRequest or
value-of-treecollectionprop.reactOnContextMenuRequest is raised.

® When the user right-clicks in an empty line in a grid or tree, the event defined in the property
contextmenumethod of the grid or tree is raised.

® When the user right-clicks elsewhere in the page, the event defined in the contextmenumethod
of the page is raised.

In the event handler of these events, you do no have to necessarily open a context menu; you can
also start other operations, if this makes sense. But in order to open a context menu, you need to
fill the structure generated for the XCIPOPUPMENU control, which is described below.

If the user selects one of the context menu items, the event xcipopupmenu.reactOnSelect is raised.

Example

The following screen displays a grid control with several rows. It uses the XCIPOPUPMENU
control to show a context menu when the user right-clicks on a row. It shows a different context
menu when the user right-clicks in an empty area of the grid and yet another one when the user
right-clicks elsewhere in the page.

700 Natural for Ajax

XCIPOPUPMENU - Enable Context Menus

Context Menu Example e3
Llst With Context Menu
|« |Last name o [Firstname o |Department J
Carter James
Miller lohn
Madify
Delete

The XML layout definition contains the following:

<natpage>
<Xcipopupmenu>
</xcipopupmenu>

</natpage>

The example Natural code is contained in the library SYSEXNJX as program CTRCTX-P.

Adapter Interface

DEFINE DATA PARAMETER
1 XCIPOPUPMENU

2 MENUNODE (1:*)

3 ID (A) DYNAMIC

3 IMAGE (A) DYNAMIC

3 LEVEL (I4)

3 REFERENCE (A) DYNAMIC

3 TEXT (A) DYNAMIC

2 ORIGINATORQUERY (A) DYNAMIC

2 SELECTEDREFERENCE (A) DYNAMIC
END-DEFINE

A menu is reflected by a tree of menu nodes. Each menu node is represented by an 1D, a TEXT, an
optional IMAGE and a REFERENCE value. When the user selects a menu item, the REFERENCE value
of that menu item is then returned in the parameter SELECTEDREFERENCE.

Natural for Ajax 701

XCIPOPUPMENU - Enable Context Menus

The value of ORIGINATORQUERY is normally not used by Natural applications. The selected line can
easier be determined with an NJX:EVENTDATA control.

Built-in Events

xcipopupmenu.reactOnSelect

702 Natural for Ajax

105 Non-Visual Controls and Hot Keys

This part describes some controls that do not have any visual effect to your screen, but provide
some client functions to be applied to your page.

The information provided in this part is organized under the following headings:

TIMER
XCIDATADEF - Data Definition

Extended Hot Key Management

«C L L L

Function Key Handling

703

704

106 TIMER

L 11T o] (- ST SPPPPTPPRR 706
B PIOPEITIES oo 707

705

TIMER

With a timer, you can regularly trigger a defined event sent by the client. For example, you can
use a timer to regularly update information to be displayed inside your page.

The timer tag is accessible as a valid subnode inside the page tag.

Specify either the interval or the intervalprop property in order to set the interval. In case of
using a property for dynamically setting the interval, note the following:

" You can change the interval time at any time.

" You can stop the timer by setting the interval time to 0.

Example

The following screen displays a time stamp of the server. It is refreshed depending on the interval
field. Increase/decrease the interval time by choosing the corresponding buttons.

Demo Timer

Increment Decrement Stop

Time
Interval (ms) 0
Server time Wed Sep 21 11:08:50 CEST 2005

The XML layout definition is:

<page model="DemoTimerAdapter">
{titlebar name="Demo Timer">
</titlebar>
<header withdistance="false">

<button name="~~Increment" method="incrementTimer">
</button>

<button name="~~Decrement" method="decrementTimer">
</button>

<putton name="~~Stop" method="stopTimer">

</button>

706 Natural for Ajax

TIMER

</header>
<{pagebody>
<rowarea name="Time">
<dtr>
<label name="Interval (ms)" width="100" asplaintext="true">
</label>
<field valueprop="interval" length="5" displayonly="true"
datatype="int">
</field>
</itrd
Gitr>
<label name="Server time" width="100" asplaintext="true">
</label>
<field valueprop="serverTime" length="50" displayonly="true">
</field>
</itr>
<{/rowarea>
<{/pagebody>
{statusbar withdistance="false">
</statusbar>
<timer intervalprop="interval">
</timer>
</page>

In this example, the timer tag does not send a defined event but refreshes the screen. The timer
interval is retrieved by the property interval of the adapter object.

Properties
Basic
interval Duration in milliseconds the timer waits between calling the adapter |Sometimes obligatory

method defined in the METHOD property.

Use this property to "hard code" the duration - or use
INTERVALPROP to define the duration by an adapter property.

intervalprop |Name of the adapter parameter that defines the timer interval Sometimes obligatory
duration. If 0 is passed then the timer is stopped.

method Name of the event that is sent to the adapter by the timer. Obligatory

comment |Comment without any effect on rendering and behaviour. The Optional

comment is shown in the layout editor's tree view.

Natural for Ajax 707

708

107 XCIDATADEF - Data Definition

L 11T o] (- ST SPPPPTPPRR 710
B PIOPEITIES oo 713

709

XCIDATADEF - Data Definition

With an XCIDATADEF control, you can define data structures that are exchanged between a page
and its adapter, but which are not visually represented on the page. Examples are Natural control
variables, which can be assigned to controls on a page after they have been defined in an XCIDA-
TADEEF control. They are not visually represented on the page, but can be evaluated by the appli-
cation to control the modification status of the page and its controls.

The XCIDATADEEF control allows the definition of scalar variables, structures, arrays, structures
of arrays and arrays of structures. When an adapter is generated from a page that contains one or
more XCIDATADEEF controls, corresponding Natural data structures are generated into the
parameter data area of the adapter.

Example

The following example shows several field controls and a grid control. It uses XCIDATADEF
controls to define control variables and assigns these in various ways to the fields and grid elements
of the page.

Control Variable Samples 3

rSimple Field With Control Variable = | —

First Name: |
Last Mame:

Grld With Control Variables

P

L
|«

The XML layout definition is:

<?xml version="1.0" encoding="UTF-8"7>
<natpage hotkeys="13;onEnter" natsource="CTRCV-A" natsinglebyte="true" natcv="cv-page"
xmlns:njx="http://www.softwareag.com/njx/njxMapConverter">
<titlebar name="Control Variable Samples">
</titlebar>
<{pagebody takefullheight="true">
<rowarea name="Simple Field With Control Variable">
<Aatr>
<Tabel name="First Name:" width="80">
</label>

710 Natural for Ajax

XCIDATADEF - Data Definition

<field valueprop="firstname" width="200" njx:natcv="cv-firstname">
</field>
<hdist width="50">
</hdist>
</itr>
<Gtr>
<label name="lLast Name:" width="80">
</label>
<field valueprop="1lastname" width="200" njx:natcv="cv-lastname">
</field>
</itr>
</rowarea>
<rowarea name="Grid With Control Variables">
<rowtablearea?2 griddataprop="persons" rowcount="4" width="100%">
<tr>
<gridcolheader width="30" propref="selected">
</gridcolheader>
<gridcolheader name="ID" width="25%" propref="id">
</gridcolheader>
<gridcolheader name="Last Name" width="40%" propref="last">
</gridcolheader>
<gridcolheader name="First Name" width="35%" propref="first">
</gridcolheader>
</tr>
{repeat>
<str valueprop="selected">
<selector valueprop="selected" singleselect="true">
</selector>
<field valueprop="id" width="25%" noborder="true"
transparentbackground="true">
</field>
<field valueprop="Tlast" width="40%" noborder="true"
transparentbackground="true" njx:natcv="persons(*).cv-last">
</field>
{xcidatadef dataprop="cv-last" datatype="C">
</xcidatadef>
<field valueprop="first" width="35%" noborder="true"
transparentbackground="true" njx:natcv="cv-first(*)">
</field>
</str>
</repeat>
</rowtablearea2>
</rowarea>
<rowarea name="Description" height="100%">
<itr takefullwidth="true" height="100%">
<subpage valueprop="infopagename" height="100%" width="100%">
</subpage>
</itr>
</rowarea>
</pagebody>
<statusbar withdistance="false">
</statusbar>

Natural for Ajax 711

XCIDATADEF - Data Definition

<{xcidatadef dataprop="cv-page" datatype="C">
</xcidatadef>
<{xcidatadef dataprop="cv-firstname" datatype="C">
</xcidatadef>
<{xcidatadef dataprop="cv-lastname" datatype="C">
</xcidatadef>
<xcidatadef dataprop="cv-first" datatype="C" array="true">
</xcidatadef>

<{/natpage>

The above example shows various ways in which control variables can be defined and assigned
to controls:

" cv-page is a scalar control variable that is assigned to the page as a whole. In the application, it
reflects the modification status of the entire page.

® cv-firstname and cv-Tastname are scalar control variables that are assigned to the FIELD
controls firstname and 1astname. They reflect the modification status of the respective controls.

® cv-last is a control variable that is defined as an element of the grid persons. Consequently,
it is implicitly an array and is assigned to the element Tast as persons(*).cv-last. Each
occurrence of persons (*).cv-1last reflects the modification status of the corresponding occur-
rence of persons.last.

® cv-firstisanarray of control variables that is defined outside the grid persons. Consequently,
it is assigned to the element first as cv-first(*). Each occurrence of cv-first(*) reflects the
modification status of the corresponding occurrence of persons.first. Note the difference to
the previous case: because cv-first(*) is defined outside the grid persons, it is not automati-
cally resized together with persons.first. Resizing cv-first(*) appropriately is in the
responsibility of the application program.

The corresponding adapter code looks as follows:

DEFINE DATA PARAMETER
/*(PARAMETER

1 CV-FIRST (C/1:*)
CV-FIRSTNAME (C)
CV-LASTNAME (C)
CV-PAGE (C)

FIRSTNAME (A) DYNAMIC
INFOPAGENAME (A) DYNAMIC
LASTNAME (A) DYNAMIC
PERSONS (1:%*)

CV-LAST (C)

FIRST (A) DYNAMIC

ID (A) DYNAMIC

LAST (A) DYNAMIC

2 SELECTED (L)

/*) END-PARAMETER
END-DEFINE

RN RN R

712 Natural for Ajax

XCIDATADEF - Data Definition

/*(PROCESS PAGE

PROCESS PAGE (CV=CV-PAGE) U'/njxdemos/ctrlcontrolvar' WITH

PARAMETERS
NAME U'firstname’
VALUE FIRSTNAME (CV=CV-FIRSTNAME)
NAME U'infopagename'
VALUE INFOPAGENAME
NAME U'Tlastname'’
VALUE LASTNAME (CV=CV-LASTNAME)
NAME U'persons(*).first'
VALUE PERSONS.FIRST(*) (CV=CV-FIRST(*))
NAME U'persons(*).id'
VALUE PERSONS.ID(*)
NAME U'persons(*).last'
VALUE PERSONS.LAST(*) (CV=PERSONS.CV-LAST(*))
NAME U'persons(*).selected’
VALUE PERSONS.SELECTED(*) (EM='false'/'true')
END-PARAMETERS
/*) END-PROCESS

The example code is contained in the library SYSEXNJX as program CTRCV-P.

Properties
Basic
dataprop The XCIDATADEF control allows to create data structures|Optional
for the processing side that are created in addition to data
structures that are created by the normal controls. The
DATAPROP represents the name of the data element that
provides the content of the control.
datatype Data type of the data element. One of the list of valid values.|Optional |type
Using the reserved word "type" you can nest multiple '
XCIDATADEEF structures. Xxs:string
xs:int
xs:float
xs:decimal
xs:double
xs:date

xs:dateTime

xs:time

Natural for Ajax

713

XCIDATADEF - Data Definition

xs:byte

xs:short

Nn.n
Pn.n
string n

C

array If set to true, the XCIDATADEF will be an array. Optional |true

false

clientdata Default is false. If set to true then the data is also send to |Optional|true
the browser. Usually applications use the default setting.
Only set this to true for small data that is really rendered false
in the browser.

Natural

njx:natname If a Natural variable with a name not valid for Application|Optional
Designer (for instance #FIELD1) shall be bound to the
control, a different name (for instance HFIELD1) can be
bound instead. If the original name (in this case #FIELD1)
is then specified in this attribute, the original name is
generated into the parameter data area of the Natural
adapter and a mapping between the two names is generated
into the PROCESS PAGE statement of the Natural adapter.

njx:natsysvar If the control shall be bound to a Natural system variable, |Optional
this attribute specifies the name of the system variable.

njx:natsysio If the control shall be bound to a Natural system variable |Optional
with the attribute njx:natsysvar, this attribute indicates if
the system variable is modifiable. The default is false.

njx:natstringtype|If the control shall be bound to a Natural system variable |Optional
of string format with the attribute njx:natsysvar, this
attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

njx:natcv Name of a Natural control variable that shall be assigned |Optional
to the control. The control variable must be defined in a
Data Definition (XCIDATADEF) control on the same page.
The application can use the control variable to check the
modification status of the control.

njx:natcomment |The value of this attribute is generated as comment line into | Optional
the parameter data area of the Natural adapter, before the
field name. The Map Converter, for instance, uses this

714 Natural for Ajax

XCIDATADEF - Data Definition

attributes to indicate for a generated statusprop variable to
which field the statusprop belongs.

Natural for Ajax

715

716

108 Extended Hot Key Management

= Direct Hot Key Definitions with Certain CONMrolSoiiiiiiiiiiii e 718
= Hot Key Definitions for Certain CONIOISvveeiiiiiieiiie e 718

"7

Extended Hot Key Management

Extended hot key management provides the following features:

® Possibility to define hot keys with certain controls.

" Possibility to define language dependent hot keys.

Direct Hot Key Definitions with Certain Controls

Some controls allow to directly specify hot keys within the text that is displayed inside the control.
The controls that currently support this feature are:

®" BUTTON
" MENU
" ROWTABAREA

Example: If you specify the button text to be "~~Stop", the button will look like this:

Stop

The text may both be directly maintained in the control (name property) or may come from the
multi language management (textid property).

At the time, the hot key CTRL+ALT+S will be added to the page. The definition of hot keys in the
texts of MENU controls or ROWTABAREA controls is done in the same way.

(Caution: Application Designer does not check if hot keys are defined twice in a page.

Why use CTRL+ALT as a default way to trigger the hot keys? This is because most of the simple ALT
keys are already occupied by the browser.

Hot Key Definitions for Certain Controls

The controls PAGE, FIELD and ROWTABLEAREA?2 support the property hotkeys.

The hotkeys property defines the active hot keys for the corresponding control. This means that
you may have hot keys that are only valid inside a certain grid (ROWTABLEAREA2 control) or
even inside a single FIELD, but are not valid inside the whole page (PAGE control).

718 Natural for Ajax

Extended Hot Key Management

Have a look at the following demo:

'Hotkey Enhancements .

Info

(1) Within the keycode you can use "textids”. With that you can provide for language
specfic hotkeys - 2.q. keys "Cirl-alt-d" within an english context may invoke the
same functionality like "Ctri-altd” when you run your application with german
language.

(2) You can provide for gnd hotkeys, & gnd hotkey is 15 invoked only if the user
invokes the hotkeys within the grid.

| DEmim

Press keys "Ctr-alt-a” within the gnd - a popup will appear. Press the same keys
within the surrounding page - the result is now a message on the statushar.,

|| First name " Last name ||J

LT e S B = LR) [¥ 6 L B

o
o

Natural for Ajax 719

Extended Hot Key Management

If the user presses CTRL+ALT+A inside the grid, the hot key is managed by the grid. If the user
presses the same key outside the grid, the hot key is processed by a corresponding definition on
page level. The XML layout looks as follows:

<{page model="com.softwareag.cis.test40.GridHotkeysAdapter"
translationreference="40_gridhotkeys"
hotkeys="ctrl-alt-65;onCtr1ATtAPage">

<rowtablearea?2 griddataprop="grid" rowcount="12" width="100%"
firstrowcolwidths="true"
hotkeys="ctrl-alt-$KEYCODE_A;onCtrl1ATtA">

The hotkeys property on PAGE, FIELD or ROWTABLEAREA? is a semicolon-separated list con-
taining the hot key itself and the method it is calling. There can be multiple hot key definitions for
the same control. When maintaining this property, use the special dialog in the Layout Painter
that appears for the hotkeys property.

You can either specify the key code of the hot key or a text ID that is to be translated by the multi
language management.

720 Natural for Ajax

109 Function Key Handling

Some keyboard function keys are usually assigned to specific functions of the web browser. 5,
for example, causes a page reload and Fi1 toggles full screen mode.

In a Natural for Ajax application, these keyboard function keys might be assigned as hot keys to
events in the application. But the user should also have the option to use, for example, F11 in the
usual way as a web browser function key. Therefore, the following rules apply:

= If the keyboard focus is on the Natural for Ajax page, the function key raises the corresponding
event in the application.

= If the keyboard focus is not on the Natural for Ajax page, but in the area of the web browser
(for example, in the address line), the function key raises the corresponding event in the web
browser.

Exception

In Internet Explorer 7, F10 and F11 are handled by the web browser only if both the keyboard focus
and the mouse pointer are in the area of the web browser.

721

722

110 Working with Workplaces

This part deals with applications that organize multiple pages in so-called workplaces. A prere-
quisite of building workplaces is an understanding of multi frame pages.

The information provided in this part is organized under the following headings:

What are Multi Frame Pages?

Definition of Multi Frame Pages

Application Designer Workplace Framework
NJX:XCIWPINFO2

NJX:XCIWPFUNCTIONS

¢ € €& € & ¢

NJX:XCIWPACCESS2

723

724

111 What are Multi Frame Pages?

Multi frame pages are a special set of pages. Normal pages represent a generated HTML page - a
multi frame page represents a generated HTML frameset page.

A multi frame page does not contain controls but frames in which other pages are positioned.
Each frame is associated with an ID (called , target” in this section). A frame may be:

® anormal HTML page

® an intelligent Application Designer page

" a frameset itself containing frames

Multi frame pages are the preferred way of arranging Application Designer pages in a frameset.

Besides enhanced possibilities of communication between frames, multi frame pages automatically
take care of keeping all Application Designer frames inside the same session. See section Session

Management in Working with Pages (which is part of the Application Designer documentation) for
more details.

725

726

112 Definition of Multi Frame Pages

B MEPAGE ..o 728
B MECISFRAME ...t 730
B MEHTMLFRAME et 732
B MEFRAMESET ..o 733

727

Definition of Multi Frame Pages

The definition of multi frame pages is done with the Layout Painter. When you create a new layout,
a dialog appears in which you select a template. To create a multi frame page, you have to select
the "Multi Frame Page" template. The Layout Painter will open just as usual, but instead of having
the PAGE control as the highest control, you now see the control MFPAGE. You can reach a
number of controls that are related to multi frame page management.

The following controls are ,normal frame controls” (they are described below):

® MFPAGE - the top element of multi frame pages.

MFCISFRAME - a frame in which an Application Designer HTML page is loaded.
MFHTMLFRAME - a frame in which a normal HTML page is loaded.
MFFRAMESET - an area that can be subdivided into frames itself.

The following controls are ,,workplace controls” (they are described in the section Application
Designer Workplace Framework. The Application Designer workplace is based on these controls.

" MFWPFUNCTIONS
= MFWPACTIVEFUNCTIONS
" MFWPCONTENT

MFPAGE

The MFPAGE is the top node of every multi frame page. It can be subdivided into frames or fra-
mesets.

Basic

separation |Specifies how the corresponding internally used frameset|Obligatory|rows
is subdivided: choose "rows" for subdividing into rows,
"cols" for subdividing into columns. cols

sizing Defines the size of the contained sub-frames. If you have |Obligatory
three sub-frames to show up inside the page then you
might specify "200,200,*" to specify how the height (if
SEPARATION is "rows") or the width (if SEPARATION
is "cols") is distributed among the frames.

You can speficy per frame either a pixel value or a "*".

comment Comment without any effect on rendering and behaviour. | Optional
The comment is shown in the layout editor's tree view.

Appearance

border Space between frames contained in the frameset that is |Optional |1
internally built up.

728 Natural for Ajax

Definition of Multi Frame Pages

2

3

int-value

bordercolor

Sets the border color of the frame set.

Optional

#FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

frameborder

Defines if to display a border around the contained
frames. Valid values are "true" or "false".

Optional

true

false

framespacing

Defines the amount of additional space between the
frames. Value is a pixel value.

Optional

1

2

3

int-value

framesetstyle

Style passed to the HTML-frameset definition that is
internally generated.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Natural for Ajax

729

Definition of Multi Frame Pages

MFCISFRAME

The MFCISFRAME represents a frame in which an Application Designer page is shown. The name
of the page is passed as a parameter.

Basic

target Id of the frame. Must be unique inside the frameset page. |Obligatory
Must only contain alphanumeric characters.

The id is important! CIS offers certain methods inside
the Model-class that allow an adapter to start operations
for a certain frame (e.g. openeCIPagelnFrame(...)). As
part of the parameters of these methods a target-id is
passed. The target-id is exactly the id you specifiy with
the TARGET property.

cisurl URL of the page to be shown inside. Use Obligatory
/project/page.html as syntax, e.g.
"/HTMLBasedGUI/empty.html".

Do NOT use only page.html believing that you do not
have to specify the project because the multi frame page
runs in the same project than the page you want to open
- you ALWAYS have to specify the project!

comment Comment without any effect on rendering and Optional
behaviour. The comment is shown in the layout editor's
tree view.

Appearance

resizable Decision if the user is able to resize the frame. This Optional |true
property must be in synch with the definition in the
"neighbour frames". If the neighbour frames do not false
support resizing then it will not be offered to the user
as consequence.

Valid values are "true" and "false". Default is "true".

withborder Boolean value defining if the frame has a border on its |Optional |true

own. Default is "false".
false

framestyle Style that is passed to the HTML-FRAME definition that|Optional |background-color:
is internally generated. #FF0000

color: #0000FF

font-weight: bold

730 Natural for Ajax

Definition of Multi Frame Pages

bordercolor Sets the border color of the frame set. Optional |#FF0000
#00FF00
#0000FF
#FFFFFF
#808080

#000000

marginheight Defines top and bottom margin height. Value is a pixel [Optional |1
value. Default is "0".
2
3

int-value

marginwidth Defines left and right margin width. Value is a pixel =~ [Optional |1
value. Default is "0".
2
3

int-value

withownborder |Flag that indicates if started pages show an own border.|Optional |true

Default is false.
false

Unload Behaviour

unloadbehaviour |Reaction that CIS should take if the page inside the frame|Optional |NOTHING
is closed. Possible values are "NOTHING" for doing
nothing and "REMOVESESSION" for removing the REMOVESESSION
session on server side.

Do not define this property just "by accident" but leave
it to the default ("NOTHING").

You only switch to "REMOVESESSION" if you want
that the server side session is destroyed when leaving
the page. This is the case if you have one page that
clearly indicates the closing of a session at the point of
time when the page is closed.

Applications can change the page that is shown inside the MFCISFRAME by using the method
Adapter.openCISPagelInTarget(...).

Natural for Ajax 731

Definition of Multi Frame Pages

MFHTMLFRAME

The MFHTMLFRAME represents a frame in which a normal HTML page is shown. This page can
be a static HTML page or any URL - e.g. a URL referring to a certain JSP page.

Basic

target

Id of the frame. Must be unique inside the frameset page.
Must only contain alphanumeric characters.

The id is important! CIS offers certain methods inside the
Model-class that allow an adapter to start operations for a
certain frame (e.g. openeCIPagelnFrame(...)). As part of the
parameters of these methods a target-id is passed. The
target-id is exactly the id you specifiy with the TARGET

property.

Obligatory

url

URL to be opened inside the frame. The URL can be defined
relative to the multi frame page or can be defined in an
absolute way..

Example: You can define
"../HTMLBasedGUI/workplace/header2.html" - or
"http://www.softwareag.com".

Obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

resizable

Decision if the user is able to resize the frame. This property
must be in synch with the definition in the "neighbour
frames". If the neighbour frames do not support resizing then
it will not be offered to the user as consequence.

Valid values are "true" and "false". Default is "true".

Optional

true

false

withborder

Boolean value defining if the frame has a border on its own.
Default is "false".

Optional

true

false

scrolling

Boolean that indicates whether the frame can be scrolled.
Default is true.

Optional

true

false

framestyle

Style that is passed to the HTML-FRAME definition that is
internally generated.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

732

Natural for Ajax

Definition of Multi Frame Pages

bordercolor

Sets the border color of the frame set.

Optional

#FF0000

#00FFO00

#0000FF

#FFFFFF

#808080

#000000

marginheight

Defines top and bottom margin height. Value is a pixel value.
Default is "0".

Optional

—_

2

3

int-value

marginwidth

Defines left and right margin width. Value is a pixel value.
Default is "0".

Optional

—_

2

3

int-value

MFFRAMESET

The MFFRAMESET represents a frame that is internally again divided into frames. The MFFRA-
MESET definition decides whether to divide into rows or columns, and how to size the inner frames.

Basic

target

Id of the frame. Must be unique inside the frameset page.
Must only contain alphanumeric characters.

The id is important! CIS offers certain methods inside the
Model-class that allow an adapter to start operations for a
certain frame (e.g. openeCIPagelnFrame(...)). As part of the
parameters of these methods a target-id is passed. The
target-id is exactly the id you specifiy with the TARGET

property.

Obligatory

separation

Specifies how the corresponding internally used frameset
is subdivided: choose "rows" for subdividing into rows,
"cols" for subdividing into columns.

Obligatory

TOws

cols

Natural for Ajax

733

Definition of Multi Frame Pages

sizing Defines the size of the contained sub-frames. If you have |Obligatory
three sub-frames to show up inside the page then you might
specify "200,200,*" to specify how the height (if
SEPARATION is "rows") or the width (if SEPARATION is
"cols") is distributed among the frames.
You can speficy per frame either a pixel value or a "*".
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
border Space between frames contained in the frameset that is Optional |1
internally built up.
2
3
int-value
bordercolor |Sets the border color of the frame set. Optional [#FF0000
#00FFO00
#0000FF
#FFFFFF
#808080
#000000
frameborder |Defines if to display a border around the contained frames. |Optional |true
Valid values are "true" or "false".
false
framespacing|Defines the amount of additional space between the frames. |Optional |1
Value is a pixel value.
2
3
int-value
framesetstyle |Style passed to the HTML-frameset definition that is Optional |background-color:
internally generated. #FF0000
color: #0000FF
font-weight: bold
734 Natural for Ajax

113 Application Designer Workplace Framework

B FTAMEWOTK OVBIVIEWottt ettt e e et e e e e e e e 737
m Functions Frame: MFWPFUNGCTIONSuuuiiiiiiieitieiiieiseeieisesieeeeeeeeeeseseeesesssesssesesssesesessssssesssensessesnnes 738
= Active Functions Frame: MFWPACTIVEFUNCTIONSoouiiiiii e 740
= Content Frame: MEWPCONTENT ..ot 741
= Filling the MFWPFUNCTIONS Frame Initially: MFWPBOOTSTRAPINFOccooiiiiiiiiiiiiiceeec e 743
= Session Management inside the WOrKPIACEcoouviiiiiiiii e 752
= Workplace API for Dynamic Manipulationccoooiiiiiiiiiiiiiie e 753

735

Application Designer Workplace Framework

The Natural example library SYSEXNJX provides an example of a workplace built on base of the
Application Designer framework. The example can be executed with the following URL:

http://<host>:<port>/cisnatural/servlet/StartCISPage? PAGEURL=/njxdemos/wpdynworkplace.html

For information on the Natural versions with which this example is provided, see the section
Support for Special Features.

ristursd far Ajax Faamples e e Wik

Syateim e
Appications of Soully (Sa6) [T r— T g intion
Faworites of Scully {SAG)
+] Figld
zHA Firct Dmma Welcome to the Natural for
+] Gnd Demos ;

+ (] Operatians an Grids Ajax Examples

+ j Beportng

+] Single Cortrols

+] XML Ciata Deeclaration
+ | Special Control
Maintain Workplacs + L) Server Sule Sorollng } -
i' + [C] Maw Natural Conrols Protetieg

Googhks Saard

Soiteang AG

Softeans &G [Pop-up)
Softeane A0 [MEWS frams)

The wbeniion of tes deme = te thew by enienple how
15 uge the Appbeaticn Deagner contrels efectrely
anvid heow b i thoerm bo Matural secwer-sde

The Eeme 2 an exention of the dacenentation thit
comes with Applcation Dengner and Mabaral fir
Araz Wele the dovmneataban ConcETates oo
prowcng refirence matenal, See deme conlars
ermmples oo wng the contrals m Mabaral spphicatons

software~

SOLLTIORG

The deme i3 an evolang aid and sl be conmantly
xmedidind o the Babars

a1

The workplace framework bases on the multi frame page management described in the previous
sections. It offers the following:

* flexible arrangement of frames,

* dynamic loading of available functions,

" possibility to change the environment at runtime via specific controls,

" execution of multiple tasks between which the user can switch (, multi document interface”).

736 Natural for Ajax

Application Designer Workplace Framework

Framework Overview

An Application Designer workplace is a certain arrangement of frames in a multi frame page.
Some of the frames have predefined tasks. Have a look at the example workplace in which you
can already see the most important frames:

- Active Functions

|-.1......

| Matursl Page Examples Description
Favortes of Scully [SAG)H

Welcome to the Natural for

: FunﬂtiﬂnE 3 £2 Opr n Grid Ajax Examples

Content g

COMPA

a_—— =T

The "Functions" frame contains the available functions that can be chosen and invoked by the user.
The "Content" frame contains the page or page sequence that is opened if a function is selected.
The "Active Functions" frame shows the functions that were opened by the user and allows the
user to navigate between the active functions.

Have a look at the XML layout definitions for this workplace; it defines how the frames are
arranged (../njx<nn>.ear/cisnatural.war/njxdemos/xml/wpdynworkplace.xml):

Natural for Ajax 737

Application Designer Workplace Framework

<?xml version="1.0" encoding="UTF-8"7>
<mfpage separation="rows" sizing="20,*">
<mfwpactivefunctions resizable="false" withborder="false" scrolling="false"
framestyle="border: Opx solid #000000">
</mfwpactivefunctions>
<mfframeset target="/77" separation="cols" sizing="265,*">
<mfframeset target="LEFTPART" separation="rows" sizing="*,400" border="true'
framesetstyle="border: 1px solid #808080">
<mfwpfunctions bootstrapinfourl="/njxdemos/xml/wpdynbootstrapinfo.xml"
serversidescrolling="false" framestyle="border: 1 solid

#808080; ">
</mfwpfunctions>
<mfhtmlframe target="NEWS" url="../njxdemos/html/wpdynhowto.html"
resizable="true" withborder="false" scrolling="true"
framestyle="border: 1lpx solid #808080">
</mfhtml frame>
</mfframeset>
<mfwpcontent resizable="true" withborder="true" scrolling="false"
framestyle="border: 1 solid #808080;">
</mfwpcontent>
</mfframeset>
</mfpage>

You see that there are three special frame controls that are used internally: MFWPFUNCTIONS,
MFWPACTIVEFUNCTIONS and MFWPCONTENT. In addition, there is one HTML page arranged
below the MEFWPFUNCTIONS control.

Let us take a closer look at each of the three workplace frame controls.

Functions Frame: MFWPFUNCTIONS

This is the frame to hold the available functions to be selected by the user. The control has the
following properties:

Basic

bootstrapclass Name of the class that is responsible for passing the initial |Optional
workplace configuration. The class must support interface
"IMFWorkplace2" and must support a constructor without
parameters.

When being displayed the workplace creates an instance of
this class and asks for an object that represents the workplace
setup. Have a look into the javadoc-documentation for
interface "IMFWorkplace2" for more information.

738 Natural for Ajax

Application Designer Workplace Framework

bootstrapinfourl URL to an .xml file that holds the initial workplace Optional
configuration. Do not use BOOTSTRAPINFOURL and
BOOSTRAPCLASS at the same time!
Use /project/directory/doc.xml as syntax, e.g.
/HTMLBasedGUI/workplace/bootstrapworkplaceinfo.xml.
serversidescrolling Flag that decides if the function tree providing the available|Optional |true
workplaces functions support client side scrolling (default,
"false") or supports server side scrolling ("true"). Server side false
scrolling should be used if a function tree containes more
than 100 nodes.
defaultcontentpage |URL of a page that is shown in the 'content area’ by default.|Optional
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
contentstylesheet Style sheet that should be used for the content that is started | Optional
inside the workplace.
framestyle Style that is passed to the HTML-FRAME definition that is |Optional |background-color:
internally generated. #FF0000
color: #0000FF
font-weight: bold
bordercolor Sets the border color of the frame set. Optional |#FF0000
#00FF00
#0000FF
#FFFFFF
#808080
#000000
marginheight Defines top and bottom margin height. Value is a pixel value. |Optional |1
Default is "0".
2
3
int-value
marginwidth Defines left and right margin width. Value is a pixel value. |Optional |1
Default is "0".
2
3

Natural for Ajax

739

Application Designer Workplace Framework

int-value
activefunctionsvariant | Defines how the MFWPACTIVEFUNCTIONS frame displays |Optional | tabstrip
the list of started pages. You can either use a STRIPSEL or .
TABSTRIP control. Default is "tabstrip". stripsel
withownborder Flag that indicates if the functions page shows an additional | Optional |true
border. Default is false.
false
workplacestylesheet |Style sheet that should be used for the workplace itself. Optional
withplusminus If set to "true" then +/- Icons will be rendered in front of the|Optional |true
mfwpfuntions.
false

Active Functions Frame: MFWPACTIVEFUNCTIONS

This frame shows the functions that the user started and between which the user can switch.

Basic
resizable Decision if the user is able to resize the frame. This Optional |true
property must be in synch with the definition in the
"neighbour frames". If the neighbour frames do not false
support resizing then it will not be offered to the user as
consequence.
Valid values are "true" and "false". Default is "true".
withborder |Boolean value defining if the frame has a border on its |Optional |true
own. Default is "false".
false
scrolling Boolean that indicates whether the frame can be scrolled. |Optional | true
Default is true.
false
framestyle |Style that is passed to the HTML-FRAME definition that |Optional |background-color:
is internally generated. #FF0000
color: #0000FF
font-weight: bold
bordercolor |Sets the border color of the frame set. Optional [#FF0000
#00FF00
740 Natural for Ajax

Application Designer Workplace Framework

#0000FF
#FFFFFF
#808080
#000000
marginheight|Defines top and bottom margin height. Value is a pixel |Optional|1l
value. Default is "0".)
3
int-value
marginwidth |Defines left and right margin width. Value is a pixel Optional |1
value. Default is "0".)
3
int-value
comment Comment without any effect on rendering and behaviour. | Optional
The comment is shown in the layout editor's tree view.

Content Frame: MFWPCONTENT

This is the frame in which content is started that is selected from the functions area.

Basic
resizable Decision if the user is able to resize the frame. This Optional |true
property must be in synch with the definition in the
"neighbour frames". If the neighbour frames do not false
support resizing then it will not be offered to the user
as consequence.
Valid values are "true" and "false". Default is "true".
withborder Boolean value defining if the frame has a border on its |Optional |true
own. Default is "false".
false
scrolling Boolean that indicates whether the frame can be Optional |true
scrolled. Default is true.
false

Natural for Ajax

741

Application Designer Workplace Framework

framestyle Style that is passed to the HTML-FRAME definition |Optional |background-color:
that is internally generated. #FF0000
color: #0000FF
font-weight: bold
bordercolor Sets the border color of the frame set. Optional [#FF0000
#00FF00
#0000FF
#FFFFFF
#808080
#000000
marginheight |Defines top and bottom margin height. Value is a pixel |Optional |1
value. Default is "0".
2
3
int-value
marginwidth |Defines left and right margin width. Value is a pixel |Optional|1
value. Default is "0".
2
3
int-value
withownborder |Flag that indicates if started pages show an own border. |Optional |true
Default is false.
false
comment Comment without any effect on rendering and Optional
behaviour. The comment is shown in the layout editor's
tree view.
742 Natural for Ajax

Application Designer Workplace Framework

Filling the MFWPFUNCTIONS Frame Initially: MFWPBOOTSTRAPINFO

The MFWPFUNCTIONS frame can be filled initially by using the bootstrapinfourl property.
This property expects an URL to an XML file that represents the initial workplace setup (for
example, ../njx<nn>.ear/cisnatural.war/njxdemos/xml/wpdynworkplace.xml).

Have a look at the corresponding XML file:

<mfwpbootstrapinfo
defaultcontentpage="/HTMLBasedGUI/empty.html"
workplacestylesheet="../cis/styles/CIS_DEFAULT.css"
synchtabnavigation="true"
showdustbin="true"
withtakeouttopopup="false"
withcloseallwindowsicon="false"

mfworkplaceeventlistener="com.softwareag.cis.workplace.MFDefaultEventListener"
targetnameofresizableleftpart="AVAILABLEACTIVITIES"
translationproject="tshmfp"
translationreference="mfworkplace">

<mfwptopic
name="System"
treeclass="WORKPLACETOPICIClientTree">

<mfwpfolder
name="System"
draginfo="System"
opened="true">

<mfwpopencispage
name="Login"
activityurl="/cisnatural/NatLogon.html&xciParameters.natsession=Workplace

&xciParameters.natparam=stack%3D%28 L0GON+SYSEXNJIX%Z3BWPLGIN-P%29"
onlyoneinstance="true"
followpageswitches="true">
</mfwpopencispage>

</mfwpfolder>
</mfwptopic>
<mfwptopic
name="Maintain Workplace"

treeclass="WORKPLACETOPIC1ClientTree">

<mfwpopencispage

Natural for Ajax 743

Application Designer Workplace Framework

name="Maintain Function Tree"
activityurl="/cisnatural/NatLogon.html&xciParameters.natsession=Workplace

&xciParameters.natparam=stack%3D%28L0GON+SYSEXNJIX%3BWPFUNC-P%29"
onlyoneinstance="true"
followpageswitches="true">
</mfwpopencispage>

<mfwpopencispage
name="Maintain Content Pages"
activityurl="/cisnatural/NatLogon.html&xciParameters.natsession=Workplace

&xciParameters.natparam=stack%3D%28 L0GON+SYSEXNJIX%Z3BWPCONT-P%29"
onlyoneinstance="true"
followpageswitches="true">
</mfwpopencispage>
</mfwptopic>
</mfwpbootstrapinfo>

| Note: To make sure that you are using a proper bootstrapinfo.xml file, use the XML Schema

editor.xsd (and all corresponding XSD files) to validate your XML file (for example, in
XMLSpy).

Overview of the bootstrapinfo hierarchy:

<mfwpbootstrapinfo> // root tag
<mfwptopic> // new topic
<mfwpfolder> // MFWorkplaceTreeNodeFolder

<mfwpopencispage> // MFWorkplaceTreeNodeCISPage
<{mfwpopencispopup> // MFWorkplaceTreeNodeCISPopup
<mfwpopencistarget> // MFWorkplaceTreeNodeCISTarget
<mfwpopenhtmlpage> // MFWorkplaceTreeNodeHTMLPage
<mfwpopenhtmlpopup> // MFWorkplaceTreeNodeHTMLPopup
<mfwpopenhtmltarget> // MFWorkplaceTreeNodeHTMLTarget

Each of the sublevel tags can contain all sublevel tags as subnodes, including itself.
The following topics are covered below:

= MFWPBOOTSTRAPINFO Properties
= MFWPTOPIC Properties

= MFWPFOLDER Properties

= MFWPOPENCISPAGE Properties

= MFWPOPENCISPOPUP Properties

= MFWPOPENCISTARGET Properties
= MFWPOPENHTMLPAGE Properties
= MFWPOPENHTMLPOPUP Properties

744 Natural for Ajax

Application Designer Workplace Framework

= MFWPOPENHTMLTARGET Properties

MFWPBOOTSTRAPINFO Properties

Basic

defaultcontentpage

The workplace consists out of several frames, one of it the
content frame. If there is no active activity in the workplace
then the defaultContentPage is displayed inside the content
frame. You can use this in two ways:

(1) Either create one "background page" which always is shown
in an "empty" workplace.

(2) Or create one "background page" which the workplace opens
by default. E.g. you want in a start-workplace to first present
to the user a logon page.

EXAMPLE: "/HTMLBasedGUI/empty.html"

Optional

workplacestylesheet

The stlye sheet which is used for the left and top frame of the
workplace. If no style sheet is specified then the workplace
adapts to the standard style sheet which is kept in the CISsession
context. You typically want to use one fix child for a workplace
- because the workplace is typically embedded in some other
frames arranging some graphics/etc. around, and you do not
want the workplace colour's to change independent from this.

EXAMPLE: "/cis/styles/XYZ_STLYE.css"

Optional

background-cc
#FF0000

color: #0000FF

font-weight: b

translationproject

Name of the project where the actual used multilanguage file
is located.

e.g. cisdemos

Optional

translationreference

Name of the multilanguage .csv file.
e.g. test

(if the file test.csv should be used)

Optional

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

Appearance

mfworkplaceeventlistener

Use this interface to react on workplace events.
(1) Create an implementation of this interface

(2) Use method
MFWorkplacelInfo.registerMFWorkplacekventListener
to register your class

Optional

Natural for Ajax

745

Application Designer Workplace Framework

(3) Use method NODEInfo.setDropInfo on each tree item to
be able to drag that item

Step two and three are typically done within the "bootstrap info
provider"-class

A ClISworkplace is a certain arrangement of frames in a multi
frame page. The "functions"-frame (MFWPFUNCTIONS) holds
the available functions to be selected by the user (click with the
left mouse Button). In addition you can provide for right mouse
button menu or drag and drop within the function tree. With
that you may allow users to add/remove/shift menu items
(personalization).

targetnameofresizableleftpart

The workplace may contain a favourite list. At the bottom of
the favourite list there are some items by which you can
influence the size of the corresponding left part of the
workplace. The name of the target frame to be resized is passed
with this method.

Optional

View
showdustbin Flag that indicates wether the dustbin (have a look at the DEMO |Optional | true
WORKPLACE) is shown or not.
false
Boolean value, default is false.
synchtabnavigation Set flag that decides if the tree "on the left" is synchronized with | Optional | true
the tab navigation "on the top". If the user selects an opened
activity in the tab strip then the corresponsding tree node and false
topic is shown as consequence.
Pay attention: the base of the synchronization is the naming of
nodes. There is currently no naming concept beyond (that e.g.
assigns ids to nodes). Make sure, your tree nodes are set in a
way that each one holds a unique name. Use the tabText
(setTabText) in order to make nodes unique!
true ==> synchronization is done; false ==> synchronization is
not done;
default is false.
withcloseallwindowsicon Flag that indicates whether the Close AllWindowslcon is shown |Optional |true
in the workplace or not.
false
Boolean value, default is false.
withtakeouttopopup Flag that indicates Optional |true
false
746 Natural for Ajax

Application Designer Workplace Framework

MFWPTOPIC Properties
Basic
name Text of the topic. Obligatory
textid Multi language dependent text that is displayed inside the |Optional
control. The "textid" is translated into a corresponding string
at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

comment |Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Appearance

buttonstyle |Style info that is passed to the button representing the topic. |Optional

iconurl The button that represents this topic may have an additional |Optional
icon in front of the text. Use this parameter to set the icon URL.

treestyle |Background style for the tree. You can e.g. define background |Optional |background-color:
colors and background pictures. Avoid the usage of ' and " #FF0000

characters.
color: #0000FF

Please also have a look onto the method "setStyleClass" - via .
this method you can pass a reference to a CSS class. font-weight: bold

treeclass |Sets the style class for rendering the tree area of the topic. There |Optional
are 10 standard style classes available in the default style sheet:
PLACETOPIC1ClientTree to WORKPLACETOPIC10ClientTree.
These style sheets can be maintained within the CISstyle sheet

editor.
tooltip Tooltip of the node. Optional
tooltipid |Text ID of the tooltip. Optional
MFWPFOLDER Properties
Basic
name Text of the tree node folder. Obligatory

textid Multi language dependent text that is displayed inside the control. The "textid"|Optional
is translated into a corresponding string at runtime.

Do not specify a "name" inside the control if specifying a "textid".

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Appearance

draginfo |Any information that is useful to react on a drop event. Characters ' and \ are|Optional
not allowed.

Natural for Ajax 747

Application Designer Workplace Framework

opened |(Flag that indicates whether the folder is opened or not. Optional |true
Boolean value false

tooltip |Text of the tooltip of the tree node folder. Optional

tooltipid |Text ID of the tooltip. Optional

MFWPOPENCISPAGE Properties

Basic
name Text of the node. Obligatory
textid Multi language dependent text that is displayed inside the control. |Optional
The "textid" is translated into a corresponding string at runtime.
Do not specify a "name" inside the control if specifying a "textid".
activityurl URL to be started when user clicks on node. You can append Obligatory

parameters to the URL by appending them via
"andamp;paraml=valuelandamp;param2=value2"

followpageswitches|If the user navigates inside the called page (e.g. switches from one |Obligatory
page to the other) then this navigation is registered. True means:

when reinvoking the page through the tree then the user come back
exactly to the page where he/she stayed. False means: the user id
brought back to the starting page always.

onlyoneinstance A page with the corresponding text is only started once inside the |Obligatory |true
workplace. If the page already exists no new pages is started but the
existing one is picked. false
comment Comment without any effect on rendering and behaviour. The Optional

comment is shown in the layout editor's tree view.

Appearance

draginfo Any information that is useful to react on a drop event. Characters |Optional
"and \ are not allowed.

iconurl URL for the icon in front of the text. The workplace iself is running |Optional
in project "HTMLBasedGUI" - you have to go up first "../" to address
your icons.

tooltip Text of the tooltip of the tree node. Optional

tooltipid Text ID of the tooltip. Optional

748 Natural for Ajax

Application Designer Workplace Framework

MFWPOPENCISPOPUP Properties

Basic
name Text of the node. Obligatory
textid Multi language dependent text that is displayed inside the control. The |Optional
"textid" is translated into a corresponding string at runtime.
Do not specify a "name" inside the control if specifying a "textid".
activityurl| URL to be started when user clicks on node. You can append parameters|Obligatory
to the URL by appending them via
"andamp;paraml=valuelandamp;param2=value2"
comment |Comment without any effect on rendering and behaviour. The comment|Optional
is shown in the layout editor's tree view.
Appearance
draginfo |Any information that is useful to react on a drop event. Characters ' and |Optional
\ are not allowed.
iconurl |URL for the icon in front of the text. Must start with "../project". Optional
tooltip Tooltip of the node. Optional
tooltipid |Text ID of tooltip. Optional
width Set the dimension of the popup in pixels. (width) Optional |1
2
3
int-value
height Set the dimension of the popup in pixels. (height) Optional |1
2
3
int-value
left Set the dimension of the popup in pixels. (left) Optional |1
2
3
int-value
top Set the dimension of the popup in pixels. (top) Optional |1
2
3

Natural for Ajax

749

Application Designer Workplace Framework

int-value
MFWPOPENCISTARGET Properties
Basic
name Text of the node. Obligatory
textid Multi language dependent text that is displayed inside the control. The "textid" |Optional
is translated into a corresponding string at runtime.
Do not specify a "name" inside the control if specifying a "textid".
activityurl|URL to be started when user clicks on node. You can append parameters to the|Obligatory
URL by appending them via "andamp;paraml=valuelandamp;param2=value2".
target Name of the target Frame in which the CIS page is going to be opened. Obligatory
During workplace definition each frame you define gets assigned a target-id.
comment |Comment without any effect on rendering and behaviour. The comment is shown |Optional
in the layout editor's tree view.
Appearance
draginfo |Any information that is useful to react on a drop event. Characters ' and \ are |Optional
not allowed.
iconurl |URL for the icon in front of the text. Must start with "../project". Optional
tooltip Tooltip of the node. Optional
tooltipid |Text ID of the tooltip. Optional
MFWPOPENHTMLPAGE Properties
Basic
name Text of the node. Optional
textid Multi language dependent text that is displayed inside the control. The |Optional
"textid" is translated into a corresponding string at runtime.
Do not specify a "name" inside the control if specifying a "textid".
activityurl URL to be started when user clicks on node. Optional
onlyoneinstance | A page with the corresponding text is only started once inside the Optional |true
workplace. If the page already exists no new pages is started but the
existing one is picked. false
comment Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.
Appearance
draginfo Any information that is useful to react on a drop event. Characters ' and |Optional
\ are not allowed.
750 Natural for Ajax

Application Designer Workplace Framework

iconurl URL for the icon in front of the text. Must start with "../project” Optional
tooltip Tooltip of the node. Optional
tooltipid Text ID of the tooltip. Optional

MFWPOPENHTMLPOPUP Properties

Basic
name Text of the node. Optional
textid Multi language dependent text that is displayed inside the control. The |Optional
"textid" is translated into a corresponding string at runtime.
Do not specify a "name" inside the control if specifying a "textid".
activityurl|URL to be started when user clicks on node. Obligatory
comment |Comment without any effect on rendering and behaviour. The comment|Optional
is shown in the layout editor's tree view.
Appearance
iconurl |URL for the icon in front of the text. Must start with "../project” Optional
draginfo |Any information that is useful to react on a drop event. Characters ' and |Optional
\ are not allowed.
tooltip Tooltip of the node. Optional
tooltipid |Text ID of the tooltip. Optional
width Set the dimension of the popup in pixels. (width) Optional |1
2
3
int-value
height Set the dimension of the popup in pixels. (height) Optional |1
2
3
int-value
left Set the dimension of the popup in pixels. (left) Optional |1
2
3
int-value
top Set the dimension of the popup in pixels. (top) Optional |1

Natural for Ajax 751

Application Designer Workplace Framework

2
3
int-value
MFWPOPENHTMLTARGET Properties
Basic
name Text of the node. Obligatory

textid Multi language dependent text that is displayed inside the control. The "textid" |Optional
is translated into a corresponding string at runtime.

Do not specify a "name" inside the control if specifying a "textid".

activityurl|URL to be started when user clicks on node. Obligatory

target Name of the target Frame in which the HTML Page is going to be opened. Obligatory

When defining a workplace page you assign a target-id per frame.

comment |Comment without any effect on rendering and behaviour. The comment is shown |Optional
in the layout editor's tree view.

Appearance

iconurl |URL for the icon in front of the text Must start with "../project". Optional

draginfo |Any information that is useful to react on a drop event. Characters ' and \ are |Optional
not allowed.

tooltip Tooltip of the node. Optional

tooltipid | Text ID of the tooltip. Optional

Session Management inside the Workplace

When the user selects functions in the MFWPFUNCTIONS frame, then pages are opened in the
content frame, or as popups or in a named target frame.

The workplace offers a ,, multi document interface” - i.e. you can work in parallel in several activities
and you can switch between these activities. This structure is reflected in the server-side session
structure. The section Details on Session Management in the Special Development Topics (which is part
of the Application Designer documentation) explains this in a detailed way. However, some
information is given below.

The session management of Application Designer knows sessions (typically representing a
browser instance) and subsessions (reflecting a user activity with a defined life cycle). A session
contains one or more subsessions. Inside one subsession, the adapter object are kept which are
required by a page or a page sequence. Subsessions are isolated from one another.

752 Natural for Ajax

Application Designer Workplace Framework

The workplace proceeds in the following way:

Every activity that is started inside the content is represented by a subsession of its own. If you
have opened five Application Designer pages via the function tree inside the content area of the
workplace, then there are five subsessions on the server side. If the user navigates between the
activities (e.g. via the MFWPACTIVEFUNCTIONS frame), then from session point of view the
user navigated between subsessions.

The workplace itself also occupies one subsession. If Application Designer pages are opened in
a popup or in anamed target, then these pages are living inside the subsession of the workplace.

When programming content pages, you do not notice the session management: every page that
you design and test in the Layout Painter behaves in the same way in the workplace. Due to the
separation into subsessions, you are not aware of "neighboring" subsessions.

Workplace API for Dynamic Manipulation

Internally, the workplace is started when the workplace frameset page is loaded. So far you got
to know the framework to set up the workplace by providing a MFWPBOOTSTRAPINFO file.

But you can also dynamically manipulate the workplace. There are two typical usages:

You can exchange all workplace definitions dynamically. Maybe you offer the user a ,, reduced”
workplace just allowing the user to log on at the beginning. Afterwards, the ,real” workplace
for the user is built up - containing all functions available for the user.

You can manipulate workplace definitions in an existing workplace. For example, you modify
the title of an activity that is shown in the MFWPACTIVEFUNCTIONS area. Or you want to
add certain nodes to an existing tree.

For this purpose, there is a set of controls containing the workplace functions that you can use
from your application:

NJX:XCIWPINFO2
NJX:XCIWPFUNCTIONS
NJX:XCIWPACCESS2

Natural for Ajax 753

754

114 NJX:XCIWPINFO2

L 11T o] (- ST SPPPPTPPRR 756
B AQAPIEr INEEITACE .. .uviiii e 756

755

NJX:XCIWPINFO2

The NJX:XCIWPINFO2 control is used to access and exchange the function tree that is shown in
the , Functions” frame (MFWPFUNCTIONS) as a whole. In order to perform incremental changes
in the function tree, you should use the NJX:XCIWPFUNCTIONS control.

The NJX:XCIWPINFO2 control provides a functional API to the workplace. It does not have design
time properties nor does it raise events.

The following topics are covered below:

Example

The XML code for the example looks as follows:

<natpage xmins:njx="http://www.softwareag.com/njx/njxMapConverter">
<njx:xciwpinfoz2>
</njx:xciwpinfo2>

</natpage>

Adapter Interface

XCIWPINFO_CHANGEINDEX (I4)
XCIWPINFO_NODE (1:%*)
ACTIVITYURL (A) DYNAMIC
BUTTONSTYLE (A) DYNAMIC
DRAGINFO (A) DYNAMIC
FOLLOWPAGESWITCHES (L)
HEIGHT (I4)

ICONURL (A) DYNAMIC
LEFT (I4)

LEVEL (I4)

NAME (A) DYNAMIC
ONLYONEINSTANCE (L)
OPENED (I4)

TARGET (A) DYNAMIC
TOOLTIP (A) DYNAMIC

TOP (I4)

TREECLASS (A) DYNAMIC
TREESTYLE (A) DYNAMIC
TYPE (A) DYNAMIC

WIDTH (I4)

RPN NN NN NN NN NN NN N

Each occurrence in the array XCIWPINFO_NODE describes a node in the function tree. The function
tree consists of up to three levels: topics, folders and nodes.

756 Natural for Ajax

NJX:XCIWPINFO2

Topic

The following structure elements are used to describe a topic:

Element Meaning

BUTTONSTYLE|Style info that is passed to the button representing the topic.

ICONURL The button that represents this topic may have an additional icon in front of the text.
Use this parameter to set the icon URL.

LEVEL The following definition means ,This is a topic”:
LEVEL =1

NAME Name of the topic.

OPENED The following definition means ,The topic is closed:
OPENED = 0

The following definition means ,The topic is opened”:

OPENED = 1
TOOLTIP Text of the tooltip for the topic.

TREECLASS [Set the style class for rendering the tree area of the topic. There are ten standard style
classes available in the default style sheet: PLACETOPIC1CIientTree to
WORKPLACETOPIC10CT1ientTree. These style sheets can be maintained with the style
sheet editor of the Application Designer.

TREESTYLE |Background style for the tree. For example, you can define background colors and
background pictures. Avoid the usage of single quote (') and double-quote (") characters.

Folder

The following structure elements are used to describe a folder:

Element |Meaning

DRAGINFO|Any information that is useful to react on a drop event. The single quote (') and backslash
(\) characters are not allowed.

LEVEL The following definitions mean , This is a folder”:

LEVEL = 2 and OPENED = 0

or

LEVEL = 2and OPENED = 1
NAME Name of the folder.

OPENED |The following definition means ,The folder is closed”:

OPENED = 0

Natural for Ajax 757

NJX:XCIWPINFO2

Element |Meaning

OPENED =1

The following definition means ,The folder is opened*:

TOOLTIP |Text of the tooltip for the folder.

Node that opens a page in the ,Content” frame

The following structure elements are used to describe a node that opens an Application Designer
page or HTML page in the ,, Content” frame:

Element Meaning

ACTIVITYURL The URL to be loaded when the user clicks on a node. You can append
parameters to the URL.

DRAGINFO Any information that is useful to react on a drop event. The single quote (')
and backslash (\) characters are not allowed.

FOLLOWPAGESWITCHES |If true, the workplace keeps the information when the user switches inside the
content area from one page to the next. If the user reinvokes the page, the page
to which the user switched last is shown, not the one from the ACTIVITYURL.
The use of FOLLOWPAGESWITCHES only makes sense if ONLYONEINSTANCE is
set to true.

ICONURL The URL for the icon which is shown in front of the name.

LEVEL The following definition creates a node on level 2, that is, directly under a
topic:

LEVEL = 2 and OPENED = 2
The following definition creates a node on level 3, that is, under a folder:
LEVEL = 3

NAME Name of the node.

ONLYONEINSTANCE A page with the corresponding name is only started once inside the workplace.
If the page already exists, no new page is started but the existing one is used.

OPENED See the above description for LEVEL.

TOOLTIP Text of the tooltip for the tree node.

TYPE "cis" to open an Application Designer page, or "html" to open an HTML page.

758

Natural for Ajax

NJX:XCIWPINFO2

Node that opens a page in a pop-up window

The following structure elements are used to describe a node that opens an Application Designer
page or HTML page in a pop-up window:

Element Meaning

ACTIVITYURL|The URL to be loaded when the user clicks on a node. You can append parameters to
the URL.

DRAGINFO Any information that is useful to react on a drop event. The single quote (') and backslash
(\) characters are not allowed.

HEIGHT Set the dimension of the pop-up in pixels.

ICONURL The URL for the icon which is shown in front of the name.

LEFT Set the relative position of the pop-up in pixels.

LEVEL The following definition creates a node on level 2, that is, directly under a topic:

LEVEL = 2 and OPENED = 2

The following definition creates a node on level 3, that is, under a folder:

LEVEL = 3

NAME Name of the node.

OPENED See the above description for LEVEL.

TOOLTIP Text of the tooltip for the tree node.

TOP Set the relative position of the pop-up in pixels.

TYPE "cispopup" to open an Application Designer page, or "htmlpopup"” to open an HTML
page.

WIDTH Set the dimension of the pop-up in pixels.

Node that opens a page in a target frame

The following structure elements are used to describe a node that opens an Application Designer
page or HTML page in a target frame other than the ,Content” frame:

Element Meaning

ACTIVITYURL|The URL to be loaded when the user clicks on a node. You can append parameters to
the URL.

DRAGINFO Any information that is useful to react on a drop event. The single quote (') and backslash
(\) characters are not allowed.

ICONURL The URL for the icon which is shown in front of the name.

LEVEL The following definition creates a node on level 2, that is, directly under a topic:

LEVEL = 2 and OPENED = 2

Natural for Ajax 759

NJX:XCIWPINFO2

Element Meaning
The following definition creates a node on level 3, that is, under a folder:
LEVEL = 3

NAME Name of the node.

OPENED See the above description for LEVEL.

TARGET Name of the target frame in which the page is to be opened. During workplace definition,
you assign a target ID to each frame you define.

TOOLTIP Text of the tooltip for the tree node.

TYPE "cistarget": Open an Application Designer page.

"htmltarget": Open an HTML page.

When the structure is passed to the application, it contains the information about the current
function tree. The application may change this information and return it. In order to indicate that
the function tree shall be updated in the user interface, the application must modify the value of
XCIWPINFO_CHANGEINDEX on return. This is achieved, for instance, by the following statement:

ADD 1 TO XCIWPINFO_CHANGEINDEX

760

Natural for Ajax

115

NJX:XCIWPFUNCTIONS

= Example

= Adapter Interface

761

NJX:XCIWPFUNCTIONS

The NJX:XCIWPFUNCTIONS control is used to modify the function tree that is shown in the
,Functions” frame (MFWPFUNCTIONS) incrementally. In order to access the content of the
function tree or to exchange it as a whole, you have to use the NJX:XCIWPINFO2 control.

The NJX:XCIWPFUNCTIONS control provides a functional API to the workplace. It does not have
design time properties nor does it raise events.

The following topics are covered below:

Example

The XML code for the example looks as follows:

<natpage xmins:njx="http://www.softwareag.com/njx/njxMapConverter">
<njx:xciwpfunctions>
</njx:xciwpfunctions>

</natpage>

Adapter Interface

XCIWPFUNCTIONS (1:%*)
CMDADDFOLDER

ADDFOLDER_ASFIRST (L)
ADDFOLDER_FOLDERNAME (A) DYNAMIC
ADDFOLDER_OPENED (I4)
ADDFOLDER_TOPICNAME (A) DYNAMIC
CMDADDNODE

ADDNODE_ACTIVITYURL (A) DYNAMIC
ADDNODE_ASFIRST (L)
ADDNODE_FOLDERNAME (A) DYNAMIC
ADDNODE_HEIGHT (I4)
ADDNODE_LEFT (I4)

ADDNODE_NAME (A) DYNAMIC
ADDNODE_TARGET (A) DYNAMIC
ADDNODE_TOP (14)
ADDNODE_TOPICNAME (A) DYNAMIC
ADDNODE_TYPE (A) DYNAMIC
ADDNODE_WIDTH (I4)

CMDADDTOPIC
ADDTOPIC_SWITCHTOTOPIC (L)
ADDTOPIC_TOPICNAME (A) DYNAMIC
ADDTOPIC_TREECLASS (A) DYNAMIC
CMDREMFOLDER
REMFOLDER_FOLDERNAME (A) DYNAMIC
REMFOLDER_TOPICNAME (A) DYNAMIC

W WM WWWMN WWWWWWWWWWWMNDWWWWMN

762 Natural for Ajax

NJX:XCIWPFUNCTIONS

CMDREMNODE

CMDREMTOPIC

W NN W W WM

REMNODE_FOLDERNAME (A) DYNAMIC
REMNODE_NAME (A) DYNAMIC
REMNODE_TOPICNAME (A) DYNAMIC

REMTOPIC_TOPICNAME (A) DYNAMIC

Each occurrence in the array XCIWPFUNCTIONS describes a command that is to be sent to the
workplace API. Several commands can be sent in a sequence. For each command, a corresponding

substructure must be filled.

Add a topic

The following structure elements belong to CMDADDTOPIC:

Element

Meaning

ADDTOPIC_SWITCHTOTOPIC

"true": Open the new topic.

ADDTOPIC_TOPICNAME

Name of the topic.

ADDTOPIC_TREECLASS

Sets the style class for rendering the tree area of the topic. There are ten
standard style classes available in the default style sheet:
PLACETOPICIClientTree to WORKPLACETOPIC10CTientTree. These
style sheets can be maintained with the style sheet editor of the
Application Designer.

Add a folder

The following structure elements belong to CMDADDFOLDER:

Element Meaning

ADDFOLDER_ASFIRST "true": Add this folder as the first folder under the given topic.

"false": Add this folder as the last folder under the given topic.

ADDFOLDER_FOLDERNAME [Name of the folder.

ADDFOLDER_OPENED 0: Add the folder as a closed folder with potential subnodes.
1: Add the folder as an opened folder.

2: Add the folder as a closed folder without subnodes.

ADDFOLDER_TOPICNAME |Name of the topic to which the folder is to be added.

Natural for Ajax

763

NJX:XCIWPFUNCTIONS

Add a node

The following structure elements belong to CMDADDNODE:

Element

Meaning

ADDNODE_NAME

Name of the node to be added.

ADDNODE_FOLDERNAME

Name of the folder to which the node is to be added.

ADDNODE_TOPICNAME

Name of the topic that contains this folder.

ADDNODE_ASFIRST

"true": Add this node as the first node under the given folder.

"false": Add this node as the last node under the given folder.

ADDNODE_ACTIVITYURL

The URL to be loaded when the user clicks on the node. You can append
parameters to the URL.

ADDNODE_TYPE

"cis": A node that opens an Application Designer page in the ,Content” frame.
"html": A node that opens an HTML page in the ,,Content” frame.

"cispopup": A node that opens an Application Designer page in a pop-up
window.

"htmlpopup": A node that opens an HTML page in a pop-up window.

"cistarget": A node that opens an Application Designer page in a target frame
other than the , Content” frame.

"htmlpopup": A node that opens an HTML page in a target frame other than
the ,,Content” frame.

ADDNODE_LEFT

Only with type "cispopup" and "htmlpopup". Set the relative position of the
pop-up in pixels.

ADDNODE_TOP

Only with type "cispopup" and "htmlpopup". Set the relative position of the
pop-up in pixels.

ADDNODE_HEIGHT

Only with type "cispopup” and "htmlpopup". Set the dimension of the pop-up
in pixels.

ADDNODE_WIDTH

Only with type "cispopup” and "htmlpopup". Set the dimension of the pop-up
in pixels.

ADDNODE_TARGET

Only with type "cistarget" and "htmltarget". Name of the target frame in
which the page is to be opened. During workplace definition, you assign a
target ID to each frame you define.

764

Natural for Ajax

NJX:XCIWPFUNCTIONS

Remove a topic

The following structure element belongs to CMDREMTOPIC:

Element Meaning

REMTOPIC_TOPICNAME |Name of the topic to be removed.

Remove a folder

The following structure elements belong to CMDREMFOLDER:

Element Meaning

REMFOLDER_FOLDERNAME |Name of the folder to be removed.
REMFOLDER_TOPICNAME |Name of the topic that contains the folder.

Remove a node

The following structure elements belong to CMDREMNODE:

Element Meaning

REMNODE_FOLDERNAME |Name of the folder that contains the node to be removed.
REMNODE_NAME Name of the node to be removed.
REMNODE_TOPICNAME |Name of the topic that contains the folder with the node to be removed.

Natural for Ajax 765

766

116 NJX:XCIACCESS2

L 11T o] (- ST SPPPPTPPRR 768
B AQAPIEr INEEITACE .. .uviiii e 768

767

NJX:XCIACCESS2

The NJX:XCIWPACCESS2 control is used to open, activate and close content pages in the workplace,
to open pages as pop-up windows, or to open pages in a frame.

This control provides a functional API to the workplace. It does not have design time properties
nor does it raise events.

The following topics are covered below:

Example

The XML code for the example looks as follows:

<natpage xmins:njx="http://www.softwareag.com/njx/njxMapConverter">
<njx:xciwpaccesse>
</njx:xciwpaccess2>

</natpage>

Adapter Interface

XCIWPACCESS2 (1:%)
CMDADDPAGETOWORKPLACE
ADD_ACTIVITYURL (A) DYNAMIC
ADD_NAME (A) DYNAMIC
ADD_TYPE (A) DYNAMIC
CMDCLOSECONTENTPAGE (A) DYNAMIC
CMDINVOKEMETHODINCONTENTPAGE
METHOD (A) DYNAMIC
CMDOPENPAGEINTARGET
OPEN_ACTIVITYURL (A) DYNAMIC
OPEN_TARGET (A) DYNAMIC
OPEN_TYPE (A) DYNAMIC
CMDOPENPOPUP
POPUP_ACTIVITYURL (A) DYNAMIC
POPUP_HEIGHT (I4)

POPUP_LEFT (I4)

POPUP_TITLE (A) DYNAMIC
POPUP_TOP (I4)

POPUP_TYPE (A) DYNAMIC
POPUP_WIDTH (I4)
CMDSHOWPAGEINWORKPLACE
SHOW_ACTIVITYURL (A) DYNAMIC
SHOW_NAME (A) DYNAMIC
SHOW_TYPE (A) DYNAMIC

W W WM W WWWWWWMNWWWMNDWMNDMNDWWWMN

768 Natural for Ajax

NJX:XCIACCESS2

Each occurrence in the array XCIWPACCESS2 describes a command that is to be sent to the workplace
API. Several commands can be sent in a sequence. For each command, a corresponding substructure
must be filled.

Open a page in the ,Content” frame

The following structure elements belong to CMDADDPAGETOWORKPLACE:

Element Meaning

ADD_ACTIVITYURL|The URL to be loaded.

ADD_NAME The name to be displayed in the ,, Active Functions” frame.

ADD_TYPE "cis": Open an Application Designer page.

"html": Open an HTML page.

Open a page in a pop-up window

The following structure elements belong to CMDOPENPOPUP:

Element Meaning

POPUP_ACTIVITYURL|The URL to be loaded. You can append parameters to the URL.
POPUP_TITLE Title of the pop-up window.

POPUP_TYPE "cis": Open an Application Designer page.

"html": Open an HTML page.

POPUP_LEFT Set the relative position of the pop-up in pixels.
POPUP_TOP Set the relative position of the pop-up in pixels.
POPUP_WIDTH Set the dimension of the pop-up in pixels.
POPUP_HEIGHT Set the dimension of the pop-up in pixels.

Open a page in a target frame other than the "Content" frame

The following structure elements belong to CMDOPENPAGEINTARGET:

Element Meaning

OPEN_ACTIVITYURL|The URL to be loaded. You can append parameters to the URL.

OPEN_TARGET Name of the target frame in which the page is to be opened. During workplace
definition, you assign a target ID to each frame you define.

OPEN_TYPE "cis": Open an Application Designer page.

"html": Open an HTML page.

Natural for Ajax 769

NJX:XCIACCESS2

Activate an already open page in the "Content" frame

The following structure elements belong to CMDSHOWPAGE INWORKPLACE:

Element

Meaning

SHOW_ACTIVITYURL

The URL to be loaded. You can append parameters to the URL.

SHOW_NAME

Name of the page in the , Active Functions” frame.

SHOW_TYPE

"cis": Activate an Application Designer page.

"html": Activate an HTML page.

Close the currently active page in the "Content" frame
Assign the value "closeit" to CMDCLOSECONTENTPAGE.

Close all pages in the "Content" frame
Assign the value "all" to CMDCLOSECONTENTPAGE.

Invoke a method (raise an event) in the currently active page in the "Content" frame

The following structure element belongs to CMDINVOKEMETHODINCONTENTPAGE:

Element

Meaning

METHOD

Name of the method/event.

770

Natural for Ajax

Stichwortverzeichnis

A

Ajax, 1
Application Designer
Natural tools for map conversion, 130

C

conversion logs

Natural tool for map conversion, 131
conversion rules

Natural tool for map conversion, 130

map converter
Natural tool for map conversion, 130

N

Natural for Ajax, 1

771

772

	Natural for Ajax
	Inhaltsverzeichnis
	1 Natural for Ajax
	2 Introduction
	What is a Rich Internet Application?
	Rich Internet Applications with Natural
	Mixed Applications

	3 Installation
	Prerequisites
	Java
	J2EE Server
	Apache Ant
	Natural for Mainframes
	Natural for UNIX
	Natural for Windows
	Support for Special Features
	Development Servers
	Development Clients
	Browser Prerequisites

	License Key File Handling
	Installing Natural for Ajax on JBoss Application Server
	First-time Installation
	Update Installation

	Installing Natural for Ajax on Sun Java System Application Server
	First-time Installation
	Update Installation

	Verifying the Installation

	4 Setting Up Your Environment
	Setting Up Application Designer
	Setting Up Your Development Environment for Natural
	Setting Up Your Runtime Environment for Natural

	5 First Steps
	6 About this Tutorial
	7 Starting the Development Workplace
	8 Creating a Project
	9 Getting Started with the Layout Painter
	Creating a New Layout
	Elements of the Layout Painter Screen
	Previewing the Layout
	Viewing the XML Code

	10 Writing the GUI Layout
	Specifying the Properties for the Natural Page
	Specifying a Name for the Title Bar
	Using the Property Editor
	Specifying a Name and Method for the Button
	Adding the Input and Output Areas
	Adding the Image
	Adding a Horizontal Distance
	Adding an Instructional Text
	Adding a Vertical Distance
	Saving Your Layout

	11 Setting Up Your Development and Runtime Environment for Natural
	12 Creating the Natural Code
	Importing the Adapter into Natural
	Creating the Main Program
	Testing the Completed Application

	13 Some Background Information
	Name Binding between Controls and Adapter
	Data Exchange at Runtime
	Files and their Locations

	14 Developing the User Interface
	Starting the Development Workplace
	Creating an Application Designer Project
	Creating a Natural Page
	Specifying Properties for the Natural Page
	Designing the Page
	Binding Properties and Methods
	Previewing the Layout
	Viewing the Protocol
	Saving the Layout
	Generating the Adapter
	Data Type Mapping

	15 Developing the Application Code
	Importing the Adapter
	Importing the Adapter Using Natural Studio
	Importing the Adapter Using Natural for Eclipse

	Creating the Main Program
	Structure of the Main Program
	Handling Page Events
	Built-in Events and User-defined Events
	Sending Events to the User Interface
	Using Pop-Up Windows
	Using Natural Maps
	Navigating between Pages and Maps
	Using Pages and Maps Alternatively
	Starting a Natural Application from the Logon Page
	Starting a Natural Application with a URL

	16 Deploying the Application
	Components of a Natural for Ajax Application
	Unloading the Natural Modules
	Installing the Natural Modules
	Unloading the User Interface Components
	Installing the User Interface Components
	Packaging and Deployment as a Web Application

	17 Natural Parameters and System Variables
	18 Usage of Edit Masks
	General Information
	Data Types with Edit Masks
	Characters Used in Edit Masks
	Specifying Edit Masks in Layouts
	Input Rendering
	Input Completion

	Static versus Dynamic Validation

	19 Multi Language Management
	20 Support of Right-to-Left Languages
	21 Server-Side Scrolling and Sorting
	General Information
	Variants of Server-Side Scrolling and Sorting
	No Server-Side Scrolling and Sorting
	Web Server-Side Scrolling and Sorting
	Natural Server-Side Scrolling and Sorting

	Controls that Support Server-Side Scrolling and Sorting
	Data Structures for Server-Side Scrolling and Sorting
	Server-Side Scrolling and Sorting in Trees
	Events for Server-Side Scrolling and Sorting

	22 Application Modernization
	23 Overview of Conversion Steps
	24 Map Extraction
	General Information
	Using Natural for Ajax Tools
	Using the Mass Function
	Location of the Files

	25 Map Conversion
	General Information
	First Steps
	Using the Map Converter
	Invoking the Map Converter
	Setting the Conversion Options
	Previewing/Generating a Single Layout
	Generating All Layouts
	Viewing the Conversion Results
	Refreshing the Display

	Using the Editor Extension
	Using the Conversion Rules Tool
	Using the Conversion Logs Tool

	26 Customizing the Map Conversion Process
	Map Converter Processing
	Processing of Rows and Columns
	Rows
	Columns

	Processing of Sequence and Grid Areas
	Summary: Processing Steps of the Map Converter

	Conversion Rules
	Conversion Rules Examples
	Example 1
	Example 2
	Example 3

	Default Conversion Rules File
	Root Rule
	Data Type Conversion Rules
	Other Default Conversion Rules

	Conversion Rules that Often Need to be Adapted
	Naming of Adapters
	Setting the Title of a Map

	Writing Your Own Conversion Rules

	Templates
	Variables in Templates
	Templates in Templates
	Editing Templates

	Tag Converters

	27 Code Conversion
	General Information
	Generating Adapters
	Structure of a Map-Based Application
	Structure of a Natural for Ajax Application
	Tasks of the Code Conversion
	DEFINE DATA Statement
	statusprop

	INPUT Statement
	REINPUT Statement
	PF-Key Event Handling
	SET KEY Statement
	Processing Rules
	System Variables
	Variable Names Containing Special Characters

	28 Working with Containers
	29 Positioning of Controls inside a Container
	Row Types - TR and ITR
	Some More Details on ITR
	TR Properties
	ITR Properties

	30 Defining the Width of Controls inside a Container
	Controlling the Width of Controls
	HDIST and VDIST Controls
	HDIST Control
	VDIST Control

	HDIST Properties
	VDIST Properties
	rowspan and colspan Definitions
	CELLSPAN Control
	CELLSPAN Properties
	Rules for Positioning Controls inside Containers

	31 Vertical Sizing of Containers and Controls
	Vertical Pixel Sizing
	Vertical Percentage Sizing
	Finishing the Example

	32 Overview of Different Containers
	Different Kind of Containers
	Row Containers
	Column Containers
	Row and Column Containers in Combination
	Nesting Containers

	33 ROWAREA and COLAREA
	ROWAREA Properties
	COLAREA Properties

	34 ROWAREAWITHHEADER
	Simple Example
	ROWAREAWITHHEADER Properties
	ROWAREAHEADER Properties
	ROWAREABODY Properties

	35 ROWTABAREA and COLTABAREA
	ROWTABAREA Properties
	COLTABAREA Properties
	TABPAGE Properties
	The Most Common Error
	Example: Controlling which Tab is displayed by the Server Adapter
	Example: Controlling the Visibility of Tab Pages

	36 ROWTABLE0 and COLTABLE0
	ROWTABLE0 Properties
	COLTABLE0 Properties

	37 ROWDYNAVIS and COLDYNAVIS
	ROWDYNAVIS Properties
	COLDYNAVIS Properties
	Some Comments on Controlling the Visibility of Controls

	38 ROWDIV and INNERDIV
	When to Use ROWDIV and INNERDIV Containers
	ROWDIV Properties
	INNERDIV Properties

	39 ROWSCROLLAREA
	ROWSCROLLAREA Properties

	40 HSPLIT and VSPLIT
	Example for HSPLIT
	Example for VSPLIT
	HSPLIT Properties
	VSPLIT Properties
	SPLITCELL Properties
	Defining the Split Size

	41 HLINE and VLINE
	VLINE Properties
	HLINE Properties

	42 Performance Optimization with Containers
	43 Working with Controls
	44 Some Common Rules for all Controls
	Name and Text ID
	Table, Row, Column, Control
	Explicit Alignment
	Binding to Adapter Parameters
	Directly Influencing the Control Style
	Dynamically Controlling the Visibility and the Display Status of Controls
	Focus Management
	Flushing of Inputs
	Tab Sequence
	Tooltips

	45 BREADCRUMB
	Example
	Adapter Interface
	Built-in Events
	Properties

	46 BUTTON
	Example: Simple Button
	Example: Button with Image
	Hiding and Disabling Buttons
	Properties

	47 BUTTONLIST
	Adapter Interface
	Properties

	48 CHECKBOX
	Properties

	49 COMBODYN2
	Adapter Interface
	Properties

	50 COMBOFIX
	COMBOFIX Properties
	COMBOOPTION Properties

	51 DATEINPUT
	Example
	Properties

	52 DROPICON
	Example
	Properties

	53 FIELD
	Built-in Events
	Properties

	54 FILEUPLOAD/FILEUPLOAD2
	FILEUPLOAD
	FILEUPLOAD2
	FILEUPLOAD Properties
	FILEUPLOAD2 Properties

	55 ICON
	Example
	Properties

	56 ICONLIST
	Adapter Interface
	Built-in Events
	Properties

	57 IHTML
	Properties

	58 IMAGEOUT
	Properties

	59 LABEL
	Example
	Aligning the Text
	Properties

	60 MENUBUTTON
	Example
	MENUBUTTON Properties
	MENUITEM Properties

	61 METHODLINK
	Properties

	62 MULTISELECT
	Example
	Adapter Interface
	Properties

	63 NEWSFEED
	Example
	Built-in Events
	Properties

	64 RADIOBUTTON
	Properties

	65 SCHEDULELINE
	Properties

	66 SLIDER
	Example
	Adapter Interface
	Properties

	67 STRIPSEL
	Example
	Properties

	68 SUBPAGE
	Properties

	69 TABSEL
	Adapter Interface
	Built-in Events
	Properties

	70 TABSTRIP2
	Example
	Adapter Interface
	Built-in Events
	Properties

	71 TAGCLOUD
	Example
	Adapter Interface
	Built-in Events
	Properties

	72 TEXT
	Properties

	73 TEXTOUT
	Example
	Properties

	74 TOGGLE
	Properties

	75 ACTIVEX
	Properties

	76 GOOGLEMAP2
	Before You Start
	Example
	General Usage

	Typical Problems
	Google Map API Key
	Map Remains Gray

	Properties

	77 NETMEETING
	Example
	Properties

	78 SKYPECALL
	Example
	Properties

	79 NJX:BUTTONITEMLIST
	Example
	Adapter Interface
	Built-in Events
	Properties

	80 NJX:BUTTONITEM
	Example
	Built-in Events
	Properties

	81 NJX:BUTTONITEMLISTFIX
	Example
	Adapter Interface
	Built-in Events
	Properties

	82 NJX:BUTTONITEMFIX
	Example
	Built-in Events
	Properties

	83 NJX:FIELDLIST
	Example
	Adapter Interface
	Built-in Events
	Properties

	84 NJX:FIELDITEM
	Example
	Adapter Interface
	Built-in Events
	Properties

	85 NJX:FIELDVALUE
	Example
	Adapter Interface
	Built-in Events
	Properties

	86 NJX:NJXVARIABLE
	Example
	Properties

	87 NJX:EVENTDATA
	Example
	Adapter Interface

	88 NATPAGE
	Properties

	89 Working with Grids
	90 Basics
	91 TEXTGRID2
	A Simple Example
	Adapter Interface
	Selecting Rows in a TEXTGRID2
	TEXTGRID2 Properties
	COLUMN Properties
	Dynamic Setting of Text Styles in TEXTGRID2

	92 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling
	Performance Considerations
	Example
	Adapter Interface
	Using Server-Side Scrolling
	Using Server-Side Sorting
	TEXTGRIDSSS2 Properties

	93 ROWTABLEAREA2 - The Flexible Control Grid
	Example
	Adapter Interface
	Built-in Events
	Making Grids Look like Grids
	ROWTABLEAREA2 Properties
	STR Properties

	94 MGDGRID - Managing the Grid
	Example
	Adapter Interface
	Built-in Events
	MGDGRID Properties
	ROWINSERT Properties
	ROWCOPY Properties
	ROWDELETE Properties

	95 GRIDCOLHEADER - Flexible Column Headers
	Flexible Column Sizing
	Flexible Column Sorting
	GRIDCOLHEADER Properties
	Smart Selection of Rows - SELECTOR Control
	SELECTOR Properties

	96 Working with Trees
	97 Basics
	Types of Trees
	When to Use Which Type

	98 TREENODE3 in Control Grid (ROWTABLEAREA2)
	Example
	Adapter Interface
	Built-in Events
	Properties

	99 CLIENTTREE
	Example
	Adapter Interface
	Built-in Events
	Properties

	100 Working with Menus
	101 Types of Menus
	102 MENU
	Example
	Adapter Interface
	Built-in Events
	Properties

	103 DLMENU
	Example
	Adapter Interface
	Built-in Events
	Properties

	104 XCIPOPUPMENU - Enable Context Menus
	Example
	Adapter Interface
	Built-in Events

	105 Non-Visual Controls and Hot Keys
	106 TIMER
	Example
	Properties

	107 XCIDATADEF - Data Definition
	Example
	Properties

	108 Extended Hot Key Management
	Direct Hot Key Definitions with Certain Controls
	Hot Key Definitions for Certain Controls

	109 Function Key Handling
	110 Working with Workplaces
	111 What are Multi Frame Pages?
	112 Definition of Multi Frame Pages
	MFPAGE
	MFCISFRAME
	MFHTMLFRAME
	MFFRAMESET

	113 Application Designer Workplace Framework
	Framework Overview
	Functions Frame: MFWPFUNCTIONS
	Active Functions Frame: MFWPACTIVEFUNCTIONS
	Content Frame: MFWPCONTENT
	Filling the MFWPFUNCTIONS Frame Initially: MFWPBOOTSTRAPINFO
	MFWPBOOTSTRAPINFO Properties
	MFWPTOPIC Properties
	MFWPFOLDER Properties
	MFWPOPENCISPAGE Properties
	MFWPOPENCISPOPUP Properties
	MFWPOPENCISTARGET Properties
	MFWPOPENHTMLPAGE Properties
	MFWPOPENHTMLPOPUP Properties
	MFWPOPENHTMLTARGET Properties

	Session Management inside the Workplace
	Workplace API for Dynamic Manipulation

	114 NJX:XCIWPINFO2
	Example
	Adapter Interface

	115 NJX:XCIWPFUNCTIONS
	Example
	Adapter Interface

	116 NJX:XCIACCESS2
	Example
	Adapter Interface

	Stichwortverzeichnis

