
Natural for Mainframes

Natural for Ajax

バージョン 4.2.5

October 2009

This document applies to Natural バージョン 4.2.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © Software AG 1979-2009. All rights reserved.

The name Software AG™, webMethods™, Adabas™, Natural™, ApplinX™, EntireX™ and/or all Software AG product names are
either trademarks or registered trademarks of Software AG and/or Software AG USA, Inc. Other company and product names mentioned
herein may be trademarks of their respective owners.

目次

1 Natural for Ajax ... 1
2 はじめに .. 3

What is a Rich Internet Application? ... 4
Rich Internet Applications with Natural ... 4
Mixed Applications .. 5

3 Installation ... 7
Prerequisites ... 8
License Key File Handling ... 11
Installing Natural for Ajax on JBoss Application Server ... 11
Installing Natural for Ajax on Sun Java System Application Server 14
Verifying the Installation .. 37

4 Setting Up Your Environment ... 19
Setting Up Application Designer ... 20
Setting Up Your Development Environment for Natural .. 20
Setting Up Your Runtime Environment for Natural .. 21

5 First Steps .. 25
6 About this Tutorial .. 27
7 Starting the Development Workplace ... 31
8 Creating a Project .. 33
9 Getting Started with the Layout Painter ... 35

Creating a New Layout .. 36
Elements of the Layout Painter Screen ... 38
Previewing the Layout ... 39
Viewing the XML Code .. 40

10 Writing the GUI Layout ... 43
Specifying the Properties for the Natural Page .. 44
Specifying a Name for the Title Bar ... 45
Using the Property Editor .. 46
Specifying a Name and Method for the Button ... 48
Adding the Input and Output Areas ... 48
Adding the Image .. 52
Adding a Horizontal Distance ... 52
Adding an Instructional Text ... 53
Adding a Vertical Distance .. 54
Saving Your Layout .. 54

11 Setting Up Your Development and Runtime Environment for Natural 57
12 Creating the Natural Code .. 59

Importing the Adapter into Natural .. 60
Creating the Main Program ... 61
Testing the Completed Application ... 64

13 Some Background Information ... 67
Name Binding between Controls and Adapter ... 68
Data Exchange at Runtime ... 68

iii

Files and their Locations .. 69
14 Developing the User Interface ... 71

Starting the Development Workplace .. 72
Creating an Application Designer Project ... 73
Creating a Natural Page ... 73
Specifying Properties for the Natural Page .. 74
Designing the Page ... 75
Binding Properties and Methods ... 75
Previewing the Layout ... 76
Viewing the Protocol .. 76
Saving the Layout ... 76
Generating the Adapter ... 76
Data Type Mapping .. 77

15 Developing the Application Code ... 79
Importing the Adapter ... 80
Creating the Main Program ... 82
Structure of the Main Program .. 84
Handling Page Events .. 84
Built-in Events and User-defined Events ... 85
Sending Events to the User Interface ... 85
Using Pop-Up Windows .. 86
Using Natural Maps ... 88
Navigating between Pages and Maps .. 88
Using Pages and Maps Alternatively ... 89
Starting a Natural Application from the Logon Page .. 90
Starting a Natural Application with a URL ... 90

16 Deploying the Application .. 91
Components of a Natural for Ajax Application ... 92
Unloading Natural Modules .. 92
Unloading the User Interface Components ... 92
Installing the Natural Modules .. 93
Installing the User Interface Components ... 93

17 Natural Parameters and System Variables .. 95
18 Multi Language Management ... 97
19 Support of Right-to-Left Languages .. 99
20 Server-Side Scrolling and Sorting .. 101

General Information ... 102
Variants of Server-Side Scrolling and Sorting .. 102
Controls that Support Server-Side Scrolling and Sorting 104
Data Structures for Server-Side Scrolling and Sorting ... 105
Server-Side Scrolling and Sorting in Trees ... 106
Events for Server-Side Scrolling and Sorting ... 107

21 Application Modernization ... 109
22 Overview of Conversion Steps .. 111
23 Map Extraction ... 113

Natural for Ajaxiv

Natural for Ajax

General Information ... 114
Using Natural for Ajax Tools .. 114
Using the Mass Function .. 114
Location of the Files .. 114

24 Map Conversion .. 117
General Information ... 118
First Steps ... 119
Using the Map Converter ... 121
Using the Editor Extension ... 124
Using the Conversion Rules Tool ... 125
Using the Conversion Logs Tool .. 126

25 Customizing the Map Conversion Process .. 129
Map Converter Processing ... 130
Conversion Rules .. 132
Templates .. 142
Tag Converters .. 145

26 Code Conversion ... 147
General Information ... 148
Generating Adapters .. 148
Structure of a Map-Based Application ... 148
Structure of a Natural for Ajax Application ... 149
Tasks of the Code Conversion .. 150
DEFINE DATA Statement .. 150
INPUT Statement ... 151
REINPUT Statement ... 152
PF-Key Event Handling .. 154
SET KEY Statement .. 155
Processing Rules ... 158
System Variables ... 158
Variable Names Containing Special Characters ... 159

27 Working with Controls .. 161
28 Some Common Rules for all Controls ... 165

Name and Text ID .. 166
Table, Row, Column, Control ... 166
Explicit Alignment ... 166
Binding to Adapter Parameters .. 167
Directly Influencing the Control Style ... 167
Dynamically Controlling the Visibility and the Display Status of Controls 168
Focus Management .. 168
Flushing of Inputs .. 169
Tab Sequence .. 169
Tooltips ... 171

29 BREADCRUMB ... 173
Example .. 174
Adapter Interface .. 174

vNatural for Ajax

Natural for Ajax

Built-in Events .. 174
Properties .. 175

30 BUTTON .. 177
Example: Simple Button ... 178
Example: Button with Image .. 179
Hiding and Disabling Buttons ... 179
Properties .. 179

31 BUTTONLIST .. 185
Adapter Interface .. 186
Properties .. 186

32 CHECKBOX ... 189
Properties .. 190

33 COMBODYN2 ... 195
Adapter Interface .. 196
Properties .. 196

34 COMBOFIX .. 201
COMBOFIX Properties ... 202
COMBOOPTION Properties .. 205

35 DATEINPUT .. 207
Example .. 208
Properties .. 208

36 DROPICON ... 215
Example .. 216
Properties .. 216

37 FIELD ... 221
Built-in Events .. 222
Properties .. 222

38 FILEUPLOAD/FILEUPLOAD2 ... 233
FILEUPLOAD ... 234
FILEUPLOAD2 ... 236
FILEUPLOAD Properties ... 237
FILEUPLOAD2 Properties ... 240

39 ICON .. 243
Example .. 244
Properties .. 244

40 ICONLIST .. 249
Adapter Interface .. 250
Built-in Events .. 250
Properties .. 250

41 IHTML ... 253
Properties .. 254

42 IMAGEOUT ... 257
Properties .. 258

43 LABEL .. 261
Example .. 263

Natural for Ajaxvi

Natural for Ajax

Aligning the Text .. 263
Properties .. 264

44 MENUBUTTON .. 269
Example .. 270
MENUBUTTON Properties .. 271
MENUITEM Properties .. 273

45 METHODLINK .. 275
Properties .. 276

46 MULTISELECT .. 279
Example .. 280
Adapter Interface .. 280
Properties .. 280

47 NEWSFEED ... 285
Example .. 287
Built-in Events .. 288
Properties .. 288

48 RADIOBUTTON .. 289
Properties .. 290

49 SCHEDULELINE ... 295
Properties .. 296

50 SLIDER ... 301
Example .. 302
Adapter Interface .. 303
Properties .. 303

51 STRIPSEL ... 309
Example .. 310
Properties .. 310

52 SUBPAGE ... 313
Properties .. 314

53 TABSEL .. 317
Adapter Interface .. 318
Built-in Events .. 319
Properties .. 319

54 TABSTRIP2 ... 321
Example .. 322
Adapter Interface .. 322
Built-in Events .. 322
Properties .. 323

55 TAGCLOUD ... 325
Example .. 326
Adapter Interface .. 327
Built-in Events .. 327
Properties .. 327

56 TEXT .. 331
Properties .. 332

viiNatural for Ajax

Natural for Ajax

57 TEXTOUT .. 337
Example .. 338
Properties .. 338

58 TOGGLE .. 345
Properties .. 346

59 ACTIVEX ... 351
Properties .. 352

60 GOOGLEMAP2 ... 355
Before You Start .. 356
Example .. 357
Typical Problems .. 358
Properties .. 359

61 NETMEETING ... 361
Example .. 362
Properties .. 362

62 SKYPECALL .. 365
Example .. 367
Properties .. 367

63 NJX:BUTTONITEMLIST .. 369
Example .. 371
Adapter Interface .. 371
Built-in Events .. 372
Properties .. 372

64 NJX:BUTTONITEM ... 373
Example .. 374
Built-in Events .. 374
Properties .. 375

65 NJX:BUTTONITEMLISTFIX .. 379
Example .. 380
Adapter Interface .. 380
Built-in Events .. 381
Properties .. 381

66 NJX:BUTTONITEMFIX .. 383
Example .. 384
Built-in Events .. 384
Properties .. 385

67 NJX:FIELDLIST .. 391
Example .. 393
Adapter Interface .. 394
Built-in Events .. 394
Properties .. 394

68 NJX:FIELDITEM .. 397
Example .. 399
Adapter Interface .. 400
Built-in Events .. 400

Natural for Ajaxviii

Natural for Ajax

Properties .. 400
69 NJX:FIELDVALUE ... 411

Example .. 413
Adapter Interface .. 413
Built-in Events .. 413
Properties .. 414

70 NJX:NJXVARIABLE ... 423
Example .. 424
Properties .. 424

71 NJX:EVENTDATA ... 425
Example .. 427
Adapter Interface .. 428

72 Working with Grids ... 429
73 Basics .. 431
74 TEXTGRID2 ... 433

A Simple Example .. 434
Adapter Interface .. 435
Selecting Rows in a TEXTGRID2 .. 435
TEXTGRID2 Properties .. 436
COLUMN Properties .. 442
Dynamic Setting of Text Styles in TEXTGRID2 .. 446

75 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling 447
Performance Considerations .. 448
Example .. 448
Adapter Interface .. 450
Using Server-Side Scrolling .. 450
Using Server-Side Sorting .. 451
TEXTGRIDSSS2 Properties ... 451

76 ROWTABLEAREA2 - The Flexible Control Grid .. 459
Example .. 460
Adapter Interface .. 462
Built-in Events .. 462
Making Grids Look like Grids .. 463
ROWTABLEAREA2 Properties .. 464
STR Properties .. 469

77 FLEXLINE - Flexible Columns in Control Grids ... 471
Example .. 472
Adapter Interface .. 473
FLEXLINE Properties ... 474

78 MGDGRID - Managing the Grid ... 475
Example .. 477
Adapter Interface .. 478
Built-in Events .. 479
MGDGRID Properties .. 479
ROWINSERT Properties .. 483

ixNatural for Ajax

Natural for Ajax

ROWCOPY Properties ... 484
ROWDELETE Properties .. 485

79 Working with Trees .. 487
80 TREENODE3 in Control Grid (ROWTABLEAREA2) .. 489

Example .. 490
Adapter Interface .. 491
Built-in Events .. 491
Properties .. 491

81 CLIENTTREE ... 497
Example .. 498
Adapter Interface .. 499
Built-in Events .. 499
Properties .. 499

82 Working with Menus ... 503
83 Types of Menus .. 505
84 MENU .. 507

Example .. 508
Adapter Interface .. 509
Built-in Events .. 509
Properties .. 510

85 DLMENU ... 513
Example .. 514
Adapter Interface .. 515
Built-in Events .. 515
Properties .. 516

86 Non-Visual Controls and Hot Keys ... 517
87 TIMER .. 519

Example .. 520
Properties .. 521

88 Extended Hot Key Management ... 523
Direct Hot Key Definitions with Certain Controls ... 524
Hot Key Definitions for Certain Controls .. 524

89 Function Key Handling ... 527
索引 ... 529

Natural for Ajaxx

Natural for Ajax

1 Natural for Ajax

This documentation is organized under the following headings:

Using Natural for Ajax

What is Natural for Ajax?Introduction

How to install Natural for Ajax on the supported
application servers.

Installation

How to set up Application Designer, your development
environment for Natural, and your runtime environment
for Natural.

Setting Up Your Environment

How to create a 「Hello World!」 application.First Steps

How to develop the user interface using Application
Designer.

Developing the User Interface

How to develop the application code using Natural
Studio or Natural for Eclipse.

Developing the Application
Code

How to unload and install the Natural modules and user
interface components.

Deploying the Application

Gives an overview of the Natural parameters and system
variables that are evaluated in Natural for Ajax
applications and sent to Application Designer.

Natural Parameters and System
Variables

Describes aspects to be considered for
internationalization.

Multi Language Management

Describes how Natural for Ajax supports right-to-left
languages and bidirectional text.

Support of Right-to-Left
Languages

Describes how Natural for Ajax supports the concept of
server-side scrolling and sorting.

Server-Side Scrolling and
Sorting

How to convert a character-based Natural application
to a Natural for Ajax application.

Application Modernization

1

Application Designer Reference (adapted to Natural for Ajax)

Shows you how to work with the elements that are
placed into containers - the controls.

Working with Controls

Explains what grids are and how to use them.Working with Grids

Explains the basic types of trees and how to use them.Working with Trees

Shows you how to arrange a number of functions in a
structured way.

Working with Menus

Describes how to develop controls that do not have
visual effects.

Non-Visual Controls and Hot
Keys

See also Configuring the Client in the Natural Web I/O Interface documentation. There, you will learn
how to

■ start a Natural application from the logon page or with a URL,
■ manage the configuration file for the session using the configuration tool,
■ modify the style sheet which controls the font, the color and the representation of the PF keys,
■ activate the preconfigured security settings of Natural for Ajax and to adapt them to your

requirements,
■ create your own trust files for a secure connection between the Natural Web I/O Interface server

and Natural for Ajax,
■ enable logging in the case of problems with Natural for Ajax.

Natural for Ajax2

Natural for Ajax

2 はじめに

■ What is a Rich Internet Application? .. 4
■ Rich Internet Applications with Natural .. 4
■ Mixed Applications .. 5

3

Using Natural for Ajax, you can create rich internet applications which use the Ajax (Asynchronous
JavaScript and XML) technology. This enables Natural users on Windows, UNIX and mainframe
platforms to develop and use Natural applications with a browser-based user interface, similar
to GUI desktop applications.

What is a Rich Internet Application?

Classical HTML- and browser-based applications suffer from known disadvantages. The server
responds to each user interaction with a new page. This may lead to long response times and new
rendering in the browser and thus to a discontinuous workflow for the user. The possibilities
offered by DHTML overcome these disadvantages, but they are complicated to use and make it
hard to build a comfortable user interface. The user interface is therefore often simpler and less
comfortable than users are accustomed to from their experience with desktop applications. Although
it is possible to provide complex controls and features like drag-and-drop, this is hard to implement
- especially if compatibility with all commonly used browsers is required. Classical GUI applications
also have the disadvantage that a client component of the application must be installed on each
client machine.

Rich internet applications that use the Ajax technology overcome these disadvantages by combining
the reachability of browser-based applications with the rich user interface of GUI applications.
Software AG provides support for the development of rich internet applications with Application
Designer. Natural for Ajax combines the user interface capabilities of Application Designer with
the application development capabilities of Natural.

Rich Internet Applications with Natural

At runtime, a rich internet application with Natural has the following structure:

■ A Natural host session on a Windows, UNIX or mainframe server runs the application code.
Other than with a map application, the application does not deal with user interface issues. It
contains only the application logic and communicates with the user interface layer by sending
and receiving data. The data is displayed in page in a web browser. Events - such as button
clicks - that the user raises in the web browser are passed back to the application code. Along
with an event, the application code receives also the data that the user modified in the web
browser. It processes the event and the data and returns modified data back to the web browser
page.

■ Natural for Ajax, which is running on an application server, merges the data received from the
Natural application into a DHTML page and delivers the page to the web browser. In the inverse
direction, Natural for Ajax forwards events that the user raised in the web browser along with
the modified data to the Natural application.

Natural for Ajax4

はじめに

■ A web browser renders the DHTML page. JavaScript code on the page processes local user
interaction and exchanges data with Natural for Ajax as needed. It uses Ajax technology to
exchange data with the Natural application in the background without having to re-render the
page as a whole.

At development time, a rich internet application is created with Natural in the following way:

■ Application Designer is used to develop the user interface layout of a web page and to bind the
controls on the page to data elements in the application. Application Designer is contained in
the Natural for Ajax module running on the application server.

■ When the user saves the page layout, a Natural module of type 「Adapter」 is generated. The
adapter serves as an interface between the application code and the page layout. It contains:
■ A data structure that describes the data that the Natural application has to deliver to the

application server in order to populate the web page.
■ The Natural code necessary to transfer the data structure to the user interface and to receive

modified data back.
■ A code skeleton, in the form of comment lines, that contains handlers for the expected events.

The application programmer can copy this code skeleton into the main program to implement
the event handlers.

■ Then a main program is implemented that exchanges data with the web page using the adapter
and handles the events. The event handler code has no knowledge of the web page layout, but
operates only on the page data that is sent and received through the adapter.

■ The navigation between different pages is implemented. A rich internet application navigates
between pages in the same way as a map application would navigate between maps.

Mixed Applications

With the support of Unicode, Natural has introduced the Natural Web I/O Interface which renders
Natural maps in a web browser. Typically, if you are running map-oriented applications and wish
to change them to rich internet applications, you will do this gradually. In certain parts of an
application, maps might be replaced by rich GUI pages, other parts will possibly be left unchanged.
Therefore, Natural supports running mixed applications which consist of both maps and rich GUI
pages. With maps, the application controls the page layout, and the rendering mechanism therefore
respects the layout information that the application provides. With rich GUI pages, the application
does not control the layout; the layout is controlled by Application Designer. However, for the
users of an application the switch between maps and rich GUI pages is seamless.

5Natural for Ajax

はじめに

6

3 Installation

■ Prerequisites .. 8
■ License Key File Handling ... 11
■ Installing Natural for Ajax on JBoss Application Server .. 11
■ Installing Natural for Ajax on Sun Java System Application Server ... 14
■ Verifying the Installation .. 37

7

Natural for Ajax consists of a J2EE enterprise application (njx12.ear) and a J2EE resource adapter
(njx12ra.rar). Both components are to be deployed on a J2EE server. Natural for Ajax receives data
from Natural applications running on a Windows, UNIX or mainframe host and delivers web
pages to the user's web browser.

This 章 describes the installation of Natural for Ajax on application servers on Windows or UNIX.
It does not describe the installation of the additionally required Natural components on a Windows,
UNIX or mainframe host, but refers to the corresponding installation documents.

For information on how to activate the preconfigured security settings of Natural for Ajax and
how to adapt them to your requirements, see Configuring Security in the Configuring the Client part
of the Natural Web I/O Interface documentation.

Prerequisites

The following topics are covered below:

■ Java
■ J2EE Server
■ Apache Ant
■ Natural for Mainframes
■ Natural for UNIX
■ Natural for Windows
■ Support for Special Features
■ Development Servers
■ Development Clients
■ Browser Prerequisites

Java

JDK 1.5.0_12 or above is required.

J2EE Server

The following application servers are supported. The application servers are not delivered with
Natural for Ajax. They can be obtained from the locations indicated below, according to their
respective license terms.

■ JBoss Application Server 4.0.5 and 4.2.2 (see http://www.jboss.org/).
■ Sun Java System Application Server 8.1, 8.2 and 9.1 (see http://www.sun.com/).

Natural for Ajax8

Installation

http://www.jboss.org/
http://www.sun.com/

Apache Ant

Apache Ant 1.6.5 or above is required to perform the deployment on JBoss Application Server.
This tool is freely available on http://ant.apache.org/.

Natural for Mainframes

If you want to use Natural for Ajax with Natural for Mainframes, the following must be installed:

■ Natural for Mainframes Version 4.2.3 or above, and
■ the Natural Web I/O Interface server.

For detailed information, see:

■ the Installation documentation which is provided with Natural for Mainframes;
■ the section Installing and Configuring the Natural Web I/O Interface Server in the version of the
Natural Web I/O Interface documentation which is provided for Natural for Mainframes.

Natural for UNIX

If you want to use Natural for Ajax with Natural for UNIX, the following must be installed:

■ Natural for UNIX Version 6.3.1 or above, and
■ the Natural Web I/O Interface daemon.

For detailed information, see:

■ the Installation documentation which is provided for Natural for UNIX;
■ the section Installing and Configuring the Natural Web I/O Interface Server in the version of the
Natural Web I/O Interface documentation which is provided for Natural for UNIX.

Natural for Windows

If you want to use Natural for Ajax with Natural for Windows, the following must be installed:

■ Natural for Windows Version 6.3.3 or above, and
■ the Natural Web I/O Interface server (which is implemented as a service).

For detailed information, see:

■ the Installation documentation which is provided for Natural for Windows;
■ the section Installing and Configuring the Natural Web I/O Interface Server in the version of the
Natural Web I/O Interface documentation which is provided for Natural for Windows.

9Natural for Ajax

Installation

http://ant.apache.org/

Support for Special Features

If you want to use the Natural parameters DC and DTFORM in a Natural for Ajax application, the
following versions are required:

■ Natural for Mainframes Version 4.2.5 or above,
■ Natural for UNIX Version 6.3.5 or above,
■ Natural for Windows Version 6.3.5 or above.

Development Servers

The following development servers support the remote development of Natural for Ajax
applications:

■ Natural Development Server for Mainframes Version 2.2.3 or above.
■ Natural Development Server for UNIX Version 2.2.3 or above.
■ Natural Development Server for Windows Version 2.2.4 or above.

Development Clients

The following development clients support the remote development of Natural for Ajax
applications:

■ Natural for Windows (Natural Studio) Version 6.3.1 or above.
■ Natural for Eclipse Version 3.2.1 or above.

Browser Prerequisites

Supported browsers in this version are:

■ Internet Explorer 6.0 through 7.0.
■ Mozilla Firefox 2.0. through 3.0.

重要: Cookies and JavaScript must be enabled in the browser.

Natural for Ajax10

Installation

License Key File Handling

A valid license key file is required during the installation. The license key file is an XML file which
is usually supplied along with the product. Alternatively, you can obtain a license key file from
Software AG via your local distributor.

Installing Natural for Ajax on JBoss Application Server

Only one version of the Natural Web I/O Interface client or one version of Natural for Ajax can
be installed on the same JBoss Application Server.

You can either install the Natural Web I/O Interface client or Natural for Ajax on the same JBoss
Application Server, not both.

It is assumed that <jboss> is the directory of your JBoss Application Server installation.

The following topics are covered below:

■ First-time Installation
■ Update Installation

First-time Installation

手順 3.1. To install Natural for Ajax

1 Install Apache Ant (you need Apache Ant to deploy Natural for Ajax to the JBoss Application
Server; see the Prerequisities above for the required version number):

1. Download and unzip Apache Ant (from http://ant.apache.org/) into an installation directory
of your choice. Avoid a directory name that contains blanks.

2. Let the environment variable ANT_HOME point to the directory <ant> (where <ant> is the
directory of your Ant installation).

3. Add <ant>/bin to your PATH environment variable.

2 Deploy Natural for Ajax to JBoss Application Server:

1. Copy the Natural for Ajax distributables to a directory on a disk drive.

11Natural for Ajax

Installation

http://ant.apache.org/

2. In the directory that contains the Natural for Ajax distributables, there is an Ant script
named jbossdeploy.xml. Edit this script and change the setting

<property name="jbosshome" value=""/>

to

<property name="jbosshome" value="<jboss>"/>

where <jboss> is your JBoss Application Server installation directory.

重要: Take care to use forward slashes (also on Windows) when specifying the
directory path.

3. Execute the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml

Wait for the message 「BUILD SUCCESSFUL」. This indicates that the deployment was
successful.

3 Copy the license file into the directory
<jboss>/server/default/deploy/njx12.ear/cisnatural.war/cis/licensekey.

4 Edit the file <jboss>/server/default/deploy/jbossjca-service.xml and change the setting

<!-- Enable connection close debug monitoring -->
<attribute name="Debug">true</attribute>

to

<!-- Enable connection close debug monitoring -->
<attribute name="Debug">false</attribute>

5 JBoss Application Server 4.0.5 only: Edit the file
<jboss>/server/default/deploy/njx12.ear/cisnatural.war/WEB-INF/web.xml and uncomment the
section

<!--
Uncomment the next lines, in case the configuration tool is installed on a JBOSS
4.0.5.GA
<listener>

<listener-class>org.apache.myfaces.webapp.StartupServletContextListener</listener-class>
</listener>
-->

Natural for Ajax12

Installation

so that it looks as follows:

<listener>

<listener-class>org.apache.myfaces.webapp.StartupServletContextListener</listener-class>
</listener>

重要: For JBoss Application Server 4.2, you must not remove this comment.

6 Start JBoss Application Server.

Update Installation

手順 3.2. To update Natural for Ajax

1 Shut down JBoss Application Server.

2 Deploy Natural for Ajax to JBoss Application Server:

1. Copy the Natural for Ajax distributables to a directory on a disk drive.

2. In the directory that contains the Natural for Ajax distributables, there is an Ant script
named jbossdeploy.xml. Edit this script and change the setting

<property name="jbosshome" value=""/>

to

<property name="jbosshome" value="<jboss>"/>

where <jboss> is your JBoss Application Server installation directory.

重要: Take care to use forward slashes (also on Windows) when specifying the
directory path.

3. In order to upgrade an existing Natural for Ajax 1.1.1 installation to version 1.2, execute
the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml upgrade

Wait for the message 「BUILD SUCCESSFUL」. This indicates that the deployment was
successful.

4. In order to update an existing Natural for Ajax 1.2.<n> installation to the newest update
package (1.2.<m>), execute the script jbossdeploy.xml by entering the following command:

ant -f jbossdeploy.xml redeploy

13Natural for Ajax

Installation

Wait for the message 「BUILD SUCCESSFUL」. This indicates that the deployment was
successful.

3 Make sure that the file <jboss>/server/default/deploy/jbossjca-service.xml contains the same
settings as described for a first-time installation.

4 JBoss Application Server 4.0.5 only: Make sure that the file
<jboss>/server/default/deploy/njx12.ear/cisnatural.war/WEB-INF/web.xml contains the same
settings as described for a first-time installation.

5 Regenerate the HTML pages of the projects that you have created with an earlier release of
Natural for Ajax. For each project to regenerate, execute the script jbossdeploy.xml by entering
the following command:

ant -f jbossdeploy.xml regenerate -Dnjxproj=<projectname>

Wait for the message 「BUILD SUCCESSFUL」. This indicates that the generation was
successful.

6 Start JBoss Application Server.

Installing Natural for Ajax on Sun Java System Application Server

Natural for Ajax is installed using the Adminstration Console of Sun Java System Application
Server.

The following is assumed:

■ <host> is the name of the machine on which the application server is installed.
■ <port> is the name of the port where the application server is installed. In a default installation,

this is port 8080.
■ <adminport> is the name of the port where the Adminstration Console is installed. In a default

installation, this is port 4848.
■ <sunas> is the path to the directory in which the application server is installed. In a default

installation on Windows, this is C:/Sun/AppServer.

The following topics are covered below:

■ First-time Installation

Natural for Ajax14

Installation

■ Update Installation

First-time Installation

手順 3.3. To install Natural for Ajax

1 Edit the file <sunas>/domains/domain1/config/server.policy and add the following settings:

// Allow Application Designer to create an own class loader
grant {
permission java.lang.RuntimePermission "createClassLoader";
};

// Allow Application Designer to modify its own project directories
grant {
permission java.io.FilePermission
"${com.sun.aas.instanceRoot}${/}applications${/}j2ee-apps${/}njx12${/}cisnatural_war${/}-",
"read,write,delete";
};

// Enable the Java Logging API
grant {
permission java.util.logging.LoggingPermission "control";
};

重要: If you do not enable the Java Logging API, the resource adapter will not start
and Natural for Ajax will therefore be inoperative.

2 Start the application server.

3 Open your web browser and enter the following URL:

http://<host>:<adminport>

This opens the Adminstration Console.

4 Deploy the resource adapter njx12ra.rar:

1. Open the tree node Applications > Connector Modules.

2. Choose Deploy.

3. Select njx12ra.rar as the package file to be uploaded to the application server.

4. Choose Next. "njx12ra" is automatically included as the application name.

5. Choose Finish.

5 Define the JNDI name for the resource adapter:

1. Open the tree node Resources> Connectors >Connector Connection Pools.

15Natural for Ajax

Installation

2. Choose New.

3. Enter "NatPool" (the name is arbitrary) as the name.

4. Select njx12ra as the resource adapter.

5. Each connection to a Natural host results in a new connection being made. Since each user
requires a unique host session, connection pooling cannot be used. Therefore, you should
make sure there are enough sessions for your users. The default maximum number is "32".

6. Choose Next.

7. Choose Next.

8. Choose Finish.

9. Open the tree node Resources> Connectors >Connector Resources.

10. Choose New.

11. Enter "eis/NaturalUnicodeRA" as the JNDI name.

12. Select NatPool (or whatever name you specified previously) as the pool name.

13. Choose OK.

6 Deploy the enterprise application njx12.ear:

1. Open the tree node Applications > Enterprise Applications.

2. Choose Deploy.

3. Select njx12.ear as the file to upload.

4. Choose Next.

5. Choose OK. The deployment may take several minutes.

7 Copy the license file into the directory <sunas>/domains/domain1/applications/j2ee-
apps/njx12/cisnatural_war/cis/licensekey (you have to create the directory if it does not yet exist).

8 Restart the application server.

Update Installation

手順 3.4. To update Natural for Ajax

1 Shut down the application server.

2 Create a backup copy of your sessions.xml file, which is located in
<sunas>/domains/domain1/applications/j2ee-apps/njx<nnn>/cisnatural_war/WEB-INF.

3 Create a backup copy of your license file, which is located in
<sunas>/domains/domain1/applications/j2ee-apps/njx<nnn>/cisnatural_war/cis/licensekey.

Natural for Ajax16

Installation

4 Create backup copies of previously created projects, which are located in
<sunas>/domains/domain1/applications/j2ee-apps/njx<nnn>/cisnatural_war.

5 Start the application server.

6 Start a web browser and enter the following URL:

http://<host>:<adminport>

This opens the Adminstration Console.

7 Undeploy the resource adapter njx<nnn>ra.rar.

8 Undeploy the enterprise application njx<nnn>.ear.

9 Deploy the new version of Natural for Ajax as in a first-time installation.

10 Shut down the application server.

11 Restore the files that you have backed up in steps 2, 3 and 4.

12 Start the application server.

13 Start a web browser and enter the following URL:

http://<host>:<port>/cisnatural

This opens the Application Designer development workplace.

14 In the Development Tools node of the navigation frame, choose Layout Manager.

15 For each application project that you have created with an earlier release of Natural for Ajax,
select the layout definitions and from the Operations on multiple Items menu, choose
(Re)Generate HTML Pages.

Verifying the Installation

It is assumed that http://<host>:<port> is the URL of your application server.

手順 3.5. To verify the installation

1 Enter the following URL in your web browser:

http://<host>:<port>/cisnatural

This opens the Application Designer development workplace.

2 Enter the following URL in your web browser:

http://<host>:<port>/cisnatural/servlet/StartCISPage?PAGEURL=/cisnatural/NatLogon.html

This opens the Natural logon page. The installation is now complete.

17Natural for Ajax

Installation

18

4 Setting Up Your Environment

■ Setting Up Application Designer ... 20
■ Setting Up Your Development Environment for Natural .. 20
■ Setting Up Your Runtime Environment for Natural .. 21

19

Before you start developing and executing Natural for Ajax applications, you have to make specific
definitions in your environment.

Setting Up Application Designer

Currently, there is nothing to configure for Natural pages.

Setting Up Your Development Environment for Natural

If you are practising remote development with Natural's Single Point of Development (SPoD), a
Natural Development Server must be installed and activated on the remote machine.

■ Mainframe
When your Natural Development Server is located on a mainframe, see the Natural Development
Server documentation.

■ UNIX
When your Natural Development Server is located on UNIX, see Activating the Natural
Development Server on UNIX in the Installation documentation which is provided with Natural
for UNIX.

■ Windows
When your Natural Development Server is located on Windows, the Web I/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural.
See the Installation documentation which is provided with Natural for Windows.

手順 4.1. To set up Natural Studio

1 Ask your administrator for the host name and the port number of the Natural Development
Server.

2 Connect to the Natural Development Server. See Accessing a Remote Development Environment
in the Remote Development Using SPoD documentation which is provided with Natural for
Windows.

3 It is recommended that you create a new Natural library for each Application Designer project.

手順 4.2. To set up Natural for Eclipse

1 Ask your administrator for the host name and the port number of the Natural Development
Server.

2 Create a new target in Natural for Eclipse, using this host name and port number. For further
information, see the Natural for Eclipse documentation.

Natural for Ajax20

Setting Up Your Environment

3 When creating a Natural project, assign this target in the project properties.

Setting Up Your Runtime Environment for Natural

The following must be installed on the remote machine where you are going to test and execute
the Natural code:

■ Mainframe
When your Natural Development Server is located on a mainframe, the Natural Web I/O Interface
server must be installed and started. For detailed information, see Installing and Configuring the
NaturalWeb I/O Interface Server in theNaturalWeb I/O Interfacedocumentation which is provided
for Natural for Mainframes.

■ UNIX
On UNIX, the Natural Web I/O Interface server is implemented as a daemon.

When your Natural Development Server is located on UNIX, the Natural Web I/O Interface
daemon must be installed and activated. For detailed information, see Installing and Configuring
the Natural Web I/O Interface Server in the Natural Web I/O Interface documentation which is
provided for Natural for UNIX.

■ Windows
On Windows, the Natural Web I/O Interface server is implemented as a service.

When your Natural Development Server is located on Windows, the Web I/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural
Runtime. See the Installation documentation which is provided with Natural for Windows.

See also Installing and Configuring the Natural Web I/O Interface Server in the Natural Web I/O
Interface documentation which is provided for Natural for Windows.

手順 4.3. To set up the runtime environment for Natural for Mainframes

1 Ask your administrator for the host name and the port number of the Natural Web I/O Interface
server.

2 Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

21Natural for Ajax

Setting Up Your Environment

3 Add a new session with the following settings:

DescriptionOption

Enter the name that is to be available for selection in the logon page.Session ID

The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Host name

The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number

4 In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name and port number) that match your environment. Remove the
dummy setting for the application (which is "script-name").

Then you will be able to execute the examples from the logon page.

5 Restart the application server.

手順 4.4. To set up the runtime environment for Natural for UNIX

1 Ask your administrator for the host name and the port number of the Natural Web I/O Interface
server and the name of the script that is used to start up Natural sessions. A sample shell
script for starting up Natural (nwo.sh) is delivered with Natural for UNIX; see also nwo.sh -
Shell Script for Starting Natural in the Natural Web I/O Interface documentation.

2 Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

3 Add a new session with the following settings:

DescriptionOption

Enter the name that is to be available for selection in the logon page.Session ID

The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Host name

The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number

The name of the script that is used to start up Natural sessions. Enter the value that you
have received from your administrator.

Application

4 In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This

Natural for Ajax22

Setting Up Your Environment

session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Edit this session and enter the settings (host name, port number and the name of the Natural
startup script) that match your environment. Then you will be able to execute the examples
from the logon page.

5 Restart the application server.

手順 4.5. To set up the runtime environment for Natural for Windows

1 Ask your administrator for the host name and the port number of the Natural Web I/O Interface
server and the name of the batch file that is used to start up Natural sessions. A sample batch
file for starting up Natural (nwo.bat) is delivered with Natural for Windows; see also Batch
File for Starting Natural in the Natural Web I/O Interface documentation.

2 Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Configuring the Client part of the Natural
Web I/O Interface documentation.

3 Add a new session with the following settings:

DescriptionOption

Enter the name that is to be available for selection in the logon page.Session ID

The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Host name

The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number

The name of the batch file that is used to start up Natural sessions. Enter the value that
you have received from your administrator.

Application

4 In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name, port number and the name of the Natural startup batch file)
that match your environment. Then you will be able to execute the examples from the logon
page.

5 Restart the application server.

23Natural for Ajax

Setting Up Your Environment

24

5 First Steps

This documentation is organized under the following headings:

About this Tutorial

Starting the Development Workplace

Creating a Project

Getting Started with the Layout Painter

Writing the GUI Layout

Setting Up Your Development and Runtime Environment for Natural

Creating the Natural Code

Some Background Information

It is important that you work through the exercises in the same sequence as they appear in this
tutorial. Problems may occur if you skip an exercise.

25

26

6 About this Tutorial

This tutorial provides an introduction to working with Natural for Ajax. It explains how to create
a 「Hello World!」 application. This covers all basic steps you have to perform when creating
pages with Natural for Ajax: you create a layout file, you create an adapter and a main program,
and you run the application.

When you have completed all steps of this tutorial, the page for your 「Hello World!」 application
will look as follows:

27

Your application will act in the following way: When you enter a name in the Your Name field
and choose the Say Hello button, the Result field displays "Hello World" and the name you have
entered.

To reach this goal, you will proceed as follows:

1. You will first create a new Application Designer project.

2. You will then use Application Designer's Layout Painter to create the following layout:

Natural for Ajax28

About this Tutorial

This corresponds to the following XML layout:

<?xml version="1.0" encoding="UTF-8"?>
<natpage natsource="HELLO-A">

<titlebar name="Hello World!">
</titlebar>
<header withdistance="false">

<button name="Say Hello" method="sayHello">
</button>

</header>
<pagebody>

<itr takefullwidth="true">
<hdist width="100%">
</hdist>
<icon image="../cisdemos/images/hello.gif">
</icon>

</itr>
<rowarea name="Input Area">

<itr>
<label name="Your name" width="100">
</label>
<field valueprop="name" width="200">
</field>

</itr>
</rowarea>
<rowarea name="Output Area">

<itr>

29Natural for Ajax

About this Tutorial

<label name="Result" width="100">
</label>
<field valueprop="result" width="200" displayonly="true">
</field>

</itr>
</rowarea>
<vdist pixelheight="100">
</vdist>
<itr>

<label name="Input your name and press the 'Say Hello'
button." asplaintext="true">

</label>
</itr>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</natpage>

3. When you save your layout for the first time, an intelligent HTML page and the Natural adapter
for this page are generated.

4. Before you can start coding, you have to make specific definitions in your development
environment (this tutorial assumes that you are using Natural Studio as your development
environment).

5. You will import the generated Natural adapter into your Natural library

6. You will then create the main program which will use the adapter to display the page and which
will handle the events that occur on the page, for example, when you choose the Say Hello
button of your application.

You can now proceed with your first exercise: Starting the Development Workplace.

Natural for Ajax30

About this Tutorial

7 Starting the Development Workplace

This tutorial assumes that you have installed Natural for Ajax as described in the Installation
section.

手順 7.1. To start the development workplace

1 Make sure that your application server is running.

2 Invoke your browser and start the development workplace with the following URL:

http://<host>:<port>/cisnatural

where <host> is the name of the machine on which your application server is installed and
<port> is the port number of your application server.

注意: If you have not defined another port number during installation, the default port
number is "8080".

The development workplace is now shown in your browser.

31

You can now proceed with the next exercise: Creating a Project.

Natural for Ajax32

Starting the Development Workplace

8 Creating a Project

In the Application Designer environment, layouts are structured in so-called application projects.
In the development workplace, you see the existing projects on the left. For each project, there is
a tree of layout definitions that you can display when you choose the button containing the project
name. For example:

For this tutorial, you will now create a project with the name "cisnatfirst".

33

手順 8.1. To create a project

1 Choose Tools & Documentation to display the list of development tools.

2 Choose Project Manager in the tree.

A list of existing application projects is now shown on the right.

3 Choose the New button which is located below the list of application projects.

The following is now shown:

4 Enter "cisnatfirst" as the name of your project and choose the Create button.

Your new project is now shown in the list of existing application projects on the right.

The left side, which shows buttons for all existing projects, now also shows a button for your
new project.

You can now proceed with the next exercise: Getting Started with the Layout Painter.

Natural for Ajax34

Creating a Project

9 Getting Started with the Layout Painter

■ Creating a New Layout ... 36
■ Elements of the Layout Painter Screen .. 38
■ Previewing the Layout .. 39
■ Viewing the XML Code ... 40

35

The Layout Painter, which can be accessed from the development workplace, is used to write the
page layout. This is an Application Designer application itself.

Creating a New Layout

You will now create a layout which is stored in the project you have previously created.

手順 9.1. To choose a layout template

1 Choose the button for the project cisnatfirst.

The list of layout nodes inside the tree will be empty at the beginning:

2 Choose New Layout... in the tree.

The following dialog appears.

Natural for Ajax36

Getting Started with the Layout Painter

3 Enter "helloworld.xml" in the Name field.

This is the name of your layout definition.

4 Select the Natural Page tab at the bottom of the dialog.

5 Select the template for the Natural page (when you move the mouse over this template, the
tool tip "Natural Page" appears).

The main screen of the Layout Painter appears:

37Natural for Ajax

Getting Started with the Layout Painter

注意: The file helloworld.xml is stored in the /xml directory of your project.

Elements of the Layout Painter Screen

The Layout Painter screen is divided into several areas:

■ Layout Area (left side)
This area consists of a layout tree and a properties area.

The layout tree contains the controls that represent the XML layout definition. You drag these
controls from the controls palette into the layout tree. Each node in the layout tree represents
an XML tag.

In the properties area below the layout tree, you specify the properties for the control which is
currently selected in the layout tree.

Natural for Ajax38

Getting Started with the Layout Painter

■ Preview Area (middle)
The preview area shows the HTML page which is created using the controls in the layout area.
This page is refreshed each time, you choose the preview button (see below).

■ Controls Palette (right side)
Each control is represented by an icon. A tool tip is also provided which appears when you
move the mouse pointer over the control. This tool tip also displays the XML tag which will be
used in the XML layout.

The palette is structured into sections, where each section represents a certain type of controls.

Previewing the Layout

The layout tree inside the Layout Painter already contains some nodes that were copied from the
template that you chose in the dialog in which you specified the name of the page. To see what
the page looks like, preview the layout as described below.

手順 9.2. To preview the layout

■ Choose the following button which is shown at the top of the Layout Painter.

The preview area is updated and you see the page. The page already contains a title bar, a
header containing an Exit button, the page body and a status bar.

39Natural for Ajax

Getting Started with the Layout Painter

The preview area is a sensitive area. When you select a control in the preview area (for example,
the title bar), this control is automatically selected in the layout tree.

Viewing the XML Code

When creating the layout, you can view the currently defined XML code.

手順 9.3. To view the XML code

■ From the Edit tab of the Layout Painter, choose XML.

A dialog box appears. At this stage of the tutorial, it contains the following XML layout
definition for the nodes which were copied from the template.

<natpage natsinglebyte="true"
xmlns:njx="http://www.softwareag.com/njx/njxMapConverter">

<titlebar name="New Natural Page">
</titlebar>
<header withdistance="false">

<button name="Exit" method="onExit">
</button>

</header>
<pagebody>

Natural for Ajax40

Getting Started with the Layout Painter

</pagebody>
<statusbar withdistance="false">
</statusbar>

</natpage>

You can now proceed with the next exercise: Writing the GUI Layout.

41Natural for Ajax

Getting Started with the Layout Painter

42

10 Writing the GUI Layout

■ Specifying the Properties for the Natural Page .. 44
■ Specifying a Name for the Title Bar ... 45
■ Using the Property Editor .. 46
■ Specifying a Name and Method for the Button ... 48
■ Adding the Input and Output Areas ... 48
■ Adding the Image .. 52
■ Adding a Horizontal Distance ... 52
■ Adding an Instructional Text ... 53
■ Adding a Vertical Distance .. 54
■ Saving Your Layout .. 54

43

You will now create the layout for your 「Hello World!」 application. When you have completed
all exercises in this 章, the layout should look as shown below and the XML code should be the
same as shown in the section About this Tutorial.

ヒント: Preview the layout and view the XML code each time you have completed an
exercise. If the system finds some wrong or missing definitions while generating the preview
page, there will be a corresponding message in the status bar. From the Home tab of the
Layout Painter, choose Protocol to get more information about these problems.

Specifying the Properties for the Natural Page

You will now specify the following for the Natural page:

■ Name for the Natural Adapter (natsource)
The value in the property natsource defines the name of the adapter. The adapter is a Natural
object that your application will use to communicate with the page. It will be generated when
you save the page layout.

If you do not specify a value for natsource, the name that you have specified for the layout
(without the extension ".xml") will be used as the name for the Natural adapter. If you want to
use the adapter in a development environment other than Natural for Eclipse, you must make
sure that the resulting name matches the naming conventions for Natural object names.

Natural for Ajax44

Writing the GUI Layout

■ Handling of Strings (natsinglebyte)
Using the property natsinglebyte, you can specify how the strings displayed on this page are
to be handled in the Natural application. Natural knows two types of strings: Unicode strings
(format U) and code page strings (format A). By default, the strings displayed in web pages are
mapped to Unicode strings in Natural. For this tutorial, you will specify that code page strings
are to be used. Therefore, you will set the property natsinglebyte to "true".

If you do not specify a value for natsinglebyte or when you set it to "false", Unicode strings
will be used.

手順 10.1. To specify the properties for the Natural page

1 In the layout tree, select the node natpage.

The properties for this control are now shown in the properties area at the bottom.

2 Specify the following properties:

ValueProperty

HELLO-Anatsource

truenatsinglebyte

Specifying a Name for the Title Bar

You will now specify the string "Hello World!" which is to appear in the title bar of your application.

手順 10.2. To specify the name for the title bar

1 In the layout tree, select the node titlebar (New Natural Page).

The properties for this control are now shown in the properties area at the bottom. You can
see the default entry "New Natural Page" for the name property.

2 Specify the following property:

ValueProperty

Hello World!name

When you click on the layout tree, the node in the layout tree changes to titlebar (Hello
World!).

注意: Properties that are left blank are not shown in the XML code.

45Natural for Ajax

Writing the GUI Layout

Using the Property Editor

You can also specify the property values using the Property Editor. In this case, you can access
detailed help information on each property.

手順 10.3. To use the Property Editor

1 Select the control in the layout tree for which you need help, for example, the titlebar (Hello
World!) node.

2 From the Edit tab of the Layout Painter, choose Property Editor.

The following dialog appears.

Natural for Ajax46

Writing the GUI Layout

The properties of the control are listed.

3 Click on the name of a property to display detailed information on this property. This
information is shown below the list of properties.

4 Choose the Finish button to close the dialog.

Any changes you have applied in the dialog will be saved.

47Natural for Ajax

Writing the GUI Layout

Specifying a Name and Method for the Button

You will now specify the string "Say Hello" which is to appear on the button. And you will specify
the name of the method that is to be invoked when the user chooses this button.

手順 10.4. To specify the name and the method for the button

1 In the layout tree, open the header node.

注意: By clicking the icon of a node, you hide or expand the node's subnodes.

You can now see the entry for the button with the default name "Exit".

2 Select the node button (Exit).

3 Specify the following properties:

ValueProperty

Say Helloname

sayHellomethod

The method needs to be programmed in the adapter. This will be explained later in this
tutorial.

Adding the Input and Output Areas

The input and output areas in this tutorial are created using Row Area controls. These controls
can be found in the Container section of the controls palette.

Each row area will contain an Independent Row control which in turn contains a Label and a
Field control. These controls can be found in the Controls section of the controls palette.

For adding controls to your layout, you drag them from the controls palette onto the corresponding
tree node in the layout tree. This is explained below.

手順 10.5. To create the input area

1 Open the Container section of the controls palette.

Natural for Ajax48

Writing the GUI Layout

When you move the mouse over a control, a tool tip appears which also displays the control
name which will be used in the XML layout. For example:

2 Drag the Row Area control from the controls palette onto the pagebody node in the layout
tree.

The row area is added as a subnode of the pagebody node. The new subnode is automatically
selected so that you can maintain the properties of the row area directly in the properties area.

3 Specify the following property:

ValueProperty

Input Areaname

4 Drag the Independent Row control from the controls palette onto the rowarea (Input Area)
node in the layout tree.

49Natural for Ajax

Writing the GUI Layout

When you drop information into the tree, the system will sometimes respond by offering a
context menu with certain options about where to place the control. In this case, the following
context menu appears.

注意: When you move the mouse outside the context menu, the context menu
disappears. The control is not inserted in this case.

5 Choose the Add as Subnode command.

The control is now inserted below the rowarea (Input Area) node. The new node is shown
as itr.

6 Open the Controls section of the controls palette.

7 Drag the Label control from the controls palette onto the itr node you have just inserted and
specify the following properties:

ValueProperty

Your Namename

100width

8 Drag the Field control from the controls palette onto the itr node you have just inserted.

A context menu appears and you have to specify where to place the control.

9 From the context menu, choose the Add as last Subnode command.

Natural for Ajax50

Writing the GUI Layout

10 Specify the following properties for the field:

ValueProperty

namevalueprop

200width

手順 10.6. To create the output area

■ Create the output area in the same way as the input area (add it as the last subnode of the
pagebody node), with the following exceptions:

Row Area

Specify a different value for the following property:

ValueProperty

Output Areaname

Label

Specify a different value for the following property:

ValueProperty

Resultname

Field

Specify different values for the following properties:

ValueProperty

resultvalueprop

truedisplayonly

注意: To display the displayonly property, choose the Appearance tab at the
bottom of the properties area. You can then select the required value from a drop-
down list box.

51Natural for Ajax

Writing the GUI Layout

Adding the Image

You will now add the image which is to be shown above the input area. To do so, you will use
the Icon control which can be found in the Controls section of the controls palette.

注意: The image is provided in Application Designer's /cisdemos/images directory.

手順 10.7. To add the image

1 Drag the Icon control from the controls palette onto the pagebody node in the layout tree.

The icon is added as the last subnode of the pagebody node. It is automatically placed into
an itr (independent row) node.

2 Specify the following property for the icon:

ValueProperty

../cisdemos/images/hello.gifimage

3 Select the itr node containing the icon and choose the following button below the layout tree:

The selected node is now moved up so that it appears as the first subnode of the pagebody
node.

4 Specify the following property for the itr node:

ValueProperty

truetakefullwidth

Adding a Horizontal Distance

When you preview the layout, you will see that the image you have just added appears centered.

You will now move the image to the right side of the page. To do so, you will use the Horizontal
Distance control which can be found in both the Controls section and the Container section of
the controls palette.

Natural for Ajax52

Writing the GUI Layout

手順 10.8. To add the horizontal distance

1 Drag the Horizontal Distance control from the controls palette onto the itr node containing
the icon.

2 From the resulting context menu, choose the Add as first Subnode command.

The node hdist is inserted into the tree.

3 Specify the following property:

ValueProperty

100%width

Adding an Instructional Text

You will now enter a text which is to appear below the output area and which tells the user what
to do.

To do so, you will once again use the Independent Row control into which you will insert a Label
control.

注意: The Independent Row control can be found in both the Controls section and the
Container section of the controls palette.

手順 10.9. To add the independent row with the label

1 Drag the Independent Row control from the controls palette onto the pagebody node in the
layout tree.

2 From the resulting context menu, choose the Add as last Subnode command.

The node itr is inserted into the tree.

3 Drag the Label control from the controls palette onto the itr node you have just created.

53Natural for Ajax

Writing the GUI Layout

4 Specify the following properties for the label:

ValueProperty

Input your name and press the 'Say Hello' button.name

trueasplaintext

注意: Go to the Appearance tab to display the property asplaintext.

Adding a Vertical Distance

When you preview the layout, you will see that the text you have just added appears directly
below the output area. You will now move the text 100 pixels to the bottom.

To do so, you will use the Vertical Distance control which can be found in both the Controls
section and the Container section of the controls palette.

手順 10.10. To add the vertical distance

1 Drag the Vertical Distance control from the controls palette onto the itr node containing the
label.

2 From the resulting context menu, choose the Add as preceding Node command.

The node vdist is inserted into the tree.

3 Specify the following property:

ValueProperties

100height

Saving Your Layout

If you have not already done so, you should now save your layout.

When you save a layout for the first time, an HTML file is generated (in addition to the XML file)
which is placed into the root directory of your application project. This HTML file is updated each
time you save the layout.

Natural for Ajax54

Writing the GUI Layout

The Natural adapter is also created when you save your layout for the first time. Later in this
tutorial, you will import this adapter into your Natural library. Your application program will use
the adapter to communicate with the page.

手順 10.11. To save the layout

■ Choose the following button which is shown at the top of the Layout Painter.

You can now proceed with the next exercise: Setting Up Your Development and Runtime
Environment for Natural.

55Natural for Ajax

Writing the GUI Layout

56

11 Setting Up Your Development and Runtime Environment

for Natural

Before you start coding, you have to make specific definitions in your Natural environment.

手順 11.1. To set up your Natural environment

■ Set up your Natural development and runtime environment for the required platform as
described in Setting Up Your Environment previously in this documentation.

This tutorial assumes that you use Natural Studio as your development environment.

Make sure to use the names mentioned below.

■ Development Environment
Create a new Natural library with the name CISHELLO.

■ Runtime Environment
When you add the new entry to the configuration file, specify "Execute samples" as the
session name:

<session id="Execute samples" trace="false">

"Execute samples" is the entry that will later be available for selection in the logon page.

You can now proceed with the next exercise: Creating the Natural Code.

57

58

12 Creating the Natural Code

■ Importing the Adapter into Natural .. 60
■ Creating the Main Program ... 61
■ Testing the Completed Application .. 64

59

Importing the Adapter into Natural

You will now import the generated adapter into Natural to make it available to your application.

When you saved your page layout, Application Designer created the Natural adapter HELLO-A for
your page. This is the name that you have specified earlier in this tutorial. Your application program
will use the adapter to communicate with the page. The adapter has been generated into the
following directory:

<installdir>/cisnatfirst/nat

注意: The location of <installdir> depends on your application server environment.

手順 12.1. To import the adapter

1 Import the adapter source into the Natural library CISHELLO which you have created earlier
in this tutorial. To do so, use either drag-and-drop or the import function of the SYSMAIN
utility.

The adapter looks as follows:

* PAGE1: PROTOTYPE --- CREATED BY Application Designer --- /*<RO>>
* PROCESS PAGE USING 'XXXXXXXX' WITH
* NAME RESULT
DEFINE DATA PARAMETER
1 NAME (U) DYNAMIC
1 RESULT (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/cisnatfirst/helloworld' WITH
PARAMETERS
NAME U'name'
VALUE NAME

NAME U'result'
VALUE RESULT

END-PARAMETERS
*
* TODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U'nat:page.end'
* /* Page closed.
* IGNORE
* VALUE U'sayHello'
* /* TODO: Implement event code.
* PROCESS PAGE UPDATE FULL

Natural for Ajax60

Creating the Natural Code

* NONE VALUE
* /* Unhandled events.
* PROCESS PAGE UPDATE
* END-DECIDE
/*/*) END-HANDLER
*
END /*<<RO>

2 Stow the adapter.

Creating the Main Program

You will now create the main program which uses the adapter to display the page and which
handles its events. The name of the program will be HELLO-P and you will store it in the library
CISHELLO.

This description assumes that you are working with Natural Studio.

手順 12.2. To create the main program

1 Make sure that the library CISHELLO is selected.

2 From the Object menu, choose New > Program.

3 Enter a DEFINE DATA statement:

DEFINE DATA LOCAL
END-DEFINE

4 Import the adapter interface into the DEFINE DATA statement:

1. Place the cursor in END-DEFINE.

2. From the Program menu, choose Import.

3. In the resulting dialog box, select the Adapter option button.

4. Select the object HELLO-A.

5. Select all importable data fields.

6. Choose the Import button.

61Natural for Ajax

Creating the Natural Code

The result is your completed DEFINE DATA statement:

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE

5 Enter the PROCESS PAGE statement. The statement uses the page adapter to display the page
in the web browser and to pass data to the controls on the page:

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT

6 Initialize the page data. In the page layout definition, the property name has been bound to
the FIELD control with the label Your Name. For the property name, a parameter NAME has
been generated into the parameter data area of the adapter. Thus, in order to preset the FIELD
control, we will preset the variable NAME with the value "Application Designer".

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := 'Application Designer'
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT

7 Handle the events that can occur on the page. A template for the event handler code has been
generated as a comment block into the page adapter HELLO-A. List the adapter HELLO-A and
copy this comment block into your main program and terminate the program with an END
statement:

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := 'Application Designer'
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT

VALUE 'nat:page.end'

Natural for Ajax62

Creating the Natural Code

/* Page closed.
IGNORE

VALUE 'sayHello'
/* TODO: Implement event code.

PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.

PROCESS PAGE UPDATE
END-DECIDE
*
END

After the page has been displayed, the user raises events on the page by using the controls.
The name of the raised event is then contained in the system variable *PAGE-EVENT. Depending
on the event, the program modifies the page data, resends it to browser with a PROCESS PAGE
UPDATE FULL statement and waits for the next event to occur.

The predefined event nat:page.end is raised when the user closes the page. The event sayHello
is raised when the user chooses the Say Hello button. Previously in this tutorial, you have
bound the event sayHello to this button while designing the page. The NONE VALUE block
should always be defined as above. It contains the default handling of all events that are not
handled explicitly.

8 When the event sayHello occurs, we want to display a greeting in the FIELD control with
the label Result. Therefore, we modify the variable RESULT (which is bound to the
corresponding FIELD control in the page layout) accordingly before we resend the page data.

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := 'Application Designer'
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT

VALUE 'nat:page.end'
/* Page closed.

IGNORE
VALUE 'sayHello'
/* TODO: Implement event code.

COMPRESS 'Hello, ' NAME '!' TO RESULT
PROCESS PAGE UPDATE FULL

NONE VALUE
/* Unhandled events.

PROCESS PAGE UPDATE
END-DECIDE
*
END

63Natural for Ajax

Creating the Natural Code

The main program is now complete.

If you have not yet saved the program, save or stow it now with the name "HELLO-P".

9 Catalog all modules in the library CISHELLO.

Testing the Completed Application

You will now run the application in your web browser and check whether it provides the desired
result.

The generated HTML file helloworld.html (which is updated each time you save your layout) can
be found within the root of your application project, that is in <installdir>/cisnatfirst.

This HTML page has some prerequisites concerning the browser workplace in which it is running.
Therefore, it is per se not usable as a directly accessible page but needs to be embedded into a
frame providing a defined set of functions.

It is necessary to logon to Natural before starting an application. Therefore, Natural applications
are started using a logon page.

手順 12.3. To test the application

1 Enter the following URL inside your browser:

http://localhost:8080/cisnatural/servlet/StartCISPage?PAGEURL=/cisnatural/NatLogon.html

The logon page should now appear.

Natural for Ajax64

Creating the Natural Code

If the logon page is not displayed, check the following:

■ URLs are case-sensitive. Double-check your input.
■ Check whether the file NatLogon.html is available in the directory cisnatural.

2 On the logon page, select the entry Execute samples from the Session ID drop-down list box.
You have prepared this entry earlier in this tutorial when you have set up the runtime
environment.

3 Provide your user ID and password valid for the machine on which the Natural application
will be running.

4 In the Natural parameters text box, enter the Natural command line which is necessary to
start your application:

STACK=(LOGON CISHELLO;HELLO-P;FIN)

5 Choose the Connect button.

Your application should be started now.

6 Enter your name and choose the Say Hello button.

65Natural for Ajax

Creating the Natural Code

The page should now successfully 「talk」 to your adapter.

You have now completed this tutorial. See the remaining section of these First Steps for some
background information.

Natural for Ajax66

Creating the Natural Code

13 Some Background Information

■ Name Binding between Controls and Adapter ... 68
■ Data Exchange at Runtime .. 68
■ Files and their Locations ... 69

67

Name Binding between Controls and Adapter

Which are the critical parts when building the 「Hello World!」 application?

■ The NATPAGE control in the layout points to the name of the adapter object (property
natsource).

■ The FIELD control in the layout points to the property name of the adapter (property valueprop).
■ The BUTTON control in the layout points to the event sayHello() of the adapter (property
method).

There is a name binding between the layout definition and its corresponding adapter. This is the
simple and effective approach of the Application Designer's development process: The adapter
represents a logical abstraction of what the page displays. All layout definitions are kept in the
page - all the logic is kept in the adapter. (Or better: behind the adapter. The adapter itself should
only be a facade to the 「real」 application logic.)

Data Exchange at Runtime

What happens at runtime?

■ When the user starts a Natural session from the logon page, the Natural program that the user
specified in the command line is started.

■ The Natural program executes a PROCESS PAGE statement, using an adapter.
■ The PROCESS PAGE statement passes the name of the HTML page to be used and the initial page

data to the browser.
■ The browser displays the page. JavaScript code on the page distributes the initial data to the

controls.
■ The user provides some input, for example, enters the name. The content change is stored inside

the page. The Natural program is not yet involved.
■ The user does something which causes a flush of the changes (for example, the user chooses a

button). Therefore, all registered data changes are packaged and are sent through the adapter
to the Natural program, including the information which event has been raised.

■ The Natural program receives the modified data.
■ The system variable *PAGE-EVENT receives the name of the raised event.
■ The event handler in the Natural program modifies the data and resends it to the page using a
PROCESS PAGE UPDATE statement.

■ And so forth.

Natural for Ajax68

Some Background Information

With a standard HTTP connection, only the changed content of the screen is passed when operating
on one page. The layout is kept stable in the browser. Consequently, there is no flickering of the
page due to page reloading.

All steps described in the list above are done completely transparent to your adapter; i.e. you do
not have to cope with session management, stream parsing, error management, building up HTML
on the server, etc. You just have to provide an intelligent HTML page by defining it in the Layout
Painter and an adapter object.

Files and their Locations

Have a look at the files created for your 「Hello World!」 application and take notice of the
directory in which they are located.

All files are located in the directory <installdir>/cisnatural/cisnatfirst. The <installdir>/cisnatural
directory is the directory of the web application instance. The <installdir>/cisnatural/cisnatfirst
directory is the directory that has been created for your new project.

■ The XML layout definition is kept in the <installdir>/cisnatural/cisnatfirst/xml directory.
■ The generated HTML page is kept directly in the project directory. There are also some other

files inside this directory that start with "ZZZZ". These files are temporary files used when
previewing pages inside the Layout Painter.

■ The generated Natural adapters are kept in the directory <installdir>/cisnatural/cisnatfirst/nat.
■ In the directory <installdir>/cisnatural/cisnatfirst/accesspath, 「access restriction」 files are

generated. If you view these files inside a normal text editor (such as Notepad), you see that
one file is maintained for each page; it holds the information about which properties are accessed
by the page.

69Natural for Ajax

Some Background Information

70

14 Developing the User Interface

■ Starting the Development Workplace ... 72
■ Creating an Application Designer Project ... 73
■ Creating a Natural Page ... 73
■ Specifying Properties for the Natural Page ... 74
■ Designing the Page ... 75
■ Binding Properties and Methods ... 75
■ Previewing the Layout .. 76
■ Viewing the Protocol .. 76
■ Saving the Layout .. 76
■ Generating the Adapter .. 76
■ Data Type Mapping .. 77

71

In the First Steps tutorial, you have developed a small rich internet program step by step. In this
tutorial, you have already performed most of the steps required to develop a rich internet
application.

The general procedure to develop a rich internet application with Natural for Ajax is as follows:

1. Use Application Designer to design the web pages that form the user interface of your
application.

2. Generate a Natural adapter for each page (by saving the page). The adapter is a Natural object
that forms the interface between the application code and the web page.

3. Use one of the Natural tools (Natural Studio or Natural for Eclipse) to write the Natural
application programs that contain the business logic and use adapters to exchange data with
the web pages.

In this 章, the first two steps (design and adapter) are explained in more detail. Step 3 (business
logic) is described in the section Developing the Application Codewhich also addresses advanced
topics that are not covered in the tutorial.

For detailed information on how to use the Application Designer development workplace, see
Development Tools in the Application Designer documentation. The latest version of the Application
Designer documentation is available at
http://documentation.softwareag.com/webmethods/cit_reroute.htm. The information which is
provided below describes the most important differences which pertain to Natural for Ajax.

Starting the Development Workplace

The Application Designer development workplace is the central point for starting tools for layout
development.

手順 14.1. To start the development workplace

1 Make sure that your application server is running.

2 Invoke your browser and start the development workplace with the following URL:

http://<host>:<port>/cisnatural

where <host> is the name of the machine on which your application server is installed and
<port> is the port number of your application server.

注意: If you have not defined another port number during installation, the default port
number is "8080".

Natural for Ajax72

Developing the User Interface

http://documentation.softwareag.com/webmethods/cit_reroute.htm

Creating an Application Designer Project

First you create an Application Designer project using the Project Manager. The project contains
the layouts of the web pages you design, the files that are generated from the layouts and are
required to run your application and additional files that make your application multi language
capable and supply help information. See also Creating a Project in the tutorial.

注意: Detailed information on the Project Manager is provided in the Application Designer
documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

All files in your Application Designer project are stored in one directory on the application server
where Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server:

■ JBoss Application Server
<installdir>/server/default/deploy/njx<nnn>.ear/cisnatural.war

■ Sun Java System Application Server
<installdir>/domains/domain1/applications/j2ee-apps/njx<nnn>.ear/cisnatural_war

where <installdir> is the directory in which your application server is installed and <nnn> is the
current Natural for Ajax version.

Creating a Natural Page

In order to create the layout of your web pages, you use Application Designer's Layout Painter.

注意: Detailed information on the Layout Painter is provided in the Application Designer
documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Add a page layout to your project as described in Creating a New Layout in the tutorial (select
the template for the Natural page).

注意: More detailed information on creating a layout is provided in the Application Designer
documentation at http://documentation.softwareag.com/webmethods/cit_reroute.htm.

73Natural for Ajax

Developing the User Interface

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Specifying Properties for the Natural Page

In order to specify generation options for the new page, you specify values for certain properties
that are specific for Natural pages.

To define properties, you select the node natpage in the layout tree of the Layout Painter. The
properties for this control are then shown in the properties area at the bottom. When you select
the Natural tab in the properties area, you can see the Natural-specific properties.

The following properties are available for the Natural page:

DescriptionProperty

Specifies a name for the Natural adapter object that will later be generated from your
page layout. During adapter generation, this name is checked to match the Natural naming

natsource

conventions for objects. If you do not specify a name here, the adapter name is taken
from the layout name. This might result in names that are not valid for Natural objects.
These adapters can only be used in Natural for Eclipse.

Specifies whether string properties of the page are to be mapped to Unicode strings (U)
or code page strings (A) in Natural. The value "true" means code page strings. The value
"false" means Unicode strings (default).

natsinglebyte

Properties of controls used in the page might have a recursive structure. These structures
are mapped to multi-dimensional arrays in the Natural adapter. Natural arrays are limited

natrecursion

to three dimensions. Therefore, the recursion depth of these structures can be limited
using this property.

Specifies the character that is to be used as the decimal character in the format
specifications of variables with decimal format in the parameter data area of the Natural

natdc

adapter. For example, if a comma (,) is specified, "(N7,2)" is generated. If a period (.) is
specified, "(N7.2)" is generated. The default is the period (.).

The controls ROWTABLEAREA2 and MGDGRID support server-side scrolling and
sorting. The corresponding data structures are generated into the parameter data area of

natsss

the Natural adapter only if this attribute has been set to true. The default is false. This is
for compatibility with earlier versions.

For the control TEXTGRIDSSS2, the server-side scrolling data structures are always
generated.

Internal use only. Do not modify this.xmlns:njx

Natural for Ajax74

Developing the User Interface

Designing the Page

Design your Natural page by dragging controls and containers from the controls palette onto the
corresponding node in the layout tree or to the HTML preview. This has already been explained
in the section Writing the GUI Layout of the tutorial.

注意: More detailed information on defining the layout is provided in the Application
Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Binding Properties and Methods

Many of the controls you use on your page have properties that can be controlled by the application.
Also the controls can raise events that your application may wish to handle. The next step is
therefore assigning identifiers to each of these properties and events under which your application
can later address them. This procedure is called 「binding」.

To get an overview which properties and events are bindable to application variables and events,
it is a good idea to select a control in the layout tree and open the Event Editor as described in the
Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

The Event Editor displays only those properties of controls that can be bound to application
variables and events. It indicates also which properties must be bound mandatorily. The usage
and meaning of each of the properties and events is described for each control in the following
sections of this Natural for Ajax documentation:

■ Working with Controls
■ Working with Grids
■ Working with Trees
■ Working with Menus
■ Non-Visual Controls and Hot Keys

As an example for property and event binding, see the following sections in the First Steps tutorial:

■ Using the Property Editor
■ Specifying a Name and Method for the Button

75Natural for Ajax

Developing the User Interface

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

Previewing the Layout

To find out how the current layout definitions are rendered on the page, preview the layout as
described in the Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Viewing the Protocol

The protocol contains warnings and error messages that might occur while you design and preview
your page. For further information, see the Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

Saving the Layout

Save the page layout as described in Saving Your Layout in the tutorial.

Other than with Java adapters (which are described in the Application Designer documentation),
you do not use the Code Assistant (which is part of the Layout Painter) to generate adapter code
interactively. For Natural pages the adapter code is generated completely from the page properties
and the property and event bindings that you specified previously. An adapter is generated
automatically when you save the layout for the first time. It is updated each time you save the
layout.

Generating the Adapter

When you save the layout, a Natural adapter is generated according to the following rules:

The adapter is generated into the subdirectory nat of your project directory.Location

The name of the project directory corresponds to the project name. The location of the directory
depends on the application server. See Creating an Application Designer Project.

The name of the adapter is determined by the properties you have set. See Specifying
Properties for the Natural Page.

Name

For each control property that has been bound to an identifier (as described in Binding
Properties and Methods) a parameter in the parameter data area of the adapter is

Property
identifiers

generated.The identifier is therefore validated against the Natural naming conventions for
user-defined variables and translated to upper-case. If an identifier does not comply to these

Natural for Ajax76

Developing the User Interface

http://documentation.softwareag.com/webmethods/cit_reroute.htm
http://documentation.softwareag.com/webmethods/cit_reroute.htm

rules, a warning is generated into the protocol and as a comment into the adapter code.
Additionally, the name must comply to the naming conventions for XML entities. This means
especially that the name must start with a character.

To achieve uniqueness within 32 characters, the last four characters are (if necessary) replaced
by an underscore, followed by a three-digit number.

For each event that can be raised by a control on the page, an event handler skeleton is
generated as a comment into the adapter.

Event
identifiers

注意: Some controls raise events whose names are dynamically constructed at runtime. For
these events, no handler skeleton can be generated. The control reference contains information
about these additional events.

The event identifiers are not validated.

Data Type Mapping

Several Application Designer controls have properties for which a data type can be specified. An
example is the FIELD control. It has a valueprop property which can be restricted to a certain data
type. The data type is used at runtime to validate user input. At generation time (that is, when a
Natural adapter is generated for the page), the data type determines the Natural data format of
the corresponding adapter parameter.

The following table lists the data types used in Application Designer and the corresponding Natural
data formats.

NaturalApplication Designer

A or U (depending on the NATPAGE property natsinglebyte). The string must contain
an RGB value, for instance "#FF0000" for the color red.

color

D (YYYYMMDD)date

F4float

I4int

P19long

T (HHIISS)time

T (YYYYMMDDHHIISST)timestamp

Nn.nN n.n

Pn.nP n.n

A or U dynamic (depending on the NATPAGE property natsinglebyte).string (default)

An or Un (depending on the NATPAGE property natsinglebyte).string n

F8xs:double

I1xs:byte

77Natural for Ajax

Developing the User Interface

NaturalApplication Designer

I2xs:short

Natural for Ajax78

Developing the User Interface

15 Developing the Application Code

■ Importing the Adapter ... 80
■ Creating the Main Program ... 82
■ Structure of the Main Program ... 84
■ Handling Page Events .. 84
■ Built-in Events and User-defined Events .. 85
■ Sending Events to the User Interface .. 85
■ Using Pop-Up Windows .. 86
■ Using Natural Maps ... 88
■ Navigating between Pages and Maps .. 88
■ Using Pages and Maps Alternatively ... 89
■ Starting a Natural Application from the Logon Page .. 90
■ Starting a Natural Application with a URL ... 90

79

Natural for Ajax Tools, which is an optional plug-in for Natural Studio, allows you to use some
of the Natural for Ajax functionality which is described in this 章 directly from within Natural
Studio. For further information, see Natural for Ajax Tools in the Natural Studio Extensions
documentation which is provided for Natural for Windows.

Importing the Adapter

After having generated the adapter, the next step is making it available to your Natural development
project.

As described previously, the adapter code is generated into a directory in your application server
environment. The way you access the adapter depends on the Natural development tool you use.

The following topics are covered below:

■ Importing the Adapter Using Natural Studio
■ Importing the Adapter Using Natural for Eclipse

Importing the Adapter Using Natural Studio

It is assumed that your development library is located on a Natural development server and that
you have mapped this development server in Natural Studio.

手順 15.1. To import the adapter from a remote environment

■ Use drag-and-drop.

または:

Remote UNIX environment only: Use the import function of SYSMAIN.

Importing the Adapter Using Natural for Eclipse

It is assumed that you have

■ installed Natural for Eclipse,
■ installed Application Designer's Eclipse plug-in,
■ created a Natural project in Eclipse,
■ established a target for the Natural project (a Natural development server).

Natural for Ajax80

Developing the Application Code

The Navigator view will then look similar to the following:

手順 15.2. To import the adapter from a remote environment

1 Proceed as described below to create the Page Layouts folder in your Natural project. This is
the folder where you edit your page layouts with Application Designer.

1. Invoke the Properties dialog for your Natural project.

2. Set the Application Designer properties as follows:

DescriptionOption

Specify the application server directory in which the page layouts of your
project are stored.

Layout Folder

Specify host name and port number of your application server.Web Server Connection

Specify "cisnatural".Web Application

2 Proceed as described below to create an additional folder in your Natural project. This is the
folder in which the generated adapters are located.

1. Select your Natural project, invoke the context menu and choose New > Natural Folder.

2. Expand the resulting dialog by choosing the Advanced button.

3. Specify a folder name of your choice (for example, "Adapters").

4. Enable the Link to folder in the file system check box and specify the application server
directory in which the generated adapters of your project are stored.

Now you have access to your page layouts and adapters in your Natural project.

3 Copy or move the generated adapter from the new folder you have just created into your
Natural source folder.

81Natural for Ajax

Developing the Application Code

The Navigator view should now look similar to the following (with the new folders for the
page layouts and adapters, and with your adapter in the Natural source folder).

4 Catalog or stow the adapter in the Natural source folder. To do so, you have to upload and
compile the adapter with Natural for Eclipse.

Creating the Main Program

After you have imported the adapter, you create a program that calls the adapter to display the
page and handles the events that the user raises on the page. This program can be a Natural
program, subprogram, subroutine or function. We use a Natural program as example.

The adapter already contains the data structure that is required to fill the page. It contains also a
skeleton with the necessary event handlers. You can therefore create a program with event handlers
from an adapter in a few steps.

Open or list the adapter in the development tool of your choice (Natural Studio or Natural for
Eclipse).

* PAGE1: PROTOTYPE --- CREATED BY Application Designer ---
* PROCESS PAGE USING 'XXXXXXXX' WITH
* FIELD1 FIELD2
DEFINE DATA PARAMETER
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/MyProject/mypage' WITH
PARAMETERS
NAME U'field1'
VALUE FIELD1

NAME U'field2'
VALUE FIELD2

END-PARAMETERS
*
* TODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U'nat:page.end'
* /* Page closed.
* IGNORE
* VALUE U'onExit'
* /* TODO: Implement event code.

Natural for Ajax82

Developing the Application Code

* PROCESS PAGE UPDATE FULL
* NONE VALUE
* /* Unhandled events.
* PROCESS PAGE UPDATE
* END-DECIDE
/*/*) END-HANDLER
*
END

Create a new program, copy the adapter source into the program and then proceed as follows:

■ Remove the comment lines in the header.
■ Change DEFINE DATA PARAMETER into DEFINE DATA LOCAL.
■ Replace the PROCESS PAGE statement with a PROCESS PAGE USING operand4 statement, where
operand4 stands for the name of your adapter.

■ Remove the comment lines that surround the DECIDE block.
■ Uncomment the DECIDE block.

Your program should now look as follows:

DEFINE DATA LOCAL
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end'
/* Page closed.
IGNORE

VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*
END

Stow the program with a name of your choice. The resulting program can be executed in a browser
where it displays the page. However, it does not yet do anything useful, because it handles the
incoming events only in a default way and contains no real application logic.

83Natural for Ajax

Developing the Application Code

Structure of the Main Program

The main program that displays the page and handles its events has the following general structure:

■ A PROCESS PAGE USING statement with the page adapter. The PROCESS PAGE statement displays
the page in the user's web browser and fills it with data. Then, it waits for the user to modify
the data and to raise an event.

■ A DECIDE block with a VALUE clause for each event that shall be explictly handled.
■ A default event handler for all events that shall not be explicitly handled.

Each event handler does the following:

■ It processes the data the has been returned from the page in the user's web browser.
■ It performs a PROCESS PAGE UPDATE FULL statement to re-execute the previous PROCESS PAGE
USING statement with the modified data and to wait for the next event.

The default event handler does not modify the data. It does the following:

■ It performs a PROCESS PAGE UPDATE statement to re-execute the previous PROCESS PAGE USING
statement and to wait for the next event.

Handling Page Events

When the PROCESS PAGE statement receives an event, the data structure that was passed to the
adapter is filled with the modified data from the page and the system variable *PAGE-EVENT is
filled with the name of the event. Now, the corresponding VALUE clause in the DECIDE statement
is met and the code in the clause is executed.

The application handles the event by processing and modifying the data and resending it to the
page with a PROCESS PAGE UPDATE FULL statement. Alternatively, it uses the PROCESS PAGE UPDATE
statement without the FULL clause in order to resend the original (not modified) data.

Natural for Ajax84

Developing the Application Code

Built-in Events and User-defined Events

There are built-in events and user-defined events.

Built-in Events

The following built-in events can be received from the page:

nat:page.end
This event is raised when the user closes the page with the Close button in the upper right
corner of the page, opens another page or closes the web browser.

nat:page.default
This event is sent if the Natural for Ajax client needs to synchronize the data displayed on the
page with the data held in the application. It is usually handled in the default event handler
and just responded with a PROCESS PAGE UPDATE.

Other built-in events can be sent by specific controls. These events are described in the control
reference.

User-defined Events

User-defined events are those events that the user has assigned to controls while designing the
page layout with the Layout Painter. The names of these events are freely chosen by the user. The
meaning of the events is described in the control reference.

Sending Events to the User Interface

The PROCESS PAGE UPDATE statement can be accompanied by a SEND EVENT clause. With the SEND
EVENT clause, the application can trigger certain events on the page when resending the modified
data.

The following events can be sent to the page:

85Natural for Ajax

Developing the Application Code

nat:page.message

This event is sent to display a text in the status bar of the page. It has the following parameters:

ValueFormatName

Sets the icon in the status bar ("S"=success icon, "W"=warning icon, "E"=error icon).A or Utype

Short text.A or Ushort

Long text.A or Ulong

nat:page.valueList

This event is sent to pass values to a FIELD control with value help on request (see also the
description of the FIELD control in the control reference). It has the following parameters:

ValueFormatName

A list of unique text identifiers displayed in the FIELD control with value help. The list
must be separated by semicolon characters.

A or Uid

A list of texts displayed in the FIELD control with value help. The list must be separated
by semicolon characters.

A or Utext

nat:page.xmlDataMode
This event is sent to switch several properties of controls on the page in one call to a predefined
state. The state must be defined in an XML file that is expected at a specific place. See the
information on XML property binding in the Application Designer documentation for further
information.

ValueFormatName

Name of the property file to be used.A or Udata

Using Pop-Up Windows

A rich GUI page can be displayed as a modal pop-up in a separate browser window. A modal
pop-up window can open another modal pop-up window, thus building a window hierarchy. If
a PROCESS PAGE statement and its corresponding event handlers are enclosed within a PROCESS
PAGE MODAL block, the corresponding page is opened as a modal pop-up window.

The application can check the current modal pop-up window level with the system variable
*PAGE-LEVEL. *PAGE-LEVEL = 0 indicates that the application code is currently dealing with the
main browser window. *PAGE-LEVEL > 0 indicates that the application code is dealing with a
modal pop-up window and indicates the number of currently stacked pop-up windows.

Natural for Ajax86

Developing the Application Code

In order to modularize the application code, it makes sense to place the code for the handling of
a modal pop-up window and the enclosing PROCESS PAGE MODAL block in a separate Natural
module, for instance, a subprogram. Then the pop-up window can be opened with a CALLNAT
statement and can thus be reused in several places in the application.

Example program MYPAGE-P:

DEFINE DATA LOCAL
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'MYPAGE-A'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end'
/* Page closed.
IGNORE

VALUE U'onPopup'
/* Open a pop-up window with the same fields.
CALLNAT 'MYPOP-N' FIELD1 FIELD2
PROCESS PAGE UPDATE FULL

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*
END

Example subprogram MYPOP-N:

DEFINE DATA PARAMETER
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
/* The following page will be opened as pop-up.
PROCESS PAGE MODAL
*
PROCESS PAGE USING 'MYPOP-A'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end'
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*

87Natural for Ajax

Developing the Application Code

END-PROCESS
*
END

Using Natural Maps

Rich internet applications written with Natural for Ajax need not only consist of rich GUI pages,
but may also use classical maps. This is especially useful when an application that was originally
written with maps shall only be partly changed to provide a rich GUI. In this case the application
can run under Natural for Ajax from the very beginning and can then be 「GUIfied」 step by
step.

Navigating between Pages and Maps

Due to the similar structure of programs that use maps and programs that use adapters, it is easy
for an application to leave a page and open a map, and vice versa. For each rich GUI page, you
write a program that displays the page and handles its events. For each map, you write a program
that displays the map and handles its events. In an event handler of the page, you call the program
that handles the map. In an 「event handler」 of the map, you call the program that handles the
page.

Example for program MYPAGE-P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end'
/* Page closed.
IGNORE

VALUE U'onDisplayMap'
/* Display a Map.
FETCH 'MYMAP-P'

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*
END

Natural for Ajax88

Developing the Application Code

Example for program MYMAP-P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
SET KEY ALL
INPUT USING MAP 'MYMAP'
*
DECIDE ON FIRST *PF-KEY
VALUE 'PF1'
/* Display a rich GUI page.
FETCH 'MYPAGE-P'

NONE VALUE
REINPUT WITH TEXT
'Press PF1 to display rich GUI page.'

END-DECIDE
*
END

Using Pages and Maps Alternatively

An application can also decide at runtime whether to use maps or rich GUI pages, depending on
the capabilities of the user interface. The system variable *BROWSER-IO lets the application decide
if it is running in a web browser at all. If this is the case, the system variable tells whether the
application has been started under Natural for Ajax and may thus use both maps and pages, or
whether it has been started under the Natural Web I/O Interface and may thus use only maps.

Example:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
IF *BROWSER-IO = 'RICHGUI'

/* If we are running under Natural for Ajax,
/* we display a rich GUI page.
PROCESS PAGE USING 'MYPAGE'
DECIDE ON FIRST *PAGE-EVENT

VALUE U'nat:page.end'
/* Page closed.
IGNORE

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

89Natural for Ajax

Developing the Application Code

END-DECIDE
ELSE

/* Otherwise we display a map.
SET KEY ALL
INPUT USING MAP 'MYMAP'
DECIDE ON FIRST *PF-KEY

VALUE 'PF1'
/* Map closed.
IGNORE

NONE VALUE
REINPUT WITH TEXT
'Press PF1 to terminate.'

END-DECIDE
END-IF
*
END

Starting a Natural Application from the Logon Page

In order to start a Natural application from the logon page, you proceed as described inConfiguring
the Client which is part of the Natural Web I/O Interface documentation.

Starting a Natural Application with a URL

See Starting a Natural Application with a URL in the section Configuring the Client which is part of
the Natural Web I/O Interface documentation.

Natural for Ajax90

Developing the Application Code

16 Deploying the Application

■ Components of a Natural for Ajax Application .. 92
■ Unloading Natural Modules ... 92
■ Unloading the User Interface Components ... 92
■ Installing the Natural Modules .. 93
■ Installing the User Interface Components ... 93

91

Components of a Natural for Ajax Application

A Natural for Ajax application consists of two parts that are usually installed on two different
machines.

On one hand, there are Natural modules (adapters, programs, subprograms and other Natural
objects) that are installed on a Natural server. On the other hand, there are page layouts of rich
GUI pages and related files that are installed in a Natural for Ajax environment on an application
server.

Unloading Natural Modules

The Natural modules that belong to your application are contained in one or several Natural
libraries in your Natural development environment. Unload them into a file, using the Object
Handler.

Unloading the User Interface Components

The user interface components of your application are contained in one or several Application
Designer projects in your Natural for Ajax development environment on your development
application server.

All files in your Application Designer project are stored in one directory on the application server
on which Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server:

■ JBoss Application Server
<installdir>/server/default/deploy/njx<nnn>.ear/cisnatural.war

■ Sun Java System Application Server
<installdir>/domains/domain1/applications/j2ee-apps/njx<nnn>.ear/cisnatural_war

where <installdir> is the directory in which your application server is installed and <nnn> is the
current Natural for Ajax version.

The project directory contains a number of subdirectories, only some of which need to be deployed
to the production environment. <projectdir> in the table below stands for the name of your
project directory. Pack the following files and subdirectories into an archive, using an archiving
tool like WinZip or tar.

Natural for Ajax92

Deploying the Application

DescriptionFile

Generated HTML pages.<projectdir>/*.html

Page layouts.<projectdir>/xml/*.*

Page data schemas.<projectdir>/wsdl/*.*

Page data access definitions.<projectdir>/accesspath/*.*

Language-dependent strings.<projectdir>/multilanguage/*.*

Language-dependent help texts.<projectdir>/help/*.*

Installing the Natural Modules

In order to install the Natural modules in the production environment, load them with the Object
Handler.

Installing the User Interface Components

In order to install the user interface components, unpack the previously created archive into a
corresponding project directory in your Natural for Ajax production environment on your
production application server.

93Natural for Ajax

Deploying the Application

94

17 Natural Parameters and System Variables

The following Natural parameters and system variables are evaluated in Natural for Ajax
applications and sent to Application Designer:

■ DC

The character assigned to the DC parameter is used in the representation of decimal fields in
Application Designer.

■ DTFORM

This parameter is used for all date fields in Application Designer pages. In your application,
the date is shown according to the setting of the DTFORM parameter.

■ *LANGUAGE

Change the language while an application is running. See also Multi Language Management.

See also Support for Special Features.

95

96

18 Multi Language Management

The multi language management is responsible for changing the text IDs into strings that are
presented to the user.

There are two translation aspects:

■ All literals in the GUI definitions of a layout are replaced by strings which are language-specific.
This is based on the multi language management of Application Designer.

注意: Detailed information on the multi language management is provided in the
Application Designer documentation at
http://documentation.softwareag.com/webmethods/cit_reroute.htm.

■ Literals that are contained in your application code are handled with the language management
of Natural.

In a Natural for Ajax application, both language management systems are related by common
language codes. The language codes used are those that are defined for the Natural profile
parameter ULANG and the system variable *LANGUAGE.

The Application Designer documentation describes how the text files containing the language-
dependent texts are created and maintained (see the information on writing multi language layouts
at the above URL). For a multi-lingual Natural for Ajax application, the names of the directories
that contain the text files should be chosen according to the Natural language codes, for instance
/multilanguage/4 for Spanish texts.

When an application is started from the Natural logon page (see Starting a Natural Application
from the Logon Page), the user can select the language to be used. Depending on the selected
language, the same (Natural) language code is set up both in Application Designer and in the
Natural session, so that both language management systems are then configured to use the same
language.

97

http://documentation.softwareag.com/webmethods/cit_reroute.htm

注意: The language for a session can also be defined in the configuration file sessions.xml,
with the element language. See Managing the Configuration File for the Session in the Natural
Web I/O Interface documentation.

It is also possible to change the language while an application is running. This is done by setting
the Natural system variable *LANGUAGE in the Natural program. Each time this system variable is
changed, Natural for Ajax changes the language code for the web pages when the next update of
the page occurs.

For compatibility with the predefined multi language directories in Application Designer, the
English and German texts need not be stored in /multilanguage/1 and /multilanguage/2, but can be
contained in /multilanguage/en and /multilanguage/de.

Natural for Ajax98

Multi Language Management

19 Support of Right-to-Left Languages

Natural for Ajax supports right-to-left languages and bidirectional text without specific actions
taken by the application. The browser displays and accepts bidirectional text always in the expected
order.

Applications can use the same page layouts both in left-to-right and in right-to-left screen direction.
To switch the screen direction, the statement SET CONTROL is used as follows:

DescriptionStatement

Sets the screen direction to right-to-left.SET CONTROL 'VON'

Sets the screen direction to left-to-right.SET CONTROL 'VOFF'

Switches from left-to-right to right-to-left screen direction and vice versa.SET CONTROL 'V'

99

100

20 Server-Side Scrolling and Sorting

■ General Information ... 102
■ Variants of Server-Side Scrolling and Sorting .. 102
■ Controls that Support Server-Side Scrolling and Sorting .. 104
■ Data Structures for Server-Side Scrolling and Sorting ... 105
■ Server-Side Scrolling and Sorting in Trees .. 106
■ Events for Server-Side Scrolling and Sorting ... 107

101

General Information

It is often the case that a web application has to display an arbitrary amount of data in a grid
control, for instance, the records from a database table. In these cases, it is mostly not efficient to
send all data as a whole to the web client. Instead, it will be intended to display a certain amount
of data to begin with and to send more data as the user scrolls through the page. To support this,
the grid controls in Natural for Ajax support the concept of server-side scrolling and sorting.

Variants of Server-Side Scrolling and Sorting

The following graphic illustrates the different types of server-side scrolling and sorting that are
supported by Natural for Ajax.

With respect to server-side scrolling and sorting, the following options can be used:

■ No Server-Side Scrolling and Sorting
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) as a whole.

Advantage: Neither the web server nor the Natural application are involved in the process of
scrolling and sorting. As long as the user only scrolls and sorts, no round trip from the web
client to the web server or to the Natural server is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

■ Web Server-Side Scrolling and Sorting (SSS_W)
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) in portions.

Advantage: The Natural application is not involved in the process of scrolling and sorting. As
long as the user only scrolls and sorts, no round trip from the web server to the Natural server
is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

Natural for Ajax102

Server-Side Scrolling and Sorting

■ Natural Server-Side Scrolling and Sorting (SSS_N)
The Natural application sends the grid data to the web server in portions. The web server sends
the grid data to the web client (browser) in portions.

Advantage: A round trip between web server and Natural application passes only the visible
data portion.

Disadvantage: The Natural application must support the process of scrolling and sorting with
a specific application logic.

The decision between these options will often depend on the expected data volume. The application
can decide dynamically at runtime which option to use.

The following topics show the difference between these three options

■ No Server-Side Scrolling and Sorting
■ Web Server-Side Scrolling and Sorting
■ Natural Server-Side Scrolling and Sorting

No Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of twenty. The Natural application
sends twenty rows and indicates that no further rows are to be expected (SIZE=0).

Step 2: When you scroll up and down, no server round trips to the web server or to the Natural
application are performed.

Web Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
twenty rows and indicates that no further rows are to be expected (SIZE=0).

103Natural for Ajax

Server-Side Scrolling and Sorting

Step 2: When you scroll up and down, the web browser requests additional records from the web
server There are no server round trips to Natural.

Natural Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
five rows and indicates that further rows are to be expected (SIZE=20).

Step 2: When you scroll up and down, the web browser requests additional records from the web
server. The web server requests additional records from the Natural application.

The Natural application can dynamically decide at runtime which option of server-side scrolling
and sorting it wants to use. This can depend on the number of records contained in a search result.

■ If the application does not want to use server-side scrolling and sorting at all, it sends as many
rows to the web browser as the grid is configured to hold, or it sends fewer rows.

■ If the application wants to use web server-side scrolling and sorting, it sends all available rows
and sets the SIZE parameter to zero in the data structure that represents the grid in the
application.

■ If the application wants to use Natural server-side scrolling and sorting, it sends only part of
the available rows and indicates in the SIZE parameter how many rows are to be expected
altogether.

Controls that Support Server-Side Scrolling and Sorting

The following controls support server-side scrolling and sorting:

■ TEXTGRIDSSS2
■ ROWTABLEAREA2
■ MGDGRID

注意: For compatibility reasons with earlier versions of Natural for Ajax, you have to set
the natsss property of NATPAGE to true in order to activate server-side scrolling and

Natural for Ajax104

Server-Side Scrolling and Sorting

sorting for the controls ROWTABLEAREA2 and MGDGRID. If this property is set to true,
for all instances of these grid controls on a page, the necessary data structures are generated
into the Natural adapter interface.

Data Structures for Server-Side Scrolling and Sorting

If you use the TEXTGRIDSSS2 control or if you use the ROWTABLEAREA2 or MGDGRID control
and have set the property natsss to true for the page, the following additional data structure is
generated into the adapter interface for each instance of these controls. This data structure is used
to control the scroll and sort behavior at runtime.

1 LINESINFO
2 ROWCOUNT (I4)
2 SIZE (I4)
2 SORTPROPS (1:*)
3 ASCENDING (L)
3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)

The name of the data structure is derived from the name of the variable that is bound to the grid.
In this example, the variable LINES had been bound to the grid. Therefore, the name LINESINFO
was generated.

With each event that is related to scrolling and sorting, the application receives the information
how many rows it should deliver at least (ROWCOUNT) and the index of the first record to be delivered
(TOPINDEX).

In SORTPROPS, the application receives the information in which sort sequence the records should
be delivered and by which columns the records should be sorted.

In SIZE, the application can indicate whether the delivered amount of rows represents all available
data (SIZE=0, no Natural server-side scrolling), or whether there are more rows to come
(SIZE=total-number-of-records, Natural server-side scrolling).

When Natural server-side scrolling is used, the application will, for instance, hold the available
rows (mostly the result of a database search) in an X-array, sort this X-array as requested and
deliver the requested portion of rows. However, other implementations and optimizations are
possible, depending on the needs and possibilities of the application.

105Natural for Ajax

Server-Side Scrolling and Sorting

Server-Side Scrolling and Sorting in Trees

The ROWTABLEAREA2 control can also be configured as a tree control, where each row represents
a tree node. In this case, the data structure that supports server-side scrolling contains one more
field, DSPINDEXFIRST.

1 LINESINFO
2 DSPINDEXFIRST (I4)
2 ROWCOUNT (I4)
2 SIZE (I4)
2 SORTPROPS (1:*)
3 ASCENDING (L)
3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)

The need for this additional control field comes from the fact that a tree can contain hidden items.

The rows sent by the Natural application must always start with an item at level one. The additional
field DSPINDEXFIRST is provided because the visible part of the tree can start at a node with a level
greater than one (a subnode). In DSPINDEXFIRST, the application must indicate the index of the
first visible row within the rows sent from Natural.

Natural for Ajax106

Server-Side Scrolling and Sorting

Example

The top nodes of the tree are open and the user scrolls down as shown below:

The Natural application is supposed to send data starting with a top node. In our example, this
is the node named toptext_0. But the first visible child node would be childtext_0.2. This means
that among the sent items, the first three items are hidden. The application sets the value for
DSPINDEXFIRST to "3" when sending the data.

Events for Server-Side Scrolling and Sorting

In order to support server-side scrolling and sorting, an application must handle a number of
related events properly. The events are described with the corresponding controls. Examples on
how to handle the events are provided in the library SYSEXNJX.

107Natural for Ajax

Server-Side Scrolling and Sorting

108

21 Application Modernization

This part describes how to convert a character-based Natural application to a Natural for Ajax
application.

The information in this part is organized under the following headings:

Overview of Conversion Steps

Map Extraction

Map Conversion

Customizing the Map Conversion Process

Code Conversion

109

110

22 Overview of Conversion Steps

The conversion of a character-based Natural application to a Natural for Ajax application consists
of several steps as illustrated in the following graphic:

■ Step 1: Map Extraction
Extracts from each Natural map the information that is required to create a corresponding
Natural for Ajax page. For each map, a map extract file is created. This file is intended as input
for the map conversion.

Required tool: Natural Studio which is part of Natural for Windows.

See Map Extraction for further information.
■ Step 2: INPUT Statement Extraction

This step is required for Natural applications that do not use maps, but use INPUT statements
for the dynamic specification of the screen layouts.

Extracts from each INPUT statement in the source code the information that is required to create
a corresponding Natural for Ajax page. For each INPUT statement, a map extract file is created.
This file has the same format as a map extract file created by the map extraction process, and it
is also intended as input for the map conversion.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.
■ Step 3: Map Conversion

Processes the map extract files and creates the corresponding Natural for Ajax pages.

Required tool: Map Converter which is part of the Application Designer development workplace
contained in Natural for Ajax.

See Map Conversion and Customizing the Map Conversion Process for further information.

111

■ Step 4: Code Conversion
This step requires that the Natural for Ajax pages have already been created.

Modifies the application code in such as way that it can use the newly created Natural for Ajax
pages. The application can still run in a terminal, in the Natural Web I/O Interface client or in
batch as before. But it can now also run in a Natural for Ajax session with the new Natural for
Ajax pages.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.

Code conversion can also be performed manually. SeeCode Conversion for further information.

The resulting Natural for Ajax application mimics the character-based application. The user
interface is not restructured in the sense that several maps are combined into a single page or that
complex maps are split into several separate pages. This kind of restructuring is not part of the
conversion, but of the normal development of a Natural for Ajax application.

Natural for Ajax112

Overview of Conversion Steps

23 Map Extraction

■ General Information ... 114
■ Using Natural for Ajax Tools ... 114
■ Using the Mass Function ... 114
■ Location of the Files ... 114

113

General Information

The Map Extractor is the first tool that is used in the process of converting a map-based application
to a Natural for Ajax application. It analyzes the code of a Natural map and creates from each map
a file that contains information about the map, the so-called 「map extract file」.

The map extract files have the extension .njx and are not human-readable. They are intended as
input for the second step of the process, the map conversion.

The Map Extractor is used only to process character maps. GUI elements contained in maps are
not extracted.

Using Natural for Ajax Tools

The map extract files can be created using Natural for Ajax Tools, which is an optional plug-in for
Natural Studio. See Using the Map Extractor in the Natural Studio Extensions documentation which
is provided for Natural for Windows.

Using the Mass Function

For mass processing of maps, the Natural program MAP2NJX is provided. The program is delivered
in the plug-in library SYSPLNJX.

MAP2NJX is working only on the local environment. It is called in the following way:

MAP2NJX library-name map-name

In the parameter map-name, the asterisk (*) notation can be used.

Location of the Files

The location of the map extract files depends on the settings in the configuration file
ConfigNJXPLG.dat (seeConfiguring the Servers in theNatural Studio Extensionsdocumentation which
is provided for Natural for Windows).

If an application server and a Natural Web I/O Interface server has been specified for the active
environment, and if a file-system path to the application server environment has been specified,
and if an Application Designer project has been created for the current library, and if this Application

Natural for Ajax114

Map Extraction

Designer project contains a nat subdirectory, then the Map Extractor writes the resulting map
extract files to the nat subdirectory of this Application Designer project.

If the above information is not available for the active environment, the Map Extractor stores the
files as follows:

■ If the active environment is the local environment, the files are stored in the res subdirectory of
the current library.

■ If the active environment is a remote environment, the files are stored in the res subdirectory of
the private library of the user in the local environment.

The names of the map extract files are derived from the map names (for example, MYMAP.NSM results
in MYMAP.NJX).

115Natural for Ajax

Map Extraction

116

24 Map Conversion

■ General Information ... 118
■ First Steps .. 119
■ Using the Map Converter .. 121
■ Using the Editor Extension .. 124
■ Using the Conversion Rules Tool .. 125
■ Using the Conversion Logs Tool ... 126

117

General Information

After the Map Extractor or the INPUT Extractor has been used to create extract files from maps,
the Map Converter is the next tool used in the process of converting a map-based application into
a Natural for Ajax application. The Map Converter processes the map extract files that were created
by the Map Extractor or the INPUT Extractor. It analyzes the map extract files and creates a Natural
for Ajax page layout from each map extract file. Controls on the map are converted to controls on
the page. Many features of the original map are converted to features of the page.

By default, the Map Converter uses a predefined set of page templates and conversion rules that
control the conversion process. The templates and the conversion rules can be modified or extended
to adapt the converter to the requirements of a specific conversion project. With the advanced
option to program own conversion handlers, the Map Converter provides additional flexibility
and extensibility.

The Application Designer development workplace contained in Natural for Ajax provides additional
Natural tools for map conversion:

The following Natural tools can be invoked from the navigation frame:

■ Map Converter
This tool is used for mass generation of layouts. For quick start with this tool, see First Steps
below. For detailed information on all options of this tool, see Using the Map Converter.

You can also generate a single layout while designing a page in the Layout Painter. An editor
extension is available for this purpose. See Using the Editor Extension for further information.

■ Conversion Rules
You can use this tool to copy the conversion rules from other projects to the current project. See
Using the Conversion Rules Tool for further information.

■ Conversion Logs
You can use this tool to view or delete the log files that have been created during the conversion.
See Using the Conversion Logs Tool for further information.

Natural for Ajax118

Map Conversion

First Steps

We start with a simple map like the one below and we suppose that you have already created a
map extract file with the Map Extractor. The map is contained in a Natural library named TESTCONV.
The map extract file has been stored in the nat subdirectory of an Application Designer project
with the corresponding name testconv.

手順 24.1. To create a Natural for Ajax page layout from an extract file

1 Open the Application Designer development workplace.

2 In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Map Converter.

The Map Converter is opened.

3 Select the project in which you want to store the page layouts that are to be generated. That
is, select your project testconv.

4 Select the conversion rules file to be used. That is, stick with the rules file convrulesDefault.xml
to begin with.

5 Select the map input folder, that is, the folder in which your map extract files are stored.

6 Select a map extract file.

7 From theMapConversionmenu, choose ShowMap to display the content of the map extract
file in XML format.

または:

Choose the icon that is shown in the Select Natural Maps header.

8 From the Map Conversion menu, choose Preview Page Layout to display the resulting page
layout as it would turn out using the selected conversion rules file.

119Natural for Ajax

Map Conversion

The right side shows a preview of the generated page layout. The Conversion Results area
shows a status message which informs either about successful conversion or an error that has
occurred.

9 From the Map Conversion menu, choose Preview in Browser to display the resulting page
layout in a separate browser window.

10 After having previewed the conversion result for one or several maps in your project, choose
Generate All Layouts from the Map Conversion menu to generate page layouts for all map
extract files contained in the selected folder.

11 For now close the Map Converter and switch to the project testconv to continue working on
the generated page layout.

12 You might wish to assign a different name for the adapter to be generated for the page, change
other properties or modify the layout in any other way. Then save the layout and generate
the adapter as usual.

When you import the adapter into your Natural library, you will notice that the parameter
data area is the same as in the original map. This is the case even though the map uses system
variables and variables with special characters. The necessary translation is done inside the
generated adapter code and does not influence the application code.

13 Now create a main program for the adapter and run it in the browser.

You may have noticed the following effects of the applied conversion rules:

■ The title in the first row of the map has been placed into the caption of the page and the
asterisks have been stripped off. Your application will quite surely have a different layout
of the map titles. The conversion rules can therefore be adapted to accommodate the needs

Natural for Ajax120

Map Conversion

of your application, and the rule that identifies the title and places it into the caption is just
a simple application of customizing the conversion rules.

■ The literals such as "F4 Delete" on the map have each been turned into a button control and
a label. This is also due to a sample conversion rule contained in the default conversion
rules.

■ The date field has been converted to a field control with the data type "date". This enables
the user to select the date with the Date Input dialog box.

The full concept of customizing the Map Converter is described inCustomizing the Conversion
Process.

Using the Map Converter

The Map Converter is used for mass generation of layouts.

In the First Steps, you have already learned how to use the Map Converter. The topics below
provide detailed descriptions of the different options and menu commands that are available in
the Map Converter:

■ Invoking the Map Converter
■ Setting the Conversion Options
■ Previewing/Generating a Single Layout
■ Generating All Layouts
■ Viewing the Conversion Results
■ Refreshing the Display

Invoking the Map Converter

When you invoke the Map Converter, the following dialog appears.

手順 24.2. To invoke the Map Converter

■ In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Map Converter.

121Natural for Ajax

Map Conversion

Setting the Conversion Options

In order to start the generation, you have to select a project, a conversion rules file and the folder
containing your map extract files. The following options are available for this purpose:

Project
This drop-down list box provides for selection all Application Designer projects that are
currently defined.

Select the project in which you want to store the page layouts that are to be generated.

Use default rules
When this option button is selected, the default conversion rules and related templates are
used. These rules are stored in the subdirectory convrules of the project directory njxmapconverter.

Use project rules
When this option button is selected, the project-specific conversion rules are used. These rules
are contained in the subdirectory convrules of your project directory.

When your project does not yet have any project rules and you select this option button, the
Conversion Tool is automatically shown in a dialog. You can then copy the default conversion
rules and templates to the currently selected project. It is recommended that you copy all or
part of the default rules and related templates into your project and adapt the copies to the
requirements of your application. SeeUsing the ConversionRules Tool for further information.

You can also invoke the Conversion Tool manually. To do so, you choose Copy Rules from
the Conversion Rules menu.

Rules
This drop-down list box provides for selection all available conversion rules files. When the
Use default rules option button is selected, the default rules files are shown. When the Use
project rules option button is selected, the rules files in the project directory are shown.

Select the conversion rules file that is to be used.

You can display the XML code of the selected conversion rules file in a dialog. To do so, you
either choose the icon that is shown in the Select Conversion Rules header or you choose
Show Rules from the Conversion Rules menu.

Map input folder
Specify the folder which contains the map extract files that are to be processed.

Select map
Optional. This drop-down list box provides for selection all map extract files that are stored
in the currently selected map input folder.

For mass generation, it is not required that you select a map. However, you can select a map,
for example, if you want preview the layout of the resulting Application Designer page as it
would turn out using the selected conversion rules file.

Natural for Ajax122

Map Conversion

You can display the XML code of the selected map extract file in a dialog. To do so, you either
choose the icon that is shown in the Select Natural Maps header or you choose ShowMap
from the Map Conversion menu.

Previewing/Generating a Single Layout

When you choose one of the following commands from the Map Conversion menu, the currently
selected conversion rules file and the currently selected map extract file are used for preview or
generation of a single layout from a single map extract file:

Preview Page Layout
Shows a single page layout in the preview area of the Map Converter (on the right side).

Preview in Browser
Shows a preview of a single page layout in a separate browser window.

Generate Selected Layout
Generates a single page layout. The resulting file is stored in the currently selected project.

Generating All Layouts

When you choose the following command from theMapConversionmenu, the currently selected
conversion rules file and all map extract files in the selected map input folder are used as input
for the mass generation:

Generate All Layouts
Generates all page layouts (mass generation). The resulting files are stored in the currently
selected project.

Viewing the Conversion Results

After a preview or generation, you can either choose the icon that is shown in the Conversion
Results header or you choose the following command from the Map Conversion menu:

Show Layout XML Definition
Shows the XML layout definition for the page which was last generated or previewed in a
dialog.

When the last generation was a mass generation, an additional drop-down list box is shown
under Conversion Results. This drop-down list box provides for selection the names of all
generated page layouts. When you choose the Show Layout XML Definition command (or
the corresponding icon), the XML layout definition for the page which is currently selected in
the drop-down list box is shown in a dialog.

123Natural for Ajax

Map Conversion

After a mass generation, an additional icon for previewing a generated page layout is shown
in the Conversion Results header. When you choose this icon, the layout for the page which
is currently selected in the drop-down list box is shown in the preview area of the Map
Converter (on the right side).

When you choose the Show Logs command from the Conversion Logs menu, the Conversion
Logs tool is shown in a dialog. For further information on the options in this dialog, see Using the
Conversion Logs Tool.

Refreshing the Display

For example, when you have created a new project which is not yet visible in the Map Converter,
you can choose the Refresh command from the View menu of the Map Converter. This reloads
all projects, conversion rules and map extract files and resets the contents of the dialog.

Using the Editor Extension

An editor extension, the Map Conversion Assistant, is used to generate a single layout while
designing a page in the Layout Painter. In this case, you fill an empty layout with the information
from a map extract file.

手順 24.3. To add a map to an empty layout using the editor extension

1 Create a new layout using the Natural Map Converter template.

2 From the Extensions tab of the Layout Painter, choose Map Conversion Assistant.

The following area is now shown in the Layout Painter.

3 Select either the Use default rules option button or the Use project rules option button. See
Setting the Conversion Options for information on these option buttons.

4 Optional. When you choose theCopyRules button, you can copy the default conversion rules
and templates to the current project. In this case, the Conversion Rules tool is shown in a

Natural for Ajax124

Map Conversion

dialog. For further information on the options in this dialog, see Using the Conversion Rules
Tool.

5 From the Rules drop-down list box, select the conversion rules file that is to be used. The
rules files that are provided for selection in this drop-down list box depend on the setting of
the option buttons (either the default rules or the project rules are shown).

6 Optional. When you choose the ShowRules button, the XML code of the selected conversion
rules file is shown in a dialog.

7 In the Map input folder text box, specify the folder which contains the map extract files.

8 From the Select map drop-down list box, select the map that is to be used.

The XML layout definition of the selected map is now shown at the bottom of the Map
Conversion Assistant.

9 Choose the Add to Page button.

The map description is converted to the corresponding layout elements and these elements
are added to the current layout, which is now shown in the preview area.

TheAdd to Page button is now dimmed. If you want to remove the elements you have added
to the page, you can choose the Undo Add button.

10 Optional. When you choose the Show Log button, the Conversion Logs tool is shown in a
dialog. For further information on the options in this dialog, see Using the Conversion Logs
Tool.

11 Modify the layout as usual.

Using the Conversion Rules Tool

Using this tool you can copy the default conversion rules and templates to a selected project for
modification.

手順 24.4. To invoke the Conversion Rules tool

■ In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Conversion Rules.

または:

When theMapConverter is currently shown, chooseCopyRules from theConversionRules
menu.

125Natural for Ajax

Map Conversion

または:

When the editor extension is currently shown, choose the Copy Rules button.

手順 24.5. To copy the conversion rules

1 From the Project drop-down list box, select the project into which you want to copy the
conversion rules.

2 In the Conversion Rules box, select the rules file(s) that you want to copy and choose the >
button.

または:

If you want to copy all files, choose the >> button.

The selected files are shown on the right side of the Conversion Rules box.

To deselect one or more files, you can use the < or << button.

For each selected rules file, the templates that are used in the rules file are automatically
selected in theTemplates box, so that always a consistent set of rules and templates is selected
for copying.

3 Optional. If you want to overwrite any existing rules and templates files with the same names
in the selected project, activate the Overwrite existing files check box.

4 Choose the Copy Selected Rules button to copy the rules and templates files to the selected
project.

Using the Conversion Logs Tool

Using this tool you can view the log files that have been created during the conversion of Natural
maps to Application Designer layouts. You can also delete these log files.

手順 24.6. To invoke the Conversion Logs tool

■ In the Natural Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Conversion Logs.

または:

Natural for Ajax126

Map Conversion

When the Map Converter is currently shown, choose Show Log from the Conversion Logs
menu.

または:

When the editor extension is currently shown, choose the Show Log button.

手順 24.7. To view a log file

1 From the Project drop-down list box, select the project for which you want to view a log file.

The log files contained in this project are shown in the drop-down list box to the right.

2 Select the log file that you want to view.

3 Choose the Load Log File button.

Log lines for the selected log file are now shown at the bottom of the tool. Each log file contains
the conversion results of one or several maps. The log lines that are shown belong to an
individual map; this is the map that is selected in the Logged map conversions drop-down
list box.

4 Optional. Select a different map from the Logged map conversions drop-down list box.

The conversion result of the newly selected map is immediately shown at the bottom of the
tool.

5 Optional. Choose the View Text button to display the content of the selected log file as a CSV
file in a dialog. This shows the conversion results for all maps.

手順 24.8. To delete log files

1 Select the project for which you want to delete the log files.

2 Choose the Delete Log Files button.

A dialog appears asking to confirm the deletion.

3 Choose the Yes button to delete all log files in the selected project.

127Natural for Ajax

Map Conversion

128

25 Customizing the Map Conversion Process

■ Map Converter Processing .. 130
■ Conversion Rules .. 132
■ Templates .. 142
■ Tag Converters .. 145

129

Map Converter Processing

The map conversion process reads a map extract file created by the Map Extractor or the INPUT
Extractor and transforms it into a corresponding Application Designer page layout file. The
conversion process is controlled by rules and templates.

The Map Converter ships with a default set of conversion rules and corresponding template files.
This set allows for default map conversions without changing rules or templates. In most cases,
you will add or modify some conversion rules and/or templates to customize the conversion
according to the requirements of your application.

For advanced customizations, there is also the possibility to plug own Java-written conversion
classes (the so-called 「tag converters」) into the conversion processing. But you should only do
this in very rare cases.

The following topics are covered below:

■ Processing of Rows and Columns
■ Processing of Sequence and Grid Areas
■ Summary: Processing Steps of the Map Converter

Processing of Rows and Columns

By default, for each row and column in a map, a corresponding row and column is generated in
the layout. By default, the Map Converter inserts the converted rows and columns at a defined
position within a corresponding page template. Template and insert position can be defined by
the user. Skipping or different handling of specific rows and columns can be defined via
corresponding conversion rules.

The following sections describe the default processing for rows and columns in case no specific
rules for different insert positions are specified:

■ Rows

Natural for Ajax130

Customizing the Map Conversion Process

■ Columns

Rows

For each row in a map, the Map Converter generates an ITR (independent table row) control with
the default settings. For empty rows, an ITR control containing the control defined in the
EMPTYROW_TEMPLATE is generated.

Columns

The fields and literals within a row are aligned to columns according to the following rules:

■ Column Start Position
If an absolute column start position is defined for a field or literal in the map, the corresponding
control in the page layout is aligned so that it starts exactly with the specified column. This is
done by inserting a HDIST (horizontal distance) control with a corresponding width as a filler.

■ Conversion Rules
If no absolute column start position is defined for a field or literal in the map, a HDIST control
is not added as a filler by default. In this case, the field or literal is simply appended as the last
subnode of the current ITR control. In many cases, this would result in a layout that requires
additional manual adding of fillers. This is because appending two field controls without adding
any HDIST control often does not look as intended. Therefore, the Map Converter includes
default conversion rules for filler settings. You can modify the default conversion rules or add
your own conversion rules to fine-tune this behavior. For more information, see Conversion
Rules.

■ ColumnWidth
A character map has a fixed number of rows and columns. For the literal "ABCD", this means
that it uses exactly 4 columns. Calculating the correct width and height of field on a web page
is more complex. The width of "ABCD" will most likely be greater than the width of "llll". Very
short fields (with a length of one or two characters) should have a minimum width so that the
content is fully visible. You can fine-tune the width by adapting the predefined conversion rule
variable $$widthfactor$$ or by adding your own conversion rules. For more information, see
Conversion Rules.

Processing of Sequence and Grid Areas

The map extract file also contains information about arrays. With Application Designer, arrays
are usually rendered as grid controls. Application Designer provides a couple of grid controls:

■ TEXTGRID2 - a grid containing text.
■ TEXTGRIDSSS2 - a text grid with server-side scrolling.
■ ROWTABLEAREA2 - a grid containing other controls.
■ MGDGRID - a managed grid.

131Natural for Ajax

Customizing the Map Conversion Process

The Map Converter tries to convert arrays into suitable grid controls. Before the real conversion
of arrays to grid controls can be done, the Map Converter must first identify the sequence and
grid areas on the map. During this process of area identification, the Map Converter groups literals
and fields together into sequences and areas. Whether the corresponding fields or literals are
actually converted into a grid depends on the conversion rules that are executed after this area
identification step.

This process of area identification is simply a kind of marking. The corresponding sequence and
area objects can be used as source in the conversion rules to define the actual controls.

Summary: Processing Steps of the Map Converter

The conversion is done in several steps:

1. The map extract file is loaded and the corresponding rows and columns are collected.

2. The sequence and grid areas are identified.

3. For each row, the list of items in this row is processed, according to the column order. An item
can be one of the following: a simple literal, a field or an area. For each found item, the
corresponding conversion rules are executed.

Conversion Rules

Different conversion projects have different requirements to the conversion process. The Map
Converter is driven by conversion rules and thus allows for flexible control of the conversion
process. Conversion rules define how source items (items from a given map extract file) are mapped
to target items (items in the page layout to be created) and under which conditions a certain source
item shall be converted to a certain target item. The Map Converter is delivered with a default set
of conversion rules contained in the file convrulesDefault.xml in the subdirectory convrules in the
Application Designer project njxmapconverter. A more application-specific conversion can be
achieved by copying and modifying the default set of rules or by adding own rules.

Each set of conversion rules is defined in an XML file according to the XML schema convrules.xsd
in the subdirectory convrules in the Application Designer project njxmapconverter. Each individual
conversion rule consists of a name, a description, a source and a target. The source identifies an
element in the map extract file. The target identifies controls and attributes to be generated in the
page layout.

The conversion rules make often use of regular expressions and so-called capture groups. For
more information about regular expressions, see for instance the web site http://www.regular-
expressions.info.

Natural for Ajax132

Customizing the Map Conversion Process

http://www.regular-expressions.info
http://www.regular-expressions.info

The following topics are covered below:

■ Conversion Rules Examples
■ Default Conversion Rules File
■ Conversion Rules that Often Need to be Adapted
■ Writing Your Own Conversion Rules

Conversion Rules Examples

The following examples are provided:

■ Example 1
■ Example 2
■ Example 3

Example 1

The following example rule (contained in the default conversion rules file) defines that fields in
the map extract file with the qualification AD=O shall be converted to field controls with the property
displayonly="true".

<convrule rulename="Ofield_rule">
<description>Defines the control template to be used for input fields
which are specified as output only.</description>
<source>

<sourceitem>ifField</sourceitem>
<sourcecond>
<condattr>//ifAD</condattr>
<condvalue>.*O.*</condvalue>

</sourcecond>
</source>
<target>

<targetitem>$OFIELD_TEMPLATE</targetitem>
</target>

</convrule>

The source element specifies that this rule applies to fields (element ifField) that have an AD
parameter (element ifAD) that contains a letter "O" (matching the regular expression .*O.*). The
target element specifies that these fields are to be converted to whatever is contained in the template
file OFIELD_TEMPLATE.xml. This template file must be contained in the same directory as the
conversion rules file.

133Natural for Ajax

Customizing the Map Conversion Process

The template file contains the detailed specification of the field to be generated. The file
OFIELD_TEMPLATE.xml delivered with the map converter contains, for instance, the following:

<?xml version="1.0" encoding="UTF-8"?>
<field valueprop="$$" width="$$" noborder="true" displayonly="true"/>

That is, the resulting field is generated without a border (noborder="true") and as a display-only
field (displayonly="true"). The valueprop and width to be assigned ($$) are not determined by
this rule, but are left under the control of other rules.

Example 2

The following example rule (contained in the default conversion rules file) defines that for all
fields that are defined with the format An in the map extract file, an attribute datatype="string
n" shall be added to the element that is generated into the page layout.

<convrule rulename="AfixType_rule">
<description>All Natural "An" dfFields are converted to the
Application Designer datatype "string n". Example: "A10" is
converted to "string n".</description>
<source>

<sourceitem>dfField</sourceitem>
<selection>

<selectattr>dfFormat</selectattr>
<selectval>A([0-9]+)</selectval>

</selection>
</source>
<target>
<targetitem>$$</targetitem>
<targetattr>

<attrname>datatype</attrname>
<attrvalue>string $1</attrvalue>

</targetattr>
</target>

</convrule>

The source element specifies that this rule applies to fields that have in the field definition (element
dfField) a format (element dfFormat) of An (matching the regular expression A([0-9]+)). The
target element specifies that for whatever element is generated into the page layout for this kind
of fields, an attribute datatype="string $1" shall be added. In terms of regular expressions, $1
refers to the contents of the first 「capture group」 of the regular expression A([0-9]+). In case
of a format A20, $1 will evaluate to 20 and thus an attribute datatype="string 20" will be
generated.

The control to be generated into the page layout (<targetitem>$$</targetitem>) is not determined
by this rule, but is left under the control of other rules.

Natural for Ajax134

Customizing the Map Conversion Process

Summary: The combination of the two rules in example 1 and 2 makes sure that output fields, for
example, of format A20 are converted to field controls with displayonly="true" and
datatype="string 20".

Example 3

The following more advanced rule was created for the use of a specific conversion project. The
following task had to be achieved: A literal of the format "F10 Change" shall be converted to a
button that is named "F10", is labeled "Change" and raises an event named "PF10". With the
explanations from the examples above, the rule should be nearly self-explanatory.

Note that according to the rules of regular expressions, the variable $1 refers to the string matched
by the expression part in the first pair of parentheses (the first 「capture group」), that is for
instance "F10", and the variable $3 refers to the string matched by the expression part in the third
pair of parentheses (the third 「capture group」), that is for instance "Change".

<convrule rulename="Function_rule" lone="true">
<description>Generates a button from specific literals.</description>

<source>
<sourceitem>ltLiteral</sourceitem>
<selection>
<selectattr>ltName</selectattr>
<selectval>(F[0-9]+)(\p{Space})(.*)</selectval>

</selection>
</source>
<target>

<targetitem>$BUTTON_TEMPLATE</targetitem>
<targetattr>
<attrname>name</attrname>
<attrvalue>$1</attrvalue>

</targetattr>
<targetattr>
<attrname>method</attrname>
<attrvalue>P$1</attrvalue>

</targetattr>
</target>
<target>

<targetitem>hdist</targetitem>
<targetattr>
<attrname>width</attrname>
<attrvalue>4</attrvalue>

</targetattr>
</target>
<target>

<targetitem>label</targetitem>
<targetattr>
<attrname>name</attrname>
<attrvalue>$3</attrvalue>

</targetattr>

135Natural for Ajax

Customizing the Map Conversion Process

</target>
</convrule>

Default Conversion Rules File

The Map Converter is delivered with a default set of conversion rules contained in the file
convrulesDefault.xml in the subdirectory convrules in the Application Designer projectnjxmapconverter.
A more application-specific conversion can be achieved by copying and modifying the default set
of rules or by adding own rules.

The following topics are covered below:

■ Root Rule
■ Data Type Conversion Rules
■ Other Default Conversion Rules

Root Rule

Like every conversion rules file, the file contains exactly one "Root_rule". The root rule specifies
the template file to be used for the overall page layout. In this template file, the application-specific
page layout can be defined, using company logos, colors, fonts, etc. The root rule must always
have "map" as the source item and must refer to some variable defined in the page template file
as the target item. The place of that variable specifies where in the page template the converted
map items are placed. See for instance the root rule from the default conversion rules:

<convrule rulename="Root_rule">
<description>Exactly one rule with the sourceitem "map" is required.
This rule must define the natpage template and insert position of
the conversion result.</description>
<source>

<sourceitem>map</sourceitem>
</source>
<target>

<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
</target>

</convrule>

Natural for Ajax136

Customizing the Map Conversion Process

The rule refers to a page layout template NATPAGE_TEMPLATE.xml and refers to a variable
defined in that template where the converted map elements shall be placed. Here is the
corresponding content of the page layout template NATPAGE_TEMPLATE.xml:

<?xml version="1.0" encoding="UTF-8"?>
<natpage xmlns:njx=http://www.softwareag.com/njx/njxMapConverter

natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>
<pagebody>

<njx:njxvariable name="MAPROOT"/>
</pagebody>
<statusbar withdistance="false"/>

</natpage>

This template specifies the following:

■ The overall page layout shall consist of the elements titlebar, pagebody and statusbar.
■ The converted map elements shall be placed into the pagebody.
■ The name of the Natural adapter to be generated from that page layout shall be determined by

a rule (natsource="$$NATSOURCE$$"). There must be a corresponding rule that yields a value
for the variable $$NATSOURCE$$, for instance derived from the map name. We shall see later how
to define such a rule.

■ All strings in the page layout shall be mapped to Natural variables of type A in the adapter
interface (natsinglebyte="true").

■ The text displayed in the title bar shall be determined by a rule (name="$$TITLEVAR$$"). There
must be a corresponding rule that yields a value for the variable $$TITLEVAR$$, for instance
derived from a literal in the first row in the map. We shall see later how to define such a rule.

Data Type Conversion Rules

The default conversion rules file contains a set of rules that control the conversion of data types:
from Natural data types in the map to corresponding Application Designer data types in the page
layout. An example was given above in Example 2. Usually, these rules need not be adapted. They
have been chosen in such a way that the process of extracting maps, converting them to layouts
and generating Natural adapters for these usually yields the same data types in the adapter interface
as in the map interface.

137Natural for Ajax

Customizing the Map Conversion Process

Other Default Conversion Rules

Other default conversion rules define a default mapping for literals, modifiable fields, output
fields, modifiable grids, output grids, system variables and fields with special characters like "#"
in their names. These rules need only be adapted in special cases.

Conversion Rules that Often Need to be Adapted

Some conversion rules need to be adapted in nearly all conversion projects. These rules are
contained in the section "APPLICATION SPECIFIC RULES" in the default conversion rules file.

The following topics are covered below:

■ Naming of Adapters
■ Setting the Title of a Map

Naming of Adapters

Each application has a different naming convention for Natural objects. There is a rule (it is named
"Natsource_rule" in the default conversion rules file) that controls how adapter names are derived
from map names. The rule replaces the first letter "M" in the map name with an "A" and places
the resulting string into the variable NATSOURCE. Remember that in the default page template, the
natsource property of NATPAGE (which defines the adapter name to generated) is preset with
the variable reference $$NATSOURCE$$. Thus, a map with the name TESTM1 results in an adapter
named TESTA1. Other naming conventions for maps will require a more sophisticated adapter
naming rule.

Setting the Title of a Map

Each application has a different way of showing titles in a map. Often, the title string shall be
placed into the title bar of the resulting page layout during conversion. There is a rule (in the
default conversion rules file, it is named "Titlevar_rule") that controls how the title string in a map
is recognized. The rule searches in the first row of a map for a literal enclosed in "***" and places
the resulting string into the variable TITLEVAR. Remember that in the default page template, the
name property of the titlebar element (which defines the string to be shown in the title bar) is
preset with the variable reference $$TITLEBAR$$. So this rule takes care that the found literal is
placed into the titlebar element of the page. Other conventions for map titles will require a more
sophisticated rule.

Natural for Ajax138

Customizing the Map Conversion Process

Writing Your Own Conversion Rules

When writing your own conversion rules, you can use the default rules as examples. In order to
write rules from scratch, you need to know the elements of the map that can be referred to as
source items and the full syntax of the rule definition.

■ The XML schema of the map extract files is contained in the file naturalmap.xsd in the subdirectory
convrules in the Application Designer project njxmapconverter.

■ As described in Processing of Sequence and Grid Areas, one step in the map conversion is the
detection of sequence and grid areas in the map. Conversion rules can also refer to the detected
sequence and grid areas. The XML schema of the map extract files after the detection of sequence
and grid areas is described in the extended XML schema naturalmapxml_extended.xsd in the same
directory.

■ The syntax of the conversion rules is described by the XML schema convrules.xsd in the same
directory.

The basic structure of a conversion rule is as follows:

<convrule rulename="...">
<description>...</description>
<source>...</source>
<target>...</target>
<target>...</target>
...

</convrule>

This means, a conversion rule consists of one source element and (optionally) one or several
target elements. The source element identifies an item from the map. The target elements specify
the conversion output. If no target elements are specified, nothing is generated from the identified
source element.

The basic structure of a source element is as follows (example):

<source>
<sourceitem>ltLiteral</sourceitem>

<selection>
<selectattr>ltName</selectattr>
<selectval>***(.*)***</selectval>

</selection>
<sourcecond>
<condattr>ltRow</condattr>
<condvalue>1</condvalue>

</sourcecond>
</source>

The sourceitem element refers to a specific kind of item on a map, such as a literal (ltLiteral),
a defined field (dfField), an input field (ifField) or the identifier of the map (identity). The

139Natural for Ajax

Customizing the Map Conversion Process

elements that can be used here are specified by the XML schema that describes the map extract
after the detection of sequence and grid areas (naturalmapxml_extended.xsd). Therefore, the elements
sequenceArea and gridArea, which are only known after this processing, can also be used here.

The selectattr and selectval elements are used to match an element of a specific kind by its
attribute values. The selectval element uses regular expressions to perform a match. Capturing
groups such as (.*) can be used here, so that the target part of the conversion rule can later refer
to parts of the matched value.

Finally, there can be zero, one or several sourcecond elements, which allow to define further to
which map items the rule applies. If several sourcecond elements are specified, the rule is triggered
only if all conditions match (logical AND).

The basic structure of a target element is as follows:

<target>
<targetitem>...</targetitem>
<targetattr>

<attrname>...</attrname>
<attrvalue>...</attrvalue>

</targetattr>
<targetattr>

...
</targetattr>
...

</target>

In detail, there are several different options to specify a target item:

■ Specify the root element name of an Application Designer control, along with its attributes and
attribute values. The attribute value can be a constant, a variable or a reference to a capturing
group from a regular expression in a sourcecond element of the same rule. In this case, the
corresponding control is generated during conversion.

<target>
<targetitem>label</targetitem>
<targetattr>

<attrname>height</attrname>
<attrvalue>10</attrvalue>

</targetattr>
<targetattr>

<attrname>width</attrname>
<attrvalue>$$width$$</attrvalue>

</targetattr>
<targetattr>

<attrname>name</attrname>
<attrvalue>$1</attrvalue>

</targetattr>
</target>

Natural for Ajax140

Customizing the Map Conversion Process

■ Specify the name of a variable that is defined in the conversion rules file in a convvariable
element.

<target>
<targetitem>$$name$$</targetitem>

</target>

■ Refer to the name of a template file, optionally along with attribute names and values. In this
case, whatever is contained in the template file will be generated. Attribute definitions in the
template file are replaced.

<target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
<targetattr>

<attrname>name</attrname>
<attrvalue>$1</attrvalue>

</targetattr>
<targetattr>

<attrname>method</attrname>
<attrvalue>P$1</attrvalue>

</targetattr>
</target>

■ Refer to the name of a template variable and the name of a template file, separated by a dot. In
this case, the template variable is replaced with whatever is contained in the template file.

<target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>

</target>

■ Only in the root rule: Specify the name of a template file and the name of a template variable
that is contained in this file, separated by a dot. In this case, the template variable is replaced
with the entire result of the map conversion.

<target>
<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>

</target>

■ Specify "$$" as the target item. This is useful when writing a more general rule that is to apply
after another more specific rule has already created a target item. The attributes specified along
with the target item "$$" are applied to the already created target item, whatever this target item
was.

141Natural for Ajax

Customizing the Map Conversion Process

<target>
<targetitem>$$</targetitem>
<targetattr>

<attrname>datatype</attrname>
<attrvalue>xs:double</attrvalue>

</targetattr>
</target>

■ Specify "$." as the target item. This refers to the template that is currently being processed. The
attributes specified along with the target item "$." are applied to the current template.

<target>
<targetitem>$.</targetitem>
<targetattr>

<attrname>$$NATSOURCE$$</attrname>
<attrvalue>$1-A</attrvalue>

</targetattr>
</target>

Templates

The Map Converter assembles page layouts from templates. Which templates are used, how they
are assembled and how variables in templates are filled is controlled by the conversion rules.

A template file describes the general layout of an entire Application Designer page layout or of
an individual Application Designer control. A template can contain variables and references to
other templates. During conversion, the Map Converter resolves the structure of the templates
and fills the variables with specific values, depending on the contents of the map.

A template file can describe a simple control such as a FIELD control or a more complex control
such as a TEXTGRIDSSS2 control. For the same control, multiple templates may exist. For example,
an ofield_TEMPLATE and an ifield_TEMPLATE may both be templates for the FIELD control. The
ofield_TEMPLATE would be used for output fields, the ifield_TEMPLATE for modifiable fields.
Which template is used for which subset of fields of the map is specified in the conversion rules.

Template files are well-formed XML files which contain control definitions. They are placed in
the folder convrules of your Application Designer project directory. The file name must end with
"_TEMPLATE.xml". The Map Converter ships with a set of default template files.

The following topics are covered below:

■ Variables in Templates
■ Templates in Templates

Natural for Ajax142

Customizing the Map Conversion Process

■ Editing Templates

Variables in Templates

As already seen in the examples above, templates can contain variables. Variables can be freely
defined by the user. Example:

<?xml version="1.0" encoding="UTF-8"?>
<natpage xmlns:njx=http://www.softwareag.com/njx/njxMapConverter

natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>
<pagebody>

<njx:njxvariable name="MAPROOT"/>
</pagebody>
<statusbar withdistance="false"/>

</natpage>

■ Variables as placeholders for the property values of controls
An example is the variable $$TITLEVAR$$ in the template above. If a template contains a variable
such as name="$$TITLEVAR$$", there must be a corresponding rule that yields a value for the
variable $$TITLEVAR$$. The Map Converter replaces the variable with this value.

The built-in variable $$ has a specific meaning. If it occurs as a property value, there is no specific
rule needed to produce the value. Instead, the Map Converter receives the value from a so-called
tag converter. Tag converters are Java classes that are delivered with the Map Converter.
Exchanging or writing your own tag converters is an advanced way of extending the Map
Converter and is usually not required. See Tag Converters for further information.

■ Variables as placeholders for controls and containers
An example is the variable MAPROOT in the template above. Such a variable is defined by inserting
an NJX:NJXVARIABLE control (from the controls palette of the Layout Painter) into a template.
As long as the XML of the template is well-formed, an NJX:NJXVARIABLE control can be
inserted at any place in the template. Conversion rules refer to this variable as $MAPROOT. Notice
that the value in the name property of an NJX:NJXVARIABLE control does not start with $.
Instead, the NJX:NJXVARIABLE control itself defines that it is a variable. The NJX:NJXVARIABLE
control is a special control in the Natural Extensions section of the Layout Painter's controls
palette.

143Natural for Ajax

Customizing the Map Conversion Process

Templates in Templates

Templates can refer to other templates. This can be done via adding variables. The variable can
serve as a placeholder for another template. The template name is defined via a corresponding
rule.

Example (GRID_TEMPLATE.xml):

<?xml version="1.0" encoding="UTF-8"?>
<rowtablearea2 withborder="false" griddataprop="$$gridname$$" rowcount="$$" >

<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDHEADER" />

</tr>
<repeat>

<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDITEM" />

</tr>
</repeat>

</rowtablearea2>

This means: A conversion rule like the following maps a grid area detected in the map to a
ROWTABLEAREA2 control and formats the header and rows as specified in the templates
GRIDHEADER_TEMPLATE.xml and GRIDITEM_TEMPLATE.xml.

<convrule rulename="Griditem_rule">
<description>Mapping rule for the items of grid.</description>
<source>
<sourceitem>gridArea//ifField</sourceitem>

</source>
<target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>

</target>
<target>
<targetitem>$GRIDHEADER.$GRIDHEADER_TEMPLATE</targetitem>

</target>
</convrule>

Natural for Ajax144

Customizing the Map Conversion Process

Editing Templates

Only NATPAGE templates (like the default NATPAGE template NATPAGE_TEMPLATE.xml) can
be edited with the Layout Painter. Templates for individual controls must currently be edited
using a text editor.

Tag Converters

A template must be a valid XML document. The root element must correspond to the root element
of a valid Application Designer control. Templates can contain variables. A special variable is the
variable $$.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<button name="$$" method="$$"></button>

Each template is processed by a so-called tag converter. Tag converters are in charge of resolving
the variable $$. A tag converter is a Java class that must support a specific interface and be available
in the class path of the Map Converter. Which tag converter is used depends on the root element
of the template.

In the above example, the root element is the BUTTON control. The following rule applies:

■ If a Java class with the name
com.softwareag.natural.mapconverter.converters.BUTTONConverter is found in the Java
class path, this Java class is used as the tag converter.

■ Otherwise, the class com.softwareag.natural.mapconverter.converters.DEFAULTConverter
is used as the tag converter.

In the above example, the Map Converter tries to find the class BUTTONConverter first. Since a
specific tag converter for the BUTTON control is not delivered with the Map Converter, the class
DEFAULTConverter is used as the tag converter.

In order to supply a custom tag converter for the BUTTON control, for instance, you would have
to create a Java class BUTTONConverter that belongs to the package
com.softwareag.natural.mapconverter.converters and make it available in the Java class path
of the Map Converter.

Detailed information on how to write your own tag converters is provided in the Application
Designer development workplace as Javadoc; see Map Converter Extension API in the Natural
Tools node of the navigation frame (under Tools & Documentation).

145Natural for Ajax

Customizing the Map Conversion Process

146

26 Code Conversion

■ General Information ... 148
■ Generating Adapters .. 148
■ Structure of a Map-Based Application .. 148
■ Structure of a Natural for Ajax Application ... 149
■ Tasks of the Code Conversion .. 150
■ DEFINE DATA Statement .. 150
■ INPUT Statement .. 151
■ REINPUT Statement .. 152
■ PF-Key Event Handling ... 154
■ SET KEY Statement ... 155
■ Processing Rules ... 158
■ System Variables ... 158
■ Variable Names Containing Special Characters ... 159

147

General Information

After the Map Converter has been used to create page layouts from map extract files, the last step
in the conversion process is adapting the application code to the new user interface. This step can
either be performed manually or, with Natural Engineer, partly automatically. In the following,
the manual code conversion is described.

Generating Adapters

First of all, it is necessary to generate HTML code and Natural adapters from the page layouts
that have been created by the Map Converter. This is the same procedure as with page layouts
that have been created manually with the Layout Painter. Then, the adapters are imported into
the Natural development environment.

Structure of a Map-Based Application

In this context, we need not consider the application code as a whole, but only the layer that
handles the user interface. Often, the user interface handling part of a map-based application is
structured in the following way:

■ DEFINE DATA

■ Initialization
■ REPEAT

■ INPUT [USING MAP map-name]

■ Includes client-side validations (processing rules)
■ Server-side validations

■ REINPUT or ESCAPE TOP

■ DECIDE ON *PF-KEY

■ Function key handler 1
■ Processing
■ REINPUT or ESCAPE TOP

■ Function key handler 2
■ Processing
■ REINPUT or ESCAPE TOP

Natural for Ajax148

Code Conversion

■ Function key handler n
■ Processing
■ ESCAPE BOTTOM

■ ...
■ END-DECIDE

■ END-REPEAT

■ Cleanup
■ END

In practice,

■ the REPEAT loop might or might not be there, and
■ there might not be a clean DECIDE structure for the function key handlers. Instead, checks for

the pressed function key might be spread all over the code.

However, accepting these differences, the above structure should match a large number of
applications.

Structure of a Natural for Ajax Application

The corresponding part of a Natural for Ajax application looks as follows:

■ DEFINE DATA

■ Initialization
■ REPEAT

■ PROCESS PAGE USING adapter-name

■ Includes client-side validations
■ Server-side validations

■ PROCESS PAGE UPDATE FULL

■ DECIDE ON *PAGE-EVENT

■ Event handler 1
■ Processing
■ PROCESS PAGE UPDATE FULL or ESCAPE TOP

■ Event handler 2
■ Processing
■ PROCESS PAGE UPDATE FULL or ESCAPE TOP

149Natural for Ajax

Code Conversion

■ Event handler n
■ Processing
■ ESCAPE BOTTOM

■ ...
■ END-DECIDE

■ END-REPEAT

■ Cleanup
■ END

Tasks of the Code Conversion

The code conversion should achieve the following:

■ It should be minimal invasive.
■ It should not duplicate business code.
■ The converted application should be able to run not only with the new user interface, but also

in a terminal session, in a Natural Web I/O Interface session and in batch, if it did so before the
code conversion.

In detail, the code conversion needs to deal with the statements and constructs mentioned below.

DEFINE DATA Statement

The DEFINE DATA statement must be extended because the data structures exchanged between a
program and map are not fully identical to those exchanged between a program and the
corresponding adapter.

The default conversion rules delivered with the Map Converter perform a data type mapping that
tries to ensure that the data elements in the map interface are mapped to data elements of the same
type and name in the adapter interface.

The Application Designer controls are usually not only bound to business data elements, but also
to additional control fields. Which control fields these are depends on the way in which the elements
of a map are mapped to Application Designer controls by the Map Converter rules. For instance,
a statusprop can be assigned to a field, which results in an additional parameter in the parameter
data area of the adapter. An array on a map can have been converted to a grid control with server-
side scrolling. In this case, the additional data structures needed to control server-side scrolling
need to be added to the DEFINE DATA statement.

Natural for Ajax150

Code Conversion

statusprop

The statusprop is needed to control the error status or focus of a FIELD control dynamically (see
example 3 for the REINPUT statement below where it is used to replace the MARK *field-name
clause). The default conversion rules contain a rule that creates a statusprop property for each
map field that is controlled by a control variable. The adapter generator creates from this property
a corresponding status variable and a comment line that identifies the status variable as belonging
to the field.

Example

The parameter data area of the map contains:

01 LIB-NAME (A8)
01 LIB-NAME-CV (C)

The parameter data area of the adapter will then contain:

* statusprop= STATUS_LIB-NAME-CV
01 LIB-NAME (A8)
01 STATUS_LIB-NAME-CV (A) DYNAMIC

The variable STATUS_LIB-NAME-CV is not yet known to the main program and must be defined
there.

INPUT Statement

The replacement for the INPUT statement is the PROCESS PAGE statement. In its simplest form, the
INPUT statement just references the map. In this case, it is just replaced by a PROCESS PAGE statement
with the corresponding adapter.

Example 1

Main program before conversion:

INPUT USING MAP 'MMENU'

151Natural for Ajax

Code Conversion

Main program after conversion:

IF *BROWSER-IO NE 'RICHGUI'
INPUT USING MAP 'MMENU'

ELSE
PROCESS PAGE USING 'AMENU'

END-IF

The INPUT statement can come with a message text that is displayed in the status bar. There is no
direct replacement for this construction because the PROCESS PAGE statement (in contrast to the
PROCESS PAGE UPDATE statement) does not support the SEND EVENT clause.

Example 2

Main program before conversion:

INPUT WITH TEXT MSG01 USING MAP 'MMENU'

Main program after conversion (no message will be displayed):

IF *BROWSER-IO NE 'RICHGUI'
INPUT WITH TEXT MSG01 USING MAP 'MMENU'

ELSE
PROCESS PAGE USING 'AMENU'

END-IF

REINPUT Statement

The replacement for the REINPUT statement is the PROCESS PAGE UPDATE statement. In its simplest
form, the REINPUT statement comes with a message text that is displayed in the status bar. In the
converted code, this is handled by the SEND EVENT clause of the PROCESS PAGE UPDATE statement.

Example 1

Main program before conversion:

REINPUT [FULL] WITH TEXT MSG01

Natural for Ajax152

Code Conversion

Main program after conversion:

IF *BROWSER-IO NE 'RICHGUI'
REINPUT [FULL] WITH TEXT MSG01

ELSE
PROCESS PAGE UPDATE [FULL]

AND SEND EVENT 'nat:page.message'
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSG01

END-PARAMETERS
END-IF

The REINPUT statement can come with a message number and replacements. In this case, the
message must be created from number and replacements before it is sent to the status bar with
the SEND EVENT clause.

Example 2

This example uses a subprogram GETMSTXT that builds the message text from number and
replacements.

Main program before conversion:

REINPUT [FULL] WITH TEXT *MSGNR, REPL1, REPL2

Main program after conversion:

IF *BROWSER-IO NE 'RICHGUI'
REINPUT [FULL] WITH TEXT *MSGNR, REPL1, REPL2

ELSE
CALLNAT 'GETMSTXT' MSTEXT MSGNR REPL1 REPL2
PROCESS PAGE UPDATE [FULL]

AND SEND EVENT 'nat:page.message'
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSTEXT

END-PARAMETERS
END-IF

Example 3

The REINPUT statement can come with a MARK clause in order to put the focus on a field. This case
requires that a statusprop property is created for the field during map conversion. The variable
bound to the statusprop property is then used before the PROCESS PAGE UPDATE statement to set
the FOCUS to the field.

153Natural for Ajax

Code Conversion

Main program before conversion:

REINPUT [FULL] WITH TEXT MSG01 MARK *LIB-NAME

Main program after conversion:

01 STATUS_LIB-NAME-CV (A) DYNAMIC
...
IF *BROWSER-IO NE 'RICHGUI'

REINPUT [FULL] WITH TEXT MSG01 MARK *LIB-NAME
ELSE

STATUS_LIB-NAME-CV := 'FOCUS'
PROCESS PAGE UPDATE FULL

AND SEND EVENT 'nat:page.message'
WITH PARAMETERS
NAME 'type' VALUE 'W'
NAME 'short' VALUE MSG01

END-PARAMETERS
END-IF

PF-Key Event Handling

The original application might contain checks for the content of the system variable *PF-KEY at
arbitrary places in the code. In order to handle function key events correctly in the converted
application, several things need to be achieved:

■ In response to the function keys, the converted application must raise events that are named
like the possible contents of *PF-KEY. This can be achieved by using a page template such as
NATPAGEHOTKEYS_TEMPLATE.xml which contains the required hotkey definitions.

■ A common local variable must be set up right after the INPUT or PROCESS PAGE statement that
contains either the value *PF-KEY or *PAGE-EVENT, depending on the execution environment.
The name of the variable can be freely chosen. In the example below, the name XEVENT is used.

■ The event nat:page.end must be handled in such a way so that the program terminates. This
event is raised when the user leaves the page or closes the browser session.

■ A default event handler must be set up that takes care of the values of *PAGE-EVENT that are not
expected by the original application code. These unexpected events are simply replied with a
PROCESS PAGE UPDATE FULL statement.

Natural for Ajax154

Code Conversion

Example

01 XEVENT (U) DYNAMIC
...
PROCESS PAGE USING ...
...
IF *BROWSER-IO = 'RICHGUI'

DECIDE FOR FIRST CONDITION
WHEN *PAGE-EVENT = 'nat:page.end'
STOP

WHEN *PAGE-EVENT = MASK ('PF'*) OR = MASK ('PA'*)
OR = 'ENTR' OR = 'CLR'
XEVENT := *PAGE-EVENT

WHEN NONE
PROCESS PAGE UPDATE FULL

END-DECIDE
ELSE

XEVENT := *PF-KEY
END-IF

All references to *PF-KEY in the code must then be replaced by references to XEVENT.

SET KEY Statement

Natural for Ajax provides two controls (NJX:BUTTONITEMLIST and
NJX:BUTTONITEMLISTFIX) that represent a row of buttons. These controls can be used to
replace the visual representation of the function keys from the original application. If the page
template NATPAGEPFKEYS_TEMPLATE.xml or a similar individually adapted template is used
during map conversion, each resulting page will contain a row of function key buttons. The subject
of this section is how the converted application can control the labeling and the program-sensitivity
of the function keys with only little code changes.

Natural controls the labeling and program-sensitivity of the function keys in a highly dynamic
way. The corresponding application code (SET KEY statements) can be distributed across program
levels and can be lexically separated from the corresponding INPUT statements. Also, the SET KEY
statement has several flavors, some affecting all keys and others affecting only individual keys.
As a result, the status of the function keys at a given point in time can only be determined at
application runtime.

Therefore, the following approach is chosen: Natural provides the application programming
interface (API) USR4005 that reads the current function key naming and program-sensitivity at
runtime. During code conversion, a call to this API is inserted after each SET KEY statement or into
each round trip. This call reads the function key status and passes it to the user interface.

155Natural for Ajax

Code Conversion

Example

Main program before conversion:

SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'
PF3 NAMED 'Modify' PF4 NAMED 'Delete' PF5 NAMED 'F5'
PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display'
PF9 NAMED 'F9' PF10 NAMED 'F10' PF11 NAMED 'F11' PF12 NAMED 'F12'
*
INPUT USING MAP "KEYS-M"
*
END

Map before conversion:

*** PF-Keys ***

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Enter F1 F2 Modif Delet F5 F6 Creat Displ F9 F10 F11 F12

Natural for Ajax156

Code Conversion

Main program after conversion:

DEFINE DATA LOCAL
1 PFKEY (1:*)
2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC
2 TITLE (A) DYNAMIC
2 VISIBLE (L)
1 METHODS (A4/13) CONST <'ENTR','PF1','PF2','PF3','PF4',
'PF5','PF6','PF7','PF8','PF9','PF10','PF11','PF12'>
END-DEFINE
*
SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'
PF3 NAMED 'Modify' PF4 NAMED 'Delete' PF5 NAMED 'F5'
PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display'
PF9 NAMED 'F9' PF10 NAMED 'F10' PF11 NAMED 'F11' PF12 NAMED 'F12'
*
IF *BROWSER-IO NE "RICHGUI"

INPUT USING MAP "KEYS-M"
ELSE

EXPAND ARRAY PFKEY TO (1:13)
METHOD(1:13) := METHODS (*)
CALLNAT "GETKEY-N" PFKEY (*)
PROCESS PAGE USING "KEYS-A"

END-IF
*
END

Page after conversion:

Explanation

The structure PFKEY is generated into the Natural adapter of the page as the application interface
to the BUTTONITEMLISTFIX control.

The subprogram GETKEY-N is a convenience wrapper for the API subprogram USR4005. It uses
USR4005 to determine the labeling and the program-sensitivity status for a given list of function
keys. Each function key is identified by the *PF-KEY value it raises. GETKEY-N returns the function
key information in a data structure suitable for the application interface of the
BUTTONITEMLISTFIX control. The subprogram is delivered in the library SYSEXNJX in source
code and can be adapted to the needs of the application.

157Natural for Ajax

Code Conversion

Processing Rules

The Natural maps in the application to be converted may contain processing rules. In the sense
of a Natural for Ajax application, the processing rules are server-side validations because they are
executed on the Natural server side of the application.

In order to extract processing rules from the maps and to turn them into server-side validations
in the converted application, the Natural Engineer function 「Separate Processing Rules from
Maps」 can be used.

There is currently no function available that automatically turns processing rules into client-side
validations in Application Designer.

System Variables

If a map displays a system variable (for example, *DATX), a specific default conversion rule takes
care that the necessary code for handling the system variable is generated into the Natural adapter
of the resulting page layout.

Example 1

The map displays the contents of the system variables *DATX and *TIMX. The contents of these
system variables are not modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XDATX (A8)
01 XTIMX (A8)

The body of the adapter will then contain:

XDATX := *DATX
XTIMX := *TIMX
*
PROCESS PAGE ... WITH
PARAMETERS
...
NAME U'XDATX'
VALUE XDATX

NAME U'XTIMX'
VALUE XTIMX

END-PARAMETERS

Natural for Ajax158

Code Conversion

The main program needs no special adaptation.

Example 2

The map displays the content of the system variable *CODEPAGE. The content of this system variables
is modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XCODEPAGE (A64)

The body of the adapter will then contain:

XCODEPAGE := *CODEPAGE
*
PROCESS PAGE ... WITH
PARAMETERS
...
NAME U’XCODEPAGE’
VALUE XCODEPAGE

...
END-PARAMETERS
*
*CODEPAGE := XCODEPAGE

The main program needs no special adaptation.

Variable Names Containing Special Characters

A similar procedure applies to special characters contained in variable names. These are the
following special characters:

+
#
/
@
§
&
$

注意: The hash (#) can occur only as the first character.

Variables names containing these special characters cannot be directly bound to Application
Designer control attributes. A specific default conversion rule replaces the names containing these

159Natural for Ajax

Code Conversion

special characters with configurable replacements. The original field name is generated into the
parameter data area of the Natural adapter and a corresponding mapping is generated into the
PROCESS PAGE statement of the adapter.

Example

The map displays the variables #FIRST and #LAST.

The DEFINE DATA statement of the adapter will then contain:

DEFINE DATA PARAMETER
1 #FIRST (A16)
1 #LAST (A20)

The body of the adapter will then contain:

...
PROCESS PAGE ... WITH
PARAMETERS
...
NAME U'HFIRST'

VALUE #FIRST
NAME U'HLAST'
VALUE #LAST

...
END-PARAMETERS

The main program needs no special adaptation.

Natural for Ajax160

Code Conversion

27 Working with Controls

Controls are the elements that are placed inside containers. This part first gives some common
rules that are valid for all controls, then describes the controls in more detail.

The information provided in this part is organized under the following headings:

Some Common Rules for all Controls

BREADCRUMB

BUTTON

BUTTONLIST

CHECKBOX

COMBODYN2

COMBOFIX

DATEINPUT

DROPICON

FIELD

FILEUPLOAD/FILEUPLOAD2

ICON

ICONLIST

IHTML

161

IMAGEOUT

LABEL

MENUBUTTON

METHODLINK

MULTISELECT

NEWSFEED

RADIOBUTTON

SCHEDULELINE

SLIDER

STRIPSEL

SUBPAGE

TABSEL

TABSTRIP2

TAGCLOUD

TEXT

TEXTOUT

TOGGLE

Special Controls:

ACTIVEX

GOOGLEMAP2

NETMEETING

SKYPECALL

Natural for Ajax Controls:

NJX:BUTTONITEMLIST

NJX:BUTTONITEM

NJX:BUTTONITEMLISTFIX

Natural for Ajax162

Working with Controls

NJX:BUTTONITEMFIX

NJX:FIELDLIST

NJX:FIELDITEM

NJX:FIELDVALUE

NJX:NJXVARIABLE

NJX:EVENTDATA

163Natural for Ajax

Working with Controls

164

28 Some Common Rules for all Controls

■ Name and Text ID .. 166
■ Table, Row, Column, Control .. 166
■ Explicit Alignment .. 166
■ Binding to Adapter Parameters ... 167
■ Directly Influencing the Control Style ... 167
■ Dynamically Controlling the Visibility and the Display Status of Controls .. 168
■ Focus Management ... 168
■ Flushing of Inputs .. 169
■ Tab Sequence ... 169
■ Tooltips .. 171

165

Name and Text ID

Every time a control needs a static text definition (the name of a button or the name of a label),
there are always two possibilities to define this text:

■ Specify a name directly.
■ Specify a text ID. This is a literal replaced with a string that is determined inside the multi

language management at runtime.

Table, Row, Column, Control

Most controls that allow dynamic sizing offer the following properties:

■ colspan - number of columns occupied by the control.
■ rowspan - number of rows occupied by the control.
■ width - width.
■ height - height.

These properties influence the way how controls are placed into container rows.

Explicit Alignment

Controls are put into table columns. If the column is wider or higher than the control itself, then
you can explicitly control the vertical and horizontal alignment of the control inside the columns.

Most controls offer two properties:

■ valign
Specifies the vertical alignment. Valid values are "top", "middle", "bottom". "middle" is the default
value.

■ align
Specifies the horizontal alignment. Valid values are "left", "center", "right". The default value
depends on the control. For example, labels are aligned "left" by default, the default for radio
buttons is "center".

Pay attention: valign and align only affect the position of the control inside the column in which
it is positioned if the column is larger than the control. If the column is exactly as wide and high
as the control itself, which is the typical case, then they do not have any visual effects - and also
need not be defined.

Natural for Ajax166

Some Common Rules for all Controls

align/valign do not affect the control's internal alignment.

Binding to Adapter Parameters

Most controls provide properties to specify the binding to the adapter processing. There is a naming
convention, which is:

■ The names of the properties which specify the binding to an adapter parameter end with "prop".
■ The names of the properties which specify the binding to an event end with "method".

The type of the adapter parameter which is referenced by a control depends on the control itself:

■ Most controls directly bind to scalar adapter parameters.
■ More complex controls bind to an array of group structures.

The type of adapter parameter is described with each control.

Directly Influencing the Control Style

All controls that incorporate textual information - such as labels, buttons or fields - offer the
possibility to influence directly the style that is used for displaying the information.

The normal style is derived from the definition inside a cascading style definition file (file layout.css
inside the html/general directory of the server). Overwrite or enhance this style information for
your controls by passing the style information inside the corresponding style properties.

The properties specifying the style information end with the suffix "style", e.g. there is a property
labelstyle for the label tag. The value of the property can be any kind of a valid HTML style
specification. If you want to change the display style of a label to be large and blue, define the
label in the following way:

<label name="Test" width="150" labelstyle="font-size: 24pt; color: #0000FF">
</label>

167Natural for Ajax

Some Common Rules for all Controls

Dynamically Controlling the Visibility and the Display Status of Controls

It is possible to influence the visibility of all input controls (FIELD, BUTTON, etc.) by adapter
parameters.

For some of these controls there is a property visibleprop, specifying a Boolean adapter parameter.
By this, you can control whether you want to display the control within the client or not.

For all other controls - and for more complex manipulations of what is visible and not - use the
possibility to be able to control the visibility of rows (ITR, TR) or containers (ROWAREA,
ROWTABLE0): these controls provide for a visibility parameter and consequently can be switched
on and off.

There is an extended management of what the control status "INVISIBLE" means. Most input
controls (FIELD, CHECKBOX, etc.) supporting a statusprop or a visibleprop also support a
property invisiblemode. The allowed values of invisiblemode are:

■ invisible
The corresponding control is completely removed. The horizontal space it occupied before is
taken out.

■ cleared
The corrresponding control is not visible but still occupies its horizontal space.

■ disabled
The corresponding control is displayed with a disabled state. This state is only allowed with a
certain number of controls (e.g. button and icon).

Focus Management

Sometimes you want to control the keyboard focus inside a page. Here are the internal rules how
a page finds out where to put the focus on.

The default reaction is - if a page is displayed for the first time - to put the focus on the first input
control (FIELD, CHECKBOX, RADIOBUTTON, etc.) that is available inside a page. After that, you
can navigate through the input controls - and the focus is kept stable when interacting with the
server.

With statusprop - as mentioned in the previous section - you can interrupt this default reaction;
there are two possibilities:

■ If an input control is set to status "ERROR", it requests the focus automatically. The purpose is
to guide the user automatically to those fields that are not correctly entered.

Natural for Ajax168

Some Common Rules for all Controls

■ If an input control is set to status "FOCUS", it is editable - just as normal - and also requests the
focus.

If several input controls are requesting the focus at the same time, the focus is put on the first
corresponding input control.

Flushing of Inputs

Most input controls (FIELD, CHECKBOX, RADIOBUTTON, COMBOFIX, etc.) support a property
named flush. This property controls whether data input from a user causes an immediate
synchronisation with the server or whehter data input from a user is stored internally within the
client and is synchronized with the next flushing event (e.g. when choosing a button).

There are three different values that can be specified with the flush property:

■ ""(blank)
The data is not synchroized after leaving the control. This is the default.

■ server
The data is synchronized with the server immediately when the data has been entered, i.e. when
the user has left the corresponding input field.

■ screen
The data is synchronized within the controls of the screen. This means - if you have two fields
displaying the same property - you can synchronize the fields immediately, without interacting
with the server.

ヒント: On the one hand, it is useful to flush information in a very fine granular way; you
can react on wrong entered data immediately - on the other hand, you have to remember
that each flush causes network traffic. The screen's data is sent to the server side processing
and the screen waits for the response of the server. During this time, the page is blocked
for input and the user sees an hour glass popping up in the left top corner of the screen.

Tab Sequence

By default, the tab sequence of the controls of a page is defined by the order of the controls inside
the page's XML layout definition. Using the property tabindex, this order can be overridden and
the order of the tab index can be explicitly defined.

169Natural for Ajax

Some Common Rules for all Controls

The following example shows a page with three fields and one button with an explicitly defined
tab sequence:

The XML layout definition is:

<rowarea name="Simple Tab Sequence">
<itr takefullwidth="true">

<coltable0 width="50%">
<itr>

<label name="First" width="120">
</label>
<field valueprop="first" width="120" tabindex="1">
</field>

</itr>
<itr>

<label name="Third" width="120">
</label>
<field valueprop="third" width="120" tabindex="3">
</field>

</itr>
</coltable0>
<coltable0 width="50%">

<itr>
<label name="Second" width="120">
</label>
<field valueprop="second" width="120" tabindex="2">
</field>

</itr>
<itr>

<hdist width="120">
</hdist>
<button name="OK" method="onOK" tabindex="4">
</button>

</itr>
</coltable0>

</itr>
</rowarea>

According to the sequence of controls inside the layout definition, the default tab sequence would
be: field First, field Third, field Second and button OK.

Due to explicitly defining the tabindex property for the fields and the button, the tab sequence is
now correct: field First, field Second, field Third and button OK.

Natural for Ajax170

Some Common Rules for all Controls

Pay attention:

■ Once having started to explicitly set the tab index in a page, you must consequently continue
with all controls of the page. Adding new controls without tab index, is internally interpreted
as if these controls were defined with tab index "0".

■ Equal tab indices in controls are allowed. In this case, the sequence of the controls inside the
layout definition defines the tab sequence among the controls with an equal index.

■ Moving controls from one location to the other within a page typically means that you have to
adapt the tab sequence accordingly.

The tab index usually is a positive integer value. You may define tab index "-1" for excluding
certain controls from the tab sequence at all. In this case, the corresponding controls may only be
reached by mouse clicking.

Conclusion:

■ In typical pages, you do not have to take care of the tab sequence at all because the default (tab
sequence by order of controls in page layout) is adequate to the user's experience.

■ Only use the explicit definition of the tab sequence if really it is required - the effort for maintaing
each tab index with each control should not be underestimated.

Tooltips

Tooltips can be applied to many controls. If the user hovers with the mouse cursor over a control
for some seconds, a small yellow box appears showing some more detailed explanation.

The corresponding controls offer two properties:

■ title
Here you can specify a hard-coded text that is used as the tooltip.

■ titletextid
Here you specify a text ID that is passed to the multi language management..

171Natural for Ajax

Some Common Rules for all Controls

172

29 BREADCRUMB

■ Example .. 174
■ Adapter Interface ... 174
■ Built-in Events ... 174
■ Properties .. 175

173

The BREADCRUMB control represents a horizontal list of links. The number of links and the name
of each link is dynamically controlled by the application.

The control always occupies 100% of the given width.

Example

The XML layout definition is:

<rowarea name="Bread Crumbs...">
<breadcrumb breadcrumbprop="items">
</breadcrumb>

</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 ITEMS (1:*)
2 STYLE (U) DYNAMIC
2 TEXT (U) DYNAMIC
2 TOOLTIP (U) DYNAMIC
1 ITEMSINFO
2 SELECTEDITEM (I4)
END-DEFINE

Built-in Events

value-of-breadcrumbprop.onSelect

Natural for Ajax174

BREADCRUMB

Properties

Basic

ObligatoryName of the adapter parameter that represents the control
in the adapter.

breadcrumbprop

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

breadcrumbstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

1OptionalPixel distance between the links that are rendered.pixeldistance

2

3

int-value

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

175Natural for Ajax

BREADCRUMB

176

30 BUTTON

■ Example: Simple Button .. 178
■ Example: Button with Image .. 179
■ Hiding and Disabling Buttons ... 179
■ Properties .. 179

177

The BUTTON control represents a button. Within the definition, specify an event that is sent to
the adapter when choosing the button.

Example: Simple Button

The XML layout definition is:

<rowarea name="Buttons">
<itr>

<button name="Save As ..." method="saveAs">
</button>
<hdist>
</hdist>
<button name="Refresh" method="refresh">
</button>

</itr>
</rowarea>

Natural for Ajax178

BUTTON

Example: Button with Image

The XML layout definition is:

<rowarea name="Buttons">
<itr>

<button name="Save" method="onSave" image="../HTMLBasedGUI/images/save.gif">
</button>
<hdist>
</hdist>
<button name="Remove" method="onRemove"

image="../HTMLBasedGUI/images/remove.gif">
</button>

</itr>
</rowarea>

Hiding and Disabling Buttons

Buttons (like many other controls) can be dynamically hidden by using the visibleprop property
- and referencing to a server side property that decides whether to hide a button or not.

There are two modes of hiding that can be controlled by using the property invisiblemode:

■ If set to "disabled", the button is grayed and is not selectable anymore.
■ If set to "invisible", the button is hidden.

Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

textid

179Natural for Ajax

BUTTON

Do not specify a "name" inside the control if specifying a
"textid".

ObligatoryName of the event that is sent to the adapter when the user
presses the button.

method

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)name

(already explained above)textid

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does understand
is valid.

image

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

invisibleOptionalThis property has three possible values:invisiblemode

disabled(1) "invisible": the button is not visible without occupying
any space.

cleared
(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies
space.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an

Natural for Ajax180

BUTTON

ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines
a height this control can reference. If you specify this control

100%to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

OptionalPixel height of image inside button.imageheight

OptionalPixel width of image inside button.imagewidth

background-color:
#FF0000

OptionalCSS style definition that is directly passed into the text of
this control.

textstyle

color: #0000FFWith the style you can individually influence the text of the
button. You can specify any style sheet expressions.
Examples are: font-weight: bold

font-weight: bold

color: #FF0000

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

buttonstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions

181Natural for Ajax

BUTTON

are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

VAR1OptionalSome controls offer the possibility to define style variants.
By this style variant you can address different styles inside

stylevariant

VAR2your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the
align control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

Natural for Ajax182

BUTTON

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but you may want to define the control two span
over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

gifOptionalURL of image that is displayed if the control is disabled.
Use properties VISIBLEPROP and INVISIBLEMODE to
disable the control.

imagedisabled

jpg

jpeg

trueOptionalSet this property to true and the button will work as an
'Submitbutton', that is neccessary if you want to transfer
and/or save form values.

submitbutton

false

i.e. password and username or complete search forms

Default value is false.

You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

Binding

(already explained above)method

OptionalName of the adapter parameter that provides the
information if this control is displayed or not. As

visibleprop

consequence you can control the visibility of the control
dynamically.

OptionalName of an adapter parameter that provides the text to be
displayed inside the button. Typically buttons have static

nameprop

texts either defined by the property "name" or "textid". Via

183Natural for Ajax

BUTTON

"nameprop" you can dynamically set the button's text by
your application. Use the nameprop in cases the button's
text should change dependent on your logic.

Example: you may want to define the button's text to reflect
the next status the user can set to a business object.

OptionalName of the adapter parameter that dynamically defines
the title of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

titleprop

Online help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

(already explained above)titleprop

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the
object identification

testtoolid

Natural for Ajax184

BUTTON

31 BUTTONLIST

■ Adapter Interface ... 186
■ Properties .. 186

185

The button list represents a vertical arrangement of buttons. The number of buttons and the name
on each button are dynamically controlled by the application.

The controls always occupy 100% of the given width and occupy the height required by the buttons.

Adapter Interface

DEFINE DATA PARAMETER
1 BUTTONLIST (1:*)
2 ID (U) DYNAMIC
2 IMAGEURL (U) DYNAMIC
2 METHOD (U) DYNAMIC
2 STYLE (U) DYNAMIC
2 TEXT (U) DYNAMIC
END-DEFINE

Properties

Basic

ObligatoryName of the adapter parameter that represents the control
in the adapter.

buttonlistprop

1OptionalPixel distance between the buttons that are rendered.pixeldistance

2

3

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

buttonstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions

Natural for Ajax186

BUTTONLIST

are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalPixel height of image inside button.imageheight

OptionalPixel width of image inside button.imagewidth

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

187Natural for Ajax

BUTTONLIST

188

32 CHECKBOX

■ Properties .. 190

189

The CHECKBOX control displays a check box. It represents a boolean value in the application.

Properties

Basic

ObligatoryName of the adapter parameter that represents the control
in the adapter.

valueprop

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

trueOptionalIf set to true, the FIELD will not be accessible for input. It
is just used as an output field.

displayonly

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size

rightof the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.

Natural for Ajax190

CHECKBOX

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the size

bottomof the column is bigger than the size of the control. In this
case the "align" property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but you may want to define the control
to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control
two span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

invisibleOptionalIf the visibility of the control is determined dynamically
by an adapter property then there are two rendering modes
if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source order
to resolve duplicates.

tabindex

0

1

191Natural for Ajax

CHECKBOX

2

5

10

32767

Label

OptionalText that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

OptionalMulti language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

OptionalWitdh of the distance between checkbox and label in pixel.hdistpixelwidth

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

labelstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Binding

(already explained above)valueprop

OptionalName of the adapter parameter that dynamically passes
information how the control should be rendered and how
it should act.

statusprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Natural for Ajax192

CHECKBOX

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to

flushmethod

be sent when the user updates the content of the control.
By doing so you can distinguish on the server side from
which control the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in
case the user presses F1 on the control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that
can be later on used within your test tool in order to do
the object identification

testtoolid

Typically, the CHECKBOX is followed by a LABEL control naming the displayed check box. In
the LABEL definition, set the property asplaintext to "true".

193Natural for Ajax

CHECKBOX

194

33 COMBODYN2

■ Adapter Interface ... 196
■ Properties .. 196

195

The COMBODYN control is the dynamic counterpart of the COMBOFIX control. Whereas the
selection options inside the COMBOFIX control are defined in a fixed way inside the page definition,
the COMBODYN2 control offers the possibility to control the selection options dynamically in the
application.

Adapter Interface

DEFINE DATA PARAMETER
1 COSTCENTER (U) DYNAMIC
1 VALIDCOSTCENTERS (1:*)
2 ID (U) DYNAMIC
2 NAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

Properties

Basic

ObligatoryName of the adapter parameter that provides the content of the
control.

valueprop

ObligatoryName of the adapter parameter that provides the valid values
that are available as selectable options.

validvaluesprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width of
the control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content.

140

160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

50%the parent element of the control properly defines a width this

100%control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row) may itself
define a width of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

Natural for Ajax196

COMBODYN2

(already explained above)width

OptionalNumber of rows that are displayed inside the control. If specified
as "1" (default) then the control is rendered as combo box - if
">1" then the control is rendered as multi line selection.

size

OptionalIf set to true, the FIELD will not be accessible for input. It is just
used as an output field.

displayonly

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is
part of a row (e.g. ITR or TR). Sometimes the size of the column

rightis bigger than the size of the control itself. In this case the "align"
property specifies the position of the control inside the column.
In most cases you do not require the align control to be explicitly
defined because the size of the column around the controls
exactly is sized in the same way as the contained control.

If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which
you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is
part of a row (e.g. ITR or TR). Sometimtes the size of the column

bottomis bigger than the size of the control. In this case the "align"
property specify the position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By default

3it is "1" - but you may want to define the control to span over
more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default it

3is "1" - but you may want to define the control two span over
more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

197Natural for Ajax

COMBODYN2

int-value

trueOptionalIf set to "true" then the combo box is rendered like a FIELD
control that offers valid value support.

renderasfield

false
Default is "false".

The normal translation of COMBODYN2 into HTML renders
an HTML-select control. This control has certain limitations
inside Internet Explorer: it only offers a very reduced set of styles
to manipulate its look and feel and - much worse: it always
occupies z-index "0" i.e. if you other areas overlapping the
COMBODYN2 area then COMBODYN2 is always on the top.
This is quite ugly if e.g. a menu is opened and parts of the menu
overlap a COMBODYN2 control.

trueOptionalIf set to "true" then multiple selections are allowed.allowmultiselection

false

OptionalCSS style definition that is directly passed into this control.combostyle

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

invisibleOptionalIf the visibility of the control is determined dynamically by an
adapter property then there are two rendering modes if the
visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and does
not show any roll over effects any more.

Binding

(already explained above)valueprop

(already explained above)validvaluesprop

Natural for Ajax198

COMBODYN2

OptionalName of the adapter parameter that dynamically passes
information how the control should be rendered and how it
should act.

statusprop

OptionalName of the adapter parameter that dynamically defines the
title of the control. The title is displayed as tool tip when ther
user moves the mouse onto the control.

titleprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the
browser client - and communicated to the server adapter object
when a user e.g. presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly after changing
the input a synchronization with the server adapter is triggered.
As consequence you directly can react inside your adapter logic
onto the change of the corresponding value. - Please be aware
of that during the synchronization always all changed properties
- also the ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if
you want to pass one changed value to all its representaion
directly after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be

flushmethod

sent when the user updates the content of the control. By doing
so you can distinguish on the server side from which control
the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in case
the user presses F1 on the control.

helpid

(already explained above)titleprop

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be
later on used within your test tool in order to do the object
identification

testtoolid

199Natural for Ajax

COMBODYN2

200

34 COMBOFIX

■ COMBOFIX Properties ... 202
■ COMBOOPTION Properties ... 205

201

The COMBOFIX control is a selection control. Depending on its configuration, it is either displayed
as a combo box or as a selection list.

The COMBOFIX control allows specifying a defined set of values which can be selected. This set
of values is defined as part of the layout definition - it cannot be controlled dynamically by the
application.

注意: If you want to use dynamic selection, there are two possibilities. Either use the
COMBODYN control which has the same look and feel as the COMBOFIX control, but
where the selectable values are not specified as part of the page definition and are controlled
by the application. Or use the value help popup dialogs.

COMBOFIX Properties

Basic

ObligatoryName of the adapter parameter that provides the content of the
control.

valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

OptionalNumber of rows that are displayed inside the control. If specified as
"1" (default) then the control is rendered as combo box - if ">1" then
the control is rendered as multi line selection.

size

OptionalIf set to true, the FIELD will not be accessible for input. It is just used
as an output field.

displayonly

leftOptionalHorizontal alignment of control in its column.align

Natural for Ajax202

COMBOFIX

centerEach control is "packaged" into a column. The column itself is part of
a row (e.g. ITR or TR). Sometimes the size of the column is bigger

rightthan the size of the control itself. In this case the "align" property
specifies the position of the control inside the column. In most cases
you do not require the align control to be explicitly defined because
the size of the column around the controls exactly is sized in the same
way as the contained control.

If you want to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align
the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part of
a row (e.g. ITR or TR). Sometimtes the size of the column is bigger

bottomthan the size of the control. In this case the "align" property specify
the position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control the
number of rows your control occupies. By default it is "1" - but you
may want to define the control two span over more than one columns. 3

4The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 5

50

int-value

OptionalCSS style definition that is directly passed into this control.combostyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

203Natural for Ajax

COMBOFIX

background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

invisibleOptionalIf the visibility of the control is determined dynamically by an adapter
property then there are two rendering modes if the visibility is "false":

invisiblemode

cleared
(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and does not
show any roll over effects any more.

-1OptionalIndex that defines the tab order of the control. Controls are selected
in increasing index order and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Binding

(already explained above)valueprop

OptionalName of the adapter parameter that dynamically passes information
how the control should be rendered and how it should act.

statusprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the browser
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the input
a synchronization with the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of
the corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that
were changed before - are transferred to the adapter object, not only
the one that triggered the synchonization.

Natural for Ajax204

COMBOFIX

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if you want to pass one
changed value to all its representaion directly after changing the value.

OptionalWhen the data synchronization of the control is set to FLUSH="server"
then you can specify an explicit event to be sent when the user updates

flushmethod

the content of the control. By doing so you can distinguish on the
server side from which control the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in case the user
presses F1 on the control.

helpid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be later
on used within your test tool in order to do the object identification

testtoolid

COMBOOPTION Properties

Basic

OptionalName that is displayed as selectable option. Either use the NAME property to specify
the text in a "hard" way or use the TEXTID property to define the text in a language
dependent way.

name

OptionalText ID that is used for this option. The text id is passed to the multi language
management in order to find a language dependent text.

textid

OptionalActual value of the option that is passed into the adapter property specified by
VALUEPROP inside the COMBOFIX control.

value

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

205Natural for Ajax

COMBOFIX

206

35 DATEINPUT

■ Example .. 208
■ Properties .. 208

207

The DATEINPUT control is used to input a date or a date with time. The input can be done both
with the keyboard or by opening a popup in which the user can browse through a calendar. The
calendar can be controlled by server side processing in the following way:

■ You can define a valid-from and a valid-to date. Thus, the control will not allow the user to
input an invalid date.

■ You can explicitly control the color and the tooltip information inside the calendar. For example,
you may set up a calendar in which vacation times are hightlighted in a certain way.

Example

The most simple usage scenario is to just use the DATEINPUT control in the following way:

<rowarea name="Dateinput">
<itr>

<label name="Order Date" width="120">
</label>
<dateinput valueprop="orderDate" width="120">
</dateinput>

</itr>
</rowarea>

The corresponding screen looks like this:

Properties

Basic

OptionalName of the adapter parameter that provides the
content of the control.

valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the
width of the control will either be a default width or

160- in case of container controls - it will follow the
width that is occupied by its content.

Natural for Ajax208

DATEINPUT

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only

50%bring up correct results if the parent element of the

100%
control properly defines a width this control can
reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent
element does not specify a width then the rendering
result may not represent what you expect.

dateOptionalBy default, the DATEINPUT control is managing a
day. By explicitly setting a datatype you can define

datatype

datetimethat the control is managing a day and time. In the
first use type CDATE within your adapter program
- in the second case use type CTIMESTAMP.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Binding

(already explained above)valueprop

OptionalName of the adapter parameter that provides a lower
limit for the value of the control. The value is used
for client side validation of user input.

fromprop

OptionalName of the adapter parameter that provides an
upper limit for the value of the control. The value is
used for client side validation of user input.

toprop

OptionalName of the adapter parameter that provides style
information that is used inside the date popup.

infoprop

OptionalName of the adapter parameter that provides a
boolean that indicates if to show additional seconds.

secondsvisprop

This property make sense only if property
DATATYPE is set to "daytime".

OptionalName of the adapter parameter that dynamically
passes information how the control should be
rendered and how it should act.

statusprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated to the
server adapter object when a user e.g. presses a
button. By using the FLUSH property you can
change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server

209Natural for Ajax

DATEINPUT

adapter is triggered. As consequence you directly
can react inside your adapter logic onto the change
of the corresponding value. - Please be aware of that
during the synchronization always all changed
properties - also the ones that were changed before
- are transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed
value is populated inside the page. You use this
option if you have redundant usage of the same
property inside one page and if you want to pass
one changed value to all its representaion directly
after changing the value.

OptionalWhen the data synchronization of the control is set
to FLUSH="server" then you can specify an explicit

flushmethod

event to be sent when the user updates the content
of the control. By doing so you can distinguish on
the server side from which control the flush of data
was triggered.

Appearance

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then there are
two rendering modes if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed"
and does not show any roll over effects any more.

trueOptionalIf set to true, the FIELD will not be accessible for
input. It is just used as an output field.

displayonly

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the size
of the column around the controls exactly is sized in
the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

Natural for Ajax210

DATEINPUT

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than the
size of the control. In this case the "align" property
specify the position of the control inside the column.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

inputstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes
want to control the number of rows your control

3occupies. By default it is "1" - but you may want to

4
define the control two span over more than one
columns.

5The property only makes sense in table rows that
are snychronized within one container (i.e. TR, STR 50
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes
want to control the number of columns your control

3occupies. By default it is "1" - but you may want to

4
define the control to span over more than one
columns.

5The property only makes sense in table rows that
are snychronized within one container (i.e. TR, STR 50

211Natural for Ajax

DATEINPUT

int-valuetable rows). It does not make sense in ITR rows,
because these rows are explicitly not synched.

trueOptionalBoolean value defining if the control has a border.
Default is "false".

noborder

false

trueOptionalBoolean value defining if the control is rendered
with a transparent background. Default is "false".

transparentbackground

false

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order and
in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Valuehelp

gifOptionalURL of image that is displayed inside the right
corner of the field to indicate to the user that there

popupicon

jpgis some value help available.. Any image type (.gif,
.jpg, ...) that your browser does understand is valid.

jpeg
Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page
is generated directly into your project's folder.
Specifiying "images/xyz.gif" will point into a
directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to
an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

trueOptionalBoolean property that control if a field with
POPUPMETHOD defined is still usable for keyboard

popupinputonly

falseinput. If "false" (= default) then the user can input a
value either directly via keyboard or by using the
popupmethod's help. If set to "true" then no
keyboard input is possible - but only selection from
the popup-method's help.

trueOptionalValue help in a field is triggered either by clicking
with the mouse or by pressing a certain key inside

popuponalt40

Natural for Ajax212

DATEINPUT

falsethe field. The "traditional" keys are "cusrsor-down",
"F7" or "F4". Sometimes you do not want to mix other
"cursor-down" behaviour (e.g. scrolling in lists) with
the value help behaviour. In this case switch this
property to "true" - and the value help will only come
up anymore when "alt-cursor-down" is pressed.

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to define
a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that is
used for the control.

titletextid

OptionalName of the adapter parameter that dynamically
defines the title of the control. The title is displayed

titleprop

as tool tip when ther user moves the mouse onto the
control.

OptionalHelp id that is passed to the online help management
in case the user presses F1 on the control.

helpid

Natural

OptionalIf the control shall be bound to a Natural system
variable of string format with the attribute

njx:natstringtype

njx:natsysvar, this attribute indicates the format of
the string, A (code page) or U (Unicode). The default
is A.

OptionalIf the control shall be bound to a Natural system
variable with the attribute njx:natsysvar, this

njx:natsysio

attribute indicates if the system variable is
modifiable. The default is false.

OptionalIf a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall

njx:natname

be bound to the control, a different name (for
instance HFIELD1) can be bound instead. If the
original name (in this case #FIELD1) is then specified
in this attribute, the original name is generated into
the parameter data area of the Natural adapter and
a mapping between the two names is generated into
the PROCESS PAGE statement of the Natural
adapter.

OptionalIf the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

njx:natsysvar

OptionalThe value of this attribute is generated as comment
line into the parameter data area of the Natural

njx:natcomment

213Natural for Ajax

DATEINPUT

adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

Natural for Ajax214

DATEINPUT

36 DROPICON

■ Example .. 216
■ Properties .. 216

215

The DROPICON control is an icon that can be used in order to build drag-and-drop scenarios. A
DROPICON can be defined as the starting point of a drag-and-drop operation or as the target
point of a drag-and-drop operation.

Example

Have a look at the following screen:

The user can click the left mouse button on the left icon (drag), move the mouse to the right icon
and then release the mouse button (drop).

The configuration of drag and drop is quite simple: the icon that is used for starting drag-and-
drop operations leaves a certain drag information - a plain string. The receiving icon, on which
the user performs the drop operation, receives both an event and the string which was left by the
icon from where the operation was started.

Properties

Basic

gifObligatoryURL that points to the image that is shown as icon.image

jpgThe URL either is an absolute URL or a relative URL. If using
a relative URL then be aware of that the generated page is
located directly inside your project's directory. jpeg

Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.

Natural for Ajax216

DROPICON

"../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

OptionalString containing any kind of application data to identify
the source DROPINFO control within a drag and drop

draginfo

process. Use property DROPINFOPROP to return this data
on runtime.

OptionalName of the adapter parameter that provides for information
that is passed to the adapter when dropping this control

draginfoprop

over another DROPICON. Do not use this property (or
property DROPINFO respectively) if you do not want the
user to drag this control.

OptionalName of the adapter parameter to that the "drag info" of the
dragged DROPICON control is set. Do not use this property

dropinfoprop

if this control should not accept other DROPICON controls
within a drag and drop process (i.e. is not a drop target).

Sometimes
obligatory

Name of the event that is sent to the adapter when the user
is dragging another DROPICON control over this control

dropmethod

and drops it there. Do not use this parameter if this control
should not accept other DROPICON controls within a drag
and drop process (i.e. is not a drop target).

Sometimes
obligatory

Name of the event that is sent to the adapter when clicking
on the control.

method

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Binding

(already explained above)draginfoprop

(already explained above)dropinfoprop

(already explained above)dropmethod

OptionalName of adapter parameter that provides as value the URL
of the image that is shown inside the control.

imageprop

(already explained above)method

OptionalName of the adapter parameter that provides the
information if this control is displayed or not. As

visibleprop

consequence you can control the visibility of the control
dynamically.

OptionalName of the adapter parameter that dynamically defines
the title of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

titleprop

Appearance

(already explained above)image

invisibleOptionalIf the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

invisiblemode

cleared

217Natural for Ajax

DROPICON

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

OptionalIf the visibility is dynamically controlled by using the
INVISIBLEPROP then there are two ways the icon reacts if
the corresponding property passes back "false".

imageinactive

If you want the icon to switch into an inactive status then
define inside this property the URL of the image that is the
inactive counter part to the normal icon image. Maybe the
image is a grayed version of the normal icon image.

If you do not define a value for this property then the icon
is made invisible.

OptionalPixel width of the image that is shown inside the icon. If not
defined then the icon is rendered with its normal width.

imagewidth

OptionalPixel height of the image that is shown inside the icon. If
not defined then the icon is rendered with its normal height.

imageheight

trueOptionalIf set to "true" then 2 pixels of distance are kept on the left
and on the right of the icon.

withdistance

false
Reason behing: if arranging several icons inside one table
row (ITR, TR) then a certain distance is kept between the
icons when this property is set to "true".

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

Natural for Ajax218

DROPICON

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

colstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

spanstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

Online Help

OptionalText that is shown as tooltip for the control.title

219Natural for Ajax

DROPICON

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

(already explained above)titleprop

Natural for Ajax220

DROPICON

37 FIELD

■ Built-in Events ... 222
■ Properties .. 222

221

The FIELD control is used for entering data. It provides the following features:

■ Normal input/output of text.
■ Password input.
■ Dynamic control if input is allowed.
■ Dynamic highlighting of field in case of errors.
■ Flush the input directly to the server when leaving the field.
■ Raise an event on pressing F4 or F7 or on click - useful for value help popup dialogs
■ Adapt the output to a data type (e.g. transfer "YYYYMMDD" to a visible date field)

Built-in Events

findValidValuesForXXX

Properties

Basic

ObligatoryName of the adapter parameter that provides
the content of the control.

valueprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

Natural for Ajax222

FIELD

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

(already explained above)width

5OptionalWidth of FIELD in amount of characters.
WIDTH and LENGTH should not be used

length

10together. Note that the actual size of the control

15
depends on the font definition if using the
LENGTH property.

20

int-value

5OptionalMaximum number of characters that a user may
enter into this FIELD. This property is not

maxlength

10depending on the LENGTH property - please

15
do not get confused by the similar naming.
MAXLENGTH has nothing to do with the

20optical sizing of the control but only with the
number of characters you may input.

int-value

leftOptionalAlignment of text inside the control.textalign

center

right

trueOptionalIf set to "true", each entered character is
displayed as a '*'.

password

false

trueOptionalIf set to true, the FIELD will not be accessible
for input. It is just used as an output field.

displayonly

false

trueOptionalIf "true" then all input is automatically
transferred to upper case characters.

uppercase

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do

223Natural for Ajax

FIELD

not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than
the size of the control. In this case the "align"
property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may
sometimes want to control the number of

3columns your control occupies. By default it is

4
"1" - but you may want to define the control to
span over more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may
sometimes want to control the number of rows

3your control occupies. By default it is "1" - but

4
you may want to define the control two span
over more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

background-color: #FF0000OptionalCSS style definition that is directly passed into
this control.

fieldstyle

color: #0000FF
With the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are:

font-weight: bold

Natural for Ajax224

FIELD

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

trueOptionalBoolean value defining if the control has a
border. Default is "false".

noborder

false

trueOptionalBoolean value defining if the control is rendered
with a transparent background. Default is
"false".

transparentbackground

false

OptionalName of the adapter parameter that provides
the background color of the control.

bgcolorprop

OptionalName of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The

fgcolorprop

color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPROP to choose both - text and
background color.

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then there

invisiblemode

clearedare two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

225Natural for Ajax

FIELD

10

32767

Binding

(already explained above)valueprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is
set to FLUSH="server" then you can specify an

flushmethod

explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

OptionalName of the adapter parameter that
dynamically passes information how the control
should be rendered and how it should act.

statusprop

OptionalName of the adapter parameter that provides a
"human understandable" description for the

valuetextprop

value: in some cases you enter an id into a
FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined into
one text (string) that is returned into the FIELD.

Natural for Ajax226

FIELD

0OptionalIf using property "valuetextprop" then a field
knows an id and a text for a certain value. There

textidmode

1are three types of display: either both are shown

2
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

OptionalName of the adapter parameter that
dynamically defines the title of the control. The

titleprop

title is displayed as tool tip when ther user
moves the mouse onto the control.

(already explained above)bgcolorprop

(already explained above)fgcolorprop

trueOptionalName of the adapter parameter that controls
that the field's value help event is sent to the

autocallpopupmethod

falseadapter with a certain offset (milliseconds) after
last key down event.

OptionalName of the adapter parameter that provides
the maximum number of characters that a user

maxlengthprop

may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Validation

dateOptionalBy default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

datatype

float

int...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field

longwith datatype "int" then a corresponding error

timemessage will popup when the user leaves the
field.

timestamp
...will format the data coming from the server
or coming form the user input: if the field has color
datatype "date" and the user inputs "010304"

xs:decimalthen the input will be translated into

xs:double
"01.03.2004" (or other representation, dependent
on date format settings).

xs:dateIn addition valeu popups are offered for the
user automatically for some datatypes: e.g. when xs:dateTime
specifying datatype "date" the automatically the
field provides a calendar input popup. xs:time

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format

227Natural for Ajax

FIELD

N n.nnumber. The server side representation may be
a float value, but also can be a double or a
BigDecimal property. P n.n

string n

xs:byte

xs:short

OptionalContains information used for Data Validation.validationrules

Use the Validation Rules Editor to make
changes!

[a-zA-Z0-9_.-]OptionalRegular expression against which the content
of the field is checked on client side when the

validation

{1,}\\@[a-zA-Z0-9_.-]user changes the field. If the validation fails then

{1,}\\.\\w{2,}\\d{5}
an error message popup up and informs the
user about the wrong input.

[0-9)(-/+]+

OptionalName of the adapter parameter that provides a
regular expression for the validation of the field.

validationprop

Works the same way as VALIDATION but in a
dynamic way.

OptionalIf a client side validation fails due to wrong user
input then an error popup is opened. If you

validationuserhint

define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

OptionalIf using validation expressions (either property
"validation" or "validationprop") then a popup

validationuserhintprop

comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

1OptionalNumber that specifiies how many digits are to
be displayed (ie digits before the comma). If

digits

2using this feature then the DATATYPE property
must be set to 'float'. See also DECIMALDIGITS.

3

int-value

OptionalName of the adapter parameter that provides
information how many digits are to be displayed

digitsprop

Natural for Ajax228

FIELD

(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'.

1OptionalNumber that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float'.

decimaldigits

2

3

int-value

OptionalName of the adapter parameter that provides
information how many decimal digits are to be

decimaldigitsprop

displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float'.

Valuehelp

openIdValueComboOptionalName of the event that is sent to the adapter
when the user requests value help by pressing

popupmethod

openIdValueHelpF4 or F7 or by clicking into the FIELD with the

openIdValueComboOrPopup
right mouse button. See at chapter 'Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

trueOptionalBoolean property that control if a field with
POPUPMETHOD defined is still usable for

popupinputonly

falsekeyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

OptionalName of the adapter parameter that provides
the information whether a POPUPMETHOD is

popupprop

available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

trueOptionalValue help in a field is triggered either by
clicking with the mouse or by pressing a certain

popuponalt40

falsekey inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to
"true" - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

229Natural for Ajax

FIELD

1OptionalPixel width of the standard
"openIdValueCombo" popup dialog. Default is
field width or at least 150 pixel.

popupcombowidth

2

3

int-value

gifOptionalURL of image that is displayed inside the right
corner of the field to indicate to the user that

popupicon

jpgthere is some value help available.. Any image

jpeg
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

trueOptionalBoolean property that decides if touch pad
support is offered for the FIELD control. The

touchpadinput

falsedefault is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

onlinehelp

OptionalHelp id that is passed to the online help
management in case the user presses F1 on the
control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

titletextid

OptionalContains information used by the Formula
Editor.

formula

Use the Formula Editor to make changes!

Hot Keys

Natural for Ajax230

FIELD

OptionalComma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

hotkeys

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Natural

OptionalIf the control shall be bound to a Natural system
variable of string format with the attribute

njx:natstringtype

njx:natsysvar, this attribute indicates the format
of the string, A (code page) or U (Unicode). The
default is A.

OptionalIf the control shall be bound to a Natural system
variable with the attribute njx:natsysvar, this

njx:natsysio

attribute indicates if the system variable is
modifiable. The default is false.

OptionalIf a Natural variable with a name not valid for
Application Designer (for instance #FIELD1)

njx:natname

shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.
If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter.

OptionalIf the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

njx:natsysvar

OptionalThe value of this attribute is generated as
comment line into the parameter data area of

njx:natcomment

the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

Miscellaneous

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid

231Natural for Ajax

FIELD

232

38 FILEUPLOAD/FILEUPLOAD2

■ FILEUPLOAD ... 234
■ FILEUPLOAD2 .. 236
■ FILEUPLOAD Properties ... 237
■ FILEUPLOAD2 Properties ... 240

233

The file upload controls simplify the process of uploading files from the client to the server. Two
types are available:

■ The FILEUPLOAD control is represented by a button. When you choose the button, a dialog
appears showing the file upload form (field input and a file selection button).

■ With the FILEUPLOAD2 control, you embed the file upload form into your page.

Both types have the program binding, i.e. you can switch between the two types without touching
your code.

FILEUPLOAD

The FILEUPLOAD control simplifies the process of uploading files from the client to the server.
Look at the following example:

The control - from the look-and-feel perspective - is a button with some special reaction. When
you choose the button, the following dialog appears:

Natural for Ajax234

FILEUPLOAD/FILEUPLOAD2

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

After choosing the Upload button, the first screen looks as follows:

235Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

FILEUPLOAD2

With the FILEUPLOAD2 control, you embed the file upload form into your page.

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

Natural for Ajax236

FILEUPLOAD/FILEUPLOAD2

After choosing the file, the screen looks as follows:

FILEUPLOAD Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not specify the
name when using the multi language management - but specify a
"textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryName of the adapter parameter in which the client file name is passed
at upload time.

cfileprop

ObligatoryName of the adapter parameter in which at upload time the name of
the target file is written, which is a copy of the client file in the server

sfileprop

file system. Note that this file name is not the same as the client file
name.

ObligatoryName of the event that is sent to the adapter when a file is uploaded.
The file data is available on the server at the point of time this method
is called.

method

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

gifOptionalURL of image that is displayed inside the control. Any image type
(.gif, .jpg, ...) that your browser does understand is valid.

image

jpg
Use the following options to specify the URL:

jpeg
(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

100OptionalWidth of the control.width

237Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will
be rendered with its default height. If the control is a container control

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50% then

100%the parent element (e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalName of the adapter parameter that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

visibleprop

invisibleOptionalThis property has three possible values:invisiblemode

cleared(1) "invisible": the button is not visible without occupying any space.

(2) "disabled": the button is deactivated: it is "grayed" and does not
show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies space.

OptionalCSS style definition that is directly passed into this control.buttonstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

Natural for Ajax238

FILEUPLOAD/FILEUPLOAD2

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimes the size of the column is bigger

rightthan the size of the control itself. In this case the "align" property
specifies the position of the control inside the column. In most cases
you do not require the align control to be explicitly defined because
the size of the column around the controls exactly is sized in the same
way as the contained control.

If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which you
align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimtes the size of the column is bigger

bottomthan the size of the control. In this case the "align" property specify
the position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control two span over more than one
columns.

4

239Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

Binding

(already explained above)cfileprop

(already explained above)sfileprop

(already explained above)method

(already explained above)visibleprop

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

titletextid

FILEUPLOAD2 Properties

Basic

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalName of the adapter parameter in which the client file name is passed
at upload time.

cfileprop

OptionalName of the adapter parameter in which at upload time the name of
the target file is written, which is a copy of the client file in the server

sfileprop

Natural for Ajax240

FILEUPLOAD/FILEUPLOAD2

file system. Note that this file name is not the same as the client file
name.

OptionalName of the event that is sent to the adapter when a file is uploaded.
The file data is available on the server at the point of time this method
is called.

method

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Binding

(already explained above)cfileprop

(already explained above)sfileprop

(already explained above)method

OptionalName of the adapter parameter that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

visibleprop

invisibleOptionalIf the visibility of the control is determined dynamically by an adapter
property then there are two rendering modes if the visibility is "false":

invisiblemode

disabled
(1) "invisible": the control is not visible.

cleared
(2) "disabled": the control is deactivated: it is "grayed" and does not
show any roll over effects any more.

Appearance

(already explained above)invisiblemode

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control two span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

241Natural for Ajax

FILEUPLOAD/FILEUPLOAD2

int-value

trueOptionalNormally the background is in light colour but the CIS style sheets
also have a dark(er) grey colour to be used.

darkbackground

false
If DARKBACKGROUND is set to true then the darker background
colour is chosen. This property typically is used to integrate light
coloured controls into darker container areas.

Natural for Ajax242

FILEUPLOAD/FILEUPLOAD2

39 ICON

■ Example .. 244
■ Properties .. 244

243

The ICON control is similar to the BUTTON control, but it uses an image to display its function.
When chosen, it sends an event to the adapter.

Example

The XML layout definition is:

<rowarea name="Icons">
<itr>

<icon image="../HTMLBasedGUI/images/remove.gif" method="remove"
title="Remove">

</icon>
<icon image="../HTMLBasedGUI/images/cut.gif" method="cut" withdistance="true"

title="Cut">
</icon>

<icon image="../HTMLBasedGUI/images/paste.gif" method="paste" title="Paste">
</icon>

</itr>
</rowarea>

Properties

Basic

gifObligatoryURL that points to the image that is shown as icon.image

jpgThe URL either is an absolute URL or a relative URL.
If using a relative URL then be aware of that the

jpeggenerated page is located directly inside your
project's directory.

Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.
"../HTMLBasedGUI/images/new.gif" point to a URL
that is located inside a different project.

ObligatoryName of the event that is sent to the adapter when
clicking on the control.

method

Natural for Ajax244

ICON

OptionalText that is displayed inside the control. Please do
not specify the name when using the multi language
management - but specify a "textid" instead.

name

OptionalMulti language dependent text that is displayed
inside the control. The "textid" is translated into a
corresponding string at runtime.

textid

Do not specify a "name" inside the control if
specifying a "textid".

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

OptionalPixel width of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal width.

imagewidth

OptionalPixel height of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal height.

imageheight

1OptionalThe HTML font size of the text. Corresponding to
the HTML definition "1" means "smallest" and "6"
means "biggest".

textsize

2

3

4

5

6

gifOptionalIf the visibility is dynamically controlled by using
the INVISIBLEPROP then there are two ways the

imageinactive

jpgicon reacts if the corresponding property passes
back "false".

jpeg
If you want the icon to switch into an inactive status
then define inside this property the URL of the
image that is the inactive counter part to the normal
icon image. Maybe the image is a grayed version of
the normal icon image.

If you do not define a value for this property then
the icon is made invisible.

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than the

245Natural for Ajax

ICON

size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than the
size of the control. In this case the "align" property
specify the position of the control inside the column.

trueOptionalIf set to "true" then 2 pixels of distance are kept on
the left and on the right of the icon.

withdistance

false
Reason behing: if arranging several icons inside one
table row (ITR, TR) then a certain distance is kept
between the icons when this property is set to "true".

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

colstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

spanstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

Natural for Ajax246

ICON

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then there are
two rendering modes if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order and
in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

asideOptionalPosition of the (optional) text to the icon. Aside or
below, default is aside.

nameposition

below
Set the corresponding text in the name or the text
id property.

trueOptionalIf set to true a small indicator signals that there is a
corresponding menu 'behind this icon'. Default is
false.

displaymenuindicator

false

Binding

(already explained above)method

OptionalName of the adapter parameter that provides the
information if this control is displayed or not. As

visibleprop

consequence you can control the visibility of the
control dynamically.

247Natural for Ajax

ICON

OptionalName of the adapter parameter that dynamically
defines the title of the control. The title is displayed

titleprop

as tool tip when ther user moves the mouse onto
the control.

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that is
used for the control.

titletextid

(already explained above)titleprop

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier
that can be later on used within your test tool in
order to do the object identification

testtoolid

Natural for Ajax248

ICON

40 ICONLIST

■ Adapter Interface ... 250
■ Built-in Events ... 250
■ Properties .. 250

249

The ICONLIST is very similar to the BUTTONLIST, representing a list of items instead of a list of
buttons. The list can either be a vertical list or a horizontal list.

Adapter Interface

DEFINE DATA PARAMETER
1 ICONLIST (1:*)
2 DRAGINFO (U) DYNAMIC
2 DROPINFO (U) DYNAMIC
2 ID (U) DYNAMIC
2 IMAGEURL (U) DYNAMIC
2 METHOD (U) DYNAMIC
2 NAME (U) DYNAMIC
2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-iconlistprop.onDrop
value-of-iconlistprop.onSelect

Properties

Basic

ObligatoryName of the adapter parameter that represents the
control in the application.

iconlistprop

trueOptionalDirection of the icon list.vertical

falseIf not specified (or set to "true") then the icons are
arranged in one column, one below the other. If
specified as "false" then the icons are arrange in one
row, one aside the other.

1OptionalAn icons of the ICONLIST control is embedded into
an internal cell. The CELLSPACING property

cellspacing

2defined the number of pixels that are kept between
the icon an the border of this cell.

3
Use the CELLSPACING in order to define a certain
distance each icon keeps from the next item. int-value

Natural for Ajax250

ICONLIST

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

OptionalPixel width of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal width.

imagewidth

OptionalPixel height of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal height.

imageheight

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

background-color:
#FF0000

OptionalStyle definition (following CSS style sheet
definitions) that is used for the background area of
the ICONLIST control.

tablestyle

color: #0000FF

font-weight: bold

background-color:
#FF0000

OptionalStyle definition (following CSS style sheet
definitions) that is used for each cell area of the
ICONLIST control in which an icon is kept.

cellstyle

color: #0000FF

font-weight: bold

trueOptionalIf set to true a small indicator signals that there is a
corresponding menu 'behind this icon'. Default is
false.

displaymenuindicator

false

asideOptionalPosition of the text that is displayed inside the
control. Use method ICONLISTItem.setName to set
the text.

additionaltextposition

below

251Natural for Ajax

ICONLIST

1OptionalThe HTML font size of the text. Corresponding to
the HTML definition "1" means "smallest" and "6"
means "biggest".

textsize

2

3

4

5

6

trueOptionalFlag (boolean) that indicates whether to insert a
padding right hand of the last icon. This attribute

withrightpadding

falsedoes apply for horizontal ICONLIST only (see
attribute VERTICAL). Default is true.

Natural for Ajax252

ICONLIST

41 IHTML

■ Properties .. 254

253

The IHTML control is used to embed server side generated HTML inside a page that is provided
by the application. The IHTML control is very flexible on the one hand. On the other hand, you
have to take care about what is defined inside the IHTML area.

Use this control if you have, for example, a server side report generation program already producing
HTML as output which you want to include into your pages, etc.

Properties

Basic

OptionalName of the adapter parameter that provides the content of the
control.

valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

50%the parent element of the control properly defines a width this

100%control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if 400

50%the parent element of the control properly defines a height this
control can reference. If you specify this control to have a height

100%of 50% then the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

Natural for Ajax254

IHTML

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control two span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples
are:

ihtmlstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimtes the size of the column is

bottom

255Natural for Ajax

IHTML

bigger than the size of the control. In this case the "align" property
specify the position of the control inside the column.

Natural for Ajax256

IHTML

42 IMAGEOUT

■ Properties .. 258

257

The IMAGEOUT control is used to present images inside a page. The name of the image is not
statically defined inside the layout but is controlled by the application through an adapter
parameter.

Properties

Basic

OptionalName of the adapter parameter that provides as value the URL of the image
that is shown inside the control.

valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the

50%control properly defines a width this control can reference. If you specify this

100%control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control will be rendered
with its default height. If the control is a container control (containing) other
controls then the height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the
control properly defines a height this control can reference. If you specify this
control to have a height of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

OptionalColumn spanning of control.colspan

If you use TR table rows then you may sometimes want to control the number
of columns your control occupies. By default it is "1" - but you may want to
define the control to span over more than one columns.

Natural for Ajax258

IMAGEOUT

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

OptionalRow spanning of control.rowspan

If you use TR table rows then you may sometimes want to control the number
of rows your control occupies. By default it is "1" - but you may want to define
the control two span over more than one columns.

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

259Natural for Ajax

IMAGEOUT

260

43 LABEL

■ Example .. 263
■ Aligning the Text .. 263
■ Properties .. 264

261

The LABEL control is a static text. The tag has different properties to control the design of the
label. It can be used to display plain text or as a headline of a grid.

By default, the label is rendered with a white line under the text. The default is suitable if a FIELD
control follows the label.

Natural for Ajax262

LABEL

Example

The XML layout definition is:

<rowarea name="Label Controls">
<itr>

<label name="Narrow" width="50">
</label>
<hdist>
</hdist>
<label name="Wide" width="150">
</label>
<hdist>
</hdist>
<label name="Plain" width="100" asplaintext="true">
</label>
<hdist>
</hdist>
<label name="Headline" width="100" asheadline="true">
</label>

</itr>
<vdist>
</vdist>

</rowarea>

For a better separation between the LABEL controls, horizontal distances (HDIST) were added.

Aligning the Text

Use the property textalign in order to align the label's text. Do not use the align property.
textalign refers to the text inside the control, align refers to the position of the control inside the
surrounding cell - if the cell is larger than the control.

263Natural for Ajax

LABEL

Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

140

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf the textual content of the control exceeds the size of the
control then the browser automatically breaks the line and
arranges the text accordingly.

nowrap

false

You can avoid this behaviour by setting NOWRAP to "true".
No line break will be performed by the browser.

(already explained above)width

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200

Natural for Ajax264

LABEL

(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250

300is a container control (containing) other controls then the
height of the control will follow the height of its content.

250
(B) Pixel sizing: just input a number value (e.g. "20").

400
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

trueOptionalIf set to true, the label has a dark background and the text
is written in white (if using the standard style sheet).

asheadline

false
You may use this rendering style is you use labels as
headlines of control grids (ROWTABLEAREA2 control).

trueOptionalIf set to true, no white line is drawn under the label text (if
using the standard style sheet).

asplaintext

false
You may use this rendering style if the label is used to name
a RADIOBUTTON control or a CHECKBOX control.

leftOptionalHorizontal alignment of the text that is shown.textalign

center

right

trueOptionalBoolean property defining the rendering if the text of the
label does not fit into the defined width. If "true" then the

cuttext

falsetext is cut - the part that does not fit is hidden. If "false" then
the browser opens a second line.

Default is "false".

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

labelstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

265Natural for Ajax

LABEL

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but you may want to define the control two span
over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

Natural for Ajax266

LABEL

int-value

invisibleOptionalIf the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

Binding

OptionalName of the adapter parameter that provides the
information if this control is displayed or not. As

visibleprop

consequence you can control the visibility of the control
dynamically.

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

267Natural for Ajax

LABEL

268

44 MENUBUTTON

■ Example .. 270
■ MENUBUTTON Properties .. 271
■ MENUITEM Properties ... 273

269

The MENUBUTTON control offers the possibility to arrange buttons in a hierarchy.

Example

In the following example, there are two menu buttons which act differently when they are selected:

The XML code for the example looks as follows:

<rowarea name="Demo">
<itr takefullwidth="true">

<coltable0 width="50%" takefullheight="true">
<itr>

<menubutton name="Below" menuposition="below">
<menuitem name="New..." method="newFile" pixelwidth="150">
</menuitem>
<menuitem name="Open..." method="openFile" pixelwidth="150">
</menuitem>

</menubutton>
</itr>

</coltable0>
<coltable0 width="50%">

Natural for Ajax270

MENUBUTTON

<vdist height="50">
</vdist>
<itr>

<menubutton name="Above" menuposition="above">
<menuitem name="Save..." method="saveFile" pixelwidth="150">
</menuitem>

<menuitem name="Save as ..." method="saveAsFile" pixelwidth="150">
</menuitem>

</menubutton>
</itr>

</coltable0>
</itr>

</rowarea>

In the definition of a menu item, an event that is to be sent to an adapter is exactly defined like
with a normal button.

MENUBUTTON Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not specify the
name when using the multi language management - but specify a
"textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

aboveOptionalabove if the menu should popup above the base menu button - below
if the menu should popup below the base menu button.

menuposition

below
The default is below.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%

271Natural for Ajax

MENUBUTTON

100%parent element of the control properly defines a width this control
can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalName of the adapter parameter that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

visibleprop

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control two span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

OptionalCSS style definition that is directly passed into this control.buttonstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

Natural for Ajax272

MENUBUTTON

MENUITEM Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not specify the name
when using the multi language management - but specify a "textid"
instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the control. The
"textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryName of the event that is sent to the adapter when clicking on the
control.

method

ObligatoryWidth of the control in pixels.pixelwidth

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

OptionalHeight of the control in pixels.pixelheight

OptionalCSS style definition that is directly passed into this control.itemstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

273Natural for Ajax

MENUBUTTON

274

45 METHODLINK

■ Properties .. 276

275

The METHODLINK is a control that renders a text that is dynamically provided by the application
through an adapter parameter. The text is rendered as a hyperlink. When clicking on the hyperlink,
an event is sent to the adapter. It is used in scenarios in which users are in the habit of following
links instead of choosing buttons or icons.

Properties

Basic

OptionalText that is displayed inside the control. Please do not specify
the name when using the multi language management - but
specify a "textid" instead.

name

OptionalMulti language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

ObligatoryName of the event that is sent to the adapter when clicking on
the control.

method

ObligatoryName of the adapter parameter that provides the text that is
shown as link.

valueprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width of
the control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content.

140

160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct

50%results if the parent element of the control properly defines a

100%width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does
not specify a width then the rendering result may not represent
what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

Natural for Ajax276

METHODLINK

trueOptionalIf the text of the control contains HTML tags then these are by
default interpreted by the browser. Specifiying

straighttext

falseSTRAIGHTTEXT as "true" means that the browser will directly
render the characters without HTML interpretation.

Example: if you want to output the source of an HTML text
then STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

linkstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalCSS style class definition that is directly passed into this control.linkclass

The style class can be either one which is part of the "normal"
CIS style sheet files (i.e. the ones that you maintain with the
style sheet editor) - or it can be one of an other style sheet file
that you may reference via the ADDSTYLESHEET property of
the PAGE tag.

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is
part of a row (e.g. ITR or TR). Sometimes the size of the column

rightis bigger than the size of the control itself. In this case the "align"
property specifies the position of the control inside the column.
In most cases you do not require the align control to be
explicitly defined because the size of the column around the
controls exactly is sized in the same way as the contained
control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign" in
which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middle

277Natural for Ajax

METHODLINK

Each control is "packaged" into a column. The column itself is
part of a row (e.g. ITR or TR). Sometimtes the size of the column

bottom

is bigger than the size of the control. In this case the "align"
property specify the position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to span
over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but you may want to define the control two span over
more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

Binding

(already explained above)valueprop

(already explained above)method

OptionalName of the adapter parameter that dynamically defines the
title of the control. The title is displayed as tool tip when ther
user moves the mouse onto the control.

titleprop

Natural for Ajax278

METHODLINK

46 MULTISELECT

■ Example .. 280
■ Adapter Interface ... 280
■ Properties .. 280

279

The MULTISELECT control allows comfortable input of multiple selections of items from a defined
number of items.

Example

The available items are rendered on the left and are brought to the right by choosing the
corresponding button. There are buttons to bring all items from the left to the right, and back.

Adapter Interface

DEFINE DATA PARAMETER
1 TOWNS (1:*)
2 ID (U) DYNAMIC
2 SELECTED (L)
2 TEXT (U) DYNAMIC
END-DEFINE

Properties

Basic

ObligatoryName of the adapter parameter representing this control in the
application.

valueprop

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140

Natural for Ajax280

MULTISELECT

(A) You do not define a width at all. In this case the width of the control
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content.

160

180

200(B) Pixel sizing: just input a number value (e.g. "100").

50%(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

100%parent element of the control properly defines a width this control can
reference. If you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a width of "100%".
If the parent element does not specify a width then the rendering result
may not represent what you expect.

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will
be rendered with its default height. If the control is a container control

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control can
reference. If you specify this control to have a height of 50% then the

100%parent element (e.g. an ITR-row) may itself define a height of "100%".
If the parent element does not specify a width then the rendering result
may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to true, the FIELD will not be accessible for input. It is just used
as an output field.

displayonly

false

trueOptionalIf set to true, corresponding up and down arrows appear on the right
hand side. These arrows allow for changing the order of the selected
items.

withupdown

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is part of
a row (e.g. ITR or TR). Sometimes the size of the column is bigger than

rightthe size of the control itself. In this case the "align" property specifies
the position of the control inside the column. In most cases you do not
require the align control to be explicitly defined because the size of the

281Natural for Ajax

MULTISELECT

column around the controls exactly is sized in the same way as the
contained control.

If you want to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align the
control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part of
a row (e.g. ITR or TR). Sometimtes the size of the column is bigger than

bottomthe size of the control. In this case the "align" property specify the
position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns. 3

4The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control the
number of rows your control occupies. By default it is "1" - but you
may want to define the control two span over more than one columns. 3

4The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 5

50

int-value

OptionalCSS style definition that is directly passed into this control.msstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them with
a semicolon.

Natural for Ajax282

MULTISELECT

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

Binding

(already explained above)valueprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the browser
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the input
a synchronization with the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that were
changed before - are transferred to the adapter object, not only the one
that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if you want to pass one changed
value to all its representaion directly after changing the value.

OptionalWhen the data synchronization of the control is set to FLUSH="server"
then you can specify an explicit event to be sent when the user updates

flushmethod

the content of the control. By doing so you can distinguish on the server
side from which control the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in case the user
presses F1 on the control.

helpid

283Natural for Ajax

MULTISELECT

284

47 NEWSFEED

■ Example .. 287
■ Built-in Events ... 288
■ Properties .. 288

285

The NEWSFEED control is a simple-to-use 「newsreader」 within the Application Designer pages.
It offers the possibility to read news feeds (RSS feeds and Atom feeds).

重要: In order to use the NEWSFEED control, you have to specify a valid RSS or Atom feed
URL (for example http://news.cnet.com/2547-1001_3-0-5.xml). If necessary, you also have
to specify your proxy server settings (host, port, user name, password).

Natural for Ajax286

NEWSFEED

http://news.cnet.com/2547-1001_3-0-5.xml

Example

The XML layout definition is:

<rowarea name="Newsfeed Control" width="560">
<newsfeed infoprop="newsfeedinfoprop" width="550" height="450">
</newsfeed>

</rowarea>

287Natural for Ajax

NEWSFEED

Built-in Events

value-of-infoprop.onOpenLink
value-of-infoprop.onOpenLinkNewTarget

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the adapter.infoprop

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will be
rendered with its default height. If the control is a container control (containing)
other controls then the height of the control will follow the height of its content. 250

300(B) Pixel sizing: just input a number value (e.g. "20").

250(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of

400the control properly defines a height this control can reference. If you specify

50%this control to have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect. 100%

vsplitOptionalBy default the newsfeed control appears within a vsplit control. Headers on
the left and content on the right. Set this value to hsplit and the control appears
within a hsplit control. Headers on top, content on the bottom.

splitstyle

hsplit

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Natural for Ajax288

NEWSFEED

48 RADIOBUTTON

■ Properties .. 290

289

The RADIOBUTTON control displays the radio button. Radio buttons can be grouped together
so that a group of RADIOBUTTON controls manipulates one adapter parameter. Each
RADIOBUTTON instance represents one value for the adapter parameter.

Properties

Basic

ObligatoryName of the adapter parameter that provides the content
of the control.

valueprop

OptionalValue that represents this instance of the RADIOBUTTON
control.

value

The value is set into the adapter property that is defined
by the VALUEPROP property when the user clicks onto
the control. - Vice versa: the control is switched to
"marked" when the adapter property holds the value
defined.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

trueOptionalIf set to true, the FIELD will not be accessible for input. It
is just used as an output field.

displayonly

false

leftOptionalHorizontal alignment of control in its column.align

Natural for Ajax290

RADIOBUTTON

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size

rightof the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the size

bottomof the column is bigger than the size of the control. In this
case the "align" property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but you may want to define the control
to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control
two span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

invisibleOptionalIf the visibility of the control is determined dynamically
by an adapter property then there are two rendering modes
if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

291Natural for Ajax

RADIOBUTTON

(2) "disabled": the control is deactivated: it is "grayed" and
does not show any roll over effects any more.

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source order
to resolve duplicates.

tabindex

0

1

2

5

10

32767

Label

OptionalText that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

OptionalMulti language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

OptionalWitdh of the distance between checkbox and label in pixel.hdistpixelwidth

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

labelstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

Binding

(already explained above)valueprop

OptionalName of the adapter parameter that dynamically passes
information how the control should be rendered and how
it should act.

statusprop

Natural for Ajax292

RADIOBUTTON

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to

flushmethod

be sent when the user updates the content of the control.
By doing so you can distinguish on the server side from
which control the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in
case the user presses F1 on the control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that
can be later on used within your test tool in order to do
the object identification

testtoolid

The RADIOBUTTON control is typically followed by a label explaining its meaning.

293Natural for Ajax

RADIOBUTTON

294

49 SCHEDULELINE

■ Properties .. 296

295

The SCHEDULELINE control is used to define screens like the following:

You can display a certain sequence of items, each item holding a text, a color value, a size and an
identifier. When clicking on an item, a certain event is sent to your adapter and the ID of the
selected item is returned to perform activities in your program.

Properties

Basic

ObligatoryName of the adapter parameter that represents the control
in the adapter.

valueprop

It returns a semicolon separated list of schedule items.
Each item is represented by a color, a width, a text and
a selection id. The width is not a pixel width but
represents a "portion" that this schedule item represents.

Example: #FF0000\"1000;Text 1;1;#00FF00;500;Text 2;2

The total "logical width" is 1500. The firts item occupies
2/3 of the width, the right item occupies 1/3 of the width.

The selection is required in case you want to react on user
selections. If a user clicks onto one schedule item then
the adapter is notified by a certain event - the id of the
schedule item is passed as reference. Please have a look
into the corresponding property descriptions.

Natural for Ajax296

SCHEDULELINE

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case

160of container controls - it will follow the width that is
occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%

100%up correct results if the parent element of the control
properly defines a width this control can reference. If you
specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

OptionalHeight of the control in pixels.pixelheight

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

(already explained above)pixelheight

trueOptionalA schedule line consists of sections, each one rendered
with a certain width. By default the width does not

pixelsizemode

falserepresent a pixel value but represents a logical size. The
width of the section depends on the logical size of one
section compared with the logical size of the other
sections.

When switching this property to "true" then the size of
the sections are interpreted as real pixel values.

leftOptionalHorizontal alignment of the text inside the control's
schedule items.

cellalign

center

right

topOptionalVertical alignement of the text inside the control's
schedule items.

cellvalign

middle

bottom

background-color:
#FF0000

OptionalStyle that is used inside the schedule item cells. Can be
any CSS style.

cellstyle

297Natural for Ajax

SCHEDULELINE

color: #0000FF

font-weight: bold

trueOptionalIf switched to "true" then the text inside the schedule item
cells is not broken if exceeding the size of the control -
the text is cut instead.

cellnowrap

false

Default is "false".

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the size

bottomof the column is bigger than the size of the control. In this
case the "align" property specify the position of the
control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but you may want to define the
control to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control
two span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

trueOptionalFlag (true | false) that indicates that cells of different lines
(within ROWTABLEAREA2) does not have same ids. If

crosslineids

falseset to false the control is able to detect and skip
unnecessary re-draws (performance).

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

tablestyle

Natural for Ajax298

SCHEDULELINE

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

Binding

(already explained above)valueprop

OptionalName of the event that is sent to the adapter when the
user selects one schedule item with the mouse.

selectmethod

OptionalName of an adapter parameter in which the id of the
selected schedule item is passed.

selscheduleprop

OptionalName of an adapter parameter that is used in the
following way:

seltypeprop

If the user selects an item it can also be determined, if the
item is selected by the left or by the right mouse button.
In case the user uses the left mouse button, the value
LEFT is passed into the property, which is referenced by
the SELTYPEPROP property. In case the user uses the
right mouse button, the value RIGHT is passed.

trueOptionalIf set to "true" then schedule items holding an id can be
"preselected": the user can click on a schedule item and

preselectmode

falseit is "grayed" as consequence - without directly calling
the selection method. The selection method is called when
double clicking onto the schedule item.

Default is "false".

The reaction of the control when clicking with the right
mouse button remains untouched: still the selection
method is called by a single right mouse button click.

Vertical

trueOptionalFlag that indicates if the line is rendered vertically.
Default is false.

verticalschedule

false

299Natural for Ajax

SCHEDULELINE

OptionalName of an adapter parameter that contains the comma
separated list of help texts that are displayed on mouse
over (tooltip).

tooltipprop

OptionalName of an adapter parameter that returns a comma
separated string of image URLs. An URL either is an

imageprop

absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located
directly inside your project's directory.

Example: "images/green.gif;;red.gif"

leftOptionalFlag that indicates to render the image at the left or right
hand of the text.

imageorientation

right

OptionalName of the adapter parameter to that the id of the
dragged cell is set. Do not use this property if you do not

dropinfoprop

want to support drag and drop within the
SCHEDULELINE. The server side property needs to be
of type "String".

OptionalName of the event that is sent to the adapter on drop of
one cell (source) over another cell (target). Use property

onmovemethod

DROPINFOPROP to get the id of the dragged cell
(source). Use SELSCHEDULEPROP to get the id of the
cell that got the drop (target).

OptionalName of an adapter parameter to that the information is
set whether the user pressed the CTRL key when selecting
a cell.

controlkeyprop

Natural for Ajax300

SCHEDULELINE

50 SLIDER

■ Example .. 302
■ Adapter Interface ... 303
■ Properties .. 303

301

The SLIDER control represents a slider. The main use of the slider is to limit the user input to
specific values. It uses a number representation for its values, but the numbers can also be used
to express string values.

Example

The XML layout definition is:

<rowarea name="Number Output">
<itr>

<slider valueprop="slider1" from="13" to="60" showrange="true"
showcurrentvalue="false">

</slider>
</itr>

</rowarea>

The control can be customized by setting its start value, end value and a step. The start and end
values form a closed interval. The step defines the distance between two valid values represented
by the slider in this interval.

In the above example, the value for the step is the default value "1". The possible values represented
by the slider are the integers from "13" to "60". It is possible to specify a floating-point number as
a step, for example "0,25". The slider can be further customized by setting the properties showrange
and showcurrentvalue which show the range (start and end value) and the current value of the
slider while the user is moving it. The width and height of the slider point is adjustable. The slider
point is the element which the user drags and drops. The colors, the borders of the slider, the point,
the line, the range and the current value can also be customized.

Natural for Ajax302

SLIDER

Adapter Interface

DEFINE DATA PARAMETER
1 SLIDER
2 DISPLAYONLY (L)
2 FROM (F4)
2 SLIDERVALUE (F4)
2 STEP (F4)
2 TO (F4)
END-DEFINE

Properties

Basic

ObligatoryName of the adapter parameter that provides
the content of the control.

valueprop

Appearance

100OptionalWidth of the slider. Can be given in pixels or
percentage.

width

120

140

160

180

200

50%

303Natural for Ajax

SLIDER

100%

trueOptionalIf set to true, the SLIDER will not be accessible
for input. It is just used as an output.

displayonly

false

trueOptionalBoolean value. Whether to show the range of
the slider. The range is the "from" and "to"
values.

showrange

false

trueOptionalBoolean value. Whether to show the current
value of the slider while it is moving.

showcurrentvalue

false

#FF0000OptionalBackground color of the slider container.mainbgcolor

#00FF00This should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF

#FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBorder color of the slider container.mainbordercolor

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

thinOptionalBorder width of the slider container.mainborderwidth

medium

thick

1px

2px

5px

10px

#FF0000OptionalBackground color of the slider point.pointbgcolor

#00FF00This should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF

Natural for Ajax304

SLIDER

#FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBorder color of the slider point.pointbordercolor

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

thinOptionalBorder width of the slider point.pointborderwidth

medium

thick

1px

2px

5px

10px

10OptionalWidth of the slider point in pixels. The value
must be an integer value.

pointwidth

20

40

100

300

10OptionalHeight of the slider point in pixels. The value
must be an integer value.

pointheight

20

40

100

300

#FF0000OptionalBackground color of the slider line.linebgcolor

#00FF00This should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF

305Natural for Ajax

SLIDER

#FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBorder color of the slider line.linebordercolor

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

thinOptionalBorder width of the slider line.lineborderwidth

medium

thick

1px

2px

5px

10px

xx-smallOptionalFont size of the slider range.rangefontsize

x-small

small

medium

large

x-large

xx-large

smaller

larger

150%

#FF0000OptionalBackground color of the slider current value
which is shown if the "showcurrentvalue"
property is set to true.

valuebgcolor

#00FF00

#0000FF

Natural for Ajax306

SLIDER

This should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others.

#FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBackground color of the slider current value
which is shown if the "showcurrentvalue"
property is set to true.

valuebordercolor

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #bbb #666 #666 #bbb

thinOptionalBorder width of the slider current value which
is shown if the "showcurrentvalue" property is
set to true.

valueborderwidth

medium

thick

1px

2px

5px

10px

xx-smallOptionalFont size of the slider current value which is
shown if the "showcurrentvalue" property is set
to true.

valuefontsize

x-small

small

medium

large

x-large

xx-large

smaller

larger

150%

307Natural for Ajax

SLIDER

308

51 STRIPSEL

■ Example .. 310
■ Properties .. 310

309

The STRIPSEL control is very similar to the TABSTRIP2 control: the user selects one option out of
many.

The STRIPSEL control is typically located somewhere at the top of a page, but it can also be
positioned anywhere else.

Example

Programming a STRIPSEL control is the same as programming the TABSTRIP2 control - just the
rendering of the control differs:

In this example, the STRIPSEL control is the control below the titlebar. For comparison, the
TABSTRIP2 control has also been added.

Properties

Basic

OptionalName of the adapter parameter that represents the
control in the adapter.

tabstripprop

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size

rightof the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is
sized in the same way as the contained control.

Natural for Ajax310

STRIPSEL

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained
text.

trueOptionalFlag that indicates if the control shows scroll icons on
the right upper corner. Default is true

scrollable

false

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

backgroundstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

OptionalHelp text that is displayed if the user moves the mouse
of the scroll to left icon.

scrolllefttitle

OptionalMulti language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

scrolllefttitletextid

Do not specify a "name" inside the control if specifying
a "textid".

OptionalHelp text that is displayed if the user moves the mouse
of the scroll to right icon.

scrollrighttitle

OptionalMulti language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

scrollrighttitletextid

Do not specify a "name" inside the control if specifying
a "textid".

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

311Natural for Ajax

STRIPSEL

312

52 SUBPAGE

■ Properties .. 314

313

The SUBPAGE control defines an area in which an HTML page is shown. The URL of the page is
not statically defined, but is dynamically controlled by the application.

Due to the browser's capability to embed installed plug-ins, you can use non-HTML objects to be
called - and which the browser is able to understand. For example, if you have Microsoft Office
installed (or the viewers for Microsoft Office documents) and you pass the name of a Word
document as the URL, the Word document will be embedded into the page.

Properties

Basic

ObligatoryName of the adapter parameter that provides the URL to be displayed
inside the SUBPAGE control.

valueprop

Please note: the SUBPAGE control only re-renders its inner content if the
URL provided by the property really changes. The SUBPAGE control
does not "know" if something changed inside the contained page and that
it has to redraw the page. - If you want to refresh the inner page explicitly
append some random number to your URL, e.g.:
http://...url...?RANDOM=45435. By changing the number the browser will
reload the URL.

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width of the control
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content.

140

160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element

50%of the control properly defines a width this control can reference. If you

100%specify this control to have a width of 50% then the parent element (e.g.
an ITR-row) may itself define a width of "100%". If the parent element
does not specify a width then the rendering result may not represent what
you expect.

100Sometimes
obligatory

Height of the control.

There are three possibilities to define the height:

height

150

(A) You do not define a height at all. As consequence the control will be
rendered with its default height. If the control is a container control

200

250(containing) other controls then the height of the control will follow the
height of its content.

300

Natural for Ajax314

SUBPAGE

(B) Pixel sizing: just input a number value (e.g. "20"). 250

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element

400

50%of the control properly defines a height this control can reference. If you

100%
specify this control to have a height of 50% then the parent element (e.g.
an ITR-row) may itself define a height of "100%". If the parent element
does not specify a width then the rendering result may not represent what
you expect.

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

(already explained above)height

autoOptionalDefinition of the scrollbar's appearance.scrolling

yesYou can define that the scrollbars only are shown if the content is
exceeding the control's area ("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and the content is cut ("hidden"). no

Default is "auto".

OptionalCSS style definition that is directly passed into this control.pagestyle

With the style you can individually influence the rendering of the control.
You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them with a
semicolon.

Sometimes it is useful to have a look into the generated HTML code in
order to know where direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns. 3

4The property only makes sense in table rows that are snychronized within
one container (i.e. TR, STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not synched. 5

50

int-value

315Natural for Ajax

SUBPAGE

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control the
number of rows your control occupies. By default it is "1" - but you may
want to define the control two span over more than one columns. 3

4The property only makes sense in table rows that are snychronized within
one container (i.e. TR, STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not synched. 5

50

int-value

Binding

(already explained above)valueprop

Natural for Ajax316

SUBPAGE

53 TABSEL

■ Adapter Interface ... 318
■ Built-in Events ... 319
■ Properties .. 319

317

The TABSEL control looks as shown in the following example:

The number of tabs is dynamically defined at runtime. There are various output options:

■ With/without a horizontal line below the control.
■ Normal or reverse coloring.

Like the TABSTRIP control, the TABSEL control does not provide internal containers that are
switched when selecting tabs. It just represents one tab line.

Adapter Interface

DEFINE DATA PARAMETER
1 TABS
2 SELECTEDITEM (I4)
2 TSITEMS (1:*)
3 ID (U) DYNAMIC
3 NAME (U) DYNAMIC
3 TITLE (U) DYNAMIC
END-DEFINE

Natural for Ajax318

TABSEL

Built-in Events

value-of-tabselprop.onSelect

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the
adapter.

tabselprop

trueOptionalIf set to "true" then a bottom border is rendered below the tab selection.
If set to "false" then no bottom border will be drawn.

bottomborder

false

trueOptionalReverses the color scheme of the TABSEL control.reversecolors

false

1OptionalInserts a horizontal distance left of the first "tab" and shifts the "tabs"
to the right as consequence. The value you may define represents the
number of pixels that are inserted.

leftindent

2

3

int-value

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

319Natural for Ajax

TABSEL

320

54 TABSTRIP2

■ Example .. 322
■ Adapter Interface ... 322
■ Built-in Events ... 322
■ Properties .. 323

321

The TABSTRIP2 control is used to navigate through certain aspects of your application. The way
you navigate depends completely on your implementation.

Example

The control looks as follows:

For each aspect, there is one tab holding a name and an index. The left-most tab holds index 1, the
next one 2, etc.

Adapter Interface

DEFINE DATA PARAMETER
1 TABS
2 SELINDEX (I4)
2 TSITEMS (1:*)
3 NAME (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-tabstripprop.onSelect

Natural for Ajax322

TABSTRIP2

Properties

Basic

OptionalName of the adapter parameter that represents the control
in the adapter.

tabstripprop

leftOptionalHorizontal alignment of the control's content.align

center

right

trueOptionalIf set to "true" then small icons will appear on the right
border of the control. If the size of the "tabs" is too big and

scrollable

falsesome tabs are cut as consequence then you can use these
icons for scrolling left and right.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

backgroundstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

323Natural for Ajax

TABSTRIP2

324

55 TAGCLOUD

■ Example .. 326
■ Adapter Interface ... 327
■ Built-in Events ... 327
■ Properties .. 327

325

The TAGCLOUD control represents a collection of tags. A tag is a keyword assigned to an
information resource (picture, video clip or others). In a tag cloud, the tags are mainly shown by
their popularity.

Example

As you can see, different tags can be added to a tag cloud. They differ by their popularity. The
most popular tags are those with a bigger font size.

Natural for Ajax326

TAGCLOUD

The XML layout definition is:

<itr>
<tagcloud tagcloudprop="tagCloud"

width="300" height="350"
borderstyle="dotted" borderwidth="1px"
bordercolor="#0000FF" backgroundcolor="#E6E6FA"
textcolor="#0000FF">

</tagcloud>
</itr>

The tag cloud can be customized by defining a background color.

Adapter Interface

DEFINE DATA PARAMETER
1 TAGCLOUD
2 TCLITEM (1:*)
3 ID (U) DYNAMIC
3 POPULARITY (I4)
3 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-tagcloudprop.onSelect

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the
adapter.

tagcloudprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

327Natural for Ajax

TAGCLOUD

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%
can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%

100%then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

solidOptionalChoose the style the controls border.borderstyle

double

groove

dotted

dashed

inset

outset

ridge

hidden

thinOptionalBorder size of control in pixels. Specify "0" not to renderborderwidth

mediumany border at all.

thick

1px

2px

Natural for Ajax328

TAGCLOUD

5px

10px

#FF0000OptionalSets the border color of the control.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

#FF0000OptionalSets the background color of the control.backgroundcolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

#FF0000OptionalSets the text color of the control.textcolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

329Natural for Ajax

TAGCLOUD

330

56 TEXT

■ Properties .. 332

331

The TEXT control represents a multi line text edit control. It represents the value of an adapter
parameter.

Properties

Basic

ObligatoryName of the adapter parameter that provides the content of the
control.

valueprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content.

140

160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%

100%then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the browser
client - and communicated to the server adapter object when a user

Natural for Ajax332

TEXT

e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the
input a synchronization with the server adapter is triggered. As
consequence you directly can react inside your adapter logic onto
the change of the corresponding value. - Please be aware of that
during the synchronization always all changed properties - also
the ones that were changed before - are transferred to the adapter
object, not only the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if you
want to pass one changed value to all its representaion directly
after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be sent

flushmethod

when the user updates the content of the control. By doing so you
can distinguish on the server side from which control the flush of
data was triggered.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

trueOptionalIf set to true, the FIELD will not be accessible for input. It is just
used as an output field.

displayonly

false

OptionalName of the adapter parameter that dynamically passes
information how the control should be rendered and how it should
act.

statusprop

softOptionalSpecifies the line wrapping inside the control. By default a line that
exceeds the width of the control is broken automatically.

wrap

hard
You may define this property to not wrap at all ("off") - in this case
the text control offers horizontal scroll bars to scroll the text. off

There are two styles of wrapping "soft" and "hard". The difference
between "soft" and "hard" is the way the text is - if changed by the
user - passed back to the adapter property: when specifying "soft"
then line breaks which are caused by wrapping are not sent to the
server, when specifying "hard" then line breaks caused by wrapping
are sent as carriage return/ line feed. - Be carefule when specifying
"hard" as consequence!

OptionalHeight of control specified by number of rows. Either define the
height by the HEIGHT property or by the ROWS property. Do not
specify both!

rows

333Natural for Ajax

TEXT

When specifying the height by ROWS then be aware of that the
height depends from the font size used inside the control (that is
defined in the styles sheet definition).

OptionalWidth of control specified by number of characters. Either define
the width by the WIDTH property or by the COLS property. Do
not specify both!

cols

When specifying the width by COLS then be aware of that the
width depends from the font size used inside the control (that is
defined in the styles sheet definition).

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control two span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

OptionalCSS style definition that is directly passed into this control.textareastyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.

Natural for Ajax334

TEXT

Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

titletextid

OptionalName of the adapter parameter that dynamically defines the title
of the control. The title is displayed as tool tip when ther user
moves the mouse onto the control.

titleprop

autoOptionalDefinition of the scrollbar's appearance.scroll

scrollYou can define that the scrollbars only are shown if the content is
exceeding the control's area ("auto"). Or scrollbars can be shown

hiddenalways ("scroll"). Or scrollbars are never shown - and the content
is cut ("hidden").

Default is "auto".

-1OptionalIndex that defines the tab order of the control. Controls are selected
in increasing index order and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Online Help

OptionalHelp id that is passed to the online help management in case the
user presses F1 on the control.

helpid

(already explained above)title

(already explained above)titletextid

(already explained above)titleprop

Natural

OptionalIf the control shall be bound to a Natural system variable of string
format with the attribute njx:natsysvar, this attribute indicates the

njx:natstringtype

format of the string, A (code page) or U (Unicode). The default is
A.

OptionalIf the control shall be bound to a Natural system variable with the
attribute njx:natsysvar, this attribute indicates if the system variable
is modifiable. The default is false.

njx:natsysio

335Natural for Ajax

TEXT

OptionalIf a Natural variable with a name not valid for Application Designer
(for instance #FIELD1) shall be bound to the control, a different

njx:natname

name (for instance HFIELD1) can be bound instead. If the original
name (in this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area of the
Natural adapter and a mapping between the two names is
generated into the PROCESS PAGE statement of the Natural
adapter.

OptionalIf the control shall be bound to a Natural system variable, this
attribute specifies the name of the system variable.

njx:natsysvar

OptionalThe value of this attribute is generated as comment line into the
parameter data area of the Natural adapter, before the field name.

njx:natcomment

The Map Converter, for instance, uses this attributes to indicate
for a generated statusprop variable to which field the statusprop
belongs.

Natural for Ajax336

TEXT

57 TEXTOUT

■ Example .. 338
■ Properties .. 338

337

The TEXTOUT control is used to display plain text. The text is not statically defined (as a label)
but is controlled by an adapter property.

Example

The XML layout definition is:

<rowarea name="Textouts">
<itr>

<textout valueprop="factor1" width="100">
</textout>
<textout valueprop="factor1" width="100" textsize="1">
</textout>
<textout valueprop="factor1" width="100" textsize="3">
</textout>
<textout valueprop="factor1" width="100" textsize="6">
</textout>

</itr>
</rowarea>

Properties

Basic

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case

140

160of container controls - it will follow the width that is
occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%

100%up correct results if the parent element of the control
properly defines a width this control can reference. If you

Natural for Ajax338

TEXTOUT

specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

ObligatoryName of the adapter parameter that provides the content
of the control.

valueprop

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the

250control is a container control (containing) other controls

300
then the height of the control will follow the height of its
content.

250(B) Pixel sizing: just input a number value (e.g. "20").

400(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control

100%properly defines a height this control can reference. If
you specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

trueOptionalIf the textual content of the control exceeds the size of the
control then the browser automatically breaks the line
and arranges the text accordingly.

nowrap

false

You can avoid this behaviour by setting NOWRAP to
"true". No line break will be performed by the browser.

1OptionalThe HTML font size of the text. Corresponding to the
HTML definition "1" means "smallest" and "6" means
"biggest".

textsize

2

3

4

5

6

339Natural for Ajax

TEXTOUT

#FF0000OptionalColour of the text. Input a value like "#FF0000".textcolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

dateOptionalBy default, the control is managing its content as string.
By explicitly setting a datatype you can define that the

datatype

floatcontrol will format the data coming from the server: if

int
the field has datatype "date" and the user inputs "010304"
then the input will be translated into "01.03.2004" (or other
representation, dependent on date format settings). long

Please note: the datatype "float" is named a bit misleading
- it represents any decimal format number. The server

time

timestampside representation may be a float value, but also can be
a double or a BigDecimal property.

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

xs:byte

xs:short

trueOptionalIf the text of the control contains HTML tags then these
are by default interpreted by the browser. Specifiying

straighttext

falseSTRAIGHTTEXT as "true" means that the browser will
directly render the characters without HTML
interpretation.

Natural for Ajax340

TEXTOUT

Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size

rightof the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the size

bottomof the column is bigger than the size of the control. In this
case the "align" property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but you may want to define the
control to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control
two span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

341Natural for Ajax

TEXTOUT

OptionalName of an adapter parameter that passes back a color
value (e.g. "#FF0000" for red color). The color value is

bgcolorprop

used as background color in the control. The color of the
text color is automatically chosen dependent from the
background color: for light background colors the text
color is black, for dark background colors the color is
white. Use FGCOLORPROP to choose the text color on
your own.

OptionalName of an adapter parameter that passes back a color
value (e.g. "#FF0000" for red color). The color value is

fgcolorprop

used as text color in the control. The background color
is automatically chosen dependent from the text color:
for dark text colors the background color is transparent
(default), for light text colors the color is black. Use
BGCOLORPROP to choose both - the text and
background color.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

textoutstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

OptionalCSS style class definition that is directly passed into this
control.

textoutclass

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that you
maintain with the style sheet editor) - or it can be one of
an other style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

Binding

(already explained above)valueprop

(already explained above)bgcolorprop

(already explained above)fgcolorprop

Natural for Ajax342

TEXTOUT

OptionalName of the adapter parameter that provides the
information if this control is displayed or not. As

visibleprop

consequence you can control the visibility of the control
dynamically.

invisibleOptionalIf the visibility of the control is determined dynamically
by an adapter property then there are two rendering
modes if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed"
and does not show any roll over effects any more.

Natural

OptionalIf the control shall be bound to a Natural system variable
of string format with the attribute njx:natsysvar, this

njx:natstringtype

attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

OptionalIf the control shall be bound to a Natural system variable
with the attribute njx:natsysvar, this attribute indicates
if the system variable is modifiable. The default is false.

njx:natsysio

OptionalIf a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be

njx:natname

bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name (in
this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area
of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement
of the Natural adapter.

OptionalIf the control shall be bound to a Natural system variable,
this attribute specifies the name of the system variable.

njx:natsysvar

OptionalThe value of this attribute is generated as comment line
into the parameter data area of the Natural adapter,

njx:natcomment

before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

343Natural for Ajax

TEXTOUT

344

58 TOGGLE

■ Properties .. 346

345

The TOGGLE control is used to display and to edit a selection status. In principle, it acts similar
to a CHECKBOX control, but it

■ allows to define different icon images for the "true" and "false" representations;
■ allows being informed when the user presses the CTRL or SHIFT key when clicking the icon. With

this information, you can react on a combination of SHIFT and click in a different way than to a
normal click or a combination of CTRL and click. This is especially useful inside grid processing
when you want to allow the user to do mass selections.

Properties

Basic

ObligatoryName of the adapter parameter that represents the value of the
control.

valueprop

gifObligatoryImage URL that is shown if the corresponding property value is
"true".

trueimage

jpg

jpeg

gifObligatoryImage URL that is shown if the corresponding property value is
"true".

falseimage

jpg

jpeg

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

Natural for Ajax346

TOGGLE

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalImage URL that is shown if the corresponding property value is
"null".

partialimage

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control two span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

-1OptionalIndex that defines the tab order of the control. Controls are selected
in increasing index order and in source order to resolve duplicates.

tabindex

0

347Natural for Ajax

TOGGLE

1

2

5

10

32767

OptionalCSS style class definition that is directly passed into this control.backgroundclass

The style class can be either one which is part of the "normal" CIS
style sheet files (i.e. the ones that you maintain with the style sheet
editor) - or it can be one of an other style sheet file that you may
reference via the ADDSTYLESHEET property of the PAGE tag.

Binding

(already explained above)valueprop

OptionalName of the adapter parameter that dynamically passes information
how the control should be rendered and how it should act.

statusprop

OptionalName of the event that is sent to the adapter when the user clicks
on the toggle control and presses the Shift-key the same time.

shiftmethod

OptionalName of the event that is sent to the adapter when the user clicks
on the toggle control and presses the Ctrl-key the same time.

controlmethod

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the browser
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the
input a synchronization with the server adapter is triggered. As
consequence you directly can react inside your adapter logic onto
the change of the corresponding value. - Please be aware of that
during the synchronization always all changed properties - also
the ones that were changed before - are transferred to the adapter
object, not only the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if you
want to pass one changed value to all its representaion directly
after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be sent

flushmethod

when the user updates the content of the control. By doing so you

Natural for Ajax348

TOGGLE

can distinguish on the server side from which control the flush of
data was triggered.

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

titletextid

349Natural for Ajax

TOGGLE

350

59 ACTIVEX

■ Properties .. 352

351

This is a 「hot topic」: embedding ActiveX controls in pages. Before telling you what the control
does, let us explain why we do it:

Of course, the client integration of ActiveX controls has - from browser or SWT perspective - only
disadvantages:

■ ActiveX controls are not secure: you decide to run one control or not. But do not have a
「sandbox」 as you have with JavaScript or with applets. Using an ActiveX control means that
this contol - once running - has native access to your computer, just as any other native program.

■ ActiveX controls are bound to the Microsoft Windows platform.
■ ActiveX controls need to be explicitly installed on the client side - maybe automated in some

way, but still an explicit installation is necessary.

But - and this is why we support them - in some cases, they are a nice way to integrate other
software which runs out of the scope of the browser.

Example: you may want to integrate your user interface with a barcode reader which is connected
to your client via a serial interface. In this case, there is no way to access this barcode reader via
JavaScript. You need to use an ActiveX control (or a signed applet) to connect to the serial device.

There is a simple interface between HTML/JavaScript and ActiveX, and vice versa. ActiveX controls
can be embedded into an HTML page and it is possible to directly access properties of the ActiveX
control from JavaScript. This interface was used for building the ACTIVEX control that you can
use as an Application Designer control.

Properties

Basic

OptionalClass id of the ActiveX control. A string in the format
"8E27C92B-1264-101C-8A2F-040224009C02" representing the UUID of the

classid

ActiveX component. The CLASSID is used inside the HTML client to reference
the ActiveX control.

OptionalThe unique program identifier which has been registered for this ActiveX
Control like "Shell.Explorer"

progid

OptionalInit parameters that are used for creating an instance of the ActiveX control.
Values are passed as semicolon separated string: property;value;property;value
etc.

xinitparams

The property is the name of the ActiveX control's property that is initialized
with the corresponding value.

OptionalSame as GETXPARAMS but now the other direction. Adapter properties that
are transferred (on change) into corresponding ActiveX properties with each

setxparams

Natural for Ajax352

ACTIVEX

repsonse. The string format is the same:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.

OptionalSemicolon separated list of which ActiveX control are linked with which
adapter properties. The format is:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.

getxparams

With each request send from the browser the ActiveX properties are collected
in from the ActiveX control and are transferred (if they have changed) into
the corresponding adapter properties.activex_attr_progid"Program id of the
ActiveX control. E.g. "MSCAL.Calendar" for the Microsoft calendar. The
PROGID is used inside the SWT client to access the ActiveX control.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of

50%the control properly defines a width this control can reference. If you specify

100%this control to have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will be
rendered with its default height. If the control is a container control

250(containing) other controls then the height of the control will follow the height
of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of 400

50%the control properly defines a height this control can reference. If you specify
this control to have a height of 50% then the parent element (e.g. an ITR-row)

100%may itself define a height of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

OptionalName of the adapter parameter that indicates that the ActiveX control is
reloaded with every response from the server that changed data of the ActiveX
control.

reloadprop

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

353Natural for Ajax

ACTIVEX

354

60 GOOGLEMAP2

■ Before You Start .. 356
■ Example .. 357
■ Typical Problems ... 358
■ Properties .. 359

355

The GOOGLEMAP2 control is used to provide for Google Maps support within Application
Designer pages. The control internally makes use of the Google Maps API. In order to use the
control on your site, you need to sign up for a Google Maps API key at
http://code.google.com/apis/maps/signup.html. Make sure that you agree with the Google Maps
API Terms of Use (http://code.google.com/apis/maps/terms.html).

Before You Start

In order to use the GOOGLEMAP2 control, you need to sign up for a Google Maps API key. A
key is valid for a single 「directory」 on your web server only, i.e. you sign up for a URL like
http://www.mysite.com/mywebapp/myproject. With a standard installation of Application Designer
on localhost, you may sign up for the URL http://localhost:8080/mywebapp/myproject. Typically, you
develop your Application Designer web application not on the site on which you run it later in
productive mode. Therefore, you may sign up for two different sites (development and production
site).

Required Steps

1. Choose the project directory that keeps the layouts using the GOOGLEMAP2 control.

2. Sign up for a Google Maps API key at http://code.google.com/apis/maps/signup.html for this
project directory (e.g. http://localhost:8080/mywebapp/myproject).

3. Create the API key page. Store the key page in the registered project directory. You are free in
naming the file (the file extension must be "html"). The GOOGLEMAP2 control embeds your
API key as a subpage. The subpage must have the following minimum structure:

<html>
<head>

<script src="
http://maps.google.com/maps?file=api&v=2.x&key=YOUR_API_KEY"></script>

<script src="../HTMLBasedGUI/general/googlemapsscript.js"></script>
</head>
<body>

<div id="map" style="position:absolute; top0; left:0;"></div>
</body>

</html>

You see that the page includes two JavaScript libraries. The first line refers to the Google Maps
API. Replace the placeholder "YOUR_API_KEY" with your Google Maps API key. With the
second line, the page includes the control's scripting (calls from Application Designer to the
Google Maps). The page body is quite simple: it contains a single div tag with the ID "map".
This div is used as an anchor to insert Google Maps controls dynamically.

Natural for Ajax356

GOOGLEMAP2

http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/terms.html
http://code.google.com/apis/maps/signup.html

Example

■ General Usage

General Usage

The map options are taken from the property infoprop. On this object, you may set the address
(or latitude and longitude), the zoom level and the map size as well as the map type.

注意: The usage of address or longitude/latitude is mutually exclusive.

357Natural for Ajax

GOOGLEMAP2

Typical Problems

■ Google Map API Key
■ Map Remains Gray

Google Map API Key

Your Google Maps API key is bound to a directory on a certain web server (i.e. you sign up for
the URL http://mycomputer.mydomain.com:8080/mywebapp/myproject). If you use your key for another
URL, Google shows an error message:

Reasons that cause the error:

■ You have registered your computer using the computer's name (e.g. http://mycomputer...). But
the Application Designer development workplace is started using the URL http://localhost....

Solution: start the Application Designer workplace with http://mycomputer....
■ The registered directory (e.g. .../mywebapp/myproject) does not match your installation (either a

mistake in writing when signing up for the key or you have renamed the web application or
project after registration).

Solution: rename your web application or project to match the registered names. Or sign up for
a new key and insert the new key into the API key page. In the latter case, delete the content of
the browser's cache. Otherwise, the browser will use the former API key page (and thus the old
key).

Map Remains Gray

If you use longitude and latitude for placing the marker on the map, their values may exceed the
map top (or bottom) border. If you are able to find the map by scrolling down (or up), then this
is the case. Check the values for longitude and latitude in this case.

Natural for Ajax358

GOOGLEMAP2

Properties

Basic

ObligatoryName of adapter parameter that represents the control in the
adapter.

infoprop

ObligatoryName of the Maps API Key page. Example:
mygooglemapsapikey.html. Keep this file within the project

apikeypagename

directory (directory within the CIS HTML pages are kept). The
GOOGLEMAP-control expects this file within certain Javascript
includes and content. Have look into chapter "Google Map - Before
You Start" within the Developers Guide

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%

100%then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

359Natural for Ajax

GOOGLEMAP2

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

OptionalCSS style definition that is directly passed into this control.pagestyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control two span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

Natural for Ajax360

GOOGLEMAP2

61 NETMEETING

■ Example .. 362
■ Properties .. 362

361

The NETMEETING control allows you to start NetMeeting sessions within your Application
Designer pages.

Example

The XML layout definition is:

<pagebody>
<itr>

<netmeeting calltoprop="callto" modeprop="modep" width="300">
</netmeeting>

</itr>
</pagebody>

Properties

Basic

OptionalName of the adapter parameter that provides the contact data of the 'contact'
that should be called.

calltoprop

The data has to have the following semantics.

ILS Server/email adress e.g. ils.netmeeting.de/contact@testmail.com

OptionalName of the adapter parameter that holds the mode of the control.modeprop

Natural for Ajax362

NETMEETING

Possible are:

FULL, PREVIEWONLY, PREVIEWNOPAUSE, REMOTEONLY,
REMOTENOPAUSE, DATAONLY

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the

50%control properly defines a width this control can reference. If you specify this

100%control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

363Natural for Ajax

NETMEETING

364

62 SKYPECALL

■ Example .. 367
■ Properties .. 367

365

The SKYPECALL control allows you to start the Skype client with given contact data from your
Application Designer pages.

重要: In order to use the SKYPECALL control you need to have a valid Skype account and
the Skype client must be installed. For further information, see http://www.skype.com/.

Natural for Ajax366

SKYPECALL

http://www.skype.com/

Example

The XML layout definition is:

<pagebody>
<itr>
<label name="Click on the link to start the Skype client: "

asplaintext="true"></label>
<skypecall valueprop="skypecall"></skypecall>
</itr>

</pagebody>

Properties

Basic

ObligatoryName of the adapter parameter that contains the phone number or the Skype ID
of the person that should be called. It is also possible to set some parameters.

valueprop

For further information, see the Skype API.

Note: The Skype client must be installed if you want to use this control.

367Natural for Ajax

SKYPECALL

368

63 NJX:BUTTONITEMLIST

■ Example .. 371
■ Adapter Interface ... 371
■ Built-in Events ... 372
■ Properties .. 372

369

The NJX:BUTTONITEMLIST control is used to arrange buttons in a horizontal line. In contrast to
the NJX:BUTTONITEMLISTFIX control, the number of buttons in an NJX:BUTTONITEMLIST
control can be changed dynamically (up to an upper limit defined at design time), but the layout
of the buttons cannot be configured individually. Instead, all buttons in the list are configured
with the same layout.

Natural for Ajax370

NJX:BUTTONITEMLIST

Example

The XML code for the example looks as follows:

<rowarea name="Dynamic Buttonlist">
<itr>

<njx:buttonitemlist buttonlistprop="dynbuttons"
buttoncount="10" hdist="10">

<njx:buttonitem width="100">
</njx:buttonitem>

</njx:buttonitemlist>
</itr>

</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 DYNBUTTONS (1:*)
2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC
2 TITLE (A) DYNAMIC
2 VISIBLE (L)
END-DEFINE

371Natural for Ajax

NJX:BUTTONITEMLIST

Built-in Events

The buttons in the NJX:BUTTONITEMLIST control (NJX:BUTTONITEM controls) behave like
BUTTON controls.

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the adapter.buttonlistprop

OptionalMaximum count of buttons in the buttonlist.buttoncount

If no buttoncount is defined then a default of 10 is assigned.

OptionalHorizontal distance between the buttons. Can be specified either in pixels or
as percentage value.

hdist

If no width is defined then a default width of 2 pixels is assigned.

Natural for Ajax372

NJX:BUTTONITEMLIST

64 NJX:BUTTONITEM

■ Example .. 374
■ Built-in Events ... 374
■ Properties .. 375

373

The NJX:BUTTONITEM control is used to configure the buttons in an NJX:BUTTONITEMLIST
control. Only one NJX:BUTTONITEM control is needed in an NJX:BUTTONITEMLIST control.
This NJX:BUTTONITEM control is used to configure all buttons in the same way.

Example

The XML code for the example looks as follows:

<rowarea name="Dynamic Buttonlist">
<itr>

<njx:buttonitemlist buttonlistprop="dynbuttons"
buttoncount="10" hdist="10">

<njx:buttonitem width="100">
</njx:buttonitem>

</njx:buttonitemlist>
</itr>

</rowarea>

Built-in Events

The NJX:BUTTONITEM control behaves like a BUTTON control.

Natural for Ajax374

NJX:BUTTONITEM

Properties

Basic

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

gifOptionalURL of image that is displayed inside the control. Any image
type (.gif, .jpg, ...) that your browser does understand is valid.

image

jpg
Use the following options to specify the URL:

jpeg
(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

invisibleOptionalThis property has three possible values:invisiblemode

disabled(1) "invisible": the button is not visible without occupying any
space.

cleared
(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies space.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of
the control will either be a default width or - in case of

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines a
width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does
not specify a width then the rendering result may not
represent what you expect.

375Natural for Ajax

NJX:BUTTONITEM

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines a
height this control can reference. If you specify this control to

100%have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element
does not specify a width then the rendering result may not
represent what you expect.

OptionalPixel height of image inside button.imageheight

OptionalPixel width of image inside button.imagewidth

background-color:
#FF0000

OptionalCSS style definition that is directly passed into the text of this
control.

textstyle

color: #0000FFWith the style you can individually influence the text of the
button. You can specify any style sheet expressions. Examples
are: font-weight: bold

font-weight: bold

color: #FF0000

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

buttonstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

VAR1OptionalSome controls offer the possibility to define style variants. By
this style variant you can address different styles inside your

stylevariant

Natural for Ajax376

NJX:BUTTONITEM

VAR2style sheet definition file (.css). If not defined "normal" styles
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this case
the "align" property specifies the position of the control inside
the column. In most cases you do not require the align control
to be explicitly defined because the size of the column around
the controls exactly is sized in the same way as the contained
control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign" in
which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside the
column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but you may want to define the control two span
over more than one columns.

4

377Natural for Ajax

NJX:BUTTONITEM

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows).

5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

gifOptionalURL of image that is displayed if the control is disabled. Use
properties VISIBLEPROP and INVISIBLEMODE to disable
the control.

imagedisabled

jpg

jpeg

trueOptionalSet this property to true and the button will work as an
'Submitbutton', that is neccessary if you want to transfer
and/or save form values.

submitbutton

false

i.e. password and username or complete search forms

Default value is false.

You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the object
identification

testtoolid

Natural for Ajax378

NJX:BUTTONITEM

65 NJX:BUTTONITEMLISTFIX

■ Example .. 380
■ Adapter Interface ... 380
■ Built-in Events ... 381
■ Properties .. 381

379

The NJX:BUTTONITEMLISTFIX control is used to arrange buttons in a horizontal line. In contrast
to the NJX:BUTTONITEMLIST control, the number of buttons in an NJX:BUTTONITEMLIST
control cannot be changed dynamically, but the layout of the buttons can be configured individually.

Example

The XML code for the example looks as follows:

<rowarea name="Fix Buttonlist">
<itr>

<njx:buttonitemlistfix buttonlistprop="fixbuttons" hdist="4">
<njx:buttonitemfix method="onButton1"
invisiblemode="cleared" width="300">

</njx:buttonitemfix>
<njx:buttonitemfix method="onButton2"
invisiblemode="disabled" width="100">

</njx:buttonitemfix>
</njx:buttonitemlistfix>

</itr>
</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 FIXBUTTONS (1:*)
2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC
2 TITLE (A) DYNAMIC
2 VISIBLE (L)
END-DEFINE

Natural for Ajax380

NJX:BUTTONITEMLISTFIX

Built-in Events

The buttons in the NJX:BUTTONITEMLISTFIX control (NJX:BUTTONITEMFIX controls) behave
like BUTTON controls.

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the adapter.buttonlistprop

OptionalHorizontal distance between the buttons. Can be specified either in pixels or
as percentage value.

hdist

If no width is defined then a default width of 2 pixels is assigned.

381Natural for Ajax

NJX:BUTTONITEMLISTFIX

382

66 NJX:BUTTONITEMFIX

■ Example .. 384
■ Built-in Events ... 384
■ Properties .. 385

383

The NJX:BUTTONITEMFIX control is used to configure the individual buttons in an
NJX:BUTTONITEMLISTFIX control. For each button in the NJX: BUTTONITEMLISTFIX control,
one NJX:BUTTONITEMFIX control is needed.

Example

The XML code for the example looks as follows:

<rowarea name="Fix Buttonlist">
<itr>

<njx:buttonitemlistfix buttonlistprop="fixbuttons" hdist="4">
<njx:buttonitemfix method="onButton1"
invisiblemode="cleared" width="300">

</njx:buttonitemfix>
<njx:buttonitemfix method="onButton2"
invisiblemode="disabled" width="100">

</njx:buttonitemfix>
</njx:buttonitemlistfix>

</itr>
</rowarea>

Built-in Events

The NJX:BUTTONITEMFIX control behaves like a BUTTON control.

Natural for Ajax384

NJX:BUTTONITEMFIX

Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

ObligatoryName of the event that is sent to the adapter when the user
presses the button.

method

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does understand
is valid.

image

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

invisibleOptionalThis property has three possible values:invisiblemode

disabled(1) "invisible": the button is not visible without occupying
any space.

cleared
(2) "disabled": the button is deactivated: it is "grayed" and
does not show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies
space.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140

385Natural for Ajax

NJX:BUTTONITEMFIX

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160

180container controls - it will follow the width that is occupied
by its content.

200
(B) Pixel sizing: just input a number value (e.g. "100").

50%
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 100%

results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines
a height this control can reference. If you specify this control

100%to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

OptionalPixel height of image inside button.imageheight

OptionalPixel width of image inside button.imagewidth

background-color:
#FF0000

OptionalCSS style definition that is directly passed into the text of
this control.

textstyle

color: #0000FFWith the style you can individually influence the text of the
button. You can specify any style sheet expressions.
Examples are: font-weight: bold

font-weight: bold

color: #FF0000

Natural for Ajax386

NJX:BUTTONITEMFIX

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

buttonstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

VAR1OptionalSome controls offer the possibility to define style variants.
By this style variant you can address different styles inside

stylevariant

VAR2your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. In most cases you do not require the
align control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way
as the contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

1OptionalColumn spanning of control.colspan

387Natural for Ajax

NJX:BUTTONITEMFIX

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but you may want to define the control two span
over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

gifOptionalURL of image that is displayed if the control is disabled.
Use properties VISIBLEPROP and INVISIBLEMODE to
disable the control.

imagedisabled

jpg

jpeg

trueOptionalSet this property to true and the button will work as an
'Submitbutton', that is neccessary if you want to transfer
and/or save form values.

submitbutton

false

i.e. password and username or complete search forms

Default value is false.

You should only use a 'Submitbutton' if the withformtag
option of the pagebody tag is set true.

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

Natural for Ajax388

NJX:BUTTONITEMFIX

32767

Binding

(already explained above)method

Online help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the
object identification

testtoolid

389Natural for Ajax

NJX:BUTTONITEMFIX

390

67 NJX:FIELDLIST

■ Example .. 393
■ Adapter Interface ... 394
■ Built-in Events ... 394
■ Properties .. 394

391

The NJX:FIELDLIST control is used to arrange fields or groups of fields in a horizontal line. The
difference of using the NJX:FIELDLIST control instead of individual fields is that the NJX:FIELDLIST
control binds the contained fields to an array or array group in the application, while individual
fields are bound to individual variables.

Natural for Ajax392

NJX:FIELDLIST

Example

The XML code for the example looks as follows:

<rowarea name="Complex Field List">
<itr>

<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="60">

<njx:fielditem valueprop="id" width="80"
invisiblemode="cleared">

</njx:fielditem>
</njx:fieldlist>

</itr>
<itr>

<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="10">

<njx:fielditem valueprop="last" width="130"
invisiblemode="invisible">

</njx:fielditem>
</njx:fieldlist>

</itr>
<itr>

<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="40">

<njx:fielditem valueprop="first" width="100"
invisiblemode="invisible">

</njx:fielditem>
</njx:fieldlist>

</itr>
</rowarea>
<rowarea name="Simple Field List">

<itr>
<njx:fieldlist fieldlistprop="simple" fieldcount="10">

<njx:fieldvalue width="50">
</njx:fieldvalue>

</njx:fieldlist>
</itr>

</rowarea>

393Natural for Ajax

NJX:FIELDLIST

Adapter Interface

DEFINE DATA PARAMETER
1 COLUMNS (1:*)
2 FIRST (A) DYNAMIC
2 ID (A) DYNAMIC
2 LAST (A) DYNAMIC
2 STATUS (A) DYNAMIC
1 SIMPLE (A/1:*) DYNAMIC
END-DEFINE

For all NJX:FIELDLIST controls that are bound to the same value in fieldlistprop (here: columns),
one common structure array is generated (here: COLUMNS).

For each NJX:FIELDITEM control, an element in the structure is generated according to the value
bound in valueprop (here: FIRST, ID and LAST).

For a simple field list (one that contains an NJX:FIELDVALUE control), a simple array is generated
according to the value bound in valueprop (here: SIMPLE).

Built-in Events

The fields in the NJX:FIELDLIST control (NJX:FIELDITEM controls or NJX:FIELDVALUE controls)
behave like FIELD controls.

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the adapter.fieldlistprop

OptionalMaximum count of fields in the fieldlist.fieldcount

If no fieldcount is defined then a default of 10 is assigned.

OptionalHorizontal distance between the fields Can be specified either in pixels or
as percentage value.

hdist

If no width is defined then a default width of 2 pixels is assigned.

OptionalIf a Natural variable with a name not valid for Application Designer (for
instance #FIELD1) shall be bound to the control, a different name (for instance

njx:natname

HFIELD1) can be bound instead. If the original name (in this case #FIELD1)
is then specified in this attribute, the original name is generated into the

Natural for Ajax394

NJX:FIELDLIST

parameter data area of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement of the Natural
adapter.

OptionalThe value of this attribute is generated as comment line into the parameter
data area of the Natural adapter, before the field name. The Map Converter,

njx:natcomment

for instance, uses this attributes to indicate for a generated statusprop variable
to which field the statusprop belongs.

395Natural for Ajax

NJX:FIELDLIST

396

68 NJX:FIELDITEM

■ Example .. 399
■ Adapter Interface ... 400
■ Built-in Events ... 400
■ Properties .. 400

397

The NJX:FIELDITEM control is used to configure the individual fields in an NJX:FIELDLIST
control in order to create a complex field list. The fields of a complex field list are mapped to a
group array in the Natural application. For each field in the NJX:FIELDLIST control, one
NJX:FIELDITEM control is needed. The NJX:FIELDITEM controls are used to configure the fields
in the list independently.

Natural for Ajax398

NJX:FIELDITEM

Example

The XML code for the example looks as follows:

<rowarea name="Complex Field List">
<itr>

<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="60">

<njx:fielditem valueprop="id" width="80"
invisiblemode="cleared">

</njx:fielditem>
</njx:fieldlist>

</itr>
<itr>

<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="10">

<njx:fielditem valueprop="last" width="130"
invisiblemode="invisible">

</njx:fielditem>
</njx:fieldlist>

</itr>
<itr>

<njx:fieldlist fieldlistprop="columns" fieldcount="5"
hdist="40">

<njx:fielditem valueprop="first" width="100"
invisiblemode="invisible">

</njx:fielditem>
</njx:fieldlist>

</itr>
</rowarea>

399Natural for Ajax

NJX:FIELDITEM

Adapter Interface

DEFINE DATA PARAMETER
1 COLUMNS (1:*)
2 FIRST (A) DYNAMIC
2 ID (A) DYNAMIC
2 LAST (A) DYNAMIC
2 STATUS (A) DYNAMIC
END-DEFINE

For all NJX:FIELDLIST controls that are bound to the same value in fieldlistprop (here: columns),
one common structure array is generated (here: COLUMNS).

For each NJX:FIELDITEM control, an element in the structure is generated according to the value
bound in valueprop (here: FIRST, ID and LAST).

Built-in Events

The fields in the NJX:FIELDITEM control (NJX:FIELDLIST controls or NJX:FIELDVALUE controls)
behave like FIELD controls.

Properties

Basic

ObligatoryName of the adapter parameter that provides
the content of the control.

valueprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width

Natural for Ajax400

NJX:FIELDITEM

this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

(already explained above)width

5OptionalWidth of FIELD in amount of characters.
WIDTH and LENGTH should not be used

length

10together. Note that the actual size of the control

15
depends on the font definition if using the
LENGTH property.

20

int-value

5OptionalMaximum number of characters that a user may
enter into this FIELD. This property is not

maxlength

10depending on the LENGTH property - please

15
do not get confused by the similar naming.
MAXLENGTH has nothing to do with the

20optical sizing of the control but only with the
number of characters you may input.

int-value

leftOptionalAlignment of text inside the control.textalign

center

right

trueOptionalIf set to "true", each entered character is
displayed as a '*'.

password

false

trueOptionalIf set to true, the FIELD will not be accessible
for input. It is just used as an output field.

displayonly

false

trueOptionalIf "true" then all input is automatically
transferred to upper case characters.

uppercase

false

leftOptionalHorizontal alignment of control in its column.align

401Natural for Ajax

NJX:FIELDITEM

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than
the size of the control. In this case the "align"
property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may
sometimes want to control the number of

3columns your control occupies. By default it is

4
"1" - but you may want to define the control to
span over more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may
sometimes want to control the number of rows

3your control occupies. By default it is "1" - but

4
you may want to define the control two span
over more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

Natural for Ajax402

NJX:FIELDITEM

background-color: #FF0000OptionalCSS style definition that is directly passed into
this control.

fieldstyle

color: #0000FF
With the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are:

font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

trueOptionalBoolean value defining if the control has a
border. Default is "false".

noborder

false

trueOptionalBoolean value defining if the control is rendered
with a transparent background. Default is
"false".

transparentbackground

false

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then there

invisiblemode

clearedare two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Binding

403Natural for Ajax

NJX:FIELDITEM

(already explained above)valueprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is
set to FLUSH="server" then you can specify an

flushmethod

explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

OptionalName of the adapter parameter that provides a
"human understandable" description for the

valuetextprop

value: in some cases you enter an id into a
FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined into
one text (string) that is returned into the FIELD.

OptionalIf using property "valuetextprop" then a field
knows an id and a text for a certain value. There

textidmode

are three types of display: either both are shown
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

Natural for Ajax404

NJX:FIELDITEM

OptionalName of the adapter parameter that
dynamically defines the title of the control. The

titleprop

title is displayed as tool tip when ther user
moves the mouse onto the control.

OptionalName of the adapter parameter that provides
the background color of the control.

bgcolorprop

OptionalName of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The

fgcolorprop

color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPROP to choose both - text and
background color.

trueOptionalName of the adapter parameter that controls
that the field's value help event is sent to the

autocallpopupmethod

falseadapter with a certain offset (milliseconds) after
last key down event.

OptionalName of the adapter parameter that provides
the maximum number of characters that a user

maxlengthprop

may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Validation

dateOptionalBy default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

datatype

float

int...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field

longwith datatype "int" then a corresponding error

timemessage will popup when the user leaves the
field.

timestamp
...will format the data coming from the server
or coming form the user input: if the field has color
datatype "date" and the user inputs "010304"

xs:decimalthen the input will be translated into

xs:double
"01.03.2004" (or other representation, dependent
on date format settings).

xs:dateIn addition valeu popups are offered for the
user automatically for some datatypes: e.g. when xs:dateTime
specifying datatype "date" the automatically the
field provides a calendar input popup. xs:time

405Natural for Ajax

NJX:FIELDITEM

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format

N n.nnumber. The server side representation may be

P n.n
a float value, but also can be a double or a
BigDecimal property.

string n

xs:byte

xs:short

OptionalContains information used for Data Validation.validationrules

Use the Validation Rules Editor to make
changes!

[a-zA-Z0-9_.-]OptionalRegular expression against which the content
of the field is checked on client side when the

validation

{1,}\\@[a-zA-Z0-9_.-]user changes the field. If the validation fails then

{1,}\\.\\w{2,}\\d{5}
an error message popup up and informs the
user about the wrong input.

[0-9)(-/+]+

OptionalName of the adapter parameter that provides a
regular expression for the validation of the field.

validationprop

Works the same way as VALIDATION but in a
dynamic way.

OptionalIf a client side validation fails due to wrong user
input then an error popup is opened. If you

validationuserhint

define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

OptionalIf using validation expressions (either property
"validation" or "validationprop") then a popup

validationuserhintprop

comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

1OptionalNumber that specifiies how many digits are to
be displayed (ie digits before the comma). If

digits

2using this feature then the DATATYPE property
must be set to 'float'. See also DECIMALDIGITS.

3

int-value

Natural for Ajax406

NJX:FIELDITEM

OptionalName of the adapter parameter that provides
information how many digits are to be displayed

digitsprop

(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'.

1OptionalNumber that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float'.

decimaldigits

2

3

int-value

OptionalName of the adapter parameter that provides
information how many decimal digits are to be

decimaldigitsprop

displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float'.

Valuehelp

openIdValueComboOptionalName of the event that is sent to the adapter
when the user requests value help by pressing

popupmethod

openIdValueHelpF4 or F7 or by clicking into the FIELD with the

openIdValueComboOrPopup
right mouse button. See at chapter 'Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

trueOptionalBoolean property that control if a field with
POPUPMETHOD defined is still usable for

popupinputonly

falsekeyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

OptionalName of the adapter parameter that provides
the information whether a POPUPMETHOD is

popupprop

available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

trueOptionalValue help in a field is triggered either by
clicking with the mouse or by pressing a certain

popuponalt40

falsekey inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to

407Natural for Ajax

NJX:FIELDITEM

"true" - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

1OptionalPixel width of the standard
"openIdValueCombo" popup dialog. Default is
field width or at least 150 pixel.

popupcombowidth

2

3

int-value

gifOptionalURL of image that is displayed inside the right
corner of the field to indicate to the user that

popupicon

jpgthere is some value help available.. Any image

jpeg
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

trueOptionalBoolean property that decides if touch pad
support is offered for the FIELD control. The

touchpadinput

falsedefault is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

onlinehelp

OptionalHelp id that is passed to the online help
management in case the user presses F1 on the
control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

titletextid

OptionalContains information used by the Formula
Editor.

formula

Natural for Ajax408

NJX:FIELDITEM

Use the Formula Editor to make changes!

Hot Keys

OptionalComma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

hotkeys

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Natural

OptionalIf a Natural variable with a name not valid for
Application Designer (for instance #FIELD1)

njx:natname

shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.
If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter.

OptionalThe value of this attribute is generated as
comment line into the parameter data area of

njx:natcomment

the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

Miscellaneous

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid

409Natural for Ajax

NJX:FIELDITEM

410

69 NJX:FIELDVALUE

■ Example .. 413
■ Adapter Interface ... 413
■ Built-in Events ... 413
■ Properties .. 414

411

The NJX:FIELDVALUE control is used to configure the fields in an NJX:FIELDLIST control in
order to create a simple field list. The fields of a simple field list are mapped to an array in the
Natural application. Only one NJX: FIELDVALUE control is needed in an NJX: FIELDLIST control.
This NJX:FIELDVALUE control is used to configure all fields in the list in the same way.

Natural for Ajax412

NJX:FIELDVALUE

Example

The XML code for the example looks as follows:

<rowarea name="Simple Field List">
<itr>

<njx:fieldlist fieldlistprop="simple" fieldcount="10">
<njx:fieldvalue width="50">
</njx:fieldvalue>

</njx:fieldlist>
</itr>

</rowarea>

Adapter Interface

DEFINE DATA PARAMETER
1 SIMPLE (A/1:*) DYNAMIC
END-DEFINE

For a simple field list (one that contains an NJX:FIELDVALUE control), an array is generated
according to the value bound in valueprop (here: SIMPLE).

Built-in Events

The NJX:FIELDVALUE control behaves like a FIELD control.

413Natural for Ajax

NJX:FIELDVALUE

Properties

Basic

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

(already explained above)width

5OptionalWidth of FIELD in amount of characters.
WIDTH and LENGTH should not be used

length

10together. Note that the actual size of the control

15
depends on the font definition if using the
LENGTH property.

20

int-value

5OptionalMaximum number of characters that a user may
enter into this FIELD. This property is not

maxlength

10depending on the LENGTH property - please

15
do not get confused by the similar naming.
MAXLENGTH has nothing to do with the

20optical sizing of the control but only with the
number of characters you may input.

Natural for Ajax414

NJX:FIELDVALUE

int-value

leftOptionalAlignment of text inside the control.textalign

center

right

trueOptionalIf set to "true", each entered character is
displayed as a '*'.

password

false

trueOptionalIf set to true, the FIELD will not be accessible
for input. It is just used as an output field.

displayonly

false

trueOptionalIf "true" then all input is automatically
transferred to upper case characters.

uppercase

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. In most cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than
the size of the control. In this case the "align"
property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may
sometimes want to control the number of

3columns your control occupies. By default it is

415Natural for Ajax

NJX:FIELDVALUE

4"1" - but you may want to define the control to
span over more than one columns.

5
The property only makes sense in table rows
that are snychronized within one container (i.e. 50

int-value
TR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not
synched.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may
sometimes want to control the number of rows

3your control occupies. By default it is "1" - but

4
you may want to define the control two span
over more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

background-color: #FF0000OptionalCSS style definition that is directly passed into
this control.

fieldstyle

color: #0000FF
With the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are:

font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

trueOptionalBoolean value defining if the control has a
border. Default is "false".

noborder

false

trueOptionalBoolean value defining if the control is rendered
with a transparent background. Default is
"false".

transparentbackground

false

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then there

invisiblemode

Natural for Ajax416

NJX:FIELDVALUE

clearedare two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Binding

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is
set to FLUSH="server" then you can specify an

flushmethod

417Natural for Ajax

NJX:FIELDVALUE

explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

OptionalIf using property "valuetextprop" then a field
knows an id and a text for a certain value. There

textidmode

are three types of display: either both are shown
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

OptionalName of the adapter parameter that provides
the background color of the control.

bgcolorprop

OptionalName of the adapter parameter that passes back
a color value (e.g. "#FF0000" for red color). The

fgcolorprop

color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPROP to choose both - text and
background color.

trueOptionalName of the adapter parameter that controls
that the field's value help event is sent to the

autocallpopupmethod

falseadapter with a certain offset (milliseconds) after
last key down event.

OptionalName of the adapter parameter that provides
the maximum number of characters that a user

maxlengthprop

may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a static
way.

Validation

dateOptionalBy default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

datatype

float

int...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field

longwith datatype "int" then a corresponding error

timemessage will popup when the user leaves the
field.

timestamp
...will format the data coming from the server
or coming form the user input: if the field has color
datatype "date" and the user inputs "010304"

xs:decimalthen the input will be translated into

Natural for Ajax418

NJX:FIELDVALUE

xs:double"01.03.2004" (or other representation, dependent
on date format settings).

xs:date
In addition valeu popups are offered for the
user automatically for some datatypes: e.g. when xs:dateTime

xs:time
specifying datatype "date" the automatically the
field provides a calendar input popup.

------------------------Please note: the datatype "float" is named a bit
misleading - it represents any decimal format N n.n
number. The server side representation may be

P n.na float value, but also can be a double or a
BigDecimal property.

string n

xs:byte

xs:short

OptionalContains information used for Data Validation.validationrules

Use the Validation Rules Editor to make
changes!

[a-zA-Z0-9_.-]OptionalRegular expression against which the content
of the field is checked on client side when the

validation

{1,}\\@[a-zA-Z0-9_.-]user changes the field. If the validation fails then

{1,}\\.\\w{2,}\\d{5}
an error message popup up and informs the
user about the wrong input.

[0-9)(-/+]+

OptionalIf a client side validation fails due to wrong user
input then an error popup is opened. If you

validationuserhint

define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

OptionalIf using validation expressions (either property
"validation" or "validationprop") then a popup

validationuserhintprop

comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property.

1OptionalNumber that specifiies how many digits are to
be displayed (ie digits before the comma). If

digits

2using this feature then the DATATYPE property
must be set to 'float'. See also DECIMALDIGITS.

3

419Natural for Ajax

NJX:FIELDVALUE

int-value

OptionalName of the adapter parameter that provides
information how many digits are to be displayed

digitsprop

(i. e. digits before the decimal character). If this
feature is used, the DATATYPE property must
be set to 'float'.

1OptionalNumber that specifiies how many decimal digits
are to be displayed. If using this feature then
the DATATYPE property must be set to 'float'.

decimaldigits

2

3

int-value

OptionalName of the adapter parameter that provides
information how many decimal digits are to be

decimaldigitsprop

displayed (i. e. digits before the decimal
character). If this feature is used, the
DATATYPE property must be set to 'float'.

Valuehelp

openIdValueComboOptionalName of the event that is sent to the adapter
when the user requests value help by pressing

popupmethod

openIdValueHelpF4 or F7 or by clicking into the FIELD with the

openIdValueComboOrPopup
right mouse button. See at chapter 'Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

trueOptionalBoolean property that control if a field with
POPUPMETHOD defined is still usable for

popupinputonly

falsekeyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

OptionalName of the adapter parameter that provides
the information whether a POPUPMETHOD is

popupprop

available or not. This feature is used in scenarios
in which a FIELD offers e.g. value help or not,
depending on business logic inside the adapter.

trueOptionalValue help in a field is triggered either by
clicking with the mouse or by pressing a certain

popuponalt40

falsekey inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
not want to mix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help

Natural for Ajax420

NJX:FIELDVALUE

behaviour. In this case switch this property to
"true" - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

1OptionalPixel width of the standard
"openIdValueCombo" popup dialog. Default is
field width or at least 150 pixel.

popupcombowidth

2

3

int-value

gifOptionalURL of image that is displayed inside the right
corner of the field to indicate to the user that

popupicon

jpgthere is some value help available.. Any image

jpeg
type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

trueOptionalBoolean property that decides if touch pad
support is offered for the FIELD control. The

touchpadinput

falsedefault is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control for making
inputs through a touch terminal.

onlinehelp

OptionalHelp id that is passed to the online help
management in case the user presses F1 on the
control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

titletextid

OptionalContains information used by the Formula
Editor.

formula

421Natural for Ajax

NJX:FIELDVALUE

Use the Formula Editor to make changes!

Hot Keys

OptionalComma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

hotkeys

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Miscellaneous

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid

Natural for Ajax422

NJX:FIELDVALUE

70 NJX:NJXVARIABLE

■ Example .. 424
■ Properties .. 424

423

The NJX:NJXVARIABLE control is used in Natural Map Converter templates in order to define a
placeholder that is replaced during map conversion. For further information, see Templates in the
section Customizing the Map Conversion Process of the Application Modernization part.

Example

The Map Converter template NATPAGE_TEMPLATE contains a variable MAPROOT that receives the
result of the map conversion process. As a result, the converted Natural map content is placed
into the pagebody of the resulting page layout.

<?xml version="1.0" encoding="UTF-8"?>
<natpage xmlns:njx="http://www.softwareag.com/njx/njxMapConverter"
natsource="$$NATSOURCE$$" natsinglebyte="true">

<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>
<pagebody>

<njx:njxvariable name="MAPROOT"/>
</pagebody>
<statusbar withdistance="false"/>

</natpage>

Properties

Basic

OptionalThe name of the variable.name

Natural for Ajax424

NJX:NJXVARIABLE

71 NJX:EVENTDATA

■ Example .. 427
■ Adapter Interface ... 428

425

The NJX:EVENTDATA control supplies additional information related to specific events. With
some events, the application needs additional information to handle the event properly. Only one
instance of the control needs to be added to the page. This instance provides the event data for all
events of other controls on the page that supply additional data. If the page does not contain an
instance of the NJX:EVENTDATA control, no additional event data is supplied to the application.

Natural for Ajax426

NJX:EVENTDATA

Example

The XML layout definition is:

<?xml version="1.0" encoding="UTF-8"?>
<natpage natsource="CTREVD-A" natsinglebyte="true"
xmlns:njx="http://www.softwareag.com/njx/njxMapConverter">

<titlebar name="Event Data Example">
</titlebar>
<pagebody takefullheight="true">

<rowarea name="Event Data" height="100%">
<itr height="100%">

<textgrid2 griddataprop="lines" width="100%"
height="100%" selectprop="selected"
onclickmethod="lines.onClick">

<column name="ID" property="id" width="100">
</column>
<column name="Last" property="last">
</column>
<column name="First" property="first">
</column>

</textgrid2>
</itr>

</rowarea>
</pagebody>
<statusbar withdistance="false">
</statusbar>
<njx:eventdata>
</njx:eventdata>

</natpage>

427Natural for Ajax

NJX:EVENTDATA

Adapter Interface

DEFINE DATA PARAMETER
1 LINES (1:*)
2 FIRST (A) DYNAMIC
2 ID (A) DYNAMIC
2 LAST (A) DYNAMIC
2 SELECTED (L)
1 XCIEVENTDATA
2 XCIINDEX (I4)
END-DEFINE

If a left click is applied to the grid, the index of the line is contained in XCIEVENTDATA.XCIINDEX.

Note that in order to receive the event data, the click event must refer to a specific control. In this
example, it must therefore be named lines.onClick, not just onClick.

Natural for Ajax428

NJX:EVENTDATA

72 Working with Grids

This 章 shows you how to deal with grids. Working with grids is as simple as working with
singular properties because the grid management adapts seamlessly into the normal processing
of the Application Designer environment.

The information provided in this part is organized under the following headings:

Basics

TEXTGRID2

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

ROWTABLEAREA2 - The Flexible Control Grid

FLEXLINE - Flexible Columns in Control Grids

MGDGRID - Managing the Grid

429

430

73 Basics

It is quite simple: 「normal」 controls refer to an adapter and are bound to adapter parameters.
Grid controls refer to an adapter as well - but are bound to a group array. Each array element
provides group elements to access its content.

Two types of grid controls are available:

■ The TEXTGRID2 control is a control that displays grid data - but does not allow any change to
the data. You can select grid rows and colorize them in different ways. Change the order of
columns dynamically and sort columns by clicking into the title row of the grid.

There is a TEXTGRIDSSS2 control that is a certain variant of the TEXTGRID2 control.
■ The ROWTABLEAREA2 is a container that internally allows you to use any normal control to

be embedded inside a grid. Therefore, you can place normal FIELD controls, CHECKBOX
controls etc. inside the ROWTABLEAREA2 container.

Use the TEXTGRID2 controls for displaying and selecting data. Use ROWTABLEAREA2 for
entering data inside a grid.

431

432

74 TEXTGRID2

■ A Simple Example ... 434
■ Adapter Interface ... 435
■ Selecting Rows in a TEXTGRID2 .. 435
■ TEXTGRID2 Properties ... 436
■ COLUMN Properties .. 442
■ Dynamic Setting of Text Styles in TEXTGRID2 .. 446

433

A Simple Example

The following example shows a TEXTGRID2 control:

There are two columns which hold data. There is one column at the very left which displays a
selection icon - in addition to a yellow background for a selected line. Even and odd lines are
displayed in slightly different colors. At the very right of each title column, there is a symbol which
indicates the sorting status; if you double-click on this symbol, the column is sorted first in ascending
direction and, when clicking again, in descending direction. Change the sequence of columns by
dragging the title of a column and dropping it on another column's title. Depending from where
you drop, the column is either moved left or right.

The asterisk in the upper left corner of the grid is used to select/deselect all lines in the grid. The
behavior depends on the setting of the singleselect property which determines whether multiple
lines can be selected in the grid (default) or whether only one line can be selected:

■ Multiple Line Selection Mode
When you choose the asterisk for the first time, all lines are selected. When you choose the
asterisk a second time, all lines are deselected.

■ Single Line Selection Mode
When you choose the asterisk (no matter how often), an existing selected line is deselected.

Natural for Ajax434

TEXTGRID2

The XML layout definition is:

<rowarea name="Textgrid">
<itr takefullwidth="true" fixlayout="true">

<textgrid2 griddataprop="lines" width="100%" height="200"
selectprop="selected"

hscroll="true">
<column name="First Name" property="firstName" width="50%">
</column>
<column name="Last Name" property="lastName" width="50%">
</column>

</textgrid2>
</itr>
<vdist height="5">
</vdist>

</rowarea>

The TEXTGRID2 definition is bound to a grid data property lines.

Inside the TEXTGRID2 control definition there are two columns. These columns are bound to the
properties firstName and lastName.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 LINES (1:*)
2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

Selecting Rows in a TEXTGRID2

Maybe you wonder why there is a selectedfield in the adapter parameter data area of the previous
example.

This field is required for indicating which lines are currently selected and which are not. Each line
which is displayed in the TEXTGRID2 control is represented in the adapter by an array occurrence
of the array LINES. Therefore, the selection status of the grid (which lines are selected and which
lines are not) is mirrored by the corresponding selected field of each array occurrence.

435Natural for Ajax

TEXTGRID2

TEXTGRID2 Properties

Basic

ObligatoryName of the adapter parameter that represents the grid
in the adapter.

griddataprop

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the
width of the control will either be a default width or -

160in case of container controls - it will follow the width
that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%

100%up correct results if the parent element of the control
properly defines a width this control can reference. If
you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not specify
a width then the rendering result may not represent
what you expect.

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence
the control will be rendered with its default height. If

250the control is a container control (containing) other

300
controls then the height of the control will follow the
height of its content.

250(B) Pixel sizing: just input a number value (e.g. "20").

400(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control

100%properly defines a height this control can reference. If
you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

Natural for Ajax436

TEXTGRID2

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

Selection

OptionalName of the adapter parameter that is used to mark if
an individual row of the text grid is selected.

selectprop

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

trueOptionalIf set to "true" then only one row can be selected inside
the text grid. - If set to "false" then multiple lines can be

singleselect

falseselected by using Ctrl- and Shift-key during mouse
selection.

Default is "false".

OptionalName of an adapter parameter that dynamically defines
whether SINGLESELECT is true or false.

singleselectprop

OptionalName of the event that is sent to the adapter when the
user selects a row.

onclickmethod

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

OptionalName of the event that is sent to the adapter when the
user selects a row by a double click.

ondblclickmethod

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

trueOptionalWhen defining a SELECTPROP property then
automatically a selection column is added as first left

withselectioncolumn

falsecolumn of the grid. Inside the column an icon inidicates
if a row is currently selected.

Set this property to "false" in order to avoid the selection
column.

trueOptionalFlag that indicates whether the selection column shows
a "select all" icon on top. Default is true.

withselectioncolumnicon

false

trueOptionalif switched to true then an additional "graying" of
selected lines will be activated. Switch this property to

fgselect

false"true" if you have coloured textgrid cells: the selection
colour will not override the colour of each cell, as
consequence you require an additional effect in order
to make the user see which row is selected.

437Natural for Ajax

TEXTGRID2

OptionalName of an adapter parameter that is used to mark if
an individual row of the text grid should receive the
focus.

focusedprop

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

Right Mouse Button

OptionalName of the event that is sent to the adapter when the
user clicks with the right mouse button onto an empty
area of the grid.

oncontextmenumethod

trueOptionalWith SHIFT and CTRL key the user can select multiple
lines (use property SINGLESELECT to suppress this

singleselectcontextmenu

falsefeature). Use this property to ensure that the context
menu is requested only for a single line.

Default is "false".

trueOptionalUse this property to enable the default context menu
of the browser within the textgrid. Please note: do not

enabledefaultcontextmenu

falseenable the browser's context menu if your application
itself provides for a context menu.

Default is "false".

Appearance

(already explained above)width

(already explained above)height

1OptionalNumber of rows that are displayed independent of the
size of the server side collection.

minapparentrows

2

3

int-value

trueSometimes
obligatory

Indicates if to show a horizontal scrollbar ("true") or not
("false").

hscroll

false
If no scrollbar is shown then the control occupies the
horizontal space that is required by its content.

trueOptionalIf defined as "false" then no top title row is shown.withtitlerow

false"True" is default.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3

Natural for Ajax438

TEXTGRID2

4By default it is "1" - but you may want to define the
control to span over more than one columns.

5
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 50

int-value
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies.

3By default it is "1" - but you may want to define the
control two span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

trueOptionalIf defined to "false" then no re-arranging of columns is
offered to the user.

personalizable

false
Default is "true". This means: if using COLUMN
controls inside the grid definition then the user can
re-arrange the sequence of columns by dragging and
dropping them within the top title row.

VAR1OptionalSome controls offer the possibility to define style
variants. By this style variant you can address different

stylevariant

VAR2styles inside your style sheet definition file (.css). If not
defined "normal" styles are chosen, if defined (e.g.
"VAR1") then other style definitions (xxxVAR1xxx) are
chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently
offerst two variants "VAR1" and "VAR2" but does not
predefine any semantics behind - this is up to you!

OptionalCSS style definition that is directly passed into this
control.

backgroundstyle

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

439Natural for Ajax

TEXTGRID2

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or

hiddenscrollbars can be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut ("hidden").

Default is "auto".

trueOptionalThe textgrid controls provide for a so called "roll over"
effect. The row that is currently below the mouse

withrollover

falsepointer is highlighted in a certain way. Use this property
to disable the roll over effect (Default is TRUE).

trueOptionalWhen switching the FIXEDCOLUMNSIZES property
to value "true" then internally the grid is arranged in a

fixedcolumnsizes

falseway that the area always determines its size out of the
width specification of the COLUMN controls. The
browser does not look into the column contents in order
to try to optimise the size of the area - but always
follows the width that you define.

1OptionalMinimum height of the control in pixels. Use this
property to ensure a minimum height if the overall

requiredheight

2control's height is a percentage of the available space -

3
i.e. if value of property HEIGHT is a percentage (e.g.
100%).

int-valuePlease note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the required
height the end of the control is just cut off.

trueOptionalFlag that indicates if the user can change the width of
the grid columns. Default is false.

disablecolumnresizing

false

trueOptionalFlag that indicates if the user can change the order of
grid columns. Default is false.

disablecolumnmoving

false

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source
order to resolve duplicates.

tabindex

0

Natural for Ajax440

TEXTGRID2

1

2

5

10

32767

Drag And Drop

OptionalName of the row item property that passes back the
line's "drag info". When using this attribute the grid

draginfoprop

lines can be dragged onto "drop targets" (e.g.
DROPICON control). The dragged line is identified by
its "drag info". Use any string/information applicable.

Natural

OptionalIf a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be

njx:natname

bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name
(in this case #FIELD1) is then specified in this attribute,
the original name is generated into the parameter data
area of the Natural adapter and a mapping between the
two names is generated into the PROCESS PAGE
statement of the Natural adapter.

OptionalThe value of this attribute is generated as comment line
into the parameter data area of the Natural adapter,

njx:natcomment

before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

Deprecated

ondblclickOptionalUse ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

directselectevent

onclick

OptionalUse ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

directselectmethod

441Natural for Ajax

TEXTGRID2

COLUMN Properties

The COLUMN tag is the typical tag that is placed inside a TEXTGRID2 definition. The COLUMN
definition defines a column with its binding to a property of the collection elements.

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a corresponding
string at runtime.

textid

Do not specify a "name" inside the control if specifying
a "textid".

ObligatoryProperty of the row item object that represents the
column's content.

property

The content typically is straight text but can also be
"complex HTML".

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow the width that is
occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%

100%up correct results if the parent element of the control
properly defines a width this control can reference. If you
specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

dateOptionalBy default, the control is managing its content as string.
By explicitly setting a datatype you can define that the

datatype

Natural for Ajax442

TEXTGRID2

floatcontrol will format the data coming from the server: if
the field has datatype "date" and the user inputs "010304"

intthen the input will be translated into "01.03.2004" (or other
representation, dependent on date format settings).

long
Please note: the datatype "float" is named a bit misleading
- it represents any decimal format number. The server time

timestampside representation may be a float value, but also can be
a double or a BigDecimal property.

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

xs:byte

xs:short

leftOptionalHorizontal alignment of the control's content.align

center

right

trueOptionalIf the text of the control contains HTML tags then these
are by default interpreted by the browser. Specifiying

straighttext

falseSTRAIGHTTEXT as "true" means that the browser will
directly render the characters without HTML
interpretation.

Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

trueOptionalIf switched to "true" then all spaces inside the text that is
rendered into the column are converted to non breakable
spaces (andnbsp\").

convertspaces

false

443Natural for Ajax

TEXTGRID2

Use this option if you have "meaningful" spaces inside
the values you return from the server adapter object, e.g.
if outputting some ASCII protocol inside a column.

trueOptionalIf switched to "false" then the content of the column is
broken if it excceeds the column's width definition.

cuttextline

falseDefault is "true" i.e. if the content is too big for the column
cell then it is cut.

trueOptionalFlag that indicates if a small sort indicator is shown within
the right corner of the control. Default is TRUE.

withsorticon

false

OptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

headerimage

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Binding

(already explained above)property

OptionalName of the adapter parameter that provides a
style-string that is used for rendering the column's
content.

textstyleprop

As consequence you can indiviudally assign a CSS-style
to each cell of your text grid.

OptionalName of the adapter parameter that provides a style class
to be used for rendering the content.

textclassprop

You can set up a limited number of style classes inside
your style sheet definition - and dynamically reference
them per grid cell.

OptionalName of the adapter parameter that provides an image
URL. The image is rendered at the very left of the

imageprop

column's area - in front of the text (PROPERTY property
definition).

OptionalName of the event that is sent to the adapter if user clicks
the column's text.

linkmethod

Natural for Ajax444

TEXTGRID2

OptionalName of the adapter parameter that provides the tooltip
of this cell.

celltitleprop

Online help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

OptionalText that is shown as tooltip for the sort indicator.sorttitle

Either input text by using this SORTTITLE property - or
use the SORTTITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text for the sort indicator.

sorttitletextid

(already explained above)celltitleprop

Natural

OptionalIf the control shall be bound to a Natural system variable
of string format with the attribute njx:natsysvar, this

njx:natstringtype

attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

OptionalIf the control shall be bound to a Natural system variable
with the attribute njx:natsysvar, this attribute indicates
if the system variable is modifiable. The default is false.

njx:natsysio

OptionalIf a Natural variable with a name not valid for Application
Designer (for instance #FIELD1) shall be bound to the

njx:natname

control, a different name (for instance HFIELD1) can be
bound instead. If the original name (in this case #FIELD1)
is then specified in this attribute, the original name is
generated into the parameter data area of the Natural
adapter and a mapping between the two names is
generated into the PROCESS PAGE statement of the
Natural adapter.

OptionalIf the control shall be bound to a Natural system variable,
this attribute specifies the name of the system variable.

njx:natsysvar

OptionalThe value of this attribute is generated as comment line
into the parameter data area of the Natural adapter, before

njx:natcomment

the field name. The Map Converter, for instance, uses this
attributes to indicate for a generated statusprop variable
to which field the statusprop belongs.

445Natural for Ajax

TEXTGRID2

Dynamic Setting of Text Styles in TEXTGRID2

The example from the previous sections will now be enhanced in order to demonstrate how to
control the style of cells inside a TEXTGRID2 control dynamically:

Some of the cells in the TEXTGRID2 control are rendered with a different style than the normal
one. Each COLUMN definition has the property textstyleprop:

<rowarea name="Textgrid">
<itr takefullwidth="true" fixlayout="true">

<textgrid2 griddataprop="lines" width="100%" height="200"
selectprop="selected"

hscroll="true">
<column name="First Name" property="firstName" width="50%"

textstyleprop="firstNameStyle">
</column>
<column name="Last Name" property="lastname" width="50%"

textstyleprop="lastNameStyle">
</column>

</textgrid2>
</itr>
<vdist height="5">
</vdist>
<itr>

<button name="Remove Selected Items" method="onRemoveSelectedItems">
</button>

</itr>
</rowarea>

Natural for Ajax446

TEXTGRID2

75 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

■ Performance Considerations .. 448
■ Example .. 448
■ Adapter Interface ... 450
■ Using Server-Side Scrolling ... 450
■ Using Server-Side Sorting ... 451
■ TEXTGRIDSSS2 Properties ... 451

447

The TEXTGRIDSSS2 control is a variant of the TEXTGRID2 control which is explained in the
previous section. "SSS" is the abbreviation for "server-side scrolling". What this means is described
in this 章.

Performance Considerations

The TEXTGRID2 control fetches all items belonging to the grid and renders them according to its
layout definition. If there are more items available than the grid can display, a vertical scroll bar
is displayed and you can scroll through the list.

From scrolling perspective, this is very effective - the browser is very fast when scrolling is needed.
But there are two disadvantages, especially for long lists:

■ All the data that are to be displayed inside the grid must be available on the client side. Therefore,
the data must be transferred from the server to the client at least one time. Imagine you have a
grid of 10,000 lines: even if Application Designer transfers only 「net data」 and even if this
happens in 「delta transfer mode」, it must be transferred.

■ In addition, the grid must be built completely in order to allow fast scrolling. This means - taking
the above example - that 10,000 lines have to be rendered before the grid can be displayed. Table
rendering is time-consuming and needs a lot of the client's CPU performance.

Consequence: text grids of the TEXTGRID2 control are easy to use, but they have their limitations
in terms of scalability. You should use it only if a limited amount of information is to be displayed.

Example

The TEXTGRIDSSS2 is very similar to the TEXTGRID2 control. However, some special behavior
has been built in. The main differences are 「in the background」. The TEXTGRIDSSS2 control
only receives the data of the visible items. In this example, only the data of the first 20 items are
returned and rendered. When scrolling down, the next 20 items are fetched and rendered. This
means: the control requests always the data which are currently displayed.

Natural for Ajax448

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Consequence: every scrolling step requires an interaction with the server. However, only a small
amount of data - which is visible - is requested, not the data of all available items. The performance
of the grid does not change with the number of items which are available. There is no time difference
in rendering a text grid containing 100 or 10,000 items.

The layout definition is:

<rowarea name="Textgridsss2">
<itr>

<textgridsss2 griddataprop="lines" rowcount="20" width="100%"
selectprop="selected" singleselect="false" hscroll="true"
directselectmethod="onDirectSelection"
directselectevent="ondblClick">

<column name="First Name" property="firstname" width="50%">
</column>
<column name="Last Name" property="lastname" width="50%">
</column>

</textgridsss2>
</itr>

</rowarea>

449Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 LINES (1:*)
2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
1 LINESINFO
2 ROWCOUNT (I4)
2 SIZE (I4)
2 SORTPROPS (1:*)
3 ASCENDING (L)
3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)
END-DEFINE

The parameters are nearly the same as for the TEXTGRID2 control. In addition, there is a LINESINFO
structure. This structure is used to control the server-side scrolling and the server-side sorting.

Using Server-Side Scrolling

In the adapter parameters that represent the TEXTGRIDSSS2 control in the application, there are
three parameters that control the server-side scrolling:

■ TOPINDEX

■ ROWCOUNT

■ SIZE

In TOPINDEX and ROWCOUNT, the application receives the information how many items it should
deliver to the page with the next scroll event and with which item the delivered amount should
start.

In SIZE, the application returns the total number of items available. The client uses this information
to set up the scroll bar correctly.

Natural for Ajax450

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Using Server-Side Sorting

In the adapter parameters that represent the TEXTGRIDSSS2 control in the application, there is a
substructure that controls the server-side sorting: SORTPROPS. With the information in this structure,
the client tells the application by which sort criteria and in which order the client expects the items
to be sorted.

TEXTGRIDSSS2 Properties

Basic

ObligatoryName of the adapter parameter that represents the grid
in the adapter.

griddataprop

ObligatoryNumber of rows that is renderes inside the control.rowcount

There are two ways of using this property - dependent
on whether you in addition define the HEIGHT
property:

If you do NOT define the HEIGHT property then the
control is rendered with exactly the number of rows
that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the maximum
number of rows that is picked from the server. You
should define this value in a way that it is not too low
- otherwise your grid will not be fully filled. On the
other hand it should not be defined too high ("100")
because this causes more communication traffic and
more rendering effort inside the browser.

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the
width of the control will either be a default width or -

160in case of container controls - it will follow the width
that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200

451Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring

50%

100%up correct results if the parent element of the control
properly defines a width this control can reference. If
you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not specify
a width then the rendering result may not represent
what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence
the control will be rendered with its default height. If

250the control is a container control (containing) other

300
controls then the height of the control will follow the
height of its content.

250(B) Pixel sizing: just input a number value (e.g. "20").

400(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control

100%properly defines a height this control can reference. If
you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not specify
a width then the rendering result may not represent
what you expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

Selection

OptionalName of the adapter parameter that is used to mark if
an individual row of the text grid is selected.

selectprop

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

trueOptionalIf set to "true" then only one row can be selected inside
the text grid. - If set to "false" then multiple lines can be

singleselect

falseselected by using Ctrl- and Shift-key during mouse
selection.

Default is "false".

OptionalName of an adapter parameter that dynamically defines
whether SINGLESELECT is true or false.

singleselectprop

Natural for Ajax452

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

OptionalName of the event that is sent to the adapter when the
user selects a row.

onclickmethod

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

OptionalName of the event that is sent to the adapter when the
user selects a row by a double click.

ondblclickmethod

In the event handler you can find the selected rows by
iterating through the rows and finding out which one's
selected element is set to "true".

trueOptionalWhen defining a SELECTPROP property then
automatically a selection column is added as first left

withselectioncolumn

falsecolumn of the grid. Inside the column an icon inidicates
if a row is currently selected.

Set this property to "false" in order to avoid the selection
column.

trueOptionalFlag that indicates whether the selection column shows
a "select all" icon on top. Default is true.

withselectioncolumnicon

false

trueOptionalif switched to true then an additional "graying" of
selected lines will be activated. Switch this property to

fgselect

false"true" if you have coloured textgrid cells: the selection
colour will not override the colour of each cell, as
consequence you require an additional effect in order
to make the user see which row is selected.

OptionalName of an adapter parameter that is used to mark if
an individual row of the text grid should receive the
focus.

focusedprop

If the user selects a text grid row, the value "true" is
passed into the corresponding array element of the
adapter parameter.

Right Mouse Button

OptionalName of the event that is sent to the adapter when the
user clicks with the right mouse button onto an empty
area of the grid.

oncontextmenumethod

trueOptionalWith SHIFT and CTRL key the user can select multiple
lines (use property SINGLESELECT to suppress this

singleselectcontextmenu

falsefeature). Use this property to ensure that the context
menu is requested only for a single line.

Default is "false".

trueOptionalUse this property to enable the default context menu
of the browser within the textgrid. Please note: do not

enabledefaultcontextmenu

453Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

falseenable the browser's context menu if your application
itself provides for a context menu.

Default is "false".

Appearance

(already explained above)width

(already explained above)height

trueOptionalIndicates if to show a horizontal scrollbar ("true") or not
("false").

hscroll

false
If no scrollbar is shown then the control occupies the
horizontal space that is required by its content.

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or

hiddenscrollbars can be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut ("hidden").

Default is "auto".

trueOptionalBoolean property that decides if touch pad support is
offered for the TEXTGRID control. The default is "false".

touchpadinput

falseIf switched to "true" then you can scroll the grid via a
touch pad. As consequence you can use this control for
making inputs through a touch terminal.

trueOptionalIf defined as "false" then no top title row is shown.withtitlerow

false"True" is default.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but you may want to define the
control to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies.

3By default it is "1" - but you may want to define the
control two span over more than one columns.

4

Natural for Ajax454

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table

5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

trueOptionalIf defined to "false" then no re-arranging of columns is
offered to the user.

personalizable

false
Default is "true". This means: if using COLUMN controls
inside the grid definition then the user can re-arrange
the sequence of columns by dragging and dropping
them within the top title row.

VAR1OptionalSome controls offer the possibility to define style
variants. By this style variant you can address different

stylevariant

VAR2styles inside your style sheet definition file (.css). If not
defined "normal" styles are chosen, if defined (e.g.
"VAR1") then other style definitions (xxxVAR1xxx) are
chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently
offerst two variants "VAR1" and "VAR2" but does not
predefine any semantics behind - this is up to you!

OptionalCSS style definition that is directly passed into this
control.

backgroundstyle

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

trueOptionalIf switched to "true" then the grid will show small scroll
icons by which the user can scroll the grid's content.

withblockscrolling

falseScrolling typically is done by using the grid's scrollbar
- the scroll icons that are switched on by this property
are an additional possibility to scroll.

455Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

trueOptionalThe textgrid controls provide for a so called "roll over"
effect. The row that is currently below the mouse pointer

withrollover

falseis highlighted in a certain way. Use this property to
disable the roll over effect (Default is TRUE).

trueOptionalWhen switching the FIXEDCOLUMNSIZES property
to value "true" then internally the grid is arranged in a

fixedcolumnsizes

falseway that the area always determines its size out of the
width specification of the COLUMN controls. The
browser does not look into the column contents in order
to try to optimise the size of the area - but always
follows the width that you define.

1OptionalMinimum height of the control in pixels. Use this
property to ensure a minimum height if the overall

requiredheight

2control's height is a percentage of the available space -

3
i.e. if value of property HEIGHT is a percentage (e.g.
100%).

int-valuePlease note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the required
height the end of the control is just cut off.

1OptionalMinimum number of apparent rows. Insert a valid
number to make sure that (e.g. 10) rows are shown for
sure.

minapparentrows

2

3

int-value

trueOptionalFlag that indicates if the user can change the width of
the grid columns. Default is false.

disablecolumnresizing

false

trueOptionalFlag that indicates if the user can change the order of
grid columns. Default is false.

disablecolumnmoving

false

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source
order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Natural for Ajax456

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

trueOptionalIf set to false, no empty line will be rendered. By default
empty lines are shown.

showemptylines

false

Drag And Drop

OptionalName of the row item property that passes back the
line's "drag info". When using this attribute the grid

draginfoprop

lines can be dragged onto "drop targets" (e.g.
DROPICON control). The dragged line is identified by
its "drag info". Use any string/information applicable.

Natural

OptionalIf a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be

njx:natname

bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name
(in this case #FIELD1) is then specified in this attribute,
the original name is generated into the parameter data
area of the Natural adapter and a mapping between the
two names is generated into the PROCESS PAGE
statement of the Natural adapter.

OptionalThe value of this attribute is generated as comment line
into the parameter data area of the Natural adapter,

njx:natcomment

before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

Deprecated

OptionalUse ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

directselectmethod

ondblclickOptionalUse ONCLICKMETHOD and ONDBLCLICKMETHOD
instead.

directselectevent

onclick

Inside the TEXTGRIDSSS2 definitions, COLUMN tags are also used to define its content. There
is no difference in COLUMN tag usage between TEXTGRIDSSS2 and TEXTGRID2 definition.

457Natural for Ajax

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

458

76 ROWTABLEAREA2 - The Flexible Control Grid

■ Example .. 460
■ Adapter Interface ... 462
■ Built-in Events ... 462
■ Making Grids Look like Grids ... 463
■ ROWTABLEAREA2 Properties ... 464
■ STR Properties ... 469

459

The ROWTABLEAREA2 is a container control that allows other controls to be arranged inside its
grid management.

The ROWTABLEAREA2 control supports server-side scrolling and sorting. This concept is explained
in Server-Side Scrolling and Sorting. An example for the usage of server-side scrolling and sorting
with the ROWTABLEAREA2 control is contained in the example library SYSEXNJX.

Example

There is a grid that contains a header row and 10 lines. Each line contains one check box and two
fields. Some of the lines are highlighted.

The XML layout definition is:

<rowarea name="Grid">
<rowtablearea2 griddataprop="lines" rowcount="10" width="100%" withborder="true">

<tr>
<hdist>
</hdist>
<label name="First Name" asheadline="true">
</label>
<label name="Last Name" asheadline="true">
</label>

Natural for Ajax460

ROWTABLEAREA2 - The Flexible Control Grid

</tr>
<repeat>

<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="30">
</checkbox>
<field valueprop="firstname" width="50%">
</field>
<field valueprop="lastname" width="50%">
</field>

</str>
</repeat>

</rowtablearea2>
<vdist height="10">
</vdist>
<itr>

<button name="Add new Line" method="onAddLine">
</button>
<hdist>
</hdist>
<button name="Remove selected Lines" method="onRemoveLines">
</button>

</itr>
</rowarea>

Note the following:

■ There is a ROWTABLEAREA2 definition with the property griddataprop="lines". There is a
rowcount definition of "10". This is the same as for the text grid processing: the grid container
is bound to a server-side collection. Similar to the TEXTGRIDSSS2 definition, there is a row
count that defines the number of lines.

■ Inside the ROWTABLEAREA2 definition, there is first the definition of a normal table row (TR)
in which a distance and two labels are defined. The labels are rendered with asheadline="true".

■ Inside the REPEAT definition, there is a special table row definition "STR" (selectable table row)
that itself contains one CHECKBOX and two FIELD definitions. CHECKBOX and FIELDs are
bound to properties themselves.

■ After the ROWTABLEAREA2 definition, there is a vertical distance and a row that contains two
buttons with which a user can manipulate the grid.

The content of the REPEAT block is repeated as many times as defined inside the rowcount
definition of ROWTABLEAREA2. The content holds a table row (STR) - therefore the result is a
grid.

461Natural for Ajax

ROWTABLEAREA2 - The Flexible Control Grid

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 LINES (1:*)
2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

If the grid has been configured for server-side scrolling and sorting, the data structure contains
additional fields that control server-side scrolling and sorting (see below). In order to use server-
side scrolling and sorting, set the property natsss in NATPAGE to "true".

DEFINE DATA PARAMETER
1 LINES (1:*)
2 FIRSTNAME (U) DYNAMIC
2 LASTNAME (U) DYNAMIC
2 SELECTED (L)
1 LINESINFO
2 ROWCOUNT (I4)
2 SIZE (I4)
2 SORTPROPS (1:*)
3 ASCENDING (L)
3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)
END-DEFINE

Built-in Events

value-of-griddataprop.onCtrlSelect
value-of-griddataprop.onSelect
value-of-griddataprop.onShiftSelect
value-of-griddataprop.onSort
value-of-griddataprop.onTopindexChanged

Natural for Ajax462

ROWTABLEAREA2 - The Flexible Control Grid

Making Grids Look like Grids

Fields typically contain a high number of FIELD controls. Typically, a FIELD control has a certain
rendering that renders a field with a border and with a certain background color.

Be aware that inside the FIELD definition, there are two important properties:

■ noborder - if set to "true", no border will be drawn
■ transparentbackground - if set to "true", the field will always take over the background of the

controls in which it is positioned (e.g. STR row).

Have a look at the difference between the following screens. One screen uses the properties, the
other screen does not use them.

This is a grid:

463Natural for Ajax

ROWTABLEAREA2 - The Flexible Control Grid

This is collection of fields:

ROWTABLEAREA2 Properties

Basic

ObligatoryName of the adapter parameter that represents the
control in the adapter.

griddataprop

OptionalNumber of rows that is renderes inside the control.rowcount

There are two ways of using this property -
dependent on whether you in addition define the
HEIGHT property:

If you do NOT define the HEIGHT property then
the control is rendered with exactly the number of
rows that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the
maximum number of rows that is picked from the
server. You should define this value in a way that
it is not too low - otherwise your grid will not be

Natural for Ajax464

ROWTABLEAREA2 - The Flexible Control Grid

fully filled. On the other hand it should not be
defined too high ("100") because this causes more
communication traffic and more rendering effort
inside the browser.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As
consequence the control will be rendered with its

250default height. If the control is a container control

300
(containing) other controls then the height of the
control will follow the height of its content.

250(B) Pixel sizing: just input a number value (e.g.
"20"). 400

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will

50%

100%only bring up correct results if the parent element
of the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will 100%
only bring up correct results if the parent element
of the control properly defines a width this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

465Natural for Ajax

ROWTABLEAREA2 - The Flexible Control Grid

trueSometimes
obligatory

If set to "true" then the grid is sized according to
its first row. This first row typically is a

firstrowcolwidths

falseheader-TR-row in which GRIDCOLHEADER
controls are used as column headers for the
subsequent rows.

Default is "false", i.e. the grid is sized according to
its "whole content".

Please note: when using the GRIDCOLHEADER
control within the header-TR-row this property
must be set to "true" - otherwise column resizing
(by drag and drop) does not work correctly.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

trueOptionalIf set to "false" then no thin border is drawn around
the controls that are contained in the grid.

withborder

false
Default is "true".

trueOptionalIndicates if to show a horizontal scrollbar ("true")
or not ("false").

hscroll

false
If no scrollbar is shown then the control occupies
the horizontal space that is required by its content.

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if
the content is exceeding the control's area ("auto").

hiddenOr scrollbars can be shown always ("scroll"). Or
scrollbars are never shown - and the content is cut
("hidden").

Default is "auto".

(already explained above)firstrowcolwidths

trueOptionalIf switched to true then the content of the grid can
be selected and exported into the client's clipboard.

clipboardaccess

false

trueOptionalIf switched to "true" then the grid will show small
scroll icons by which the user can scroll the grid's

withblockscrolling

falsecontent. Scrolling typically is done by using the
grid's scrollbar - the scroll icons that are switched
on by this property are an additional possibility to
scroll.

trueOptionalIf set to "true" then touch screen icons for scrolling
are displayed in addition.

touchpadinput

Natural for Ajax466

ROWTABLEAREA2 - The Flexible Control Grid

falseDefault is "false".

1OptionalMinimum height of the control in pixels. Use this
property to ensure a minimum height if the overall

requiredheight

2control's height is a percentage of the available

3
space - i.e. if value of property HEIGHT is a
percentage (e.g. 100%).

int-valuePlease note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the
required height the end of the control is just cut
off.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

tablestyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

trueOptionalNormally the background is in light colour but the
CIS style sheets also have a dark(er) grey colour to
be used.

darkbackground

false

If DARKBACKGROUND is set to true then the
darker background colour is chosen. This property
typically is used to integrate light coloured controls
into darker container areas.

Binding

OptionalName of the event that is sent to the adapter when
the user presses the right mouse button in the grid,

oncontextmenumethod

but not on an existing row, but in an empty area
of the grid.

OptionalName of the event that is sent to the adapter when
the user presses the TAB key within the very last

fwdtabkeymethod

cell of the grid (last cell within the last line). Use

467Natural for Ajax

ROWTABLEAREA2 - The Flexible Control Grid

property FWDTABKEYFILTER to associate this
call with a grid column.

OptionalBy default the FWDTABKEYMETHOD is called if
the user presses the TAB key within the veryfirst

fwdtabkeyfilter

cell of the grid. Input the name of a cell's
VALUEPROP to associate the method call with
any other column.

OptionalName of the event that is sent to the adapter when
the user presses SHIFT and TAB keys within the

bwdtabkeymethod

first cell of a grid line. Use property
BWDTABKEYFILTER to associate this call with a
cell of choice.

OptionalBy default the BWDTABKEYMETHOD is called if
the user presses the SHIFT and TAB keys within

bwdtabkeyfilter

the very first cell of the grid. Input the name of a
cell's VALUEPROP to associate the method call
with any other column.

Hot Keys

OptionalComma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

hotkeys

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two hot
keys. Method onCtrlAltA is invoked if the user
presses Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout Painter to
input hot keys.

Natural for Ajax468

ROWTABLEAREA2 - The Flexible Control Grid

STR Properties

STR (selectable table row) is a normal table row (TR) that highlights its background depending
on an adapter property.

Basic

ObligatoryName of the adapter parameter that defines if the row is selected
or not.

valueprop

trueOptionalFlag that indicates if the grid line shows alternating background
color (like rows within a textgrids). Default is false. Please note:

withalterbackground

falsecontrols inside the row must have transparent background. In case
of the FIELD control simply set property
TRANSPARENTBACKGROUND to true.

trueOptionalFlag that indicates if an unused row is visible. Example: if set to
false a grid with rowcount ten and a server side collection size of
seven will hide the three remaining rows.

showifempty

false

Default is false.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Binding

(already explained above)valueprop

OptionalName of the event that is sent to the adapter when the user clicks
a line.

onclickmethod

OptionalName of the event that is sent to the adapter when the user double
clicks a line.

ondblclickmethod

OptionalName of the adapter parameter that is filled when the user clicks
a FIELD control. The VALUEPROP of the clicked field control will
passed.

proprefprop

OptionalName of the adapter parameter that provides the background
color of the control.

backgroundcolorprop

469Natural for Ajax

ROWTABLEAREA2 - The Flexible Control Grid

470

77 FLEXLINE - Flexible Columns in Control Grids

■ Example .. 472
■ Adapter Interface ... 473
■ FLEXLINE Properties ... 474

471

In aprevious example, the grid was completely defined as part of the layout definition: the sequence
of columns was internally defined by defining the controls that are part of an STR row.

Example

Have a look at the following example:

The grid looks like a normal ROWTABLEAREA2 grid, but it is built in a more dynamic way.

The XML layout definition is:

<pagebody>
<rowarea name="Example">

<vdist height="5">
</vdist>
<rowtablearea2 griddataprop="lines" rowcount="10" width="395"

withborder="true">
<tr>

<label name=" " asheadline="true">
</label>

Natural for Ajax472

FLEXLINE - Flexible Columns in Control Grids

<flexline infoprop="headline">
</flexline>

</tr>
<repeat>

<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="30">
</checkbox>
<flexline infoprop="/rowline">
</flexline>
<hdist width="100%">
</hdist>

</str>
</repeat>

</rowtablearea2>
<vdist height="10">
</vdist>

</rowarea>
<vdist height="5">
</vdist>

</pagebody>

You see that there are two FLEXLINE control definitions inside the ROWTABLEAREA2 definition:

■ One definition represents the headline of the grid.
■ The other definition is part of each row's content.

Each definition points to a property that passes the configuration at runtime. Within the second
definition, you may see something which is new for you: the VALUEPROP references to a property
/rowline. The "/" character at the beginning indicates that this property is dynamically controlled
by the application through an adapter parameter.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 HEADLINE (1:*)
2 ATTRIBUTES (U) DYNAMIC
2 CONTROL (U) DYNAMIC
1 LINES (1:*)
2 SELECTED (L)
1 ROWLINE (1:*)
2 ATTRIBUTES (U) DYNAMIC
2 CONTROL (U) DYNAMIC
END-DEFINE

473Natural for Ajax

FLEXLINE - Flexible Columns in Control Grids

FLEXLINE Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the adapter.infoprop

trueOptionalFlag that indicates if a border is drawn between the controls that are rendered
inside the FLEXLINE control. Default is "false", i.e. no border is drawn.

withborder

false

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Natural for Ajax474

FLEXLINE - Flexible Columns in Control Grids

78 MGDGRID - Managing the Grid

■ Example .. 477
■ Adapter Interface ... 478
■ Built-in Events ... 479
■ MGDGRID Properties ... 479
■ ROWINSERT Properties ... 483
■ ROWCOPY Properties .. 484
■ ROWDELETE Properties .. 485

475

The MGDGRID control is an extension of theROWTABLEAREA2 control. It allows to insert, copy
and delete rows of the grid.

Like the ROWTABLEAREA2 control, the MGDGRID control supports server-side scrolling and
sorting. This concept is explained in Server-Side Scrolling and Sorting. An example for the usage of
server-side scrolling and sorting with the ROWTABLEAREA2 control is contained in the example
library SYSEXNJX. The same example can be used to illustrate the usage of server-side scrolling
and sorting with the MGDGRID control.

See also STR Properties which are described with the ROWTABLEAREA2 control.

Natural for Ajax476

MGDGRID - Managing the Grid

Example

There is a grid that contains a header row and 10 lines. Each line contains two fields and a 「delete
row」 control.

Each of the function controls (insert, copy, delete) can be added at the top of the MGDGRID, below
the MGDGRID or within the lines of the MGDGRID.

Look at the corresponding layout definition:

<rowarea name="Manage Grid Demo">
<mgdgrid griddataprop="mglines" rowcount="10" width="100%" firstrowcolwidths="true">

<tr>
<label name=" " width="25" asheadline="true">
</label>
<gridcolheader name="First Name" width="50%">
</gridcolheader>
<gridcolheader name="Last Name" width="50%" >
</gridcolheader>
<gridcolheader width="20">
</gridcolheader>
<hdist></hdist>

</tr>
<repeat>
<str valueprop="selected" showifempty="true">

<selector valueprop="selected" singleselect="true">
</selector>
<field valueprop="fname" width="100%">

477Natural for Ajax

MGDGRID - Managing the Grid

</field>
<field valueprop="lname" width="100%">
</field>
<rowdelete>
</rowdelete>

</str>
</repeat>
<mgdfunctions>
<rowinsert title="Insert a new line">
</rowinsert>
<rowcopy title="Copy selected line">
</rowcopy>

</mgdfunctions>
</mgdgrid>

</rowarea>

The MGDGRID control is an extension to the ROWTABLEAREA2 control. See the description of
the ROWTABLEAREA2 control for further information.

Adapter Interface

In the parameter data area of the adapter, the grid data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 MGLINES (1:*)
2 FNAME (U) DYNAMIC
2 LNAME (U) DYNAMIC
2 SELECTED (L)
END-DEFINE

If the grid has been configured for server-side scrolling and sorting, the data structure contains
additional fields that control server-side scrolling and sorting (see below). In order to use server-
side scrolling and sorting, set the property natsss in NATPAGE to "true".

DEFINE DATA PARAMETER
1 MGLINES (1:*)
2 FNAME (U) DYNAMIC
2 LNAME (U) DYNAMIC
2 SELECTED (L)
1 LINESINFO
2 ROWCOUNT (I4)
2 SIZE (I4)
2 SORTPROPS (1:*)
3 ASCENDING (L)
3 PROPNAME (U) DYNAMIC

Natural for Ajax478

MGDGRID - Managing the Grid

2 TOPINDEX (I4)
END-DEFINE

Built-in Events

value-of-griddataprop.onCtrlSelect
value-of-griddataprop.onSelect
value-of-griddataprop.onShiftSelect
value-of-griddataprop.onSort
value-of-griddataprop.onTopindexChanged

MGDGRID Properties

Basic

ObligatoryName of the adapter parameter that represents the
control in the adapter.

griddataprop

OptionalNumber of rows that is renderes inside the control.rowcount

There are two ways of using this property -
dependent on whether you in addition define the
HEIGHT property:

If you do NOT define the HEIGHT property then
the control is rendered with exactly the number of
rows that is defined as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as
percentage value "100%") then the number of rows
depends on the actual height of the control. The
ROWCOUNT value in this case indicates the
maximum number of rows that is picked from the
server. You should define this value in a way that
it is not too low - otherwise your grid will not be
fully filled. On the other hand it should not be
defined too high ("100") because this causes more
communication traffic and more rendering effort
inside the browser.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As
consequence the control will be rendered with its

250default height. If the control is a container control

479Natural for Ajax

MGDGRID - Managing the Grid

300(containing) other controls then the height of the
control will follow the height of its content.

250
(B) Pixel sizing: just input a number value (e.g.
"20"). 400

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will

100%only bring up correct results if the parent element
of the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will 100%
only bring up correct results if the parent element
of the control properly defines a width this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

trueSometimes
obligatory

If set to "true" then the grid is sized according to
its first row. This first row typically is a

firstrowcolwidths

falseheader-TR-row in which GRIDCOLHEADER
controls are used as column headers for the
subsequent rows.

Default is "false", i.e. the grid is sized according to
its "whole content".

Please note: when using the GRIDCOLHEADER
control within the header-TR-row this property

Natural for Ajax480

MGDGRID - Managing the Grid

must be set to "true" - otherwise column resizing
(by drag and drop) does not work correctly.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

trueOptionalIf set to "false" then no thin border is drawn around
the controls that are contained in the grid.

withborder

false
Default is "true".

trueOptionalIndicates if to show a horizontal scrollbar ("true")
or not ("false").

hscroll

false
If no scrollbar is shown then the control occupies
the horizontal space that is required by its content.

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if
the content is exceeding the control's area ("auto").

hiddenOr scrollbars can be shown always ("scroll"). Or
scrollbars are never shown - and the content is cut
("hidden").

Default is "auto".

(already explained above)firstrowcolwidths

trueOptionalIf switched to true then the content of the grid can
be selected and exported into the client's clipboard.

clipboardaccess

false

trueOptionalIf switched to "true" then the grid will show small
scroll icons by which the user can scroll the grid's

withblockscrolling

falsecontent. Scrolling typically is done by using the
grid's scrollbar - the scroll icons that are switched
on by this property are an additional possibility to
scroll.

trueOptionalIf set to "true" then touch screen icons for scrolling
are displayed in addition.

touchpadinput

false
Default is "false".

1OptionalMinimum height of the control in pixels. Use this
property to ensure a minimum height if the overall

requiredheight

2control's height is a percentage of the available

3
space - i.e. if value of property HEIGHT is a
percentage (e.g. 100%).

int-valuePlease note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the

481Natural for Ajax

MGDGRID - Managing the Grid

required height the end of the control is just cut
off.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

tablestyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

Binding

OptionalName of the event that is sent to the adapter when
the user presses the right mouse button in the grid,

oncontextmenumethod

but not on an existing row, but in an empty area
of the grid.

OptionalName of the event that is sent to the adapter when
the user presses the TAB key within the very last

fwdtabkeymethod

cell of the grid (last cell within the last line). Use
property FWDTABKEYFILTER to associate this
call with a grid column.

OptionalBy default the FWDTABKEYMETHOD is called if
the user presses the TAB key within the veryfirst

fwdtabkeyfilter

cell of the grid. Input the name of a cell's
VALUEPROP to associate the method call with
any other column.

OptionalName of the event that is sent to the adapter when
the user presses SHIFT and TAB keys within the

bwdtabkeymethod

first cell of a grid line. Use property
BWDTABKEYFILTER to associate this call with a
cell of choice.

OptionalBy default the BWDTABKEYMETHOD is called if
the user presses the SHIFT and TAB keys within

bwdtabkeyfilter

the very first cell of the grid. Input the name of a
cell's VALUEPROP to associate the method call
with any other column.

Hot Keys

Natural for Ajax482

MGDGRID - Managing the Grid

OptionalComma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

hotkeys

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two hot
keys. Method onCtrlAltA is invoked if the user
presses Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout Painter to
input hot keys.

Natural

OptionalIf a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall

njx:natname

be bound to the control, a different name (for
instance HFIELD1) can be bound instead. If the
original name (in this case #FIELD1) is then
specified in this attribute, the original name is
generated into the parameter data area of the
Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE
statement of the Natural adapter.

OptionalThe value of this attribute is generated as comment
line into the parameter data area of the Natural

njx:natcomment

adapter, before the field name. The Map Converter,
for instance, uses this attributes to indicate for a
generated statusprop variable to which field the
statusprop belongs.

ROWINSERT Properties

Basic

ObligatoryURL that points to the image that is shown as icon.image

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

483Natural for Ajax

MGDGRID - Managing the Grid

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Binding

OptionalName of the adapter parameter that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management - representing the
tooltip text that is used for the control.

titletextid

ROWCOPY Properties

Basic

ObligatoryURL that points to the image that is shown as icon.image

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Binding

OptionalName of the adapter parameter that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management - representing the
tooltip text that is used for the control.

titletextid

Natural for Ajax484

MGDGRID - Managing the Grid

ROWDELETE Properties

Basic

ObligatoryURL that points to the image that is shown as icon.image

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Binding

OptionalName of the adapter parameter that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management - representing the
tooltip text that is used for the control.

titletextid

485Natural for Ajax

MGDGRID - Managing the Grid

486

79 Working with Trees

This part shows you how to work with trees and tree nodes. The information is organized under
the following headings:

TREENODE3 in Control Grid (ROWTABLEAREA2)

CLIENTTREE

487

488

80 TREENODE3 in Control Grid (ROWTABLEAREA2)

■ Example .. 490
■ Adapter Interface ... 491
■ Built-in Events ... 491
■ Properties .. 491

489

Example

The following image shows an example for a tree management:

The grid contains three columns: the first column shows the tree node, the other two columns
display some text information.

The XML layout definition is:

<rowarea name="Tree">
<rowtablearea2 griddataprop="treeGridInfo" rowcount="8" width="500"

withborder="false">
<tr>

<label name="Tree Node" width="200" asheadline="true">
</label>
<label name="Toggle Count" width="100" asheadline="true"

labelstyle="text-align:right">
</label>
<label name="Select Count" width="100" asheadline="true"

labelstyle="text-align:right">
</label>

</tr>
<repeat>

<tr>
<treenode3 width="200" withplusminus="true"

imageopened="images/fileopened.gif"
imageclosed="images/fileclosed.gif"
imageendnode="images/fileendnode.gif">

</treenode3>
<textout valueprop="toggleCount" width="100" align="right">
</textout>
<textout valueprop="selectCount" width="100" align="right">
</textout>

</tr>
</repeat>

</rowtablearea2>
</rowarea>

Natural for Ajax490

TREENODE3 in Control Grid (ROWTABLEAREA2)

You see that the TREENODE3 control is placed inside the control grid just as a normal control.
There are certain properties available which influence the rendering: in the example, the name of
the tree node images is statically overwritten. The flag withplusminus is set to true - consequently,
small "+"/"-" icons are placed in front of the node.

Adapter Interface

In the parameter data area of the adapter, the tree data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 TREEGRIDINFO (1:*)
2 DRAGINFO (U) DYNAMIC
2 DROPINFO (U) DYNAMIC
2 LEVEL (I4)
2 OPENED (I4)
2 SELECTCOUNT (U) DYNAMIC
2 TEXT (U) DYNAMIC
2 TOGGLECOUNT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-griddataprop.reactOnSelect
value-of-griddataprop.reactOnToggle

Properties

Basic

1OptionalWidth of the control.width

2There are three possibilities to define the width:

3(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. int-value

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

491Natural for Ajax

TREENODE3 in Control Grid (ROWTABLEAREA2)

the parent element of the control properly defines a width this
control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to "true" then +/- Icons will be rendered in front of the tree
items.

withplusminus

false

trueOptionalIf set to "true" then the tree elements are connected with one
another by gray lines.

withlines

false
Please pay attention: if switching this property to "true" then you
have to create the instance of your server side TREECollection
object with a special constructor:

Example:

TREECollection m_tree = new TREECollection(true)

trueOptionalIf set to "true" then the text of an item is also available as tool tip.
Use this option in case you expect that the horizontal space of

withtooltip

falsethe item will not be sufficient to display the whole text of the
item.

trueOptionalIf set to "true" then the tree node can also be edited. Editing is
started when the user double clicks the node.

withtextinput

false
The text that is input is passed into the property "text" which is
implemented in the default NODEInfo implementation.

OptionalImage of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by this

imageopened

property or also may be defined dynamically - see the
corresponding properties defined with this control.

OptionalImage of a tree node that has subnodes and that is currently not
showing its nodes. The image either is defined statically by this

imageclosed

property or also may be defined dynamically - see the
corresponding properties defined with this control.

OptionalImage of a tree node that is an end node (leaf node). The image
either is defined statically by this property or also may be defined

imageendnode

dynamically - see the corresponding properties defined with this
control.

trueOptionalIf set to "true" then only one item can be selected. If set to "false"
then multiple icons can be selected.

singleselect

false

Natural for Ajax492

TREENODE3 in Control Grid (ROWTABLEAREA2)

ondblclickOptionalEvent that represents a tree node selection. A tree node selection
is done when the user clicks/doubleclicks on the tree node text.

directselectevent

onclickIn this case the select() method is called in the corresponding
node object on server side.

1OptionalNumber of pixels that each hierarchy level is indented. If not
defined then a standard is used.

pixelshift

2

3

int-value

1OptionalNumber of pixels that end nodes are indented. If not defined
then a standard is used.

pixelshiftendnode

2

3

int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" -

3but you may want to define the control two span over more than
one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalHeight of the control in pixels.pixelheight

2

3

493Natural for Ajax

TREENODE3 in Control Grid (ROWTABLEAREA2)

int-value

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to resolve
duplicates.

tabindex

0

1

2

5

10

32767

Binding

OptionalName of an adapter parameter that provides for a image for the
tree node.

imageprop

Each node may provide for its own image, e.g. dependent on the
type of node.

If the adapter property passes back an empty string, then the
image is taken from the static definitions that you may parallely
do by using the properties IMAGEOPENED, IMAGECLOSED
and IMAGEENDNODE.

OptionalName of the adapter parameter that indicates if the row receives
the keyboard focus.

focusedprop

If more than one lines are returning "true", the first of them is
receiving the focus.

screenOptionalFlush behaviour when using the possibility of having editable
tree nodes. If double clicking on the tree node then you can edit

flush

serverits content. The FLUSH property defines how the browser
behaves when leaving the tree node's input field:

If not defined ("") then nothing happens - the changed tree node
text is communicated to the server side adapter object with the
next roundtrip.

If defined as "server" then immediately when leaving the field a
roundtrip to the server is initiated - in case you want your adapter
logic to directly react on the item change.

If defined as "screen" then the changed tree node text is populated
inside the page inside the front end.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit event to be sent

flushmethod

when the user updates the content of the control. By doing so

Natural for Ajax494

TREENODE3 in Control Grid (ROWTABLEAREA2)

you can distinguish on the server side from which control the
flush of data was triggered.

OptionalName of the adapter parameter that provides for a text that is
shown if the user moves the mouse over the tree item (tooltip).

tooltipprop

OptionalName of an adapter parameter that contains a comma separated
list of valid drag informations.

validdraginfosprop

Drag and Drop

trueOptionalIf set to true then drag and drop is enabled within the tree.enabledrag

false

495Natural for Ajax

TREENODE3 in Control Grid (ROWTABLEAREA2)

496

81 CLIENTTREE

■ Example .. 498
■ Adapter Interface ... 499
■ Built-in Events ... 499
■ Properties .. 499

497

Example

The following example shows a simple client tree:

The XML layout definition is:

<rowarea name="Clienttree">
<clienttree treecollectionprop="tree" height="200" withplusminus="true"

treestyle="background-color:#FEFEEE">
</clienttree>

</rowarea>

In this example, the client tree is directly put as row into the ROWAREA container. The property
treecollectionprop contains a reference to the property tree which contains the net data of the
tree. With the property treestyle, an explicit background color is set.

Natural for Ajax498

CLIENTTREE

Adapter Interface

In the parameter data area of the adapter, the tree data is represented by the following data
structure:

DEFINE DATA PARAMETER
1 TREE (1:*)
2 LEVEL (I4)
2 OPENED (I4)
2 SELECTED (L)
2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

value-of-treecollectionprop.reactOnContextMenuRequest
value-of-treecollectionprop.reactOnSelect
value-of-treecollectionprop.reactOnToggle

Properties

Basic

OptionalName of the adapter parameter that represents the control
in the adapter.

treecollectionprop

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines
a height this control can reference. If you specify this control

100%to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent

499Natural for Ajax

CLIENTTREE

element does not specify a width then the rendering result
may not represent what you expect.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to "true" then +/- Icons will be rendered in front of the
tree items.

withplusminus

false

trueOptionalIf set to "true" then the text of an item is also available as tool
tip. Use this option in case you expect that the horizontal

withtooltip

falsespace of the item will not be sufficient to display the whole
text of the item.

trueOptionalIf set to "true" then the clicked item will also marked with a
certain background color. The background color is defined
by the style sheet settings.

selectionvisible

false

trueOptionalIf set to "true" then only one item can be selected. If set to
"false" then multiple icons can be selected.

singleselect

false

OptionalImage of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by

imageopened

this property or also may be defined dynamically - see the
corresponding properties defined with this control.

OptionalImage of a tree node that has subnodes and that is currently
not showing its nodes. The image either is defined statically

imageclosed

by this property or also may be defined dynamically - see
the corresponding properties defined with this control.

OptionalImage of a tree node that is an end node (leaf node). The
image either is defined statically by this property or also may

imageendnode

be defined dynamically - see the corresponding properties
defined with this control.

OptionalStyle (following cascading style sheet definitions) that is
directly passed to the background area of the client tree. You
can manipulate e.g. the colour of the tree's background.

treestyle

The style can also be set dynamically by specifying the
property TREESTYLEPROP.

autoOptionalDefinition of the horizontal scrollbar's appearance.hscroll

scrollYou can define that the scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or scrollbars

hiddencan be shown always ("scroll"). Or scrollbars are never shown
- and the content is cut ("hidden").

Default is "auto".

Natural for Ajax500

CLIENTTREE

1OptionalNumber of pixels that each hierarchy level is indented. If not
defined then a standard is used.

pixelshift

2

3

int-value

1OptionalNumber of pixels that end nodes are indented. If not defined
then a standard is used.

pixelshiftendnode

2

3

int-value

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

trueOptionalFlag that indicates if the control has a 10 pixel padding on
left side. Default is true.

withleftpadding

false

Binding

(already explained above)treecollectionprop

trueOptionalIf set to "true" then you indicate to the tree control that not
all tree information may be loaded when initializing the tree

dynamicloading

false(i.e. the tree collection on server side). As consequence the
tree control will pass the "toggle-event" to the server - in case
the subnodes of a certain nodes are not yet loaded.

In the case the toggle event is passed to the server, the method
onToggle() is called inside the tree item.

OptionalName of the adapter parameter that provides the image URL
which is shown for opened tree nodes or end tree nodes. The

imageopenedprop

value may be different from tree node to tree node. Each tree
node may have an own image.

OptionalName of the adapter parameter that provides for the image
URL which is shown for closed tree nodes. The value may

imageclosedprop

501Natural for Ajax

CLIENTTREE

be different from tree node to tree node. Each tree node may
have an own image.

Optionalname of the adapter parameter that dynamically provides
for a style value that is passed to the control's area

treestyleprop

(background of the client tree). You can as consequence e.g.
define the background-colour of the tree dependent on your
server side logic.

OptionalName of the adapter parameter that passes back the name
of a style sheet class that is taken to render the client tree's

treeclassprop

background area. - Similar to the property TREESTYLEPROP,
but now a style class is passed, not the style itself.

OptionalName of the adapter parameter that provides for a text that
is shown if the user moves the mouse over the tree item
(tooltip).

tooltipprop

OptionalName of the event that is sent to the adapter when the user
presses the right mouse button in an empty area of the client
tree.

oncontextmenumethod

ondblclickOptionalEvent that represents a tree node selection. A tree node
selection is done when the user clicks/doubleclicks on the

directselectevent

onclicktree node text. In this case the select() method is called in the
corresponding node object on server side.

OptionalName of the adapter parameter that indicates if the row
receives the keyboard focus.

focusedprop

If more than one lines are returning "true", the first of them
is receiving the focus.

Drag and Drop

trueOptionalIf set to true then drag and drop is enabled within the tree.enabledrag

false

Natural for Ajax502

CLIENTTREE

82 Working with Menus

Menus are used to arrange a number of functions in a structured way.

The information provided in this part is organized under the following headings:

Types of Menus

MENU

DLMENU

503

504

83 Types of Menus

The following menu controls are available:

■ MENU
This is the typical drop-down menu:

■ DLMENU
This is a double-line menu representing a two-level hierarchy. It can be found quite often in
web applications.

When clicking an item in the first line, the corresponding subitems are shown in the second line.

All menu controls are dynamically configured by the application. This means:

505

■ The structure of the menu and its menu nodes is not statically defined but is dynamically
controlled by the application through adapter parameters. For example, you can build a
personalized menu taking the user's rights into consideration.

■ Menu information can be dynamically updated during runtime.

Natural for Ajax506

Types of Menus

84 MENU

■ Example .. 508
■ Adapter Interface ... 509
■ Built-in Events ... 509
■ Properties .. 510

507

Example

The example looks as follows:

When clicking on a menu item for which a function has been defined, then the name of the function
is displayed in the status bar.

Natural for Ajax508

MENU

The XML layout definition is:

<page model="Menue_01_Adapter">
<titlebar name="Menu Demo">
</titlebar>
<header align="left" withdistance="false">

<menu menucollectionprop="menuData" width="100">
</menu>

</header>
<pagebody>
</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

In this example, the menu is embedded in the header. By the property menucollectionprop, it is
bound to the adapter property menuData.

Adapter Interface

DEFINE DATA PARAMETER
1 MENUDATA (1:*)
2 ID (U) DYNAMIC
2 IMAGEURL (U) DYNAMIC
2 LEVEL (I4)
2 METHOD (U) DYNAMIC
2 OPENED (I4)
2 TEXT (U) DYNAMIC
1 SELMENUITEM (U) DYNAMIC
END-DEFINE

Built-in Events

items.reactOnSelect

509Natural for Ajax

MENU

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the
adapter.

menucollectionprop

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row) may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalURL of the image that is shown on the right end of a menu item, if
this item contains subitems. If not explicitly defined then a default
icon is used.

toggleimage

Natural for Ajax510

MENU

OptionalName of the adapter parameter that provides a URL that defines
the toggle image. The toggle icon is shown on the right end of a
menu item that has subitems.

toggleimageprop

OptionalCSS style definition that is directly passed into this control.menustyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source"
or "View frame's source" function.

OptionalName of the adapter parameter that dynamically provides explicit
style information for the control.

menustyleprop

511Natural for Ajax

MENU

512

85 DLMENU

■ Example .. 514
■ Adapter Interface ... 515
■ Built-in Events ... 515
■ Properties .. 516

513

Example

The example looks as follows:

A double-line menu is displayed. When selecting a menu item, then its text is written to the status
bar.

Natural for Ajax514

DLMENU

The XML layout definition is:

<page model="menue_02_dl_Adapter">
<titlebar name="Double Line Menu">
</titlebar>
<dlmenu menuprop="menuData">
</dlmenu>
<header withdistance="false">

<button name="Save">
</button>

</header>
<pagebody>
</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

The DLMENU control is positioned directly following the title bar. In its property menuprop, it
holds a binding to the property menuData.

Adapter Interface

DEFINE DATA PARAMETER
1 ITEMS (1:*)
2 LEVEL (I4)
2 METHOD (U) DYNAMIC
2 TEXT (U) DYNAMIC
END-DEFINE

Built-in Events

items.onSelectSubItem

515Natural for Ajax

DLMENU

Properties

Basic

ObligatoryName of the adapter parameter that represents the control in the adapter.menuprop

OptionalMulti language dependent text that is displayed inside the control. The
"textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

leftOptionalHorizontal alignment of the control's content.align

center

right

trueOptionalIf set to "true" then the DLMENU control only contains its top line - there
is no second line below. Default is "false".

onlyoneline

false

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Natural for Ajax516

DLMENU

86 Non-Visual Controls and Hot Keys

This part describes some controls that do not have any visual effect to your screen, but provide
some client functions to be applied to your page.

The information provided in this part is organized under the following headings:

TIMER

Extended Hot Key Management

Function Key Handling

517

518

87 TIMER

■ Example .. 520
■ Properties .. 521

519

With a timer, you can regularly trigger a defined event sent by the client. For example, you can
use a timer to regularly update information to be displayed inside your page.

The timer tag is accessible as a valid subnode inside the page tag.

Specify either the interval or the intervalprop property in order to set the interval. In case of
using a property for dynamically setting the interval, note the following:

■ You can change the interval time at any time.
■ You can stop the timer by setting the interval time to 0.

Example

The following screen displays a time stamp of the server. It is refreshed depending on the interval
field. Increase/decrease the interval time by choosing the corresponding buttons.

The XML layout definition is:

<page model="DemoTimerAdapter">
<titlebar name="Demo Timer">
</titlebar>
<header withdistance="false">

<button name="~~Increment" method="incrementTimer">
</button>
<button name="~~Decrement" method="decrementTimer">
</button>
<button name="~~Stop" method="stopTimer">
</button>

Natural for Ajax520

TIMER

</header>
<pagebody>

<rowarea name="Time">
<itr>

<label name="Interval (ms)" width="100" asplaintext="true">
</label>
<field valueprop="interval" length="5" displayonly="true"

datatype="int">
</field>

</itr>
<itr>

<label name="Server time" width="100" asplaintext="true">
</label>
<field valueprop="serverTime" length="50" displayonly="true">
</field>

</itr>
</rowarea>

</pagebody>
<statusbar withdistance="false">
</statusbar>
<timer intervalprop="interval">
</timer>

</page>

In this example, the timer tag does not send a defined event but refreshes the screen. The timer
interval is retrieved by the property interval of the adapter object.

Properties

Basic

Sometimes obligatoryDuration in milliseconds the timer waits between calling the adapter
method defined in the METHOD property.

interval

Use this property to "hard code" the duration - or use
INTERVALPROP to define the duration by an adapter property.

Sometimes obligatoryName of the adapter parameter that defines the timer interval
duration. If 0 is passed then the timer is stopped.

intervalprop

ObligatoryName of the event that is sent to the adapter by the timer.method

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

521Natural for Ajax

TIMER

522

88 Extended Hot Key Management

■ Direct Hot Key Definitions with Certain Controls ... 524
■ Hot Key Definitions for Certain Controls ... 524

523

Extended hot key management provides the following features:

■ Possibility to define hot keys with certain controls.
■ Possibility to define language dependent hot keys.

Direct Hot Key Definitions with Certain Controls

Some controls allow to directly specify hot keys within the text that is displayed inside the control.
The controls that currently support this feature are:

■ BUTTON
■ MENU
■ ROWTABAREA

Example: If you specify the button text to be "~~Stop", the button will look like this:

The text may both be directly maintained in the control (name property) or may come from the
multi language management (textid property).

At the time, the hot key CTRL+ALT+S will be added to the page. The definition of hot keys in the
texts of MENU controls or ROWTABAREA controls is done in the same way.

注意: Application Designer does not check if hot keys are defined twice in a page.

Why use CTRL+ALT as a default way to trigger the hot keys? This is because most of the simple ALT

keys are already occupied by the browser.

Hot Key Definitions for Certain Controls

The controls PAGE, FIELD and ROWTABLEAREA2 support the property hotkeys.

The hotkeys property defines the active hot keys for the corresponding control. This means that
you may have hot keys that are only valid inside a certain grid (ROWTABLEAREA2 control) or
even inside a single FIELD, but are not valid inside the whole page (PAGE control).

Natural for Ajax524

Extended Hot Key Management

Have a look at the following demo:

525Natural for Ajax

Extended Hot Key Management

If the user presses CTRL+ALT+A inside the grid, the hot key is managed by the grid. If the user presses
the same key outside the grid, the hot key is processed by a corresponding definition on page
level. The XML layout looks as follows:

<page model="com.softwareag.cis.test40.GridHotkeysAdapter"
translationreference="40_gridhotkeys"

hotkeys="ctrl-alt-65;onCtrlAltAPage">
...
...

<rowtablearea2 griddataprop="grid" rowcount="12" width="100%"
firstrowcolwidths="true"

hotkeys="ctrl-alt-$KEYCODE_A;onCtrlAltA">
...
...

The hotkeys property on PAGE, FIELD or ROWTABLEAREA2 is a semicolon-separated list
containing the hot key itself and the method it is calling. There can be multiple hot key definitions
for the same control. When maintaining this property, use the special dialog in the Layout Painter
that appears for the hotkeys property.

You can either specify the key code of the hot key or a text ID that is to be translated by the multi
language management.

Natural for Ajax526

Extended Hot Key Management

89 Function Key Handling

Some keyboard function keys are usually assigned to specific functions of the web browser. F5,
for example, causes a page reload and F11 toggles full screen mode.

In a Natural for Ajax application, these keyboard function keys might be assigned as hot keys to
events in the application. But the user should also have the option to use, for example, F11 in the
usual way as a web browser function key. Therefore, the following rules apply:

■ If the keyboard focus is on the Natural for Ajax page, the function key raises the corresponding
event in the application.

■ If the keyboard focus is not on the Natural for Ajax page, but in the area of the web browser
(for example, in the address line), the function key raises the corresponding event in the web
browser.

Exception

In Internet Explorer 7, F10 and F11 are handled by the web browser only if both the keyboard focus
and the mouse pointer are in the area of the web browser.

527

528

索引

A
Ajax, 1
Application Designer

Natural tools for map conversion, 118

C
conversion logs

Natural tool for map conversion, 118
conversion rules

Natural tool for map conversion, 118

M
map converter

Natural tool for map conversion, 118

N
Natural for Ajax, 1

529

530

	Natural for Ajax
	目次
	1 Natural for Ajax
	2 はじめに
	What is a Rich Internet Application?
	Rich Internet Applications with Natural
	Mixed Applications

	3 Installation
	Prerequisites
	Java
	J2EE Server
	Apache Ant
	Natural for Mainframes
	Natural for UNIX
	Natural for Windows
	Support for Special Features
	Development Servers
	Development Clients
	Browser Prerequisites

	License Key File Handling
	Installing Natural for Ajax on JBoss Application Server
	First-time Installation
	Update Installation

	Installing Natural for Ajax on Sun Java System Application Server
	First-time Installation
	Update Installation

	Verifying the Installation

	4 Setting Up Your Environment
	Setting Up Application Designer
	Setting Up Your Development Environment for Natural
	Setting Up Your Runtime Environment for Natural

	5 First Steps
	6 About this Tutorial
	7 Starting the Development Workplace
	8 Creating a Project
	9 Getting Started with the Layout Painter
	Creating a New Layout
	Elements of the Layout Painter Screen
	Previewing the Layout
	Viewing the XML Code

	10 Writing the GUI Layout
	Specifying the Properties for the Natural Page
	Specifying a Name for the Title Bar
	Using the Property Editor
	Specifying a Name and Method for the Button
	Adding the Input and Output Areas
	Adding the Image
	Adding a Horizontal Distance
	Adding an Instructional Text
	Adding a Vertical Distance
	Saving Your Layout

	11 Setting Up Your Development and Runtime Environment for Natural
	12 Creating the Natural Code
	Importing the Adapter into Natural
	Creating the Main Program
	Testing the Completed Application

	13 Some Background Information
	Name Binding between Controls and Adapter
	Data Exchange at Runtime
	Files and their Locations

	14 Developing the User Interface
	Starting the Development Workplace
	Creating an Application Designer Project
	Creating a Natural Page
	Specifying Properties for the Natural Page
	Designing the Page
	Binding Properties and Methods
	Previewing the Layout
	Viewing the Protocol
	Saving the Layout
	Generating the Adapter
	Data Type Mapping

	15 Developing the Application Code
	Importing the Adapter
	Importing the Adapter Using Natural Studio
	Importing the Adapter Using Natural for Eclipse

	Creating the Main Program
	Structure of the Main Program
	Handling Page Events
	Built-in Events and User-defined Events
	Sending Events to the User Interface
	Using Pop-Up Windows
	Using Natural Maps
	Navigating between Pages and Maps
	Using Pages and Maps Alternatively
	Starting a Natural Application from the Logon Page
	Starting a Natural Application with a URL

	16 Deploying the Application
	Components of a Natural for Ajax Application
	Unloading Natural Modules
	Unloading the User Interface Components
	Installing the Natural Modules
	Installing the User Interface Components

	17 Natural Parameters and System Variables
	18 Multi Language Management
	19 Support of Right-to-Left Languages
	20 Server-Side Scrolling and Sorting
	General Information
	Variants of Server-Side Scrolling and Sorting
	No Server-Side Scrolling and Sorting
	Web Server-Side Scrolling and Sorting
	Natural Server-Side Scrolling and Sorting

	Controls that Support Server-Side Scrolling and Sorting
	Data Structures for Server-Side Scrolling and Sorting
	Server-Side Scrolling and Sorting in Trees
	Events for Server-Side Scrolling and Sorting

	21 Application Modernization
	22 Overview of Conversion Steps
	23 Map Extraction
	General Information
	Using Natural for Ajax Tools
	Using the Mass Function
	Location of the Files

	24 Map Conversion
	General Information
	First Steps
	Using the Map Converter
	Invoking the Map Converter
	Setting the Conversion Options
	Previewing/Generating a Single Layout
	Generating All Layouts
	Viewing the Conversion Results
	Refreshing the Display

	Using the Editor Extension
	Using the Conversion Rules Tool
	Using the Conversion Logs Tool

	25 Customizing the Map Conversion Process
	Map Converter Processing
	Processing of Rows and Columns
	Rows
	Columns

	Processing of Sequence and Grid Areas
	Summary: Processing Steps of the Map Converter

	Conversion Rules
	Conversion Rules Examples
	Example 1
	Example 2
	Example 3

	Default Conversion Rules File
	Root Rule
	Data Type Conversion Rules
	Other Default Conversion Rules

	Conversion Rules that Often Need to be Adapted
	Naming of Adapters
	Setting the Title of a Map

	Writing Your Own Conversion Rules

	Templates
	Variables in Templates
	Templates in Templates
	Editing Templates

	Tag Converters

	26 Code Conversion
	General Information
	Generating Adapters
	Structure of a Map-Based Application
	Structure of a Natural for Ajax Application
	Tasks of the Code Conversion
	DEFINE DATA Statement
	statusprop

	INPUT Statement
	REINPUT Statement
	PF-Key Event Handling
	SET KEY Statement
	Processing Rules
	System Variables
	Variable Names Containing Special Characters

	27 Working with Controls
	28 Some Common Rules for all Controls
	Name and Text ID
	Table, Row, Column, Control
	Explicit Alignment
	Binding to Adapter Parameters
	Directly Influencing the Control Style
	Dynamically Controlling the Visibility and the Display Status of Controls
	Focus Management
	Flushing of Inputs
	Tab Sequence
	Tooltips

	29 BREADCRUMB
	Example
	Adapter Interface
	Built-in Events
	Properties

	30 BUTTON
	Example: Simple Button
	Example: Button with Image
	Hiding and Disabling Buttons
	Properties

	31 BUTTONLIST
	Adapter Interface
	Properties

	32 CHECKBOX
	Properties

	33 COMBODYN2
	Adapter Interface
	Properties

	34 COMBOFIX
	COMBOFIX Properties
	COMBOOPTION Properties

	35 DATEINPUT
	Example
	Properties

	36 DROPICON
	Example
	Properties

	37 FIELD
	Built-in Events
	Properties

	38 FILEUPLOAD/FILEUPLOAD2
	FILEUPLOAD
	FILEUPLOAD2
	FILEUPLOAD Properties
	FILEUPLOAD2 Properties

	39 ICON
	Example
	Properties

	40 ICONLIST
	Adapter Interface
	Built-in Events
	Properties

	41 IHTML
	Properties

	42 IMAGEOUT
	Properties

	43 LABEL
	Example
	Aligning the Text
	Properties

	44 MENUBUTTON
	Example
	MENUBUTTON Properties
	MENUITEM Properties

	45 METHODLINK
	Properties

	46 MULTISELECT
	Example
	Adapter Interface
	Properties

	47 NEWSFEED
	Example
	Built-in Events
	Properties

	48 RADIOBUTTON
	Properties

	49 SCHEDULELINE
	Properties

	50 SLIDER
	Example
	Adapter Interface
	Properties

	51 STRIPSEL
	Example
	Properties

	52 SUBPAGE
	Properties

	53 TABSEL
	Adapter Interface
	Built-in Events
	Properties

	54 TABSTRIP2
	Example
	Adapter Interface
	Built-in Events
	Properties

	55 TAGCLOUD
	Example
	Adapter Interface
	Built-in Events
	Properties

	56 TEXT
	Properties

	57 TEXTOUT
	Example
	Properties

	58 TOGGLE
	Properties

	59 ACTIVEX
	Properties

	60 GOOGLEMAP2
	Before You Start
	Example
	General Usage

	Typical Problems
	Google Map API Key
	Map Remains Gray

	Properties

	61 NETMEETING
	Example
	Properties

	62 SKYPECALL
	Example
	Properties

	63 NJX:BUTTONITEMLIST
	Example
	Adapter Interface
	Built-in Events
	Properties

	64 NJX:BUTTONITEM
	Example
	Built-in Events
	Properties

	65 NJX:BUTTONITEMLISTFIX
	Example
	Adapter Interface
	Built-in Events
	Properties

	66 NJX:BUTTONITEMFIX
	Example
	Built-in Events
	Properties

	67 NJX:FIELDLIST
	Example
	Adapter Interface
	Built-in Events
	Properties

	68 NJX:FIELDITEM
	Example
	Adapter Interface
	Built-in Events
	Properties

	69 NJX:FIELDVALUE
	Example
	Adapter Interface
	Built-in Events
	Properties

	70 NJX:NJXVARIABLE
	Example
	Properties

	71 NJX:EVENTDATA
	Example
	Adapter Interface

	72 Working with Grids
	73 Basics
	74 TEXTGRID2
	A Simple Example
	Adapter Interface
	Selecting Rows in a TEXTGRID2
	TEXTGRID2 Properties
	COLUMN Properties
	Dynamic Setting of Text Styles in TEXTGRID2

	75 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling
	Performance Considerations
	Example
	Adapter Interface
	Using Server-Side Scrolling
	Using Server-Side Sorting
	TEXTGRIDSSS2 Properties

	76 ROWTABLEAREA2 - The Flexible Control Grid
	Example
	Adapter Interface
	Built-in Events
	Making Grids Look like Grids
	ROWTABLEAREA2 Properties
	STR Properties

	77 FLEXLINE - Flexible Columns in Control Grids
	Example
	Adapter Interface
	FLEXLINE Properties

	78 MGDGRID - Managing the Grid
	Example
	Adapter Interface
	Built-in Events
	MGDGRID Properties
	ROWINSERT Properties
	ROWCOPY Properties
	ROWDELETE Properties

	79 Working with Trees
	80 TREENODE3 in Control Grid (ROWTABLEAREA2)
	Example
	Adapter Interface
	Built-in Events
	Properties

	81 CLIENTTREE
	Example
	Adapter Interface
	Built-in Events
	Properties

	82 Working with Menus
	83 Types of Menus
	84 MENU
	Example
	Adapter Interface
	Built-in Events
	Properties

	85 DLMENU
	Example
	Adapter Interface
	Built-in Events
	Properties

	86 Non-Visual Controls and Hot Keys
	87 TIMER
	Example
	Properties

	88 Extended Hot Key Management
	Direct Hot Key Definitions with Certain Controls
	Hot Key Definitions for Certain Controls

	89 Function Key Handling
	索引

