
Linking Natural Objects to the Natural
Nucleus
The Natural nucleus is a collection of service programs such as memory administration, string handling,
operating system interfaces, the compiler and the runtime environment which comprise the kernel of
Natural. It is independent of the operating-system and the TP system.

This document describes the advantages of linking Natural objects to the Natural nucleus and provides
information on how to proceed.

The following topics are covered:

Benefits

ULDOBJ Utility

Using ULDOBJ to Generate an Object Module

Additional Considerations for Linking Subroutines

Operating System Dependency of Object Module Generation

Example of Linking a Natural Object to the Natural Nucleus

Benefits
Linking Natural objects to the Natural nucleus provides the following benefits:

Better Performance
The objects are executed from the nucleus and not from the Natural buffer pool. This saves space in
the buffer pool and also results in fewer database calls. (If Natural cataloged objects are not linked to
the Natural nucleus, they are stored in a database file, for example Adabas, and the actual code must
be loaded from this file into the buffer pool before it can be executed.)

Consistency
As an object which is linked to the Natural nucleus is always executed from the nucleus, there is no
effect if the cataloged object from which it was derived is deleted or changed in the Natural system
file. Thus, during each TP-monitor session, the status of the object remains unchanged. A new
version of an object which is linked to the nucleus can be obtained by unloading it with ULDOBJ (see
below), relinking the new version to the Natural nucleus and refreshing the Natural module.
(Refreshing implies that a new copy of a module is loaded into the TP monitor region.)

Global Error Handling
If a cataloged object fetches another program to handle errors (for example, by using the Natural
system variable *ERROR-TA), and the error-handling program cannot be loaded into the buffer pool,
the original error might be missed and any subsequent error may mask the first error and lead to
confusion. To prevent this situation, you can link a user-written global error-handling program to the
nucleus.

1

Linking Natural Objects to the Natural NucleusLinking Natural Objects to the Natural Nucleus

ULDOBJ Utility
You can use the ULDOBJ utility to link Natural cataloged objects to the Natural nucleus. With the
ULDOBJ utility, you generate an object module from a Natural cataloged object and write it to a Natural
work file. The generated object module is then processed by the linkage editor and linked to the Natural
nucleus.

Under z/OS and z/VSE: When a Natural shared nucleus is used, the generated object module has to be
linked to the environment-independent part of the nucleus.

Using ULDOBJ to Generate an Object Module

 To invoke the ULDOBJ utility

1. Log on to the library SYSMISC and issue the command ULDOBJ.

 10:12:19 ***** NATURAL OBJECT MAINTENANCE ***** 2005-01-05
 User: XYZ - NATURAL ULDOBJ UTILITY - Library: SYSMISC
 Opsys .. z/OS

 Specify parameters below

 Object ________ (Enter ’.’ to exit)
 Library SYSMISC_
 OP System ... ________

2. Specify and confirm the following parameters:

Object The name of the cataloged object to be processed. The object can be a program,
subprogram, subroutine, helproutine or map.

Library The name of the library containing the cataloged object.

OP
System

The name of the operating system for which the object module is to be generated.
(Different operating systems have different rules to which the object module must
conform.) The name of the operating system must be one of the following:

z/OS z/OS systems

z/VSE z/VSE systems

BS2000 BS2000/OSD systems

CMS VM/CMS systems

2

ULDOBJ UtilityLinking Natural Objects to the Natural Nucleus

For each object processed, the ULDOBJ utility displays a report containing the following
information:

the object type (Program, Subprogram, Subroutine, Helproutine, Map, Adapter);

the name of the cataloged object processed;

the programming mode (S = structured mode, R = reporting mode)

the name of the library containing the cataloged object;

the name of the operating system for which the object deck was generated;

the size of the cataloged object and optimized code (if applicable);

the Natural version and system maintenance (SM) level of the cataloged object;

statistics about the last cataloging of the object, including user and terminal IDs.

ULDOBJ prompts for another object and library after the data from the initial input have been
processed. The operating system is not requested, because it does not make sense to generate object
modules for more than one operating system for the same Natural work file.

 To terminate the ULDOBJ utility

After the last cataloged object has been processed, enter a "." in the first input field (Object) and
press ENTER.

The generated object module conforms to the format of the specified operating system. It is in
relocatable format with non-executable code and consists of:

an external symbol directory (ESD),

a relocation dictionary (RLD),

text with the instructions and data corresponding to the program,

an END statement (end-of-module indicator for the load module).

The generated object module is written to a Natural work file, which is used as input to a linkage
editor. (Depending on the operating system, it may be better to use ULDOBJ in batch mode.)

The generated object module must be processed by the linkage editor of the corresponding operating
system before the code is executable as a load module (see the example given below). Each load
module is valid once it is linked to the Natural nucleus and defined by an NTSTAT entry definition in
the Natural configuration module NATCONFG (see Natural Configuration Tables).

Additional Considerations for Linking Subroutines
Once a cataloged object has been unloaded by the ULDOBJ utility and linked to the Natural nucleus, the
cataloged object can be deleted from the Natural system file.

3

Linking Natural Objects to the Natural NucleusAdditional Considerations for Linking Subroutines

However, this is not true for an object of type "subroutine". A subroutine has two names:

the name specified in the statements PERFORM and DEFINE SUBROUTINE and

the name of the object that contains the DEFINE SUBROUTINE statement.

Natural internally associates these two names, but this is possible only if the cataloged object still exists
on the Natural system file. If the cataloged object were deleted, this association would be lost and the
subroutine linked to the nucleus would not be executable.

Operating System Dependency of Object Module Generation
The object module is generated in different ways, according to the operating system. These differences are
listed below.

Platform: Requirement:

z/OS A NAME control statement is generated as the last card of the object module. It
specifies the replace function. For example:

NAME TEST (R)

TEST is the name of the cataloged object.

z/VSE The object module(s) will be in LIBR format. A CATALOG control statement is
generated as the first card and a "/*" as the last card of the object module. For example:

CATALOG TEST.OBJ REPLACE-YES
... ... object module ...
/+

TEST.OBJ is the name of the cataloged object.

When the LIBR utility is executed, assign SYSIPT to the work file written by the
ULDOBJ utility (ASSIGN SYSIPT= work-file-1).

BS2000/OSDThe object module(s) will be in LMS format. An ADD control statement is generated as
the first card and an END statement as the last card of the object module. For example:

ADDR >TEST
... ... object module ...
END

When the LMS utility is executed, assign SYSDTA to the work file written by the
ULDOBJ utility (SYSFILE SYSDTA=work-file-1). The file name generated is
Nvr.MOD, where vr stands for the current Natural version and release number.

If multiple cataloged objects are unloaded during execution of the utility, the object
decks are appended to each other.

4

Operating System Dependency of Object Module GenerationLinking Natural Objects to the Natural Nucleus

Example of Linking a Natural Object to the Natural Nucleus
If, for example, the objects LOGPROG and EDITPROG in the library SYSLIB are to be linked to the
Natural nucleus, the following steps could be taken:

1. Identify the cataloged objects to be linked.

Object Library
-------------- --------------
LOGPROG SYSLIB
EDITPROG SYSLIB

2. Set up the batch Natural job stream. Assuming a z/OS environment, include the following cards:

//CMWKF01 DD DSN=ULD.NAT.PGMS,UNIT=SYSDA,DISP=(,KEEP),
// SPACE=(CYL,(3,1),,RLSE),VOL=SER=VVVVVV,
// DCB=(RECFM=FB,BLKSIZE=800,LRECL=80)
//CMSYNIN DD *
LOGON SYSMISC
ULDOBJ LOGPROG,SYSLIB,OS
EDITPROG,SYSLIB
.
FIN
/*

3. Set up the linkage editor job stream.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X
//*
//* GENERATE OS LOAD MODULE FROM ULDOBJ UTILITY
//*
//LINK1 EXEC PGM=IEWL,PARM=’LIST,LET,XREF,NCAL,RENT,REUS’
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=X
//SYSLIN DD DSN=NAT.ULD.PGMS,DISP=OLD,UNIT=SYSDA,VOL=SER=VVVVVV
/*

This step places the load modules LOGPROG and EDITPROG in the NATURAL.USER.LOAD
dataset.

With an additional link-edit job, these modules can be linked together as a single load module before
being linked to the nucleus in Step 5.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X
//*
//* OPTIONAL JOB TO LINK CATALOGED OBJECTS TOGETHER
//*
//LINK2 EXEC PGM=IEWL,PARM=’LIST,LET,XREF,NCAL,RENT,REUS’
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=X
//SYSLIN DD *
INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM
NAME XXXXXX(R)
/*

5

Linking Natural Objects to the Natural NucleusExample of Linking a Natural Object to the Natural Nucleus

4. Define the statically linked Natural programs in source module NATCONFG in the NSTATIC table
for linked Natural programs:

NTSTAT INPL,TYPE=W
NTSTAT INPLLIB,TYPE=W
NTSTAT AERROR,TYPE=W
NTSTAT LOGPROG <==== your entries
NTSTAT EDITPROG <====

TYPE=W means that a "weak" external reference to the specified program is generated rather than a
normal one.

5. Review the linkage editor job stream for the Natural nucleus and include the following:

//*
//* INCLUDE DDNAME AND DSN OF DATASET WHERE OBJECTS RESIDE
//*
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//NATLIB DD DSN=NATURAL.V2.USER.LOAD,DISP=SHR//*
//SYSLIN DD*
...
... INCLUDE MODULES FOR NUCLEUS
...
INCLUDE NATLIB(NATPARM) NATPARM MODULE
INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM
...
... INCLUDE ENTRY AND NAME CARDS
...
/*

If the cataloged objects were linked together (as done optionally in Step 3), include this load module
instead of the individual load modules in the link of the nucleus.

6

Example of Linking a Natural Object to the Natural NucleusLinking Natural Objects to the Natural Nucleus

	Linking Natural Objects to the Natural Nucleus
	Benefits
	ULDOBJ Utility
	Using ULDOBJ to Generate an Object Module
	Additional Considerations for Linking Subroutines
	Operating System Dependency of Object Module Generation
	Example of Linking a Natural Object to the Natural Nucleus

