Debugger Tutorial Debugger Tutorial

Debugger Tutorial

This tutorial introduces the basic features of the debugger and discusses different debugging methods. It
takes you through a simple scenario that demonstrates how the debugger can be used to analyze runtime
errors and control program execution.

It is important that you work through Sessions 1 to 5 in sequence.
Notes:

1. For ease of use, the tutorial primarily quotes direct commands to demonstrate the debugger features
and not the alternative menu functions.

2. For afull description of all debugger features mentioned in this tutorial, refer to the relevant sections
in the remainder of thBebugger documentation.

® Prerequisites

e Fundamentals of Debugging

® Session 1 - Analyzing a Natural Error

® Session 2 - Using a Breakpoint

® Session 3 - Using a Watchpoint

® Session 4 - Tracing the Logical Flow of Programs

® Session 5 - Using Statistics about the Program Execution
e Additional Hints for Using the Debugger

e Example Sources

Prerequisites
® You should be familiar with programming in Natural.

® Before you start with Session 1, you need to create all example programs (DEBUG1P and
DEBUGZ2P) and subprograms (DEBUG1N, DEBUG2N, DEBUG3N and DEBUGA4N) provided in
the sectiorExample Sources later in this tutorial. Save and catalog these objects with the system
commandSTOW

Fundamentals of Debugging

The debugger can be used to interrupt the execution flow of a Natural object at a particular debug event
and obtain information on the current status of the interrupted object such as the next statement to be
executed, the value of a variable and the hierarchy (program levels) of objects called.

Debugger Tutorial Session 1 - Analyzing a Natural Error

You basically need to take the following two major steps to pass control to the debugger for program
interruption:

1. Activate the debugger with the system commEB8T ON.

This allows the debugger to receive control for each statement to be executed by the Natural runtime
system.

2. Set one or more debug entries (breakpoints and watchpoints) for the Natural objects to be executed.

This allows the debugger to decide when to take over control from the Natural runtime system and
interrupt the program execution.

A Natural error always interrupts the program execution. No debug entry is required then, the
debugger steps in automatically.

The following is an overview of all possible program interruptions:

Program Explanation
Interruption

Breakpoint Causes a program interruption for a statement line in a Natural object.

The debugger interrupts the program execution whenever the statement line for
which a breakpoint is set is to be executed, théefere the statement contained in
this line is processed.

Watchpoint Causes a program interruption for a variable in a Natural object.

The debugger interrupts the program execution whenever the contents of the
variable for which a watchpoint is set have changed, thaiftés,the statement that
references this variable is processed.

Step mode Steps through the object during the program execution.

Step mode is initiated by a debugger command and requires that the debugger
previously received control because of a breakpoint or a watchpoint. In step mode,
the debugger interrupts the program execubeiore each executable statement
contained in this object is processed.

Natural error | Causes an automatic program interruption.

Session 1 - Analyzing a Natural Error

This session describes investigation methods for a Natural error that occurs during program execution.

» Tosimulatea Natural error
1. From the NEXT prompt, execute DEBUG1P.

The following Natural error message appeBXSBUGI1N 0180 NAT0954 Abnormal
termination SOC7 during program execution.

Session 1 - Analyzing a Natural Error Debugger Tutorial

The message points to line 180 in the subprogram DEBUBONUS := SALARY * PERCENT

/100 . This indicates that incorrect values are returned for one or more of the variables referenced.
However, at this point, this is no clear evidence of what actually causes the problem; and it could be
difficult to determine the cause if the variable values were retrieved from a database (as is typical for
employee records).

¥ To activatethe debugger for further problem investigation

1. Atthe NEXT prompt, enter the following:

TEST ON

The messag&est mode started. indicates that the debugger is activated.

Note:
TEST ONremains active for the duration of the current session or until youlda&¥ OFF to

deactivate the debugger.
2. Again, execute DEBUG1P from the NEXT prompt.

A Debug Break window similar to the example below appears:

B Debug Break ---------------m--- +
| Break by ABEND SOC7 at NATARI2+2A4-4 (NAT0954) |
| at line 180 in subprogram DEBUG1N (level 2) |
| in library DEBUG in system file (10,32). |
I I
Go [
List break [
Debug Main Menu [
Next break command |
Run (set test mode OFF) |
Step mode |
Variable maintenance [

I
Code .. G |

I

| Abnormal termination SOC7 during program execution|
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |
+ +

<VWIVZZIrro

Since a Natural error occurs, the debugger steps in automatically and displgsubdreak
window.

Additional information on where the error occurs is displayed at the top of the window: the module
(NATARI2) in the Natural nucleus (helpful for Software AG technical support), the type of object
(subprogram) the library DEBUGand the database ID and file numkEp,82) of the system

file.

The Debug Break window also provides debugger functions that can be used, for example, to
continue the program executio@d or Run), invoke the debugger maintenance mdneb(ig Main

Menu) or activate step mode. You execute a function by using either the appropriate function code or
PF key.

Debugger Tutorial

» Toinspect the erroneous statement line
1.

The source of DEBUGIN is displayed:

Session 1 - Analyzing a Natural Error

In theCode field, replace the default ent@yby L to execute théist break function.

13:48:54

Test Mode ON - List Object Source -
Co Line Source

__ 0070 2 NUMCHILD (N2)
_ 0080 2ENTRYDATE (D)
__ 0090 2SALARY (P7.2)
_ 0100 2BONUS (P7.2)
_ 0110 LOCAL

__ 0120 1 TARGETDATE (D)
_ 0130 1 DIFFERENCE (P3.2)
_ 0140 1 PERCENT (P2.2) INIT <3.5>
__ 0150 END-DEFINE

__ 0210 END

Command ===>

+

Help Step Exit Last Scan Flip -

ek NATURAL TEST UTILITIES *****

Bottom of data

INIT <D’'2009-01-01">

0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | last |ine
~ 0180 BONUS : = SALARY * PERCENT / 100 | * NAT0954 *
0190 END-IF |

__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA |

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---

2007-09-06
Object DEBUGIN

Message
I
I
I
I
I

>

Li Br< Canc

last line indicates that the stateme

successfully.

nt contained in line 170 is the last statement that executed

The statement in line 180 which causes the problem is highlighted and annotateNATB954

*

This indicates that the error is caused by either the contents of the va&ddA& Yor PERCENT
Most likely, this iSSALARYsincePERCENTs properly initialized.

¥ To check the contents of SALARY

1. In the Command line, enter the following:

DI S VAR SALARY

A Display Variable screen similar to the example below appears for the vafilARY

Session 1 - Analyzing a Natural Error Debugger Tutorial

18:59:51 reekk NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variable (Alphanumeric) - Object DEBUG1N

Name EMPLOYEE.SALARY
Fmt/Len ... P 7.2
Type parameter

Position ..
Contents ..

Command ===>

Vari abl e contains invalid data.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

The messag¥®ariable contains invalid data. indicates that the contents of the
variable, which seems to be blank, does not match the format of the variable. This becomes clear
when you view the hexadecimal representation of the variable contents as described in the next step.

2. Press PF11 (Hex) to display the hexadecimal contents of the variable.

The screen now looks similar to the example below:

11:13:33 *rxkk NATURAL TEST UTILITIES **+** 2007-09-06
Test Mode ON - Display Variable (Hexadecimal) - Object DEBUG1N

Name EMPLOYEE.SALARY
Fmt/Len ...P 7.2

Type parameter

Index

Range

Position ..

Contents .. 4040404040

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

The hexadecimal value shows that the variable is not in packed numeric format, thus leading to a
calculation error during the program execution. DEBUG1P obviously provides DEBUG1N with an
incorrect value foSALARY

Tip:
You can press PF10 (Alpha) to switch back to the alphanumeric representation.

Debugger Tutorial Session 2 - Using a Breakpoint

3. In the Command line, enter the following:

The commandsOreturns control from the debugger to the Natural runtime system, which continues
the program execution until the end of the program or the next debug event. In this case, there is no
additional debug event and the NEXT prompt appears with the known Natural error message.

» Tocorrect SALARY in the object source

1. Open DEBUG1P with the program editor and remove the comment sign (*) entes&d ARRY :=
99000 .

2. Save and catalog the program with the system comBSiEOaV

3. Execute DEBUGI1P.

The debugger does not interrupt the program th@lgBT ON s still set. The program executes
successfully and outputs a report:

Page 1 07-09-06 15:28:06

EMPLOYEE RECEIVES: 100800.00
PLUS BONUS OF: 3465.00

NEXT LIB=DEBUG

Session 2 - Using a Breakpoint
You can interrupt the program execution at a specific statement line by setting a breakpoint for this line.

» Toset abreakpoint for a statement linein DEBUGIN

1. Atthe NEXT prompt, enter the following:

TEST SET BP DEBUGLN 170

The messagBreakpoint DEBUG1NO0170 set at line 170 of object DEBUG1N.

confirms that a breakpoint with the naDEBUG1N0170s set for statement line 170 in the
DEBUG1N subprogram.

Notes:

1. A breakpoint can only be set for an executable statement. If you try to set a statement for a
non-executable statement, an appropriate error message appears.

2. A breakpoint is usually only valid during the current Natural session. If required, you can save a

Session 2 - Using a Breakpoint Debugger Tutorial

breakpoint for future sessions: s®ing Breakpoints and Watchpoints in Additional Hints for
Using the Debugger.

2. Execute DEBUG1P.

The debugger now interrupts the program execution at the statement line, where the new breakpoint
is set. TheDebug Break window appears:

e Debug Break ------------------- +
| Break by breakpoi nt DEBUGLN0170 [
| at line 170 in subprogram DEBUGIN (level 2) |
| in library DEBUG in system file (10,32). [
|
Go |
List break |
Debug Main Menu |
Next break command |
Run (set test mode OFF) |
Step mode |
Variable maintenance |
|
Code .. G |

|
PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |

+
t

<mvmITzZITO

+
1

The window indicates the name of the breakpoint, the corresponding statement line and object and
the library that contains the object. It also indicates the operational level of subprogram DEBUG1N.

¥ Toview the statement indicated in the Debug Break window

® Execute thdist break function.

The source of DEBUGLN is displayed on thist Object Source screen:

Debugger Tutorial

Session 2 - Using a Breakpoint

11:36:45
Test Mode ON

Co Line Source

__ 0070 2 NUMCHILD (N2)
__ 0080 2 ENTRYDATE (D)
__ 0090 2 SALARY (P7.2)
0100 2BONUS (P7.2)
0110 LOCAL

__ 0120 1 TARGETDATE (D)
__ 0130 1 DIFFERENCE (P3.2)
0140 1 PERCENT
__ 0150 END-DEFINE

*ekkk NATURAL TEST UTILITIES *****
- List Object Source -

INIT <D’2009-01-01"> |

(P2.2) INIT <3.5> |

2007-09-06
Object DEBUG1N
Bottom of data
Message
II
I
I
I

__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365

| ast

line

~ 0170 | F DI FFERENCE GE 10
0190 END-IF

_ 0210 END

/* BONUS FOR YEARS I N COWPAN |

_ 0180 BONUS := SALARY * PERCENT / 100 |

_ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + LiBr< > Canc

DEBUGLNO170

Statement line 170 indicated in tBebug Break window is highlighted. Th# essage column
indicates the name of the breakpolDEBUG1NO17(set for this statement line and the last

statement line executed (line 160 as indicatetastyline).

Remember: A breakpoint interrupts the program execlifore the statement for which the

breakpoint is set is processed.

There are several direct commands you can enter drnish®bject Sour ce screen to obtain more
information on the current object. As an example, you can view all variables as described in the

following step.
» Todisplay alist of variables contained in DEBUGI1N

1. Inthe Command line, enter the following:

DI S VAR

A Display Variables screen similar to the example below appears:

Session 2 - Using a Breakpoint Debugger Tutorial

11:06:13 reekk NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variables (Alphanumeric) - Object DEBUGI1N
All
Co Le Variable Name F Leng Contents Msg.
1 EMPLOYEE
___ 2NAME A 20 MEIER
__ 2ENTRYDATE D 1989-01-01
__ 2SALARY P 7.2 99000.00
___ 2BONUS P 7.2 *** jnvalid data ***
___ 1 TARGETDATE D 2009-01-01
___ 1 DIFFERENCE P 3.2 20.00
__ 1 PERCENT P 2.23.50

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Zoom Flip - + LiBrAlphaHex Canc

The screen lists all variables defined in DEBUG1N. You can neglect the remalikl data

for BONUSIN this case, it is not essential whetBENUSs properly initialized since it is used as a
target operand only. However, to exercise another debugger command, change the contents of
BONUSN the following step.

¥ To check and modify the contents of BONUS

1. IntheCo column, next tBBONUSenter the following:

Or:
In the Command line, enter the following:

MOD VAR BONUS

A Modify Variable screen similar to the example below appears:

Debugger Tutorial Session 2 - Using a Breakpoint

11:29:50 reekk NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Modify Variable (Alphanumeric) - Object DEBUG1N

Name EMPLOYEE.BONUS
Fmt/Len ... P 7.2
Type parameter

Position .. 1
Contents ..

Command ===>

Variable contains invalid data.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Save Flip Li Br Alpha Hex Canc

2. You can use the hexadecimal display to verify that the variable is not in packed numeric format.
Press PF10 (Alpha) to switch back to the alphanumeric representation.

3. IntheContentsfield, enter a value in packed numeric format, for exanif@845.00 and press
PF5 (Save).

The screen now looks similar to the example below:

11:50:00 *rxkk NATURAL TEST UTILITIES **+** 2007-09-06
Test Mode ON - Display Variable (Alphanumeric) - Object DEBUG1N

Name EMPLOYEE.BONUS
Fmt/Len ...P 7.2

Type parameter

Index

Range

Position ..

Contents .. 12345. 00

Command ===>

Vari abl e BONUS nodi fi ed.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

A message confirms the modification@bntents.

10

Session 3 - Using a Watchpoint Debugger Tutorial

4. Press PF9 (Li Br) or PF3 (Exit).
ThelList Object Source screen appears.

5. Inthe Command line, enter the following:

The debugger returns control to the Natural runtime system, which finishes executing DEBUG1P
since no further debug event occurs. The report produced by the program is output:

Page 1 07-09-06 10:02:51

EMPLOYEE RECEIVES: 100800.00
PLUS BONUS OF: 3465.00

NEXT LIB=DEBUG

6. Before you continue with the next session, delete all current breakpoints by entering the following at
the NEXT prompt:

TEST DEL BP * *

A message appears confirming that all breakpoint (in this case, only one breakpoint) are deleted.

Session 3 - Using a Watchpoint

DEBUGL1P and DEBUGIN perform a calculation for a single employee’s bonus and salary payment. If
multiple employee records were processed, you would probably test whether the BDidhl8s now

updated correctly. This is done by setting a watchpoint for this variable. A watchpoint allows the debugger
to interrupt the program execution when the contents of the specified variable change.

» To set awatchpoint for the variable BONUS

1. At the NEXT prompt, enter the following:

TEST SET WP DEBUGLN BONUS

The messag@/atchpoint BONUS set for variable EMPLOYEE.BONUS. confirms that
a watchpoint is set for the varialB®©NUSn the DEBUG1N example subprogram.

Notes:

11

Debugger Tutorial Session 3 - Using a Watchpoint

1. If you enter a debugger direct command in the Command line of a debugger screen, you must
omit the keywordl'EST. For example, instead 8EST SET WP DEBUG1N BONUSyou
would then enteBET WP DEBUG1N BONUS®nNly.

2. A watchpoint is usually only valid during the current Natural session. If required, you can save a
watchpoint for future sessions: s&ving Breakpoints and Watchpoints in Additional Hints for
Using the Debugger.

2. Execute DEBUG1P from the NEXT prompt.

The debugger interrupts the program execution at the new watchpoint and invdResug&r eak
window:

oo Debug Break ------------------- +
| Break by watchpoi nt BONUS [
| at line 180 in subprogram DEBUGIN (level 2) |
| in library DEBUG in system file (10,32). |

I
Go |
List break |
Debug Main Menu [
Next break command |
Run (set test mode OFF) |
Step mode |
Variable maintenance |

I
Code .. G |

I

I
PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |

+
T

<VITZZIroe

+
T

The window indicates that a watchpoint was detected in line 180. This line contains the statement
that processes the variald®NUS

The debugger interrupted the program execudftan the statement fdBONUSwvas processed. Only
then could the debugger recognize that the contents of the variable had changed.

3. Execute thé&ist break function.

TheList Object Source now looks similar to the example below:

12

Session 3 - Using a Watchpoint Debugger Tutorial

16:24:46 *xxkx NATURAL TEST UTILITIES ***** 2007-09-06

Test Mode ON - List Object Source - Object DEBUG1N
Bottom of data

Co Line Source Message

0070 2 NUMCHILD (N2) |
0080 2 ENTRYDATE (D) |

~ 0090 2 SALARY (P7.2) |

~_ 0100 2BONUS (P7.2) |

0110 LOCAL |

0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |

0130 1 DIFFERENCE (P3.2) |

0140 1 PERCENT (P2.2) INIT <3.5> |

0150 END-DEFINE |

0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |

0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170

~ 0180 BONUS := SALARY * PERCENT / 100 | BONUS
0190 END-IF |

0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA |

—_ 0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + LiBr< > Canc

The statement which references the vari@NUSs highlighted and thsl essage column indicates
the name of the watchpoint set for the variable.

» Tocheck for changesin BONUS

1. Inthe Command line, enter the following:

DS VAR BONUS

TheDisplay Variable screen appears and displays a valug466.00 in theContentsfield. This
shows that the contents of the variaB@NUShave changed.

2. Press PF3 (Exit) to return to thist Object Source screen.
¥ To check for changesin SALARY

1. To test the contents of the variaBIBLARYin a later step, set a breakpoint 84LARYby entering
the following in theCo column of line 200:

SE

From theList Object Source screen, a line command suchSdsis a convenient alternative to using
the SET BP direct command.

13

Debugger Tutorial

Session 3 - Using a Watchpoint

TheMessage column indicates that a breakpoiBF) is set for line 200:

17:55:58
Test Mode ON

Co Line Source
0070 2 NUMCHILD (N2)
__ 0080 2 ENTRYDATE (D)

wkkk NATURAL TEST UTILITIES *rvx*
- List Object Source -

2007-09-06
Object DEBUG1N
Bottom of data
Message
|I

~ 0090 2 SALARY (P7.2) |
~ 0100 2BONUS (P7.2) |
0110 LOCAL |

0120 1 TARGETDATE (D) INIT <D'2009-01-01"> |

0130 1 DIFFERENCE (P3.2) |

0140 1 PERCENT (P2.2) INIT <3.5> |

0150 END-DEFINE |

0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |

0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170

0180 BONUS := SALARY * PERCENT / 100 | BONUS
0190 END-IF |
~ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL | NCREA |
0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + LiBr< > Canc

BP set

2. In the Command line, enter the following:

The Debug Break window appears:

Debug Break
| Break by breakpoi nt DEBUGLN0200 |
| at line 200 in subprogram DEBUGLN (level 2) |

| in library DEBUG in system file (10,32). |

I

Go |

List break [

Debug Main Menu [

Next break command |

Run (set test mode OFF) |

Step mode |

Variable maintenance [

I

I

I

I

I
I
I
I
I I
I
I
I
I
+

<LWIBTVZZIrrO

Code .. G |
I

I
PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |
+

3. Execute thé&ist break function.

14

Session 3 - Using a Watchpoint Debugger Tutorial

ThelList Object Source screen now looks similar to the example below:

10:49:31 *xxkk NATURAL TEST UTILITIES ***** 2007-09-06

Test Mode ON - List Object Source - Object DEBUG1N
Bottom of data

Co Line Source Message

0070 2 NUMCHILD (N2) |

~ 0080 2 ENTRYDATE (D) |

~ 0090 2 SALARY (P7.2) |

~ 0100 2BONUS (P7.2) |

0110 LOCAL |

0120 1 TARGETDATE (D) INIT <D'2009-01-01"> |
0130 1 DIFFERENCE (P3.2) |

0140 1 PERCENT (P2.2) INIT <3.5> |

0150 END-DEFINE |

0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170

0180 BONUS := SALARY * PERCENT / 100 | last |ine
0190 END-IF |

0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA | DEBUG1N0200
0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + LiBr< > Canc

Since this is a breakpoint, the statement that references (and udeiés Yhas not yet been
executed. As a result, the contents of the variable have not changed.

4. In the Command line, entBiS VAR SALARY to verify that the contents &ALARYare
unchanged.

The variable screen proves tiB8LARYSstill contains99000 , the initial value assigned in
DEBUG1P.

5. To view the update of the variable contents, step to the next statement by choosing either of the
following methods:

In the Command line, enter the following:

STEP

Or:
Press PF2 (Step).

The screen now looks similar to the example below:

15

Debugger Tutorial Session 4 - Tracing the Logical Flow of Programs

13:38:24 *xxkx NATURAL TEST UTILITIES ***** 2007-09-06

Test Mode ON - List Object Source - Object DEBUG1N
Bottom of data

Co Line Source Message

0070 2 NUMCHILD (N2) |
0080 2 ENTRYDATE (D) |

~ 0090 2 SALARY (P7.2) |

~_ 0100 2BONUS (P7.2) |

0110 LOCAL |

0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |

0130 1 DIFFERENCE (P3.2) |

0140 1 PERCENT (P2.2) INIT <3.5> |

0150 END-DEFINE |

0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |

0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170
0180 BONUS := SALARY * PERCENT / 100 |

__ 0190 END-IF |
__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA | last |ine
_ 0210 END | step node

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + LiBr< > Canc

You skipped one line and processed the next executable statement in line 200, which updates
SALARY TheM essage column indicates that step mode is set. In step mode, the debugger continues
the program execution at the next executable statement.

6. In the Command line, ent®iS VAR SALARY to check the variable contents.

TheDisplay Variable screen appears and displays a valued6800.00 in theContents field.
This proves that the contents of the varicgddd ARYhave changed.

7. In the Command line, enter the following:

The debugger returns control to the Natural runtime system, which finishes executing DEBUG1P
since no further debug event occurs. The report produced by the program is output.
Session 4 - Tracing the Logical Flow of Programs

This session describes debugging methods you can use to better understand, overview and control a
complex Natural application with numerous objects.

The session starts out with instructions for analyzing the logical flow of an application on the statement
level. It then demonstrates how breakpoints can be used to find out the sequence in which programs are
executed.

16

Session 4 - Tracing the Logical Flow of Programs Debugger Tutorial

The instructions in this session are based on a simple (but sufficient for demonstration) example
application that consists of one program (DEBUG2P) and three subprograms (DEBUG2N, DEBUG3N
and DEBUGA4N).

¥ Toset abreakpoint at program begin or end

1. Set a breakpoint for DEBUG2P by entering the following at the NEXT prompt:

TEST SET BP DEBUXP BEG

The messagBreakpoint DEBUG2P-BEG set at line BEG of object DEBUG2P.
confirms that a breakpoint is set in DEBUG1N.

Using the keywordEGinstead of a specific line number has the effect that the breakpoint is set at
the beginning of the program, that is, for the first statement to be executed. This can even be the
DEFINE DATA statement, for example, if dNIT clause is used, which generates an executable
statement when the program is cataloged.

Tip:

You can also specify the keywdENDto set a breakpoint for the last statement to be executed. This
can be th&NDstatement but also tliETCHor CALLNATstatement.

2. Execute DEBUG2P.

TheDebug Break window appears:

N aaae e Debug Break ------------------- +
| Break by breakpoi nt DEBUGP- BEG
| at line 130 in program DEBUG2P (level 1) |
| in library DEBUG in system file (10,32). |
I
Go |
List break [
Debug Main Menu |
Next break command |
Run (set test mode OFF) |
Step mode |
Variable maintenance |
I
Code .. G |

I
PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |

+
t

<VWIDVZZICO

+
t

The debugger now steps in at the first breakpoint set for the program.

3. Execute théist break function to check the source and see that the debugger now steps in at the
first executable statemeRAME := '"MEIER’

17

Debugger Tutorial Session 4 - Tracing the Logical Flow of Programs

» To step through an application

1. Onthelist Object Source screen, set step mode by either pressing PF2 (Step) or el@€ERIn
the Command line.

The last statement executed is annotated haghline . The next statement to be executed is

highlighted and annotated wisttep mode
Tip:

If you do not want the debugger to pause at every single statement but step through an application
more quickly, in theSTEPcommand, specify the number of statements you want to skip, for
exampleSTEP 2 or STEP 10.

2. Press PF2 (Step) repeatedly until@#d_LNATstatement is annotated witep mode
3. Continue with PF2 (Step) and executeGA¢ LNAT

The invoked subprogram DEBUG2N is displayed, where the next statement to be executed is
highlighted:

11:59:19
Test Mode ON

3* NATURAL TEST UTILITIES ***

- List Object Source -

Object

2007-09-06
DEBU&GN

Top of data
Co Line Source Message
_ 0010 * SUBPROGRAM DEBUG2N: CALLS 'DEBUG3N’ AND 'DEBUG4N’FOR |
_ 0020 rrrrrrkr ARk Hhkkkkkkkokok Rk |
__ 0030 DEFI NE DATA [
__ 0040 PARAMETER [
__ 0050 1 EMPLOYEE |
_ 0060 2NAME (A20) |
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) [
__ 0090 2 SALARY (P7.2) [
_ 0100 2BONUS (P7.2) |
_ 0110 LOCAL |
_ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
_ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |

step node

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + LiBr< > Canc

As an alternative, you could skip tBALLNATby enteringSTEP SKIP in the Command line.

You would then only step through the statements in the invoking program DEBUG2 but not through
the statements within an invoked subprogram.

¥ Toview thelevels at which the objects are executed

18

Session 4 - Tracing the Logical Flow of Programs Debugger Tutorial

1. InthelList Object Source screen of DEBUG2N, enter the following in the Command line:

CBJCHAI N

A Break Information screen similar to the example below appears:

13:45:34 *xkxx NATURAL TEST UTILITIES ****=* 2007-09-06
- Break Information -

No GDA active for the current program.

Break by step mode

at line 30 in subprogram DEBUG2N (level 2)
in library DEBUG in system file (10,32).

In addition to the object information already known, this screen indicates whether the program
references a GDA (global data area).

2. Press ENTER to scroll down one page.

The screen now looks similar to the example below:

13:46:34 *rxkk NATURAL TEST UTILITIES *rxx* 2007-09-06
- Current Object Chain -

Level Name Type Line Library DBID FNR
2 DEBUG2N Subprogram 0 DEBUG 10 32
1 DEBUG2P Program 170 DEBUG 10 32

This screen indicates the operational levels at which the objects are executed: subprogram
DEBUG2N is executed at level 2 and program DEBUG2P (which invokes the subprogram) is
executed at the superior level 1.

3. Press ENTER.
TheList Object Source screen appears.

4. In the Command line, enter the following:

The debugger returns control to the Natural runtime system, which finishes executing DEBUG2P
since no further debug event occurs. The report produced by the program is output:

19

Debugger Tutorial Session 4 - Tracing the Logical Flow of Programs

Page 1 07-09-06 10:04:21

EMPLOYEE RECEIVES: 99300.00
PLUS BONUS OF: 3565.00

NEXT LIB=DEBUG

5. Delete all breakpoints currently set by entering the following at the NEXT prompt:

TEST DEL BP * *

A message appears confirming that all breakpoints are deleted.

¥ To set breakpointsto follow the program execution

1. Atthe NEXT prompt, enter the following:

TEST SET BP ALL BEG

The messagBreakpoint ALL-BEG set at line BEG of object ALL. appears.

This indicates that you have set a breakpoint for the first executable statement of each object to be
executed.

2. Execute DEBUG2P.
A Debug Break window appears for DEBUG2P.
3. Execute th&o function repeatedly.

Each time you executgo, the next object invoked is indicated in thebug Break window

(DEBUG2N first and then DEBUG3N and DEBUGA4N). Thus, you can easily determine which
objects are invoked at what point during the program execution. Additionally, for each object, you
can apply the menu functions of thebug Break window.

4. When the NEXT prompt appears, delete all breakpoints currently set by entering the following:

TEST DEL BP * *

A message appears confirming that all breakpoints are deleted.

20

Session 5 - Using Statistics about the Program Execution Debugger Tutorial

Session 5 - Using Statistics about the Program Execution

You can use the debugger to view statistical information on which objects are called and how often they
are called. Additionally, you can find out which statements are executed, and how often.

¥ To check what objects are called during program execution

1. Atthe NEXT prompt, enter the following:

TEST SET CALL ON

The messag€all statistics started. confirms that the statistics function is activated.
2. Execute DEBUG2P.
The debugger logs all object calls executed, and the report produced by the program is output.

3. At the NEXT prompt, enter the following:

TEST DI'S CALL

A Display Called Objects screen similar to the example below appears:

10:43:47 weekk NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Called Objects - Object
All
Object Library Type DBID FNR S/C Ver Cat Date Time Calls
* DEBUG___

DEBUG2P DEBUG Program 10 32 S/C 4.2 2007-08-30 13:48

DEBUG2N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48
DEBUG3N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48
DEBUG4N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48

PR e e

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Flip + Canc

The screen lists all objects executed: the invoking program (DEBUG2P) and all other objects
invoked (DEBUG2N, DEBUG3N and DEBUG4N). It also indicates how frequently each object is
invoked CALLS), the type of object called, where the object is stored and under which Natural
version, whether source and cataloged objects exist, and when the object was cataloged.

4. Press PF3 (Exit) or PF12 (Canc) until the NEXT prompt appears.

21

Debugger Tutorial

» Tocheck which statements ar e executed during program execution

1. Atthe NEXT prompt, enter the following:

4.

22

Session 5 - Using Statistics about the Program Execution

TEST SET XSTAT COUNT

The messag8tatement execution counting started for library/object

/. confirms that the statistics function is activated for all objects contained in the current library

and all steplibs concatenated with this library.

Execute DEBUG2P.

The debugger logs all statements processed by the program before the report produced by the

program is output.

At the NEXT prompt, enter the following:

TEST DI S XSTAT

A List Statement Execution Statistics screen similar to the example below appears:

11:39:10 reekk NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Statement Execution Statistics - Object
All

Co Object Library Type DBID FNR hj . Cal | ed Exec Exec % Total No.

* * n Tinmes able uted Executi ons
___DEBUG2P DEBUG Program 10 32 1 8 8100 8
__DEBUG2N DEBUG Subprogram 10 32 1 8 8100 8
__DEBUG3N DEBUG Subprogram 10 32 1 2 2100 2
__DEBUG4N DEBUG Subprogram 10 32 1 10 7 70 7
Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---

Help Exit Last Flip - + Canc
The screen lists the number of calbf. Called n Times), the number of executable

statementsExec able), the number of executed statemeiisecuted), the percentage of

executed statements as related to the total number of executable stat®nantsthe total number

of executed statementSdtal No. Executions).

In theCo column, next tddEBUG4Nenter the following:

Additional Hints for Using the Debugger Debugger Tutorial

A statistics screen similar to the example below appears:

12:11:19 wkkk NATURAL TEST UTILITIES *rvx* 2007-09-06
Test Mode ON - Display Statement Lines - Object DEBUG4N
Line Source Count

0010 ** SUBPROGRAM 'DEBUGA4N’: CALCULATES SPECIAL SALARY INCREASE
0020 kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkk

0030 DEFINE DATA

0040 PARAMETER

0050 1 SALARY (P7.2)

0060 END-DEFINE

0070 DECIDE FOR FIRST CONDITION 1
0080 WHEN SALARY < 50000 1
0090 SALARY := SALARY + 1800 not executed
0100 WHEN SALARY < 70000 1
0110 SALARY := SALARY + 1200 not executed
0120 WHEN SALARY < 90000 1
0130 SALARY := SALARY + 600 not executed
0140 WHEN NONE 1
0150 SALARY := SALARY + 300 1

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Flip + Canc

The screen indicates how often a statement was executed and the executable statements that were not
processed.

Additional Hintsfor Using the Debugger
This section provides additional hints for using the debugger.
e Time Stamps of Objects
® Saving Breakpoints and Watchpoints
® Debug Main Menu for Maintenance Functions
e Help for Commands on Maintenance Screens
® Major Functions Available during Program Interruption
® Next Option for Additional Commands During Program Interruption
e Displaying Large Variables and Arrays
® Printing Debugger Statistics

® Using the Debugger in Batch Mode

23

Debugger Tutorial Time Stamps of Objects

Time Stamps of Objects

A cataloged object that does not exactly correspond to the source object can cause debugging errors. If
you want to guarantee that source and cataloged object correspond to each other, save and catalog them
with the system commar8TOwW

For details, see the secti@perational Requirements.

Saving Breakpoints and Watchpoints

You can save the breakpoints and watchpoints set in the current session as a debug environment and load
this environment for use in a future session. This is helpful if you want to repeatedly test an application
with the same debug entries.

For details, see the sectiDebug Environment Maintenance.

Debug Main Menu for Maintenance Functions

All debugger maintenance functions, such as setting a breakpoint or creating statistics, can be executed by
using either a direct command or the maintenance functions providedDetibg Main Menu. You
open this menu by entering one of the following:

e TEST
at a command prompt.

e MENU
at the Command line of a debugger screen.

o M
in theCode field of theDebug Break window.

Help for Commands on M aintenance Screens

For a list of direct commands available on a debugger maintenance screen, press PF1 (Help) or enter a
guestion mark (?) in the Command line.

A debugger maintenance screen that contains list items usually also provides line commands that can be
used to further process an item. You enter a line command @othelumn, next to the required item.
For a list of valid line commands, enter a question mark (?) in this column.

Major Functions Available during Program Interruption
The major functions available during the program interruption are listed in the following section. They can

be executed from either tiebug Break window or the Command line of a debugger maintenance
screen.

24

Next Option for Additional Commands During Program Interruption Debugger Tutorial

event occurs.

Codein Alternative Function

Debug Direct Command

Window

G GO Continues the program execution until the next debug event
occurs.

L LIST BREAK Lists the object source at the statement line where the debu

watchpoint. See alddext Option for Additional Commands
During Program Interruption.

N NEXT Executes the next break command if specified for a breakpo

R RUN Switches test mode off and continues the program executior.
S STEP Processes the executable statements line by line.
\% DIS VAR Displays a list of variables defined for the interrupted object.

Next Option for Additional Commands During Program Interruption

nt or

When displaying or modifying a breakpoint or watchpoint, you will notice that the debugger command
BREAKis attached to each of them. This command invokeB¢hag Break window and must not be
removed. However, you can specify additional debugger commands to be executed during the program
interruption after th8REAKcommand. An additional command is executed when you enter either the

command\NEXTin the Command line or the function cadén theDebug Break window.

You enter the debugger commands in@oenmands field of the appropriate breakpoint or watchpoint

maintenance screen as shown in the following example:

11:38:55 wikkk NATURAL TEST UTILITIES #*xx 2007-09-06
Test Mode ON - Modify Breakpoint - Object
Spy number 1
Initial state A (A = Active, | = Inactive)
Breakpoint name DEBUG1P0170_ DBID/FNR 10/32
Object name DEBUG1P_ Library DEBUG
Line number 0170
Labelcccceenne
Skips before execution.. 0
Max number executions ... ____ 0
Commands ... BREAK
STACK

DI'S VAR BONUS

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF 7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Save Flip Canc

25

Debugger Tutorial Example Sources

In the example above, the comm&iHACKinstructs the debugger to view the Natural stack. The
commandIS VAR BONUS instructs the debugger to display the specified variable. This is helpful, for
example, if you set a breakpoint in a loop and always want to view the value of one particular variable
only. You then do not have to enter DS VAR command repeatedly.

For details, see the description of the fi€ommands in the section&ields and Columns on Breakpoint
Screens andFields and Columns on Watchpoint Screens.

Displaying Large Variablesand Arrays

TheDisplay Variable screen shows all definitions of a variable and displays its contents in alphanumeric
or hexadecimal format. For the display features available for large variables, whose contents extend
beyond the current screen or variables with array definitions, see the §xsfilay Variable -

Individual.

Printing Debugger Statistics
You can print the statistical reports produced by the debugger or download them to a PC.

For details, sePrint Objects in the sectiorCall Satistics Maintenance andPrint Satements in the section
Satement Execution Satistics Maintenance.

Using the Debugger in Batch Mode

The debugger is mainly designed for interactive operations in online mode. Although you can, in

principle, execute all debugger features in batch mode, processing online operations in batch (for example,
the use of PF keys) can require complex batch programming. However, there are also debugger features
for which batch processing is a convenient alternative. One example is collecting and printing statistical
data about an application as describeBxample of Generating and Printing Statistics in Batch in the

sectionBatch Processing.

Example Sour ces

This section contains the source code of the example programs and subprograms required in Sessions 1 to
5.

Program DEBUG1P

** PROGRAM 'DEBUG1P: CALLS 'DEBUGI1N’ FOR SALARY AND BONUS CALCULATION

*% * *% *% * *%

DEFINE DATA
LOCAL
1 EMPLOYEE (A42)
1 REDEFINE EMPLOYEE
2NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2BONUS (P7.2)
END-DEFINE
NAME :='MEIER’
NUMCHILD :=2
ENTRYDATE := D'1989-01-01'
* SALARY := 99000

26

Example Sources

CALLNAT 'DEBUG1N’ NAME NUMCHILD ENTRYDATE SALARY BONUS
WRITE 'EMPLOYEE RECEIVES:” SALARY

WRITE® PLUS BONUS OF:" BONUS

END

Subprogram DEBUGIN

** SUBPROGRAM 'DEBUG1N’: CALCULATES BONUS AND SALARY INCREASE

*% * *kkkkkkkhkkhhkkkhkk *% *kkkhkkkhkkkkk *% *% *

DEFINE DATA
PARAMETER
1 EMPLOYEE
2NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2BONUS (P7.2)
LOCAL
1 TARGETDATE (D) INIT <D’2009-01-01">
1 DIFFERENCE (P3.2)
1 PERCENT (P2.2) INIT <3.5>
END-DEFINE
DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365
IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPANY
BONUS := SALARY * PERCENT / 100
END-IF
SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREASE
END

Program DEBUG2P

** PROGRAM 'DEBUG2P’: CALLS 'DEBUG2N’'FOR SALARY AND BONUS CALCULATION

DEFINE DATA
LOCAL
1 EMPLOYEE (A42)
1 REDEFINE EMPLOYEE
2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2 BONUS (P7.2)
END-DEFINE
NAME :='MEIER’
NUMCHILD :=2
ENTRYDATE := D'1989-01-01’
SALARY = 99000
CALLNAT 'DEBUG2N’ NAME NUMCHILD ENTRYDATE SALARY BONUS
WRITE 'EMPLOYEE RECEIVES: SALARY
WRITE’ PLUS BONUS OF’ BONUS
END

Subprogram DEBUG2N

** SUBPROGRAM DEBUG2N: CALLS 'DEBUG3N’ AND 'DEBUG4N’FOR SPECIAL RATES
DEFINE DATA
PARAMETER
1 EMPLOYEE
2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)

Debugger Tutorial

27

Debugger Tutorial

2 SALARY (P7.2)
2 BONUS (P7.2)
LOCAL
1 TARGETDATE (D) INIT <D'2009-01-01">
1 DIFFERENCE (P3.2)
1 PERCENT (P2.2) INIT <3.5>
END-DEFINE
DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365
IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPANY
BONUS := SALARY * PERCENT / 100
END-IF
IF NUMCHILD >0
CALLNAT 'DEBUG3N’ NUMCHILD BONUS /* SPECIAL BONUS
END-IF
CALLNAT 'DEBUG4N’ SALARY /* SPECIAL SALARY INCREASE
END

Subprogram DEBUG3N

** SUBPROGRAM 'DEBUG3N': CALCULATES SPECIAL BONUS

*% * *kkkkkkkhkkhhkkkhkk *% *kkkhkkkhkkkkk *% *%

DEFINE DATA
PARAMETER

1 NUMCHILD (N2)
1BONUS (P7.2)

END-DEFINE
BONUS := BONUS + NUMCHILD * 50
END

Subprogram DEBUGA4N

** SUBPROGRAM 'DEBUGA4N’: CALCULATES SPECIAL SALARY INCREASE

DEFINE DATA
PARAMETER
1 SALARY (P7.2)
END-DEFINE
DECIDE FOR FIRST CONDITION
WHEN SALARY < 50000
SALARY := SALARY + 1800
WHEN SALARY < 70000
SALARY := SALARY + 1200
WHEN SALARY < 90000
SALARY := SALARY + 600
WHEN NONE
SALARY := SALARY + 300
END-DECIDE
END

28

Example Sources

	Debugger Tutorial
	Prerequisites
	Fundamentals of Debugging
	Session 1 - Analyzing a Natural Error
	Session 2 - Using a Breakpoint
	Session 3 - Using a Watchpoint
	Session 4 - Tracing the Logical Flow of Programs
	Session 5 - Using Statistics about the Program Execution
	Additional Hints for Using the Debugger
	Time Stamps of Objects
	Saving Breakpoints and Watchpoints
	Debug Main Menu for Maintenance Functions
	Help for Commands on Maintenance Screens
	Major Functions Available during Program Interruption
	Next Option for Additional Commands During Program Interruption
	Displaying Large Variables and Arrays
	Printing Debugger Statistics
	Using the Debugger in Batch Mode

	Example Sources
	
	Program DEBUG1P
	Subprogram DEBUG1N
	Program DEBUG2P
	Subprogram DEBUG2N
	Subprogram DEBUG3N
	Subprogram DEBUG4N

