Using Natural Statements and System Variables Using Natural Statements and System Variables

Using Natural Statements and System
Variables

This section contains special considerations concerning Natural data manipulation language (DML)
statements (that is, Natural native DML statements and Natural SQL DML statements), and Natural
system variables when used with DB2.

It mainly consists of information also contained in the Natural basic documentation set where each
Natural statement and variable is described in detail.

For an explanation of the symbols used in this section to describe the syntax of Natural statements, see
Syntax Symbols in the NaturaBatements documentation.

For information on logging SQL statements contained in a Natural program, rBBL@G Trace
Screen for SQL Statements in theDBLOG Utility documentation.

This section covers the following topics:
® DB2 Special Register Consideration
e Using Natural Native DML Statements
e Using Natural SQL Statements
e Using Natural System Variables
® Multiple Row Processing

e Error Handling

DB2 Special Register Consideration

NDB refreshes the following DB2 special registers automatically to the values, which applied to the least
previous executed transaction.

e CURRENT SQLID

e CURRENT SCHEMA

e CURRENT PATH

® CURRENT PACKAGE PATH

NDB refreshes the following DB2 special registers only automatically to the values, which applied to the
least previous executed transaction, if the paranfREERESH=0M set.

e CURRENT PACKAGESET

Using Natural Statements and System Variables Using Natural Native DML Statements

e CURRENT SERVER

Those special registers are refreshed regardless whether the previously executed transaction was rolled
back or was committed.

All other special registers are not implicitly manipulated by NDB.

Using Natural Native DML Statements

This section summarizes particular points you have to consider when using Natural data manipulation
language (DML) statements with DB2. Any Natural statement not mentioned in this section can be used
with DB2 without restriction.

Below is information on the following Natural DML statements:
e BACKOUT TRANSACTION

e DELETE

e END TRANSACTION

e FIND

e HISTOGRAM

e READ

e STORE

e UPDATE

BACKOUT TRANSACTION

The Natural native DML statemeBACKOUT TRANSACTIONNdoes all database modifications made
since the beginning of the last logical transaction. Logical transactions can start either after the beginning
of a session or after the BYNCPOINTEND TRANSACTIONor BACKOUT TRANSACTION

statement.

How the statement is translated and which command is actually issued depends on the TP-monitor
environment:

e |f this command is executed within a Natural stored procedure or Natural user-defined function
(UDF), Natural for DB2 executes the underlying rollback operation. This sets the caller into a
must-rollback state. If this command is executed within a Natural stored procedure or UDF for
Natural error processing (implidROLLBACK Natural for DB2 does not execute the underlying
rollback operation, thus allowing the caller to receive the original Natural error.

® Under CICS, th8ACKOUT TRANSACTIOKtatement is translated into BXEC CICS
ROLLBACKcommand. However, in pseudo-conversational mode, only changes made to the database
since the last terminal I/O are undone. This is due to CICS-specific transaction processing, see
Natural for DB2 under CICS

DELETE Using Natural Statements and System Variables

Note:
Be aware that with terminal input in database loops, Natural switches to conversational mode if no
file server is used.

® |n batch mode and under TSO, 88CKOUT TRANSACTIONtatement is translated into an SQL
ROLLBACKcommand.

Note:
If running in a DSNMTVO01 environment, tiBACKOUT TRANSACTIORKtatement is ignored if the
used PSB has been generated withouCM&@AT=YE®ption.

® Under IMS TM, theBACKOUT TRANSACTIONKtatement is translated into an IMS Rollback
(ROLB command. However, only changes made to the database since the last terminal 1/0 are
undone. This is due to IMS TM-specific transaction processind\aeeal for DB2 under IMSTM.

As all cursors are closed when a logical unit of work en8@KOUT TRANSACTIOKtatement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must is®&GKeOUT TRANSACTION
statement for the external program.

If a program tries to backout updates which have already been committed, for example by a terminal 1/O,
a corresponding Natural error message (NAT3711) is returned.

DELETE

The Natural native DML statemeDELETEIs used to delete a row from a table which has been read with
a precedind-IND, READ or SELECTstatement. It corresponds to the SQL stateD&METE WHERE
CURRENT OFcur sor - nane, which means that only the row which was read last can be deleted.

Example:

FIND EMPLOYEES WITH NAME = 'SMITH’
AND FIRST_NAME ='ROGER’
DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSORlas follows:

DECLARE CURSOR1 CURSOR FOR

SELECT FROM EMPLOYEES

WHERE NAME ="'SMITH’ AND FIRST_NAME = 'ROGER’ FOR UPDATE OF NAME
DELETE FROM EMPLOYEES

WHERE CURRENT OF CURSORL1

Both theSELECTand theDELETEstatement refer to the same cursor.

Natural translates a Natural native DNAELETEstatement into a Natural SQRELETEstatement in the
same way it translates a Natural native DMIND statement into a Natural SGBELECTstatement.

Using Natural Statements and System Variables END TRANSACTION

A row read with &IND SORTED BY cannot be deleted due to DB2 restrictions explained with the
FIND statement. A row read withREAD LOGICAL cannot be deleted either.

DELETE when Using the File Server

If a row rolled out to the file server is to be deleted, Natural rereads automatically the original row from
the database to compare it with its image stored in the file server. If the original row has not been
modified in the meantime, tHeELETEoperation is performed. With the next terminal I/O, the transaction
is terminated, and the row is deleted from the actual database.

If the DELETEoperates on a scrollable cursor, the row on the file server is markétl 8 Ehole and is
deleted from the base table.

However, if any modification is detected, the row will not be deleted and Natural issues the NAT3703
error message for non-scrollable cursors.

If the DELETEoperates on a scrollable cursor, Natural for DB2 simulates SQLCODE -224 THE RESULT
TABLE DOES NOT AGREE WITH THE BASE TABLE USING for DB2 compliance.

If the DELETEoperates on a scrollable cursor and the row has become a hole, Natural for DB2 simulates
SQLCODE -222 AN UPDATE OR DELETE OPERATION WAS ATTEMPTED AGAINST A HOLE.

Since aDELETEstatement requires that Natural rereads a single row, a unique index must be available for
the respective table. All columns which comprise the unique index must be part of the corresponding
Natural view.

END TRANSACTION

The Natural native DML statemeBND TRANSACTIONNdicates the end of a logical transaction and
releases all DB2 data locked during the transaction. All data modifications are committed and made
permanent.

How the statement is translated and which command is actually issued depends on the TP-monitor
environment:

e |f this command is executed from a Natural stored procedure or user defined function (UDF), Natural
for DB2 does not execute the underlying commit operation. This allows the stored procedure or UDF
to commit updates against non DB2 databases.

e Under CICS, th&€ND TRANSACTIONstatement is translated into BXEC CICS SYNCPOINT
command. If the file server is used, an implicit end-of-transaction is issued after each terminal I/O.
This is due to CICS-specific transaction processing in pseudo-conversational mddkysador
DB2 under CICS.

® |n batch mode and under TSO, 8D TRANSACTIONstatement is translated into an SQL
COMMIT WORKommand.

Note:
If running in a DSNMTVO01 environment tHeND TRANSACTIONstatement is ignored if the used
PSB has been generated without@MPAT=YE®ption.

FIND Using Natural Statements and System Variables

® Under IMS TM, theEND TRANSACTIONstatement is not translated into an IMS CHKP call, but is
ignored. Due to IMS TM-specific transaction processing Kaeral for DB2 under IMSTM), an
implicit end-of-transaction is issued after each terminal 1/0.

Except when used in combination with the S@ILTH HOLDclause (seSELECT - SQL in Using

Natural QL Statements), anEND TRANSACTIONstatement must not be placed within a database loop,
since all cursors are closed when a logical unit of work ends. Instead, it has to be placed outside such a
loop or after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its @@MMITcommand if the Natural program issues
database calls, too. The calling Natural program must issiENDBETRANSACTIONstatement on behalf
of the external program.

Note:
With DB2, theEND TRANSACTIONstatement cannot be used to store transaction data.

FIND
The Natural native DML statemeRtND corresponds to the Natural SQL statentBt ECT
Example:

Natural native DML statements:

FIND EMPLOYEES WITH NAME ='BLACKMORE’
AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent Natural SQL statement:

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES
WHERE NAME = 'BLACKMORFE’
AND AGE BETWEEN 20 AND 40

Natural internally translateskIND statement into an SQRELECTstatement as describedRnocessing

of QL Satements Issued by Natural in the sectionnternal Handling of Dynamic Statements. The
SELECTstatement is executed by @PEN CURSORtatement followed by BETCHcommand. The
FETCHcommand is executed repeatedly until either all records have been read or the program flow exits
the FIND processing loop. £LOSE CURSORommand ends tHeELECTprocessing.

TheWITH clause of &IND statement is converted to tWHERElause of th&ELECTstatement. The

basic search criterion for a DB2 table can be specified in the same way as for an Adabas file. This implies
that only database fields which are defined as descriptors can be used to construct basic search criteria and
that descriptors cannot be compared with other fields of the Natural view (that is, database fields) but only
with program variables or constants.

Note:
As each database field (column) of a DB2 table can be used for searching, any database field can be
defined as a descriptor in a Natural DDM.

Using Natural Statements and System Variables HISTOGRAM

The WHEREIlause of thé&IND statement is evaluated by Natuafier the rows have been selected via
the WITH clause. Within th&®VHERElause, non-descriptors can be used and database fields can be
compared with other database fields.

Note:
DB2 does not have sub-, super-, or phonetic descriptors.

A FIND NUMBERstatement is translated intcc& LECTstatement containing@OUNT(*) clause. The
number of rows found is returned in the Natural system varidblMBERas described in the Natural
System Variables documentation.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing. If the
FIND UNIQUE statement is referenced by dRDATEstatement, a non-cursor (SearchdBDATE

operation is generated instead of a cursor-oriented (PositioffATEoperation. Therefore, it can be

used if you want to update a DB2 primary key. It is, however, recommended to use the Natural SQL
SearchedJPDATEstatement to update a primary key.

In static mode, thEIND NUMBERandFIND UNIQUE statements are translated intSEBLECT
SINGLE statement as described in the sectismg Natural SQL Statements.

TheFIND FIRST statement cannot be used. eSSWORRIPHER COUPLERNdRETAIN clauses
cannot be used either.

TheSORTED BYclause of &IND statement is translated into the SQELECT ... ORDER BY
clause, which follows the search criterion. Because this produces a read-only result table, a row read with
aFIND statement that containsS®ORTED BYclause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation time. If this limit is exceeded,
a Natural error message is returned.

Notes:

1. If a processing limit is specified as a constant integer number, for ex&iile(5) , the
limitation value will be translated intoRETCH FIRST i nt eger ROWS ONLYclause in the
generated SQL string.

2. Natural for DB2 supports DB2 multiple row processing on behalf d¥itheTIFETCHclause of the
FIND statement.

FIND when using the File Server

As far as the file server is concerned, there are no programming restrictions with selection statements. It
is, however, recommended to make yourself familiar with its functionality considering performance and
file server space requirements.

HISTOGRAM

The Natural DML statememtlSTOGRAMeturns the number of rows in a table which have the same
value in a specific column. The number of rows is returned in the Natural system vaidMBERas
described in the Natur&ystem Variables documentation.

READ Using Natural Statements and System Variables

Example:

Natural native DML statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent Natural SQL statement:
SELECT COUNT(*), AGE FROM EMPLOYEES
WHERE AGE > -999

GROUP BY AGE
ORDER BY AGE

Natural translates thHdlISTOGRAMtatement into an SQEELECTstatement, which means that the
control flow is similar to the flow explained for tféND statement.

Note:
With Universal Database Server for z/OS Version 8, Natural for DB2 supports DB2 multiple row
processing on behalf of tiULTIFETCHclause of théllISTOGRAMtatement.

READ

The Natural native DML statemeREADcan also be used to access DB2 tables. Natural translates a
READstatement into an SQRELECTstatement.

READ PHYSICALandREAD LOGICALcan be usedREAD BY ISN , however, cannot be used, as
there is no DB2 equivalent to Adabas ISNs. PR&SSWORBNACIPHER clauses cannot be used either.

Since aBREAD LOGICALstatement is translated int@&LECT ... ORDER BY statement, which
produces a read-only table, a row read wiREsAD LOGICAL statement cannot be updated or deleted
(see Example 1). The start value can only be a constant or a program variable; any other field of the
Natural view (that is, any database field) cannot be used.

A READ PHYSICALstatement is translated int@&LECTstatement without a@RDER BYclause and
can therefore be updated or deleted (see Example 2).

Example 1:

Natural native DML statements:

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent Natural SQL statement:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
WHERE NAME >=""
ORDER BY NAME

Example 2:

The Natural native DML statements:

Using Natural Statements and System Variables STORE

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent Natural SQL statement:

SELECT NAME FROM PERSONNEL

If the READstatement contains\HER[Elause, this clause is evaluated by the Natural procafisothe
rows have been selected according to the descriptor value(s) specified in the search criterion.

Processing Limit

If a processing limit is specified as a constant integer number, for exagAE) (5) , in the SQL string
generated, the value that defines the limitation will be translated into the clause

FETCH FI RST integer ROAS ONLY

Cursors for DB2 Clauses

Natural for DB2 uses insensitive scrollable cursors to process the follREAstatement:

READ.. [IN] [LOG CAL] VARI ABLE/ DYNAM Coperand5 [SEQUENCE]

Natural for DB2 uses insensitive scrollable cursors to procesdEA®statement below. If relating to a
PositionedJPDATEor PositionedDELETEstatement, Natural for DB2 uses insensitive static cursors.

READ .. [IN] [PHYSI CAL] DESCENDI NG VARI ABLE/ DYNAM Coperand5 [SEQUENCE]

oper and5

Value A will be translated into BETCH FIRST/NEXT DB2 access, and vali®into aFETCH
LAST/PRIOR DB2 access.

Note:
Natural for DB2 supports DB2 multiple row processing on behalf oMe TIFETCHclause of the
READstatement.

READ when Using the File Server

As far as the file server is concerned there are no programming restrictions with selection statements. It is,
however, recommended to make yourself familiar with its functionality considering performance and file
server space requirements.

STORE

The Natural native DML stateme8TORHEs used to add a row to a DB2 table. Bl®OREstatement
corresponds to the SQL statemBMSERT.

UPDATE Using Natural Statements and System Variables

Example:

The Natural native DML statement:

STORE RECORD IN EMPLOYEES
WITH PERSONNEL_ID ='2112’
NAME = 'LIFESON’
FIRST_NAME ='ALEX

Equivalent Natural SQL statement:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
VALUES ('2112’, 'LIFESON’, 'ALEX’)

The PASSWORRIPHER andUSING/GIVING NUMBER clauses of th6 TOREstatement cannot be
used.

UPDATE

The Natural native DML statemedPDATEupdates a row in a DB2 table which has been read with a
preceding=IND, READ or SELECTstatement. It corresponds to the SQL statetd®RATE WHERE
CURRENT OFcur sor - nane (PositionedJPDATE, which means that only the row which was read
last can be updated.

UPDATE when Using the File Server

If a row rolled out to the file server is to be updated, Natural automatically rereads the original row from
the database to compare it with its image stored in the file server. If the original row has not been
modified in the meantime, théPDATEoperation is performed. With the next terminal 1/O, the transaction
is terminated and the row is definitely updated on the database.

If the UPDATEOoperates on a scrollable cursor, the row on the file server and the row in the base table are
updated. If the row no longer qualifies for the search criteria of the r&&ieBCTstatement after the
update, the row is marked @®DATEhole on the file server.

However, if any modification is detected, the row will not be updated and Natural issues the NAT3703
error message for non-scrollable cursors.

If the UPDATEOoperates on a scrollable cursor, Natural for DB2 simulates SQLCODE -224 THE RESULT
TABLE DOES NOT AGREE WITH THE BASE TABLE USING for DB2 compliance.

If the UPDATEoperates on a scrollable cursor and the row has become a hole, Natural for DB2 simulates
SQLCODE -222 AN UPDATE OR DELETE OPERATION WAS ATTEMPTED AGAINST A HOLE.

Since arlUPDATEstatement requires rereading a single row by Natural, a unique index must be available
for this table. All columns which comprise the unique index must be part of the corresponding Natural
view.

UPDATE with FIND/READ

As explained with the Natural native DML statemERtID, Natural translatesEND statement into an
SQL SELECTstatement. When a Natural program contains a MNDATEstatement, this statement is
translated into an SQUPDATEstatement and BOR UPDATE OFclause is added to tf8ELECT
statement.

Using Natural Statements and System Variables UPDATE

Example:

FIND EMPLOYEES WITH SALARY < 5000
ASSIGN SALARY = 6000
UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR

SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
FOR UPDATE OF SALARY

UPDATE EMPLOYEES SET SALARY = 6000
WHERE CURRENT OF CURSOR1

Both theSELECTand thdJPDATEstatement refer to the same cursor.

Due to DB2 logic, a column (field) can only be updated if it is contained iR@e UPDATE OFclause;
otherwise updating this column (field) is rejected. Natural includes automatically all columns (fields) into
theFOR UPDATE OFclause which have been modified anywhere in the Natural program or which are
input fields as part of a Natural map.

However, an DB2 column is not updated if the column (field) is marked as "not updateable" in the Natural
DDM. Such columns (fields) are removed from BE@R UPDATE OFlist without any warning or error
message. The columns (fields) contained inrRG&R UPDATE OFlist can be checked with théSTSQL

command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

Short-Name Range Type of Field

AA - N9 non-key field that can be updated

Aa - Nz non-key field that can be updated

OA - 09 primary key field

PA - P9 ascending key field that can be updated
QA -Q9 descending key field that can be updatedl
RA - X9 non-key field that cannot be updated

Ra - Xz non-key field that cannot be updated

YA -Y9 ascending key field that cannot be updated
ZA - Z9 descending key field that cannot be updated
1A-9Z non-key field that cannot be updated
la-9z non-key field that cannot be updated

Be aware that a primary key field is never part BR UPDATE OFlist. A primary key field can only
be updated by using a non-curtti?DATEoperation (see also Natural SQPDATEstatement in the
sectionUsing Natural SQL Statements).

10

UPDATE Using Natural Statements and System Variables

A row read with &IND statement that containsSORTED BYclause cannot be updated (due to DB2
limitations as explained with tHIND statement). A row read withREAD LOGICAL statement cannot
be updated either (as explained with RieADstatement).

If a column is to be updated which is redefined as an array, it is strongly recommended to update the
whole column and not individual occurrences; otherwise, results are not predictable. To do so, in reporting
mode you can use tl@BTAIN statement, which must be applied to all field occurrences in the column to

be updated. In structured mode, however, all these occurrences must be defined in the corresponding
Natural view.

The data locked by ddPDATEstatement are released wherEqND TRANSACTIONCOMMIT WORK
or BACKOUT TRANSACTIOKROLLBACK WORKstatement is executed by the program.

Note:

If a length indicator field oNULL indicator field is updated in a Natural program without updating the

field (column) it refers to, the update of the column is not generated for DB2 and thus no updating takes
place.

UPDATE with SELECT

In general, the Natural native DML statemefRDATEcan be used in both structured and reporting mode.
However, after SELECTstatement, only the syntax defined for Natural structured mode is allowed:

UPDATE [RECORD] [I N] [STATEMENT] [(r)]

This is due to the fact that in combination with 8teL. ECTstatement, the Natural native DNUPDATE
statement is only allowed in the special case of:

SELECT ...
INTO VIEW view-name

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL

01 PERS VIEW OF SQL-PERSONNEL
02 NAME
02 AGE

END-DEFINE

SELECT *
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE NAME LIKE 'S%’

IF NAME = '"'SMITH’
ADD 1 TO AGE

UPDATE

END-IF

END-SELECT

11

Using Natural Statements and System Variables Using Natural SQL Statements

In combination with the Natural native DMUPDATEstatement, any other form of tB&ELECT
statement is rejected and an error message is returned.

In all other respects, the Natural native DMPDATEstatement can be used with BEELECTstatement
in the same way as with the NatuFdND statement.

Using Natural SQL Statements

This section covers points you have to consider when using Natural SQL statements with DB2. These
DB2-specific points partly consist in syntax enhancements which belong to the Extended Set of Natural
SQL syntax. The Extended Set is provided in addition to the Common Set to support database-specific
features; se€ommon Set and Extended Set in the sectior8BQL Statements in the NaturaBatements
documentation.

For information on logging SQL statements contained in a Natural program, rBBL@G Trace
Screen for SQL Statements in theDBLOG Utility documentation.

Below is information on the following Natural SQL statements and on common syntactical items:
e Syntactical tems Common to Natural SQL Statements
e CALLDBPROC - SQL
e COMMIT - SQL
e DELETE - SQL
® [INSERT - SQL
® MERGE - SQL
® PROCESS SQL
® READ RESULT SET - SQL
e ROLLBACK - SQL
e SELECT - SQL

e UPDATE - SQL

Syntactical ltems Common to Natural SQL Statements

The following common syntactical items are either DB2-specific and do not conform to the standard SQL
syntax definitions (that is, to tl@ommon Sebf Natural SQL syntax) or impose restrictions when used
with DB2 (see als@QL Satements in the NaturaBtatements documentation).

Below is information on the following common syntactical items:

atom
comparison
factor
scalar-function

12

Syntactical ltems Common to Natural SQL Statements Using Natural Statements and System Variables

column-function
scalar-operator
special-register
units
case-expression

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant.
When running dynamically, however, the use of host variables is restricted by DB2. For further details,
refer to the relevant DB2 literature by IBM.

comparison

The comparison operators specific to DB2 belong to the NdEutahded Setror a description, refer to
Comparison Predicate in Search Condition, NaturalSQL Statements in the NaturaBatements
documentation.

factor

The following factors are specific to DB2 and belong to the Natural B@tnded Set

special-register

scalar-function (scalar-expression, . ..)
scalar-expression unit

case-expression

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to DB2 and belong to the Natur&x&pded Set

The scalar functions Natural for DB2 supports are listed below in alphabetical order:

13

Using Natural Statements and System Variables

A-H I-R S-Z
ABS IDENTITY_VAL_LOCAL|SCORE
ABSVAL IFNULL SECOND
ACOS INSERT SIGN
ADD_MONTHS INTEGER SIN
ASIN JULIAN_DAY SINH
ASCII_CHR LAST_DAY SMALLINT
ASCII_STR LCASE SOAPHTTPC
ATAN LEFT SOAPHTTPV
ATAN2 LENGTH SOAPHTTPNC
ATANH LN SOAPHTTPNV
BIGINT LOCATE SOUNDEX
BINARY LOCATE_IN_STRING |SPACE
BLOB LOG SQRT
CCSID_ENCODING |LOG10 STRIP
CEIL LOWER SUBSTR
CEILING LPAD SUBSTRING
CHAR LTRIM TAN
CHARACTER_LENGT|MAX TANH
CLOB MICROSECOND TIME
COALESCE MIDNIGHT_SECONDS | TIMESTAMP

COLLATION_KEY
COMPARE_DECFLOA
CONCAT
CONTAINS

cos

COSH

DATE

DAY
DAYOFMONTH
DAYOFWEEK
DAYOFWEEK_ISO
DAYOFYEAR

DAYS

DBCLOB

DEC

DECFLOAT
DECFLOAT_SORTKE
DECIMAL
DECRYPT_BIT
DECRYPT_CHAR
DECRYPT_DB
DEGREES
DIFFERENCE
DIGITS

DOUBLE
DOUBLE_PRECISION
DSN_XMLVALIDATE
EBCDIC_CHR
EBCDIC_STR
ENCRYPT_TDES
ENCRYPT

EXP

EXTRACT

FLOAT

FLOOR

GRAPHIC
GENERATE_UNIQUE
GETHINT
GETVARIABLE
HEX

HOUR

MIN
MINUTE

MOD

MONTH
MONTHS_BETWEEN
MQPUBLISH
MQPUBLISHXML
MQREAD
MQREADCLOB
MQREADXML
MQRECEIVE
MQRECEIVECLOB
MQRECEIVEXML
MQSEND
MQSENDXML
MQSENDXMLFILE
MQSENDXMLFILECLOR
MQSUBSCRIBE
MQUNSUBSCRIBE
MULTIPLY_ALT
NEXT_DAY
NORMALIZE_DECFLOA
NORMALIZE_STRING
NULLIF

OVERLAY

POSSTR

POWER

QUANTIZE
QUARTER

RADIANS
RAISE_ERROR
RAND

REAL

REPEAT

REPLACE

RID

RIGHT

ROUND
ROUND_TIMESTAMP
ROWID

RPAD

RTRIM

TIMESTAMPADD
TIMESTAMP_FORMA
TIMESTAMP_ISO
TO_CHAR
TO_DATE
TOTALORDER
TRANSLATE
TRUNC
TRUNC_TIMESTAMP
TRUNCATE
UCASE

UNICODE
UNICODE_STR
UNISTR

UPPER

VALUE
VARBINARY
VARCHAR
VARCHAR_FORMAT
VARGRAPHIC
WEEK

WEEK_ISO
XMLATTRIBUTES
XMLCONCAT
XMLCOMMENT
XMLDOCUMENT
XMLELEMENT
XMLFOREST
XMLNAMESPACES
XMLPARSE
XMLPI
XMLQUERY
XMLSERIALIZE
XMLTEXT

YEAR

14

Syntactical ltems Common to Natural SQL Statements

Syntactical ltems Common to Natural SQL Statements Using Natural Statements and System Variables

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar
expressions depends upon the scalar function. Multiple scalar expressions must be separated from one
another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE SUBSTR (NAME, 1, 3) = Fri’

column-function

A column function returns a single-value result for the argument it receives. The argument is a set of like
values, such as the values of a column. Column functions are also called aggregating functions.

The following column functions conform to standard SQL. They are not specific to DB2:

AVG
COUNT
MAX
MIN
SUM

The following column functions do not conform to standard SQL. They are specific to DB2 and belong to
the Natural SQIlExtended Set

COUNT_BIG
CORRELATION
COVARIANCE
COVARIANCE_SAMP
STDDEV
STDDEV_POP
STDDEV_SAMP
VAR

VAR_POP
VAR_SAMP
VARIANCE
VARIANCE_SAMP
XMLAGG

scalar-operator

The concatenation operat@ QNCA™r ||) does not conform to standard SQL. It is specific to DB2 and
belongs to the Natur&xtended Set

special-register

The following special registers do not conform to standard SQL. They are specific to DB2 and belong to
the Natural SQIExtended Set

15

Using Natural Statements and System Variables Syntactical ltems Common to Natural SQL Statements

CURRENT APPLICATION ENCODING SCHEME
CURRENT CLIENT_ACCNTG
CURRENT CLIENT_APPLNAME
CURRENT CLIENT_USERID
CURRENT CLIENT_WRKSTNNAME
CURRENT DATE

CURRENT_DATE

CURRENT DEBUG MODE
CURRENT DECFLOAT ROUNDING MODE
CURRENT DEGREE

CURRENT FUNCTION PATH
CURRENT_LC_CTYPE

CURRENT LC_CTYPE

CURRENT LOCALE LC_CTYPE
CURRENT OPTIMIZATION HINT
CURRENT PACKAGESET
CURRENT_PATH

CURRENT PRECISION

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT_MEMBER

CURRENT PACKAGE PATH
CURRENT REFRESH AGE
CURRENT ROUTINE VERSION
CURRENT SCHEMA

CURRENT RULES

CURRENT SQLID

CURRENT SERVER

CURRENT TIME

CURRENT_TIME

CURRENT TIMESTAMP

CURRENT TIMEZONE
CURRENT_TIMEZONE USER

A reference to a special register returns a scalar value.

Using the comman8ET CURRENT SQLID, the creator name of a table can be substituted by the
current SQLID. This enables you to access identical tables with the same table name but with different
creator names.

units
Units, also called "durations”, are specific to DB2 and belong to the NaturaE$®hded Set
The following units are supported:

DAY

DAYS

HOUR

HOURS
MICROSECOND
MICROSECONDS
MINUTE

16

CALLDBPROC - SQL Using Natural Statements and System Variables

MINUTES
MONTH
MONTHS
SECOND
SECONDS
YEAR
YEARS

case-expression

CASE { searched-when-clause ... } l ELSE { NUL L } END

simple-when-clause scalar expression

Case- expr essi ons do not conform to standard SQL and are therefore supported by the Natural SQL
Extended Sebnly.

Example:

DEFINE DATA LOCAL
01 #EMP
02 #EMPNO (A10)
02 #FIRSTNME (A15)
02 #MIDINIT (A5)
02 #LASTNAME (A15)
02 #EDLEVEL (A13)
02 #INCOME (P7)
END-DEFINE
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
(CASE WHEN EDLEVEL < 15 THEN 'SECONDARY’
WHEN EDLEVEL < 19 THEN 'COLLEGE’

ELSE 'POST GRADUATE’
END) AS EDUCATION, SALARY + COMM AS INCOME
INTO

#EMPNO, #FIRSTNME, #MIDINIT, #LASTNAME,
#EDLEVEL, #INCOME
FROM DSN8510-EMP
WHERE (CASE WHEN SALARY = 0 THEN NULL
ELSE SALARY / COMM
END) > 0.25
DISPLAY #EMP
END-SELECT
END

CALLDBPROC - SQL

The Natural SQL stateme®ALLDBPROG used to call DB2 stored procedures. It supports the result set
mechanism of DB2 and it enables you to call DB2 stored procedures. For further details and statement
syntax, se€ALLDBPROG the NaturaBtatements documentation.

The following topics are covered below:

e Static and Dynamic Execution
® Result Sets

® |ist of Parameter Data Types
o CALLMODE=NATURAL

17

Using Natural Statements and System Variables CALLDBPROC - SQL

e Example of CALLDBPROC/READ RESULT SET
Static and Dynamic Execution

If the CALLDBPROGtatement is executed dynamically, all parameters and constants are mapped to the
variables of the following DB2 SQL statement:

CALL : hv USING DESCRIPTOR :sql da statenent

: hv denotes a host variable containing the name of the procedure to be calledjhda is a
dynamically generated sqlda describing the parameters to be passed to the stored procedure.

If the CALLDBPROGtatement is executed statically, the constants df&id DBPROGtatement are
also generated as constants in the generated assembler SQL source for the DB2 precompiler.

Result Sets

If the SQLCODE created by tH@ALL statement indicates that there are result sets (SQLC&bB& and

+464), Natural for DB2 runtime execute®&ESCRIBE PROCEDURE hv INTO : sql da statement

in order to retrieve the result set locator values of the result sets created by the invoked stored procedure.
These values are put into tRESULT SETSvariables specified in theALLDBPROGtatement. Each

RESULT SETSvariable specified in EALLDBPROGr which no result set locator value is present is

reset to zero. The result set locator values can be used to read the result sets by meRE#Df the

RESULT SET statement as long as the database transaction which created the result set has not yet issued
aCOMMITor ROLLBACK

If the result set was created by a cuMbmTH HOLD, the result set locator value remains valid after a
COMM IToperation.

Unlike other Natural SQL statemen@ALLDBPROE@nables you (optionally!) to specify &QLCODE
variable following theGIVING keyword which will contain th€QLCODBf the underlyingCALL
statement. IGIVING is specified, it is up to the Natural program to react orst@QeCODKerror
message NAT3700 is not issued by the runtime).

List of Parameter Data Types

Below are the parameter data types supported b Ahé DBPROGtatement:

18

CALLDBPROC - SQL Using Natural Statements and System Variables

Natural DB2 Data Type

Format/Length

An CHAR()

B2 SMALLINT

B4 INT

Bn CHAR()

(n=not equal 2

or 4)

F4 REAL

F8 DOUBLE PRECISION

12 SMALLINT

14 INT

Nnhn.m NUMERICHNn+m m)

Pnn.m NUMERICHNn+m n)

Gn GRAPHIC(n)

An/1:m VARCHAR(* m)

D DATE

T TIME
Note:
The Natural format T has a wider data range than the equivalenT DE2data type
Compared with DBZIME, in addition, the Natural T variable has a date fraction
(year, month, day) and the tenths of a second. As a result, when converting a Natural
T variable into a DBZIME value, Natural for DB2 cuts off the date fraction and {he
tenths of a second part. When converting OBE into Natural T format, the date
fraction is reset t0000-01-02 and the tenths of a second part is resétito
Natural.

CALLMODE=NATURAL

This parameter is used to invoke Natural stored procedures definddARMMMETER STYLE
GENERAL/WITH NULL

If the CALLMODE=NATURAlarameter is specified, an additional parameter describing the parameters
passed to the Natural stored procedure is passed from the client, that is, caller, to the server, that is, the
Natural for DB2 server stub. The parameter is the Stored Procedure Control Block (STCB; SEERIs0
Layout in PARAMETER STYLE in the sectiorProcessing Natural Stored Procedures and UDFs) and has

the formatvARCHARrom the viewpoint of DB2. Therefore, every Natural stored procedure defined with
PARAMETER STYLE GENERAL/WITH NULIhas to be defined with tHteREATE PROCEDURE
statement by using thisSARCHARarameter as the first in IBARMLIST row.

From the viewpoint of the caller, that is, the Natural program, and from the viewpoint of the stored
procedure, that is, Natural subprogram, the STCB is invisible. It is passed as first parameter by the Natural
for DB2 runtime and it is used as on the server side to build the copy of the passed data in the Natural

19

Using Natural Statements and System Variables CALLDBPROC - SQL

thread and the correspondi@@LLNATstatement. Additionally, this parameter serves as a container for
error information created during execution of the Natural stored procedure by the Natural runtime. It also
contains information on the library where you are logged on and the Natural subprogram to be invoked.

Example of CALLDBPROC/READ RESULT SET

Below is a sample program for issui@LLDBPRO@NAREAD RESULT SET statements:

DEFINE DATA LOCAL
1ALPHA (A8)
1 NUMERIC (N7.3)
1PACKED (P9.4)
1VCHAR (A20/15) INIT <DB25SGCP’>
1INTEGER2 (12)
1INTEGER4 (14)
1BINARY2 (B2)
1BINARY4 (B4)
1BINARY12 (B12)
1FLOAT4 (F4)
1FLOATS (F8)
1 INDEX-ARRAY (12/1:11)
1 INDEX-ARRAY1(I2)
1 INDEX-ARRAY2(I2)
1 INDEX-ARRAY3(I2)
1 INDEX-ARRAY4(I2)
1 INDEX-ARRAY5(12)
1 INDEX-ARRAY6(I2)
1 INDEX-ARRAY7(I2)
1 INDEX-ARRAY8(I2)
1 INDEX-ARRAY9(I2)
1 INDEX-ARRAY10(12)
1 INDEX-ARRAY11(12)
1#RESP (14)
1 #RS1 (14) INIT <99>
1 #RS2 (14) INIT <99>
LOCAL
1 V1 VIEW OF SYSIBM-SYSTABLES
2 NAME
1 V2 VIEW OF SYSIBM-SYSPROCEDURES
2 PROCEDURE
2 RESULT_SETS
1V (12) INIT <99>
END-DEFINE
CALLDBPROC 'DAEFDB25.SYSPROC.SNGSTPC’ DSN8510-EMP
ALPHA INDICATOR :INDEX-ARRAY1
NUMERIC INDICATOR :INDEX-ARRAY?2
PACKED INDICATOR :INDEX-ARRAY3
VCHAR(*) INDICATOR :INDEX-ARRAY4
INTEGER2 INDICATOR :INDEX-ARRAY5
INTEGER4 INDICATOR :INDEX-ARRAY6
BINARY2 INDICATOR :INDEX-ARRAY7
BINARY4 INDICATOR :INDEX-ARRAYS
BINARY12 INDICATOR :INDEX-ARRAY9
FLOAT4 INDICATOR :INDEX-ARRAY10
FLOAT8 INDICATOR :INDEX-ARRAY11
RESULT SETS #RS1 #RS2
CALLMODE=NATURAL
READ (10) RESULT SET #RS2 INTO VIEW V2 FROM SYSIBM-SYSTABLES
WRITE 'PROC F RS PROCEDURE 50T RESULT_SETS
END-RESULT
END

20

COMMIT - SQL Using Natural Statements and System Variables

COMMIT - SQL

The Natural SQICOMMITstatement indicates the end of a logical transaction and releases all DB2 data
locked during the transaction. All data modifications are made permanent.

COMMITis a synonym for the Natural native DML statemeND TRANSACTIONas described in the
sectionUsing Natural Native DML Statements.

No transaction data can be provided with@@MMITstatement.

If this command is executed from a Natural stored procedure or user-defined function (UDF), Natural for
DB2 does not execute the underlying commit operation. This allows the Natural stored procedure or UDF
to commit updates against non DB2 databases.

Under CICS, th€ OMMITstatement is translated into BKEC CICS SYNCPOINT command. If the
file server is used, an implicit end-of-transaction is issued after each terminal I/O. This is due to
CICS-specific transaction processing in pseudo-conversational mod«gtaest for DB2 under CICS.

Under IMS TM, theCOMM ITstatement is not translated into an IBBECKPOINTcommand, but is
ignored. An implicit end-of-transaction is issued after each terminal 1/O. This is due to IMS TM-specific
transaction processing, siatural for DB2 under IMSTM.

Unless when used in combination with iM¢TH HOLDclause (se8ELECT - Cursor-Oriented in the
NaturalStatements documentation), EOMMITstatement must not be placed within a database loop, since
all cursors are closed when a logical unit of work ends. Instead, it has to be placed outside such a loop or
after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its @@MMITcommand if the Natural program issues
database calls, too. The calling Natural program must issugQMMITstatement on behalf of the
external program.

For further details and statement syntax,G&MMIT - SQL in the NaturaBatements documentation.

DELETE - SQL

Both the cursor-oriented &ositionedDELETE and the non-cursor &earchedELETEstatements are
supported as part of Natural SQL; the functionality of the PositiDiecdE TESstatement corresponds to
that of the Natural DMIDELETEstatement. For further details and statement syntaXESEETEIn the
NaturalStatements documentation.

With DB2, a table name in tHeEROMlause of &earchedELETEstatement can be assigned a
correl ati on- nane. This does not correspond to the standard SQL syntax definition and therefore
belongs to the Natural S(Extended Set

The SearcheDELETEstatement must be used, for example, to delete a row from a self-referencing table,
since with self-referencing tables a PositioD#tl ETEis not allowed by DB2.

For further details and statement syntax,BEEETE - QL in the NaturaBatements documentation.

21

Using Natural Statements and System Variables INSERT - SQL

INSERT - SQL
The Natural SQUNSERT statement is used to add one or more new rows to a table.

Since thdNSERT statement can contain a select expression, all the DB2-spmxifimon syntactical
itemsdescribed above apply.

For further details and statement syntax,ISSERT - SQL in the NaturaBtatements documentation.

MERGE - SQL

The MERGEtatement is a hybrid SQL statement consisting &/RRATEcomponent and dNSERT
component. It allows you either to insert a row into a DB2 table or to update a row of a DB2 table if the
input data matches an already existing row of a table.

The MERGEtatement belongs to the SQL Extended Set.

For further details and statement syntax, M&&RGE - QL in the NaturaBatements documentation.

PROCESS SQL

The NaturaPROCESS SQlstatement is used to issue SQL statements to the underlying database. The
statements are specified isat enment - st ri ng, which can also include constants and parameters.
The set of statements which can be issued is also referred to as Flexible SQL and comprises those
statements which can be issued with the SQL statemECUTE

In addition, Flexible SQL includes the following DB2-specific statements:

CALL

CONNECT

GET DIAGNOSTICS

SET APPLICATION ENCODING SCHEME
SET CONNECTION

SET CURRENT DEGREE

SET CURRENT LC_CTYPE

SET CURRENT OPTIMIZATION HINT

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
SET CURRENT PACKAGE PATH

SET CURRENT PACKAGESET

SET CURRENT PATH

SET CURRENT PRECISION

SET CURRENT REFRESH AGE

SET CURRENT RULES

SET CURRENT SCHEMA

SET CURRENT SQLID

SET ENCRYPTION PASSWORD

SET host -vari abl e=speci al -regi ster
RELEASE

Notes:

22

READ RESULT SET - SQL Using Natural Statements and System Variables

1. SQL statements issued BROCESS SQlare skipped during static generation. Thus they are always
executed dynamically vilDBIOMO

2. To avoid transaction synchronization problems between the Natural environment and DB2, the
COMMITandROLLBACKstatements must not be used witRROCESS SQL

For further details and statement syntax,RROCESS SQlin the NaturaBatements documentation.

READ RESULT SET - SQL

The Natural SQIREAD RESULT SET statement reads a result set created by a Natural stored procedure
that was invoked by @ALLDBPROGtatement. For details on how to specify the scroll direction by using
the variablescroll-hv, see the&SELECTstatement.

For further details and statement syntax,READ RESULT SETin the NaturaBatements
documentation.

ROLLBACK - SQL

The Natural SQIROLLBACKstatement undoes all database modifications made since the beginning of

the last logical transaction. Logical transactions can start either after the beginning of a session or after the
last COMMITEND TRANSACTIONr ROLLBACKBACKOUT TRANSACTIOKtatement. All records

held during the transaction are released.

For further details and statement syntax,R&&LBACK -SQL in the NaturaBatements documentation.

ROLLBACKHSs a synonym for the Natural statemBACKOUT TRANSACTIOMS described in the
sectionUsing Natural Native DML Statements.

If this command is executed from a Natural stored procedure or user-defined function (UDF), Natural for
DB2 executes the underlying rollback operation. This sets the caller into a must-rollback state. If this
command is executed by Natural error processing (impiGiLtLBACK Natural for DB2 does not

execute the underlying rollback operation, thus allowing the caller to receive the original Natural error.

Under CICS, thROLLBACKstatement is translated into BXKEC CICS ROLLBACK command.

However, if the file server is used, only changes made to the database since the last terminal I/O are
undone. This is due to CICS-specific transaction processing in pseudo-conversational mdateralee

for DB2 under CICS

Under IMS TM, theROLLBACKstatement is translated into an IMS RollbaRIO{B command.
However, only changes made to the database since the last terminal I/O are undone. This is due to IMS
TM-specific transaction processing, $¢sgural for DB2 under IMSTM.

As all cursors are closed when a logical unit of work en&8)BLBACKstatement must not be placed
within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its B@hLBACKcommand if the Natural program
issues database calls, too. The calling Natural program must issR@th®&ACKstatement on behalf of
the external program.

23

Using Natural Statements and System Variables SELECT - SQL

SELECT - SQL

The Natural SQISELECTstatement supports both the cursor-oriented selection, which is used to retrieve
an arbitrary number of rows and the non-cursor selection (Sing&bECT), which retrieves at most
one single row.

For full details and statement syntax, S&& ECT -SQL in the NaturaBatements documentation.

SELECT - Cursor-Oriented

Like the Natural native DMIFIND statement, the cursor-orient8&LECTstatement is used to select a

set of rows (records) from one or more DB2 tables, based on a search criterion. Since a database loop is
initiated, the loop must be closed biz@OPstatement (in reporting mode) or by BND-SELECT

statement (in structured mode). With this construction, Natural uses the same loop processing as with the
FIND statement. In addition, no cursor management is required from the application program; it is
automatically handled by Natural.

For further details and syntax, s&& ECT - SQL, Syntax 1 - Cursor-Oriented Selection in the Natural
Satements documentation.

SELECT SINGLE - Non-Cursor-Oriented

The Natural SQL statemeSELECT SINGLE provides the functionality of a non-cursor selection
(SingletonSELECT); that is, a select expression that retrieves at most one row without using a cursor.

Since DB2 supports the Singlet8ELECTcommand in static SQL only, in dynamic mode, the Natural
SELECT SINGLE statement is executed in the same way as a setdev#CTstatement, which results

in a cursor operation. However, Natural checks the number of rows returned by DB2. If more than one
row is selected, a corresponding error message is returned.

For further details and syntax, s&& ECT - SQL, Syntax 2 - Non-Cursor Selection in the Natural
Satements documentation.

UPDATE - SQL

Both the cursor-oriented or Positiond@DATEand the non-cursor or SearcRdéeDATEstatements are
supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With DB2, the name of a table or Natural view to be referenced by a Se&leB&dlEcan be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore belongs
to the NaturaExtended Set

The SearchetdPDATEstatement must be used, for example, to update a primary key field, since DB2
does not allow updating of columns of a primary key by using a PositidRBA T Estatement.

Note:

If you use theSET * notation, all fields of the referenced Natural view are added 6@ UPDATE
OFandSET lists. Therefore, ensure that your view contains only fields which can be updated; otherwise,
a negativéeSQLCODEs returned by DB2.

24

Using Natural System Variables Using Natural Statements and System Variables

For further details and syntax, dEDATE - SQL in the NaturaBatements documentation.

Using Natural System Variables

When used with DB2, there are restrictions and/or special considerations concerning the following Natural
system variables:

® *ISN

o *NUMBER

o *ROWCOUNT
For information on restrictions and/or special considerations, refer to the deatatase-Specific
Information in the corresponding system variable documentation.
Multiple Row Processing
This section describes the multiple row functionality for DB2 databases.
You have to operate against DB2 for z/OS Version 8 or higher to use these features.
Natural for DB2 provides two kinds of multiple row processing features:

e Standard multiple row processing

e This feature does not influence the program logic. Although the Natural native DML and Natural
SQL DML provide clauses for specification of the multi-fetch-factor, the Natural program operates
with one database row and from the program point of view only one row is received from or is send
to the database.

e Advanced multiple row processing

This feature is only available with Natural SQL DML and has a lot of impact on the program logic,
as it allows the retrieval of multiple rows from the database into the program storage by a single
Natural SQLSELECTstatement into a set of arrays. Additionally it is possible to insert multiple
rows into the database from a set of arrays by the Natural[SRIERT statement.

Below is information on the following topics:
® Purpose of Multi-Fetch Feature (Standard)
e Considerations for Multi-Fetch Usage (Standard)
e Size of the Multi-Fetch Buffer (Standard)
e Support of TEST DBLOG Q (Standard)

e Multiple Rows to Program (Advanced)

25

Using Natural Statements and System Variables Purpose of Multi-Fetch Feature (Standard)

e Multiple Rows from Program (Advanced)

Purpose of Multi-Fetch Feature (Standard)

In standard mode, Natural does not read multiple records with a single database call; it always operates in
a one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large
number of database records are being processed.

To improve the performance of those programs, you can use the Multi-Fetch Clause in the Natural DML
FIND, READor HISTOGRAMtatements. This allows you to specify the number of records read per
database access.

FI ND MULTI - FETCH | ON
READ OFF
H STOGRAM OF multi-fetch-factor

Where therul ti - f et ch-fact or is either a constant or a variable with a format integer (14).

To improve the performance of the Natural SRELECTstatements, you can use iWéTH ROWSET
POSITIONING FOR Clause to specify a multi-fetch-factor.

W TH ROWSET POSI TI ONI NG FOR { [:] row_hv } ROWG l
integer

At statement execution time, the runtime checkaifibt i - f et ch- f act or greater than 1 is supplied
for the database statement.

Ifthemul ti-fetch-factor is

less than or equal to the database call is continued in the usual one-record-per-access mode.

greater than 1 the database call is prepared dynamically to read multiple records (e.g. 10){with a
single database access into an auxiliary buffer (multi-fetch buffer). If succegsful,
the first record is transferred into the underlying data view. Upon the execution of
the next loop, the data view is filled directly from the multi-fetch buffer, withput
database access. After all records are fetched from the multi-fetch buffer, the next
loop results in the next record set being read from the database. If the datapase
loop is terminated (either by end-of-recoBSCAPESTOR etc.), the content g
the multi-fetch buffer is released.

—

Considerations for Multi-Fetch Usage (Standard)

® The program does not receive "fresh” records from the database for every loop, but operates with
images retrieved at the most recent multi-fetch access.

e |f a dynamic direction chang&\ DYNAMIC...SEQUENCE) is coded for a Natural DMREADor
HISTOGRAMtatement, the multi-fetch feature is not possible and leads to a corresponding syntax
error at compilation.

26

Size of the Multi-Fetch Buffer (Standard) Using Natural Statements and System Variables

® The size occupied by a database loop in the multi-fetch buffer is determined according to the rule:

header + sgldaheader + columns*(sqglvar+lise) + mf*(udind + sum(collen) + sum(LF(columns) + sum(nullind))

32 + 16 + columns*(44+12) + mf*(1 + sum(collen) + sum(LF(column)) + sum(2))

where
® header denotes the length of the header of a entry in the DB2 multifetch buffer, that is, 32
e sqldaheader denotes the length of the header of a sglda, that is, 16
e columns denotes the number of receiving fields of a SQL request
e sqlvar denotes the length of a sqlvar, thad4s,
® lise denotes the length of a Natrual for DB2 specific sqlvar extension
o mf denotes the multifetch factor, that is, the number of rows fetched by one database call
e collen denotes the length of the receiving field

e | F(column) denotes the size of the length field of the receiving field, that is, O for fixed length fields,
2 for variable length fields, and 4 for large object columns (LOBS)

e nullind denotes the length of a null indicator, that is, 2

Size of the Multi-Fetch Buffer (Standard)

The multifetch buffer is released at terminal i/o in pseudo conversional mode. Therefore there is no size
limitation for the DB2 multifetch buffe{B2SIZE6). The buffer will be automatical enlarged if
necessary.

Support of TEST DBLOG Q (Standard)

When multi-fetch is used, real database calls are only submitted to get a new set of records.

The TEST DBLOG Qfacility is also called from the Natural for DB2 multi fetch handler for every rowset
fetch from DB2 and for every record moved from the multi fetch buffer to the program storage. The
events are distinguished by the liteélULTI FETCH ... and<BUFF FETCH ...

Example: TEST DBLOG List Break-Out

27

Using Natural Statements and System Variables

Multiple Rows to Program (Advanced)

Command ===>

10:51:57 wikk NATURAL Test Utilities ***** 2006-01-27
User HGK - DBLOG Trace - Library NDB42
M No R SQ Statenent (truncated) CU SN SREF M Typ SQLC/W Program Line LV
_ 1 SELECT EMPNO,FIRSTNME,LASTNAM 01 01 0260 D DB2 MF000001 0260 01
_ 2 MULTIFETCH NEX 01 01 0260 D DB2 MF000001 0260 01
_ 3 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 4 <BUFF FETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 5 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 6 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 7 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 8 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 9 <BUFFFETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 10 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 11 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 12 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 13 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 14 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 15 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
_ 16 <BUFFFETCH NEX 00 00 0260 D DB2 MFO000001 0260 01
17 <BUFF FETCH NEX 00 00 0260 D DB2 MFO000001 0260 01

where colummNo represents the following:

1 is a open cursor DB2 call.

columnSQL Statemen).

2 is a "real" database call that reads a set of records via multi-fetckl(Hee FETCH NEX in

records from the

3-17|are "no real" database calls, but only entries that document that the program has received

multi-fetch buffer (see&BUFF FETCH NEXin columnSQL Statemen).

Multiple Rows to Program (Advanced)

The feature allows programs to retrieve multiple rows from DB2 into arrays.

This feature is only available with tiIBELECTstatement.

Prerequisites

DB2ARRY=0ON

INTO Clause

WITH ROWSET POSITIONING Clause
ROWS_RETURNED Clause
Restrictions and Constraints

Prerequisites

¥ To use this feature

File Server Usage and Positioned UPDATE and DELETE

hese

1. Set the compiler optidDB2ARRY=0Kby using arOPTIONSstatement or thEOMPOP&ommand

or theCMP(rofile parameter).

28

Multiple Rows to Program (Advanced) Using Natural Statements and System Variables

2. Specify a list of receiving arrays in tieTO Clause of th&&ELECBtatement.

3. Specify the number of rows to be retrieved from the database by aFiTgl#operation via the
WITH ROWSET POSITIONINGClause.

4. Specify a variable receiving the number of rows retrieved from the database via the
ROWS_RETURNEIause.

DB2ARRY=0ON

DB2ARRY=0M necessary to allow the specification of arrays inXi€® Clause DB2ARRY=0IdIso
prevents the usage of arrays as sending or receiving fields foCBBRVARCHAR
/GRAPHIGVARGRAPHIGolumns. Instead Natural scalar fields with the appropriate length have to be
used.

INTO Clause

Each array specified in tHBTO Clause has to be contiguous (one occurrence following immediately by
another, this is expected by DB2) and has to be one-dimensional. The arrays are filled from the first
occurrence (low) to last occurrence (high). The first array occurrences compose the first row of the
received rowset, the second array occurrences compose the second row of the received rowset. The array
occurrences of the nth index compose the nth row returned from DB2LINBXWCATOR or

INDICATOR Clause is used in tHBITO Clause for arrays, the specified length indicators or null

indicators have also to be arrays. The number of occurrent&d@ICATOR andINDICATOR arrays

have to equal or greater than the number of occurrences of the master array.

WITH ROWSET POSITIONING Clause

TheWITH_ROWSET_POSITIONIN®lause is used to specify the number of rows to be retrieved from

the database by one processing cycle. The specified number has to be equal or smaller than the minimum
of occurrences of all specified arrays. If a variable, not a constant, is specified the actual content of the
variable will be used during each processing cycle. The specified number has to bédgedtemaller
than32768 .

ROWS_RETURNED Clause

TheROWS_ RETURNEDause is used to specify a variable, which will contain the number of rows read
from the database during the actual fetch operation. The format of the variable has to be 14.

Restrictions and Constraints

Natural Views: It is not possible to use Natural arrays of views itNf© clause, that is, the use of
keywordVIEW s not possible.

File Server Usage and Positioned UPDATE and DELETE

The purpose of this feature is to reduce the number of database and database interface calls for bulk batch
processing. Therefore it is not recommended to use this kind of programming in online CICS or IMS
environments, when terminal 1/0s occur within open cursor loops; that is, the file server is used. A fortiori

it is not possible to perform a PositiongBDATEor PositionedELETEstatement after terminal 1/0.

29

Using Natural Statements and System Variables Multiple Rows from Program (Advanced)

Example:

DEFINE DATA LOCAL

01 NAME (A20/1:10)

01 ADDRESS (A100/1:10)
01 DATEOFBIRTH (A10/1:10)
01 SALARY (P4.2/1:10)
01 L$ADDRESS (12/1:10)

01 ROWS (14)
01 NUMBER (14)
01 INDEX (14)
END-DEFINE

OPTIONS DB2ARRY=ON
ASSIGN NUMBER := 10
SEL.
SELECT NAME, ADDRESS , DATEOFBIRTH, SALARY
INTO :NAME(*), [* <-- ARRAY
:ADDRESS(*) LINDICATOR :L$ADDRESS(*), /* <-- ARRAY
:DATEOFBIRTH(1:10), /* <-- ARRAY
:SALARY(01:10) /* <-- ARRAY
FROM NAT-DEMO
WHERE NAME >’
WITH ROWSET POSITIONING FOR :NUMBER ROWS /* <-- ROWS REQ
ROWS_RETURNED :ROWS /* <-- ROWS RET
IF ROWS >0
FOR INDEX =1 TO ROWS STEP 1
DISPLAY
INDEX (EM=99) *COUNTER (SEL.) (EM=99) ROWS (EM=99)
NAME(INDEX)
ADDRESS(INDEX) (AL=20)
DATEOFBIRTH(INDEX)
SALARY/(INDEX)
END-FOR
END-IF
END-SELECT
END

Multiple Rows from Program (Advanced)

The feature allows programs to insert multiple rows into a DB2 table from arrays.
This feature is only available with the Natural SRUISERT statement.
Prerequisites

¥ To use this feature

1. Set the compiler optidDB2ARRY=0Kby using arOPTIONSstatement or thEOMPOP&ommand
or theCMPQrofile parameter).

2. Specify a list of sending arrays in MALUESCIlause of the Natural SQNSERT statement.

3. Specify the number of rows to be inserted into the database by a single NatuhsISERT
statement via thEOR n ROWSClause.

30

Multiple Rows from Program (Advanced) Using Natural Statements and System Variables

DB2ARRY=0ON

DB2ARRY=0I& necessary to allow the specification of arrays intheUESClause DB2ARRY=0N

also prevents the usage of arrays as sending or receiving fields fa IB¥SRVARCHAR
IGRAPHIGVARGRAPHI@olumns. Instead Natural scalar fields with the appropriate length have to be
used.

VALUES Clause

Each array specified in thAéALUESCIause has to be contiguous (one occurrence following immediately

by another, this is expected by DB2) and has to be one-dimensional. The arrays are read from the first
occurrence (low) to last occurrence (high). The first array occurrences compose the first row inserted into
the database, the second array occurrences compose the second row inserted into the database. The array
occurrences of the nth index compose the nth row inserted into the databa$&Df@GATOR or

INDICATOR Clauses are used in tidLUESClause for arrays, the specified length indicators or null
indicators have also to be arrays. The numbé&tNDICATOR andINDICATOR array occurrences has

to be equal or greater than the number of occurrences of the master array.

FOR n ROWS Clause

The FOR n ROWSClause is used to specify how many rows are to be inserted into the database table by
onelNSERT statement. The specified number has to be equal or smaller than the minimum of
occurrences of all specified arrays in YWeL UESClause. The specified number has to be greateGthan

and smaller thaB2768.

Restrictions and Constraints
e Natural Views

It is not possible to use Natural arrays of views intAe UESclause, that is, the use of keyword
VIEWIs not possible.

® Static Execution

Due to DB2 restrictions it is not possible to execute multiple row inserts in static mode. Therefore
multiple row inserts are not generated static and are always dynamically prepared and executed by
Natural for DB2.

It is not possible to use Natural arrays of views inliEO clause, that is, the use of keywMHEW
is not possible.

Example:

DEFINE DATA LOCAL
01 NAME (A20/1:10) INIT <’ZILLERY',ZILLER2';ZILLER3'ZILLER4’
JZILLERS'ZILLERG''ZILLER7’,’ZILLERS’
JZILLER9'ZILLERA™>
01 ADDRESS (A100/1:10) INIT <ANGEL STREET 1'ANGEL STREET 2’
,/ANGEL STREET 3'’ANGEL STREET 4’
,/ANGEL STREET 5',ANGEL STREET €’
/ANGEL STREET 7'ANGEL STREET &
,/ANGEL STREET 9'’ANGEL STREET 10>
01 DATENATD (D/1:10) INIT <D’1954-03-27',D0'1954-03-27’,D'1954-03-27'
,D'1954-03-27,0'1954-03-27',0'1954-03-27’
,D'1954-03-27,0'1954-03-27',0'1954-03-27

31

Using Natural Statements and System Variables

,D'1954-03-27">
01 SALARY (P4.2/1:10) INIT <1000,2000,3000,4000,5000
,6000,7000,8000,9000,9999>

01 SALARY_N (N4.2/1:10) INIT <1000,2000,3000,4000,5000

,6000,7000,8000,9000,9999>

01 LSADDRESS (12/1:10) INIT <14,14,14,14,14,14,14,14,14,15>
01 NSADDRESS (12/1:10) INIT <00,00,00,00,00,00,00,00,00,00>

01ROWS (l4)

01 INDEX (I4)

01 V1 VIEW OF NAT-DEMO_ID
02 NAME

02 ADDRESS (EM=X(20))
02 DATEOFBIRTH

02 SALARY

01 ROWCOUNT (14)
END-DEFINE

OPTIONS DB2ARRY=0ON [* <-- ENABLE DB2 ARRAY

ROWCOUNT :=10
INSERT INTO NAT-DEMO_ID
(NAME,ADDRESS,DATEOFBIRTH,SALARY)

VALUES
(:NAME(*), [* <-- ARRAY
:ADDRESS(*) [* <-- ARRAY

INDICATOR :NS§ADDRESS(*) /* <-- ARRAY

LINDICATOR :LSADDRESS(*), /* <-- ARRAY DB2 VCHAR
:DATENATD(1:10), /* <-- ARRAY NATURAL DATES
:SALARY_N(01:10) /* <-- ARRAY NATURAL NUMERIC

)
FOR :ROWCOUNT ROWS

SELECT * INTO VIEW V1 FROM NAT-DEMO_ID WHERE NAME > 'Z’

DISPLAY V1 [* <-- VERIFY INSERT
END-SELECT

BACKOUT

END

Error Handling

In contrast to the normal Natural error handling, where eith@MNuERRORstatement is used to intercept
execution time errors or standard error message processing is performed and program execution is
terminated, the enhanced error handling of Natural for DB2 provides an application controlled reaction to

the encountered SQL error.

Error Handling

Two Natural subprogramslDBERRandNDBNOERRire provided to disable the usual Natural error

handling and to check the encountered SQL error for the returned SQL code. This functionality replaces

the E function of theDB2SERMnterface, which is still provided but no longer documented.

For further information on Natural subprograms provided for DB2, see the skt@dace Subprograms.

Example:
DEFINE DATA LOCAL
01 #SQLCODE (14)
01 #SQLSTATE (A5)
01 #SQLCA (A136)
01 #DBMS (B1)
END-DEFINE
*
* Ignore error from next statement

*

32

Error Handling Using Natural Statements and System Variables

CALLNAT 'NDBNOERR’

*

* This SQL statement produces an SQL error

*

INSERT INTO SYSIBH-SYSTABLES (CREATOR, NAME, COLCOUNT)
VALUES ('SAG’, 'MYTABLE', '3’)

*

* Investigate error

*

CALLNAT 'NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBMS
*
IF #DBMS NE 2 /* not DB2
MOVE 3700 TO *ERROR-NR
END-IF
*
DECIDE ON FIRST VALUE OF #SQLCODE
VALUE 0, 100 [* successful execution
IGNORE
VALUE -803 [* duplicate row
/* UPDATE existing record
/*
IGNORE
NONE VALUE
MOVE 3700 TO *ERROR-NR
END-DECIDE

*

END

33

	Using Natural Statements and System Variables
	DB2 Special Register Consideration
	Using Natural Native DML Statements
	BACKOUT TRANSACTION
	DELETE
	DELETE when Using the File Server

	END TRANSACTION
	FIND
	FIND when using the File Server

	HISTOGRAM
	READ
	Processing Limit
	Cursors for DB2 Clauses
	READ when Using the File Server

	STORE
	UPDATE
	UPDATE when Using the File Server
	UPDATE with FIND/READ
	UPDATE with SELECT

	Using Natural SQL Statements
	Syntactical Items Common to Natural SQL Statements
	atom
	comparison
	factor
	scalar-function
	column-function
	scalar-operator
	special-register
	units
	case-expression
	Example:

	CALLDBPROC - SQL
	Static and Dynamic Execution
	Result Sets
	List of Parameter Data Types
	CALLMODE=NATURAL
	Example of CALLDBPROC/READ RESULT SET

	COMMIT - SQL
	DELETE - SQL
	INSERT - SQL
	MERGE - SQL
	PROCESS SQL
	READ RESULT SET - SQL
	ROLLBACK - SQL
	SELECT - SQL
	SELECT - Cursor-Oriented
	SELECT SINGLE - Non-Cursor-Oriented

	UPDATE - SQL

	Using Natural System Variables
	Multiple Row Processing
	Purpose of Multi-Fetch Feature (Standard)
	Considerations for Multi-Fetch Usage (Standard)
	Size of the Multi-Fetch Buffer (Standard)
	Support of TEST DBLOG Q (Standard)
	Example: TEST DBLOG List Break-Out

	Multiple Rows to Program (Advanced)
	Prerequisites
	DB2ARRY=ON
	INTO Clause
	WITH ROWSET POSITIONING Clause
	ROWS_RETURNED Clause
	Restrictions and Constraints
	File Server Usage and Positioned UPDATE and DELETE

	Multiple Rows from Program (Advanced)
	Prerequisites
	DB2ARRY=ON
	VALUES Clause
	FOR n ROWS Clause
	Restrictions and Constraints

	Error Handling

