Natural under UTM - Part 4

Natural under UTM - Part 4

This part of the Natural UTM Interface documentation covers the following topics:

® Accounting for Natural UTM Applications

Utility Programs for Use with Natural under UTM

Software Exchange

UTM TACCLASS Concept - Priority Control

Generating a Natural UTM Application

Optimizing Natural UTM Applications

Several Applications with One Common Natural

Entering and Defining Dynamic Natural Parameters

UTM User Restart

Adabas Priority Control

Natural under UTM - Part 4

Accounting for Natural UTM Applications

To better control the use of resources by Natural UTM applications, accounting records are made
available by the user exitsCCINIT andACCEXIT.

® The user exifCCINIT is activated by the Natural UTM Interface at the beginning of each dialog

step.

® The user exinCCEXIT is activated by the Natural UTM Interface depending on the parameter
ACCNTin macroNURENT

ACCNT=DIAL

The user exiACCEXIT is activated at the end of each dialogue step.

ACCNT=APPI

The user exiACCEXIT is activated at each change of application (new Naty

logon ID).

ral

In both cases, an accounting record is also provided at the end of the deldsispstem command or
TERMINATEstatement).

Structure of the Accounting Record

Natural under UTM - Part 4 Utility Programs for Use with Natural under UTM

0-7 Logical UTM terminal name DS |CL8
8-15 |UserID DS |CL8
16 - 23 |Current Natural application name DS |CL8
24 - 27 |Number of Adabas calls DS |F
28 - 31 |Accumulated message length DS F
32 - 35 |Elapsed time in Natural including subroutines (milliseconds) DS |F
36 - 37 |Number of pages printed DS |H
38 -39 |Number of terminal 1/O transfers DS |H
40 - 49 |(user area) DS |CL10
50 - 51 |unused DS |CL2
52 - 55 |Adabas command time (milliseconds) DS F
56 - 63 |Name of last transaction program DS |CL8

The user area of the accounting record can (if required) be used for additional application-specific
accounting information. The accounting area is in the user-specific UTM communication area KB
(Kommunikationsbereigh

The current address of the UTM KBs can be found with the &@ii¢BADRf macroNATUTMas
necessary; otherwise, the operand of the parati&tef macroNATUTMnust be set t¥ES In this case,
Natural passes the address of the communication area as the first parameter of every subroutine call.

The user exit routinACCEXIT can store the accounting records in an Adabas file, in a shared sequential
PAM dataset or in a task-specific SAM dataset. The progf@@EXIT shows an example of the method
for storing accounting records; sgeftware Exchange
Utility Programs for Use with Natural under UTM
Several utility programs are provided for use with Natural under UTM.
The following rules apply to their usage:
® The Natural and UTM macro libraries must be used when assembling these utilities.
® When a particular program is to be used:
O its name must be specified with the parameldK or LINK2 of macroNATUTM
O and the program itself must be linked with the front-end part of the Natural UTM application.
A short-form description of these utility programs is given below.
NATDUH INPTEX | NATPRNTTUTMTAQ TACSWTCH

A detailed description, including the interface, valid parameter values and a summary of the logic, can be
found in each program’s maintenance log.

Utility Program NATDUE Natural under UTM - Part 4

Utility Program NATDUE

The programNATDUEcan be used to find out within a Natural program whether the user has entered data
in the current dialogue step or whether merely EM/DU or DU was pressed.

The utility programiINPTEX must be used NATDUES to be called. The progralRPTEX satisfies the

user exitNPTEX in the format exit modulEREXIT and checks at each dialogue step whether data were
entered. According to the result of this test, a flag that is subsequently interrogated by the program
NATDUES set in the communication area KiBofnmunikationsbereigh

Example of a Natural Program that Calls NATDUE:

* PROG1 - EXAMPLE FOR CALLING THE SUBROUTINE 'NATDUE’
RESET P1(Al) ...

INPUT USING MAP ...

CALL 'NATDUE' P1

IFP1="Y'DO.. /[*INPUT FROM USER
IFP1="N'DO.. /*NOINPUT FROM USER
IFP1="E'DO.. /*ERROR

END
Utility Program INPTEX
The utility programiNPTEX satisfies the user exit of the same name in the formaEREKXIT.

Important:
INPTEX must be linked with the front-end part of the Natural UTM application.

A Warning:
Any modifications that can be made to this program, for example,
ignoring data entered in a particular line on the terminal screen, are
made at the user’s risk.

The function of this program is to check each input message for the presence of input from the terminal, or
whether merely EM/DU or DU was pressed.

It is not necessary to define the program n#RTEX with the parametdrINK or LINK2 of macro
NATUTM

Utility Program NATPRNT

The programrNATPRNTprovides the following special service functions for operating local printers:
® accepting the logical name of the target printer;
e verifying the printer name against a list of valid printer names;

e setting a marker for building variable length print records.

Natural under UTM - Part 4 Utility Program UTMTAC

Utility Program UTMTAC

The progranUTMTAGCwhich can be called from a Natural program, yields the current UTM TAC. This
makes it possible for a central Natural program to perform UTM TAC-controlled "navigation" within a
Natural UTM application.

Utility Program TACSWTCH

The utility programlfACSWTCI4$ a macro which can be used to dynamically assign a UTM TAC for a
PEND PR(OGRAM¥from within a Natural program. The specified UTM TAC is checked against the
generated UTM table and saved accordingly. Also, information can be passeBENIDEPR(OGRAM)
To use this utility, proceed as follows:

1. Define the valid UTM TACs and assemble TRaCSWTClrhacro:

2. For ExampleTACSWTCH TAC=(tacl,tac2,tac3,...tac n) These TACs have to be
defined inKDCDEFRas well, and for the generationKlbCROOThey have to be assigned to the
corresponding UTM patrtial programs.

3. Define the programff ACSWTCMith the parameteisINK to LINK4 in macroNATUTM
4. Link programfACSWTCHb the front-end part of the Natural UTM Interface.

5. Interface descriptiof€ALL 'TACSWTCH’ P1 [P2] P3

Special TACSWTCH Functions Natural under UTM - Part 4

P1 (A8) Contains the UTM TAC to be used foPEND PR
P2 (A n) Is optional and contains the length and data of a message {o the
PEND PR

The structure oP2 is: LLLDDD.....

LLL Message length (3 digits, no length field);
minimum length000, maximum lengthi60.
DDD Message area.
P3 (Al) Has two functions:

On call and ifP3 contains the valu€ (Go), thePEND
PR(OGRAM)s executed at the next Natural outdWRUT,
WRITE DISPLAY). After calling the Natural UTM Interface
with PEND PR the Natural session is continued where it hgd
been suspended, which means that the last output is displdyed to
the user.

On return,P3 contains the return code frofACSWTCH

Possible return codes are:

0 The operation has been executed without effor.
1 TAC has not been found in the TAC table.

2 Message length was less tHG00 .

3 Message length was ov&g0.

OnceTACSWTCHas been called without errorP&ND
PR(OGRAM)an be executed by either issuinglil

command or with FERMINATEstatement or by activating the
function key forPEND PR see the parametBRKEY

Special TACSWTCH Functions

You can use the firstACSWTCIdarameter with the following values:

Value |Explanation

o

RESET The UTM TAC currently available will be cleared, that is, the session will be terminate)
with PEND FI .

GETP | Data will be moved from the print buffer to the adequate data area of the calling Natufal
program.

GETU | Data will be moved from the KB user extension to the adequate data area of the calling
Natural program.

The first two bytes (format: binary) in the print buffer or in the KB user extension must contain the data
length (including these first two bytes).

Natural under UTM - Part 4

Special TACSWTCH Functions

Value| Explanation

buffer.

PUTP| Data will be moved from the adequate data area of the calling Natural program to the grint

extension.

PUTU) Data will be moved from the adequate data area of the calling Natural program to the KB user

The first two bytes (format: binary) in the data area of the Natural program must contain the data length
(including these first two bytes). The data will be moved including the first two bytes.

Example for PUTP and GETP:

DEFINE DATA LOCAL

01 P1(A8) /* FUNCTION CODE/UTM TAC
01 P2(A252) /* FIRST PART OF DATA AREA
01 REDEFINE P2
02 P21(B2) /* DATA LENGTH INCLUDING FIRST TWO BYTES
02 P22(A250)
01 A1(A250) /* SECOND PART OF DATA AREA
01 P3(N1) /* RETURN CODE
END-DEFINE
/¥ PROGRAM LOGIC
MOVE 'PUTP’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
MOVE 502 TO P21 /* MOVE TOTAL LENGTH OF DATA
CALL 'TACSWTCH P1P2P3 /* PUT DATA INTO PRINT BUFFER
IFP2NEO /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
MOVE 'NAT1’ TO P1 /* MOVE ADEQUATE UTM TAC
MOVE ‘G’ TO P3 /* EXECUTE PEND PR WITH TAC NAT1
CALL "TACSWTCH’ P1 P3
IFP3NEO /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
INPUT " /* DUMMY MESSAGE FOR DRIVER CONTROL

Now the Natural UTM driver gets control and runs with the following logic:

1. Itignores the dummy messgePUT ')

2. MPUTwith LENGTH=0andPEND PRwith TAC’'NAT1" for the UTM partial program.

3. The UTM partial program gets the Natural program data through the print buffer. The print buffer is
located in the UTM SPAB and the address of the print buffer is defined in th&iBAd®PBUFF’

which is located in the UTM KB:

® |t moves data for the Natural program into the print buffer (the first two bytes must contain the
data length in binary format, including the two-byte length field).

e |t executes aiMPUTwith LENGTH=0and aPEND PRwith the TAC defined for the Natural

UTM driver.
4. The Natural UTM driver gets contrdN(T/MGET).

5. It simulateONLY ENTER for Natural.

Software Exchange Natural under UTM - Part 4

6. It resumes with Natural as follows:

MOVE 'RESET’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
CALL 'TACSWTCH P1P3 /*RESET PEND PR TAC (NAT1)
IFP3NE O /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
MOVE 'GETP’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
CALL 'TACSWTCH P1P2P3 /* GET DATA FROM PRINT BUFFER
IFP3NEO /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
* PROGRAM LOGIC
END
If the parameteKBSAVEof macroNATUTMs set toYES the called UTM partial program may use the
UTM KB (from the end of the header plus first twelve bytes). In this case, the UTM KB will be saved
(beginning from KB header plus first twelve bytes) wBfAUTand will be refreshed witBGET

When defining UTM transaction codes for the transaction logic between Natural and other UTM partial
programs, the following rule applies:

For aPEND PRfrom another UTM partial program to the Natural UTM driver, the preceding start TAC
may never be used. The fact that the Natural UTM driver was calle®®BNB PRcan only be

recognized if the contents of the preceding start TAC in K&dACV@Gre different from the current

TAC in field KCTACAL (Normally, fieldKCTACV&ontains the TAC with which the user has entered the
application.)

Software Exchange

Software AG’s customers have developed programs that meet certain specific needs found in their Natural
UTM applications. These programs are made available to all interested users via the "Software
Exchange". This also applies to programs developed by Software AG that demonstrate example solutions
to particular problems.

These programs, which are available free of charge, are not maintained by Software AG. The complete
documentation of each program is usually included in the maintenance log of the source listing.

A short-form description of each program is given below:

XAMDUSAUTMCOBUTMNAYNUEXAMPIACCEXIT | TABMOD

Program XAMDUSA

This program saves and restores the current user-spaRKING-STORAGE SECTIObF the calling
COBOL program.

This enables user-specific data areas, for example tables, to be accessible over many dialogue steps and
without regard to the UTM task in which the user is currently running. The data are saved in a PAM file
using logical/physical chained PAM-1/0.

Natural under UTM - Part 4 Program UTMCOB

Program UTMCOB

ProgramUTMCORs an example of a user-specific UTM partial program within a Natural UTM
application. It shows the fundamental logical structure of a program that, as a UTM patrtial program:

® Can be activated by the user by associated UTM TACs.

® Activates the Natural UTM Interface and hence the Natural application by meRESIBf
PR(OGRAM)with dynamic Natural parameters.

® Can be activated from the Natural UTM Interface by mea=tfD PR(OGRAM)

See alsc&Calling UTM Chained Partial Programs

Program UTMNAV

ProgramUTMNAVs another example of a user-specific UTM partial program within a Natural UTM
application:

® |t can be activated by the user or WREND PR(OGRAMYy the associated UTM TAC.
® |[tinterprets passed messages as dynamic Natural parameters.
® |t provides screen output of information on the program logic.

® Previously received screen input (Natural dynamic parameters) is seMmlitfiand passed to the
Natural UTM Interface witiPEND PR(OGRAM)

ProgramUTMNA\¢ontains an example of how the UTM KB can be used as a "common" user area.

Program NUEXAMPL

ProgramNUEXAMPIs an example of a user-specific UTM partial program which can exchange data with
a Natural program. The program logicNiJEXAMPIland of the calling Natural program is described in
the maintenance log 6fUEXAMPL

Program ACCEXIT

ProgramACCEXIT is an example of a program that saves accounting data on a shared ISAM dataset. The
user exitsACCEXIT andSHUTEX?2of the Natural UTM Interface are used. See Alscounting for
Natural UTM Applications

Program TABMOD
The programT ABMODwhich can be called from a Natural program, performs the following functions:

e |oad data records, for example a table, into a common memory pool using a unique key when an
application is started and whilst an application is running;

e transfer data records according to the requirements of the calling Natural program.

UTM TACCLASS Concept - Priority Control Natural under UTM - Part 4

This makes it possible to load frequently-needed data into storage once only and then keep them resident.

TABMOUDs available as a macro in the librédyThnn.MAC. It contains all information necessary for its
installation and usage.

UTM TACCLASS Concept - Priority Control

Natural programs can allocate UTM TAC classes to optimize resource control using the UTM
TACCLASS concept in a Natural UTM application.

The following procedure should be followed when generating the Natural UTM application and creating
the Natural program:

Step 1. Specify UTM TACs and TAC Classes in the KDCDEF and
KDCROOT Definitions

Example:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATP

ROOT KDCNATP

MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=5120

MAX TASKS=10

MAX ASYNTASKS=3

EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT

DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART

PROGRAM FREXIT

PROGRAM NUERROR

PROGRAM KDCADM,COMP=SPL4

DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,TIME=(3600000,5400), TACCLASS=1,...
TAC NAT1,TIME=(3600000,5400), TACCLASS=2,...

DEFAULT TAC TYPE=A,PROGRAM=NUSTART,EXIT=NUERROR,CALL=FIRST,...
TAC NATAS, TACCLASS=9
TAC NATAS1,TACCLASS=10

TACCLASS 1,TASKS=3

TACCLASS 2,TASKS=1

TACCLASS 9,TASKS=2

TACCLASS 10,TASKS=1

END

See also the Siemens documentatidiM Generierung und Administratiq TM Generation and
Administratior).

Notes on the UTM TACs Defined

Natural under UTM - Part 4 Step 2: The Structure of the UTM Start Job

UTM Explanation
TAC
NAT This is the UTM TAC for less resource-intensive synchronous transactions; that is,

transactions of short duration.

NAT1 This is the UTM TAC for more resource-intensive synchronous transactions; that is,
transactions of longer duration.

NATAS |This is the UTM TAC for less resource-intensive asynchronous transactions.

NATAS1 |This is the UTM TAC for more resource-intensive asynchronous transactions.

Step 2: The Structure of the UTM Start Job
The name of the job EN.NATUTM

Example:

/.NATUTM LOGON Natural,E,, TIME=10000
ISYSFILE SYSOUT=PROT.UTMSTAT
/FILE NATUTM.KDCA,LINK=KDCFILE
/ERASE NATUTM.PRINTCONTROL
ISTEP

/FILE LOG.NATUTM,LINK=SYSLOG

/FILE NATUTM.SWAPFILE,LINK=PAMNAT,SHARUPD=Y
/SYSFILE TASKLIB=NAT210.MOD
[.REPEAT EXEC NATUTM.E

.UTM START FILEBASE=NATUTM
START TASKS=7

START ASYNTASKS=3

START STARTNAME=EN.NATUTM

.UTM END

/SKIP .REPEAT

ISTEP

ISYSFILE SYSOUT=(PRIMARY)

ISTEP

ISYSFILE SYSLST=(PRIMARY)

/CAT NATUTM.PRINTCONTROL,SHARE=YES
/PRINT LST.NATUTM.,SPACE=E

/ERASE LST.NATUTM.

ISTEP

/LOGOFF NOSPOOL

Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program

The TAC-class of synchronous UTM transactions can be changed by a Natural program with the
statements:

CALL 'NATTAC' operandl[operand2][operand3]JINPUT 'TACCLASS

where:

10

Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program Natural under UTM - Part 4

oper andl | Must contain the valu€=n, whereS denotes "synchronous" ands an integer valued
- 4) that denotes the priority level of the transaction in subrold&ETACs table of
transaction codes for synchronous TACs.

If n is 0, the table of transaction codes is not used. The TAC to be used is passed
explicitly in oper and2 whenNATTACis called.

If nis a value in the rande- 4 , the priority level of the desired TAC is taken from
the appropriate paramef@€LS1 to TCLS4 (for synchronous transactions) TELAL to
TCLAA4 (for asynchronous transactions).

If the subroutindNATTACdetects an error inper andl, it returns immediately to the
calling program with an error codedper and1:

EO1 |The first two characters aiperandlwere neitheS= norA=.

EO2 | The third character afper and1 was<0 or>4.

EO03 |No UTM TAC was defined for the specified priority level when the Natural YTM
application was generated, which means that the corresponding parar@isr
n or TCLA n) has the value.

~—~

operand2 | Optional. Must contain the UTM TAC for the desired TAC class if the third character of
oper andl isO.

operand3 |Optional. Must contain the valuéif the current user’s subsequent dialogue is to be
executed with the UTM TAC defined oper and1 oroperand2 If oper and3 is
omitted wherNATTACIs called, or ifoper and3 has some value other th#nthe
STARTtransaction code for the current user is used again with the first terminal opitput
(standard function). lbper and3 has the valu¥ whenNATTAGis called, further
processing for the current user takes place with the UTM TAC specifagoeinand1
(implicit) or oper and2 (explicit) .

The statementNPUT 'TACCLASS’ does not perform any terminal I/O; its function is merely to control
the TACCLASS allocation.

Alternatively, a Natural program can call the Natural subprodgd&hTACwith aCALLNATstatement.
For this, thdNPUT 'NATTAC’ statement is omitted; the operands are the same as foAttie
statement (see above):

CALLNAT 'NATTAC’ operandl[operand2][operand3]

This procedure can be used with synchronous as well as asynchronous trand&Tior<Cis contained
in the librarySYSTEM

Example 1:

A Natural program that allocates a UTM TAC explicitly to assign a new TAC class and then changes over
to the START UTM TAC.

* TACCLASS - EXAMPLE FOR A TACCLASS SWITCH

RESET CONTROL(A3) NEWTAC(A8) NR(N3)

REDEFINE CONTROL (ERRFLD(AL))

INPUT 'TEST FOR A TACCLASS SWITCH - NEW TAC: NAT1’ IFELD(A1)
MOVE 'S=0' TO CONTROL /* SYNCHR. TAC, EXPLICIT --> Note 1
MOVE ’NAT1’ TO NEWTAC /* SET NEW TAC --> Note 2

CALL 'NATTAC’ CONTROL NEWTAC /* INVOKE TAC SWITCH --> Note 3

11

Natural under UTM - Part 4 Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program

IF ERRFLD ='E’ DO [* ERROR CHECK --> Note 4
DISPLAY 'ERROR’ CONTROL 'FROM NATTAC’
TERMINATE
DOEND
INPUT 'TACCLASS’ /* ACTIVATE NEW TAC --> Note 5
READ (50) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS --> Note 6
ADD 1 TO NR
WRITE NOTITLE NOHDR NR MAKE MODEL /* START TAC ISUSED --> Note 7
LOOP
ON ERROR DISPLAY 'ERROR IN PROGRAM TACCLASS’
END
Note

1 The valueS=0 indicates that it is a synchronous transaction and that the TAC is passed
explicitly in the second parameter of tBALL 'NATTAC’ , which means that the TAC tablg
is not used.

The new TAC NATY) is set up for the call tNATTAC
The change of TAC class is initialized by calliN§TTAC

An error check is performed after returning from subroutlAG TAC

A pseudoMPUTand aPEND PAare executed with the new TAC.

The program is now running in the TAC classNAT1L

N | oo |W|N

When the first terminal output starts, the START UTM TAC takes effect again.

In this example, thAUTOMOBILHile is read using the UTM TAGIAT1 When the first terminal output
begins, the START UTM TACNAT) takes effect again.

Internal Processing Logic:

WhenNATTAC s called, a flag is set in the UTM communication akanimunikationsbereigh
indicating that a change of TACCLASS is pending.

The UTM TAC passed by the program is also stored in the user-specific communication area. The
operationlNPUT 'TACCLASS’ causes terminal output from Natural, which causes the UTM interface
to issue amMPUTand aPEND 'PA’ with the new UTM TAC (the message is received by the Natural
UTM Interface itself). When the message is received (in the new TAC class), the presence of the
TACCLASS change flag causes the interface to simulaiTa@DU in its input area. Further processing
runs in the new TAC class.

Depending upon the value of the operand in the previous ddA®TAC the first message sent to the
terminal can cause aMPUTand aPEND 'PR’ with the user's START UTM TAC; that is, a further
TACCLASS change may take place.

Example 2:

A Natural program that allocates a UTM TAC explicitly to assign a new TAC class without changing over
to the START UTM TAC.

* TACCLAS1 - EXAMPLE FOR A TACCLASS SWITCH
RESET CONTROL(A3) NEWTAC(A8) SWOFF(AL)

INPUT 'TEST FOR A TACCLASS SWITCH - NEW TAC: NAT1’ IFELD(A1)
MOVE 'S=0' TO CONTROL /* SYNCHR. TAC, EXPLICIT

12

Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program Natural under UTM - Part 4

MOVE 'NAT1 TO NEWTAC /* SET NEW TAC

MOVE 'Y' TO SWOFF /* NO RESET TO START TAC

CALL 'NATTAC’' CONTROL NEWTAC SWOFF /* INVOKE TAC SWITCH
INPUT 'TACCLASS’ I* ACTIVATE NEW TAC

FETCH 'TACCLAS2 /* NOW IN NEW TACCLASS

END

* TACCLAS? - THIS PROGRAM IS FETCHED FROM PROGRAM TACCLAS1
RESET NR(N3)
READ (25) AUTOMOBILES BY MAKE /* TACCLASS IS NAT1

ADD 1 TO NR

WRITE NOTITLE NOHDR NR MAKE MODEL HORSEPOWER YEAR
LOOP

FETCH 'MAINMENU’ /* TACCLASS = NAT1

END

In this example, processing is assigned to a new TAC class witiNIPAQ. Switching to the user’s
START UTM TAC is avoided by the presence of the third param8idF}-in the call taNATTACwith
valueY.

It is also possible to perform several TACCLASS changes within one Natural program.
Example 3:

A Natural program that performs two explicit and one implicit TACCLASS changes.

*TACMULT - EXAMPLE FOR TWO TACCLASS SWITCHES IN ONE PROGRAM
RESET CONTROL(A3) NEWTAC(A8) SWOFF(AL) NR(N4)
INPUT 'TEST FOR 2 TACCLASS SWITCHES'’ IFELD(A1)

MOVE 'S=0" TO CONTROL /* SYNCHR. TAC, EXPLICIT
MOVE 'NAT1 TO NEWTAC /* SET NEW TAC

MOVE 'Y' TO SWOFF /* NO RESET TO START TAC

CALL 'NATTAC’' CONTROL NEWTAC SWOFF /* INVOKE TAC SWITCH
INPUT 'TACCLASS’ I* ACTIVATE NEW TAC

READ (50) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TO NR

WRITE NR MAKE MODEL YEAR

LOOP

EJECT [* ACTIVATE NEW OQUTPUT #*

MOVE ’'S=0’' TO CONTROL /* SYNCHR. TAC, EXPLICIT
MOVE 'NAT2' TO NEWTAC /* SET NEW TAC

CALL 'NATTAC' CONTROL NEWTAC /* INVOKE TAC SWITCH
INPUT 'TACCLASS’ I* ACTIVATE NEW TAC

READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
WRITE MAKE MODEL YEAR /* NOW START TAC IS USED
LOOP

ON ERROR DISPLAY 'ERROR IN PROGRAM TACMULT’

END

The UTM TACNATZ2has not been considered in the preceding examples; it must be dei2GROOT
andKDCDEF

If an explicit TACCLASS change is to take place aft®/RITE PRINT or DISPLAY statement, an

EJECT must be issued before assigning the new TAC. This operation performs an unconditional output to

the terminal before executing tiéPUT "'TACCLASS'’ . Instead of th&JECT, the following statements
can be used:

13

Natural under UTM - Part 4 Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program

STACK TOP DATA A’
INPUT A(AL)

This sequence also performs an unconditional output to the terminal before executitijifie
'TACCLASS'.

Example 4:

A Natural program that allocates a UTM TAC implicitly to assign a new TAC class and then changes over
to the START UTM TAC. This example uses the TAC table for synchronous transactions in the
subroutineNATTAC

* TACIMP1 - EXAMPLE FOR AN IMPLICIT TACCLASS SWITCH
RESET CONTROL(A3) NR(N3)

REDEFINE CONTROL (ERRFLD(AL))

INPUT 'TEST FOR AN IMPLICIT TACCLASS SWITCH’ IFELD(A1)

MOVE ’'S=1'TO CONTROL /* USE 1ST TAC IN TABLE --> Note
CALL 'NATTAC’ CONTROL /* INVOKE TAC SWITCH
IF ERRFLD ="E’' DO /* ERROR CHECK
DISPLAY 'ERROR’' CONTROL 'FROM NATTAC’
TERMINATE
DOEND
INPUT 'TACCLASS’ I* ACTIVATE NEW TAC
READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TONR
WRITE NOTITLE NOHDR NR MAKE MODEL /* START TAC IS USED
LOOP
ON ERROR DISPLAY 'ERROR IN PROGRAM TACIMPY’
END

Note: The valué&=1 indicates that it is a synchronous transaction and that the TAC is to be taken from
the first entry in the TAC table. This is the TAC that was defined as the value of the operand of the
parameteif CLS1 (default value: NAT1). The third character of the first parameter i€ &ld.

'NATTAC’ indicates which of the four paramet&iGLS1 to TCLS4 applies.

Example 5:

A Natural program that allocates a UTM TAC implicitly to assign a new TAC class but does not change
over to the START UTM TAC. This example uses the TAC table for synchronous transactions in the
subroutineNATTAGC and processing continues with this TAC.

* TACIMP2 - EXAMPLE FOR AN IMPLICIT TACCLASS SWITCH
RESET CONTROL (A3) SWOFF(A1) NR(N3)
REDEFINE CONTROL (ERRFLD(AL))

MOVE 'S=4’ TO CONTROL [* USE 4TH TAC IN TABLE --> Note
MOVE 'Y' TO SWOFF /* NO RESET TO START TAC
CALL 'NATTAC’ CONTROL SWOFF /* INVOKE TAC SWITCH
IF ERRFLD ="E’' DO /* ERROR CHECK
DISPLAY 'ERROR’ CONTROL 'FROM NATTAC’
TERMINATE
DOEND
INPUT 'TACCLASS’ I* ACTIVATE NEW TAC
READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TONR
WRITE NR MAKE MODEL YEAR
LOOP
ON ERROR DISPLAY 'ERROR IN PROGRAM TACIMP2’
END

14

Step 4: Allocation of TAC Classes for Asynchronous Transactions within one Natural UTM Application Natural under UTM - Part 4

Note: The valué&=4 indicates that it is a synchronous transaction and that the TAC is to be taken from
the fourth entry in the TAC table. This is the TAC that was defined as the value of the operand of the
parameteil CLS4 (default valueNAT4). The TACNAT4is not defined in the exampleskDCROOaNd
KDCDEFin practice, the user must supply suitable definitions.

Using the TAC table has the advantage that the UTM TAC does not have to be coded explicitly in the
Natural program. The Natural programs contain merely the relative priority "weights" of the transactions
to be executed. The system administrator can allocate and change the names of the UTM TACs without
having to change the Natural programs.

For testing Natural programs with TACCLASS change for synchronous transactions, please note the
following: To verify correct operation of the TACCLASS change, the Natural program can be tested
without the statement(§ALL 'NATTAC’ operandl (operand2) (operand3). If theINPUT
'TACCLASS’ statement produces only the outiACCLASS’ on the terminal, the program is correct.
The operand(s) for the call MATTACmMust be set correctly. The UTM processing terminates with Error
CodeKMOl1whenever a UTM TAC that is not defineddiDCROO&NdKDCDEHRS used.

Step 4: Allocation of TAC Classes for Asynchronous Transactions within one
Natural UTM Application

The TAC class for asynchronous transactions within a Natural UTM application can be changed with the
statement:

CALL 'NATTAC' oper andl[oper and?2]

oper andl | Must contain the valuA= n, whereA denotes "asynchronous" ands an integer in th
range from0 to 4 that denotes the priority level of the transaction in subroutine

NATTAC's table of transaction codes for asynchronous TACs. The form of the opgrand
is analogous to the form of the operand for synchronous transactions.

D

oper and2 | Optional. Contains the UTM TAC for the required TAC clagsgiér and1 has the
valueA=0.

All UTM TACs for asynchronous transactions must begin with the character string which is defined as
unique identifier for asynchronous TACs in param@&®y¥NTA®f macroNATUTMConversely, the
UTM TACs for synchronous transactions must not begin with this string.

Example 6:

A Natural program that performs initialization for asynchronous transaction processing, using the UTM
TAC NATAS This is the standard TAC for asynchronous transactions. See also the description of the
parameteASYNTAOf macroNATUTM

* STARTAS - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING

* WITHIN ONE APPLICATION - USING THE STANDARD TAC

FORMAT LS=145

RESET PARM1(A144) PRDEST(A8) LTDEST(AS8)

MOVE 'PRINTER1’ TO PRDEST

MOVE *INITID TO LTDEST

COMPRESS 'SENDER=' PRDEST ’,OUTDEST=' LTDEST ',
'MENU=F,STACK=(LOGON APPL1;READAUTO)’ INTO PARM1
LEAVING NO

CALL 'NATASYN’

15

Natural under UTM - Part 4 Step 4: Allocation of TAC Classes for Asynchronous Transactions within one Natural UTM Application

SET CONTROL 'H’

WRITE NOTITLE NOHDR PARM1

INPUT "ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1)
END

Example 7:

A Natural program that initializes asynchronous transaction processing and allocates the UTM TAC
NATAS1for assignment to another TAC class.

* STASTAC - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING

* WITHIN ONE APPLICATION

* AND SWITCH TO A NEW TACCLASS

FORMAT LS=145

RESET PARM1(A144) PRDEST(A8) LTDEST(A8) CONTROL(A3) NEWTAC(AS)

REDEFINE CONTROL (ERRFLD(AL))

MOVE 'PRINTER1’ TO PRDEST

MOVE *INIT-ID TO LTDEST

COMPRESS 'SENDER=' PRDEST ’,OUTDEST=' LTDEST ',
'MENU=F,STACK=(LOGON APPL1;READAUTO)’ INTO PARM1

LEAVING NO

MOVE 'A=0" TO CONTROL /* ASYNCHR. TAC, EXPLICIT --> NOTE
MOVE 'NATAS1' TO NEWTAC /* SET NEW TAC
CALL 'NATTAC’ CONTROL NEWTAC /* INVOKE TAC SWITCH
IF ERRFLD ="E’' DO /* ERROR CHECK

DISPLAY 'ERROR’' CONTROL 'FROM NATTAC’

TERMINATE

DOEND
CALL 'NATASYN’ /* INVOKE ASYNCHRONOUS TAC

SET CONTROL 'H’

WRITE NOTITLE NOHDR PARM1

INPUT "ASYNTAC INVOKED - HOPEFULLY’ IFELD(A1)
END

The valueA=0 indicates that it is an asynchronous transaction and that the TAC is passed explicitly in the
second parameter of t@ALL 'NATTAC’ , which means that the TAC table is not used.

MOVE 'A=1" TO CONTROL
CALL 'NATTAC’' CONTROL

The procedure for using the TAC table (see the paramE@ral to TCLA4 in the sectiolParameters of
Macro NATUTN) corresponds to the procedure for synchronous transactions.

An example of the program that is to be executed asynchron®REAAUTD

* READAUTO - ASYNCHRONOUS Natural PROGRAM
READ (75) AUTOMOBILES BY MAKE

WRITE MAKE MODEL HORSEPOWER BODY-TYPE YEAR
LOOP

ON ERROR TERMINATE

TERMINATE

END

The desired UTM TAC must always be allocated in the Natural program that initializes the asynchronous
transaction processing (the use of the standard TAC for asynchronous transaction processing is an
exception; see the description of the param®8¥NTAGN the macrANATUTMThe program that is to

be executed asynchronously then runs in the desired TAC class. Since each asynchronous Natural
program must be ended with thERMINATEstatement, the UTM DC transaction is also en&END

'FI’) when the program ends.

16

Step 5: Assign the TAC Class for Asynchronous Transactions between two Natural UTM Applications Natural under UTM - Part 4

The program that initializes the asynchronous transaction processing always runs in a synchronous
transaction. Thus it is feasible to perform a change of TACCLASS using the procedure for synchronous
transactions. This change can take place before allocating the asynchronous TACs or after initializing the
asynchronous transactiotNPUT statement).

Step 5: Assign the TAC Class for Asynchronous Transactions between two
Natural UTM Applications

It is not necessary to cdIATTACfor asynchronous transaction processing between two Natural UTM

applications. The necessary UTM TAC is allocated explicitly in the Natural program; see also
Asynchronous Transaction Processing

UTM TACCLASS Switch

The following figure illustrates the logic of a UTM TACCLASS switch for synchronous transactions:

Message
-4 Soreen Output|
o 45
UTM Task TAC Class NAT1 UTM Task TAC Class NATZ
INIT {tac=NAT1) Message INIT (tac=NAT2)
MGET r E MGET
| PHEGEASS IF FLAG=ON DO
A1) : ' SET ETX/DU
RESET FLAG
DOEND
(3)
{4)
MPUT MPUT
PEND PA{NATZ) {5)] | PEND RE (NAT2)
Message
(2)
ETX/DO
T
Matural

—+p EXEC PROGRAM

" P SET FLAG
{3} | CALL'NATTAC - tac=MAT2

- INPUT TACCLASS'
READAUTOMOBILES . 4 4]
DISPLAY.. il
END

17

Natural under UTM - Part 4

Generating a Natural UTM Application

The following programs and macros must be assembled to generate a Natural UTM application:

KDCROOT |UTM interface module.

NATUTM Front-end part of the Natural UTM Interface.

BS2STUB | Common memory pool definition.

FREXIT Format exit module (only if the default parameter is to be changed).
NURENT Reentrant part of the Natural UTM Interface.

NTPRM Natural parameter module.

NTSWPRM | Swap pool parameter module.

This list does not include the utility programs of the Natural UTM Interface.

The following example shows how to generate an application.

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATP

ROOT KDCNATP

MAX APPLINAME=NATUTM,APPLIMODE=S KDCFILE=(NATUTM,S)
MAX KB=400,SPAB=8192,NB=5120, TRMSGLTH=5120

MAX TASKS=10,ASYNTASKS=3

MAX GSSBS=0,KSSBS=1

MAX LOGACKWAIT=600,RESWAIT=(600,1200), TERMWAIT=(1800,0)
MAX PGPOOL=(88,80,95), CONRTIME=2, RECBUF=(400,2048)

MAX DPUTLIMIT1=(001,23,59,59),DPUTLIMIT2=(001,23,59,59)

MAX LPUTLTH=0

x4

+

| EXIT DEFINITIONS: STARTUP (CSECT NAME OF NATUTM) |

|
|

x4

SHUTDOWN (CSECT NAME OF NATUTM) |
FORMAT (FREXIT) [
+

EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT

x4

| PROGRAMDEFINITIONS |

x4

DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART

PROGRAM FREXIT

PROGRAM NUERROR

PROGRAM AUTOTAC

PROGRAM KDCADM,COMP=SPL4

x4

+

| SYNCHRONOUS TACS FOR Natural/lUTM |
| THE ERROR EXIT 'NUERROR’ MUST BE DEFINED FOR EACH TAC |

x4

+

DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH
TAC NAT,ADMIN=NO,TIME=0

TAC AUTOCONN

x4 +

*| BADTACS DEFINITION FOR Natural/UTM |

*| THE ERROR EXIT 'NUERROR’ MUST BE DEFINED FOR EACH TAC |

x4

+

TAC KDCBADTC,CALL=FIRST,PROGRAM=AUTOTAC,EXIT=NUERROR,TYPE=D

18

Generating a Natural UTM Application

Generating the Natural UTM Interface Natural under UTM - Part 4

*4 +

| ASYNCHRONOUS TACS FOR Natural/UTM |

| THE ERROR EXIT 'NUERROR' MUST BE DEFINED FOR EACH TAC |
*4 +

DEFAULT TAC TYPE=A,PROGRAM=NUSTART EXIT=NUERROR,CALL=FIRST
TAC NATAS

TAC NATSY

*4 +

| UTM ADMINISTRATOR TACS |

*4 +

DEFAULT TAC PROGRAM=KDCADM,ADMIN=Y,TYPE=D,CALL=BOTH

TAC KDCTAC

TAC KDCLOG

TAC KDCSHUT
TAC KDCAPPL
TAC KDCINF
TAC KDCUSER
TAC KDCSEND
TAC KDCDIAG
TAC KDCLTERM
TAC KDCPTERM
TAC KDCSWTCH
TAC KDCHELP

*+ +
*| PTERM 9750 DEFINITION I
*4 +

DEFAULT PTERM PRONAM=VR,PTYPE=T9750, TERMN=FE,CONNECT=N
PTERM DFDSSO001,LTERM=DF97501
PTERM DFDSS002,LTERM=DF97502
PTERM DFDSS003,LTERM=DF97503

*+ +
*| LTERM DEFINITION |
*+ +

DEFAULT LTERM USAGE=D,STATUS=ON,ANNOAMSG=YES,RESTART=YES
LTERM=DF97501
LTERM=DF97502
LTERM=DF97503

*+ +
*| SFUNC DEFINITION |
*+ +

SFUNC F1,RET=21Z
SFUNC F2,RET=22Z
SFUNC F3,RET=23Z
SFUNC F4,RET=24Z
SFUNC F5,RET=25Z
SFUNC K1,RET=26Z
SFUNC K2,RET=27Z
SFUNC K3,RET=28Z
SFUNC K4,RET=29Z
END

See also the Siemens documentatidiM Generierung und Administratiq TM Generation and
Administratior).

Generating the Natural UTM Interface

1. The operands of thparameters of mactdATUTMmust be set to the correct values as required; the

macroNATUTMnust then be assembled.

19

Natural under UTM - Part 4 Generating the Natural UTM Interface

2. Example of NATUTM Macro Call:

NUSTART NATUTM APPLNAM=NATUTM, --> Note 1 -
NUCNAME=NAT

vVrs

--> Note 2 -

LINK=TACSWTCH --> Note 3 -
PARMOD=24, --> Note 4 -
ROLLACC=UPAM-AS, --> Note 5 -
ROLLTSZ=180, --> Note 6 -
TERMTAB=(SWP,TERMNAME), --> Note 7 -
UMODE=(S,G) --> Note 8

Notes

1| The CSECTname of the front-end part of the Natural UTM Interface is specified as
NUSTART(default value). The name of the Natural UTM application is specifidthd&JTM

2| The name of the link-edited reentrant part of the Natural UTM application is specified as
NATvr s; this is also the name of the common memory pool into which the reentrant pgrt will
be loaded.

3| A TABLEmacro call is to be executed for progradCSWTCHI his means that this progran
must be linked in the front-end part of the Natural UTM application.

4| The Natural UTM application runs in 24-bit addressing mode.

5| The access method to the Natural roll file is specifiddR&Mwith P1-Eventing for
asynchronous writes.

6| The maximum thread size of the Natural roll file is specifieti8is (KB).

7| The internal terminal control table is allocated in the Natural swap pool; the logical terninal
name will be used for identifying the entries in the terminal control table.

8| The user dialogue with Natural is to take place in "single" mode; that is, one terminal can
initiate one Natural session. Messages at restart, logoff and also free-running messages
(asynchronous processing) are to be output in German.

The operands of the other parameters of mE&®UTMare not specified since the default values
apply.

3. Assemble the mactURENTthe reentrant part of the Natural UTM Interface). In this example, no

changes are required to the parameters.G3teCTname of the assembled matfoRENTs
NURENT

4. Assemble the macBS2STUBwith the common memory pool definitions specified in macro

ADDON

5. Assemble the Natural parameter module. The saNRRMmacro call must be adapted to suit the

local environment.

6. Assemble the swap pool parameter module (mMeTEWPRM

20

Optimizing Natural UTM Applications Natural under UTM - Part 4

Linking the Non-Reentrant Front-End Part and the Reentrant Part

The front-end part and the reentrant part of the Natural UTM application can be linked using the JCL
supplied. This JCL should be checked and maodified as required to suit the local environment (library
names, etc.) before being used. Special features in the JCL are indicRiEMBRIStatements.

Setting Up the Natural Roll File

The size of the Natural swap file must be calculated and the file must be allocated with link name
PAMNAT

Start Job for a Natural UTM Application

JCL examples for starting the Natural UTM application are supplied. Before use, the JCL should be
checked and modified as required (UTM startup parameters, dataset names, etc.).

Optimizing Natural UTM Applications

The following points should be considered if the performance of a Natural UTM application is
unsatisfactory:

® Can poor performance be localized to one or more particular Natural programs?
If so, optimize the program(s) by redesigning. These programs can be identified by using the Natural
monitor in library SYSTP.

® |[s the swap I/O rate too high?
By using the prograilENUnN library SYSTPyou can check how efficiently the Natural swap pool
is being used. The statistical information provided about the swap pool also helps to answer the
following questions:

O Is the number of logical swap pools and their slot lengths appropriate?
FunctionSWin the main menu ddY STPoffers various possibilities for controlling the Natural
swap pool optimization.

O Has the Natural swap pool been defined large enough?
Increasing the size of the swap pool and/or generatiragp pool data spaceduces the swap
I/O rate considerably.

® |s the Natural buffer pool too small?
Information about the size and occupancy of the Natural buffer pool can be obtained with the Natural
utility SYSBPMwhich is described in the Natutatilities documentation.

® Has the number of UTM tasks been chosen correctly?
This is strongly dependent upon the path lengths of the individual transactions and the number of
terminals connected.

® |s it possible that particular transactions (so-called long jobs) are loading the available UTM
tasks so heavily that the shorter transactions are suffering from poor throughput as a result?
If this is the case, the UTM TACCLASS concept and/or the asynchronous transaction processing
facilities should be used.

21

Natural under UTM - Part 4 Several Applications with One Common Natural

® Does the Natural Roll File consist of too many extents on one disk drive (physical chained I/O is
not possible over extent boundaries), or is the Natural Roll File on a very heavily used disk drive?
If possible, allocate the Natural Roll File to one or more lightly-used disk drives, with only one
extent on each.

These suggestions should be considered in the light of the total system environment, including such
factors as available storage, storage paging rates, disk and channel 1/O traffic loads, etc.

Several Applications with One Common Natural
See alsoNatural Shared Nucleus under BS2000/G8Ehe NaturaOperationsdocumentation.

To save storage space, it can be desirable for several Natural UTM applications to share a common
Natural reentrant part in a common memory pool in the class 6 storage. The following steps must be taken
when generating the Natural UTM application:

® The global Natural load pool must be defined with the parameters of module CMPSTART, for
example:

NAME=NATSHARE,POSI=ABOVE,ADDR=250,PFIX=YES,SIZE=2MB
LIBR=NATvr s.USER.MOD

For more information, seEMPSTART Prograrin the NaturaDperationsdocumentation.
Notes:

1. NATSHARES the name of the linked Natural reentrant part. It is also the name of the common
memory pool.

2. The operand of parametFIX must beYES

3. The operand of parame&DDRmMust be defined.

4. The operand of parametdBR must contain the name of the module library from which the Natural
reentrant part is to be loaded.

5. The reentrant part of the Natural UTM driver (the assembled module of RIABRBNT must be
linked to the front-end part of several applications.

6. The operand of parametdt/ CNAMEust be defined for each assembly of m&tAd UTMas the
same (in this exampl&UCNAME=NATSHARE

7. The definition of the Natural load pool in tABDONnacro for the assembly of mad&2STUB
must be the same for all applications, for example:
STUBSHAR BS2STUB PARMOD=31,PROGMOD=ANY ADDON
NAME=NATSHARE,STAT=GLOBAL

For more information, se®DDON Macroin the NaturaDperationsdocumentation.

Lists of Shared and Application-Specific Parameter Modules

If application-specific Natural parameter modules are to be used, they must be linked to the front-end
parts of the Natural UTM applications, which means that there is a parameter module in each front-end
part. This also applies to the swap pool parameter module.

Only the addresses defined in STATIC list of the parameter module of the front-end part are
considered; if any of these addresses cannot be resolved in the front-end part (because they refer to the
reentrant part), Natural tries to resolve these addresses WIIST&TIC list in the parameter module of

22

Entering and Defining Dynamic Natural Parameters Natural under UTM - Part 4

the reentrant part. Thus it is allowed to have unresdB&HATIC addresses when linking the front-end
part, provided they can be resolved by the reentrant part.

As theCSTATIC list of the reentrant part is only used for those addresses which cannot be resolved by the
front-end partall CSTATIC entries to be used (whether they are in the front-end part or in the reentrant
part) must be defined in tl@STATIC list of the parameter module of the front-end part.

Entering and Defining Dynamic Natural Parameters

The following possibilities exist for entering and defining the Natural dynamic parameters:

® entering the dynamic parameters together with the UTM TAC when logging on to the application;

® passing the dynamic parameters from another UTM partial programMBibdandPEND
PR(OGRAM)

e defining the dynamic parameters in the operand of the parali8AR1They then apply to all
users of this application and cannot be changed.

UTM User Restart

When a Natural session is started, any Natural dynamic parameters defined are saved up to a length which
is defined in the operand of parame®&DYPRNh macroNATUTMIn case of a user restart situation,

these saved data are automatically reused when the Natural session is started again. This also applies when
the start of the Natural session results froREAND PR(OGRAMf another UTM patrtial program.

See alsd@slobal (Restartable) Swap Poiol the NaturaDperationsdocumentation.

Adabas Priority Control

Adabas priority control has no connection with the priority control of BS2000/0OSD. Unlike with
BS2000/0SD priority control, for Adabas a higher priority value means higher priority. If several requests
are in the Adabas command queue at the same time, the request with the highest priority is processed first
by Adabas and is added to the priority of the other requests that are in the command queue at this time.

Under certain conditions, it may be useful to assign to the Adabas task a lower BS2000/OSD priority than
to the UTM tasks.

The following parameters in macNATUTMan be used to control Adabas priority control for UTM
transactions:

ADAPRI |Activation of Adabas priority control for UTM transactions.

APRISTD| Assignment of standard Adabas priority for all UTM transactions to which no priority is
assigned individually.

TCLS n |Assignment of Adabas priority for individual synchronous UTM transactions.

TCLA n |Assignment of Adabas priority for individual asynchronous UTM transactions.

23

Natural under UTM - Part 4 Adabas Priority Control

If Adabas priority control is activated for UTM transactions (paramfelekPRI=YES, it is also in effect
for non-Natural programs which access Adabas via the subréADIAEALL see the parameter
ADACALL in the macrcNATUTM

By defining different Adabas priorities for different transactions with the above parameters, and at the
same time using the UTM TACCLASS concept, it is possible to set up a very sophisticated system of
priority control. However, when you explicitly assign Adabas priorities to UTM transaction, you should
take into consideration the standard priorities Adabas assigns to other processes (for example, TIAM or
batch processing).

24

	Natural under UTM - Part 4
	Accounting for Natural UTM Applications
	Structure of the Accounting Record

	Utility Programs for Use with Natural under UTM
	Utility Program NATDUE
	Example of a Natural Program that Calls NATDUE:

	Utility Program INPTEX
	Utility Program NATPRNT
	Utility Program UTMTAC
	Utility Program TACSWTCH
	Special TACSWTCH Functions
	Example for PUTP and GETP:

	Software Exchange
	Program XAMDUSA
	Program UTMCOB
	Program UTMNAV
	Program NUEXAMPL
	Program ACCEXIT
	Program TABMOD

	UTM TACCLASS Concept - Priority Control
	Step 1: Specify UTM TACs and TAC Classes in the KDCDEF and KDCROOT Definitions
	Example:

	Step 2: The Structure of the UTM Start Job
	Example:

	Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program
	Example 1:
	Internal Processing Logic:
	Example 2:
	Example 3:
	Example 4:
	Example 5:

	Step 4: Allocation of TAC Classes for Asynchronous Transactions within one Natural UTM Application
	Example 6:
	Example 7:

	Step 5: Assign the TAC Class for Asynchronous Transactions between two Natural UTM Applications
	UTM TACCLASS Switch

	Generating a Natural UTM Application
	Generating the Natural UTM Interface
	Linking the Non-Reentrant Front-End Part and the Reentrant Part
	Setting Up the Natural Roll File
	Start Job for a Natural UTM Application

	Optimizing Natural UTM Applications
	Several Applications with One Common Natural
	Lists of Shared and Application-Specific Parameter Modules

	Entering and Defining Dynamic Natural Parameters
	UTM User Restart
	Adabas Priority Control

