S software*

A SOFTWARE GMBH BRAND

Natural

Unicode and Code Page Support

Version 9.2.4

October 2025

ADABAS & NATURAL

This document applies to Natural Version 9.2.4 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1979-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATMF-NNATUNICODE-924-20251013

Table of Contents

PTOACE ..t v
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 Introduction to Unicode and Code Page SUppoOrtccoovvvviiiiiiiiiiiiiiicic, 5
About Code Pages and Unicodecoceeviiiiiiiiiiiiiiiiiiiiciiciccceee e 6
About Unicode and Code Page Support in Naturalccccoevviiiiiiiiiiiiiiinnn. 7
3 Enabling Unicode and Code Page Supportccooieiiiiiiiiiiiiiiicc, 9
ICU for Adabas & Natural (ICS)ccooruiiiiiiiiiieiiiieeeeeee e 10
ICS Module SAGICUccoiiiiiiiiiiiiiiiii e 10
Alternative ICS Modules for Support of Architecture Levelscccceevennienen. 12
ICU Data LIDTariesccceoiiiiiiiiiiiiiiciiieciieeeiee et 12
ICU Data Itemsc.ooiiiiiiiiiiiiccic 13
Unicode and Code Page Support for Adabascccceoviiiiiiiiiiiiiiiiiiiiinne, 14
Translation Tables ... 14
Support of Multi-Byte Code Pagesccccooeiiiiiiiiiiiiiiiiiiiiiiicciecce 15
B ICS BT i e 17
Data Scope and Data Handlingccccoooiiiiiiiiiiiiiiiiiiiiccccccec 18
The CFICU STEPLIB Parameterccocceeeriiiiiiiiiiiiiiiiieeiieecieeecieeeeiee e 18
Validating the CFICU STEPLIB Parametercccccooiiiiiiiiiiiiiiicccce 19
Using ICS31 in Natural subtask (needs APF-authorized ICS load library) 19
5 Configuration and Administration of the Unicode and Code Page Environment 21
Profile Parameters and Macroscccccoiiiiiiiiiiiiiiiiiiicicccc 22
Encoding INformationccooiiiiiiiiiiiiiiic 27
6 Development ENVITONMENtcccooiiiiiiiiiiiiiiiiiiiccee e 29
Development Environment for Applicationscccocceiviiiiiiiiiiiiiiiniiiiiiiinins 30
Customizing Your ENvironmentcccccoooiiiiiiiiiiiiiicce 31
Editors in the SPoD Environmentccccooiiiiiiiiiiiiiiiiiiiccccc 31
Code Page Support for Editors, System Commands, and Utilities 32
Code Page Support for Natural Source Objectsccceeviviviiiiiiiiiiniiiniiiciccieeen, 34
7 Unicode and Code Page Support in the Natural Programming Language 37
Natural Data Format U for Unicode-Based Dataccccccooviiiiiiiiiiiiiiiiiiis 38
Statementsccooiiiiiiiiii 39
Logical Condition Criteriacccocoeviiiiiiiiiiiiiii e 43
System Variablesccocoiiiiiiiiiiiiiiiiii 44
Large and Dynamic Variablesc.c.ccccoiiiiiiiiiiiii 44
Session Parameterscccooviiiiiiiiiiiii 44
Sample Programscccociiiuiiiiiiiiiiiiiicii 47
8 Unicode Input and Output Handling in Natural Applicationsc..ccoceeiinnnnn 49
Displaying and Entering Unicode Dataccccccooiiiiiiiiiiiiiiiiiiiiice, 50
Natural Web I/O Interface Clientccccocuiviiiiiiiiiiiiiiiiiiic 50
9 Bidirectional Language SUPPOTtccociiiiiiiiiiiiiiiiiiiii i 55

Unicode and Code Page Support

General INformationccooiiiiiiiiiiiiiii e 56
Screen DIrectioncccoiiiiiiiiiiiiii 56
Field DiIreCtioncccciiiiiiiiiiiiiiiciccc e 56
Arabic Shapingcccooiiiiiiii 58
10 Unicode Data StOrageccceivuiiiiiiiiiiiiiiiiiciiccicciecec e 61
Unicode Data and Parameter ACCessccovvuiiiiiiiiiiiiiiiiiiniiiicccec, 62
Database Management System Interfacescccocceevviiiiiniiiiiiniiiiiiiceee 62
Work Files and Print Filescccooiiiiiiiiiiiiiccc 63
11 Migrating Existing Applicationsc.cccooviiiiiiiiiiiiiic 65
Impact of Unicode on Existing Applicationsccccevviiiiiiiiiiinniiiiiiiicieee, 66
Migrating Existing ODbjectscccooiiiiiiiiiiiii 66
Adding Unicode Support to Existing Applicationscccccceevviiiiiniiiiiiiiinnnenn 68
Migrating Natural Remote Procedure Calls (RPC)cccccoeviiiiiiiiiiiiniiiine 68
12 Help and TroubleShOOtingcocoviiiiiiiiiiiiiiiiicicccee e 69
Receiving the Startup Error "Invalid Code Page Specified"ccccocviiinnnnnnn 70
The Default Code Pagecccoieviiiiiiiiiiiicc 70
Displaying All Relevant Natural Code Page Settingscccccocceiviiiiiiiiiiiinnnnnn. 70
Handling UTF-8 Encoding with Natural Codec.cccooiiiiiiiiniii, 70
Incorrectly Displayed Characterscccceeviiiiiiiiiiiiiiiiiiiciiceccee e 70
Receiving an Error When Editing a Natural Sourceccccoooviiiiniiiiiiiiinn, 71
Receiving an Error When Saving a Natural Sourcecccooooiiiii, 71
Finding out the Encoding of a Natural Sourceccccccoevviiiiiiiiiiiiiiiiiiiinnne, 71
Changing the Encoding of a Natural Sourceccooiiiiiiiiii, 71
Substitution Characters Used When a Character Cannot Be Converted 72
Using Natural Sources with Previous Natural Versions That Are Not Code Page
Enabledccooiiiiiii 72
INAEX et 73

iv Unicode and Code Page Support

Preface

This documentation describes how Natural supports Unicode and code pages on z/OS. It also
describes how Natural supports bidirectional languages.

This documentation is organized under the following headings:

Introduction

General information on code pages and the Unicode Standard, and
on how Unicode and code pages are supported in Natural.

Enabling Unicode and Code Page
Support

Information on ICU for Adabas & Natural (ICS), ICU data libraries,
support of code pages, and on transaction tables.

ICS 311

Information on ICS 311 based on ICU 66.1 and Unicode 13.0.

Configuration and Administration
of the Unicode/Code Page
Environment

Information on profile parameters which provide Unicode and code
page support, and on the encoding of code page data.

Development Environment

How to customize your environment and how Unicode is handled
by the Natural editors. Information on code page support for Natural
editors, system commands and Natural source objects.

Unicode and Code Page Support in
the Natural Programming Language

Information on the U format and on statements, logical condition
criteria, system variables, large and dynamic variables, and session
parameters which provide Unicode and code page support.

Unicode Input/Output Handling in
Natural Applications

How to display and enter Unicode data. Information on the Natural
Web I/O Interface client which is used in SPoD and runtime
environments.

Bidirectional Language Support

How Natural supports bidirectional languages.

Unicode Data Storage

Information on database access, and on the work file types and print
files which provide Unicode and code page support.

Migrating Existing Applications

About the impact of Unicode on existing applications. How to migrate
existing objects, add Unicode support to existing applications, and
how to migrate Natural remote procedure calls (RPC).

Help and Troubleshooting

Answers to frequently asked questions and help regarding frequently
received errors.

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON ..o e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Unicode and Code Page Support

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Unicode and Code Page Support 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Introduction to Unicode and Code Page Support

= About Code Pages and UNICOOEuuviiiiiiiiiii it
= About Unicode and Code Page Support in NatUFaloooiiiiiiiiiiiee e

Introduction to Unicode and Code Page Support

About Code Pages and Unicode

A traditional code page is a list of selected character codes, arranged in a certain order, that support
specific languages or groups of languages that share common scripts. A code page can contain a
maximum of 256 character codes. For character sets which contain more than 256 characters (for
example, Chinese or Japanese), double-byte code unit handling (DBCS) is used: DBCS code pages
are actually multi-byte encodings, a mix of 1-byte and 2-byte code points.

Code pages have the inherent disadvantage of not being able to be used to store different languages
in the same data stream. Unicode was designed to remove this restriction by providing a standard
encoding for all character sets which is independent of the platform, program, or language used
to access the data. With Unicode, a unique number is provided for every character.

A single number is assigned to each code element defined by the Unicode Standard. Each of these
numbers is called a “code point” and, when referred to in text, is listed in hexadecimal form fol-
lowing the prefix "U". For example, the code point "U+0041" is the hexadecimal number "0041"
(equal to the decimal number "65"). It represents the character "A" in the Unicode Standard which
is named “LATIN CAPITAL LETTER A”.

The Unicode Standard defines three encoding forms that allow the same data to be transmitted
in a byte, word or double word oriented format. A “code unit” is the minimal bit combination
that can represent a character in a specific encoding. The Unicode Standard uses 8-bit code units
in the UTF-8 encoding form, 16-bit code units in the UTF-16 encoding form, and 32-bit code units
in the UTF-32 encoding form. All three encoding forms encode the same common character repertoire
and can be efficiently transformed into one another without loss of data.

In the context of Natural, we are concerned with two of these encoding forms: UTF-16 and UTE-
8. Natural uses UTF-16 for the coding of Unicode strings at runtime and UTEF-8 for the coding of
Unicode data in files. UTF-16 is an endian-dependent 2-byte encoding; the endian format that will
be used depends on the platform. UTF-8 is a variable-length encoding.

For a complete description of Unicode, see the Unicode consortium web site at http://www.uni-
code.org/.

Note: For obtaining information on Unicode code points, you can use the SYSCP utility.

6 Unicode and Code Page Support

http://www.unicode.org/
http://www.unicode.org/

Introduction to Unicode and Code Page Support

About Unicode and Code Page Support in Natural

For Unicode support, the Natural data format U and specific statements, parameters and system
variables are used. For details, see the remainder of this documentation.

Most existing data is available in code page format. When converting this data to Unicode, it is
required that the correct code page is used. Natural provides the possibility to define the correct
code page on several levels:

* The system code page is used if a default code page is not defined in Natural.

If no code page is defined (CP=0FF), a default code page is not defined. CP=AUTO is intended to
adjust the Natural session to the code page of the current I/O device.

® The default code page is used when the Natural parameter CP is defined; this overwrites the
operating system's code page.

® The object code page which is defined, for example, for a source overwrites the default code
page for this object.

When using Unicode strings and code page strings in one application, Natural performs implicit
conversions where necessary (for example, when moving or comparing data). Explicit conversions
can be performed with the statement MOVE ENCODED.

In most cases, existing applications which do not require Unicode support, will run unchanged.
Changes can be necessary if the existing sources are encoded in different code pages. For more
information, see Migrating Existing Applications later in this documentation.

It is not possible to run an existing application and also support Unicode data without any changes
to the application. The Natural data format U has to be introduced in the application and it will
most probably not suffice to simply replace the A format definitions with U format definitions.
All code which assumes a specific memory layout of strings (for example, REDEFINE from alpha-
numeric to numeric format) has to be adapted.

Unicode characters are not permitted within variable names, object names and library names.
Unicode-based data are supported for Adabas and Db2.

Natural uses the International Components for Unicode (ICU) library for Unicode collation and
conversion. For more information, see http://userguide.icu-project.org/. See also ICU for Adabas
& Natural (ICS) later in this documentation.

Unicode and Code Page Support 7

http://userguide.icu-project.org/

3 Enabling Unicode and Code Page Support

= |CU for Adabas & Natural (ICS)
= |CS Module SAGICU

= Alternative ICS Modules for Support of Architecture LEVEISccvviiiiiiiiiiii e

= Support of Multi-Byte Code Pages

ICU Data Libraries
ICU Data Itemscvvvvvvvnneee.
Unicode and Code Page Support for Adabasviiiiiiiiiiiicee e
= Translation Tables

Enabling Unicode and Code Page Support

ICU for Adabas & Natural (ICS)

Code page conversion and Unicode support make use of functionality provided by ICU for Adabas
& Natural (ICS). If you want to enable Natural for Unicode and code page support, you have to
install the components provided with ICS: the ICS module SAGICU or an alternative ICS module
and ICU data libraries.

] Notes:

1. No ICS component must be installed to execute applications without Unicode and code page
support, that is, when the profile parameters CFICU and CP are set to OFF.

2. Information on the currently used ICU version and Unicode specification is provided in the
main menu of the SYSCP utility. See Invoking and Terminating SYSCP in the Ultilities documentation
of the Natural for z/OS documentation.

ICS Module SAGICU

If you want to enable Natural for Unicode and code page support, you need to link and load an
ICU data library during the installation of Natural as described in Installing ICU for Adabas &
Natural for z/OS (see ICS 311).

The ICS module SAGICU is intended to be used independently from localization data. It contains
no statically-linked code pages and locales. A dataset containing the entirety of the ICU localization
data, modulated in data items, is part of the ICS 311 delivery. Its name can be specified by the
CFICU STEPLIB parameter or statically in the JCL as a Natural steplib.

= Collation Services
= Code Pages and Locales

Collation Services

Another feature of this module is collation services. Collation services are used to compare Unicode
strings. They consider the fact that the alphabetical order varies from language to language. It is
a big challenge to accommodate the world's languages and writing systems and the different orders
that are used. However, the ICU collation service provides excellent means for comparing strings
in a locale-sensitive fashion. For example, in German locale, the character "A" is sorted between

n__n

"A" and "B"; in Swedish locale, it is sorted after "Z". In Lithuanian, the character "y" is sorted
between "i" and "k". The ICU implementation of collation services is compliant to the Unicode
Collation Algorithm and conforms to ISO 14651. The algorithms have been designed and reviewed

by experts in multi-lingual collation, and are therefore robust and comprehensive.

10 Unicode and Code Page Support

Enabling Unicode and Code Page Support

Code Pages and Locales

Statically-linked collation data (set of code pages and locale IDs) is not supported with ICS 311.

ICS 311 uses all of the ICU localization data.

The ICS module SAGICU provides the following code pages and locales:

Code Pages Locales

IBMO037 de_DE
IBM273 en_US
IBM1025 es_ES
IBM1026 fr FR
IBM1047 sv_SE
IBM1097

IBM01140

IBM01141

IBM01145

IBM01146

IBM01147

US (alias for IBM01140)

DE (alias for IBM01141)

ES (alias for IBM01145)

EN (alias for IBM01146)

FR (alias for IBM01147)
IBM-37_P100-1995,SWAPLFNL
IBM-1047_P100-1995,SWAPLENL
IBM-1140_P100-1997,SWAPLFNL
EBCDIC-XML-US

IBM-290 (Japanese code page SBCS)
IBM-930 (Japanese code page SBCS/DBCS)
IBM-939 (Japanese code page SBCS/DBCS)
IBM-1390 (Japanese code page SBCS/DBCS)
IBM-1399 (Japanese code page SBCS/DBCS)
IBM-932 (Japanese code page ASCII MBCS)
IBM-942 (Japanese code page ASCII MBCS)
IBM-943 (Japanese code page ASCII MBCS)
EUC-JP (Japanese code page ASCII MBCS)
IBM-420 (RTL code page)

IBM-424 (RTL code page)

IBM-916 (RTL code page)

Unicode and Code Page Support 11

Enabling Unicode and Code Page Support

Alternative ICS Modules for Support of Architecture Levels

If your Natural system runs on z/OS with an IBM processor with architecture level 9 or higher,
you can replace the ICS module SAGICU by SAGICUA9. SAGICUA9 is built to use advanced machine
instructions introduced with IBM's ESA/390 and z/Architecture. You can use the system command
TECH (see the System Commands documentation) to find out the architecture level supported on
your current machine.

SAGICUA9 improves the execution performance, especially for Natural statements that use Unicode
variables or code-page encoding instructions (for example, MOVE ENCODED). For more information
on architecture levels, refer to the related documentation from IBM (z/Architecture, Principles of
Operation).

 Caution: An operation exception error (abend code SOCI) can occur if the ICS module
SAGICUA9 is used, but the underlying machine architecture level is lower than 9.

ICU Data Libraries

If you want to enable Natural for Unicode and code page support, you need to link and load an
ICU data library during the installation of Natural as described in Installing ICU for Adabas &
Natural for z/OS.

ICU data libraries are supplied with the following ICS data modules where nn denotes the current
version of the module as announced in the current Natural for z/OS > Release Notes.

Data Module | Description

ICSDTnnE |Contains the most popular code pages and locales. The code pages are already declared in
NATCONFG.

ICSDTnnd |Same as ICSDTnnE, but enhanced by Japanese code pages. ICSDTnnJ is already linked to the
ICS module SAGICU (or an alternative ICS module). It contains the above mentioned code
pages and locales.

ICSDTnnX |Contains all possible converters and locales offered by the currently supported ICU version.
It supports about 230 different code pages (predominantly EBCDIC code pages) and 238 locales.
Therefore, the module size is huge.

ICSDTnnX supports all code pages and locale IDs which are supported by the currently
supported ICU version (see http://demo.icu-project.org/icu-bin/convexp).

12 Unicode and Code Page Support

http://demo.icu-project.org/icu-bin/convexp

Enabling Unicode and Code Page Support

ICU Data Items

The ICU data items supported by Natural include converters and collators. For example: a con-
verter is used when a MOVE ENCODED statement executes, and a collator when strings are compared
in an IF statement.

An ICU data item is either statically linked to an ICU data library or it is dynamically loaded on
request during the Natural session.

ICU data items are supplied as loadable modules on the ICS data set supplied for installation of
Natural, and must be accessible through the Natural steplib chain.

When a data item is used for the first time, ICS attempts to open it from the linked or loaded ICU
data library. If no data item is associated with a library, ICS attempts to dynamically load the data
item from the ICS data set.

This section covers the following topics:

= Naming Conventions for Data Item Modules
= |CU Dynamically Loaded Single Data Items

Naming Conventions for Data Item Modules

The name of a data item module in the ICS data set is restricted to eight characters. As indicated
in the table below, it consists of the following;:

= A prefix (I),
" A two-digit ICU version (xx),
® A logical group identifier (C, B, S, L, M or D), and

® A four-digit sequence number (nnnn).

Module Name | Contents

IxxCnnnn |Charset mapping tables (converter modules)

IxxBnnnn |Break iterators

IxxSnnnn |Collators (collation services)

IxxLnnnn |Localization (formatting, display names and other localized data)

IxxMnnnn |Miscellaneous data (rule-based number formats and transliterators)

IxxDnnnn |Base data

Example:

158C0074 is the name of a converter for ICU Version 58.2 and code page ibm-1148_P100-1997.

Unicode and Code Page Support 13

Enabling Unicode and Code Page Support

However, in a MOVE ENCODED statement, Natural expects the long name of the code page that cor-
responds to the data item module. Any valid alias name of the code page can be used. The name
of the code page is automatically mapped to the eight-character short name when the data item
module is loaded.

For further information, see the appropriate ICU web site.
ICU Dynamically Loaded Single Data ltems

Using dynamically loaded single data item modules allows for extensive flexibility. Data is loaded
on demand and supports all code pages. A dataset containing all of the ICU localization data,
modulated in single data items, is part of the ICS 311 delivery.

A single data item module is loaded when first accessed (e.g. by a MOVE ENCODED statement) and
is available for future use instantly without the need to reload. Only the already used code pages
will be kept in memory and no statically-linked data or a separate data library as was the case
with previous ICS versions.

Unicode and Code Page Support for Adabas

If a Natural session is enabled for code page or Unicode support, you should ascertain that Natural's
Adabas user session also uses the appropriate user encoding for accessing Adabas data.

Because Adabas uses Entire Conversion Services (ECS) for conversion, the ECS name must be
specified in the related NTCPAGE entry in module NATCONFG. To ascertain that Natural's Adabas
user session uses the correct code page, specify the ACODE and/or WCODE option in the OPRB para-
meter for the databases used.

For more information on Adabas Unicode and code page support conversion, see the Adabas for
z/OS documentation.

Translation Tables

Natural uses various tables for character translation and character property definition. The contents
of the tables can be modified via profile parameters (TAB, UTAB1, UTAB2 and SCTAB) during the start
of a Natural session.

If Natural is running with code page support (that is: the CP profile parameter is set to a value
other than 0FF), the tables cannot be modified by the user. In this case, the following Natural
startup message will be issued to notify the user that the above mentioned session parameters are
not considered:

14 Unicode and Code Page Support

Enabling Unicode and Code Page Support

Character translation parameter table-name ignored due to CFICU=ON.

Natural adjusts the tables automatically, according to the code page used for the Natural session
(value of the system variable *CODEPAGE). See also Translation Tables in the Operations documentation.

Support of Multi-Byte Code Pages

Natural supports multi-byte code pages (MBCS) such as IBM-939 which is a Japanese code page
based on EBCDIC and DBCS. Multi-byte code pages can be selected using the CP parameter (by
setting CP to AUTO (if supported) or to the name of a code page). If Natural is running with a multi-
byte code page, it uses internal I/O buffers which are based on Unicode. This means that all data
written into the internal I/O buffers by an I/O statement are converted to Unicode. Due to the re-
quirements of Unicode and multi-byte code pages, the size of the I/O buffers is increased as com-
pared to the traditional I/O since Unicode characters need twice as much space as EBCDIC char-
acters and enhanced attributes are needed to describe a field.

In the case of single-byte code pages (SBCS) such as IBM-1140, the traditional EBCDIC-based I/O
is still used to preserve resources.

Unicode and Code Page Support 15

16

4 ICS 311

= Data Scope and Data Handling
= The CFICU STEPLIB Parameter

= Validating the CFICU STEPLIB Parameter

= Using ICS31 in Natural subtask (needs APF-authorized ICS load library)ccoocoviiiiiinii

17

ICS 311

This chapter covers the following topics:

Data Scope and Data Handling

ICS 311 provides all of the available ICU customization data, modulated in so-called Data Items.
The dataset containing the data items is part of the delivery, along with the ICS 311 load modules
SAGICU and SAGICUA9.

A data item (collator, converter) is located on the disk in the dataset. The data item is loaded in
the memory on demand (e.g. by a MOVE ENCODED statement). Once a data item is loaded, it is
available for future use instantly without the need to reload.

This allows for the ICS 311 load modules SAGICU and SAGICUA9 to be kept minimal in size.

A new SYSCP function to list all loaded data items has been introduced (see SYSCP function Loaded
Code Pages in section Utilities > SYSCP Ultility - Code Page Administration).

The CFICU STEPLIB Parameter

Data files provided with Natural are no longer supported with ICS 311. ICU localization data is
loaded only dynamically from a dataset containing the data items (collators, converters, etc.).

The name of this dataset can be:

= statically specified in the JCL as a Natural Steplib.
® dynamically allocated with the CFICU STEPLIB parameter (see section The CFICU STEPLIB Para-
meter in Unicode and Code Page Support > ICS 311).

ICS uses both allocation methods to search for data items, starting from the CFICU STEPLIB dataset
(if given) and the statically specified Natural Steplibs in the JCL.

This dynamic approach allows for flexibility. The JCL must not be changed in order to run Natural,
only a Natural session parameter must be added.

The dataset given by the CFICU STEPLIB parameter will be dynamically allocated only once by
the first Natural session in a given TP system under the DD Card ICSxxxDD (xxx corresponds to
ICS version) and used by all Natural sessions afterwards.

Example: CFICU=(STEPLIB="I311ITEMS.LOAD")

18 Unicode and Code Page Support

ICS 311

Validating the CFICU STEPLIB Parameter

The first Natural session in a given TP system will try to validate the CFICU STEPLIB parameter.
If the validation is successful, ICS will initialize. All following Natural sessions in the TP system
will disregard the CFICU STEPLIB parameter and use the dynamically allocated dataset of the first
session. Validation criteria for the dataset name include the following:
" the dataset must exist.
" the dataset name must be enclosed in ' ' - see example above.
® the dataset name must conform to the z/OS naming conventions:

* maximal length of 44 characters

" no special characters allowed

" must not be a high level qualifier, i.e. must contain at least one dot "'
If the validation is not successful, Natural error NAT3414 STEPLIB DSN <data set name> cannot
be Toaded will be issued. The next Natural session will try to validate the STEPLIB parameter and
initialize ICS again. This iteration will continue until a successful ICS initialization is reached. All

sessions after a successful ICS initialization will disregard the STEPLIB parameter and use the
already allocated resource.

Using ICS31 in Natural subtask (needs APF-authorized ICS load library)

Under the current implementation of NPR, the PRD.ICSnnn.MVSLOAD must always be APF-
authorized. This is independent of whether it is part of the STEPLIB concatenation or specified
with the STEPLIB parameter of CFICU.

The scenarios for using ICS31 in a Natural subtask are:

® When running multiple Natural sessions / subtasks from an Entire System Server (NPR) node.
® When NOP, NOM, EOR are automated to be run by an ESS/NPR node.

® When running an NDV server.

Unicode and Code Page Support 19

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_155.htm

20

5 Configuration and Administration of the Unicode and Code

Page Environment

= Profile Parameters and Macros

= Encoding Information

21

Configuration and Administration of the Unicode and Code Page Environment

Notation vr:

When used in this document, the notation vr represents the 2-digit ICU version number.

Profile Parameters and Macros

This section lists the profile parameters and macros which are used in conjunction with Unicode

and code page support.

Unless otherwise noted, the profile parameters and macros mentioned in this section are explained
in detail in the Parameter Reference.

Parameter or Macro

Description

CFICUor NTCFICU macro

Enables Unicode support for various Unicode settings.

See also CFICU Parameter and CFICU and CP: Session Modes

CMPO or CPAGE keyword
subparameter of NTCMPO
macro

Generates code page-sensitive Natural programs.

See also CPAGE Compiler Option.

CcP

Defines the default code page for Natural. This code page is used for the runtime
and development environment if not superposed with a code page defined for
a single object (for example, for a Natural source).

Only platform-suitable code pages can be used. This means, for example, that
no ASCII code page can be defined for a z/OS platform. An initialization error
message occurs if a wrong code page is used.

See also CFICU and CP: Session Modes.

CPCVERR

Specifies whether a conversion error that occurs when converting from Unicode
to code page or from code page to Unicode or from one code page to another
code page results in a Natural error or not.

This parameter is not regarded for the conversion of Natural sources when
loading them into the source area or when cataloging them.

It is not regarded whether a Unicode field is converted into the code page before
an I/O on a terminal emulation. In this case, the substitution character defined
by ICU is replaced by the place holder character which is defined in NATCONFG.

CPOBJIN

Specifies the code page in which the batch input file for data is encoded. This
file is defined in the data set CMOBJIN.

CPPRINT

Specifies the code page in which the batch output file shall be encoded. This file
is defined in the data set CMPRINT.

CPSYNIN

Specifies the code page in which the batch input file for commands is encoded.
This file is defined in the data set CMSYNIN.

22

Unicode and Code Page Support

Configuration and Administration of the Unicode and Code Page Environment

Parameter or Macro Description

NTCPAGE macro In the NATCONFG module, this macro defines a code page and all related
information, such as place holder character, locale ID and collation tables.

See also NTCPAGE Macro.

NTCPAGE and NATCONFG are explained in detail in the Operations documentation.

OPRB or NTOPRB macro |Sets the ACODE and/or WCODE option to define the user encoding if the used
Adabas database is enabled for UES (universal encoding support).

PRINT or CP keyword Defines the code page for a report.
subparameter of NTPRINT

macro

SRETAIN Specifies that all existing sources have to be saved in their original encoding
format. See also Customizing Your Environment.

See also:

® Natural in Batch Mode in the Operations documentation.

® For valid code pages, see http://www.iana.org/assignments/character-sets.
This section covers the following topics:

= CFICU Parameter

= CFICU and CP: Session Modes
= CPAGE Compiler Option

= NTCPAGE Macro

= Natural Development Server

CFICU Parameter

The parameter CFICU and its subparameters are explained in detail in the Parameter Reference. Some
of the subparameters have an impact on the performance.

If collation services are used to compare Unicode strings, both strings are checked whether they
are normalized or not. The check itself consumes a lot of CPU time. If you are sure that the strings
are already normalized, you can switch off the check (COLNORM=0FF).

In Unicode, it is possible to represent the same character as one code point or as a combination of
two or more code points. For example, the German character "a" can be represented by "U+00E4"
or by the combination of the code points "U+0061" and "U+0308". The conversion from Unicode
to, for example, IBM01140 treats combined characters as single code points and produces an "a"
followed by a substitution character since code point "U+0308" is not represented in the target
code page. With CNVNORM=0N, a normalization is performed right before the actual conversion. The
normalization consumes additional CPU time and temporary storage. If you are sure that no

combining characters are involved in MOVE statements (except MOVE NORMALIZED), you should set

Unicode and Code Page Support 23

http://www.iana.org/assignments/character-sets

Configuration and Administration of the Unicode and Code Page Environment

CNVNORM to OFF to increase performance. Note that all possible combinations are represented by a
single coded Unicode code point.

Conversion from Unicode to code page and vice versa is not high-performance. The reason is that
the ICU implementation is written in C++ and that it covers nearly all Unicode, code page and
language aspects in the world. However, some code pages can be mapped to Unicode (and vice
versa) via translation tables to accelerate conversion. Accelerator tables are activated with the
CPOPT subparameter. If it is set to ON, Natural automatically creates two accelerator tables during
session initialization by using ICU conversion functions. The first table (with a size of 512 bytes)
is used for conversion from code page to Unicode and the other table (with a size of 65535 bytes)
is used for conversion from Unicode to code page. During a Natural session, all conversions are
then executed via the accelerator tables instead of ICU calls. Accelerator tables are only provided
for the default code page (*CODEPAGE). Temporary code pages (for example, in MOVE ENCODED
statements) do not use accelerator tables if the module NATCPTAB is not linked. If it linked, up to
30 accelerator tables based on the ICU database are used to speed up performance.

CFICU and CP: Session Modes

The parameters CFICU and CP can be used to adjust Natural to specific purposes:

Settings Description

CFICU=0FF, CP=0FF |Compatibility mode. For running existing applications without Unicode and
without code page support. Legacy translation tables are used for I/O translation.
Compared with former versions, there is no significant increase in resource
consumption (CPU time and buffer usage). This mode does not need the ICS
module SAGICU (or an alternative ICS module) to be linked to the Natural
nucleus.

CFICU=0N, CP=0FF For new applications that are using Unicode and code page conversion (MOVE
ENCODED) but not default code page support. Therefore, the system variable
*CODEPAGE is empty. It is possible to use U format variables, but it is not possible
to use, for example, MOVE A TO U, since this requires the default code page
information. The error NAT3411 will be issued indicating that no default code
page is available.

CFICU=ON, CP=value" |For new applications that are using full Unicode as well as code page support.

CFICU=0FF, CP=value |This combination does not make sense, because code page support needs ICU
’ services for conversion. Therefore, CF I CU=0N is enforced in this case and a session
initialization message is issued.

“where valueis any value other than OFF.

24 Unicode and Code Page Support

Configuration and Administration of the Unicode and Code Page Environment

CPAGE Compiler Option

The compiler option CPAGE creates objects that can be executed with a code page which is different
from the code page used at creation time. This means that all alphanumeric constants of the object
which are coded with the code page at creation time have to be converted to the code page which
is active at execution time. To make it possible for the Natural object loader to find and convert
alphanumeric constants, an additional table is created by the compiler. This increases the size of
the generated object, depending on the number of used alphanumeric constants. The conversion
at runtime consumes additional CPU time. If the default code page (value of the system variable
*CODEPAGE) is the same as the code page at creation time or if the session has no default code page
(CP=0FF), no conversion is done. Conversion errors are ignored, independent from the setting of
the parameter CPCVERR. If the compiler option CPAGE is set to OFF, no conversion is performed at
runtime and the alphanumeric constants are treated as they are.

The following sample program is cataloged with code page IBM01141 (German) and is executed
with default code page IBM01140 (us). The characters "A", "O" and "U" are defined in both code
pages, but at different code points.

Example 1 - CPAGE=0FF:

OPTIONS CPAGE=O0FF
WRITE *CODEPAGE 'A0U"
END

Output with code page IBM01140 (us):

Page 1
IBM01140 ¢\ !

Example 2 - CPAGE=0N:

OPTIONS CPAGE=ON
WRITE *CODEPAGE 'AQU"
END

Output with code page IBM01140 (us):

Page 1

IBM0O1140 AOU

Unicode and Code Page Support 25

Configuration and Administration of the Unicode and Code Page Environment

NTCPAGE Macro

The most common standard for code page names is the IANA name. Therefore, the system variable
*CODEPAGE contains the IANA name of the default code page. A code page is qualified by its Coded
Character Set ID (CCSID). Currently, Adabas uses the Entire Conversion Service definition
(ADAECS). The macro NTCPAGE can be used to assign these different names to the unambiguous
IANA name. NTCPAGE is part of the Natural configuration module (NATCONFG).

It does not matter whether the IANA name, the CCSID/CCSN or the alias name is entered with
the CP parameter. The alias name can be a user-defined name which is used to assign a more sig-
nificant name to the code page. In any case, *CODEPAGE contains the JANA name of the selected
code page.

In addition, a place holder character can be defined for a code page. It overwrites the default
substitution character of that code page, which is normally a non-displayable character (for example,
H’3F’ in an EBCDIC code page). The place holder character can be used to avoid that non-display-
able characters are sent to terminals.

Example:

NTCPAGE TANA=IBM01140,CCSID=1140,ECS=1140,ALIAS="US’,PHC=003F

The values 1BM01140, 1140 or US can be entered with the CP parameter to activate the code page.
*CODEPAGE contains the name IBM01140. The substitution character of the code page will be replaced
by "U+003F", which is a quotation mark (?).

The number of available code pages depends on the used ICU data library.

All code pages defined in the currently used data package can be used by Natural. An NTCPAGE
entry is only necessary if an alternative alias name or place holder character is desired.

Natural Development Server

The following configuration parameter is available with Natural Development Server (NDV):

Settings Description

TERMINAL_EMULATION=WEBIO |Specifies that the Natural Web I/O Interface client (which supports
Unicode) is used for input and output.

26 Unicode and Code Page Support

Configuration and Administration of the Unicode and Code Page Environment

Encoding Information

The code page information of the object is part of the object directory displayed with the LIST
system command. For details, see Displaying Directory Information in the System Commands docu-
mentation.

The encoding of code page data can be specified on different levels.
Level 1 - Default Code Page

The default code page can be defined with the CP parameter.

Level 2 - Code Page for a Single Object

A code page can be defined for Natural sources, batch input (CPOBJIN, CPSYNIN) and output files
(CPPRINT).

If a code page is defined at object level, this overwrites the default code page.

Unicode and Code Page Support 27

28

6 Development Environment

= Development Environment for APPlICAtIONSvviiiiiiiiii e

= Customizing Your Environment ..

= Editors in the SPoD Environment

= Code Page Support for Editors, System Commands, and UtIlIIes ...
= Code Page Support for Natural SOUrCe OBJECESvvvviieiiiiiiiiiiee e

29

Development Environment

Development Environment for Applications

The development environment for Unicode applications is Natural Single Point of Development
(SPoD).

Matural Studio

Program Editor

Diata Editor
Map Editor
UTF-16
A A
Oc 5
i ¥
o o =
B= g
k4 ¥

Mainframe Server

Program

Code Page

1 Conversion error handling

In a SPoD environment, the Natural objects of a Unicode application which are located on a Nat-
ural Development Server (NDV) can be modified using Natural Studio. If supported by the server,

the sources are exchanged between client and server in UTF-8 format.

On NDV servers, the objects are stored with the default or their original encoding, depending on

the setting of the profile parameter SRETAIN.

30 Unicode and Code Page Support

Development Environment

Customizing Your Environment

If the parameter SRETAIN is set to OFF, all sources are saved with the default code page. You have
to be careful with this setting because it may lead to improper code page information if you have
sources which were created with an earlier Natural version. In this case, the encoding information
of the source is unassigned and the source is always opened with the default code page (value of
the system variable *CODEPAGE). This will often work even if the default code page is not the correct
encoding of the source. Some language-specific characters will be displayed incorrectly in this
case. If such a source is opened with the wrong code page and is saved with SRETAIN being set to
0N, no encoding will be stored for the source; the source can later be opened correctly if Natural
is started with the correct default code page. However, once you have saved the source with
SRETAIN being set to 0FF, the default code page will be saved as the encoding of the source; from
this time on, the source will only be opened with this code page. For this reason, you should use
this setting only if you are certain that all of your Natural sources are encoded in the default code

page.

Editors in the SPoD Environment

The Natural for Windows editors are fully Unicode-enabled. Via SPoD they can also be used for
z/OS sources. The editors provided with Natural for z/OS are not Unicode-enabled.

| Note: The editors provided with Natural for z/OS provide code page support. See Code
Page Support for Editors, System Commands, and Utilities.

When a source is opened with an editor in Natural Studio (Natural for Windows), the content of
the source will be converted from the corresponding code page to Unicode before it is loaded into
the editor. This will guarantee that all characters can be displayed correctly even if the source
contains characters which are not included in the system code page. If the conversion from the
source's code page to Unicode fails, an error will be displayed and the editor is not opened. In this
case, the user has to define the correct encoding of the source. The source encoding can be changed
in the Properties dialog box (see Properties for the Nodes in the Using Natural Studio documentation).

Using the Natural for Windows program editor, you can convert text constants into their hexa-
decimal Unicode representations (see Converting to Hexadecimal Format in the Program Editor section
of the Natural for Windows Editors documentation). If you are developing for a platform where
UTF-8 sources are not preferred, you can thus enter all characters for a Unicode constant, select
all the characters of the constant, convert them to their hexadecimal representation and then add
the "UH" prefix for Unicode hexadecimal constants. Furthermore, when you hover the mouse
pointer over a character or a selected character range of a text constant, a tool tip shows the corres-
ponding hexadecimal Unicode representation.

Unicode and Code Page Support 31

Development Environment

Code Page Support for Editors, System Commands, and Utilities

The following topics are covered below:

= Editors
= System Commands and Ultilities

Editors

The program, map and data area editors are not Unicode-enabled. Instead the sources are stored
with code page information. According to the setting of the profile parameter SRETAIN, Natural
sources with code page information may be converted automatically from the current code page
of the source into the default code page of the current Natural session (value of the system variable
*CODEPAGE) if the source is loaded into the editor. If there are any characters that cannot be conver-
ted, a window displays a code point conversion error and asks for substitute values for those code
points that cannot be converted. The display of this message is independent from the current setting
of the parameter CPCVERR. In this case, the user can decide to open the editor with or without
converting the source into the default code page. Saving or stowing a converted source will save
the new code page information. Sources without code page information (for example, sources that
have been saved or stowed with previous Natural versions) are loaded into the editors without
any conversion. According to the setting of the profile parameter SRETAIN, the current code page
information of the source will be retained.

Inserting sources with the . I command or the split screen function will also convert sources, if
necessary, according to the setting of the profile parameter SRETAIN. If characters cannot be con-
verted, the defined substitution character will be inserted instead.

The check and conversion of the source is performed when the editor is started, not when the
program is loaded into the source area. If a program is executed via RUN program-name, a conversion
is not performed. This causes different behavior, depending on whether RUN program-name is
entered on the NEXT screen or on an editor screen. If RUN program-name is entered on the NEXT
screen, no conversion follows; if it is entered on an editor screen, the editor is started right after
the execution of the program and a conversion is performed.

See the table below for the code page that is assigned to an existing Natural source that is saved
or stowed, depending on the values of the profile parameters SRETAIN and CP.

32 Unicode and Code Page Support

Development Environment

Original Source Code Page
Information

Setting of SRETAIN

Source Code Page Information

after SAVE or STOW if CP is

Set to a Value other than OFF

Source Code Page

Information after SAVE or

STOW if CP is setto OFF

Source without code
page information

SRETAIN=0ON
SRETAIN=(ON,EXCEPTNEW)

No code page information

No code page
information

Source without code
page information

SRETAIN=0FF

Code page resulting from
evaluation of CP

No code page
information

Source is encoded in
code page 1

SRETAIN=0N
SRETAIN=(ON,EXCEPTNEW)

Original code page (code
page 1)

Original code page
(code page 1)

Source is encoded in
code page 1

SRETAIN=0FF

Code page resulting from
evaluation of CP

Original code page
(code page 1)

The table below shows the code page that is assigned to a new Natural source that is saved or
stowed, depending on the values of the profile parameters SRETAIN and CP.

Source Code Page Information after

Cp

Setting of SRETAIN Source Code Page Information after SAVE or
SAVE or STOW if CP is set to OFF
STOW if CP is Set to a Value other than OF F
SRETAIN=0N Code page resulting from evaluation of |No code page information

SRETAIN=0FF

CP

Code page resulting from evaluation of

No code page information

SRETAIN=(ON,EXCEPTNEW)

No code page information

No code page information

System Commands and Utilities

LIST

By default, the system command LIST displays sources as they are stored in the system file without

any conversions.

The CONVERTED option of the LIST command converts the source into the default code page (value
of the system variable *CODEPAGE) if the code page information of the source is provided. All non-
convertible characters are then replaced by the defined substitution character.

Unicode and Code Page Support

33

Development Environment

LISTDIR

The system command LIST DIR shows the used code page information of a Natural source in the
directory window.

SCAN

Similar to the editors, the system command SCAN converts the sources before executing the actual
SCAN command.

Object Handler (SYSOBJH)

The Object Handler unloads and loads sources with different code page information and preserves
the original code page information.

The transfer format option UTF-8 converts sources from any code page to UTF-8 format while
unloading, and stores information about the original code page in the work file. The corresponding
load function converts the source back to the original code page or to another code page, if specified.
This option can also be used to provide code page information for sources which have been saved
or stowed with previous Natural versions and which therefore do not contain any code page in-
formation.

Unload and load sources in internal format will keep the code page information, if available.
SYSCP Utility - Code Page Administration

The SYSCP utility can be used to obtain information on code pages and to check or change the code
page assignment of a source.

Code Page Support for Natural Source Objects

The Natural compiler, the editors and the Natural system file do not support object sources that
are encoded in Unicode. Unicode constants coded in an object source are saved in the default code
page, and the cataloged object contains the Unicode code points. The only way to define Unicode
constants which do not have an equivalent in the default code page is to use hexadecimal definitions
(UH).

Since Natural sources are not converted to Unicode or UTF-8 before saving, they can still be read
by previous Natural versions. Code page information is stored in the header of the source. The
code page information in the header is simply ignored if a source is accessed by a Natural version
which is not code page enabled.

= Programs, Data Areas, Maps and Map
= DDMs

34 Unicode and Code Page Support

Development Environment

= Error Messages
= Help Texts

Programs, Data Areas, Maps and Map

These object sources are not stored in Unicode format but in the default code page of the current
Natural session. The name of the code page is stored in the directory of the source. Therefore, as
compared to previous Natural versions, the size of a source remains unchanged. But there is a
check by the editor whether the code page of the source is equal to the default code page of the
Natural session. If the code pages are different, the source is converted into the default code page
with the possibility of conversion errors. If a character of the source is not mapped in the default
code page, a window appears in the editor to allow manual conversion of the failed characters.
For example, a program which has been created with code page IBM01140 contains the following
line:

WRITE '100 €'

If the program is edited again with Natural running with code page IBM037, a conversion error
occurs since the character "€" is not mapped in code page IBM037.

Note that the conversion is done when the editor is started and not when the source is loaded.
DDMs

DDMs are not stored in Unicode format but in the default code page of the current Natural session.
The name of the code page is stored in the directory of the DDM. Note that there is no DDM on
the system file. As compared to previous Natural versions, the size of a DDM increases slightly.
When reading a DDV, there is a check by the editor whether the code page of the DDM is equal
to the default code page of the Natural session. If the code pages are different, the DDM is converted
into the default code page with the possibility of conversion errors. If a character of the DDM is
not mapped in the default code page, a window appears in the editor to allow manual conversion
of the failed characters. For example, a DDM which has been created with code page IBM01140
contains the following line:

* 100 €

If the DDM is edited again with Natural running with code page IBM037, a conversion error occurs
since the character "€" is not mapped in code page IBM037.

Unicode and Code Page Support 35

Development Environment

Error Messages

Natural error messages are not stored in Unicode format but in the default code page of the current
Natural session. The name of the code page is stored in an additional Adabas field on the system
file. There is a check by the SYSERR utility and by user exits whether the code page of the error
message is equal to the default code page of the Natural session. If the code pages are different,
the error message is converted into the default code page. Errors will be ignored - this means, the
substitution character (or if defined, the place holder character) will be used.

Help Texts

Help texts are always maintained with code page IBM01140 (English). They are not stored with
a code page definition. If the default code page of the Natural session is not IBM01140, the help
text is converted into the default code page. Errors will be ignored - this means, the substitution
character (or if defined, the place holder character) will be used.

36 Unicode and Code Page Support

7 Unicode and Code Page Support in the Natural Programming

Language

= Natural Data Format U for Unicode-Based Datac.evvviiiiiiiiiiiiiieee e 38
L (=111 01 PSSP U T OPPPRPPPPRR 39
m | 0gical CONAIION CrIEEIIAeee ittt e e e e 43
B SYSIEM VAMADIES ... 44
= Large and DYNamiC Vari@DIESvvuveeiiiiiiiiiiiiiie ittt aaaaaaas 44
B SESSION ParamMEIErS ... e —————————————————— 44
B SAMPIE PIOGIAMS ...ttt ettt e e e e ettt e e e e e e e et e e e e e e e e e aaeea e 47

37

Unicode and Code Page Support in the Natural Programming Language

Natural Data Format U for Unicode-Based Data

In Natural, you can specify Unicode strings with the format U and U constants.

® Format U
With format U, you can define data which holds Unicode strings. The Natural data format U is
internally UTF-16.

See also Format and Length of User-Defined Variables in the Programming Guide.

* U Constants
You can define Unicode constants with the prefix "U". For example:

U'Apfel’

The prefix "UH" can be used for defining Unicode constants in hexadecimal format. Four hexa-
decimal digits represent one UTF-16 code unit as defined by the Unicode Standard. So the
overall length must be a multiple of four. For example, if you need the hexadecimal form of

U'Apfel’

you need the UTF-16 code units for "A", "p", "f", "e" and "1" (which are "U+00C4", "U+0070",
"U+0066", "U+0065" and "U+006C") and you have to combine them to the following hexadecimal
string:

UH"00C4007000660065006C"
See also Unicode Constants in the Programming Guide.

The data format U is endian-dependent. This has to be considered when moving between the
formats B and U.

U versus A

The advantage of the U format (as compared with the A format) is, that it can hold any combinations
of characters from different languages and that it does not depend on the default code page (value
of the system variable *CODEPAGE). Moreover, the U format makes it easier to share data between
different platforms; no more conversions (for example, from EBCDIC to ASCII) are necessary.

On the other hand, U format data consumes more memory than A format data. For languages in
which most strings can be represented by single-byte encoding, U format will result in strings
occupying twice the space that was previously required. However, for East Asian languages, the
memory consumption will often not be higher.

38 Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

Statements

Basically, U format can be used in most statements which allow A format. However, if a Natural
object name is given as an operand of a statement (for example, in the CALLNAT statement), U
cannot be used because Natural object names have A format. For information on a specific statement,
see the Statements documentation.

Basically, A and U format can be used together in one statement, for example:

EXAMINE S FOR P WITH DELIMITER D REPLACE R
where S is U format, and P, D and R are A format.

In the above example, the variables P, D and R are temporarily converted into the target format U
before the actual execution of the EXAMINE statement. The conversion from Unicode to code page
or vice versa requires calling an ICU function. The conversion requires additional computing time
and additional memory. This disadvantage is even greater with very large variables. To avoid
frequent conversions, it is recommended that you use only one format within one statement. When
all operands in the above example are specified in either U format or A format, a conversion is
not necessary. However, if you choose to specify only U operands, this variant will be slower since
(due to its nature) this operand type consumes more resources; one character is then coded with
2 bytes (instead of 1 byte which is used with A format).

With a conversion (especially from U format to A format), there is always the risk that characters
cannot be represented in the target code page. For example, you want to convert the Unicode
character "U+05D0" (Hebrew letter Alef) into the code page IBM01140 (English). Since this character
is not contained in the code page IBM01140, either the substitution character for this code page is
used, or the place holder which was specified when defining the code page in NATCONFG. When
the parameter CPCVERR is set to ON, an error message will be issued in this case, indicating a con-
version error. In any case, the original information will be lost.

The following statements are particularly affected when using Unicode:

= MOVE NORMALIZED

= MOVE ENCODED
EXAMINE

PARSE JSON

PARSE XML

REQUEST DOCUMENT
= DEFINE PRINTER

Unicode and Code Page Support 39

Unicode and Code Page Support in the Natural Programming Language

= CALLNAT (RPC)

MOVE NORMALIZED

Normalization in Unicode: A process of removing alternate representations of equivalent sequences
from textual data in order to convert the data into a form that can be binary-compared for equival-
ence. The Unicode Standard defines different normalization forms. The normalization form that
results from the canonical decomposition of a Unicode string, followed by the replacement of all
decomposed sequences by primary composites where possible, is called “Normalization Form
Composed” (NFC).

Natural assumes that all Unicode data is in NFC format to assure that string operations can be
performed without partial truncation of a Unicode character. Natural conversion operations assure
that the resulting Unicode string is in NFC. If Unicode data is received from outside of Natural
and it is not guaranteed that the data has NFC format, the MOVE NORMALIZED statement can be ap-
plied.

Example:
Character Sequence NFC
é (U+00EA) é (U+00EA)

e (U+0065) + A (U+0302) | (U+00EA)

Note: Concatenating two or more strings in NFC format can result in not-NFC format.

MOVE ENCODED

An implicit conversion between Unicode and the default code page (value of the system variable
*CODEPAGE) is performed when moving strings from U to A or vice versa with the MOVE statement.

Furthermore, the MOVE ENCODED statement can be used for conversion between different code pages
or from any available code page to Unicode and vice versa. This can be helpful if data is coming
from outside of Natural and this data is coded in a code page which differs from the default code
page. But even for conversions between the default code page and Unicode, this statement can be
used if you want to obtain a potential conversion error with the GIVING clause; if CPCVERR is set to
ON, the MOVE statement will stop with a runtime error in this case.

If a character cannot be converted, it depends on the setting of the CPCVERR parameter whether a
substitution character is used for this character or whether the conversion fails.

This statement can also be used for conversion from U data into UTE-8 format.

Note: If you convert data to a code page which differs from the default code page, it is re-
commended not to use this data in I/O. I/O is only meaningful with the default code page.

40 Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

EXAMINE

A “grapheme” is what a user normally thinks of as a character. In most cases, a Unicode code
point is a grapheme, however, a grapheme can also consist of several Unicode code points. For
example, a sequence of one base character and one or more combining characters is a grapheme.

Example: "a" (U+0061) + "." (U+0323) + "*" (U+0302) defines one grapheme which is displayed as
follows:

Note: If a base/combining character sequence is normalized, this does not mean that the

sequence is always replaced by a pre-composed character, because not all characters are
available in a pre-composed format.

A “supplementary code point” is a Unicode code point between "U+10000" and "U+10FFFF". A
supplementary code point is in UTF-16, represented by a surrogate pair which consists of two
code units where the first value of the pair is a “high-surrogate code unit”, and the second is a
“low-surrogate code unit”. Such characters are generally rare, but some are used, for example, as
part of Chinese and Japanese personal names, and therefore support for these characters is com-
monly required for government applications in East Asian countries.

The string handling statements such as EXAMINE and its SUBSTRING option work on UTF-16 code
units. It is the user's responsibility that the code does not separate graphemes or surrogate pairs.

However, the clauses CHARPOSITION and CHARLENGTH of the EXAMINE statement (see Syntax 3 - EX-
AMINE for Unicode Graphemes) can be used to ask for the start and length (in UTF-16 code units)
of graphemes. The result values can be used for SUBSTRING calls. With these clauses, it is possible
to scan a string grapheme by grapheme.

Example:

DEFINE DATA LOCAL
1 J#UNICODE-STRING (U15)
1 #fCODE-UNIT-INDEX (N4)

1 #fCODE-UNIT-LEN (N4)
1 #fGRAPHEME-NUMBER (N4)
END-DEFINE

MOVE U'aflcimictid' TO #fUNICODE-STRING
##fGRAPHEME -NUMBER := 1

REPEAT

EXAMINE
FULL VALUE OF ffUNICODE-STRING
FOR CHARPOSITION #GRAPHEME-NUMBER
GIVING POSITION IN #CODE-UNIT-INDEX

Unicode and Code Page Support 41

Unicode and Code Page Support in the Natural Programming Language

GIVING LENGTH IN #CODE-UNIT-LEN
DISPLAY #UNICODE-STRING #fGRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN
##GRAPHEME-NUMBER := #fGRAPHEME-NUMBER + 1

WHILE #fCODE-UNIT-INDEX NE O

END-REPEAT

END

The above example program provides the following output:

Page 1 05-12-15 09:33:49

fFUNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN

atlcibiciid 1 1 1
aflciictid 2 2 2
atlcibiciid 3 4 1
aflciictid 4 5 3
atlcibiciid 5 8 1
aflciictid 6 9 3
aflciictid 7 12 1
atlcibiciid 8 13 3
aflciictid 9 0 0
PARSE JSON

The document to be parsed is always internally converted to UTF-8 if the document is not already
encoded in UTF-8.

See the description of the PARSE JSON statement for further information.

See also Statements for Internet Access and Parsing in the Programming Guide.
PARSE XML

The document to be parsed is always internally converted to UTF-16 (if the document is not already
encoded in UTF-16).

See the description of the PARSE XML statement for further information.

See also Statements for Internet Access and Parsing in the Programming Guide.

42 Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

REQUEST DOCUMENT

Data transfer with the REQUEST DOCUMENT statement normally does not involve any code page
conversion. If you want to have the outgoing and/or incoming data encoded in a specific code
page, you can use the DATA ALL clause and/or the RETURN PAGE clause of the REQUEST DOCUMENT
statement to specify this.

See the description of the REQUEST DOCUMENT statement for further information.

See also Statements for Internet Access and Parsing in the Programming Guide.
DEFINE PRINTER

The DEFINE PRINTER statement providesa CODEPAGE clause to provide for conversion of print report
data into a code page different from the default code page (value of the system variable *CODEPAGE).

CALLNAT (RPC)

Data exchange in Unicode format via RPC is supported. See the description of the CALLNAT state-
ment.

If U data is sent from a platform with big endian encoding to a platform with little endian encoding
or vice versa, the encoding is adapted so that it conforms with the encoding on the receiving
platform. For example, when U data in little endian encoding arrives on a big endian platform,
this data is converted to big endian encoding before it is handed over to the program. When this
data is sent back, it is converted back to little endian encoding.

Logical Condition Criteria

In a logical condition criterion, Unicode operands can be used together with alphanumeric and
binary operands. If not all operands are Unicode operands (format U), the second and all following
operands are converted to the format of the first operand. If a binary operand (format B) is specified
as the second or a following operand, the length of the binary operand must be even; the binary
operand is assumed to contain Unicode code points.

If the first operand is a Unicode operand (format U) and the comparison is therefore performed
as a Unicode comparison, the ICU collation algorithm is used. The ICU algorithm does not perform
a plain binary comparison. For example,

" some code points such as "U+0000" are ignored during the comparison process,

" combined characters are considered as being equal to the equivalent single code point (for ex-
ample, the German character "d" represented by "U+00E4" and the combination of the code
points "U+0061" and "U+0308" are considered as being equal by ICU).

Unicode and Code Page Support 43

Unicode and Code Page Support in the Natural Programming Language

| Note: Comparing an alphanumeric and a Unicode operand can deliver different results,

depending on the sequence of the fields.

See also Logical Condition Criteria in the Programming Guide.

System Variables

*CODEPAGE

The system variable *CODEPAGE is used to return the JANA name of the default code page, that is,
the code page used for conversions between Unicode and code page format.

*LOCALE

The system variable *LOCALE contains the language and country of the current locale.

Large and Dynamic Variables

U format can be used for large and dynamic variables. For dynamic U variables, *LENGTH returns
the number of UTF-16 code units.

See also Introduction to Dynamic Variables and Fields in the Programming Guide.

Session Parameters

The following session parameters are available:

Parameter |Description

DL Specifies the display length for a field of format A or U. See also Display Length for Output - DL
Parameter in the Programming Guide.

EMU Edit mask in Unicode.

ICU Insertion character in Unicode.

LCU Leading characters in Unicode.

TCU Trailing characters in Unicode.

44 Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

DL versus AL

As long as Natural was not Unicode-enabled, the length of an alphanumeric field was always
identical to the number of columns needed for displaying the field (called number of display
columns). This was even true for the East Asian languages which use DBCS code pages: an A
format field can hold only half the characters (for example, A10 results in A5).

Example:

DEFINE DATA LOCAL

1 4tA8 (A8)
END-DEFINE

##A8 := 'computer'
WRITE #A8

A8 = 'EWFIE'
WRITE A8

END

The above code results in the following output:

Page 1 ...

computer
M

With U format fields, the length of a field and the number of display columns is no longer
identical. U characters can have narrow width (for example, Latin characters), wide width (for
example, Chinese characters) or no width (for example, combining characters). Therefore, it is
totally unknown how many display columns a U field needs; this depends on the contents of the
field. Natural cannot automatically decide how many columns are to be reserved on the screen:
if the maximum size is assumed, Latin output will have large gaps, and if the minimum size is
assumed, Chinese output cannot be displayed totally. Therefore, the Natural programmer has to
define the display width of a field; this is done with the DL parameter. The AL parameter cannot
be used for this purpose, because it cuts away the part of the field which exceeds the defined
length. But we do not want to cut any characters from the U field; we only want to define the start
position of the following field.

Example:

DEFINE DATA LOCAL
1 U8 (U8)

1 #U4 (U4)
END-DEFINE

#U8 := 'computer'
WRITE U8

#U4 = U'EHREE
WRITE #U4 (DL=8)
END

Unicode and Code Page Support 45

Unicode and Code Page Support in the Natural Programming Language

The above code results in the same output as above:

Page 1 ...

computer
R

On Windows, in a remote development environment with the Natural Web I/O Interface client,
it is possible to scroll in a field where the defined value for the DL parameter is smaller than the
real display width of the field.

EMU, ICU, LCU, TCU versus EM, IC, LC, TC

The parameters EMU, ICU, LCU and TCU allow using characters which are not included in the default
code page. They are stored in Unicode format in the generated program. These parameters can
be used with all field formats.

The parameters EM, IC, LC and TC can also be used with U format fields. These parameters may
also be useful if characters which are contained in the default code page have different encodings
in other code pages. For example, the Euro sign (€) has the code point "0x80" in the "windows-
1252" (Latin 1) code page, but the code point "0x88" in the "windows-1251" (Cyrillic) code page.
Thus, using a Unicode parameter (EMU, ICU, LCU or TCU) will assure that the Euro sign is always
displayed correctly, no matter what code page is installed on the PC.

Example for EMU:

DEFINE DATA

LOCAL

01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
02 FIRST-NAME
02 NAME
02 SALARY (1)

END-DEFINE

*
READ (6) EMPLOYEES-VIEW

DISPLAY NAME FIRST-NAME SALARY(1) (EMU=999,999€)

END-READ

*

END

The above code results in the following output:

46 Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

Page 1 05-12-15 11:45:36
NAME FIRST-NAME ANNUAL
SALARY
ADAM SIMONE 159,980«
MORENO HUMBERTO 165,810¢
BLOND ALEXANDRE 172,000¢
MAIZIERE ELISABETH 166,900¢
CAOUDAL ALBERT 167,350¢
VERDIE BERNARD 170,100¢

Sample Programs

The library SYSEXPG contains sample programs for Unicode and code page support in Natural:

® UNICO0X01 lists all Unicode characters.
" UNICOX02 converts Unicode characters to code points and vice versa.

" CODEPX01 lists all code pages, whether the code page is supported in Natural and which encoding
it uses. For all supported code pages, it offers services to list the characters of the code page and
to convert a string from the code page into its hexadecimal representation and vice versa.

® CODEPXL1I lists all characters of any 1-byte code page.
® CODEPXL2 lists all characters of any 2-byte code page.

® CODEPXC1 converts a string from any code page into its hexadecimal representation and vice
versa.

Unicode and Code Page Support 47

48

8 Unicode Input and Output Handling in Natural Applications

= Displaying and Entering Unicode Datacuvviiiiiiiiiiiiii s

= Natural Web /0O Interface Client

49

Unicode Input and Output Handling in Natural Applications

The Natural runtime environment is enabled for Unicode support. Unicode characters are converted
to the default code page (value of the system variable *CODEPAGE) before they are displayed on
the terminal. Unicode characters which have no equivalent in the default code page are replaced
by a substitution character.

With the Natural Web I/O Interface under SPoD, Unicode characters are fully supported by the
terminal emulation. In this case, U format fields are displayed and can be entered correctly as
Unicode. They are not converted to the equivalent in the default code page. The Natural Web I/O
Interface is activated by the Natural Development Server configuration parameter
TERMINAL_EMULATION=WEBIO. The system variable *DEVICE contains BROWSER.

Displaying and Entering Unicode Data

] Notes:

1. Unicode data cannot be displayed on 3270 terminals.

2. When running applications with Natural for z/OS, see Natural Web 1/O Interface Client below.

If you run Natural via a terminal emulation or a z/OS terminal such as IBM 3270/3279, the page
will be converted to the default code page (value of the system variable *CODEPAGE) before display-
ing it, so that all characters which are not contained in the default code page are replaced with the
substitution character. Equally, input is only possible in code page format and will be converted
to Unicode format before assigning it to a U format field. You have to regard that the substitution
character is defined by the ICU conversion tables. Depending on this character, it is possible that
garbage is displayed with a terminal emulation. However, it is strongly recommended that you
use the Natural Web I/O Interface when displaying characters not contained in the default code

page.

On code page oriented z/OS terminals, it is important to select the suitable code page. The default
code page of Natural, the code page of the terminal and even the font used by the terminal determ-
ine the capability of displaying certain characters correctly.

Natural Web 1/O Interface Client

Full Unicode I/O is only supported at runtime with the Natural Web I/O Interface. If an application
is run in the terminal emulation and Unicode strings are displayed, some Unicode characters may
not be displayed correctly.

The Natural Web I/O Interface client is used to display non-GUI information which contains
Unicode characters. It can be used in the following environments:

= SPoD Environment

50 Unicode and Code Page Support

Unicode Input and Output Handling in Natural Applications

= Runtime Environment
SPoD Environment

The Natural Web I/O Interface client can be invoked when you use Natural for Windows and you
are working with Natural Studio in a remote development environment (SPoD); see Natural Web
/O Interface Client in Remote Development Using SPoD which is part of the Natural for Windows
documentation.

When the Natural Web I/O Interface client is used, the Web I/O window appears instead of the
terminal emulation window which is not Unicode-enabled in z/OS environments.

The following graphic shows the SPoD environment for Unicode applications with Natural Devel-
opment Servers (NDV) on z/OS:

Web 10
Window <
L}
8
5
Terminal
Emulation
A
.1
o Natural Development Server
“ on Mainframe
¥
—p Code Page |<- 2: Unicode |
A

INFUT #U (110}

1) NDV parameter TERMINAL EMULAT ION=WEEID
2 MDV parameter TERMINAL EMULATION not specified

Unicode and Code Page Support 51

Unicode Input and Output Handling in Natural Applications

So that the Natural Web I/O Interface client can be invoked, the Natural Development Server has
to be configured as follows:

® If you want to use the Natural Web I/O Interface client in a remote z/OS environment, the NDV
configuration parameter TERMINAL_EMULATION must be set to WEBI0 on the NDV server. See NDV
Configuration Parameters in the Natural Development Server documentation. The Natural profile
parameter TMODEL can be used to determine the user screen size.

Runtime Environment

The Natural Web I/O Interface client appears when running applications with Natural. It runs in
a web/application server.

The following graphic shows the runtime environment for Unicode applications:

Browser
Matural Web 11O
Interface Client
i
i
5
Terminal
Emulation
A
Natural Web /0 Interface Server u
Y
Unicode: |— P Code Page rl =
A

INPUT #U (U100}

Natural recognizes automatically whether the session has been started from the Natural Web I/O
Interface client or from the terminal emulation.

It is required that the Natural Web I/O Interface server has been installed and configured. See
Natural Web 1/O Interface. Moreover, the Web I/O terminal converter module NATWEB must be linked

52 Unicode and Code Page Support

Unicode Input and Output Handling in Natural Applications

to the Natural nucleus. The Natural profile parameter TMODEL can be used to determine the user
screen size.

Unicode and Code Page Support 53

54

9 Bidirectional Language Support

B GENETAl INfOMMALION ..o e e e
B S BN DITBC 0N et e

= Field Direction
= Arabic Shaping

95

Bidirectional Language Support

General Information

Some languages, for example Arabic and Hebrew, are written from right-to-left (RTL), whereas
the majority of the languages, for example English and German, are written from left-to-right
(LTR). Text which contains both left-to-right and right-to-left characters is called bidirectional text.

Support for bidirectional languages is not activated automatically; the user always has to specify
all required parameters (for example, PM=I) as described below.

The output of Natural programs can be controlled using the profile parameter PM, the terminal
command %V, and the session parameter PM.

The profile parameter D0 (Display Order) is additionally used to support applications that have
been originally written for terminals which support inverse (right-to-left) print mode, but no bid-
irectional data. These applications create the display order of bidirectional data in the application
code. With the parameter DO, these applications are enabled to run compatibly also with I/O devices
that support bidirectional data. This is for instance the case if an application runs in a browser
with the Natural Web 1/O Interface.

Screen Direction

The profile parameter PM defines the default screen direction. When PMis set to R (reset), the default
screen direction is left-to-right. When PM is set to I (inverse), the default screen direction is right-
to-left. All non-alphanumeric fields, system variables and PF key lines are automatically inverted
by Natural so that they are displayed correctly from right-to-left if the screen direction is right-to-
left.

The terminal command %V can be used to change the screen direction. If the screen direction is
right-to-left, the layout of the current window is mirrored, which means that the origin of all
window components or fields is the upper right corner. The screen direction is changed to right-
to-left using %VON and is reverted to left-to-right using %VOFF.

Field Direction

The session parameter PM reverses the direction of a field. The effect of “reversing the direction of
a field” depends on the statement in which the PM parameter is used and the platform. If the PM
parameter is used in a MOVE statement, the content of the field is simply reversed (that is, the first
character will become the last character, and so on); the result does not depend on the characters
of the field. Trailing blanks are removed before the field is reversed.

56 Unicode and Code Page Support

Bidirectional Language Support

For example, the following program

DEFINE DATA LOCAL
1 TEST1 (A10)

1 TEST2 (A10)
END-DEFINE

TEST1 := 'program'

MOVE TEST1 (PM=I) TO TESTZ
INPUT TEST1 (AD=0) TESTZ (AD=0)

END

produces the following output:

TESTI program TEST2 margorp
where "margorp" is the reversed version of "program".

When the PM parameter is used for IO statements such as INPUT or DISPLAY, its effect is even more
complex. In this case, the field direction is based on the screen direction:

" If the screen direction is left-to-right and PM=1I is applied to a field, the field direction changes
to right-to-left.

" If the screen direction is right-to-left and PM=I is applied to a field, the field direction changes
to left-to-right.

On browser terminals (Natural Web I/O Interface), “reversing the field direction” does not mean
that the characters of the field are simply reversed. Instead, the complex bidirectional algorithm
is applied. On character-oriented terminals, however, the characters of a field are not resorted;
they are simply reversed.

In the following example, the characters assigned to the variable TEST have been entered in the
following sequence:

abc w11 123

If the characters are entered in the sequence as described above, the program is displayed in the
following way, because the characters are simply displayed in the keying sequence.

Unicode and Code Page Support 57

Bidirectional Language Support

DEFINE DATA LOCAL

1 TEST (A20)
END-DEFINE

TEST := 'abc waa 123"

SET CONTROL "voff'

INPUT TEST (AD=0) /
TEST (AD=0 PM=I)

SET CONTROL "von'
INPUT TEST (AD=0) /

TEST (AD=0 PM=I)
END

This program produces two identical screens because the statements SET CONTROL 'voff' and
SET CONTROL 'von' do not apply to alphanumeric fields. Both screens look as follows:

TEST abc wia 123
TEST 321 23w cha

Arabic Shaping

In Arabic text, all characters of a string are normally connected with each other. For this reason,
Arabic characters have up to 4 presentation forms: the isolated, the final, the initial and the medial
form. The form that will be used depends on the position of the character in the string. For example,
the Arabic character "MIEEEM" has the following forms in Unicode:

U+0645 ARABIC LETTER MEEM

{ﬁ
U+FEE1|# |ARABIC LETTER MEEM ISOLATED FORM
U+FEE2|# |ARABIC LETTER MEEM FINAL FORM

U+FEE3 || ARABIC LETTER MEEM INITIAL FORM
U+FEE4 || ARABIC LETTER MEEM MEDIAL FORM

Moreover, some characters are combined to a new form if they appear consecutively in a string.
This is called a “ligature”. For example, the characters

58 Unicode and Code Page Support

Bidirectional Language Support

U+0644 J ARABIC LETTER LAM

U+0627| | |ARABIC LETTER ALEF

have the following combined form:

U+FEFB |%|ARABIC LIGATURE LAM WITH ALEF ISOLATED FORM

Unicode strings should include only the Arabic characters in the Arabic block (U+0600 through
U+06FF) or the Arabic Supplement block (U+0750 through U+077F); it is not recommended to use
the presentation forms in regular Arabic text. It is up to the user interface to display the correct
shapes of the characters.

“Shaped” means that every Arabic base character is converted to the appropriate Arabic present-
ation form. The string may contain each of the four presentation forms of a character. For example,
if U+0645 (ARABIC LETTER MEEM) is used as the last character of a string, it is converted to
U+FEE2 (ARABIC LETTER MEEM FINAL FORM).

“Unshaped” means that each character is represented only by its basic form. For example, instead
of U+FEE2 (ARABIC LETTER MEEM FINAL FORM), U+0645 (ARABIC LETTER MEEM) is used.
The conversion to the correct presentation form is performed by the rendering engine of the output
device.

Natural strings are internally represented as unshaped alpha or Unicode strings. If strings are
displayed with a browser using the Natural Web I/O Interface client or the PROCESS PAGE statement,
no transformation is required since the rendering engine of the browser takes care of the correct
presentation. Incoming strings from such devices are already unshaped and can be directly passed
to Natural. If a string is displayed on a terminal such as 3279 or a terminal emulator such as IBM
Personal Communications, it must be converted into the shaped form since the terminal itself does
not take care of the correct presentation. Accordingly, incoming strings are in the shaped form
and must be transformed into the unshaped form to be processed correctly by Natural. The most
popular code page for Arabic terminals on z/OS is IBM420. Compared to Unicode, the number of
characters is reduced and not each form of a character is contained. The conversion of strings into
IBM420 substitutes unavailable forms of a character by a similar presentation form. For example,
the medial form of the Arabic letter MEEM (U+FEE4) is substituted by the initial form (U+FEE3)
of the character.

In the Arabic EBCDIC code page IBM420, the Arabic character "MEEM" is represented by the fol-
lowing presentation forms:

Unicode and Code Page Support 59

Bidirectional Language Support

H'BA’ | # |ARABIC LETTER MEEM
H’BB’ | -a| ARABIC LETTER MEEM INITIAL FORM

Arabic Tail Fragment

The Arabic characters SEEN (U+0633), SHEEN (U+0634), SAD (U+0635) and DAD (U+0636) (Seen
Family) are displayed on terminals as two bytes if they appear in the final form. Code page IBM420
contains a so-called "Arabic tail fragment" that completes the final form of a Seen Family character
on terminals or terminal emulators. Of course, the Arabic tail fragment needs an additional position
on the screen. The Arabic tail fragment is not required by the browsers. If a string with the final
form of a Seen Family character is entered in a browser (Natural Web I/O Interface client or PROCESS
PAGE statement) and subsequently displayed on a terminal, the Arabic tail fragment is appended
to the string with the consequence that the length of the string increases. If a string with the final
form of a Seen Family character is entered via a terminal or terminal emulator and subsequently
displayed in a browser, the Arabic tail fragment is removed from the string.

| Note: For more information about control of character shaping, see SHAPED - Control of

Character Shaping in the Parameter Reference documentation.

60 Unicode and Code Page Support

10 Unicode Data Storage

= Unicode Data and Parameter ACCESSuouiiuririiiiiiiie ettt
= Database Management System INTErfaCEScciiuuiiiiiiii s

= \Work Files and Print Files

61

Unicode Data Storage

Unicode Data and Parameter Access

The following graphic shows how Unicode data and parameters are accessed.

DEFINE DATA LOCAL

1 #0U (1100)

1 EMPLIY VIEW OF EMPLOYEES-UNICODE
2 UNICODE-HAME

1 #XML-STRING (1)

1 #U-REC (U500}

END-DEFINE

FIND EMPLU WITH UNICODE-NAME='...'

READ WORK FIRE 1 #U-I

SELECT ... INHTO J..
i | \\‘
Adabas Work File DEZ (Mainframe)
W field DBCHAR ar

DEVCHAR

Database Management System Interfaces

The following topics are covered below:

= Accessing Unicode Data in an Adabas Database

62

Unicode and Code Page Support

Unicode Data Storage

= Accessing Unicode Data in a Db2 Database
Accessing Unicode Data in an Adabas Database

Natural enables users to access wide-character fields (format W) in an Adabas database.

Data Definition Module
Adabas wide-character fields (W) are mapped to the Natural data format U (Unicode).

Access Configuration
Natural receives data from Adabas and sends data to Adabas using UTF-16 as common encod-

ing.

Before accesing unicode data in an Adabas database, you must set the correct 0PRB parameter
in natparm. The current 0PRB parameter values are sent to Adabas with the open request. The
values are used for wide-character fields and apply to the entire Adabas user session.

For detailed information, see Unicode Data in the Accessing Data in an Adabas Database part of the
Programming Guide.

Accessing Unicode Data in a Db2 Database

Natural enables users to access CHAR and/or WCHAR fields in a Db2 database as Unicode data.

See also Natural for Db2 in the Database Management System Interfaces documentation.

Work Files and Print Files

The following topics are covered below:

= Work Files
= Print Files

Work Files

No special consideration is given to Unicode data when writing or reading work files. Like all
other data types, Unicode data is written and read as is, without conversion.

Unicode and Code Page Support 63

Unicode Data Storage

Print Files

When sending Unicode data to print files, one or two conversion steps take place.

In a first step, Unicode data contained in a print line is converted to the default code page of the
session. As a consequence, all characters which are not contained in this default code page are
replaced with the substitution character.

Before passing this converted print line to the actual print access method, it is additionally checked
whether a code page has been specified for the logical printer. This may have been accomplished
with the CODEPAGE operand of the DEFINE PRINTER statement or the CP subparameter of the PRINT
parameter. If such a code page has been given, the whole print line (not only the Unicode part of
it) is converted accordingly in a second step.

The converted print line is passed to the access method, which means that print access methods
do not receive Unicode data.

Example:

DEFINE PRINTER (1) CODEPAGE 'IBMOI1140'
WRITE (1) "HELLO' U'WORLD"
END

64 Unicode and Code Page Support

11 Migrating Existing Applications

= |mpact of Unicode on EXisting APPlICAtIONSuvviiiiiiiiiiit e 66
B Migrating EXiSting ODJECESeeiiiiiiee it 66
= Adding Unicode Support to EXisting ApplICAtIoNSoeiiiiiiiiiiiii e 68
= Migrating Natural Remote Procedure Calls (RPC)ooiiiiiiiiiiiici e 68

65

Migrating Existing Applications

Impact of Unicode on Existing Applications

There is no impact of Unicode on existing applications. This means that existing Natural applications
should execute without any changes. Make sure that the parameters CFICU and CP are set to OFF.
In this case, it is not necessary to install any of the components supplied with ICU for Adabas &
Natural (ICS). Only the I/O buffers have been noticeably increased since the attributes have been
enhanced to support potential Unicode fields. If CP is set to 0FF, the system variable *CODEPAGE is
cleared and the well-known translation tables (such as standard table or alternative table) are
continued to be used for I/O translations.

Migrating Existing Objects

Natural has been extended so that the code page information can be defined on several levels:

® The Natural profile parameter CP defines the default Natural code page.
* For several objects (Natural sources, Natural batch input/output files, print reports, Adabas
files) an object-specific code page can be defined.

If neither an object-specific code page nor a default code page is defined (that is, CP=0FF applies),
Natural does not convert any data.

Since it is not possible to identify the correct code page automatically, it is important that you
define the required code page information yourself. The following scenarios are possible:

Status Effort Action
All data is available in the No effort No action.
operating system's code page.
All data is stored with one code |Easy The Natural profile parameter CP has to be set to the
page, but this code page differs correct code page. Make sure that the I/O device
from the operating system's code supports this code page. CP=AUTO forces Natural to
page. run with the code page of the I/O device.
The data is available in different |Depends on the |The correct code page has to be defined for every
code pages. number of Natural object:
sources and code
pages " Sources
Save each object in the session with the correct
code page.

66 Unicode and Code Page Support

Migrating Existing Applications

Status Effort Action

= Batch Files
Set the Natural profile parameters CPOBJIN,
CPSYNIN and CPPRINT to the correct code page.

= Adabas Files (ECS enabled)
Set the Natural profile parameter 0PRB with the
ACODE option.

Different code pages are mixed in |High The object has to be rewritten in the appropriate code
one object (for example, in a source) page format.

Sources which have been saved or stowed with previous Natural versions do not have code page
information. The code page field of the directory is empty.

Since Natural sources are not saved in Unicode format, the source has to be converted into the
default code page (value of the system variable *CODEPAGE) that applies to the session. If code page
support is switched off (CP=0FF), the code page information of the source is ignored and no con-
version is performed. Alphanumeric constants have to be adjusted to the default code page when
they are loaded into the source area.

Since Natural sources are not saved in Unicode format, alphanumeric constants have to be adjusted
to the default code page during start of the object. This can be achieved with the CPAGE compiler
option. If CPAGE is set to ON, an additional table is generated into the object. The Natural loader
uses this table to convert every alphanumeric constant to the default code page (value of the system
variable *CODEPAGE). Depending on the amount of alphanumeric constants, the additional table
increases the size of the resulting object and the conversion consumes additional CPU time.

It is important that dependent objects (for example, a program and a local data area used by the
program) use the same code page. If dependent objects use different code pages, it should be as-
certained that the used characters (for example, "#") are mapped to the same code points in the
used code pages. The following objects and data do not have an associated object-specific or data-
specific code page:

" Data definition modules (DDMs),

® Predict rules,

" Predict XRef data.

Care should be taken if such data is used in or produced by objects for which an object-specific
code page has been defined. If the application itself does not necessarily have to be code page en-

abled and you want the application to be code page sensitive with respect to the data that is being
processed, you should consider to use the profile parameter SRETAIN with the value (ON, EXCEPTNEW).

Unicode and Code Page Support 67

Migrating Existing Applications

Adding Unicode Support to Existing Applications

Itis easy to extend existing applications with new source code based on the U format. The following
rules have to be regarded for the U format (as compared with the A format):

" A REDEFINE of U to a format other than U should be avoided because this may result in split
characters.

® U format is endian-dependent. This has to be considered when moving between the formats B
and U.

® Keep in mind that characters may be lost when moving U to A.

If you want to change existing fields from A format to U format, the following rules have to be
regarded:

* Code which assumes a specific encoding of strings has to be changed (for example, comparison
with a B field).

= All REDEFINE statements of the field have to be checked for their validity.

" A REDEFINE to N is not possible (that is: you will not get the expected result).

* The database field has to be migrated to Unicode (provided that this is supported by your
database).

" You may have to change the length of the field: if the A field contains DBCS characters, half the
length is required for the U field.

Migrating Natural Remote Procedure Calls (RPC)

The parameter CP is used in conjunction with the parameter macro NTCPAGE (in the source module
NATCONFG) to specify the name of the default code page for Natural data or to automatically take
the code page name from the user terminal.

The parameter CPRPC is used with the profile parameter RPC and the corresponding macro NTRPC.

68 Unicode and Code Page Support

12 Help and Troubleshooting

= Receiving the Startup Error "Invalid Code Page Specified”coouiiiiiiiiiiiiiiee e 70
B The Default COUE PAGEvvvieiiiiii ettt et e e e e e e e e 70
= Displaying All Relevant Natural Code Page Settingscovviiiiiiiiieiiiii e 70
= Handling UTF-8 Encoding with Natural Coaeccuviiiiiiiiiii e 70
= [ncorrectly Displayed Characterscooiiuiiiiiiiie e 70
= Receiving an Error When Editing @ Natural SOUICEcooiuiiiiiiiiiiiiiiic e 71
= Receiving an Error When Saving @ Natural SOUMCEcoooiiiiiiiiiiiic e 71
= Finding out the Encoding of @ Natural SOUICEcoiiiiiiiiiiii e 4
= Changing the Encoding of @ Natural SOUICEcoiiiiiiiiiii e 4
= Substitution Characters Used When a Character Cannot Be Convertedccccooiiiiiiiiiiiii 72
= Using Natural Sources with Previous Natural Versions That Are Not Code Page Enabledccccoeee. 72

69

Help and Troubleshooting

Receiving the Startup Error "Invalid Code Page Specified"

The code page you have defined with the profile parameter CP does either not exist (see /-
tp://demo.icu-project.org/icu-bin/convexp for valid ICU code pages and http://www.iana.org/as-
signments/character-sets for the appropriate IANA names) or is an invalid default code page for
the platform (for example, an ASCII code page cannot be used on z/OS).

Check whether the same IJANA name, CCSID/CCSN or alias name as specified in NATCONFG is
used.

The Default Code Page

The default code page is the code page which is the result of the evaluation of the profile parameter
CP.

The default code page which is used by Natural for conversions between code page and Unicode
and vice versa can be detected by displaying the content of the system variable *CODEPAGE.

Displaying All Relevant Natural Code Page Settings

You can display all settings using the system command CPINFO.

Handling UTF-8 Encoding with Natural Code

Use the MOVE ENCODED statement for conversion from UTE-8 to UTF-16: the code page "UTE-8" has
to be used for the A format variable.

Incorrectly Displayed Characters

Check if you are using the correct code page. If the code page is correct, check if the selected font
supports the characters you want to display.

70 Unicode and Code Page Support

http://site.icu-project.org/#/convexp
http://site.icu-project.org/#/convexp
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Help and Troubleshooting

Receiving an Error When Editing a Natural Source

The source is saved with the code page at creation time. You get a conversion error when the
source could not be converted from the code page of the saved source into the code page of the
current Natural session. You can start Natural with the code page of the source to avoid conversion
or you can adjust non-convertible characters in the window which appears when the editor is
started.

Receiving an Error When Saving a Natural Source

If you are connected to a z/OS environment via SPoD, the source from Natural for z/OS is converted
and edited in Unicode in the SPoD environment. If it is saved, it has to be converted into the code
page of the Natural server. A conversion error may occur if a Unicode character is not mapped in
the code page of the Natural server session.

If you are in a native Natural for z/OS environment (without SPoD) you do not get errors when
saving a source since a conversion is not performed. The source is saved with the code page in-
formation of the current Natural session.

Finding out the Encoding of a Natural Source

Code page information is part of the Natural source directory. Use the LIST DIR command to
display the directory.

Changing the Encoding of a Natural Source

You should start your Natural session with the desired code page using the CP parameter. Set the
parameter SRETAIN to OFF, edit the source and save it. Now the source has the modified code page
information. Or, you can use the SYSCP utility to check or change the code page assignment of a
source.

Unicode and Code Page Support 71

Help and Troubleshooting

Substitution Characters Used When a Character Cannot Be Converted

The substitution character of the code page or, if specified in the configuration file, the place
holder character is used.

Using Natural Sources with Previous Natural Versions That Are Not Code
Page Enabled

With previous Natural versions that are not code page enabled, it is possible to access sources that
have been saved with code page information. The layout of the source has not been changed and
the code page information will simply be ignored if the source is accessed with a previous version.

72 Unicode and Code Page Support

Index

A

application
add Unicode support, 68

B

bidirectional language support, 55

C

CALLNAT
statement, 43
code page, 27
code page support, v
constants
for Unicode, 38

D

default code page, 7, 27
DEFINE PRINTER
statement, 43

E

encoding of a code page, 27
EXAMINE
statement, 41

ICU library, 10

L

logical condition criteria
U format, 43

MOVE ENCODED
statement, 40

MOVE NORMALIZED
statement, 40

P

PARSE JSON

statement, 42

PARSE XML

statement, 42

print files

Unicode support, 63

profile parameters

R

important for Unicode, 22

REQUEST DOCUMENT

S

statement, 43

SAGICU, 10
SAGICUAO9, 12
session parameters

important for Unicode, 44

statements

important for Unicode, 39

system code page, 7, 27
system variables

U

8}

important for Unicode, 44

format for Unicode-based data, 38

Unicode support, v

W

work files

Unicode support, 63

73

74

	Unicode and Code Page Support
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction to Unicode and Code Page Support
	About Code Pages and Unicode
	About Unicode and Code Page Support in Natural

	3 Enabling Unicode and Code Page Support
	ICU for Adabas & Natural (ICS)
	ICS Module SAGICU
	Collation Services
	Code Pages and Locales

	Alternative ICS Modules for Support of Architecture Levels
	ICU Data Libraries
	ICU Data Items
	Naming Conventions for Data Item Modules
	ICU Dynamically Loaded Single Data Items

	Unicode and Code Page Support for Adabas
	Translation Tables
	Support of Multi-Byte Code Pages

	4 ICS 311
	Data Scope and Data Handling
	The CFICU STEPLIB Parameter
	Validating the CFICU STEPLIB Parameter
	Using ICS31 in Natural subtask (needs APF-authorized ICS load library)

	5 Configuration and Administration of the Unicode and Code Page Environment
	Profile Parameters and Macros
	CFICU Parameter
	CFICU and CP: Session Modes
	CPAGE Compiler Option
	NTCPAGE Macro
	Natural Development Server

	Encoding Information
	Level 1 - Default Code Page
	Level 2 - Code Page for a Single Object

	6 Development Environment
	Development Environment for Applications
	Customizing Your Environment
	Editors in the SPoD Environment
	Code Page Support for Editors, System Commands, and Utilities
	Editors
	System Commands and Utilities
	LIST
	LIST DIR
	SCAN
	Object Handler (SYSOBJH)
	SYSCP Utility - Code Page Administration

	Code Page Support for Natural Source Objects
	Programs, Data Areas, Maps and Map
	DDMs
	Error Messages
	Help Texts

	7 Unicode and Code Page Support in the Natural Programming Language
	Natural Data Format U for Unicode-Based Data
	U versus A

	Statements
	MOVE NORMALIZED
	MOVE ENCODED
	EXAMINE
	PARSE JSON
	PARSE XML
	REQUEST DOCUMENT
	DEFINE PRINTER
	CALLNAT (RPC)

	Logical Condition Criteria
	System Variables
	*CODEPAGE
	*LOCALE

	Large and Dynamic Variables
	Session Parameters
	DL versus AL
	EMU, ICU, LCU, TCU versus EM, IC, LC, TC

	Sample Programs

	8 Unicode Input and Output Handling in Natural Applications
	Displaying and Entering Unicode Data
	Natural Web I/O Interface Client
	SPoD Environment
	Runtime Environment

	9 Bidirectional Language Support
	General Information
	Screen Direction
	Field Direction
	Arabic Shaping

	10 Unicode Data Storage
	Unicode Data and Parameter Access
	Database Management System Interfaces
	Accessing Unicode Data in an Adabas Database
	Accessing Unicode Data in a Db2 Database

	Work Files and Print Files
	Work Files
	Print Files

	11 Migrating Existing Applications
	Impact of Unicode on Existing Applications
	Migrating Existing Objects
	Adding Unicode Support to Existing Applications
	Migrating Natural Remote Procedure Calls (RPC)

	12 Help and Troubleshooting
	Receiving the Startup Error "Invalid Code Page Specified"
	The Default Code Page
	Displaying All Relevant Natural Code Page Settings
	Handling UTF-8 Encoding with Natural Code
	Incorrectly Displayed Characters
	Receiving an Error When Editing a Natural Source
	Receiving an Error When Saving a Natural Source
	Finding out the Encoding of a Natural Source
	Changing the Encoding of a Natural Source
	Substitution Characters Used When a Character Cannot Be Converted
	Using Natural Sources with Previous Natural Versions That Are Not Code Page Enabled

	Index

