
Natural ISPF

Programmer's Guide

Version 8.2.7

April 2019

This document applies to Natural ISPF Version 8.2.7 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1989-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ISP-PROG-827-20181204

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Macro Facility .. 5
Macro Syntax .. 6
Examples of Macro Usage .. 8
Using the Macro Feature in Natural ISPF .. 10
Macro Objects ... 10
RUN / EXECUTE a Macro .. 11
COPY / SUBMIT a Macro ... 14
Edit Macro .. 18
Using Macro Objects in Other Natural Applications ... 28
PLAY a Macro ... 31
Inline Macros .. 32
Splitting Macro Objects into Modules .. 36
Saving Macro Output in the User Workpool ... 37

3 Incore Database ... 39
Overview .. 40
Defining Fields of an Incore File .. 41
Identifying an Incore File ... 42
Creating an Incore File ... 43
Manipulating Incore Files with Natural DML ... 47
Managing the Incore Database using the CALLNAT Interface 49
The Incore Database Container Data Set ... 67

4 Open NSPF .. 71
Overview .. 72
Common Subjects of Open NSPF Routines ... 76
Defining a User Object ... 78
Defining a User Command .. 98

5 Application Programming Interface ... 105
ISP-U000 - Current Session Program ... 106
ISP-U001 - Access Shortlibs Program ... 108
ISP-U002 - Retrieve Error Texts Program ... 109
ISP-U003 - Read Data from Edit Session Program ... 109
ISP-U004 - Pass Command Script Program ... 110
ISP-U005 - Check for Natural Member Versions Program 111
ISP-U006 - Set Source Area Attributes Program .. 111
ISP-U007 - Check User Authorization Program .. 111
ISP-U008 - Current Session Program Including Global Data 112
ISP-U009 – Current Session Program / Previous Session Program 113

6 Authorization .. 115

iii

iv

Preface

Natural ISPF is the application development tool of Software AG and provides a full range of
application programming and system programming facilities in anymainframe environment that
includes Natural.

This documentation describes the special programming facilities provided byNatural ISPF to help
you realize advanced application development. For a description of theNatural ISPF user interface
and object-types, consult the Natural ISPF User's Guide.

This documentation is organized under the following headings:

Describes the Natural ISPF macro feature that allows you to use the Natural
language to generate text of any kind.

Macro Facility

Explains theNatural ISPF IncoreDatabase facilitywhich enables theNatural
programmer to maintain complex data structures in the user memory and
to perform complex actions on these structures.

Incore Database

Provides information about the Open NSPF facility which enables you to
modify and enhance Natural ISPF according to site-specific needs.

Open NSPF

Describes the programs which can be used in Natural applications (or in
Open NSPF routines) to access Natural ISPF internal information.

Application Programming
Interface

Lists the available authorization classes and the Natural ISPF objects they
refer to.

Authorization Classes

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://documenta-
tion.softwareag.com. The site requires credentials for SoftwareAG's Product Support site Empower.
If you do not have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Programmer's Guide2

About this Documentation

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.asp and give us
a call.

Software AG TECHcommunity

You can finddocumentation and other technical information on the SoftwareAGTECHcommunity
website at http://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

■ Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Programmer's Guide

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

4

2 Macro Facility

■ Macro Syntax ... 6
■ Examples of Macro Usage .. 8
■ Using the Macro Feature in Natural ISPF ... 10
■ Macro Objects .. 10
■ RUN / EXECUTE a Macro ... 11
■ COPY / SUBMIT a Macro .. 14
■ Edit Macro ... 18
■ Using Macro Objects in Other Natural Applications ... 28
■ PLAY a Macro .. 31
■ Inline Macros .. 32
■ Splitting Macro Objects into Modules ... 36
■ Saving Macro Output in the User Workpool .. 37

5

Natural ISPF provides a macro feature that allows you to use the Natural language to generate
text of any kind. In a process known as macro expansion, text is generated, which can consist of
substituting variables, repeating blocks, generating blocks conditionally, even performing screen
or file I/Os.

The macro feature is useful when you are creating different sources, all of the same structure but
with different content. Themacro feature thus supports you in editing programs and other sources,
offering many uses within Natural ISPF.

This chapter describes macro syntax and the objects in which the macro feature can be used, in-
cluding some examples.

Macro Syntax

The macro feature is an extension of the Natural language and consists of two types of statement,
identified in the source by the macro character (in the given examples, the paragraph sign (§) is
used). These statements are:

Processing Statements

Executed during macro expansion; these statements must be preceded by the macro character
followed by a blank. The full Natural language is available for processing statements. You can
work in either structured or report mode as normal.

Example

0010 § MOVE 'PERSONNEL' TO #FILE-NAME (A32)
0020 § MOVE 'NAME' TO #KEY (A32)

Text Lines

Copied to the generated output of the macro; text lines can contain variables that are substituted
by their current values duringmacro expansion. Variables in text lines are identified by the macro
character, for example:

0030 READ §#FILE-NAME BY §#KEY
0040 WRITE 'RECORD READ'

Variables can also be used as part of names. To concatenate a variable value with the rest of the
name during macro expansion, you must use the vertical line as concatenation character (|).

Note: If your keyboard does not have the vertical line, use the character that has hexadecimal
value 4F.

Programmer's Guide6

Macro Facility

Examples

■ For example, using the values in the examples above, the line:

0030 FIND §#FILE-NAME|-VIEW BY §#KEY

generates the following text:

0030 FIND PERSONNEL-VIEW BY NAME

Note: The concatenation character need only be typed after the macro variable, and need
not be typed before a variable to be substituted after a concatenated string.

■ For example, the JCL line:

0040 // DD DSN=§#DSNIN|(§#MEMBER|)

generates the following text using current variable values:

0040 // DD DSN=ISP.COMN.DATA(ISPJCL)

In this example, the concatenation character is used to concatenate the parentheses.

If the macro character itself is to appear in the macro output, you must write a double macro
character in the source.

■ For example, the following line:

0010 * this macro uses the §§ char as macro char.

generates the following text:

0010 * this macro uses the § char as macro char.

7Programmer's Guide

Macro Facility

Examples of Macro Usage

1. Straight Substitution of Variables

The source lines:

§ MOVE 'PERSONNEL' TO #FILE-NAME (A32)
§ MOVE 'NAME' TO #KEY (A32)
READ §#FILE-NAME BY §#KEY
WRITE 'RECORD READ' §#KEY

produce the following output text:

READ PERSONNEL BY NAME
WRITE 'RECORD READ' NAME

2. Define Loops

The following source lines generate a Natural data definition:

§ DEFINE DATA LOCAL
§ 1 #FIELD (A32/5) INIT <'MAKE','MODEL','COLOR'>
§ 1 #I (N2)
§ END-DEFINE
§ *
DEFINE DATA LOCAL
1 AUTOMOBILES-VIEW
§ FOR #I = 1 TO 5
§ IF #FIELD(#I) = ' ' ESCAPE BOTTOM END-IF
2 §#FIELD(#I)
§ END-FOR
END-DEFINE

The following text lines are produced:

DEFINE DATA LOCAL
1 AUTOMOBILES-VIEW
2 MAKE
2 MODEL
2 COLOR
END-DEFINE

Programmer's Guide8

Macro Facility

3. Screen I/O

The following source lines prompt you for a member name:

§ RESET #MEMBER(A8)
§ INPUT #MEMBER
//§*INIT-USER|A JOB
//ASM EXEC ASMM,MEM=§#MEMBER

The resulting output text using input member name EDRBPM is:

//MBEA JOB
//ASM EXEC ASMM,MEM=EDRBPM

4. File I/O

The following source lines read the first three records from the PERSONNEL file, and if the persons
are male, addresses them with a specified text:

§ READ(3) PERSONNEL BY NAME STARTING FROM 'A'
§ IF SEX ='M' DO
DEAR MR. §NAME
CONGRATULATIONS....
§ DOEND
§ LOOP

The resulting output text reads as follows:

DEAR MR. ALCOCK
CONGRATULATIONS....
DEAR MR. ALLAN
CONGRATULATIONS....
DEAR MR. AZOVEDA
CONGRATULATIONS....

5. Conditional Text Generation

Examples 2 and 4 above contain a macro text line which makes generation of text dependent on
a specific condition:

§ IF #FIELD(#I) = ' ' ESCAPE BOTTOM END-IF in example 2, and
§ IF SEX='M' DO in example 4

9Programmer's Guide

Macro Facility

Using the Macro Feature in Natural ISPF

You can use the macro feature in Natural ISPF in any of the following ways:

■ In a special Natural object called a macro object. Macro objects reside in Natural libraries and
can be accessed as any otherNatural object (specify TYPE=MACRO). Macro expansion is performed
when the macro is executed; the macro output can be accessed for further handling in the user
workpool facility. Additionally, macro objects can be referenced from various places within
Natural ISPF.

■ Inline macros in other sources (for example, PDS members, z/VSE members, LMS elements,
Natural programs). The macros are executed as a result of certain function commands. The ac-
tual function is performed on the macro output, which can be seen as an intermediate file and
is also written to the user workpool.

The following subsections describe each possibility in detail.

Macro Objects

You can access and maintain macro objects as any other Natural object if you specify TYPE=MACRO
(see the subsectionNatural Objects in the section Common Objects in theNatural ISPF User's Guide).
However, please note the following when maintaining macro objects using the Editor:

■ You must not use the END statement in macro objects;
■ The CHECK command checks the processing statements and variables to be substituted in macro
expansion for correct Natural syntax;

Note: The CHECK command does not check that the text resulting from macro expansion
is a valid Natural source. To do this, execute the macro object and store the resulting
output from the user workpool as a Natural program (see the subsection User Workpool
in the section Common Objects in the Natural ISPF User's Guide).

■ The CATALOG and STOW commands compile the macro and create the “compiled” macro.

You can RUN a macro source, and use compiled macro objects in any of the following ways:
■ EXECUTE a macro;
■ Issue the COPY or SUBMIT function command for a macro;
■ Use the Edit macro feature;
■ Reference a macro from another object using the INCLUDE-MACRO statement;
■ Execute a macro from applications outside of Natural ISPF;

Programmer's Guide10

Macro Facility

■ PLAY a macro to generate and execute a command script.

These uses are explained in the following subsections. Use of the INCLUDE-MACRO statement is de-
scribed in the subsection Inline Macros.

RUN / EXECUTE a Macro

Whenyou issue the RUN command for amacro object, themacro source is executed, and the resulting
output is written to the user workpool.

When you issue the EXECUTE command for a macro object, the compiled macro is executed, and
the resulting output is written to the user workpool. If you are executing the macro from an ap-
plication outside of Natural ISPF, the output is written to the source area (see also the subsection
Using Macro Objects in other Natural Applications).

The output of a macro object appears in the user workpool under the name of the macro and can
be edited and saved (see the subsectionUser Workpool in the section Common Objects in theNatural
ISPF User's Guide).

The following are two examples of macro objects. The first illustrates the use of variables to gen-
erate a Natural program, the second to generate job control lines.

Example 1: Using variables to generate a Natural program

Thismacro generates a part of aNatural program,which reads a specified number of records from
a file in a logical sequence and displays the descriptor value and some other fields on the screen.

Macro definition:

§ DEFINE DATA LOCAL
§ 1 #FILE-NAME(A32)
§ 1 #KEY (A32)
§ 1 #FIELD (A32/5)
§ 1 #I (N3)
§ END-DEFINE
§ *
§ SET CONTROL 'WL60C13B05/05F'
§ INPUT(AD=MIT'_') ' DISPLAY RECORD IN A FILE'
§ / ' FILE NAME : ' #FILE-NAME
§ / ' KEY FIELD : ' #KEY
§ / ' FIELD : ' #FIELD(1)
§ / ' : ' #FIELD(2)
§ / ' : ' #FIELD(3)
§ / ' : ' #FIELD(4)
§ / ' : ' #FIELD(5)
READ(1) §#FILE-NAME!-VIEW BY §#KEY STARTING FROM #VALUE

11Programmer's Guide

Macro Facility

INPUT '§#KEY : ' 20T ' ' §#KEY (AD=OI)
§ FOR #I = 1 TO 5
§ IF #FIELD(#I) = ' ' ESCAPE BOTTOM END-IF
/ ' §#FIELD(#I) : ' 20T ' ' §#FIELD(#I) (AD=MI)

§ END-FOR
END-READ

If you issue a RUN command from your Natural edit session, the macro is executed and you are
prompted for input of the following fields:

+--+
! !
! DISPLAY RECORD IN A FILE !
! FILE NAME : ________________________________ !
! KEY FIELD : ________________________________ !
! FIELD : ________________________________ !
! : ________________________________ !
! : ________________________________ !
! : ________________________________ !
! : ________________________________ !
! !
! !
+--+

Assuming you specify the following values:

+--+
! !
! DISPLAY RECORD IN A FILE !
! FILE NAME : AUTOMOBILES_____________________ !
! KEY FIELD : MAKE____________________________ !
! FIELD : MODEL___________________________ !
! : COLOR___________________________ !
! : HORSEPOWER______________________ !
! : ________________________________ !
! : ________________________________ !
! !
! !
+--+

The variables are substituted with these values and the resulting output is written to the user
workpool. You can see the output in the user workpool using the local command OUTPUT:

Programmer's Guide12

Macro Facility

READ(1) AUTOMOBILES-VIEW BY MAKE STARTING FROM #VALUE
INPUT ' MAKE : ' 20T ' ' MAKE (AD=OI)
/ ' MODEL : ' 20T ' ' MODEL (AD=MI)
/ ' COLOR : ' 20T ' ' COLOR (AD=MI)
/ ' HORSEPOWER : ' 20T ' ' HORSEPOWER (AD=MI)
END-READ

The resulting Natural program can be edited in the user workpool and saved (see the subsection
User Workpool in the section Common Objects in the Natural ISPF User's Guide).

Example 2: Using variables to generate JCL lines.

The following macro object generates a job to perform a SYSMAIN COPY function, with the source
and destination values given as variables:

§ RESET #JOBNAME(A8)
§ RESET #FD(N3) #FL(A8) #FF(N3)
§ RESET #TD(N3) #TL(A8) #TF(N3)
§ COMPRESS *INIT-USER 'SM' INTO #JOBNAME LEAVING NO SPACE
§ SET CONTROL 'WL60C6B005/010F'
§ INPUT 'ENTER PARAMETERS FOR LIBRARY COPY:'
§ / 'FROM: DBID:' #FD 'FNR:' #FF 'LIB:' #FL
§ / 'TO : DBID:' #TD 'FNR:' #TF 'LIB:' #TL
//§#JOBNAME JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
//COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
// PARM=('DBID=9,FNR=33,FNAT=(,15),FSIZE=19',
// 'EJ=OFF,IM=D,ID='';'',MAINPR=1,INTENS=1')
//STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
// DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
//DDCARD DD *
ADARUN DA=9,DE=3380,SVC=249
//CMPRINT DD SYSOUT=X
//CMPRT01 DD SYSOUT=X
//CMWKF01 DD DUMMY
//CMSYNIN DD *
LOGON SYSMAIN2
CMD C C * FM §#FL DBID §#FD FNR §#FF TO §#TL DBID §#TD FNR §#TF REP
FIN

If you issue the RUN command from your Natural edit session, the macro is executed and you are
prompted for source and destination values in the following window:

13Programmer's Guide

Macro Facility

ENTER PARAMETERS FOR LIBRARY COPY:
FROM: DBID: FNR: LIB:
TO : DBID: FNR: LIB:

Assuming you enter 1 in the FROM: DBID and FNR fields, enter 2 in the TO: DBID and FNR fields, and
enter MYLIB in both LIB fields, the Natural program is run and the output generated in the user
workpool (use the local command OUTPUT):

//MBESM JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
//COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
// PARM=('DBID=9,FNR=33,FNAT=(,15),FSIZE=19',
// 'EJ=OFF,IM=D,ID='';'',MAINPR=1,INTENS=1')
//STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
// DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
//DDCARD DD *
ADARUN DA=9,DE=3380,SVC=249
//CMPRINT DD SYSOUT=X
//CMPRT01 DD SYSOUT=X
//CMWKF01 DD DUMMY
//CMSYNIN DD *
LOGON SYSMAIN2
CMD C C * FM MYLIB DBID 1 FNR 1 TO MYLIB DBID 2 FNR 2 REP
FIN
/*

COPY / SUBMIT a Macro

Macro objects are separate objects in Natural ISPF and can be accessed directly by the COPY and
SUBMIT function commands from any system screen using the object-type MAC in the command
syntax. Available commands are:

Parameter SyntaxCommand

library(member),object-type object-parameters,REPCOPY

library(member),TARGET=node-idSUBMIT

Example: COPY 1

The function command:

Programmer's Guide14

Macro Facility

COPY MAC MYLIB(MYPROG),NAT NEWLIB(NEWPROG)

executes macro object MYPROG in Natural library MYLIB and saves the output as Natural object
NEWPROG in library NEWLIB.

Example: COPY 2

The macro program EXHEADER in Natural library SYSISPE dynamically creates a program header
subsection with some information as to the edited object:

§ *
§ * MACRO GENERATES A STANDARD PROGRAM HEADER FOR THE PROGRAM
§ * BEING CURRENTLY EDITED
§ *
§ DEFINE DATA
§ LOCAL USING ISPN---L
§ LOCAL
§ 1 #OBJECT (A2)
§ 1 #FUNCTION(A2)
§ 1 #DATA (A200)
§ 1 #PROGRAM (A8)
§ 1 #TEXT (A50/5)
§ 1 #I (N2)
§ END-DEFINE
§ *
§ * GET NATURAL SESSION DATA
§ *
§ CALLNAT 'ISP-U000' #OBJECT #FUNCTION #DATA
§ MOVE #DATA TO #SES-DATA-N
§ MOVE #MEMBER TO #PROGRAM
§ SET KEY PF3
§ SET CONTROL 'WL70C10B005/005F'
§ SET CONTROL 'Y45'
§ INPUT (AD=MIL'_')
§ WITH TEXT '----- PROGRAM HEADING INFORMATION -------------'
§ 'PROGRAM:' #PROGRAM (AD=OI) 'TYPE:' #OBJTYPE (AD=OI)
§ 'LIBRARY:' #LIBRARY (AD=OI)
§ / 'PURPOSE:' #TEXT (1)
§ / ' ' #TEXT (2)
§ / ' ' #TEXT (3)
§ / ' ' #TEXT (4)
§ / ' ' #TEXT (5)
§ IF #TEXT(1) = ' '
§ REINPUT WITH TEXT 'PURPOSE IS REQUIRED'
§ END-IF

* OBJECT : §#PROGRAM DATE CREATED: §*DATD BY: §*USER
* ---
* PURPOSE:
§ FOR #I = 1 TO 5
§ IF #TEXT(#I) NE ' '

15Programmer's Guide

Macro Facility

* §#TEXT(#I)
§ END-IF
§ END-FOR
* ---
* PROGRAM HISTORY
* DATE USER-ID REF-NO DESCRIPTION

*
§ IF #OBJTYPE NE 'C'
DEFINE DATA
§ IF #OBJTYPE NE 'N'

GLOBAL USING
§ ELSE

PARAMETER
§ END-IF

LOCAL USING
LOCAL

END-DEFINE
*
* ----------
* Mainstream
* ----------
*
*
*
* --------------------
* Internal subroutines
* --------------------
*
END
§ END-IF

Note: For a specification of the subprogram ISP-U000 and the Local Data Area ISPN---L
referenced in this example, see the section Application Programming Interface.

If you start an editing session with a different object and issue the command:

COPY MAC SYSISPE(EXHEADER)

from the Editor command line, marking the place at which you want to see the header with the
Editor line command A, the following window prompts you to input the required information:

PROGRAM HEADING INFORMATION
PROGRAM: MYPROG TYPE: P LIBRARY: SYSISPE
PURPOSE: __

__
__
__
__

Programmer's Guide16

Macro Facility

The header information includes the program name, type and library name and you can add a
description of the program purpose. Assuming you enter: Program to perform a function and
press ENTER, the following header is inserted at the specified place in your program:

* OBJECT : MYPROG DATE CREATED: 31.08.90 BY: MBE
* ---
* PURPOSE:
* PROGRAM TO PERFORM A FUNCTION
* ---
* PROGRAM HISTORY
* DATE USER-ID REF-NO DESCRIPTION

*
DEFINE DATA

GLOBAL USING
LOCAL USING
LOCAL

END-DEFINE
*
* ----------
* Mainstream
* ----------
*
*
*
* --------------------
* Internal subroutines
* --------------------
*
END

Example: SUBMIT

The function command:

SUBMIT MAC MYLIB(MYPROG),TARGET=69

submits onNode 69 the output generated by themacro object MYPROGwhich resides in the Natural
library MYLIB.

Note: (for z/OS only) In a similarway,with the function parameter TYPE=TSO or TYPE=IDCAMS,
macro expansion can be used to pass the generated source lines to the TSO batch interface
or to the IDCAMS utility.

17Programmer's Guide

Macro Facility

Edit Macro

In the Editmacro field on the entry screens of someNatural ISPF objects (for example, PDS objects,
Natural objects), you can specify the name of a macro object to be used as a model when editing
a member. When starting the edit session with function command syntax, you must use the
MACRO=keyword parameter.

The specified macro is executed, and the output appears in the edit area of the new member (the
macro object referenced must be in the current library or in the library SYSTEM or STEPLIB).

Note: All lines generated by the macro are protected and cannot be modified.

Macro objects used as a model in this way are called “edit macros”. They offer the following addi-
tional functions:

■ Save variable values in the generated source;
■ Define your own blocks of code in the generated source (user-edited blocks);
■ Change the syntax of the information lines generated by the macro to match the syntax of the
comments in the target language.

These functions are described in more detail below.

Save/Get Variable Values

You can save variable values specified during the execution of a macro object used for the Edit
macro option (for example, if the macro prompts you for input values). If you wish to change any
value and regenerate the macro output in the new source, use the REGENERATE command from the
Editor command line, the other specified values remain in place.

A regeneration also takes place each time the member is selected for EDIT using the Edit macro
option. If you select themember for EDITwithout using the Edit macro option, the generated lines
from the last generation are in place.

Variables used can be simple variables or arrays of any type. If you use arrays, you can reference
variables in the following format:

#VAR(1)
#VAR(1:5)

Note: The notation #VAR(*)must not be used.

Variable values are saved using the SAVE-DATA statement after a GET-DATA clause in the macro
object, as detailed below.

Programmer's Guide18

Macro Facility

GET-DATA Statement

GET-DATA
{USING local-name}
{var-name}

END-GET

Note: Any line of this processing statement must be preceded by the macro character. The
keyword GET-DATAmust be the first string in the line.

Meaning of the variable parts:

MeaningVariable

Name of local data area objectlocal-name

Variable name, optionally followed by an array definition, for example:

A(5), A(2:4), A(3,5), A(2:3,6), A(1:3,1:3,7:9)

var-name

Function

When editing a new member with an Edit macro, the GET-DATA statement has no effect at all.
However, when a subsequent REGENERATE command is executed, the GET-DATA statement restores
variable field contents to the values of the last SAVE-DATA from the editedmember. The field names
are taken from the data areas, or are typed in explicitly.

Restrictions

1. The total number of fields is restricted to 128.

2. Length of field name must not exceed the following values:

32 - Scalar field

27 - One-dimensional array

23 - Bi-dimensional array

19 - 3-dimensional array

3. When using data areas:
■ only fields of level one are taken;
■ fields can be scalar or array (any dimension).

4. The notation #var-name(*) is not valid.

19Programmer's Guide

Macro Facility

Examples

§ GET-DATA
§ #ALFA
§ #NUM
§ #VEC(3)
§ #VEC(2:5)
§ #VEC(4,6:7)
§ #VEC(4,4,4)
§ END-GET

§ GET-DATA USING G-LOCAL END-GET

§ GET-DATA
§ #MY-VAR
§ USING G-LOCAL
§ END-GET

SAVE-DATA Statement

SAVE-DATA ALL

or:

SAVE-DATA
{USING local-name}
{var-name}

END-SAVE

Note: Any line of this processing statement must be preceded by the macro character. The
keyword SAVE-DATAmust be the first string in the line.

Meaning of the variable parts:

MeaningVariable

Name of local data area objectlocal-name

Variable name, optionally followed by an array definition, for example:

A(5), A(2:4), A(3,5), A(2:3,6), A(1:3,1:3,7:9)

var-name

Programmer's Guide20

Macro Facility

Function

The SAVE-DATA statement saves the variable contents in the generated source. These values can
later be retrieved using the GET-DATA statement. The SAVE-DATA ALL option refers to the variable
list of the previous GET-DATA statement. The SAVE-DATA ALL option is valid only if the GET-DATA
statement is contained in the same macro object. The field values are taken from the data areas,
or are typed in explicitly.

Note: The GET-DATA clause has no effect when the Edit macro option is used to create a new
member. However, when editing an existing member, or when issuing the REGENERATE
command, it reads the variable data for the previous execution, the SAVE-DATA statement
writes the data to the generated source.

Restrictions

The same restrictions apply as for the GET-DATA statement (see above).

Examples

§ SAVE-DATA ALL

§ SAVE-DATA USING G-LOCAL END-SAVE

§ SAVE-DATA
§ #MY-VAR
§ USING G-LOCAL
§ END SAVE ↩

Example: Save Variable Values

The following macro object named EXMOD generates a program to invoke any application:

0010 § DEFINE DATA LOCAL
....
0040 § 1 #M-LIB (A8)
0050 § 1 #M-START(A8)
0060 § END-DEFINE
0070 § *
0080 § GET-DATA
0090 § #M-LIB
0100 § #M-START
0110 § END-GET
0120 § *
0130 § INPUT (AD=IM) 'APPLICATION :' #M-LIB /
0140 § 'STARTPROGRAM:' #M-START
0150 § IF #M-LIB EQ ' ' STOP END-IF
0160 § SAVE-DATA ALL

21Programmer's Guide

Macro Facility

0170 DEFINE DATA
0180 LOCAL
0190 01 DUMMY (A1)
0200 § BEGIN-BLOCK 'DATA'
0210 ** HERE YOU CAN DEFINE YOUR OWN FIELDS
0220 § END-BLOCK
0230 END-DEFINE
0240 § BEGIN-BLOCK 'START'
0250 ** HERE YOU CAN ENTER YOUR OWN STATEMENTS
0260 § END-BLOCK
0270 § IF #M-START NE ' '
0280 STACK TOP COMMAND '§#M-START'
0290 § END-IF
0300 STACK TOP COMMAND 'LOGON §#M-LIB'
0310 STACK TOP COMMAND 'SETUP * SPF'
0320 *
0330 END

If you specify this macro as edit macro when starting an edit session with new Natural member
MYPROG in the library MYLIB using the command:

EDIT NAT MYLIB(MYPROG) MACRO=EXMOD

you are prompted for the input values:

APPLICATION
STARTPROGRAM

The following output is written to the edit session using input values MYAPPL for APPLICATION and
STARTUP for PROGRAM:

=P0001 ***M GENERATED USING:EXMOD
=P0010 ***MSV #M-LIB = MYAPPL
=P0020 ***MSV #M-START = STARTUP
=P0030 DEFINE DATA
=P0040 LOCAL
=P0050 01 DUMMY (A1)
=P0060 ***MBB DATA
000070 ** HERE YOU CAN DEFINE YOUR OWN FIELDS
=P0080 ***MBE
=P0090 END-DEFINE
=P0100 ***MBB START
000110 ** HERE YOU CAN ENTER YOUR OWN STATEMENTS
=P0120 ***MBE
=P0130 STACK TOP COMMAND 'STARTUP'
=P0140 STACK TOP COMMAND 'LOGON MYAPPL'
=P0150 STACK TOP COMMAND 'SETUP * SPF'
=P0160 *
=P0170 END

Programmer's Guide22

Macro Facility

If you now enter the command:

REGENERATE

in the Editor command line, the macro program is regenerated and the prompt for application
and start program reappears with the values last specified. You can modify any value and press
ENTER to load the new output in your edit session. Any unchanged variable retains its old value.

User-Edited Blocks in Generated Source

You can define your own blocks of code in the source generated by themacro object executed using
the Editmacro option. Each block starts with a line signalling the beginning of the block, indicating
a string or variable (BEGIN-BLOCK statement). The block closes with a line signalling the end of the
block (END-BLOCK statement). The corresponding syntax in the macro object is:

BEGIN-BLOCK block-identifier
text-line ...

END-BLOCK

Note: The lines beginningwith the keywords BEGIN-BLOCK and END-BLOCKmust be preceded
by the macro character. The keywords BEGIN-BLOCK and END-BLOCKmust be the first string
in the respective lines.

Meaning of the variables:

MeaningVariable

Can either be an alphanumeric constant or a variable of format A.block-identifier

A line used to initialize the block when a new source is generated.text-line

Function

After macro execution, you can write your own lines of code at the designated place when editing
the output generated by the Edit macro option. The next time you start an edit session with the
member and you wish to regenerate the source using the Edit macro option, your user-edited
blocks remain intact.

23Programmer's Guide

Macro Facility

Restrictions

■ The block-identifier must not exceed 8 characters and must be unique within the scope of the
generated source (that is, different blocks must carry different identifiers).

■ No macro processing statements are allowed within a user-edited block.

Example

0200 § BEGIN-BLOCK 'string' (or: #variable)
0210 <text lines to initialize the block for the first time>
0220 § END-BLOCK

The following figure illustrates the sequence of events described above:

Programmer's Guide24

Macro Facility

Example: User-Defined Blocks in Generated Source

Using the examplemacro object EXMOD illustrated in the above example of saving variables, consider
the text generated by the command:

EDIT NAT MYLIB(MYPROG) MACRO=EXMOD

specifying MYAPPL and STARTUP as input values for the prompted application and start program:

=P0001 ***M GENERATED USING:EXMOD
=P0010 ***MSV #M-LIB = MYAPPL
=P0020 ***MSV #M-START = STARTUP
=P0030 DEFINE DATA
=P0040 LOCAL
=P0050 01 DUMMY (A1)
=P0060 ***MBB DATA
000070 ** HERE YOU CAN DEFINE YOUR OWN FIELDS
=P0080 ***MBE
=P0090 END-DEFINE
=P0100 ***MBB START
000110 ** HERE YOU CAN ENTER YOUR OWN STATEMENTS
=P0120 ***MBE
=P0130 STACK TOP COMMAND 'STARTUP'
=P0140 STACK TOP COMMAND 'LOGON MYAPPL'
=P0150 STACK TOP COMMAND 'SETUP * SPF'
=P0160 *
=P0170 END

You can now define your own lines of code in the lines containing the comment HERE YOU CAN
DEFINE YOUR OWN FIELDS/STATEMENTS, for example:

=P0001 ***M GENERATED USING:EXMOD
=P0010 ***MSV #M-LIB = MYAPPL
=P0020 ***MSV #M-START = STARTUP
=P0030 DEFINE DATA
=P0040 LOCAL
=P0050 01 DUMMY (A1)
=P0060 ***MBB DATA
000070 01 #STARTDATA (A10) INIT <'INIT'>
=P0080 ***MBE
=P0090 END-DEFINE
=P0100 ***MBB START
000110 SET CONTROL 'MT'
000120 STACK TOP DATA #STARTDATA
=P0130 ***MBE
=P0130 STACK TOP COMMAND 'STARTUP'
=P0130 STACK TOP COMMAND 'LOGON MYAPPL'
=P0160 STACK TOP COMMAND 'SETUP * SPF'
=P0170 *
=P0180 END

25Programmer's Guide

Macro Facility

You can save this source using the SAVE command. If you now start an edit session with this
member, regenerating the source by specifying the macro object EXMOD in the command:

EDIT NAT MYLIB(MYPROG) MACRO=EXMOD

and specifying other values in the APPLICATION and STARTPROGRAM prompt, for example YOURAPPL
and START, the following output is loaded in the edit area:

=P0001 ***M GENERATED USING:EXMOD
=P0010 ***MSV #M-LIB = YOURAPPL
=P0020 ***MSV #M-START = START
=P0030 DEFINE DATA
=P0040 LOCAL
=P0050 01 DUMMY (A1)
=P0060 ***MBB DATA
000070 01 #STARTDATA (A10) INIT <'INIT'>
=P0080 ***MBE
=P0090 END-DEFINE
=P0100 ***MBB START
000110 SET CONTROL 'MT'
000120 STACK TOP DATA #STARTDATA
=P0130 ***MBE
=P0140 STACK TOP COMMAND 'START'
=P0150 STACK TOP COMMAND 'LOGON YOURAPPL'
=P0160 STACK TOP COMMAND 'SETUP * SPF'
=P0170 *
=P0180 END

Change Syntax Format

Source lines generated using the Edit macro option can be adapted to match the syntax of the
target language. This is done using the DATA-FORMAT statement as the first executable macro
statement in the macro object:

DATA-FORMAT=[sssssss] [yyy]

Note: This statement can only occur as the first executable macro statement. It must be
preceded by the macro character, and the keyword DATA-FORMATmust be the first string in
the line.

Meaning of the variables:

Programmer's Guide26

Macro Facility

MeaningVariable

Prefix string of up to 7 characters. The default is ***M.sssssss

Suffix string of up to 3 characters. By default, this string is empty.yyy

Notes:

1. The notation MODEL-DATA-FORMAT is also valid. The equal sign (=) is optional and can be omitted
if the keyword DATA-FORMAT is followed by at least one separating blank, followed by the prefix
and/or suffix strings.

2. The prefix and/or suffix string can optionally be enclosed in apostrophes ('). This notation is
required if the specified string contains one ormore blanks, or if it is a prefix string endingwith
a blank character (that is, if the prefix must be separated from remaining text by a blank).

Function

In some cases, the invoked macro writes its own data into the source area (for example, saved
variables). The DATA-FORMAT statement provides a prefix and suffix for that data. This definition
must reflect a comment in the target language.

Restrictions

1. The whole DATA-FORMAT statement cannot exceed one line.

2. The prefix or suffix string cannot contain commas or apostrophes. If any string contains blanks,
the whole string must be enclosed in apostrophes.

Examples

§ DATA-FORMAT ******C

§ DATA-FORMAT=/*,*/ /* for PL1

§ DATA-FORMAT '/REMA ' /* for BS2000 job control

An example macro using the DATA-FORMAT statement follows on the next page.

27Programmer's Guide

Macro Facility

Example: Change Syntax Format

The following macro object generates a job to perform a tape scan on a specified volume. The
DATA-FORMAT statement specifies JCL as the syntax format for the generated source:

0010 § DATA-FORMAT //*
0020 § RESET #VOL(A6)
0030 § GET-DATA
0040 § #VOL
0050 § END-GET
0060 § SET CONTROL 'WL60C10B005/005F'
0070 § INPUT (AD=MI'_') WITH TEXT 'ENTER VOLSER FOR TAPESCAN'
0080 § / ' VOLSER ' #VOL
0090 § SAVE-DATA
0100 //JWOTP12 JOB JWO,CLASS=1,MSGCLASS=X,REGION=2500K
0110 //SCAN EXEC TAPESCAN,TAPE=§#VOL

The following source is generated using the command:

EDIT NAT MYLIB(TAPESC) MACRO=EXJCL

and specifying volume COM811 in the prompt window that appears during macro execution:

=P0001 //* GENERATED USING:EXJCL
=P0010 //*FR //*
=P0020 //*SV #VOL = COM811
=P0030 //JWOTP12 JOB JWO,CLASS=1,MSGCLASS=X,REGION=2500K
=P0040 //SCAN EXEC TAPESCAN,TAPE=COM811

Using Macro Objects in Other Natural Applications

When you wish to execute macro objects from a Natural application or program outside Natural
ISPF, the generated output is written to the source area, where it can be edited using the standard
Natural program editor, and run in a production environment. Amore detailed description follows
in the subsections below.

Macro objects are invoked from other applications using the statement:

FETCH RETURN 'name' parameters

where name is the name of the macro to be invoked and parameters the parameters to be passed
to the macro as required.

Note: The macro must be a cataloged object in the library SYSTEM or STEPLIB.

Programmer's Guide28

Macro Facility

Generating Natural Code in Natural Applications

Macro objects to be invoked in Natural applications outside Natural ISPF must carry their own
generation parameters. This is done by coding an appropriate SET-MACRO statement in the macro
as follows:

SET-MACRO
parameter-definition ...

END-SET

where parameter-definition takes the following format:

NAME = object-name
SMODE = {S}

{R}
TYPE = {P}}

= {C}
= {S}
= {N}
= {A}
= {L}
= {M}
= {G}
= {H}
= {T}

Note: Any line of this processing statement must be preceded by the macro character. The
keyword SET-MACROmust be the first string in the respective line.

Meaning of variable:

MeaningVariable

Name given to the generated code. It must not exceed 8 characters and can be specified as
an alphanumeric constant or the content of an alphanumeric variable.

object-name

The values of the other keywords refer to the type and structure of the generated code.

Function

The SET-MACRO statement defines the macro generation parameters described under the above
syntax. Note that if invoked using the Edit macro option, the NAME parameter specified using the
SET-MACRO statement in the invoked macro is overridden by the name specified in the Edit macro
call.

29Programmer's Guide

Macro Facility

Examples

§ SET-MACRO NAME='MY-PROG' END-SET

§ SET-MACRO
§ NAME=#INPUT-PROG
§ TYPE=N
§ SMODE=S
§ END-SET ↩

An example that demonstrates the use of this statement can be found in the Example Library, objects
MAC-RUNZ and MAC-RUNP. Executing the program MAC-RUNP causes aNatural object to be generated,
cataloged and executed.

Using Macro Objects with GET-DATA / SAVE-DATA Statements

If the invoked macro uses GET-DATA/SAVE-DATA statements (see the subsection Edit Macro), the
Natural subprogram ISP--RVUmust be called. This subprogram extracts the data from the source
area and clears the source area. It must be called before the macro is executed, and expects the
output of the last execution of themacro in the source area. Additionally, the subprogram ISP--RVU
provided has the following parameters:

MeaningI/OTypeName

I/O(A8)#MACRO If source area is empty when called.'-empty-'

No appropriate text found in source area.' '

Name of the macro program which generated
the source

'name'

Non-zero if error occurred.O(N3)#ERROR-CODE

Explanation of error.O(A75)#ERROR-TEXT

If you wish to use this feature, the following programsmust be copied from the Natural ISPF user
exit library to your application or to a valid STEPLIB:

ISP--RVU
ISP--RVN

Programmer's Guide30

Macro Facility

PLAY a Macro

PLAY Command

The Natural ISPF function command PLAY allows you to execute sequences of Natural ISPF com-
mands stored as any of a number of Natural ISPF objects (PDS member, Natural object, z/VSE
member, LMS element, workpool output, or, as explained below, as a macro object). For details
on the PLAY feature, see the subsection Executing Command Scripts in the section Useful Features in
the Natural ISPF User's Guide.

Generate Command Script

A command script can be generated by amacro, allowing scripts to be created and played dynam-
ically. This can be done with the following syntax, valid from any system screen:

PLAY MAC library(member)

Here, the member must be a cataloged Natural object of type O (macro) or of type P (program).
For special considerations applying to type P, see the subsection Splitting Macro Objects into
Modules.

Example

For example, executing the following macro with the PLAY command generates a prompt for a
CHANGE command to be used on a member, with a choice of a STOW or SAVE command after the
change is made:

§ RESET #MEMBER(A8) #FROM(A16) #TO(A16) #STOW(A1)
§ INPUT(AD=MI) 'Change' #FROM 'To' #TO 'in member' #MEMBER

/ 'Stow?' #STOW(A1)
EDIT NAT §#MEMBER
CHANGE '§#FROM' '§#TO' all
§ IF #STOW NE ' '
STOW
§ ELSE
SAVE
§ END-IF
END

For another example, see member VERIFY in the Example Library. This macro generates a script
that verifies whether or not Natural ISPF has been installed correctly in your environment.

31Programmer's Guide

Macro Facility

Inline Macros

Apart from macro objects, other sources, such as PDS members, Natural programs, CA Panvalet
members, etc., can use the macro feature by including inline macros. Inline macros are processing
statements and variables included in a member. As a result of certain function commands, the
member is checked formacro statements, and if any are found, themember is run as amacro object:
the output is held in an intermediate file written to the user workpool. The invoked function is
then performed on the intermediate file.

Inline macros also allow the use of a special INCLUDE-MACRO statement that can invoke a macro
object and include its output in the member. The INCLUDE-MACRO statement takes the following
format:

INCLUDE-MACRO name [parameter]

Note: This statement must be preceded by the macro character.

Meaning of the variables:

MeaningVariable

Identifies the compiled macro to be included. It can be an alphanumeric constant or variable
and must not exceed 8 characters in length.

name

Parameters that can be sent to the macro to be received by means of the INPUT statement.parameter

Note: The macro object invoked by the INCLUDE-MACRO statement must be a cataloged
(CATALOG or STOW command) object in the current Natural library, or library SYSTEM or
STEPLIB.

The function commands that perform macro expansion of inline macros and INCLUDE-MACRO
statements are:

■ For Natural programs: CHECK, RUN, CATALOG, STOW, SUBMIT;
■ For other sources (PDS, Librarian members, etc.): SUBMIT.

Note: The macro facility must be enabled either with the command MACRO ON or by setting
the MACRO EXPAND option in the user defaults of your user profile to Y.

Important: When using inline macros in any non-Natural source, you must specify the Nat-
ural programming mode before starting an edit session or issuing a SUBMIT command. You
do this via the MACRO SMODE setting in the user defaults of your user profile (see the section
Profile Maintenance in the Natural ISPF User's Guide). If no mode is specified in your user
profile, the default is the mode defined by the system administrator.

Programmer's Guide32

Macro Facility

Tip: Instead of submitting non-Naturalmembers containing inlinemacros, a better perform-
ance can be achieved by copying themember as amacro object to aNatural library, compiling
it, and then submitting it.

The following figure illustrates the use of inline macros:

Note: If the macro facility is disabled (for example with the MACRO OFF session command),
the function is executed directly on the source.

Example: Inline Macros in a Natural Program

Below is an example of a Natural programwhich contains an INCLUDE-MACRO statement. The pro-
gram reads specified records from the file AUTOMOBILES:

DEFINE DATA LOCAL
1 AUTOMOBILES-VIEW VIEW OF AUTOMOBILES

2 MAKE
2 MODEL
2 COLOR

1 #VALUE(A20)
END-DEFINE
*
INPUT #VALUE (AD=MIT'_')
§ INCLUDE-MACRO 'EXF1' 'AUTOMOBILES' 'MAKE' 'MODEL' 'COLOR'
END

Below is the macro object EXF1 called by the INCLUDE-MACRO statement:

33Programmer's Guide

Macro Facility

§ DEFINE DATA
§ LOCAL USING EXFL
§ LOCAL
§ 1 #I(N3)
§ END-DEFINE
§ *
§ DEFINE WINDOW WIND1 SIZE 13 * 60
§ BASE 10/10
§ CONTROL SCREEN
*
§ SET WINDOW 'WIND1'
§ INPUT(AD=MIT'_') ' DISPLAY RECORD IN A FILE'
§ / ' FILE NAME : ' #FILE-NAME 0007 JWO 94-12-14 18:02
§ / ' KEY FIELD : ' #KEY
§ / ' FIELD : ' #FIELD(1) 2 0006 JWO 94-02-18 11:02
§ / ' : ' #FIELD(2)
§ / ' : ' #FIELD(3)
§ / ' : ' #FIELD(4)
§ / ' : ' #FIELD(5)
§ SET WINDOW OFF
READ(1) §#FILE-NAME BY §#KEY STARTING FROM #VALUE
INPUT ' §#KEY : ' 20T ' ' §#KEY (AD=OI)
§ FOR #I = 1 TO 5
§ IF #FIELD(#I) = ' ' ESCAPE BOTTOM END-IF
/ ' §#FIELD(#I) : ' 20T ' ' §#FIELD(#I) (AD=OD)

§ END-FOR
END-READ

If you issue the RUN command from your Natural edit session, you are prompted for the variable
VALUEwhich corresponds to the starting value of the records to be read. If you enter the required
value (for example, FERRARI), you are prompted for the fields MAKE, MODEL and COLOR. Type in the
required values and press ENTER. The output of the program is written to the user workpool under
the name ##INLINE.

DEFINE DATA LOCAL /* L0060
1 AUTOMOBILES-VIEW VIEW OF AUTOMOBILES /* L0070

2 MAKE /* L0080
2 MODEL /* L0090
2 COLOR /* L0100

1 #VALUE(A20) /* L0110
END-DEFINE /* L0120
INPUT #VALUE (AD=MIT'_') /* L0150
READ(1) AUTOMOBILES-VIEW BY MAKE STARTING FROM #VALUE
INPUT ' MAKE : ' 20T ' ' MAKE (AD=OI)
/ ' MODEL : ' 20T ' ' MODEL (AD=MI)
/ ' COLOR : ' 20T ' ' COLOR (AD=MI)

END-READ
END /* L0170

Programmer's Guide34

Macro Facility

Example: Inline Macros in a PDS Member

The macro object used as an example for the substitution of variables in JCL lines described in the
subsectionMacroObjects could also be a PDSmember: the job performs a SYSMAIN COPY function,
with the source and destination values given as variables:

§ RESET #JOBNAME(A8)
§ RESET #FD(N3) #FL(A8) #FF(N3)
§ RESET #TD(N3) #TL(A8) #TF(N3)
§ COMPRESS *INIT-USER 'SM' INTO #JOBNAME LEAVING NO SPACE
§ INPUT 'ENTER PARAMETERS FOR LIBRARY COPY:'
§ / 'FROM: DBID:' #FD 'FNR:' #FF 'LIB:' #FL
§ / 'TO : DBID:' #TD 'FNR:' #TF 'LIB:' #TL
//§#JOBNAME JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
//COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
// PARM=('DBID=9,FNR=33,FNAT=(,15),FSIZE=19',
// 'EJ=OFF,IM=D,ID='';'',MAINPR=1,INTENS=1')
//STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
// DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
//DDCARD DD *
ADARUN DA=9,DE=3380,SVC=249
//CMPRINT DD SYSOUT=X
//CMPRT01 DD SYSOUT=X
//CMWKF01 DD DUMMY
//CMSYNIN DD *
LOGON SYSMAIN2
CMD C C * FM §#FL DBID §#FD FNR §#FF TO §#TL DBID §#TD FNR §#TF REP
FIN

If you issue the SUBMIT command from your PDS edit session, the macro processing statements
are executed and you are prompted for source and destination values in the following window:

ENTER PARAMETERS FOR LIBRARY COPY:
FROM: DBID: FNR: LIB:
TO : DBID: FNR: LIB:

Assuming you enter 1 in the FROM: DBID and FNR fields, enter 2 in the TO: DBID and FNR fields,
and enter MYLIB in both LIB fields, the JCL lines are generated and the job is submitted to the op-
erating system. You can access and maintain the generated JCL in the user workpool under the
name ##SUBMIT:

35Programmer's Guide

Macro Facility

//MBESM JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
//COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
// PARM=('DBID=9,FNR=33,FNAT=(,15),FSIZE=19',
// 'EJ=OFF,IM=D,ID='';'',MAINPR=1,INTENS=1')
//STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
// DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
//DDCARD DD *
ADARUN DA=9,DE=3380,SVC=249
//CMPRINT DD SYSOUT=X
//CMPRT01 DD SYSOUT=X
//CMWKF01 DD DUMMY
//CMSYNIN DD *
LOGON SYSMAIN2
CMD C C * FM 1 DBID 1 FNR 1 TO 2 DBID 2 FNR 2 REP
FIN
/*

Splitting Macro Objects into Modules

When you are writing a macro designed to generate larger amounts of data (for example, large
batch jobs), certain technical limitations (for example, ESIZE restrictions) are encountered. To avoid
these problems, the macro object should be split into several modules to create entire macro ap-
plications.

Because a cataloged Natural object of type P (program) can also be used as a macro, the object can
also be addressed fromNatural ISPF with the commands COPY MAC, PLAY MAC or SUBMIT MAC. The
FETCH RETURN statement can then be used to branch from such a program to a real macro object,
that generates JCL, for example. This statement works for macro objects in the sameway as it does
for Natural programs: the text lines generated by several macro objects called in succession, are
simply accumulated in the User Workpool.

Example

The following program IG-----P can be executed with the command:

SUBMIT MAC PROB-DE1(IG-----P)

It executes a screen dialog and then addresses various other Natural objects. Some of these are
programs (IGDOCM-P, IGDNEW-P), which perform online actions, but others are macro objects
(IGJOBC-Z, IGIEBC-Z), that generate JCL lines.

Programmer's Guide36

Macro Facility

000010 DEFINE DATA
000020 GLOBAL USING IF-----G
000030 LOCAL USING XXCTIT-A
000040 LOCAL
------ -- 740 line(s) not displayed
007450 INPUT USING MAP 'IGINP-1M'
007460 SET CONTROL 'WB'
007470 DECIDE ON EVERY VALUE OF ##TYPE(#K)
007480 VALUE 'D'
007490 FETCH RETURN 'IGDOCM-P' /* Create documentation member
007500 VALUE 'H'
007510 FETCH RETURN 'IGDNEW-P' ##PARM(#K) /* Update the news member
007520 VALUE 'X' /* user defined
007530 FETCH RETURN ##PROGRAM(#K) ##PARM(#K)
007540 VALUE 'S', 'U' , 'B' , 'I' , 'Z'
007550 IF #JOB-CREATED EQ FALSE
007560 FETCH RETURN 'IGJOBC-Z' /* Job-card
007570 MOVE TRUE TO #JOB-CREATED
007580 END-IF
007590 VALUE 'I'
007600 FETCH RETURN 'IGIEBC-Z' ##PARM(#K) /* IEBCOPY

Saving Macro Output in the User Workpool

The output of objects that use the Natural ISPF macro facility is written to the user workpool at
execution time. This subsection summarizes which commands can be used for which object types
to write output to the workpool and under what name the output appears in the workpool:

Name of Output in WorkpoolCommandObject Type

macro-nameRUNMacro

macro-nameEXECUTE

##PLAYPLAY

##INLINESTOW/CAT/RUNNatural program with inline macros

##SUBMITSUBMITMacro and other objects with inline macros

Note: Workpool files are intermediate files only. If you wish to keep source that was gener-
ated in theworkpool, it is strongly recommended that you store it as another object elsewhere
in Natural ISPF. See the subsection Saving Output in the section Common Objects of theNat-
ural ISPF User's Guide).

37Programmer's Guide

Macro Facility

38

3 Incore Database

■ Overview ... 40
■ Defining Fields of an Incore File ... 41
■ Identifying an Incore File ... 42
■ Creating an Incore File ... 43
■ Manipulating Incore Files with Natural DML .. 47
■ Managing the Incore Database using the CALLNAT Interface ... 49
■ The Incore Database Container Data Set ... 67

39

Overview

Traditionally, data processing applications mainly handle fields and files. With the technological
advances in the field of data processing, however, the need for manipulating more complex data
structures is arising on a large scale. Applications must be able to support the integration of texts,
tables, images, graphics, etc.

The Natural ISPF Incore Database facility enables the Natural programmer to maintain complex
data structures in the user memory, and to perform complex actions on these structures. Using
the Incore Database, you can handle texts, reports, files and tables using the Natural language.

Advantages of Incore Files

Using incore files in application development has several advantages:

■ You can integrate Software AG Editor functions in Natural programs, enabling flexible manip-
ulation of your incore files;

■ An incore file is a temporary workfile of unlimited space running in memory;
■ You can have your personal environment to test and prototype your applications away from
your site's database administration activities. After prototyping, no further source changes are
required to access a real database;

■ If you wish to keep the contents of an incore file permanently, you can write them to a container
file. You can retrieve the incore file later, thus avoiding the need to regenerate the data from
your programs.

Functions of the Incore Database Facility

The Incore Database facility allows you to perform the following:

■ Define an incore file structure using Natural DDMs;
■ Dynamically create and delete incore files;
■ Manipulate the data in an incore file using the Natural DML or the WRITE reportn statement;
■ Invoke the INCORE processor (with CALLNAT interface) to perform operations on an incore file as
a whole, for example:
■ BROWSE an incore file (for example, one which contains a report)
■ EDIT an incore file (for example, one which contains text)
■ STORE incore files as a whole into a container file and retrieve them later

Incore database files can be handled like Adabas files with some restrictions on field types, see
the subsectionDefining Fields of an Incore File. Incore files are not identified by a file number but
by an identifier, this allows multiple copies of a file created with the same DDM to be in the

Programmer's Guide40

Incore Database

database. Incore files are temporary files which cannot be shared by users, each file belongs to
only one user. The following figure illustrates this concept:

Incore files are allocated dynamically and stored in memory and, if required, swapped to disk (in
fact, the files are stored in the Editor Buffer Pool). Incore files provide “unlimited memory” to a
user. The Incore Database can be used in an online environment as well as in Batch. If incore files
are to be kept permanently, they can be stored in the CONTAINER (usually an Adabas file) for later
retrieval.

Note: The theoreticalmaximum for incore files per user is 50. For this reason it is recommen-
ded to delete unused incore files, especiallywhen the errormessageNAT6896 (Session does
not exist) occurs.

Defining Fields of an Incore File

You define the fields of an incore file by defining a Natural DDM. This can be done with the Nat-
ural utility SYSDDM or with Software AG's data dictionary Predict. In Predict, an incore database
is defined exactly as an Adabas database. The DDM is recognized as an incore file by using a
special DBID (see the the Natural ISPF Installation documentation or ask your administrator). The
file number (FNR) must be a value lower than 191.

Some Information about Fields

■ Incore DDMs can include fields of type: Alphanumeric, Numeric, Binary and Packed. Fields
can be defined asMU, and can be defined as descriptors. The following types are not supported:
Sub, Super, Phonetic and Hyperdescriptors.

■ Periodic groups are now supported, but internally handled as a series of multiple value fields
and therefore may not themselves contain multiple value fields.

■ In addition to these fields, you can define a control pseudo-field (that is, no real database field):

41Programmer's Guide

Incore Database

RN RECORD-NUMBER (N7)

This field is used to access a physical record number within an incore file.
■ The number of fields of an incore file (including multiple occurrences) is limited to 66 (for ex-
ceptions to this limitation, see below).

Some Information about Record Size

■ The record size of an incore file manipulated using Natural DML or using the CALLNAT INCORE
interface (not with CONTAINER actions) is limited to 4000 - n bytes, where n is the number of fields
within the file.

■ If an incore file is to be stored in / retrieved from the Natural ISPF Container File, its record size
is limited to 3896 - n bytes.

■ However, you can define and use an incore file with more than 66 fields, if the record size of
the file does not require themaximum sizes mentioned above. To be precise, for each additional
field over 66, the maximum record size must be decreased by 28 bytes.

■ If a viewdefinition contains the pseudofield RECORD-NUMBER, this field can be ignoredwith respect
to the above limitations of record sizes and number of fields.

Identifying an Incore File

Each incore file has an identifier, Format A8. This identifier must be supplied (but can be supplied
implicitly) with everyNatural statement and incore processor call that refers to the incore file. The
identifier notation is:

IDENTIFIER =const/var

If the identifier is omitted, the default is set implicitly by prefix L plus the three-digit FNR. For
example, if the incore file to be referenced has file number 12, the default identifier is L012.

Example

The following Natural DML lines read an incore file with identifier PER01 and display fields NAME,
AGE, CITY:

Programmer's Guide42

Incore Database

....
0080 READ INCORE-PERSONNEL IDENTIFIER = 'PER01'
0090 DISPLAY NAME AGE CITY
....

The following Natural statements browse an incore file with identifier PER02 using an ISPF-like
user interface:

...
0120 MOVE 'BROWSE' TO ACTION
0130 MOVE 'PER02' TO FILE-IDENTIFIER
0140 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
0150 IF ERROR-CODE > 0
....

Creating an Incore File

After an incore DDM has been defined, incore files can be created in several ways:

■ Implicitly with the first store statement.
■ Explicitly using a CALLNAT interface statement. Using this method, file-internal parameters can
be controlled and null files can be created, since no initial STORE is required. This interface is
described in more detail in a later subsection.

■ By WRITE/DISPLAY report statements.With thismechanism, reports can be stored andmanipulated
in the incore database.

Creating an Incore File Implicitly

An incore file can be created implicitly with the first STORE statement. The actual record format is
then set by the fields that are specified with the STORE statement.

If the file contains multiple value fields or periodic groups, the first STORE statement must specify
all occurrences that are to be used with this file. Subsequent STORE statements can specify selected
occurrences as long as they do not specify an occurrence greater than the highest occurrence from
the first STORE statement.

43Programmer's Guide

Incore Database

Example

The Natural DML lines

....
0080 STORE INCORE-PERSONNEL IDENTIFIER = 'PER01'
0090 WITH NAME = 'SMITH' AGE = 20 CITY = 'NY'
....

create a new incore file with identifier PER01 and fields NAME, AGE, CITY. One record is stored in
the file, as specified by the field values.

When creating an incore file implicitly, no additional parameters for creating the file can be defined,
the default values will be taken by incore database. If these values are not correct for your type of
application or you want to create an empty incore file, you have to create an incore file explicitly.

Creating an Incore File Explicitly

You can create an incore File explicitly using the CALLNAT statement ACTION = 'CREATE'.

The additional parameters are:

MeaningParameter

The identifier to be assignedFILE-IDENTIFIER

To take the field definitions and field headers from a View defined to Predict. If this
field is omitted, the file layout is taken from the first STORE statement.

VIEW

Possible values are: YES, NO (default).IDB-LOG

If IDB-LOG = 'YES'when creating the Incore-File, it is possible to use END
TRANSACTION/BACKOUT TRANSACTION (ET/BT) logic. In this case, a log of last changes
is kept. A BACKOUT TRANSACTION statement reverses all the incore modifications
up to the last END TRANSACTION.

If IDB-LOG = 'NO', END/BACKOUT TRANSACTION is ignored (no error produced).
If you work without logging, overall performance is better.

Possible values are: YES (default), NO.INDEX

The Incore Database can perform FIND operations with or without using an index.
Indices aremore efficientwhen large amounts of records are involved, but have fixed
overhead. When working without indices, the *NUMBER system variable is not
available. When performance is important and the file is relatively small, it is
recommended that you work without indices. Even with the default option
INDEX=YES, there are some restrictions regarding support of the system variable
*NUMBER:

■ With FIND SORTED, *NUMBER is not available and is set to 9999999.

Programmer's Guide44

Incore Database

MeaningParameter

■ This also applies to complex FIND criteria (FIND ... AND ..., FIND ... OR ...), especially
if more than one descriptor is referred to.

■ This also applies to FIND statements which use the comparison operators LT, GT
or NE.

Possible values are:ISN-TYPE

STANDARD (default), REUSE, RENUM. The values have the following meaning:

STANDARD (Default). An unchanged number is supplied to each new record in an
ascending order (same as Adabas).

REUSE. Same as STANDARD, but the ISNs of deleted records are reused.

RENUM. The ISN is the physical record number. This means that it can change during
the record's life. This mode of work is more efficient, and if there is no advantage to
be gained from using the *ISN system variable, RENUM is recommended.

The ISN can be referred from Natural using the *ISN system variable. The meaning
of the ISN depends on the ISN-TYPE of the file.

You can also assign a standard ISN to a record. This is a fixed number which does
not change throughout the record's life (but note the exception which applies to
ISN-TYPE='RENUM', described above.

Possible values are: YES, NO (default). Wildcard selection can be supported in search
criteria:

WILD-CARD-SEARCH

* (asterisk). Denotes any string of characters.

_ (underscore). Placeholder for any character.

To enable a wildcard search, WILD-CARD-SEARCH = 'YES'must be specified when
creating a new incore file. By default, wildcards are not enabled (WILD-CARD-SEARCH
= 'NO').

Example

The following programdisplays the NAME, AGE, and CITY data for all personnel whose names begin
with S and belong to any department that consists of 5 characters and begins with DEV:

0270 FIND INCORE-PERSONNEL WITH NAME = 'S*'
0280 AND DEPARTMENT ='DEV__'
0290 DISPLAY NAME AGE CITY
0300 END-FIND

The records of an incore file are ordered in a physical sequence. Each record therefore has a
physical record number. The record number of a record increases by 1 when a record is inserted
before it, or decreases by 1 if a record before it is deleted. In addition to using the ISN, this physical

45Programmer's Guide

Incore Database

record number can be referred to directly using the DDM pseudo-field RECORD-NUMBER (Adabas
short name RN). The sequence of records may be relevant in cases in which the order of records is
significant, for example, TEXT lines.

The following table shows the effect of the ISN-TYPE parameter on ISN assignment as well as the
usage of *ISN and RECORD-NUMBER in various situations:

ISN assignment / availabilityUsage of RECORD-NUMBERValue of ISN-TYPE
parameter specified
for CREATE

Statement

ISN is automatically generated in
ascending order. If this is not intended,

Physical record number
can be set in the RN field: if

'STANDARD'
(default)

STORE

use the NUMBER option of the STORE
statement to set the ISN explicitly.

set to nn, the record is
inserted and the added
record has an RN of nn. If First unused ISN is allocated. If this is not

intended, use the NUMBER option of the
STORE statement to set the ISN explicitly.

'REUSE'
RN is zero or not specified,
the record is appended to
the end of the file.

The record is added either at the end of
the file or at the position specified in the

'RENUM'

RNfield; in both cases the physical number
is the ISN.

ISN is returned in the *ISN system
variable.

Record number can be
returned in the RN
pseudo-field.

READ
PHYSICAL

ISN is returned in the *ISN system
variable.

RN not available.READ BY ISN

ISN is returned in the *ISN system
variable.

The RN pseudo-field is
filled only if the descriptor

'STANDARD' or
'REUSE'

READ
LOGICAL/FIND

field referred to in the ISN not available.'RENUM'
search criteria is also RN;
otherwise it contains zero.

ISN can be used in criteria of GET
statement.

RN not available.'STANDARD' or
'REUSE'

GET

ISN can be used in criteria of GET
statement.

Record number can be
returned in the RN
pseudo-field.

'RENUM'

Programmer's Guide46

Incore Database

Creating an Incore File with a WRITE/DISPLAY Statement

You can direct output to an incore file using the WRITE or DISPLAY statement. The file is then created
dynamically.

Example

0010 DEFINE PRINTER(3) OUTPUT 'INCORE'
0020 FORMAT(3) LS=70
0030 READ(100) PERSONNEL
0040 DISPLAY(3) NAME AGE SEX
0050 END

The incore file thus created is assigned the identifier REPORTnn, where nn is the report number (in
the above example, REPORT03). The incore file layout will consist of one field, Type Axx, where xx
is the report line size (in the above example, A70). TheAdabas name of the field is A1. The program
IDB-REPO in the example library shows how to read an incore file created by a WRITE / DISPLAY
statement.

New reports written to INCORE create new incore files. If a new report is written to an incore file
with the same identifier, the 'old' file is overwritten. Once an incore file is created using the DISPLAY
or WRITE statement, it can be manipulated as described in the subsectionManipulating Incore Files.

Manipulating Incore Files with Natural DML

Retrieving Incore File Records

Records can be retrieved using any of the Natural statements READ, FIND, GET and HISTOGRAM.

Example

The following lines display the contents of the incore file identified by DOC:

0140 READ TEXT IDENTIFIER = 'DOC'
0150 DISPLAY LINE(AL=70)
0160 END-READ

The following lines display all records as specified by the fields from the incore file identified by
the default value (Lxxx, where xxx is the DDM file number).

47Programmer's Guide

Incore Database

0270 FIND INCORE-PERSONNEL WITH NAME = 'SMITH'
0280 AND AGE > 27
0290 DISPLAY AGE CITY
0300 END-FIND

Note: READ PHYSICAL, READ BY ISN, READ LOGICAL, FIND SORTED, GET *ISN are all supported.
The system variables *NUMBER, *ISN are supported with some restriction in some modes of
operation. See the explanation of the ISN-TYPE and INDEX parameters in the subsection
Creating an Incore File Explicitly. If the incore file does not exist, the processing loop returns
no records and terminates immediately.

Restrictions

■ Binary fields may only be used as secondary search criteria, that is, following AND in a FIND, and
may not be used at all for logical reads/histograms.

■ In a series of nested FIND or READ LOGICAL processing loops, only 2 may refer to the same file
identifier.

Adding Records to an Incore File

The stored record is normally added at the end of existing records. However, you can control the
physical sequence of the record in a single operation using the pseudo-field RECORD-NUMBER.

Example

The following program writes ten records with the text "Sample text line no: n" to an incore file,
and then inserts the text line this is Line Number 5 to Line 5.

0010 DEFINE DATA LOCAL
0020 1 TEXT VIEW OF ISP-IDB-TEXT
0030 2 LINE
0040 2 RECORD-NUMBER
0050 1 I(P3)
0060 END-DEFINE
0070 FOR I = 1 TO 10
0080 COMPRESS 'Sample text line no:'I INTO TEXT.LINE
0090 STORE TEXT
0100 END-FOR
0110 MOVE 'this is Line Number 5' TO TEXT.LINE
0120 MOVE 5 to TEXT.RECORD-NUMBER
0130 STORE TEXT

Note: The view TEXT (a file of lines) is a very useful way of maintaining texts in an incore
file. The DDM ISP-IDB-TEXT consists of one field: LINE (A80). This DDM is supplied with
the Incore Database facility of Natural ISPF.

Programmer's Guide48

Incore Database

Modifying Incore File Records

Records in an incore file can be modified using the Natural statements UPDATE, DELETE.

Example

This little program updates an incore file by adding 1 to the value of the AGE field of a specified
record.

0270 FIND(1) INCORE-PERSONNEL WITH NAME = 'SMITH'
0280 ADD 1 TO AGE
0290 UPDATE
0300 END-FIND

This program deletes all lines containing the string $TEMP$ from the incore file identified by DOC1:

0270 READ TEXT IDENTIFIER = 'DOC1'
0280 IF LINE = SCAN '$TEMP$'
0290 DELETE
0300 END-IF
0310 END-READ

Managing the Incore Database using the CALLNAT Interface

You can use the CALLNAT interface to create, delete, list, edit and browse incore files. Corresponding
subprograms are supplied with the Incore Database component of Natural ISPF.

The subprograms are loaded into libraries SYSISPDB and SYSTEM. If you intend to use Incore
Database functionalitywithin yourNatural application,make sure that one of the abovementioned
libraries is defined as a STEPLIB for your application, or copy all modules for SYSISPDB into one
of your STEPLIBs. In addition, you must define library SYSLIBS as steplib for your application.

The parameters for the INCORE subprogram (IDBI--NN) are in a local-data-area: IDBI---L, which
contains the following three variables:

MeaningParameter

The name of the call subprogram.INCORE

The first parameter for the subprogram contains control fields for internal use.INCORE-CTL

The second parameter contains all fields described in this section.INCORE-DATA

The input parameter must be assigned before the CALLNAT is issued. The result will be in the data-
area fields after the CALLNAT execution. Available functions for CALLNAT statements to the Incore
Database are:

49Programmer's Guide

Incore Database

MeaningParameter

Pass control to the user and allow him to edit incore file contents.EDIT

Pass control to the user and display incore file contents.BROWSE

Issue an Editor command operating on an incore file.COMMAND

Delete an incore file from the Incore Database.DELETE

Create an incore file explicitly.CREATE

List existing incore files.(blank)

Example

These program lines specify the DELETE function and the incore file identifier EX1 before the CALLNAT
is issued:

....
0630 MOVE 'DELETE' TO ACTION
0640 MOVE 'EX1' TO FILE-IDENTIFIER
0650 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
0660 IF ERROR-CODE > 0
....

Deleting an Incore File

You can delete an incore file using a CALLNAT statement with ACTION = 'DELETE'with
FILE-IDENTIFIER identifying the incore file to be deleted.

Example

The following lines delete an incore file identified by CURRENT.

0810 ASSIGN ACTION = 'DELETE'
0820 ASSIGN FILE-IDENTIFIER = 'CURRENT'
0830 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
....

Listing Existing Incore Files

You can list all existing incore files using a CALLNAT statement within a REPEAT loop using ACTION
= ' '. Search criteria for the parameter FILE-IDENTIFIER is optional. The FILE-IDENTIFIER and
NUMBER-OF-RECORDS are retrieved by the subprogram.

END-OF-DATA contains Y after the last call that returns real data.

Programmer's Guide50

Incore Database

Example

The following program displays all incore files whose identifiers begin with R:

0900 RESET INCORE-CTL INCORE-DATA
0910 MOVE 'R*' TO INCORE-DATA.FILE-IDENTIFIER
0920 CALLNAT INCORE INCORE-CTL INCORE-DATA
0930 REPEAT UNTIL INCORE-CTL.END-OF-DATA = 'Y'
0940 DISPLAY FILE-IDENTIFIER NUMBER-OF-RECORDS
0950 CALLNAT INCORE INCORE-CTL INCORE-DATA
0960 END-REPEAT

Editing/Browsing an Incore File

The display and modification of an incore file on a terminal screen is not as simple as in the case
of a record field manipulation. Sometimes, the data will not fit on a single screen page, so that
scrolling capabilities are a requirement.

Additionally, editing requires complex functions such as insert characters, delete characters, order
text, find/replace string. The incore facility provides such editing capabilitieswith a single statement.

Using ACTION='EDIT' or ACTION='BROWSE' on the CALLNAT statement, the incore file is presented
using the Software AG Editor. The incore processor does all the terminal input output for you.
Once the user has finished modifying or viewing the file, control is returned to your Natural
program.

Formatted files that contain several fields can also be edited or browsed. In this case, the fields are
delimited with a blank. Physical tabulation is available in edit mode. When in edit mode, only
fields of the types Alpha and Numeric are supported (Packed and Binary are not supported). If
the file contains binary or packed fields, actions EDIT and BROWSE are handled identically.

Example 1

The following lines start an edit session with the incore file identified by MYDOC:

....
0510 ASSIGN ACTION = 'EDIT'
0520 ASSIGN FILE-IDENTIFIER='MYDOC'
0530 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
....

Incore 1 (data prefixed with 4-digit line number):

51Programmer's Guide

Incore Database

EDIT:-MYDOC--
COMMAND==>
**** ******************************* top of data ****************************
0001 This is the first line of text
0002
0003 It shows an example of an edit session
**** **

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-
Help Quit Rfind Rchan Up Down Swap Right Left Curso

Example 2

The following lines create an incore file dynamically by writing output from the PERSONNEL file to
it. The first 100 records from the PERSONNEL file are written to the incore file, which is assigned the
default identifier of REPORT03.

....
0010 DEFINE PRINTER(3) OUTPUT 'INCORE'
0020 FORMAT(3) LS=70
0030 READ(100) PERSONNEL
0040 DISPLAY(3) NAME CITY SEX
....

The following lines browse the newly created incore file REPORT03 using the CALLNAT statement.

....
0840 ASSIGN ACTION = 'BROWSE'
0850 ASSIGN FILE-IDENTIFIER = 'REPORT03'
0860 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
....

Incore 2 (no prefixes displayed):

Programmer's Guide52

Incore Database

BROWSE:-REPORT03-- Row 1 of 149
COMMAND==>
1Page 1 93-06-21 09:56:44

NAME CITY S
E
X

-------------------- -------------------- -

GUENTER JOIGNY F
BRAUN ST-ETIENNE M
CAOUDAL LE BLANC MESNIL M
VERDIE MILLAU M
GUERIN BOULOGNE BILLANCOURT F
VAUZELLE MAMERS M
CHAPUIS IVRY SUR SEINE M
MONTASSIER RENNES M
JOUSSELIN PERPIGNAN M
BAILLET LYS LEZ LANNOY M
MARX PARIS M
D'AGOSTINO FONTENAY SOUS BOIS M
LEROUGE ARGENTEUIL M

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Rfind Rchan Up Down Swap Right Left Curso

Additional Parameters when Calling the Editor

When starting a sessionwith the Editor using ACTION='EDIT' or ACTION='BROWSE', some additional
parameters can be specified to set up the Editor environment:

MODIFIED (A3) = ['YES']
['NO']

This value is returned to the caller when ACTION='EDIT' or ACTION='COMMAND'.

YESmeans the text has been modified in an edit session.

PREFIXES (A6) = ['NUMS']
['CMD']
['NONE']

Default: NUMS for ACTION='EDIT'; NONE for ACTION='BROWSE'.

53Programmer's Guide

Incore Database

MeaningParameter

Data is prefixed with a 4-digit line number. For an example, see figure with Example 1.NUMS

Data is prefixed with 2 blanks. For an example, see figure on next page.CMD

No prefixes are displayed. For an example, see figure with Example 2.NONE

Incore 3 (data prefixed with 2 blanks):

BROWSE:-REPORT01-- Row 1 of 149
COMMAND==>

1Page 1 93-06-21 09:36:59

NAME CITY S
E
X

-------------------- -------------------- -

GUENTER JOIGNY F
BRAUN ST-ETIENNE M
CAOUDAL LE BLANC MESNIL M
VERDIE MILLAU M
GUERIN BOULOGNE BILLANCOURT F
VAUZELLE MAMERS M
CHAPUIS IVRY SUR SEINE M
MONTASSIER RENNES M
JOUSSELIN PERPIGNAN M
BAILLET LYS LEZ LANNOY M
MARX PARIS M
D'AGOSTINO FONTENAY SOUS BOIS M
LEROUGE ARGENTEUIL M

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Rfind Rchan Up Down Swap Right Left Curso

SHOW-COMMAND-LINE (A3) = ['YES']
['NO']
['USR']

Default: YES

MeaningParameter

Command line is displayed (COMMAND==>). See figure above.YES

Command line is not displayed. For an example, see figure below.NO

Command line is not displayed inside the window, but can be entered into *COM variable in the
map displayed by the caller. Commands entered into *COM are executed by IDB routine.

USR

Incore 4 (command line not displayed):

Programmer's Guide54

Incore Database

BROWSE:-MYDOC-- Row 1 of 12

This is a sample text line

TITLE (A50) = ['text']
['NO']

MeaningParameter

Text to be displayed in the top-left corner of the edit screen. For an example, see figure below.
Default title is composed of the contents of the fields ACTION and FILE-IDENTIFIER (for example:
EDIT-MYDOC); see figure Incore 1 and figure Incore 4.

text

No default text is generated. Messages only are put into the message line. The position of the
message line remains unchanged and is controlled by the user program.

NO

Incore 5 (text displayed in top-left corner of screen):

This is a program-supplied title---

COMMAND==>

0001 This is a sample text line

**** ***************************** bottom of data *****************************

55Programmer's Guide

Incore Database

MESSAGE (A50) = ['text']

MeaningParameter

Text to be displayed in the top-right corner of the edit screen, the first time the edit screen is
displayed. For an example, see figure below.

text

Incore 6 (text displayed in top-right corner of screen).

This is a program supplied title-------------Please modify text or press PF3!!
COMMAND==>
0001 This is a sample text line
**** ***************************** bottom of data *****************************

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Rfind Rchan Up Down Swap Right Left Curso

COMMAND (A50) = ['command']

A valid Editor command, to be executed by the Editor before the edit screen is displayed.

Example

This program starts an edit session with incore file TXT1. The Editor command prompt is not
shown, the document name is displayed in the top left corner. When the edit screen is displayed,
the cursor will be on the first occurrence of string SUBJECT:

Programmer's Guide56

Incore Database

....
0780 ASSIGN ACTION = 'EDIT'
0790 ASSIGN FILE-IDENTIFIER = 'TXT1
0800 ASSIGN SHOW-COMMAND-LINE = 'NO'
0810 ASSIGN TITLE =#DOCUMENT-NAME
0820 ASSIGN COMMAND = 'FIND SUBJECT'
0830 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
....

ALARM (A3) = ['YES']
['NO']

Default: NO

MeaningParameter

The Editor sounds an audible signal the first time the edit screen is displayed (useful together
with MESSAGE).

YES

No signal is sounded.NO

SCROLL (A4) = ['CSR']
['PAGE']
['HALF']

Default: CSR

MeaningParameter

Scroll by cursor position.CSR

Scroll by page.PAGE

Scroll by half a page.HALF

Other values such as WORD are also allowed, for a full list of valid values, see the Software AG Ed-
itor documentation.

HORIZONTAL-SCROLL (A3) = ['YES']
['NO']

Default: NO

MeaningParameter

Allow horizontal scroll (left/right).YES

Disallow horizontal scroll. The message cols nnn mmm is not displayed, either.NO

57Programmer's Guide

Incore Database

HEADER (A80) = ['text']
['YES']

MeaningParameter

Text to be displayed above the first line of the data. For an example, see figure Incore 1 below.text

If CALLNAT ACTION = 'CREATE'was used with specification of view fields, YES generates the
text automatically from the header defined in Predict.

YES

If HEADER is empty, the header line will not be displayed. Incore 1 (text displayed above first line
of data):

Top of the Pops - All-time Greats--
COMMAND==>

Title Group No.
**** ********************** top of data **********************
0001 I Can't Dance Genesis 034
0002 Steel Wheels Rolling Stones 077
0003 Private Dancer Tina Turner 089
0004 Goodbye Cream Cream 118
0005 Abbey Road Beatles 234
0006 Joshua Tree U2 255
0007 Thriller Michael Jackson 276
0008 Born in the USA Bruce Springsteen 301
0009 So Peter Gabriel 345
0010 Nightingales and Bombers Manfr. Mann's Earthb.412
**** ******************** bottom of data *********************

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Rfind Rchan Up Down Swap Right Left Curso

START-HIGHLIGHT-CHAR (A1) = ['char']
END-HIGHLIGHT-CHAR (A1) = ['char']

Special characters that start and end highlighting of text in a browse screen. Highlighting must
be started and ended on one line. The START/END characters themselves are displayed as blanks.
An example of highlighted text is given in the figure below.

Incore 2 (highlighted text):

Programmer's Guide58

Incore Database

BROWSE:-MYDOC--- Row 1 of 2
COMMAND==>
This word is highlighted
This word is highlighted

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit Rfind Rchan Up Down Swap Right Left Curso

Note that to achieve the highlighting in the above example, each occurrence of "word" must be
enclosed in the START/END characters.

Editing in Windowing Mode

Instead of editing in full screen mode, you can display the edit screen in a window and edit in the
window.

Example

The DEFINE WINDOW and SET WINDOW statements define thewindow inwhich the Editor is displayed:

DEFINE WINDOW WIND1 SIZE 15 * 60 '
BASE 3 / 10

SET WINDOW 'WIND1'
ASSIGN ACTION = 'EDIT'
....

Incore 3

59Programmer's Guide

Incore Database

Enter Incore file Id: DOC1

+---+
! EDIT:-DOC1--- !
! COMMAND==> !
! **** ************************ top of data *********************** !
! 0001 This is a sample text line !
! **** ********************** bottom of data ********************** !
! !
! !
! !
! !
! !
! !
! Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10- !
! HELP QUIT RFIND RCHAN UP DOWN SWAP RIGHT !
+---+

Anumber ofmore detailed sample programs are delivered on theNatural ISPF installationmedium.
For a list of their names, issue the command:

HELP EXAMPLE

and scroll down to the heading INCORE DATABASE Examples.

PF Key Handling

The Editor is sensitive to the PF key status, declared in the program. Key position, key display
form, key sensitivity and key name can be declared from the programusing the SET KEY statement.
Keys are translated to Editor commands, using the DATA clause in the SET KEY command.

Example

SET KEY PF7=DATA 'UP 4' NAMED 'Up'
SET KEY PF8=DATA 'DOWN 4' NAMED 'Down'

Programmer's Guide60

Incore Database

PF Key Display

The display of the PF key lines when editing/browsing is controlled by the field:

KEYS-TYPE (A8) = {'OFF'}
{'ON'}
{'DEFAULT'}
{'SCREEN'}

Possible values are:

MeaningParameter

No control is given to the user by PF keysOFF

Control is given to the user by PF keys. Keys can be defined by the statement SET KEY = DATA
xx NAMED yy, where:

ON

xx is the Editor command to be executed when the PF key is pressed.

yy is the text to be displayed in the PF key lines.

The two bottom lines of the screen or window are reserved for display of defined keys.

Note: PF keys are evaluated by the incore processor and are reset when returning to the caller.
For this reason it is recommended that you define the PF keys every time before invoking the
incore processor with ACTION = 'EDIT' / ACTION = 'BROWSE'.

Keys are active, Natural ISPF default PF keys are active regardless of the user keys definitions.DEFAULT

Same as ON, but no lines are reserved for display of PF keys (to be used onlywith DEFINE WINDOW
CONTROL SCREEN clause).

SCREEN

If no key is defined, the Natural ISPF default keys are used.

Assigning Default PF Keys and Language-dependent Constants

A user exit IDB-USRN, distributed in the User Exit Library, can be used to set default PF keys and
some language-dependent constants. In order to use this exit you have to copy IDB-USRN to your
library and modify it according to your needs.

61Programmer's Guide

Incore Database

Escape Commands

After you have edited or browsed an incore file, the QUIT command returns control to the program.
However, it is possible to pass escape commands to the Editor. These are commands that, when
entered in the edit session, also return control to the program,which then processes the command.

The following parameters can be used on the CALLNAT:

ESCAPE-MAIN-COMMANDS (A120) = {'command1 command2 ...'}
{*}

Passes escape commands to the Editor. Multiple commands must be separated by a blank. The
asterisk (*) as value can be used to pass all commands which cannot be processed by the incore
processor to the caller.

RETURN- MAIN-COMMAND (A10) = 'token'

When control is returned to the program, the first token of the command is returned in this field.

RETURN-MAIN-COMMAND-PARM (A10) = 'text'

The rest of the command is returned in this field.

Example

The following program starts an edit sessionwith incore file TXT and passes the escape commands
CLEAR and ZIP to the Editor.

1120 ASSIGN ACTION ='EDIT'
1130 ASSIGN FILE-IDENTIFIER = 'TXT1'
1140 ASSIGN ESCAPE-MAIN-COMMANDS = 'CLEAR ZIP'
1150 CALLNAT INCORE USING INCORE-DATA INCORE-CTL
1160 DECIDE ON FIRST VALUE OF RETURN-MAIN-COMMAND
1170 VALUE ' ' IGNORE
1180 VALUE 'CLEAR' PERFORM DELETE-TEXT
1190 ESCAPE TOP /* BACK TOP PROCESS EDIT
.....

Following the same logic, escape line commands can also be used. The available parameters are:

ESCAPE-LINE-COMMANDS (A36) = 'command'

Passes the line command(s) to the Editor.

Programmer's Guide62

Incore Database

RETURN-LINE-COMMAND (A2) = 'command'

When an escape line command is entered in the edit session, the program receives the line command
in this field.

RETURN-LINE-DATA (A80) = 'data'

When an escape line command is entered in the edit session, the program receives the text in this
line in this field.

RETURN-LINE-NUMBER (N7) = 'number'

When an escape line command is entered in the edit session, the program receives the relative line
number in this field.

Example

1250 ASSIGN ACTION = 'EDIT'
1260 ASSIGN FILE-IDENTIFIER = 'TXT1' ,
1270 ASSIGN ESCAPE-LINE-COMMANDS = 'TL'
1280 CALLNAT INCORE USING INCORE-DATA INCORE-CTL
1290 DECIDE ON FIRST VALUE OF RETURN-LINE-COMMAND
1300 VALUE ' ' IGNORE
1310 VALUE 'TL
1320 CALLNAT 'TRANSLAT' RETURN-LINE-DATA
1330 FIND(1) TEXT IDENTIFIER = 'TXT1'
1340 WITH RECORD-NUMBER = RETURN-LINE-NUMBER
1350 MOVE RETURN-LINE-DATA TO LINE
1360 UPDATE
....
1450 END-FIND

Resetting the Change Flag

If the contents of an incore file has been saved (stored) in the database and the incore file is not
deleted, it could be necessary to mark the incore file as not being modified since the last update
of the database. This can be done by using the RESETMOD action.No further parameters are required.

63Programmer's Guide

Incore Database

Example

The following program lines specify the RESETMOD function:

....
0440 MOVE 'RESETMOD' TO ACTION
0450 MOVE 'EX1' TO FILE-IDENTIFIER
0460 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
0470 IF ERROR-CODE > 0
....

Editor Commands

All Editor commands are described in detail in the Software AG Editor documentation. The fol-
lowing commands are supported when editing incore files:

Main Commands

Display commands:

BNDS,COLS MASK
CAPS,HEX,NULLS,ADVANCE,ESCAPE,EMPTY,FIX,PROTECT
TABCHAR,TABS,LTAB,
EXCLUDE,INCLUDE,XSWAP
PROFILE,RESET

Position commands:

BOTTOM,TOP,DOWN,UP,LEFT,RIGHT,-H,-P,+H,+P
CURSOR,HOME
LABEL LOCATE,LX,POINT

Text commands:

CHANGE,FIND,RFIND,RCHANGE
DELETE,DX,DY,CX,CY
SHIFT
LC,UC
RENUMBER,UNREN
POWER,ORDER
CENTER,JLEFT,JRIGHT,JUSTIFY
WINDOW,CWINDOW,MWINDOW,DWINDOW

Programmer's Guide64

Incore Database

Line Commands:

Positioning:

A,B,O,T

Display:

X,F,L

Text handling:

I,D,R,C,M,W,N
),(,>,<
S,J,UC,LC
BNDS,COLS,MASK,TABS
TF,TC,LJ,RJ,TI,TE
CX,CY,DX,DY,MX,MY,CX-Y,DX-Y,MX-Y,CY-
X,DY-X,MY-X
WS,WM,WC,WM

Issuing Edit Commands using CALLNAT

You can issue an edit command to an incore file using ACTION = 'COMMAND' on the CALLNAT
statement to INCORE. With this mechanism program controlled editing can be implemented in an
easy way. If the command modified data, YES is returned in the MODIFIED field.

Example

The following lines issue the EDITOR CHANGE command to an incore file identified by REPORT03:

....
0840 ASSIGN ACTION = 'COMMAND',
0850 ASSIGN FILE-IDENTIFIER = 'REPORT03'
0860 ASSIGN COMMAND = 'Change ATKIN ADKIN all'
0870 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
....

65Programmer's Guide

Incore Database

Error Handling

If an error occurs during the execution of the CALLNAT statement, it is returned to the ERROR-CODE
and ERROR-TEXT fields.

CALLNAT Parameter Summary

The following matrix provides an overview of which parameters on the CALLNAT statement are
relevant to which actions on incore files:

I=Input
O=Output
R=Required

blankCOMMANDDELETEBROWSEEDITCREATEAction
Field

IRIRIRIRIRIRACTION

IOIRIRIRIRIRFILE-IDENTIFIER

OEND-OF-DATA

OOOOOOERROR-CODE

OOOOOOERROR-TEXT

ONUMBER-OF-RECORDS

IIPREFIXES

IISHOW-COMMAND-LINE

IITITLE

IIESCAPE-MAIN-COMMANDS

IIESCAPE-LINE-COMMANDS

IIHORIZONTAL-SCROLL

IIICOMMAND

IIHEADER

IIMESSAGE

IIALARM

ISTART-HIGHLIGHT-CHAR

IEND-HIGHLIGHT-CHAR

IISCROLL

IIKEYS-TYPE

OOMODIFIED

OORETURN-LINE-COMMAND

OORETURN-LINE-DATA

OORETURN-LINE-NUMBER

Programmer's Guide66

Incore Database

blankCOMMANDDELETEBROWSEEDITCREATEAction
Field

OORETURN-MAIN-COMMAND

OORETURN-MAIN-COMMAND-PARM

IIDB-LOG

IINDEX

IISN-TYPE

IVIEW

IWILD-CARD-SEARCH

The Incore Database Container Data Set

You can use a “container” data set in which you can store incore files for later retrieval. The con-
tainer data set itself can be an Adabas or VSAM file. The following figure illustrates the container
data set concept:

You can access this container using a CALLNAT statement in the same way as for INCORE, this sub-
program is called IDBC---N.

Local data containing the subprogramparameters are supplied in a local-data-area called IDBC---L.
The physical container data set is preset using the LFILE parameter (see theNatural ISPF Adminis-
tration Guide).

END TRANSACTION is not performed by these container accesses, and must be performed by the
user program.

Available functions for CALLNAT statements to the container data set are:

67Programmer's Guide

Incore Database

MeaningFunction

Store an incore file into the container data set.STORE

Retrieve an incore file from the container data set.RETRIEVE

Delete an incore file from the container data set.DELETE

Retrieve a directory of the container data set.(blank)

An incore file saved in a container data set is identified by means of three fields:

■ TYPE (A8)

■ GROUP (A48)

■ NAME (A32)

Example

The following lines store the incore file identified by PERS in the container data set. The file can
later be identified using the values of the TYPE, GROUP and NAME fields:

0510 ASSIGN ACTION = 'STORE'
0520 ASSIGN FILE-IDENTIFIER = 'PERS'
0530 ASSIGN TYPE = 'APP1'
0540 ASSIGN GROUP = 'PERSONS'
0550 ASSIGN NAME = 'REP001'
0560 CALLNAT CONTAINER USING CONTAINER-CTL CONTAINER-DATA

The following lines retrieve this incore file from the container data set, assigning the identifier
PERS1:

0610 ASSIGN ACTION = 'RETRIEVE'
0620 ASSIGN FILE-IDENTIFIER = 'PERS1'
0630 ASSIGN TYPE = 'APP1'
0640 ASSIGN GROUP = 'PERSONS'
0650 ASSIGN NAME = 'REP001'
0660 CALLNAT CONTAINER USING CONTAINER-CTL CONTAINER-DATA

Lists of files in the container data set can be generated in the same way as listing incore files.

Programmer's Guide68

Incore Database

Examples

The following program lists all container entries of type APP1 and group PERSONS:

0760 ASSIGN ACTION = ' '
0770 ASSIGN TYPE = 'APP1'
0780 ASSIGN GROUP = 'PERSONS'
0790 CALLNAT CONTAINER USING CONTAINER-CTL CONTAINER-DATA
0800 REPEAT UNTIL END-OF-DATA = 'Y'
0810 DISPLAY TYPE GROUP NAME
0820 CALLNAT CONTAINER USING CONTAINER-CTL CONTAINER-DATA
0830 END-REPEAT

The following deletes the incore file identified by the TYPE, GROUP and NAMEfields from the container
data set:

0930 ASSIGN ACTION = 'DELETE'
0940 ASSIGN TYPE = 'APP1'
0950 ASSIGN GROUP = 'PERSONS'
0960 ASSIGN NAME = 'REP001'
0970 CALLNAT CONTAINER USING CONTAINER-CTL CONTAINER-DATA

69Programmer's Guide

Incore Database

70

4 Open NSPF

■ Overview ... 72
■ Common Subjects of Open NSPF Routines .. 76
■ Defining a User Object ... 78
■ Defining a User Command .. 98

71

The OpenNSPF facility enables you tomodify and enhance Natural ISPF according to the specific
needs of your site. This is easily done by writing site-specific logic in user-exits, while keeping all
the advantages of the Natural ISPF environment such as split-screen, multi-session and command
logic.

Overview

Natural ISPF is an integrated product, that enables you to work with different external objects
(such as PDS, NATURAL, JOBS) in a unified environment.Hence,Natural ISPF functionality is provided
by means of objects (for example, PDS MEMBER) that are accessed by functions (for example, EDIT).
The unified environment is presented to the user by means of menus (such as the Administrator
Menu) and commands (such as TECH).

■ Customized Menus:
Natural ISPF menus are built from a screen layout and a command related to each option. In
Open NSPF, it is possible to define new menus, to alter existing menus and change the default
Main Menu. This option has existed in Natural ISPF since Version 1.1 and is documented in the
Natural ISPF Administration Guide. For example, you can add the option Predict to your Main
Menu.

■ Customized Commands:
ANatural ISPF command can be executed from any place in Natural ISPF and is not related to
any specific object. Open NSPF enables you to define new commands. These commands are
directed at user-written subprograms. You can also use this facility to define command synonyms
or to overwrite existing commands. For example, you can define MAIL as a new command that
checks whether there is mail waiting for you (in Con-nect or another site-specific office system).

■ Customized Objects and Functions:
A Natural ISPF object usually references external objects or data which can be read, modified
or edited (for example, a library member). Each object can be identified by several fields. For
example, the object PDS is identified by the fields DSNAME, MEMBER, VOLSER and NODE. A Natural
ISPF object can be related to one or several (new or existing) functions such as EDIT, BROWSE.
Each activation of a function for an object invokes a Natural ISPF panel, a full screen that can
be suspended and resumed according to Natural ISPF logic, until it is terminated by the user,
or by the logic of the function (for example, DELETE). For example, you can add new object
EMPLOYEE and relate it to functions LIST, DELETE and INFORMATION.

You can also add a new function and relate it to an existing object. Since Natural ISPF does not
know the new function, you have to maintain it in the object user exit and transfer control to an-
other user-defined object, which contains the logic to be executed (see also the subsection Object
Exits in the section User Exits in the Natural ISPF Administration Guide).

Programmer's Guide72

Open NSPF

Customizing Natural ISPF

Natural ISPF architecture can be summarized by listing the following modules:

■ Nucleus:
The nucleus is responsible for all the common logic, for example, the logic supported by the
following main modules:
■ Command Processor:
The Command Processor interprets commands typed in by the user.

■ Browser:
The Browser displays LIST/BROWSE/EDIT sessions on the screen.

■ Manager:
The Manager supports multiple sessions and split screen.

The nucleus is responsible for the screen I/O of the Editor, but not for the object-specific screens.
The nucleus is the main part of Natural ISPF. It is written mostly in Natural and executed from
SYSLIB.

■ Natural ISPF tables:
The Natural ISPF tables are stored in the Natural system file and contain definitions such as the
existing objects, their names and synonyms, the functions, the commands, menus, user profiles
etc. Natural ISPF is installed with predefined tables, stored in the System Profile Library
(SYSISPS1). Site-specific tables that can extend or overwrite the predefined tables are stored in
the User Profile Library (SYSISPFU).

■ Command Modules:
There is amodule for each command, implementing the command logic. The commandmodules
are written as Natural subprograms, called from the Natural ISPF nucleus, and operate from
SYSLIB.

■ Object Modules:
There is onemodule for each object, responsible for the logic specific to this object. For example,
the PDS module implements reading a member from a PDS library, writing it, deleting it, dis-
playing the PDS entry panel, displaying information screen etc. The object modules are written
as Natural subprograms, called from the Natural ISPF nucleus, and operate from SYSLIB.

This architecture can be illustrated as follows:

73Programmer's Guide

Open NSPF

Multi-Operations Management

One of the attractive features of Natural ISPF is its multi-session management. A user can work
in many sessions simultaneously. For example, he can be editing a PDS member while looking at
a JOB output. This is done using the Natural ISPF Multi-Operation Environment. It is important
to understand this mechanism in order to work properly with Open NSPF.

An operation in Natural ISPF is a series of actions within a given context, that can be interspersed
with other operations (from the user point of view, an operation can be suspended and resumed).
For example, an operation could be issuing a direct command to edit a PDS member, changing a
few lines, saving the member, and ending the session. Other examples of operations in Natural
ISPF are:

■ Performing a function for an object (for example, BROWSE JOB)
■ Activating a menu
■ Special nucleus operations (such as display of PF key assignments)

An operation in Natural ISPF is built of events, where each event is a piece of code that must be
executed as a whole (the operation cannot be suspended in the middle of an event). When an op-
eration starts, a special area called “operation data” is allocated, the data in this area is the only
data that stays “alive” between the events of the operation. This data is releasedwhen the operation
ends. This operation data is the only place where data involving the operation can 'live' outside
any event, and this is also the preferred communication area between events.

InOpenNSPF, operations are involvedwhen implementing customized objects.Note the following:

■ The operation starts when a direct command for a function is issued to this object (either by the
user or by an open module), or when a line command is issued from a list of this object type.

■ When an operation starts, the operation data is allocated, then a series of events for this object
is issued, each event is a CALLNAT to the object subprogram, where the operation data is passed
as a parameter.

Programmer's Guide74

Open NSPF

■ An operation ends when the command END is issued to it. This command can be issued by the
user or by an open-module.

Note: A command is not an operation, as only a single call is made to the command
module, and no operation data is needed. Displaying a menu is internally an operation,
but since it is handled by the nucleus, this is irrelevant to the Open NSPF programmer.

User Objects and User Commands

Defining newuser objects and newuser commands is done by adding an object code or a command
code to the Site Control Table. User objects can additionally be related to existing Natural ISPF
functions.

The Site Control Table resides in the User Profile Library and is usually called CONTROLU. It can be
accessed for update operationswith the command EDIT CNF CONTROLU, or from the CONTROLU (Edit
Site Control Table) option on the Configuration Menu.

Implementing the corresponding logic in Natural ISPF is done by writing a subprogram and
copying it to the Natural ISPF Execution Library (SYSLIB). Each new object and command has a
unique program, which is called byNatural ISPFwhenever the object is accessed or the command
is issued. The naming convention for the Open NSPF subprograms is as follows:

ISUxnn

where:

Fixed prefix for Open NSPF.ISU

O - If the program is for a user object.x

C - If the program is for a user command.

Two-letter code of the routine as defined in the Site Control Table.nn

Example:

The object EMPLOYEEwill use the code EM, which means a subprogram named ISUOEMmust handle
all logic for the object EMPLOYEE.

75Programmer's Guide

Open NSPF

Common Subjects of Open NSPF Routines

The following subjects are valid for all Open NSPF routines, that is, for routines implementing
newobjects or new commands. This subsection contains reference information and can be skipped
if you are reading this section for the first time to gain an idea of Open NSPF.

Natural ISPF Error Handling

For the mechanism of the error handling, see the description of the following fields:

TypeLengthField Name

Input(N3)INPUT-ERROR-CODE

If not equal to 0, Natural ISPF is in error-mode. Error mode usually means skipping further action
and displaying the error (acoustic alarm signal and message text in the appropriate part of the
HEADER field) to the user in the next input operation. Error mode is reset automatically after the
subsequent input operation.

TypeLengthField Name

Output(N3)OUTPUT-ERROR-CODE

If an error occurs in a user subprogram, this field must be set to a non-zero value. The current
function is aborted and the error is displayed on the next screen. Additional information about
the error must be supplied in the fields ERROR-NUMBER, ERROR-TEXT and ERROR-PARM.
OUTPUT-ERROR-CODE should not be set in the DISPLAY event.

TypeLengthField Name

Output(N4)ERROR-NUMBER

If ERROR-TEXT is blank, this field contains the number of the error to be taken from the ErrorMessage
Library. The Natural library if the number is in range 0001 - 6799, library SYSISPS1 if the number
is in range 6800 - 9999.

Error numbers 9000 - 9999 are not used byNatural ISPF and can be used for site-specificmessages.

TypeLengthField Name

Output(A75)ERROR-TEXT

Contains a text that will be displayed in the next input operation (not necessarily in error mode).

Programmer's Guide76

Open NSPF

TypeLengthField Name

Output(A75)ERROR-PARM

Contains parameters for the error text separated by a semi-colon (;). Parameters in the error-text
are noted as :1: . :2:. Parameter substitution is done by Natural ISPF.

Command Variable

A command variable is passed to every user subprogram. This variable contains the current re-
quested command, if it has not been processed by Natural ISPF yet. If the subprogram changes
this field, the commands in the field are pushed to the Natural ISPF command stack.

Data Usage in an Open NSPF Routine

Several data areas are passed to an Open NSPF routine as parameters:

Local data for Open NSPF routine. The data is kept between events and lives as long
as the current function is active. This can be used to save all data necessary to identify
the current object.

OPERATION-DATA

Shared by all Open NSPF routines, as well as by user exits, and can be used to
communicate between these programs. An example for using GLOBAL-DATA can be
found in the Example Library:

GLOBAL-DATA

Implements PREFIX command and stores
GLOBAL-DATA.

ISUCPR

Job user exit that evaluates GLOBAL-DATA.ISPJ---U

Additional shared data. For details on usage, see below.STATIC-DATA

Natural ISPF Static Data Usage

Open NSPF routines are subprograms which cannot use a Natural Global Data Area for data
shared in several programs. In case this type of data is needed, Natural ISPF offers a mechanism
to create and retrieve “static data” which is accessible by all Open NSPF routines via the Natural
ISPF data manager.

Natural ISPF can store and retrieve data items throughout the session. The items have a length of
253 bytes and are identified by two letters. They are passed to every Open NSPF routine in two
parameters:

77Programmer's Guide

Open NSPF

STATIC-DATA (A253)
STATIC-ID (A2)

By default, the data item identified by a blank is passed first, and the data item which was last
used is passed. You can modify STATIC-DATA. If in a call to the Open NSPF routine the STATIC-ID
is changed, Natural ISPF will call again with the same event and will pass the static data item that
was requested. This is possible for user objects and user commands.

A coding example in an Open NSPF subroutine:

DEFINE DATA PARAMETER
USING ISP-UO-A

PARAMETER
1 #STATIC-DATA(A253)
1 REDEFINE #STATIC-DATA /* user redefinition of STATIC-DATA

2 #MY-FIELD1 (A10)
2 #MY-FIELD2 (N05)
2 #MY-FIELD3 (A32)

1 #GLOBAL-DATA(A32)
1 #OPERATION-DATA(A253)
1 REDEFINE #OPERATION-DATA

.....

.....
END-DEFINE
*
IF #STATIC-ID NE 'PP' /* get static data with id=PP

MOVE 'PP' TO #STATIC-ID
ESCAPE ROUTINE /* return to get data

END-IF
IF #STATIC-DATA EQ ' ' /* empty just created

RESET #MY-FIELD1
#MY-FIELD2
#MY-FIELD3 /* set initial values

END-IF
..... /* now it can be used
.....

Defining a User Object

Open NSPF routines to implement new user objects are of type Natural subprogram with a pre-
defined parameter area to communicate with Natural ISPF:

Programmer's Guide78

Open NSPF

DEFINE DATA
PARAMETER USING ISP-UO-A /* Standard Open NSPF interface
PARAMETER
1 #STATIC-DATA (A253)
1 #GLOBAL-DATA (A32) /* Shared data for Open NSPF routine
1 #OPERATION-DATA (A253) /* Local data for Open NSPF routine
LOCAL
END-DEFINE

The parameter area ISP-UO-A can be found in the User Exit Library. The Open NSPF routine is
called fromNatural ISPF every time object-specific logic is to be executed, that is, when the object
is accessed by a related function.

The object-specific logic identified by the EVENT field in the parameter area is referred to as an
event (see the subsection Event Logic).

To add a new object to Natural ISPF, proceed as follows:

1. Allocate a two-letter code to the object (to determine the subprogramname). Object codes should
start with an alpha character, special characters and numbers are reserved for Software AG.

2. Prepare a Natural subprogram to handle the object and copy it to SYSLIB.

3. Add the object to the Site Control Table.

4. Relate the object to functions. It is recommended that you use existing Natural ISPF functions,
but you can also define new functions.

Once the object is defined to Natural ISPF, the object program can be invoked using the Natural
ISPF command

FF OO parameters

where:

is the function ID.FF

is the object ID (object abbreviation).OO

This results in a call to a program with the name ISUOnn, where nn stands for the two-character
code identifying the object.

Note: One of the related functions could also be the function ENTRY, which presents an Entry
Panel, a screen which allows field-oriented input of all parameters relevant for the object
(typically the components of OPERATION-DATA). The command ENTRY OO can then be inserted
in one of your site-specific menu definitions, thus making it available within your site-
specific menu structure (see the explanation for ENTRY in the sectionMenu Maintenance of
the Natural ISPF Administration Guide).

79Programmer's Guide

Open NSPF

Site Control Table: Adding a User Object

The Site Control Table can be found in the User Profile Library and is usually called CONTROLU. In
this table, you can define new objects, and you can relate objects to functions.

Edit macro MAC-CNFZ is available when editing the Site Control Table. If you wish to use this edit
macro, youmust use theNatural utility SYSMAIN to copy the following programs from the Example
Library (SYSISPE) to the User Profile Library (SYSISPFU):

MAC-CNF*
MACCNF*

Note: As an alternative, it would also be sufficient to define the library SYSISPE as a STEPLIB
for the library SYSISPFU.

■ To create a new CONTROLUmember, you can use the edit macro with the function command:

EDIT CNF CONTROLU MODEL=MAC-CNFZ

■ To modify an existing CONTROLUmember, use the command:

REGENERATE

in the edit session with the existing member.

The following is an example of a Site Control Table:

* OBJECTS
*
*CODE
* !SUB-system
* ! !Object sec
* ! ! !1 letter abbv
* ! ! ! !3 letter abbv
* ! ! ! ! !name !description !type
* ! ! ! ! ! ! !
>UU!I! ! !PRU!PRUSERS !PROCESS users !U
>E7! ! ! !EMP!EMPLOYEES!Employees !U
>-9! ! ! !TXT!Text !Text Members !U

Note: The columndelimiting character (!) used in the above example is keyboard-language
dependent and corresponds to hex code 4F.

Programmer's Guide80

Open NSPF

MeaningParameter

Two-character code to be used for the subprogram name. It is strongly recommended
that you use a letter as first character. For example: E7. This means that the subprogram
name must be ISUOE7.

CODE

One-character code of the subsystem to which the object applies. The subsystem codes
are the same as used in the Configuration Table, for example, M for z/OS (MVS). If the
subsystem is not installed, the object is not available. If no subsystem is specified, the
object is always available. For a list of available subsystems, see Subsystems Supported
by Natural ISPF of the Natural ISPF Administration Guide.

SUB-System

Authorization class (see Authorization Classes in this documentation). If you want to
restrict access to this object/function it is recommended that you use the '=' (USER

Object sec

DEFINED) authorization class and assign different authorization levels to user/user
groups.

An object can be abbreviated with 1 letter (as N for Natural), but you should not use this
1-byte abbreviation because most of them are already used by Software AG.

1Letter abbv

A 2- or 3-character ID to abbreviate the object in function commands, for example, EMP
for EMPLOYEES.

3Letter abbv

Full name of the object, for example, EMPLOYEES.Name

Further description of the object used in active help screens.Description

Identification of a user-defined object. This column must contain the letter U for every
definition of a user-defined object.

Type

Site Control Table: Adding a User Function

You can define new functions in the Site Control Table CONTROLU in lines starting with the minus
sign (-), for example:

* FUNCTIONS
*Code
* !1 Letter abv
* ! !2 Letter abv
* ! ! !Name
* ! ! !Action
* ! ! !Security
* ! ! !!Parameters?
* ! ! !!!Prompt-type
* ! ! !!!!Editor?
* ! ! !!!! !
-IS! !IS!INSPECT !*Insp'td!1 !
-RM! !RM!REMARK !*Remarkd!2 X!

Note: The column delimiting character ! used in the above example is keyboard-language
dependent and corresponds to hex code 4F.

81Programmer's Guide

Open NSPF

MeaningParameter

Two-character identifier of function (passed to the subprogram), for example, RM for the
function REMARK.

CODE

A function can be abbreviatedwith 1 letter (as E for Edit), but you should not use this 1-byte
abbreviation because most of them are already used by Software AG.

1Letter abbv

Two-letter abbreviation of the function (to be used as line command).2Letter abbv

Full name of the function.Name

Associated attribute text, to be used as reply to line commands in list sessions; max. 8
characters, first character should be an asterisk (*).

Action

Security level assigned, to be compared with the user's authorization level (a digit in the
range 1-9). The function can be activated only if the user has an authorization level greater
or equal to the security level assigned to the function.

Security

Leave blank - for future use.Parameters

Leave blank - for future use.Prompt-type

Specify X to indicate that function invokes an Editor session (session-type E/B/L/R). Leave
blank to indicate that the function results in amessage or in a screen handled by the object's
user subprogram.

Editor

Site Control Table: Relating User Objects to Functions

You can relate the new object to Natural ISPF functions in the Site Control Table as follows:

* FUNCTIONS FOR OBJECTS
*
*
*CODE
* !FUNCTION-OPTION OPTIONS = D - Default function X - regular
* ! ! ! ! ! ! ! ! !
$E7!LS-D!---X!IN-X!DL-X! ! ! ! !
$-9!LS-D!BR-X!ED-X!DL-X!---X! ! ! !
$UU!LS-D!---X!DL-X! ! ! ! ! !

Note: The column delimiting character ! used in the above example is keyboard-language
dependent and corresponds to hex code 4F.

MeaningParameter

Two-character code of the object.CODE

In each of these columns, you can define a function that can be applied to the object.
A maximum of 10 functions can be activated per object. Each function definition
consists of 4 bytes: AABC, where:

FUNCTION-OPTIONS

Function code, for all available function codes see the
sectionUser Exits in theNatural ISPF Administration Guide.

AA

Two hyphens (--) as function code means ENTRY function,
that is displaying an Entry Panel related to this object.

Programmer's Guide82

Open NSPF

MeaningParameter

Not used.B

Function type: X is a regular function, D the default function.
For example, for object E7 (EMPLOYEES):

C

LS-Dmeans LIST is the default,

---Xmeans Entry Panel for the object,

IN-Xmeans INFORMATION as a non-default function,

DL-Xmeans DELETE as a non-default function.

Example

In the list of active jobs, you want to abbreviate the line command MODIFYwith MO, which prompts
for an operator command to be sent to the selected active job. Standard Natural ISPF does not
support this functionality, but with Open NSPF it could be implemented as follows.

The following definitions must be specified in the Site Control Table:

*
* Define a new function MODIFY
*
-MO! !MO!MODIFY !*Modifd !1 !
*
* Define a new object TASK
*
>-A! ! ! !TAS!TASK !Tasks !U
*
* Relate the new function to active jobs (code A)
* and to new object TASK
*
$A !MO-X! ! ! ! ! ! ! !
$-A!MO-D! ! ! ! ! ! ! !

Now you must implement ISUO-Awhich contains the logic for the MODIFY command (a coding
example can be found in the Example Library). When an MO line command is entered in the list of
active jobs you must supply logic to invoke ISUO-A. This can be done with an object transfer in
the active jobs user exit ISPA---U (a coding example can be found in the Example Library).

83Programmer's Guide

Open NSPF

Event Logic

Events are passed to the user-subprogram in the EVENTfield of the parameter area. The subprogram
must be able to react to the event by executing some object-specific logic for all functions defined
for this object. Of course, the subprogram can use other routines to handle an event.

Unknown events must be ignored by the subprogram to allow for the addition of events in later
versions of Natural ISPF.

Session Types

Natural ISPF can handle different types of sessions for Natural ISPF objects, as well as for user
objects:

DescriptionType

The session is handled by the user subprogram. Usually, performing a function means entering data
and reacting to user commands, but this is not always the case. For example, a function such as DELETE
can operate without additional terminal I/O and then terminate. The user subprogram must:

' '

■ Perform the function, this includes handling the terminal I/O (event=PERFORM).
■ Redisplay the last screen, if terminal I/O has been performed (event=DISPLAY).

The session is an Editor session, all terminal I/O is handled by Natural ISPF. All editing commands
are allowed in this session. The user subprogram must:

E

■ Retrieve the data to be edited and store it in an incore file (event=START).
■ Retrieve the data from the incore file and store it in an appropriate place, when a command such
as SAVE has been entered (event=COMMAND).

A Browse session is very similar to an edit session, the only difference is that update commands are
not allowed. In this case, the subprogram does not have to be prepared to save the data.

B

The session is an Editor session, which contains a list of items, such as a list of members in a library.
All terminal I/O is handled by Natural ISPF. The list can be manipulated with Editor commands,

L

updates are not allowed. Additionally, all function commands defined for the object can be used as
line commands. The user subprogram must:

■ Retrieve the data to be listed and store it in an incore file (event=START).
■ React to line commands entered in the list (event=LINE).

The session is like a list, but the list is refreshedwhenever ENTER is pressed (can be used for displaying
datawhich changes very frequently like the list of active jobs inNatural ISPF). Line commandhandling
is identical to a list session. The user subprogram must:

R

■ Check parameters and create an incore file (event=START).
■ Delete the old contents of the incore file and read the actual data to be listed and store it in an incore
file (event=REFRESH).

Programmer's Guide84

Open NSPF

DescriptionType

■ React to line commands entered in the list (event=LINE).

Session Types and Events

This table gives an overview which events receive control depending on the session type, and the
numbers indicate the normal sequence of events.

LISTITEMDISPLAYPERFORMENDCOMMANDREFRESHTITLESTARTPARM-ENDPARMLINE

x3211LIST

x43211LIST
REFRESHABLE

3211EDIT

3211BROWSE

43211SELF-HANDLED

Event Description

This subsection provides a detailed description of all events.

LINE

This event is called as first event when the function is invoked with a line command. In the LINE
event, the parameters for the current function must be extracted as in the PARM event for direct
commands. Therefore, the parameters supplied in LINE-DATAmust be separated and written to
OPERATION-DATA as in the PARM event. Remember thatwhen designing a list, all identifiers necessary
for line command processing should be in the first 100 byte of a line, because this part of a line is
passed in the field LINE-DATA. Care must be taken if left/right shifting commands are possible for
the Editor session, because the data visible to the user are always delivered by the LINE-DATA field.

PARM

Natural ISPF function commands can be issued with positional and/or keyword parameters.
Keyword parameters are recognized as a pair of tokens, separated by the equal sign (=). This event
implements parameter passing, and is processed only if parameters are passed. Each parameter
is passed in a separate event in the PARM-KEYWORD and PARM-VALUE fields, so successive calls of this
event depend on the number of parameters typed in by the user.

■ PARM-KEYWORD contains a keyword if the parameter has been typed in as a keyword parameter,
or the position if the parameter was entered as a positional parameter.

■ PARM-VALUE contains the parameter value. Valid parameters should be stored in OPERATION-DATA
for further processing of the function.

85Programmer's Guide

Open NSPF

Example:

Assume the user issued the command:

EDIT MYPROG T NODE=148 VOLSER=DISK01

This command results in the following PARM events:

PARM-VALUEPARM-KEYWORDNumber

MYPROG11

T22

148NODE3

DISK01VOLSER4

PARM-END

For future use.

START

This event is called after all parameters have been passed with the PARM or LINE event. This event
is also executed if no parameters are passed.

Normally, the parameters collected in OPERATION-DATA are checked if they are all available and
correct to execute the function. The function can be aborted by setting the field and return to the
caller.

In this event, the Session Type (E/B/L/R) must be set. The next screen is displayed either in PERFORM
event in theOpenNSPF routine or by theNatural ISPF control logic if the Editor is used, depending
on the SESSION-TYPE. For the Session Type Edit/Browse/List/Refreshable list (abbreviated respect-
ively as E/B/L/R), an incore file must be created. Except for type R, the file must be filled with data.
For type R, the file is filled with data in the REFRESH event.

TITLE

This event is called once after the START event to get the session title. The given title is then available
in the TITLE field in successive PERFORM events, or is displayed in the top left corner of the Browser
screen.

REFRESH

This event is called for Session Type R before the screen is displayed (the screen is displayed outside
the Open NSPF routine). In this event, the contents of the incore file should be refreshed, which
usually means delete and fill again with refreshed data.

Programmer's Guide86

Open NSPF

COMMAND

When the session is handled by Natural ISPF (Session Type E/B/L/R), a command is routed to the
OpenNSPF routinewhen it is not a valid Editor command.When the screen is self-handled (Session
Type ' '), all commands are first routed to this event. The command must be filtered if it is a
valid local command for the current function. Commands which are not handled locally must be
returned to Natural ISPF. If line commands and main commands are entered simultaneously, the
event LINE for the new function is executed before the COMMAND event.

END

This event is called as the last event before session terminates. If an incore file has been created
(Session Type E/B/L/R), it must be deleted.

PERFORM

This event is called when the screen is handled by the Open NSPF routine itself (Session-Type '
'). Normally an INPUT WITH TEXT #TITLE is coded here.

DISPLAY

This event is called when the screen handled by the Open NSPF routine (Session-Type ' ') must
be refreshed, for example when an UNZOOM command is entered, that is, the current screen should
be displayed (INPUT statement) and control should be given to Natural ISPF (ESCAPE statement),
which will handle non-conversational mode.

LISTITEM

This event is called when the user enters the new command ALL in a LIST session. In the LISTITEM
event, the parameters for the current function must be extracted similarly to the LINE event for
line commands. Therefore, the identifier of a single object in the list supplied in the field LINE-DATA
must be extracted and written to the field ITEM-NAME. Remember that when designing a list, all
identifiers necessary for line commandprocessing should be in the first 100 bytes of a line, because
this part of a line is passed in the field LINE-DATA. Caremust be taken if left/right shifting commands
are possible for the incore file, because the data visible to the user are always delivered by the
LINE-DATA field.

Parameter Description

This subsection provides a detailed description of all parameters passed to and from the Open
NSPF routine.

87Programmer's Guide

Open NSPF

TypeLengthParameter Name

Input/Output(A50)COMMAND

The first token entered in the command line. If a PF key is pressed, the value assigned to the PF
key is delivered as command. If a command is entered and a PF key is pressed simultaneously,
the contents of the PF key is concatenated before the command. The value returned in the command
field will be processed by Natural ISPF. This takes effect in the START, PERFORM, COMMAND and END
events and results in invocation of the corresponding function.

TypeLengthParameter Name

Input/Output(L)CHANGED

This flag is set in an Editor session (session type E) if data are modified. It indicates whether the
session was changed by the user and therefore an update must be done. This is relevant to the
COMMAND event when a SAVE command is executed and in the END event where the session is closed.

The flag can also be reset by the subprogram (for example, after a successful SAVE).

TypeLengthParameter Name

Input/Output(N4)ERROR-NUMBER

As input parameter, a non-zero ERROR-NUMBER indicates that a message has to be displayed to the
user. The text of the message has already been prepared in the TITLE field.

As output parameter, a non-zero ERROR-NUMBER indicates that the text stored in SYSERR for this
number has to be displayed to the user in the next Natural ISPF screen (this could be in an Open
NSPF subprogram or in Natural ISPF itself).

See also the field OUTPUT-ERROR-CODE. If OUTPUT-ERROR-CODE is not set (value is zero), information
can be passed to the user since the current function is not aborted. The error text is taken according
to number ranges from the following libraries:

6800 - 8999: SYSISPS1
9000 - 9999: are reserved for the user in SYSISPS1

TypeLengthParameter Name

Output(A75)ERROR-TEXT

Overrides ERROR-NUMBER.

Programmer's Guide88

Open NSPF

TypeLengthParameter Name

Output(A75)ERROR-PARM

The ERROR-PARM tokens delimited by a semicolon (;). Parameters to be substituted in the error texts
are denoted as :1: :2:

TypeLengthParameter Name

Input(A2)FUNCTION

The function code as defined in the member CONTROLx.

TypeLengthParameter Name

Input/Output(A32)GLOBAL-DATA

Data Area common to all Open NSPF routines.

TypeLengthParameter Name

Output(A79)HEADER

If the Editor is used (Session Type E/B/L/R) the column headers are delivered to the caller in this
field. If omitted, no column headers are presented in the Editor session.

TypeLengthParameter Name

Input(A8)IDENTIFIER

Unique identifier created for this session. Can be used as file identifier to the Incore Database. This
identifier is available in the START event and all subsequent events.

TypeLengthParameter Name

Input(N3)INPUT-ERROR-CODE

Denotes that there is an error situation, that is, the field OUTPUT-ERROR-CODEwas set in a previous
function or in Natural ISPF itself. In terms of Natural ISPF, this means that the screen must be
presented with the ALARM feature.

TypeLengthParameter Name

Input(A100)LINE-DATA

Contains the Editor line as displayed currently in the screen area. Care must be taken if shift
left/right is used. In this case, the visible data on the screen is always delivered in LINE-DATA.

89Programmer's Guide

Open NSPF

TypeLengthParameter Name

Input(A8)EVENT

Defines the event that is to be handled by the Open NSPF routine. For description and possible
values, see the subsection Event Description.

TypeLengthParameter Name

Output(N3)OUTPUT-ERROR-CODE

Anon-zero value denotes an error situation toNatural ISPF, that is, the current function is aborted
and the error denoted by the fields ERROR-NUMBER, ERROR-TEXT and ERROR-PARM is reported in the
previous screen. This should be used in real error situations. If the screen is handled by an Open
NSPF routine, themessage is brought in the field TITLE and is available in the PERFORM and DISPLAY
events. OUTPUT-ERROR-CODE should not be set in the DISPLAY event.

TypeLengthParameter Name

Input(A50)PARM-KEYWORD

Contains a keyword, if the notation KEYWORD=PARM-VALUEwas used, or a one-digit number, if the
parameter is positional.

TypeLengthParameter Name

Input(A50)PARM-VALUE

Contains the parameter value.

TypeLengthParameter Name

Output(A4)PF-KEY

In the PERFORM event, the PF key pressedmust be returned toNatural ISPF so that it can be handled
by Natural ISPF. That is, *PF-KEYmust be moved to PF-KEY.

TypeLengthParameter Name

Input/Output(A253)OPERATION-DATA

Local data for OpenNSPF routine. The data is kept between events and lives as long as the current
operation is active.

Programmer's Guide90

Open NSPF

TypeLengthParameter Name

Output(A2)SESSION-TYPE

Possible values:

The screen is handled by the Open NSPF routine itself in the PERFORM event.' '

Editor EDITmode'E'

Editor BROWSEmode. No line commands are valid in this type of session.'B'

Editor LISTmode. All function commands can be entered as line commands in this type of session.'L'

Editor refreshable LISTmode. All function commands can be entered as line commands in this type
of session.

'R'

TypeLengthParameter Name

Input/Output(A253)STATIC-DATA

Shared data segment identified by STATIC-ID. The data is always updated when it is changed
upon return to Natural ISPF. The data segment lives as long as the Natural ISPF session lives. If
the STATIC-DATA and STATIC-ID are changed in one operation, the data is updated for the old ID
and the new Segment for the new ID is returned.

TypeLengthParameter Name

Input/Output(A2)STATIC-ID

Identification for a shared data segment. If this ID is changed, the current event is triggered again
and the appropriate data segment is returned. The last STATIC-ID accessed is always returned as
a default for new functions.

TypeLengthParameter Name

Input/Output(A79)TITLE

The session title which is displayed in the first line of the screen. It is assigned in the event TITLE
andused in the events PERFORM and DISPLAYwhen the screen is handled by theOpenNSPF routine
itself (Session Type ' '). An error message or error text is brought in the right part of the TITLE
when it is requested. This means the fields ERROR-NUMBER and ERROR-TEXT and ERROR-PARM are
converted and assigned to the TITLE.

91Programmer's Guide

Open NSPF

TypeLengthParameter Name

Output(A70)ITEM-NAME

Contains valid parameters which must be extracted from the LINE-DATA field in the LISTITEM
event. ITEM-NAME can contain any combination of positional and keyword parameters according
to the parameter syntax for the current object. The contents of ITEM-NAME are used byNatural ISPF
to generate a function command with parameters as returned in ITEM-NAME. Thus a later PARM
event must also be able to interpret these parameters. A coding example can be found in the
member ISUO-7 in the Example Library.

The following table gives an overview which parameters take effect depending on the event:

LISTITEMDISPLAYPERFORMENDCOMMANDLINEREFRESHTITLESTARTPARM-ENDPARMEvent
Parameter

OIOOCOMMAND

IICHANGED

OOOOOOOERRORNUMBER

OOOOOOOERROR-TEXT

OOOOOOOERROR-PARM

IIIIIIIIIIIFUNCTION

IOIOIOIOIOIOIOIOIOIOIOGLOBAL-DATA

OHEADER

IIINPUT-ERROR-CODE

IIIIIIIDENTIFIER

IILINE-DATA

IIIIIIIIIIIEVENT

OOOOOOOOUTPUT-ERROR-CODE

IPARM-KEYWORD

IPARM-VALUE

OPF-KEY

IOIOIOIOIOIOIOIOIOIOOPERATION-DATA

OSESSION-TYPE

IOIOIOIOIOIOIOIOIOIOSTATIC-DATA

IOIOIOIOIOIOIOIOIOIOSTATIC-ID

IIOTITLE

OITEM-NAME

Note: The PARM-END event is for future use. As new functionality is implemented in future,
more events may be created. In order to be upwards compatible with future versions of

Programmer's Guide92

Open NSPF

Natural ISPF, it is therefore good coding practice if your subprograms ignore unknown or
unused events.

Example

The following example can be found in the Example Library:

* OBJECT : ISUO-7 DATE CREATED: 16.02.93 BY: JWO
* ---
* PURPOSE:
* Example program which uses Incore Database(IDB)
* and OPEN NSPF. The functions list of employees
* and info employees are implemented and have an
* NSPF like user-interface

*
DEFINE DATA PARAMETER

USING ISP-UO-A
PARAMETER
1 #STATIC-DATA(A253)
1 #GLOBAL-DATA(A32)
1 #OPERATION-DATA(A253)
1 REDEFINE #OPERATION-DATA /* our memory

2 #PERSONNEL-ID (A8)
2 #NAME (A20)
2 #FIRST-NAME (A20)

1 #LINE-DATA(A100) /* list line passed when
1 REDEFINE #LINE-DATA /* line commands are entered

2 #LINE-PERSONNEL-ID (A8)
2 #F1 (A01)
2 #LINE-FIRST-NAME (A20)
2 #F2 (A01)
2 #LINE-NAME (A20)

*
LOCAL USING IDBI---L /* for Incore database
LOCAL
1 EMPLOYEES VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 SEX
2 BIRTH
2 DEPT
2 JOB-TITLE

1 EMPL-LIST VIEW OF ISP-IDB-EMPL-LIST /* Incore file to be listed
2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 BIRTH

93Programmer's Guide

Open NSPF

2 JOB-TITLE
1 #HEADER2

2 PERSONNEL-ID (A8) INIT <'Number'>
2 #F1 (A1)
2 FIRST-NAME (A20) INIT <'First-Name'>
2 #F2 (A1)
2 NAME (A20) INIT <'Name'>
2 #F3 (A1)
2 BIRTH (A6) INIT <'Birth'>
2 #F4 (A1)
2 JOB-TITLE (A20) INIT <'Title'>

1 REDEFINE #HEADER2
2 #HEADER1 (A77)

1 #NO-RECORDS(L) INIT <TRUE>
1 #END-NAME (A8)
END-DEFINE
*
* Mainline
* Functions for EMPLOYEES are LIST, INFO and ENTRY PANEL
*
DECIDE ON FIRST VALUE OF #FUNCTION

VALUE 'LS'
PERFORM EMPL-LIST

VALUE 'IN'
PERFORM EMPL-INFO

VALUE '--'
PERFORM EMPL-ENTRY-PANEL

NONE IGNORE
END-DECIDE
*
*
* Function Subroutines
*
*
DEFINE SUBROUTINE EMPL-LIST
*
DECIDE ON FIRST VALUE OF #EVENT

VALUE 'LISTITEM' /* For ALL command
PERFORM ITEM-OPTION

*
VALUE 'PARM' /* Get parameters
PERFORM PARM-OPTION

*
VALUE 'START'
IF #NAME = ' ' /* parameter missing

MOVE 1 TO #OUTPUT-ERROR-CODE /* error
MOVE 6802 TO #ERROR-NUMBER
ESCAPE ROUTINE

END-IF
*
* Fill Incore File (Edit session) with data
*

Programmer's Guide94

Open NSPF

EXAMINE #NAME FOR '*' REPLACE ' '
COMPRESS #NAME H'FF' INTO #END-NAME LEAVING NO

*
READ (100) EMPLOYEES BY NAME STARTING FROM #NAME

IF EMPLOYEES.NAME GT #END-NAME
ESCAPE BOTTOM

END-IF
MOVE FALSE TO #NO-RECORDS
MOVE BY NAME EMPLOYEES TO EMPL-LIST
STORE EMPL-LIST IDENTIFIER = #IDENTIFIER

END-READ
*

IF #NO-RECORDS
MOVE 1 TO #OUTPUT-ERROR-CODE
MOVE 'No employee found' TO #ERROR-TEXT

END-IF
ASSIGN #SESSION-TYPE = 'L' /* it is a LIST session
ASSIGN #HEADER = #HEADER1 /* with field headers
END TRANSACTION

*
VALUE 'TITLE' /* Create a Title
COMPRESS #TITLE #NAME INTO #TITLE

*
VALUE 'END' /* Delete Incore file
MOVE #IDENTIFIER TO FILE-IDENTIFIER
MOVE 'DELETE' TO ACTION
CALLNAT INCORE USING INCORE-CTL INCORE-DATA

*
*

VALUE 'COMMAND' IGNORE /* Local command handling
VALUE 'PARM-END' IGNORE /* End of parameter parsing
NONE IGNORE /* other events ignored

END-DECIDE
*
END-SUBROUTINE
*
DEFINE SUBROUTINE EMPL-INFO
DECIDE ON FIRST VALUE OF #EVENT
*

VALUE 'LINE' /* Get parameters from list-line
PERFORM LINE-OPTION

*
VALUE 'PARM' /* Get parameters
PERFORM PARM-OPTION

*
VALUE 'START'
IF #PERSONNEL-ID = ' ' /* Missing parameters

MOVE 1 TO #OUTPUT-ERROR-CODE
MOVE 6802 TO #ERROR-NUMBER
ESCAPE ROUTINE

END-IF
ASSIGN #SESSION-TYPE = ' ' /* session is handled in here

95Programmer's Guide

Open NSPF

*
VALUE 'TITLE' /* Create a Title
IF #NAME NE ' '

COMPRESS #TITLE #NAME INTO #TITLE
ELSE

COMPRESS #TITLE #PERSONNEL-ID INTO #TITLE
END-IF

*
VALUE 'PERFORM' ,'DISPLAY' /* handle session
MOVE TRUE TO #NO-RECORDS
FIND EMPLOYEES WITH PERSONNEL-ID = #PERSONNEL-ID

INPUT WITH TEXT #TITLE USING MAP 'ISUO-7IM'
IF #EVENT = 'DISPLAY'

ESCAPE ROUTINE
END-IF
MOVE *PF-KEY TO #PF-KEY /* return pressed key for

/* interpretation
MOVE FALSE TO #NO-RECORDS

END-FIND
IF #NO-RECORDS

MOVE 1 TO #OUTPUT-ERROR-CODE
MOVE 'No employee found' TO #ERROR-TEXT
MOVE 'END' TO #COMMAND

END-IF
VALUE 'COMMAND' IGNORE /* Local command handling
VALUE 'PARM-END' IGNORE /* End of parameter parsing
NONE IGNORE

END-DECIDE
END-SUBROUTINE
*
DEFINE SUBROUTINE EMPL-ENTRY-PANEL
*
DECIDE ON FIRST VALUE OF #EVENT
*

VALUE 'LINE' /* Get parameters from line
PERFORM LINE-OPTION

*
VALUE 'PARM' /* Get parameters
PERFORM PARM-OPTION

*
VALUE 'TITLE' /* Create a Title
MOVE 'EMPLOYEES - ENTRY PANEL' TO #TITLE

*
VALUE 'PERFORM' ,'DISPLAY' /* Non Editor functions
INPUT (AD=MI) WITH TEXT #TITLE

'COMMAND ===>'(I) #COMMAND
/
/
/ ' Name '(I) '===>'(D) #NAME
/ ' Personnel-No '(I) '===>'(D) #PERSONNEL-ID

IF #EVENT = 'DISPLAY' ESCAPE ROUTINE END-IF
IF #COMMAND = ' ' AND *PF-KEY = 'ENTR'

Programmer's Guide96

Open NSPF

IF #PERSONNEL-ID EQ ' '
MOVE 'LIST' TO #COMMAND

ELSE
MOVE 'INFO' TO #COMMAND

END-IF
END-IF
MOVE *PF-KEY TO #PF-KEY

*
VALUE 'COMMAND' IGNORE /* Local command handling
VALUE 'PARM-END' IGNORE /* End of parameter parsing
VALUE 'START' IGNORE
VALUE 'END' IGNORE
NONE IGNORE

END-DECIDE
END-SUBROUTINE
*
* General Subroutines
*
DEFINE SUBROUTINE PARM-OPTION
*
* Employee name is an accepted parameter
* either with keyword NAME or as first parameter.
* Employee number is accepted with keyword NUMBER.
*
DECIDE ON FIRST VALUE OF #PARM-KEYWORD

VALUE '1','NAME' MOVE #PARM-VALUE TO #NAME
VALUE 'NUMBER'
IF #PARM-VALUE IS (N8)

MOVE RIGHT #PARM-VALUE TO #PERSONNEL-ID
ELSE

MOVE 1 TO #OUTPUT-ERROR-CODE /* error
MOVE 6801 TO #ERROR-NUMBER /* invalid parameter
ESCAPE ROUTINE

END-IF
NONE IGNORE

END-DECIDE
END-SUBROUTINE
*
DEFINE SUBROUTINE LINE-OPTION
*
* Move the relevant data from the list line into our
* program data
*
MOVE #LINE-PERSONNEL-ID TO #PERSONNEL-ID
MOVE #LINE-NAME TO #NAME
END-SUBROUTINE
*
*
DEFINE SUBROUTINE ITEM-OPTION
*
* Move the relevant data from the list line into ITEM-NAME
*

97Programmer's Guide

Open NSPF

COMPRESS 'NUMBER = ' #LINE-PERSONNEL-ID INTO #ITEM-NAME
END-SUBROUTINE
*
END

Defining a User Command

Every command defined for Open NSPF is implemented by an Open NSPF routine. The Open
NSPF routines are of type Natural subprogramwith a fixed parameter area to communicate with
Natural ISPF:

DEFINE DATA
PARAMETER USING ISP-UC-A /* Standard Open NSPF interface
PARAMETER
1 #STATIC-DATA (A253)
1 #GLOBAL-DATA (A32) /* Shared data for Open NSPF routine
LOCAL
END-DEFINE

The parameter area ISP-UC-A can be found in the User Exit Library (SYSISPX). The Open NSPF
routine is called from Natural ISPF every time the command is issued.

Site Control Table: Adding a User Command

The Site Control Table can be found in the User Profile Library and is usually called CONTROLU. In
this table, you can define new commands.

Edit macro MAC-CNFZ is available when editing the Site Control Table. If you wish to use this edit
macro, youmust use theNatural utility SYSMAIN to copy the following programs from the Example
Library (SYSISPE) to the User Profile Library (SYSISPFU):

MAC-CNF*
MACCNF*

Note: As an alternative, it would also be sufficient to define the library SYSISPE as a STEPLIB
for the library SYSISPFU.

■ If you wish to create a new CONTROLUmember, you can use the edit macro using the function
command

Programmer's Guide98

Open NSPF

EDIT CNF CONTROLU MODEL=MAC-CNFZ

■ If you wish to modify an existing CONTROLUmember, use the following command in the edit
session with the existing member:

REGENERATE

To add a new command to Natural ISPF, proceed as follows:

1. Allocate a two-letter code to the command.

2. Prepare a Natural subprogram to handle the command and copy it into SYSLIB.

3. Add the user command to the Site Control Table.

Once the command has been entered in the Site Control Table and the corresponding subprogram
has been copied to SYSLIB, the subprogram is executed every time a user issues the command.

The command attributes are entered into one line in the Site Control Table in fixed positions with
the exclamation mark (!) in the beginning of the line.

Example:

*COMMAND !
* !SECURITY OPTION/LEVEL
* ! !COMMAND-TYPE
* ! ! !MIN ABBV
* ! ! ! !PROGRAM
* ! ! ! ! !PROGRAM-PARM
* ! ! ! ! ! !SUBSYSTEM
!MAIL ! !U!4!ML ! !

Note: The column delimiting character ! used in the above example is keyboard-language
dependent and corresponds to hex code 4F.

MeaningParameter

Full command name, for example: MAIL.Command

One character security option with one digit for level. The command will be active
only if the user has been assigned an authorization level greater or equal to the
command level (e.g. Q2). If left blank, the command is always active.

Security
Option/Level

The one-character security option is the Authorization class (seeAuthorization Classes
in the Natural ISPF Administration Guide). To restrict access to this object/function
you should use the '=' (USER DEFINED) authorization class and assign different
authorization levels to user/user groups.
The one-digit level corresponds to the authorization level defined for the specified
class in the user authorization table (see the section User Definitions in the Natural
ISPF Administration Guide).

99Programmer's Guide

Open NSPF

MeaningParameter

Identification of a user-defined command. This columnmust contain the letter U for
every definition of a user-defined command.

Command-Type

Minimum characters in command line to identify the command. For example, 2
would allow users to enter MA. 4 allows no command abbreviation for MAIL.

Min abbv

Two-character code to be used for the subprogramname. It is strongly recommended
that you use a letter for the first digit. For example, a code of MLmeans the
subprogram must be called ISUCML.

Program

For future use.Program-Parm

One-character subsystem code. The codes are the same as in the Configuration Table.
The command will be active if the subsystem is installed. For example, Mmeans the

Subsystem

user command is available to z/OS users. If left blank, the command is always active.
For a list of available subsystems, see Subsystems Supported by Natural ISPF of the
Natural ISPF Administration Guide.

Parameter Description

TypeLengthParameter Name

Input/Output(A128)COMMAND

This field contains the command in full length which the user typed in to invoke the Open NSPF
routine, including those parameters that precede the first parameter delimiter.

TypeLengthParameter Name

Input/Output(A64)COMMAND-PARM

Command parameters which were entered by the user after the first parameter delimiter.

For example, assuming the parameter delimiter is a comma (,), and the user-defined command is
UCOM, the COMMAND and COMMAND-PARM fields have the following contents:

Value for COMMAND-PARM parameterValue for COMMAND parameterCommand typed in by user

(blank)UCOMUCOM

(blank)UCOM AUCOM A

XUCOM AUCOM A,X

XUCOM A BUCOM A B,X

X,YUCOM AUCOM A,X,Y

Programmer's Guide100

Open NSPF

TypeLengthParameter Name

Output(N4)ERROR-NUMBER

An error number which is reported to the user. The error is brought in the field TITLE and is
available in the PERFORM and DISPLAY events so that it can be presented to the user. See also the
field OUTPUT-ERROR-CODE. If OUTPUT-ERROR-CODE is not set (value is zero), information can be passed
to the user since the current function is not aborted. The error text is taken according to number
ranges from the following libraries:

6800 - 8999: SYSISPS1
9000 - 9999: are reserved for the user in SYSISPS1.

TypeLengthParameter Name

Output(A75)ERROR-TEXT

Text to be displayed. If this field is filled, ERROR-NUMBER is ignored.

TypeLengthParameter Name

Output(A75)ERROR-PARM

The ERROR-PARM tokens delimited by a semicolon (;). Parameters to be substituted in the error texts
are denoted as :1: :2:

TypeLengthParameter Name

Input/Output(A32)GLOBAL-DATA

Data Area common to all Open NSPF routines.

TypeLengthParameter Name

Input/Output(A253)STATIC-DATA

Shared data segment identified by STATIC-ID. The data is always updated when it is changed
upon return to Natural ISPF. The data segment lives as long as the Natural ISPF session lives. If
the STATIC-DATA and STATIC-ID are changed in one operation, the data is updated for the old ID
and the new segment for the new ID is returned.

TypeLengthParameter Name

Input/Output(A2)STATIC-ID

Identification for a shared data segment. If this ID is changed, the subprogram is invoked again
and the appropriate data segment is returned.

101Programmer's Guide

Open NSPF

TypeLengthParameter Name

Output(N3)OUTPUT-ERROR-CODE

Anon-zero value denotes an error situation toNatural ISPF, that is, the current function is aborted
and the error denoted by the fields ERROR-NUMBER, ERROR-TEXT and ERROR-PARM is reported in the
previous screen. This should be used in real error situations.

Examples

The first example program is relevant to sites that run Software AG's Office System Con-nect. It
checks for new items in the user's Con-nect Inbasket.

* Program checks whether something new is in
* CON-NECT inbasket
DEFINE DATA
PARAMETER USING ISP-UC-A
PARAMETER
1 #STATIC-DATA(A253)
1 #GLOBAL-DATA(A32)
LOCAL
1 #RC (N2)
1 #CAB (A8)
1 #PSW (A8)
1 #PHONE (P8)
1 #MAIL (P8)
1 #INVIT (P8)
1 #OP-MAIL (P8)
1 #POST-MAIL (P8)
END-DEFINE
MOVE *USER TO #CAB
CALLNAT 'Z-INBKT' #RC #CAB #PSW #PHONE #MAIL #INVIT #OP-MAIL #POST-MAIL
IF #RC NE 0

MOVE 'Connect error' TO #ERROR-TEXT
MOVE 1 TO #OUTPUT-ERROR-CODE

ELSE
MOVE 'You have' TO #ERROR-TEXT
DECIDE FOR EVERY CONDITION

WHEN #PHONE NE 0
COMPRESS #ERROR-TEXT #PHONE 'phones' INTO #ERROR-TEXT

WHEN #MAIL NE 0
COMPRESS #ERROR-TEXT #MAIL 'mail' INTO #ERROR-TEXT

WHEN #INVIT NE 0
COMPRESS #ERROR-TEXT #INVIT 'Invitation' INTO #ERROR-TEXT

WHEN NONE
COMPRESS #ERROR-TEXT 'No mail' INTO #ERROR-TEXT

END-DECIDE
END-IF
END

Programmer's Guide102

Open NSPF

The second example program is relevant to BS2000 sites. It translates the command FS(TAT) into
theNatural ISPF command LIST BF to list BS2000 files. In thisway, FS and FSTAT become synonyms
of the Natural ISPF command LIST BF *.

* This program translates command FS(TAT) ... into LIST BF ..
* to list BS2000 files
DEFINE DATA
PARAMETER USING ISP-UC-A
PARAMETER
1 #STATIC-DATA(A253)
1 #GLOBAL-DATA(A32)
LOCAL
1 #WRITTEN-CMD (A128)
1 #FUNC-PARMS (A128)
1 #-DEL (A1) CONST <H'FE'>
END-DEFINE
*
EXAMINE #COMMAND FOR FULL ' ' REPLACE FIRST WITH #-DEL
SEPARATE #COMMAND LEFT INTO #WRITTEN-CMD #FUNC-PARMS

WITH DELIMITER #-DEL
IF #FUNC-PARMS = ' '

MOVE '*' TO #FUNC-PARMS
END-IF
COMPRESS 'LS BF' #FUNC-PARMS INTO #COMMAND
END

103Programmer's Guide

Open NSPF

104

5 Application Programming Interface

■ ISP-U000 - Current Session Program .. 106
■ ISP-U001 - Access Shortlibs Program .. 108
■ ISP-U002 - Retrieve Error Texts Program ... 109
■ ISP-U003 - Read Data from Edit Session Program ... 109
■ ISP-U004 - Pass Command Script Program .. 110
■ ISP-U005 - Check for Natural Member Versions Program .. 111
■ ISP-U006 - Set Source Area Attributes Program .. 111
■ ISP-U007 - Check User Authorization Program .. 111
■ ISP-U008 - Current Session Program Including Global Data ... 112
■ ISP-U009 – Current Session Program / Previous Session Program .. 113

105

The programs described in this chapter can be used in Natural applications (or in Open NSPF
routines) to access Natural ISPF internal information.

All programs and required Natural ISPF modules are loaded into the Exit Library and into the
library SYSTEM. If you wish to use the API programs, it is strongly recommended that you define
either SYSTEM or SYSISPE as STEBLIB for your application.

ISP-U000 - Current Session Program

This program is supplied in object form only. It is aNatural subprogramwhich returns information
about the currentNatural ISPF session and can be called fromuser programs outsideNatural ISPF.

The following parameters must be defined:

MeaningTypeFormatParameter

Contains 2-character abbreviation of the object type. For a list of possible values,
see the Table of Exits and Object Abbreviations in section User Exits in the Natural
ISPF Administration Guide.

O(A2)#OBJECT

Contains 2-character abbreviation of the function currently executed.O(A2)#FUNCTION

Contains all parameters; must be redefined according to object type. A special
local data area is delivered in source form for this redefinition.

O(A253)#SES-DATA

Example

The following example is a short Natural macro object which users can call using the COPY MACRO
command froman edit session. It generates a programheader and uses program ISP-U000 to obtain
the name and library of the program being edited:

§ *
§ * MACRO GENERATES A STANDARD PROGRAM HEADER FOR THE PROGRAM
§ * BEING CURRENTLY EDITED
§ *
§ DEFINE DATA
§ LOCAL USING ISPN---L /* Redefinition of Natural data
§ LOCAL
§ 1 #OBJECT (A2)
§ 1 #FUNCTION(A2)
§ 1 #DATA (A253)
§ 1 #PROGRAM (A8)
§ 1 #TEXT (A50/5)
§ 1 #I (N2)
§ END-DEFINE
§ *
§ * GET NATURAL SESSION DATA

Programmer's Guide106

Application Programming Interface

§ *
§ CALLNAT 'ISP-U000' #OBJECT #FUNCTION #DATA
§ MOVE #DATA TO #SES-DATA-N /* Move to redefinition
§ MOVE #MEMBER TO #PROGRAM
§ SET KEY PF3
§ SET CONTROL 'WL70C12B005/005F'
§ INPUT (AD=MIL'_')
§ WITH TEXT '----- PROGRAM HEADING INFORMATION -------------'
§ 'PROGRAM:' #PROGRAM (AD=OI)
§ 'LIBRARY:' #LIBRARY (AD=OI)
§ / 'PURPOSE:' #TEXT (1)
§ / ' ' #TEXT (2)
§ / ' ' #TEXT (3)
§ / ' ' #TEXT (4)
§ / ' ' #TEXT (5)
§ IF #TEXT(1) = ' '
§ REINPUT WITH TEXT 'PURPOSE IS REQUIRED'
§ END-IF

* PROGRAM: §#PROGRAM DATE CREATED: §*DATD BY: §*USER
* ---
* PURPOSE:
§ FOR #I = 1 TO 5
§ IF #TEXT(#I) NE ' '
* §#TEXT(#I)
§ END-IF
§ END-FOR
* ---
* PROGRAM HISTORY
* DATE USER-ID REF-NO DESCRIPTION

*

The following figure shows the result of the INPUT statement in the macro when the program is
invoked from an edit session with program NEWPROG in library NSPFWORK:

107Programmer's Guide

Application Programming Interface

EDIT-NAT:NSPFWORK(NEWPROG)-Program->Struct-Free-29K - >>> Versioning is invoked
COMMAND===> COPY MAC MAC-HEAD SCROLL===> CSR
****** ****************************** top of data *****************************
****** **************************** bottom of data ****************************

+---+
! ----- PROGRAM HEADING INFORMATION ------------- !
! PROGRAM: NEWPROG LIBRARY: NSPFWORK !
! PURPOSE: This program demonstrates something _____________ !
! ___ !
! ___ !
! ___ !
! ___ !
! !
! Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10- !
! Help Split End Suspe Rfind Rchan Up Down Swap Left !
+---+

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Split End Suspe Rfind Rchan Up Down Swap Left Right Curso

Another useful example called COPYSYS can be found in the Example Library. This program copies
a member which is edited to the library SYSLIB.

ISP-U001 - Access Shortlibs Program

This program allows user programs to access short library names defined in Natural ISPF either
in the user profile or in the global shortlib table. If an entry is found, the data set name and volser
of the data set is returned.

MeaningTypeFormatParameter

2-byte library abbreviation.I(A2)#IN-SHORT

Data set name, if given abbreviation was found.O(A44)#OUT-DSN

Volser, if defined in profile.O(A6)#OUT-VOLSER

Programmer's Guide108

Application Programming Interface

ISP-U002 - Retrieve Error Texts Program

This program can be used to retrieve error texts from the Natural ISPF Error Message Library
SYSISPSx (where x is the current language code). If a text is not found for the current language
code, the English text is returned. Parameters can be replaced in the error text.

This program can only be used by Open NSPF programs, which are executed from SYSLIB. This
program will not work if invoked from any user application.

MeaningTypeFormatParameter

Error number to be retrieved.I(N4)#ERR-NUMBER

Text, including substituted parameters.O(A75)#ERR-TEXT

Parameters separated by (;). Formal parameters in the text must be specified
as :n:, where n is the number of the parameter.

I(A75)#ERR-PARM

Note: Error messages 9000 - 9999 are reserved for use by your site.

ISP-U003 - Read Data from Edit Session Program

This program can be used to read data from an edit session. When using this program, you must
use the ISP-U03A data area which contains the following fields:

MeaningTypeFormatParameter

Data lines from the Editor session, a maximum of 20 lines can be read
in one call.

O(A132/20)#LINES

Editor session number.I(B2)#ED-SESNUM

Error number, 0 if function was executed correctly.O(N4)#ERROR-NUMBER

Number of lines returned in field #LINES.O(N2)#LINES-READ

Number of lines to read in 1 callI/O(N2)#LINES-TO-READ

Length of the lines.O(N4)#LINE-LENGTH

Do not modify between calls.W(N6)#ED-NUM

True if the last lines have been read.O(L)#EOF

If true, the number of lines, the information about the last line and the
first 60 characters of each line read are displayed.

O(L)#TRACE

109Programmer's Guide

Application Programming Interface

Example:

DEFINE DATA
LOCAL USING ISP-U03A
LOCAL
1 #I (N2)
END-DEFINE
INPUT #ED-SESNUM
*
MOVE 20 TO #LINES-TO-READ
*
WRITE 'user processing of a macro result' //
*
REPEAT

CALLNAT 'ISP-U003' #READ-PARM
IF #ERROR-NUMBER NE 0

WRITE '=' #ERROR-NUMBER
ESCAPE BOTTOM

END-IF
FOR #I = 1 TO #LINES-READ

PERFORM LINE-PROCESSING
END-FOR
IF #EOF

ESCAPE BOTTOM
END-IF

END-REPEAT
*
DEFINE SUBROUTINE LINE-PROCESSING
PRINT #LINES(#I)
END-SUBROUTINE
END

ISP-U004 - Pass Command Script Program

This subprogram can be used to pass a command script (that is, a sequence of Natural ISPF com-
mands) toNatural ISPF and to execute it whenNatural ISPF is invoked next time. See alsomember
ISP-COAP in the example library.

MeaningTypeFormatParameter

Command lines to be processed.I(A50/10)#IN-COMMANDS

Number of lines to be processed in IN-COMMANDS.I(N2)#IN-LINES

For future use.(A1)#COMMAND-POS

For future use.(A1)#FUNCTION

Return code:O#RC

0 - Processing terminated ok.

Programmer's Guide110

Application Programming Interface

MeaningTypeFormatParameter

1 - Natural ISPF is not active.

2 - Processing terminated with error.

ISP-U005 - Check for Natural Member Versions Program

Subprogram checks whether versions (update decks) for a Natural member exist.

MeaningTypeFormatParameter

Natural library name.I(A8)#IN-LIBRARY

Natural member name.I(A8)#IN-MEMBER

Return code:O(N4)#RC

0 - Processing terminated ok.

TRUE Versions for this member exist.O(L)#OUT-VERSION

FALSE Natural ISPF versioning is not active in this environment.O(L)#GEN-VERSION

ISP-U006 - Set Source Area Attributes Program

Subprogram sets source area attributes and is used in macro processing.

MeaningTypeFormatParameter

Member name to be set.I(A8)#IN-MEMBER

Natural object type to be set.I(A1)#IN-TYPE

Programming mode (S/R) to be set.I(A1)#IN-MODE

ISP-U007 - Check User Authorization Program

This subprogram checks whether the current user is authorized to use Natural ISPF or certain
parts of its functionality.

111Programmer's Guide

Application Programming Interface

MeaningTypeFormatParameter

2-character code of Natural ISPF object being checked (leave blank to check
if user is authorized to access any object).

I(A2)#IN-OBJECT

2-character code of Natural ISPF object being checked (leave blank to check
if user is authorized to use any function valid for a specific object; irrelevant
if IN-OBJECT is blank).

I(A2)#IN-FUNCTION

Return code:O(N4)#RC

0 - User is authorized.

-1 - User is not authorized.

>0 - “Error in execution”. Use USR0320N to retrieve error text from library
SYSISP1.

= -NNNN - Natural runtime error NNNN has occurred during execution. Use
USR0120N to retrieve error text.

ISP-U008 - Current Session Program Including Global Data

This program is supplied in object form only. It is aNatural subprogramwhich returns information
about the currentNatural ISPF session and can be called fromuser programs outsideNatural ISPF.
It works like ISP-U000 but includes global data

The following parameters must be defined:

MeaningTypeFormatParameter

Contains 2-character abbreviation of the object type. For a list of possible
values, see the Table of Exits and Object Abbreviations in the sectionUser Exits
in the Natural ISPF Administration Guide.

O(A2)#OBJECT

Contains 2-character abbreviation of the function currently being executed.O(A2)#FUNCTION

Contains session number of SAG edit session.O(N2)#CURR-SES-NUM

Contains command line to be interpreted.O(A50)#L-COMMAND

Contains character which will be interpreted as macro character.O(A1)#MACRO-CHAR

Contains command delimiter character for command line.O(A1)#CMD-DEL

Contains all parameters; must be redefined according to object type. A
special local data area is delivered in source form for this redefinition

O(A253)#SES-DATA

Programmer's Guide112

Application Programming Interface

ISP-U009 – Current Session Program / Previous Session Program

This program is supplied in object form only. It is aNatural subprogramwhich returns information
about the currentNatural ISPF session and can be called fromuser programs outsideNatural ISPF.
It works in the same way as ISP-U000 except when executing a Natural program. In this case, the
data of the previous session is returned.

The following parameters must be defined:

MeaningTypeFormatParameter

Contains 2-character abbreviation of the object type. For a list of possible values,
see the Table of Exits and Object Abbreviations in section User Exits in the Natural
ISPF Administration Guide.

O(A2)#OBJECT

Contains 2-character abbreviation of the function currently executed.O(A2)#FUNCTION

Contains all parameters; must be redefined according to object type. A special
local data area is delivered in source form for this redefinition.

O(A253)#SES-DATA

113Programmer's Guide

Application Programming Interface

114

6 Authorization

This chapter lists the available authorization classes and the Natural ISPF objects they refer to.

■ Authorization classes as they appear in the Class column of the table are assigned authorization
levels in user definitions (see the Natural ISPF Administration Guide).

■ The codes in the Code column of the table are used in menu lines in menu definitions, as well
as in the Site Control Table.

Natural ISPF ObjectsClassCode

z/VSE/ESA filesz/VSE/ESA files1

SYSOUT of z/VSE/ESA jobsz/VSE/ESA SYSOUT2

Active jobs (z/OS and z/VSE/ESA)Active jobs3

BS2000 jobs and job variablesBS2000 jobs4

Use of operator commandsOperator commands9

Configuration operationsNSPF AdministratorA

BS2000 filesBS2000 filesB

Data sets and volumes (z/OS)Data set maintenanceD

LMS library elements and previous versionsBS2000 LMS elementsE

Jobs, including SYSOUT files (z/OS)SYSOUTSJ

CA Librarian members and versionsCA LibrarianL

Natural objects and viewsNatural programmingN

PDS members and previous versionsPDS maintenanceP

System operationsSystem infoS

CA Panvalet members and previous versionsCA PanvaletT

Site-specific menu optionsUser defined=

115

116

	Programmer's Guide
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Macro Facility
	Macro Syntax
	Processing Statements
	Example

	Text Lines
	Examples

	Examples of Macro Usage
	1. Straight Substitution of Variables
	2. Define Loops
	3. Screen I/O
	4. File I/O
	5. Conditional Text Generation

	Using the Macro Feature in Natural ISPF
	Macro Objects
	RUN / EXECUTE a Macro
	Example 1: Using variables to generate a Natural program
	Example 2: Using variables to generate JCL lines.

	COPY / SUBMIT a Macro
	Example: COPY 1
	Example: COPY 2
	Example: SUBMIT

	Edit Macro
	Save/Get Variable Values
	GET-DATA Statement
	Function
	Restrictions
	Examples

	SAVE-DATA Statement
	Function
	Restrictions
	Examples
	Example: Save Variable Values

	User-Edited Blocks in Generated Source
	Function
	Restrictions
	Example
	Example: User-Defined Blocks in Generated Source

	Change Syntax Format
	Function
	Restrictions
	Examples
	Example: Change Syntax Format

	Using Macro Objects in Other Natural Applications
	Generating Natural Code in Natural Applications
	Function
	Examples

	Using Macro Objects with GET-DATA / SAVE-DATA Statements

	PLAY a Macro
	PLAY Command
	Generate Command Script
	Example

	Inline Macros
	Example: Inline Macros in a Natural Program
	Example: Inline Macros in a PDS Member

	Splitting Macro Objects into Modules
	Example

	Saving Macro Output in the User Workpool

	3 Incore Database
	Overview
	Advantages of Incore Files
	Functions of the Incore Database Facility

	Defining Fields of an Incore File
	Some Information about Fields
	Some Information about Record Size

	Identifying an Incore File
	Example

	Creating an Incore File
	Creating an Incore File Implicitly
	Example

	Creating an Incore File Explicitly
	Example

	Creating an Incore File with a WRITE/DISPLAY Statement
	Example

	Manipulating Incore Files with Natural DML
	Retrieving Incore File Records
	Example
	Restrictions

	Adding Records to an Incore File
	Example

	Modifying Incore File Records
	Example

	Managing the Incore Database using the CALLNAT Interface
	Example
	Deleting an Incore File
	Example

	Listing Existing Incore Files
	Example

	Editing/Browsing an Incore File
	Example 1
	Example 2

	Additional Parameters when Calling the Editor
	Example
	Editing in Windowing Mode
	Example
	PF Key Handling
	Example
	PF Key Display
	Assigning Default PF Keys and Language-dependent Constants
	Escape Commands
	Example
	Example
	Resetting the Change Flag
	Example

	Editor Commands
	Main Commands
	Line Commands:

	Issuing Edit Commands using CALLNAT
	Example

	Error Handling
	CALLNAT Parameter Summary

	The Incore Database Container Data Set
	Example
	Examples

	4 Open NSPF
	Overview
	Customizing Natural ISPF
	Multi-Operations Management
	User Objects and User Commands
	Example:

	Common Subjects of Open NSPF Routines
	Natural ISPF Error Handling
	Command Variable
	Data Usage in an Open NSPF Routine
	Natural ISPF Static Data Usage

	Defining a User Object
	Site Control Table: Adding a User Object
	Site Control Table: Adding a User Function
	Site Control Table: Relating User Objects to Functions
	Example

	Event Logic
	Session Types
	Session Types and Events
	Event Description
	Parameter Description
	Example

	Defining a User Command
	Site Control Table: Adding a User Command
	Parameter Description
	Examples

	5 Application Programming Interface
	ISP-U000 - Current Session Program
	Example

	ISP-U001 - Access Shortlibs Program
	ISP-U002 - Retrieve Error Texts Program
	ISP-U003 - Read Data from Edit Session Program
	Example:

	ISP-U004 - Pass Command Script Program
	ISP-U005 - Check for Natural Member Versions Program
	ISP-U006 - Set Source Area Attributes Program
	ISP-U007 - Check User Authorization Program
	ISP-U008 - Current Session Program Including Global Data
	ISP-U009 – Current Session Program / Previous Session Program

	6 Authorization

