
Performance Considerations
This chapter covers the following topics:

Formats

Arrays

Alphanumeric Fields

DECIDE ON

Numeric Values

Variable Positioning

Variable Caching

NODBG

Formats
Best performance is achieved when you use the data formats packed numeric (P) and integer (I4) in
arithmetic operations.

Avoid converting data between the formats packed numeric (P), unpacked numeric (N), integer (I), and
floating point (F), as this causes processing overhead even with optimized code.

As there is no interpretation overhead with optimized code, the differences between the various data
formats become much more prominent: with optimized code the performance improvement gained by
using format P instead of N, for example, is even higher than with normal code.

Example:

A = A + 1

In the above numeric calculation

with non-optimized code, format P executes approximately 13 % faster than format N.

with optimized code, however, format P executes approximately 56 % faster than format N.

The performance gain which would be achieved by applying the Natural Optimizer Compiler to this
simple statement is

with unpacked operands (N): 8 times faster

with packed operands (P): 15 times faster

1

Performance ConsiderationsPerformance Considerations

Arrays
Array range operations, such as

MOVE A(*) TO B(*)

are executed more efficiently than if the same function were programmed using a FOR statement
processing loop. This is also true for optimized code.

When indexes are used, integer format I4 should be used to achieve optimum performance.

Alphanumeric Fields
We recommend that you adjust the length of the alphanumeric constant to the length of the variable, when
moving an alphanumeric constant to an alphanumeric variable (format A), or when comparing an
alphanumeric variable with an alphanumeric constant. This will significantly speed up operation, for
example:

A(A5):=’XYZAB’

...
IF A = ’ABC ’ THEN ...

is faster than

IF A = ’ABC’ THEN ...

DECIDE ON
When using the DECIDE ON statement with a system variable, array or parameter operand1, it is more
efficient to move the value to a scalar variable of the same type and length defined in the LOCAL storage
section.

Numeric Values
When using numeric constants in assignments or arithmetic operations, try to force the constants to have
the same type as the operation.

Rules of Thumb

Any numeric constant with or without a decimal but without an exponent is compiled to a packed
number having the minimum length and precision to represent the value, unless the constant is an
array index or substring starting position or length, in which case it becomes a four-byte integer (I4).
This rule applies irrespective of the variable types participating in the operation.

Operations containing floating point will be executed in floating point. Add E00 to numeric values to
force them to be floating point, for example:

2

ArraysPerformance Considerations

ADD 1E00 to F(F8)

Operations not containing floating point, but containing packed numeric, unpacked numeric, date or
time variables will be executed in packed decimal. For ADD, SUBTRACT and IF , force numeric
constants to have the same number of decimal places as the variable with the highest precision by
adding a decimal place and trailing zeros, for example:

ADD 1.00 TO P(P7.2)

This technique is unnecessary for MULTIPLY and DIVIDE .

Variable Positioning
To ease the optimization process, try to keep all scalar references at the front of the data section and all
array references at the end of the data section.

Variable Caching
The Natural Optimizer Compiler contains an algorithm to enhance the performance even further. In terms
of performance, a statement will differ depending on the types of operands. The statement will execute
more slowly if one or more of the operands is a parameter, array or scalar field of Type N (numeric) or
combinations of these operands. The NOC analyzes the program flow and determines which variables
with one or more of these characteristics are read two or more times without being written to. It then
moves the value of each variable to a temporary cache area where it can be accessed quickly under the
following conditions:

The variable is accessed often but seldom modified and

The variable is an array of any type or a scalar field of Type N (numeric).

Most suitable for variable caching are programs with long sequences that repeatedly access the same
variable, in particular if the variable is an array. Variable caching then avoids complex and recurring
address computation.

Example of Variable Caching

The example program displayed below demonstrates the advantage of variable caching. Cataloged with
NODBG (see below) and CACHE=ON, executing this program in a test environment took 47 % of the time
required to execute the program with NODBG and CACHE=OFF. Cataloging the program with CACHE=ON,
reduces the code generated by the NOC from 856 bytes to 376 bytes.

DEFINE DATA LOCAL
1 ARR(N2/10,10,10)
1 I(I4) INIT <5>
1 J(I4) INIT <6>
1 K(I4) INIT <7>
END-DEFINE
DECIDE ON EVERY ARR(I,J,K)
 VALUE 10 IGNORE
 VALUE 20 IGNORE
 VALUE 30 IGNORE
 VALUE 40 IGNORE
 VALUE 50 IGNORE
 VALUE 60 IGNORE

3

Performance ConsiderationsVariable Positioning

 VALUE 70 IGNORE
 VALUE 80 IGNORE
 VALUE 90 IGNORE
 NONE IGNORE
END-DECIDE

Warning:
If the content of a cached variable is modified with the command
MODIFY VARIABLE of the Natural Debugger, only the content of the
original variable is modified. The cached value (which may still be
used in subsequent statements) remains unchanged. Therefore,
variable caching should be used with great care if the Natural
Debugger is used. See also the Natural Debugger documentation.

NODBG
Once a program has been thoroughly tested and put into production, you should catalog the program with
the NODBG option as described in the section Optimizer Options. Without debug code, the optimized
statements will execute from 10% to 30% faster.

The code to facilitate debugging is removed when this option is specified, even with INDX or OVFLW
options turned on.

4

NODBGPerformance Considerations

	Performance Considerations
	Formats
	
	Example:

	Arrays
	Alphanumeric Fields
	DECIDE ON
	Numeric Values
	Rules of Thumb

	Variable Positioning
	Variable Caching
	Example of Variable Caching

	NODBG

