5 software~

Natural for Mainframes

Natural for Ajax

IN—I 3425

October 2009

Natural

This document applies to Natural /3—37 3 > 4.2.5 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © Software AG 1979-2009. All rights reserved.

The name Software AG™, webMethods™, Adabas™, Natural™, ApplinX™, EntireX™ and/or all Software AG product names are
either trademarks or registered trademarks of Software AG and/or Software AG USA, Inc. Other company and product names mentioned
herein may be trademarks of their respective owners.

BR

1 Natural fOr AJaXcoocviiiiiiiiiiiiiiii s 1
2B T BDIT s 3
What is a Rich Internet Application?ccccoeviiiiiiiiiiiiiiiiiii 4
Rich Internet Applications with Naturalcccocooii 4
Mixed APPLCAtIONSooovviiiiiiiiiiiii e 5
B INStallationcocviiiiiiiiiiiiii 7
PrerequiSitesccociiiiiiiiiiiiii 8
License Key File Handlingccccocoiiiiiiiiiiiiiiiiiiiii, 11
Installing Natural for Ajax on JBoss Application Servercccoccoeviiiiiiiiennnnn, 11
Installing Natural for Ajax on Sun Java System Application Server 14
Verifying the Installationccooiiiiiiiii 37
4 Setting Up Your ENvironmentcccoooiiiiiiiiiiiiiiiiiiiiiiccce 19
Setting Up Application Designercccocooviiiiiiiiiiiiiiiccccec 20
Setting Up Your Development Environment for Naturalc..ccccooiinn, 20
Setting Up Your Runtime Environment for Naturalccccocoiviiiiiiiinne 21
5 FIISt STEPS woiviiiiiiicec s 25
6 About this Tutorialcccooiiiiiiiiii 27
7 Starting the Development Workplacecccooooiiiiiiiiiii 31
8 Creating a Projectcccoiviiiiiiiiiiiiiii 33
9 Getting Started with the Layout Painter ... 35
Creating a New Layout ... 36
Elements of the Layout Painter Screenccccooviiiiiiiiiiiiiiiiiiiiiicee, 38
Previewing the Layoutccoccooiiiiiiiii 39
Viewing the XIML COodecccooiiiiiiiiiiiiiiiiiiiiicccee e 40
10 Writing the GUI Layoutccccccviiiiiiiiiiiiiiiiiiiicicc 43
Specifying the Properties for the Natural Pageccccccocieviiiiiiiiiiiiiniiiicne 44
Specifying a Name for the Title Barccccoccoviiiiiiiiiiiiiii, 45
Using the Property Editor ..., 46
Specifying a Name and Method for the Buttonccccoooiiiiiiiiniiiie 48
Adding the Input and Output Areasc.cccoevieiiiiiiiiicic 48
Adding the IMagecccoooiiiiiiiii 52
Adding a Horizontal Distancec.coccoviiiiiiiiiiiiiiiccccece 52
Adding an Instructional Textccccccoviiiiiiiiiiiiiiii 53
Adding a Vertical Distancecccccooviiiiiiiiiiiiiiiiiii 54
Saving Your Layoutc.ccooviiiiiiiiii 54
11 Setting Up Your Development and Runtime Environment for Natural 57
12 Creating the Natural Codeccoviiiiiiiiiii 59
Importing the Adapter into Naturalccccoiiiiiiiiiiiniiie, 60
Creating the Main Programcccccoviiiiiiiiiiiiiiii 61
Testing the Completed Applicationccooiiiiiiiiiiiiii 64
13 Some Background Informationccceeiiiiiiiiiiiiiiiiiiiii 67
Name Binding between Controls and Adapterccooooiiiiiiiiiiii, 68
Data Exchange at RUNtimecccoooiiiiiiiiiiiiic 68

Natural for Ajax

Files and their Locationsccccooviiiiiiiiiiiiiiiiic 69
14 Developing the User Interfaceccccocevieiiiiiiiiiiiiicce 71
Starting the Development Workplacecccociiiiiiiiiiiiiiiiiiiiiiiic, 72
Creating an Application Designer Projectcccoccooiiiiiiiiiiiii, 73
Creating a Natural Pagec.ccocovviiiiiiiiiiiiiiicccccc 73
Specifying Properties for the Natural Pageccooeviiiiiiiiiniiii 74
Designing the Pagecccoooiiiiiiiiiiiiiicc e 75
Binding Properties and Methodscccccooiiiiiiiiiiiiiiii, 75
Previewing the Layoutc.ccooiiiiiiii 76
Viewing the Protocolcccccooiiiiiiiiiiiiiiiiiii i 76
Saving the Layoutc.coooiiiiiiiiic 76
Generating the Adapterc..coooiiiiiiiiiiiiii e 76
Data Type Mappingcccooouiiiiiiiiiiiii 77
15 Developing the Application Codecccoooiiiiiiiiiiiiiiii 79
Importing the Adaptercccooviiiiiiiiiiiiii 80
Creating the Main Programc.cccooiiiiiiiiiiiii 82
Structure of the Main Programccccoecviiiiiiiiiiiiiiiiiiiccccceecce e 84
Handling Page EVeNtscccocoiiiiiiiiiiic e 84
Built-in Events and User-defined Eventsccccoccooviiiiiiiiiiii 85
Sending Events to the User Interfaceccccocoeviiiiiiiiiiiiiii, 85
Using Pop-Up WINAOWSccoiiiiiiiiiiiic 86
Using Natural Mapscccociiiiiiiiiiiiiiiiiiiiici e 88
Navigating between Pages and Mapsc.cccooiiiiiiiiiiiiiiii 88
Using Pages and Maps Alternativelycccccooeiiiiiiiiiiiiiiiiiiiicicce 89
Starting a Natural Application from the Logon Pagec.cccccoeiiiiiiiiiiinnnn. 90
Starting a Natural Application with a URLc.cccccciiiiiiiiiiiicece 90
16 Deploying the APplicationccccovcuiiiiiiiiiiiiiiiiiiiiiiic e 91
Components of a Natural for Ajax Applicationcccocoovveiiiiiiiiiiiiie, 92
Unloading Natural Modulesccccoooiiiiiiiiiiiiiiiiiiicccce, 92
Unloading the User Interface Componentsccooiviiiiiiiiiiiiiiicniccc, 92
Installing the Natural Modulesccccoociiiiiiiiiiiiiiiiie 93
Installing the User Interface Componentscccocceeviiiiiiiiiiiiiiiiiicccc 93
17 Natural Parameters and System Variablescccccociiiiiiiiiiiiii, 95
18 Multi Language Managementccccocueiiiiiiiiiiiiiiiiiiiiiiieic e 97
19 Support of Right-to-Left Languagesc.cccooiiiiiiiiiiiiiie 99
20 Server-Side Scrolling and SOTtINGccccoecviiviiiiiiiiiiiiiiiii i 101
General Informationccccoiiiiiiiiiiiiiii 102
Variants of Server-Side Scrolling and Sortingcccecevviiiiiiiiiniiiiiinicineene 102
Controls that Support Server-Side Scrolling and Sortingc.cccocveviiiiiiinnnne. 104
Data Structures for Server-Side Scrolling and Sortingccocevveiviiiiiiinnnnnn. 105
Server-Side Scrolling and Sorting in Treesccccocviviiiiiiiiiiiiiiiiiiiiien, 106
Events for Server-Side Scrolling and Sortingccccoeooeviiiiiiiiiiiii 107
21 Application Modernizationccocuiiiiiiiiiiiiiiiiiiiiiiieic e 109
22 Overview of CONVersion StePSccvieviiiiiiiiiiiiiicicccee e 111
23 Map EXtractionccooiiiiiiiiiiiiiiiiiiiicic 113

Natural for Ajax

Natural for Ajax

General INformationccueoiiiiiiiiiiiiii e 114
Using Natural for Ajax TOOISccooiiiiiiiiiiiiiiccc 114
Using the Mass FUNCHONcccoooiiiiiiiiiiiiiiii 114
Location of the Filescccccooiiiiiiiii 114
24 Map CONVETISIONuuiiiiiiiiiiiiiiiie it enaee s 117
General INformationccccoiiiiiiiiiiiiii 118
FIrst StEPS ..vvviiiiiiiiiiiiiic 119
Using the Map CONVETrtercccoouiiiiiiiiiiiiiiiiiiiiii i 121
Using the Editor EXtension ... 124
Using the Conversion Rules TOOIccccociiiiiiiiiiiiiiiiiic e, 125
Using the Conversion Logs TOOLcccceiiiiiiiiiiiiicccec 126
25 Customizing the Map Conversion Processccccooouvieiiiiiiiiiniiiiiieiiiciicieccees 129
Map Converter Processingcocoooiiiiiiiiiiiiiiiiic 130
Conversion RULes ..o 132
TemPlatescoooviiiiiiiiiii 142
Tag CONVEItOrSooviiiiiiiiiect e 145
26 Code CONVETSIONoouiiuiiiiiiiiiiiciiieiccc et 147
General Informationccccoiviiiiiiiiiiiiii 148
Generating AdapPterscocuiiiiiiiiiiiiii 148
Structure of a Map-Based Applicationcccocoviiiiiiiiiiiiii 148
Structure of a Natural for Ajax Applicationcccccoeveviiiiiiiiiiiiiie 149
Tasks of the Code CONVErSIONcceiiiiiiiiiiiiiiiiiicccccccccc e 150
DEFINE DATA Statementccccccoiiiiiiiiiiiiiiiiiiiicciccccc e 150
INPUT Statementcccooiiiiiiiiiiiiiiiccc e 151
REINPUT Statementccccceeoiiiiiiiiiiiiiiiiiiiciiciecicceieee e 152
PF-Key Event Handlingccooouiiiiiiiiiiiiiiiiiiiccc e 154
SET KEY Statementc.ccooiiiiiiiiiiiiici e 155
Processing RUIeS ... 158
System Variablescccccooiiiiiiiiiiiiiii e, 158
Variable Names Containing Special Characterscccooveviiiiiiiniiiiic, 159
27 Working with CONtrolsccccoiiiiiiiiiiiiiiiiiii e 161
28 Some Common Rules for all Controlsccccooviiiiiiiiiiiiiiiiiiie 165
Name and Text ID ... 166
Table, Row, Colum, CONIOLo.uuviiiiiiiiiieeeeiieee et ettt ettt e v e enaas 166
Explicit AIgNMENtccooiiiiiiii 166
Binding to Adapter Parametersc.cccceviiiiiiiiiiiiiiiiiiii, 167
Directly Influencing the Control Styleccocoiiiiiiii, 167
Dynamically Controlling the Visibility and the Display Status of Controls 168
Focus Managementcccoiiiiiiiiiiiiiiiiii 168
Flushing of INPULSccccooiiiiiiiiiii e 169
Tab SEqUENCEc..ooiiiiiiiiiiiic 169
TOOIHPS e 171
29 BREADCRUMBoooiiiiiiiiiiiiccicicccc e 173
EXamPle ..o.ooiiiiiiiiii 174
Adapter INterfacecooviiiiiiiiiiiii e 174

Natural for Ajax v

Natural for Ajax

BUilt-In EVENLS ...cooiiiiiiiiiiiiiie e 174
PrOPerti€sc.oioiiiiiiiiiii 175
30 BUTTON ..ottt 177
Example: Simple BUutton ... 178
Example: Button with Imageccociiiiiiiiiiiiii, 179
Hiding and Disabling Buttonscccocoviiiiiiiiii 179
PIOpPerties ...t 179
31 BUTTONLIST ..ottt 185
Adapter Interfaceccocooioiiiiiiii 186
PIOpertiescooviiiiiiiiiiiii 186
32 CHECKBOX ..ottt 189
PIOPertiescccouiiiiiiiiiiiiiiii 190
33 COMBODYN2 ..ottt e 195
Adapter INterfacecooovieiiiiiiiiic e 196
Propertiesoooiiiiiiiiiiiiiic 196
34 COMBOFIX ..ottt s 201
COMBOFIX Propertiescccciviviiiiiiiiiiiiiiiiciiicc e 202
COMBOOPTION Properti€scoceeeuiieiiiiiiiiiieiicciecicee e 205
35 DATEINPUTooiiiiiiiiic s 207
EXamPle ..o.ooiiiiiiiiiii 208
PrOPerti€sooouiiiiiiiiii 208
36 DROPICON ..ottt 215
EXAMPIE ..coviiiiiici 216
PIOPertiescccouiiiiiiiiiiiiiii 216
37 FIELD .oiiiiiiiiiiiicc s 221
Built-in EVeNts ..o 222
PrOpertiesooviiiiiiiiiiiiiic 222
38 FILEUPLOAD/FILEUPLOAD?2ccccociiiiiiiiiiiiiiiiicicic e 233
FILEUPLOADoootiiiiiiiie e 234
FILEUPLOADZoooiiiiiiiiiiiiiiii s 236
FILEUPLOAD Propertiesccccocuiiiiiiiiiiiiiiiiiiiiicciiceciicciecciee e 237
FILEUPLOAD2Z Propertiesccccovvuiiiiiiiiiiiiiiiiiiiiiiiciieecec e 240
B ICON . 243
EXamPle ..oooiiiiiiiii 244
PrOPerti€soouiiiiiiiiiiii 244
40 TCONLIST ..ot 249
Adapter Interfacecc.ooioiiiiiiii 250
Built-in EVeNts ..o 250
PrOPertiesc.cooiiiiiiiiiiiic 250
AT THTML oo 253
PIOPertiescoooiuiiiiiiiiiiii 254
42 IMAGEOUT ..o 257
PIopertiesccciiiiiiiiiiiiii 258
A3 LABEL ..ottt e 261
EXQMIPLE ..o e 263

vi

Natural for Ajax

Natural for Ajax

Aligning the Textccccciiiiiiiiiiiii 263
PrOPerti€sc.oioiiiiiiiiiii 264
44 MENUBUTTONoooiiiiiiiiiieec e 269
EXAMPIE ..ooviiiiicc 270
MENUBUTTON Propertiesccccuiiiiiiiiiiiiiiiiiiiiciiiiccicccececcec e 271
MENUITEM Propertiescocoiiiiiiiiiiiiiiiiiicciei e 273
45 METHODLINKcooiiiiiiiiiiiiicec et 275
Propertiesc..oooiiiiiiiiiiiiic 276
46 MULTISELECToooiiiiiiiiiiiiiiccccce e 279
EXamPIe ..o 280
Adapter INterfaceccooioiiiiiii 280
PIOPertiesccouiiiiiiiiiiiiii 280
47 NEWSFEEDccciiiiiiiiiiiiiiiiiicicc e 285
EXamPle ..o 287
Built-in EVENtSooiiiiiiiii 288
PrOPerti€soouiiiiiiiiiii 288
48 RADIOBUTTONoootiiiiiiiiiiiiiiicctecicee et 289
PrOPerti€soouiiiiiiiiiii 290
49 SCHEDULELINEcooiiiiiiiiiiiiiiiii et 295
PrOPertiesc.oooiiiiiiiiiiiiicic 296
50 SLIDER ...ooiiiiiiiiiiiiiiiiicice e 301
EXamPIe ..ooiiiiiiiiii e 302
Adapter Interface ..o 303
PIOPertiescccoiiiiiiiiiiiiiii 303
51 STRIPSELooiiiiiiiiiiiiiiiii e 309
EXQMIPLE .o e 310
PrOpertiesc..ooviiiiiiiiiiiiiiic 310
52 SUBPAGE ..ot 313
Propertiesccouiiiiiiiiiiii 314
53 TABSEL ...coviiiiiiiiiiccicctc s 317
Adapter INterfacecociiiiiiiiiiiii 318
Built-in EVENtS ..o 319
PIOPETHIES ..o 319
54 TABSTRIP2 ...ttt 321
EXAMPIE ..ooviiiiiiici 322
Adapter INterfacecocooviiiiiiiiiiii 322
Built-in EVENtScccoiiiiiiiiiiiii 322
PIOperties ... 323
55 TAGCLOUDuiiiiiiiiiiiiiiiiici e 325
EXAMPIE ©.ooviiiiiii 326
Adapter INterfacecccooviiiiiiiiiiiiii 327
Built-in EVENtScccoiiiiiiii 327
PIopertiesccciiiiiiiiiiiiii 327
56 TEXT .o 331
PIoperties ... 332

Natural for Ajax vii

Natural for Ajax

57 TEXTOUT ..ot e 337
EXamPle ..o 338
PIOPertiesooouiiiiiiiiiiiiii 338

58 TOGGLE ..ottt 345
PIOpertiesccuiiiiiiiiiiiiii 346

59 ACTIVEX ..ottt 351
PIOpPerties ...t 352

60 GOOGLEMAP2 ..ottt 355
Before YOu Startcccociiiiiiiiiiiiiiiiii 356
EXamPIe ..o 357
Typical Problemsccooiiiiiiiiiiii 358
PIOPertiescccouiiiiiiiiiiiiiiii 359

61 NETMEETIINGoooiiiiiiiiiiiiiici e 361
EXamPle ..o 362
Propertiesoooiiiiiiiiiiiiiic 362

62 SKYPECALLoooiiiiiiiiiiii e 365
EXaMPLe ..o 367
PrOPertiesoouiiiiiiiiiii 367

63 NJX:BUTTONITEMLISTccooiiiiiiiiiiiiiiiiiiicicciccec s 369
EXamPle ..o.ooiiiiiiiiiii 371
Adapter Interfaceccocoiiiiiiiiiiiii 371
Built-in EVENtS ...coooiiiiiiii 372
PrOPerti€soouiiiiiiiiii 372

64 NJX:BUTTONITEMccoooiiiiiiiiiiiiiiicciiice e 373
EXamPle ..ooooiiiiiiiii 374
Built-in EVeNts ..o 374
PrOpertiesooviiiiiiiiiiiiiic 375

65 NJX:BUTTONITEMLISTEIXcooiiiiiiiiiiiiiiiiiiicicicciccccc e 379
EXamMPIe ..o 380
Adapter Interfaceccoooioiiiiiiii 380
Built-in EVENtsoccoiiiiiiiiiii 381
PrOPeIti®s ...couviiiiiiiiiiiicci e 381

66 NJX:BUTTONITEMEFLIXcoooiiiiiiiiiiiiiiiiiiiiccccc s 383
EXamPle ..oooiiiiiiiii 384
Built-in EVeNts ..o 384
PIOPertiescooiiiiiiiiiiiiiii 385

67 NJX:FIELDLIST ..ottt 391
EXQMIPLE ..o e 393
Adapter Interfaceccccooviiiiiiiiiiiiiii 394
Built-in EVeNtscccoiiiiiii 394
PIOPertiescoooiuiiiiiiiiiiii 394

68 NJX:FIELDITEMcciiiiiiiiiiiiiiiiiiiiiiie e 397
EXaMPLE ..o 399
Adapter Interface ... 400
Built-in EVeNts ..o 400

viii Natural for Ajax

Natural for Ajax

PrOPertiescc.ooiviiiiiiiiiiiii 400
69 NJX:FIELDVALUEooiiiiiiiiiiiiiic s 411
EXamPIe .ooiiiiiiii s 413
Adapter INterface ..o 413
Built-in EVENtSc.ooiiiiiiiiiiii 413
PrOPertiesc.ooouiiiiiiiiiii 414
70 NJXINJXVARIABLE ..ot 423
EXamPle ..o.ooiiiiiiiiii 424
PrOPerti€sooouiiiiiiiiiii 424
71 NJX:EVENTDATA ..ot 425
EXAMPIE ..oovioiiiiiciic s 427
Adapter INterfacecooiiiiiiiiiiiiii 428
72 Working With Gridscoooiiiiiiiiiii 429
73 BASICS woeiiiiiiiiiiciic s 431
74 TEXTGRID2 ..ottt 433
A Simple EXample ..o 434
Adapter INterfacecocooviiiiiiiiiiiiii 435
Selecting Rows in @ TEXTGRID2cccccooviiiiiiiiiiiicceecccce 435
TEXTGRID2 Propertiesccccociiiiiiiiiiiiiiiiiiiiciiiiccciiccee e 436
COLUMN Propertiescocuiiiiiiiiiiiiiiiiciiiccciiceciececec e 442
Dynamic Setting of Text Styles in TEXTGRID2cccccooviiiiinininiiieieicc 446
75 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrollingccccooviviiiiiiiiinnnen. 447
Performance Considerationscccccooiiiiiiiiiiiiiiiiiiii 448
EXaMPLE ..o 448
Adapter INterface ..o 450
Using Server-Side SCrollingcoccieviiiiiiiiiiiiiiiiiiiie e 450
Using Server-Side SOTtingccceviiiiiiiiiiiiiiiiiiiiiiii 451
TEXTGRIDSSS2 PrOPertiesc..ccuiiuiiiiieiiiiiiiiieiceiieie e 451
76 ROWTABLEAREAZ2 - The Flexible Control Gridcccccceeviiiiiiiiiiiiiiiiiiiiiice. 459
EXAMPIE ..ooviiiiiicic 460
Adapter INterfacecociiiiiiiiiiiii 462
Built-in EVENtS ..o 462
Making Grids Look like Gridscccociiiiiiiiiiiiiiiiiiiiiiiie 463
ROWTABLEAREA2 Propertiesccccceevviiiiiiiiiiiiiiiicciiicccieccciecciec e 464
STR Propertiescocoeviiiiiiiiiiiiicie et 469
77 FLEXLINE - Flexible Columns in Control Gridscccccoviiviiiiiniiiiiiiiiii, 471
EXAMPIE ..ooviieiiiiciicc s 472
Adapter INterfacecociiiiiiiiiiiiii 473
FLEXLINE Propertiescc.cccooiiiiiiiiiiiiiiiiiiiiciiccciceceic s 474
78 MGDGRID - Managing the Gridc..cccooiiiiiiii 475
EXamPIe ..ooiiiiiiiiii s 477
Adapter Interface ... 478
Built-in EVENtSooiiiiiiiiii 479
MGDGRID Propertiesccooiiiiiiiiiiiiiicciecicccee e 479
ROWINSERT Propertiesccccoceiiiiiiiiiiiiiiiiiiiiiiiicciiccieccice e 483

Natural for Ajax iX

Natural for Ajax

ROWCOPY Propertiesccceoiiiiiiiiiiiiiiiiiicciiccciicccieceeecee e 484
ROWDELETE Propertiescccovuiiiiiiiiiiiiiiccicec e 485
79 Working With Treescccovviiiiiiiiiiiiiiiiiiii e 487
80 TREENODES3 in Control Grid (ROWTABLEAREA2)ccccciiiiiiiiiiiiiiiiiiiiice, 489
EXaMPLE ..o 490
Adapter Interfaceccooioiiiiiiii 491
Built-in EVeNts ..o 491
Propertiescooiiiiiiiiiiiiiiic 491
81 CLIENTTREEociiiiiiiiiiiiiiiiii s 497
EXamPIe ..o 498
Adapter Interfaceccooioiiiiiiii 499
Built-in EVENtsocoiiiiiiiiii 499
PrOPeIti®s ...ccviiiiiiiiiiiici e 499
82 Working with Menuscccciiiiiiiiiiiiiiiii 503
83 TYPES Of MENIUSoovviiiiiiiiiiiiii i 505
84 MENU ..ot s 507
EXaMPLe ..o 508
Adapter Interfaceccooieiiiiiii 509
Built-in EVeNts ..o 509
PrOPertiesc.coiiiiiiiiiiiiiiic 510
85 DLMENU ...ttt 513
EXamPIe ..ooiiiiiiiiii e 514
Adapter Interface ..o 515
Built-in EVENtSooiiiiiiiiii 515
PrOPeItiesceiiiiiiiiiiiii 516
86 Non-Visual Controls and Hot Keysc.ccooiviiiiiiiiiiiiiiiiiceecec 517
87 TIMER ..ottt s 519
EXAMPIE ..coviiiiiii 520
PIOPertiescoouiiiiiiiiiiiiii 521
88 Extended Hot Key Managementccocoeviiiiiiiiiiiiiiicceee e 523
Direct Hot Key Definitions with Certain Controlsc.cccocceviiiiiiniiniiinnnnn. 524
Hot Key Definitions for Certain Controlscccoccoviiiiiiiiiiiniiiiiicc 524
89 Function Key Handlingcccccooiiiiiiiiiiiiiiiiiicc e, 527
FRIT| e 529

X Natural for Ajax

1

Natural for Ajax

This documentation is organized under the following headings:

Using Natural for Ajax

9 Introduction What is Natural for Ajax?

[Installation How to install Natural for Ajax on the supported
application servers.

[Setting Up Your Environment |How to set up Application Designer, your development
environment for Natural, and your runtime environment
for Natural.

3 First Steps How to create a [Hello World!| application.

[Developing the User Interface |How to develop the user interface using Application
Designer.

[Developing the Application How to develop the application code using Natural

Code Studio or Natural for Eclipse.

3 Deploying the Application How to unload and install the Natural modules and user
interface components.

3 Natural Parameters and System |Gives an overview of the Natural parameters and system

Variables

variables that are evaluated in Natural for Ajax
applications and sent to Application Designer.

Multi Language Management

Describes aspects to be considered for
internationalization.

Support of Right-to-Left
Languages

Describes how Natural for Ajax supports right-to-left
languages and bidirectional text.

Server-Side Scrolling and
Sorting

Describes how Natural for Ajax supports the concept of
server-side scrolling and sorting.

¢ & & ©

Application Modernization

How to convert a character-based Natural application
to a Natural for Ajax application.

Natural for Ajax

Application Designer Reference (adapted to Natural for Ajax)

[Working with Controls Shows you how to work with the elements that are
placed into containers - the controls.
Working with Grids Explains what grids are and how to use them.
] 8 p 8
Working with Trees Explains the basic types of trees and how to use them.
o 8 p yp
3 Working with Menus Shows you how to arrange a number of functions in a
structured way.
3 Non-Visual Controls and Hot |Describes how to develop controls that do not have
Keys visual effects.

See also Configuring the Client in the Natural Web 1/O Interface documentation. There, you will learn
how to

W start a Natural application from the logon page or with a URL,

¥ manage the configuration file for the session using the configuration tool,

¥ modify the style sheet which controls the font, the color and the representation of the PF keys,

W activate the preconfigured security settings of Natural for Ajax and to adapt them to your
requirements,

W create your own trust files for a secure connection between the Natural Web I/O Interface server
and Natural for Ajax,

¥ enable logging in the case of problems with Natural for Ajax.

2 Natural for Ajax

2 X C&IC

® What is a Rich Internet APPlICALIONTooiiiiiiiiii e 4
= Rich Internet Applications With NatUFalovvviiiiiiiiiiii e 4
5

B MIXEd APPLICALIONS ... e

lZColc

Using Natural for Ajax, you can create rich internet applications which use the Ajax (Asynchronous
JavaScript and XML) technology. This enables Natural users on Windows, UNIX and mainframe
platforms to develop and use Natural applications with a browser-based user interface, similar
to GUI desktop applications.

What is a Rich Internet Application?

Classical HTML- and browser-based applications suffer from known disadvantages. The server
responds to each user interaction with a new page. This may lead to long response times and new
rendering in the browser and thus to a discontinuous workflow for the user. The possibilities
offered by DHTML overcome these disadvantages, but they are complicated to use and make it
hard to build a comfortable user interface. The user interface is therefore often simpler and less
comfortable than users are accustomed to from their experience with desktop applications. Although
itis possible to provide complex controls and features like drag-and-drop, this is hard to implement
- especially if compatibility with all commonly used browsers is required. Classical GUI applications
also have the disadvantage that a client component of the application must be installed on each
client machine.

Rich internet applications that use the Ajax technology overcome these disadvantages by combining
the reachability of browser-based applications with the rich user interface of GUI applications.
Software AG provides support for the development of rich internet applications with Application
Designer. Natural for Ajax combines the user interface capabilities of Application Designer with
the application development capabilities of Natural.

Rich Internet Applications with Natural

At runtime, a rich internet application with Natural has the following structure:

¥ A Natural host session on a Windows, UNIX or mainframe server runs the application code.
Other than with a map application, the application does not deal with user interface issues. It
contains only the application logic and communicates with the user interface layer by sending
and receiving data. The data is displayed in page in a web browser. Events - such as button
clicks - that the user raises in the web browser are passed back to the application code. Along
with an event, the application code receives also the data that the user modified in the web
browser. It processes the event and the data and returns modified data back to the web browser
page.

¥ Natural for Ajax, which is running on an application server, merges the data received from the
Natural application intoa DHTML page and delivers the page to the web browser. In the inverse
direction, Natural for Ajax forwards events that the user raised in the web browser along with
the modified data to the Natural application.

4 Natural for Ajax

I C&IC

¥ A web browser renders the DHTML page. JavaScript code on the page processes local user
interaction and exchanges data with Natural for Ajax as needed. It uses Ajax technology to
exchange data with the Natural application in the background without having to re-render the
page as a whole.

At development time, a rich internet application is created with Natural in the following way:

¥ Application Designer is used to develop the user interface layout of a web page and to bind the
controls on the page to data elements in the application. Application Designer is contained in
the Natural for Ajax module running on the application server.

® When the user saves the page layout, a Natural module of type [Adapter] is generated. The
adapter serves as an interface between the application code and the page layout. It contains:

W A data structure that describes the data that the Natural application has to deliver to the
application server in order to populate the web page.

¥ The Natural code necessary to transfer the data structure to the user interface and to receive
modified data back.

¥ A code skeleton, in the form of comment lines, that contains handlers for the expected events.
The application programmer can copy this code skeleton into the main program to implement
the event handlers.

¥ Then a main program is implemented that exchanges data with the web page using the adapter
and handles the events. The event handler code has no knowledge of the web page layout, but
operates only on the page data that is sent and received through the adapter.

¥ The navigation between different pages is implemented. A rich internet application navigates
between pages in the same way as a map application would navigate between maps.

Mixed Applications

With the support of Unicode, Natural has introduced the Natural Web I/O Interface which renders
Natural maps in a web browser. Typically, if you are running map-oriented applications and wish
to change them to rich internet applications, you will do this gradually. In certain parts of an
application, maps might be replaced by rich GUI pages, other parts will possibly be left unchanged.
Therefore, Natural supports running mixed applications which consist of both maps and rich GUI
pages. With maps, the application controls the page layout, and the rendering mechanism therefore
respects the layout information that the application provides. With rich GUI pages, the application
does not control the layout; the layout is controlled by Application Designer. However, for the
users of an application the switch between maps and rich GUI pages is seamless.

Natural for Ajax 5

3 Installation

B PIEIBGUISIEES . oeeeit ittt ettt e e ettt et e oottt e e oot e e e e e ettt et e e e e et e e e e e e e e a bt e e e eaeaan e 8
B License Key File HanINGoooiiiii e 11
= |nstalling Natural for Ajax on JBosS AppliCation SEIVEToiiiiiiiiieiiiiei e 1
= |nstalling Natural for Ajax on Sun Java System Application SErver ... 14
m Verifying the INSAlIAtoN ..o 37

Installation

Natural for Ajax consists of a J2EE enterprise application (njx12.ear) and a J2EE resource adapter
(njx12ra.rar). Both components are to be deployed on a J2EE server. Natural for Ajax receives data
from Natural applications running on a Windows, UNIX or mainframe host and delivers web
pages to the user's web browser.

This & describes the installation of Natural for Ajax on application servers on Windows or UNIX.
It does not describe the installation of the additionally required Natural components on a Windows,
UNIX or mainframe host, but refers to the corresponding installation documents.

For information on how to activate the preconfigured security settings of Natural for Ajax and
how to adapt them to your requirements, see Configuring Security in the Configuring the Client part
of the Natural Web 1/0 Interface documentation.

Prerequisites

The following topics are covered below:

= Java

= J2EE Server

= Apache Ant

= Natural for Mainframes

= Natural for UNIX

= Natural for Windows

= Support for Special Features
= Development Servers

= Development Clients

= Browser Prerequisites

Java
JDK 1.5.0_12 or above is required.

J2EE Server

The following application servers are supported. The application servers are not delivered with
Natural for Ajax. They can be obtained from the locations indicated below, according to their
respective license terms.

¥ JBoss Application Server 4.0.5 and 4.2.2 (see http://www.jboss.org/).
¥ Sun Java System Application Server 8.1, 8.2 and 9.1 (see http://www.sun.com/).

8 Natural for Ajax

http://www.jboss.org/
http://www.sun.com/

Installation

Apache Ant

Apache Ant 1.6.5 or above is required to perform the deployment on JBoss Application Server.
This tool is freely available on http://ant.apache.org/.

Natural for Mainframes

If you want to use Natural for Ajax with Natural for Mainframes, the following must be installed:

B Natural for Mainframes Version 4.2.3 or above, and

B the Natural Web I/O Interface server.
For detailed information, see:

¥ the Installation documentation which is provided with Natural for Mainframes;

¥ the section Installing and Configuring the Natural Web 1/O Interface Server in the version of the
Natural Web 1I/O Interface documentation which is provided for Natural for Mainframes.

Natural for UNIX

If you want to use Natural for Ajax with Natural for UNIX, the following must be installed:

B Natural for UNIX Version 6.3.1 or above, and
B the Natural Web I/O Interface daemon.

For detailed information, see:

W the Installation documentation which is provided for Natural for UNIX;

¥ the section Installing and Configuring the Natural Web 1/O Interface Server in the version of the
Natural Web 1/O Interface documentation which is provided for Natural for UNIX.

Natural for Windows

If you want to use Natural for Ajax with Natural for Windows, the following must be installed:

B Natural for Windows Version 6.3.3 or above, and

¥ the Natural Web I/O Interface server (which is implemented as a service).
For detailed information, see:

¥ the Installation documentation which is provided for Natural for Windows;

¥ the section Installing and Configuring the Natural Web 1/O Interface Server in the version of the
Natural Web I/O Interface documentation which is provided for Natural for Windows.

Natural for Ajax 9

http://ant.apache.org/

Installation

Support for Special Features

If you want to use the Natural parameters DC and DTFORM in a Natural for Ajax application, the
following versions are required:

B Natural for Mainframes Version 4.2.5 or above,
B Natural for UNIX Version 6.3.5 or above,

B Natural for Windows Version 6.3.5 or above.
Development Servers

The following development servers support the remote development of Natural for Ajax
applications:

¥ Natural Development Server for Mainframes Version 2.2.3 or above.
¥ Natural Development Server for UNIX Version 2.2.3 or above.

¥ Natural Development Server for Windows Version 2.2.4 or above.
Development Clients

The following development clients support the remote development of Natural for Ajax
applications:

¥ Natural for Windows (Natural Studio) Version 6.3.1 or above.

¥ Natural for Eclipse Version 3.2.1 or above.
Browser Prerequisites

Supported browsers in this version are:

¥ Internet Explorer 6.0 through 7.0.
¥ Mozilla Firefox 2.0. through 3.0.

AN BE: Cookies and JavaScript must be enabled in the browser.

10 Natural for Ajax

Installation

License Key File Handling

A valid license key file is required during the installation. The license key file is an XML file which
is usually supplied along with the product. Alternatively, you can obtain a license key file from
Software AG via your local distributor.

Installing Natural for Ajax on JBoss Application Server

Only one version of the Natural Web I/O Interface client or one version of Natural for Ajax can
be installed on the same JBoss Application Server.

You can either install the Natural Web I/O Interface client or Natural for Ajax on the same JBoss
Application Server, not both.

It is assumed that <jboss> is the directory of your JBoss Application Server installation.
The following topics are covered below:

= First-time Installation
= Update Installation

First-time Installation

»=F[E 3.1. To install Natural for Ajax

1 Install Apache Ant (you need Apache Ant to deploy Natural for Ajax to the JBoss Application
Server; see the Prerequisities above for the required version number):

1. Download and unzip Apache Ant (from http://ant.apache.org/) into an installation directory
of your choice. Avoid a directory name that contains blanks.

2. Let the environment variable ANT_HOME point to the directory <ant> (where <ant> is the
directory of your Ant installation).

3. Add <ant>/bin to your PATH environment variable.

2 Deploy Natural for Ajax to JBoss Application Server:

1. Copy the Natural for Ajax distributables to a directory on a disk drive.

Natural for Ajax "

http://ant.apache.org/

Installation

2. In the directory that contains the Natural for Ajax distributables, there is an Ant script
named jbossdeploy.xml. Edit this script and change the setting

<property name="jbosshome" value=""/>
to

<property name="jbosshome" value="<jboss>"/>
where <jboss> is your JBoss Application Server installation directory.

A\ EE: Take care to use forward slashes (also on Windows) when specifying the
directory path.

3. Execute the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml

Wait for the message [BUILD SUCCESSFUL . This indicates that the deployment was
successful.

Copy the license file into the directory
<jboss>/server/default/deploy/njx12.ear/cisnatural.war/cis/licensekey.

Edit the file <jboss>/server/default/deploy/jbossjca-service.xml and change the setting

{!-- Enable connection close debug monitoring -->
<attribute name="Debug">true</attribute>

to

{!-- Enable connection close debug monitoring -->
<attribute name="Debug">false</attribute>

JBoss Application Server 4.0.5 only: Edit the file
<jboss>/server/default/deploy/njx12.ear/cisnatural.war/WEB-INF/web.xml and uncomment the
section

<h--

Uncomment the next lines, in case the configuration tool is installed on a JBOSS
4.0.5.GA

<listener>

<listener-class>org.apache.myfaces.webapp.StartupServietContextlListener</Tistener-class>
</listener>
==

12

Natural for Ajax

Installation

so that it looks as follows:

{listener>

<listener-class>org.apache.myfaces.webapp.StartupServietContextlListener</Tistener-class>
</listener>

AN BE: For JBoss Application Server 4.2, you must not remove this comment.

Start JBoss Application Server.

Update Installation

»=F|[E 3.2. To update Natural for Ajax

1
2

Shut down JBoss Application Server.
Deploy Natural for Ajax to JBoss Application Server:

1. Copy the Natural for Ajax distributables to a directory on a disk drive.
2. In the directory that contains the Natural for Ajax distributables, there is an Ant script

named jbossdeploy.xml. Edit this script and change the setting
<property name="jbosshome" value=""/>
to

<property name="jbosshome" value="<jboss>"/>
where <jboss> is your JBoss Application Server installation directory.

& EE: Take care to use forward slashes (also on Windows) when specifying the
directory path.

. In order to upgrade an existing Natural for Ajax 1.1.1 installation to version 1.2, execute

the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml upgrade

Wait for the message [BUILD SUCCESSFUL . This indicates that the deployment was
successful.

. In order to update an existing Natural for Ajax 1.2.<n> installation to the newest update

package (1.2.<m>), execute the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml redeploy

Natural for Ajax 13

Installation

Wait for the message [BUILD SUCCESSFUL . This indicates that the deployment was
successful.

3 Make sure that the file <jboss>/server/default/deploy/jbossjca-service.xml contains the same
settings as described for a first-time installation.

4 JBoss Application Server 4.0.5 only: Make sure that the file
<jboss>/server/default/deploy/njx12.ear/cisnatural.war/WEB-INF/web.xml contains the same
settings as described for a first-time installation.

5 Regenerate the HTML pages of the projects that you have created with an earlier release of
Natural for Ajax. For each project to regenerate, execute the script jbossdeploy.xml by entering
the following command:

ant -f jbossdeploy.xml regenerate -Dnjxproj=<projectname>

Wait for the message [BUILD SUCCESSFUL . This indicates that the generation was
successful.

6 Start JBoss Application Server.

Installing Natural for Ajax on Sun Java System Application Server

Natural for Ajax is installed using the Adminstration Console of Sun Java System Application
Server.

The following is assumed:

W <host> is the name of the machine on which the application server is installed.

W <port>is the name of the port where the application server is installed. In a default installation,
this is port 8080.

W <adminport> is the name of the port where the Adminstration Console is installed. In a default
installation, this is port 4848.

W <(sunas> is the path to the directory in which the application server is installed. In a default
installation on Windows, this is C:/Sun/AppServer.

The following topics are covered below:

= First-time Installation

14 Natural for Ajax

Installation

= Update Installation

First-time Installation

»FE 3.3. To install Natural for Ajax

1 Edit the file <sunas>/domains/domainl/config/server.policy and add the following settings:

// Allow Application Designer to create an own class loader
grant {

permission java.lang.RuntimePermission "createClasslLoader";
b

// Allow Application Designer to modify its own project directories
grant {
permission java.io.FilePermission

"${com.sun.aas.instanceRoot}${/}tapplications${/}j2ee-apps${/injx12${/}tcisnatural_war${/}-",

"read,write,delete";
b

// Enable the Java Logging API

grant {

permission java.util.logging.lLoggingPermission "control";

e

A EE: If you do not enable the Java Logging AP], the resource adapter will not start

and Natural for Ajax will therefore be inoperative.

2 Start the application server.

3 Open your web browser and enter the following URL:

http://<host>:<adminport>

This opens the Adminstration Console.

4 Deploy the resource adapter njx12ra.rar:

. Open the tree node Applications > Connector Modules.

. Choose Deploy.

1
2
3. Select njx12ra.rar as the package file to be uploaded to the application server.
4. Choose Next. "njx12ra" is automatically included as the application name.

5

. Choose Finish.

5 Define the JNDI name for the resource adapter:

1. Open the tree node Resources> Connectors >Connector Connection Pools.

Natural for Ajax

15

Installation

S

Choose New.
Enter "NatPool" (the name is arbitrary) as the name.
Select njx12ra as the resource adapter.

Each connection to a Natural host results in a new connection being made. Since each user
requires a unique host session, connection pooling cannot be used. Therefore, you should
make sure there are enough sessions for your users. The default maximum number is "32".

6. Choose Next.
7. Choose Next.
8.
9

Choose Finish.

. Open the tree node Resources> Connectors >Connector Resources.

10. Choose New.
11. Enter "eis/NaturalUnicodeRA" as the JNDI name.

12 Select NatPool (or whatever name you specified previously) as the pool name.

13. Choose OK.

6 Deploy the enterprise application njx12.ear:

G L

Open the tree node Applications > Enterprise Applications.
Choose Deploy.

Select njx12.ear as the file to upload.

Choose Next.

Choose OK. The deployment may take several minutes.

7 Copy the license file into the directory <sunas>/domains/domain1/applications/j2ee-
apps/njx12/cisnatural_war/cis/licensekey (you have to create the directory if it does not yet exist).

8 Restart the application server.

Update Installation

» =& 3.4. To update Natural for Ajax

1 Shut down the application server.

2 Create a backup copy of your sessions.xml file, which is located in
<sunas>/domains/domainl/applications/j2ee-apps/njx<nnn>/cisnatural_war/WEB-INF.

3 Create a backup copy of your license file, which is located in
<sunas>/domains/domainl/applications/j2ee-apps/njx<nnn>/cisnatural_war/cis/licensekey.

16

Natural for Ajax

Installation

10
11
12
13

14
15

Create backup copies of previously created projects, which are located in
<sunas>/domains/domainl/applications/j2ee-apps/njx<nnn>/cisnatural_war.

Start the application server.

Start a web browser and enter the following URL:

http://<host>:<adminport>

This opens the Adminstration Console.

Undeploy the resource adapter njx<nnn>ra.rar.

Undeploy the enterprise application njx<nnn>.ear.

Deploy the new version of Natural for Ajax as in a first-time installation.
Shut down the application server.

Restore the files that you have backed up in steps 2, 3 and 4.

Start the application server.

Start a web browser and enter the following URL:

http://<host>:<port>/cisnatural

This opens the Application Designer development workplace.

In the Development Tools node of the navigation frame, choose Layout Manager.

For each application project that you have created with an earlier release of Natural for Ajax,
select the layout definitions and from the Operations on multiple Items menu, choose

(Re)Generate HTML Pages.

Verifying the Installation

It is assumed that http://<host>:<port> is the URL of your application server.

» =& 3.5. To verify the installation

1

Enter the following URL in your web browser:

http://<host>:<port>/cisnatural

This opens the Application Designer development workplace.

Enter the following URL in your web browser:

http://<host>:<port>/cisnatural/serviet/StartCISPage?PAGEURL=/cisnatural/NatLogon.htm]

This opens the Natural logon page. The installation is now complete.

Natural for Ajax

17

18

4 Setting Up Your Environment

B Setting Up ApPlICAtION DESIGNETvviieeeeei ittt e e e e et e e e e e
= Setting Up Your Development Environment for Naturalcoooiiiiiiiiiiiii e
= Setting Up Your Runtime Environment for Naturalcccvvviiiiiiiiiii e

19

Setting Up Your Environment

Before you start developing and executing Natural for Ajax applications, you have to make specific
definitions in your environment.

Setting Up Application Designer

Currently, there is nothing to configure for Natural pages.

Setting Up Your Development Environment for Natural

If you are practising remote development with Natural's Single Point of Development (SPoD), a
Natural Development Server must be installed and activated on the remote machine.

¥ Mainframe
When your Natural Development Server is located on a mainframe, see the Natural Development
Server documentation.

W UNIX
When your Natural Development Server is located on UNIX, see Activating the Natural
Development Server on UNIX in the Installation documentation which is provided with Natural
for UNIX.

¥ Windows
When your Natural Development Server is located on Windows, the Web I/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural.
See the Installation documentation which is provided with Natural for Windows.

»F|IE 4.1. To set up Natural Studio

1 Ask your administrator for the host name and the port number of the Natural Development
Server.

2 Connect to the Natural Development Server. See Accessing a Remote Development Environment
in the Remote Development Using SPoD documentation which is provided with Natural for
Windows.

3 Itisrecommended that you create a new Natural library for each Application Designer project.

»F|IE 4.2. To set up Natural for Eclipse

1 Ask your administrator for the host name and the port number of the Natural Development
Server.

2 Create anew target in Natural for Eclipse, using this host name and port number. For further
information, see the Natural for Eclipse documentation.

20 Natural for Ajax

Setting Up Your Environment

3

When creating a Natural project, assign this target in the project properties.

Setting Up Your Runtime Environment for Natural

The following must be installed on the remote machine where you are going to test and execute
the Natural code:

B Mainframe

When your Natural Development Server is located on a mainframe, the Natural Web I/O Interface
server must be installed and started. For detailed information, see Installing and Configuring the
Natural Web 1/O Interface Server in the Natural Web I/O Interface documentation which is provided
for Natural for Mainframes.

H UNIX

On UNIX, the Natural Web I/O Interface server is implemented as a daemon.

When your Natural Development Server is located on UNIX, the Natural Web I/O Interface
daemon must be installed and activated. For detailed information, see Installing and Configuring
the Natural Web 1/O Interface Server in the Natural Web 1/O Interface documentation which is
provided for Natural for UNIX.

B Windows

On Windows, the Natural Web I/O Interface server is implemented as a service.

When your Natural Development Server is located on Windows, the Web 1/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural
Runtime. See the Installation documentation which is provided with Natural for Windows.

See also Installing and Configuring the Natural Web 1/O Interface Server in the Natural Web 1/0
Interface documentation which is provided for Natural for Windows.

»=F|[E 4.3. To set up the runtime environment for Natural for Mainframes

1

Ask your administrator for the host name and the port number of the Natural Web I/O Interface
server.

Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

Natural for Ajax 21

Setting Up Your Environment

Add a new session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number|The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name and port number) that match your environment. Remove the
dummy setting for the application (which is "script-name").

Then you will be able to execute the examples from the logon page.

Restart the application server.

»=F|[E 4.4. To set up the runtime environment for Natural for UNIX

Ask your administrator for the host name and the port number of the Natural Web I/O Interface
server and the name of the script that is used to start up Natural sessions. A sample shell
script for starting up Natural (nwo.sh) is delivered with Natural for UNIX; see also nwo.sh -
Shell Script for Starting Natural in the Natural Web I/O Interface documentation.

Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

Add a new session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number | The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Application |The name of the script that is used to start up Natural sessions. Enter the value that you
have received from your administrator.

In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This

22

Natural for Ajax

Setting Up Your Environment

session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Edit this session and enter the settings (host name, port number and the name of the Natural
startup script) that match your environment. Then you will be able to execute the examples
from the logon page.

5 Restart the application server.

»FE 4.5. To set up the runtime environment for Natural for Windows

1 Askyour administrator for the host name and the port number of the Natural Web I/O Interface
server and the name of the batch file that is used to start up Natural sessions. A sample batch
file for starting up Natural (nwo.bat) is delivered with Natural for Windows; see also Batch
File for Starting Natural in the Natural Web I/O Interface documentation.

2 Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configquration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

3 Add anew session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number |The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Application |The name of the batch file that is used to start up Natural sessions. Enter the value that
you have received from your administrator.

4 In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name, port number and the name of the Natural startup batch file)
that match your environment. Then you will be able to execute the examples from the logon

page.

5 Restart the application server.

Natural for Ajax 23

24

5 First Steps

This documentation is organized under the following headings:

About this Tutorial

Starting the Development Workplace
Creating a Project

Getting Started with the Layout Painter
Writing the GUI Layout

Setting Up Your Development and Runtime Environment for Natural

C L L L L oL L

Creating the Natural Code

& Some Background Information

It is important that you work through the exercises in the same sequence as they appear in this

tutorial. Problems may occur if you skip an exercise.

25

26

6 About this Tutorial

This tutorial provides an introduction to working with Natural for Ajax. It explains how to create
a [Hello World!| application. This covers all basic steps you have to perform when creating
pages with Natural for Ajax: you create a layout file, you create an adapter and a main program,
and you run the application.

When you have completed all steps of this tutorial, the page for your [Hello World!| application
will look as follows:

27

About this Tutorial

(Preview &
‘Hello World! X

Say Hello

Input Area -
Your Marme | |
‘output Area
Result | |

Input your name and press the 'Say Hello' button,

Your application will act in the following way: When you enter a name in the Your Name field
and choose the Say Hello button, the Result field displays "Hello World" and the name you have
entered.

To reach this goal, you will proceed as follows:

1. You will first create a new Application Designer project.

2. You will then use Application Designer's Layout Painter to create the following layout:

28 Natural for Ajax

About this Tutorial

- natpage
- [T titlebar (Hello Woaorld!)
- [header
= button (Say Hella)
- pagebody
=FIIlitr
=+ hdist (100%.)
2] icon
=" rowarea (Input Area)
= IIlitr
A label (Your Nare, 100)
I field (name, 200)
=" rowarea (Output Area)
=Ll
A label (Result, 100}
T field (result, 200}
1 wvdist (100)
LIt
A label (Input your name and press the 'Say Hello' button.)

statushar

This corresponds to the following XML layout:

<?xml version="1.0" encoding="UTF-8"7>
<natpage natsource="HELLO-A">
<titlebar name="Hello World!">
</titlebar>
<header withdistance="false">
<button name="Say Hello" method="sayHello">
</button>
<{/header>
<pagebody>
<Gtr takefullwidth="true">
<hdist width="100%">

</hdist>
<icon image="../cisdemos/images/hello.gif">
</icon>
</itr>
<rowarea name="Input Area">
Gitr>
<Tabel name="Your name" width="100">
</label>
<field valueprop="name" width="200">
</field>
</itr>
<{/rowarea>
<rowarea name="Qutput Area">
<Gtr>

Natural for Ajax 29

About this Tutorial

<label name="Result" width="100">
</label>
<field valueprop="result" width="200" displayonly="true">
</field>
</itr>
</rowarea>
<vdist pixelheight="100">
</vdist>
<Gtr>
<label name="Input your name and press the 'Say Hello'
button." asplaintext="true">
</Tabel>
</itr>
</pagebody>
{statusbar withdistance="false">
<{/statusbar>
</natpage>

When you save your layout for the first time, an intelligent HTML page and the Natural adapter
for this page are generated.

. Before you can start coding, you have to make specific definitions in your development

environment (this tutorial assumes that you are using Natural Studio as your development
environment).

. You will import the generated Natural adapter into your Natural library

. You will then create the main program which will use the adapter to display the page and which

will handle the events that occur on the page, for example, when you choose the Say Hello
button of your application.

You can now proceed with your first exercise: Starting the Development Workplace.

30

Natural for Ajax

7 Starting the Development Workplace

This tutorial assumes that you have installed Natural for Ajax as described in the Installation
section.

»F|IE 7.1. To start the development workplace

1 Make sure that your application server is running.

2 Invoke your browser and start the development workplace with the following URL:

http://<host>:<port>/cisnatural

where <host> is the name of the machine on which your application server is installed and
<port>is the port number of your application server.

B 7EE: If you have not defined another port number during installation, the default port

number is "8080".

The development workplace is now shown in your browser.

31

Starting the Development Workplace

'. 3
g Development Workplace

Application Designer

0 OEE

| Tools & Dacumentation

= bevelopment Toals
=] Project Manager
=] Layout Manager
= Style Sheet Editor
=] Language Manager
|:| Lit=ral Translstor
= waR Packager
[Corntral Editor
E Manitoring
= Layout Check
=] Matural Tools APPLICATION DESIGNER
=] Map Converter Viersion 2.4
[=] Map Convartar Extension API
H Conversion Rules

' Copyright @ 2005 - 2008 Software AG, Darmstadt, Germany
E Canversion Logs and/or Saftware &G USA, Inc., Restan, VA, Usited States of America,
=1 pesformance Toals and./or thew suppliers,
— AL rights resereed,
[Start/Stop Trace
[= Execute Trace
=) Developar Docneants
|:| iJnline Documsntation

HTHLBasedGUL
njzdemos
njEMapconyerter

You can now proceed with the next exercise: Creating a Project.

32 Natural for Ajax

8 Creating a Project

In the Application Designer environment, layouts are structured in so-called application projects.
In the development workplace, you see the existing projects on the left. For each project, there is
a tree of layout definitions that you can display when you choose the button containing the project

name. For example:

Tools & Documentation
cisdernos
cisnatural

HTMLE asedGUI

njxdemos

D Mew Layout...

Refresh View

) Preferences

-1 Lavaouts
=[] {default package)

O-menu
calculator
complexData
ctrlactivex
ctributtonlist
ctrlclienttree
ctrlcombodyn
ctrlcontrolgrid
ctridlimenu

For this tutorial, you will now create a project with the name "cisnatfirst".

33

Creating a Project

»=F & 8.1. To create a project

Choose Tools & Documentation to display the list of development tools.

Choose Project Manager in the tree.

A list of existing application projects is now shown on the right.

Choose the New button which is located below the list of application projects.

The following is now shown:

Create Mew Application Project -
Application Project

Create

Please note: you have to create a context root inside your servlet
engine! The name of the context root is the name of the application
project. In the native Application Designer environment this is done
automatically by restarting the Server.

Enter "cisnatfirst" as the name of your project and choose the Create button.
Your new project is now shown in the list of existing application projects on the right.

The left side, which shows buttons for all existing projects, now also shows a button for your
new project.

You can now proceed with the next exercise: Getting Started with the Layout Painter.

34

Natural for Ajax

9 Getting Started with the Layout Painter

= Creating a New Layout

= Elements of the Layout Painter SCrEENcouiiiiiiiii e

= Previewing the Layout
= Viewing the XML Code

35

Getting Started with the Layout Painter

The Layout Painter, which can be accessed from the development workplace, is used to write the
page layout. This is an Application Designer application itself.

Creating a New Layout

You will now create a layout which is stored in the project you have previously created.

»=F|IE 9.1. To choose a layout template

1 Choose the button for the project cisnatfirst.

The list of layout nodes inside the tree will be empty at the beginning:

cisnatfirst

D New Layout,.,
Refresh View
{3 Preferences
- |:| Layouts
-] (default package)

2 Choose New Layout... in the tree.

The following dialog appears.

MName new 1. xml

-- Web Page Dialog

Login
Page

Absence
Request

Invoice

Meeting
Agenda

2|

HTHML Page

1)

36

Natural for Ajax

Getting Started with the Layout Painter

3 Enter "helloworld.xml" in the Name field.

This is the name of your layout definition.

4 Select the Natural Page tab at the bottom of the dialog.

-- Web Page Dialog

Hame helloworld.=ml

[@ Natural || =% Natural
Map Converker

Matural Page
Al i

HTML Page Workplace WSDL Page XCI Page Natural Page PDF Output 4)

5 Select the template for the Natural page (when you move the mouse over this template, the
tool tip "Natural Page" appears).

The main screen of the Layout Painter appears:

Natural for Ajax 37

Getting Started with the Layout Painter

|Layout: helloworld.xmi £3

Hormas Edit Insert Tools Extensions M | ﬂa]
|___ Hew Form = [Span ¥ Protocol ¥ Log * ®ML Scharma (X50)
! Save As T Sarvar Log ¥ Praferences =
Fila Log Configuration
= _-'I Page
Etpaqe = Title Bar =
+ | titlebar (New Matural Page) — el
+ = header ~ Page Header
| pagebody T Page Body
|| statusbhar L] status Bar
. E +« & 1 o = Double Line Manu
=¥ Tab Strip Seledion
Tab Saelection
'29 Tirner e
| internal Popup Pag
boi
Cantalnar
Controls
Gride/ Tress
wab 2.0/ Mashup
= Advanced
qip Matural Extensions

= e file helloworld.xml 1s stored in the /xml directory of your project.
B The file helloworld.xml i d in the /xml di y of your proj

Elements of the Layout Painter Screen

The Layout Painter screen is divided into several areas:

¥ Layout Area (left side)
This area consists of a layout tree and a properties area.

The layout tree contains the controls that represent the XML layout definition. You drag these
controls from the controls palette into the layout tree. Each node in the layout tree represents
an XML tag.

In the properties area below the layout tree, you specify the properties for the control which is
currently selected in the layout tree.

38 Natural for Ajax

Getting Started with the Layout Painter

¥ Preview Area (middle)
The preview area shows the HTML page which is created using the controls in the layout area.
This page is refreshed each time, you choose the preview button (see below).

¥ Controls Palette (right side)
Each control is represented by an icon. A tool tip is also provided which appears when you
move the mouse pointer over the control. This tool tip also displays the XML tag which will be
used in the XML layout.

The palette is structured into sections, where each section represents a certain type of controls.

Previewing the Layout

The layout tree inside the Layout Painter already contains some nodes that were copied from the
template that you chose in the dialog in which you specified the name of the page. To see what
the page looks like, preview the layout as described below.

» =& 9.2. To preview the layout

B Choose the following button which is shown at the top of the Layout Painter.
e

The preview area is updated and you see the page. The page already contains a title bar, a
header containing an Exit button, the page body and a status bar.

Natural for Ajax 39

Getting Started with the Layout Painter

(Preview &
Mew Matural Page &3

The preview area is a sensitive area. When you select a control in the preview area (for example,
the title bar), this control is automatically selected in the layout tree.

Viewing the XML Code

When creating the layout, you can view the currently defined XML code.

» I8 9.3. To view the XML code

B From the Edit tab of the Layout Painter, choose XML.

A dialog box appears. At this stage of the tutorial, it contains the following XML layout
definition for the nodes which were copied from the template.

<natpage natsinglebyte="true"
xmins:njx="http://www.softwareag.com/njx/njxMapConverter">
<titlebar name="New Natural Page">
</titlebar>
<header withdistance="false">
<putton name="Exit" method="onExit">
</button>
</header>
<pagebody>

40 Natural for Ajax

Getting Started with the Layout Painter

</pagebody>
{statusbar withdistance="false">
</statusbar>

</natpage>

You can now proceed with the next exercise: Writing the GUI Layout.

Natural for Ajax 41

42

10 Writing the GUI Layout

= Specifying the Properties for the Natural Pageoooiiiiiiiiii e 44
= Specifying @ Name for the Title Barooviiiiiiie s 45
B UsINg the Property EItOr ... 46
= Specifying a Name and Method for the BUtONeeiiiiiiiiii 48
= Adding the INput and QUIPUL AFBAScoiiiiiiiie e 48
B AAAING T8 IMBGE ..t 52
m Adding @ HOMZONTAl DISTANCEuuviiiiiiiiii s 52
m Adding an INSErUCHIONEI TEXEoeiiiiiiiee e 53
® Adding @ VertiCal DISTANCEviiiiiiiie e 54
B SAVING YOUE LAYOULeeiiiiiec ettt e ettt e e e e et e e e e e e e s st raaeeeae s 54

43

Writing the GUI Layout

You will now create the layout for your [Hello World!] application. When you have completed
all exercises in this &, the layout should look as shown below and the XML code should be the
same as shown in the section About this Tutorial.

- @ natpage
- [ttebar (Hello Warld!)
- header
= button (Say Hello)
-] pagebaody
LIt
=+ hdist {100%)
=l icon
=" rowarea (Input Area)
- Lititr
A label (Your Name, 100)
T field (name, 200)
- rowarea (Output Area)
|
A label (Result, 1007
I field (result, 200}
1 wdist (100)
=FIIlitr
A label (Input your name and press the 'Say Hello' button)
[| statusbar

Q B> b: Preview the layout and view the XML code each time you have completed an

exercise. If the system finds some wrong or missing definitions while generating the preview
page, there will be a corresponding message in the status bar. From the Home tab of the
Layout Painter, choose Protocol to get more information about these problems.

Specifying the Properties for the Natural Page

You will now specify the following for the Natural page:

¥ Name for the Natural Adapter (natsource)
The value in the property natsource defines the name of the adapter. The adapter is a Natural

object that your application will use to communicate with the page. It will be generated when
you save the page layout.

If you do not specify a value for natsource, the name that you have specified for the layout
(without the extension ".xml") will be used as the name for the Natural adapter. If you want to
use the adapter in a development environment other than Natural for Eclipse, you must make
sure that the resulting name matches the naming conventions for Natural object names.

44 Natural for Ajax

Writing the GUI Layout

¥ Handling of Strings (natsinglebyte)
Using the property natsinglebyte, you can specify how the strings displayed on this page are
to be handled in the Natural application. Natural knows two types of strings: Unicode strings
(format U) and code page strings (format A). By default, the strings displayed in web pages are
mapped to Unicode strings in Natural. For this tutorial, you will specify that code page strings
are to be used. Therefore, you will set the property natsinglebyte to "true".

If you do not specify a value for natsinglebyte or when you set it to "false", Unicode strings
will be used.

»FIE 10.1. To specify the properties for the Natural page

1 In the layout tree, select the node natpage.

The properties for this control are now shown in the properties area at the bottom.

2 Specify the following properties:

Property Value

natsource HELLO-A

natsinglebyte|true

Specifying a Name for the Title Bar

You will now specify the string "Hello World!" which is to appear in the title bar of your application.

»=F[E 10.2. To specify the name for the title bar

1 In the layout tree, select the node titlebar (New Natural Page).

The properties for this control are now shown in the properties area at the bottom. You can
see the default entry "New Natural Page" for the name property.

2 Specify the following property:

Property | Value

name |Hello World!

When you click on the layout tree, the node in the layout tree changes to titlebar (Hello
World!).

7EE: Properties that are left blank are not shown in the XML code.

Natural for Ajax 45

Writing the GUI Layout

Using the Property Editor

You can also specify the property values using the Property Editor. In this case, you can access

detailed help information on each property.

» £ 10.3. To use the Property Editor

1

2

Select the control in the layout tree for which you need help, for example, the titlebar (Hello
World!) node.

Kl

From the Edit tab of the Layout Painter, choose Property Editor.

_

IE| natpage
+ T titlebar (Hello Waorld!)
= header
+ | pagebody
[_| statushar

Ttrdd

The following dialog appears.

k4

46

Natural for Ajax

Writing the GUI Layout

A TITLEBAR -- Web Page Di... [

Basic
Basic properties for this control,

name Hello Warld! | | Basic
Binding

textid e

withclose b

align b

image

helpid

titlestyla A

pixelheight M

straighttext b

closetitle ﬂ

Click onto a name of an property to see a help text

Back || Mext | | | Finish || Cancel

The properties of the control are listed.

3 Click on the name of a property to display detailed information on this property. This
information is shown below the list of properties.

4 Choose the Finish button to close the dialog.

Any changes you have applied in the dialog will be saved.

Natural for Ajax 47

Writing the GUI Layout

Specifying a Name and Method for the Button

You will now specify the string "Say Hello" which is to appear on the button. And you will specify
the name of the method that is to be invoked when the user chooses this button.

»£IE 10.4. To specify the name and the method for the button

1 In the layout tree, open the header node.

i 7EE: By clicking the icon of a node, you hide or expand the node's subnodes.

You can now see the entry for the button with the default name "Exit".
2 Select the node button (Exit).
3 Specify the following properties:

Property |Value

name |Say Hello

method |sayHello

The method needs to be programmed in the adapter. This will be explained later in this
tutorial.

Adding the Input and Output Areas

The input and output areas in this tutorial are created using Row Area controls. These controls
can be found in the Container section of the controls palette.

Each row area will contain an Independent Row control which in turn contains a Label and a
Field control. These controls can be found in the Controls section of the controls palette.

For adding controls to your layout, you drag them from the controls palette onto the corresponding
tree node in the layout tree. This is explained below.

»=F[E 10.5. To create the input area

1 Open the Container section of the controls palette.

48 Natural for Ajax

Writing the GUI Layout

When you move the mouse over a control, a tool tip appears which also displays the control
name which will be used in the XML layout. For example:

Page
Container
Independent Row =
Table Row
#=+ Horizontal Distance
:I: WVertical Distance

Eow Area

- Collpow Area (ROWAREA)
“% Row Area With Hea

il gras Header

Area Body

2 Drag the Row Area control from the controls palette onto the pagebody node in the layout
tree.

The row area is added as a subnode of the pagebody node. The new subnode is automatically
selected so that you can maintain the properties of the row area directly in the properties area.

3 Specify the following property:

Property | Value

name |Input Area

4 Drag the Independent Row control from the controls palette onto the rowarea (Input Area)
node in the layout tree.

Natural for Ajax 49

Writing the GUI Layout

When you drop information into the tree, the system will sometimes respond by offering a
context menu with certain options about where to place the control. In this case, the following
context menu appears.

-] pagebody
= Add as Subnode

1

sta

[

&dd as preceding Node
+ Add as subseqguent Mode

| 7EE: When you move the mouse outside the context menu, the context menu
disappears. The control is not inserted in this case.

5 Choose the Add as Subnode command.

The control is now inserted below the rowarea (Input Area) node. The new node is shown
as itr.

6 Open the Controls section of the controls palette.

7 Drag the Label control from the controls palette onto the itr node you have just inserted and
specify the following properties:

Property | Value

name |Your Name
width (100

8 Drag the Field control from the controls palette onto the itr node you have just inserted.

A context menu appears and you have to specify where to place the control.

- pagebody

- rowarea (Input Area)l
=22 Add as first Subnode

. Ba Add as last Subnode
L statu=oan

9 From the context menu, choose the Add as last Subnode command.

50 Natural for Ajax

Writing the GUI Layout

10 Specify the following properties for the field:

Property Value

valueprop|name

width 200

»F|IE 10.6. To create the output area

B Create the output area in the same way as the input area (add it as the last subnode of the
pagebody node), with the following exceptions:

Row Area

Specify a different value for the following property:

Property | Value

name |Output Area

Label

Specity a different value for the following property:

Property | Value

name |Result

Field

Specify different values for the following properties:

Property Value

valueprop |result

displayonly|true

J

X To display the displayonly property, choose the Appearance tab at the

bottom of the properties area. You can then select the required value from a drop-
down list box.

Natural for Ajax

51

Writing the GUI Layout

Adding the Image

You will now add the image which is to be shown above the input area. To do so, you will use
the Icon control which can be found in the Controls section of the controls palette.

| 7R The image is provided in Application Designer's /cisdemos/images directory.

»=F[& 10.7. To add the image

1 Drag the Icon control from the controls palette onto the pagebody node in the layout tree.

The icon is added as the last subnode of the pagebody node. It is automatically placed into
an itr (independent row) node.

2 Specify the following property for the icon:

Property | Value

image |../cisdemos/images/hello.gif

3 Select the itr node containing the icon and choose the following button below the layout tree:
T

The selected node is now moved up so that it appears as the first subnode of the pagebody
node.

4 Specify the following property for the itr node:

Property Value

takefullwidth|true

Adding a Horizontal Distance

When you preview the layout, you will see that the image you have just added appears centered.

You will now move the image to the right side of the page. To do so, you will use the Horizontal
Distance control which can be found in both the Controls section and the Container section of
the controls palette.

52 Natural for Ajax

Writing the GUI Layout

»=E|[E 10.8. To add the horizontal distance

1 Drag the Horizontal Distance control from the controls palette onto the itr node containing
the icon.

2 From the resulting context menu, choose the Add as first Subnode command.

The node hdist is inserted into the tree.

3 Specify the following property:

Property | Value

width [100%

Adding an Instructional Text

You will now enter a text which is to appear below the output area and which tells the user what
to do.

To do so, you will once again use the Independent Row control into which you will insert a Label
control.

i A& The Independent Row control can be found in both the Controls section and the
Container section of the controls palette.

»F|IE 10.9. To add the independent row with the label

1 Drag the Independent Row control from the controls palette onto the pagebody node in the
layout tree.

2 From the resulting context menu, choose the Add as last Subnode command.

The node itr is inserted into the tree.

3 Drag the Label control from the controls palette onto the itr node you have just created.

Natural for Ajax 53

Writing the GUI Layout

4 Specify the following properties for the label:

Property Value

name Input your name and press the '‘Say Hello' button.

asplaintext|true

| 7R Go to the Appearance tab to display the property asplaintext.

Adding a Vertical Distance

When you preview the layout, you will see that the text you have just added appears directly
below the output area. You will now move the text 100 pixels to the bottom.

To do so, you will use the Vertical Distance control which can be found in both the Controls
section and the Container section of the controls palette.

» I8 10.10. To add the vertical distance

1 Drag the Vertical Distance control from the controls palette onto the itr node containing the
label.

2 From the resulting context menu, choose the Add as preceding Node command.

The node vdist is inserted into the tree.

3 Specify the following property:

Properties |Value

height (100

Saving Your Layout

If you have not already done so, you should now save your layout.

When you save a layout for the first time, an HTML file is generated (in addition to the XML file)

which is placed into the root directory of your application project. This HTML file is updated each
time you save the layout.

54 Natural for Ajax

Writing the GUI Layout

The Natural adapter is also created when you save your layout for the first time. Later in this
tutorial, you will import this adapter into your Natural library. Your application program will use
the adapter to communicate with the page.

»ZF[E 10.11. To save the layout

B Choose the following button which is shown at the top of the Layout Painter.
=l

You can now proceed with the next exercise: Setting Up Your Development and Runtime
Environment for Natural.

Natural for Ajax 95

56

11 Setting Up Your Development and Runtime Environment

for Natural

Before you start coding, you have to make specific definitions in your Natural environment.

» £ 11.1. To set up your Natural environment

B Set up your Natural development and runtime environment for the required platform as
described in Setting Up Your Environment previously in this documentation.

This tutorial assumes that you use Natural Studio as your development environment.
Make sure to use the names mentioned below.

¥ Development Environment
Create a new Natural library with the name CISHELLO.

¥ Runtime Environment
When you add the new entry to the configuration file, specify "Execute samples" as the
session name:

{session id="Execute samples" trace="false">

"Execute samples" is the entry that will later be available for selection in the logon page.

You can now proceed with the next exercise: Creating the Natural Code.

of

58

12 Creating the Natural Code

= |mporting the Adapter into Natural

= Creating the Main Program

= Testing the Completed Application

59

Creating the Natural Code

Importing the Adapter into Natural

You will now import the generated adapter into Natural to make it available to your application.

When you saved your page layout, Application Designer created the Natural adapter HELLO-A for
your page. This is the name that you have specified earlier in this tutorial. Your application program
will use the adapter to communicate with the page. The adapter has been generated into the
following directory:

<installdir>/cisnatfirst/nat

7EE: The location of <installdir>depends on your application server environment.

»F|IE 12.1. To import the adapter

Import the adapter source into the Natural library CISHELLO which you have created earlier
in this tutorial. To do so, use either drag-and-drop or the import function of the SYSMAIN
utility.

The adapter looks as follows:

* PAGELl: PROTOTYPE --- CREATED BY Application Designer --- /*<R0>>
* PROCESS PAGE USING "XXXXXXXX' WITH
* NAME RESULT
DEFINE DATA PARAMETER
1 NAME (U) DYNAMIC
1 RESULT (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/cisnatfirst/helloworld"' WITH
PARAMETERS
NAME U'name'
VALUE NAME
NAME U'result'
VALUE RESULT
END-PARAMETERS
*
* T0DO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'sayHello'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL

b S S e

60

Natural for Ajax

Creating the Natural Code

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
/*/*) END-HANDLER
*

*
*
*
*

END /*<<RO>

2 Stow the adapter.

Creating the Main Program

You will now create the main program which uses the adapter to display the page and which
handles its events. The name of the program will be HELLO- P and you will store it in the library
CISHELLO.

This description assumes that you are working with Natural Studio.

»F[E 12.2. To create the main program

1 Make sure that the library CISHELLO is selected.
2 From the Object menu, choose New > Program.

3 Enter a DEFINE DATA statement:

DEFINE DATA LOCAL
END-DEFINE

4 Import the adapter interface into the DEFINE DATA statement:

Place the cursor in END-DEFINE.

From the Program menu, choose Import.

In the resulting dialog box, select the Adapter option button.
Select the object HELLO-A.

Select all importable data fields.

AN

Choose the Import button.

Natural for Ajax 61

Creating the Natural Code

The result is your completed DEFINE DATA statement:

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC

END-DEFINE
5 Enter the PROCESS PAGE statement. The statement uses the page adapter to display the page
in the web browser and to pass data to the controls on the page:
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT
6 Initialize the page data. In the page layout definition, the property name has been bound to
the FIELD control with the label Your Name. For the property name, a parameter NAME has
been generated into the parameter data area of the adapter. Thus, in order to preset the FIELD
control, we will preset the variable NAME with the value "Application Designer".
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := 'Application Designer'
PROCESS PAGE USING "HELLO-A'
WITH NAME RESULT
7 Handle the events that can occur on the page. A template for the event handler code has been
generated as a comment block into the page adapter HELLO- A. List the adapter HELLO-A and
copy this comment block into your main program and terminate the program with an END
statement:
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := "Application Designer’
PROCESS PAGE USING '"HELLO-A"
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT
VALUE 'nat:page.end’
62 Natural for Ajax

Creating the Natural Code

/* Page closed.
IGNORE
VALUE 'sayHello'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

After the page has been displayed, the user raises events on the page by using the controls.
The name of the raised event is then contained in the system variable *PAGE - EVENT. Depending
on the event, the program modifies the page data, resends it to browser with a PROCESS PAGE
UPDATE FULL statement and waits for the next event to occur.

The predefined event nat : page. end is raised when the user closes the page. The event sayHel10
is raised when the user chooses the Say Hello button. Previously in this tutorial, you have
bound the event sayHe11o0 to this button while designing the page. The NONE VALUE block
should always be defined as above. It contains the default handling of all events that are not
handled explicitly.

8 When the event sayHel10 occurs, we want to display a greeting in the FIELD control with
the label Result. Therefore, we modify the variable RESULT (which is bound to the
corresponding FIELD control in the page layout) accordingly before we resend the page data.

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := "Application Designer'
PROCESS PAGE USING 'HELLO-A"'
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT
VALUE 'nat:page.end’
/* Page closed.
IGNORE
VALUE 'sayHello'
/* TODO: Implement event code.

COMPRESS 'Hello, ' NAME "!' TO RESULT
PROCESS PAGE UPDATE FULL
NONE VALUE

/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Natural for Ajax 63

Creating the Natural Code

The main program is now complete.

If you have not yet saved the program, save or stow it now with the name "HELLO-P".

9 Catalog all modules in the library CISHELLO.

Testing the Completed Application

You will now run the application in your web browser and check whether it provides the desired
result.

The generated HTML file helloworld.html (which is updated each time you save your layout) can
be found within the root of your application project, that is in <instal1dir>/cisnatfirst.

This HTML page has some prerequisites concerning the browser workplace in which it is running.
Therefore, it is per se not usable as a directly accessible page but needs to be embedded into a
frame providing a defined set of functions.

It is necessary to logon to Natural before starting an application. Therefore, Natural applications
are started using a logon page.

»F|IE 12.3. To test the application

1 Enter the following URL inside your browser:

http://1localhost:8080/cisnatural/servlet/StartCISPage?PAGEURL=/cisnatural/NatLogon.htm]

The logon page should now appear.

64 Natural for Ajax

Creating the Natural Code

rCunnectiun details

Session ID: IExecute Samples LI
Host name: Port;
Llser name: Password:

MHatural application:

Matural parameter:

Language: |Eng|i5h ;l

rChange Password -

Mew password:

Fepeat new
password:

Conneckt

If the logon page is not displayed, check the following:

B URLs are case-sensitive. Double-check your input.

¥ Check whether the file NatLogon.html is available in the directory cisnatural.

2 Onthelogon page, select the entry Execute samples from the Session ID drop-down list box.
You have prepared this entry earlier in this tutorial when you have set up the runtime
environment.

3 Provide your user ID and password valid for the machine on which the Natural application
will be running.

4 In the Natural parameters text box, enter the Natural command line which is necessary to
start your application:

STACK=(LOGON CISHELLO;HELLO-P;FIN)
5 Choose the Connect button.

Your application should be started now.

6 Enter your name and choose the Say Hello button.

Natural for Ajax 65

Creating the Natural Code

The page should now successfully [talk] to your adapter.

iqHH!'!'!!IIIIIIIIIIIIIIIIIIIIIIIIIlllllllllllllllllllll!l

Your Mame

Jo

Result

iq!HEEEF!'!!II!I

Hello Warld, Jo 1111

You have now completed this tutorial. See the remaining section of these First Steps for some

background information.

66

Natural for Ajax

13 Some Background Information

= Name Binding between Controls and AdapLerco.vviiiiiiiii
® Data EXchange at RUNTIME ... et e e e e

= Files and their Locations

67

Some Background Information

Name Binding between Controls and Adapter

Which are the critical parts when building the [Hello World!] application?

¥ The NATPAGE control in the layout points to the name of the adapter object (property
natsource).

¥ The FIELD control in the layout points to the property name of the adapter (property valueprop).

¥ The BUTTON control in the layout points to the event sayHel10() of the adapter (property
method).

There is a name binding between the layout definition and its corresponding adapter. This is the
simple and effective approach of the Application Designer's development process: The adapter
represents a logical abstraction of what the page displays. All layout definitions are kept in the
page - all the logic is kept in the adapter. (Or better: behind the adapter. The adapter itself should
only be a facade to the [real] application logic.)

Data Exchange at Runtime

What happens at runtime?

¥ When the user starts a Natural session from the logon page, the Natural program that the user
specified in the command line is started.

¥ The Natural program executes a PROCESS PAGE statement, using an adapter.

™ The PROCESS PAGE statement passes the name of the HTML page to be used and the initial page
data to the browser.

¥ The browser displays the page. JavaScript code on the page distributes the initial data to the
controls.

¥ The user provides some input, for example, enters the name. The content change is stored inside
the page. The Natural program is not yet involved.

¥ The user does something which causes a flush of the changes (for example, the user chooses a
button). Therefore, all registered data changes are packaged and are sent through the adapter
to the Natural program, including the information which event has been raised.

¥ The Natural program receives the modified data.
¥ The system variable *PAGE - EVENT receives the name of the raised event.

¥ The event handler in the Natural program modifies the data and resends it to the page using a
PROCESS PAGE UPDATE statement.

B And so forth.

68 Natural for Ajax

Some Background Information

With a standard HTTP connection, only the changed content of the screen is passed when operating
on one page. The layout is kept stable in the browser. Consequently, there is no flickering of the
page due to page reloading.

All steps described in the list above are done completely transparent to your adapter; i.e. you do
not have to cope with session management, stream parsing, error management, building up HTML
on the server, etc. You just have to provide an intelligent HTML page by defining it in the Layout
Painter and an adapter object.

Files and their Locations

Have a look at the files created for your [Hello World!] application and take notice of the
directory in which they are located.

All files are located in the directory <installdir>/cisnatural/cisnatfirst. The <installdir>/cisnatural
directory is the directory of the web application instance. The <instal1dir>/cisnatural/cisnatfirst
directory is the directory that has been created for your new project.

¥ The XML layout definition is kept in the <installd1ir>/cisnatural/cisnatfirst/xml directory.

¥ The generated HTML page is kept directly in the project directory. There are also some other
files inside this directory that start with "ZZZZ". These files are temporary files used when
previewing pages inside the Layout Painter.

¥ The generated Natural adapters are kept in the directory <installdir>/cisnatural/cisnatfirst/nat.

¥ In the directory <installdir>/cisnatural/cisnatfirst/accesspath, [access restriction] files are
generated. If you view these files inside a normal text editor (such as Notepad), you see that
one file is maintained for each page; it holds the information about which properties are accessed
by the page.

Natural for Ajax 69

70

14 Developing the User Interface

= Starting the Development WOTKPIACEcoiiiiiiiiii e 72
= Creating an Application Designer ProJECtoiiiiiiiiieiiii e 73
B Creating @ NatUrAl PAgeooiiiiiiie i s 73
= Specifying Properties for the Natural Pageccooiiiiiiiiiii e 74
B DESIGNING T8 PAJEivviiiiiiiieeeeieeee ettt 75
= Binding Properties and MethOdScuuiiiiiii e 75
L oo Yo = = o T | PP 76
B VIEWING the PIOTOCOL ...ttt 76
B SAVING T8 LAYOUL ...ttt 76
B Generating the AaDIer ... e 76
B DAta TYPE MAPPING ...ttt ettt e oottt e e e e e ettt e e e e e et e e e e e e aeea s 77

7"

Developing the User Interface

In the First Steps tutorial, you have developed a small rich internet program step by step. In this
tutorial, you have already performed most of the steps required to develop a rich internet
application.

The general procedure to develop a rich internet application with Natural for Ajax is as follows:

1. Use Application Designer to design the web pages that form the user interface of your
application.

2. Generate a Natural adapter for each page (by saving the page). The adapter is a Natural object
that forms the interface between the application code and the web page.

3. Use one of the Natural tools (Natural Studio or Natural for Eclipse) to write the Natural
application programs that contain the business logic and use adapters to exchange data with
the web pages.

In this &, the first two steps (design and adapter) are explained in more detail. Step 3 (business
logic) is described in the section Developing the Application Code which also addresses advanced
topics that are not covered in the tutorial.

For detailed information on how to use the Application Designer development workplace, see
Development Tools in the Application Designer documentation. The latest version of the Application
Designer documentation is available at
http://documentation.softwareag.com/webmethods/cit_reroute.htm. The information which is
provided below describes the most important differences which pertain to Natural for Ajax.

Starting the Development Workplace

The Application Designer development workplace is the central point for starting tools for layout
development.

»F|IE 14.1. To start the development workplace
1 Make sure that your application server is running.

2 Invoke your browser and start the development workplace with the following URL:

http://<host>:<port>/cisnatural

where <host> is the name of the machine on which your application server is installed and
<port>is the port number of your application server.

| 7R Ifyou have not defined another port number during installation, the default port
number is "8080".

72 Natural for Ajax

http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Creating an Application Designer Project

First you create an Application Designer project using the Project Manager. The project contains
the layouts of the web pages you design, the files that are generated from the layouts and are
required to run your application and additional files that make your application multi language
capable and supply help information. See also Creating a Project in the tutorial.

] 7EE: Detailed information on the Project Manager is provided in the Application Designer

documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

All files in your Application Designer project are stored in one directory on the application server
where Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server:

¥ JBoss Application Server
<installdir>/server/default/deploy/njx<nnn>.ear/cisnatural.war

¥ Sun Java System Application Server
<installdir>/domains/domainl/applications/j2ee-apps/njx<nnn>.ear/cisnatural_war

where <installdir>isthe directory in which your application server is installed and <nnn>is the
current Natural for Ajax version.

Creating a Natural Page

In order to create the layout of your web pages, you use Application Designer's Layout Painter.

] 7AR: Detailed information on the Layout Painter is provided in the Application Designer

documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Add a page layout to your project as described in Creating a New Layout in the tutorial (select
the template for the Natural page).

i

] 7ER: More detailed information on creating a layout is provided in the Application Designer

documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Natural for Ajax 73

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Specifying Properties for the Natural Page

In order to specify generation options for the new page, you specify values for certain properties
that are specific for Natural pages.

To define properties, you select the node natpage in the layout tree of the Layout Painter. The
properties for this control are then shown in the properties area at the bottom. When you select
the Natural tab in the properties area, you can see the Natural-specific properties.

i

The following properties are available for the Natural page:

Property

Description

natsource

Specifies a name for the Natural adapter object that will later be generated from your
page layout. During adapter generation, this name is checked to match the Natural naming
conventions for objects. If you do not specify a name here, the adapter name is taken
from the layout name. This might result in names that are not valid for Natural objects.
These adapters can only be used in Natural for Eclipse.

natsinglebyte

Specifies whether string properties of the page are to be mapped to Unicode strings (U)
or code page strings (A) in Natural. The value "true" means code page strings. The value
"false" means Unicode strings (default).

natrecursion

Properties of controls used in the page might have a recursive structure. These structures
are mapped to multi-dimensional arrays in the Natural adapter. Natural arrays are limited
to three dimensions. Therefore, the recursion depth of these structures can be limited
using this property.

natdc

Specifies the character that is to be used as the decimal character in the format
specifications of variables with decimal format in the parameter data area of the Natural
adapter. For example, if a comma (,) is specified, "(N7,2)" is generated. If a period (.) is
specified, "(N7.2)" is generated. The default is the period (.).

natsss

The controls ROWTABLEAREA2 and MGDGRID support server-side scrolling and
sorting. The corresponding data structures are generated into the parameter data area of
the Natural adapter only if this attribute has been set to true. The default is false. This is
for compatibility with earlier versions.

For the control TEXTGRIDSSS2, the server-side scrolling data structures are always
generated.

xmlns:njx

Internal use only. Do not modify this.

74

Natural for Ajax

Developing the User Interface

Designing the Page

Design your Natural page by dragging controls and containers from the controls palette onto the
corresponding node in the layout tree or to the HTML preview. This has already been explained
in the section Writing the GUI Layout of the tutorial.

B 7EE: More detailed information on defining the layout is provided in the Application

Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Binding Properties and Methods

Many of the controls you use on your page have properties that can be controlled by the application.
Also the controls can raise events that your application may wish to handle. The next step is
therefore assigning identifiers to each of these properties and events under which your application
can later address them. This procedure is called [binding] .

To get an overview which properties and events are bindable to application variables and events,
itis a good idea to select a control in the layout tree and open the Event Editor as described in the
Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

The Event Editor displays only those properties of controls that can be bound to application
variables and events. It indicates also which properties must be bound mandatorily. The usage
and meaning of each of the properties and events is described for each control in the following
sections of this Natural for Ajax documentation:

® Working with Controls

® Working with Grids

® Working with Trees

® Working with Menus

® Non-Visual Controls and Hot Keys

As an example for property and event binding, see the following sections in the First Steps tutorial:

B Using the Property Editor
B Specifying a Name and Method for the Button

Natural for Ajax 75

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

Previewing the Layout

To find out how the current layout definitions are rendered on the page, preview the layout as
described in the Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Viewing the Protocol

The protocol contains warnings and error messages that might occur while you design and preview
your page. For further information, see the Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Saving the Layout

Save the page layout as described in Saving Your Layout in the tutorial.

Other than with Java adapters (which are described in the Application Designer documentation),
you do not use the Code Assistant (which is part of the Layout Painter) to generate adapter code
interactively. For Natural pages the adapter code is generated completely from the page properties
and the property and event bindings that you specified previously. An adapter is generated
automatically when you save the layout for the first time. It is updated each time you save the
layout.

Generating the Adapter

When you save the layout, a Natural adapter is generated according to the following rules:

Location The adapter is generated into the subdirectory nat of your project directory.

The name of the project directory corresponds to the project name. The location of the directory
depends on the application server. See Creating an Application Designer Project.

Name The name of the adapter is determined by the properties you have set. See Specifying
Properties for the Natural Page.

Property For each control property that has been bound to an identifier (as described in Binding
identifiers Properties and Methods) a parameter in the parameter data area of the adapter is
generated.The identifier is therefore validated against the Natural naming conventions for
user-defined variables and translated to upper-case. If an identifier does not comply to these

76 Natural for Ajax

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Developing the User Interface

rules, a warning is generated into the protocol and as a comment into the adapter code.
Additionally, the name must comply to the naming conventions for XML entities. This means
especially that the name must start with a character.

To achieve uniqueness within 32 characters, the last four characters are (if necessary) replaced
by an underscore, followed by a three-digit number.

Event
identifiers

For each event that can be raised by a control on the page, an event handler skeleton is
generated as a comment into the adapter.

3=z, . . .
7EE: Some controls raise events whose names are dynamically constructed at runtime. For

these events, no handler skeleton can be generated. The control reference contains information
about these additional events.

The event identifiers are not validated.

Data Type Mapping

Several Application Designer controls have properties for which a data type can be specified. An
example is the FIELD control. It has a valueprop property which can be restricted to a certain data
type. The data type is used at runtime to validate user input. At generation time (that is, when a
Natural adapter is generated for the page), the data type determines the Natural data format of
the corresponding adapter parameter.

The following table lists the data types used in Application Designer and the corresponding Natural
data formats.

Application Designer | Natural

color A or U (depending on the NATPAGE property natsinglebyte). The string must contain
an RGB value, for instance "#FF0000" for the color red.

date D (YYYYMMDD)

float F4

int 4

long P19

time T (HHIISS)

timestamp T (YYYYMMDDHHIISST)

N n.n Nn.n

P n.n Pn.n

string (default) |A or Udynamic (depending on the NATPAGE property natsinglebyte).

string n Anor Un (depending on the NATPAGE property natsinglebyte).
xs:double F8
xs:byte 11

Natural for Ajax

77

Developing the User Interface

Application Designer|Natural
xs:short 12
78 Natural for Ajax

15 Developing the Application Code

B MPOMtNG the AQADIET ... e 80
m Creating the Main PrOGramc..uiiiiiiiee ettt e e e e e et e e e et e e e neeee s 82
= Structure of the Main PrOGramooiiiiiiiiii et 84
B HaNANG PaGE EVENLS ... 84
= Built-in Events and User-defined EVENLS ... 85
= Sending Events t0 the USer INterfaceoovviiiiiiiii e 85
B USING POP-UP WINGOWS ...ttt nnsnnes 86
B USING NGLUFAI MBDS ...t 88
= Navigating between Pages and Mapscoouuiiiiiiiiiiii e 88
= Using Pages and Maps AREIMALIVEIYvuuerieiieiiiiiiiiiiiiiiviieieie et aeeneeeeee e 89
= Starting a Natural Application from the LOgon Pageocouviiiiiiiiiiiii e 90
= Starting a Natural Application With @ URLooiiiiiiiii e 90

79

Developing the Application Code

Natural for Ajax Tools, which is an optional plug-in for Natural Studio, allows you to use some
of the Natural for Ajax functionality which is described in this & directly from within Natural
Studio. For further information, see Natural for Ajax Tools in the Natural Studio Extensions
documentation which is provided for Natural for Windows.

Importing the Adapter

After having generated the adapter, the next step is making it available to your Natural development
project.

As described previously, the adapter code is generated into a directory in your application server
environment. The way you access the adapter depends on the Natural development tool you use.

The following topics are covered below:

= |mporting the Adapter Using Natural Studio
= |mporting the Adapter Using Natural for Eclipse

Importing the Adapter Using Natural Studio

It is assumed that your development library is located on a Natural development server and that
you have mapped this development server in Natural Studio.

»=F|IE 15.1. To import the adapter from a remote environment

B Use drag-and-drop.
Tl

Remote UNIX environment only: Use the import function of SYSMAIN.
Importing the Adapter Using Natural for Eclipse

It is assumed that you have

¥ installed Natural for Eclipse,
¥ installed Application Designer's Eclipse plug-in,
W created a Natural project in Eclipse,

W established a target for the Natural project (a Natural development server).

80 Natural for Ajax

Developing the Application Code

The Navigator view will then look similar to the following;:

il

»=F|[E 15.2. To import the adapter from a remote environment

1 Proceed as described below to create the Page Layouts folder in your Natural project. This is
the folder where you edit your page layouts with Application Designer.

1. Invoke the Properties dialog for your Natural project.

2. Set the Application Designer properties as follows:

Option Description

Layout Folder Specify the application server directory in which the page layouts of your
project are stored.

Web Server Connection |Specify host name and port number of your application server.

Web Application Specify "cisnatural”.

il

2 Proceed as described below to create an additional folder in your Natural project. This is the
folder in which the generated adapters are located.
1. Select your Natural project, invoke the context menu and choose New > Natural Folder.
2. Expand the resulting dialog by choosing the Advanced button.
3. Specity a folder name of your choice (for example, "Adapters").
4. Enable the Link to folder in the file system check box and specify the application server

directory in which the generated adapters of your project are stored.

Now you have access to your page layouts and adapters in your Natural project.

3 Copy or move the generated adapter from the new folder you have just created into your
Natural source folder.

Natural for Ajax 81

Developing the Application Code

The Navigator view should now look similar to the following (with the new folders for the
page layouts and adapters, and with your adapter in the Natural source folder).

Il

4 Catalog or stow the adapter in the Natural source folder. To do so, you have to upload and
compile the adapter with Natural for Eclipse.

Creating the Main Program

After you have imported the adapter, you create a program that calls the adapter to display the
page and handles the events that the user raises on the page. This program can be a Natural
program, subprogram, subroutine or function. We use a Natural program as example.

The adapter already contains the data structure that is required to fill the page. It contains also a
skeleton with the necessary event handlers. You can therefore create a program with event handlers
from an adapter in a few steps.

Open or list the adapter in the development tool of your choice (Natural Studio or Natural for
Eclipse).

* PAGEI: PROTOTYPE --- CREATED BY Application Designer ---
* PROCESS PAGE USING '"XXXXXXXX' WITH
* FIELD1 FIELDZ?
DEFINE DATA PARAMETER
1 FIELD1I (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/MyProject/mypage' WITH
PARAMETERS
NAME U'fieldl"’
VALUE FIELDI1
NAME U'field2’
VALUE FIELD?2
END-PARAMETERS
*
* T0ODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.

* ok X X of

82 Natural for Ajax

Developing the Application Code

PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
/*/*) END-HANDLER
S

* % % oF of

END
Create a new program, copy the adapter source into the program and then proceed as follows:

B Remove the comment lines in the header.
.(:hangeDEFINE DATA PARAMETER into DEFINE DATA LOCAL.

W Replace the PROCESS PAGE statement with a PROCESS PAGE USING operand4 statement, where
operand4 stands for the name of your adapter.

B Remove the comment lines that surround the DECIDE block.

B Uncomment the DECIDE block.

Your program should now look as follows:

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Stow the program with a name of your choice. The resulting program can be executed in a browser
where it displays the page. However, it does not yet do anything useful, because it handles the
incoming events only in a default way and contains no real application logic.

Natural for Ajax 83

Developing the Application Code

Structure of the Main Program

The main program that displays the page and handles its events has the following general structure:

B A PROCESS PAGE USING statement with the page adapter. The PROCESS PAGE statement displays
the page in the user's web browser and fills it with data. Then, it waits for the user to modify
the data and to raise an event.

™ A DECIDE block with a VALUE clause for each event that shall be explictly handled.

¥ A default event handler for all events that shall not be explicitly handled.
Each event handler does the following;:

W It processes the data the has been returned from the page in the user's web browser.

W It performs a PROCESS PAGE UPDATE FULL statement to re-execute the previous PROCESS PAGE
USING statement with the modified data and to wait for the next event.

The default event handler does not modify the data. It does the following:

W It performs a PROCESS PAGE UPDATE statement to re-execute the previous PROCESS PAGE USING
statement and to wait for the next event.

Handling Page Events

When the PROCESS PAGE statement receives an event, the data structure that was passed to the
adapter is filled with the modified data from the page and the system variable *PAGE-EVENT is
filled with the name of the event. Now, the corresponding VALUE clause in the DECIDE statement
is met and the code in the clause is executed.

The application handles the event by processing and modifying the data and resending it to the
page witha PROCESS PAGE UPDATE FULL statement. Alternatively, it uses the PROCESS PAGE UPDATE
statement without the FULL clause in order to resend the original (not modified) data.

84 Natural for Ajax

Developing the Application Code

Built-in Events and User-defined Events

There are built-in events and user-defined events.
Built-in Events
The following built-in events can be received from the page:

nat:page.end
This event is raised when the user closes the page with the Close button in the upper right
corner of the page, opens another page or closes the web browser.

nat:page.default
This event is sent if the Natural for Ajax client needs to synchronize the data displayed on the
page with the data held in the application. It is usually handled in the default event handler
and just responded with a PROCESS PAGE UPDATE.

Other built-in events can be sent by specific controls. These events are described in the control
reference.

User-defined Events

User-defined events are those events that the user has assigned to controls while designing the
page layout with the Layout Painter. The names of these events are freely chosen by the user. The
meaning of the events is described in the control reference.

Sending Events to the User Interface

The PROCESS PAGE UPDATE statement can be accompanied by a SEND EVENT clause. With the SEND
EVENT clause, the application can trigger certain events on the page when resending the modified
data.

The following events can be sent to the page:

Natural for Ajax 85

Developing the Application Code

nat:page.message

This event is sent to display a text in the status bar of the page. It has the following parameters:

Name (Format |Value

type |A or U|Sets the icon in the status bar ("S"=success icon, "W"=warning icon, "E"=error icon).

short|A or U|Short text.

lTong |A or U|Long text.

nat:page.valueList

This event is sent to pass values to a FIELD control with value help on request (see also the
description of the FIELD control in the control reference). It has the following parameters:

Name |Format |Value

id |A or U|A list of unique text identifiers displayed in the FIELD control with value help. The list
must be separated by semicolon characters.

text|A or U|A list of texts displayed in the FIELD control with value help. The list must be separated
by semicolon characters.

nat:page.xmlDataMode
This event is sent to switch several properties of controls on the page in one call to a predefined
state. The state must be defined in an XML file that is expected at a specific place. See the
information on XML property binding in the Application Designer documentation for further
information.

Name |Format |Value

data|A or U|Name of the property file to be used.

Using Pop-Up Windows

A rich GUI page can be displayed as a modal pop-up in a separate browser window. A modal
pop-up window can open another modal pop-up window, thus building a window hierarchy. If
a PROCESS PAGE statement and its corresponding event handlers are enclosed within a PROCESS
PAGE MODAL block, the corresponding page is opened as a modal pop-up window.

The application can check the current modal pop-up window level with the system variable
*PAGE-LEVEL. *PAGE-LEVEL = 0 indicates that the application code is currently dealing with the
main browser window. *PAGE-LEVEL > 0 indicates that the application code is dealing with a
modal pop-up window and indicates the number of currently stacked pop-up windows.

86 Natural for Ajax

Developing the Application Code

In order to modularize the application code, it makes sense to place the code for the handling of
a modal pop-up window and the enclosing PROCESS PAGE MODAL block in a separate Natural
module, for instance, a subprogram. Then the pop-up window can be opened with a CALLNAT
statement and can thus be reused in several places in the application.

Example program MYPAGE - P:

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE-A'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onPopup'
/* Open a pop-up window with the same fields.
CALLNAT 'MYPOP-N' FIELD1 FIELDZ?
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END
Example subprogram MYPOP - N:

DEFINE DATA PARAMETER

1 FIELDI (U) DYNAMIC

1 FIELDZ (U) DYNAMIC

END-DEFINE

*

/* The following page will be opened as pop-up.
PROCESS PAGE MODAL

*

PROCESS PAGE USING 'MYPOP-A'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

Natural for Ajax 87

Developing the Application Code

END-PROCESS

*

END

Using Natural Maps

Rich internet applications written with Natural for Ajax need not only consist of rich GUI pages,
but may also use classical maps. This is especially useful when an application that was originally
written with maps shall only be partly changed to provide a rich GUL. In this case the application
can run under Natural for Ajax from the very beginning and can then be [GUIfied] step by

step.

Navigating between Pages and Maps

Due to the similar structure of programs that use maps and programs that use adapters, it is easy
for an application to leave a page and open a map, and vice versa. For each rich GUI page, you

write a program that displays the page and handles its events. For each map, you write a program
that displays the map and handles its events. In an event handler of the page, you call the program
that handles the map. Inan [event handler] of the map, you call the program that handles the

page.

Example for program MYPAGE - P:

DEFINE DATA LOCAL
1 FIELDI (U20)

1 FIELDZ (U20)
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
VALUE U'onDisplayMap'
/* Display a Map.
FETCH 'MYMAP-P'
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

88

Natural for Ajax

Developing the Application Code

Example for program MYMAP - P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELDZ2 (U20)
END-DEFINE
*
SET KEY ALL
INPUT USING MAP 'MYMAP'
*
DECIDE ON FIRST *PF-KEY
VALUE 'PF1'
/* Display a rich GUI page.
FETCH '"MYPAGE-P'
NONE VALUE
REINPUT WITH TEXT
'Press PF1 to display rich GUI page.'
END-DECIDE

*

END

Using Pages and Maps Alternatively

An application can also decide at runtime whether to use maps or rich GUI pages, depending on
the capabilities of the user interface. The system variable *BROWSER- 10 lets the application decide
if it is running in a web browser at all. If this is the case, the system variable tells whether the
application has been started under Natural for Ajax and may thus use both maps and pages, or
whether it has been started under the Natural Web I/O Interface and may thus use only maps.

Example:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
IF *BROWSER-I0O = 'RICHGUI'
/* If we are running under Natural for Ajax,
/* we display a rich GUI page.
PROCESS PAGE USING "'MYPAGE'
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end’
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

Natural for Ajax 89

Developing the Application Code

END-DECIDE
ELSE
/* Otherwise we display a map.
SET KEY ALL
INPUT USING MAP 'MYMAP'
DECIDE ON FIRST *PF-KEY
VALUE 'PF1'
/* Map closed.
IGNORE
NONE VALUE
REINPUT WITH TEXT
'"Press PF1 to terminate.'
END-DECIDE
END-IF

*

END

Starting a Natural Application from the Logon Page

In order to start a Natural application from the logon page, you proceed as described in Configuring
the Client which is part of the Natural Web I/O Interface documentation.

Starting a Natural Application with a URL

See Starting a Natural Application with a URL in the section Configuring the Client which is part of
the Natural Web I/O Interface documentation.

90 Natural for Ajax

16

Deploying the Application

Components of a Natural for Ajax ApPICALIONvviiiiii e

Unloading Natural Modules ...

Unloading the User Interface COMPONENESvviiiiiiiiie e

Installing the Natural Modules

Installing the User Interface COMPONENTScovviviiiiiiiiii e

91

Deploying the Application

Components of a Natural for Ajax Application

A Natural for Ajax application consists of two parts that are usually installed on two different
machines.

On one hand, there are Natural modules (adapters, programs, subprograms and other Natural
objects) that are installed on a Natural server. On the other hand, there are page layouts of rich
GUI pages and related files that are installed in a Natural for Ajax environment on an application
server.

Unloading Natural Modules

The Natural modules that belong to your application are contained in one or several Natural
libraries in your Natural development environment. Unload them into a file, using the Object
Handler.

Unloading the User Interface Components

The user interface components of your application are contained in one or several Application
Designer projects in your Natural for Ajax development environment on your development
application server.

All files in your Application Designer project are stored in one directory on the application server
on which Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server:

¥ JBoss Application Server
<installdir>/server/default/deploy/njx<nnn>.ear/cisnatural.war

¥ Sun Java System Application Server
<installdir>/domains/domainl/applications/j2ee-apps/njx<nnn>.ear/cisnatural_war

where <installdir>isthe directory in which your application server is installed and <nnn>is the
current Natural for Ajax version.

The project directory contains a number of subdirectories, only some of which need to be deployed
to the production environment. <projectdir> in the table below stands for the name of your
project directory. Pack the following files and subdirectories into an archive, using an archiving
tool like WinZip or tar.

92 Natural for Ajax

Deploying the Application

File Description
<projectdir>/*.html Generated HTML pages.
<projectdir>/xml/** Page layouts.
<projectdir>wsdl/** Page data schemas.
<projectdir>laccesspath/*.* Page data access definitions.
<projectdir>/multilanguage/*.* | Language-dependent strings.
<projectdir>/help/** Language-dependent help texts.

Installing the Natural Modules

In order to install the Natural modules in the production environment, load them with the Object
Handler.

Installing the User Interface Components

In order to install the user interface components, unpack the previously created archive into a
corresponding project directory in your Natural for Ajax production environment on your
production application server.

Natural for Ajax 93

94

17 Natural Parameters and System Variables

The following Natural parameters and system variables are evaluated in Natural for Ajax
applications and sent to Application Designer:

LI

The character assigned to the DC parameter is used in the representation of decimal fields in
Application Designer.

W DTFORM
This parameter is used for all date fields in Application Designer pages. In your application,
the date is shown according to the setting of the DTFORM parameter.

W < LANGUAGE

Change the language while an application is running. See also Multi Language Management.

See also Support for Special Features.

95

96

18 Multi Language Management

The multi language management is responsible for changing the text IDs into strings that are
presented to the user.

There are two translation aspects:

¥ Allliterals in the GUI definitions of a layout are replaced by strings which are language-specific.
This is based on the multi language management of Application Designer.

H 7EE: Detailed information on the multi language management is provided in the

Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

W Literals that are contained in your application code are handled with the language management
of Natural.

In a Natural for Ajax application, both language management systems are related by common
language codes. The language codes used are those that are defined for the Natural profile
parameter ULANG and the system variable * LANGUAGE.

The Application Designer documentation describes how the text files containing the language-
dependent texts are created and maintained (see the information on writing multi language layouts
at the above URL). For a multi-lingual Natural for Ajax application, the names of the directories
that contain the text files should be chosen according to the Natural language codes, for instance
/multilanguage/4 for Spanish texts.

When an application is started from the Natural logon page (see Starting a Natural Application
from the Logon Page), the user can select the language to be used. Depending on the selected
language, the same (Natural) language code is set up both in Application Designer and in the
Natural session, so that both language management systems are then configured to use the same
language.

97

http://documentation.softwareag.com/webmethods/cit_reroute.htm

Multi Language Management

] 7EE: The language for a session can also be defined in the configuration file sessions.xml,

with the element Tanguage. See Managing the Configuration File for the Session in the Natural
Web I/O Interface documentation.

It is also possible to change the language while an application is running. This is done by setting
the Natural system variable *LANGUAGE in the Natural program. Each time this system variable is

changed, Natural for Ajax changes the language code for the web pages when the next update of
the page occurs.

For compatibility with the predefined multi language directories in Application Designer, the
English and German texts need not be stored in /multilanguage/1 and /multilanguage/2, but can be
contained in /multilanguage/en and /multilanguage/de.

98 Natural for Ajax

19 Support of Right-to-Left Languages

Natural for Ajax supports right-to-left languages and bidirectional text without specific actions

taken by the application. The browser displays and accepts bidirectional text always in the expected
order.

Applications can use the same page layouts both in left-to-right and in right-to-left screen direction.
To switch the screen direction, the statement SET CONTROL is used as follows:

Statement Description

SET CONTROL 'VON' |Sets the screen direction to right-to-left.

SET CONTROL 'VOFF"|Sets the screen direction to left-to-right.
SET CONTROL 'V'

Switches from left-to-right to right-to-left screen direction and vice versa.

99

100

20 Server-Side Scrolling and Sorting

B General INFOrMELIONoiiiiiii e et e e a e e e e 102
= Variants of Server-Side Scrolling and SOrtNGccuviiiiiiiii e 102
= Controls that Support Server-Side Scrolling and SOMINGvviiiiiiie e 104
= Data Structures for Server-Side Scrolling and SOMINGovviiiiiiiiiii e 105
= Server-Side Scrolling and SOMNG iN TrEESvvviviiei i 106
= Events for Server-Side Scrolling and SOMINGooiiiiiiiiii e 107

101

Server-Side Scrolling and Sorting

General Information

It is often the case that a web application has to display an arbitrary amount of data in a grid
control, for instance, the records from a database table. In these cases, it is mostly not efficient to
send all data as a whole to the web client. Instead, it will be intended to display a certain amount
of data to begin with and to send more data as the user scrolls through the page. To support this,
the grid controls in Natural for Ajax support the concept of server-side scrolling and sorting.

Variants of Server-Side Scrolling and Sorting

The following graphic illustrates the different types of server-side scrolling and sorting that are
supported by Natural for Ajax.

i

With respect to server-side scrolling and sorting, the following options can be used:

¥ No Server-Side Scrolling and Sorting
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) as a whole.

Advantage: Neither the web server nor the Natural application are involved in the process of
scrolling and sorting. As long as the user only scrolls and sorts, no round trip from the web
client to the web server or to the Natural server is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

¥ Web Server-Side Scrolling and Sorting (SSS_W)
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) in portions.

Advantage: The Natural application is not involved in the process of scrolling and sorting. As
long as the user only scrolls and sorts, no round trip from the web server to the Natural server
is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

102 Natural for Ajax

Server-Side Scrolling and Sorting

¥ Natural Server-Side Scrolling and Sorting (SSS_N)
The Natural application sends the grid data to the web server in portions. The web server sends
the grid data to the web client (browser) in portions.

Advantage: A round trip between web server and Natural application passes only the visible
data portion.

Disadvantage: The Natural application must support the process of scrolling and sorting with
a specific application logic.

The decision between these options will often depend on the expected data volume. The application
can decide dynamically at runtime which option to use.

The following topics show the difference between these three options

= No Server-Side Scrolling and Sorting
= Web Server-Side Scrolling and Sorting
= Natural Server-Side Scrolling and Sorting

No Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of twenty. The Natural application
sends twenty rows and indicates that no further rows are to be expected (SIZE=0).

il

Step 2: When you scroll up and down, no server round trips to the web server or to the Natural
application are performed.

5]
Web Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
twenty rows and indicates that no further rows are to be expected (SIZE=0).

il

Natural for Ajax 103

Server-Side Scrolling and Sorting

Step 2: When you scroll up and down, the web browser requests additional records from the web
server There are no server round trips to Natural.

5]
Natural Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
five rows and indicates that further rows are to be expected (SIZE=20).

il

Step 2: When you scroll up and down, the web browser requests additional records from the web
server. The web server requests additional records from the Natural application.

il

The Natural application can dynamically decide at runtime which option of server-side scrolling
and sorting it wants to use. This can depend on the number of records contained in a search result.

W If the application does not want to use server-side scrolling and sorting at all, it sends as many
rows to the web browser as the grid is configured to hold, or it sends fewer rows.

W If the application wants to use web server-side scrolling and sorting, it sends all available rows
and sets the SIZE parameter to zero in the data structure that represents the grid in the
application.

W If the application wants to use Natural server-side scrolling and sorting, it sends only part of
the available rows and indicates in the SIZE parameter how many rows are to be expected
altogether.

Controls that Support Server-Side Scrolling and Sorting

The following controls support server-side scrolling and sorting:

B TEXTGRIDSSS2
B ROWTABLEAREA2
® MGDGRID

| 7R For compatibility reasons with earlier versions of Natural for Ajax, you have to set

the natsss property of NATPAGE to true in order to activate server-side scrolling and

104 Natural for Ajax

Server-Side Scrolling and Sorting

sorting for the controls ROWTABLEAREA2 and MGDGRID. If this property is set to true,
for all instances of these grid controls on a page, the necessary data structures are generated
into the Natural adapter interface.

Data Structures for Server-Side Scrolling and Sorting

If you use the TEXTGRIDSSS2 control or if you use the ROWTABLEAREA2 or MGDGRID control
and have set the property natsss to true for the page, the following additional data structure is
generated into the adapter interface for each instance of these controls. This data structure is used
to control the scroll and sort behavior at runtime.

LINESINFO

ROWCOUNT (I4)

SIZE (1I4)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC
TOPINDEX (I4)

N W WM NN

The name of the data structure is derived from the name of the variable that is bound to the grid.
In this example, the variable LINES had been bound to the grid. Therefore, the name LINESINFO
was generated.

With each event that is related to scrolling and sorting, the application receives the information
how many rows it should deliver at least (ROWCOUNT) and the index of the first record to be delivered
(TOPINDEX).

In SORTPROPS, the application receives the information in which sort sequence the records should
be delivered and by which columns the records should be sorted.

In SIZE, the application can indicate whether the delivered amount of rows represents all available
data (SIZE=0, no Natural server-side scrolling), or whether there are more rows to come
(SIZE=total-number-of-records, Natural server-side scrolling).

When Natural server-side scrolling is used, the application will, for instance, hold the available
rows (mostly the result of a database search) in an X-array, sort this X-array as requested and
deliver the requested portion of rows. However, other implementations and optimizations are
possible, depending on the needs and possibilities of the application.

Natural for Ajax 105

Server-Side Scrolling and Sorting

Server-Side Scrolling and Sorting in Trees

The ROWTABLEAREA2 control can also be configured as a tree control, where each row represents
a tree node. In this case, the data structure that supports server-side scrolling contains one more
field, DSPINDEXFIRST.

LINESINFO
DSPINDEXFIRST (I4)
ROWCOUNT (I4)

SIZE (14)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC
TOPINDEX (I4)

DWW NN

The need for this additional control field comes from the fact that a tree can contain hidden items.

The rows sent by the Natural application must always start with an item at level one. The additional
field DSPINDEXFIRST is provided because the visible part of the tree can start at a node with a level
greater than one (a subnode). In DSPINDEXFIRST, the application must indicate the index of the
first visible row within the rows sent from Natural.

106 Natural for Ajax

Server-Side Scrolling and Sorting

Example

il

The top nodes of the tree are open and the user scrolls down as shown below:

il

The Natural application is supposed to send data starting with a top node. In our example, this
is the node named toptext_0. But the first visible child node would be childtext_0.2. This means
that among the sent items, the first three items are hidden. The application sets the value for
DSPINDEXFIRST to "3" when sending the data.

Events for Server-Side Scrolling and Sorting

In order to support server-side scrolling and sorting, an application must handle a number of
related events properly. The events are described with the corresponding controls. Examples on
how to handle the events are provided in the library SYSEXNJX.

Natural for Ajax 107

108

21 Application Modernization

This part describes how to convert a character-based Natural application to a Natural for Ajax
application.

The information in this part is organized under the following headings:

Overview of Conversion Steps

Map Extraction

Map Conversion

Customizing the Map Conversion Process

Code Conversion

¢ € & ¢ @

109

110

22 Overview of Conversion Steps

The conversion of a character-based Natural application to a Natural for Ajax application consists
of several steps as illustrated in the following graphic:

Il

¥ Step 1: Map Extraction
Extracts from each Natural map the information that is required to create a corresponding
Natural for Ajax page. For each map, a map extract file is created. This file is intended as input
for the map conversion.

Required tool: Natural Studio which is part of Natural for Windows.

See Map Extraction for further information.

W Step 2: INPUT Statement Extraction
This step is required for Natural applications that do not use maps, but use INPUT statements
for the dynamic specification of the screen layouts.

Extracts from each INPUT statement in the source code the information that is required to create
a corresponding Natural for Ajax page. For each INPUT statement, a map extract file is created.
This file has the same format as a map extract file created by the map extraction process, and it
is also intended as input for the map conversion.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.

¥ Step 3: Map Conversion
Processes the map extract files and creates the corresponding Natural for Ajax pages.

Required tool: Map Converter which is part of the Application Designer development workplace
contained in Natural for Ajax.

See Map Conversion and Customizing the Map Conversion Process for further information.

M

Overview of Conversion Steps

¥ Step 4: Code Conversion
This step requires that the Natural for Ajax pages have already been created.

Modifies the application code in such as way that it can use the newly created Natural for Ajax
pages. The application can still run in a terminal, in the Natural Web I/O Interface client or in
batch as before. But it can now also run in a Natural for Ajax session with the new Natural for
Ajax pages.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.
Code conversion can also be performed manually. See Code Conversion for further information.

The resulting Natural for Ajax application mimics the character-based application. The user
interface is not restructured in the sense that several maps are combined into a single page or that
complex maps are split into several separate pages. This kind of restructuring is not part of the
conversion, but of the normal development of a Natural for Ajax application.

112 Natural for Ajax

23 Map Extraction

B GENeral INfOrMELIONeeiie e ettt 114
m Using Natural for AJaX TOOISceivieiieeiiiii ettt e e e e e e e e e nnaee e e e 114
B USING the MASS FUNCHON ...t 114
B LOCAtON OF tNE FIIES ... e 114

13

Map Extraction

General Information

The Map Extractor is the first tool that is used in the process of converting a map-based application
to a Natural for Ajax application. It analyzes the code of a Natural map and creates from each map
a file that contains information about the map, the so-called [map extract file] .

The map extract files have the extension .njx and are not human-readable. They are intended as
input for the second step of the process, the map conversion.

The Map Extractor is used only to process character maps. GUI elements contained in maps are
not extracted.

Using Natural for Ajax Tools

The map extract files can be created using Natural for Ajax Tools, which is an optional plug-in for
Natural Studio. See Using the Map Extractor in the Natural Studio Extensions documentation which
is provided for Natural for Windows.

Using the Mass Function

For mass processing of maps, the Natural program MAP2NJX is provided. The program is delivered
in the plug-in library SYSPLNJX.

MAP2NJX is working only on the local environment. It is called in the following way:

MAP2NJX Tibrary-name map-name

In the parameter map -name, the asterisk (*) notation can be used.

Location of the Files

The location of the map extract files depends on the settings in the configuration file
ConfigNJXPLG.dat (see Configuring the Servers in the Natural Studio Extensions documentation which
is provided for Natural for Windows).

If an application server and a Natural Web I/O Interface server has been specified for the active
environment, and if a file-system path to the application server environment has been specified,
and if an Application Designer project has been created for the current library, and if this Application

114 Natural for Ajax

Map Extraction

Designer project contains a nat subdirectory, then the Map Extractor writes the resulting map
extract files to the nat subdirectory of this Application Designer project.

If the above information is not available for the active environment, the Map Extractor stores the
files as follows:

W If the active environment is the local environment, the files are stored in the res subdirectory of
the current library.
W If the active environment is a remote environment, the files are stored in the res subdirectory of

the private library of the user in the local environment.

The names of the map extract files are derived from the map names (for example, MYMAP . NSM results
in MYMAP . NJX).

Natural for Ajax 115

116

24 Map Conversion

B General INFOrMELIONoiiiiiii e et e e a e e e e 118
I 1] oSO RSOOR TP PPPPP 119
B USING the MaP CONVEIET ...t e 121
B Using the EdItor EXIENSIONeeiiiii ittt a e 124
m Using the Conversion RUIES TOOIcoiiiiiiiiiiiiie e 125
= Using the Conversion LOGS TOOIuuiiiiiiiiie et 126

"7

Map Conversion

General Information

After the Map Extractor or the INPUT Extractor has been used to create extract files from maps,
the Map Converter is the next tool used in the process of converting a map-based application into
a Natural for Ajax application. The Map Converter processes the map extract files that were created
by the Map Extractor or the INPUT Extractor. It analyzes the map extract files and creates a Natural
for Ajax page layout from each map extract file. Controls on the map are converted to controls on
the page. Many features of the original map are converted to features of the page.

By default, the Map Converter uses a predefined set of page templates and conversion rules that
control the conversion process. The templates and the conversion rules can be modified or extended
to adapt the converter to the requirements of a specific conversion project. With the advanced
option to program own conversion handlers, the Map Converter provides additional flexibility
and extensibility.

The Application Designer development workplace contained in Natural for Ajax provides additional
Natural tools for map conversion:

i

The following Natural tools can be invoked from the navigation frame:

¥ Map Converter
This tool is used for mass generation of layouts. For quick start with this tool, see First Steps
below. For detailed information on all options of this tool, see Using the Map Converter.

You can also generate a single layout while designing a page in the Layout Painter. An editor
extension is available for this purpose. See Using the Editor Extension for further information.

¥ Conversion Rules
You can use this tool to copy the conversion rules from other projects to the current project. See
Using the Conversion Rules Tool for further information.

¥ Conversion Logs
You can use this tool to view or delete the log files that have been created during the conversion.
See Using the Conversion Logs Tool for further information.

118 Natural for Ajax

Map Conversion

First Steps

We start with a simple map like the one below and we suppose that you have already created a
map extract file with the Map Extractor. The map is contained in a Natural library named TESTCONV.
The map extract file has been stored in the nat subdirectory of an Application Designer project
with the corresponding name testcono.

il

»=F|[E 24.1. To create a Natural for Ajax page layout from an extract file

1
2

Open the Application Designer development workplace.

In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Map Converter.

The Map Converter is opened.

i

Select the project in which you want to store the page layouts that are to be generated. That
is, select your project testconv.

Select the conversion rules file to be used. That is, stick with the rules file convrulesDefault.xml
to begin with.

Select the map input folder, that is, the folder in which your map extract files are stored.
Select a map extract file.

From the Map Conversion menu, choose Show Map to display the content of the map extract
file in XML format.

F izl

Choose the icon that is shown in the Select Natural Maps header.

il

From the Map Conversion menu, choose Preview Page Layout to display the resulting page
layout as it would turn out using the selected conversion rules file.

Natural for Ajax 19

Map Conversion

10

11

12

13

The right side shows a preview of the generated page layout. The Conversion Results area
shows a status message which informs either about successful conversion or an error that has
occurred.

il

From the Map Conversion menu, choose Preview in Browser to display the resulting page
layout in a separate browser window.

il

After having previewed the conversion result for one or several maps in your project, choose
Generate All Layouts from the Map Conversion menu to generate page layouts for all map
extract files contained in the selected folder.

il

For now close the Map Converter and switch to the project testconv to continue working on
the generated page layout.

il

You might wish to assign a different name for the adapter to be generated for the page, change
other properties or modify the layout in any other way. Then save the layout and generate
the adapter as usual.

When you import the adapter into your Natural library, you will notice that the parameter
data area is the same as in the original map. This is the case even though the map uses system
variables and variables with special characters. The necessary translation is done inside the
generated adapter code and does not influence the application code.

Now create a main program for the adapter and run it in the browser.

il

You may have noticed the following effects of the applied conversion rules:

¥ The title in the first row of the map has been placed into the caption of the page and the
asterisks have been stripped off. Your application will quite surely have a different layout
of the map titles. The conversion rules can therefore be adapted to accommodate the needs

120

Natural for Ajax

Map Conversion

of your application, and the rule that identifies the title and places it into the caption is just
a simple application of customizing the conversion rules.

¥ The literals such as "F4 Delete" on the map have each been turned into a button control and
a label. This is also due to a sample conversion rule contained in the default conversion
rules.

¥ The date field has been converted to a field control with the data type "date". This enables
the user to select the date with the Date Input dialog box.

The full concept of customizing the Map Converter is described in Customizing the Conversion
Process.

Using the Map Converter

The Map Converter is used for mass generation of layouts.

In the First Steps, you have already learned how to use the Map Converter. The topics below
provide detailed descriptions of the different options and menu commands that are available in
the Map Converter:

= |nvoking the Map Converter

= Setting the Conversion Options

= Previewing/Generating a Single Layout
= Generating All Layouts

= Viewing the Conversion Results

= Refreshing the Display

Invoking the Map Converter

When you invoke the Map Converter, the following dialog appears.

il

»=F & 24.2. To invoke the Map Converter

B In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Map Converter.

Natural for Ajax 121

Map Conversion

Setting the Conversion Options

In order to start the generation, you have to select a project, a conversion rules file and the folder
containing your map extract files. The following options are available for this purpose:

Project
This drop-down list box provides for selection all Application Designer projects that are
currently defined.

Select the project in which you want to store the page layouts that are to be generated.

Use default rules
When this option button is selected, the default conversion rules and related templates are
used. These rules are stored in the subdirectory convrules of the project directory njxmapconverter.

Use project rules
When this option button is selected, the project-specific conversion rules are used. These rules
are contained in the subdirectory convrules of your project directory.

When your project does not yet have any project rules and you select this option button, the
Conversion Tool is automatically shown in a dialog. You can then copy the default conversion
rules and templates to the currently selected project. It is recommended that you copy all or
part of the default rules and related templates into your project and adapt the copies to the
requirements of your application. See Using the Conversion Rules Tool for further information.

You can also invoke the Conversion Tool manually. To do so, you choose Copy Rules from
the Conversion Rules menu.

Rules
This drop-down list box provides for selection all available conversion rules files. When the
Use default rules option button is selected, the default rules files are shown. When the Use
project rules option button is selected, the rules files in the project directory are shown.

Select the conversion rules file that is to be used.

You can display the XML code of the selected conversion rules file in a dialog. To do so, you
either choose the icon that is shown in the Select Conversion Rules header or you choose
Show Rules from the Conversion Rules menu.

Map input folder
Specify the folder which contains the map extract files that are to be processed.

Select map
Optional. This drop-down list box provides for selection all map extract files that are stored
in the currently selected map input folder.

For mass generation, it is not required that you select a map. However, you can select a map,
for example, if you want preview the layout of the resulting Application Designer page as it
would turn out using the selected conversion rules file.

122 Natural for Ajax

Map Conversion

You can display the XML code of the selected map extract file in a dialog. To do so, you either
choose the icon that is shown in the Select Natural Maps header or you choose Show Map
from the Map Conversion menu.

Previewing/Generating a Single Layout

When you choose one of the following commands from the Map Conversion menu, the currently
selected conversion rules file and the currently selected map extract file are used for preview or
generation of a single layout from a single map extract file:

Preview Page Layout
Shows a single page layout in the preview area of the Map Converter (on the right side).

Preview in Browser
Shows a preview of a single page layout in a separate browser window.

Generate Selected Layout
Generates a single page layout. The resulting file is stored in the currently selected project.

Generating All Layouts

When you choose the following command from the Map Conversion menu, the currently selected
conversion rules file and all map extract files in the selected map input folder are used as input
for the mass generation:

Generate All Layouts
Generates all page layouts (mass generation). The resulting files are stored in the currently
selected project.

Viewing the Conversion Results

After a preview or generation, you can either choose the icon that is shown in the Conversion
Results header or you choose the following command from the Map Conversion menu:

Show Layout XML Definition
Shows the XML layout definition for the page which was last generated or previewed in a
dialog.

When the last generation was a mass generation, an additional drop-down list box is shown
under Conversion Results. This drop-down list box provides for selection the names of all
generated page layouts. When you choose the Show Layout XML Definition command (or
the corresponding icon), the XML layout definition for the page which is currently selected in
the drop-down list box is shown in a dialog.

Natural for Ajax 123

Map Conversion

il

After a mass generation, an additional icon for previewing a generated page layout is shown
in the Conversion Results header. When you choose this icon, the layout for the page which
is currently selected in the drop-down list box is shown in the preview area of the Map
Converter (on the right side).

When you choose the Show Logs command from the Conversion Logs menu, the Conversion
Logs tool is shown in a dialog. For further information on the options in this dialog, see Using the
Conversion Logs Tool.

Refreshing the Display
For example, when you have created a new project which is not yet visible in the Map Converter,

you can choose the Refresh command from the View menu of the Map Converter. This reloads
all projects, conversion rules and map extract files and resets the contents of the dialog.

Using the Editor Extension

An editor extension, the Map Conversion Assistant, is used to generate a single layout while
designing a page in the Layout Painter. In this case, you fill an empty layout with the information
from a map extract file.

»ZE|IE 24.3. To add a map to an empty layout using the editor extension

1 Create a new layout using the Natural Map Converter template.

i

2 From the Extensions tab of the Layout Painter, choose Map Conversion Assistant.

The following area is now shown in the Layout Painter.

il

3 Select either the Use default rules option button or the Use project rules option button. See
Setting the Conversion Options for information on these option buttons.

4 Optional. When you choose the Copy Rules button, you can copy the default conversion rules
and templates to the current project. In this case, the Conversion Rules tool is shown in a

124 Natural for Ajax

Map Conversion

10

11

dialog. For further information on the options in this dialog, see Using the Conversion Rules
Tool.

From the Rules drop-down list box, select the conversion rules file that is to be used. The
rules files that are provided for selection in this drop-down list box depend on the setting of
the option buttons (either the default rules or the project rules are shown).

Optional. When you choose the Show Rules button, the XML code of the selected conversion
rules file is shown in a dialog.

In the Map input folder text box, specify the folder which contains the map extract files.
From the Select map drop-down list box, select the map that is to be used.

The XML layout definition of the selected map is now shown at the bottom of the Map
Conversion Assistant.

Choose the Add to Page button.

The map description is converted to the corresponding layout elements and these elements
are added to the current layout, which is now shown in the preview area.

The Add to Page button is now dimmed. If you want to remove the elements you have added
to the page, you can choose the Undo Add button.

Optional. When you choose the Show Log button, the Conversion Logs tool is shown in a
dialog. For further information on the options in this dialog, see Using the Conversion Logs
Tool.

Modify the layout as usual.

Using the Conversion Rules Tool

Using this tool you can copy the default conversion rules and templates to a selected project for
modification.

il

» I 24.4. To invoke the Conversion Rules tool

In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Conversion Rules.

EJrEe

When the Map Converter is currently shown, choose Copy Rules from the Conversion Rules
menu.

Natural for Ajax 125

Map Conversion

EJrEe

When the editor extension is currently shown, choose the Copy Rules button.

»=F|I[E 24.5. To copy the conversion rules

1 From the Project drop-down list box, select the project into which you want to copy the
conversion rules.

2 Inthe Conversion Rules box, select the rules file(s) that you want to copy and choose the >
button.

EQrdxe

If you want to copy all files, choose the >> button.

The selected files are shown on the right side of the Conversion Rules box.
To deselect one or more files, you can use the < or << button.

For each selected rules file, the templates that are used in the rules file are automatically
selected in the Templates box, so that always a consistent set of rules and templates is selected
for copying.

3 Optional. If you want to overwrite any existing rules and templates files with the same names
in the selected project, activate the Overwrite existing files check box.

4 Choose the Copy Selected Rules button to copy the rules and templates files to the selected
project.

Using the Conversion Logs Tool

Using this tool you can view the log files that have been created during the conversion of Natural
maps to Application Designer layouts. You can also delete these log files.

il

»=F|I[E 24.6. To invoke the Conversion Logs tool

B In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Conversion Logs.

EJrdrEe

126 Natural for Ajax

Map Conversion

When the Map Converter is currently shown, choose Show Log from the Conversion Logs
menu.

EJArEe

When the editor extension is currently shown, choose the Show Log button.

» @ 24.7. To view a log file

1

From the Project drop-down list box, select the project for which you want to view a log file.

The log files contained in this project are shown in the drop-down list box to the right.
Select the log file that you want to view.

Choose the Load Log File button.

Log lines for the selected log file are now shown at the bottom of the tool. Each log file contains
the conversion results of one or several maps. The log lines that are shown belong to an

individual map; this is the map that is selected in the Logged map conversions drop-down
list box.

Optional. Select a different map from the Logged map conversions drop-down list box.
The conversion result of the newly selected map is immediately shown at the bottom of the
tool.

Optional. Choose the View Text button to display the content of the selected log file as a CSV
file in a dialog. This shows the conversion results for all maps.

»F|IE 24.8. To delete log files

Select the project for which you want to delete the log files.
Choose the Delete Log Files button.

A dialog appears asking to confirm the deletion.

Choose the Yes button to delete all log files in the selected project.

Natural for Ajax 127

128

25 Customizing the Map Conversion Process

B MaP CONVEIET PrOCESSING ..ottt ettt e e e s 130
B CONVETSION RUIBS ...ttt 132
B TEMPIAEES ..ttt e e e e 142
B TAG CONVEITEIS ...ttt e ettt e et e et e e 145

129

Customizing the Map Conversion Process

Map Converter Processing

The map conversion process reads a map extract file created by the Map Extractor or the INPUT
Extractor and transforms it into a corresponding Application Designer page layout file. The
conversion process is controlled by rules and templates.

il

The Map Converter ships with a default set of conversion rules and corresponding template files.
This set allows for default map conversions without changing rules or templates. In most cases,
you will add or modify some conversion rules and/or templates to customize the conversion
according to the requirements of your application.

For advanced customizations, there is also the possibility to plug own Java-written conversion
classes (the so-called [tag converters]) into the conversion processing. But you should only do
this in very rare cases.

The following topics are covered below:

= Processing of Rows and Columns
= Processing of Sequence and Grid Areas
= Summary: Processing Steps of the Map Converter

Processing of Rows and Columns

By default, for each row and column in a map, a corresponding row and column is generated in
the layout. By default, the Map Converter inserts the converted rows and columns at a defined
position within a corresponding page template. Template and insert position can be defined by
the user. Skipping or different handling of specific rows and columns can be defined via
corresponding conversion rules.

The following sections describe the default processing for rows and columns in case no specific
rules for different insert positions are specified:

= Rows

130 Natural for Ajax

Customizing the Map Conversion Process

= Columns
Rows

For each row in a map, the Map Converter generates an ITR (independent table row) control with
the default settings. For empty rows, an ITR control containing the control defined in the
EMPTYROW_TEMPLATE is generated.

Columns

The fields and literals within a row are aligned to columns according to the following rules:

¥ Column Start Position
If an absolute column start position is defined for a field or literal in the map, the corresponding
control in the page layout is aligned so that it starts exactly with the specified column. This is
done by inserting a HDIST (horizontal distance) control with a corresponding width as a filler.

¥ Conversion Rules
If no absolute column start position is defined for a field or literal in the map, a HDIST control
is not added as a filler by default. In this case, the field or literal is simply appended as the last
subnode of the current ITR control. In many cases, this would result in a layout that requires
additional manual adding of fillers. This is because appending two field controls without adding
any HDIST control often does not look as intended. Therefore, the Map Converter includes
default conversion rules for filler settings. You can modify the default conversion rules or add
your own conversion rules to fine-tune this behavior. For more information, see Conversion
Rules.

¥ Column Width

A character map has a fixed number of rows and columns. For the literal "ABCD", this means
that it uses exactly 4 columns. Calculating the correct width and height of field on a web page
is more complex. The width of "ABCD" will most likely be greater than the width of "Illl". Very
short fields (with a length of one or two characters) should have a minimum width so that the
content is fully visible. You can fine-tune the width by adapting the predefined conversion rule
variable $$widthfactor$$ or by adding your own conversion rules. For more information, see
Conversion Rules.

Processing of Sequence and Grid Areas

The map extract file also contains information about arrays. With Application Designer, arrays
are usually rendered as grid controls. Application Designer provides a couple of grid controls:
¥ TEXTGRID?2 - a grid containing text.

W TEXTGRIDSSS2 - a text grid with server-side scrolling.

W ROWTABLEAREA2 - a grid containing other controls.

¥ MGDGRID - a managed grid.

Natural for Ajax 131

Customizing the Map Conversion Process

The Map Converter tries to convert arrays into suitable grid controls. Before the real conversion
of arrays to grid controls can be done, the Map Converter must first identify the sequence and
grid areas on the map. During this process of area identification, the Map Converter groups literals
and fields together into sequences and areas. Whether the corresponding fields or literals are
actually converted into a grid depends on the conversion rules that are executed after this area
identification step.

This process of area identification is simply a kind of marking. The corresponding sequence and
area objects can be used as source in the conversion rules to define the actual controls.

il

Summary: Processing Steps of the Map Converter

The conversion is done in several steps:

1. The map extract file is loaded and the corresponding rows and columns are collected.
2. The sequence and grid areas are identified.

3. For each row, the list of items in this row is processed, according to the column order. An item
can be one of the following: a simple literal, a field or an area. For each found item, the
corresponding conversion rules are executed.

Conversion Rules

Different conversion projects have different requirements to the conversion process. The Map
Converter is driven by conversion rules and thus allows for flexible control of the conversion
process. Conversion rules define how source items (items from a given map extract file) are mapped
to target items (items in the page layout to be created) and under which conditions a certain source
item shall be converted to a certain target item. The Map Converter is delivered with a default set
of conversion rules contained in the file convrulesDefault.xml in the subdirectory convrules in the
Application Designer project njxmapconverter. A more application-specific conversion can be
achieved by copying and modifying the default set of rules or by adding own rules.

Each set of conversion rules is defined in an XML file according to the XML schema convrules.xsd
in the subdirectory convrules in the Application Designer project njxmapconverter. Each individual
conversion rule consists of a name, a description, a source and a target. The source identifies an
element in the map extract file. The target identifies controls and attributes to be generated in the
page layout.

The conversion rules make often use of regular expressions and so-called capture groups. For
more information about regular expressions, see for instance the web site http://www.regular-
expressions.info.

132 Natural for Ajax

http://www.regular-expressions.info
http://www.regular-expressions.info

Customizing the Map Conversion Process

The following topics are covered below:

= Conversion Rules Examples

= Default Conversion Rules File

= Conversion Rules that Often Need to be Adapted
= Writing Your Own Conversion Rules

Conversion Rules Examples

The following examples are provided:

= Example 1
= Example 2
= Example 3

Example 1

The following example rule (contained in the default conversion rules file) defines that fields in
the map extract file with the qualification AD=0 shall be converted to field controls with the property
displayonly="true".

<convrule rulename="0field_rule">
{description>Defines the control template to be used for input fields
which are specified as output only.</description>
<{source>
{sourceitem>ifField</sourceitem>
{sourcecond>
<condattr>//ifAD</condattr>
<condvalue>.*0.*</condvalue>
</sourcecond>
</source>
{target>
<targetitem>$0FIELD_TEMPLATE</targetitem>
</target>
</convrule>

The source element specifies that this rule applies to fields (element ifField) that have an AD
parameter (element i fAD) that contains a letter "O" (matching the regular expression .*0.*). The
target element specifies that these fields are to be converted to whatever is contained in the template
file OFIELD_TEMPLATE.xml. This template file must be contained in the same directory as the
conversion rules file.

Natural for Ajax 133

Customizing the Map Conversion Process

The template file contains the detailed specification of the field to be generated. The file
OFIELD_TEMPLATE.xml delivered with the map converter contains, for instance, the following:

<?xml version="1.0" encoding="UTF-8"7>
<field valueprop="$$" width="$$" noborder="true" displayonly="true"/>

That is, the resulting field is generated without a border (noborder="true") and as a display-only
field (displayonly="true"). The valueprop and width to be assigned ($$) are not determined by
this rule, but are left under the control of other rules.

Example 2

The following example rule (contained in the default conversion rules file) defines that for all
fields that are defined with the format An in the map extract file, an attribute datatype="string
n" shall be added to the element that is generated into the page layout.

<convrule rulename="AfixType_rule">
<description>All Natural "An" dfFields are converted to the
Application Designer datatype "string n". Example: "AIQ0" 1is
converted to "string n".</description>
<source>
{sourceitem>dfField</sourceitem>
<selection>
{selectattr>dfFormat</selectattr>
<selectval>A([0-9]+)</selectval>
</selection>
<{/source>
{target>
<targetitem>$$</targetitem>
{targetattr>
<attrname>datatype</attrname>
<attrvalue>string $1</attrvalue>
</targetattr>
</target>
</convrule>

The source element specifies that this rule applies to fields that have in the field definition (element
dfField) a format (element dfFormat) of An (matching the regular expression A([0-91+)). The
target element specifies that for whatever element is generated into the page layout for this kind
of fields, an attribute datatype="string $1" shall be added. In terms of regular expressions, $1
refers to the contents of the first [capture group of the regular expression A([0-9]+). In case
of a format A20, $1 will evaluate to 20 and thus an attribute datatype="string 20" will be
generated.

The control to be generated into the page layout (<targetitem>$$</targetitem>)is not determined
by this rule, but is left under the control of other rules.

134 Natural for Ajax

Customizing the Map Conversion Process

Summary: The combination of the two rules in example 1 and 2 makes sure that output fields, for
example, of format A20 are converted to field controls with displayonly="true" and
datatype="string 20".

Example 3

The following more advanced rule was created for the use of a specific conversion project. The
following task had to be achieved: A literal of the format "F10 Change" shall be converted to a
button that is named "F10", is labeled "Change" and raises an event named "PF10". With the
explanations from the examples above, the rule should be nearly self-explanatory.

Note that according to the rules of regular expressions, the variable $1 refers to the string matched
by the expression part in the first pair of parentheses (the first [capture group), that is for
instance "F10", and the variable $3 refers to the string matched by the expression part in the third
pair of parentheses (the third [capture group]), that is for instance "Change".

<convrule rulename="Function_rule" lone="true">
<description>Generates a button from specific literals.</description>
<source>
<sourceitem>ltlLiteral</sourceitem>
{selection>
{selectattr>TtName</selectattr>
<selectval>(F[0-91+)(\p{Space})(.*)</selectval>
</selection>
<{/source>
{target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$1</attrvalue>
</targetattr>
{targetattr>
<attrname>method</attrname>
<attrvalue>P$l</attrvalue>
{/targetattr>
<{/target>
{target>
{targetitem>hdist</targetitem>
{targetattr>
<attrname>width</attrname>
<attrvalue>4</attrvalue>
<{/targetattr>
{/target>
{target>
{targetitem>label</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$3</attrvalue>
{/targetattr>

Natural for Ajax 135

Customizing the Map Conversion Process

{/target>
<{/convrule>

Default Conversion Rules File

The Map Converter is delivered with a default set of conversion rules contained in the file
convrulesDefault.xml in the subdirectory convrules in the Application Designer project njxmapconverter.
A more application-specific conversion can be achieved by copying and modifying the default set
of rules or by adding own rules.

The following topics are covered below:

= Root Rule
= Data Type Conversion Rules
= QOther Default Conversion Rules

Root Rule

Like every conversion rules file, the file contains exactly one "Root_rule". The root rule specifies
the template file to be used for the overall page layout. In this template file, the application-specific
page layout can be defined, using company logos, colors, fonts, etc. The root rule must always
have "map" as the source item and must refer to some variable defined in the page template file
as the target item. The place of that variable specifies where in the page template the converted
map items are placed. See for instance the root rule from the default conversion rules:

<convrule rulename="Root_rule">
{description>Exactly one rule with the sourceitem "map" is required.
This rule must define the natpage template and insert position of
the conversion result.</description>
{source>
<sourceitem>map</sourceitem>
<{/source>
{target>
<{targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
</target>
</convrule>

136 Natural for Ajax

Customizing the Map Conversion Process

The rule refers to a page layout template NATPAGE_TEMPLATE.xml and refers to a variable
defined in that template where the converted map elements shall be placed. Here is the
corresponding content of the page layout template NATPAGE_TEMPLATE.xml:

<?xml version="1.0" encoding="UTF-8"7>

<natpage xmlns:njx=http://www.softwareag.com/njx/njxMapConverter
natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>

<pagebody>
<njx:njxvariable name="MAPROOT"/>
</pagebody>
{statusbar withdistance="false"/>
</natpage>

This template specifies the following:

¥ The overall page layout shall consist of the elements titlebar, pagebody and statusbar.
¥ The converted map elements shall be placed into the pagebody.

¥ The name of the Natural adapter to be generated from that page layout shall be determined by
arule (natsource="$$NATSOURCE$$"). There must be a corresponding rule that yields a value
for the variable $ $NATSOURCES$$, for instance derived from the map name. We shall see later how
to define such a rule.

B All strings in the page layout shall be mapped to Natural variables of type A in the adapter
interface (natsinglebyte="true").

¥ The text displayed in the title bar shall be determined by a rule (name="$$TITLEVAR$$"). There
must be a corresponding rule that yields a value for the variable $$TITLEVAR$S, for instance
derived from a literal in the first row in the map. We shall see later how to define such a rule.

Data Type Conversion Rules

The default conversion rules file contains a set of rules that control the conversion of data types:
from Natural data types in the map to corresponding Application Designer data types in the page
layout. An example was given above in Example 2. Usually, these rules need not be adapted. They
have been chosen in such a way that the process of extracting maps, converting them to layouts
and generating Natural adapters for these usually yields the same data types in the adapter interface
as in the map interface.

Natural for Ajax 137

Customizing the Map Conversion Process

Other Default Conversion Rules

Other default conversion rules define a default mapping for literals, modifiable fields, output
tields, modifiable grids, output grids, system variables and fields with special characters like "#"
in their names. These rules need only be adapted in special cases.

Conversion Rules that Often Need to be Adapted

Some conversion rules need to be adapted in nearly all conversion projects. These rules are
contained in the section "APPLICATION SPECIFIC RULES" in the default conversion rules file.

The following topics are covered below:

= Naming of Adapters
= Setting the Title of a Map

Naming of Adapters

Each application has a different naming convention for Natural objects. There is a rule (it is named
"Natsource_rule" in the default conversion rules file) that controls how adapter names are derived
from map names. The rule replaces the first letter "M" in the map name with an "A" and places
the resulting string into the variable NATSOURCE. Remember that in the default page template, the
natsource property of NATPAGE (which defines the adapter name to generated) is preset with
the variable reference $$NATSOURCE$$. Thus, a map with the name TESTMI results in an adapter
named TESTAL. Other naming conventions for maps will require a more sophisticated adapter
naming rule.

Setting the Title of a Map

Each application has a different way of showing titles in a map. Often, the title string shall be
placed into the title bar of the resulting page layout during conversion. There is a rule (in the
default conversion rules file, it is named "Titlevar_rule") that controls how the title string in a map
is recognized. The rule searches in the first row of a map for a literal enclosed in "***" and places
the resulting string into the variable TITLEVAR. Remember that in the default page template, the
name property of the titlebar element (which defines the string to be shown in the title bar) is
preset with the variable reference $$TITLEBAR$$. So this rule takes care that the found literal is
placed into the tit1ebar element of the page. Other conventions for map titles will require a more
sophisticated rule.

138 Natural for Ajax

Customizing the Map Conversion Process

Writing Your Own Conversion Rules

When writing your own conversion rules, you can use the default rules as examples. In order to
write rules from scratch, you need to know the elements of the map that can be referred to as
source items and the full syntax of the rule definition.

¥ The XML schema of the map extract files is contained in the file naturalmap.xsd in the subdirectory
convrules in the Application Designer project njxmapconverter.

W As described in Processing of Sequence and Grid Areas, one step in the map conversion is the
detection of sequence and grid areas in the map. Conversion rules can also refer to the detected
sequence and grid areas. The XML schema of the map extract files after the detection of sequence
and grid areas is described in the extended XML schema naturalmapxml_extended.xsd in the same
directory.

¥ The syntax of the conversion rules is described by the XML schema convrules.xsd in the same
directory.

The basic structure of a conversion rule is as follows:

<convrule rulename="...">
<description>...</description>
{source>...</source>
<target>...</target>
<target>...</target>

</convrule>

This means, a conversion rule consists of one source element and (optionally) one or several
target elements. The source element identifies an item from the map. The target elements specify
the conversion output. If no target elements are specified, nothing is generated from the identified
source element.

The basic structure of a source element is as follows (example):

<{source>
<sourceitem>ltlLiteral</sourceitem>
{selection>
{selectattr>l1tName</selectattr>
<selectval >\F\F*(*)***<{/selectval>
<{/selection>
<sourcecond>
<condattr>TtRow</condattr>
<condvalue>1</condvalue>
</sourcecond>
</source>

The sourceitem element refers to a specific kind of item on a map, such as a literal (1tLiteral),
a defined field (dfField), an input field (i fField) or the identifier of the map (identity). The

Natural for Ajax 139

Customizing the Map Conversion Process

elements that can be used here are specified by the XML schema that describes the map extract
after the detection of sequence and grid areas (naturalmapxml_extended.xsd). Therefore, the elements
sequenceArea and gridArea, which are only known after this processing, can also be used here.

The selectattr and selectval elements are used to match an element of a specific kind by its
attribute values. The selectval element uses regular expressions to perform a match. Capturing
groups such as (.*) can be used here, so that the target part of the conversion rule can later refer
to parts of the matched value.

Finally, there can be zero, one or several sourcecond elements, which allow to define further to
which map items the rule applies. If several sourcecond elements are specified, the rule is triggered
only if all conditions match (logical AND).

The basic structure of a target element is as follows:

{target>
<targetitem>...</targetitem>
{targetattr>

<attrname>...</attrname>
<attrvalue>...</attrvalue>
{/targetattr>
{targetattr>

{/targetattr>
{/target>
In detail, there are several different options to specify a target item:

¥ Specify the root element name of an Application Designer control, along with its attributes and
attribute values. The attribute value can be a constant, a variable or a reference to a capturing
group from a regular expression in a sourcecond element of the same rule. In this case, the
corresponding control is generated during conversion.

{target>
{targetitem>label</targetitem>
{targetattr>
<attrname>height</attrname>
<attrvalue>10</attrvalue>

{/targetattr>

{targetattr>
<attrname>width</attrname>
<attrvalue>$$width$s</attrvalue>

{/targetattr>

{targetattr>
<attrname>name</attrname>
<attrvalue>$l</attrvalue>

{/targetattr>

{/target>

140 Natural for Ajax

Customizing the Map Conversion Process

¥ Specify the name of a variable that is defined in the conversion rules file in a convvariable
element.

{target>
<{targetitem>$$name$$</targetitem>
{/target>

W Refer to the name of a template file, optionally along with attribute names and values. In this

case, whatever is contained in the template file will be generated. Attribute definitions in the
template file are replaced.

{target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$1</attrvalue>

</targetattr>

{targetattr>
<attrname>method</attrname>
<attrvalue>P$l</attrvalue>

{/targetattr>

{/target>

W Refer to the name of a template variable and the name of a template file, separated by a dot. In
this case, the template variable is replaced with whatever is contained in the template file.

{target>

<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>
<{/target>

¥ Only in the root rule: Specify the name of a template file and the name of a template variable
that is contained in this file, separated by a dot. In this case, the template variable is replaced
with the entire result of the map conversion.

{target>

<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
{/target>

W Specify "$$" as the target item. This is useful when writing a more general rule that is to apply
after another more specific rule has already created a target item. The attributes specified along

with the target item "$$" are applied to the already created target item, whatever this target item
was.

Natural for Ajax 141

Customizing the Map Conversion Process

{target>
{targetitem>$$</targetitem>
{targetattr>
<attrname>datatype</attrname>
<attrvalue>xs:double</attrvalue>
{/targetattr>
{/target>

W Specify "$." as the target item. This refers to the template that is currently being processed. The
attributes specified along with the target item "$." are applied to the current template.

{target>
{targetitem>$.</targetitem>
{targetattr>
<attrname>$$NATSOURCE$$</attrname>
<attrvalue>$l-A</attrvalue>
{/targetattr>
{/target>

Templates

The Map Converter assembles page layouts from templates. Which templates are used, how they
are assembled and how variables in templates are filled is controlled by the conversion rules.

A template file describes the general layout of an entire Application Designer page layout or of
an individual Application Designer control. A template can contain variables and references to
other templates. During conversion, the Map Converter resolves the structure of the templates
and fills the variables with specific values, depending on the contents of the map.

A template file can describe a simple control such as a FIELD control or a more complex control
such as a TEXTGRIDSSS2 control. For the same control, multiple templates may exist. For example,
an ofield_TEMPLATE and an ifield_TEMPLATE may both be templates for the FIELD control. The
ofield_TEMPLATE would be used for output fields, the ifield_ TEMPLATE for modifiable fields.
Which template is used for which subset of fields of the map is specified in the conversion rules.

Template files are well-formed XML files which contain control definitions. They are placed in
the folder convrules of your Application Designer project directory. The file name must end with
"_TEMPLATE.xml". The Map Converter ships with a set of default template files.

The following topics are covered below:

= Variables in Templates
= Templates in Templates

142 Natural for Ajax

Customizing the Map Conversion Process

= Editing Templates

Variables in Templates

As already seen in the examples above, templates can contain variables. Variables can be freely
defined by the user. Example:

<?xml version="1.0" encoding="UTF-8"7>

<natpage xmins:njx=http://www.softwareag.com/njx/njxMapConverter
natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>

<pagebody>
<njx:njxvariable name="MAPROOT"/>
</pagebody>
{statusbar withdistance="false"/>
</natpage>

¥ Variables as placeholders for the property values of controls
An example is the variable $$TITLEVAR$$ in the template above. If a template contains a variable
such as name="$$TITLEVAR$$", there must be a corresponding rule that yields a value for the
variable $$TITLEVAR$$. The Map Converter replaces the variable with this value.

The built-in variable $$ has a specific meaning. If it occurs as a property value, there is no specific
rule needed to produce the value. Instead, the Map Converter receives the value from a so-called
tag converter. Tag converters are Java classes that are delivered with the Map Converter.
Exchanging or writing your own tag converters is an advanced way of extending the Map
Converter and is usually not required. See Tag Converters for further information.

¥ Variables as placeholders for controls and containers
An example is the variable MAPROOT in the template above. Such a variable is defined by inserting
an NJX:NJXVARIABLE control (from the controls palette of the Layout Painter) into a template.
As long as the XML of the template is well-formed, an NJX:NJXVARIABLE control can be
inserted at any place in the template. Conversion rules refer to this variable as $MAPROOT. Notice
that the value in the name property of an NJX:NJXVARIABLE control does not start with $.
Instead, the NJX:NJXVARIABLE control itself defines that it is a variable. The NJX:NJXVARIABLE
control is a special control in the Natural Extensions section of the Layout Painter's controls
palette.

Natural for Ajax 143

Customizing the Map Conversion Process

Templates in Templates

Templates can refer to other templates. This can be done via adding variables. The variable can
serve as a placeholder for another template. The template name is defined via a corresponding
rule.

Example (GRID_TEMPLATE.xml):

<?xml version="1.0" encoding="UTF-8"7>
<rowtablearea?2 withborder="false" griddataprop="$$gridnames" rowcount="$$" >
<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDHEADER" />
</tr>
<repeat>
<Er>
<hdist></hdist>
<njx:njxvariable name="GRIDITEM" />
</tr>
<{/repeat>
</rowtablearea2>

This means: A conversion rule like the following maps a grid area detected in the map to a
ROWTABLEAREA? control and formats the header and rows as specified in the templates
GRIDHEADER_TEMPLATE.xml and GRIDITEM_TEMPLATE.xml.

<convrule rulename="Griditem_rule">
<description>Mapping rule for the items of grid.</description>
<{source>
<sourceitem>gridArea//ifField</sourceitem>
<{/source>
{target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>
</target>
{target>
<targetitem>$GRIDHEADER.$GRIDHEADER_TEMPLATE</targetitem>
<{/target>
</convrule>

144 Natural for Ajax

Customizing the Map Conversion Process

Editing Templates
Only NATPAGE templates (like the default NATPAGE template NATPAGE_TEMPLATE.xml) can

be edited with the Layout Painter. Templates for individual controls must currently be edited
using a text editor.

Tag Converters

A template must be a valid XML document. The root element must correspond to the root element
of a valid Application Designer control. Templates can contain variables. A special variable is the
variable $$.

Example:

<?xml version="1.0" encoding="UTF-8"7>
<button name="$$" method="$$"></button>

Each template is processed by a so-called tag converter. Tag converters are in charge of resolving
the variable $$. A tag converter is a Java class that must support a specific interface and be available
in the class path of the Map Converter. Which tag converter is used depends on the root element
of the template.

In the above example, the root element is the BUTTON control. The following rule applies:

B If a Java class with the name
com.softwareag.natural.mapconverter.converters.BUTTONConverter is found in the Java
class path, this Java class is used as the tag converter.

B Otherwise, the class com.softwareag.natural .mapconverter.converters.DEFAULTConverter
is used as the tag converter.

In the above example, the Map Converter tries to find the class BUTTONConverter first. Since a
specific tag converter for the BUTTON control is not delivered with the Map Converter, the class
DEFAULTConverter is used as the tag converter.

In order to supply a custom tag converter for the BUTTON control, for instance, you would have
to create a Java class BUTTONConverter that belongs to the package
com.softwareag.natural.mapconverter.converters and make it available in the Java class path
of the Map Converter.

Detailed information on how to write your own tag converters is provided in the Application
Designer development workplace as Javadoc; see Map Converter Extension API in the Natural
Tools node of the navigation frame (under Tools & Documentation).

Natural for Ajax 145

146

26 Code Conversion

B General INFOrMELIONoiiiiiii e et e e a e e e e 148
B GENErAtiNG AGAPIETS ..ottt ettt et e et e e e e et e e s 148
= Structure of @ Map-Based APPlICAtIONcooiiiiiiiii e 148
= Structure of a Natural for Ajax ApPIICALIoNueeiiiiiee e 149
= Tasks of the Code CONVEISIONoiiiiiiiiii e 150
B DEFINE DATA SEAIEMENT ...t e et a e e e 150
B INPUT SEREBMENL ...t 151
B REINPUT SEAIEMENT ...ttt e e e e e e e e e e e aeeee e e 152
B PE-Key EVENEHANAING ... 154
B SET KEY STAIEMENL ... 155
B PrOCESSING RUIBS ...ttt 158
B SYSIEM VAMADIESoieiiiiec e 158
= Variable Names Containing Special CharaCterscooiiiiiiiiiiiiii e 159

147

Code Conversion

General Information

After the Map Converter has been used to create page layouts from map extract files, the last step
in the conversion process is adapting the application code to the new user interface. This step can
either be performed manually or, with Natural Engineer, partly automatically. In the following,
the manual code conversion is described.

Generating Adapters

First of all, it is necessary to generate HTML code and Natural adapters from the page layouts
that have been created by the Map Converter. This is the same procedure as with page layouts
that have been created manually with the Layout Painter. Then, the adapters are imported into
the Natural development environment.

Structure of a Map-Based Application

In this context, we need not consider the application code as a whole, but only the layer that
handles the user interface. Often, the user interface handling part of a map-based application is
structured in the following way:
W DEFINE DATA
¥ Initialization
W REPEAT
B INPUT [USING MAP map-name]
¥ Includes client-side validations (processing rules)
¥ Server-side validations
B REINPUT or ESCAPE TOP
W DECIDE ON *PF-KEY
¥ Function key handler 1
¥ Processing
B REINPUT or ESCAPE TOP
¥ Function key handler 2
¥ Processing

B REINPUT or ESCAPE TOP

148 Natural for Ajax

Code Conversion

¥ Function key handler n
¥ Processing
B £SCAPE BOTTOM
™ END-DECIDE
B END-REPEAT
¥ Cleanup
B END

In practice,

¥ the REPEAT loop might or might not be there, and

M there might not be a clean DECIDE structure for the function key handlers. Instead, checks for
the pressed function key might be spread all over the code.

However, accepting these differences, the above structure should match a large number of
applications.

Structure of a Natural for Ajax Application

The corresponding part of a Natural for Ajax application looks as follows:

B DEFINE DATA
¥ Initialization
W REPEAT
M PROCESS PAGE USING adapter-name
¥ Includes client-side validations
W Server-side validations
M PROCESS PAGE UPDATE FULL
W DECIDE ON *PAGE-EVENT
¥ Event handler 1
¥ Processing
M PROCESS PAGE UPDATE FULL or ESCAPE TOP
¥ Event handler 2
¥ Processing

B PROCESS PAGE UPDATE FULL or ESCAPE TOP

Natural for Ajax 149

Code Conversion

¥ Event handler n
¥ Processing
B ESCAPE BOTTOM
u oo
M END-DECIDE
W END-REPEAT
¥ Cleanup
W END

Tasks of the Code Conversion

The code conversion should achieve the following;:

B 1t should be minimal invasive.
¥ Tt should not duplicate business code.

¥ The converted application should be able to run not only with the new user interface, but also
in a terminal session, in a Natural Web I/O Interface session and in batch, if it did so before the
code conversion.

In detail, the code conversion needs to deal with the statements and constructs mentioned below.

DEFINE DATA Statement

The DEFINE DATA statement must be extended because the data structures exchanged between a
program and map are not fully identical to those exchanged between a program and the
corresponding adapter.

The default conversion rules delivered with the Map Converter perform a data type mapping that
tries to ensure that the data elements in the map interface are mapped to data elements of the same
type and name in the adapter interface.

The Application Designer controls are usually not only bound to business data elements, but also
to additional control fields. Which control fields these are depends on the way in which the elements
of a map are mapped to Application Designer controls by the Map Converter rules. For instance,
astatusprop canbe assigned to a field, which results in an additional parameter in the parameter
data area of the adapter. An array on a map can have been converted to a grid control with server-
side scrolling. In this case, the additional data structures needed to control server-side scrolling
need to be added to the DEFINE DATA statement.

150 Natural for Ajax

Code Conversion

statusprop

The statusprop is needed to control the error status or focus of a FIELD control dynamically (see
example 3 for the REINPUT statement below where it is used to replace the MARK *field-name
clause). The default conversion rules contain a rule that creates a statusprop property for each
map field that is controlled by a control variable. The adapter generator creates from this property

a corresponding status variable and a comment line that identifies the status variable as belonging
to the field.

Example
The parameter data area of the map contains:

01 LIB-NAME (A8)
01 LIB-NAME-CV (C)

The parameter data area of the adapter will then contain:

* statusprop= STATUS_LIB-NAME-CV
01 LIB-NAME (A8)
01 STATUS_LIB-NAME-CV (A) DYNAMIC

The variable STATUS_LIB-NAME-CV is not yet known to the main program and must be defined
there.

INPUT Statement

The replacement for the INPUT statement is the PROCESS PAGE statement. In its simplest form, the
INPUT statement just references the map. In this case, it is just replaced by a PROCESS PAGE statement
with the corresponding adapter.

Example 1
Main program before conversion:

INPUT USING MAP "MMENU'

Natural for Ajax 151

Code Conversion

Main program after conversion:

IF *BROWSER-I0 NE 'RICHGUI'
INPUT USING MAP "MMENU'
ELSE
PROCESS PAGE USING '"AMENU'
END-IF

The INPUT statement can come with a message text that is displayed in the status bar. There is no
direct replacement for this construction because the PROCESS PAGE statement (in contrast to the
PROCESS PAGE UPDATE statement) does not support the SEND EVENT clause.

Example 2

Main program before conversion:

INPUT WITH TEXT MSGO1 USING MAP "MMENU'

Main program after conversion (no message will be displayed):

IF *BROWSER-I0 NE 'RICHGUI'

INPUT WITH TEXT MSGO1 USING MAP "MMENU'
ELSE

PROCESS PAGE USING "AMENU'
END-IF

REINPUT Statement

The replacement for the REINPUT statement is the PROCESS PAGE UPDATE statement. In its simplest
form, the REINPUT statement comes with a message text that is displayed in the status bar. In the
converted code, this is handled by the SEND EVENT clause of the PROCESS PAGE UPDATE statement.

Example 1
Main program before conversion:

REINPUT [FULL] WITH TEXT MSGO1

152 Natural for Ajax

Code Conversion

Main program after conversion:

IF *BROWSER-IO NE "RICHGUI'
REINPUT [FULL] WITH TEXT MSGO1
ELSE
PROCESS PAGE UPDATE [FULLI]
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSGO1
END-PARAMETERS
END-IF

The REINPUT statement can come with a message number and replacements. In this case, the
message must be created from number and replacements before it is sent to the status bar with
the SEND EVENT clause.

Example 2

This example uses a subprogram GETMSTXT that builds the message text from number and
replacements.

Main program before conversion:
REINPUT [FULL] WITH TEXT *MSGNR, REPLI, REPLZ
Main program after conversion:

IF *BROWSER-I0O NE '"RICHGUI'
REINPUT [FULL] WITH TEXT *MSGNR, REPLI, REPL2
ELSE
CALLNAT 'GETMSTXT' MSTEXT MSGNR REPLI REPLZ?
PROCESS PAGE UPDATE [FULLI]
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSTEXT
END-PARAMETERS
END-IF

Example 3

The REINPUT statement can come with a MARK clause in order to put the focus on a field. This case
requires that a statusprop property is created for the field during map conversion. The variable
bound to the statusprop property is then used before the PROCESS PAGE UPDATE statement to set
the FOCUS to the field.

Natural for Ajax 153

Code Conversion

Main program before conversion:
REINPUT [FULL] WITH TEXT MSGO1 MARK *LIB-NAME
Main program after conversion:

01 STATUS_LIB-NAME-CV (A) DYNAMIC

IF *BROWSER-IO NE 'RICHGUI'
REINPUT [FULL] WITH TEXT MSGO1 MARK *LIB-NAME
ELSE
STATUS_LIB-NAME-CV := "FOCUS'
PROCESS PAGE UPDATE FULL
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE "W’
NAME 'short' VALUE MSGO1
END-PARAMETERS
END-IF

PF-Key Event Handling

The original application might contain checks for the content of the system variable *PF-KEY at
arbitrary places in the code. In order to handle function key events correctly in the converted
application, several things need to be achieved:

¥ In response to the function keys, the converted application must raise events that are named
like the possible contents of *PF-KEY. This can be achieved by using a page template such as
NATPAGEHOTKEYS_TEMPLATE.xml which contains the required hotkey definitions.

¥ A common local variable must be set up right after the INPUT or PROCESS PAGE statement that
contains either the value *PF-KEY or *PAGE-EVENT, depending on the execution environment.
The name of the variable can be freely chosen. In the example below, the name XEVENT is used.

¥ The event nat:page.end must be handled in such a way so that the program terminates. This
event is raised when the user leaves the page or closes the browser session.

¥ A default event handler must be set up that takes care of the values of *PAGE-EVENT that are not
expected by the original application code. These unexpected events are simply replied with a
PROCESS PAGE UPDATE FULL statement.

154 Natural for Ajax

Code Conversion

Example

01 XEVENT (U) DYNAMIC
PROCESS PAGE USING ...

IF *BROWSER-I0O = 'RICHGUI'
DECIDE FOR FIRST CONDITION
WHEN *PAGE-EVENT = 'nat:page.end’
STOP
WHEN *PAGE-EVENT = MASK ('PF'*) OR = MASK ('PA'*)
OR = "ENTR'" OR = 'CLR"
XEVENT := *PAGE-EVENT
WHEN NONE
PROCESS PAGE UPDATE FULL
END-DECIDE
ELSE
XEVENT := *PF-KEY
END-IF

All references to *PF-KEY in the code must then be replaced by references to XEVENT.

SET KEY Statement

Natural for Ajax provides two controls (NJX:BUTTONITEMLIST and
NJX:BUTTONITEMLISTFIX) that represent a row of buttons. These controls can be used to
replace the visual representation of the function keys from the original application. If the page
template NATPAGEPFKEYS_TEMPLATE.xml or a similar individually adapted template is used
during map conversion, each resulting page will contain a row of function key buttons. The subject
of this section is how the converted application can control the labeling and the program-sensitivity
of the function keys with only little code changes.

Natural controls the labeling and program-sensitivity of the function keys in a highly dynamic
way. The corresponding application code (SET KEY statements) can be distributed across program
levels and can be lexically separated from the corresponding INPUT statements. Also, the SET KEY
statement has several flavors, some affecting all keys and others affecting only individual keys.
As aresult, the status of the function keys at a given point in time can only be determined at
application runtime.

Therefore, the following approach is chosen: Natural provides the application programming
interface (API) USR4005 that reads the current function key naming and program-sensitivity at
runtime. During code conversion, a call to this APl is inserted after each SET KEY statement or into
each round trip. This call reads the function key status and passes it to the user interface.

Natural for Ajax 155

Code Conversion

Example

Main program before conversion:

SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'

PF3 NAMED 'Modify"' PF4 NAMED 'Delete' PF5 NAMED 'F5'

PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display'

PF9 NAMED 'F9' PFI0 NAMED 'F10' PFI11 NAMED 'FI11' PF12 NAMED 'F12'

*

INPUT USING MAP "KEYS-M"

*

END
Map before conversion:

* kK PF’KeyS * kK

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Enter F1 F2 Modif Delet F5 F6 Creat Displ F9 F10 F11 Fl2

156 Natural for Ajax

Code Conversion

Main program after conversion:

DEFINE DATA LOCAL
PFKEY (1:*)
METHOD (A) DYNAMIC
NAME (A) DYNAMIC
TITLE (A) DYNAMIC
VISIBLE (L)
METHODS (A4/13) CONST <'ENTR','PF1','PF2','PF3','PF4',
'PF5',"'PF6',"'PF7"','PF8"',"PF9","'PF10", "PF11"',"'PF12"'>
END-DEFINE
*
SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'
PF3 NAMED 'Modify"' PF4 NAMED 'Delete' PF5 NAMED 'F5'
PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display’
PF9 NAMED 'F9' PF10 NAMED 'F10' PF11 NAMED 'F11' PF12 NAMED 'F12'
*
IF *BROWSER-I0 NE "RICHGUI"
INPUT USING MAP "KEYS-M"
ELSE
EXPAND ARRAY PFKEY TO (1:13)
METHOD(1:13) := METHODS (*)
CALLNAT "GETKEY-N" PFKEY (*)
PROCESS PAGE USING "KEYS-A"
END-IF

*

END

R DN

Page after conversion:

i

Explanation

The structure PFKEY is generated into the Natural adapter of the page as the application interface
to the BUTTONITEMLISTFIX control.

The subprogram GETKEY -N is a convenience wrapper for the API subprogram USR4005. It uses
USR4005 to determine the labeling and the program-sensitivity status for a given list of function
keys. Each function key is identified by the *PF-KEY value it raises. GETKEY - N returns the function
key information in a data structure suitable for the application interface of the
BUTTONITEMLISTFIX control. The subprogram is delivered in the library SYSEXNJX in source
code and can be adapted to the needs of the application.

Natural for Ajax 157

Code Conversion

Processing Rules

The Natural maps in the application to be converted may contain processing rules. In the sense
of a Natural for Ajax application, the processing rules are server-side validations because they are
executed on the Natural server side of the application.

In order to extract processing rules from the maps and to turn them into server-side validations
in the converted application, the Natural Engineer function [Separate Processing Rules from
Maps| can be used.

There is currently no function available that automatically turns processing rules into client-side
validations in Application Designer.

System Variables

If a map displays a system variable (for example, *DATX), a specific default conversion rule takes
care that the necessary code for handling the system variable is generated into the Natural adapter
of the resulting page layout.

Example 1

The map displays the contents of the system variables *DATX and *TIMX. The contents of these
system variables are not modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XDATX (A8)
01 XTIMX (A8)

The body of the adapter will then contain:

XDATX *DATX

XTIMX := *TIMX

*

PROCESS PAGE ... WITH
PARAMETERS

NAME U'XDATX'
VALUE XDATX

NAME U'XTIMX'
VALUE XTIMX

END-PARAMETERS

158 Natural for Ajax

Code Conversion

The main program needs no special adaptation.
Example 2

The map displays the content of the system variable *CODEPAGE. The content of this system variables
is modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XCODEPAGE (A64)

The body of the adapter will then contain:

XCODEPAGE := *CODEPAGE

*

PROCESS PAGE ... WITH
PARAMETERS

NAME U’ XCODEPAGE’
VALUE XCODEPAGE

END-PARAMETERS
*

*CODEPAGE := XCODEPAGE

The main program needs no special adaptation.

Variable Names Containing Special Characters

A similar procedure applies to special characters contained in variable names. These are the
following special characters:

P U e ™~ = +

7EE: The hash (#) can occur only as the first character.

Variables names containing these special characters cannot be directly bound to Application
Designer control attributes. A specific default conversion rule replaces the names containing these

Natural for Ajax 159

Code Conversion

special characters with configurable replacements. The original field name is generated into the
parameter data area of the Natural adapter and a corresponding mapping is generated into the

PROCESS PAGE statement of the adapter.

Example

The map displays the variables #FIRST and #LAST.

The DEFINE DATA statement of the adapter will then contain:

DEFINE DATA PARAMETER
1 #FIRST (A16)
1 JfLAST (A20)

The body of the adapter will then contain:

PROCESS PAGE ... WITH
PARAMETERS

NAME U'"HFIRST'
VALUE #FIRST
NAME U'HLAST'
VALUE #LAST

END-PARAMETERS

The main program needs no special adaptation.

160

Natural for Ajax

27

Working with Controls

Controls are the elements that are placed inside containers. This part first gives some common

rules that are valid for all controls, then describes the controls in more detail.

The information provided in this part is organized under the following headings:

L L S e . "I "I T T T

Some Common Rules for all Controls

BREADCRUMB

BUTTON

BUTTONLIST

CHECKBOX

COMBODYN2

COMBOFIX

DATEINPUT

DROPICON

FIELD

FILEUPLOAD/FILEUPLOAD?2

ICON

ICONLIST

IHTML

161

Working with Controls

IMAGEOUT

LABEL

MENUBUTTON

METHODLINK

MULTISELECT

NEWSFEED

RADIOBUTTON

SCHEDULELINE

SLIDER

STRIPSEL

SUBPAGE

TABSEL

TABSTRIP2

TAGCLOUD

TEXT

TEXTOUT

L N S T S e N T "I " " "

3 TOGGLE

Special Controls:

2 ACTIVEX
2 GOOGLEMAP2
2 NETMEETING
2 SKYPECALL

Natural for Ajax Controls:

9 NJX:BUTTONITEMLIST
9 NJX:BUTTONITEM
9 NJX:BUTTONITEMLISTFIX

162

Natural for Ajax

Working with Controls

C L L L L L

NJX:BUTTONITEMFIX
NJX:FIELDLIST
NJX:FIELDITEM
NJX:FIELDVALUE
NJX:NJXVARIABLE

NJX:EVENTDATA

Natural for Ajax

163

164

28 Some Common Rules for all Controls

B NAME ANA TEXEID ...t e e e e e e e a e e e 166
m Table, ROW, COIUMN, CONIONe e e e, 166
B EXPICIE AIGNMENT ... e ettt e e 166
= Binding to Adapter Parametersooiiiiiiiiiii e 167
= Directly Influencing the Control STYIEooiiiiiiii e 167
= Dynamically Controlling the Visibility and the Display Status of Controlsccccoeiiiiiiiiiiie 168
B FOCUS MANAGEMENT ...eeiiiiiiiieee e 168
B FJUSHING OF INPULS ...t 169
B TAD SEOUEINCE ...ttt e e e e 169
L [oT0] Lo OSSO P U R PPPOPUPPPPPPRR 171

165

Some Common Rules for all Controls

Name and Text ID

Every time a control needs a static text definition (the name of a button or the name of a label),
there are always two possibilities to define this text:

¥ Specify a name directly.

¥ Specify a text ID. This is a literal replaced with a string that is determined inside the multi
language management at runtime.

Table, Row, Column, Control

Most controls that allow dynamic sizing offer the following properties:

¥ colspan - number of columns occupied by the control.
¥ rowspan - number of rows occupied by the control.

B width - width.

® height - height.

These properties influence the way how controls are placed into container rows.

Explicit Alignment

Controls are put into table columns. If the column is wider or higher than the control itself, then
you can explicitly control the vertical and horizontal alignment of the control inside the columns.

Most controls offer two properties:

M yalign
Specifies the vertical alignment. Valid values are "top", "middle", "bottom". "middle" is the default
value.

M align
Specifies the horizontal alignment. Valid values are "left", "center", "right". The default value
depends on the control. For example, labels are aligned "left" by default, the default for radio
buttons is "center".

Pay attention: valign and al1ign only affect the position of the control inside the column in which
it is positioned if the column is larger than the control. If the column is exactly as wide and high
as the control itself, which is the typical case, then they do not have any visual effects - and also
need not be defined.

166 Natural for Ajax

Some Common Rules for all Controls

align/valign do not affect the control's internal alignment.

Binding to Adapter Parameters

Most controls provide properties to specify the binding to the adapter processing. There is a naming
convention, which is:

¥ The names of the properties which specify the binding to an adapter parameter end with "prop".

¥ The names of the properties which specify the binding to an event end with "method".
The type of the adapter parameter which is referenced by a control depends on the control itself:

¥ Most controls directly bind to scalar adapter parameters.

® More complex controls bind to an array of group structures.

The type of adapter parameter is described with each control.

Directly Influencing the Control Style

All controls that incorporate textual information - such as labels, buttons or fields - offer the
possibility to influence directly the style that is used for displaying the information.

The normal style is derived from the definition inside a cascading style definition file (file layout.css
inside the html/general directory of the server). Overwrite or enhance this style information for
your controls by passing the style information inside the corresponding style properties.

The properties specifying the style information end with the suffix "style", e.g. there is a property
Tabelstyle for the label tag. The value of the property can be any kind of a valid HTML style
specification. If you want to change the display style of a label to be large and blue, define the
label in the following way:

<{label name="Test" width="150" labelstyle="font-size: 24pt; color: #0000FF">
</label>

Natural for Ajax 167

Some Common Rules for all Controls

Dynamically Controlling the Visibility and the Display Status of Controls

It is possible to influence the visibility of all input controls (FIELD, BUTTON, etc.) by adapter
parameters.

For some of these controls there is a property visibleprop, specifying a Boolean adapter parameter.
By this, you can control whether you want to display the control within the client or not.

For all other controls - and for more complex manipulations of what is visible and not - use the
possibility to be able to control the visibility of rows (ITR, TR) or containers (ROWAREA,
ROWTABLEQ): these controls provide for a visibility parameter and consequently can be switched
on and off.

There is an extended management of what the control status "INVISIBLE" means. Most input
controls (FIELD, CHECKBOX, etc.) supporting a statusprop ora visibleprop also support a
property invisiblemode. The allowed values of invisiblemode are:

¥ invisible
The corresponding control is completely removed. The horizontal space it occupied before is
taken out.

W cleared
The corrresponding control is not visible but still occupies its horizontal space.

¥ disabled
The corresponding control is displayed with a disabled state. This state is only allowed with a
certain number of controls (e.g. button and icon).

Focus Management

Sometimes you want to control the keyboard focus inside a page. Here are the internal rules how
a page finds out where to put the focus on.

The default reaction is - if a page is displayed for the first time - to put the focus on the first input
control (FIELD, CHECKBOX, RADIOBUTTON, etc.) that is available inside a page. After that, you
can navigate through the input controls - and the focus is kept stable when interacting with the
server.

With statusprop - as mentioned in the previous section - you can interrupt this default reaction;
there are two possibilities:

¥ If an input control is set to status "ERROR", it requests the focus automatically. The purpose is
to guide the user automatically to those fields that are not correctly entered.

168 Natural for Ajax

Some Common Rules for all Controls

¥ If an input control is set to status "FOCUS", it is editable - just as normal - and also requests the
focus.

If several input controls are requesting the focus at the same time, the focus is put on the first
corresponding input control.

Flushing of Inputs

Most input controls (FIELD, CHECKBOX, RADIOBUTTON, COMBOFIX, etc.) support a property
named flush. This property controls whether data input from a user causes an immediate
synchronisation with the server or whehter data input from a user is stored internally within the
client and is synchronized with the next flushing event (e.g. when choosing a button).

There are three different values that can be specified with the f1ush property:

W ""(blank)
The data is not synchroized after leaving the control. This is the default.

W server
The data is synchronized with the server immediately when the data has been entered, i.e. when
the user has left the corresponding input field.

¥ screen
The data is synchronized within the controls of the screen. This means - if you have two fields

displaying the same property - you can synchronize the fields immediately, without interacting
with the server.

Q B>/ F: On the one hand, it is useful to flush information in a very fine granular way; you
can react on wrong entered data immediately - on the other hand, you have to remember
that each flush causes network traffic. The screen's data is sent to the server side processing
and the screen waits for the response of the server. During this time, the page is blocked
for input and the user sees an hour glass popping up in the left top corner of the screen.

Tab Sequence

By default, the tab sequence of the controls of a page is defined by the order of the controls inside
the page's XML layout definition. Using the property tabindex, this order can be overridden and
the order of the tab index can be explicitly defined.

Natural for Ajax 169

Some Common Rules for all Controls

The following example shows a page with three fields and one button with an explicitly defined
tab sequence:

Simple Tab Sequence -

First Second
Third Ik,

The XML layout definition is:

<rowarea name="Simple Tab Sequence">
<itr takefullwidth="true">
<coltableQ width="50%">
<Gitr>
<Tabel name="First" width="120">
</Tabel>
<field valueprop="first" width="120" tabindex="1">
</field>
</itr>
<Atr>
{label name="Third" width="120">
</label>
<field valueprop="third" width="120" tabindex="3">
</field>
</itr>
</coltable0>
<coltable0 width="50%">
<Gtr>
<{Tabel name="Second" width="120">
</label>
<field valueprop="second" width="120" tabindex="2">
</field>
</itr>
<Gitr>
<hdist width="120">
</hdist>
<button name="0K" method="onOK" tabindex="4">
</button>
</itr>
</coltablel>
</itr>
{/rowarea>

According to the sequence of controls inside the layout definition, the default tab sequence would
be: field First, field Third, field Second and button OK.

Due to explicitly defining the tabindex property for the fields and the button, the tab sequence is
now correct: field First, field Second, field Third and button OK.

170 Natural for Ajax

Some Common Rules for all Controls

Pay attention:

¥ Once having started to explicitly set the tab index in a page, you must consequently continue
with all controls of the page. Adding new controls without tab index, is internally interpreted
as if these controls were defined with tab index "0".

¥ Equal tab indices in controls are allowed. In this case, the sequence of the controls inside the
layout definition defines the tab sequence among the controls with an equal index.

¥ Moving controls from one location to the other within a page typically means that you have to

adapt the tab sequence accordingly.

The tab index usually is a positive integer value. You may define tab index "-1" for excluding
certain controls from the tab sequence at all. In this case, the corresponding controls may only be
reached by mouse clicking.

Conclusion:

¥ In typical pages, you do not have to take care of the tab sequence at all because the default (tab
sequence by order of controls in page layout) is adequate to the user's experience.

¥ Only use the explicit definition of the tab sequence if really it is required - the effort for maintaing
each tab index with each control should not be underestimated.

Tooltips

Tooltips can be applied to many controls. If the user hovers with the mouse cursor over a control
for some seconds, a small yellow box appears showing some more detailed explanation.

The corresponding controls offer two properties:

Wititle
Here you can specify a hard-coded text that is used as the tooltip.

Wtitletextid
Here you specify a text ID that is passed to the multi language management..

Natural for Ajax 171

172

29 BREADCRUMB

L 11T o] (- ST SPPPPTPPRR 174
B AQAPIEr INEEITACE .. .uviiii e 174
B BUIE-IN EVENES L. 174
LI (L= T SRS PPRR 175

173

BREADCRUMB

The BREADCRUMB control represents a horizontal list of links. The number of links and the name
of each link is dynamically controlled by the application.

The control always occupies 100% of the given width.

Example

Bread Crumbs... -

Books F Computers F Ajax

The XML layout definition is:

<rowarea name="Bread Crumbs...">
<breadcrumb breadcrumbprop="items">
</breadcrumb>

<{/rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 ITEMS (1:%)

2 STYLE (U) DYNAMIC

2 TEXT (U) DYNAMIC

2 TOOLTIP (U) DYNAMIC
1 ITEMSINFO

2 SELECTEDITEM (I4)
END-DEFINE

Built-in Events

value-of-breadcrumbprop.onSelect

174 Natural for Ajax

BREADCRUMB

Properties

Basic

breadcrumbprop

Name of the adapter parameter that represents the control
in the adapter.

Obligatory

breadcrumbstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

pixeldistance

Pixel distance between the links that are rendered.

Optional

2

3

int-value

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Natural for Ajax

175

176

30 BUTTON

B Example: SIMPIE BULONoooi et e a e 178
= Example: BULON WIth IMAGEeeeiiii ittt e e e 179
= Hiding and Disabling BUONSoiiiiiiiiii e 179
LI (L= T SRS PPRR 179

177

BUTTON

The BUTTON control represents a button. Within the definition, specify an event that is sent to
the adapter when choosing the button.

Example: Simple Button

Buttons -

Sawve &s .., Refresh

The XML layout definition is:

<{rowarea name="Buttons">
<Gtr>
<button name="Save As ..." method="saveAs">
</button>
<hdist>
</hdist>
<button name="Refresh" method="refresh">
</button>
</itr>
<{/rowarea>

178 Natural for Ajax

BUTTON

Example: Button with Image

Buttons -

| save 2 Remove

The XML layout definition is:

<{rowarea name="Buttons">
<Gtr>
<pbutton name="Save" method="onSave" image="../HTMLBasedGUI/images/save.gif">
</button>
<hdist>
</hdist>
<button name="Remove" method="onRemove"
image="../HTMLBasedGUI/images/remove.gif">
</button>
/it
</rowarea>

Hiding and Disabling Buttons

Buttons (like many other controls) can be dynamically hidden by using the visibleprop property
- and referencing to a server side property that decides whether to hide a button or not.

There are two modes of hiding that can be controlled by using the property invisiblemode:

W If set to "disabled", the button is grayed and is not selectable anymore.

B If set to "invisible", the button is hidden.

Properties

Basic

name Text that is displayed inside the control. Please do not Sometimes
specify the name when using the multi language obligatory
management - but specify a "textid" instead.

textid Multi language dependent text that is displayed inside the|Sometimes
control. The "textid" is translated into a corresponding string | obligatory
at runtime.

Natural for Ajax 179

BUTTON

Do not specify a "name" inside the control if specifying a
"textid".

method

Name of the event that is sent to the adapter when the user
presses the button.

Obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

name

(already explained above)

textid

(already explained above)

image

URL of image that is displayed inside the control. Any
image type (.gif, jpg, ...) that your browser does understand
is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUl/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
pg

jpeg

invisiblemode

This property has three possible values:

(1) "invisible": the button is not visible without occupying
any space.

(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies
space.

Optional

invisible

disabled

cleared

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an

Optional

100

120

140

160

180

200

50%

100%

180

Natural for Ajax

BUTTON

ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
textstyle CSS style definition that is directly passed into the text of |Optional [background-color:
this control. #FF0000
With the style you can individually influence the text of the color: #0000FF
button. You can specify any style sheet expressions.
Examples are: font-weight: bold
font-weight: bold
color: #FF0000
buttonstyle |CSS style definition that is directly passed into this control. |Optional |background-color:

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions

#FF0000
color: #0000FF

font-weight: bold

Natural for Ajax

181

BUTTON

are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

stylevariant

Some controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style

definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional

VARI1

VAR2

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the
column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the
align control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Optional

top
middle

bottom

colspan

Column spanning of control.

If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to
span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are
explicitly not synched.

Optional

5

50

int-value

rowspan

Row spanning of control.

Optional

182

Natural for Ajax

BUTTON

If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span 3
over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
imagedisabled |URL of image that is displayed if the control is disabled. |Optional |gif
Use properties VISIBLEPROP and INVISIBLEMODE to .
disable the control. P8
jpeg
submitbutton |Set this property to true and the button will work asan |Optional |true
'Submitbutton', that is neccessary if you want to transfer
and/or save form values. false
i.e. password and username or complete search forms
Default value is false.
You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.
tabindex Index that defines the tab order of the control. Controls are|Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
Binding
method (already explained above)
visibleprop |Name of the adapter parameter that provides the Optional
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.
nameprop Name of an adapter parameter that provides the text to be|Optional

displayed inside the button. Typically buttons have static
texts either defined by the property "name" or "textid". Via

Natural for Ajax

183

BUTTON

"nameprop" you can dynamically set the button's text by
your application. Use the nameprop in cases the button's
text should change dependent on your logic.

Example: you may want to define the button's text to reflect
the next status the user can set to a business object.

titleprop Name of the adapter parameter that dynamically defines |Optional
the title of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

Online help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.

titleprop (already explained above)

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that can|Optional
be later on used within your test tool in order to do the
object identification

184 Natural for Ajax

31 BUTTONLIST

B AQAPIET INEEITACE .. . v e aa e 186
B PIOPEITIES oo 186

185

BUTTONLIST

The button list represents a vertical arrangement of buttons. The number of buttons and the name
on each button are dynamically controlled by the application.

The controls always occupy 100% of the given width and occupy the height required by the buttons.

Adapter Interface

DEFINE DATA PARAMETER
1 BUTTONLIST (1:%*)

2 ID (U) DYNAMIC

2 IMAGEURL (U) DYNAMIC
2 METHOD (U) DYNAMIC

2 STYLE (U) DYNAMIC

2 TEXT (U) DYNAMIC
END-DEFINE

Properties

Basic

buttonlistprop |[Name of the adapter parameter that represents the control |Obligatory
in the adapter.

—_

pixeldistance |Pixel distance between the buttons that are rendered. Optional
2
3

int-value

buttonstyle |CSS style definition that is directly passed into this control. |Optional |background-color:

#FF0000
With the style you can individually influence the rendering

of the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions

186 Natural for Ajax

BUTTONLIST

are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
tabindex Index that defines the tab order of the control. Controls are|Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
comment Comment without any effect on rendering and behaviour. |Optional

The comment is shown in the layout editor's tree view.

Natural for Ajax

187

188

32 CHECKBOX

LI (] L= T SRS PPPPUPRRR 190

189

CHECKBOX

The CHECKBOX control displays a check box. It represents a boolean value in the application.

Properties

Basic

valueprop

Name of the adapter parameter that represents the control
in the adapter.

Obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional

100

120

140

160

180

200

50%

100%

displayonly

If set to true, the FIELD will not be accessible for input. It
is just used as an output field.

Optional

true

false

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size
of the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.

Optional

left
center

right

190

Natural for Ajax

CHECKBOX

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom
case the "align" property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By defaultitis "1" - but you may want to define the control 3
to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
invisiblemode |If the visibility of the control is determined dynamically |Optional |invisible
by an adapter property then there are two rendering modes
if the visibility is "false": cleared
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: itis "grayed" and
does not show any roll over effects any more.
tabindex Index that defines the tab order of the control. Controls |Optional |-1
are selected in increasing index order and in source order
to resolve duplicates. 0
1

Natural for Ajax

191

CHECKBOX

10

32767

Label

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Optional

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Optional

hdistpixelwidth

Witdh of the distance between checkbox and label in pixel.

Optional

labelstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

valueprop

(already explained above)

statusprop

Name of the adapter parameter that dynamically passes
information how the control should be rendered and how
it should act.

Optional

flush

Flushing behaviour of the input control.

By default an input into the control is registered within
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Optional

screen

server

192

Natural for Ajax

CHECKBOX

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

flushmethod |When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to
be sent when the user updates the content of the control.
By doing so you can distinguish on the server side from
which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in |Optional
case the user presses F1 on the control.

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management |Optional
- representing the tooltip text that is used for the control.

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that |Optional

can be later on used within your test tool in order to do
the object identification

Typically, the CHECKBOX is followed by a LABEL control naming the displayed check box. In
the LABEL definition, set the property asplaintext to "true".

Natural for Ajax

193

194

33 COMBODYN2

B AQAPIET INEEITACE .. . v e aa e 196
B PIOPEITIES oo 196

195

COMBODYN2

The COMBODYN control is the dynamic counterpart of the COMBOFIX control. Whereas the
selection options inside the COMBOFIX control are defined in a fixed way inside the page definition,
the COMBODYNZ2 control offers the possibility to control the selection options dynamically in the
application.

Adapter Interface

DEFINE DATA PARAMETER

1 COSTCENTER (U) DYNAMIC
1 VALIDCOSTCENTERS (1:%*)
2 1D (U) DYNAMIC

2 NAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

Properties

Basic

valueprop Name of the adapter parameter that provides the content of the|Obligatory
control.

validvaluesprop Name of the adapter parameter that provides the valid values |Obligatory
that are available as selectable options.

width Width of the control. Sometimes |100
obligatory

There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of 140
the control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200

attention: percentage sizing will only bring up correct results if
the parent element of the control properly defines a width this
control can reference. If you specify this control to have a width 100%
of 50% then the parent element (e.g. an ITR-row) may itself
define a width of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.

50%

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Appearance

196 Natural for Ajax

COMBODYN2

width (already explained above)
size Number of rows that are displayed inside the control. If specified | Optional
as "1" (default) then the control is rendered as combo box - if
">1" then the control is rendered as multi line selection.
displayonly If set to true, the FIELD will not be accessible for input. It is just|Optional
used as an output field.
align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself is center
part of arow (e.g. ITR or TR). Sometimes the size of the column)
is bigger than the size of the control itself. In this case the "align" right
property specifies the position of the control inside the column.
In most cases you do not require the align control to be explicitly
defined because the size of the column around the controls
exactly is sized in the same way as the contained control.
If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which
you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is middle
part of arow (e.g. ITR or TR). Sometimtes the size of the column
is bigger than the size of the control. In this case the "align" bottom
property specify the position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By default
itis "1" - but you may want to define the control to span over 3
more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default it
is "1" - but you may want to define the control two span over 3
more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50

explicitly not synched.

Natural for Ajax

197

COMBODYN2

int-value

renderasfield If set to "true" then the combo box is rendered like a FIELD Optional |[true

control that offers valid value support.
false

Default is "false".

The normal translation of COMBODYN2 into HTML renders
an HTML-select control. This control has certain limitations
inside Internet Explorer: it only offers a very reduced set of styles
to manipulate its look and feel and - much worse: it always
occupies z-index "0" i.e. if you other areas overlapping the
COMBODYN?2 area then COMBODYN?2 is always on the top.
This is quite ugly if e.g. a menu is opened and parts of the menu
overlap a COMBODYN?2 control.

allowmultiselection |If set to "true" then multiple selections are allowed. Optional |true

false

combostyle CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source” or "View frame's source" function.

invisiblemode If the visibility of the control is determined dynamically by an |Optional |invisible
adapter property then there are two rendering modes if the
visibility is "false": cleared

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and does
not show any roll over effects any more.

Binding

valueprop (already explained above)

validvaluesprop |(already explained above)

198 Natural for Ajax

COMBODYN2

statusprop

Name of the adapter parameter that dynamically passes
information how the control should be rendered and how it
should act.

Optional

titleprop

Name of the adapter parameter that dynamically defines the
title of the control. The title is displayed as tool tip when ther
user moves the mouse onto the control.

Optional

flush

Flushing behaviour of the input control.

By default an input into the control is registered within the
browser client - and communicated to the server adapter object
when a user e.g. presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly after changing
the input a synchronization with the server adapter is triggered.
As consequence you directly can react inside your adapter logic
onto the change of the corresponding value. - Please be aware
of that during the synchronization always all changed properties
- also the ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if
you want to pass one changed value to all its representaion
directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be
sent when the user updates the content of the control. By doing
so you can distinguish on the server side from which control
the flush of data was triggered.

Optional

Online Help

helpid

Help id that is passed to the online help management in case
the user presses F1 on the control.

Optional

titleprop

(already explained above)

Miscellaneous

testtoolid

Use this attribute to assign a fixed control identifier that can be
later on used within your test tool in order to do the object
identification

Optional

Natural for Ajax

199

200

34 COMBOFIX

= COMBOFIX Properties

= COMBOOPTION Properties

201

COMBOFIX

The COMBOFIX control is a selection control. Depending on its configuration, it is either displayed
as a combo box or as a selection list.

The COMBOFIX control allows specifying a defined set of values which can be selected. This set
of values is defined as part of the layout definition - it cannot be controlled dynamically by the
application.

] 7EE: If you want to use dynamic selection, there are two possibilities. Either use the

COMBODYN control which has the same look and feel as the COMBOFIX control, but
where the selectable values are not specified as part of the page definition and are controlled
by the application. Or use the value help popup dialogs.

COMBOFIX Properties

Basic

valueprop Name of the adapter parameter that provides the content of the Obligatory
control.

width Width of the control. Optional |100

There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

(B) Pixel sizing: just input a number value (e.g. "100"). 180

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% then 100%
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

50%

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Appearance

width (already explained above)

size Number of rows that are displayed inside the control. If specified as |Optional
"1" (default) then the control is rendered as combo box - if ">1" then
the control is rendered as multi line selection.

displayonly |If set to true, the FIELD will not be accessible for input. It is just used | Optional
as an output field.

align Horizontal alignment of control in its column. Optional |left

202 Natural for Ajax

COMBOFIX

Each control is "packaged" into a column. The column itself is part of center
arow (e.g. ITR or TR). Sometimes the size of the column is bigger)
than the size of the control itself. In this case the "align" property right
specifies the position of the control inside the column. In most cases
you do not require the align control to be explicitly defined because
the size of the column around the controls exactly is sized in the same
way as the contained control.
If you want to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align
the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is part of middle
arow (e.g. ITR or TR). Sometimtes the size of the column is bigger
than the size of the control. In this case the "align" property specify bottom
the position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of columns your control occupies. By default it is "1" - but
you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of rows your control occupies. By default it is "1" - but you
may want to define the control two span over more than one columns. 3
The property only makes sense in table rows that are snychronized 4
within one container (i.e. TR, STR table rows). It does not make sense 5
in ITR rows, because these rows are explicitly not synched.
50
int-value
combostyle |CSS style definition that is directly passed into this control. Optional
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:
border: 1px solid #FF0000
Natural for Ajax 203

COMBOFIX

background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

invisiblemode |If the visibility of the control is determined dynamically by an adapter|Optional |invisible
property then there are two rendering modes if the visibility is "false":

cleared
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: it is "grayed" and does not
show any roll over effects any more.
tabindex Index that defines the tab order of the control. Controls are selected |Optional |-1
in increasing index order and in source order to resolve duplicates.
0
1
2
5
10
32767
Binding
valueprop (already explained above)
statusprop Name of the adapter parameter that dynamically passes information|Optional
how the control should be rendered and how it should act.
flush Flushing behaviour of the input control. Optional |screen
By default an input into the control is registered within the browser server

client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the input
a synchronization with the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of
the corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that
were changed before - are transferred to the adapter object, not only
the one that triggered the synchonization.

204 Natural for Ajax

COMBOFIX

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if you want to pass one

changed value to all its representaion directly after changing the value.

on used within your test tool in order to do the object identification

flushmethod |When the data synchronization of the control is set to FLUSH="server" |Optional
then you can specify an explicit event to be sent when the user updates
the content of the control. By doing so you can distinguish on the
server side from which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in case the user|Optional
presses F1 on the control.

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that can be later |Optional

COMBOOPTION Properties

Basic

name Name that is displayed as selectable option. Either use the NAME property to specify |Optional
the text in a "hard" way or use the TEXTID property to define the text in a language
dependent way.

textid Text ID that is used for this option. The text id is passed to the multi language Optional
management in order to find a language dependent text.

value Actual value of the option that is passed into the adapter property specified by Optional
VALUEPROP inside the COMBOFIX control.

comment |Comment without any effect on rendering and behaviour. The comment is shown [Optional
in the layout editor's tree view.

Natural for Ajax 205

206

35 DATEINPUT

L 11T o] (- ST SPPPPTPPRR 208
B PIOPEITIES oo 208

207

DATEINPUT

The DATEINPUT control is used to input a date or a date with time. The input can be done both
with the keyboard or by opening a popup in which the user can browse through a calendar. The
calendar can be controlled by server side processing in the following way:

® You can define a valid-from and a valid-to date. Thus, the control will not allow the user to
input an invalid date.

¥ You can explicitly control the color and the tooltip information inside the calendar. For example,
you may set up a calendar in which vacation times are hightlighted in a certain way.

Example

The most simple usage scenario is to just use the DATEINPUT control in the following way:

<rowarea name="Dateinput">
Gtr>
<label name="Order Date" width="120">
</label>
<dateinput valueprop="orderDate" width="120">
</dateinput>
</itr>
</rowarea>

The corresponding screen looks like this:

Dateinput -
Order Date A
Properties
Basic
valueprop Name of the adapter parameter that provides the |Optional
content of the control.
width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the 140
width of the control will either be a default width or
- in case of container controls - it will follow the 160
width that is occupied by its content.

208 Natural for Ajax

DATEINPUT

(B) Pixel sizing: just input a number value (e.g. "100"). 180

(C) Percentage sizing: input a percantage value (e.g. 200
"50%"). Pay attention: percentage sizing will only
bring up correct results if the parent element of the 50%
control properly defines a width this control can
reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent
element does not specify a width then the rendering
result may not represent what you expect.

100%

datatype By default, the DATEINPUT control is managing a |Optional |date
day. By explicitly setting a datatype you can define
that the control is managing a day and time. In the datetime
first use type CDATE within your adapter program
- in the second case use type CTIMESTAMP.

comment Comment without any effect on rendering and Optional
behaviour. The comment is shown in the layout
editor's tree view.

Binding

valueprop (already explained above)

fromprop Name of the adapter parameter that provides a lower|Optional
limit for the value of the control. The value is used
for client side validation of user input.

toprop Name of the adapter parameter that providesan |Optional
upper limit for the value of the control. The value is
used for client side validation of user input.

infoprop Name of the adapter parameter that provides style |Optional
information that is used inside the date popup.

secondsvisprop Name of the adapter parameter that provides a Optional
boolean that indicates if to show additional seconds.
This property make sense only if property
DATATYPE is set to "daytime".

statusprop Name of the adapter parameter that dynamically |Optional
passes information how the control should be
rendered and how it should act.

flush Flushing behaviour of the input control. Optional [screen

By default an input into the control is registered server
within the browser client - and communicated to the
server adapter object when a user e.g. presses a
button. By using the FLUSH property you can
change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server

Natural for Ajax 209

DATEINPUT

adapter is triggered. As consequence you directly
can react inside your adapter logic onto the change
of the corresponding value. - Please be aware of that
during the synchronization always all changed
properties - also the ones that were changed before
- are transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed
value is populated inside the page. You use this
option if you have redundant usage of the same
property inside one page and if you want to pass
one changed value to all its representaion directly
after changing the value.

flushmethod

When the data synchronization of the control is set
to FLUSH="server" then you can specify an explicit
event to be sent when the user updates the content
of the control. By doing so you can distinguish on
the server side from which control the flush of data
was triggered.

Optional

Appearance

invisiblemode

If the visibility of the control is determined
dynamically by an adapter property then there are
two rendering modes if the visibility is "false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed"
and does not show any roll over effects any more.

Optional

invisible

cleared

displayonly

If set to true, the FIELD will not be accessible for
input. It is just used as an output field.

Optional

true

false

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the size
of the column around the controls exactly is sized in
the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

Optional

left
center

right

210

Natural for Ajax

DATEINPUT

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than the bottom
size of the control. In this case the "align" property
specify the position of the control inside the column.
inputstyle CSS style definition that is directly passed into this |Optional |background-color:
control. #FF0000
With the style you can individually influence the color: #0000FF
rendering of the control. You can specify any style)
sheet expressions. Examples are: font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes 2
want to control the number of rows your control
occupies. By default it is "1" - but you may want to 3
define the control two span over more than one 4
columns.
The property only makes sense in table rows that >
are snychronized within one container (i.e. TR, STR 50
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes 2
want to control the number of columns your control
occupies. By default it is "1" - but you may want to 3
define the control to span over more than one 4
columns.
The property only makes sense in table rows that >
are snychronized within one container (i.e. TR, STR 50

Natural for Ajax

211

DATEINPUT

table rows). It does not make sense in ITR rows, int-value
because these rows are explicitly not synched.
noborder Boolean value defining if the control has a border. |Optional|true
Default is "false".
false
transparentbackground |Boolean value defining if the control is rendered |Optional |true
with a transparent background. Default is "false".
false
tabindex Index that defines the tab order of the control. Optional |-1
Controls are selected in increasing index order and
in source order to resolve duplicates. 0
1
2
5
10
32767
Valuehelp
popupicon URL of image that is displayed inside the right Optional | gif
corner of the field to indicate to the user that there .
is some value help available.. Any image type (.gif, P8
jpg, .-.) that your browser does understand is valid. ipeg
Use the following options to specify the URL:
(A) Define the URL relative to your page. Your page
is generated directly into your project's folder.
Specifiying "images/xyz.gif" will point into a
directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to
an image of a neighbour project.
(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".
popupinputonly Boolean property that control if a field with Optional true
POPUPMETHOD defined is still usable for keyboard
input. If "false" (= default) then the user can input a false
value either directly via keyboard or by using the
popupmethod's help. If set to "true" then no
keyboard input is possible - but only selection from
the popup-method's help.
popuponalt40 Value help in a field is triggered either by clicking |Optional|true
with the mouse or by pressing a certain key inside
212 Natural for Ajax

DATEINPUT

the field. The "traditional" keys are "cusrsor-down",
"F7" or "F4". Sometimes you do not want to mix other
"cursor-down" behaviour (e.g. scrolling in lists) with
the value help behaviour. In this case switch this
property to "true" - and the value help will only come
up anymore when "alt-cursor-down" is pressed.

false

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to define
a language dependent literal.

titletextid Text ID that is passed to the multi lanaguage Optional
management - representing the tooltip text that is
used for the control.

titleprop Name of the adapter parameter that dynamically |Optional
defines the title of the control. The title is displayed
as tool tip when ther user moves the mouse onto the
control.

helpid Help id that is passed to the online help management | Optional
in case the user presses F1 on the control.

Natural

njx:natstringtype

If the control shall be bound to a Natural system
variable of string format with the attribute
njx:natsysvar, this attribute indicates the format of
the string, A (code page) or U (Unicode). The default
is A.

Optional

njx:natsysio If the control shall be bound to a Natural system |Optional
variable with the attribute njx:natsysvar, this
attribute indicates if the system variable is
modifiable. The default is false.

njx:natname If a Natural variable with a name not valid for Optional

Application Designer (for instance #FIELD1) shall
be bound to the control, a different name (for
instance HFIELD1) can be bound instead. If the
original name (in this case #FIELD1) is then specified
in this attribute, the original name is generated into
the parameter data area of the Natural adapter and
a mapping between the two names is generated into
the PROCESS PAGE statement of the Natural
adapter.

njx:natsysvar

If the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

Optional

njx:natcomment

The value of this attribute is generated as comment
line into the parameter data area of the Natural

Optional

Natural for Ajax

213

DATEINPUT

adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

214 Natural for Ajax

36 DROPICON

L 11T o] (- ST SPPPPTPPRR 216
B PIOPEITIES oo 216

215

DROPICON

The DROPICON control is an icon that can be used in order to build drag-and-drop scenarios. A
DROPICON can be defined as the starting point of a drag-and-drop operation or as the target
point of a drag-and-drop operation.

Example

Have a look at the following screen:

P
Demo -

The user can click the left mouse button on the left icon (drag), move the mouse to the right icon
and then release the mouse button (drop).

The configuration of drag and drop is quite simple: the icon that is used for starting drag-and-
drop operations leaves a certain drag information - a plain string. The receiving icon, on which
the user performs the drop operation, receives both an event and the string which was left by the
icon from where the operation was started.

Properties

Basic

image URL that points to the image that is shown as icon. Obligatory |gif
The URL either is an absolute URL or a relative URL. If using irg
a relative URL then be aware of that the generated page is)
located directly inside your project's directory. Jpeg
Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.

216 Natural for Ajax

DROPICON

"../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

draginfo

String containing any kind of application data to identify
the source DROPINFO control within a drag and drop
process. Use property DROPINFOPROP to return this data
on runtime.

Optional

draginfoprop

Name of the adapter parameter that provides for information
that is passed to the adapter when dropping this control
over another DROPICON. Do not use this property (or
property DROPINFO respectively) if you do not want the
user to drag this control.

Optional

dropinfoprop

Name of the adapter parameter to that the "drag info" of the
dragged DROPICON control is set. Do not use this property
if this control should not accept other DROPICON controls
within a drag and drop process (i.e. is not a drop target).

Optional

dropmethod

Name of the event that is sent to the adapter when the user
is dragging another DROPICON control over this control
and drops it there. Do not use this parameter if this control
should not accept other DROPICON controls within a drag
and drop process (i.e. is not a drop target).

Sometimes
obligatory

method

Name of the event that is sent to the adapter when clicking
on the control.

Sometimes
obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Binding

draginfoprop

(already explained above)

dropinfoprop

(already explained above)

dropmethod

(already explained above)

imageprop

Name of adapter parameter that provides as value the URL
of the image that is shown inside the control.

Optional

method

(already explained above)

visibleprop

Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Optional

titleprop

Name of the adapter parameter that dynamically defines
the title of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

Optional

Appearance

image

(already explained above)

invisiblemode

If the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

Optional

invisible

cleared

Natural for Ajax

217

DROPICON

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

imageinactive

If the visibility is dynamically controlled by using the
INVISIBLEPROP then there are two ways the icon reacts if
the corresponding property passes back "false".

If you want the icon to switch into an inactive status then
define inside this property the URL of the image that is the
inactive counter part to the normal icon image. Maybe the
image is a grayed version of the normal icon image.

If you do not define a value for this property then the icon
is made invisible.

Optional

imagewidth

Pixel width of the image that is shown inside the icon. If not
defined then the icon is rendered with its normal width.

Optional

imageheight

Pixel height of the image that is shown inside the icon. If
not defined then the icon is rendered with its normal height.

Optional

withdistance

If set to "true" then 2 pixels of distance are kept on the left
and on the right of the icon.

Reason behing: if arranging several icons inside one table
row (ITR, TR) then a certain distance is kept between the
icons when this property is set to "true".

Optional

true

false

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the
column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Optional

top
middle

bottom

218

Natural for Ajax

DROPICON

colstyle CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source” or "View frame's source” function.
spanstyle CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source” or "View frame's source” function.
tabindex Index that defines the tab order of the control. Controls are |Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
Online Help
title Text that is shown as tooltip for the control. Optional

Natural for Ajax

219

DROPICON

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management |Optional
- representing the tooltip text that is used for the control.
titleprop (already explained above)
220 Natural for Ajax

37

FIELD

= Built-in Events

= Properties

221

FIELD

The FIELD control is used for entering data. It provides the following features:

¥ Normal input/output of text.

¥ Password input.

¥ Dynamic control if input is allowed.

¥ Dynamic highlighting of field in case of errors.

¥ Flush the input directly to the server when leaving the field.

¥ Raise an event on pressing F4 or F7 or on click - useful for value help popup dialogs

¥ Adapt the output to a data type (e.g. transfer "YYYYMMDD" to a visible date field)

Built-in Events

findValid ValuesForXXX

Properties

Basic

valueprop

Name of the adapter parameter that provides
the content of the control.

Obligatory

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case
the width of the control will either be a default
width or - in case of container controls - it will
follow the width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g.
VllOOVl).

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

Sometimes
obligatory

100

120

140

160

180

200

50%

100%

222

Natural for Ajax

FIELD

the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
width (already explained above)
length Width of FIELD in amount of characters. Optional |5
WIDTH and LENGTH should not be used
together. Note that the actual size of the control 10
depends on the font definition if using the 15
LENGTH property.
20
int-value
maxlength Maximum number of characters that a user may [Optional |5
enter into this FIELD. This property is not
depending on the LENGTH property - please 10
do not get confused by the similar naming. 15
MAXLENGTH has nothing to do with the
optical sizing of the control but only with the 20
number of characters you may input.
int-value
textalign Alignment of text inside the control. Optional |left
center
right
password If set to "true", each entered character is Optional [true
displayed as a ™.
false
displayonly If set to true, the FIELD will not be accessible |Optional |true
for input. It is just used as an output field.
false
uppercase If "true" then all input is automatically Optional |true
transferred to upper case characters.
false
align Horizontal alignment of control in its column. |Optional |left
Each control is "packaged” into a column. The center
column itself is part of a row (e.g. ITR or TR).)
Sometimes the size of the column is bigger than right

Natural for Ajax

223

FIELD

not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than bottom
the size of the control. In this case the "align"
property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of
columns your control occupies. By default it is 3
"1" - but you may want to define the control to 4
span over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of rows
your control occupies. By default it is "1" - but 3
you may want to define the control two span 4
over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
fieldstyle CSS style definition that is directly passed into |Optional |background-color: #FFO000
this control.
color: #0000FF
With the style you can individually influence)
the rendering of the control. You can specify font-weight: bold
any style sheet expressions. Examples are:
224 Natural for Ajax

FIELD

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

noborder

Boolean value defining if the control has a
border. Default is "false".

Optional

true

false

transparentbackground

Boolean value defining if the control is rendered
with a transparent background. Default is
"false".

Optional

true

false

bgcolorprop

Name of the adapter parameter that provides
the background color of the control.

Optional

fgcolorprop

Name of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The
color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPRORP to choose both - text and
background color.

Optional

invisiblemode

If the visibility of the control is determined
dynamically by an adapter property then there
are two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

Optional

invisible

cleared

tabindex

Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional

1
—_

Natural for Ajax

225

FIELD

10

32767

Binding

valueprop

(already explained above)

flush

Flushing behaviour of the input control.

By default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is
set to FLUSH="server" then you can specify an
explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

Optional

statusprop

Name of the adapter parameter that
dynamically passes information how the control
should be rendered and how it should act.

Optional

valuetextprop

Name of the adapter parameter that provides a
"human understandable" description for the
value: in some cases you enter an id into a
FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined into
one text (string) that is returned into the FIELD.

Optional

226

Natural for Ajax

FIELD

textidmode

If using property "valuetextprop” then a field
knows an id and a text for a certain value. There
are three types of display: either both are shown
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

Optional

titleprop

Name of the adapter parameter that
dynamically defines the title of the control. The
title is displayed as tool tip when ther user
moves the mouse onto the control.

Optional

bgcolorprop

(already explained above)

fgcolorprop

(already explained above)

autocallpopupmethod

Name of the adapter parameter that controls
that the field's value help event is sent to the
adapter with a certain offset (milliseconds) after
last key down event.

Optional

true

false

maxlengthprop

Name of the adapter parameter that provides
the maximum number of characters that a user
may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Optional

Validation

datatype

By default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field
with datatype "int" then a corresponding error
message will popup when the user leaves the
field.

..will format the data coming from the server
or coming form the user input: if the field has
datatype "date" and the user inputs "010304"
then the input will be translated into
"01.03.2004" (or other representation, dependent
on date format settings).

In addition valeu popups are offered for the
user automatically for some datatypes: e.g. when
specifying datatype "date" the automatically the
field provides a calendar input popup.

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format

Optional

date

float

int

long

time
timestamp
color
xs:decimal
xs:double
xs:date
xs:dateTime

xs:time

Natural for Ajax

227

FIELD

number. The server side representation may be
a float value, but also can be a double or a
BigDecimal property.

Nnn
Pnn
string n
xs:byte

xs:short

validationrules

Contains information used for Data Validation.

Use the Validation Rules Editor to make
changes!

Optional

validation

Regular expression against which the content
of the field is checked on client side when the
user changes the field. If the validation fails then
an error message popup up and informs the
user about the wrong input.

Optional

[a-zA-Z0-9_.-]
{L\\@[a-zA-Z0-9_.-]
(LA A\ w{2,)\\d{5}

[0-9)(-/+1+

validationprop

Name of the adapter parameter that provides a
regular expression for the validation of the field.
Works the same way as VALIDATION but in a
dynamic way.

Optional

validationuserhint

If a client side validation fails due to wrong user
input then an error popup is opened. If you
define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

Optional

validationuserhintprop

If using validation expressions (either property
"validation" or "validationprop") then a popup
comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

Optional

digits

Number that specifiies how many digits are to
be displayed (ie digits before the comma). If

using this feature then the DATATYPE property
must be set to 'float’. See also DECIMALDIGITS.

Optional

2

3

int-value

digitsprop

Name of the adapter parameter that provides
information how many digits are to be displayed

Optional

228

Natural for Ajax

FIELD

(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'.

decimaldigits

Number that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float’.

Optional

2

3

int-value

decimaldigitsprop

Name of the adapter parameter that provides
information how many decimal digits are to be
displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float".

Optional

Valuehelp

popupmethod

Name of the event that is sent to the adapter
when the user requests value help by pressing
F4 or F7 or by clicking into the FIELD with the
right mouse button. See at chapter Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

Optional

openldValueCombo
openldValueHelp

openldValueComboOrPopup

popupinputonly

Boolean property that control if a field with
POPUPMETHOD defined is still usable for
keyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

Optional

true

false

popupprop

Name of the adapter parameter that provides
the information whether a POPUPMETHOD is
available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

Optional

popuponalt40

Value help in a field is triggered either by
clicking with the mouse or by pressing a certain
key inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to
"true” - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

Optional

true

false

Natural for Ajax

229

FIELD

popupcombowidth

Pixel width of the standard
"openldValueCombo" popup dialog. Default is
field width or at least 150 pixel.

Optional

2
3

int-value

popupicon

URL of image that is displayed inside the right
corner of the field to indicate to the user that
there is some value help available.. Any image
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
Pg

jpeg

touchpadinput

Boolean property that decides if touch pad
support is offered for the FIELD control. The
default is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

Optional

true

false

onlinehelp

helpid

Help id that is passed to the online help
management in case the user presses F1 on the
control.

Optional

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

formula

Contains information used by the Formula
Editor.

Use the Formula Editor to make changes!

Optional

Hot Keys

230

Natural for Ajax

FIELD

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.
Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Optional

Natural

njx:natstringtype

If the control shall be bound to a Natural system
variable of string format with the attribute
njx:natsysvar, this attribute indicates the format
of the string, A (code page) or U (Unicode). The
default is A.

Optional

njx:natsysio

If the control shall be bound to a Natural system
variable with the attribute njx:natsysvar, this
attribute indicates if the system variable is
modifiable. The default is false.

Optional

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1)
shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.
If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter.

Optional

njx:natsysvar

If the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

Optional

njx:natcomment

The value of this attribute is generated as
comment line into the parameter data area of
the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

Optional

Miscellaneous

testtoolid

Use this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

Optional

Natural for Ajax

231

232

38 FILEUPLOAD/FILEUPLOAD2

B FILEUPLOAD ...ttt 234
B FILEUPLOADZ ...ttt 236
B FILEUPLOAD PIOPEITIES ... vttt et e et e et e e e e 237
B FILEUPLOADZ PrOPEITIESeeeitieieeiitt ettt ettt ettt 240

233

FILEUPLOAD/FILEUPLOAD2

The file upload controls simplify the process of uploading files from the client to the server. Two
types are available:

¥ The FILEUPLOAD control is represented by a button. When you choose the button, a dialog
appears showing the file upload form (field input and a file selection button).

¥ With the FILEUPLOAD?2 control, you embed the file upload form into your page.

Both types have the program binding, i.e. you can switch between the two types without touching
your code.

FILEUPLOAD

The FILEUPLOAD control simplifies the process of uploading files from the client to the server.
Look at the following example:

rFiIE upload -

Upload File ...

Client file name

Server file name

The control - from the look-and-feel perspective - is a button with some special reaction. When
you choose the button, the following dialog appears:

3 File Upload - Web Page Dialog [? |[X]
File Upload

Durchsuchen...

Upload

234 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

Speichern unter,

Speichern in: | i§ tubeitsplatz v| o2 mE
L S System (22
i L DVD-RW-Laufwerk (D:)
Zuletzt

verwendete D
=
Desktop

A

Eigene Dateien

Arbeitzplatz

" D ateinarme: | V| [Speichern]

Netzwe:rkumgeb D ateityp: | vl [Abbrechen]

After choosing the Upload button, the first screen looks as follows:

rFiIe upload -
Upload File ... |

Client file name C:faaaa.doc

Server file name C:fCISftempfFRE0837 729837837 3/aaa

Natural for Ajax 235

FILEUPLOAD/FILEUPLOAD2

FILEUPLOAD2

With the FILEUPLOAD?2 control, you embed the file upload form into your page.

Uﬂ'ﬂﬂﬂ... -
Browse...

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

- Choose file @

Lok jr: IE My Pictures j - ¥ B3~
wieeen | [
Documents
G i
Desktop

iSample Pictures:

¥
"
-
(%

by Documents

ty Compuiter

e

—

My Metwork File name: IimageDDE.png j Open
Places

Files of type: | &1l Files ") | Cancel

7 |

236 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

After choosing the file, the screen looks as follows:

Upload... -
C:\Temp'log.txt Browse...

FILEUPLOAD Properties

Basic

name Text that is displayed inside the control. Please do not specify the |Sometimes
name when using the multi language management - but specify a |obligatory
"textid" instead.

textid Multi language dependent text that is displayed inside the control. |Sometimes
The "textid" is translated into a corresponding string at runtime. obligatory

Do not specify a "name" inside the control if specifying a "textid".

cfileprop Name of the adapter parameter in which the client file name is passed |Obligatory
at upload time.

sfileprop Name of the adapter parameter in which at upload time the name of |Obligatory
the target file is written, which is a copy of the client file in the server
file system. Note that this file name is not the same as the client file
name.

method Name of the event that is sent to the adapter when a file is uploaded. |Obligatory
The file data is available on the server at the point of time this method
is called.

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Appearance

image URL of image that is displayed inside the control. Any image type |Optional |gif
(-.gif, jpg, -..) that your browser does understand is valid. _
) %)
Use the following options to specify the URL: '
Jpeg
(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

width Width of the control. Optional 100

Natural for Ajax 237

FILEUPLOAD/FILEUPLOAD2

There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
. . . 50%
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% then 100%
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will 200
be rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow 250
the height of it tent.
e height of its conten 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. iy .) . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define a height of 100%
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
visibleprop |Name of the adapter parameter that provides the information if this |Optional
control is displayed or not. As consequence you can control the
visibility of the control dynamically.
invisiblemode|This property has three possible values: Optional |invisible
(1) "invisible": the button is not visible without occupying any space. cleared
(2) "disabled": the button is deactivated: it is "grayed" and does not
show any roll over effects any more.
(3)"cleared": the button is not visible but it still occupies space.
buttonstyle |CSS style definition that is directly passed into this control. Optional
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:
border: 1px solid #FF0000
238 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself is part center
of arow (e.g. ITR or TR). Sometimes the size of the column is bigger
than the size of the control itself. In this case the "align" property right
specifies the position of the control inside the column. In most cases
you do not require the align control to be explicitly defined because
the size of the column around the controls exactly is sized in the same
way as the contained control.
If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which you
align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged” into a column. The column itself is part middle
of arow (e.g. ITR or TR). Sometimtes the size of the column is bigger
than the size of the control. In this case the "align" property specify bottom
the position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1" -
but you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default it is "1" - but
you may want to define the control two span over more than one 3
columns. 4

Natural for Ajax

239

FILEUPLOAD/FILEUPLOAD2

The property only makes sense in table rows that are snychronized 5

within one container (i.e. TR, STR table rows). It does not make sense

in ITR rows, because these rows are explicitly not synched. 50
int-value

Binding

cfileprop (already explained above)

sfileprop (already explained above)

method (already explained above)

visibleprop |(already explained above)

Online Help

title Text that is shown as tooltip for the control. Optional

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

titletextid Text ID that is passed to the multi lanaguage management - Optional
representing the tooltip text that is used for the control.

FILEUPLOAD?2 Properties

Basic

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the

¥ . . 50%

parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% then 100%
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

cfileprop Name of the adapter parameter in which the client file name is passed | Optional
at upload time.

sfileprop Name of the adapter parameter in which at upload time the name of |Optional
the target file is written, which is a copy of the client file in the server

240 Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

file system. Note that this file name is not the same as the client file
name.

method Name of the event that is sent to the adapter when a file is uploaded. |Optional
The file data is available on the server at the point of time this method
is called.
comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.
Binding
cfileprop (already explained above)
sfileprop (already explained above)
method (already explained above)
visibleprop Name of the adapter parameter that provides the information if this|Optional
control is displayed or not. As consequence you can control the
visibility of the control dynamically.
invisiblemode |If the visibility of the control is determined dynamically by an adapter |Optional |invisible
property then there are two rendering modes if the visibility is "false":
disabled
(1) "invisible": the control is not visible.
cleared
(2) "disabled": the control is deactivated: it is "grayed" and does not
show any roll over effects any more.
Appearance
invisiblemode |(already explained above)
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default it is "1" - but
you may want to define the control two span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50
int-value
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1" -
but you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 50

Natural for Ajax

241

FILEUPLOAD/FILEUPLOAD2

int-value

darkbackground |Normally the background is in light colour but the CIS style sheets |Optional |true

also have a dark(er) grey colour to be used.
false

If DARKBACKGROUND is set to true then the darker background
colour is chosen. This property typically is used to integrate light
coloured controls into darker container areas.

242 Natural for Ajax

39 icon

L 11T o] (- ST SPPPPTPPRR 244
B PIOPEITIES oo 244

243

ICON

The ICON control is similar to the BUTTON control, but it uses an image to display its function.
When chosen, it sends an event to the adapter.

Example

Icons -

HHE
The XML layout definition is:

{rowarea name="Icons">

<dtrd>
<icon image="../HTMLBasedGUI/images/remove.gif" method="remove"
title="Remove">
<{/icon>
<icon image="../HTMLBasedGUI/images/cut.gif" method="cut" withdistance="true"
title="Cut">
</icon>
<icon image="../HTMLBasedGUI/images/paste.gif" method="paste" title="Paste">
</icon>
<Jitrd
<{/rowarea>
Properties
Basic
image URL that points to the image that is shown as icon.|Obligatory |gif
The URL either is an absolute URL or a relative URL. ipg
If using a relative URL then be aware of that the .
generated page is located directly inside your Jpeg
project's directory.
Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.
"../HTMLBasedGUI/images/new.gif" point to a URL
that is located inside a different project.
method Name of the event that is sent to the adapter when |Obligatory
clicking on the control.

244 Natural for Ajax

ICON

name

Text that is displayed inside the control. Please do
not specify the name when using the multi language
management - but specify a "textid" instead.

Optional

textid

Multi language dependent text that is displayed
inside the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

Optional

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

Appearance

imagewidth

Pixel width of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal width.

Optional

imageheight

Pixel height of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal height.

Optional

textsize

The HTML font size of the text. Corresponding to
the HTML definition "1" means "smallest" and "6"
means "biggest".

Optional

imageinactive

If the visibility is dynamically controlled by using
the INVISIBLEPROP then there are two ways the
icon reacts if the corresponding property passes
back "false".

If you want the icon to switch into an inactive status
then define inside this property the URL of the
image that is the inactive counter part to the normal
icon image. Maybe the image is a grayed version of
the normal icon image.

If you do not define a value for this property then
the icon is made invisible.

Optional

gif
g

jpeg

align

Horizontal alignment of control in its column.

Each control is "packaged"” into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than the

Optional

left
center

right

Natural for Ajax

245

ICON

size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than the
size of the control. In this case the "align" property
specify the position of the control inside the column.

Optional

top
middle

bottom

withdistance

If set to "true" then 2 pixels of distance are kept on
the left and on the right of the icon.

Reason behing: if arranging several icons inside one
table row (ITR, TR) then a certain distance is kept
between the icons when this property is set to "true".

Optional

true

false

colstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

spanstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

246

Natural for Ajax

ICON

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

information if this control is displayed or not. As
consequence you can control the visibility of the
control dynamically.

invisiblemode If the visibility of the control is determined Optional |invisible
dynamically by an adapter property then there are
two rendering modes if the visibility is "false": cleared
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.
tabindex Index that defines the tab order of the control. Optional |-1
Controls are selected in increasing index order and
in source order to resolve duplicates. 0
1
2
5
10
32767
nameposition Position of the (optional) text to the icon. Aside or |Optional |aside
below, default is aside.
below
Set the corresponding text in the name or the text
id property.
displaymenuindicator|If set to true a small indicator signals that there is a|Optional |true
corresponding menu 'behind this icon'. Default is
false. false
Binding
method (already explained above)
visibleprop Name of the adapter parameter that provides the |Optional

Natural for Ajax

247

ICON

titleprop Name of the adapter parameter that dynamically |Optional
defines the title of the control. The title is displayed
as tool tip when ther user moves the mouse onto
the control.

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

titletextid Text ID that is passed to the multi lanaguage Optional
management - representing the tooltip text that is
used for the control.

titleprop (already explained above)

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier | Optional
that can be later on used within your test tool in
order to do the object identification

248 Natural for Ajax

40 ICONLIST

B AQAPIET INEEITACE .. . v e aa e 250
B B U EVENES e a e e 250
LI (] 1= PSPPSR 250

249

ICONLIST

The ICONLIST is very similar to the BUTTONLIST, representing a list of items instead of a list of
buttons. The list can either be a vertical list or a horizontal list.

Adapter Interface

DEFINE DATA PARAMETER
1 ICONLIST (1:%)

2 DRAGINFO (U) DYNAMIC
2 DROPINFO (U) DYNAMIC
2 1D (U) DYNAMIC

2 IMAGEURL (U) DYNAMIC
2 METHOD (U) DYNAMIC

2 NAME (U) DYNAMIC
2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-iconlistprop.onDrop
value-of-iconlistprop.onSelect

Properties

Basic

iconlistprop Name of the adapter parameter that represents the |Obligatory
control in the application.

vertical Direction of the icon list. Optional |true
If not specified (or set to "true") then the icons are false
arranged in one column, one below the other. If
specified as "false" then the icons are arrange in one
row, one aside the other.

cellspacing Anicons of the ICONLIST control is embedded into |Optional |1
an internal cell. The CELLSPACING property
defined the number of pixels that are kept between 2
the icon an the border of this cell. 3
Use the CELLSPACING in order to define a certain .

. . . int-value

distance each icon keeps from the next item.

250 Natural for Ajax

ICONLIST

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

Appearance

imagewidth

Pixel width of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal width.

Optional

imageheight

Pixel height of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal height.

Optional

align

Horizontal alignment of control in its column.

Each control is "packaged” into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

Optional

left
center

right

tablestyle

Style definition (following CSS style sheet
definitions) that is used for the background area of
the ICONLIST control.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

cellstyle

Style definition (following CSS style sheet
definitions) that is used for each cell area of the
ICONLIST control in which an icon is kept.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

displaymenuindicator

If set to true a small indicator signals that there is a
corresponding menu 'behind this icon'. Default is
false.

Optional

true

false

additionaltextposition

Position of the text that is displayed inside the
control. Use method ICONLISTItem.setName to set
the text.

Optional

aside

below

Natural for Ajax

251

ICONLIST

textsize The HTML font size of the text. Corresponding to |Optional |1
the HTML definition "1" means "smallest" and "6"
means "biggest". 2
3
4
5
6
withrightpadding Flag (boolean) that indicates whether to inserta |Optional |true
padding right hand of the last icon. This attribute
does apply for horizontal ICONLIST only (see false
attribute VERTICAL). Default is true.
252 Natural for Ajax

41 IHTML

LI (] L= T SRS PPPPUPRRR 254

253

IHTML

The IHTML control is used to embed server side generated HTML inside a page that is provided
by the application. The IHTML control is very flexible on the one hand. On the other hand, you
have to take care about what is defined inside the IHTML area.

Use this control if you have, for example, a server side report generation program already producing
HTML as output which you want to include into your pages, etc.

Properties

Basic

valueprop |Name of the adapter parameter that provides the content of the |Optional
control.

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if 509
the parent element of the control properly defines a width this 7
control can reference. If you specify this control to have a width 100%
of 50% then the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay

. . : . . 400

attention: percentage sizing will only bring up correct results if
the parent element of the control properly defines a height this 50%
control can reference. If you specify this control to have a height
of 50% then the parent element (e.g. an ITR-row) may itself define 100%
a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

254 Natural for Ajax

[HTML

colspan |Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than 3
one columns. A
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan |Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By defaultitis "1" - but
you may want to define the control two span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
ihtmlstyle |CSS style definition that is directly passed into this control. Optional |background-color:
#FF0000
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples color: #0000FF
are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating them
with a semicolon.
Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source” or "View frame's source" function.
comment |Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is part middle
of arow (e.g. ITR or TR). Sometimtes the size of the column is
bottom

Natural for Ajax

255

IHTML

bigger than the size of the control. In this case the "align" property
specify the position of the control inside the column.

256

Natural for Ajax

42 IMAGEOUT

LI (] L= T SRS PPPPUPRRR 258

257

IMAGEOUT

The IMAGEOUT control is used to present images inside a page. The name of the image is not
statically defined inside the layout but is controlled by the application through an adapter
parameter.

Properties

Basic

valueprop |Name of the adapter parameter that provides as value the URL of the image |Optional
that is shown inside the control.

width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the control will 140
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 200

percentage sizing will only bring up correct results if the parent element of the
control properly defines a width this control can reference. If you specify this
control to have a width of 50% then the parent element (e.g. an ITR-row) may 100%
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

50%

height Height of the control. Optional
There are three possibilities to define the height:

(A) You donot define a height at all. As consequence the control will be rendered
with its default height. If the control is a container control (containing) other
controls then the height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the
control properly defines a height this control can reference. If you specify this
control to have a height of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

colspan |Column spanning of control. Optional

If you use TR table rows then you may sometimes want to control the number
of columns your control occupies. By default it is "1" - but you may want to
define the control to span over more than one columns.

258 Natural for Ajax

IMAGEOUT

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

rowspan |Row spanning of control. Optional

If you use TR table rows then you may sometimes want to control the number
of rows your control occupies. By default itis "1" - but you may want to define
the control two span over more than one columns.

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Natural for Ajax 259

260

43 LABEL

L 11T o] (- ST SPPPPTPPRR 263
B AIGNING TN X et e e e e e e e e e 263
LI (] 1= PSPPSR 264

261

LABEL

The LABEL control is a static text. The tag has different properties to control the design of the
label. It can be used to display plain text or as a headline of a grid.

By default, the label is rendered with a white line under the text. The default is suitable if a FIELD
control follows the label.

262 Natural for Ajax

LABEL

Example

Label Controls -

MNarrow \Wide Plain

The XML layout definition is:

<rowarea name="Label Controls">

<tr>
<Tabel name="Narrow" width="50">
</label>
<hdist>
</hdist>
<{Tabel name="Wide" width="150">
</Tabel>
<hdist>
</hdist>
<label name="Plain" width="100" asplaintext="true">
</Tabel>
<hdist>
</hdist>
<Tabel name="Headline" width="100" asheadline="true">
</label>

</itrd

<vdist>

</vdist>

{/rowarea>

For a better separation between the LABEL controls, horizontal distances (HDIST) were added.

Aligning the Text

Use the property textalign in order to align the label's text. Do not use the a11gn property.
textalign refers to the text inside the control, a1ign refers to the position of the control inside the
surrounding cell - if the cell is larger than the control.

Natural for Ajax 263

LABEL

Properties

Basic

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Sometimes
obligatory

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Sometimes
obligatory

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

Sometimes
obligatory

100
120
140
160
180
200
50%

100%

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

nowrap

If the textual content of the control exceeds the size of the
control then the browser automatically breaks the line and
arranges the text accordingly.

You can avoid this behaviour by setting NOWRAP to "true".
No line break will be performed by the browser.

Optional

true

false

width

(already explained above)

height

Height of the control.

There are three possibilities to define the height:

Optional

100

150

200

264

Natural for Ajax

LABEL

(A) You do not define a height at all. As consequence the 250
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 300
height of the control will follow the height of its content. 250
(B) Pixel sizing: just input a number value (e.g. "20"). 400
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 50%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 100%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
asheadline If set to true, the label has a dark background and the text |Optional |true
is written in white (if using the standard style sheet).
false
You may use this rendering style is you use labels as
headlines of control grids (ROWTABLEAREA2 control).
asplaintext If set to true, no white line is drawn under the label text (if |Optional |true
using the standard style sheet).
false
You may use this rendering style if the label is used to name
a RADIOBUTTON control or a CHECKBOX control.
textalign Horizontal alignment of the text that is shown. Optional |left
center
right
cuttext Boolean property defining the rendering if the text of the |Optional |true
label does not fit into the defined width. If "true" then the
text is cut - the part that does not fit is hidden. If "false" then false
the browser opens a second line.
Default is "false".
labelstyle CSS style definition that is directly passed into this control.|Optional |background-color:

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

#FF0000
color: #0000FF

font-weight: bold

Natural for Ajax

265

LABEL

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source” function.

align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself center
is part of a row (e.g. ITR or TR). Sometimes the size of the .
column is bigger than the size of the control itself. In this right
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.
If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself middle
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the bottom
"align" property specify the position of the control inside
the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span 3
over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
266 Natural for Ajax

LABEL

int-value
invisiblemode|If the visibility of the control is determined dynamically by |Optional |invisible
an adapter property then there are two rendering modes if
cleared

the visibility is "false":
(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

Binding

visibleprop |Name of the adapter parameter that provides the Optional
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management |Optional

- representing the tooltip text that is used for the control.

Natural for Ajax

267

268

44 MENUBUTTON

L 11T o] (- ST SPPPPTPPRR 270
B MENUBUTTON PrOPEIIESveiiiiiieiii ettt 271
B MENUITEM PrOPEITIES ...ttt e e e e e 273

269

MENUBUTTON

The MENUBUTTON control offers the possibility to arrange buttons in a hierarchy.

Example

In the following example, there are two menu buttons which act differently when they are selected:

rnemn -
Below
Shove
rDemu -
Below
Mew...
Cpen... Ahove
rDemn -
Below
Save..
E Save 3s ...

The XML code for the example looks as follows:

<rowarea name="Demo">
<tr takefullwidth="true">
<coltableO width="50%" takefullheight="true">

<itr>
<menubutton name="Below" menuposition="below">
<menuitem name="New..." method="newFile" pixelwidth="150">
</menuitem>
<menuitem name="0pen..." method="openFile" pixelwidth="150">
</menuitem>
</menubutton>
</itr>

</coltable0>
<coltable0 width="50%">

270 Natural for Ajax

MENUBUTTON

<vdist height="50">

</vdist>
<Gtr>
<menubutton name="Above" menuposition="above">
<menuitem name="Save..." method="saveFile" pixelwidth="150">
</menuitem>
<menuitem name="Save as ..." method="saveAsFile" pixelwidth="150">
</menuitem>
</menubutton>
</itr>
</coltable0>
</itr>
</rowarea>

In the definition of a menu item, an event that is to be sent to an adapter is exactly defined like
with a normal button.

MENUBUTTON Properties

Basic

name Text that is displayed inside the control. Please do not specify the |Sometimes
name when using the multi language management - but specify a |obligatory
"textid" instead.

textid Multi language dependent text that is displayed inside the control. |Sometimes
The "textid" is translated into a corresponding string at runtime. |obligatory
Do not specify a "name" inside the control if specifying a "textid".

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Appearance

menuposition |above if the menu should popup above the base menu button - below |Optional ~ |above
if the menu should popup below the base menu button.

below

The default is below.

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the 509

Natural for Ajax 271

MENUBUTTON

parent element of the control properly defines a width this control 100%
can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

visibleprop |Name of the adapter parameter that provides the information if this |Optional
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

colspan Column spanning of control. Optional |1

If you use TR table rows then you may sometimes want to control 2

the number of columns your control occupies. By default it is "1" -

but you may want to define the control to span over more than one 3

columns.
4

The property only makes sense in table rows that are snychronized 5

within one container (i.e. TR, STR table rows). It does not make sense

in ITR rows, because these rows are explicitly not synched. 50
int-value

rowspan Row spanning of control. Optional |1

If you use TR table rows then you may sometimes want to control 2

the number of rows your control occupies. By default it is "1" - but

you may want to define the control two span over more than one 3

columns.
4

The property only makes sense in table rows that are snychronized 5

within one container (i.e. TR, STR table rows). It does not make sense

in ITR rows, because these rows are explicitly not synched. 50
int-value

buttonstyle |CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

272 Natural for Ajax

MENUBUTTON

MENUITEM Properties

Basic

name Text that is displayed inside the control. Please do not specify the name|Sometimes
when using the multi language management - but specify a "textid" |obligatory
instead.

textid Multi language dependent text that is displayed inside the control. The|Sometimes
"textid" is translated into a corresponding string at runtime. obligatory
Do not specify a "name" inside the control if specifying a "textid".

method Name of the event that is sent to the adapter when clicking on the Obligatory
control.

pixelwidth |Width of the control in pixels. Obligatory

comment |Comment without any effect on rendering and behaviour. The comment|Optional
is shown in the layout editor's tree view.

Appearance

pixelheight|Height of the control in pixels. Optional

itemstyle |CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source” function.

Natural for Ajax

273

274

45 METHODLINK

LI (] L= T SRS PPPPUPRRR 276

275

METHODLINK

The METHODLINK is a control that renders a text that is dynamically provided by the application
through an adapter parameter. The text is rendered as a hyperlink. When clicking on the hyperlink,

an event is sent to the adapter. It is used in scenarios in which users are in the habit of following

links instea

d of choosing buttons or icons.

Properties

Basic

name

Text that is displayed inside the control. Please do not specify
the name when using the multi language management - but
specify a "textid" instead.

Optional

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Optional

method

Name of the event that is sent to the adapter when clicking on
the control.

Obligatory

valueprop

Name of the adapter parameter that provides the text that is
shown as link.

Obligatory

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width of
the control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a
width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does
not specify a width then the rendering result may not represent
what you expect.

Sometimes

obligatory

100
120
140
160
180
200
50%

100%

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

Appearance

width

(already explained above)

276

Natural for Ajax

METHODLINK

straighttext

If the text of the control contains HTML tags then these are by
default interpreted by the browser. Specifiying
STRAIGHTTEXT as "true" means that the browser will directly
render the characters without HTML interpretation.

Example: if you want to output the source of an HTML text
then STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

Optional

true

false

linkstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

linkclass

CSS style class definition that is directly passed into this control.

The style class can be either one which is part of the "normal"
CIS style sheet files (i.e. the ones that you maintain with the
style sheet editor) - or it can be one of an other style sheet file
that you may reference via the ADDSTYLESHEET property of
the PAGE tag.

Optional

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself is
part of arow (e.g. ITR or TR). Sometimes the size of the column
is bigger than the size of the control itself. In this case the "align”
property specifies the position of the control inside the column.
In most cases you do not require the align control to be
explicitly defined because the size of the column around the
controls exactly is sized in the same way as the contained
control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign" in
which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Optional

top

middle

Natural for Ajax

277

METHODLINK

Each control is "packaged" into a column. The column itself is bottom
part of arow (e.g. ITR or TR). Sometimtes the size of the column
is bigger than the size of the control. In this case the "align"
property specify the position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
defaultitis "1" - but you may want to define the control to span 3
over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan |Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span over 3
more than one columns. 1
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
Binding
valueprop |(already explained above)
method (already explained above)
titleprop |Name of the adapter parameter that dynamically defines the |Optional
title of the control. The title is displayed as tool tip when ther
user moves the mouse onto the control.
278 Natural for Ajax

46 MULTISELECT

L 11T o] (- ST SPPPPTPPRR 280
B AQAPIEr INEEITACE .. .uviiii e 280
LI (] 1= PSPPSR 280

279

MULTISELECT

The MULTISELECT control allows comfortable input of multiple selections of items from a defined
number of items.

Example

Sevilla Lebrija
Carmona Malaga
Cadiz ? 7| Bilbaa
Valencla
Madrid »
Salamanca
Barcelona <
Granada

<<

The available items are rendered on the left and are brought to the right by choosing the
corresponding button. There are buttons to bring all items from the left to the right, and back.

Adapter Interface

DEFINE DATA PARAMETER
1 TOWNS (1:%*)

2 1D (U) DYNAMIC

2 SELECTED (L)

2 TEXT (U) DYNAMIC

END-DEFINE

Properties

Basic

valueprop |Name of the adapter parameter representing this control in the Obligatory
application.

width Width of the control. Obligatory|100
There are three possibilities to define the width: 120

140

280 Natural for Ajax

MULTISELECT

(A) You do not define a width at all. In this case the width of the control 160
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 50%
attention: percentage sizing will only bring up correct results if the
. . . 100%

parent element of the control properly defines a width this control can
reference. If you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a width of "100%".
If the parent element does not specify a width then the rendering result
may not represent what you expect.

height Height of the control. Obligatory|100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will 200
be rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow 250
the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay

. iy . . . 400

attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control can 50%
reference. If you specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a height of "100%". 100%

If the parent element does not specify a width then the rendering result
may not represent what you expect.

comment Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.

Appearance

displayonly |If set to true, the FIELD will not be accessible for input. It is just used |Optional |true

as an output field.
false

withupdown |If set to true, corresponding up and down arrows appear on the right|Optional |true
hand side. These arrows allow for changing the order of the selected

items. false
align Horizontal alignment of control in its column. Optional |left

Each control is "packaged" into a column. The column itself is part of center

arow (e.g. ITR or TR). Sometimes the size of the column is bigger than)

the size of the control itself. In this case the "align" property specifies right

the position of the control inside the column. In most cases you do not
require the align control to be explicitly defined because the size of the

Natural for Ajax 281

MULTISELECT

column around the controls exactly is sized in the same way as the
contained control.

If you want to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align the
control's contained text.

valign Vertical alignment of control in its column. Optional |top

Each control is "packaged"” into a column. The column itself is part of middle
arow (e.g.ITR or TR). Sometimtes the size of the column is bigger than

the size of the control. In this case the "align" property specify the bottom
position of the control inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of columns your control occupies. By defaultitis "1" - but you
may want to define the control to span over more than one columns. 3
The property only makes sense in table rows that are snychronized 4
within one container (i.e. TR, STR table rows). It does not make sense
. . 5
in ITR rows, because these rows are explicitly not synched.
50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control the 2
number of rows your control occupies. By default it is "1" - but you
may want to define the control two span over more than one columns. 3
The property only makes sense in table rows that are snychronized 4
within one container (i.e. TR, STR table rows). It does not make sense
. . 5
in ITR rows, because these rows are explicitly not synched.
50
int-value

msstyle CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

282 Natural for Ajax

MULTISELECT

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

Binding

valueprop |(already explained above)

flush Flushing behaviour of the input control. Optional |screen
By default an input into the control is registered within the browser server

client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the input
a synchronization with the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that were
changed before - are transferred to the adapter object, not only the one
that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if you want to pass one changed
value to all its representaion directly after changing the value.

flushmethod |When the data synchronization of the control is set to FLUSH="server"|Optional
then you can specify an explicit event to be sent when the user updates
the content of the control. By doing so you can distinguish on the server
side from which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in case the user |Optional
presses F1 on the control.

Natural for Ajax 283

284

47 NEWSFEED

L 11T o] (- ST SPPPPTPPRR 287
B B U EVENES e a e e 288
LI (] 1= PSPPSR 288

285

NEWSFEED

The NEWSFEED control is a simple-to-use [newsreader] within the Application Designer pages.
It offers the possibility to read news feeds (RSS feeds and Atom feeds).

FAN EE: Inorder to use the NEWSFEED control, you have to specify a valid RSS or Atom feed

URL (for example http://news.cnet.com/2547-1001_3-0-5.xml). If necessary, you also have
to specify your proxy server settings (host, port, user name, password).

286 Natural for Ajax

http://news.cnet.com/2547-1001_3-0-5.xml

NEWSFEED

Example

rNEWSfEEd Control

B 15.04-16:39 &nti-Krebs-Impfung - Aufgeputschie Kdrperabwehr J
18.04-16:332 Bundesverfassungsgericht - Linke verschlaft Tornado-Gerichtstermin
158.04-16:00 Bombenterror - Uber 100 Tate bei Anschldgen in Bagdad
18.04-15:25 Raketenabwehr - USA planen Zusarmmenarbeit mit Russland
12.04-15:21 Gradengesuch - Klar erldutert umstrittenes Grufwiort
18.04-15:17 Telefon und Internet - Zypries weitet Uberwachung aus
18.04-15:14 Azteken - Die mysteridsen Toten der Mandpyramide
18.04-14:59 Tirkei - Deutscher bei Uberfall auf Bibel-verlag getdtet
128.04-14:51 Us5-Waffendiskussion - Letzte Bastion gegen Revolverhelden
18.04-14:47 EM-Vergahe - Paolitik, Platini und Pelzmantel
18.04-14:41 Bundeskabinett - Yorratsdatenspeicherung beschlossen
18.04-13:13 Journalisten-attacken - ARD und ZDF protestieren bei Putin

« o

The XML layout definition is:

<rowarea name="Newsfeed Control" width="560">
<newsfeed infoprop="newsfeedinfoprop" width="550" height="450">
</newsfeed>

{/rowarea>

Natural for Ajax 287

NEWSFEED

Built-in Events

value-of-infoprop.onOpenLink
value-of-infoprop.onOpenLinkNewTarget

Properties

Basic

infoprop |Name of the adapter parameter that represents the control in the adapter. |Obligatory

height |Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will be 200
rendered with its default height. If the control is a container control (containing)
other controls then the height of the control will follow the height of its content. 250
(B) Pixel sizing: just input a number value (e.g. "20"). 300
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 250
percentage sizing will only bring up correct results if the parent element of

. j . . 400
the control properly defines a height this control can reference. If you specify
this control to have a height of 50% then the parent element (e.g. an ITR-row) 50%
may itself define a height of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect. 100%

splitstyle | By default the newsfeed control appears within a vsplit control. Headers on |Optional |vsplit
plitstyle By pp P P p

the left and content on the right. Set this value to hsplit and the control appears .
within a hsplit control. Headers on top, content on the bottom. hsplit

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

288 Natural for Ajax

48 RADIOBUTTON

LI (] L= T SRS PPPPUPRRR 290

289

RADIOBUTTON

The RADIOBUTTON control displays the radio button. Radio buttons can be grouped together
so that a group of RADIOBUTTON controls manipulates one adapter parameter. Each
RADIOBUTTON instance represents one value for the adapter parameter.

Properties

Basic

valueprop

Name of the adapter parameter that provides the content
of the control.

Obligatory

value

Value that represents this instance of the RADIOBUTTON
control.

The value is set into the adapter property that is defined
by the VALUEPROP property when the user clicks onto
the control. - Vice versa: the control is switched to
"marked" when the adapter property holds the value
defined.

Optional

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional

100

120

140

160

180

200

50%

100%

displayonly

If set to true, the FIELD will not be accessible for input. It
is just used as an output field.

Optional

true

false

align

Horizontal alignment of control in its column.

Optional

left

290

Natural for Ajax

RADIOBUTTON

Each control is "packaged" into a column. The column center
itself is part of a row (e.g. ITR or TR). Sometimes the size
of the column is bigger than the size of the control itself. right
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.
If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom
case the "align" property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By defaultitis "1" - but you may want to define the control 3
to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
invisiblemode |If the visibility of the control is determined dynamically |Optional |invisible
by an adapter property then there are two rendering modes
cleared

if the visibility is "false":

(1) "invisible": the control is not visible.

Natural for Ajax

291

RADIOBUTTON

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

tabindex

Index that defines the tab order of the control. Controls
are selected in increasing index order and in source order
to resolve duplicates.

Optional

1
—_

10

32767

Label

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Optional

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Optional

hdistpixelwidth

Witdh of the distance between checkbox and label in pixel.

Optional

labelstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source” function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

valueprop

(already explained above)

statusprop

Name of the adapter parameter that dynamically passes
information how the control should be rendered and how
it should act.

Optional

292

Natural for Ajax

RADIOBUTTON

flush Flushing behaviour of the input control. Optional |screen

By default an input into the control is registered within server
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

flushmethod |When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to
be sent when the user updates the content of the control.
By doing so you can distinguish on the server side from
which control the flush of data was triggered.

Online Help

helpid Help id that is passed to the online help management in |Optional
case the user presses F1 on the control.

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that |Optional

can be later on used within your test tool in order to do
the object identification

The RADIOBUTTON control is typically followed by a label explaining its meaning.

Natural for Ajax 293

294

49 SCHEDULELINE

LI (] L= T SRS PPPPUPRRR 296

295

SCHEDULELINE

The SCHEDULELINE control is used to define screens like the following:

rEmpIu',ree'S schedules -
Ermployee Schedule
.00 9. 00 10:00 11:00
Alan Sales Meeting Team meeting (Joan, Jim, HuPresentation
Barny Sales Meeting
Joan Team meeting (Joan, Jirm, Hu
Kirsten Budget Meeting Interyiew
Michael
Ricky Fepair PC
Fohert Sales Meeting Team meeting (Joan, Jim, HuPresentation
2:00 Q.00 10:00 11:00
"Selection -
Item

You can display a certain sequence of items, each item holding a text, a color value, a size and an
identifier. When clicking on an item, a certain event is sent to your adapter and the ID of the
selected item is returned to perform activities in your program.

Properties

Basic

valueprop Name of the adapter parameter that represents the control | Obligatory
in the adapter.

It returns a semicolon separated list of schedule items.
Each item is represented by a color, a width, a text and
a selection id. The width is not a pixel width but
represents a "portion” that this schedule item represents.

Example: #FF0000\ "1000;Text 1,;1;#00FF00;500;Text 2;2

The total "logical width" is 1500. The firts item occupies
2/3 of the width, the right item occupies 1/3 of the width.

The selection is required in case you want to react on user
selections. If a user clicks onto one schedule item then
the adapter is notified by a certain event - the id of the
schedule item is passed as reference. Please have a look
into the corresponding property descriptions.

296 Natural for Ajax

SCHEDULELINE

width Width of the control. Obligatory|100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width 140
of the control will either be a default width or - in case
of container controls - it will follow the width that is 160
ied by it tent.
occupied by its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g.
" o/ " . o . . . 50%
50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control 100%
properly defines a width this control can reference. If you
specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.
pixelheight Height of the control in pixels. Optional
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
width (already explained above)
pixelheight (already explained above)
pixelsizemode |A schedule line consists of sections, each one rendered |Optional |true
with a certain width. By default the width does not
represent a pixel value but represents a logical size. The false
width of the section depends on the logical size of one
section compared with the logical size of the other
sections.
When switching this property to "true" then the size of
the sections are interpreted as real pixel values.
cellalign Horizontal alignment of the text inside the control's Optional |left
schedule items.
center
right
cellvalign Vertical alignement of the text inside the control's Optional |top
schedule items.
middle
bottom
cellstyle Style that is used inside the schedule item cells. Can be |Optional |background-color:

any CSS style.

#FF0000

Natural for Ajax

297

SCHEDULELINE

color: #0000FF

font-weight: bold

cellnowrap If switched to "true" then the text inside the schedule item |Optional |true
cells is not broken if exceeding the size of the control -
the text is cut instead. false

Default is "false".

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom

case the "align" property specify the position of the
control inside the column.

colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By default it is "1" - but you may want to define the 3
control to span over more than one columns. 4
The property only makes sense in table rows that are 5

snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.

int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5

snychronized within one container (i.e. TR, STR table
rows). [t does not make sense in ITR rows, because these 50
rows are explicitly not synched.

int-value
crosslineids Flag (true | false) that indicates that cells of different lines |Optional |true
(within ROWTABLEAREA?2) does not have same ids. If
set to false the control is able to detect and skip false
unnecessary re-draws (performance).
tablestyle CSS style definition that is directly passed into this Optional |background-color:
control. #FF0000

298 Natural for Ajax

SCHEDULELINE

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

color: #0000FF

font-weight: bold

Binding

valueprop

(already explained above)

selectmethod

Name of the event that is sent to the adapter when the
user selects one schedule item with the mouse.

Optional

selscheduleprop

Name of an adapter parameter in which the id of the
selected schedule item is passed.

Optional

seltypeprop

Name of an adapter parameter that is used in the
following way:

If the user selects an item it can also be determined, if the
item is selected by the left or by the right mouse button.
In case the user uses the left mouse button, the value
LEFT is passed into the property, which is referenced by
the SELTYPEPROP property. In case the user uses the
right mouse button, the value RIGHT is passed.

Optional

preselectmode

If set to "true" then schedule items holding an id can be
"preselected": the user can click on a schedule item and
it is "grayed" as consequence - without directly calling
the selection method. The selection method is called when
double clicking onto the schedule item.

Default is "false".

The reaction of the control when clicking with the right
mouse button remains untouched: still the selection
method is called by a single right mouse button click.

Optional

true

false

Vertical

verticalschedule

Flag that indicates if the line is rendered vertically.
Default is false.

Optional

true

false

Natural for Ajax

299

SCHEDULELINE

tooltipprop

Name of an adapter parameter that contains the comma
separated list of help texts that are displayed on mouse
over (tooltip).

Optional

imageprop

Name of an adapter parameter that returns a comma
separated string of image URLs. An URL either is an
absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located
directly inside your project's directory.

Example: "images/green.gif;;red.gif"

Optional

imageorientation

Flag that indicates to render the image at the left or right
hand of the text.

Optional

left

right

dropinfoprop

Name of the adapter parameter to that the id of the
dragged cell is set. Do not use this property if you do not
want to support drag and drop within the
SCHEDULELINE. The server side property needs to be
of type "String".

Optional

onmovemethod

Name of the event that is sent to the adapter on drop of
one cell (source) over another cell (target). Use property
DROPINFOPROP to get the id of the dragged cell
(source). Use SELSCHEDULEPRORP to get the id of the
cell that got the drop (target).

Optional

controlkeyprop

Name of an adapter parameter to that the information is
set whether the user pressed the CTRL key when selecting
a cell.

Optional

300

Natural for Ajax

50 SLIDER

L 11T o] (- ST SPPPPTPPRR 302
B AQAPIEr INEEITACE .. .uviiii e 303
LI (] 1= PSPPSR 303

301

SLIDER

The SLIDER control represents a slider. The main use of the slider is to limit the user input to
specific values. It uses a number representation for its values, but the numbers can also be used
to express string values.

Example

13 - &0

The XML layout definition is:

<rowarea name="Number Qutput">
<Gitr>
<sTider valueprop="sliderl"™ from="13" to="60" showrange="true"
showcurrentvalue="false">
</slider>
</itr>
</rowarea>

The control can be customized by setting its start value, end value and a step. The start and end

values form a closed interval. The step defines the distance between two valid values represented
by the slider in this interval.

How old are you?

O—= (O

=tart

step step = 1

i3 “ &0 |

In the above example, the value for the step is the default value "1". The possible values represented
by the slider are the integers from "13" to "60". It is possible to specify a floating-point number as
a step, for example "0,25". The slider can be further customized by setting the properties showrange
and showcurrentvalue which show the range (start and end value) and the current value of the
slider while the user is moving it. The width and height of the slider point is adjustable. The slider
point is the element which the user drags and drops. The colors, the borders of the slider, the point,
the line, the range and the current value can also be customized.

302 Natural for Ajax

SLIDER

Customized

it b current value

Adapter Interface

DEFINE DATA PARAMETER

1 SLIDER

2 DISPLAYONLY (L)

2 FROM (F4)

2 SLIDERVALUE (F4)

2 STEP (F4)

2 T0 (F4)

END-DEFINE

Properties

Basic

valueprop Name of the adapter parameter that provides |Obligatory

the content of the control.
Appearance
width Width of the slider. Can be given in pixels or |Optional |100
percentage.

120
140
160
180
200
50%

Natural for Ajax

303

SLIDER

100%
displayonly If set to true, the SLIDER will not be accessible |Optional |true
for input. It is just used as an output.
false
showrange Boolean value. Whether to show the range of |Optional |true
the slider. The range is the "from" and "to"
values. false
showcurrentvalue [Boolean value. Whether to show the current |Optional |true
value of the slider while it is moving.
false
mainbgcolor Background color of the slider container. Optional |#FF0000
This should be a valid CSS color value. For #00FF00
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF
#FFFFFF
#808080
#000000
mainbordercolor |Border color of the slider container. Optional |#bbb #666 #666 #bbb
This should be a valid CSS border-color value. #BFCFFT #00248F #00248F
You can specify a different color for the top, #BFCFFF
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB
mainborderwidth |Border width of the slider container. Optional |thin
medium
thick
1px
2px
5px
10px
pointbgcolor Background color of the slider point. Optional |#FF0000
This should be a valid CSS color value. For #00FF00
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF
304 Natural for Ajax

SLIDER

#FFFFFF
#808080
#000000
pointbordercolor |Border color of the slider point. Optional |#bbb #666 #666 #bbb
This should be a valid CSS border-color value. #BFCFFF #00248F #00248F
You can specify a different color for the top, #BFCFFF
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB
pointborderwidth |Border width of the slider point. Optional |thin
medium
thick
1px
2px
5px
10px
pointwidth Width of the slider point in pixels. The value |Optional |10
must be an integer value.
20
40
100
300
pointheight Height of the slider point in pixels. The value |Optional |10
must be an integer value.
20
40
100
300
linebgcolor Background color of the slider line. Optional |#FF0000
This should be a valid CSS color value. For #00FF00
example a name(blue, red), a hexadecimal
#0000FF

value(#99CCFF) or others.

Natural for Ajax

305

SLIDER

#FFFFFF

#808080

#000000

linebordercolor

Border color of the slider line.

This should be a valid CSS border-color value.

You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

Optional

#bbb #666 #666 #bbb

#BFCFFF #00248F #00248F
#BFCFFF

lineborderwidth

Border width of the slider line.

Optional

thin
medium
thick
1px

2px

5px

10px

rangefontsize

Font size of the slider range.

Optional

xx-small
x-small
small
medium
large
x-large
xx-large
smaller
larger

150%

valuebgcolor

Background color of the slider current value
which is shown if the "showcurrentvalue"
property is set to true.

Optional

#FF0000

#00FF00

#0000FF

306

Natural for Ajax

SLIDER

This should be a valid CSS color value. For #FFFFFF
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #808080
#000000
valuebordercolor |Background color of the slider current value |Optional |#bbb #666 #666 #bbb

which is shown if the "showcurrentvalue"
property is set to true.

#BFCFFF #00248F #00248F

#BFCFFF

This should be a valid CSS border-color value.

You can specify a different color for the top,

right, bottom and left border in this sequence.

For example: #bbb #666 #666 #bbb

valueborderwidth |Border width of the slider current value which |Optional |thin

is shown if the "showcurrentvalue" property is)

set to true. medium
thick
1px
2px
5px
10px

valuefontsize Font size of the slider current value whichis |Optional |xx-small

shown if the "showcurrentvalue" property is set

to true. x-small
small
medium
large
x-large
xx-large
smaller
larger
150%

Natural for Ajax

307

308

51 STRIPSEL

L 11T o] (- ST SPPPPTPPRR 310
B PIOPEITIES oo 310

309

STRIPSEL

The STRIPSEL control is very similar to the TABSTRIP2 control: the user selects one option out of
many.

The STRIPSEL control is typically located somewhere at the top of a page, but it can also be
positioned anywhere else.

Example

Programming a STRIPSEL control is the same as programming the TABSTRIP2 control - just the
rendering of the control differs:

STRIPSEL Control £:3

First Second Third Fourth

rTest -

Selection First

rCumpﬂrisun with TABSTRIP Control -
First Second Third Fourth

In this example, the STRIPSEL control is the control below the titlebar. For comparison, the
TABSTRIP2 control has also been added.

Properties

Basic

tabstripprop Name of the adapter parameter that represents the Optional
control in the adapter.

align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column center
itself is part of arow (e.g.ITR or TR). Sometimes the size .
of the column is bigger than the size of the control itself. right

In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is
sized in the same way as the contained control.

310 Natural for Ajax

STRIPSEL

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained
text.

scrollable

Flag that indicates if the control shows scroll icons on
the right upper corner. Default is true

Optional

true

false

backgroundstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source” function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

scrolllefttitle

Help text that is displayed if the user moves the mouse
of the scroll to left icon.

Optional

scrolllefttitletextid

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

scrollrighttitle

Help text that is displayed if the user moves the mouse
of the scroll to right icon.

Optional

scrollrighttitletextid

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

Optional

Natural for Ajax

3N

312

52 SUBPAGE

LI (] L= T SRS PPPPUPRRR 314

313

SUBPAGE

The SUBPAGE control defines an area in which an HTML page is shown. The URL of the page is

not statically defined, but is dynamically controlled by the application.

Due to the browser's capability to embed installed plug-ins, you can use non-HTML objects to be
called - and which the browser is able to understand. For example, if you have Microsoft Office

installed (or the viewers for Microsoft Office documents) and you pass the name of a Word
document as the URL, the Word document will be embedded into the page.

Properties
Basic
valueprop |Name of the adapter parameter that provides the URL to be displayed |Obligatory
inside the SUBPAGE control.
Please note: the SUBPAGE control only re-renders its inner content if the
URL provided by the property really changes. The SUBPAGE control
does not "know" if something changed inside the contained page and that
it has to redraw the page. - If you want to refresh the inner page explicitly
append some random number to your URL, e.g.:
http://...url...?2RANDOM=45435. By changing the number the browser will
reload the URL.
width Width of the control. Sometimes |100
obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the control 140
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 200
percentage sizing will only bring up correct results if the parent element 509
of the control properly defines a width this control can reference. If you ?
specify this control to have a width of 50% then the parent element (e.g. 100%
an ITR-row) may itself define a width of "100%". If the parent element
does not specify a width then the rendering result may not represent what
you expect.
height Height of the control. Sometimes |100
obligatory
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will be 200
rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow the 250
height of it tent.
eight of its conten 300
314 Natural for Ajax

SUBPAGE

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element
of the control properly defines a height this control can reference. If you
specify this control to have a height of 50% then the parent element (e.g.
an ITR-row) may itself define a height of "100%". If the parent element
does not specify a width then the rendering result may not represent what
you expect.

250
400
50%

100%

comment

Comment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

Optional

Appearance

width

(already explained above)

height

(already explained above)

scrolling

Definition of the scrollbar's appearance.

You can define that the scrollbars only are shown if the content is
exceeding the control's area ("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and the content is cut ("hidden").

Default is "auto".

Optional

auto

yes

no

pagestyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the control.
You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them with a
semicolon.

Sometimes it is useful to have a look into the generated HTML code in
order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source” or "View
frame's source" function.

Optional

colspan

Column spanning of control.

If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns.

The property only makes sense in table rows that are snychronized within
one container (i.e. TR, STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not synched.

Optional

5

50

int-value

Natural for Ajax

315

SUBPAGE

rowspan |Row spanning of control. Optional |1

If you use TR table rows then you may sometimes want to control the 2

number of rows your control occupies. By default it is "1" - but you may

want to define the control two span over more than one columns. 3

The property only makes sense in table rows that are snychronized within 4

one container (i.e. TR, STR table rows). It does not make sense in ITR 5

rows, because these rows are explicitly not synched.
50
int-value

Binding

valueprop |(a1ready explained above)

316 Natural for Ajax

53 TABSEL

B AQAPIET INEEITACE .. . v e aa e 318
B B U EVENES e a e e 319
LI (] 1= PSPPSR 319

317

TABSEL

The TABSEL control looks as shown in the following example:

Second | Third | Fourth | Fifth | Sixth | Seventh
Second | Third | Fourth | Fifth | Sizth | Seventh
First
Command
First
Command

The number of tabs is dynamically defined at runtime. There are various output options:

B With/without a horizontal line below the control.

¥ Normal or reverse coloring.

Like the TABSTRIP control, the TABSEL control does not provide internal containers that are
switched when selecting tabs. It just represents one tab line.

Adapter Interface

DEFINE DATA PARAMETER
1 TABS

2 SELECTEDITEM (I4)
2 TSITEMS (1:%)

3 ID (U) DYNAMIC

3 NAME (U) DYNAMIC
3 TITLE (U) DYNAMIC
END-DEFINE

318

Natural for Ajax

TABSEL

Built-in Events

value-of-tabselprop.onSelect

Properties

Basic

tabselprop |Name of the adapter parameter that represents the control in the Obligatory
adapter.

bottomborder |If set to "true" then a bottom border is rendered below the tab selection.|Optional |true

If set to "false" then no bottom border will be drawn.
false

reversecolors |Reverses the color scheme of the TABSEL control. Optional |true

false

leftindent Inserts a horizontal distance left of the first "tab" and shifts the "tabs" |Optional |1
to the right as consequence. The value you may define represents the

number of pixels that are inserted. 2
3
int-value
comment Comment without any effect on rendering and behaviour. The Optional

comment is shown in the layout editor's tree view.

Natural for Ajax 319

320

54 1asstrIP

L 11T o] (- ST SPPPPTPPRR 322
B AQAPIEr INEEITACE .. .uviiii e 322
B BUIE-IN EVENES L. 322
LI (L= T SRS PPRR 323

321

TABSTRIP2

The TABSTRIP2 control is used to navigate through certain aspects of your application. The way
you navigate depends completely on your implementation.

Example

The control looks as follows:

Simple programming of tab-strip-controls 3
First Second Third
Exit

Selection -

Selected tab First

For each aspect, there is one tab holding a name and an index. The left-most tab holds index 1, the
next one 2, etc.

Adapter Interface

DEFINE DATA PARAMETER
1 TABS

2 SELINDEX (I4)

2 TSITEMS (1:%)

3 NAME (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-tabstripprop.onSelect

322 Natural for Ajax

TABSTRIP2

Properties
Basic
tabstripprop Name of the adapter parameter that represents the control |Optional
in the adapter.
align Horizontal alignment of the control's content. Optional |left
center
right
scrollable If set to "true" then small icons will appear on the right |Optional |true
border of the control. If the size of the "tabs" is too big and
some tabs are cut as consequence then you can use these false
icons for scrolling left and right.
backgroundstyle | CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.
comment Comment without any effect on rendering and behaviour. |Optional

The comment is shown in the layout editor's tree view.

Natural for Ajax

323

324

55 TAGCLOUD

L 11T o] (- ST SPPPPTPPRR 326
B AQAPIEr INEEITACE .. .uviiii e 327
B BUIE-IN EVENES L. 327
LI (L= T SRS PPRR 327

325

TAGCLOUD

The TAGCLOUD control represents a collection of tags. A tag is a keyword assigned to an
information resource (picture, video clip or others). In a tag cloud, the tags are mainly shown by
their popularity.

computer technology ja\fa
books drinks MUSIC people
germany summer flowers
kids holiday semantic micro
Dirthday animals jokes email

virus university city water
clouds september Science mowvie

software ag google

apache networking library
news sky EC|IDSE brasil

iapple piano biology Xml
iart

As you can see, different tags can be added to a tag cloud. They differ by their popularity. The
most popular tags are those with a bigger font size.

326 Natural for Ajax

TAGCLOUD

The XML layout definition is:

<Gtr>
<tagcloud tagcloudprop="tagCloud"
width="300" height="350"
borderstyle="dotted" borderwidth="1px"
bordercolor="#f0000FF" backgroundcolor="#E6E6FA"
textcolor="#0000FF">
</tagcloud>
</itrd

The tag cloud can be customized by defining a background color.

Adapter Interface

DEFINE DATA PARAMETER
1 TAGCLOUD

2 TCLITEM (1:%)

3 ID (U) DYNAMIC

3 POPULARITY (I4)

3 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-tagcloudprop.onSelect

Properties

Basic

tagcloudprop |Name of the adapter parameter that represents the control in the |Obligatory
adapter.

width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180

Natural for Ajax 327

TAGCLOUD

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a width this control 50%
can reference. If you specify this control to have a width of 50% 1002
then the parent element (e.g. an ITR-row) may itself define a width ?
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
borderstyle Choose the style the controls border. Optional |solid
double
groove
dotted
dashed
inset
outset
ridge
hidden
borderwidth Border size of control in pixels. Specify "0" not to render Optional |thin
any border at all. medium
thick
1px
2px

328 Natural for Ajax

TAGCLOUD

5px

10px

bordercolor

Sets the border color of the control.

Optional

#FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

backgroundcolor

Sets the background color of the control.

Optional

#FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

textcolor

Sets the text color of the control.

Optional

#FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

Natural for Ajax

329

330

56

= Properties

331

TEXT

The TEXT control represents a multi line text edit control. It represents the value of an adapter
parameter.

Properties
Basic
valueprop Name of the adapter parameter that provides the content of the |Obligatory
control.
width Width of the control. Sometimes |100
obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
. . . 50%
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. . ;] . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
flush Flushing behaviour of the input control. Optional |screen
By default an input into the control is registered within the browser server
client - and communicated to the server adapter object when a user

332 Natural for Ajax

TEXT

e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the
input a synchronization with the server adapter is triggered. As
consequence you directly can react inside your adapter logic onto
the change of the corresponding value. - Please be aware of that
during the synchronization always all changed properties - also
the ones that were changed before - are transferred to the adapter
object, not only the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if you
want to pass one changed value to all its representaion directly
after changing the value.

flushmethod

When the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be sent
when the user updates the content of the control. By doing so you
can distinguish on the server side from which control the flush of
data was triggered.

Optional

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

Appearance

width

(already explained above)

displayonly

If set to true, the FIELD will not be accessible for input. It is just
used as an output field.

Optional

true

false

statusprop

Name of the adapter parameter that dynamically passes
information how the control should be rendered and how it should
act.

Optional

wrap

Specifies the line wrapping inside the control. By default a line that
exceeds the width of the control is broken automatically.

You may define this property to not wrap at all ("off") - in this case
the text control offers horizontal scroll bars to scroll the text.

There are two styles of wrapping "soft" and "hard". The difference
between "soft" and "hard" is the way the text is - if changed by the
user - passed back to the adapter property: when specifying "soft"
then line breaks which are caused by wrapping are not sent to the
server, when specifying "hard" then line breaks caused by wrapping
are sent as carriage return/ line feed. - Be carefule when specifying
"hard" as consequence!

Optional

soft

hard

off

Trows

Height of control specified by number of rows. Either define the
height by the HEIGHT property or by the ROWS property. Do not
specify both!

Optional

Natural for Ajax

333

TEXT

When specifying the height by ROWS then be aware of that the
height depends from the font size used inside the control (that is
defined in the styles sheet definition).

cols Width of control specified by number of characters. Either define |Optional
the width by the WIDTH property or by the COLS property. Do
not specify both!

When specifying the width by COLS then be aware of that the
width depends from the font size used inside the control (that is
defined in the styles sheet definition).

colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than 3
one columns. 4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default itis "1" - but
you may want to define the control two span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value

textareastyle CSS style definition that is directly passed into this control. Optional

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.

334 Natural for Ajax

TEXT

Press right mouse-button in your browser and select the "View
source" or "View frame's source” function.

title Text that is shown as tooltip for the control. Optional

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

titletextid Text ID that is passed to the multi lanaguage management - Optional
representing the tooltip text that is used for the control.

titleprop Name of the adapter parameter that dynamically defines the title |Optional
of the control. The title is displayed as tool tip when ther user
moves the mouse onto the control.

scroll Definition of the scrollbar's appearance. Optional |auto

You can define that the scrollbars only are shown if the content is scroll
exceeding the control's area ("auto"). Or scrollbars can be shown

always ("scroll"). Or scrollbars are never shown - and the content hidden
is cut ("hidden").
Default is "auto".
tabindex Index that defines the tab order of the control. Controls are selected |Optional |-1
in increasing index order and in source order to resolve duplicates.
0
1
2
5
10
32767
Online Help
helpid Help id that is passed to the online help management in case the |Optional
user presses F1 on the control.
title (already explained above)
titletextid (already explained above)
titleprop (already explained above)
Natural

njxmatstringtype|If the control shall be bound to a Natural system variable of string |Optional
format with the attribute njx:natsysvar, this attribute indicates the
format of the string, A (code page) or U (Unicode). The default is
A.

njx:natsysio If the control shall be bound to a Natural system variable with the |Optional
attribute njx:natsysvar, this attribute indicates if the system variable
is modifiable. The default is false.

Natural for Ajax 335

TEXT

njx:natname

If a Natural variable with a name not valid for Application Designer
(for instance #FIELD1) shall be bound to the control, a different
name (for instance HFIELD1) can be bound instead. If the original
name (in this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area of the
Natural adapter and a mapping between the two names is
generated into the PROCESS PAGE statement of the Natural
adapter.

Optional

njx:natsysvar If the control shall be bound to a Natural system variable, this ~ |Optional
attribute specifies the name of the system variable.
njxmnatcomment |The value of this attribute is generated as comment line into the |Optional

parameter data area of the Natural adapter, before the field name.
The Map Converter, for instance, uses this attributes to indicate
for a generated statusprop variable to which field the statusprop
belongs.

336

Natural for Ajax

5 7 TEXTOUT

L 11T o] (- ST SPPPPTPPRR 338
B PIOPEITIES oo 338

337

TEXTOUT

The TEXTOUT control is used to display plain text. The text is not statically defined (as a label)
but is controlled by an adapter property.

Example

Textouts

200

w om0 500

The XML layout definition is:

<{rowarea name="Textouts">

<Gtrd>
<textout valueprop="factorl" width="100">
</textout>
{textout valueprop="factorl" width="100" textsize="1">
</textout>
<{textout valueprop="factorl" width="100" textsize="3">
</textout>
<textout valueprop="factorl" width="100" textsize="6">
</textout>
</itr>
</rowarea>
Properties
Basic
width Width of the control. Sometimes|100
obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width 140
of the control will either be a default width or - in case
of container controls - it will follow the width that is 160
ied by it tent.
occupied by its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. 509
"50%"). Pay attention: percentage sizing will only bring ?
up correct results if the parent element of the control 100%
properly defines a width this control can reference. If you
338 Natural for Ajax

TEXTOUT

specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

valueprop Name of the adapter parameter that provides the content|Obligatory
of the control.
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
width (already explained above)
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the
control is a container control (containing) other controls 250
then the height of the control will follow the height of its 300
content.
. L iy 250
(B) Pixel sizing: just input a number value (e.g. "20").
(C) Percentage sizing: input a percantage value (e.g. 400
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control
properly defines a height this control can reference. If 100%
you specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.
nowrap If the textual content of the control exceeds the size of the |Optional |true
control then the browser automatically breaks the line
and arranges the text accordingly. false
You can avoid this behaviour by setting NOWRAP to
"true". No line break will be performed by the browser.
textsize The HTML font size of the text. Corresponding to the |Optional |1
HTML definition "1" means "smallest" and "6" means
"biggest". 2
3
4
5
6

Natural for Ajax

339

TEXTOUT

textcolor Colour of the text. Input a value like "#FF0000". Optional [#FF0000
#00FF00
#0000FF
#FFFFFF
#808080
#000000
datatype By default, the control is managing its content as string. |Optional |date
By explicitly setting a datatype you can define that the
control will format the data coming from the server: if float
the field has datatype "date" and the user inputs "010304" -
then the input will be translated into "01.03.2004" (or other m
representation, dependent on date format settings). long
Please note: the datatype "float" is named a bit misleading time
- it represents any decimal format number. The server
side representation may be a float value, but also can be timestamp
a double or a BigDecimal property.
color
xs:decimal
xs:double
xs:date
xs:dateTime
xs:time
Nnn
Pnn
string n
xs:byte
xs:short
straighttext If the text of the control contains HTML tags then these |Optional |true
are by default interpreted by the browser. Specifiying
STRAIGHTTEXT as "true" means that the browser will false
directly render the characters without HTML
interpretation.
340 Natural for Ajax

TEXTOUT

Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column center
itself is part of a row (e.g. ITR or TR). Sometimes the size
of the column is bigger than the size of the control itself. right
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.
If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column middle
itself is part of a row (e.g. ITR or TR). Sometimtes the size
of the column is bigger than the size of the control. In this bottom
case the "align" property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By default it is "1" - but you may want to define the 3
control to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies. By
default it is "1" - but you may want to define the control 3
two span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value

Natural for Ajax

341

TEXTOUT

bgcolorprop

Name of an adapter parameter that passes back a color
value (e.g. "#FF0000" for red color). The color value is
used as background color in the control. The color of the
text color is automatically chosen dependent from the
background color: for light background colors the text
color is black, for dark background colors the color is
white. Use FGCOLORPROP to choose the text color on
your own.

Optional

fgcolorprop

Name of an adapter parameter that passes back a color
value (e.g. "#FF0000" for red color). The color value is
used as text color in the control. The background color
is automatically chosen dependent from the text color:
for dark text colors the background color is transparent
(default), for light text colors the color is black. Use
BGCOLORPRORP to choose both - the text and
background color.

Optional

textoutstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

textoutclass

CSS style class definition that is directly passed into this
control.

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that you
maintain with the style sheet editor) - or it can be one of
an other style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

Optional

Binding

valueprop

(already explained above)

bgcolorprop

(already explained above)

fgcolorprop

(already explained above)

342

Natural for Ajax

TEXTOUT

visibleprop

Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Optional

invisiblemode

If the visibility of the control is determined dynamically
by an adapter property then there are two rendering
modes if the visibility is "false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed"
and does not show any roll over effects any more.

Optional

invisible

cleared

Natural

njx:mnatstringtype

If the control shall be bound to a Natural system variable
of string format with the attribute njx:natsysvar, this
attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

Optional

njx:natsysio

If the control shall be bound to a Natural system variable
with the attribute njx:natsysvar, this attribute indicates
if the system variable is modifiable. The default is false.

Optional

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name (in
this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area
of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement
of the Natural adapter.

Optional

njx:natsysvar

If the control shall be bound to a Natural system variable,
this attribute specifies the name of the system variable.

Optional

njx:natcomment

The value of this attribute is generated as comment line
into the parameter data area of the Natural adapter,
before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

Optional

Natural for Ajax

343

344

58 toceLe

LI (] L= T SRS PPPPUPRRR 346

345

TOGGLE

The TOGGLE control is used to display and to edit a selection status. In principle, it acts similar
to a CHECKBOX control, but it

W allows to define different icon images for the "true" and "false" representations;

¥ allows being informed when the user presses the CTRL or SHIFT key when clicking the icon. With
this information, you can react on a combination of sHIFT and click in a different way than to a
normal click or a combination of CTRL and click. This is especially useful inside grid processing
when you want to allow the user to do mass selections.

Properties
Basic
valueprop Name of the adapter parameter that represents the value of the |Obligatory
control.
trueimage Image URL that is shown if the corresponding property value is |Obligatory|gif
"true”. _
P8
jpeg
falseimage Image URL that is shown if the corresponding property value is |Obligatory|gif
"true". .
P8
jpeg
comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
Appearance
width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the 509
parent element of the control properly defines a width this control ?
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

346 Natural for Ajax

TOGGLE

height Height of the control. Optional
There are three possibilities to define the height:
(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.
(B) Pixel sizing: just input a number value (e.g. "20").
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
partialimage Image URL that is shown if the corresponding property value is |Optional
"null".
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1" -
but you may want to define the control to span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default itis "1" - but
you may want to define the control two span over more than one 3
columns.
4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
tabindex Index that defines the tab order of the control. Controls are selected |Optional |-1
in increasing index order and in source order to resolve duplicates.
0

Natural for Ajax

347

TOGGLE

1
2
5
10
32767
backgroundclass | CSS style class definition that is directly passed into this control. |Optional
The style class can be either one which is part of the "normal" CIS
style sheet files (i.e. the ones that you maintain with the style sheet
editor) - or it can be one of an other style sheet file that you may
reference via the ADDSTYLESHEET property of the PAGE tag.
Binding
valueprop (already explained above)
statusprop Name of the adapter parameter that dynamically passes information |Optional
how the control should be rendered and how it should act.
shiftmethod Name of the event that is sent to the adapter when the user clicks |Optional
on the toggle control and presses the Shift-key the same time.
controlmethod |Name of the event that is sent to the adapter when the user clicks |Optional
on the toggle control and presses the Ctrl-key the same time.
flush Flushing behaviour of the input control. Optional |screen
By default an input into the control is registered within the browser server

client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the
input a synchronization with the server adapter is triggered. As
consequence you directly can react inside your adapter logic onto
the change of the corresponding value. - Please be aware of that
during the synchronization always all changed properties - also
the ones that were changed before - are transferred to the adapter
object, not only the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if you
want to pass one changed value to all its representaion directly
after changing the value.

flushmethod When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to be sent
when the user updates the content of the control. By doing so you

348 Natural for Ajax

TOGGLE

can distinguish on the server side from which control the flush of
data was triggered.

Online Help
title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.
titletextid Text ID that is passed to the multi lanaguage management - Optional

representing the tooltip text that is used for the control.

Natural for Ajax

349

350

59

ACTIVEX

= Properties

351

ACTIVEX

Thisisa [hot topic] : embedding ActiveX controls in pages. Before telling you what the control
does, let us explain why we do it:

Of course, the client integration of ActiveX controls has - from browser or SWT perspective - only
disadvantages:

W ActiveX controls are not secure: you decide to run one control or not. But do not have a
'sandbox] as you have with JavaScript or with applets. Using an ActiveX control means that
this contol - once running - has native access to your computer, just as any other native program.

W ActiveX controls are bound to the Microsoft Windows platform.

W ActiveX controls need to be explicitly installed on the client side - maybe automated in some
way, but still an explicit installation is necessary.

But - and this is why we support them - in some cases, they are a nice way to integrate other
software which runs out of the scope of the browser.

Example: you may want to integrate your user interface with a barcode reader which is connected
to your client via a serial interface. In this case, there is no way to access this barcode reader via
JavaScript. You need to use an ActiveX control (or a signed applet) to connect to the serial device.

There is a simple interface between HTML/JavaScript and ActiveX, and vice versa. ActiveX controls
can be embedded into an HTML page and it is possible to directly access properties of the ActiveX
control from JavaScript. This interface was used for building the ACTIVEX control that you can
use as an Application Designer control.

Properties
Basic
classid Class id of the ActiveX control. A string in the format Optional

"8E27C92B-1264-101C-8A2F-040224009C02" representing the UUID of the
ActiveX component. The CLASSID is used inside the HIML client to reference
the ActiveX control.

progid The unique program identifier which has been registered for this ActiveX |Optional
Control like "Shell. Explorer"

xinitparams|Init parameters that are used for creating an instance of the ActiveX control. |Optional
Values are passed as semicolon separated string: property;value;property;value
etc.

The property is the name of the ActiveX control's property that is initialized
with the corresponding value.

setxparams |Same as GETXPARAMS but now the other direction. Adapter properties that| Optional
are transferred (on change) into corresponding ActiveX properties with each

352 Natural for Ajax

ACTIVEX

repsonse. The string format is the same:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.

getxparams |Semicolon separated list of which ActiveX control are linked with which Optional
adapter properties. The format is:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.
With each request send from the browser the ActiveX properties are collected
in from the ActiveX control and are transferred (if they have changed) into
the corresponding adapter properties.activex_attr_progid"Program id of the
ActiveX control. E.g. "MSCAL.Calendar" for the Microsoft calendar. The
PROGID is used inside the SWT client to access the ActiveX control.

width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the control will 140
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: 200
percentage sizing will only bring up correct results if the parent element of 50%
the control properly defines a width this control can reference. If you specify ?
this control to have a width of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a width of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

height Height of the control. Optional {100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will be 200
rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow the height 250

f it tent.
of its conten 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
o . ; . 400

percentage sizing will only bring up correct results if the parent element of
the control properly defines a height this control can reference. If you specify 50%
this control to have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element does not specify a 100%
width then the rendering result may not represent what you expect.

reloadprop |Name of the adapter parameter that indicates that the ActiveX control is Optional
reloaded with every response from the server that changed data of the ActiveX
control.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional

shown in the layout editor's tree view.

Natural for Ajax

353

354

60 GOOGLEMAP2

B BEfOrE YOU SHAM ... e e e 356
B EXAMPIE oo 357
B TYPICAI PrODIBIMS ...t 358
LI (L= T SRS PPRR 359

355

GOOGLEMAP2

The GOOGLEMAP?2 control is used to provide for Google Maps support within Application
Designer pages. The control internally makes use of the Google Maps APL. In order to use the
control on your site, you need to sign up for a Google Maps API key at
http://code.google.com/apis/maps/signup.html. Make sure that you agree with the Google Maps
API Terms of Use (http://code.google.com/apis/maps/terms.html).

Before You Start

In order to use the GOOGLEMAP2 control, you need to sign up for a Google Maps API key. A
key is valid for a single [directory] on your web server only, i.e. you sign up for a URL like
http:/lwww.mysite.com/mywebapp/myproject. With a standard installation of Application Designer
on localhost, you may sign up for the URL http://localhost:8080/mywebapp/myproject. Typically, you
develop your Application Designer web application not on the site on which you run it later in
productive mode. Therefore, you may sign up for two different sites (development and production
site).

Required Steps

1. Choose the project directory that keeps the layouts using the GOOGLEMAP2 control.

2. Sign up for a Google Maps API key at http://code.google.com/apis/maps/signup.html for this
project directory (e.g. http://localhost:8080/mywebapp/myproject).

3. Create the API key page. Store the key page in the registered project directory. You are free in
naming the file (the file extension must be "html"). The GOOGLEMAP2 control embeds your
API key as a subpage. The subpage must have the following minimum structure:

<html>
<head>
<script src="
http://maps.google.com/maps?file=api&v=2.x&key=YOUR_API_KEY"></script>
{script src="../HTMLBasedGUI/general/googlemapsscript.js"></script>
</head>
<body>
<div id="map" style="position:absolute; topO; left:0;"></div>
</body>
</html>

You see that the page includes two JavaScript libraries. The first line refers to the Google Maps
API. Replace the placeholder "YOUR_API_KEY" with your Google Maps API key. With the
second line, the page includes the control's scripting (calls from Application Designer to the
Google Maps). The page body is quite simple: it contains a single div tag with the ID "map".
This div is used as an anchor to insert Google Maps controls dynamically.

356 Natural for Ajax

http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/terms.html
http://code.google.com/apis/maps/signup.html

GOOGLEMAP2

Example

= General Usage

General Usage

The map options are taken from the property infoprop. On this object, you may set the address
(or latitude and longitude), the zoom level and the map size as well as the map type.

B 7EE: The usage of address or longitude/latitude is mutually exclusive.

Street: |
City:
Country:
Go to Address

|Hotel Mathildenhahe =l

Remove all Hotels
Show all Hatels

- Remove selected Hotel

Flace™ new Hotel

*select place by clicking an the map

Natural for Ajax

357

GOOGLEMAP2

Typical Problems

= (Google Map API Key
= Map Remains Gray

Google Map API Key

Your Google Maps API key is bound to a directory on a certain web server (i.e. you sign up for
the URL http://mycomputer.mydomain.com:8080/mywebapp/myproject). If you use your key for another
URL, Google shows an error message:

Microsoft Internet Explorer

L] Thes Googls Maps AP key used on thes web sbe was regatersd for & different web site. You can generabe & nisw key For this web site at
. hittpe: [eseees poogle , comyfapis fmaps) .

Reasons that cause the error:

® You have registered your computer using the computer's name (e.g. http://mycomputer...). But
the Application Designer development workplace is started using the URL http://localhost....

Solution: start the Application Designer workplace with http://mycomputer....

¥ The registered directory (e.g. .../mywebapp/myproject) does not match your installation (either a
mistake in writing when signing up for the key or you have renamed the web application or
project after registration).

Solution: rename your web application or project to match the registered names. Or sign up for
a new key and insert the new key into the API key page. In the latter case, delete the content of
the browser's cache. Otherwise, the browser will use the former API key page (and thus the old

key).
Map Remains Gray
If you use longitude and latitude for placing the marker on the map, their values may exceed the

map top (or bottom) border. If you are able to find the map by scrolling down (or up), then this
is the case. Check the values for longitude and latitude in this case.

358 Natural for Ajax

GOOGLEMAP2

Properties
Basic
infoprop Name of adapter parameter that represents the control in the Obligatory
adapter.
apikeypagename |Name of the Maps API Key page. Example: Obligatory
mygooglemapsapikey.html. Keep this file within the project
directory (directory within the CIS HTML pages are kept). The
GOOGLEMAP-control expects this file within certain Javascript
includes and content. Have look into chapter "Google Map - Before
You Start" within the Developers Guide
width Width of the control. Optional |100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160
(B) Pixel sizing: just input a number value (e.g. "100"). 180
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
; . . 50%
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
height Height of the control. Optional |100
There are three possibilities to define the height: 150
A) You do not define a height at all. As consequence the control 200
(A) 8 q
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
. 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%

of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

Natural for Ajax

359

GOOGLEMAP2

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
Appearance
pagestyle CSS style definition that is directly passed into this control. Optional
With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating them
with a semicolon.
Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By defaultitis "1" - but
you may want to define the control two span over more than one 3
1 .
columns 4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than 3
one columns. 4
The property only makes sense in table rows that are snychronized 5
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched. 50
int-value
360 Natural for Ajax

61

NETMEETING

= Example ..

= Properties

361

NETMEETING

The NETMEETING control allows you to start NetMeeting sessions within your Application
Designer pages.

Example

MNetMeeting Testpage £3

The XML layout definition is:

<pagebody>
<Gitr>
<netmeeting calltoprop="callto" modeprop="modep" width="300">
<{/netmeeting>
</itr>
</pagebody>

Properties

Basic

calltoprop |Name of the adapter parameter that provides the contact data of the 'contact’ |Optional
that should be called.

The data has to have the following semantics.

ILS Server/email adress e.g. ils.netmeeting.de/contact@testmail.com

modeprop |Name of the adapter parameter that holds the mode of the control. Optional

362 Natural for Ajax

NETMEETING

Possible are:

FULL, PREVIEWONLY, PREVIEWNOPAUSE, REMOTEONLY,
REMOTENOPAUSE, DATAONLY

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the
control properly defines a width this control can reference. If you specify this
control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

Optional

100
120
140
160
180
200
50%

100%

Natural for Ajax

363

364

62 SKYPECALL

L 11T o] (- ST SPPPPTPPRR 367
B PIOPEITIES oo 367

365

SKYPECALL

The SKYPECALL control allows you to start the Skype client with given contact data from your
Application Designer pages.

FAN EE: In order to use the SKYPECALL control you need to have a valid Skype account and
the Skype client must be installed. For further information, see http://www.skype.com/.

366 Natural for Ajax

http://www.skype.com/

SKYPECALL

skmm“: | skype" - shype e ‘Jﬂ.ﬂ
Click on the link bo start the Skype dient:¥ alidsivpaID Dabsi Arsicht Kontakbs Akbonen Ancf Hife
o skevpe
= -,‘_'.:, ':_5| e'ﬂilldikﬁhﬂd
i -
Annfer mzufugen Extras
waliclskyprid
|
(400 i+
Vearbancdungs sfe
(IR L &
Ilr_h\‘ e
e]
.
-y
war B 2 usldskypesid vrd sngerufen, . 5,797,663 Kork..,

The XML layout definition is:

<{pagebody>
<tr>
<label name="Click on the link to start the Skype client: "
asplaintext="true"></label>

<skypecall valueprop="skypecall"></skypecall>
</itr>

</pagebody>

Properties

Basic

valueprop |Name of the adapter parameter that contains the phone number or the Skype ID |Obligatory
of the person that should be called. It is also possible to set some parameters.

For further information, see the Skype APL

Note: The Skype client must be installed if you want to use this control.

Natural for Ajax 367

368

63 NJX:BUTTONITEMLIST

L 11T o] (- ST SPPPPTPPRR 371
B AQAPIEr INEEITACE .. .uviiii e 371
B BUIE-IN EVENES L. 372
LI (L= T SRS PPRR 372

369

NJX:BUTTONITEMLIST

The NJX:BUTTONITEMLIST control is used to arrange buttons in a horizontal line. In contrast to
the NJX:BUTTONITEMLISTFIX control, the number of buttons in an NJX:BUTTONITEMLIST
control can be changed dynamically (up to an upper limit defined at design time), but the layout
of the buttons cannot be configured individually. Instead, all buttons in the list are configured
with the same layout.

370 Natural for Ajax

NJX:BUTTONITEMLIST

Example

r[l*yrﬂanrnﬁwt: Buttonlist: Processing Samples -

Init 4 Buttons _1 add 2 More | Hide 2 + 3 - Show 2 + 3

r[]ﬂl.ll'namlliut: Buttonlist =
Button1 | | Button 2 Button 3 Button 4

The XML code for the example looks as follows:

<{rowarea name="Dynamic Buttonlist">
<Gtr>
<njx:buttonitemlist buttonlistprop="dynbuttons"
buttoncount="10" hdist="10">
<{njx:buttonitem width="100">
</njix:buttonitem>
</njx:buttonitemlist>
</itr>
</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 DYNBUTTONS (1:%*)

2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC

2 TITLE (A) DYNAMIC
2 VISIBLE (L)
END-DEFINE

Natural for Ajax 371

NJX:BUTTONITEMLIST

Built-in Events

The buttons in the NJX:BUTTONITEMLIST control (NJX:BUTTONITEM controls) behave like

BUTTON controls.
Properties
Basic
buttonlistprop [Name of the adapter parameter that represents the control in the adapter. |Obligatory
buttoncount |Maximum count of buttons in the buttonlist. Optional
If no buttoncount is defined then a default of 10 is assigned.
hdist Horizontal distance between the buttons. Can be specified either in pixels or|Optional
as percentage value.
If no width is defined then a default width of 2 pixels is assigned.
372 Natural for Ajax

64 NJX:BUTTONITEM

L 11T o] (- ST SPPPPTPPRR 374
B B U EVENES e a e e 374
LI (] 1= PSPPSR 375

373

NJX:BUTTONITEM

The NJX:BUTTONITEM control is used to configure the buttons in an NJX:BUTTONITEMLIST
control. Only one NJX:BUTTONITEM control is needed in an NJX:BUTTONITEMLIST control.

This NJX:BUTTONITEM control is used to configure all buttons in the same way.

Example

r[hrnam?c Buttonlist: Processing Samples

Init 4 Buttons add 2 More | Hide 2 + 3 - Show 2 + 3

r[hmamic Buttonlist

Button 1 | | Button 2 Button 3 Button 4

The XML code for the example looks as follows:

<rowarea name="Dynamic Buttonlist">
<Gtr>
<njx:buttonitemlist buttonlistprop="dynbuttons"
buttoncount="10" hdist="10">
<njx:buttonitem width="100">
</njx:buttonitem>
</njix:buttonitemlist>
</itr>
{/rowarea>

Built-in Events

The NJX:BUTTONITEM control behaves like a BUTTON control.

374

Natural for Ajax

NJX:BUTTONITEM

Properties
Basic
comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.
Appearance
image URL of image that is displayed inside the control. Any image |Optional | gif
type (.gif, .jpg, ...) that your browser does understand is valid. .
P8
Use the following options to specify the URL: .
Jpeg
(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUl/images/new.gif" will
point to an image of a neighbour project.
(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".
invisiblemode | This property has three possible values: Optional |invisible
(1) "invisible": the button is not visible without occupying any disabled
space.
cleared
(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.
(3)"cleared": the button is not visible but it still occupies space.
width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of 140
the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 160
by it tent.
y its conten 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 50%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 100%

width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does
not specify a width then the rendering result may not
represent what you expect.

Natural for Ajax

375

NJX:BUTTONITEM

height Height of the control. Optional |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%").
. o . . 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 50%
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a height of "100%". If the parent element
does not specify a width then the rendering result may not
represent what you expect.
imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
textstyle CSS style definition that is directly passed into the text of this |Optional |background-color:
control. #FF0000
With the style you can individually influence the text of the color: #0000FF
button. You can specify any style sheet expressions. Examples
are: font-weight: bold
font-weight: bold
color: #FF0000
buttonstyle |CSS style definition that is directly passed into this control. |Optional|background-color:
#FF0000
With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF
Examples are:
font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and separating
them with a semicolon.
Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.
stylevariant |Some controls offer the possibility to define style variants. By |Optional | VAR1
this style variant you can address different styles inside your
376 Natural for Ajax

NJX:BUTTONITEM

style sheet definition file (.css). If not defined "normal" styles VAR2
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.
Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!
align Horizontal alignment of control in its column. Optional |left
Each control is "packaged" into a column. The column itself center
is part of a row (e.g. ITR or TR). Sometimes the size of the .
column is bigger than the size of the control itself. In this case right
the "align" property specifies the position of the control inside
the column. In most cases you do not require the align control
to be explicitly defined because the size of the column around
the controls exactly is sized in the same way as the contained
control.
If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign" in
which you align the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself middle
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the bottom
"align" property specify the position of the control inside the
column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 1
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span 3
over more than one columns. 4

Natural for Ajax

377

NJX:BUTTONITEM

The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
licitly not hed.
explicitly not synche int-value
imagedisabled |URL of image that is displayed if the control is disabled. Use|Optional | gif
properties VISIBLEPROP and INVISIBLEMODE to disable .
the control. P8
jpeg
submitbutton |Set this property to true and the button will work as an Optional |true
'Submitbutton’, that is neccessary if you want to transfer
and/or save form values. false
i.e. password and username or complete search forms
Default value is false.
You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.
tabindex Index that defines the tab order of the control. Controls are |Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
Miscellaneous
testtoolid Use this attribute to assign a fixed control identifier that can |Optional
be later on used within your test tool in order to do the object
identification
378 Natural for Ajax

65 NJX:BUTTONITEMLISTFIX

L 11T o] (- ST SPPPPTPPRR 380
B AQAPIEr INEEITACE .. .uviiii e 380
B BUIE-IN EVENES L. 381

381

LI (L= T SRS PPRR

379

NJX:BUTTONITEMLISTFIX

The NJX:BUTTONITEMLISTFIX control is used to arrange buttons in a horizontal line. In contrast
to the NJX:BUTTONITEMLIST control, the number of buttons in an NJX:BUTTONITEMLIST
control cannot be changed dynamically, but the layout of the buttons can be configured individually.

Example
rF'tx Buttonlist: Processing Samples -
........ Init Buttons i Toggle Visible

'Fix Buttonlist -
Button 1 Button 2

The XML code for the example looks as follows:

<{rowarea name="Fix Buttonlist">
<Gtr>
<njx:buttonitemlistfix buttonlistprop="fixbuttons" hdist="4">
<njx:buttonitemfix method="onButtonl"
invisiblemode="cleared" width="300">
</njix:buttonitemfix>
<njx:buttonitemfix method="onButton2"
invisiblemode="disabled" width="100">
</njx:buttonitemfix>
</njx:buttonitemlistfix>
</itr>
{/rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 FIXBUTTONS (1:%)

2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC

2 TITLE (A) DYNAMIC

2 VISIBLE (L)
END-DEFINE

380 Natural for Ajax

NJX:BUTTONITEMLISTFIX

Built-in Events

The buttons in the NJX:BUTTONITEMLISTFIX control (NJX:BUTTONITEMFIX controls) behave
like BUTTON controls.

Properties

Basic

buttonlistprop [Name of the adapter parameter that represents the control in the adapter. |Obligatory

hdist Horizontal distance between the buttons. Can be specified either in pixels or|Optional
as percentage value.

If no width is defined then a default width of 2 pixels is assigned.

Natural for Ajax 381

382

66 NJX:BUTTONITEMFIX

L 11T o] (- ST SPPPPTPPRR 384
B B U EVENES e a e e 384
LI (] 1= PSPPSR 385

383

NJX:BUTTONITEMFIX

The NJX:BUTTONITEMFIX control is used to configure the individual buttons in an
NJX:BUTTONITEMLISTFIX control. For each button in the NJX: BUTTONITEMLISTFIX control,

one NJX:BUTTONITEMFIX control is needed.

Example

rF'tx Buttonlist: Processing Samples

Init Buttons || Togale Wisible

'Fix Buttonlist
Button 1 Button 2

The XML code for the example looks as follows:

<{rowarea name="Fix Buttonlist">
<Gtr>
<njx:buttonitemlistfix buttonlistprop="fixbuttons" hdist="4">
<njx:buttonitemfix method="onButtonl"
invisiblemode="cleared" width="300">
</njx:buttonitemfix>
<njx:buttonitemfix method="onButton2"
invisiblemode="disabled" width="100">
</njx:buttonitemfix>
</njx:buttonitemlistfix>
</itrd>
{/rowarea>

Built-in Events

The NJX:BUTTONITEMFIX control behaves like a BUTTON control.

384

Natural for Ajax

NJX:BUTTONITEMFIX

Properties

Basic

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Sometimes
obligatory

textid

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Sometimes
obligatory

method

Name of the event that is sent to the adapter when the user
presses the button.

Obligatory

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

image

URL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does understand
is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
jpg

jpeg

invisiblemode

This property has three possible values:

(1) "invisible": the button is not visible without occupying
any space.

(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies
space.

Optional

invisible

disabled

cleared

width

Width of the control.

There are three possibilities to define the width:

Optional

100

120

140

Natural for Ajax

385

NJX:BUTTONITEMFIX

(A) You do not define a width at all. In this case the width 160
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 180
by its content. 200
(B) Pixel sizing: just input a number value (e.g. "100"). 50%
(C) Percentage sizing: input a percantage value (e.g. "50%").
. . . . 100%
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.
imageheight |Pixel height of image inside button. Optional
imagewidth |Pixel width of image inside button. Optional
textstyle CSS style definition that is directly passed into the text of |Optional |background-color:
this control. #FF0000
With the style you can individually influence the text of the color: #0000FF
button. You can specify any style sheet expressions.
Examples are: font-weight: bold
font-weight: bold
color: #FF0000
386 Natural for Ajax

NJX:BUTTONITEMFIX

buttonstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

stylevariant

Some controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style

definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant” property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional

VARI1

VAR2

align

Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the
column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the
align control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

Optional

left
center

right

valign

Vertical alignment of control in its column.

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the
column is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Optional

top
middle

bottom

colspan

Column spanning of control.

Optional

Natural for Ajax

387

NJX:BUTTONITEMFIX

If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By default
itis "1" - but you may want to define the control two span 3
over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
imagedisabled |URL of image that is displayed if the control is disabled. |Optional |gif
Use properties VISIBLEPROP and INVISIBLEMODE to .
disable the control.)22
jpeg
submitbutton |Set this property to true and the button will work asan |Optional |true
'Submitbutton’, that is neccessary if you want to transfer
and/or save form values. false
i.e. password and username or complete search forms
Default value is false.
You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.
tabindex Index that defines the tab order of the control. Controls are|Optional -1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
388 Natural for Ajax

NJX:BUTTONITEMFIX

32767
Binding
method (already explained above)
Online help
title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.
titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.
Miscellaneous
testtoolid Use this attribute to assign a fixed control identifier that can|Optional
be later on used within your test tool in order to do the
object identification

Natural for Ajax 389

390

67 NJX:FIELDLIST

L 11T o] (- ST SPPPPTPPRR 393
B AQAPIEr INEEITACE .. .uviiii e 394
B BUIE-IN EVENES L. 394
LI (L= T SRS PPRR 394

391

NJX:FIELDLIST

The NJX:FIELDLIST control is used to arrange fields or groups of fields in a horizontal line. The

difference of using the NJX:FIELDLIST control instead of individual fields is that the NJX:FIELDLIST
control binds the contained fields to an array or array group in the application, while individual
fields are bound to individual variables.

392 Natural for Ajax

NJX:FIELDLIST

Example

Complex Field List -
111100102 _11100105 | 111100106 _1110010? | 111100108
|Schindler Schirm |Schmitt Schmidt |Schneider

Edgar Christian Reiner Helga Wolfgang
'Simple Field List -

Schindle|Schirm | Schmitt Schmidt|Schneic Schneic Bunged|Thiele | Thoma |[Treiber

The XML code for the example looks as follows:

<rowarea name="Complex Field List">
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="60">
<njx:fielditem valueprop="id" width="80"
invisiblemode="cleared">

</njx:fielditem>

</njx:fieldlist>

</itr>

<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="10">

<njx:fielditem valueprop="last" width="130"
invisiblemode="invisible">
</njx:fielditem>

</njx:fieldlist>

<Jitr>

<itr>
<njx:fieldlist fieldlistprop="columns™ fieldcount="5"
hdist="40">

<njx:fielditem valueprop="first" width="100"
invisiblemode="invisible">
<njx:fielditem>
</njx:fieldlist>
</itr>
<{/rowarea>
<rowarea name="Simple Field List">
<Gitr>
<njx:fieldlist fieldlistprop="simple"” fieldcount="10">
<njx:fieldvalue width="50">
</njx:fieldvalue>
</njx:fieldlist>
</itr>
</rowarea>

Natural for Ajax 393

NJX:FIELDLIST

Adapter Interface

DEFINE DATA PARAMETER

1 COLUMNS (1:%*)

2 FIRST (A) DYNAMIC

2 ID (A) DYNAMIC

2 LAST (A) DYNAMIC

2 STATUS (A) DYNAMIC

1 SIMPLE (A/1:*) DYNAMIC
END-DEFINE

For all NJX:FIELDLIST controls that are bound to the same valuein field1istprop (here: columns),
one common structure array is generated (here: COLUMNS).

For each NJX:FIELDITEM control, an element in the structure is generated according to the value
bound in valueprop (here: FIRST, ID and LAST).

For a simple field list (one that contains an NJX:FIELDVALUE control), a simple array is generated
according to the value bound in valueprop (here: SIMPLE).

Built-in Events

The fields in the NJX:FIELDLIST control (NJX:FIELDITEM controls or N]JX:FIELDVALUE controls)
behave like FIELD controls.

Properties

Basic

fieldlistprop Name of the adapter parameter that represents the control in the adapter. |Obligatory

fieldcount Maximum count of fields in the fieldlist. Optional

If no fieldcount is defined then a default of 10 is assigned.

hdist Horizontal distance between the fields Can be specified either in pixels or |Optional
as percentage value.

If no width is defined then a default width of 2 pixels is assigned.

njx:natname If a Natural variable with a name not valid for Application Designer (for |Optional
instance #FIELD1) shall be bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name (in this case #FIELD1)
is then specified in this attribute, the original name is generated into the

394 Natural for Ajax

NJX:FIELDLIST

parameter data area of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement of the Natural
adapter.

njx:natcomment | The value of this attribute is generated as comment line into the parameter |Optional
data area of the Natural adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a generated statusprop variable
to which field the statusprop belongs.

Natural for Ajax 395

396

68 NJX:FIELDITEM

L 11T o] (- ST SPPPPTPPRR 399
B AQAPIEr INEEITACE .. .uviiii e 400
B BUIE-IN EVENES L. 400
LI (L= T SRS PPRR 400

397

NJX:FIELDITEM

The NJX:FIELDITEM control is used to configure the individual fields in an NJX:FIELDLIST
control in order to create a complex field list. The fields of a complex field list are mapped to a
group array in the Natural application. For each field in the NJX:FIELDLIST control, one
NJX:FIELDITEM control is needed. The NJX:FIELDITEM controls are used to configure the fields
in the list independently.

398 Natural for Ajax

NJX:FIELDITEM

Example
"Complex Field List -
11100102 11100105 11100106 (11100107 11100108
Schindler Schirm Schmitt Schmidt Schneider
Edgar Christian Reiner Helga Wolfgang
The XML code for the example looks as follows:
<rowarea name="Complex Field List">
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="60">
<njx:fielditem valueprop="id" width="80"
invisiblemode="cleared">
</njx:fielditem>
<njx:fieldlist>
</itr>
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="10">
<njx:fielditem valueprop="last™ width="130"
invisiblemode="1invisible">
</njx:fielditem>
<Injx:fieldlist>
</itr>
<Gtr>
<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="40">
<njx:fielditem valueprop="first" width="100"
invisiblemode="1invisible">
</njx:fielditem>
<Injx:fieldlist>
</itr>
</rowarea>
Natural for Ajax 399

NJX:FIELDITEM

Adapter Interface

DEFINE DATA PARAMETER

1 COLUMNS (1:*)

2 FIRST (A) DYNAMIC
2 1D (A) DYNAMIC

2 LAST (A) DYNAMIC

2 STATUS (A) DYNAMIC

END-DEFINE

For all NJX:FIELDLIST controls that are bound to the same valuein fieldlistprop (here: columns),
one common structure array is generated (here: COLUMNS).

For each NJX:FIELDITEM control, an element in the structure is generated according to the value
bound in valueprop (here: FIRST, ID and LAST).

Built-in Events

The fields in the NJX:FIELDITEM control (NJX:FIELDLIST controls or NJX:FIELDVALUE controls)
behave like FIELD controls.

Properties

Basic

valueprop Name of the adapter parameter that provides |Obligatory
the content of the control.

width Width of the control. Sometimes |100

obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g.
"0 200
100").
N 50%

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width

400 Natural for Ajax

NJX:FIELDITEM

this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
width (already explained above)
length Width of FIELD in amount of characters. Optional |5
WIDTH and LENGTH should not be used
together. Note that the actual size of the control 10
depends on the font definition if using the 15
LENGTH property.
20
int-value
maxlength Maximum number of characters that a user may [Optional |5
enter into this FIELD. This property is not
depending on the LENGTH property - please 10
do not get confused by the similar naming. 15
MAXLENGTH has nothing to do with the
optical sizing of the control but only with the 20
number of characters you may input.
int-value
textalign Alignment of text inside the control. Optional |left
center
right
password If set to "true", each entered character is Optional [true
displayed as a "'.
false
displayonly If set to true, the FIELD will not be accessible |Optional |true
for input. It is just used as an output field.
false
uppercase If "true" then all input is automatically Optional |true
transferred to upper case characters.
false
align Horizontal alignment of control in its column. |Optional |left

Natural for Ajax

401

NJX:FIELDITEM

Each control is "packaged" into a column. The center
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than right
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.
If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than bottom
the size of the control. In this case the "align"
property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of
columns your control occupies. By default it is 3
"1" - but you may want to define the control to 4
span over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of rows
your control occupies. By default it is "1" - but 3
you may want to define the control two span 4
over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
402 Natural for Ajax

NJX:FIELDITEM

fieldstyle CSS style definition that is directly passed into |Optional |background-color: #FF0000
this control.
color: #0000FF
With the style you can individually influence '
the rendering of the control. You can specify font-weight: bold
any style sheet expressions. Examples are:
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.
noborder Boolean value defining if the control has a Optional [true
border. Default is "false".
false
transparentbackground |Boolean value defining if the control is rendered |Optional |true
with a transparent background. Default is
"false". false
invisiblemode If the visibility of the control is determined Optional |invisible
dynamically by an adapter property then there
are two rendering modes if the visibility is cleared
"false":
(1) "invisible": the control is not visible.
(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.
tabindex Index that defines the tab order of the control. |Optional |-1
Controls are selected in increasing index order
and in source order to resolve duplicates. 0
1
2
5
10
32767
Binding

Natural for Ajax

403

NJX:FIELDITEM

valueprop

(already explained above)

flush

Flushing behaviour of the input control.

By default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is
set to FLUSH="server" then you can specify an
explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

Optional

valuetextprop

Name of the adapter parameter that provides a
"human understandable" description for the
value: in some cases you enter an id into a
FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined into
one text (string) that is returned into the FIELD.

Optional

textidmode

If using property "valuetextprop" then a field
knows an id and a text for a certain value. There
are three types of display: either both are shown
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

Optional

404

Natural for Ajax

NJX:FIELDITEM

titleprop

Name of the adapter parameter that
dynamically defines the title of the control. The
title is displayed as tool tip when ther user
moves the mouse onto the control.

Optional

bgcolorprop

Name of the adapter parameter that provides
the background color of the control.

Optional

fgcolorprop

Name of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The
color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPRORP to choose both - text and
background color.

Optional

autocallpopupmethod

Name of the adapter parameter that controls
that the field's value help event is sent to the
adapter with a certain offset (milliseconds) after
last key down event.

Optional

true

false

maxlengthprop

Name of the adapter parameter that provides
the maximum number of characters that a user
may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Optional

Validation

datatype

By default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field
with datatype "int" then a corresponding error
message will popup when the user leaves the
field.

..will format the data coming from the server
or coming form the user input: if the field has
datatype "date" and the user inputs "010304"
then the input will be translated into
"01.03.2004" (or other representation, dependent
on date format settings).

In addition valeu popups are offered for the
user automatically for some datatypes: e.g. when
specifying datatype "date" the automatically the
field provides a calendar input popup.

Optional

date

float

int

long

time
timestamp
color
xs:decimal
xs:double
xs:date
xs:dateTime

xs:time

Natural for Ajax

405

NJX:FIELDITEM

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be
a float value, but also can be a double or a
BigDecimal property.

Nn.n
Pnn
string n
xs:byte

xs:short

validationrules

Contains information used for Data Validation.

Use the Validation Rules Editor to make
changes!

Optional

validation

Regular expression against which the content
of the field is checked on client side when the
user changes the field. If the validation fails then
an error message popup up and informs the
user about the wrong input.

Optional

[a-zA-Z0-9_.-]
{LI\\@[a-zA-Z0-9_-]
LA\ \w{2,)\ \d{5}

[0-9)(-/+1+

validationprop

Name of the adapter parameter that provides a
regular expression for the validation of the field.
Works the same way as VALIDATION but in a
dynamic way.

Optional

validationuserhint

If a client side validation fails due to wrong user
input then an error popup is opened. If you
define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

Optional

validationuserhintprop

If using validation expressions (either property
"validation" or "validationprop") then a popup
comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

Optional

digits

Number that specifiies how many digits are to
be displayed (ie digits before the comma). If

using this feature then the DATATYPE property
must be set to 'float’. See also DECIMALDIGITS.

Optional

2

3

int-value

406

Natural for Ajax

NJX:FIELDITEM

digitsprop

Name of the adapter parameter that provides
information how many digits are to be displayed
(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float".

Optional

decimaldigits

Number that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float'.

Optional

2

3

int-value

decimaldigitsprop

Name of the adapter parameter that provides
information how many decimal digits are to be
displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float'.

Optional

Valuehelp

popupmethod

Name of the event that is sent to the adapter
when the user requests value help by pressing
F4 or F7 or by clicking into the FIELD with the
right mouse button. See at chapter Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

Optional

openldValueCombo
openldValueHelp

openldValueComboOrPopup

popupinputonly

Boolean property that control if a field with
POPUPMETHOD defined is still usable for
keyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true"” then no keyboard input is possible
- but only selection from the popup-method's
help.

Optional

true

false

popupprop

Name of the adapter parameter that provides
the information whether a POPUPMETHOD is
available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

Optional

popuponalt40

Value help in a field is triggered either by
clicking with the mouse or by pressing a certain
key inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to

Optional

true

false

Natural for Ajax

407

NJX:FIELDITEM

"true" - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

popupcombowidth

Pixel width of the standard
"openldValueCombo" popup dialog. Default is
field width or at least 150 pixel.

Optional

2

3

int-value

popupicon

URL of image that is displayed inside the right
corner of the field to indicate to the user that
there is some value help available.. Any image
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
P8

jpeg

touchpadinput

Boolean property that decides if touch pad
support is offered for the FIELD control. The
default is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

Optional

true

false

onlinehelp

helpid

Help id that is passed to the online help
management in case the user presses F1 on the
control.

Optional

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

formula

Contains information used by the Formula
Editor.

Optional

408

Natural for Ajax

NJX:FIELDITEM

Use the Formula Editor to make changes!

Hot Keys

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Optional

Natural

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1)
shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.
If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter.

Optional

njx:natcomment

The value of this attribute is generated as
comment line into the parameter data area of
the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

Optional

Miscellaneous

testtoolid

Use this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

Optional

Natural for Ajax

409

410

69 NJX:FIELDVALUE

L 11T o] (- ST SPPPPTPPRR 413
B AQAPIEr INEEITACE .. .uviiii e 413
B BUIE-IN EVENES L. 413
LI (L= T SRS PPRR 414

411

NJX:FIELDVALUE

The NJX:FIELDVALUE control is used to configure the fields in an NJX:FIELDLIST control in
order to create a simple field list. The fields of a simple field list are mapped to an array in the
Natural application. Only one NJX: FIELDVALUE control is needed in an NJX: FIELDLIST control.
This NJX:FIELDVALUE control is used to configure all fields in the list in the same way.

412 Natural for Ajax

NJX:FIELDVALUE

Example

Simple Field List =
Schindlg|Schirm | Schmitt|| Schmidt Schneig|Schneig Bungeri Thiele | Thoma | Treiber

The XML code for the example looks as follows:

<rowarea name="Simple Field List">
<Gtr>
<njx:fieldlist fieldlistprop="simple" fieldcount="10">
<njx:fieldvalue width="50">
</njix:fieldvalue>
</njx:fieldlist>
</itr>
</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 SIMPLE (A/1:*) DYNAMIC
END-DEFINE

For a simple field list (one that contains an NJX:FIELDVALUE control), an array is generated
according to the value bound in valueprop (here: SIMPLE).

Built-in Events

The NJX:FIELDVALUE control behaves like a FIELD control.

Natural for Ajax 413

NJX:FIELDVALUE

Properties
Basic
width Width of the control. Sometimes |100
obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g.
"0 200
100").
N 50%
(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.
comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
width (already explained above)
length Width of FIELD in amount of characters. Optional |5
WIDTH and LENGTH should not be used
together. Note that the actual size of the control 10
depends on the font definition if using the 15
LENGTH property.
20
int-value
maxlength Maximum number of characters that a user may [Optional |5
enter into this FIELD. This property is not
depending on the LENGTH property - please 10
do not get confused by the similar naming. 15
MAXLENGTH has nothing to do with the
optical sizing of the control but only with the 20
number of characters you may input.
414 Natural for Ajax

NJX:FIELDVALUE

int-value
textalign Alignment of text inside the control. Optional |left
center
right
password If set to "true", each entered character is Optional [true
displayed as a *'.
false
displayonly If set to true, the FIELD will not be accessible |Optional |true
for input. It is just used as an output field.
false
uppercase If "true" then all input is automatically Optional |true
transferred to upper case characters.
false
align Horizontal alignment of control in its column. |Optional |left
Each control is "packaged” into a column. The center
column itself is part of a row (e.g. ITR or TR). .
Sometimes the size of the column is bigger than right
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.
If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.
valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The middle
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than bottom
the size of the control. In this case the "align"
property specify the position of the control
inside the column.
colspan Column spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of
3

columns your control occupies. By default it is

Natural for Ajax

415

NJX:FIELDVALUE

"1" - but you may want to define the control to 4
span over more than one columns.
5
The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in tval
ITR rows, because these rows are explicitly not mbvatie
synched.
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may 2
sometimes want to control the number of rows
your control occupies. By default it is "1" - but 3
you may want to define the control two span 4
over more than one columns.
The property only makes sense in table rows >
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not int-value
synched.
fieldstyle CSS style definition that is directly passed into |Optional |background-color: #FFO000
this control.
color: #0000FF
With the style you can individually influence)
the rendering of the control. You can specify font-weight: bold
any style sheet expressions. Examples are:
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source” function.
noborder Boolean value defining if the control has a Optional [true
border. Default is "false".
false
transparentbackground | Boolean value defining if the control is rendered | Optional |true
with a transparent background. Default is
"false". false
invisiblemode If the visibility of the control is determined Optional |invisible
dynamically by an adapter property then there
416 Natural for Ajax

NJX:FIELDVALUE

are two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

cleared

tabindex

Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional

1
—_

10

32767

Binding

flush

Flushing behaviour of the input control.

By default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is
set to FLUSH="server" then you can specify an

Optional

Natural for Ajax

417

NJX:FIELDVALUE

explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

textidmode

If using property "valuetextprop” then a field
knows an id and a text for a certain value. There
are three types of display: either both are shown
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

Optional

bgcolorprop

Name of the adapter parameter that provides
the background color of the control.

Optional

fgcolorprop

Name of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The
color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPRORP to choose both - text and
background color.

Optional

autocallpopupmethod

Name of the adapter parameter that controls
that the field's value help event is sent to the
adapter with a certain offset (milliseconds) after
last key down event.

Optional

true

false

maxlengthprop

Name of the adapter parameter that provides
the maximum number of characters that a user
may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Optional

Validation

datatype

By default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field
with datatype "int" then a corresponding error
message will popup when the user leaves the
field.

..will format the data coming from the server
or coming form the user input: if the field has
datatype "date" and the user inputs "010304"
then the input will be translated into

Optional

date

float

int

long

time
timestamp
color

xs:decimal

418

Natural for Ajax

NJX:FIELDVALUE

"01.03.2004" (or other representation, dependent
on date format settings).

In addition valeu popups are offered for the
user automatically for some datatypes: e.g. when
specifying datatype "date" the automatically the
field provides a calendar input popup.

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be
a float value, but also can be a double or a
BigDecimal property.

xs:double

xs:date

xs:dateTime

xs:time

Nnn
Pnn
string n
xs:byte

xs:short

validationrules

Contains information used for Data Validation.

Use the Validation Rules Editor to make
changes!

Optional

validation

Regular expression against which the content
of the field is checked on client side when the
user changes the field. If the validation fails then
an error message popup up and informs the
user about the wrong input.

Optional

[a-zA-Z0-9_.-]
(L \@[a-zA-Z0-9_-]
LANAw{2]\ \d{5)

[0-9)(-/+1+

validationuserhint

If a client side validation fails due to wrong user
input then an error popup is opened. If you
define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

Optional

validationuserhintprop

If using validation expressions (either property
"validation" or "validationprop") then a popup
comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

Optional

digits

Number that specifiies how many digits are to
be displayed (ie digits before the comma). If

using this feature then the DATATYPE property
must be set to 'float’. See also DECIMALDIGITS.

Optional

Natural for Ajax

419

NJX:FIELDVALUE

int-value

digitsprop

Name of the adapter parameter that provides
information how many digits are to be displayed
(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'".

Optional

decimaldigits

Number that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float'.

Optional

2

3

int-value

decimaldigitsprop

Name of the adapter parameter that provides
information how many decimal digits are to be
displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float".

Optional

Valuehelp

popupmethod

Name of the event that is sent to the adapter
when the user requests value help by pressing
F4 or F7 or by clicking into the FIELD with the
right mouse button. See at chapter Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

Optional

openldValueCombo
openldValueHelp

openldValueComboOrPopup

popupinputonly

Boolean property that control if a field with
POPUPMETHOD defined is still usable for
keyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

Optional

true

false

popupprop

Name of the adapter parameter that provides
the information whether a POPUPMETHOD is
available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

Optional

popuponalt40

Value help in a field is triggered either by
clicking with the mouse or by pressing a certain
key inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help

Optional

true

false

420

Natural for Ajax

NJX:FIELDVALUE

behaviour. In this case switch this property to
"true” - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

popupcombowidth

Pixel width of the standard
"openldValueCombo" popup dialog. Default is
field width or at least 150 pixel.

Optional

2

3

int-value

popupicon

URL of image that is displayed inside the right
corner of the field to indicate to the user that
there is some value help available.. Any image
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUl/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

gif
P8

jpeg

touchpadinput

Boolean property that decides if touch pad
support is offered for the FIELD control. The
default is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

Optional

true

false

onlinehelp

helpid

Help id that is passed to the online help
management in case the user presses F1 on the
control.

Optional

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

formula

Contains information used by the Formula
Editor.

Optional

Natural for Ajax

421

NJX:FIELDVALUE

Use the Formula Editor to make changes!

Hot Keys

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Optional

Miscellaneous

testtoolid

Use this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

Optional

422

Natural for Ajax

70 NJX:NJXVARIABLE

L 11T o] (- ST SPPPPTPPRR 424
B PIOPEITIES oo 424

423

NJX:NJXVARIABLE

The NJX:NJXVARIABLE control is used in Natural Map Converter templates in order to define a
placeholder that is replaced during map conversion. For further information, see Templates in the
section Customizing the Map Conversion Process of the Application Modernization part.

Example

The Map Converter template NATPAGE_TEMPLATE contains a variable MAPROOT that receives the
result of the map conversion process. As a result, the converted Natural map content is placed
into the pagebody of the resulting page layout.

<?xml version="1.0" encoding="UTF-8"7>
<natpage xmins:njx="http://www.softwareag.com/njx/njxMapConverter"
natsource="$$NATSOURCE$$" natsinglebyte="true">

<titlebar name="$$TITLEVAR$$" align="center">

</titlebar>

<pagebody>

<njx:njxvariable name="MAPROOT"/>

</pagebody>

{statusbar withdistance="false"/>
</natpage>

Properties

Basic

name | The name of the variable. ‘Optional‘

424 Natural for Ajax

71 NJX:EVENTDATA

L 11T o] (- ST SPPPPTPPRR 427
B AQAPIEr INEEITACE .. .uviiii e 428

425

NJX:EVENTDATA

The NJX:EVENTDATA control supplies additional information related to specific events. With
some events, the application needs additional information to handle the event properly. Only one
instance of the control needs to be added to the page. This instance provides the event data for all
events of other controls on the page that supply additional data. If the page does not contain an
instance of the NJX:EVENTDATA control, no additional event data is supplied to the application.

426 Natural for Ajax

NJX:EVENTDATA

Example
" Event Data Example £3
'Event Data =
(T eliast olmest oA
ID Last First
ID Last First
kID Last First
ID Last First
D Last First
ID Last First ﬂ

+" Event lines.onClick in line 3 raised.

The XML layout definition is:

<?xml version="1.0" encoding="UTF-8"7>
<natpage natsource="CTREVD-A" natsinglebyte="true"
xmlns:njx="http://www.softwareag.com/njx/njxMapConverter">
<titlebar name="Event Data Example">
</titlebar>
<{pagebody takefullheight="true">
{rowarea name="Event Data" height="100%">
<tr height="100%">
<textgrid2 griddataprop="1lines" width="100%"
height="100%" selectprop="selected"
onclickmethod="Tines.onClick">
<column name="ID" property="id" width="100">
</column>
<column name="lLast" property="last">
</column>
<column name="First" property="first">
</column>
</textgrid2>
</itr>
</rowarea>
</pagebody>
{statusbar withdistance="false">
</statusbar>
<njx:eventdata>
</njx:eventdata>
<{/natpage>

Natural for Ajax 427

NJX:EVENTDATA

Adapter Interface

DEFINE DATA PARAMETER
1 LINES (1:%)

2 FIRST (A) DYNAMIC
2 ID (A) DYNAMIC

2 LAST (A) DYNAMIC
2 SELECTED (L)

1 XCIEVENTDATA

2 XCIINDEX (I4)
END-DEFINE

If a left click is applied to the grid, the index of the line is contained in XCIEVENTDATA.XCIINDEX.

Note that in order to receive the event data, the click event must refer to a specific control. In this
example, it must therefore be named 1ines.onC11ick, not just onC1ick.

428 Natural for Ajax

72 Working with Grids

This & shows you how to deal with grids. Working with grids is as simple as working with
singular properties because the grid management adapts seamlessly into the normal processing
of the Application Designer environment.

The information provided in this part is organized under the following headings:

Basics

TEXTGRID2

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling
ROWTABLEAREA? - The Flexible Control Grid

FLEXLINE - Flexible Columns in Control Grids

C L L L L L

MGDGRID - Managing the Grid

429

430

73 Basics

It is quite simple: [normal] controls refer to an adapter and are bound to adapter parameters.
Grid controls refer to an adapter as well - but are bound to a group array. Each array element
provides group elements to access its content.

Two types of grid controls are available:

¥ The TEXTGRID2 control is a control that displays grid data - but does not allow any change to
the data. You can select grid rows and colorize them in different ways. Change the order of
columns dynamically and sort columns by clicking into the title row of the grid.

There is a TEXTGRIDSSS?2 control that is a certain variant of the TEXTGRID2 control.

¥ The ROWTABLEAREA? is a container that internally allows you to use any normal control to
be embedded inside a grid. Therefore, you can place normal FIELD controls, CHECKBOX
controls etc. inside the ROWTABLEAREA2 container.

Use the TEXTGRID2 controls for displaying and selecting data. Use ROWTABLEAREA?2 for
entering data inside a grid.

431

432

74 TEXTGRID2

B A SIMPIE EXAMPIE ..ottt e e e e e e e e e e 434
B AQAPIEr INEEITACE .. .uviiii e 435
m Selecting ROWS iN @ TEXTGRIDZooiiiiiiieeiice e 435
B TEXTGRIDZ PrOPEITIES ... e eeeeeeeteeiiieet ettt ettt e e e e ettt e e e e e e e et eeaeeeeas 436
B COLUMN PIOPEIES ...ttt e e e et e e e e e a e e e e e e 442
= Dynamic Setting of Text Styles in TEXTGRIDZoviiiiiiiiiiii e 446

433

TEXTGRID2

A Simple Example

The following example shows a TEXTGRID2 control:

rTllaa-:tgrild -
|« |FirstName o [Last Name o [
First O Last O
First 1 Last 1
First 2 Last 2
First 3 Last 3
First 4 Last 4
First 5 Last 5
First & Last 6
First 7 Last 7
First 8 Last 8
JFir*—‘.f u] | Ast Q f

There are two columns which hold data. There is one column at the very left which displays a
selection icon - in addition to a yellow background for a selected line. Even and odd lines are
displayed in slightly different colors. At the very right of each title column, there is a symbol which
indicates the sorting status; if you double-click on this symbol, the column is sorted first in ascending
direction and, when clicking again, in descending direction. Change the sequence of columns by
dragging the title of a column and dropping it on another column's title. Depending from where
you drop, the column is either moved left or right.

The asterisk in the upper left corner of the grid is used to select/deselect all lines in the grid. The
behavior depends on the setting of the singleselect property which determines whether multiple
lines can be selected in the grid (default) or whether only one line can be selected:

¥ Multiple Line Selection Mode
When you choose the asterisk for the first time, all lines are selected. When you choose the
asterisk a second time, all lines are deselected.

¥ Single Line Selection Mode
When you choose the asterisk (no matter how often), an existing selected line is deselected.

434 Natural for Ajax

TEXTGRID2

The XML layout definition is:

{rowarea name="Textgrid">
<tr takefullwidth="true" fixlayout="true">
<textgrid2 griddataprop="lines" width="100%" height="200"
selectprop="selected"
hscroll="true">
<column name="First Name" property="firstName" width="50%">
</column>
<column name="lLast Name" property="lastName" width="50%">
</column>
</textgride>
</itr>
<vdist height="5">
</vdist>
</rowarea>

The TEXTGRID?2 definition is bound to a grid data property 1ines.

Inside the TEXTGRID?2 control definition there are two columns. These columns are bound to the
properties firstName and TastName.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER

1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

Selecting Rows in a TEXTGRID2

Maybe you wonder why thereis a selected field in the adapter parameter data area of the previous
example.

This field is required for indicating which lines are currently selected and which are not. Each line
which is displayed in the TEXTGRID2 control is represented in the adapter by an array occurrence
of the array LINES. Therefore, the selection status of the grid (which lines are selected and which
lines are not) is mirrored by the corresponding selected field of each array occurrence.

Natural for Ajax 435

TEXTGRID2

TEXTGRID2 Properties

Basic

griddataprop Name of the adapter parameter that represents the grid |Obligatory
in the adapter.

width Width of the control. Obligatory [100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the 140
width of the control will either be a default width or -
in case of container controls - it will follow the width 160
that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. 509
"50%"). Pay attention: percentage sizing will only bring ?
up correct results if the parent element of the control 100%
properly defines a width this control can reference. If
you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not specify
a width then the rendering result may not represent
what you expect.

height Height of the control. Obligatory [100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence 200
the control will be rendered with its default height. If
the control is a container control (containing) other 250
controls then the height of the control will follow the 300
height of its content.

. e A 250

(B) Pixel sizing: just input a number value (e.g. "20").
(C) Percentage sizing: input a percantage value (e.g. 400
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control
properly defines a height this control can reference. If 100%
you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

436 Natural for Ajax

TEXTGRID2

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

Optional

Selection

selectprop

Name of the adapter parameter that is used to mark if
an individual row of the text grid is selected.

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

Optional

singleselect

If set to "true" then only one row can be selected inside
the text grid. - If set to "false" then multiple lines can be
selected by using Ctrl- and Shift-key during mouse
selection.

Default is "false".

Optional

true

false

singleselectprop

Name of an adapter parameter that dynamically defines
whether SINGLESELECT is true or false.

Optional

onclickmethod

Name of the event that is sent to the adapter when the
user selects a row.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

Optional

ondblclickmethod

Name of the event that is sent to the adapter when the
user selects a row by a double click.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

Optional

withselectioncolumn

When defining a SELECTPROP property then
automatically a selection column is added as first left
column of the grid. Inside the column an icon inidicates
if a row is currently selected.

Set this property to "false" in order to avoid the selection
column.

Optional

true

false

withselectioncolumnicon

Flag that indicates whether the selection column shows
a "select all" icon on top. Default is true.

Optional

true

false

fgselect

if switched to true then an additional "graying" of
selected lines will be activated. Switch this property to
"true"” if you have coloured textgrid cells: the selection
colour will not override the colour of each cell, as
consequence you require an additional effect in order
to make the user see which row is selected.

Optional

true

false

Natural for Ajax

437

TEXTGRID2

focusedprop Name of an adapter parameter that is used to mark if |Optional
an individual row of the text grid should receive the
focus.

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

Right Mouse Button

oncontextmenumethod |Name of the event that is sent to the adapter when the|Optional
user clicks with the right mouse button onto an empty
area of the grid.

singleselectcontextmenu |With SHIFT and CTRL key the user can select multiple|Optional |true
lines (use property SINGLESELECT to suppress this
feature). Use this property to ensure that the context false
menu is requested only for a single line.

Default is "false".

enabledefaultcontextmenu |Use this property to enable the default context menu |Optional |true
of the browser within the textgrid. Please note: do not
enable the browser's context menu if your application false
itself provides for a context menu.

Default is "false".

Appearance
width (already explained above)
height (already explained above)
minapparentrows Number of rows that are displayed independent of the|Optional |1
size of the server side collection.
2
3
int-value
hscroll Indicates if to show a horizontal scrollbar ("true") or not|Sometimes |true
("false"). obligatory
false
If no scrollbar is shown then the control occupies the
horizontal space that is required by its content.
withtitlerow If defined as "false" then no top title row is shown. Optional |true
"True" is default. false
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
3

438 Natural for Ajax

TEXTGRID2

By default it is "1" - but you may want to define the
control to span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

4

5

50

int-value

rowspan

Row spanning of control.

If you use TR table rows then you may sometimes want
to control the number of rows your control occupies.
By default it is "1" - but you may want to define the
control two span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

Optional

5

50

int-value

personalizable

If defined to "false" then no re-arranging of columns is
offered to the user.

Default is "true". This means: if using COLUMN
controls inside the grid definition then the user can
re-arrange the sequence of columns by dragging and
dropping them within the top title row.

Optional

true

false

stylevariant

Some controls offer the possibility to define style
variants. By this style variant you can address different
styles inside your style sheet definition file (.css). If not
defined "normal" styles are chosen, if defined (e.g.
"VAR1") then other style definitions (xxxVAR1xxx) are
chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently
offerst two variants "VAR1" and "VAR2" but does not
predefine any semantics behind - this is up to you!

Optional

VARI1

VAR2

backgroundstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

Optional

Natural for Ajax

439

TEXTGRID2

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source” function.

vscroll Definition of the vertical scrollbar's appearance. Optional |auto
You can define that scrollbars only are shown if the scroll
content is exceeding the control's area ("auto"). Or .
scrollbars can be shown always ("scroll"). Or scrollbars hidden

are never shown - and the content is cut ("hidden").

Default is "auto".

withrollover The textgrid controls provide for a so called "roll over"|Optional |true
effect. The row that is currently below the mouse
pointer is highlighted in a certain way. Use this property false
to disable the roll over effect (Default is TRUE).

fixedcolumnsizes When switching the FIXEDCOLUMNSIZES property |Optional |true
to value "true" then internally the grid is arranged in a
way that the area always determines its size out of the false

width specification of the COLUMN controls. The
browser does not look into the column contents in order
to try to optimise the size of the area - but always
follows the width that you define.

requiredheight Minimum height of the control in pixels. Use this Optional |1
property to ensure a minimum height if the overall
control's height is a percentage of the available space - 2
i.e. if value of property HEIGHT is a percentage (e.g.
3
100%).
int-value

Please note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the required
height the end of the control is just cut off.

disablecolumnresizing Flag that indicates if the user can change the width of |Optional |true
the grid columns. Default is false.
false
disablecolumnmoving Flag that indicates if the user can change the order of |Optional |true
grid columns. Default is false.
false
tabindex Index that defines the tab order of the control. Controls |Optional |-1
are selected in increasing index order and in source
order to resolve duplicates. 0

440 Natural for Ajax

TEXTGRID2

10

32767

Drag And Drop

draginfoprop Name of the row item property that passes back the |Optional
line's "drag info". When using this attribute the grid
lines can be dragged onto "drop targets" (e.g.
DROPICON control). The dragged line is identified by
its "drag info". Use any string/information applicable.

Natural

njx:natname If a Natural variable with a name not valid for Optional
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name
(in this case #FIELD1) is then specified in this attribute,
the original name is generated into the parameter data
area of the Natural adapter and a mapping between the
two names is generated into the PROCESS PAGE
statement of the Natural adapter.

njx:natcomment The value of this attribute is generated as comment line |Optional
into the parameter data area of the Natural adapter,
before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

Deprecated

directselectevent Use ONCLICKMETHOD and ONDBLCLICKMETHOD |Optional |ondblclick

instead.
onclick

directselectmethod Use ONCLICKMETHOD and ONDBLCLICKMETHOD |Optional
instead.

Natural for Ajax 441

TEXTGRID2

COLUMN Properties

The COLUMN tag is the typical tag that is placed inside a TEXTGRID2 definition. The COLUMN
definition defines a column with its binding to a property of the collection elements.

Basic

name

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

Sometimes
obligatory

textid

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a corresponding
string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Sometimes
obligatory

property

Property of the row item object that represents the
column's content.

The content typically is straight text but can also be
"complex HTML".

Obligatory

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is
occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control
properly defines a width this control can reference. If you
specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

Obligatory

100

120

140

160

180

200

50%

100%

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

datatype

By default, the control is managing its content as string.
By explicitly setting a datatype you can define that the

Optional

date

442

Natural for Ajax

TEXTGRID2

control will format the data coming from the server: if
the field has datatype "date" and the user inputs "010304"
then the input will be translated into "01.03.2004" (or other
representation, dependent on date format settings).

Please note: the datatype "float" is named a bit misleading
- it represents any decimal format number. The server
side representation may be a float value, but also can be
a double or a BigDecimal property.

float

int

long

time
timestamp
color
xs:decimal
xs:double
xs:date

xs:dateTime

xs:time
Nn.n
Pnn
string n
xs:byte
xs:short
align Horizontal alignment of the control's content. Optional |left
center
right
straighttext If the text of the control contains HTML tags then these |Optional |true
are by default interpreted by the browser. Specifiying
STRAIGHTTEXT as "true" means that the browser will false
directly render the characters without HTML
interpretation.
Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".
MOZILLA: this property is not available in Mozilla!
convertspaces |If switched to "true" then all spaces inside the text that is|Optional |true
rendered into the column are converted to non breakable
false

spaces (andnbsp\").

Natural for Ajax

443

TEXTGRID2

Use this option if you have "meaningful” spaces inside
the values you return from the server adapter object, e.g.
if outputting some ASCII protocol inside a column.

cuttextline

If switched to "false" then the content of the column is
broken if it excceeds the column's width definition.
Default is "true" i.e. if the content is too big for the column
cell then it is cut.

Optional

false

withsorticon

Flag that indicates if a small sort indicator is shown within
the right corner of the control. Default is TRUE.

Optional

false

headerimage

URL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

Binding

property

(already explained above)

textstyleprop

Name of the adapter parameter that provides a
style-string that is used for rendering the column's
content.

As consequence you can indiviudally assign a CSS-style
to each cell of your text grid.

Optional

textclassprop

Name of the adapter parameter that provides a style class
to be used for rendering the content.

You can set up a limited number of style classes inside
your style sheet definition - and dynamically reference
them per grid cell.

Optional

imageprop

Name of the adapter parameter that provides an image
URL. The image is rendered at the very left of the
column's area - in front of the text (PROPERTY property
definition).

Optional

linkmethod

Name of the event that is sent to the adapter if user clicks
the column's text.

Optional

444

Natural for Ajax

TEXTGRID2

celltitleprop Name of the adapter parameter that provides the tooltip|Optional
of this cell.

Online help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.

sorttitle Text that is shown as tooltip for the sort indicator. Optional
Either input text by using this SORTTITLE property - or
use the SORTTITLETEXTID in order to define a language
dependent literal.

sorttitletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text for the sort indicator.

celltitleprop (already explained above)

Natural

njx:natstringtype

If the control shall be bound to a Natural system variable
of string format with the attribute njx:natsysvar, this
attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

Optional

njx:natsysio

If the control shall be bound to a Natural system variable
with the attribute njx:natsysvar, this attribute indicates
if the system variable is modifiable. The default is false.

Optional

njx:natname

If a Natural variable with a name not valid for Application
Designer (for instance #FIELD1) shall be bound to the
control, a different name (for instance HFIELD1) can be
bound instead. If the original name (in this case #FIELD1)
is then specified in this attribute, the original name is
generated into the parameter data area of the Natural
adapter and a mapping between the two names is
generated into the PROCESS PAGE statement of the
Natural adapter.

Optional

njx:natsysvar

If the control shall be bound to a Natural system variable,
this attribute specifies the name of the system variable.

Optional

njx:natcomment

The value of this attribute is generated as comment line
into the parameter data area of the Natural adapter, before
the field name. The Map Converter, for instance, uses this
attributes to indicate for a generated statusprop variable
to which field the statusprop belongs.

Optional

Natural for Ajax

445

TEXTGRID2

Dynamic Setting of Text Styles in TEXTGRID2

The example from the previous sections will now be enhanced in order to demonstrate how to
control the style of cells inside a TEXTGRID2 control dynamically:

rTextgrid -
L [FirstName o [LastName o [
First 0 Last 0
First 1 Last 1
First 2 Last 2
First 3 Last 3
First 4 Last 4
First 5 Last 5
First & Last G
First 7 Last 7
First & Last 8
JFir*—ﬂ' q | A=t A f
Remove Selected Items

Some of the cells in the TEXTGRID2 control are rendered with a different style than the normal
one. Each COLUMN definition has the property textstyleprop:

<rowarea name="Textgrid">
<tr takefullwidth="true" fixlayout="true">
<textgrid2 griddataprop="lines" width="100%" height="200"
selectprop="selected"
hscroll="true">
<column name="First Name" property="firstName" width="50%"
textstyleprop="firstNameStyle">
</column>
<column name="lLast Name" property="lastname" width="50%"
textstyleprop="TastNameStyle">
</column>
</textgride>
</itrd>
<vdist height="5">
</vdist>
<Gtr>
<pbutton name="Remove Selected Items" method="onRemoveSelectedItems">
</button>
</itr>
</rowarea>

446 Natural for Ajax

75 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

B Performance CONSIAEIAtIONSuveiiiiee it e e e e e e e e a e e e e e 448
B EXAMPIE oo 448
B AJAPLEr INEEITACE ... e 450
m USiNG Server-Side SCrOllNGvviiiiiiiii e 450
B USING SEIVEr-SIde SOMING ... ittt e e e e e e e 451
B TEXTGRIDSSS2 PrOPEITIESeeeiiiiiie ettt ettt et e ettt e e e e e e et e e e e e taaeee e e 451

447

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

The TEXTGRIDSSS2 control is a variant of the TEXTGRID2 control which is explained in the
previous section. "SSS" is the abbreviation for "server-side scrolling”. What this means is described
in this #i.

Performance Considerations

The TEXTGRID2 control fetches all items belonging to the grid and renders them according to its
layout definition. If there are more items available than the grid can display, a vertical scroll bar
is displayed and you can scroll through the list.

From scrolling perspective, this is very effective - the browser is very fast when scrolling is needed.
But there are two disadvantages, especially for long lists:

B All the data that are to be displayed inside the grid must be available on the client side. Therefore,
the data must be transferred from the server to the client at least one time. Imagine you have a
grid of 10,000 lines: even if Application Designer transfers only [net data] and even if this
happens in [delta transfer mode] , it must be transferred.

¥ In addition, the grid must be built completely in order to allow fast scrolling. This means - taking
the above example - that 10,000 lines have to be rendered before the grid can be displayed. Table
rendering is time-consuming and needs a lot of the client's CPU performance.

Consequence: text grids of the TEXTGRID2 control are easy to use, but they have their limitations
in terms of scalability. You should use it only if a limited amount of information is to be displayed.

Example

The TEXTGRIDSSS2 is very similar to the TEXTGRID2 control. However, some special behavior
has been built in. The main differences are [in the background | . The TEXTGRIDSSS2 control
only receives the data of the visible items. In this example, only the data of the first 20 items are
returned and rendered. When scrolling down, the next 20 items are fetched and rendered. This
means: the control requests always the data which are currently displayed.

448 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

#TextgridSSSE -
|« |FirstName oflastName o[
First O Last O
B First 1 Last 1
P First 2 Last 2
First 3 Last 3
First 4 Last <
First 5 Last 5
First 6 Last 6
B First 7 Last 7]
First 8 Last 8
First 9 Last 9
First 10 Last 10
P First 11 Last 11
First 12 Last 12
First 13 Last 13
First 14 Last 14
B First 15 Last 15
Firct 16 Lact 16
First 17 Last 17
First 18 Last 18
JFirSt 19 Last 19 JJ

Consequence: every scrolling step requires an interaction with the server. However, only a small
amount of data - which is visible - is requested, not the data of all available items. The performance
of the grid does not change with the number of items which are available. There is no time difference
in rendering a text grid containing 100 or 10,000 items.

The layout definition is:

<{rowarea name="Textgridsss2">

Gtr>

<textgridsss2 griddataprop="lines" rowcount="20" width="100%"

selectprop="selected" singleselect="false" hscroll="true"
directselectmethod="onDirectSelection"
directselectevent="ondb1Click">

<column name="First Name" property="firstname" width="50%">

</column>

<column name="Last Name" property="lastname" width="50%">

</column>

<{/textgridsss2>

[ARAD
{/rowarea>

Natural for Ajax

449

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)

1 LINESINFO

2 ROWCOUNT (I4)

2 SIZE (I4)

2 SORTPROPS (1:*)

3 ASCENDING (L)

3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)
END-DEFINE

The parameters are nearly the same as for the TEXTGRID2 control. In addition, thereisa LINESINFO
structure. This structure is used to control the server-side scrolling and the server-side sorting.

Using Server-Side Scrolling

In the adapter parameters that represent the TEXTGRIDSSS2 control in the application, there are
three parameters that control the server-side scrolling:

W TOPINDEX

W ROWCOUNT

WSIZE

In TOPINDEX and ROWCOUNT, the application receives the information how many items it should

deliver to the page with the next scroll event and with which item the delivered amount should
start.

In SIZE, the application returns the total number of items available. The client uses this information
to set up the scroll bar correctly.

450 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Using Server-Side Sorting

In the adapter parameters that represent the TEXTGRIDSSS2 control in the application, there is a
substructure that controls the server-side sorting: SORTPROPS. With the information in this structure,
the client tells the application by which sort criteria and in which order the client expects the items
to be sorted.

TEXTGRIDSSS2 Properties

Basic

griddataprop Name of the adapter parameter that represents the grid |Obligatory
in the adapter.

rowcount Number of rows that is renderes inside the control. Obligatory

There are two ways of using this property - dependent
on whether you in addition define the HEIGHT

property:

If you do NOT define the HEIGHT property then the
control is rendered with exactly the number of rows
that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the maximum
number of rows that is picked from the server. You
should define this value in a way that it is not too low
- otherwise your grid will not be fully filled. On the
other hand it should not be defined too high ("100")
because this causes more communication traffic and
more rendering effort inside the browser.

width Width of the control. Obligatory|100

There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case the 140
width of the control will either be a default width or -
in case of container controls - it will follow the width 160

that i ied by it tent.
at is occupied by its conten 180

(B) Pixel sizing: just input a number value (e.g. "100").

200

Natural for Ajax 451

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

(C) Percentage sizing: input a percantage value (e.g. 50%
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control 100%

properly defines a width this control can reference. If
you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not specify
a width then the rendering result may not represent
what you expect.

height Height of the control. Optional |100

There are three possibilities to define the height: 150

(A) You do not define a height at all. As consequence 200
the control will be rendered with its default height. If
the control is a container control (containing) other 250
controls then the height of the control will follow the

height of its content. 300

(B) Pixel sizing: just input a number value (e.g. "20"). 250

(C) Percentage sizing: input a percantage value (e.g. 400

"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control
properly defines a height this control can reference. If 100%
you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not specify
a width then the rendering result may not represent
what you expect.

comment Comment without any effect on rendering and Optional
behaviour. The comment is shown in the layout editor's
tree view.

Selection

selectprop Name of the adapter parameter that is used to mark if |Optional
an individual row of the text grid is selected.

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

singleselect If set to "true” then only one row can be selected inside |Optional |true
the text grid. - If set to "false” then multiple lines can be
selected by using Ctrl- and Shift-key during mouse false
selection.

Default is "false".

singleselectprop Name of an adapter parameter that dynamically defines |Optional
whether SINGLESELECT is true or false.

452 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

onclickmethod Name of the event that is sent to the adapter when the |Optional
user selects a row.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

ondblclickmethod Name of the event that is sent to the adapter when the |Optional
user selects a row by a double click.

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

withselectioncolumn When defining a SELECTPROP property then Optional |true
automatically a selection column is added as first left
column of the grid. Inside the column an icon inidicates false

if a row is currently selected.

Set this property to "false" in order to avoid the selection
column.

withselectioncolumnicon |Flag that indicates whether the selection column shows|Optional |true
a "select all" icon on top. Default is true.

false

fgselect if switched to true then an additional "graying" of Optional |true
selected lines will be activated. Switch this property to

"true"” if you have coloured textgrid cells: the selection false

colour will not override the colour of each cell, as
consequence you require an additional effect in order
to make the user see which row is selected.

focusedprop Name of an adapter parameter that is used to mark if |Optional
an individual row of the text grid should receive the
focus.

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

Right Mouse Button

oncontextmenumethod [Name of the event that is sent to the adapter when the |Optional
user clicks with the right mouse button onto an empty
area of the grid.

singleselectcontextmenu |With SHIFT and CTRL key the user can select multiple |Optional |true
lines (use property SINGLESELECT to suppress this
feature). Use this property to ensure that the context false
menu is requested only for a single line.

Default is "false".

enabledefaultcontextmenu |Use this property to enable the default context menu |Optional |true
of the browser within the textgrid. Please note: do not

Natural for Ajax 453

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

enable the browser's context menu if your application false
itself provides for a context menu.
Default is "false".
Appearance
width (already explained above)
height (already explained above)
hscroll Indicates if to show a horizontal scrollbar ("true") or not|Optional |true
("false").
false
If no scrollbar is shown then the control occupies the
horizontal space that is required by its content.
vscroll Definition of the vertical scrollbar's appearance. Optional |auto
You can define that scrollbars only are shown if the scroll
content is exceeding the control's area ("auto"). Or .
scrollbars can be shown always ("scroll"). Or scrollbars hidden
are never shown - and the content is cut ("hidden").
Default is "auto".
touchpadinput Boolean property that decides if touch pad supportis |Optional |true
offered for the TEXTGRID control. The defaultis "false".
If switched to "true" then you can scroll the grid via a false
touch pad. As consequence you can use this control for
making inputs through a touch terminal.
withtitlerow If defined as "false” then no top title row is shown. Optional |true
"True" is default. false
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of columns your control occupies.
By default it is "1" - but you may want to define the 3
control to span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these 50
rows are explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want 2
to control the number of rows your control occupies.
By default it is "1" - but you may want to define the 3
control two span over more than one columns. 4
454 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

5

50

int-value

personalizable

If defined to "false" then no re-arranging of columns is
offered to the user.

Default is "true". This means: if using COLUMN controls
inside the grid definition then the user can re-arrange
the sequence of columns by dragging and dropping
them within the top title row.

Optional

true

false

stylevariant

Some controls offer the possibility to define style
variants. By this style variant you can address different
styles inside your style sheet definition file (.css). If not
defined "normal" styles are chosen, if defined (e.g.
"VAR1") then other style definitions (xxxVAR1xxx) are
chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently
offerst two variants "VAR1" and "VAR2" but does not
predefine any semantics behind - this is up to you!

Optional

VAR1

VAR2

backgroundstyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

Optional

withblockscrolling

If switched to "true" then the grid will show small scroll
icons by which the user can scroll the grid's content.
Scrolling typically is done by using the grid's scrollbar
- the scroll icons that are switched on by this property
are an additional possibility to scroll.

Optional

true

false

Natural for Ajax

455

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

withrollover The textgrid controls provide for a so called "roll over"|Optional |true
effect. The row that is currently below the mouse pointer
is highlighted in a certain way. Use this property to false
disable the roll over effect (Default is TRUE).
fixedcolumnsizes When switching the FIXEDCOLUMNSIZES property |Optional |true
to value "true" then internally the grid is arranged in a
way that the area always determines its size out of the false
width specification of the COLUMN controls. The
browser does not look into the column contents in order
to try to optimise the size of the area - but always
follows the width that you define.
requiredheight Minimum height of the control in pixels. Use this Optional |1
property to ensure a minimum height if the overall
control's height is a percentage of the available space - 2
i.e. if value of property HEIGHT is a percentage (e.g. 3
100%).
Please note:You must not use FIXLAYOUT at the int-value
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the required
height the end of the control is just cut off.
minapparentrows Minimum number of apparent rows. Insert a valid Optional |1
number to make sure that (e.g. 10) rows are shown for
sure. 2
3
int-value
disablecolumnresizing Flag that indicates if the user can change the width of |Optional |true
the grid columns. Default is false.
false
disablecolumnmoving Flag that indicates if the user can change the order of |Optional |true
grid columns. Default is false.
false
tabindex Index that defines the tab order of the control. Controls |Optional |-1
are selected in increasing index order and in source
order to resolve duplicates. 0
1
2
5
10
32767
456 Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

showemptylines

If set to false, no empty line will be rendered. By default
empty lines are shown.

Optional

true

false

Drag And Drop

draginfoprop

Name of the row item property that passes back the
line's "drag info". When using this attribute the grid
lines can be dragged onto "drop targets" (e.g.
DROPICON control). The dragged line is identified by
its "drag info". Use any string/information applicable.

Optional

Natural

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name
(in this case #FIELD1) is then specified in this attribute,
the original name is generated into the parameter data
area of the Natural adapter and a mapping between the
two names is generated into the PROCESS PAGE
statement of the Natural adapter.

Optional

njx:natcomment

The value of this attribute is generated as comment line
into the parameter data area of the Natural adapter,
before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

Optional

Deprecated

directselectmethod

Use ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

Optional

directselectevent

Use ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

Optional

ondblclick

onclick

Inside the TEXTGRIDSSS2 definitions, COLUMN tags are also used to define its content. There
is no difference in COLUMN tag usage between TEXTGRIDSSS2 and TEXTGRID2 definition.

Natural for Ajax

457

458

76 ROWTABLEAREAZ2 - The Flexible Control Grid

L 11T o] (- ST SPPPPTPPRR 460
B AQAPIEr INEEITACE .. .uviiii e 462
B BUIE-IN EVENES L. 462
m Making Grids LOOK [IKE GrIAScooiiiiiiiiiiii e 463
® ROWTABLEAREAZ PrOPEILIESeeeeeiiiiiiee ettt ettt e e e e e e e e e e 464
B STR PIOPEITIES ... veieieeee ettt et e e e ettt e et e e e e ettt e e e e e e et a e e e e e e 469

459

ROWTABLEAREAZ - The Flexible Control Grid

The ROWTABLEAREAZ? is a container control that allows other controls to be arranged inside its

grid management.

The ROWTABLEAREAZ2 control supports server-side scrolling and sorting. This concept is explained
in Server-Side Scrolling and Sorting. An example for the usage of server-side scrolling and sorting

with the ROWTABLEAREA? control is contained in the example library SYSEXNJX.

Example

There is a grid that contains a header row and 10 lines. Each line contains one check box and two
fields. Some of the lines are highlighted.

=

Gl
Frsthame ———_|Lasthome B
[First 1 Last 1 |
First 2 \Last 2 |
First 3 Last 2
| | | |
| || |
| | |
| || |
| | |
| || |
| | |
Add new Line Remove selected Lines

The XML layout definition is:

{rowarea name="Grid">

<rowtablearea2 griddataprop="1lines" rowcount="10" width="100%" withborder="true">

<tr>
<hdist>
</hdist>

<{label name="First Name" asheadline="true">

</Tabel>

<{label name="Last Name" asheadline="true">

</Tabel>

460

Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

</tr>
{repeat>
<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="30">
</checkbox>
<field valueprop="firstname" width="50%">
</field>
<field valueprop="Tastname" width="50%">
</field>
</str>
<{/repeat>
</rowtableareaz>
<vdist height="10">
</vdist>
<Gtr>
<putton name="Add new Line" method="onAddLine">
</button>
<hdist>
</hdist>
<button name="Remove selected Lines" method="onRemovelines">
</button>
</itr>
</rowarea>

Note the following:

¥ There is a ROWTABLEAREA?2 definition with the property griddataprop="1ines". Thereis a
rowcount definition of "10". This is the same as for the text grid processing: the grid container
is bound to a server-side collection. Similar to the TEXTGRIDSSS2 definition, there is a row
count that defines the number of lines.

¥ Inside the ROWTABLEAREA?2 definition, there is first the definition of a normal table row (TR)
in which a distance and two labels are defined. The labels are rendered with asheadline="true".

¥ Inside the REPEAT definition, there is a special table row definition "STR" (selectable table row)
that itself contains one CHECKBOX and two FIELD definitions. CHECKBOX and FIELDs are
bound to properties themselves.

B After the ROWTABLEAREA?2 definition, there is a vertical distance and a row that contains two
buttons with which a user can manipulate the grid.

The content of the REPEAT block is repeated as many times as defined inside the rowcount
definition of ROWTABLEAREAZ2. The content holds a table row (STR) - therefore the result is a
grid.

Natural for Ajax 461

ROWTABLEAREAZ - The Flexible Control Grid

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER

1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

If the grid has been configured for server-side scrolling and sorting, the data structure contains
additional fields that control server-side scrolling and sorting (see below). In order to use server-
side scrolling and sorting, set the property natsss in NATPAGE to "true".

DEFINE DATA PARAMETER
1 LINES (1:%)

2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)

1 LINESINFO

2 ROWCOUNT (I4)

2 SIZE (14)

2 SORTPROPS (1:*)

3 ASCENDING (L)

3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)
END-DEFINE

Built-in Events

value-of-griddataprop.onCtrlSelect
value-of-griddataprop.onSelect
value-of-griddataprop.onShiftSelect
value-of-griddataprop.onSort
value-of-griddataprop.onTopindexChanged

462 Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

Making Grids Look like Grids

Fields typically contain a high number of FIELD controls. Typically, a FIELD control has a certain
rendering that renders a field with a border and with a certain background color.

Be aware that inside the FIELD definition, there are two important properties:

M noborder - if set to "true", no border will be drawn
W transparentbackground - if set to "true", the field will always take over the background of the
controls in which it is positioned (e.g. STR row).

Have a look at the difference between the following screens. One screen uses the properties, the
other screen does not use them.

This is a grid:
Tl pricol
|:| Article 1 0,99

|:| Article 2 1.93

|:| Article 3 2,97

[] article 4 3.96

|:| article 5 4,96 —
[] article & 0.94

|:| article 7 6.93

|:| Article B F.92

|:| Article 9 8.92
|:|.-'1'-.r‘tiI:|E 10 Q.QIj

Natural for Ajax 463

ROWTABLEAREAZ - The Flexible Control Grid

This is collection of fields:

T prcd

[lrticle 1
[] article 2
[] article 3
[] Article 4
[] article 5
[] article 6
[] article 7
[] article 8
[] article 9
[] article 10

ROWTABLEAREAZ2 Properties

0,99
1.93
2.97
2.96
4,96 —
0.94
6.93
792
=2.92

9.91;'

Basic

griddataprop

Name of the adapter parameter that represents the
control in the adapter.

Obligatory

rowcount

Number of rows that is renderes inside the control.

There are two ways of using this property -
dependent on whether you in addition define the
HEIGHT property:

If you do NOT define the HEIGHT property then
the control is rendered with exactly the number of
rows that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the
maximum number of rows that is picked from the
server. You should define this value in a way that
it is not too low - otherwise your grid will not be

Optional

464

Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

fully filled. On the other hand it should not be
defined too high ("100") because this causes more
communication traffic and more rendering effort
inside the browser.

height Height of the control. Optional |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As 200
consequence the control will be rendered with its
default height. If the control is a container control 250
(containing) other controls then the height of the 300
control will follow the height of its content.
(B) Pixel sizing: just input a number value (e.g. 250
”20”)‘ 400
(C) Percentage sizing: input a percantage value 50%
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element 100%
of the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

width Width of the control. Sometimes |100

obligatory
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g.
"0 200
100").
L 50%

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will 100%

only bring up correct results if the parent element
of the control properly defines a width this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

Natural for Ajax

465

ROWTABLEAREAZ - The Flexible Control Grid

firstrowcolwidths

If set to "true" then the grid is sized according to
its first row. This first row typically is a
header-TR-row in which GRIDCOLHEADER
controls are used as column headers for the
subsequent rows.

Default is "false", i.e. the grid is sized according to
its "whole content".

Please note: when using the GRIDCOLHEADER
control within the header-TR-row this property
must be set to "true" - otherwise column resizing
(by drag and drop) does not work correctly.

Sometimes
obligatory

true

false

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

Appearance

withborder

If set to "false" then no thin border is drawn around
the controls that are contained in the grid.

Default is "true".

Optional

true

false

hscroll

Indicates if to show a horizontal scrollbar ("true")
or not ("false").

If no scrollbar is shown then the control occupies
the horizontal space that is required by its content.

Optional

true

false

vscroll

Definition of the vertical scrollbar's appearance.

You can define that scrollbars only are shown if
the content is exceeding the control's area ("auto").
Or scrollbars can be shown always ("scroll"). Or
scrollbars are never shown - and the content is cut
("hidden").

Default is "auto".

Optional

auto

scroll

hidden

firstrowcolwidths

(already explained above)

clipboardaccess

If switched to true then the content of the grid can
be selected and exported into the client's clipboard.

Optional

true

false

withblockscrolling

If switched to "true" then the grid will show small
scroll icons by which the user can scroll the grid's
content. Scrolling typically is done by using the
grid's scrollbar - the scroll icons that are switched
on by this property are an additional possibility to
scroll.

Optional

true

false

touchpadinput

If set to "true" then touch screen icons for scrolling
are displayed in addition.

Optional

true

466

Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

Default is "false".

false

requiredheight

Minimum height of the control in pixels. Use this
property to ensure a minimum height if the overall
control's height is a percentage of the available
space - i.e. if value of property HEIGHT is a
percentage (e.g. 100%).

Please note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the
required height the end of the control is just cut
off.

Optional

1

2

3

int-value

tablestyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

darkbackground

Normally the background is in light colour but the
CIS style sheets also have a dark(er) grey colour to
be used.

If DARKBACKGROUND is set to true then the
darker background colour is chosen. This property
typically is used to integrate light coloured controls
into darker container areas.

Optional

true

false

Binding

oncontextmenumethod

Name of the event that is sent to the adapter when
the user presses the right mouse button in the grid,
but not on an existing row, but in an empty area
of the grid.

Optional

fwdtabkeymethod

Name of the event that is sent to the adapter when
the user presses the TAB key within the very last
cell of the grid (last cell within the last line). Use

Optional

Natural for Ajax

467

ROWTABLEAREAZ - The Flexible Control Grid

property FWDTABKEYFILTER to associate this
call with a grid column.

fwdtabkeyfilter

By default the FWDTABKEYMETHOD is called if
the user presses the TAB key within the veryfirst
cell of the grid. Input the name of a cell's
VALUEPROP to associate the method call with
any other column.

Optional

bwdtabkeymethod

Name of the event that is sent to the adapter when
the user presses SHIFT and TAB keys within the
first cell of a grid line. Use property
BWDTABKEYFILTER to associate this call with a
cell of choice.

Optional

bwdtabkeyfilter

By default the BWDTABKEYMETHOD is called if
the user presses the SHIFT and TAB keys within
the very first cell of the grid. Input the name of a
cell's VALUEPROP to associate the method call
with any other column.

Optional

Hot Keys

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.
Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter ...defines two hot
keys. Method onCtrlAltA is invoked if the user
presses Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout Painter to
input hot keys.

Optional

468

Natural for Ajax

ROWTABLEAREAZ - The Flexible Control Grid

STR Properties

STR (selectable table row) is a normal table row (TR) that highlights its background depending
on an adapter property.

Basic

valueprop Name of the adapter parameter that defines if the row is selected |Obligatory
or not.

withalterbackground |Flag that indicates if the grid line shows alternating background |Optional |true
color (like rows within a textgrids). Default is false. Please note:
controls inside the row must have transparent background. In case false
of the FIELD control simply set property
TRANSPARENTBACKGROUND to true.

showifempty Flag that indicates if an unused row is visible. Example: if set to |Optional |true
false a grid with rowcount ten and a server side collection size of
seven will hide the three remaining rows. false
Default is false.

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Binding

valueprop (already explained above)

onclickmethod Name of the event that is sent to the adapter when the user clicks |Optional
a line.

ondblclickmethod Name of the event that is sent to the adapter when the user double |Optional
clicks a line.

proprefprop Name of the adapter parameter that is filled when the user clicks |Optional
a FIELD control. The VALUEPROP of the clicked field control will
passed.

backgroundcolorprop [Name of the adapter parameter that provides the background |Optional
color of the control.

Natural for Ajax 469

470

77 FLEXLINE - Flexible Columns in Control Grids

L 11T o] (- ST SPPPPTPPRR 472
B AQAPIEr INEEITACE .. .uviiii e 473
B FLEXLINE PIOPEITIES ..ottt ettt e e e e 474

471

FLEXLINE - Flexible Columns in Control Grids

In a previous example, the grid was completely defined as part of the layout definition: the sequence
of columns was internally defined by defining the controls that are part of an STR row.

Example

Have a look at the following example:

Flezline Example £3
Save

rE:-:.Elmpule -
Tce pricel

[] article 1 0.99

[] article 2 1.93

[] Article 3 2.97

[] article 4 2.95

[] Article 5 4,95 —

[] article & 2.94

[] Article 7 .93

[] article 2 F.azZ

[] article 9 82,92

[] article 10 0.91 j

The grid looks like a normal ROWTABLEAREAZ2 grid, but it is built in a more dynamic way.

The XML layout definition is:

<pagebody>
<rowarea name="Example">

<vdist height="5">

</vdist>

<rowtablearea?2 griddataprop="lines" rowcount="10" width="395"

withborder="true">
<Er>

<label name=
</label>

asheadline="true">

472 Natural for Ajax

FLEXLINE - Flexible Columns in Control Grids

<flexline infoprop="headline">
</flexTine>
</tr>
{repeat>
<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="30">
</checkbox>
<flexline infoprop="/rowline">
</flexline>
<hdist width="100%">
</hdist>
</str>
<{/repeat>
</rowtableareaz2>
<vdist height="10">
</vdist>
</rowarea>
<vdist height="5">
</vdist>
<{/pagebody>

You see that there are two FLEXLINE control definitions inside the ROWTABLEAREA2 definition:

¥ One definition represents the headline of the grid.

¥ The other definition is part of each row's content.

Each definition points to a property that passes the configuration at runtime. Within the second
definition, you may see something which is new for you: the VALUEPROP references to a property

/rowline. The"/" character at the beginning indicates that this property is dynamically controlled
by the application through an adapter parameter.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 HEADLINE (1:%*)

2 ATTRIBUTES (U) DYNAMIC
2 CONTROL (U) DYNAMIC

1 LINES (1:*)

2 SELECTED (L)

1 ROWLINE (1:*)

2 ATTRIBUTES (U) DYNAMIC
2 CONTROL (U) DYNAMIC
END-DEFINE

Natural for Ajax 473

FLEXLINE - Flexible Columns in Control Grids

FLEXLINE Properties

Basic

infoprop |Name of the adapter parameter that represents the control in the adapter. |Obligatory

withborder |Flag that indicates if a border is drawn between the controls that are rendered |Optional |true
inside the FLEXLINE control. Default is "false", i.e. no border is drawn.
false

comment |Comment without any effect on rendering and behaviour. The comment is |Optional
shown in the layout editor's tree view.

474 Natural for Ajax

78 MGDGRID - Managing the Grid

L 11T o] (- ST SPPPPTPPRR 477
B AQAPIEr INEEITACE .. .uviiii e 478
B BUIE-IN EVENES L. 479
B MGDGRID PrOPEILIES ... eeeieeiiiiiiie ettt ettt ettt e ettt e e e e ettt e e e e e e e ettt teeeeaaee e 479
B ROWINSERT PrOPEIIES ...ttt e e e e e e e e e e e 483
B ROWECOPY PIOPEIIES ...ttt eee ettt ettt ettt e e e ettt e e e e e e ettt e e e e e e e e et aeeeeeeeas 484
B ROWDELETE PrOPEItIESvvviiiiiiiiie ettt e et e e e e e et a e e e e e e e 485

475

MGDGRID - Managing the Grid

The MGDGRID control is an extension of the ROWTABLEAREA2 control. It allows to insert, copy
and delete rows of the grid.

Like the ROWTABLEAREA?2 control, the MGDGRID control supports server-side scrolling and
sorting. This concept is explained in Server-Side Scrolling and Sorting. An example for the usage of
server-side scrolling and sorting with the ROWTABLEAREAZ2 control is contained in the example
library SYSEXNJX. The same example can be used to illustrate the usage of server-side scrolling
and sorting with the MGDGRID control.

See also STR Properties which are described with the ROWTABLEAREAZ2 control.

476 Natural for Ajax

MGDGRID - Managing the Grid

Example
rI"ﬂeuneu;ua Grid Demo -
Teiame | istame | 2|8
1 Firsthamel Last Mamel X
2 FirstMarmeZz Last MameZ X
3 |FirstMame3 Last Mame3 X
4 FirstMarme4 Last Name4 X
3 |FirstMames Last Mames X
& Firstharmes Last Mamet X
7 |FirstMame?7 Last Mame7 X
8 FirstMarmed Last Mame& X
8 |FirstMame9 Last Mamed X
10 FirstMame10 Last Mame10 X J

D Insert a new line Copy selected line

There is a grid that contains a header row and 10 lines. Each line contains two fieldsand a [delete
row] control.

Each of the function controls (insert, copy, delete) can be added at the top of the MGDGRID, below
the MGDGRID or within the lines of the MGDGRID.

Look at the corresponding layout definition:

{rowarea name="Manage Grid Demo">
<mgdgrid griddataprop="mglines" rowcount="10" width="100%" firstrowcolwidths="true">
<tro>
<label name="
</label>
<gridcolheader name="First Name" width="50%">
</gridcolheader>
<gridcolheader name="Last Name" width="50%" >
</gridcolheader>
<{gridcolheader width="20">
</gridcolheader>
<hdist></hdist>
</tr>
{repeat>
<str valueprop="selected" showifempty="true">
<{selector valueprop="selected" singleselect="true">
{/selector>
<field valueprop="fname" width="100%">

" width="25" asheadline="true">

Natural for Ajax 477

MGDGRID - Managing the Grid

</field>
<field valueprop="1Iname" width="100%">
</field>
<rowdelete>
</rowdelete>
</str>
{/repeat>
<mgdfunctions>
<rowinsert title="Insert a new line">
</rowinsert>
<rowcopy title="Copy selected line">
</rowcopy>
</mgdfunctions>
</mgdgrid>
{/rowarea>

The MGDGRID control is an extension to the ROWTABLEAREA2 control. See the description of
the ROWTABLEAREAZ2 control for further information.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 MGLINES (1:*)

2 FNAME (U) DYNAMIC

2 LNAME (U) DYNAMIC

2 SELECTED (L)
END-DEFINE

If the grid has been configured for server-side scrolling and sorting, the data structure contains
additional fields that control server-side scrolling and sorting (see below). In order to use server-
side scrolling and sorting, set the property natsss in NATPAGE to "true".

DEFINE DATA PARAMETER
MGLINES (1:%*)

FNAME (U) DYNAMIC
LNAME (U) DYNAMIC
SELECTED (L)
LINESINFO

ROWCOUNT (I4)

SIZE (1I4)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC

W WM NN N

478 Natural for Ajax

MGDGRID - Managing the Grid

2 TOPINDEX (I4)
END-DEFINE

Built-in Events

value-of-griddataprop.onCtrlSelect
value-of-griddataprop.onSelect
value-of-griddataprop.onShiftSelect
value-of-griddataprop.onSort
value-of-griddataprop.onTopindexChanged

MGDGRID Properties

Basic

griddataprop

Name of the adapter parameter that represents the
control in the adapter.

Obligatory

rowcount

Number of rows that is renderes inside the control.

There are two ways of using this property -
dependent on whether you in addition define the
HEIGHT property:

If you do NOT define the HEIGHT property then
the control is rendered with exactly the number of
rows that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the
maximum number of rows that is picked from the
server. You should define this value in a way that
it is not too low - otherwise your grid will not be
fully filled. On the other hand it should not be
defined too high ("100") because this causes more
communication traffic and more rendering effort
inside the browser.

Optional

height

Height of the control.
There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the control will be rendered with its
default height. If the control is a container control

Optional

100

150

200

250

Natural for Ajax

479

MGDGRID - Managing the Grid

(containing) other controls then the height of the
control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g.
"20")'

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element
of the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

300
250
400
50%

100%

width

Width of the control.
There are three possibilities to define the width:

(A) You do not define a width at all. In this case
the width of the control will either be a default
width or - in case of container controls - it will
follow the width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g.
"100").

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element
of the control properly defines a width this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

Sometimes

obligatory

100
120
140
160
180
200
50%

100%

firstrowcolwidths

If set to "true" then the grid is sized according to
its first row. This first row typically is a
header-TR-row in which GRIDCOLHEADER
controls are used as column headers for the
subsequent rows.

Default is "false", i.e. the grid is sized according to
its "whole content".

Please note: when using the GRIDCOLHEADER
control within the header-TR-row this property

Sometimes
obligatory

true

false

480

Natural for Ajax

MGDGRID - Managing the Grid

must be set to "true" - otherwise column resizing
(by drag and drop) does not work correctly.

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.
Appearance
withborder If set to "false" then no thin border is drawn around |Optional |true
the controls that are contained in the grid.
false
Default is "true".
hscroll Indicates if to show a horizontal scrollbar ("true") |Optional |true
or not ("false").
false
If no scrollbar is shown then the control occupies
the horizontal space that is required by its content.
vscroll Definition of the vertical scrollbar's appearance. |Optional |auto
You can define that scrollbars only are shown if scroll
the content is exceeding the control's area ("auto").)
Or scrollbars can be shown always ("scroll"). Or hidden
scrollbars are never shown - and the content is cut
("hidden").
Default is "auto".
firstrowcolwidths (already explained above)
clipboardaccess If switched to true then the content of the grid can|Optional |true
be selected and exported into the client's clipboard.
false
withblockscrolling If switched to "true" then the grid will show small|Optional |true
scroll icons by which the user can scroll the grid's
content. Scrolling typically is done by using the false
grid's scrollbar - the scroll icons that are switched
on by this property are an additional possibility to
scroll.
touchpadinput If set to "true" then touch screen icons for scrolling|Optional |true
are displayed in addition.
false
Default is "false".
requiredheight Minimum height of the control in pixels. Use this [Optional |1
property to ensure a minimum height if the overall
control's height is a percentage of the available 2
space - i.e. if value of property HEIGHT is a 3
percentage (e.g. 100%).
int-value

Please note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the

Natural for Ajax

481

MGDGRID - Managing the Grid

required height the end of the control is just cut
off.

tablestyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

oncontextmenumethod

Name of the event that is sent to the adapter when
the user presses the right mouse button in the grid,
but not on an existing row, but in an empty area
of the grid.

Optional

fwdtabkeymethod

Name of the event that is sent to the adapter when
the user presses the TAB key within the very last
cell of the grid (last cell within the last line). Use
property FWDTABKEYFILTER to associate this
call with a grid column.

Optional

fwdtabkeyfilter

By default the FWDTABKEYMETHOD is called if
the user presses the TAB key within the veryfirst
cell of the grid. Input the name of a cell's
VALUEPROP to associate the method call with
any other column.

Optional

bwdtabkeymethod

Name of the event that is sent to the adapter when
the user presses SHIFT and TAB keys within the
first cell of a grid line. Use property
BWDTABKEYFILTER to associate this call with a
cell of choice.

Optional

bwdtabkeyfilter

By default the BWDTABKEYMETHOD is called if
the user presses the SHIFT and TAB keys within
the very first cell of the grid. Input the name of a
cell's VALUEPROP to associate the method call
with any other column.

Optional

Hot Keys

482

Natural for Ajax

MGDGRID - Managing the Grid

hotkeys

Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.
Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;0nCtrlAltA;13;onEnter ...defines two hot
keys. Method onCtrlAltA is invoked if the user
presses Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout Painter to
input hot keys.

Optional

Natural

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall
be bound to the control, a different name (for
instance HFIELD1) can be bound instead. If the
original name (in this case #FIELD1) is then
specified in this attribute, the original name is
generated into the parameter data area of the
Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE
statement of the Natural adapter.

Optional

njx:natcomment

The value of this attribute is generated as comment
line into the parameter data area of the Natural
adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

Optional

ROWINSERT Properties

Basic

image URL that points to the image that is shown as icon.

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

Obligatory

Natural for Ajax

483

MGDGRID - Managing the Grid

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Binding

visibleprop |[Name of the adapter parameter that provides the information if this control is |Optional
displayed or not. As consequence you can control the visibility of the control
dynamically.

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid |Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

ROWCOPY Properties

Basic

image URL that points to the image that is shown as icon. Obligatory
The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.
Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Binding

visibleprop |[Name of the adapter parameter that provides the information if this control is|Optional
displayed or not. As consequence you can control the visibility of the control
dynamically.

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid |Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

484 Natural for Ajax

MGDGRID - Managing the Grid

ROWDELETE Properties

Basic

image URL that points to the image that is shown as icon. Obligatory
The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.
Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Binding

visibleprop [Name of the adapter parameter that provides the information if this control is|Optional
displayed or not. As consequence you can control the visibility of the control
dynamically.

Online Help

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid |Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

Natural for Ajax

485

486

79 Working with Trees

This part shows you how to work with trees and tree nodes. The information is organized under
the following headings:

9 TREENODES3 in Control Grid (ROWTABLEAREA2)

9 CLIENTTREE

487

488

80 TREENODES3 in Control Grid (ROWTABLEAREA2)

L 11T o] (- ST SPPPPTPPRR 490
B AQAPIEr INEEITACE .. .uviiii e 491
B BUIE-IN EVENES L. 491

491

LI (L= T SRS PPRR

489

TREENODES in Control Grid (ROWTABLEAREA2)

Example

The following

image shows an example for a tree management:

a
a
1
a
i
1}
a
1

The grid contains three columns: the first column shows the tree node, the other two columns
display some text information.

The XML layout definition is:

{rowarea name="Tree">

<rowtablearea?2 griddataprop="treeGridInfo" rowcount="8" width="500"

withborder="
<tr>

false">

<Tabel name="Tree Node" width="200" asheadline="true">

</label>

{label name="Toggle Count" width="100" asheadline="true
labelstyle="text-align:right">

</label>

<label name="Select Count" width="100" asheadline="true"
labelstyle="text-align:right">

</label>
</tr>
{repeat>
<tr>
<treenode3d width="200" withplusminus="true"
imageopened="1images/fileopened.gif"
imageclosed="images/fileclosed.gif"
imageendnode="1images/fileendnode.gif">
<{/treenode3>
{textout valueprop="toggleCount" width="100" align="right">
<{/textout>
{textout valueprop="selectCount" width="100" align="right">
<{/textout>
</tr>
{/repeat>
<{/rowtablearea?2>
</rowarea>
490

Natural for Ajax

TREENODES in Control Grid (ROWTABLEAREA2)

You see that the TREENODES3 control is placed inside the control grid just as a normal control.
There are certain properties available which influence the rendering: in the example, the name of
the tree node images is statically overwritten. The flag withplusminus is set to true - consequently,
small "+"/"-" icons are placed in front of the node.

Adapter Interface

In the parameter data area of the adapter, the tree data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 TREEGRIDINFO (1:%*)

2 DRAGINFO (U) DYNAMIC

2 DROPINFO (U) DYNAMIC

2 LEVEL (I4)

2 OPENED (I4)

2 SELECTCOUNT (U) DYNAMIC
2 TEXT (U) DYNAMIC

2 TOGGLECOUNT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-griddataprop.reactOnSelect
value-of-griddataprop.reactOnToggle

Properties
Basic
width Width of the control. Optional |1
There are three possibilities to define the width: 2
(A) You do not define a width at all. In this case the width of the 3
control will either be a default width or - in case of container)
controls - it will follow the width that is occupied by its content. int-value

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

Natural for Ajax 491

TREENODES in Control Grid (ROWTABLEAREA2)

the parent element of the control properly defines a width this
control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

comment

Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

Optional

Appearance

withplusminus

If set to "true" then +/- Icons will be rendered in front of the tree
items.

Optional

true

false

withlines

If set to "true" then the tree elements are connected with one
another by gray lines.

Please pay attention: if switching this property to "true" then you
have to create the instance of your server side TREECollection
object with a special constructor:

Example:

TREECollection m_tree = new TREECollection(true)

Optional

true

false

withtooltip

If set to "true" then the text of an item is also available as tool tip.
Use this option in case you expect that the horizontal space of
the item will not be sufficient to display the whole text of the
item.

Optional

true

false

withtextinput

If set to "true" then the tree node can also be edited. Editing is
started when the user double clicks the node.

The text that is input is passed into the property "text" which is
implemented in the default NODEInfo implementation.

Optional

true

false

imageopened

Image of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by this
property or also may be defined dynamically - see the
corresponding properties defined with this control.

Optional

imageclosed

Image of a tree node that has subnodes and that is currently not
showing its nodes. The image either is defined statically by this
property or also may be defined dynamically - see the
corresponding properties defined with this control.

Optional

imageendnode

Image of a tree node that is an end node (leaf node). The image
either is defined statically by this property or also may be defined
dynamically - see the corresponding properties defined with this
control.

Optional

singleselect

If set to "true" then only one item can be selected. If set to "false”
then multiple icons can be selected.

Optional

true

false

492

Natural for Ajax

TREENODES in Control Grid (ROWTABLEAREA2)

directselectevent |Event that represents a tree node selection. A tree node selection|Optional [ondblclick
is done when the user clicks/doubleclicks on the tree node text. '
In this case the select() method is called in the corresponding onclick
node object on server side.
pixelshift Number of pixels that each hierarchy level is indented. If not |Optional|1
defined then a standard is used.
2
3
int-value
pixelshiftendnode |Number of pixels that end nodes are indented. If not defined |Optional|1l
then a standard is used.
2
3
int-value
colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of columns your control occupies. By default it is "1"
- but you may want to define the control to span over more than 3
one columns.
4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to control 2
the number of rows your control occupies. By default it is "1" -
but you may want to define the control two span over more than 3
one columns.
4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows). It
does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
pixelheight Height of the control in pixels. Optional |1
2
3
Natural for Ajax 493

TREENODES in Control Grid (ROWTABLEAREA2)

int-value

1
—_

tabindex Index that defines the tab order of the control. Controls are Optional
selected in increasing index order and in source order to resolve
duplicates. 0

10

32767

Binding

imageprop Name of an adapter parameter that provides for a image for the |Optional
tree node.

Each node may provide for its own image, e.g. dependent on the
type of node.

If the adapter property passes back an empty string, then the
image is taken from the static definitions that you may parallely
do by using the properties IMAGEOPENED, IMAGECLOSED
and IMAGEENDNODE.

focusedprop Name of the adapter parameter that indicates if the row receives |Optional
the keyboard focus.

If more than one lines are returning "true", the first of them is
receiving the focus.

flush Flush behaviour when using the possibility of having editable |Optional |screen
tree nodes. If double clicking on the tree node then you can edit
its content. The FLUSH property defines how the browser server
behaves when leaving the tree node's input field:

If not defined (") then nothing happens - the changed tree node
text is communicated to the server side adapter object with the
next roundtrip.

If defined as "server" then immediately when leaving the field a
roundtrip to the server is initiated - in case you want your adapter
logic to directly react on the item change.

If defined as "screen" then the changed tree node text is populated
inside the page inside the front end.

flushmethod When the data synchronization of the control is set to Optional
FLUSH="server" then you can specify an explicit event to be sent
when the user updates the content of the control. By doing so

494 Natural for Ajax

TREENODES in Control Grid (ROWTABLEAREA2)

you can distinguish on the server side from which control the
flush of data was triggered.

tooltipprop Name of the adapter parameter that provides for a text thatis |Optional
shown if the user moves the mouse over the tree item (tooltip).

validdraginfosprop |Name of an adapter parameter that contains a comma separated | Optional
list of valid drag informations.

Drag and Drop

enabledrag If set to true then drag and drop is enabled within the tree. Optional |true

false

Natural for Ajax 495

496

81 CLIENTTREE

L 11T o] (- ST SPPPPTPPRR 498
B AQAPIEr INEEITACE .. .uviiii e 499
B BUIE-IN EVENES L. 499
LI (L= T SRS PPRR 499

497

CLIENTTREE

Example

The following example shows a simple client tree:

p
Clienttree -

- [&] File
+_ Mew
Ol Close
(1 Close Al
[l 5ave
(1 save all
[Exit
01 Exit
- [&] Edit
() Unda

The XML layout definition is:

<rowarea name="Clienttree">
<clienttree treecollectionprop="tree" height="200" withplusminus="true"
treestyle="background-color:#FEFEEE">
</clienttree>
<{/rowarea>

In this example, the client tree is directly put as row into the ROWAREA container. The property
treecollectionprop contains a reference to the property tree which contains the net data of the
tree. With the property treestyle, an explicit background color is set.

498 Natural for Ajax

CLIENTTREE

Adapter Interface

In the parameter data area of the adapter, the tree data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 TREE (1:%)

2 LEVEL (I4)

2 OPENED (I4)

2 SELECTED (L)

2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-treecollectionprop.reactOnContextMenuRequest
value-of-treecollectionprop.reactOnSelect
value-of-treecollectionprop.reactOnToggle

Properties

Basic

treecollectionprop Name of the adapter parameter that represents the control |Optional
in the adapter.

height Height of the control. Optional {100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percantage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%

ITR-row) may itself define a height of "100%". If the parent

Natural for Ajax 499

CLIENTTREE

element does not specify a width then the rendering result
may not represent what you expect.

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Appearance

withplusminus

If set to "true" then +/- Icons will be rendered in front of the
tree items.

Optional

true

false

withtooltip

If set to "true" then the text of an item is also available as tool
tip. Use this option in case you expect that the horizontal
space of the item will not be sufficient to display the whole
text of the item.

Optional

true

false

selectionvisible

If set to "true" then the clicked item will also marked with a
certain background color. The background color is defined
by the style sheet settings.

Optional

true

false

singleselect

If set to "true" then only one item can be selected. If set to
"false" then multiple icons can be selected.

Optional

true

false

imageopened

Image of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by
this property or also may be defined dynamically - see the
corresponding properties defined with this control.

Optional

imageclosed

Image of a tree node that has subnodes and that is currently
not showing its nodes. The image either is defined statically
by this property or also may be defined dynamically - see
the corresponding properties defined with this control.

Optional

imageendnode

Image of a tree node that is an end node (leaf node). The
image either is defined statically by this property or also may
be defined dynamically - see the corresponding properties
defined with this control.

Optional

treestyle

Style (following cascading style sheet definitions) that is
directly passed to the background area of the client tree. You
can manipulate e.g. the colour of the tree's background.

The style can also be set dynamically by specifying the
property TREESTYLEPROP.

Optional

hscroll

Definition of the horizontal scrollbar's appearance.

You can define that the scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or scrollbars
can be shown always ("scroll"). Or scrollbars are never shown
- and the content is cut ("hidden").

Default is "auto".

Optional

auto

scroll

hidden

500

Natural for Ajax

CLIENTTREE

pixelshift Number of pixels that each hierarchy level is indented. If not|Optional | 1
defined then a standard is used.
2
3
int-value
pixelshiftendnode Number of pixels that end nodes are indented. If not defined | Optional | 1
then a standard is used.
2
3
int-value
tabindex Index that defines the tab order of the control. Controls are |Optional |-1
selected in increasing index order and in source order to
resolve duplicates. 0
1
2
5
10
32767
withleftpadding Flag that indicates if the control has a 10 pixel padding on |Optional |true
left side. Default is true.
false
Binding
treecollectionprop (already explained above)
dynamicloading If set to "true" then you indicate to the tree control that not |Optional [true
all tree information may be loaded when initializing the tree
(i.e. the tree collection on server side). As consequence the false
tree control will pass the "toggle-event" to the server - in case
the subnodes of a certain nodes are not yet loaded.
In the case the toggle event is passed to the server, the method
onToggle() is called inside the tree item.
imageopenedprop Name of the adapter parameter that provides the image URL | Optional
which is shown for opened tree nodes or end tree nodes. The
value may be different from tree node to tree node. Each tree
node may have an own image.
imageclosedprop Name of the adapter parameter that provides for the image |Optional

URL which is shown for closed tree nodes. The value may

Natural for Ajax

501

CLIENTTREE

be different from tree node to tree node. Each tree node may
have an own image.

treestyleprop

name of the adapter parameter that dynamically provides
for a style value that is passed to the control's area
(background of the client tree). You can as consequence e.g.
define the background-colour of the tree dependent on your
server side logic.

Optional

treeclassprop

Name of the adapter parameter that passes back the name
of a style sheet class that is taken to render the client tree's
background area. - Similar to the property TREESTYLEPROP,
but now a style class is passed, not the style itself.

Optional

tooltipprop

Name of the adapter parameter that provides for a text that
is shown if the user moves the mouse over the tree item
(tooltip).

Optional

oncontextmenumethod

Name of the event that is sent to the adapter when the user
presses the right mouse button in an empty area of the client
tree.

Optional

directselectevent Event that represents a tree node selection. A tree node Optional ondblclick
selection is done when the user clicks/doubleclicks on the .
tree node text. In this case the select() method is called in the onclick
corresponding node object on server side.
focusedprop Name of the adapter parameter that indicates if the row Optional
receives the keyboard focus.
If more than one lines are returning "true", the first of them
is receiving the focus.
Drag and Drop
enabledrag If set to true then drag and drop is enabled within the tree. |Optional |true
false
502 Natural for Ajax

82 Working with Menus

Menus are used to arrange a number of functions in a structured way.
The information provided in this part is organized under the following headings:

@ Types of Menus
& MENU

& DLMENU

503

504

83 Types of Menus

The following menu controls are available:

¥ MENU
This is the typical drop-down menu:

File Edit Help
-EI Mamwe ..,
EH save
Save as...
Fermove
Exit
¥ DLMENU

This is a double-line menu representing a two-level hierarchy. It can be found quite often in
web applications.

When clicking an item in the first line, the corresponding subitems are shown in the second line.

All menu controls are dynamically configured by the application. This means:

505

Types of Menus

¥ The structure of the menu and its menu nodes is not statically defined but is dynamically
controlled by the application through adapter parameters. For example, you can build a
personalized menu taking the user's rights into consideration.

¥ Menu information can be dynamically updated during runtime.

506 Natural for Ajax

84 MENU

L 11T o] (- ST SPPPPTPPRR 508
B AQAPIEr INEEITACE .. .uviiii e 509
B BUIE-IN EVENES L. 509
LI (L= T SRS PPRR 510

507

MENU

Example

The example looks as follows:

Menu Demo e

File Edit Help

] (1 Mew...
E save

Save as...

Femove

Exit

When clicking on a menu item for which a function has been defined, then the name of the function
is displayed in the status bar.

508 Natural for Ajax

MENU

The XML layout definition is:

<page model="Menue_01_Adapter">
<titlebar name="Menu Demo">
</titlebar>
<header align="left" withdistance="false">
<menu menucollectionprop="menuData" width="100">
</menu>
</header>
<{pagebody>
</pagebody>
{statusbar withdistance="false">
<{/statusbar>
</page>

In this example, the menu is embedded in the header. By the property menucollectionprop, itis

bound to the adapter property menuData.

Adapter Interface

DEFINE DATA PARAMETER
1 MENUDATA (1:*)

2 1D (U) DYNAMIC

2 IMAGEURL (U) DYNAMIC
2 LEVEL (I4)

2 METHOD (U) DYNAMIC
2 OPENED (I4)

2 TEXT (U) DYNAMIC

1 SELMENUITEM (U) DYNAMIC
END-DEFINE

Built-in Events

items.reactOnSelect

Natural for Ajax

509

MENU

Properties

Basic

menucollectionprop [Name of the adapter parameter that represents the control in the |Obligatory
adapter.

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Appearance

width Width of the control. Optional |100

There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case the width of the 140
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

(B) Pixel sizing: just input a number value (e.g. "100"). 180

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay 200
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% 100%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

50%

height Height of the control. Optional
There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

toggleimage URL of the image that is shown on the right end of a menu item, if| Optional
this item contains subitems. If not explicitly defined then a default
icon is used.

510 Natural for Ajax

MENU

toggleimageprop

Name of the adapter parameter that provides a URL that defines
the toggle image. The toggle icon is shown on the right end of a
menu item that has subitems.

Optional

menustyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source”
or "View frame's source" function.

Optional

menustyleprop

Name of the adapter parameter that dynamically provides explicit
style information for the control.

Optional

Natural for Ajax

511

512

85 DLMENU

L 11T o] (- ST SPPPPTPPRR 514
B AQAPIEr INEEITACE .. .uviiii e 515
B BUIE-IN EVENES L. 515
LI (L= T SRS PPRR 516

513

DLMENU

Example

The example looks as follows:

' Save as... { Remove

A double-line menu is displayed. When selecting a menu item, then its text is written to the status
bar.

514 Natural for Ajax

DLMENU

The XML layout definition is:

<page model="menue_02_d1_Adapter">
<titlebar name="Double Line Menu">
</titlebar>
<dlmenu menuprop="menuData">
</dTmenu>
<header withdistance="false">
<button name="Save">
</button>
</header>
<{pagebody>
<{/pagebody>
{statusbar withdistance="false">
<{/statusbar>
</page>

The DLMENU control is positioned directly following the title bar. In its property menuprop, it
holds a binding to the property menuData.

Adapter Interface

DEFINE DATA PARAMETER
1 ITEMS (1:%)

2 LEVEL (I4)

2 METHOD (U) DYNAMIC
2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

items.onSelectSubltem

Natural for Ajax 515

DLMENU

Properties

Basic

menuprop |Name of the adapter parameter that represents the control in the adapter. |Obligatory

textid Multi language dependent text that is displayed inside the control. The |Optional
"textid" is translated into a corresponding string at runtime.

Do not specify a "name" inside the control if specifying a "textid".

align Horizontal alignment of the control's content. Optional |left
center

right

onlyoneline |If set to "true" then the DLMENU control only contains its top line - there [Optional |true

is no second line below. Default is "false".
false

comment |Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.

516 Natural for Ajax

86 Non-Visual Controls and Hot Keys

This part describes some controls that do not have any visual effect to your screen, but provide
some client functions to be applied to your page.

The information provided in this part is organized under the following headings:
& TIMER

& Extended Hot Key Management

@ Function Key Handling

517

518

87 TIMER

L 11T o] (- ST SPPPPTPPRR 520
B PIOPEITIES oo 521

519

TIMER

With a timer, you can regularly trigger a defined event sent by the client. For example, you can
use a timer to regularly update information to be displayed inside your page.

The timer tag is accessible as a valid subnode inside the page tag.

Specify either the interval or the intervalprop property in order to set the interval. In case of
using a property for dynamically setting the interval, note the following:

¥ You can change the interval time at any time.

® You can stop the timer by setting the interval time to 0.

Example

The following screen displays a time stamp of the server. It is refreshed depending on the interval
field. Increase/decrease the interval time by choosing the corresponding buttons.

Demo Timer

Increment Decrement Stop

Time
Interval (ms) 0
Server time Wed Sep 21 11:08:50 CEST 2005

The XML layout definition is:

<page model="DemoTimerAdapter">
{titlebar name="Demo Timer">
</titlebar>
<header withdistance="false">

<button name="~~Increment" method="incrementTimer">
</button>

<button name="~~Decrement" method="decrementTimer">
</button>

<putton name="~~Stop" method="stopTimer">

</button>

520 Natural for Ajax

TIMER

</header>
<{pagebody>
<{rowarea name="Time">
<Adtr>
<label name="Interval (ms)" width="100" asplaintext="true">
</label>
<field valueprop="interval" Tength="5" displayonly="true"
datatype="int">
</field>
</itrd
Gitr>
<label name="Server time" width="100" asplaintext="true">
</label>
<field valueprop="serverTime" length="50" displayonly="true">
</field>
</itr>
</rowarea>
<{/pagebody>
{statusbar withdistance="false">
</statusbar>
<timer intervalprop="interval">
</timer>
</page>

In this example, the timer tag does not send a defined event but refreshes the screen. The timer
interval is retrieved by the property interval of the adapter object.

Properties
Basic
interval Duration in milliseconds the timer waits between calling the adapter |Sometimes obligatory

method defined in the METHOD property.

Use this property to "hard code" the duration - or use
INTERVALPROP to define the duration by an adapter property.

intervalprop |Name of the adapter parameter that defines the timer interval Sometimes obligatory
duration. If 0 is passed then the timer is stopped.

method Name of the event that is sent to the adapter by the timer. Obligatory

comment |Comment without any effect on rendering and behaviour. The Optional

comment is shown in the layout editor's tree view.

Natural for Ajax 521

522

88 Extended Hot Key Management

= Direct Hot Key Definitions with Certain CONMrolSoiiiiiiiiiiii e 524
= Hot Key Definitions for Certain CONIOISvveeiiiiiieiiie e 524

523

Extended Hot Key Management

Extended hot key management provides the following features:

¥ Possibility to define hot keys with certain controls.

¥ Possibility to define language dependent hot keys.

Direct Hot Key Definitions with Certain Controls

Some controls allow to directly specify hot keys within the text that is displayed inside the control.
The controls that currently support this feature are:

¥ BUTTON
® MENU
¥ ROWTABAREA

Example: If you specify the button text to be "~~Stop", the button will look like this:

Stop

The text may both be directly maintained in the control (name property) or may come from the
multi language management (textid property).

At the time, the hot key CTRL+ALT+S will be added to the page. The definition of hot keys in the
texts of MENU controls or ROWTABAREA controls is done in the same way.

P 7EE: Application Designer does not check if hot keys are defined twice in a page.

Why use CTRL+ALT as a default way to trigger the hot keys? This is because most of the simple ALT
keys are already occupied by the browser.

Hot Key Definitions for Certain Controls

The controls PAGE, FIELD and ROWTABLEAREA?2 support the property hotkeys.

The hotkeys property defines the active hot keys for the corresponding control. This means that
you may have hot keys that are only valid inside a certain grid (ROWTABLEAREA2 control) or
even inside a single FIELD, but are not valid inside the whole page (PAGE control).

524 Natural for Ajax

Extended Hot Key Management

Have a look at the following demo:

'Hotkey Enhancements .

Info

(1) Within the keycode you can use "textids”. With that you can provide for language
specfic hotkeys - 2.q. keys "Cirl-alt-d" within an english context may invoke the
same functionality like "Ctri-altd” when you run your application with german
language.

(2) You can provide for gnd hotkeys, & gnd hotkey is 15 invoked only if the user
invokes the hotkeys within the grid.

| DEmim

Press keys "Ctr-alt-a” within the gnd - a popup will appear. Press the same keys
within the surrounding page - the result is now a message on the statushar.,

|| First name " Last name ||J

LT e S B = LR) [¥ 6 L B

o
o

Natural for Ajax 525

Extended Hot Key Management

If the user presses CTRL+ALT+A inside the grid, the hot key is managed by the grid. If the user presses
the same key outside the grid, the hot key is processed by a corresponding definition on page
level. The XML layout looks as follows:

<{page model="com.softwareag.cis.test40.GridHotkeysAdapter"
translationreference="40_gridhotkeys"
hotkeys="ctrl-alt-65;onCtr1ATtAPage">

<rowtablearea?2 griddataprop="grid" rowcount="12" width="100%"
firstrowcolwidths="true"
hotkeys="ctrl-alt-$KEYCODE_A;onCtrl1ATtA">

The hotkeys property on PAGE, FIELD or ROWTABLEAREA? is a semicolon-separated list
containing the hot key itself and the method it is calling. There can be multiple hot key definitions
for the same control. When maintaining this property, use the special dialog in the Layout Painter
that appears for the hotkeys property.

You can either specify the key code of the hot key or a text ID that is to be translated by the multi
language management.

526 Natural for Ajax

89 Function Key Handling

Some keyboard function keys are usually assigned to specific functions of the web browser. 5,
for example, causes a page reload and Fi1 toggles full screen mode.

In a Natural for Ajax application, these keyboard function keys might be assigned as hot keys to
events in the application. But the user should also have the option to use, for example, F11 in the
usual way as a web browser function key. Therefore, the following rules apply:

¥ If the keyboard focus is on the Natural for Ajax page, the function key raises the corresponding
event in the application.

B If the keyboard focus is not on the Natural for Ajax page, but in the area of the web browser
(for example, in the address line), the function key raises the corresponding event in the web
browser.

Exception

In Internet Explorer 7, F10 and F11 are handled by the web browser only if both the keyboard focus
and the mouse pointer are in the area of the web browser.

527

528

5|

A

Ajax, 1
Application Designer
Natural tools for map conversion, 118

C

conversion logs

Natural tool for map conversion, 118
conversion rules

Natural tool for map conversion, 118

map converter
Natural tool for map conversion, 118

N

Natural for Ajax, 1

529

530

	Natural for Ajax
	目次
	1 Natural for Ajax
	2 はじめに
	What is a Rich Internet Application?
	Rich Internet Applications with Natural
	Mixed Applications

	3 Installation
	Prerequisites
	Java
	J2EE Server
	Apache Ant
	Natural for Mainframes
	Natural for UNIX
	Natural for Windows
	Support for Special Features
	Development Servers
	Development Clients
	Browser Prerequisites

	License Key File Handling
	Installing Natural for Ajax on JBoss Application Server
	First-time Installation
	Update Installation

	Installing Natural for Ajax on Sun Java System Application Server
	First-time Installation
	Update Installation

	Verifying the Installation

	4 Setting Up Your Environment
	Setting Up Application Designer
	Setting Up Your Development Environment for Natural
	Setting Up Your Runtime Environment for Natural

	5 First Steps
	6 About this Tutorial
	7 Starting the Development Workplace
	8 Creating a Project
	9 Getting Started with the Layout Painter
	Creating a New Layout
	Elements of the Layout Painter Screen
	Previewing the Layout
	Viewing the XML Code

	10 Writing the GUI Layout
	Specifying the Properties for the Natural Page
	Specifying a Name for the Title Bar
	Using the Property Editor
	Specifying a Name and Method for the Button
	Adding the Input and Output Areas
	Adding the Image
	Adding a Horizontal Distance
	Adding an Instructional Text
	Adding a Vertical Distance
	Saving Your Layout

	11 Setting Up Your Development and Runtime Environment for Natural
	12 Creating the Natural Code
	Importing the Adapter into Natural
	Creating the Main Program
	Testing the Completed Application

	13 Some Background Information
	Name Binding between Controls and Adapter
	Data Exchange at Runtime
	Files and their Locations

	14 Developing the User Interface
	Starting the Development Workplace
	Creating an Application Designer Project
	Creating a Natural Page
	Specifying Properties for the Natural Page
	Designing the Page
	Binding Properties and Methods
	Previewing the Layout
	Viewing the Protocol
	Saving the Layout
	Generating the Adapter
	Data Type Mapping

	15 Developing the Application Code
	Importing the Adapter
	Importing the Adapter Using Natural Studio
	Importing the Adapter Using Natural for Eclipse

	Creating the Main Program
	Structure of the Main Program
	Handling Page Events
	Built-in Events and User-defined Events
	Sending Events to the User Interface
	Using Pop-Up Windows
	Using Natural Maps
	Navigating between Pages and Maps
	Using Pages and Maps Alternatively
	Starting a Natural Application from the Logon Page
	Starting a Natural Application with a URL

	16 Deploying the Application
	Components of a Natural for Ajax Application
	Unloading Natural Modules
	Unloading the User Interface Components
	Installing the Natural Modules
	Installing the User Interface Components

	17 Natural Parameters and System Variables
	18 Multi Language Management
	19 Support of Right-to-Left Languages
	20 Server-Side Scrolling and Sorting
	General Information
	Variants of Server-Side Scrolling and Sorting
	No Server-Side Scrolling and Sorting
	Web Server-Side Scrolling and Sorting
	Natural Server-Side Scrolling and Sorting

	Controls that Support Server-Side Scrolling and Sorting
	Data Structures for Server-Side Scrolling and Sorting
	Server-Side Scrolling and Sorting in Trees
	Events for Server-Side Scrolling and Sorting

	21 Application Modernization
	22 Overview of Conversion Steps
	23 Map Extraction
	General Information
	Using Natural for Ajax Tools
	Using the Mass Function
	Location of the Files

	24 Map Conversion
	General Information
	First Steps
	Using the Map Converter
	Invoking the Map Converter
	Setting the Conversion Options
	Previewing/Generating a Single Layout
	Generating All Layouts
	Viewing the Conversion Results
	Refreshing the Display

	Using the Editor Extension
	Using the Conversion Rules Tool
	Using the Conversion Logs Tool

	25 Customizing the Map Conversion Process
	Map Converter Processing
	Processing of Rows and Columns
	Rows
	Columns

	Processing of Sequence and Grid Areas
	Summary: Processing Steps of the Map Converter

	Conversion Rules
	Conversion Rules Examples
	Example 1
	Example 2
	Example 3

	Default Conversion Rules File
	Root Rule
	Data Type Conversion Rules
	Other Default Conversion Rules

	Conversion Rules that Often Need to be Adapted
	Naming of Adapters
	Setting the Title of a Map

	Writing Your Own Conversion Rules

	Templates
	Variables in Templates
	Templates in Templates
	Editing Templates

	Tag Converters

	26 Code Conversion
	General Information
	Generating Adapters
	Structure of a Map-Based Application
	Structure of a Natural for Ajax Application
	Tasks of the Code Conversion
	DEFINE DATA Statement
	statusprop

	INPUT Statement
	REINPUT Statement
	PF-Key Event Handling
	SET KEY Statement
	Processing Rules
	System Variables
	Variable Names Containing Special Characters

	27 Working with Controls
	28 Some Common Rules for all Controls
	Name and Text ID
	Table, Row, Column, Control
	Explicit Alignment
	Binding to Adapter Parameters
	Directly Influencing the Control Style
	Dynamically Controlling the Visibility and the Display Status of Controls
	Focus Management
	Flushing of Inputs
	Tab Sequence
	Tooltips

	29 BREADCRUMB
	Example
	Adapter Interface
	Built-in Events
	Properties

	30 BUTTON
	Example: Simple Button
	Example: Button with Image
	Hiding and Disabling Buttons
	Properties

	31 BUTTONLIST
	Adapter Interface
	Properties

	32 CHECKBOX
	Properties

	33 COMBODYN2
	Adapter Interface
	Properties

	34 COMBOFIX
	COMBOFIX Properties
	COMBOOPTION Properties

	35 DATEINPUT
	Example
	Properties

	36 DROPICON
	Example
	Properties

	37 FIELD
	Built-in Events
	Properties

	38 FILEUPLOAD/FILEUPLOAD2
	FILEUPLOAD
	FILEUPLOAD2
	FILEUPLOAD Properties
	FILEUPLOAD2 Properties

	39 ICON
	Example
	Properties

	40 ICONLIST
	Adapter Interface
	Built-in Events
	Properties

	41 IHTML
	Properties

	42 IMAGEOUT
	Properties

	43 LABEL
	Example
	Aligning the Text
	Properties

	44 MENUBUTTON
	Example
	MENUBUTTON Properties
	MENUITEM Properties

	45 METHODLINK
	Properties

	46 MULTISELECT
	Example
	Adapter Interface
	Properties

	47 NEWSFEED
	Example
	Built-in Events
	Properties

	48 RADIOBUTTON
	Properties

	49 SCHEDULELINE
	Properties

	50 SLIDER
	Example
	Adapter Interface
	Properties

	51 STRIPSEL
	Example
	Properties

	52 SUBPAGE
	Properties

	53 TABSEL
	Adapter Interface
	Built-in Events
	Properties

	54 TABSTRIP2
	Example
	Adapter Interface
	Built-in Events
	Properties

	55 TAGCLOUD
	Example
	Adapter Interface
	Built-in Events
	Properties

	56 TEXT
	Properties

	57 TEXTOUT
	Example
	Properties

	58 TOGGLE
	Properties

	59 ACTIVEX
	Properties

	60 GOOGLEMAP2
	Before You Start
	Example
	General Usage

	Typical Problems
	Google Map API Key
	Map Remains Gray

	Properties

	61 NETMEETING
	Example
	Properties

	62 SKYPECALL
	Example
	Properties

	63 NJX:BUTTONITEMLIST
	Example
	Adapter Interface
	Built-in Events
	Properties

	64 NJX:BUTTONITEM
	Example
	Built-in Events
	Properties

	65 NJX:BUTTONITEMLISTFIX
	Example
	Adapter Interface
	Built-in Events
	Properties

	66 NJX:BUTTONITEMFIX
	Example
	Built-in Events
	Properties

	67 NJX:FIELDLIST
	Example
	Adapter Interface
	Built-in Events
	Properties

	68 NJX:FIELDITEM
	Example
	Adapter Interface
	Built-in Events
	Properties

	69 NJX:FIELDVALUE
	Example
	Adapter Interface
	Built-in Events
	Properties

	70 NJX:NJXVARIABLE
	Example
	Properties

	71 NJX:EVENTDATA
	Example
	Adapter Interface

	72 Working with Grids
	73 Basics
	74 TEXTGRID2
	A Simple Example
	Adapter Interface
	Selecting Rows in a TEXTGRID2
	TEXTGRID2 Properties
	COLUMN Properties
	Dynamic Setting of Text Styles in TEXTGRID2

	75 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling
	Performance Considerations
	Example
	Adapter Interface
	Using Server-Side Scrolling
	Using Server-Side Sorting
	TEXTGRIDSSS2 Properties

	76 ROWTABLEAREA2 - The Flexible Control Grid
	Example
	Adapter Interface
	Built-in Events
	Making Grids Look like Grids
	ROWTABLEAREA2 Properties
	STR Properties

	77 FLEXLINE - Flexible Columns in Control Grids
	Example
	Adapter Interface
	FLEXLINE Properties

	78 MGDGRID - Managing the Grid
	Example
	Adapter Interface
	Built-in Events
	MGDGRID Properties
	ROWINSERT Properties
	ROWCOPY Properties
	ROWDELETE Properties

	79 Working with Trees
	80 TREENODE3 in Control Grid (ROWTABLEAREA2)
	Example
	Adapter Interface
	Built-in Events
	Properties

	81 CLIENTTREE
	Example
	Adapter Interface
	Built-in Events
	Properties

	82 Working with Menus
	83 Types of Menus
	84 MENU
	Example
	Adapter Interface
	Built-in Events
	Properties

	85 DLMENU
	Example
	Adapter Interface
	Built-in Events
	Properties

	86 Non-Visual Controls and Hot Keys
	87 TIMER
	Example
	Properties

	88 Extended Hot Key Management
	Direct Hot Key Definitions with Certain Controls
	Hot Key Definitions for Certain Controls

	89 Function Key Handling
	索引

