S software~

A SOFTWARE GMBH BRAND

Natural

Operations

Version 9.2.4

October 2025

ADABAS & NATURAL

This document applies to Natural Version 9.2.4 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1979-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATMF-OPERATIONS-924-20251013

Table of Contents

PTOACE ..o s s ix
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
I Configuring Naturalc.ccocooiiiiiiiiiii 5
2 Linking Natural Objects to the Natural Nucleusccccccooiiviiiiiiniiiiiiniiin 7
Benefitsccooiiiiiiiiii 8
ULDOBJ Uity ..ovoiiiiiiiiiiiiiiciiiiccc 9
Using ULDOB]J to Generate an Object Modulec.cccooviiiiiiiiiniiniiinn. 9
Additional Considerations for Linking Subroutinescccccooiiinn. 11
Operating System Dependency of Object Module Generation 11
Example of Linking a Natural Object to the Natural Nucleus 11
3 Natural User EXitsc.cccooiiiiiiiiiiiiiiiiiiiiccc 15
NATUEX1 - User Exit for Authorization Controlcccccovviiiiniinnnnn. 16
NATSREX2 and NATSREXS3 - User Exits for Sort Processingc.ccc....... 17
NATUSKnn - User Exit for Computation of Sort Keysccccoceevviininnnnn. 18
NATPM - User Exit for Inverted Outputccooieiiiiiiiiii 19
NREXPG - User Exit for NATRJEooovviiiiiiiiiiiiiieiee 20
USRO0070P - User Exit for Editor Profilesc.ccccoccviiriiiiniiiiniiiiniiciieccen, 21
USR2002P - User Exit for Help Window Text Stringsccccceeeviiinininnens 21
USR2003P - User Exit for Main Menucccccooviiiiiiiiiiiiicicccicccic 21
4 Natural User Access Method for Print and Work Filescccccoiin 23
NATAMUSR Module Descriptionccceeiiiiiiiiiiiiiiiiiiiiiinicciicciccieee 24
NATAMUSR Module Installationccccociiiiiiiiiiiiiiiiiiiiiiccs 24
Invoking the Third Party Productccccoociiiiiiiiii, 24
5 Natural System Filescccccciviiiiiiiiiiiiiiiiii 25
Natural Scratch-Pad File ..., 26
6 Natural Text Modules and Macrosc.ccccoviviiiiiiiiiiiiiic 29
Function and Usage of Text Modulesccccooviiiiiiiiiiiii, 30
NATTEXT - Natural Keyword Definitionsc.cccocoeeviiiiiiiiiiiiniiiiicins 30
NATTXT2 - Output Text, Keywords and User Termination Messages (Mixed
LT) O SUPPPTR R 31
NATTXT2U - Output Text, Keywords and User Termination Messages
(UPPEICASE) .eveviiiiiieiiieiiie e 33
NATTXTS3 - Text Fragments for Placeholders in Natural Error
MESSAZES ...ooviiiiiiiiii e 34
NTERMSG - Natural Termination Messages and Return Codes 35
7 Natural Configuration Tablesccccccoiiiiiiiiiiiiiiii 37
NATCONEFG - Natural Configuration Tablesccccooveviiiiiiiiniiiienee, 38
General Overview of Macros Used by NATCONFGcccccoeviiiiiiiiiinnnnn. 38
NTDVCE - Terminal-Device Specification Tablec..cccocoviiiinn 39
NTMSG - Message Log Table Definitionscccccceevviiiiiiiiiniiiiiiiiiiiieinee 40

Operations

NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus 40
NTCPAGE - Code Page Definitionsc.ccccoiiiiiiiiiiiiiiniciciccccece 41
Code Page SUPPOTtc.coviiiiiiiiiiiiiiiiciii 42
Output Devices Supportedc.ccoiiiiiiiiiiiii 43
Translation Tablescccccoiiiiiiiiiiiiii 44
Upper-/Lower-Case Translationc.cocoviiiiiiiiiiiiiiciccccec 47
CMULT ENELY oo 48
Output Translationccccoeviiiiiiiiiiiiiii 438
Input Translation ..o 49
Code Translation of DBCS Dataccccooiiiiiiiiiiiiiiiiiiccce 49
NTTZ - Time Zone Definitionsccccoooviiiiiiiiiiiiiiiiiiiice 49

8 Natural Storage Managementcccceevviiiiiiiiiiiiiiiiiiiecce e 55
Thread and Non-Thread Environmentsc..ccccooviiiiiiiiiiiiiiiiniiniinin, 56
BUSFET TYPES .o 56
Fixed BUffersc.ccooiiiiiiiiiii 57
Variable BUufferscccccoooiiiiiiiiii 57
Customization of Buffer Characteristicscccccovuiviiiiiiiiiiiiiii, 57

IT Profile Parameter USAgec.coveiuiiiiiiiiiiiiciiecieecce e 59
9 Natural Parameter Hierarchyccccoooiiiiiiiiiiiiiiiicceccc 61
Natural Parameter Hierarchy Overviewccccoccoviniiiiiiiiniiiiiici 62
General Rules for Parameter Usageccccceoveiiiiiiiiiiiiiniiiiiccccccc 62
Natural Parameter Modulec.cocooiiiiiiiiiii, 63
Predefined Dynamic Parameter Setsc.coccooviiiiiiiiiiiiiii 64
Predefined User Parameter Profilesccccocoviiiiiiiiiiiiiiiii 64
Dynamic Parameter Entry ... 64
Natural Security Definitionsccocceeeiiiiiiiiiiiiiiiiiniiece e 65
Session Settings for Profile Parametersccccocoviiiiiiiiiiiiiiiiiiiiiiis 65
Program/Statement Level Settingsccocoviiiiiiiiiiiiiiis 65
Development Environment Settingsccccocoiiiiiiiiiiiiniiiiiiiiiics 66
Examples of Parameter Evaluationc..ccoocoiiiiii, 66

10 Assignment of Parameter Valuesccccccooiiiiiiiiiiiiiiiiiiiiiiccccces 69
Sources for Parameter Value Assignmentcccocooiiiiiiiniiiiiiicc, 70
Static Assignment of Parameter Valuescccccociviiiiiiiiiiniiiiiiniiiieee 71
Dynamic Assignment of Parameter Valuesccccociiviiiiiiiiinniinn. 72
Session Parameters for Runtime Assignment of Parameter Values 73

11 Building a Natural Parameter Modulecccccceviiiiiiiiiiiiiiniiiiiiee 75
NTPRM Parameter Macroccccooviiiiiiiiiiiiiiiiiiciceccccc 76
Additional Macros in the Natural Parameter Modulecccocooviniininns 77
Example of Macros in the Natural Parameter Modulecccccoooiiiiinin. 79

I z/OS ENVIIONIMENTooviiiiiiiiiiiiiiiiiiiii s 81
12 Natural under z/OScccooiiiiiiiiiiii 83
Natural Subsystem ... 84

TP Monitor Interfacesccccoouviiiiiiiiiiiiii 84
Interfaces to Database Management Systemscccccooviiiiniiniinicniencinnns 84
Natural in Batch Mode under z/OSccoooiiiiiiiiiiiiii, 85

Operations

Operations

Natural as a Server UNAer Z/OSoovviieeiiieee et 85

13 Authorized Services Manager under z/OSc.cccoviiiiiniiiiiiicc 87
ASM OVEIVIEW ...oouiiiiiiiiiiiiiiciccic e 88
ASM System Requirementsc.cccoovuieiiiiiiiiiiiicccec 89
Starting the ASMc.ccooiiiiiiiiiiiic 91
ASM Operator Commandscccooieviiiiiiiiiiii e 96
Resetting the Coupling Facility Structure for ASMccccoceviiiniiiiiininnnn. 97
ASM Messages, Condition Codes and Abend Codesccccocviviiiiiinnnnnnn. 97

14 Natural Roll Server Functionalitycccoooiiiiiiiiiiii 99
Natural Roll Server - OVeIVIEWccccevviiiiiiiiiiiiiiiiiiiieciicec e, 100

Roll Server in a Single z/OS Systemccocoeviiiiiiiiiiiiiiiiiicccce 101

Roll Server in a z/OS Parallel Sysplex Environmentcccccccevviiiieninnen. 102

Roll File and LRBccccoiiiiiiiiiiiiiiiiiiiiiicicciecce e 104

15 Natural Roll Server Operationcccooviiiiiiiiiiiiiiii 107
Roll Server System Requirementscccccoviiiiiiiiiiiiiiniiiiiiiiiccce 108
Formatting the ROIL File ..o 110
Starting the ROIl SEIVercccoviiiiiiiiiiiiiiiiiiiiiicc e, 113

Roll Server Messages, Condition Codes and Abend Codescccceenen. 119
Return Codes and Reason Codes of the Roll Server Request 120
Operating the Roll Serverccccciiiiiiiiiiiiiiiiiii e, 121
Resetting the Coupling Facility Structure ..., 122

Roll Server Performance TUNINGccccevvviiiiiiiiiiiiiiiiiiiiicicicc 123

Roll Server User EXitsccccciiiiiiiiiiiiiiiiiiiiiiiiicicc 124

IV Natural in Batch Modeccccooiiiiiiiiiiiii e, 127
16 Natural in Batch Mode under z/OSooouuviiiiiiniiiiieeieeiee e 129
Natural z/OS Batch Interfaceccccoooviviiiiiiiiiiiiiii 130
Driver Parameters for z/OS Batchcccociiviiiiiiiiiiiiiis 130
Data Sets Used by Natural in z/OS Batch Modecccooviiiiiiiiiiinnnn, 130

17 Natural in Batch Mode (All ENVironments)cccoevveeeerniiieeinniieeeeniieeee e 137
Adabas Data Setscccocviiiiiiiiiiiii 138

Sort Data Setscc.ooviiiiiiiiiiii 138
Subtasking Session Support for Batch Mode Environments 138

V Natural Buffer Poolscccociiiiiiiiiiiiiiiii 143
18 Natural Buffer Pool - Generalccccooiiiiiiiiiiiiiiiiiiicic 145
Natural Buffer Pool Principle of Operationcccocooviiiiiiiiiiiiiie, 146
Buffer-Pool Monitoring and Maintenanceccccocevoiiiiiiiiiininiininnenn 151
Natural Global Buffer Poolccccoociiiiiiiiiiiiiiii 154

19 Natural Global Buffer Pool under z/OSccccoiiiiiiiiiiiiiiiiic, 155
Using a Natural Global Buffer Poolc.cocooiiiiii, 156
PrerequiSites ... 156
Operating the Natural Global Buffer Poolcccccciiiiiiiiniiini, 156
Global Buffer Pool Manager Parameter Modulec.ccooin, 158
Global Buffer Pool Operating FUNCHONScccociiiiiiiiiiiiiiiiiiiiiicice 159
Global Buffer Pool Function Parametersccccecevviiiiiiiiiiniiiiiinin, 161
Examples of NATBUFFER Specificationsccccceevieriiiiiiniiiinieiicceeee. 168

Operations v

Operations

Sample NATGBPvr Execution JObScccccooviiiiiiiiiiiiiiiiiccicc 169
Localizationccooviiiiiiiiiiiiic 171
MESSAZES ..ottt 171

VI Message Buffer Pool ... 173
20 Message Buffer Poolc.coooiiiiiiiiiiiiiiiiicc 175
PUIPOSE ..o 176
PrerequiSitescccooiiiiiiiiiiii 176
Operating the Message Buffer Poolcccccovviiiiiiiiiiiiiiii, 176

Sample NATMBPvr Execution Jobs ..o 178

Message Buffer Pool Operating FUNctionscccccoveiiviiiiiiiniiiiinniinns 179

Function Parameterscccccooiiiiiiiiiiiiii 180
MESSAZES ...eooiiiiiiiiiiiiiii 182

VII System Spool ACCESSc.oouiiuiiiiiiiiiiiicciiecec et 183
21 System SPOo0l ACCESSccuiiiuiiiiiiiiiiiiiiccccc 185
PUIPOSE ..o 186
Prerequisite ... 186

Using the Write-to-Spool Featureccccoccoiviiiiiiiniiiiiiiiiiiiicc, 186

VIII Natural 3GL CALLNAT Interfacecccccoiviiiiiiiiiiiiiiiiiiiiiciccciccecccc 191
22 Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions 193
Purpose of 3GL CALLNAT Interfaceccccoocovviiiiiiiiiiiiiiiiiicccccs 194
Prerequisitescooiiiiiiiiiiii 194
ReSIICHONS ..ovviiiiiiiiiii 196

23 Natural 3GL CALLNAT Interface - Usage, Examplesc.ccccociiiiinnin. 199
USAZE woiiiiiiiiiii i 200

Sample ENVIronmentscccoceevuiiiiiiiiiiiiciicece 204

IX Operating the Software AG Editorccccoooiiiiiiiiiiiiiiiiicnceceeesecee e 207
24 Editor Work Fileccccoooiiiiiiiii 209
Editor Work File Structurec.cocoviiiiiiiiiii 210

Editor Work File under z/OSccoooiiiiiiiiiiiic 211

Using the Editor Work File Formatting Utilityccooooviiiii, 212
Formatting during Initializationccccceeiiiniiiiiniii 212
Maintaining the Editor Work Fileccccocoiiii 212

Editor Work File under Complete/SMARTSccccooiiiiiniiiiiiiiiins 213

25 Editor Buffer Poolccccccooiiiiiiiiii 215
Purpose of the Editor Buffer Poolc.coccooooiiiii, 216
Obtaining Free BIockscccooiiiiiiiiiiiiiiii 217
Initializing the Editor Buffer Pool ..., 217
Restarting the Editor Buffer Poolccccoooiiiiiiiiiiiiiiiic 218

Editor Buffer Pool Parametersccccceeviiiiiiiiiiiiiiniiiiiieciec e 218

Buffer Pool Initialization for Multi-User Environmentsccccccceeuineinns 218

X Natural @s @ SEIrvercccoviiiiiiiiiiiii 221
26 Natural as a Server under z/OScccooiiiiiiiiiiiiiiii 223
Functionality under z/OScocciiiiiiiiiiiiii 224

Natural Nucleus Installation in a Server Environmentccccccceeiinnn. 225

Vi Operations

Operations

Print and Work File Handling with External Data Sets in a Server

ENVITONIMENtoooiiiiiiiiiiii e 225

27 Natural as a Server under CICSccoooiiiiiiiiiiiicc 227
Functionality under CICS ..o 228
Natural CICS Interface Installation in a Server Environment 228
ReSIICHONS .. 229

XI Natural Execution - Miscellaneous TOPICScccceeviiiiiiiniiiiiiiiiiiiciccecceecceee, 231
28 Natural 31-Bit Mode SUpportccccociiviiiiiiiiiiiiiiiiii 233
29 Support and Use of Natural and Non-Natural Objectsc.cccoevvrvriennnnne. 235
Support for Natural Objects from Previous Natural Versions 236
Back-End Program Calling Conventionsccceceeviiiiiiiniiiiciiiiecc, 236

LE SUDPTOZIammSccuviiiiiiiiiiiiiiiciic e 238
External Sort Programscccoceviiiiiiiiiiiiiccc 241

30 Input/Output DeVICESc.ooviviiiiiiiiiiiiiiiieiccec 243
Terminal SUPPOTLccoiiiiiiiiiiiiii 244
Light Pen SUpportcoooviiiioi 244
Printer SUPPOTtcocviiiiiiiiiiiiiii 245

31 Double-Byte Character Setsccovviiiiiiiiiiiicc 249
Natural Profile Parameter SOSIcccooiiiiiiiiiiiiii, 250
Output Format Specificationc.ccooviviiiiiiiiiiiii, 250
Parameter Definitions for DBCS Supportc.ccocoviiiiiiiiiiiii 250
Editor Profile Optionsccccoviiiiiiiiiiiiiiiiiiiie e, 251
Input Data Checkc.cccooiiiiii 251
Output Data Adjustmentcccoocviiiiiiiiiiiiiiii, 252
Natural Stack Datacoccceiiiiiiiiiiiiiiii 252
Application Programming Interfaces for DBCS Handlingccccccceeee. 252
Alternate Text Module NATTXT2Uccccooviiiiiiiiiiiiiiiiiiicccccc 253

32 Asynchronous ProCessingccocuevuieiiiiiiiiiiiiiiiiecccecee e 255
Identifying Asynchronous Natural Sessionsccccceeeiiiiiiiiiiniiiiiinnnnn. 256
Handling Output of an Asynchronous Natural Sessioncccceceeeiinen. 256
Handling Unexpected or Unwanted Inputc.ccocoeiiiiiiiiiiiiiniiinnn. 257
Other Profile Parameter Considerationsccccceviiiiiiiiiiiiiiiiiiiinnnne, 257

Operations Vii

viii

Preface

This documentation contains information for operating Natural in a z/OS environment.

This documentation is organized under the following headings:

Configuring Natural

Describes how to link Natural objects to the Natural nucleus. Provides
information on Natural user exits, Natural user access method for print and
work files, Natural system files, Natural text modules, Natural configuration
tables, and Natural storage management.

Profile Parameter Usage

Provides an overview of the hierarchical structure of the different levels on
which Natural parameters can be set. Explains how values can be assigned to
profile parameters statically, dynamically and at runtime. Describes how to
build a Natural parameter module.

z/OS Environment

Contains an overview of special considerations that apply when you are
running Natural under z/OS online or in batch mode. Describes the functions
and the operation of the Authorized Services Manager (ASM). Explains the
functions of the Natural Roll Server. Provides information on the Roll Server
system requirements, operation, performance tuning and restart capability.

Natural in Batch Mode Contains considerations that apply when running Natural in batch (Adabas
data sets, sort data sets, subtasking session support for batch environments),
and specifically when running Natural in batch mode under z/OS.

Natural Buffer Pools Contains information about the various storage management functions that
are available to a Natural administrator under z/OS.

Message Buffer Pool Provides information on how to start and operate the message text buffer pool.

System Spool Access

The Write-to-Spool feature enables Natural users to write reports to the system
spool directly. It can be used in any Natural environment (Com-plete, TSO,
CICS, IMS TM, batch, etc.) and uses the Entire System Server view
WRITE-SPOOL. This output may then be processed by any software which
expects output in JES or POWER spool (for example, Entire Output
Management).

Natural 3GL CALLNAT
Interface

Contains information about the Natural 3GL CALLNAT Interface with which
Natural enables 3GL programs to invoke and execute Natural subprograms.

Operating the Software AG
Editor

Contains information on how to operate the Software AG Editor.

Natural as a Server

Describes the use of Natural as a Server and the Natural Server Monitor.

Natural Execution -
Miscellaneous Topics

Provides information on Natural 31-bit mode support, support and use of
Natural and non-Natural objects, input/output devices, double-byte character
sets and asynchronous processing.

Preface

Notation vrs or vr

When used in this documentation, the notation vrs or vr represents the relevant product version
(see also Version in the Glossary).

Operations

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Operations

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Operations 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Configuring Natural

This part provides information on Natural configuration.

Linking Natural Objects to the Natural Nucleus
Natural User Exits

Natural User Access Method for Print and Work Files
Natural System Files

Natural Text Modules and Macros

Natural Configuration Tables

Natural Storage Management
See also the following documents in the Utilities documentation:

= SYSCP Utility - Code Page Administration
® SYSEXT - Natural Application Programming Interfaces
® SYSAPI - APIs of Natural Add-On Products

2 Linking Natural Objects to the Natural Nucleus

L 20T SO PPPPURRRTTR 8
B ULDOBUY UHIIY ..ttt 9
= Using ULDOBJ to Generate an Object MOQUIEc.uuviieiiiiii e 9
= Additional Considerations for Linking SUDIOULINEScooiviiiiiiiii e 11
= QOperating System Dependency of Object Module Generationccoovvviiiiiiiiiiiiie e 1

11

= Example of Linking a Natural Object to the Natural NUCIEUSoooiiiiiiiiiii e

Linking Natural Objects to the Natural Nucleus

The Natural nucleus is a collection of service programs such as memory administration, string
handling, operating system interfaces, the compiler and the runtime environment which comprise
the kernel of Natural. It is independent of the operating-system and the TP system.

The Natural nucleus consists of the environment-independent and the environment-dependent
nucleus. The environment-independent nucleus can be used in batch mode and by several TP
systems. The environment-dependent nucleus contains components that depend on the operating
and TP systems. For further information, see Natural Nucleus Components in the Installation for z/OS
documentation.

This document describes the advantages of linking Natural objects to the Natural nucleus and
provides information on how to proceed.

Benefits

Linking Natural objects to the Natural nucleus provides the following benefits:

® Better Performance
The objects are executed from the nucleus and not from the Natural buffer pool. This saves space
in the buffer pool and also results in fewer database calls. (If Natural cataloged objects are not
linked to the Natural nucleus, they are stored in a database file, for example Adabas, and the
actual code must be loaded from this file into the buffer pool before it can be executed.)

® Consistency
As an object which is linked to the Natural nucleus is always executed from the nucleus, there
isno effect if the cataloged object from which it was derived is deleted or changed in the Natural
system file. Thus, during each TP-monitor session, the status of the object remains unchanged.
A new version of an object which is linked to the nucleus can be obtained by unloading it with
ULDOBJ (see below), relinking the new version to the Natural nucleus and refreshing the Natural
module. (Refreshing implies that a new copy of a module is loaded into the TP monitor region.)

* Global Error Handling
If a cataloged object fetches another program to handle errors (for example, by using the Natural
system variable *ERROR-TA), and the error-handling program cannot be loaded into the buffer
pool, the original error might be missed and any subsequent error may mask the first error and
lead to confusion. To prevent this situation, you can link a user-written global error-handling
program to the nucleus.

8 Operations

Linking Natural Objects to the Natural Nucleus

ULDOBLJ Utility

You can use the ULDOBJ utility to link Natural cataloged objects to the Natural nucleus. With the
ULDOBJ utility, you generate an object module from a Natural cataloged object and write it to a
Natural work file. The generated object module is then processed by the linkage editor and linked

to the Natural nucleus.

When an environment-independent Natural nucleus is used, the generated object module has to
be linked to the environment-independent part of the nucleus.

Using ULDOBJ to Generate an Object Module

~ To invoke the ULDOBJ utility
1 Log on to the library SYSMISC and issue the command ULDOBJ.

15:49:39 *xxx* NATURAL OBJECT MAINTENANCE ****x 2012-02-13

User: XYZ - NATURAL ULDOBJ UTILITY - Library: SYSMISC
Opsys .. z/0S

Specify parameters below

Object (Enter '.' to exit)
Library SYSMISC_
OP System ... z/0S

2 Specify and confirm the following parameters:

Object The name of the cataloged object to be processed. The object can be a program,
subprogram, subroutine, helproutine or map.

Library |The name of the library containing the cataloged object.

0P System|The name of the operating system for which the object module is to be generated. The
name of the operating system must be z/OS.

For each object processed, the ULDOBJ utility displays a report containing the following inform-
ation:

" the object type (Program, Subprogram, Subroutine, Helproutine, Map, Adapter); see Objects
for Natural Application Management in the Programming Guide.

* the name of the cataloged object processed;

Operations

Linking Natural Objects to the Natural Nucleus

* the programming mode (S = structured mode, R = reporting mode);

the name of the library containing the cataloged object;

* the name of the operating system for which the object deck was generated;

the size of the cataloged object and optimized code (if applicable);

the Natural version of the cataloged object (see Version in the Glossary);

statistics about the last cataloging of the object, including user and terminal IDs.

ULDOBJ prompts for another object and library after the data from the initial input have been
processed. The operating system is not requested, because it does not make sense to generate
object modules for more than one operating system for the same Natural work file.

~ To terminate the ULDOBJ utility

m After the last cataloged object has been processed, enter a “.” in the first input field (Object)
and press ENTER.

The generated object module conforms to the format of the specified operating system. It is
in relocatable format with non-executable code and consists of:

® an external symbol directory (ESD),

® arelocation dictionary (RLD),

" text with the instructions and data corresponding to the program,

" an END statement (end-of-module indicator for the load module).

The generated object module is written to a Natural work file, which is used as input to a

linkage editor. (Depending on the operating system, it may be better to use ULDOBJ in batch
mode.)

The generated object module must be processed by the linkage editor of the corresponding
operating system before the code is executable as aload module (see the example given below).
Each load module is valid once it is linked to the Natural nucleus and defined by an NTSTAT
entry definition in the Natural configuration module NATCONFG (see Natural Configuration
Tables).

10 Operations

Linking Natural Objects to the Natural Nucleus

Additional Considerations for Linking Subroutines

Once a cataloged object has been unloaded by the ULD0BJ utility and linked to the Natural nucleus,
the cataloged object can be deleted from the Natural system file.

However, this is not true for an object of type “subroutine”. A subroutine has two names:

® the name specified in the statements PERFORM and DEFINE SUBROUTINE and
® the name of the object that contains the DEFINE SUBROUTINE statement.

Natural internally associates these two names, but this is possible only if the cataloged object still
exists on the Natural system file. If the cataloged object were deleted, this association would be
lost and the subroutine linked to the nucleus would not be executable.

Operating System Dependency of Object Module Generation

A NAME control statement is generated as the last card of the object module. It specifies the replace
function. For example:

NAME TEST (R)

TEST is the name of the cataloged object.

Example of Linking a Natural Object to the Natural Nucleus

If, for example, the objects LOGPROG and EDITPROG in the library SYSLIB are to be linked to the
Natural nucleus, the following steps could be taken:

1. Identify the cataloged objects to be linked.

Object Library
LOGPROG SYSLIB
EDITPROG SYSLIB

2. Setup the batch Natural job stream. Assuming a z/OS environment, include the following cards:

Operations 1

Linking Natural Objects to the Natural Nucleus

//CMWKFO1 DD DSN=ULD.NAT.PGMS,UNIT=SYSDA,DISP=(,KEEP),
// SPACE=(CYL,(3,1),,RLSE),VOL=SER=VVVVVV,
// DCB=(RECFM=FB,BLKSIZE=800, LRECL=80)
//CMSYNIN DD *

LOGON SYSMISC

ULDOBJ LOGPROG,SYSLIB,O0S

EDITPROG,SYSLIB

FIN

/%

3. Set up the linkage editor job stream.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X

//*

//* GENERATE OS LOAD MODULE FROM ULDOBJ UTILITY

7=

//LINKI EXEC PGM=IEWL,PARM="LIST,LET,XREF,NCAL,RENT,REUS"
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR

//SYSUTL DD UNIT=SYSDA,SPACE=(1024,(200,20))

//SYSPRINT DD SYSOUT=X

//SYSLIN DD DSN=NAT.ULD.PGMS,DISP=0LD,UNIT=SYSDA,VOL=SER=VVVVVYV
/*

This step places the load modules LOGPROG and EDITPROG in the NATURAL.USER. LOAD data set.

With an additional link-edit job, these modules can be linked together as a single load module
before being linked to the nucleus in Step 5.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X

/i

//* OPTIONAL JOB TO LINK CATALOGED OBJECTS TOGETHER
/1%

//LINKZ EXEC PGM=IEWL,PARM="LIST,LET,XREF,NCAL,RENT,REUS"
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=X

//SYSLIN DD *

INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM

INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM

NAME XXXXXX(R)

/*

4. Define the statically linked Natural programs in source module NATCONFG in the NSTATIC table
for linked Natural programs:

12 Operations

Linking Natural Objects to the Natural Nucleus

NTSTAT INPL,TYPE=W

NTSTAT INPLLIB,TYPE=W

NTSTAT AERROR,TYPE=W

NTSTAT LOGPROG ==== your entries
NTSTAT EDITPROG ====

TYPE=W means that a “weak” external reference to the specified program is generated rather
than a normal one.

5. Review the linkage editor job stream for the Natural nucleus and include the following:

/1=

//* INCLUDE DDNAME AND DSN OF DATASET WHERE OBJECTS RESIDE
I J*

//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR

//NATLIB DD DSN=NATURAL.USER.LOAD,DISP=SHR//*

//SYSLIN DD*

INCLUDE MODULES FOR NUCLEUS

INCLUDE NATLIB(nat-parm-module) NATURAL PARAMETER MODULE
INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM

INCLUDE ENTRY AND NAME CARDS
/-
nat-parm-module represents the name of the Natural parameter module.

If the cataloged objects were linked together (as done optionally in Step 3), include this load
module instead of the individual load modules in the link of the nucleus.

Operations 13

14

3 Natural User Exits

= NATUEX1 - User Exit for Authorization CONtroleiiiiiiiiiiii s
= NATSREX2 and NATSREXS - User EXits for Sort ProCeSSINGc.vvveeeiiiiiieiiiiiie e
= NATUSKnn - User Exit for Computation of SOrt KEYSccuvviiiiiiiiiiiic e

= NATPM - User Exit for Inverted Output ...
= NREXPG - User Exit for NATRJE

= USR0070P - User Exit for Editor Profiles

= USR2002P - User Exit for Help Window Text StHNGSovvviviiiiiiiciiiie e

= USR2003P - User Exit for Main Menu ...

15

Natural User Exits

A Natural user exit is an object that is invoked by Natural, a subcomponent or a subproduct.
Usually, a sample user exit is delivered in source form. The instructions contained in the user exit
have to be written or adjusted by the user. The purpose of a user exit is to manipulate data or
make decisions. Most user exits take advantage of the Natural programming language; a small
subset has to be written in Assembler language.

Other Natural user exits and application programming interfaces are described in the relevant
places in the Natural subcomponent or subproduct documentation (Natural RPC, TP Monitor In-
terfaces, Utilities, add-on products, etc.).

NATUEX1 - User Exit for Authorization Control

The user exit NATUEX1 is called whenever a user session is activated. It can be used to determine
whether or not the user is authorized to use Natural. The security data used to determine this can
be retrieved from the security system being used (for example, RACF or ACF2).

NATUEX1 is called using standard calling conventions:

Register |Contents

15 Entry address of NATUEX1

14 Return address of Natural

13 Address of a save area of 18 words
1 Address of a parameter list

The parameter list contains the following addresses:

Address |Points to an 8-byte field containing the value which is used to fill the Natural system variable

*INIT-USER
*ETID
*INIT-ID
*INIT-PROGRAM

*USER (Note that this system variable will be overwritten during a Natural Security logon.)
Address of work area (6KB length)

N G| = Q| N| =

The values of addresses 1 to 5 can be modified by the user exit. Address 6 points to an area of 6KB
that can be used as working storage.

For normal completion, the user exit must return control with Register 15 set to 0. If Register 15
does not contain 0, the Natural session is terminated with the condition code equal to the value
in Register 15.

16 Operations

Natural User Exits

NATUEX1 can be linked to the environment-independent nucleus or to an environment-dependent
nucleus. It is also possible to link it to an alternative Natural parameter module, or as a separate
module if you are running with profile parameter RCA.

An example of the user exit is available as member XNATUEX1 in the Natural source library.

For CICS: See also NCIUIDEX - User ID Exit Interface in the Natural TP Monitor Interfaces docu-
mentation.

NATSREX2 and NATSREX3 - User Exits for Sort Processing

Natural provides two user exits for sort processing: NATSREX2 and NATSREX3.

The two user exits can be used with Natural's own sort program as well as with an external sort
program. The exits are activated automatically when they are linked to the nucleus and so their
addresses get resolved. Since many external SORT programs already supply several exit functions,
the exits NATSREX2 and NATSREX3 may especially be used either with Natural's internal sort program.

NATSREX2 is always called when Natural passes a record to the sort program. NATSREX3 is called
when the sort program, upon completion of the sort run, passes a record to Natural. The example
delivered shows how you can establish your own collating sequence for a SORT.

When the user exits are activated, the following register conventions must be adhered to:

Register |Contents

15 Entry addresses of NATSREX2 and NATSREX3
14 Return address of Natural

13 Addpress of the 18-word save area

1 Addpress of the sort record

3 Length of the sort record

The user exits have to secure the Natural registers and restore them upon returning control to
Natural.

As the sort exit module is linked to the module NAT2SORT, programming has to be reentrant. The
format and structure of the sort records must not be modified.

Operations 17

Natural User Exits

NATUSKnn - User Exit for Computation of Sort Keys

Some national languages contain characters which are not sorted in the correct alphabetical order
by a sort program or database system. With the system function SORTKEY you can convert such
“incorrectly sorted” characters into other characters that are “correctly sorted” alphabetically.

When you use the SORTKEY function in a Natural program, the user exit NATUSKnn will be invoked
- nn being the current language code (that is, the current value of the system variable * LANGUAGE).

You can write a NATUSKnn user exit in any programming language that provides a standard CALL
interface. The character string specified with SORTKEY will be passed to the user exit. The user exit
has to be programmed so that it converts “incorrectly sorted” characters in this string into corres-
ponding “correctly sorted” characters. The converted character string is then used in the Natural
program for further processing.

For the conversion, NATUSKnn may use the translation table NTUTAB1 of the configuration module
NATCONFG; this means that NTUTAB1 may have to be adjusted accordingly.

NATUSKnn is called using standard calling conventions:

Register |Contents

15 Entry address of NATUSKnn

14 Return address of Natural

13 Address of a save area of 18 fullwords
1 Address of a parameter list

The parameter list contains the following addresses:

Offset |Address of

+0 The character string passed from Natural.

+4 The length of the character string (fullword).

+8 The character string resulting from the conversion.

+12 |The length of the result string (fullword).
+16 |The translation table NTUTABI.

NATUSKnn has to secure all registers, except 14 and 15, and restore them upon returning control to
Natural.

For normal completion, the user exit must return control with Register 15 set to Return Code 0. If
Register 15 does not contain "0", a corresponding Natural error will be issued.

18 Operations

Natural User Exits

Sample User Exit Programs

The following sample user exits are provided in source code form:

Program |Function

NATUSKO1|Applies to English and converts all English lower-case letters in the character string to upper-case.

NATUSKOZ|Applies to German and converts the German umlauts &, 6, ii, and £ into their corresponding
replacement characters ae, oe, ue, ss in order to provide a different sort sequence.

NATUSKnn can be linked to the environment-independent nucleus or to an environment-dependent
nucleus. It is also possible to link it to an alternative Natural parameter module, or as a separate
module if you are running with profile parameter RCA=NATUSKnn.

For linkage and loading conventions, see also the CALL statement in the Natural Statements docu-
mentation.

NATPM - User Exit for Inverted Output

The NATPM module is used to support inverse direction terminals. It contains the user exit routine
for field and line conversion which is called by Natural at terminal I/Os if for some fields the print
mode (profile parameter PM) has been set to I.

PM=I indicates inverse direction and is used to support languages writing from right to left (for
example, bi-directional languages); see also the description of the profile parameter PM.

The module NATPM is delivered as a source module and can be modified if required.
Inversion Logic

Natural provides a user-exit routine which is called for each field where the resulting attribute is
PM=I and for each line to be printed via hardcopy, additional report and primary batch output.
This exit is called with three parameters:

= the source field to be inverted,

" the target field to receive the inverted data,

® alength field specifying the length of the source and target fields.

As this user exit routine is available in source code to all users, it might be used as an explicit field

exit triggered by the PM=I attribute. The user is then able to check and modify line contents or field
contents.

Operations 19

Natural User Exits

Field User Exit

The user exit in NATPM will be called for every field where the attribute PM=1 is set.

This attribute can be set by the Natural programmer, or is automatically set for numeric fields
when the global print mode is set to PM=I. It does not matter whether the output is generated for
the terminal, for hardcopy, for additional reports or for the primary output in batch.

For printing devices, Natural does not expect automatic inversion from the hardware, but calls
NATPM again for the complete line. This feature can be used in countries where the field inversion
is not required to establish interface logic with Natural based on a field attribute.

NREXPG - User Exit for NATRJE

NREXPG is a user exit for Natural Remote Job Entry (NATRJE). After the job is complete, each JCL
card is passed to the exit before it is submitted to the operating system. The following data are
available to the exit:

® the JCL card to be submitted,

B areturn code field,

® the name of the Natural program currently being executed,
= the Natural user identification,

" a 240-byte work area.

After each call, the exit passes a return code to NATRJE indicating one of the following events:

Code [Explanation

0 Submission: the card is submitted; the exit may modify the card before submission.

4 Termination: the card is submitted; the exit is disabled for further cards of the current job.

8 |Insertion: the card is skipped based on the assumption that it contains only an insert character, for
example, the percent sign (%); additional specified cards are submitted.

10 [Deletion: the card is not submitted.

12 |The current job is flushed.

An example of the user exit, called NREXPG, is available as member XNATRJE in the Natural source
library. The exit can be assembled and linked according to the rules of programs specified as
CSTATIC. However, a CSTATIC entry for NREXPG is not required.

20 Operations

Natural User Exits

USRO0070P - User Exit for Editor Profiles

The user exit routine USR0070P enables you to modify the parameter settings for the Natural pro-
gram editor or data area editor in the default profile SYSTEM.

For further information on the editor profile, see General Information in the Editors documentation.
USR0070P provides a list of all parameters which are to receive a default setting.

With this user exit, you can also determine whether editor profiles are to be stored in the FNAT
system file, the FUSER system file or the scratch-pad file.

In addition, USR0070P considers DBCS support and sets the editor profile options Editing in
Lower Case and Dynamic Conversion of Lower Case correspondingly.

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text object USR0070T.

USR2002P - User Exit for Help Window Text Strings

The user exit routine USR2002P can be used to customize the text strings for the Current Natural
Message window that is invoked by pressing the Help key while the cursor is on the message
line.

The object USR2002P itself contains the text strings used within the Current Natural Message
window, for example, the window title and the descriptive texts, such as, the field names Sh (short
message), Tx (long message), Ex (explanation) and Ac (action).

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text object USR2002T.

USR2003P - User Exit for Main Menu

The user exit routine USR2003P can be used to customize the following settings for the Natural
Main Menu and its subordinate menus:

" position and color of the message line,

" position and color of the PF key lines.

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text object USR2003T.

Operations 21

22

4 Natural User Access Method for Print and Work Files

= NATAMUSR Module Description
= NATAMUSR Module Installation
= |nvoking the Third Party Product

23

Natural User Access Method for Print and Work Files

This document describes the Natural User Access Method which is an interface for third party
vendor products for Natural print and/or work file support.

NATAMUSR Module Description

The NATAMUSR module provides an exit interface (entry point NATAMIEX) for software vendors to
handle Natural print and work files, that is, it actually consists of two parts:

® the Natural User Access Method stub NATAMUSR delivered with Natural and
® the Natural User Access Method exit NATAMIEX delivered by a software vendor.

NATAMUSR Module Installation

The NATAMUSR module (with the access method exit) may be installed in one of the following ways:

linked to the environment-independent nucleus,

* linked to the environment-dependent nucleus,

linked to an alternative Natural parameter module (as loaded via profile parameter PARM),

linked as a separate module; in this case, the following Natural profile parameters are required:

RCA=(NATAMO9) ,RCALIAS=(NATAMO9, xxx) ,
where xxx is the name of the separate module in the load library.

The environment-independent nucleus and the environment-dependent nucleus are described in
Natural Nucleus Components for z/OS in the Natural Installation documentation.

Invoking the Third Party Product

> To invoke the third party product for Natural print and/or work file processing

m Specify AM=USER for the relevant files (see also NTPRINT and NTWORK).

For details about the Natural User Access Method exit installation and other information about
the third party exit handler, refer to the documentation of the relevant software vendor.

24 Operations

5 Natural System Files

= Natural Scratch-Pad File

25

Natural System Files

The table below lists and describes the Natural system files that are usually available in a Natural
environment. The availability of the system files and the data contained in the files depends on
the products installed in addition to base Natural.

The settings for the system files are defined with Natural profile parameters of the same names
(exception: scratch-pad file). You can follow the hyperlinks in the table below to read details about
these parameters in the Parameter Reference documentation.

System File Supplied with File Contents

FNAT Base Natural All objects required for Natural system applications.

FUSER Base Natural User-specific objects required for user-defined applications.

FPROF Base Natural Parameter profiles specified by the profile parameter PROFILE,
provided no database information is supplied as subparameter
of PROFILE.

Scratch-pad file|Base Natural Data that is not stored explicitly as a Natural object in another
system file. See also Natural Scratch-Pad File in the Operations
documentation.

FDIC Base Natural Natural Data Definition Modules (DDMs).

If Predict is installed, FDIC also contains data for the Predict
dictionary system.

If the Natural Development Server is installed, FDIC also contains
application data and holds object locking information.

FREG Base Natural Registry data that is not stored explicitly in another system file.

FSEC Natural Security Control information required for security definitions.

FSPOOL Natural Advanced Control and spooling information required to output a report on
Facilities a screen or printer and obtain print statistics.

Natural Scratch-Pad File

The Natural scratch-pad file is used to store recordings and screen captures which cannot be ex-
plicitly saved as a Natural object in the Natural FNAT or FUSER system file.

In contrast to FNAT and FUSER, a scratch-pad file is not mandatory in a Natural session. However,
you must define a scratch-pad file if you are working with read-only access to system files (profile
parameter ROSY=0N). Otherwise, the recordings and screen capture cannot be stored and a corres-
ponding error message (NAT0106) is issued instead. The scratch-pad file is excluded from read-

only access.

A reasonable estimate about the related storage requirements is hardly possible as the amount of
storage used by the Recording utility and the NATPAGE utility (for screen captures) cannot be calcu-
lated beforehand. However, the scratch-pad file size required at your site can be estimated with

26 Operations

Natural System Files

a better understanding of the types of records that are stored on it. The content of the scratch-pad
file is described in the following section.

= Recordings
= Screen Captures - NATPAGE
= File Maintenance

Related Topic:

Defining a Scratch-Pad File in the Installation for z/OS documentation.
Recordings

The Recording utility is activated using terminal commands as described in the Utilities document-
ation. Recordings are stored like Natural source programs (or other object types). The size of a
recording depends on how many screen inputs have been done during a recording session. Re-
cordings are like programs related to a library.

Currently, it is not possible to list recordings on the scratch-pad file by using the Natural LIST
system command. SYSMAIN can be used, though, to list and maintain the recordings stored on the
scratch-pad file. To store the recordings on the FNAT/FUSER file instead of on the scratch-pad file,
set the profile parameter RFILE.

Recordings which are being stored on the system file FNAT or FUSER are affected (interrupted) by
transaction backouts (BTs) which are issued in the user's application programs. This is a very
common problem encountered by users of the recording facility and it can be avoided by using
the scratch-pad file.

Screen Captures - NATPAGE

The screen capturing utility NATPAGE can be used to store screen images (in chronological sequence
of their appearance) on the scratch-pad file. NATPAGE can be activated with the terminal command
%P. From the moment %P is issued, all screens presented to the end user are stored onto the scratch-
pad file (if it has been defined for your session) until the terminal command %0 is entered. The
captured screens can be displayed using the terminal command %E.

For each screen image, the current content of the page buffer and the page attribute buffer is stored.
This means that the amount of data being stored depends on the settings of the profile parameters
PS/LS for the session and, of course, on the number of screen images. The number of possible

screens per user session depends on the profile parameter PD (default is 50; valid values are 0-255).

The size of the page buffer can be calculated as:
PS * LS

The size of the page attribute buffer is determined dynamically.

Operations 27

Natural System Files

File Maintenance

The scratch-pad file does not need any maintenance, provided it is of sufficient size.

® Recordings on the scratch-pad file can be deleted, copied, moved and listed by using the utility
SYSMAIN.

® Captured screens can be deleted by using the %E terminal command.

" Saved screen images, however, cannot be maintained in Natural at all.

Space on the scratch-pad file can be reclaimed by refreshing it with Adabas utilities in times of
non-activity without affecting subsequent Natural sessions which are using the scratch-pad file.

28 Operations

6 Natural Text Modules and Macros

= Function and Usage of Text Modulescccccvvvereeeninnnne,
= NATTEXT - Natural Keyword Definitionscccccvveeennne.

= NATTXT2 - Output Text, Keywords and User Termination Messages (Mixed Case)ccoovvveeiiiireeninnnnn..
= NATTXT2U - Output Text, Keywords and User Termination Messages (Uppercase)cooovveerivireennnnnne.
= NATTXT3 - Text Fragments for Placeholders in Natural Error MeSSagescceeeviiiiiiiiiiiiiieeiiiiiiiiiieeeeeen

= NTERMSG - Natural Termination Messages and Return Codes

29

Natural Text Modules and Macros

This document describes the Natural text modules NATTEXT, NATTXT2, NATTXT2U, NATTXT3 and the
Natural macro NTERMSG.

Function and Usage of Text Modules

All Natural keywords, alternative keywords and standard output text are contained in the modules
NATTEXT and NATTXT2. Natural system commands and alternate system commands are also included
as keywords and alternative keywords in these modules. Substitution text fragments for Natural
error messages are contained in module NATTXT3. The modules are contained in source form in
the Natural source library and in load module form in the Natural load library.

If necessary, you can modify Natural keywords, alternative keywords and text contained in these
modules. For example, Natural session termination messages can be changed from English to
another language, Natural keywords can be disabled, or synonyms can be added.

If any modifications are made to a NATTEXT, NATTXT2 or NATTXT3 module, each modified module
must be assembled, link-edited and included into the executable Natural module; refer to the
corresponding Natural installation documentation.

NATTEXT - Natural Keyword Definitions

The NATTEXT module contains the macros NTKEY, NTALT and NTSYN for each keyword and alternative
keyword to be recognized by Natural.

Modifying NATTEXT

@ Caution: Itis recommended that you modify the NATTEXT module for very important reasons

only, because once modified, it can no longer be properly maintained by support.
The following rules apply:

® A keyword value for a NTKEY or NTALT macro can be changed by replacing the current keyword
value with the desired value.

® A keyword or alternative keyword can be disabled by replacing the keyword value with the
character "%".

® The position of each NTKEY and NTALT macro within the module is fixed and must not be shifted.
Additional NTKEY and NTALT macros must not be inserted.

® Synonyms can be assigned for any keyword or alternative keyword using the NTSYN macro. One
or more NTSYN macros can be inserted after a NTKEY or NTALT macro. The NTSYN macro includes
one parameter, which is the value to be used as the synonym. If the synonym contains embedded
blanks, the entire value must be enclosed in apostrophes.

30 Operations

Natural Text Modules and Macros

Example of Modifying the NATTEXT Module

The following example illustrates how a NATTEXT module is modified. In this example

® the synonym RECHERCHE is to be used for the keyword FIND;
" the synonym LISEZ is to be used for the alternative keyword BROWSE;
® the keywords GET and HISTOGRAM are to be disabled.

NATTEXT before modification:

STATNAM NTKEY FIND
NTALT BROWSE
NTALT GET
NTALT ACCEPT
NTALT REJECT
NTALT HISTOGRAM

NATTEXT after modification

STATNAM NTKEY FIND
NTSYN RECHERCHE
NTALT BROWSE
NTSYN LISEZ
NTALT 7%
NTALT ACCEPT
NTALT REJECT
NTALT %

NATTXT2 - Output Text, Keywords and User Termination Messages (Mixed
Case)

The NATTXT2 module contains the macros NTKEYT, NTALTT and NTSYNT which define the following:

= Standard Natural Output Texts
= Keywords and Alternative Keywords for Natural System Commands and Utilities

Operations 31

Natural Text Modules and Macros

= User-Written Termination Messages
Standard Natural Output Texts

The module NATTXT2 contains the following standard Natural output texts, each of which can also
be displayed in another language if the language code is set accordingly (see also below):

* the literal Page used in the standard output page header;

" the name of each month as used in the Natural system variable *DATG (Gregorian date), date
edit masks (L), and the name of each day as used in date edit masks (N);

" the ENTER INPUT DATA message and the skeleton error messages for error numbers 1104, 1105
and 1106 (used during online input processing);

" the error message used for system file open failure (which cannot be retrieved from the system
file); an error number of the form NAT8xxx (where xxx is the decimal Adabas response code) is
added to this error message by Natural;

* the constants More, Top and Bottom used in windows for position information to be displayed
in text form;

* the table to define reports and report handling for reports greater than 33.

Any values contained in NATTXT2 can be modified by replacing the current text with the desired
text. If a month-name synonym exceeds nine characters, only the first nine positions are used by
the system variable *DATG.

NTSYNT macro statements can be added as described for module NATTEXT. However, with NATTXT2,
a second parameter can be specified. This parameter is optional and represents the language indic-
ator to be used for the synonym. When you specify the language indicator, Natural produces
message output resulting from the use of this synonym in the corresponding language. In addition,
if error message texts have been stored in the Natural system file using a language indicator other
than 1 (which is the default and stands for Eng1ish), error messages are returned in the corres-
ponding language. For information on which language code stands for which language, refer to
the profile parameter ULANG.

Keywords and Alternative Keywords for Natural System Commands and Utilities

The module NATTXT2 contains NTKEYT and NTALTT macros for each keyword and alternative keyword
to be recognized by Natural for the following Natural system commands and utilities, parameters
of commands and their values when applicable. Each of these can also be used in another language
if the language code is set accordingly (see also below):

* all Natural system commands in general;

® for the GLOBALS system command, the parameters and their values when applicable;

= for the COMPOPT system command, the parameters and their values when applicable;

32 Operations

Natural Text Modules and Macros

" public system commands (these system commands are permanently valid and cannot be disal-
lowed, neither by means of Natural Security nor by the Natural profile parameter NC;

= Natural utilities

The NTKEYT and NTALTT macro statements can be used similar to the NTKEY and NTALT macro
statements as described for module NATTEXT.

The NTSYNT macro statements can be used as described under Standard Natural Output Texts.
User-Written Termination Messages

User-written termination messages can be added with the macro NTERMSG for all return codes (1
- 255) which can be issued with a TERMINATE statement and which normally lead to the Natural
termination message NAT9987.

You specify the termination message text with the first parameter, and the corresponding return
code with the second parameter.

Example:

NTERMSG 'USRO077 THIS IS A SAMPLE USER MESSAGE FOR RETURN CODE 77',77

A TERMINATE 77 statement in a Natural application will result in the following termination message:
USRO077 THIS IS A SAMPLE USER MESSAGE FOR RETURN CODE 77

NATTXT2U - Output Text, Keywords and User Termination Messages (Upper-
case)

The NATTXT2U module contains the same items as the NATTXT2 module. The difference is that certain
keywords for the English language are contained in mixed case in NATTXT2 whereas they are in
all uppercase in NATTXT2U. This affects the keywords MORE, TOP, BOTTOM, PAGE, and all month and
weekday names.

NATTXT2U should be linked to the Natural nucleus instead of NATTXT2 in environments where
lower-case code points H' 81" to H'A9 ' are used to display national characters, for example, if code
page 930 with half-width Katakana characters is used.

Operations 33

Natural Text Modules and Macros

NATTXT3 - Text Fragments for Placeholders in Natural Error Messages

The NATTXT3 module contains the macros to define the text fragments which will be used to sub-
stitute the :n: place holder in Natural error messages.

Each text fragment can be defined in various languages. For information on which language code
stands for which language, refer to the ULANG parameter.

The text fragments will be generated in EBCDIC and Unicode notation.

Note: To assemble the NATTXT3 module, a high level assembler must be used which supports

the macro function UPPER and the definition of Unicode characters (DC CU’ unicode text’).
Example:

The text for Natural error NAT0082 (when trying to execute a non existing program) looks as fol-
lows:

Invalid command, or :1: :2: does not exist in library.

Trying to execute the object NOTEXIST leads to following result:

NAT0082 Invalid command, or Program NOTEXIST does not exist in library.
:2: was replaced by the object name (NOTEXIST).
:1: was replaced by the text fragment Program.

The text fragment was declared in module NATTXT3 as follows:

PROGRAM 0002

MSGSDEF &LC_PGM

SPACE
K o o L L o h e h m e m m e e e e m e e e e m - -
MSGSLAN 01,Program 1 ENGLISH
MSGSLAN 02,Programm 2 GERMAN
MSGSLAN 03,programme 3 FRENCH
MSGSLAN 04 ,programa 4 SPANISH
SPACE
K o o L L L L L L L L o h e h e h e h h h h e m e m e f e m f e f m m e m m mm e m i - -
MSGSGEN

Text fragment values for additional languages may be entered by adding further MSGSLAN macros.

34 Operations

Natural Text Modules and Macros

NTERMSG - Natural Termination Messages and Return Codes

Natural has a number of standard session termination messages (NAT99...) that are delivered in
macro NTERMSG and can be modified there (for example, to translate them it into another language).
The overall length of ID and text can be up to 72 characters. After the macro NTERMSG has been
modified, the Natural parameter module has to be re-assembled and linked.

Apart from the message ID and text, each standard termination message also includes one of the
following Natural system return codes, which are also defined within macro NTERMSG:

Code |Explanation

0 Normal termination.
4 Error occurred during execution/compilation (batch mode only).
8 Termination due to severe runtime error.

12 Session initialization failure.

16 Abnormal termination due to abend or severe environment failure..

With the profile parameter TS set to 0N, the termination messages are translated to upper case using

the upper case translation table NTUTAB1 as supplied in the NATCONFG module before they are dis-
played.

In addition to TS=0N, further parameters to provide for translation of messages into upper case
are provided by several Natural components. For further information, see Other Parameters to
Provide Upper Case Translation in the TS profile parameter description.

Operations 35

36

7 Natural Configuration Tables

= NATCONFG - Natural Configuration TablEsccouuriiiiiiiiiiiiii e 38
= General Overview of Macros Used by NATCONFGccoiiiiiiiiiiiiieeiiiiie et 38
= NTDVCE - Terminal-Device Specification Tablecooiiiiiiiiiiii e 39
= NTMSG - Message Log Table DEfiNItIONSooiiiiiiiiiii e 40
= NTSTAT - Definition of Natural Objects Linked to the Natural NUCIEUScoooiiiiiiiiiiiiiiiiiiiiieeee 40
= NTCPAGE - Code Page DefiNIIONSvviiiiiiiie e 41
B COE PAGE SUPPOM ...ttt e e e e e e e e e e e e e e e e e e 42
B QUEPUL DEVICES SUPPOMEA ...t e et e e e e e e e e e e e e e e 43
B TraNSIAtion TaADIESoooiiiiiiei e 44
B Upper-/Lower-Case TranSIationccoiiiiiiiiiii et e e e 47
B OMULT BNy ettt e e et e e e e et e e e e e e e e e e e e s 48
B OUEPUE TRANSIATION ©..vvveiee e e 48
B NPUE TRANSIAHON ©.evveii et 49
= Code Translation 0f DBCS Datacccuuiiieiiiiiieeiiii et 49
B NTTZ - Time Zone DEfiNItIONSvvviiiieiie it e e e e e 49

37

Natural Configuration Tables

This document provides general information on the Natural configuration tables which are con-
tained in the NATCONFG module.

See also Input/Output Devices Supported.

NATCONFG - Natural Configuration Tables

The NATCONFG module contains the Natural configuration tables.

(Caution: In general, the default specifications in NATCONFG need not and should not be

modified. In particular, do not modify without prior consultation of support any of the tables
marked with an asterisk (*) in the list below.

For most of the tables, there are corresponding macros in the Natural parameter module as well
as dynamic profile parameters. If you need to modify a NATCONFG table, use the corresponding
parameter-module macro, or dynamic profile parameter, to overwrite the table. (If you made the
modifications in the NATCONFG tables themselves, you would have to modify and reassemble
NATCONFG again with subsequent Natural releases.)

The NATCONFG module uses macros for the definition of the following Natural default configuration
tables.

In addition, it uses the following tables:

® The default attention identifier table. It defines the physical terminal keys to Natural ().

® Various other tables (*).

General Overview of Macros Used by NATCONFG

The following table provides a general overview of the macros used by the NATCONFG module for
the definition of the Natural default configuration tables:

Macro Purpose

NTDVCE * Table of terminal types. Used to specify the terminal driver to be used, see description
below, for details.

Important: Do not modify an existing NTDVCE macro, rather create a new one.

NTMSG Message log table. Natural messages which shall be written to the job message log or
to the operator console.

NTSTAT Definition of Natural objects linked to the Natural nucleus.

NTCPAGE Code page definitions.

38 Operations

Natural Configuration Tables

Macro Purpose

NTTAB Primary output translation table.

NTTAB1 NTTAB2 Secondary output/input translation tables.

NTUTAB1 NTUTABZ |Tables for translation between lower case and uppercase. These tables have to be
modified, for example, for the German character set.

NTTABA1 NTTABAZ |Tables for translation of EBCDIC characters to ASCII characters and vice versa. These
tables are used by the Object Handler.

NTTABL SYS* translation table. Translates output from programs contained in Natural SYS. . .
libraries.

NTLANG * Language translation table. Contains a list of all available language codes defined to
Natural.

NTSCTAB Scanner character type table. Determines which characters are lower-case alphabetical,

uppercase alphabetical, numeric and special characters (applies to dynamic profile
parameters, MASK and SCAN options).

NTTZ Time zone definitions. The NTTZ macro enables specifications concerning time zones
and automatic switching to and from summertime.

NTBUFID The parameters MIN and MAX of this macro can be used to change the buffer size limits
for variable buffers, see Customization of Buffer Characteristics.

Important: The default values of the other parameters in this macro should not be

modified, because the results may be unpredictable.

* Do not modify without prior consultation of support any of the tables marked with an asterisk (*)
in this list.

For further details, see Translation Tables.

NTDVCE - Terminal-Device Specification Table

For each terminal type supported by Natural, a terminal converter routine is provided. The corres-
ponding terminal drivers are responsible for the actual terminal I/Os. They build the physical data
stream from the screen buffer and the screen attribute buffer and place it in the terminal I/O buffer.

In addition, a telex driver is provided for Con-nect in order to provide faster telex, telefax and
teletext communication from and to the Topcall messaging server. This driver supports the Topcall
full-page protocol.

With the NTDVCE macro, it is possible to add new terminal drivers to Natural to specify modifications
of the terminal-specific input/output or lower-to-upper case translation tables. Other information
which can be specified is the frame character, the position of the message line, whether screen
optimization is to be on or off, as well as various flags in the IOCB. In addition, the terminal spe-
cification can be routed to an existing driver by using other translate tables or can hook into a
driver routine.

Operations 39

Natural Configuration Tables

The NTDVCE macro is invoked by either the terminal command %7= from the Natural command
line or the SET CONTROL 'T=...' statement from within a Natural program. At the start of a Nat-
ural session, the translation tables NTTAB, NTTAB1, NTTAB2, NTUTABL and NTUTAB2 are copied from
the NATCONFG module into the user area where they are modified by NTDVCE.

Note that the translation tables can be modified by the same macros dynamically or within the
Natural parameter module.

NTMSG - Message Log Table Definitions

The macro NTMSG is used to define Natural messages which shall be written to the operator console
or to the job message log (if available). A defined message will be written in addition, that is, the
usual Natural processing remains unchanged. To find the log message definition table, locate label
NATMSGT in NATCONFG. There you can add your NTMSG definitions on a one message per line basis.

NTMSG Macro Syntax
The syntax of the NTMSG macro is as follows:

NTMSG NATnnnn, logid

NTMSG Macro Parameters

Parameter | Description

NATnnnn|nnnn is the Natural message number (mandatory).

Togid |Indicates the log destination, that is, the operator console or job message log or both.

Possible values: WTO, WTL or WTO+WTL

NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus

Any object to be linked to the Natural nucleus must be specified with an NTSTAT macro. When
searching for an object, Natural always scans this list first, regardless of the library specified. For
information on how to link Natural objects to the Natural nucleus, see the ULD0BJ utility in Linking
Natural Objects to the Natural Nucleus.

NTSTAT Macro Syntax

The syntax of the NTSTAT macro is as follows:

40 Operations

Natural Configuration Tables

NTSTAT object-namel ,TYPE=W]

NTSTAT Macro Parameters

Parameter Description

object -name|Specifies the name of the object linked to the Natural nucleus.

TYPE=W Means that the entry point of the linked object is defined as a “weak external” to the Natural
nucleus. This avoids a linkage editor error message in case of the object is not linked to the
Natural nucleus.

NTCPAGE - Code Page Definitions

All code pages to be used during a Natural session must be predefined in the source module
NATCONFG. For each code page to be defined, a specific macro NTCPAGE must be entered. During
session initialization, the code page specified by the profile parameters CP, CPOBJIN, CPSYNIN,
CPPRINT and the CP keyword subparameter of profile parameter PRINT or parameter macro NTPRINT
are verified. If this code page is not defined in NATCONFG, an error message is issued.

NTCPAGE Macro Syntax
The syntax of the NTCPAGE macro is as follows:

NTCPAGE IANA=value,
CCSID=value,
CCSN=value,
ALIAS=value,
PHC=value,
MULTI=value,
ECS=value

* ok X o o X

NTCPAGE Macro Parameters

Parameter | Description

TANA This parameter is required under all operating systems. It specifies the standard name of the
code page. Maximum length: 64 characters.

CCSID |Thisis a required parameter. It specifies the coded character set identification; that is, a numeric
value with up to 5 digits.

Examples:
1141 German EBCDIC code page
62243 Hebrew/Latin (ISO 8859) code page

ALTAS |This parameter is optional. It specifies the code page alias name. Maximum length: 32 characters.

PHC This parameter is optional. It specifies the place holder character. Length: 2 bytes hexadecimal.

Operations 41

Natural Configuration Tables

Parameter | Description
ECS This parameter is optional. It specifies the key number of the code page in Entire Conversion

Service (ADAECS), which is used by Adabas.

MULTI |This parameter is optional. It specifies whether the code page is a single-byte code page or a
multi-byte or ASCII code page. Possible values:

ON The code page is a single-byte code page; for example,
IBM01140. The code page can be used as a Natural session
code page. The session code page is defined by the Natural
profile parameter CP.

OFF The code page is a multi-byte code page or ASCII code
page. It cannot be used as a Natural session code page.
Any attempt to use this code page results in initialization
message NAT7019.

This is the default setting.

VALID The code page is a multi-byte code page, but can be used
as a Natural session code page. For example, IBM-939 is
a Japanese EBCDIC code page that contains DBCS
characters.

Examples:

NTCPAGE IANA=IBM819,
CCSID=819,
ALTAS="1S0-8859-1",
PHC=003F

NTCPAGE IANA='IBM-939',
CCSID=939,
ECS=3035,

ALIAS="ibm-939_P120-1999",

PHC=3013,
MULTI=VALID

* % X o of

See also Configuration and Administration of the Unicode/Code Page Environment.

Code Page Support

By using the NTDVCE macro, different code pages can be defined and associated with a specific

terminal type and name. If Natural is then started with PM=C, all terminal I/O is translated on input
and retranslated on output. Thus, as long as the code pages are compatible, a common data rep-
resentation can still be maintained.

See also SYSCP Utility - Code Page Administration in the Utilities documentation.

42

Operations

Natural Configuration Tables

Output Devices Supported

Attribute control variables and formats define attributes to generate a certain representation on
the output device. Natural offers a wide range of possible attributes to allow the end user the best
use in designing maps and reports on the terminal.

Unfortunately not all terminals support all features available with Natural. These features are
mostly ignored on such devices or are simulated via other techniques. Basically there are two data
stream definitions in an IBM environment called standard data stream and extended data stream.

The following output devices are supported:

= Sequential Output Devices for Batch, Additional Reports
= [ine-Oriented Online Terminals
= Block-Mode-Oriented Online Terminals

Sequential Output Devices for Batch, Additional Reports

The output data contain standard ASA control characters controlling the line advance and page-
eject facility of the given printer. This printer can be either the central printer in the computer
center supported by the online or batch spooling system or the SCS printer used as online terminal
printers.

The following devices can be used to print reports generated in this form:

Device Type

Impact printer |Standard central printer hardware

Laser printer |High-speed printer, terminal printer

Daisy printer |Terminal printer

Inkjet Terminal printer

Line-Oriented Online Terminals

Terminal Make |Description

TTY Data sent to TTY devices are generated using the standard formfeed, linefeed, etc. characters.

Operations 43

Natural Configuration Tables

Block-Mode-Oriented Online Terminals

Terminal Make | Description

IBM All models and sizes which support standard data stream and/or extended data stream.

PC All models and sizes which support standard data stream and/or extended data stream.

Translation Tables

All data printed, displayed or written by Natural programs are translated by Natural. This guar-
antees that no illegal control characters can cause terminal I/O errors or display garbage information
on the terminal.

Another feature is the translation to and from character sets different from the Latin definition,
especially Arabic, Cyrillic, Greek and Hebrew characters.

This section describes all features and functions concerning field translations when data are written
to external devices such as CRT (screen terminals) or online and batch spooling systems.

The statements INPUT, DISPLAY, PRINT and WRITE write data to or read data from external devices
such as CRT, TTY or sequential files. All these statements use parameters such as constants, vari-
ables, edit masks, attribute control variables and formats to control the output image and the input
representation. Constants and variables are generated by using their respective values in the output
image. The representation of these values is then controlled by the attribute control variables,
formats, edit masks and translation tables.

Natural uses several translation tables and also provides the use of alternative translation tables,
all included in NATCONFG.

The following tables are provided:

Macro Table

NATSCTU |Required scanner table for Unicode characters. It maps the properties of Unicode characters
of the Unicode Specification (as supported by the delivered ICU version) to be used by the
Natural nucleus.

Important: This table must never be changed.

NATCPTAB |Optional single-byte code page conversion accelerator tables.

If the table is present, conversion from one code page to another code page will be faster since
it is performed via this table rather than by calling ICU functions.

The following code pages are supported by the delivered NATCPTAB:

IBM01140

44 Operations

Natural Configuration Tables

Macro Table
IBMO1141
IBM0O1145
IBMO1146
IBMO1147
ASCI1
It is possible to add new entries by using the NTCPCNV macro. For each conversion direction,
an entry is needed that contains the IANA name of the source code page, the JANA name of
the target code page and optionally a blank character, a substitution character and a place
holder character, followed by a complete list of character mappings.

NTSCTAB |The table which defines the properties of characters
B used in mask definitions for the MASK option,
B recognized as delimiters in the EXAMINE and SEPARATE statements.
This table can be used to define upper-case attributes, lower-case attributes, special characters,
hexadecimal characters and numeric characters.
To modity this table, use the macro NTSCTAB in the Natural parameter module or the
corresponding dynamic profile parameter SCTAB.
If the CP profile parameter is set to a value other than 0F F, the modification is ignored and the
table is adjusted according to the code page used for the Natural session. See also Translation
Tables in the Unicode and Code Page Support documentation.

NTTAB The standard (primary) output translation table used for screen or printer output.

Basically this table is used to translate all characters below X'40"', that is from the space
character to the question mark (X ' 00" is not translated). This guarantees that all terminal-control
characters are translated before output and no control escape sequences can influence the
screen output. Special characters (X' FE' and X' FF ") which could influence the screen output
are translated to the question mark (?).

If nothing else is specified, all Natural output data are translated with NTTAB.

To modify this table, use the macro NTTAB in the Natural parameter module or the
corresponding dynamic profile parameter TAB.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is adjusted by ICU according to the code page used
at session start.

Furthermore, all characters below X '40" are translated to the question mark (?) as described
above. A character is excluded from this translation if either of the following conditions is true:

® The character is explicitly translated to the same character.

® The character is one of the logical shift-out/shift-in characters specified with the SOSI profile
parameter (see the Parameter Reference documentation), and the specified code page is not
an MBCS code page.

Operations

45

Natural Configuration Tables

Macro

Table

NTTAB1

The alternative (secondary) output translation table for the secondary character set used when
the Natural parameter PM is set to C.

The important aspect is the translation of all possible terminal-control characters. If PM=C is
specified, all Natural output data are translated with NTTAB1. A possible application of NTTAB1
is to avoid the translation of escape sequences for printer control.

To modify this table, use the macro NTTAB1I in the Natural parameter module or the
corresponding dynamic profile parameter TAB1.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

NTTAB?Z

The secondary input translation table used when the Natural parameter PM is set to "C". If
PM=C is specified, all Natural input data are translated with NTTAB2. Conversion between
different languages or code pages can be performed with this table together with NTTAB1.

To modify this table, use the macro NTTABZ in the Natural parameter module or the
corresponding dynamic profile parameter TAB2.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

NTTABS

This table defines all valid characters that can be used in Natural variable names; it is used for
the Natural syntax processor.

It also defines all valid characters that can be used in the first position of a Natural variable
name.

In addition, it defines whether the variable is a global variable, a non-database variable or a
source-code variable.

If a code page is specified using profile parameter CP (CP=0N, CP=AUTO or CP=code-page),
the table is adjusted by ICU according to the code page used at session start.

NTUTAB1

The sample user-specific translation table for input translation from lower to upper case.

In addition, this table performs the translation specified with the statement EXAMINE
TRANSLATE INTO UPPER CASE.

To modify this table, use the macro NTUTAB1 in the Natural parameter module or the
corresponding dynamic profile parameter UTAB1L.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

NTUTAB2

The sample user-specific translation table which performs the translation specified with the
statement EXAMINE TRANSLATE INTO LOWER CASE.

To modify this table, you can use the macro NTUTAB? in the Natural parameter module or the
corresponding profile parameter UTAB2.

The modification is ignored if a code page is specified using profile parameter CP (CP=0N,
CP=AUTO or CP=code-page), and the table is not used.

46

Operations

Natural Configuration Tables

Macro

Table

NTLANG

The language-code table, which defines which language number is assigned to which language
code in the system variable * LANGUAGE.

NTTABL

The SYS* output translation table, which is controlled by the Natural profile parameter TS.
With TS=0N, this table is used to translate output produced by programs located in Natural
SYS* libraries (except modifiable fields) from Latin lower case to upper case.

This table allows the use of all upper- and lower-case characters in Latin oriented countries,
but still allows the use of these applications in countries where the lower-case characters have
been replaced with a native alphabet.

To modify this table, use the macro NTTABL in the Natural parameter module or the
corresponding dynamic profile parameter TABL.

If Natural is running with an MBCS code page (for example, CP="1BM-939"), the table is not
used, but translation is performed via ICU according to the current locale settings.

WRDFCUC1
WRDFCUC2
WRDFCSP?2

The DBCS translation tables used to translate double-byte characters into Latin characters and
vice versa.

Important: These tables have to be activated explicitly, for example, for Far East countries.

Upper-/Lower-Case Translation

For modifiable and input fields, upper- and lower-case translation can be specified. In general,
lower-case translation means that data are taken as they come in; no translation is performed. This
even makes it possible in batch mode, for instance, to read in hexadecimal data without translation.

There are several ways of specifying upper-/lower-case translation:

LC=OFF

Lower-case translation is switched off, which means that global upper-case translation
is in effect.

This profile parameter can be specified in the Natural parameter module or as dynamic
parameter. (Note that the session parameter LC has a completely different function.)

Upper-case translation is globally on.

On the field level, the attribute AD=T or AD=W can be specified. These attributes only
take effect when the global upper-case translation is deactivated (LC=0N, %L). Then it is
possible to control the translation on a field level from within a Natural program.

EXAMINE
TRANSLATE

Upper-/lower-case translation can also be performed with the EXAMINE TRANSLATE
statement.

By default, EXAMINE TRANSLATE translates to upper case by using the translation table
NTUTABI, and to lower case by using the translation table NTUTABZ.

Operations

47

Natural Configuration Tables

CMULT Entry

Itisno longer recommended to use the CMULT entry; use the EXAMINE TRANSLATE statement instead
(see above).

Output Translation

All fields, after having been formatted by possible edit masks, AL or NL parameter values, filling
characters, etc. are translated using a translation table. This ensures that no data can be sent to the
front-end printing device with embedded control information which is not explicitly generated
by Natural. This means that fields can be sent to a display device even if they contain hexadecimal
information which is identical to internal attributes. These attributes are translated before an output
operation and so Natural guarantees the screen layout as defined by the output statement.

There are several translation tables available. If nothing explicit is defined, the primary translate
table NTTAB is used.

If PM=C is specified, the secondary translation table NTTAB1 is used. For modifiable fields, PM=C also
means that the incoming data are translated again; that is, translated for output and retranslated
for input.

With this translation table logic it is possible, for example, to convert Arabic numerals to Latin
numerals. Arabic numerals have a different hexadecimal representation from the normal Latin
numerals on the terminal hardware. So on output, the Latin numerals can be translated into the
Arabic equivalent and on input, the Arabic numerals can be retranslated into Latin.

Special considerations have to be made for the Natural system applications which use Latin lower-
case and upper-case characters. Especially on terminals supporting Arabic, Greek, Cyrillic, etc.,
the hardware can be switched to not display lower-case Latin characters, but rather the native
characters.

Unfortunately, Latin lower-case characters are crabbed when displayed in, for instance, Cyrillic.

So Natural can be used with the parameter TS=0N (translate system output). TS=0N translates “SYS*”
libraries (not including library SYSTEM) and all Natural system commands by using a third trans-
lation table called NTTABL. By default, this translation table performs upper-case translation for all
lower-case Latin characters. Of course, only output data are treated this way. So this allows data
entry in the native character set even in Natural editors or system applications.

However, if Natural utilities are used to display data typed in the native character set, this results
in an upper-case translation even for data in, for example, Cyrillic representation. The result would
again be unreadable. So all Natural system utilities can use the format PM=C for fields containing
data entered in the native character set. In this case, neither the NTTABL translation table nor the

48 Operations

Natural Configuration Tables

secondary translation table NTTAB1 is used. The data are simply translated by the primary translation
table NTTAB.

For further information, see the profile parameters PM, and TS in the Parameter Reference document-
ation.

Input Translation

The translation table NTUTAB1 is available to control translation from lower to upper case. This
might cause problems in countries where special characters are used which are not set up with
the simple logic that just one bit controls the status of this letter. This especially concerns German
umlauts or Danish special characters. In such cases, translation can only be achieved by customizing
the NTUTABI table, where for each character the corresponding lower-/upper-case character can be
specified.

If upper-case translation (%U) and PM=C is specified, first upper-case translation (using NTUTAB1)
and then the secondary input translation (using NTTAB2) is performed.

Code Translation of DBCS Data

So that double-byte character set (DBCS) data can be processed the user application programming
interface USR4213N is provided to translate double-byte characters into Latin characters, see Double-
Byte Character Sets (DBCS).

NTTZ - Time Zone Definitions

The NTTZ macro is used to specify a time zone and an automatic switch to and from summertime.

| Note: Time definitions are determined by the system administrator, and the user can reference

these definitions by using the Natural profile parameter TD=zonename. With this parameter,
users from different countries and time zones are able to select their own local time.

The NTTZ macro can be used on a minimal basis to define a time difference for a time zone. In ad-
dition, an automatic switch to and from summertime can be specified, either as a fixed date or in
a more flexible definition like “first Sunday in April”. The automatic switch to and from summer-
time is processed during a running Natural session, without requiring any user interactions. Pre-
defined samples of NTTZ macro definitions are available in the delivered NATCONFG module.

Reference point for automatic switching to and from summertime is the current machine time,
which is UTC (GMT) time. Depending on the time period the current machine time is in, the current

Operations 49

Natural Configuration Tables

local time is determined. The support of automatic switching to and from summertime is currently
for years in the range from 2002 to 2041.

The following topics are covered below:

= NTTZ Macro Considerations and Restrictions
= NTTZ Macro Syntax

= NTTZ Macro Parameters

= Example of NTTZ Macro

NTTZ Macro Considerations and Restrictions

The following considerations and restrictions apply:
1. Time Format

The basic time format is:

+hh:mm:ss

or:

-hh:mm:ss

ranging from 00:00:00 through 23:59:59; abbreviations are also allowed, for example: hh:mm
or simply hh. The plus sign (+) is assumed by default, the minus sign (-) may be necessary with
the parameters TDON or TDOFF.

2. UTC versus Local Time

In order to have a unique point of reference for the time switch, the NTTZ macro parameters
SWTON and SWTOFF are given in UTC time, whereas the weekday names and day numbers in the
NTTZ macro parameters DSTON and DSTOFF are specified in local time.

3. Concurrent Use of Natural Profile Parameters DD, YD, and TD
The Natural profile parameters DD and YD do not have any effect on the automatic switching to
and from summertime, since the switch is done on the basis of the current machine time.
It is recommended to avoid the concurrent use of DD or YD and profile parameter TD=zonename.
4. Concurrent Use of Natural Profile Parameter TD and User Exit CMCOTIME
Concurrent use of profile parameter TD=zonename and user exit CMCOTIME (override machine

time) is not recommended, because a change of machine time (TOD clock) may cause unpre-
dictable results for automatic switching invoked with TD=zonename.

50 Operations

Natural Configuration Tables

NTTZ Macro Syntax
The syntax of the NTTZ macro is as follows:

NTTZ ZONE=value;
TDON=value,
TDOFF=value,
SWTON=value,
SWTOFF=value,
DSTONvalue,
DSTOFF=value

Xk X o o

NTTZ Macro Parameters

ZONE | TDON | TDOFF | SWTON | SWTOFF | DSTON | DSTOFF

ZONE - Time Zone Name

ZONE=value specifies the time zone name which can be referenced with the TD parameter. The
first occurrence of a name will be selected.

Value Explanation

32 characters.| The maximum length of a time zone name is 32 characters to allow for descriptive user
defined zone names, for example, the name of the capital city of a country.

TDON - Difference of Local Daylight Saving Time to UTC Time

TDON=value denotes the difference of local daylight saving time (summertime) to UTC time
(formerly GMT).

Value Explanation

+hh:mm:ss|See Time Format.

or
-hh:mm:ss
) Notes:

1. If only the parameter TDON is defined, the user gets display of local time as his zone time,
without automatic switching to and from summertime.

2. The parameter TDON corresponds to the parameter SWTON.

TDOFF - Difference of Local Zone Time to UTC Time
TDOFF=value denotes the difference of local zone time to UTC time (formerly GMT).

Operations 51

Natural Configuration Tables

Value Explanation

+hh:mm:ss|See also Time Format.
or
-hh:mm:ss

| Note: This parameter corresponds to the parameter SWTOFF.

SWTON - Time when Daylight Saving Time Starts

SWTON=value denotes the UTC point of time when daylight saving time (summertime) is
switched on.

Value Explanation

hh:mm:ss|See also Time Format.

SWTOFF - Time when Daylight Saving Time Ends

SWTOFF=value denotes the UTC point of time when daylight saving time (summertime) is
switched off.

Value Explanation

hh:mm:ss|See also Time Format.

DSTON - Date when Daylight Saving Time Starts

DSTON=(valuel,value2,value3,value4,day-number) denotes the day when daylight saving
time (summertime) is switched on.

Value Possible Settings

valuel FIRST, SECOND, THIRD, FOURTH or LAST.

valueZ MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY or SUNDAY.
value3 AFTER, BEFORE or IN.

valued JANUARY ... DECEMBER.

day-number|A valid day number for the respective month.

The default value is 1.

] Notes:

1. The keyword LAST requires the keyword BEFORE or IN.
2. No day number must be specified if the keyword IN is specified.

DSTOFF - Date when Daylight Saving Time Ends

DSTOFF=(valuel,valueZ,value3,value4,day-number) denotes the day when daylight saving
time (summertime) is switched off.

52 Operations

Natural Configuration Tables

Value Possible Settings
valuel FIRST, SECOND, THIRD, FOURTH or LAST.
value2 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY or SUNDAY.
value3 AFTER, BEFORE or IN.
valued JANUARY ... DECEMBER.
day-number|A valid day number for the respective month.
The default value is 1.

) Notes:

1. The keyword LAST requires the keyword BEFORE or IN.
2. No day number must be specified if the keyword IN is specified.

Example of NTTZ Macro

For daylight saving time switching in Western Europe:

NTTZ ZONE=MEZ,
TDON=2,
TDOFF=+01:00:00,
SWTON=01:00:00,
SWTOFF=01:00:00,
DSTON=(LAST, SUNDAY,IN,MARCH),
DSTOFF=(LAST,SUNDAY,IN,OCTOBER)

Xk X X o o

Additional examples of different time zones (North and South America, Asia, etc.) can be found
in the delivered NATCONFG module.

Operations 53

54

8 Natural Storage Management

= Thread and Non-Thread ENVIFONMENTSuiiii it
B B U BT TYPES .ttt e e e e e e e s
L D Yo I U 1= PP
B VAMADIE BUIBIS .. e
= Customization of BUffer CharaCteriStiCscooeeieiiiiie i e e

95

Natural Storage Management

This document describes how Natural allocates and uses main storage. A chunk of storage requested
by a Natural nucleus component is called a “buffer”.

Thread and Non-Thread Environments

There are two different types of storage environments:

® Thread storage environment (typical for multi-user environments, for example, CICS)

* Non-thread storage environment (typical for single-user environments, for example, batch)

In a thread environment, a big piece of storage called “thread” is pre-allocated for a session. The
thread size must be predefined by the system administrator. During a session each buffer allocation
request (GETMAIN) is satisfied within its thread by Natural itself. Free space due to release buffer
requests (FREEMAIN) can be reused.

Upon certain events (terminal I/Os and long waits), the thread storage may be compressed and
rolled out to external storage (roll file). The released thread can be reused by other Natural sessions.
When a suspended session is to be resumed, it is rolled in from external storage into a free thread
again.

The place on the roll file where the compressed thread storage is stored, is called a “slot”. The slot
size has a fixed length and is defined by the system administrator. It must be large enough to
contain the largest compressed thread storage. In the worst case, it may be equal to the thread
size.

In anon-thread environment, all storage requests are directly passed to the operating (sub)system.
No roll-out/roll-in is performed, that is, the buffers for a session are kept until session termination,
unless they were explicitly released before.

Buffer Types

There are three different types of buffers:

= fixed buffers
® variable buffers

" physical buffers

Fixed buffers and variable buffers have a 32-byte prefix with a common layout for all environments.
The buffer prefix starts with the buffer name followed by 5 buffer length fields (total, used low-
end, max. used, used high-end, max. used high-end). The used length fields are maintained by
the buffer-owning components and are used for thread compression. Each buffer has a unique ID
number (1-255) and can exist only once. Some buffers are allocated during session initialization,

56 Operations

Natural Storage Management

others are allocated when required. The system command BUS can be used to show information
about all fixed and variable buffers currently allocated. The characteristics of the buffers are defined
in the source module NATCONFG, which can be customized in exceptional cases (see Customization
of Buffer Characteristics below). The size of some buffers can be specified by a profile parameter.
For a complete list of such buffers, see the profile parameter DS.

Physical buffers are allocated outside the thread. They do not have a buffer prefix and they are not
unique. They are used in exceptional cases and temporarily only. Physical buffers are automatically
released at the next terminal I/O. It is possible to define work pools for physical buffers by profile
parameter WPSIZE.

Fixed Buffers

In a thread environment, fixed buffers are allocated from the low end of the thread only. In contrast
to variable buffers, fixed buffers cannot be moved relatively to the thread and their size cannot be
increased or decreased.

Variable Buffers

In a thread environment, variable buffers are allocated from the high end of the thread. If there is
no more space in the thread, variable buffers are allocated temporarily outside of the thread. Upon
thread compression, all buffer parts used are compressed into the thread. If they do not fit into
the thread, the session is terminated abnormally. This may happen especially when large dynamic
variables are used.

After thread decompression, the variable buffers may have been moved to a different place inside
or outside of the thread. Variable buffers can be increased or decreased in size on request by the
owning component. Some variable buffers are defined to be reduced or released automatically
during thread compression.

The total amount of storage allocated outside the thread can be limited by profile parameter 0VSIZE.

Customization of Buffer Characteristics

All buffers are defined in the source module NATCONFG by NTBUFID macro definitions.

@y Caution: Please, do not change any buffer characteristics except the MIN, MAX and CMPR

parameter settings explained below, because the results may be unpredictable.

Operations 57

Natural Storage Management

It is possible to change the buffer size limits by the parameters MIN and MAX of the macro NTBUFID.
This makes sense for variable buffers (TYPE=VAR) only. Limits for all buffers are defined either by
default (0 - 2097151 KB) or by the limits of the corresponding profile parameters. For further
information, see the profile parameter DS. The limits of the buffer size profile parameters in the
Natural parameter module are not affected by the MIN and MAX parameters of NTBUFID, but the
limits for the dynamic profile buffer size parameters are overwritten by MIN and MAX.

Setting the MAX parameter to a value in KB means that the size of this buffer cannot exceed this
maximum during session execution. This may cause runtime errors if more buffer storage is re-
quested for the desired buffer.

Setting the MIN parameter to a value in KB means that the size of this buffer cannot be less than
this value during session execution. For example, in the case of the 3GL CALLNAT interface
(NAT3GCAN), the setting of a buffer minimum value makes sense for the following buffers, because
the sizes of these buffers may not be increased on a lower Natural program level called by a 3GL
program.

Buffer Purpose

DATSIZE|Data areas
GLBTOOL |Utility GDA
GLBUSER|User GDA
GLBSYS |System GDA
ATVDAT |AIV area
CONTEXT |Context variables

The parameter CMPR of the macro NTBUFID defines the compression optimization algorithm for the
buffer. It corresponds to the profile parameter CMPR which defines the default. For more information
about the possible parameter values, see CMPR — General Default Compression Optimization Algorithm
in the Parameter Reference documentation.

Example of a buffer characteristics definition:

DATSIZE NTBUFID ID=GETMDATA,TYPE=VAR+INI,CMPR=0PT2,MAX=512

For further information on profile parameters affecting the buffer sizes, see Storage Management
in the Parameter Reference documentation.

58 Operations

I I Profile Parameter Usage

This part describes the fundamentals and rules that apply to the use of Natural profile parameters
in a z/OS environment.

Natural Parameter Hierarchy Overview of the hierarchical structure of the different levels on
which Natural parameters can be set. Examples are provided to
illustrate the various scenarios.

Assignment of Parameter Values Assigning values to profile parameters statically, dynamically and
at runtime.

Building a Natural Parameter Module Building a Natural parameter module from NTPRM and other
parameter macros.

Related Topics:

® For details of the individual profile parameters, see the Parameter Reference documentation.

® For an overview of the profile parameters grouped by category, see Profile Parameters Grouped
by Category in the Parameter Reference documentation.

59

60

9 Natural Parameter Hierarchy

= Natural Parameter Hierarchy Overvi
= General Rules for Parameter Usage
Natural Parameter Module

Predefined User Parameter Profiles
Dynamic Parameter Entry
Natural Security Definitions

Program/Statement Level Settings .
Development Environment Settings
Examples of Parameter Evaluation

B s

Predefined Dynamic Parameter SISvveiiiiiiiii e

Session Settings for Profile Parametersooooiiiiiiii i

61

Natural Parameter Hierarchy

This document describes the hierarchical structure of the different levels on which Natural profile

parameters can be set. Various examples are given to illustrate the scenario.

For details of the individual profile parameters, refer to the Parameter Reference documentation.

Natural Parameter Hierarchy Overview

Natural profile parameters affect the appearance and the response of a Natural user's working
environment. These parameters are set at different hierarchically organized levels as illustrated
in the table below (priority from high to low).

Level

Short Description/References to Detailed Descriptions

During Session

® Development Environment Settings
B Program/Statement Level Settings
B Session Parameter Settings

® Natural Security Definitions

Dynamic during Session Start|

® Dynamic Parameter Entry
® Predefined User Parameter Profiles
Predefined Dynamic Parameter Sets

® Alternative Natural Parameter Module

Static

® Natural Parameter Module

The hierarchically organized levels are discussed in the referenced sections, starting from the
lowest and ending with the highest priority.

General Rules for Parameter Usage

The following general rules apply:

" A parameter value set on a higher level overwrites the value defined on a lower level (exceptions:

PROFILE, SYS, DYNPARM and some other parameters that work by adding values).

® Dynamic parameters during session start have sequence priority, that is, they are evaluated

from left to right.

62

Operations

Natural Parameter Hierarchy

Example:

ESIZE=20,DATSIZE=60,ESIZE=100

The resulting value is ESIZE=100.

® Not all of the parameters available at a lower level can be defined on a higher level, too.

Natural Parameter Module

A Natural parameter module contains a set of profile parameters required to configure your
Natural environment.

A Natural parameter module is built from the NTPRM macro and additional macros during the
installation process as described in Building a Natural Parameter Module.

You can have more that one Natural parameter module depending on your personal preferences,
for example, one module for Natural batch and one for Natural online sessions.

The Natural parameter module constitutes the bottom level of the Natural parameter hierarchy.

In addition to the Natural parameter module, you may require an additional parameter module
for a Natural add-on product to be used in your environment, for example, the Natural CICS In-
terface.

= Alternative Natural Parameter Module
Alternative Natural Parameter Module

In addition to a Natural parameter module which is statically linked to the nucleus, you can define
alternative Natural parameter modules which are stored in a TP or operating-system library. They
can be used to overwrite the parameter definitions of the static Natural parameter module for a
Natural session by specifying the profile parameter PARM as described in the Parameter Reference
documentation. Exception: CSTATIC parameter definitions are not overwritten.

/) Important: PARMshould appear as the first parameter in a dynamic parameter string, because

otherwise the alternative Natural parameter module overwrites all parameter settings
previously entered in the dynamic parameter string.

Usage Restrictions

You can restrict the use of an alternative Natural parameter module to a certain user or to several
users by using the NTUSER macro.

Operations 63

Natural Parameter Hierarchy

In this macro, define the IDs of those users who are authorized to use that parameter module.
Only these users will be allowed to specify the name of that parameter module with the profile
parameter PARM.

Predefined Dynamic Parameter Sets

The assembler macro NTSYS can be used to predefine parameter sets which are named in a Natural
parameter module. These sets can be addressed under their names when Natural is invoked,
provided that the corresponding parameter module is active.

When invoked, the predefined parameter sets react in the same way as dynamically entered
parameters in that position.

See also the profile parameter SYS.

Predefined User Parameter Profiles

You can use the Natural utility SYSPARM to create individual profiles which are stored in a system
file. Each profile is given a unique character name. You can set values for any dynamic Natural
parameters in such a profile.

The profiles created with the utility SYSPARM are activated by using the parameter PROFILE when
Natural is invoked.

You can use the profile parameter USER to restrict the use of a profile to a certain user or to several
users.

When invoked, the predefined parameter profiles behave in the same way as dynamically entered
parameters in that position.

Dynamic Parameter Entry

Almost all of the parameters can be dynamically overwritten when Natural is started. Dynamic
parameters are evaluated strictly sequential.

This general overwrite facility can, however, be limited generally or for certain parameters through
the use of the profile parameter DYNPARM (only dynamically, for instance in a profile).

You can use the macro NTDYNP in the Natural parameter module to make analog settings. This,
however, will prohibit the use of the profile parameter DYNPARM.

64 Operations

Natural Parameter Hierarchy

You can use the data set CMPRMIN to define dynamic parameters in batch mode under z/OS or in
batch-like systems such as TSO, or BMP environments under IMS TM.

The advantage of this method is that you need not modify the JCL when you wish to change
Natural settings. In addition, it overcomes the length limitation of the parameter string (for example,
100 characters under z/OS).

Natural Security Definitions

Apart from protecting the libraries, files and commands, Natural Security enables the setting of
certain session-relevant profile parameters. The definitions apply to the current library of the user.

The users can also define settings for their private or default libraries.

The current security settings (session parameters) can be displayed using the Natural system
command PROFILE.

The Natural Security parameter definitions are evaluated after the regular profile parameters, that
is, they can overwrite them.

Session Settings for Profile Parameters

The Natural system command GLOBALS or the Natural statement SET GLOBALS can be used to display
and to set (modify) certain session-relevant profile parameters within and for the duration of a
Natural session.

These definitions apply to the command mode and to all programs that are executed during the
current session.

See also Session Parameters for Runtime Assignment of Parameter Values or SET GLOBALS.

Program/Statement Level Settings

The Natural statement FORMAT can be used in a program to set parameter values which are valid
for that specific program.

In addition, it is possible to set certain parameters at statement level by a terminal command.

Operations 65

Natural Parameter Hierarchy

Development Environment Settings

You can use the Natural Main Menu option Development Environment Settings to invoke a submenu
which enables selection of the tools that are available for monitoring and setting up the Natural
development environment.

Examples of Parameter Evaluation

The examples below are based on the following parameter settings:

Parameter| Parameter Module Alternative Parameter Module ALTPARM |UserProfile MYPROF
DATSIZE|40 50 60
DSIZE |6 2 (default) Not specified
ESIZE |28 (default) NTSYS A: 60 80

NTSYS A: 40

NTSYS B: 50

The following examples show the results for various dynamic parameter strings.

Example 1: No Dynamic Parameters

Resulting Values |Origin

DATSIZE 40 Parameter module
DSIZE 6 Parameter module

ESIZE 28 Parameter module

Others: Default |Parameter module

Example 2: PARM=ALTPARM

Resulting Values |Origin

DATSIZE 50 ALTPARM
Others: Default |ALTPARM

66 Operations

Natural Parameter Hierarchy

Example 3:

SYS=A

Resulting Values |Origin

DATSIZE 40 Parameter module

DSIZE 6 Parameter module

ESIZE 40 NTSYS macro in the parameter module
Example 4: PARM=ALTPARM, SYS=A

Resulting Values |Origin

DATSIZE 50 ALTPARM

DSIZE 2 ALTPARM

ESIZE 60 NTSYS macro in ALTPARM

Example 5: PARM=ALTPARM, SYS=B

Resulting Values |Origin

Error

ALTPARM does not have an NTSYS B specification

Example 6: SYS=A,PROFILE=MYPROF

Resulting Values |Origin

DATSIZE 60 MYPROF

DSIZE 6 Parameter module
ESIZE 80 MYPROF

Example 7: SYS=A,PROFILE=MYPROF,ESIZE=100

Resulting Values |Origin

DATSIZE 60 MYPROF

DSIZE 6 Parameter module

ESIZE 100 Dynamic parameter
Operations

67

Natural Parameter Hierarchy

Example 8: PROFILE=MYPROF,SYS=A

Resulting Values |Origin

DATSIZE 60 MYPROF

DSIZE 6 Parameter module
ESIZE 40

NTSYS macro in the parameter module

Example 9: DSIZE=8,SYS=A,PROFILE=MYPROF, PARM=ALTPARM

Resulting Values |Origin

DATSIZE 50 ALTPARM
Others Default |ALTPARM

Operations

10 Assignment of Parameter Values

= Sources for Parameter Value ASSIGNMENTuuiiiiiiiiiie e 70
= Static Assignment of Parameter VAIUEScovviiiiiiiiie e 4
= Dynamic Assignment of Parameter VAIUESoooiiiiiiiiiii e 72
= Session Parameters for Runtime Assignment of Parameter Values ..o 73

69

Assignment of Parameter Values

This document provides information on how values are assigned to profile parameters statically,
dynamically and at runtime.

For details of the individual profile parameters, refer to the Parameter Reference documentation.

Sources for Parameter Value Assignment

The values for profile parameters are taken from three sources:

1.

Static assignments
Profile parameters specified in the parameter macro NTPRM and additional parameter macros
contained in the Natural parameter module.

. Dynamic assignments

Parameters specified for the Natural session execution. These parameters override the static
assignments and are valid for the current Natural session. Dynamic parameters can be passed
by a front-end program, the parameter data set (CMPRMIN), session-initialization JCL, terminal
input or Natural Security. In addition, it is possible to overwrite certain parameters by Natural
program statements.

. Session parameters

Parameters specified with the system command GLOBALS (or a SET GLOBALS statement) within
the current Natural session. The parameters override static and dynamic assignments.

[ustration of the Natural Parameter Assignment:

70

Operations

Assignment of Parameter Values

Terminal Input or
Job Control Farameters

User Front-End CMPEMIN
Program Parameter
Parameters Data Set
L J
Matural Mucleus
Module —_— SYSPARM
Profiles
MNatural Parameter
Module Nmug
Parameters Security
Parameters

Static Assignment of Parameter Values

The Natural parameter module is used for the static assignment of profile parameters for all Nat-
ural environments.

In the Natural parameter module, you use the macro NTPRM, and several other macros, to specify
the parameters.

All parameter settings (except the parameter CSTATIC) made in the Natural parameter module
can be overwritten dynamically at the start of a Natural session.

Operations 71

Assignment of Parameter Values

For some profile parameters a corresponding macro is used for static assignment in the Natural
parameter module. Consequently, the syntax of the static and dynamic specifications differs
slightly, taking the following general form:

Static: macro-name keywordIl=value, keywordZ=valuel,valueZ, ...
Dynamic:|parameter-name=(keywordl=value, keywordZ=valuel,valueZ,...)
Example:

® Macro in the Natural parameter module: NTSORT WRKSIZE=500, EXT=0N

® Equivalent dynamic profile parameters: SORT=(WRKSIZE=500, EXT=0N)

If there is a parameter macro for a profile parameter other than NTPRW, this macro is indicated in
the individual parameter description.

See also the section Building a Natural Parameter Module.

Dynamic Assignment of Parameter Values

You can specify profile parameters dynamically at the start of a Natural session to override - for
the duration of a single Natural session - individual profile parameter settings of the Natural
parameter module.

Example:

NUCNAME="NATNUC#5", IM=D, INTENS=1,DU=0FF, FUSER=(10,32),PROGRAM=" ",
WORK=((1),AM=STD,DEST=WORKI,OPEN=INIT),PS=60,LS=120

All profile parameters can be specified dynamically - except CSTATIC which can be specified stat-
ically in the Natural parameter module only:

The dynamic parameter assignments are separated by (one or more) commas or blanks. If the
value for a dynamic parameter contains non-alphanumeric or special characters, the value must
be specified enclosed in apostrophes. Which characters are special characters is defined in the
character table macro NTSCTAB of NATCONFG; see Natural Configuration Tables.

The use of dynamic parameters can be enabled/disabled by the macro NTDYNP or the corresponding
dynamic profile parameter DYNPARM.

For a more comfortable specification of sets of dynamic parameters, you can use the profile para-
meter PROFILE or SYS. In addition, it is possible to set a number of dynamic parameters in Natural
Security.

72 Operations

Assignment of Parameter Values

It is possible to insert comment strings within dynamic parameters. A comment starts with “/*”
and ends with “*/”. If the comment string end delimiter is missing, an error message is issued
during session initialization.

Example:

PARM=MYPARMS /* my comment */ ADANAME=ADALNKR,PROFILE=MYPROF

The dynamic parameter settings are passed to Natural when the session is started. The method
used for passing the parameter values to Natural varies depending on the environment.

Example for z/OS in Batch Mode:

® The values are specified by the PARM keyword in the EXEC job control statement that initiates
Natural.

® In addition, dynamic parameters can be specified in the data set CMPRMIN.

® Moreover, it is possible to write a front-end program which passes control to Natural with dy-
namic parameters for the session according to z/OS standards.

Session Parameters for Runtime Assignment of Parameter Values

To some profile parameters a value can be assigned within a Natural session at runtime, using a
corresponding session parameter. The session parameter value will override the profile parameter
value.

If a corresponding session parameter exists for a profile parameter, this is indicated in the descrip-
tion of the profile parameter.

Session parameters are specified with the system command GLOBALS. Session parameters are de-
scribed in the Parameter Reference documentation. Further details on system commands can be
found in the Command Reference documentation.

Example:

GLOBALS SA=ON IM=D
Session parameters can also be specified with the SET GLOBALS statement in a program.

Some profile parameters can also be overridden within a Natural session by a terminal command.
If a corresponding terminal command exists for a profile parameter, this is indicated in the descrip-
tion of the profile parameter. Terminal commands are described in the Terminal Commands docu-
mentation.

Operations 73

Assignment of Parameter Values

Example:

SET CONTROL 'T=3279'

The value of the profile parameter TTYPE is overwritten.

74

Operations

11 Building a Natural Parameter Module

B NTPRM Parameter MACIOcoveee e e e e
= Additional Macros in the Natural Parameter MOAUIEc.viiireie e
= Example of Macros in the Natural Parameter Moduleoooiiiiiiiiiii e

75

Building a Natural Parameter Module

You build (generate) a Natural parameter module during the installation of Natural by running
the appropriate installation jobs provided by System Maintenance Aid (SMA). These jobs are de-
scribed in the relevant installation steps in the Installation for z/OS documentation.

A Natural parameter module is built from the NTPRM parameter macro and additional parameter
macros if required. You can change the default parameter settings provided by SMA and adapt
the installation jobs according to your needs.

~ To build a Natural parameter module using SMA jobs

1 Adapt the profile parameters in the default NTPRM parameter macro according to your needs
by using the NTPRM macro syntax (see the Parameter Reference documentation).

2 Ifrequired, add additional parameter macros. They must follow NTPRM in any order.

3 Assemble the Natural parameter module and link it to the environment-dependent nucleus
(see the Installation documentation for z/OS).

4 Link the Natural parameter module to the environment-independent nucleus (see the Install-
ation documentation for z/OS) if either of the following is true:

® Your NTPRM macro contains CSTATIC entries.

® Your Natural parameter module contains an NTCSTAT macro.

The CSTATIC profile parameter and the NTCSAT parameter macro are described in the Parameter
Reference documentation.

NTPRM Parameter Macro

The NTPRM parameter macro is mandatory; it must be specified in the Natural parameter module.
NTPRM contains the main profile parameter settings required to configure Natural. All profile
parameters for which no parameter macro is indicated in the individual parameter description in
the Parameter Reference documentation are defined in the NTPRM macro.

See also NTPRM Macro Syntax (Parameter Reference documentation) and Example of Macros in the
Natural Parameter Module.

76 Operations

Building a Natural Parameter Module

Additional Macros in the Natural Parameter Module

In addition to the NTPRM macro, in the Natural parameter module you can specify the parameter
macros listed in the following table. You can specify the macros in any order.

The use of one or more additional parameter macros depends on your individual system require-
ment and the products installed in your Natural environment.

The name of an additional parameter macro and its syntax are contained in the individual descrip-
tion of the corresponding profile parameter in the Parameter Reference documentation.

See also Example of Macros in the Natural Parameter Module.
Naming Conventions and Overview of Macros

Each additional parameter macro usually has a corresponding dynamic profile parameter.

The name of an additional parameter macro starts with NT followed by the name of its corresponding
profile parameter. For example: the NTBPI parameter macro corresponds to the profile parameter
BPI. Any exceptions to this rule are indicated in the following table.

The following is an overview of available macros:

Macro Purpose

NTALIAS |Defines external alias names for the modules linked to the Natural nucleus.

Corresponding dynamic profile parameter: RCALIAS.

NTBPI Assigns buffer pools to Natural sessions.

NTCCTAB |Defines printer-control sequences.

NTCFICU |Enables Unicode and code page support.

NTCMPO |Specifies compilation options.

NTCOMP |Specifies configuration settings for the Natural Com-plete/SMARTS Interface (Natural under
Com-plete/SMARTS).

NTCSTAT |Defines the modules to be linked to the Natural nucleus.

Corresponding dynamic profile parameter: CSTATIC.

NTDB Defines database types and options for databases.

NTDB2 Specifies configuration settings for Natural for Db2.

NTDBGAT |Allows debugging of external Natural applications.

NTDS Defines the sizes of storage buffers.

NTDYNP |Controls the use of dynamic profile parameters.

Corresponding dynamic profile parameter: DYNPARM.

Operations 77

Building a Natural Parameter Module

Macro Purpose

NTEDBP |Controls buffer pool operations of the Software AG Editor.

NTIMSP |Specifies configuration settings for the Natural IMS TM Interface (Natural under IMS TM).
No dynamic parameter specification possible.

NTIMSPE |Defines environment-specific parameter sets for the Natural IMS TM Interface (Natural under
IMS TM).
No dynamic parameter specification possible.

NTIMSPT |Defines Natural transaction codes for the Natural IMS TM Interface (Natural under IMS TM).
No dynamic parameter specification possible.

NTLFILE |Associates physical database files with logical system files.

NTOPRB |Controls the use of database open/close commands for Adabas or VSAM.

NTOPT Controls the use and the option settings of the Natural Optimizer Compiler.

NTOSP Specifies configuration settings for the z/OS batch interface.

NTPGP Defines properties for external programs.

NTPRINT |Specifies print file assignments.

NTRDC Configures the Natural Data Collector and its trace recording function used by the SYSRDC
and the Profiler utilities.

NTRPC Controls the handling of Natural RPC (Remote Procedure Call).

NTSCTAB |Overwrites the scanner character definitions in the NATCONFG module.

NTSORT |Controls the sort program used for the SORT statement.

NTSYS Defines sets of dynamic profile parameters.

NTTAB Overwrites the output character translation definitions in the NATCONFG module.

NTTAB1 |Defines alternative output character translation tables.

NTTAB2 |Defines alternative input character translation tables.

NTTABA1l |Overwrites the EBCDIC-to-ASCII conversion definitions in the NATCONFG module.

NTTABAZ |Overwrites the ASCII-EBCDIC conversion definitions in the NATCONFG module.

NTTABL |Overwrites the “SYS” library output translation definitions in the NATCONFG module.

NTTF Converts database IDs and file numbers during program execution.

NTTRACE |Defines the Natural components to be traced.

NTTSOP |Specifies configuration settings for the Natural TSO Interface (Natural under TSO).

NTUSER |Restricts the use of dynamic parameter strings and alternative Natural parameter modules.

NTUTAB1 |Overwrites the lower-case/upper-case conversion definitions in the NATCONFG module.

NTUTABZ |Overwrites the upper-case/lower-case conversion definitions in the NATCONFG module.

NTVEXIT |Specifies user exits for VSAM files.
Corresponds to the keyword subparameter EXIT of the dynamic profile parameter VSAM.

78 Operations

Building a Natural Parameter Module

Macro Purpose
NTVLSR |Defines local shared resources subpools for VSAM files.
Corresponds to the LSR keyword subparameter of the dynamic profile parameter VSAM.
NTVSAM |Specifies configuration settings for Natural for VSAM.
NTVTVSD |Activates DFSMS Transactional VSAM Services.
Corresponds to the TVSD keyword subparameter of the dynamic profile parameter: VSAM.
NTWEBIO |Enables or disables features of the Natural Web I/O Interface display.
NTWORK |Specifies the work files to be used during a session.
NTXML Activates or deactivates the PARSE XML and REQUEST DOCUMENT statements.
NTZIIP |Configures zIIP (System z Integrated Information Processor) processing for z/OS.

See also Example of Macros in the Natural Parameter Module.

Example of Macros in the Natural Parameter Module

In the following example of macro definitions in the Natural parameter module, vrs and vr denote

a Natural product version.

NTPRM FNR=8,
DBID=001,
FNAT=(001,8),
FUSER=(001,9),
FDIC=(001,11),
FSEC=(001,10),
FREG=(001,52),

ESIZE=128, User Extension Area
SLOCK=SPOD, Source Locking
THSIZE=0, Thread Size
UCONMAX=0, Max. Session Number
CSTATIC=(CMMSG, Static. Modules Links
NSPPFUNC) , Dummy Static. Module
LE=0FF, Record Limit Error
RECAT=0FF, Allow Stow of Macros
PROFILE=, Profile Batch
ADANAME=ADABAS, Adabas Link Routine
ADASBV=0FF, Form. Buffer not Pass.
DFOUT=S, OQutput Format of Date
DFSTACK=S, Date Format for Stack

NUCNAME=NAT vrsSH,

System File for NTPRM
Database ID for NTPRM
Natural System File
Natural User File
Predict System File
Natural Security File
Registry System File

Natural Nucleus Name

AUTO=0FF, Automatic Logon
PC=0N, PC Connection

LS=250, Default Line Size
PS=80, Default Page Size
STACK=0FF, Initial Natural Cmds.

ok o o b b X b > X o F X % ok X X o F X X ok X X o of

Operations

Building a Natural Parameter Module

ET=0FF END/BACKOUT TRANSACT.
K o o o o o o o o o e e e e e e e e e e mm e - - *
NTDB2 BTIGN=ON, Ignore Trans. Error
CONVERS=0N, Convers. Mode CICS

CONVRS2=0FF,

DBZPLAN=PQANDBvr,

DB2SSID=DBZ2A,
DB2XID=0N,
DDFSERV=CMFSERV,
DELIMID=0FF,
MAXLOOP=10,
MAXSTMT=10,
NNPSF=0FF,

NSBHOST=IBMZ.HQ.SAG,

NSBPORT=7311,

Convers. Mode2 CICS
Plan Name

Subsystem ID

Global Transaction ID
DD Name File Server
Delimited Identifiers
Nested Program Loops
Dynamic SQL Statements*
Set Positive Sign %
NSB Server Host Name *
NSB Server TCP/IP Port*

o S R e S R

PSCIGN=0FF, Positive SQLCODEs &
REFRESH=0FF, Refresh Setting %
RETRYPO=10, Positioning Retries &
RWRDONL=0ON, Delimited Identifiers *
STATDYN=NEVER Static Dynamic Switch
A g S *
NTOSP ABEXIT=ESTAE, Abend Processing &
LBPNAME=" "', Local Shared Buffer %
LEHDLR=ON, LE Error Handler =
SUBPOOL=0, Subpool for GETMAIN w
TIOBSZ=(8,64), Primary I1/0 Buffer =
USERID=0FF Init-User Job Name
K o o o o o o e o o o e e e e e e e e e e e e e e m = = - *

NTVSAM BTSUPP=ON,

CLSUPP=ON,
DDMCHK=0FF,
DDSWITE=0,
DFBE=10,
DFBN=100,
ENADIS=0FF,
ENAUNE=0FF,
ETSUPP=ON,
FORMAT=0N,
KEYLGH=126,
0PSUPP=0FF,
PATH=CHECK,
PSIGNF=0FF,
RETRY=(OFF,O0FF),
RLS=0FF,
ROLLSIZ=550,
SFILE=ON,
TAFE=10,
TAFN=50,
TIMEQUT=0,
TSAE=20,
TVS=0FF,
UPDL=32768

BACKOUT TRANSACTION #
Close Call at Session *
Support of DDM %
Maximum Entries DLBLY *
Decoded Format Buffer *
Format Buffer Entries *
Enable Disabled Files *
Enable Unenabled Files*
END TRANSACTION =
Record Formatting %
Length of VSAM Keys £
Dynamic Open Calls *
Path Processing &
Compiler Option PSIGNF*
Retry ON ERROR Clause *
Record-Level Sharing *
Session Status Info. *
Support of VSAM Files *
Maximum No. DDMs %
Maximum No. DDM Fields*
Timeout RLS Request *
READ/FIND Statement =
Support of DFSMSTVS w
Size of Update Table

80

Operations

III z/0S Environment

This part contains information about Natural under the operating system z/OS.

Natural under z/OS Contains an overview of special considerations that apply when you
are running Natural under z/OS online or in batch mode.

Authorized Services Manager Describes the functionality and operation of the Authorized Services
Manager (ASM) which is available under z/OS.

Natural Roll Server Functionality Explains the functions of the Natural Roll Server in general, its use in
a single z/OS system and in a z/OS Parallel Sysplex environment.

Natural Roll Server Operation Provides information on the roll server system requirements, operation,
performance tuning and restart capability.

] Note: The codes that Natural may receive when the Roll Server is used during a Natural

session runtime are output by the corresponding teleprocessing interfaces (Natural under
CICS or Natural under IMS TM). For a list of these codes, refer to the Return Codes and Reason
Codes of the Roll Server Request in the Messages and Codes documentation.

81

82

12 Natural under z/0S

B NQLURAL SUDSYSTEM ...t 84
E I V(o TaT) o g (=T (o= NS 84
= |nterfaces to Database Management SYSIEMScoiiiiiiiiii e 84
= Natural in Batch Mode Under Z/IOS 85
B Natural @5 @ SErVEr UNAEI Z/OSe e e e e 85

83

Natural under z/OS

This document contains an overview of special considerations that apply when you are running
Natural under z/OS.

Natural Subsystem

A Natural subsystem under z/OS consists of the following components:

= one or more Global Buffer Pools,

® an Authorized Services Manager,

® aRoll Server.

The Natural subsystem is identified by the Natural profile parameter SUBSID and by corresponding

startup parameters for the components mentioned above. The default subsystem name is NATv,
where v is the first digit of the current Natural version.

Via the Natural subsystem technique, multiple roll servers can be used simultaneously and multiple
independent sets of global buffer pools can be created - in fact, multiple Natural runtime environ-
ments can be created which will be totally independent of one another.

TP Monitor Interfaces

For information on the TP monitor interfaces that are available with Natural under z/OS, refer to
the following sections in the TP Monitor Interfaces documentation:

® Natural under Com-plete

® Natural under CICS

® Natural under TSO

® Natural under IMS TM

Interfaces to Database Management Systems

Except for the database management system Adabas, all operations requiring database interaction
are performed by a corresponding Natural interface module.

For information on the database interfaces that are available with Natural under z/OS, refer to the
following sections in the Database Management System Interfaces documentation:

® Natural for Db2

84 Operations

Natural under z/OS

® Natural for VSAM

Natural in Batch Mode under z/OS

See Natural in Batch Mode (All Environments) and Natural in Batch under z/OS.

Natural as a Server under z/OS

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. For detailed information, see Natural as a Server under z/OS.

Operations 85

86

13 Authorized Services Manager under z/OS

B ASIM OVEIVIEW ...ttt e e oottt e e e e e e e e ettt e e e e e e e ettt e e e e e e e e e et taaeeeee e 88
B ASM SyStem REQUIMEMENTSeeeiiiiii ettt ettt et e e et e e e e e e e e nneees 89
B SEAING te ASIM . 91
B ASM Operator COMMEANGSveeeiiieeee ettt ettt e ettt e e e e e ettt e e e e e e e ettt e eeeaa e e e nnees 96
= Resetting the Coupling Facility Structure for ASMooiiiiiiii e 97
= ASM Messages, Condition Codes and ADENd COEScvvvriiiiiiiiiii e 97

87

Authorized Services Manager under z/OS

This document describes functionality and operation of the Authorized Services Manager (ASM)
which is available with Natural under z/OS.

ASM Overview

The Authorized Services Manager (ASM) provides authorized operating system functions to
Natural. These functions include writing SMF records and z/OS Parallel Sysplex communication
through the Coupling Facility (CF). The ASM provides its functions via PC routines and runs in
its own address space.

The following authorized functions are provided:

® communicating Natural buffer pool administration messages,

" write-access to global buffer pools in system key,

® writing SMF records,

* holding Natural session information in the Session Information Pool (SIP),

" executing authorized system services for IBM zIIP (System z Integrated Information Processor)
support,

" executing authorized system services for z/OS shared memory objects.
" executing authorized services using the RACROUTE interface of the z/OS Security Server (RACF

or any other external security product)

The first three functions are always available, whereas the SIP is needed and used when Natural
is running with SYSPLEX enabled. For more information about the parameters you must specify
to keep session information records (SIRs) in the SIP, see the CICSPLX and SIPSERV parameters

under Natural CICS Generation Parameters. The SIP which holds the SIRs in SIP slots can be made
available via startup parameter. For more information on starting the ASM, see Starting the ASM.

You must use the ASM in the following cases:
® The Natural profile parameter BPPROP is set to PLEX or GLOBAL or GPLEX (buffer pool propagation
is used).

® Natural global buffer pools are allocated in system key. This is necessary if your systems pro-
grammer specified VSM ALLOWUSERKEYCSA(NO) in SYS1.PARMLIB(DIAGxx); see also Allocation
of the Natural GBP in the section Natural Global Buffer Pool under z/OS.

® Natural under CICS is used in a z/OS Parallel Sysplex environment (SIP function required).

® Natural under IMS TM is used in terminal-oriented, non-conversational mode (with the SIP
function).

® Natural under IMS TM is used, with the Accounting function writing SMF records.

® Enablement of zIIP support is required.

88 Operations

Authorized Services Manager under z/OS

® Enablement of the Shared Memory Objects File Server (FSSM) of Natural for Db2 is required.
® Enablement of the ACEE caching (SECURITY_CACHING=YES) of the Natural Development Server.

The Session Information Pool (SIP) holds the Natural session information records. In terminal-
oriented non-conversational mode, the Natural CICS Interface and the Natural IMS TM Interface
need these records to continue a Natural session after a terminal I/O. When running in a z/OS
Parallel Sysplex environment, the SIP is created in the Coupling Facility (CF) and a memory object
is used as an intermediate buffer to avoid unnecessary access to the CF. Otherwise, the SIP is created
in a memory object. (A memory object resides in 64-bit-addressable storage above the 2-gigabyte
address).

If the ASM is used in a z/OS Parallel Sysplex environment, one ASM instance must be started for
each Natural subsystem in each participating z/OS image.

Note concerning Natural/CICS:

The CICS System Recovery Table should include the z/OS system abend code 0D6.

ASM System Requirements

This section describes the ASM system requirements.

= APF Authorization

= System Linkage Index
= CF Structure

= XCF Signaling Paths

APF Authorization

Link the modules NATASMvr (where vr represents the relevant product version) and NATBPMGR to
an Authorized Program Facility (APF) library, specifying IEWL parameter AC(1). Refer to Installing
Natural on z/OS.

System Linkage Index

As the ASM reserves one system linkage index (System LX), check whether there is a high enough
value of NSYSLX in member IEASYSxx of library SYS1.PARMLIB.

| Note: If you terminate the ASM, the address space ID is no longer available because a System

LX has been used. It becomes available again with the next IPL.

Operations 89

Authorized Services Manager under z/OS

CF Structure

A CF structure is used if you run the SIP in a z/OS Parallel Sysplex environment.

The size of a CF structure can be calculated using the IBM web utility "CFSizer", which can be
found here:https://www.ibm.com/support/pages/cfsizer

There, you must choose "XCF" in the selection box, there where you see "Choose one".

You get a new window, which is pre-filled with "Number of systems" = 8 and "CLASSLEN" = 956
(=936 + 20 -> CONA + CONALOCKATTR)

See macro IXLYCONA for those size:

01 SIZE:

& CONA -- X'03A8' bytes = 936
* CONALOCKATTR -- X'0014' bytes = 20
& CONALISTATTR -- X'0028' bytes = 40
i CONACACHEATTR -- X'001C' bytes = 28

Authorized Server needs CONA + CONALISTATTR =936 + 40 = 976 bytes.

Once you select "Number of systems" =n (LPARs), and you press "Submit", you get something
like (5 LPARs with 936 bytes):

Function | Type |Structure Name |INITSIZE |SIZE
XCF LIST|IXC...... 18M |19M

followed by a number of lines with JCL.
XCF Signaling Paths

The XCF Signaling Services are used to propagate buffer pool administration messages in a z/OS
Parallel Sysplex environment. The minimum message is 64 bytes long, the maximum is 2048 bytes.
How often messages are sent depends on how often Natural objects are manipulated (with the
system command CATALOG, STOW or DELETE).

90 Operations

https://www.ibm.com/support/pages/cfsizer

Authorized Services Manager under z/OS

Starting the ASM

You start the ASM either as a batch job or as a started task by executing module NATASMvr, where
vr represents the relevant product version. You can specify parameters in the JCL EXEC statement,
in a parameter file, or in both. A parameter specified in the EXEC statement overwrites the corres-
ponding parameter in the parameter file.

It is recommended that you use a parameter file (see Parameters in the Parameter File) because
the parameters that control SIP timeout processing and future parameters can only be specified
in the parameter file. Existing JCL will continue to execute unchanged.

This section covers the following topics:

= Parameters in the JCL EXEC Statement
= Parameters in the Parameter File

Parameters in the JCL EXEC Statement
In the JCL EXEC statement, specify as PARM the following parameters:

subsystem-id, XCF-group-name, CF-structure-name, number-of-SIP-slots, SIP-slot-size,message-case, Update-ECSA-D

All parameters are positional and must be separated by a comma; they are explained in the
table below:

Parameter Possible Values Default |Comment
Value
subsystem-id 4-byte non-blank |NATv The specified value must match the value of the
string Natural profile parameter SUBSID (v is version).

Note: With Natural under CICS, refer to the

CICSPLX parameter in the NCMDIR macro for
setting the appropriate subsystem ID.

XCF-group-name any valid XCF none The name of the XCF group for Signaling
group name services.

An asterisk ("*") will produce the name "NAT"
followed by the subsystem-name.

It is, however, indicated that the name of a XCF
group should always be specified.

Operations 91

Authorized Services Manager under z/OS

blank

Parameter Possible Values Default |Comment
Value
CF-structure-name |any valid CF none Optional, only needed if SIP is used. The name
structure name of the CF structure used for the SIP function.
When XCF-group-name is specified while
CF-structure-name remains empty, you will
only be able to use the buffer pool propagation.
number-of-SIP-slots|l - 2147483647 |none Optional, only needed if SIP is used. The
number of slots to be allocated if the CF
structure has not yet been allocated. If omitted
or specified as 0, the entire structure will be
used for as many slots as it can hold.
SIP-slot-size 256,512,1024, |1024 The specified value is ignored if a CF structure
2048 or 4096 has already been allocated.
message-case UCTRAN or blank |blank |Specify UCTRAN if the Authorized Services
Manager is to issue all its messages in upper
case.
Update-ECSA-D ECSADUPD or blank |Update an older ECSA-Directory entry without

the need for an IPL.

Parameters in the Parameter File

The parameter file is a physical sequential file (DSORG=PS) that is allocated with LRECL=80 and
RECFM=FB. In your JCL, specify this file with DDNAME ASMPARM.

Parameters in the parameter file are specified as name=va ue pairs. Specify one parameter per line
starting in Column 1. The name=value pair is terminated by the first blank, and the rest of the line
isnot examined. Lines starting with an asterisk (*) in Column 1 are treated as comments. Parameters
are translated to upper case before they are processed.

Parameter Possible Values [Default |Comment
Value
SUBSID=name 4-byte non-blank |NAT v The specified value must match the value of
string the Natural profile parameter SUBSID (v is
version).
Note: With Natural under CICS, refer to the
CICSPLX parameter in the NCMDIR macro for
setting the appropriate subsystem ID.
XCFGROUP=group-name any valid XCF |none The name of the XCF group for Signaling
group name services.
An asterisk ("*") will produce the name "NAT"
followed by the subsystem-name.

92

Operations

Authorized Services Manager under z/OS

Parameter

Possible Values

Default
Value

Comment

It is, however, indicated that the name of a
XCF group should always be specified.

STRUCTURE=structure-name

any valid CF
structure name

none

Use only for the SIP function.

The name of the CF structure used for the SIP
function.

When XCFGROUP is specified while STRUCTURE
remains empty, you will only be able to use
the buffer pool propagation.

NUMSLOTS=number

1 -
2147483647

none

Use only for the SIP function.

The number of slots to be allocated if the CF
structure has not yet been allocated.

If omitted or specified as 0, the entire structure
will be used for as many slots as it can hold.

SLOTSIZE=size

256,512,1024,
2048 or 4096

1024

Use only for the SIP function.

The specified value is ignored if a CF structure
has already been allocated.

MSGCASE=case

UPPER or MIXED

MIXED

Specify UPPER if the Authorized Services
Manager is to issue all its messages in upper
case.

NONACTIVITY=hours

1 - 999999

none

Use only for the SIP function.

The number of hours a SIP session can be
inactive before it is deleted.

If this time is exceeded, the session is deleted
during the next scheduled timeout check.

If this parameter is omitted, no timeout check
will be executed.

This parameter can be changed using the
TIMEOUT operator command (see ASM
Operator Commands).

Both the Authorized Services Manager and
the Roll Server allow to specify a timeout
value. If Natural is running in a SYSPLEX
environment, set the same value for this
parameter and the non-activity-time
parameter of the Roll Server.

TIMEOQUTCHECK=hhmm

0000 - 2359

none

Use only for the SIP function.

Operations

93

Authorized Services Manager under z/OS

Parameter Possible Values [Default |Comment
Value
The time of day that the timeout check is to be
run.
Sessions will be deleted if they have been
inactive longer than the non-activity time
specified with NONACTIVITY.
This parameter can be changed using the
TIMEOUT operator command (see ASM
Operator Commands).
TIMEOUTREPEAT=mmmm 0 - 1440 none Use only for the SIP function.
The number of minutes between two timeout
checks.
If TIMEOUTCHECK is also specified, the first
check is run at the time specified with
TIMEQOUTCHECK, and then repeated after mmmm
minutes.
If TIMEOUTCHECK is not specified, the first
check is run mmmm minutes after Authorized
Services Manager start.
This parameter can be changed using the
REPEAT option of the TIMEOUT operator
command (see ASM Operator Commands).
FSSMDSTx See How to Enable | none Parameters starting with FSSMDSTX are passed
Tracing for to NATFSSM, the Natural for Db2 part of the
Dynamic SQL Authorized Services Manager (NATASM), to
Statements in the define a dynamic SQL trace buffer above the
Database bar.
Management
System Interfaces
documentation.
FSSMxxxx See Defining Size |none Parameters starting with FSSMxxxx (xxxx
and Format of an must not be replaced with DSTx) are passed
FSSM in the to NATFSSM, the Natural for Db2 part of the
Database Authorized Services Manager (NATASM), to
Management define the Natural for Db2 file server above
System Interfaces the bar.
documentation.
ECSADUPD=option noor yes no Update an older ECSA-Directory entry without
the need for an IPL.
TIMEOUT=option VERBOSE or VERBOSE |Displays or suppresses messages ASM0085
TERSE and ASMO0086 during a TIMEQOUT process.

94

Operations

Authorized Services Manager under z/OS

Examples:
In the following examples, v or vr represents the relevant one- or two-digit product version.

= //ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF,CFSIP,1500,512"
The subsystem ID is NAT v, the message group for buffer pool communication is NATXCF, the

structure for the Session Information Pool is CFSIP. 1500 SIP slots are to be used, each having
a size of 512 bytes.

= //ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF,CFSIP"'
Same as above, except SIP slots:

The ASM will use as many SIP slots as the CFSIP structure can hold, each having a size of
1024 bytes.

= //ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF,,500,512"
The SIP service is not to use the Coupling Facility, but to build 500 SIP slots in storage, each
having a size of 512 bytes.

= //ASM EXEC PGM=NATASMvr,PARM="NATv,NATXCF'

The SIP service will not be available.

= //ASM EXEC PGM=NATASMvr,PARM='TST5'
//ASMPARM DD DISP=SHR,DSN=FB.SYSF.PARMS(ASMPARMI)

File FB.SYSF.PARMS (ASMPARM1):

MSGCASE=M Mixed case messages

SUBSID=TST1

XCFGROUP=HELGA Message group for global buffer pool administration
*SIP definitions:

STRUCTURE=TSTSIP SIP CF structure

SLOTSIZE=256
NUMSLOTS=200

TIMEOUTCHECK=2135 Delete old sessions at 9:35 pm
NONACTIVITY=2 Delete sessions that have been inactive for 2 hours or <«
more

The SIP service is to build 200 SIP slots in CF structure TSTSIP, each having a size of 256
bytes. The Natural subsystem to be used is TST5, as the parameter on the EXEC statement
overwrites the TST1 subsystem specified in the parameter file.

Operations 95

Authorized Services Manager under z/OS

ASM Operator Commands

The following commands can be passed to the ASM using the MODIFY command:

Command Description
HELP Shows an overview of the available syntax.
TERMinate | STOP Terminates the ASM.
SNAP Debugging function.
The ASM address space is dumped to SYSUDUMP.
VLIST Displays the name, version and assembly time of modules that are linked

to the ASM.

TIMEQUT |NAT nnn

Specifies or replaces the non-activity time parameter.

REPEAT mmmm

Specifies or replaces the time interval in minutes in which the timeout check
is to be run.

TOC hhmm Specifies or replaces the time of day of the timeout check.

OFF Disables timeout checking.

ON Reinstates timeout checking.

NOW Starts an immediate timeout check.
Normal timeout check scheduling (if specified) remains in effect.

TERSE Suppresses the messages ASM0078 and ASMO080 during TIMEQUT NOW
processing.
Suppresses the messages ASM0085 and ASM0086 during a TIMEOUT
processing.
The message ASM0047 Operator command: TIMEOUT NOW is also
suppressed.

VERBOSE Displays the messages ASM0078, ASMO080 and ASM0047 during TIMEOUT

NOW processing.

Displays the messages ASM0085 and ASM0086 during a TIMEOUT
processing.

This is the default setting.

?

(or no specification)

Displays the current timeout settings.

The question mark (?) is optional and can be omitted.

For a list of return codes and reason codes of the SIP Service, refer to SIP Service Return Codes and
Reason Codes in the Messages and Codes documentation.

96

Operations

Authorized Services Manager under z/OS

Resetting the Coupling Facility Structure for ASM

When a CICS or IMS TM region which uses the Session Information Pool (SIP) function of the
Authorized Services Manager abends, the Authorized Services Manager might return an error for
the SIP. For example, the SIP might be reported as full because session cleanup had not been per-
formed before the region abended. To resolve such an error, delete the respective Coupling Facility
structure:

1. Shut down all Authorized Services Managers which use the affected CF structure.

2. Issue the operator command SETXCF FORCE,STR,STRNAME=structure-name, where
structure-name is the name of the CF structure used for the SIP function.

3. Restart all Authorized Services Managers.

ASM Messages, Condition Codes and Abend Codes

The ASM writes informational and error messages to JESMSGLG using the WT0 macro (ROUTCDE=11).
The messages are preceded by a message identifier and the ASM job name, for example:

ASM0005 FBASMvr

In this example, Authorized Services Manager Version vr (where vr represents the relevant product
version) is active

The following condition codes are used:

Condition Code | Explanation

0 Normal completion

4 Authorised server not available
8 No space for work area

12 Wrong parameter input

16 Runtime error has occurred

20 Subtask has failed

24 Abend has occurred

97 Buffer pool routine not linked
98 Invalid buffer pool type

99 No more storage

>100 Working storage could not be allocated

The following user abend codes are used:

Operations 97

Authorized Services Manager under z/OS

Abend Code |Reason Comment
uol100 IXCJOIN failed. Abend Register 14 contains the reason code.
u0101 IXCQUERY failed. Abend Register 14 contains the reason code.
u0103 Active member list full. Contact support.
u0104 IXCMSGI failed. Abend Register 14 contains the reason code.
u0105 Message Exit could not obtain a Purge Task Contact support.
Request Block.
u0106 Work Space for I XLCONN could not be obtained. | Contact support.
U05xx IXLCONN failed. XX is the reason code.
U06xx IXLLIST WRITE failed. XX is the reason code.
U070x STORAGE OBTAIN for subpool 245 failed. Contact support.
U071x STORAGE RELEASE for subpool 245 failed. Contact support.

To find a description of reason codes, refer to Programming: Sysplex Services Reference (IBM docu-
mentation). If the error was environment-specific, and it is not clear what the reason was, contact

support.

98

Operations

14 Natural Roll Server Functionality

m Natural ROIN SEIVEr - OVEIVIEWoiiiiiiiiiiiie et 100
m Roll Serverin @ Single Z/OS SYSIEMcciiiiiiieiiie e 101
= Roll Server in a z/OS Parallel Sysplex EnVIrONMENtcoouiiiiiiiiiieiii e 102
B RO FIle @NA LRB ...t 104

99

Natural Roll Server Functionality

See also Natural Roll Server Operation.

Natural Roll Server - Overview

With the Natural Roll Server, Natural can execute in a multiple-address-space system like CICS
or IMS TM,; these address spaces may be located in multiple z/OS images (z/OS Parallel Sysplex
environment). You can, of course, also use the Roll Server if you are running a single z/OS system.

When Natural performs terminal I/O, it must save the application's context data (the thread): Before
the terminal I/O is started, the thread is given to the Roll Server which keeps it in its Local Roll
Buffer, or in the roll file. This is referred to as “roll out”. When the terminal I/O is completed,
Natural requests the thread from the Roll Server, and continues the application. This is referred
to as “roll in”. In a z/OS Parallel Sysplex environment, the Roll Server keeps information about
the threads (the roll file directory) in a data structure in the Coupling Facility. Thus, it is possible
for a Natural application to execute in different z/OS systems at different times: A thread can be
given to the Roll Server on one system, and requested back from another system.

Before a roll out is performed, Natural compresses the thread into one contiguous buffer, and
decompresses it after the roll-in is performed. Depending on the Natural version installed at your
site, the CPU load of compression and decompression can be taken off the hosting TP system and
moved to respective routines within the Roll Server. If you want to take advantage of the compres-
sion/decompression feature, install the appropriate Roll Server module described in the respective
installation step in the section Installing Natural on z/OS in the Installation for Natural on z/OS doc-
umentation. In addition, Natural Batch for zIIP (extra product license required) must be available
to the Natural nucleus (see the respective installation step) in Installing Natural on z/OS.

The Roll Server runs in its own address space. It provides its services as PC routines. In a z/OS
Parallel Sysplex environment, one instance of the Roll Server must be started in each participating
z/OS image.

A list of applied Roll Server Zaps is displayed in the JESMSGLG data set of the Roll Server started
task, and by the SYSTP utility, function code R, line command 7.

Note concerning Natural under CICS: The CICS System Recovery Table should include the z/OS
system abend code 0D6.

100 Operations

Natural Roll Server Functionality

Roll Server in a Single z/OS System

When the Roll Server receives a thread through a write request (before terminal output), it checks
whether enough space is available in the local roll buffer (LRB). If there is, the thread is copied to
the LRB. If not, the thread is written to the roll file. If the thread is larger than the roll file slot size,
additional overflow slots are allocated to accommodate the thread. Allocation of overflow slots is
restricted to the roll file that the Natural session was initially assigned to. If the roll file does not
have enough free space to allocate the necessary overflow slots, an error is generated and the re-
questing Natural session terminates abnormally. Overflow slots are implicitly freed by a subsequent
write request with a smaller thread.

When the Roll Server receives a read request for the thread (after terminal input), it tries to locate
the thread in the LRB. If the thread is found, it is copied from the LRB to the requestor's address
space. If not, the thread is read from the roll file and copied to the requestor's address space.

As the main and overflow slots must reside in the same roll file, it is not possible to allocate an
overflow slot outside the LRB once the main slot could be allocated within the LRB. This would
mean that the whole write operation should be repeated from the beginning, and the main slot
should then be stored in a roll file, even if there is space for that main slot in the LRB, so that a
subsequent overflow slot could be stored in the same roll file as the main slot.

To ensure that the system performs well and that there is always enough space in the LRB, there
are “water marks”. If the LRB's high water mark is reached, the staging task is activated and copies
the LRB content to the roll file until the low water mark is reached. Where the high water mark
and the low water mark are placed is therefore an important issue of performance tuning. For
more information on performance tuning, see the section Roll Server Performance Tuning. For a
Roll Server running in a single z/OS system, the default high water mark is 80 percent and the low
water mark 70 percent.

Operations 101

Natural Roll Server Functionality

lllustration of the Roll Server in a Single z/0S System

Roll Server

LRB
: " RollFile
‘:Ifg:er : < PC \Wite — —
— - | Direct
&k - : oy
: Virite Task | > siot
- o PC Read c
Leiey i: Read Task
\Water :
Mark Slot :
Slot . p Staging Task P 1
; Slot
RF Directory

Roll Server in a z/OS Parallel Sysplex Environment

In a z/OS Parallel Sysplex environment, the Roll Servers in the participating z/OS images commu-
nicate through the Coupling Facility's (CF) XCF Signaling Services, and the roll file directory
resides in an XES data structure.

When the Roll Server receives a thread through a write request (before terminal output), it checks
whether enough space is available in the local roll buffer (LRB). If there is enough space, the thread
is copied to the LRB. If there is not enough space in the LRB, the thread is written directly to the
roll file. The roll file directory in the CF structure is updated accordingly. Thread overflow is
handled as described under Roll Server in a Single z/OS System.

102 Operations

Natural Roll Server Functionality

You can also set high and low water marks in a Parallel Sysplex environment. This option is not
provided by older Natural versions. The staging task writes threads to disk until the low water
mark is reached only when the LRB high water mark is reached. If a thread is requested from an-
other z/OS image and has not yet been written to disk, the Roll Server on the other z/OS image
sends a stage request message for this particular thread. The requested thread is then written to
disk regardless of the high and low water marks.

| Note: When you specify a high water mark of zero, the Roll Server performs identically to

earlier versions of Natural in that all threads are immediately scheduled for staging to disk.
For a Roll Server running in a Parallel Sysplex environment, both the default high and the
low water marks are zero.

When the Roll Server receives a read request for a thread (after terminal input) and the last write
request was issued in the same z/OS image, the Roll Server copies the thread directly from the
LRB into the requestor's address space. If the last write request did not come from the same z/OS
image, the thread is read from the roll file and then copied into the requestor's address space. If
the thread does not yet reside on the roll file, the Roll Server on the other z/OS image receives a
stage request message. When the thread resides on the roll file, it is read from there and then
copied into the requestor's address space.

Operations 103

Natural Roll Server Functionality

lllustration of Roll Servers in a z/OS Parallel Sysplex Environment

Roll Server Roll Server
LRB LRB
Slot
ok S High
Water e O rowie Coupling Facility PC Wiite : Ao
hdark : ,: :
: » \Wirite Task Wirite Task : hdark
: » PG Read \ RF Directory / PCRead |8 :
: ——1 |\ :
L : C Read Task o |\, o Read Task ‘) : L
water — [— — 1\ \ [RollFile /4 : Wiater
haark Slot | 3 S[agmg Task \ [- III S[aglng Task 14 Slat Mark
l Al Directory
¥ 3/
Slot \\ ! Siot / Slot

Slot

Roll File and LRB

The roll file is a BDAM file logically subdivided into a directory and fixed-length slots. The slot size
is a parameter of the roll-file formatting routine NATRSRFI. There should be at least as many slots
as there are active Natural sessions. The slot size should be large enough to accommodate an av-
erage compressed Natural thread. Threads that are larger than the slot size will occupy multiple
slots. You can check the distribution of Natural thread sizes with the SYSTP utility, function code
R, line command R: Scroll down (using PFs) to the page entitled Roll Server Peak Loads and Thread
Sizes.

The roll file directory contains one entry for each active Natural session, together with a timestamp
of its last write request. In a single z/OS system, the directory resides in the Roll Server's address
space. In a z/OS Parallel Sysplex environment, it resides in the Coupling Facility. The directory is
written back to the roll file only when the Roll Server terminates.

104 Operations

Natural Roll Server Functionality

The local roll buffer acts as a cache for the roll file. The roll buffer is contained in a z/OS memory
object and subdivided into fixed-length slots. The LRB slot size is identical to the slot size of the
corresponding roll file. If the Roll Server is to run without a roll file, the LRB slot size must be
specified as parameter on the JCL EXEC statement. See Natural Roll Server Operation, Starting
the Roll Server.

The Roll Server can run with up to five different roll files. Each of these roll files is logically con-
nected to one local roll buffer. If there are five roll files, there are five corresponding LRBs. Each
roll file is accessed by its own dedicated read, write, and staging tasks. Thus, if the roll files are
created on different disks on different channels, the roll files can be accessed simultaneously.

Natural users are allocated to the roll file that has the most free slots. You can use the NATRSU14
user exit to implement your own allocation method. For more information on this user exit, see
the relevant section in Natural Roll Server Operation.

You can see how your user IDs are distributed in the roll files with the Natural Sub-Systems and
Roll Server Information statistics function (function code R) of the SYSTP utility.

Operations 105

106

15 Natural Roll Server Operation

= Roll Server System REQUIMEMENTScoiiiiiiieiiiie e 108
B Formatting the ROI FIIEeoo e e e 110
B SHArting the RO SEIVET ... 113
= Roll Server Messages, Condition Codes and Abend COAESeevrriiiiiiiiiiiie e 119
= Return Codes and Reason Codes of the Roll Server RequeStcooivviiiiiiiiiiiiice e, 120
m Operating the ROII SEIVET ... 121
= Resetting the Coupling Facility SITUCIUIEuvviiiiiiiiiii e 122
= Roll Server Performance TUNMINGooiirieeiiiie e 123
B ROI SEIVEr USEI EXIESvieeeiieii et e et e et e e e aae e e 124

107

Natural Roll Server Operation

See also Natural Roll Server Functionality.

Roll Server System Requirements

This section describes the Roll Server system requirements.

= APF Authorization

= System Linkage Index
= Virtual Storage

= CF Structure

= XCF Signaling Paths

APF Authorization

Link the module NATRSMv r (vr represents the relevant product version) to an Authorized Program
Facility (APF) library, specifying I1EWL parameter AC(1). Refer to Installing Natural on z/OS.

System Linkage Index

As the Roll Server reserves one system linkage index (System LX), check whether there is a high
enough value of NSYSLX in member TEASYSxx of library SYS1.PARMLIB.

When the Roll Server terminates, its address space ID is no longer available because a System LX
has been used. It becomes available again with the next IPL.

Once a System LX has been reserved, it is reused with every restart of the Roll Server until the
next IPL.

Virtual Storage

Storage Size

ECSA 84 bytes

Private program storage 30 KB above

Fixed subpool storage (incl. ELSQA):|10 KB below, 50 KB above

LRB directory 32+(64*number of LRB slots)

100 slots per roll file 4 KB above

Every additional roll file 30 KB above

Working storage depending on load, about 1 MB above

108 Operations

Natural Roll Server Operation

CF Structure

A CF structure is used to hold the roll file directory in a z/OS Parallel Sysplex environment.

The size of a CF structure can be calculated using the IBM web utility "CFSizer", which can be
found here:https://www.ibm.com/support/pages/cfsizer

There, you must choose "XCF" in the selection box, there where you see "Choose one".

You get a new window, which is pre-filled with "Number of systems" = 8 and "CLASSLEN" = 956
(=936 + 20 -> CONA + CONALOCKATTR)

See macro IXLYCONA for those size:

01 SIZE:

& CONA -- X'03A8' bytes = 936
* CONALOCKATTR -- X'0014' bytes = 20
& CONALISTATTR -- X'0028' bytes = 40
i CONACACHEATTR -- X'001C' bytes = 28

Roll Server only uses CONA = 936 bytes.

Once you select "Number of systems" =n (LPARs), and you press "Submit", you get something
like (5 LPARs with 936 bytes):

Function | Type |Structure Name |INITSIZE |SIZE
XCF LIST|IXC...... 18M |19M

followed by a number of lines with JCL.
XCF Signaling Paths

In a z/OS Parallel Sysplex environment, the Roll Servers communicate via the XCF Signaling Ser-
vices. As the default XCF group name, the leftmost eight bytes of the CF structure name are used.

If you want to specify your own XCF group name, use the NATRSU24 user exit. For more information
on this user exit, see NATRSU24 User Exit.

Operations 109

https://www.ibm.com/support/pages/cfsizer

Natural Roll Server Operation

Formatting the Roll File

To format the roll file, proceed as follows:

1. Allocate it as a physical, sequential data set with a fixed-record format.

2. Format it using module NATRSRFI.

3. If the roll server executes in a z/OS Parallel Sysplex environment, reset the Coupling Facility
structure as described in the Notes Concerning the Formatting or Resetting of Roll Files.

During formatting, the roll file is converted to BDAM format with a device-dependent block size.

| Note: If you plan to use an existing roll file of a previous version, it is sufficient to execute
the NATRSRFI RESET function.

To format, enter the following parameter string under the DD name RFIPARMS, or as PARM on the
JCL EXEC statement:

function,dd-name,slot-sizenumber-of-slots

All parameters are positional; they are explained in the table below:

Parameter Description

function FORMAT Format the roll file.

RESET All roll file slots are reset (marked as free). You
can only use this parameter value if the roll file
has already been formatted.

The only other parameter allowed is dd-name.

LIST Print a list of session IDs contained in the roll
file and their last activity.

The only other parameter allowed is dd-name.

dd-name The name of the DD statement under which the roll file has been specified.

slot-size The size of a roll file slot in bytes. This size is rounded to the next higher multiple of
the block size used.

It is recommended to initially use a slot size equal to the size of the Natural thread.
Then look at the Roll Server statistics. They also show the largest occurrence of a thread
size. Use this value to reduce the slot size, if necessary.

number-of-silots|The number of roll file slots to be allocated. This number is the maximum number of
concurrently active users.

This parameter is optional. If omitted, the entire roll file, as allocated, will be formatted.

110 Operations

Natural Roll Server Operation

Parameter Description

Note that during formatting, the system abend code SB37 or SD37 (or S209 for a VSAM
file) can be encountered. This abend is intercepted by the formatting routine and can
be ignored.

To calculate the required disk space in cylinders for a roll file (SPACE parameter of the DD statement),
use the following formula:

number-of-cylinders = ceiling (number-of-slots * slot-size / (30*block-size))

or in tracks

number-of-tracks = ceiling (number-of-slots * slot-size / (2*block-size))
The block size used is:

23476 for 3380 DASD

27998 for 3390 DASD

22928 for 9345 DASD

In addition, space is needed for the roll file directory header (40 bytes) and one directory entry
for each roll file slot (24 bytes). Thus, one additional block is needed for roughly 976 slots on 3380,
1164 slots on 3390, or 953 slots on 9345 DASD.

NATRSRFI Output

If a DD statement with ddname RFIPRINT is specified, NATRSRFI directs its output to this data set.
When RFIPRINT is omitted, output is written to JESMSGLG using the WT0 macro (ROUTDCE=11). Note
that RFIPRINT must be specified for the LIST function.

NATRSRFI Condition and Abend Codes:

The following condition codes are used:

Code |Explanation

0 Normal completion.

4 Number of slots formatted is less than requested.

20 |Parameter error.

The following user abend codes are used:

Operations 1M1

Natural Roll Server Operation

Abend Code

Cause

Uu0100

Open for RFIPARMS or RFIPRINT failed

Uuo101

Open for roll file failed.

Examples:

In the following examples, vr or vrs represents the relevant product version.

Example 1:

//FBRUNRFI J0B

//FORMAT
//STEPLIB
//RF1
//RF2

NATRSRFI

(FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
EXEC PGM=

DD DISP=SHR,DSN=NATURAL.NATvr.LOAD
DD DISP=SHR,DSN=FB.SYSF.ROLLF1
DD DISP=SHR,DSN=FB.SYSF.ROLLFZ
//RFIPARMS DD *
FORMAT,RF1,200000,1000
FORMAT,RF2,200000

Excerpt from resulting JESMSGLG:

+FBRUNRFI :
+FBRUNRFI:
+FBRUNRFI :

+FBRUNRFI :
+FBRUNRFI:
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :
+FBRUNRFI :

FORMAT,RF1,200000,1000
RFI: FB.SYSF.ROLLFI

Creation date:

2001/06/13 Volume: ADA002(3390)
IECO31I D37-04,IFGO554P,FBRUNRFI, FORMAT,RF1,305B,ADA002,FB.SYSF.ROLLF1

Not enough space for 1000 slots.
Blocks written. Block size is 27998.

60
1
8
7
3

Directory block.

Blocks per slot. Slot size is 223984.

Slots initialized.
Blocks unused.

FORMAT,RF2,200000
RF2: FB.SYSF.ROLLFZ

Creation date:

Roll file version vrs.

2001/06/08 Volume: USRF08(3380)
[ECO31I D37-04,IFGO554P,FBRUNRFI, FORMAT,RF2,020F,USRFO8,FB.SYSF.ROLLF2

+FBRUNRFTI: 60 Blocks written. Block size is 23476.

+FBRUNRFTI: 1 Directory block.

+FBRUNRFTI: 9 Blocks per slot. Slot size is 211284.

+FBRUNRFTI: 6 Slots initialized. Roll file version vrs.

+FBRUNRFI: 5 Blocks unused.

Example 2:

112 Operations

Natural Roll Server Operation

//FBRUNRFI JOB (FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
//FORMAT EXEC PGM=NATRSRFI,PARM='FORMAT,RF1,200000"
//STEPLIB DD DISP=SHR,DSN=NATURAL.NATvr.LOAD

//RF1 DD DISP=SHR,DSN=FB.SYSF.ROLLF1

//RFIPRINT DD SYSOUT=X

Resulting RFIPRINT:

Natural Roll Server - Roll File Utility Version
Vrs

FORMAT,RF1,200000

RF1: FB.SYSF.ROLLF1

Creation date: YYYY/MM/DD Volume: ADA002(3390)
60 Blocks written. Block size is 27998.

1 Directory block.

8 Blocks per slot. Slot size is 223984.

7 Slots initialized. Roll file version vrs.

3 Blocks unused.

Notes Concerning the Formatting or Resetting of Roll Files

" You can format or reset several roll files at once by specifying several parameter lines in RFIPARMS.
" You cannot format or reset a roll file while the roll server is active.

® When the roll file is formatted in a z/OS Parallel Sysplex environment, the roll server Coupling
Facility structure must also be cleared using the SETXCF operator command, for example:

SETXCF FORCE,STR,STRNAME=NATROLL1

Starting the Roll Server

You start the Roll Server either as a batch job or as a started task by executing module NATRSMv r
(where vrrepresents the relevant product version). The roll file(s) must be defined as DD statements
with ddname ROLLF1 to ROLLF5.

You can specify parameters in the JCL EXEC statement, in a parameter file, or in both. A parameter
specified in the EXEC statement overwrites the corresponding parameter in the parameter file.

It is recommended that you use a parameter file. The parameter TIMEOUTREPEAT (see Parameters
in the Parameter File) and future parameters can only be specified in the parameter file. Existing
JCL will continue to execute unchanged.

This section covers the following topics:

= Parameters in the JCL EXEC Statement
= Parameters in the Parameter File

Operations 113

Natural Roll Server Operation

= Examples for Starting the Roll Server as a Batch Job
Parameters in the JCL EXEC Statement
Parameters in the JCL EXEC statement:

Sbgystan-id,nunber-of-rol 1-files,rumber-of-LRB-slats, LIB-sIat-size,(Fstnauretame, lovwatermark, ighater-ark, ronactivity-tine, timeaut-adek-tine lessaE-ae

All parameters are positional and must be separated by a comma. They are explained in the table
below:

Parameter Parameter name for [Possible [Default |Comment
parameter dataset |Values

subsystem-id SUBSID 4-byte NATv The specified value must match the
non-blank value of the Natural profile parameter
string SUBSID (v = version number).

Note: With Natural under CICS, refer to
the ROLLSRV parameter in the NCMDIR
macro for setting the appropriate
subsystem ID.
number-of-roll-files|/NUMFILES 0 -5 1 In a z/OS non-Parallel Sysplex
environment, the Roll Server can operate
without a roll file, using only the
in-storage Local Roll Buffer.

number-of-LRB-slots |NUMSLOTS 1 - none The number of LRB slots multiplied by
32767 the slot size must not exceed 2 GB.

The same number of LRB slots is
assigned for each LRB, i.e. for each roll
file used. The total number of LRB slots
is calculated by the formula:

number-of-roll-files *
number-of-LRB-slots

LRB-slot-size SLOTSIZE any roll file |Value in number of bytes.
numeric |slot size
value This parameter must be specified if no

roll file is used.

If roll files are used, this parameter is
ignored and the roll file slot size is used
instead.

If no roll files are used meaning the
number-of-roll-filesis zero, this
parameter is mandatory.

114 Operations

Natural Roll Server Operation

Parameter

Parameter name for
parameter dataset

Possible
Values

Default

Comment

CF-structure-name

STRUCTURE

any valid
structure
name

none

If you specify less than 16 characters,
blanks are appended.

Only specify this parameter if you use
the Coupling Facility (with z/OS Parallel
Sysplex). Otherwise, using this
parameter might cause unnecessary
overhead

low-water-mark

LOWWATER

7
(single
z/OS)

0
(sysplex)

Specifies the low water mark in steps of
10 percent of the number of LRB slots.

LWM can not be higher than the current
HWM.

This value is always ignored and reset
to0if CF-structure-namehasavalue,
independently of what was specified.

high-water-mark

HIGHWATER

0 - 10

8
(single

z/OS)

0
(sysplex)

Analogous to Tow-water-mark
parameter.

Value "10" means that the staging task
will never be activated. It is only
recommended to specify "10" if the LRB
is large enough to serve all
simultaneously active Natural sessions.

HWM can not be lower than the current
LWM.

This value is always ignored and reset
to0if CF-structure-namehasavalue,
independently of what was specified.

non-activity-time

NONACTIVITY

1 -
999999

none

Number of hours a session can be
inactive before it is deleted from the roll
file.

If this time is exceeded, the session is
deleted during the next scheduled
timeout check.

If this parameter is omitted, no timeout
check will be executed.

This parameter can be changed using
operator command TIMEOUT, see below.

Both the Authorized Services Manager
and the Roll Server allow to specify a

Operations

15

Natural Roll Server Operation

Parameter

Parameter name for
parameter dataset

Possible
Values

Default

Comment

timeout value. If Natural is running in
a SYSPLEX environment, set the same
value for this parameter and the
NONACTIVITY parameter of the
Authorized Services Manager.

timeout-check-time

TIMEOUTCHECK

0000 -
2359

none

The time of day that the timeout check
is to be run.

Sessions will be deleted if they have been
inactive longer than the non-activity time
specified by the preceding parameter.

If this parameter is omitted, no timeout
check will be scheduled.

This parameter can be changed using
operator command TIMEOUT, see below.

message-case

MSGCASE

UCTRAN or
blank

blank

Specify UCTRAN if the Roll Server is to
issue all its messages in upper case.

repeat-timeout-check

TIMEOUTREPEAT

0000 -
1440

none

The number of minutes between two
consecutive timeout checks.

This allows for a timeout check to occur
several times a day.

Parameters in the Parameter File

The parameter file is a physical sequential file (DSORG=PS). In your JCL, specify this file with

DDNAME RSMPARM.

Parameters in the parameter file are specified as name=value pairs, for example, NUMFILES=1.
Specify one parameter per line, starting in Column 1. The name=value pair is terminated by the
first blank, and the rest of the line is not examined. Lines starting with an asterisk (*) in Column
1 are treated as comments. Parameters are translated to upper case before they are processed.

Parameter Possible Values |Default Comment
SUBSID 4-byte NATv The specified value must match the value of the Natural
non-blank profile parameter SUBSID (v = version number).
string
Note: With Natural under CICS, refer to the CICSPLX
parameter in the NCMDIR macro for setting the appropriate
subsystem ID.
NUMFILES 0 -5 1 In a z/OS non-Parallel Sysplex environment, the Roll Server
can operate without a roll file, using only the in-storage
Local Roll Buffer.
116 Operations

Natural Roll Server Operation

Parameter Possible Values |Default Comment
NUMSLOTS 1 - 32767 |none The number of LRB slots assigned for each roll file in use.
(The total number of LRB slots is calculated by this formula:
NUMEFILES * NUMSLOTS)
SLOTSIZE any numeric |roll file slot |Value in number of bytes.
value size
This parameter must be specified if no roll file is used.
If roll files are used, this parameter is ignored and the roll
file slot size is used instead.
STRUCTURE any valid none If you specify less than 16 characters, blanks are appended.
structure name
Only specify this parameter if you use the Coupling Facility
(with z/OS Parallel Sysplex).
LOWWATER 0 -9 7 Specifies the low water mark in steps of 10 percent of the
(single number of LRB slots.
z/OS)
LWM can not be higher than the current HWM.
0
(Sysplex) This value is always ignored and reset to 0 if STRUCTURE
has a value, independently of what was specified.
HIGHWATER 0 - 10 8 Analogous to Tow-water-mark parameter.
(single
z/OS) A value of 10 means that the staging task will never be
activated. It is only recommended to specify 10 if the LRB
0 is large enough to serve all simultaneously active Natural
(Sysplex) |sessions.
HWM can not be lower than the current LWM.
This value is always ignored and reset to 0 if STRUCTURE
has a value, independently of what was specified..
NONACTIVITY |1 - 999999 [none Number of hours a session can be inactive before it is deleted
from the roll file.
If this time is exceeded, the session is deleted during the
next scheduled timeout check.
If this parameter is omitted, no timeout check will be
executed.
This parameter can be changed using the operator command
TIMEQUT, (see Operating the Roll Server).
TIMEOUTCHECK |0000 - 2359 |none The time of day that the timeout check is to be run.

Sessions will be deleted if they have been inactive longer
than the non-activity time specified by the preceding
parameter.

Operations

"7

Natural Roll Server Operation

Parameter Possible Values |Default Comment

If this parameter is omitted, no timeout check will be
scheduled.

This parameter can be changed using operator command
TIMEQOUT (see Operating the Roll Server).

TIMEOUTREPEAT|O - 1440 none The number of minutes between two consecutive timeout
checks.

The first timeout check after Roll Server start is run after
TIMEOUTREPEAT minutes.

If TIMEOUTCHECK is also specified, the first timeout check is
run at the time specified with TIMEOUTCHECK, and then
every TIMEOUTREPEAT minutes.

Specifying 0 or 1440 indicates no timeout repeat, and the
timeout check is run only at the time specified with

TIMEOUTCHECK.
MSGCASE UPPER or mixed case [MSGCASE=UPPER causes all messages to be displayed in
MIXED uppercase letters.

MSGCASE=MIXED causes all messages to be displayed in
mixed case letters.

TIMEOUT VERBOSE or |VERBOSE |Displays or suppresses the message RSM0096 during a
TERSE TIMEOUT processing.

| Note: The Local Roll Buffer resides in a Memory Object “above the bar”. Use the MEMLIMIT

parameter on the EXEC statement to ensure enough memory can be allocated “above the
bar”.

Examples for Starting the Roll Server as a Batch Job

In the following examples, vr represents the relevant product version

// EXEC PGM=NATRSMvr,PARM="NAvr,,1000"
//ROLLF1I DD DSN=SYSF.ROLLFILE

The subsystem ID is NAvr, one roll file is used (default), and the Local Roll Buffer has 1000 slots.
The slot size used is identical with the roll file's slot size. The low water mark is 70 percent (default),
the high water mark is 80 percent (default).

118 Operations

Natural Roll Server Operation

// EXEC PGM=NATRSMvr,PARM="',5,1000,150000,NATROLLI" ,MEMLIMIT=800M
//ROLLF1 DD DSN=DASDI.ROLLFILE
//ROLLFZ DD DSN=DASD2.ROLLFILE
//ROLLF3 DD DSN=DASD3.ROLLFILE
//ROLLF4 DD DSN=DASD4.ROLLFILE
//ROLLF5 DD DSN=DASD5.ROLLFILE

The subsystem ID is NATv (default), five roll files are used, and each of the five Local Roll Buffers
has 1000 slots. The LRB slot size is 150000 bytes. The roll file directory resides in the Coupling
Facility structure NATROLL1. Low and high water marks are ignored, because every thread is
written to the roll file (see Natural Roll Server Functionality). Since this job is intended for z/OS,
the MEMLIMIT option specifies 800 Megabytes for the Local Roll Buffers.

| Note: The Roll Server will not start in the following cases:
® Another Roll Server is running with the same subsystem-7d.

® Another Roll Server is accessing a roll file specified in its JCL

® A roll file has been reformatted without resetting the CF structure, using the SETXCF FORCE
command.

Roll Server Messages, Condition Codes and Abend Codes

The Roll Server writes informational and error messages to JESMSGLG using the WT0 macro
(ROUTCDE=11). The messages are preceded by a message identifier and the Roll Server's job name,
for example:

RSM0019 FBRSMvrs: Roll Server Version vrs is active
where vrs represents the relevant product version.

The messages are explained in the section Roll Server Messages in the Messages and Codes document-
ation.

Condition Codes of the Roll Server Started Task

The following condition codes are used:

Operations 119

Natural Roll Server Operation

0 Normal completion
12 Wrong parameter input
16 Runtime error

20 Abend has occurred

>100 [|Initialization error

User Abend Codes

When an unexpected return code is issued by an XCF or XES Service Call, an abend with a dump
is forced. Register 14 of the abend register contains the reason code. To find a description of the
reason, refer to Programming: Sysplex Services Reference (IBM documentation). If the error was not
environment-specific, send the dump to support.

The following user abend codes are used:

Abend Code |Cause

u0200 IXLCONN failed
U0201 IXLFORCE failed
0202 IXLLIST failed
0203 IXLDISC failed
0204 IXCLEAVE failed
U0301 IXLLIST failed
u0302 IXCMSGO failed
U0401 IXLLIST failed
U0501 IXLLIST failed

Return Codes and Reason Codes of the Roll Server Request

These are codes that Natural may receive from the Roll Server's PC services routines. They are
reported by the respective teleprocessing interfaces (Natural CICS Interface or Natural IMS TM
Interface). For a list of these codes, refer to the Return Codes and Reason Codes of the Roll Server Request
in the Messages and Codes documentation.

120 Operations

Natural Roll Server Operation

Operating the Roll Server

The following commands can be passed to the Roll Server via the MODIFY operator command:

Command |Description
HELP Shows an overview of the available syntax.
DIAGNOSE |Debugging function, only to be used when advised by support.
This command does not have any function. Its intended future use is in connection with special
Zaps to aid in diagnosing specific customer problems, as the need arises.
HWM n Sets the LRB high water mark to 1 times 10 percent of the number of LRB slots (1=0-10).
HWM can not be lower than the current LWM.
HWM is always ignored and reset to 0 if STRUCTURE has a value.
If nis not specified, the current low and high water marks are displayed.
LWM n Sets the LRB low water mark to n times 10 percent of the number of LRB slots (n=0-9).
LWM can not be higher than the current HWM.
LWM is always ignored and reset to 0 if STRUCTURE has a value.
If nis not specified, the current low and high water marks are displayed.
RESET Resets interval counters.
SNAP Debugging function. The Roll Server's address space is dumped to SYSUDUMP.
STATS Writes Roll Server statistics to JESMSGLG using the WTO macro (ROUTCDE=11). Statistics
include information about roll-out and roll-in activity, as well as roll file I/O.
TERMinate|Stops the Roll Server. The roll file directory and all modified LRB slots are written to the roll
| STOP file and the address space is terminated. The address space ID is no longer available until the
next IPL.
Statistics are written to JESMSGLG using the WTO macro (ROUTCDE=11). Statistics include
information about roll-out and roll-in activity, as well as roll file I/O.
TIMEOUT |[NAT nnn Specifies or replaces the non-activity time parameter.
TOC hhmm Specifies or replaces the time of day of the timeout
check.
OFF Disables timeout checking.
ON Reinstates timeout checking.
NOW Starts an immediate timeout check. Normal timeout
check scheduling (if specified) remains in effect.
TERSE Suppresses the messages RSM0072 and RSM0074
during TIMEOUT NOW processing. Message RSM0047
Operator command: TIMEOUT NOW is also
suppressed.

Operations

121

Natural Roll Server Operation

Command |Description
Suppresses the message RSM0096 during a TIMEQUT
process.
VERBOSE Displays the messages RSM0072, RSM0074 and

RSM0047 Operator command: TIMEQOUT NOW.

Displays the message RSM0096 during a TIMEQUT
process.

This is the default setting.

REPEAT hhmm

Specifies or replaces the interval at which a timeout
check occurs.

?

(or no specification)

Displays current timeout settings. The question mark
(?) is optional and can be omitted.

Resetting the Coupling Facility Structure

When a TP Monitor or server region which uses the Roll Server abends, the Roll Server might return
an error. For example, the Roll Server directory might be reported as full because session cleanup
had not been performed before the region abended. To resolve such an error, delete the respective
Coupling Facility structure:

1. Shut down all Roll Servers which use the affected CF structure.

2. Issue the operator command SETXCF FORCE,STR,STRNAME=structure-name, where
structure-name is the name of the CF structure used for the Roll Servers.

3. Restart all Roll Servers.
4. Format the Roll Files.

If, under normal operation, the Roll Files or the LRB become full due to the number of concurrently
active users, restart the Roll server and specify larger Roll Files or a larger LRB.

You can also monitor the usage of Roll Files with the SYSTP utility.

122

Operations

Natural Roll Server Operation

Roll Server Performance Tuning

As a general rule for Roll Server performance tuning, give the Roll Server a higher dispatching
priority than the address spaces where Natural runs.

To find out where the weaknesses in performance are, analyze the system performance using the
Natural Subsystems and Roll Server Information function of the SYSTP utility.

When looking at Roll-Server Statistics, keep an eye especially on the following values:
® The number of direct writes.
"Direct write" means that the Natural thread that was received was written to the roll file directly.

There are two possible reasons:

1. No LRB slot available. Increase the LRB.

2. The compressed thread was larger than a single LRB slot. Increase the LRB slot size.
® The number of direct reads.

“Direct read” means that the requested thread was no longer in the LRB and had to be read
directly from the roll file.

If the ratio of direct reads to the total number of reads is very high in a single z/OS system, the
LRB is too small (increase it).

If the ratio of direct reads to the total number of reads is very high in a z/OS Parallel Sysplex
environment, this may also mean that there are many inter-system activities, which in turn
means that a Natural session changes z/OS images quite frequently during its lifetime.

® The number of staging waits (in a single z/OS environment).
A “staging wait” is a situation where a write request had to wait until the Staging Task had
written the LRB slot to the roll file. If the ratio of staging waits to the total number of write re-

quests is very high, this indicates that the high and low water marks are set inappropriately or
that there is a bottleneck on the roll file device/roll file channel.

Based on experience with stress tests, the following is recommended:

If the ratio of maximal number of active users to number of LRB slots is very small, increase the
high water mark. If not, decrease the high water mark.

The difference between high water mark and low water mark should not be larger than three
(30 percent).

Ideally, if the number of LRB slots is definitely larger than the maximum number of concurrent
users, the high water mark should be set to 10.

Operations 123

Natural Roll Server Operation

Roll Server User Exits

The roll server has two user exits.

® NATRSU14
® NATRSU24

Sample source modules are delivered for these.
NATRSU14 User Exit

Specifies the roll file number to be used.
Entry calling conventions:

" Register 1 addresses the parameter list that is described by the following DSECT:

PLIST DSECT

PLRSVER DS CL4 Rol1 server version (= 'vrs')
PLNRF DS H Number of roll files

PLUID DS CL16 Userid

PLTSNUM1 DS H Total number of slots Roll file 1

Number of slots in use Roll file 1
Total number of slots Roll file 2

Number of slots in use Roll file 2
Total number of slots Roll file 3

Number of slots in use Roll file 3
Total number of slots Roll file 4

PLUSNUM4 DS Number of slots in use Roll file 4
PLTSNUM5S DS Total number of slots Roll file 5

PLUSNUM5 DS H Number of slots in use Roll file 5
PLISTL EQU *-PLIST

PLUSNUM1 DS
PLTSNUMZ DS
PLUSNUMZ DS
PLTSNUM3 DS
PLUSNUM3 DS
PLTSNUM4 DS

oI T T T T T T T

where vrs represents the relevant product version.
" Register 13 points to a 36-fullword save area.
" Register 14 contains the return address.

" Register 15 contains the entry address of NATRSU14.
Return calling convention:
" Register 15 contains the number of the roll file in binary format.

] Note: If access registers are modified within this user exit, these access registers must be

saved and restored on return. This user exit is called in primary addressing mode with Psw
Key 8. Since it runs in cross-memory mode, no SVC except SVC 13 may be used.

124 Operations

Natural Roll Server Operation

NATRSU24 User Exit

Specifies the XCF group name to be used.
Entry calling conventions:

" Register 1 points to an 8-byte area in which the group name must be generated.
" Register 13 points to an 18-fullword save area.

" Register 14 contains the return address.

Register 15 contains the entry address of NATRSU24.
As a group name default, the Roll Server will use the leftmost 8 bytes of the CF structure name.

This user exit is called in primary mode, PSW Key 8 and in task mode.

Operations 125

126

IV Natural in Batch Mode

This part contains considerations that apply when running Natural in batch mode.

Natural in Batch Mode under z/OS Provides special considerations that refer to Natural in batch mode
under the operating system z/OS.

Natural in Batch Mode (All Contains general considerations that apply when running Natural
Environments) in batch: Adabas data sets, sort data sets, subtasking session support
for batch environments.

See also Batch Mode in the section Profile Parameters Grouped by Category (Parameter Reference docu-
mentation) for an overview of the Natural profile parameters that apply if Natural is used in batch
mode.

127

128

16 Natural in Batch Mode under z/OS

B Natural Z/OS BatCh INtErfaCe e 130
® Driver Parameters for Z/OS BatChc..v .o 130
= Data Sets Used by Natural in zZ/OS Batch MOUEvvviiiiiiiiieeeie e 130

129

Natural in Batch Mode under z/OS

This document contains special considerations that refer to Natural in batch mode under the op-
erating system z/OS.

For considerations that refer to Natural in batch mode generally, see also:

= Adabas Data Sets
® Sort Data Sets

® Subtasking Session Support for Batch Mode Environments

Natural z/OS Batch Interface

The Natural z/OS batch interface consists of the NATOS object module which is linked to the Natural
nucleus during the installation procedure for base Natural as described in the Installation for z/OS
documentation.

You can customize the Natural z/OS batch interface to meet your requirements by changing the
parameter settings in the NTOSP macro in the Natural parameter module during the appropriate
installation step.

NATOS is fully reentrant and can run above the 16 MB line. Multiple Natural sessions can be started
in parallel within one batch region; see Subtasking Session Support for Batch Environments.

Driver Parameters for z/OS Batch

For information on the driver parameters that are available for z/OS in batch mode, refer to the
description of profile parameter 0SP or parameter macro NTOSP in the Parameter Reference docu-
mentation.

Data Sets Used by Natural in z/OS Batch Mode

The following data sets are required if certain functions are used during a Natural z/OS batch
mode session:

130 Operations

Natural in Batch Mode under z/OS

Data Set |Explanation

CMEDIT |Software AG Editor Work File
CMHCOPY |Hardcopy Print Output
CMOBJIN |Input for Natural INPUT Statements

CMPLOG |Dynamic Profile Parameter Report Output
CMPRINT |Primary Report Output

CMPRMIN |Dynamic Profile Parameter Input
CMPRTnn |Additional Reports 01-31

CMSYNIN |Primary Command Input

CMTRACE |External Trace Output

NATRJE |Job Submit Output

STEPLIB |Load Library for External Modules
CMWKFnn |Work Files 01-32

These data sets are described below.
For sequential data output sets, the default DCB RECFM/LRECL information is as follows:

RECFM=FBA and LRECL=133
CMEDIT - Software AG Editor Work File

The Software AG Editor work file VSAM data set is required if a local or global Software AG ed-
itor buffer pool is to be used.

If not defined in the JCL, the name of the Editor work file specified by subparameter DSNAME of
profile parameter EDBP or parameter macro NTEDBP is used by Natural to do the dynamic allocation
for the Editor work file.

Alternatively, profile parameter EDPSIZE can be used to run with an auxiliary editor buffer pool,

which doesn't require an editor work file. For more information about the installation of the Soft-
ware AG editor, refer to Installing the Software AG Editor on z/OS in the Installation for z/OS docu-

mentation.

Operations 131

Natural in Batch Mode under z/OS

CMHCOPY - Optional Report Output for Hardcopy

The default name of the hardcopy print output data set is CMHCOPY. It can be changed by one of
the following;:

" the subparameter DEST of profile parameter PRINT for Print File 0,
® the profile parameter HCDEST, which is an equivalent of PRINT=((0) ,DEST=...),
" the setting of the system variable *HARDCOPY during the session,

® the terminal command %H during the session.

The subparameters of the profile parameter PRINT for Print File 0 can be used to change the default
values for the hardcopy data set. The default data set name CMHCOPY implies CLOSE=FIN for the
hardcopy print data set, that is, after the data set has been opened for output, any subsequent
change of the hardcopy print output data set name will not be honored. If a different name is
defined at open time, the hardcopy data set will be closed according to subparameter CLOSE of
profile parameter PRINT for Print File 0.

During the session, the hardcopy data set can be released and reallocated (before open or after
close) by the by dynamic allocation (via application programming interface USR2021N, see SYSEXT
- Natural Application Programming Interfaces).

CMOBJIN - Input for Natural INPUT Statements

This data set can be used to read data by the Natural INPUT statement rather than from the primary
input data set CMSYNIN.

The usage of CMOBJIN is controlled by the profile parameter 0BJIN. The input record data length
for Natural is determined by profile parameter SL. The maximum record length (LRECL) supported
is 255. The record format (RECFM) can be fixed or variable.

CMPLOG - Dynamic Profile Parameter Report Output
If profile parameter PLOG=0N is set and data set CMPL0G is available, the evaluated dynamic profile

parameters are written to this data set during session initialization. If data set CMPLOG is not
available, the evaluated dynamic profile parameters are written to CMPRINT.

132 Operations

Natural in Batch Mode under z/OS

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

The record format (RECFM) for CMPRINT is FBA. If no DCB information for LRECL is available from
the data set or from the JCL, LRECL=133 will be used as default. If no DCB information for BLKSIZE
is available from the data set or from the JCL, BLKSTZE will be 10 times the value of LRECL as default.

If not defined in JCL, CMPRINT will be allocated dynamically as

//CMPRINT DD SYSOUT=*

when the first record is to be written.
CMPRMIN - Dynamic Parameter Data Set

CMPRMIN can be used as a dynamic parameter data set to overcome the length restriction for the
character string in the job control PARM keyword of the EXEC statement.

If available, this file is read during session initialization to get the dynamic profile parameters.

All input records from CMPRMIN are concatenated into one parameter string. Only the first 72 pos-
itions of each CMPRMIN record are significant. Trailing blanks at the end of each record are truncated;
if the last non-blank character is a comma, all trailing blanks are truncated, otherwise just one
blank is left as delimiter; no commas are inserted.

Additional dynamic parameters can be supplied using the job control PARM keyword. They are
concatenated at the end of the parameter string which was built from the input of CMPRMIN, that
is, these can be used to overwrite the parameters from CMPRMIN.

A comment starts with a slash asterisk /* and ends with an asterisk slash */ and can be anywhere
in your data set. They may span over several lines in your file.

CMPRTnn - Additional Reports 01 - 31

These data sets can be used by Natural print file statements like WRITE (nn). If no DCB information
(for example, RECFM, LRECL, BLKSIZE) is available, the defaults are defined by the PRINT profile
parameter or the NTPRINT macro in the Natural parameter module. The print file names can be
overwritten by subparameter DEST.

Operations 133

Natural in Batch Mode under z/OS

CMSYNIN - Primary Command Input

This data set is used to read command input and data requested by the Natural INPUT statement.
The latter is controlled by the profile parameter 0BJIN (see also CMOBJIN).

The input record data length for Natural is determined by profile parameter SL. The maximum
record length (LRECL) supported is 255. The record format (RECFM) can be fixed or variable.

CMTRACE - Optional Report Output for Natural Tracing

If profile parameter ETRACE=0N is set or the equivalent terminal command %TRE+ was issued, any
Natural trace output during the session is written to the CMTRACE data set. To define the Natural
components that are to be traced, the profile parameter TRACE is required.

If data set CMTRACE is not available, it will be allocated dynamically as

//CMTRACE DD SYSOUT=*

when the first trace record is to be written.
NATRJE - Job Submit Output

This data set is used for the Natural job submitting utility. If it is not defined, it will be allocated
dynamically as

//NATRJE DD SYSOUT=(A,INTRDR)

when the first job is submitted.
STEPLIB - Load Library for External Modules

STEPLIB is the default load library name for loading external modules, for example:

* the environment-independent nucleus (profile parameter NUCNAME),

" aseparate Adabas link routine module (profile parameter ADANAME),

" the session back-end program (profile parameter PROGRAM),

" any external subprograms not linked to the Natural parameter module.

The load library name can be changed by profile parameter LIBNAM. The specified load library
name must be defined by a DD statement in the JCL.

134 Operations

Natural in Batch Mode under z/OS

CMWKFnn - Work Files 01-32

These data sets can be used by Natural work file statements like READ WORK nnand WRITE WORK
nn.

If no DCB information (RECFM, LRECL, BLKSIZE, etc.) is available in the JCL or in the VTOC entry
for the data set, the defaults are defined by the WORK profile parameter or the NTWORK macro in the
Natural parameter module.

The work file data set names can be overwritten by subparameter DEST.

Operations 135

136

17 Natural in Batch Mode (All Environments)

B AAADAS DAt SELS ... 11 138
B SO DAtA SIS ...iiiiiiie ettt e et e e s 138
= Subtasking Session Support for Batch Mode EnVIFONMENLScooiiiiiiiiiiiiiiice e 138

137

Natural in Batch Mode (All Environments)

This document contains general considerations that apply when running Natural in batch mode.

Adabas Data Sets

Adabas data sets must be specified only in single-user mode. They are identical to those required
for the execution of any normal application program using Adabas. See the relevant Adabas doc-
umentation for detailed information on Adabas data sets.

Sort Data Sets

Sort data sets must be specified if a Natural program containing a SORT statement is to be executed
during the Natural session.

The requirements are identical to those for execution of a normal COBOL or PL/1 application
program that invokes the operating system sort program and can vary according to the sort program
in use.

Natural does not require the intermediate data sets SORTIN and SORTOUT, but communicates with
the sort program via the £15 and E35 user-exit routine interfaces.

Subtasking Session Support for Batch Mode Environments

= Purpose

= Prerequisites

= Functionality

= Starting a Natural Session

= Starting a Subtask

= Accessing the User Parameter Area

Purpose

With subtasking support, you can run multiple Natural batch mode sessions within one address
space. This allows parallel processing within one address space, rather than executing subsequent
job steps, and can increase throughput dramatically.

Typically, client/server applications and products would take advantage of this functionality, for
example, the Natural remote procedure call. Multiple server subtasks can be started to communicate
with remote clients.

138 Operations

Natural in Batch Mode (All Environments)

Prerequisites

If you wish to restart the Natural nucleus, it must be linked as a reentrant module (linkage editor
option RENT).

The Adabas link routine (ADALNK) must be generated with reentrancy support.
Functionality

You start a subtask by issuing a CALL statement from a Natural program. The new Natural session
(“subtask”) is started with an extended front-end parameter list. This list contains up to three
parameter sets:

® dynamic Natural profile parameters,
" startup parameters,

" user parameters.

Variable names for standard I/O data sets (for example CMPRINT) and other parameters for the
batch mode interface startup can be passed from the starting program in the startup parameter
area. Standard I/O data sets can be undefined or dummy data sets; they can be owned by one
session or shared by multiple sessions.

Furthermore, a CALL interface is provided for reading the user parameter area with a Natural
program.

Starting a Natural Session

Extended Parameter List
The Natural batch mode interface without extended parameter list gets initial control from
the operating system using standard linkage call. Register 1 points to an address with high-
order bit on as the last address indicator. This address points to a halfword field containing
the length of the following parameter area.

The extended parameter list contains up to three parameter addresses. This is indicated by the
high-order bit in the last address which can be the first, second or third address. All parameter
addresses point to a halfword field containing the parameter length of the following parameter
area. Zero length indicates that there is no parameter area.

" The first parameter area contains the dynamic profile parameters for the Natural session.

® The second contains special startup parameters for the initialization of the batch mode inter-
face.

® The third contains a user parameter area which can be accessed during the Natural session.

Startup Parameter Area
When multiple batch mode Natural (sub)tasks are running in the same region, by default these
sessions access the very same Natural standard I/O data sets (such as CMPRINT, CMSYNIN, etc),

Operations 139

Natural in Batch Mode (All Environments)

as there are no Natural profile parameters available to set these file names. Also by default the
Natural system variables *INIT-1D and *INIT-USER are identical because of their definition
for batch mode.

In order to provide unique standard I/O data set names and unique IDs for Natural subtask
sessions the startup parameters in the extended parameter list can be used to overwrite the
Natural system defaults. The Startup Parameter area is a table of pairs of 8-character fields:

® The first entry contains the 8-byte keyword to be replaced,

* the second entry contains the 8-byte replacement value.

Keywords and replacement values must be padded with trailing blanks, if necessary.

The following keywords are valid:

CMHCOPY |Permanent hardcopy destination

CMSYNIN |Command input data set name

CMOBJIN |Object input data set name

CMPRINT |Standard output data set name

CMPRMIN |Dynamic parameter input data set name

CMPLOG Dynamic parameter output data set name

CMTRACE |Trace output data set name

INITID Job step name (system variable *INIT-ID)

MSGCLASS |Spool class for dynamic allocation of CMPRINT and CMTRACE (z/OS only)

NATRJE Job submission data set name (z/OS only)

STEPLIB |Program load library name (see also profile parameter L IBNAM, Name of Load Library,
z/OS only)

SUBPOOL |z/OS storage subpool (0 - 127, right justified)

USERID Initial user identification (system variable *INIT-USER)

The usage of these entries is optional and no particular sequence is required. A blank value
for a data set means that this data set is not available or is empty.

User Parameter Area
The format of the user parameter area is free. It can be accessed from any Natural program by
a special CALL interface see Accessing the User Parameter Area.

140

Operations

Natural in Batch Mode (All Environments)

Starting a Subtask

The following call interface is supplied to be used by Natural programs to start a subtask in the
same address space.

PGMNAME [Natural nucleus name getting control (mandatory). To restart with the same nucleus, an asterisk
can be specified as the first character. The actual nucleus name is passed back in this field.

NATPARML |Natural dynamic parameter area

STRPARML |Startup parameter area

USRPARML |User parameter area

All parameter areas must start with the length of the following parameters. The following example
illustrates the usage of CMTASK.

Example:

DEFINE DATA LOCAL

01 PGMNAME (A8) INIT <'*'>

01 PARMI

02 NATPARML (I2) INIT <30>

02 NATPARMS (A30) INIT <'"INTENS=1,IM=D,STACK=MYPROG'>
01 PARM?2

02 STRPARML (I2) INIT <32>

02 STRPARMI (A16) INIT <'CMPRINT SYSPRINT'>

02 STRPARMZ (A16) INIT <'CMPRMIN MYPARMS'>

01 PARM3

02 USRPARML (I2) INIT <80>

02 USRPARMS (A80) INIT <'special user parameters'>

END-DEFINE
CALL "CMTASK' PGMNAME NATPARML STRPARML USRPARML
END

A sample program, ASYNBAT, can be found in library SYSEXTP.
Accessing the User Parameter Area

The user parameter area passed during startup can be read from any Natural program with the
following CALL statement:

CALL "CMUPARM' USRPARML USRPARMS

USRPARML is the length (12) of the USRPARMS area (before the call) and the length of the data returned
(after the call). USRPARMS is the parameter data area.

If the length of the data to be returned is greater than the area length, the data is truncated to the
area length. The following return codes are possible:

Operations 141

Natural in Batch Mode (All Environments)

0 |Data successfully moved

4 |Data moved but truncated

8 |No data available

12 |Length value not positive

16 |Insufficient number of parameters

A sample program, GETUPARM, can be found in library SYSEXTP.

142 Operations

V Natural Buffer Pools

This part contains information about the various storage management functions that are available
to a Natural administrator under the operating system z/OS.

Natural Buffer Pool - General
Natural Global Buffer Pool under z/OS

For a functional overview of the Natural buffer pool, see Natural Buffer Pool in the Natural System
Architecture documentation.

For an overview of the Natural profile parameters that affect the Natural buffer pools, see Storage
Management in the section Profile Parameters Grouped by Category in the Parameter Reference docu-
mentation.

143

144

18 Natural Buffer Pool - General

= Natural Buffer Pool Principle of Operationoooiiiiiiiiiiiiiiee e 146
= Buffer-Pool Monitoring and MaiNteNaNCEuvieiiiiiieeie e 151
= Natural Global BUFEr POOLueeiiiiiie i 154

145

Natural Buffer Pool - General

The buffer pool is a storage area into which Natural programs are placed in preparation for their
execution. Programs are moved into and out of the buffer pool as Natural users request Natural
objects. Conceptually, it serves a function similar to that of an operating system in loading programs
in and out of a reentrant area. The Natural buffer pool is an integral part of Natural in all supported
environments.

Natural Buffer Pool Principle of Operation

Natural generates reentrant Natural object code. A compiled program is loaded into the buffer
pool and executed from the buffer pool. Thus, it is possible that a single copy of a Natural program
can be executed by more than one user at the same time.

This section covers the following topics:

= Objects in the Buffer Pool

= Directory Entries

= Text Pool

= Buffer Pool Hash Table

= Buffer Pool Initialization

= Buffer Pool Search Methods
= | ocal Buffer Pool

= Global Buffer Pool

= Buffer Pool Cache

Objects in the Buffer Pool

Objects in the buffer pool can be programs, subprograms, maps and global data areas. Global data
areas are placed in the buffer pool only for compilation. In this case, two objects with the same
name are loaded in the buffer pool: the GDA itself and the corresponding symbol table.

Directory Entries

When a Natural object is loaded into the buffer pool, a control block called a directory entry is al-
located to this object.

A directory entry contains such information as the name of the object, what library it belongs to,
what database ID and Natural system file number the object was retrieved from, and some statist-
ical information (for example, the number of users who are concurrently executing the program
at a given point in time).

When a user executes a program, Natural checks the directory entries to see if the program has
already been loaded into the buffer pool. If it is not already in the buffer pool, a copy of the program
is retrieved from the appropriate Natural system file and loaded into the buffer pool.

146 Operations

Natural Buffer Pool - General

When an object is loaded in the buffer pool, one or more other Natural objects which are currently
not being executed may be deleted from the buffer pool in order to make room for the newly
loaded object. When the new object is loaded, a new directory entry is created in order to identify
this object.

When an object is deleted from the system file, it will also be deleted from the buffer pool as soon
as it is no longer being used. When an object is newly cataloged or stowed, its old version will
also be deleted from the buffer pool as soon as it is no longer being used; when it is requested for
execution again, the new version will then be loaded from the system file into the buffer pool.

Text Pool

The actual object code of a program that is loaded into the buffer pool is placed into an area called
the text pool and must be allocated as a contiguous piece of memory within this text pool. This
text pool is divided into a number of 4 KB buffers. This is an arbitrary size and can be changed at
the Natural administrator's discretion. When an object is loaded, one or more text buffers that are
contiguous to each other are allocated to store the object code of the object.

Buffer Pool Hash Table

This section applies to buffer pools of TYPE=NAT only.

To speed up the search time for looking up an object in the buffer pool directory, a hash table is
used. The number of entries in the hash table is twice the number of directory entries, rounded
up to the next prime number. This will ensure that only half of the table is filled at any point in
time and that the probability of collisions is near zero. As a consequence, the average number of
tests to find an existing object in the hash table is theoretically less than 2.

The hash criterion is the eight character long program name. If more than one program name is
hashed to the same location in the hash table, an overflow technique resolves the collisions.

The storage required for the hash table is roughly 16 bytes per text block. Thus, the available
storage in the text pool is reduced by between 1.6% (1 KB text blocks) and 0.1% (16 KB text blocks).

Buffer Pool Initialization

In case of a global buffer pool the initialization occurs during start of the global buffer pool.
In case of a local buffer pool the initialization time varies depending on the environment.
® In batch mode and TSO the initialization occurs when you begin the execution of the Natural

session.

® In a TP monitor environment, the initialization generally occurs when the first user invokes
Natural under this TP monitor. Under Com-plete and CICS, it is also possible to initialize the
local buffer pool when the TP monitor is started (see also Tip in the section Preload List).

Operations 147

Natural Buffer Pool - General

Buffer Pool Search Methods

As mentioned earlier and explained below, there are different search methods for allocating space
in the buffer pool.

> To select a search method, use

» The Natural profile parameters BPMETH and BPI.
Or the macro NTBPI in the Natural parameter module.
Or the function parameter METHOD of the global buffer pool.

For a description of these parameters and the macro NTBPI refer to the Natural Parameter Reference
documentation.

Below is information on the search methods:

® METHOD=S
® METHOD=N
® Choosing Search Methods

METHOD=S
METHOD=S indicates that a selection process is used as search algorithm for allocating storage
in the buffer pool in order to obtain the space required to accomplish a new load.

The selection process used is a combination of search Algorithms 1 and Algorithm 2:

= Algorithm 1
Search Algorithm 1 attempts to find storage in the buffer pool that is either free space or
space occupied by an unused (active but not used) object.

If free space of the exact object size required is found, the selection process ends immediately.
Otherwise, the search continues by browsing the buffer pool from top to bottom and com-
paring the entries in the buffer pool for best size fit. Additionally, in the case of unused objects,
the search also considers the last attached time of the object, that is, the time the object was
last referenced at a load or locate.

When the selection process has finished, either free space or the space of an unused object
with a size greater than or equal to the size requested is selected. The rule of precedence
that applies to the search is: free space is taken first and space of unused objects next. In the
case of unused objects, the oldest objects are removed first.

If the selection process of Algorithm 1 was not successful, Algorithm 2 is invoked.

148 Operations

Natural Buffer Pool - General

= Algorithm 2
Search Algorithm 2 starts if Algorithm 1 fails. Algorithm 2 starts searching from a position
in the buffer pool which is passed by Algorithm 1 and attempts to combine two or more
entities (free storage and/or space occupied by unused objects) in order to obtain the necessary
storage for a new load. However, the age of the object is not taken into account.

Algorithm 2 continues processing to the bottom of the text record section and, if necessary,
wraps around to the top of the text record section to make one final pass from top to bottom.
If space is still unavailable, Algorithm 2 fails, the object cannot be loaded and Natural issues
a corresponding error message.

METHOD=N
METHOD=N indicates that the next available free or unused space is used in order to obtain the
space required to accomplish a new load. Unused space is space that is occupied by an active
but not used object.

The search for the next available space starts from a pointer that moves through the buffer
pool in a wrap-around fashion. Any next available buffer pool entries that are free or contain
unused objects can be used and possibly chained together to obtain the amount of storage re-
quested.

If the bottom of the buffer pool is reached during an allocation request, the pointer is wrapped
around to the top of the buffer pool and one final search is performed through the buffer pool
from top to bottom. If the bottom of the buffer pool is reached again and the object cannot be
loaded, the load fails and Natural issues a corresponding error message.

METHOD=N can especially be considered for large buffer pools in combination with the buffer
pool cache function. For details, see also Choosing Search Methods below.

Choosing Search Methods
By default, METHOD=S is used. The advantage of this method is, that a diligent search is performed
to allocate space, taking into account the size and the age of objects and guaranteeing that the
most dispensable unused objects are removed from the buffer pool to provide space for a new

load.

A disadvantage of METHOD=S can be the high CPU time that is consumed by the selection process
when browsing the buffer pool from top to bottom.

The advantage of METHOD=N is the short selection process and, usually, little browsing that require
less CPU time for allocating space. This can be significant to large buffer pools.

The disadvantage of METHOD=N is that objects are selected less carefully for removal from the
buffer pool. To avoid an increase in Adabas I/Os for reloading removed objects, we recommend
that you use METHOD=N in combination with the buffer pool cache function.

Operations 149

Natural Buffer Pool - General

Local Buffer Pool

Using Natural as supplied on the installation tape, you are running a local buffer pool. This is a
buffer pool area that is allocated in the same partition (or region or address space) of the particular
environment in use.

For example, in a batch or TSO environment, each user has his/her own local buffer pool. In a TP
monitor environment such as Com-plete, CICS or IMS TM, there is one buffer pool per TP monitor
from which all TP users execute.

Global Buffer Pool

In a z/OS environment, a global buffer pool is allocated from CSA or ECSA storage. In such an
environment, all TSO users, batch users and TP monitor users could be executing from one common
global area.

For further information on the global buffer pool, see Natural Global Buffer Pool.
Buffer Pool Cache

This section applies to global and local buffer pools of TYPE=NAT.

The buffer pool cache is available in conjunction with global and local buffer pools. It is used only
for Natural objects like programs, subprograms, maps, etc.

When a buffer pool is not large enough to take up all objects requested by the different users,
special overload strategies are used to replace existing objects with requested objects. The number
of overload situations has a direct relation to the efficiency of the buffer pool. The best and most
efficient way to reduce the disliked overloads, hence to improve the buffer pool performance, is
simply to increase its size.

However, this choice is not applicable at most customer sites, due to a lack of available storage in
the primary address space and/or the z/OS (E)CSA.

In order to improve the situation described above, a buffer pool cache is used. The main purpose
of this mechanism is to prevent a loss of all objects which were deleted from the buffer pool due
to “short-on-buffer-pool-storage” situations. This means, that an object delete results in a “swap
out to buffer pool cache”. The intended benefit of this feature is a reduction of database calls used
for object loading and consequently a performance improvement.

Note for Global Buffer Pools:

The buffer pool cache area is allocated as a data space or as an "above the bar" 64-bit common
memory object.

When a data space is created for a buffer pool (by specifying C64=N), the ownership is assigned to
the creator task. If the creator task terminates, the system automatically deletes the data space.
Therefore, a creator task will remain active for at least as long as the buffer pool cache it owns is
in use, even if the value specified for RESIDENT is N.

150 Operations

Natural Buffer Pool - General

When a memory object is created for a buffer pool (by specifying C64=Y), the ownership is assigned
to the system (not the creator task). Because of that, the memory object is not deleted when the
creator task terminates. If you want to keep the creator task active after it executes its function,
you have to specify RESIDENT=Y.

Note for Local Buffer Pools: (z/OS only, not for Com-plete and not for IMS TM)

The buffer pool cache is allocated in a data space or in a memory object "above the bar", that is, in
64-bit memory (z/OS only). When a data space or memory object is created for a buffer pool (see
profile parameters BPCSIZE and BPC64), the ownership is assigned to the creator task. If this task
terminates, the system automatically deletes the data space or the memory object.

Buffer-Pool Monitoring and Maintenance

The Natural utility SYSBPM (described in the Natural Utilities documentation) provides statistical
information on the current status of the buffer pool. SYSBPM also allows you to adjust the buffer
pool to your requirements.

The following topics are covered below:

= Preload List

= Blacklist

= Propagation of Buffer-Pool Changes
= Performance Considerations

Preload List

A preload list is a list of objects that will be loaded into the buffer pool and remain there as resident.
When a user requests such an object for execution, it is always already in the buffer pool and need
not be loaded from the system file.

This may improve performance, may avoid buffer pool fragmentation, or may be useful to ensure
that central error transactions are always available, even if the database containing the system file
is not active.

At the start of the Natural session, Natural checks which of the objects on the preload list are
already in the buffer pool. Those which are not will then be loaded from the system file into the
buffer pool. This checking and loading is also performed whenever the buffer pool is connected,
re-connected and re-initialized using the SYSBPM utility. If a global buffer pool is re-initialized by
a REFRESH command, no checking takes place for existing Natural sessions. That is, as long as no
new Natural session is started that accesses this buffer pool, the objects on the preload list are not
loaded.

Operations 151

Natural Buffer Pool - General

The load of the preload list is not serialized. That means, if multiple Natural sessions start concur-
rently, each session tries to load all objects named in the preload list into the buffer pool. This may
lead to duplicate entries of the same Natural object in the buffer pool (see also hint below).

A preload list is identified by name, and is attached to a specific buffer pool by specifying its name
as startup parameter (for a global buffer pool) or in the NTBPI macro (for a local buffer pool). Thus,
a different preload list may be defined for each buffer pool; or the same preload list may be used
for different buffer pools.

If the specified preload list cannot be located, or if objects contained on the preload list cannot be
loaded, Natural will issue a corresponding warning message at session initialization. In either
case, the preloading will be repeated for each subsequent session initialization.

As the objects on the preload list are the first to be loaded, they are located at the beginning of the
buffer pool (except if the initial preloading could not load all objects, in which case the objects
may be located anywhere in the buffer pool).

To maintain preload lists, you use the SYSBPM utility, see SYSBPM - Preload List Maintenance in the
Natural Utilities documentation.

Tip: To avoid problems with the load of the objects on a preload list by user sessions the

following procedure is recommended:

* For a global buffer pool:
Immediately after the allocation or refresh of the global buffer pool, start a batch Natural session
that accesses the global buffer pool and that executes a FIN.

® For a local buffer pool under CICS and Com-plete:
During startup of the TP system, start an asynchronous Natural session that access the local
buffer pool, and put a FIN command on the Natural stack. Ensure that this Natural session ref-
erences the name of the preload list in its NTBPI macro.

Blacklist

To prevent a Natural object from being executed, you can put it on a so-called “blacklist”: the object
can then not be loaded into the buffer pool; and if it is already in the buffer pool, it cannot be ex-
ecuted. A user requesting such an object to be executed will then receive an appropriate error
message.

You can put not only individual objects on the blacklist, but also entire libraries.
Examples

* The blacklist may be useful, when you upgrade a Natural application and do not wish users to
continue to work with that application until you have finished the upgrade. Without the
blacklist, a user might execute a new module which in turn would invoke an old module - which
might lead to an abnormal termination of the Natural session. With the blacklist, the user can

152 Operations

Natural Buffer Pool - General

will receive a message that the requested object can currently not be executed, and can then
continue his/her Natural session.

® Performance aspects may be another reason for using the blacklist to prevent certain resource-
consuming objects from being executed in a specific environment.

" You may use the blacklist to prevent the execution of test programs in a production environment.

To maintain the blacklist, you use the SYSBPM utility. See SYSBPM - Blacklist Maintenance in the
Natural Utilities documentation.

Propagation of Buffer-Pool Changes

| Note: Under z/OS, the propagation of buffer-pool changes is always restricted to the Nat-
ural subsystem in which the change has occurred (for details on the Natural subsystem, see
Natural Subsystem (z/OS). Thus, “all global buffer pools” in this context means “all global
buffer pools within the same subsystem”.

In some environments, it is important that changes which occur in one (local or global) buffer pool
are also propagated to all other global buffer pools - that is, the same changes are also automatically
made in the other global buffer pool - so as to ensure the consistency of the buffer pools and the
Natural applications being used. This is particularly important in a z/OS Parallel Sysplex environ-
ment.

For example, if a Natural program is newly cataloged in one z/OS image, the propagation will
cause the program to be deleted from all other global buffer pools in the z/OS Parallel Sysplex
environment, so that its new version has to be loaded from the system file when the program is
to be executed again.

The following changes are propagated:

" an object is deleted from the buffer pool,

* the buffer pool's blacklist is modified,

" the buffer pool is re-initialized.

Changes can be propagated to all other global buffer pools within the current z/OS image, or

within the entire z/OS Parallel Sysplex environment, or all other global buffer pools of the same
name within the z/OS Parallel Sysplex environment.

The propagation does not affect those objects in another global buffer pool which are defined as
resident in that buffer pool.

The propagation is activated and its scope controlled by the Natural profile parameter BPPROP.

| Note: As the propagation is performed asynchronously and an object is only deleted from

a buffer pool when it is not longer being used, it may take some time until the current version
of an object is available in all buffer pools.

Operations 153

Natural Buffer Pool - General

Propagation to other local buffer pools is not possible.
Performance Considerations
For general advice on performance-related issues regarding the buffer pool and the BP cache, see

Performance Considerations in the section SYSBPM Ultility - Buffer Pool Management of the Natural
Utilities documentation.

Natural Global Buffer Pool

The Natural global buffer pool is an optional Natural component.
It is available for the following operating systems

= z/OS (refer to Global Buffer Pool under z/OS)
Profile Parameters Used

The following Natural profile parameters are used to establish a global buffer pool:

BPNAME |Specifies the name of the global buffer pool (see BPNAME). BPNAME=" " (blank) is used to establish
a connection to the local buffer pool.

SUBSID |Specifies the ID of the Natural subsystem to be used (see profile parameter SUBSID).

During Natural startup, Natural attempts to locate the global buffer pool using these parameters.
Buffer Pool Opening / Closing Procedure

With the NTBPI macro of the Natural parameter module or the corresponding profile parameter
BPI, you can define more than one buffer pool.

At session initialization, Natural attempts to establish a connection to the first buffer pool defined.
If this fails, Natural attempts to establish a connection to the second buffer pool defined. If that
fails, too, it tries the next buffer pool defined, etc. Whenever an attempt to establish a connection
to a buffer pool fails, Natural will issue a corresponding message.

The same procedure applies when a buffer pool is stopped: if you close the currently connected
buffer pool while a Natural session is still active, Natural attempts to connect to another buffer
pool (in the order in which they are defined) and continue the session. Thus, it is possible for the
Natural administrator to close a global buffer pool without having to terminate all active Natural
sessions.

154 Operations

19 Natural Global Buffer Pool under z/OS

= Using a Natural Global BUfer POOIoiiiiii e 156
B PIErEQUISIIES ..o 156
= Operating the Natural Global BUffer POOIoooiiiiiiii e 156
= Global Buffer Pool Manager Parameter MOUIEcooiiiiiiiiiiiiiiiic e 158
= Global Buffer Pool Operating FUNCHONSovvviiiiiiccc e 159
= Global Buffer Pool FUNCHON Parametersuvviiiiiiieiii e 161
= Examples of NATBUFFER SpecCifiCationscoiiiiiiiiiiiiiiic e 168
= Sample NATGBPVI EXECULION JODSooiiiiiiiiiii et 169
B LOCANZALION ... et e e e e e e e e e 171
L Lo ST: o T SO SPPP PP PPPTPPRRRPIY 171

155

Natural Global Buffer Pool under z/OS

This document describes purpose and usage of a Natural global buffer pool (GBP) under the op-
erating system z/OS.

Using a Natural Global Buffer Pool

Purpose

The Natural global buffer pool is a segment of storage assigned from the z/OS extended common
system area (ECSA) above 16 MB (or from CSA storage below, if requested), used by Natural to
load and execute Natural programs.

Benefits

Using a global buffer pool, multiple Natural sessions under different TP monitors (multiple copies

of CICS, TSO, IMS TM,, etc.) and/or in multiple batch sessions share the same area - thus requiring
less storage than would be required for a local buffer pool in each environment.

Prerequisites

The following prerequisites must be met if you want to use a global buffer pool:

1. The module NATGBP v must have been linked into an Authorized Program Facility (APF) library;
see the corresponding step in Installing Natural on z/OS in the Installation for z/OS documentation.

2. The global buffer pool must have been started; see the corresponding step in Installing Natural
on z/OS in the Installation for z/OS documentation.

Operating the Natural Global Buffer Pool

The global buffer pool is operated using the program NATGBP vr which must be executed from
within an Authorized Program Facility (APF) library.

The following topics are covered below:

= Allocation of the Natural GBP
= Setting up the Natural GBP
= Starting the Natural GBP Operating Program

156 Operations

Natural Global Buffer Pool under z/OS

= Stopping the Natural GBP Operating Program

| Note: In the following document, vrs or vr represents the relevant version of the product.

For information on product versions, see Version in the Glossary.

Allocation of the Natural GBP

If the z/OS parameter ALLOWUSERKEYCSA(YES) has explicitly been specified in
SYS1.PARMLIB(DIAGxx), a Natural global buffer pool is allocated in user key, so that Natural sessions
accessing a global buffer pool have write permission for that buffer pool.

If ALLOWUSERKEYCSA(NO) is in effect, a Natural global buffer pool is allocated in system key;
therefore, Natural sessions accessing a global buffer pool do not have any write permission for
that buffer pool. These Natural sessions call the Authorized Services Manager (ASM) to perform
all buffer pool functions. As a consequence, installation of the ASM is mandatory. The ASM is not
only called to load a Natural object into the buffer pool but also to maintain the use count of a
Natural object if the execution of this Natural object is started or terminated. The calls to the Au-
thorized Services Manager will increase Natural’s resource consumption. The overhead is hard
to predict and depends on the application profile (ratio of program calls to program execution
time).

Setting up the Natural GBP

The functions provided by the operating program NATGBP vr are activated in that they are

" specified in a parameter card (PARM=),
" read from a file (see below),

® or supplied by the MODIFY operator command.
NATGBP vr expects the first command in the parameter field (PARM=) of the EXEC statement.
You may enter:

= one of these functions

" or a reference to an input file with CF=dd-name, where dd-name represents a DD name defined
in the JCL. Only “card image” files are supported, that is, RECFM=F, LRECL=80, and only the first
72 bytes of the input record are honored. Every record included from the input file represents
a command. Blank records or records prefixed with an asterisk (*) are ignored. A file is processed
until End-Of-File (EOF). Example: PARM="CF=SYSIN1'

If the parameter field is not supplied or blank, the commands will be read from file SYSIN by default.

It is only possible to enter one function at a time at the console or one function per line using the
command file, otherwise an error message will be returned.

Operations 157

Natural Global Buffer Pool under z/OS

Each command received, from the parameter card, from file input or from operator console input
is shown on the operator console.

Starting the Natural GBP Operating Program

To start the program NATGBP vr, either start a started task or submit a job, which executes NATGBP v r.

/) Important: To ensure that the global buffer pool is retained after a system failure, the global
buffer pool should be started automatically during machine IPL.

Stopping the Natural GBP Operating Program

After all commands are processed, the program NATGBP vr terminates, unless

" RESIDENT=Y was specified

*® or a buffer pool with a cache was created.

NATGBP vr will return one of the following condition codes:

Condition Code |Explanation

0 All functions executed successfully.

20 An error has occurred; see the message log for details.

See also the CC function parameter of the global buffer pool.

Global Buffer Pool Manager Parameter Module

The global buffer pool parameter module NATGBPRM is used to set global processing options which
apply to all functions and buffer pools. The global buffer pool parameter module is delivered in
source and object form with all defaults set.

The following parameter is available:

158 Operations

Natural Global Buffer Pool under z/0OS

= UCTRAN - Lower/Mixed Case Support
UCTRAN - Lower/Mixed Case Support

This parameter enables or disables the lower/mixed case support for the global buffer pool messages.

UCTRAN=NO |Lower/mixed case support is fully enabled.

This is the default value.

UCTRAN=YES|All global buffer pool messages are issued in upper case.

Global Buffer Pool Operating Functions

The following functions are available:

= HELP - Shows an overview of the available syntax

= ADDCACHE - Allocate Cache for an Existing Global Buffer Pool
= CREATE - Create Global Buffer Pool

= DELCACHE - Release Cache of a Global Buffer Pool

= FSHUT - Shut Down Global Buffer Pool

= GLOBALS - Show Global Parameter Settings

m | ISTCACHE - List All Global Buffer Pool Caches Owned by Job
= NOP - No Operation

= REFRESH - Re-initialize Global Buffer Pool

= SHOWBP - Show Existing Buffer Pools

= TERMINATE - Terminate GBP Operating Program

= ZAPS - Display Zaps Applied to GBP

] Note: Ifno function is specified, CREATE is assumed when the profile parameter BPNAME is
specified, otherwise NOP is assumed.

HELP - Shows an overview of the available syntax

This function prints a list of the available syntax commands and, where applicable, the default
values of the function parameters.

Operations 159

Natural Global Buffer Pool under z/OS

ADDCACHE - Allocate Cache for an Existing Global Buffer Pool

This function adds cache storage to an existing global buffer pool.
CREATE - Create Global Buffer Pool

This function creates a global buffer pool with the specified parameters.
DELCACHE - Release Cache of a Global Buffer Pool

This function removes the cache storage of a global buffer pool without shutting down the buffer
pool itself.

Note: A data space Cache can only be deleted by the task which owns it. An "above the bar"
memory object Cache can be deleted by any task.

FSHUT - Shut Down Global Buffer Pool

The global buffer pool is shut down and the storage area, including buffer pool and cache storage,
is released.

If there are no active objects in the buffer pool, FSHUT is executed immediately.

If there are still active objects in the buffer pool, this will be indicated to the operator. Depending
on the setting of the parameter CONFIRM, the operator is asked for a confirmation or FSHUT is executed
immediately.

GLOBALS - Show Global Parameter Settings

This function shows all global parameter settings, that is, parameters which do not only apply to
the statement for which they have been specified.

In addition, the storage key of the global buffer pool(s) is shown.
LISTCACHE - List All Global Buffer Pool Caches Owned by Job

This function lists all global buffer pool caches currently owned by the job.

160 Operations

Natural Global Buffer Pool under z/OS

NOP - No Operation

This function code can be used to set global parameters. It does not perform any buffer pool oper-
ation.

REFRESH - Re-initialize Global Buffer Pool

With the REFRESH command it is possible to re-initialize an already active buffer pool. As no storage
allocation takes place, the buffer pool size and location (above or below 16 MB) remain unchanged.
However, it is possible to change the text-block size (see NATBUFFER parameter).

You should use this function only if the Current Use Count (see Fields for Buffer Pool Objects in
SYSBPM Directory Information) is equal to zero (see warning below) or if the buffer pool has been
destroyed.

(Caution: If you re-initialize the buffer pool while Natural objects are being executed by active

sessions in this buffer pool, the results of the active sessions are unpredictable and Natural
may even abend.

SHOWBP - Show Existing Buffer Pools
Displays all buffer pools currently existing.

TERMINATE - Terminate GBP Operating Program

The GBP operating program is terminated. This termination does not affect any active global buffer
pool.

ZAPS - Display Zaps Applied to GBP

Displays all Zaps applied to the global buffer pool operating program.

Global Buffer Pool Function Parameters

The functions of the Natural GBP operating program can be controlled with the aid of parameters.
These parameters can be specified in any sequence. They can be abbreviated so that they are still
unique.

Note: If you like to start multiple global buffer pools with an associated cache, you are re-

commended to use a single job or (under z/OS only) a single started task and to supply the
different CREATE commands in an input data set. See Example 4 in the section Natural Global
Buffer Pool under z/OS.

The following parameters are available:

Operations 161

Natural Global Buffer Pool under z/OS

= BPNAME - Name of Global Buffer Pool
® BPLIST - Name of Preload List

® BPCSIZE - Buffer Pool Cache Size

® (64 - Type of Buffer Pool Cache Storage

® CC - Count Condition Code

® CONFIRM - FSHUT Confirmation

® IDLE - Wait Time before Check

® METHOD - Search Algorithm for Allocating Space in Buffer Pool
® NATBUFFER - Buffer Size, Mode, Text Block Size

® RESIDENT - Behavior after Function Execution

® SUBSID - Natural Subsystem ID
® TYPE - Type of Buffer Pool

BPNAME - Name of Global Buffer Pool

BPNAME=va lue is required (except for the TERMINATE function). It specifies the name of the global
buffer pool to be created.

Value |Explanation

8 bytes| The name of the global buffer pool.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

* For the functions DELCACHE and FSHUT, you may supply a value of "*".

FSHUT shuts down all the buffer pools for the specified natural subsystems. If sub parameter
CONFIRMis set to Y, you must also provide additional confirmation.

DELCACHE deletes all data space caches owned by the task from the specified natural subsystem.
To delete caches located in "above the bar" memory, you must also provide a complete BPNAME
and SUBSID.

BPLIST - Name of Preload List

BPLIST=value specifies the name of the preload list.

162 Operations

Natural Global Buffer Pool under z/OS

Value [Explanation

8 bytes| The name of the preload list.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

BPCSIZE - Buffer Pool Cache Size

BPCSIZE=value specifies the amount of storage used to allocate a Buffer Pool Cache.

Value Explanation

100 - 2097148 |When sub parameter C64=N, this value is the amount of allocated storage (in KB) for a
data space for the buffer pool cache. The specified value is rounded to the next 4KB
boundary.

100 - 58720256 |When sub parameter C64=Y, this value is the amount of allocated storage (in KB) for

an "above the bar" memory object for the buffer pool cache. The specified value is
(max 57344MB) | rounded to the next IMB boundary.

] Notes:

1. The cache size can also be specified in units of MB or GB, for example, by specifying 10M for
10 MB.

2. If the BPCSIZE parameter is omitted (or set to zero), the buffer pool is not supplied with a cache.
3. A cache is only supported for buffer pools of TYPE=NAT.

4. The sub parameter C64 decides whether the cache is created in the data space or in the "above
the bar" 64 bit common memory.

C64 - Type of Buffer Pool Cache Storage

C64=value determines the type of storage for the buffer pool cache. The following values are
possible:

Value |Explanation

Y The storage for the buffer pool cache will be an "above the bar" memory object (in 64-bit memory).

N The storage for the buffer pool cache will be a data space. This is the default value.

| Note: This parameter is applicable only if BPCSIZE is provided.

Operations 163

Natural Global Buffer Pool under z/OS

CC - Count Condition Code

CC=value determines whether a condition code is ignored when returned by a command executed
by the global buffer pool manager.

Value |Explanation

Y The condition code returned after command execution is counted for the condition code of the
NATGBPvrjob.

This is the default value.

N The condition code returned after command execution is ignored.

This may lead to a job response code of zero although the command execution failed.

| Note: This parameter is valid for all commands.

Example of Command Execution:

The global buffer pool NATGBP1 is stopped and restarted with the following command sequence:

FSHUT BPN=NATGBPI1,S=NAT92,CONFIRM=N,CC=N
CREATE BPN=NATGBP1,S=NAT92,N=(1024),M=S,BPC=4096,1=60

The FSHUT command usually returns a condition code of 20 when it executes and the buffer pool
is not active. However, with CC=N set, any condition code is ignored. In this case, a job response
code greater than zero is only returned if the following CREATE command fails.

CONFIRM - FSHUT Confirmation

CONFIRM=vaTlue controls the FSHUT behavior if there are still active objects in the buffer pool.

Value |Explanation

Y A confirmation for the FSHUT function is required from the operator. The operator can decide to abort
or to force the FSHUT function.

This is the default value.

N FSHUT is forced without interaction with the operator.

| Note: This parameter is only valid for the FSHUT command it has been specified with, that

is, CONFIRM has to be specified with each FSHUT parameter, and it does not apply to sub-
sequent FSHUT commands.

164 Operations

Natural Global Buffer Pool under z/OS

IDLE - Wait Time before Check

IDLE=valueis ignored when the task does not own a buffer pool cache.

Value Explanation

Numeric|The number of seconds to elapse before the GBP operating program checks for each buffer pool
cache if its associated buffer pool is still active; if not, that buffer pool cache is released; when the
last buffer pool cache owned by the task has been released, the task terminates, unless RESTDENT=Y

has been specified.
60 This is the default value.
] Notes:

1. IDLE is a “global” parameter. Once specified, IDLE will also apply to subsequent commands,
without your having to specify it again.

2. Under z/OS, the GBP operating program also checks the specified IDLE time value against the
job's timeout value: the specified IDLE time value internally may reduce IDLE to prevent timeout
abends (5322).

METHOD - Search Algorithm for Allocating Space in Buffer Pool

METHOD=va Il ue controls which algorithm is to be used for allocating storage in the Natural buffer
pool.

Value |Explanation

N Indicates that the next available unused or free space is to be used.

The search for the next available space is done from a pointer to directory entries which moves in a
wrap-around fashion. This method may be used in combination with a buffer pool cache.

This is the default value.

S Indicates that a selection process is to be used for allocating storage.

The selection process consists of browsing the whole buffer pool directory and comparing different
entries in order to find a most suitable entry. This method was formerly known as algorithm 1+2.

| Note: This parameter is only valid for the CREATE function. If you want to change the alloc-

ation method, restart the buffer pool.

Operations 165

Natural Global Buffer Pool under z/OS

NATBUFFER - Buffer Size, Mode, Text Block Size

NATBUFFER=(size,mode, tsize) specifies the size and the mode of the buffer pool, and the text

block size.

Syntax Value Explanation

NATBUFFER=(size,mode,tsize)|size is the amount of storage (in KB) to be allocated. The pool
size can also be specified in units of MB, by specifying
10M for 10 MB.
For the Natural buffer pool (TYPE=NAT):
= The possible size is in KB (256-2097148) or in MB (1M

-2047M).
® The default size is 2MB.
For the other buffer pools:
= The possible size is in KB (100-2097148) or in MB (1M
—2047M).
® The default size is 256 KB.
The specified amount of storage is always rounded up
to a multiple of 4 KB.
Next to the storage specified by s7ze, one page (4 KB)
of write protected storage will be allocated for
administrative purposes.
mode determines if the global buffer pool is to be allocated
above or below 16 MB.
Possible values are: XA = above (default), BL = below.
tsize determines the text block size (in KB).

Possible values are: 1, 2, 4, 8, 12, and 16. The default
value is 4.

size, mode and tsize have to be specified in the sequence shown above.

| Note: If NATBUFFER is not specified, the default values will be used. See also Examples of
NATBUFFER Specifications.

166

Operations

Natural Global Buffer Pool under z/OS

RESIDENT - Behavior after Function Execution

RESIDENT=value specifies the behavior of the GBP operating program after the specified function
has been executed. The following values are possible:

Value

Explanation

Y

The GBP operating program will remain active after executing the specified function and await
further commands. Once specified, RESIDENT=Y will also apply to subsequent commands, without
your having to specify it again. (To stop the GBP operating program, you use the TERMINATE function.)

N The GBP operating program will terminate after executing the specified function, if no further
command is available. If the task owns a buffer pool cache, RESIDENT=N is ignored and the task is
not terminated.

A The GBP operating program automatically decides how to behave after having processed all

commands. It will terminate if

® no further command is available and

" no buffer pool with an associated cache exists that was created by this task.

In other words: If no buffer pool cache is owned by the task, RESIDENT=A works in the same way
as RESIDENT=N. When the task owns a buffer pool cache, RESIDENT=A works the same way as

RESIDENT=Y, but switches automatically to RESIDENT=N, when the last buffer pool whose associated
buffer pool cache was owned by this task has terminated.

This is the default setting.

Note: RESIDENT is a “global” parameter. Once specified, RESIDENT will also apply to sub-
sequent commands until explicitly specified/overwritten.

SUBSID - Natural Subsystem ID

SUBSID=value specifies the ID of the Natural subsystem.

Value

Explanation

4 bytes|The 4-byte ID of the Natural subsystem.

Once specified, SUBSID will also apply to subsequent commands, without your having to specify
it again.

The default value is NAT v, where v is the first digit of the current Natural version.

NATv

This is the default value. v is the first digit of the current Natural version.

Notes:

1. SUBSIDis a “global” parameter, that is, once specified, SUBSID will also apply to subsequent
commands until explicitly specified/overwritten.

Operations 167

Natural Global Buffer Pool under z/OS

2. For the functions DELCACHE, FSHUT and SHOWBP, you may supply SUBSID="*"to process a given
buffer pool, regardless of the subsystem. Alternatively, you may supply BPNAME="*" to process
all buffer pools from all subsystems. In this case, the FSHUT function will prompt for an addi-
tional confirmation, regardless of the value of the CONFIRM sub parameter.

3. For further information on the Natural subsystem, see Natural Subsystem (z/OS).
TYPE - Type of Buffer Pool

TYPE=value specifies the type of the buffer pool. Possible values are:

Value |Explanation

NAT |Natural buffer pool (this is the default).
SORT |Sort buffer pool.

EDIT |Editor buffer pool.

MON |Monitor buffer pool.

RNM |Review Natural Monitor buffer pool.

Examples of NATBUFFER Specifications

The following examples refer to the NATBUFFER parameter which is used to set buffer size, mode
and text block size, the parameter name being abbreviated (N).

Example 1: To allocate a global buffer pool above 16 MB, with a size of 1 MB and a text block size
of 1 KB, you specify:

N=(1000,,1)
or

N=(1M,,1)

Example 2: To allocate a global buffer pool above 16 MB, with a size of 10 MB and a text block size
of 4 KB, you specify:

N=(10000)

or

168 Operations

Natural Global Buffer Pool under z/OS

N=(10M)

Example 3: To allocate a global buffer pool above 16 MB, with a size of 256 KB and a text block
size of 4 KB, you specify:

N=(,,)

This is equivalent to omitting the NATBUFFER parameter altogether, as it causes the default values
to apply.

Sample NATGBPvr Execution Jobs

The following examples show sample batch jobs for creating and terminating a global buffer pool.

In the following examples, the notation vrs or vr represents the relevant product version. For in-
formation on product versions, see Version in the Glossary.

Example 1:

//GBPSTART J0OB

1%

//* Starts a global buffer pool with the name NATvrGBP, a size of 1 MB and

//* a text block size of 4 KB. The global buffer pool is allocated above 16 MB.
//* The subsystem used is NATv.

//* After the allocation, the job GBPSTART terminates.

717

//STEP EXEC PGM=NATGBPvr,PARM="'BPN=NATvrGBP,N=(1IM)"

//SETPLIB DD DISP=SHR,DSN=USER.APF.LINKLIB

Example 2:

//GBPRES JOB

/1%

//* Starts a global buffer pool with the name GBP, a default size of

//* 100 KB and a text block size of 1 KB. The global buffer pool is allocated
//* below 16 MB. The subsystem used is SAGS.

//* After the allocation, the job GBPRES will wait for further commands.

//* Further commands may be entered using the MODIFY operator command:

//* F GBPRES,command-string

Ve

//STEP EXEC PGM=NATGBPvr,PARM="BPN=GBP,N=(,BL,1),S=SAGS,R=Y"

Operations 169

Natural Global Buffer Pool under z/OS

Example 3:

//GBPSTOP

/i

//* Stops the global buffer pool GPB if it contains no active objects. If it
//* does contain active objects, the operator console will prompt for a reply.
//* Depending on the reply, the shutdown will be forced (Y) or aborted (N).
//* The subsystem used is NATv.

e

//STEP EXEC PGM=NATGBPvr,PARM='FSHUT,BPN=GPB"'

Example 4:

//GBPSTRT?2

//* Read commands from SYSINI:

1%

//* Start two global buffer pools (subsystem ID Nvrs) with names
7%= NATGBP1 - size=1024KB and a cache with size 2048KB, and
7% NATGBP2 - size=2048KB without cache.

//* Display all buffer pools of subsystem ID Nvrs.

i

//* Note: The job does not terminate by itself, but stays resident and waits
/= for operator commands because it owns the data space allocated for
1% buffer pool NATGBPI.

//*

//* To shut down the buffer pools, send the operator command MODIFY with
//* parameter CF=SYSINZ2 to execute the corresponding FSHUTs.
e

//STEP EXEC PGM=NATGBPvr,PARM='CF=SYSINI'

//SYSIN1 DD *

CREATE,BPN=NATGBP1,S=Nvrs,N=(1M),BPC=2M
CREATE,BPN=NATGBP2,S=Nvrs,N=(2M)

SHOWBP S=Nvrs

//SYSINZ DD *

FSHUT,BPN=NATGBP1,S=Nvrs

FSHUT,BPN=NATGBP2,S=Nvrs

SHOWBP S=Nvrs

VA

170 Operations

Natural Global Buffer Pool under z/OS

Localization

The module NATGBPTX is delivered in source form. It contains all error messages in English in
mixed case. The messages can be translated into other languages as required. In this case, the
“new” NATGBPTX source module has to be assembled and the module NATGBP vr has to be relinked.

To issue the global buffer pool messages including their variable parts in upper case, the global
buffer pool parameter module NATGBPRM has to be assembled with the UCTRAN parameter set to
YES, and the module NATGBP vr has to be relinked.

To relink the module NATGBP vr, use the following JCL:

//SYSLIN DD *

SETCODE AC(1)

SETOPT PARM(REUS=RENT)
INCLUDE NATLIB(NATGBPMG)
INCLUDE SMALIB(NATGBPRM)
INCLUDE SMALIB(NATGBPTX)
INCLUDE NATLIB(NATBPMGR)
NAME NATGBPvr(R)

/%

Messages

Refer to Natural Global Buffer Pool Manager Messages in the Natural Messages and Codes documentation

Operations 171

172

VI Message Buffer Pool

173

174

20 Message Buffer Pool

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 176
B PIErEQUISIIES ..o 176
= QOperating the Message BUffer POOIooouuiiiiiii e 176
m Sample NATMBPVI EXECULION JODSuuuiiiiiiiiiiiiiii it 178
= Message Buffer Pool Operating FUNCHONSvvviiiiiiiiiiiiie e 179
B FUNCHON PArAMELEIS ... ittt e e e e ettt e e e e e e e e eeeeea e 180
B VI ESSA0ES .iiiiiiiiiie it 182

175

Message Buffer Pool

This part describes the use of the message buffer pool.

| Note: The message buffer pool is available under z/OS.

Purpose

The message buffer pool is a cache memory which is used to store the Natural system messages
and the user texts.

Before an error message is output, Natural first checks whether the corresponding message text
is available in the message buffer pool. If so, this text is output. Otherwise, the error message
would be read from the database, and would be stored in the message buffer pool.

The message buffer pool is available only as a global buffer pool. Its use is optional, and is controlled
by the Natural profile parameter BPI or the corresponding macro NTBPI. When used, the message
buffer pool is allocated in a data space.

Prerequisites

The following prerequisites must be met if you want to use the message buffer pool:
1. The module NATMBP v must have been linked into an Authorized Program Facility (APF) library;
see the corresponding step in Installing Natural on z/OS in the Installation for z/OS documentation.

2. The message buffer pool must have been created and started; see the corresponding step in In-
stalling Natural on z/OS in the Installation for z/OS documentation.

3. The keyword subparameter TYPE of profile parameter BPI or macro NTBPI must be set to MSG.

Operating the Message Buffer Pool

The message buffer pool is operated by the program NATMBP vr which must be executed from
within an Authorized Program Facility (APF) library.

The following topics are covered below:

= Setting up the Message Buffer Pool
= Starting the Message Buffer Pool Operating Program

176 Operations

Message Buffer Pool

= Stopping the Message Buffer Pool Operating Program

| Note: In the following document, vrs or vr represents the relevant version of the product.

For information on product versions, see Version in the Glossary.
Setting up the Message Buffer Pool

The functions available from NATMBP vr (see also Function Parameters) are activated in that they
are

® provided by a parameter card (PARM=),
® read from a file (see below),

® or supplied by the MODIFY operator command unless NATMBP vr has not been terminated.
NATMBPvr expects the first command in the parameter field (PARM=) of the EXEC statement.
You may enter:

= one of the functions described in the section Common Message Buffer Pool Operating Functions,

" or a reference to an input file with CF=<dd-name>, where <dd-name> represents a DD name
defined in the JCL.

Only “card image” files are supported; that is, RECFM=F , LRECL=80, and only the first 72 bytes of
the input record are honored.

Every record included from the input file represents a command.
Blank records or records prefixed with an asterisk (*) are ignored.
A file is processed until End-Of-File (EOF).
Example: PARM="'CF=SYSINI'
If the parameter field is not supplied or blank, the commands will be read from file SYSIN by default.

It is only possible to enter one function at a time at the console, or one function per line using the
command file, otherwise an error message will be returned.

Each command received from parameter card, from file input or from operator console input is
displayed on the operator console.

Operations 177

Message Buffer Pool

Starting the Message Buffer Pool Operating Program
To start the program NATMBP vr, either start a started task or submit a job which executes NATMBP v r.
Stopping the Message Buffer Pool Operating Program

The program NATMBP v ris stopped by using the TERMINATE function (see Common Message Buffer
Pool Operating Functions) or, in case of emergency, by using the CANCEL operating program.

Sample NATMBPvr Execution Jobs

The following examples show sample batch jobs for creating and terminating a global buffer pool.

= Example 1
= Example 2
= Example 3

| Note: In the following examples, v, vrs or vr represents the relevant version of the product.

For information on product versions, see Version in the Glossary.

Example 1

//MBPSTART JOB

7%

//* Starts a message buffer pool with the name NATvrMBP and
//* a size of 10 MB.

//* The subsystem used is NATv.

yAs

//STEP EXEC PGM=NATMBPvr,PARM='BP=NATvrMBP,SI=10"

//SETPLIB DD DISP=SHR,DSN=USER.APF.LINKLIB

Example 2

//MBPRES JOB

e

//* Starts a message buffer pool with the name MBP and a default size of
//* 100 MB. The subsystem used is SAGS.

VA

//STEP EXEC PGM=NATMBPvr,PARM="BP=MBP,6 S=SAGS'

178 Operations

Message Buffer Pool

Example 3

//MBPSTRT?2

//* Read commands from SYSINI:

e

//* Start 2 message buffer pools (subsystem ID Nvrs) with name
1% NATMBP1 - size=1000MB

Il NATMBPZ - size=2000MB

//* 1f the buffer pools should shut down, send operator command MODIFY with
//* parameter "CF=SYSINZ2" to execute the corresponding FSHUTs.
e

//STEP EXEC PGM=NATMBPvr,PARM="'CF=SYSINI'

//SYSIN1 DD *

CREATE,BP=NATMBP1,S=Nvrs,SI=1000M
CREATE,BP=NATMBP2,S=Nvrs,S1=2000M

SHOWBP S=Nvrs

//SYSINZ DD *

FSHUT,BP=NATMBP1,S=Nvrs

FSHUT,BP=NATMBP2,S=Nvrs

e

Message Buffer Pool Operating Functions

The following functions are available:

= HELP - Shows an overview of the available syntax

m CREATE - Create a Message Buffer Pool

= FSHUT - Shut Down Message Buffer Pool

= TERMINATE or STOP- Terminate Message Buffer Pool Operating Program
= ZAPS - Display Zaps Applied to Message Buffer Pool

| Note: The function names can be abbreviated. It is sufficient to use the first character only,
for example T for TERMINATE.

HELP - Shows an overview of the available syntax

This function prints a list of the available syntax commands and, where applicable, the default
values of the function parameters.

Operations 179

Message Buffer Pool

CREATE - Create a Message Buffer Pool

This function creates a message buffer pool with the specified parameters.
FSHUT - Shut Down Message Buffer Pool

The message buffer pool with the specified parameters is deallocated.
TERMINATE or STOP- Terminate Message Buffer Pool Operating Program

The message buffer pool operating program is terminated. Prior to that, all active message buffer
pools are deallocated.

ZAPS - Display Zaps Applied to Message Buffer Pool

Displays all Zaps applied to the message buffer pool operating program.

Function Parameters

The functions of the message buffer pool operating program can be controlled with the aid of
parameters. These parameters can be specified in any sequence. They can be abbreviated.

The following parameters are available:

BPNAME Name of message buffer pool.
BPLIST Name of the preload list (optional).
SUBSID Natural subsystem ID.

SIZE Size of the message buffer pool.

| Note: The underlined part of the parameter name marks the shortest possible abbreviation.

BPNAME - Name of Message Buffer Pool

BPNAME=va] ue specifies the name of the message buffer pool to be created.

180 Operations

Message Buffer Pool

Value [Explanation

8 bytes|The name of the message buffer pool.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.
MTBP |This is the default value.

BPLIST - Name of Preload List

BPLIST=value specifies the name of the optional preload list.

Value |[Explanation

8 bytes|The name of the preload list.
Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

There is no default value.

SUBSID - Natural Subsystem ID

SUBSID=va lue specifies the ID of the Natural subsystem.

Value |Explanation

4 bytes|The ID of the Natural subsystem.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

NATv |This is the default value, where v is the first digit of the current Natural version.

SIZE - Size of Message Buffer Pool

SIZE=value specifies the size of the message buffer pool.

Value Explanation

1 - 2000 MB | The size of the message buffer pool.
1 This is the default value.

| Note: A1MB Message Buffer Pool can hold up to 7000 error messages.

Operations 181

Message Buffer Pool

Messages

Refer to Message Buffer Pool Messages in the Messages and Codes documentation.

182 Operations

VI I System Spool Access

183

184

21 System Spool Access

L V1Y Lot RRRPRPRRRPN 186
L o = =T U] PP PPPPPPP 186
= Using the Write-t0-Spo0l FEALUIEooiiiiiiiie e 186

185

System Spool Access

This document describes the Write-to-Spool feature for Natural.

See also Installing and Activating the Write-to-Spool Feature in the section Installing Entire System
Server Interface on z/OS in the Installation for z/OS documentation.

Purpose

The Write-to-Spool feature enables Natural users to write reports to the system spool directly. It
can be used in any Natural environment (Com-plete, TSO, CICS, IMS TM, batch, etc.) and uses
the Entire System Server view WRITE-SPOOL.

Under z/OS, the SYSOUT is part of the Entire System Server job stream within the JES spool, and it
may be processed by any software which expects output in JES Spool, for example, Entire Output
Management. The JES spool may be a JES2 or a JES3 spool.

Prerequisite

To use the Write-to-Spool feature, the Entire System Server needs to be installed.

Using the Write-to-Spool Feature

The Write-to-Spool feature is handled by a so called “access method”, which is called ESS for Entire
System Server. You may define your printer in the Natural parameter module or dynamically in
your session parameters.

Defining Your Printer

~ To define your printer

1 Define the printer in the Natural parameter module.

Use the NTPRINT macro to specify the printer number () and the access method (AM):

186 Operations

System Spool Access

NTPRINT (n),AM=ESS

Example:

NTPRINT (1,3),AM=ESS

In this example, the printers 1 and 3 are defined for use with access method ESS (Entire System
Server).

Or:

Define the printer during session startup by specifying the profile parameter PRINT, for ex-
ample:

PRINT=((1-6),AM=ESS)

In this example, the printers 1 to 6 are defined for use with access method ESS (Entire System
Server).

2 Link the access-method modules to the Natural nucleus.
See the platform-specific Installation documentation.

Or:

Load it dynamically by specifying the following profile parameters RCA and RCALIAS:

RCA=(NATAM11),RCALIAS=(NATAMII1,NATPWSAM)
where NATPWSAM is the delivered write-to-spool module containing the default parameters.

If you have linked a module with adapted parameters, use the name of this module instead.

3 Define the JES destination with the OUTPUT option of the DEFINE PRINTER statement. You can
use one of the following examples depending on whether you want to send the output to a
spool file, a local JES printer, or through a remote JES node to a remote user or device.

Example:

DEFINE PRINTER (n) OUTPUT '"LOCAL' /* For printing on local JES/POWER printers

Operations 187

System Spool Access

Or:

DEFINE PRINTER (n) QUTPUT 'DAEF' /* For printing to JES spool called DAEF

Or:

DEFINE PRINTER (n) QUTPUT 'DEST=node-name,REMOTE-USERID=user-id' /* For printing <
to remote JES nodes

where:

" nis the number in the NTPRINT entry in the Natural parameter module described in Step
1.

® node-name is the name of the remote JES node.

" user-idtheID of the user or device who receives the output.

Reports can now be written to the system spool using one of the following statements:

DISPLAY (n)

or

PRINT (n)
where n is the number in the NTPRINT entry in the Natural parameter module in Step 1.

Users can set the output format and number of copies using the FORMS and COPIES clauses of
the DEFINE PRINTER statement.

Example:

DEFINE PRINTER (2) OQUTPUT 'DEST'
FORMS 'FORM'

The defaults for items such as Entire System Server node, forms and output class can be found
in the module NATWSPDF.

188 Operations

System Spool Access

Examples for z/0S

Example 1
Assume using the factory settings and executing the Natural program:

DEFINE PRINTER (2) OUTPUT 'WK1'
WRITE (2) "THIS IS A SMART RECORD'
CLOSE PRINTER (2)

During the execution of this program, you can see the following fields with their values in the
Display Active Tasks panel:

DDNAME DSID Owner C Dest Rec-Cnt Forms Wtr PageDef FormDef
SYS00001 104 WKK A WK1 2 STD

Browsing this data set, you can see:

Page 1
THIS IS A SMART RECORD

Example 2
Assume using the default member:

Parameter Explanation (Possible Values)

WSPDFLT NODE=55526, |Entire System Server target node number (5 characters at maximum)
PROGRAM=HUGO, JES writer (8 characters at maximum)

CLASS=Y, SYSOUT class (1 character)

HOLD=YES, Hold (YES or NO)

CNTL=A, Carriage control (A or M)

FORM=WOFQO, Form (4 characters at maximum)

RMT=JESWOLF, JES remote (8 characters at maximum)

FORMDEF=FOWOLF, Form definition (6 characters at maximum)

PAGEDEF=PAWOLF Page definition (6 characters at maximum)

Execute the following Natural program:

DEFINE PRINTER (2) OUTPUT 'WKI1'
WRITE (2) '"THIS IS A SMART RECORD'
CLOSE PRINTER (2)

During the execution of this program, you can see the following fields with their values in the
Display Active Tasks panel:

Operations 189

System Spool Access

DDNAME DSID Owner C Dest Rec-Cnt Forms Wtr PageDef FormDef
SYS00002 105 WKK Y WK1 2 WOFO HUGO PAWOLF FOWOL

Browsing this data set, you can see:

Page 1
THIS IS A SMART RECORD

Example 3

Assume using the default member:

Parameter Explanation (Possible Values)

WSPDFLT NODE=55526, |Entire System Server (NPR) target node (node number)
PROGRAM=*QUTPUT, JES writer (8 characters at maximum)

The other parameters in the default member are not changed.

Run the following example program:

DEFINE PRINTER (2) QUTPUT '"KURT'
PRINT (2) ' here comes KURT'
CLOSE PRINTER (2)

After that, Entire System Server fetches the value from the field OUTPUT in the DEFINE PRINTER
statement and inherits it as the JES writer attribute for the specific spool data set.

Looking in TSO/SDSF under the job name of Entire System Server, you can see the following;:

PREFIX=NPR* DEST=(ALL) OWNER=* SYSNAME=
NP DDNAME Time Forms FCB UCS Wtr FTlash
SYS00005 10:20:48 *kxxk *Kk*xx KURT *h Kk

If in JES an associated JES writer program is defined, it gets control and handles this output
as defined in the program.

190

Operations

VIII Natural 3GL CALLNAT Interface

This part contains information about the Natural 3GL CALLNAT Interface which enables 3GL
programs to invoke and execute Natural subprograms.

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions
Natural 3GL CALLNAT Interface - Usage, Examples

191

192

22 Natural 3GL CALLNAT Interface - Purpose, Prerequisites,

Restrictions

® Purpose 0f 3GL CALLNAT INTEITACEcoeii it e e 194
B PIErEQUISIEES ..o 194
L - 14 o PSP PPPPPTPPRRP 196

193

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

This document describes the purpose of the 3GL CALLNAT interface and its prerequisites and
restrictions.

Purpose of 3GL CALLNAT Interface

With the 3GL CALLNAT interface, Natural enables 3GL programs to invoke and execute Natural
subprograms.

The 3GL can be any programming language which supports the standard linkage call interface.
In most cases this will be a COBOL program, but the functionality can also be used by, for example,
PL/1, FORTRAN, C or Assembler programs.

Availability

The interface is available in batch mode under z/OS and for the following TP-monitor environments:

= CICS,

® Com-plete,
= IMSTM,

= TSO.

Prerequisites

This section describes the prerequisites to execute a Natural subprogram from a 3GL program,
using an internal CALLNAT statement. To achieve the desired functionality, a Natural environment
must be set up before you execute the CALLNAT interface from your 3GL program.

= Space Requirements
= |inking

194 Operations

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

= Environment Dependencies
Space Requirements

The mechanism of parameter addressing in a Natural program requires that the parameters passed
reside in an area allocated by Natural, that is, in any of its sizes. The 3GL program, however, alloc-
ates the storage for its variables somewhere in the address space of the task. To make addressing
still successful, a “call-by-value” mechanism is used for those variables which do not already
reside in a Natural area. This means that, prior to invoking the Natural subprogram, the parameters
to be passed are transferred into a Natural area, namely the DATSIZE buffer.

In addition to the storage used for the contents of the variables, additional storage will be needed
depending on the number of parameters. The total amount of space required is approximately the
same as the space that would be needed in the DATSIZE buffer if the subprogram-invoking program
were coded in Natural.

Linking

To invoke the Natural subprogram, the 3GL program must call the CALLNAT interface. Depending
on the power and functionality of the call interface of the 3GL programming language, the CALLNAT
interface can be either placed in an accessible load library for dynamic loading or linked to the
3GL program.

It is recommended, whenever possible, to load the CALLNAT interface dynamically from a Natural
steplib, as this method makes sure that always the most recent version of that program is used.

The samples XNATGC2 and XNATGCP2 are provided to elucidate the technique of dynamically loading
and calling the CALLNAT interface from COBOL or PL/I, respectively.

| Note: Check with the responsible system programmer for the best solution in your envir-

onment.
Environment Dependencies

The foreign 3GL module can be either linked to Natural as a CSTATIC module and then invoked
via a branch and link instruction, or loaded dynamically and invoked via a TP-dependent link
method.

In the latter case, the 3GL module is written in a TP-specific way and the CALLNAT interface must
be adapted accordingly. For this purpose, multiple TP-specific interface modules are provided:

Operations 195

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Interface Module |Purpose

NATXCAL To be used in the following cases:

= if the 3GL module is either loaded dynamically or linked to Natural and then invoked
by a branch and link instruction (batch, Com-plete, IMS TM, TSO, %P=S and %P=LS in
CICS).

® if the 3GL module is called via the INTERFACE4 option of the CALL statement. It provides
the INTERFACE4 Natural Callnat Interface as well as the INTERFACE4 Callback Functions.
For further information on the INTERFACE4 functionality, see the CALL statement
documentation.

Note: For CALL INTERFACE4 purposes, NATXCAL cannot be loaded dynamically but
must be linked to the 3GL program.

NCIXCALL To be used in a CICS environment if the 3GL module has been invoked using EXEC CICS
LINK; NCIXCALL is delivered in source code to be compiled with your CICS macros. See
also Installing the Natural CICS Interface on z/OS in the Installation documentation.

NCIXCPRM To be used in a CICS environment to build the parameter address list used as COMMAREA
for the subsequent EXEC CICS LINK command.

Restrictions

Terminating a Natural Subprogram

The invoked Natural subprogram should be terminated with a return to the calling program.
Inadmissible Natural Statements

The following statements must not be used.

" FETCH

= RUN

= STOP

® TERMINATE

When used in the invoked Natural subprogram they will bring about an appropriate Natural
runtime error (NAT0967).

196 Operations

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Parameter Values Passed by the 3GL Program

The parameter values passed by the 3GL program must not reside in a write-protected storage
area.

Dynamic Arrays
Arrays with dynamic ranges are not possible.
TP-Monitor-Specific Restrictions

® Under CICS
For CICS environments, the 3GL program that uses the Natural 3GL CALLNAT interface must
be written for conversational mode. The 3GL program runs on the second CICS program level
and pseudo-conversational program technique can therefore not be used.

® Under IMS TM
IMS TM environments running Natural can use the 3GL CALLNAT interface only if both the
3GL program and the Natural subprogram do not issue any terminal I/O; when DISPLAY, INPUT
and WRITE are used in the invoked Natural subprogram they will bring about an appropriate
Natural runtime error (NAT0967).

Operations 197

198

23 Natural 3GL CALLNAT Interface - Usage, Examples

LU o PP PO PUPPRTTPPPRPTPPPPS 200
B SaMPIE ENVIFONMENES ...ttt e e e e e e e a e e e e e 204

199

Natural 3GL CALLNAT Interface - Usage, Examples

This section describes the usage of the 3GL CALLNAT interface and describes a number of sample
3GL CALLNAT environments.

Usage

The following topics are covered:

= Qverview
= Call Structure
= Parameter Handling

Overview

When you invoke a Natural subprogram from a 3GL program, a Natural session must be active,
i.e. the 3GL program itself must be called by Natural.

Therefore you must take special precautions if you do not want the Natural layer to show up. The
following figure is intended to give you an overview of how an application using the Natural 3GL
CALLNAT interface may be designed in such a case:

200 Operations

Natural 3GL CALLNAT Interface - Usage, Examples

COBOL
Front-End Program

v
NATE2 STACK=CALLCOB. . ‘

v
Natural
DEFINE DATA LOCAL T
4k | COBPGM
CALL ‘COBPGM' | ..
CALL 'MATXCAL
END | USING NATPGM'
.--"'__'__'__'__'_ -
NATPGM «
DEFINE DATA PARAMETER
END

The necessary environment is established by first invoking a Natural start-up program. By using
the Natural CALL statement, this start-up program can then invoke a 3GL program from where
you can invoke the CALLNAT interface.

Operations 201

Natural 3GL CALLNAT Interface - Usage, Examples

Call Structure

The Natural main program is very simple; it only calls, for example, a COBOL program:

CALL 'COBPGM'
END

The CALL statement of the 3GL programming language (for example, COBOL) must have access
to the Natural 3GL CALLNAT interface, which then invokes the Natural subprogram:

CALL 'interface' USING natpgm pl ... pn

The parameter interfaceis environment-dependent (for example, NATXCAL) and linked to the
calling program. The parameter natpgmmust be an alphanumeric variable of 8 bytes that contains
the name of the Natural subprogram to be invoked. The parameters pI ... pnare passed to the
Natural subprogram.

Example (for all environments except CICS):

The COBOL program C0BPGM could contain coding similar to the following one:

MOVE "FINDNPGM' TO natpgm

CALL ‘'interface' USING natpgm number name
IF natpgm NE 'FINDNPGM'

THEN GOTO error_handling_1

The invoked Natural subprogram FINDNPGM calculates the number of persons in the file EMPLOYEES
with name equal to a value passed from the COBOL program:

DEFINE DATA

PARAMETER

1 pnumber (P10)

1 pname (A20)

LOCAL

1 emp VIEW OF employees
END-DEFINE

*

RESET presp

FIND NUMBER emp WITH name=pname
MOVE *NUMBER TO pnumber
ESCAPE ROUTINE

202 Operations

Natural 3GL CALLNAT Interface - Usage, Examples

If an error occurs while the subprogram is executed, information about this error will be returned
in the variable natpgmin the form *NATnnnn, where nnnn is the corresponding Natural error
number.

Example (for CICS only):

Under CICS, the call of a Natural subroutine from, for example, COBOL should be as follows:

WORKING STORAGE SECTION

01 PARM-LIST PIC X(132).

01 NATPGM PIC X(8).

01 NUMBER PIC 9(10) comp-3.
01 NAME PIC X(20).

PROCEDURE DIVISION

MOVE 'FINDNPGM" TO NATPGM

CALL "NCIXCPRM' USING PARM-LIST NATPGM NUMBER NAME ...
EXEC CICS LINK PROGRAM('NCIXCALL")

COMMAREA(PARM-LIST) LENGTH(132) END-EXEC.

The called subroutine NCIXCPRM builds the parameter address list used as COMMAREA in the sub-
sequent EXEC CICS LINK command.

Parameter Handling

There is no format and length checking. It is the caller's responsibility to pass a correct parameter
list. The number, format and length of the parameters are defined by the invoked Natural subpro-
gram.

When you are passing parameters, group arrays should not be passed, since they are resolved as
individual arrays:

Example of Invalid Syntax:

01 GROUP (1:2)
02 F1
02 F2

Operations 203

Natural 3GL CALLNAT Interface - Usage, Examples

Example of Valid Syntax:

01 F1 (1:2)
01 F2 (1:2)

Arrays with dynamic ranges cannot be used as parameters.

Sample Environments

The objective for the sample 3GL CALLNAT environments below is to demonstrate how a COBOL
routine can call a Natural subprogram under specific TP-monitor systems or in batch mode, and
to give system-specific instructions to create such environments.

The following topics are covered:

= Sample Environment for CICS
= More Samples
= Sample for Any Other Supported Environment

Sample Environment for CICS

Perform the following steps to create a sample Natural 3GL CALLNAT environment under CICS:

Step 1: Create the Environment Initialization
" Set up the front-end program that initializes the 3GL CALLNAT environment.

® Use the COBOL front-end XNCIFRCX in the Natural/CICS source library. It starts Natural,
stacks LOGON YOURLIB and executes the program TSTCOB, which initializes the Natural 3GL
CALLNAT environment.

® Locate the string NCvr (where vr represents the relevant product version) in the source code
and replace it with the valid transaction ID for Natural.

® Compile and link-edit the COBOL program and define program to CICS via CEDA DEFINE
PROGRAM.

Step 2: Install the Sample COBOL Call
Provided in the Natural/CICS source library NCI. SRCE is the sample member XNCI3GC1, which
contains a default call to the Natural subprogram MYPROG.

" For test purposes, create the following program in the library SYSTEM and stow it as:

204 Operations

Natural 3GL CALLNAT Interface - Usage, Examples

WRITE 'BEFORE PGM EXECUTION'
CALL 'COBNAT'

WRITE "AFTER PGM EXECUTION'
END

® Look at the XNCI3GC1 source and review the CALL and LINK. Compile and link as COBNAT
with the following CICS INCLUDE directives or use Step 2 of the Sample Job NCTI070:

INCLUDE CICSLIB(DFHECI)

INCLUDE XNCI3GC1 <= output from translator and compiler
INCLUDE NCILIB(NCIXCPRM)

ENTRY XNCI3GC1

NAME COBNAT(R)

Step 3: Create a Sample Natural Subprogram
By default, the source member XNCI3GC1 is set up to call the Natural subprogram MYPROG in
the library YOURLIB. The program TSTCOB, as mentioned above, starts up the process by calling
COBNAT that contains the actual call to the Natural subprogram MY PROG.

Create the subprogram MYPROG to demonstrate the executing Natural subprogram.

DEFINE DATA PARAMETER
01 PARMI (A18)
01 PARMZ (A18)
01 PARM3 (A18)
END-DEFINE

*

MOVE 'PARAMOLI" TO PARMI

MOVE 'PARAMOZ2' TO PARMZ

MOVE 'PARAMO3' TO PARM3
END

Step 4: Verify the CICS Resources
= Use the job NCII005 for a guide to defining the CICS resources (PPT and PCT).
® Define the required CICS resources (PPT and PCT).

Step 5: Test the Environment
Test the environment by using the NCYC default transaction. Use CEDF to monitor the program
control and observe the data areas in use.

A\ Important: Since Natural is at the top of the CICS program hierarchy, any COBOL sub-

program issuing terminal I/Os must run in conversational mode. Pseudo-conversational
programs would need to be modified, and any new development using the Natural
3GL CALLNAT interface should be done in conversational mode.

Operations 205

Natural 3GL CALLNAT Interface - Usage, Examples

More Samples

Sample Program | Description

XNCI3GC2 COBOL sample with same functionality as XNCI3GC1, but accepting parameters from the
calling Natural program.

XNCI3GP1 PL/I sample with same functionality as COBOL sample XNCI3GC1.

XNCI3GP2

PL/I sample with same functionality as XNCI3GC1, but accepting parameters from the
calling Natural program.

More Non-CICS Samples

Sample Program | Description

XNAT3GC2

COBOL sample with same functionality as CICS sample XNCI3GC2.

XNAT3GP2

PL/I sample with same functionality as CICS sample XNCI3GP2.

Sample for Any Other Supported Environment

Perform the following steps to create a sample Natural 3GL CALLNAT:

Step 1: Assemble and Link ASMNAT

The sample Assembler routine XNAT3GA1 contains a basic example to access the CALLNAT inter-
face. The register calling conventions are in the source of this program.

Link NATXCAL with XNAT3GA1 with entry point ASMNAT.

Step 2: Start the Natural Session

Start a Natural session stacking a program that calls the ASMNAT program which in turn calls
the Natural subroutine ASMNAT.

206

Operations

IX Operating the Software AG Editor

This part contains information on how to operate the Software AG Editor.

The Software AG Editor is a feature that represents basic functionality within Natural, exclusively
used by several Natural subproducts and other products.

Editor Work File
Editor Buffer Pool

See also:

® SYSEDT Utility - Editor Buffer Pool Administration in the Utilities documentation
* Installing the Software AG Editor in the Installation for z/OS documentation

" Software AG Editor in the Editors documentation

207

208

24 Editor Work File

B EItOr WOrK File SEUCIUIE ...oveiee et e e aeeeas 210
m Editor WOrk File UNEr Z/OS ... 211
= Using the Editor Work File Formatting ULilityooooiiiii e 212
= Formatting during INIAIZATIONoooiii e 212
= Maintaining the EAItOr WOIK Filevvirieiiiiiiiiiiiiiiiiiiiiiiii it ae e enee e 212
= Editor Work File under Complete/SMARTS ... i 213

209

Editor Work File

This document describes structure, use and maintenance of the editor work file under the various
operating systems.

See also:

SYSEDT Utility - Editor Buffer Pool Administration in the Utilities documentation

Installing the Software AG Editor on z/OS in the Installation for z/OS documentation

EDBP - Software AG Editor Buffer Pool Definitions in the Parameter Reference documentation

Software AG Editor in the Editors documentation

Editor Work File Structure

The editor work file is a relative record data set with fixed length records. It is divided into three
parts:

= Control Record
= \Work Records
= Recovery Records

| Note: If you use an editor auxiliary buffer pool defined by the profile parameter EDPSIZE,
no editor work file is required.

Control Record

The control record contains buffer pool control information including the buffer pool parameters.

During the first initialization of the work file or during a buffer pool cold start (triggered by editor
buffer pool subparameter COLD), the values defined in the editor buffer pool parameter EDBP and/or
in the corresponding macro NTEDBP are saved in the work file control record. Moreover, the current
operating system Id (system variable *HOSTNAME) and the global buffer pool name or the current
job name are saved for subsequent verification.

You can modify the control record by using the Generation Parameters function of the SYSEDT
Utility.

For buffer pool warm restarts, the buffer pool parameters are read from the control record.

210 Operations

Editor Work File

Work Records

The work records contain logical file records which have been moved out of the buffer pool due
to a lack of free buffer pool blocks.

Logical work file records are lost during a restart of the buffer pool or if a timeout occurs for the
logical file.

Recovery Records

The recovery records hold checkpoint information of editor sessions. If the system terminates ab-
normally, this information can be used by the editor recovery facility to recover logical files. Re-
covery records are lost during a cold restart of the buffer pool.

The recovery facility is used by Natural ISPF only. If you do not intend to use this product, you
can run without the recovery part by defining the editor buffer pool subparameter PWORK=100.

Editor Work File under z/OS

One editor work file corresponds to one Editor Buffer Pool. If you intend to use a global editor
buffer pool, the editor work file must be shared by all users using the same global editor buffer
pool. The accessed editor work file can be used only by sessions within the same operating system
(system variable *HOSTNAME) and with the same global buffer pool or the same job name for local
buffer pools. This connection can be dropped by a buffer pool cold start only. Alternatively, the
editor work file formatting utility can be used to reset the work file connection.

The editor work file must be large enough to contain the editor sessions of all users. A minimum
number of 100 records per editor user is recommended. The record length of the work file must
be fixed, can be defined from 504 to 16384 bytes, and must be a multiple of 8.

) Note: The record length of data sets or PDS members, which will be edited with Natural
ISPF, cannot be larger as the record length of this editor work file.

The size of a work file record is specified either when allocating the editor work file (default size
is 4088).

The total number of editor work file records depends on the allocated data set space for the editor
work file.

There are two alternative ways of formatting the editor work file:

* offline by using the editor work file formatting utility,

® online during buffer pool initialization.

Operations 211

Editor Work File

Using the Editor Work File Formatting Utility

This method is to be preferred, because no online user has to wait until formatting is finished.
Optionally, the Natural parameter module may be assembled and linked to the editor work file
formatting utility to specify editor buffer pool parameters by means of the macro NTEDBP. Otherwise,
the default parameter values apply.

During reformatting, however, the work file must not be in use, which means that the system(s)
using the corresponding buffer pool have been terminated before reformatting.

Formatting during Initialization

When the editor buffer pool is in uninitialized or terminated state, then during the first session
which uses the Software AG Editor, a "buffer pool cold start" is performed on one of the following
conditions:

1. if the work file has not been formatted yet,

2. if the control record indicates “cold start” (which can also be specified by using the Editor
Buffer Pool Administration utility SYSEDT),

3. if the buffer pool subparameter COLD=0N was specified.

Otherwise, a buffer pool warm start is performed if a valid control record is found during buffer
pool initialization. In this case, all buffer pool parameters are taken from the work file control record
and no records are formatted.

Maintaining the Editor Work File

If you want to change the size of the editor work file (for example, because it is too small), the
COPY function of the editor work file formatting utility can be used to avoid a buffer pool cold
start; that is, the loss of the recovery records.

To copy an existing editor work file, perform the following steps:
1. Modify any buffer pool parameters by using the SYSEDT Utility, for example, PWORK if you

want to change the percentage of work records in the file.

2. Terminate the editor buffer pool by using the System Administration Facilities of the SYSEDT
Utility and ensure that no Natural session is using the editor after the buffer pool termination.

3. Close (if necessary) and deallocate the editor work file.

4. Rename the editor work file by using the VSAM utility IDCAMS (ALTER command).

212 Operations

Editor Work File

5. Define a new editor work file with the original name and possibly a different size, but with the
same record length.

6. Perform the following steps:
" In the EXEC JCL card, add PARM=COPY.

* For the renamed editor work file CMCOPY to be copied into the new work file CMEDIT, add
//CMCOPY DD....

® Run the editor work file formatting utility with the new file.
7. Check the job log for potential errors.
8. Reallocate and (if necessary) reopen the editor work file.
9. Use the Editor Buffer Pool Administration utility SYSEDT to check that the buffer pool and the

work file have been restarted successfully.

/), Important: All Natural sessions must be restarted if you want them to use the editor after
the buffer pool restart.

Editor Work File under Complete/SMARTS

SMARTS work files are located in the SMARTS Portable File System. The path must be specified
with the SMARTS environment variable $NAT_WORK_ROOT. The name of the editor work file is
specified with the EDBP subparameter DDNAME.

Formatting of an editor work file is only possible during buffer pool initialization (online). There
is currently no tool under SMARTS to format an editor work file offline.

Operations 213

214

25 Editor Buffer Pool

m Purpose of the EdItor BUFET POOIooiiiiiii et 216
B ObtaINING Free BIOCKSeeiiieie ettt 217
= |nitializing the Editor BUffer POOIooiiii e 217
= Restarting the Editor BUEr POOIoouiiiii e 218
= Editor Buffer POOI Parametersooiiiiiiiiiiiic e 218
= Buffer Pool Initialization for Multi-User ENVIFONMENESoviiiiiiiiiiiieeee e 218

215

Editor Buffer Pool

This document describes purpose, use and operation of the Editor Buffer Pool which is an inter-
mediate main storage area used by the Software AG Editor.

Purpose of the Editor Buffer Pool

The editor buffer pool can be seen as an extension of the editor buffer (SSIZE). It is an intermediate
main storage area used by the Software AG Editor to maintain its logical files.

Alogical file consists of one or more logical records and contains the data of a Natural source object
or a file (for example, a job, a PDS member or an LMS element) maintained by the editor. As a
user can work with more than one object at the same time, several logical files can exist concurrently
for each user.

The number of logical files (as well as the percentage of recovery records in the Editor Work File
is defined in the buffer pool parameter macro.

The editor buffer pool can be defined as a local or a global or an auxiliary (EDPSIZE) buffer pool.
In multi-user environments (CICS and IMS TM), the editor buffer pool is shared by all editor users
of either the same region (local pool) or more than one region (global pool).

The editor buffer pool contains various control tables and a number of data blocks:

Area Size

Main control block 500 bytes

Logical file table 20 bytes per logical file

Work file table 4 bytes per record

Recovery file table 16 bytes per record

Buffer pool block table |28 bytes per block

Buffer pool blocks see text below

As the size of a buffer pool block is equal to the size of a work file record, one buffer pool block
can contain one logical file record.

The buffer pool is initialized by the first editor user. During warm start buffer pool initialization,
all recovery records are checked to build the recovery file table.

Several functions are provided to access the buffer pool (for example, functions to allocate, read,
write or delete a record).

216 Operations

Editor Buffer Pool

Obtaining Free Blocks

If the buffer pool becomes full, buffer pool blocks have to be moved to an external data set, the
editor work file, to obtain free blocks.

In such a situation, the editor checks all logical files for their timeout value and deletes any logical
file which has not been accessed within the specified time. This means that all its buffer pool blocks
and work file records are freed, and the logical file is lost.

If there is still no buffer pool block available, the editor moves the oldest block to the work file,
according to the specified timeout parameter values (see the Generation Parameters function of the
SYSEDT Utility in the Natural Utilities documentation).

Initializing the Editor Buffer Pool

An uninitialized editor buffer pool is initialized when the Software AG Editor is called for the first
time. Then the various control blocks are created. There are two different modes of buffer pool
and work file initialization: “cold start” and “warm start”.

Buffer Pool Cold Start

A buffer pool cold start can be triggered by the editor buffer pool subparameter COLD or by the
Editor Buffer Pool Administration utility SYSEDT or automatically (if the editor work file is un-
formatted).

During a buffer pool cold start, the values of the editor buffer pool parameter EDBP or the corres-
ponding macro NTEDBP are stored into the work file control record and all work file recovery records
are cleared.

Buffer Pool Warm Start

During a buffer pool warm start, the buffer pool parameters are read from the work file control
record and all work file recovery records are read to build the recovery file table in the buffer pool.

The accessed editor work file can be used only by sessions within the same operating system
(system variable *HOSTNAME) and with the same global buffer pool or the same job name for local
buffer pools. This connection can be dropped by a buffer pool cold start only. Alternatively, the
editor work file formatting utility can be used to reset the work file connection.

Operations 217

Editor Buffer Pool

Restarting the Editor Buffer Pool

The Editor Buffer Pool Administration utility SYSEDT can be used to terminate the editor buffer
pool, that is, to set it to the uninitialized state. This avoids the restart of the TP system or of the
global buffer pool.

If SYSEDT isnot available due to buffer-pool problems, the program BPTERM can be used to terminate
the buffer pool.

A\ Important: All Natural sessions must be restored if you want them to use the editor after

buffer-pool restart.

Editor Buffer Pool Parameters

The editor buffer pool parameter EDBP or the corresponding macro NTEDBP in the Natural parameter
module is required to define parameters for the operation of the editor buffer pool.

When the editor work file is formatted, these parameters are stored into the work file control record
while all other records are cleared. Thus, reformatting a work file that has been previously used,
means that all editor checkpoint and recovery information is lost.

Some of these parameters can be modified dynamically during execution of the buffer pool by
using the Editor Buffer Pool Administration utility SYSEDT.

Buffer Pool Initialization for Multi-User Environments

During the buffer pool initialization, all recovery records are read from the editor work file.
Therefore, the first users have to wait for a long time or even receive a timeout message until the
editor buffer pool initialization is finished.

For this reason, a special Natural program has been supplied to trigger the buffer pool initialization
before the first user becomes active. This program can be activated either during the startup of
the TP monitor, or by a batch job if a global buffer pool is used.

The session must then be started with the session parameter:

218 Operations

Editor Buffer Pool

STACK=(LOGON SYSEDT,user,password;BPINIT;FIN)

Under CICS: If the session runs asynchronously, SENDER=CONSOLE must be specified to obtain any
error messages issued during initialization. The source program FRONTPLT is supplied as a sample
program to show you how to start an asynchronous Natural session during CICS startup via PLTPI.

Operations 219

220

X Natural as a Server

This part describes the use of Natural as a Server under z/OS in batch mode and under the TP
monitor CICS.

Natural as a Server under z/OS Explains how Natural can act as a server in a client/server environment

under z/OS in batch mode.
Natural as a Server under Explains how Natural can act as a server in a client/server environment
CICS under the TP monitor CICS; describes the functionality and the installation

of the Natural CICS Interface in a server environment and informs about
restrictions that apply in such an environment.

221

222

26 Natural as a Server under z/OS

m Functionality UNAEr Z/OS ... 224
= Natural Nucleus Installation in @ Server ENVIronmentcooiviiiiiiiiiiic e 225
= Print and Work File Handling with External Data Sets in a Server Environmentccccoeiiiiiiiiiiiienens 225

223

Natural as a Server under z/OS

This document applies under z/OS only.

Functionality under z/OS

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. Part of the server
functionality is the enhanced batch driver. There are a lot of underlying protocols for the client/serv-
er communication, such as the execution of stored procedures for Db2 and the execution of remote
procedure calls, see the Natural RPC (Remote Procedure Call) documentation.

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example,
for Db2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server front-end.

There are different server stubs for Db2, for Natural RPC and for others.
Natural Batch Driver

The Natural batch driver (that is, for example, NATOS under z/OS) has been enhanced to act as the
environment-specific interface component which maintains the Natural server sessions and supplies
environment-specific services to Natural. It can be linked to the server stub module or loaded by
the server stub as a separate module.

The batch driver is able to create and to control multiple sessions by using storage threads including
functionality for thread storage compression, decompression and rollout to external storage devices.

When the batch driver is called by the server stub for the first time (during server initialization),
the storage threads are created in main storage. The number and size of the storage threads is de-
termined by the server stub. Then a static Natural session is initialized. This includes profile
parameter evaluation and the allocation of static storage buffers. The resulting pre-initialized
storage thread is saved in main storage separately. For every new Natural session, this initial
'session clone' is copied into the thread.

When decided by the server stub, a session can be rolled out to be resumed at a later point of time.
The Natural Roll Server is used by the driver to save the compressed thread storage of a session.
As an alternative, main storage can be used to save the compressed thread storage. In this case,
the number of sessions in rolled-out state is limited by the region size.

224 Operations

Natural as a Server under z/OS

Natural Nucleus Installation in a Server Environment

The Natural nucleus and its batch driver are designed to support both, server and non-server en-
vironments. For the server-specific definitions and requirements, please refer to the specific docu-
mentation (for example, to the Natural RPC (Remote Procedure Call) documentation or to the Natural
for Db2 documentation).

If the number of sessions is not limited to a small number and if the server type supports session
rollout, the Natural Roll Server must be installed and be started before the server initializes. To
do this, ensure that the SUBSID parameter in the Natural parameter module is set to the correct
value. For the server, the Adabas link interface (ADALNK) must be generated so that ADALNK is also
reentrant, in addition to the server.

You can use a local or a global Natural buffer pool. If you define a local buffer pool, it will be
shared by all sessions within the server region.

If alogical print or work file number is to be used for processing within any server session, it must
be associated with an access method at session start time. This can be done in the Natural para-
meter module with the macros NTWORK and NTPRINT, as in the following example, if you want to
allow the full range of all print and work file numbers possible:

NTPRINT (1-31),AM=STD,OPEN=ACC,DEST=*
NTWORK (1-32),AM=STD,OPEN=ACC,DEST=*

The subparameter DEST=* defines generic DD name generation during the first DEFINE WORK FILE
or DEFINE PRINTER statement, OUTPUT clause (see below). Subparameter OPEN=ACC avoids pre-
opening of the files at program start time. The open is issued upon the first access of the file.

Print and Work File Handling with External Data Sets in a Server Environment

When running many concurrent sessions in one region, there may be resource conflicts with ex-
ternal print and work files. The logical names (DD names) for print and work files are defined by
the subparameter DEST of macro NTPRINT, respectively NTWORK or its dynamic equivalents, PRINT
or WORK (defaults CMPRTnn and CMWKF nn). For normal Natural batch processing, these files are
defined in JCL by a logical (DD) and a physical data set name.

However, DD names are reserved by the operating system for exclusive use by one task, respectively
session, that is, if CMWKEFO01 is opened by one session for processing, no other session could use
this file until it is closed again. Other sessions would get an error if they would try to open it.

In a server environment, all print and work file requests are handled by a dedicated I/O subtask.
This ensures data set integrity and avoids resource contention. It enables the shared usage of print
and work files across Natural session boundaries, that is, multiple sessions can access the same

Operations 225

Natural as a Server under z/OS

file concurrently. This is true only for print and work files whose DD-name starts with CM. All
other files are considered as exclusive and cannot be shared.

For exclusive usage of print and work files, Natural offers the following two features to support
print and work files in a server environment (both require a special implementation within the
Natural application programs for the server environment):

® DEFINE WORK FILE or DEFINE PRINTER statements, OUTPUT clause and

® dynamic data set allocation (application programming interface USR2021N, see SYSEXT - Natural
Application Programming Interfaces).

The DEFINE WORK FILE and the DEFINE PRINTER statement OUTPUT clause can be used

" to define the logical DD name for a work or print file, or
" to define the physical data set name, or

" to define an output spool class.

If a DD name is specified, the access method checks whether the data set is allocated. If not, an
error is issued. The data set can be allocated by any Natural program using the USR2021N subpro-
gram supplied in library SYSEXT.

If a physical data set name or a spool file class is specified, the access method itself allocates the
data set dynamically during the execution of the DEFINE ... statement. To ensure that a unique
DD name is used, DEST=* should be predefined in the Natural parameter module. This avoids
any DD name conflicts.

If the application is using the application programming interface USR2021N, it may specify an as-
terisk value for the DD name variable to get back a unique DD name from the access method. This
DD name can be used for a subsequent DEFINE ... statement.

By default, the access properties of the server job are used for print and work files. Some server
types, for example, Natural Development Server and Natural RPC, support impersonation, that
is, the access properties of the individual client account is used for exclusive print and work files.
For more information, refer to the corresponding section in your server documentation.

226 Operations

27 Natural as a Server under CICS

= Functionality UNAEr CICS ...t 228
= Natural CICS Interface Installation in @ Server EnVIrONMENtoooveeie e 228
B R S IOt 0N et e 229

227

Natural as a Server under CICS

This document applies under CICS only.
See also:

® Natural under CICS in the TP Monitor Interfaces documentation

= Natural RPC (Remote Procedure Call) documentation

Functionality under CICS

Natural as a Server

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. There are a lot of
underlying protocols for the client/server communication, such as the execution of stored procedures
for Db2 (see Natural for Db2) and the execution of remote procedure calls (see Natural RPC (Remote
Procedure Call)).

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example
for Db2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server front-end.

There are different server stubs for Db2, for RPC and for others.

Natural CICS Interface Installation in a Server Environment

There is nothing specific to define when installing the Natural CICS Interface in order to serve as
a Natural server environment. There are no requirements on thread type or type of rolling (CICS
roll facilities or roll server).

Actually, Natural server sessions may share a Natural under CICS environment with “normal”,
for example, terminal bound Natural sessions. The difference is that, in case of a Natural server
session, the Natural CICS Interface does not deal with a principal facility, such as a terminal or
printer, but with a server stub. In terms of CICS, a Natural server session is a series of asynchronous
CICS tasks, and the session context (session restart data) is maintained by the server stub using a
unique 8-byte session ID.

228 Operations

Natural as a Server under CICS

Restrictions

The following restrictions apply when Natural is used as a server under CICS:

1.

Natural server sessions under CICS can only run in pseudo-conversational mode. A Natural
server session cannot run in conversational mode, as the Natural CICS Interface always has to
pass control back to the server stub; therefore PSEUDO=0N is forced for Natural server sessions
under CICS. Because of the same reason REL0=0N is forced for Natural server sessions using
TYPE=GETM threads.

3GL programs called by Natural should be aware of the fact that Natural server sessions are
running asynchronously in CICS, that is, no CICS terminal (TCTTE) is available.

The profile parameter ADAMODE should be set to 1 or 2, otherwise Adabas may build a different
UQE ID for each dialog step of the Natural server session.

The profile parameter PROGRAM or equivalent back-end program settings by Natural are not
honored, as the logic flow at session termination from the Natural CICS Interface to the server
stub must not be interrupted and/or falsified by a potential back-end program.

Care should be taken when using the parameter TERMVAR (&T1D) in the macro NTCICSP in the
file name setting for Natural print and work files: As a Natural server session runs asynchron-
ously, there is no (unique) terminal ID or other unique four-character session identifier to insert.
In CICS/TS 1.3 and above, the CICS Interface internally uses the QNAME option when dealing
with CICS temporary storage for such Natural print and work files, that is internally a 16-byte
temporary storage queue name is used (the 8-byte unique server session ID is appended to the
file's DEST specification). This means on the other hand that such CICS temporary storage queues
can only be accessed by the originating session.

Operations 229

230

XI Natural Execution - Miscellaneous Topics

This part provides general information on Natural execution.

Natural 31-Bit Mode Support

Support and Use of Natural and Non-Natural Objects
Input/Output Devices

Double-Byte Character Sets

Asynchronous Processing

For explanations of the terms used in this document, see the Glossary.

231

232

28 Natural 31-Bit Mode Support

In general, Natural runs with the following settings:
AMODE=31

RMODE=ANY

Exceptions to this are described with the corresponding environment documentation.

233

234

29 Support and Use of Natural and Non-Natural Objects

= Support for Natural Objects from Previous Natural VErsionscoooveviiiiiiiiiiiiiiccceeeeiee e 236
= Back-End Program Calling CONVENTIONSccuuiiiiiiiiiiee e e e 236
L ST T o] oo - 1 1 PSPPSRI 238
B EXIENAl SOM PrOGIAMS ...ttt 241

235

Support and Use of Natural and Non-Natural Objects

Support for Natural Objects from Previous Natural Versions

Natural objects created in an earlier version of Natural can be executed in the current Natural
version without any adjustments to the objects or any conversion or migration procedure being
required. This also applies to objects that have been cataloged with the Natural Optimizer Compiler.

For details about supported Natural versions, see Product Versions Supported by Natural in the
current Natural for z/OS Release Notes.

Back-End Program Calling Conventions

This section describes the conventions that apply to invoking a back-end program.

) Notes:

1. Except under z/OS in batch mode, a specified back-end program is not invoked if the Natural
session is executing on a Natural Development Server.

This section covers the following topics:

= Back-End Program Calling Conventions (Batch Mode)
= Special Considerations under CICS

= Special Considerations under IMS TM

= Sample Back-End Programs

Back-End Program Calling Conventions (Batch Mode)

If the profile parameter PROGRAM is specified (or set dynamically during a Natural session by calling
the subprogram CMPGMSET in the library SYSEXTP), a back-end program is invoked, regardless of
whether the session terminated normally or abnormally. The back-end program is called using
standard OS linkage conventions and must return the control to its caller.

If a back-end program is available, Natural does not issue any session termination messages. Non-
zero user return codes, specified via operandl of the Natural TERMINATE statement, are indicated
by the Natural error message NAT9987.

A parameter area containing the following information is passed to the back-end program:

® a fullword that holds the Natural system or user return code,
® a Natural termination message of 72 characters,

® a fullword that holds the length of the Natural termination data (or zero),

236 Operations

Support and Use of Natural and Non-Natural Objects

" the termination data passed by operand? of the TERMINATE statement (if any).

The back-end program parameter area is at least 80 bytes long. The macro NAMBCKP, which contains
a DSECT layout of the back-end program parameter area, is supplied in the Natural source library
and can be used by Assembler back-end programs.

Special Considerations under CICS

Under CICS, the back-end program parameter data is passed in the COMMAREA and in the TWA.
In the TWA, only 80 bytes are passed, containing return code and message, while the length field
contains an address that points to the full back-end program parameter area. The same TWA is
also provided if Natural has been invoked via EXEC CICS LINK;see also Natural under CICS, Front-
End Invoked via LINK in the Natural TP Monitor Interfaces documentation.

If the parameter BACKRPL=ALL is set in the NTCICSP macro (depending on the Natural CICS Interface
version installed), only the termination data is passed in the COMMAREA.

Special Considerations under IMS TM

Under IMS TM,, the calling conventions for a back-end program are different in a dialog-oriented
environment. There, the back-end program is called by a program-to-program switch and the
name of the back-end program is used as an IMS TM transaction code. In this case, the Natural
environment is terminated before the program-to-program switch takes place; see Natural under
IMS TM, Support of Natural Profile Parameter PROGRAM in the Natural TP Monitor Interfaces docu-
mentation.

Sample Back-End Programs

The following table contains a number of sample programs:

Sample Back-end Program for Batch and TSO Environments in COBOL:

LINKAGE SECTION

01 BACKEND-PARM-AREA.

02 TERMINATION-RETURN-CODE PIC S9(8) COMP.
02 TERMINATION-MESSAGE PIC X(72).

02 TERMINATION-DATA-LENGTH PIC S9(8) COMP.
02 TERMINATION-DATA PIC X(100)

PROCEDURE DIVISION USING BACKEND-PARM-AREA

Sample Back-end Program for Batch and TSO Environments in Assembler:

Operations 237

Support and Use of Natural and Non-Natural Objects

BACKPROG CSECT
SAVE (14,12)

LR 11,15
USING BACKPROG, 11
L 2,0(1)

USING BCKPARM, 2

RETURN (14,12)
BCKPARM NAMBCKP
END

Sample Back-end Program for CICS in Assembler:

L 2,DFHEICAP
USING BCKPARM, 2

BCKPARM NAMBCKP
END

Sample Back-end Program XNATBACK for Batch Mode:

A sample program for batch mode is supplied as XNATBACK in the Natural source library. This program
issues the Natural termination message on both SYSPRINT and the operator console; potential termination
data is printed on SYSPRINT in dump format.

LE Subprograms

This section applies to z/OS batch mode, CICS, Com-plete, IMS TM and TSO. It provides inform-
ation on how Natural supports IBM Language Environment (LE) subprograms.

This section covers the following topics:

= Support of IBM LE Subprograms
= Enabling Natural Support of LE Subprograms
= Passing LE Runtime Options

238 Operations

Support and Use of Natural and Non-Natural Objects

= | E Abend Handling
Support of IBM LE Subprograms

To support IBM Language Environment (LE) subprograms, Natural must be prepared for the CALL
statement to be able to call LE subprograms. LE subprograms can be static (profile parameters
CSTATIC and RCA) or dynamic subprograms of Natural.

Dynamic LE subprograms of Natural are loaded via the CEEFETCH LE service and deleted by the
CEERELES service as per the DELETE profile parameter.

Enabling Natural Support of LE Subprograms

The following is required to be able to call IBM Language Environment (LE) subprograms from
Natural:

1. When installing Natural CICS Interface, the environment-dependent nucleus must be generated
as described in the appropriate installation steps in Installing Natural CICS Interface on z/OS in
the Installation documentation.

For LE enablement of Natural under CICS, see also the appropriate installation steps and the
section Natural CICS Interface and IBM Language Environment (LE) in the TP Monitor Interfaces
documentation.

2. For LE enablement of Natural under Com-plete, the LE370 keyword subparameter of the NTCOMP
macro must be set to ON (see the Parameter Reference documentation). See also the chapter IBM
Language Environment Considerations in your Com-plete documentation.

3. The IBM LE runtime modules must automatically be included from the IBM LE library during
the linkage editor step. There must not be any unresolved externals starting with “CEE”. Do
not set the linkage editor option NCAL.

4. Under z/OS batch, IMS TM and TSO, Natural can also call LE main programs, but only as dy-
namic subprograms. If an LE main program is to be called dynamically, this has to be indicated
by specifying SET CONTROL 'P=L" before the CALL statement. Otherwise, the LE environment
created by Natural will be terminated by the LE main program.

Passing LE Runtime Options

Under z/OS Batch and TSO:
You have three options:

1. You can pass LE run-time options by using the PARM= parameter in your JCL. The following
applies:

® The run-time options that are passed to the main routine must be followed by a slash (/)
to separate them from the Natural parameters.

Operations 239

Support and Use of Natural and Non-Natural Objects

® If you want to use a slash within your Natural parameters, then your Natural parameters
must begin with a slash.

Example:
PARM='/ID=/,..."

2. You can pass LE run-time options by using the CEEOPTS input data set in your JCL. With
the use of CEEOPTS the LE run-time options are also available to all subtasks. The use of
CEEOPTS is especially required with a Natural RPC server in batch mode.

Example:

//CEEOPTS DD *
POSIX(ON)
/*

3. You can define LE run-time options by modifying and re-assembling the supplied source
module NATLEOPT. For example, if you have any subprograms still running in 24 bit mode,
set SYSPARM(RMODE24) as parameter for the assembler rather than changing NATLEOPT.

If you have other specific requirements for your LE subprograms, you can add the desired
LE options for the CEEXOPT macro in source module NATLEOPT.

Under IMS TM:
You can pass LE run-time options by providing the region-specific run-time options load
module CEEROPT in your STEPLIB concatenation. In addition, the LE library routine retention
initialization routine CEELRRIN must be present on the PREINIT list of your region JCL.

The following is a sample definition of a CEEROPT load module that allows the execution of
AMODE (24) subprograms:

CEEROPT CSECT
CEEROPT AMODE ANY
CEEROPT RMODE ANY
CEEXOPT ALL31=((OFF),QVR), X
STACK=((128K,128K,BELOW,KEEP,512K,128K),0VR)
END CEEROPT

240 Operations

Support and Use of Natural and Non-Natural Objects

LE Abend Handling

Natural supports the LE-specific user error handling, that is, if an LE subprogram has defined a
user error handler, this handler gets control when an abend, a program check or any other LE error
condition occurs in the subprogram. If no LE user error handler has been defined, Natural reacts
according to the setting of the DU profile parameter.

In this case, a special error message (NAT0950 if DU=0FF or NAT9967 if DU=0N) is issued which in-
dicates the LE error number. In addition, the corresponding LE error message is issued on CEEMSG
and an LE snap dump is written to CEEDUMP according to LE run-time option TERMTHDACT.

| Note: In case of DU=FORCE, the abend handling of Natural is disabled and the LE error

handling takes place even if no LE subprogram is active at the time of the abend. In this
case, it is strongly recommended to specify the LE run-time option TERMTHDACT (UAIMM) to
get all required diagnostic information.

External Sort Programs

This document provides information on using external sort programs with Natural.
The following topics are covered:

= Support of External Sort Programs
= Special Considerations

Support of External Sort Programs

The Natural SORT statement may optionally invoke an external sort program that carries out the
actual sorting. An external sort program is used if the keyword subparameter EXT of the macro
NTSORT is set to ON in the Natural parameter module.

Natural supports all external sort programs that comply with the sort interface documented in
the manuals for the relevant operating system.

The requirements (for example, space and data sets) are identical to those for the execution of a
3GL (for example, COBOL, PL/I) application program that invokes the operating system sort
program and can vary according to the external sort program in use.

The communication with the external sort program is via the E15 and E35 user-exit routines. As
a consequence, Natural does not require the data sets SORTIN and SORTOUT.

Operations 241

Support and Use of Natural and Non-Natural Objects

Special Considerations

All external sort programs supporting the extended parameter list can be used.

242 Operations

30 Input/Output Devices

B TEIMINGL SUPPOM ...ttt ettt e e e e e ettt e et e e e e e e ettt e e e e e e e e ettt e e e eaaa e 244
B LIGNt PEN SUPPOM ...ttt e ettt e et e e e e e e e 244
L 101 T TV o] oo PRSPPI 245

243

Input/Output Devices

This document provides some additional information on input/output devices supported by
Natural.

Terminal Support

Natural supports a wide variety of terminal types for the use with z/OS computers. In TP monitor
environments in which the terminal type information is not supplied automatically to Natural,
you can use the Natural profile parameter TTYPE so that Natural can activate the appropriate
converter routine to operate a specific type of terminal.

Links to related topics:

® NTDVCE - Terminal-Device Specification Table

® Terminal Communication - Profile Parameters Grouped by Function (Parameter Reference documenta-
tion)

® NATCONFG Module (various I/O translation topics)

® Natural Terminal Commands

Light Pen Support

The support of light pens has been enhanced by the terminal command %RM. This command causes
all light-pen-sensitive fields on the screen to be made write-protected; that is, the user can select
them with a light pen, but cannot overwrite their contents.

For a field to be light-pen sensitive, it must be displayed intensified (session parameter AD=I) or
blinking (AD=B), and the first character of the field must be a light-pen designator character (see
below). Selecting a field with a light pen causes the designator character to be changed; therefore,
you can make the processing of fields selected with a light pen dependent on the values of the
designator characters.

The following designator characters are available:

Character Meaning

? You can select multiple fields before pressing ENTER.

> It was selected and if it is selected again, it becomes a question mark ?; the characters ? and
> will toggle.

& You can select only one field and it will be as an ENTER for both the field and the MDT
(modified data tag).

" ' (blank) |You can select only one field and you will only see the MDT.

244 Operations

Input/Output Devices

As designator characters, you have to distinguish selection fields (?, >) and attention fields (&,
blank or null). Selection fields do not start an immediate data transmission, so you are able to select
more than one field. Attention fields result in an immediate action.

The SELECT CURSOR key emulates a light-pen selection. If you move the cursor to the field you want
to select and press SELECT CURSOR, this field will be selected.

Sample Natural Program for Light Pen Usage

RESET #FIELD-1 (A8)
#FIELD-2 (A8) #FIELD-3 (A8) #CV-1 (C) #CV-2 (C) #CV-3 (C)
SET KEY ALL
/* SET CONTROL 'RM" IS A TOGGLE. AFTER IT IS EXECUTED ONCE MAKE IT A
/* COMMENT, SO THAT YOU DO NOT TOGGLE IT 'OFF".
**SET CONTROL 'RM'
REPEAT
IF *PF-KEY NOT = "ENTR' AND *PF-KEY NOT = 'PEN' ESCAPE BOTTOM
MOVE (AD=I CD=YE) TO #CV-1
MOVE (AD=I CD=RE) TO #CV-2
MOVE (AD=I CD=BL) TO #CV-3
MOVE ' FIELD-1' TO #FIELD-1
MOVE '&FIELD-2' TO #FIELD-2
MOVE '?FIELD-3' TO #FIELD-3
INPUT (SG=0FF IP=0FF)
01/01 #FIELD-1 (CV=§fCV-1 AD=M)
03/01 #fFIELD-2 (CV=§fCV-2 AD=M)
05/01 #fFIELD-3 (CV=§CV-3 AD=M)
WRITE 'PF-KEY ="' *PF-KEY
IF #fCV-1 MODIFIED WRITE '#CV-1 MODIFIED' #FIELD-1
IF #CV-2 MODIFIED WRITE '#CV-2 MODIFIED' #FIELD-2
IF #CV-3 MODIFIED WRITE '#CV-3 MODIFIED' #FIELD-3
LOOP
END

Printer Support

The following topics are covered:

= Printer-Advance Control Characters

Operations 245

Input/Output Devices

= Natural Laser-Printer Support
Printer-Advance Control Characters

Printer-advance control characters can be generated within a Natural program by using the DEFINE
PRINTER statement as follows:

DEFINE PRINTER (n) QUTPUT 'name'
DEFINE PRINTER (n+1) OUTPUT 'CCONTROL'

Both DEFINE PRINTER statements work together so that all Natural output for the printer (n) follows
the normal Natural report-output rules and all Natural output for the printer (n+1) is also written
to the printer (n). Natural does not generate a printer-advance control character for this report.
Therefore, the first character in the output variable is the control character.

With this method, it is possible to merge control characters for laser-printer systems and channel-
advance characters for line printers in a normal Natural output report.

Sample Natural Program for Printer-Advance Control Character

DEFINE PRINTER (1) QUTPUT 'CMPRTOI'
DEFINE PRINTER (2) QUTPUT 'CCONTROL'
WRITE (1) '"TEST'

WRITE (2) NOTITLE '+TEST'

MOVE H'BA" TO A(AI)

WRITE (2) A '...."

The corresponding hexadecimal data in the spool file starting from column 0 are:

r..r..r..r..r.. o o I T o o oo o Il
F1 E3 C5 E2 E3

1 T EBE S T

4E E3 CH E2 E3

+ T E S T

bA ...

CCONTROL is the name of a special printer control table associated to the printer n-1; it must not
be modified.

246 Operations

Input/Output Devices

Natural Laser-Printer Support

Natural supports IBM 3800 laser-printer systems.

The DEFINE PRINTER statement is used to control and allocate a report for the 3800 printer system.
With this statement, you can specify that the Natural print output for report 1 is routed to a 3800
printer system.

DEFINE PRINTER (1) QUTPUT 'LAS3800'
I T =>1-31 for CMPRTOl to CMPRT31

Depending on the setting of the INTENS parameter, Natural repeats each line up to four times and
recognizes the Natural attributes AD=D, AD=I, AD=C and AD=V (see session parameter AD).

The first line contains the ASA control code in the first column and the 3800-font control character
(hexadecimal F0) for the first font in the second column. The columns 2 to nnn contain the print
data which are not flagged with the attribute AD=I, AD=C or AD=V.

The second line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F1) for the second font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=1.

The third line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F2) for the third font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=C.

The fourth line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F3) for the fourth font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=V.

If INTENS is specified with a value less than 4, all non-supported fonts are printed with hexadecimal
FO.

Sample Natural Program for Laser Printer Usage

DEFINE PRINTER (1) QUTPUT 'LAS3800'
WRITE (1) "FIRST' 'SECOND' (AD=I) 'THIRD' (AD=C) 'FOURTH' (AD=V)

The corresponding hexadecimal data in the spool file starting from column 0 are:

Operations 247

Input/Output Devices

r..r..r..r..r..r..ro oot o o o T I o o o o I u I LT

40 FO C6 C9 D9 E2 E3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 (hex)
0 FIRST

4E F1 40 40 40 40 40 40 E2 C5 C3 E4 D5 C4 C4 40 40 40 40 40 40 40 (hex)

+ 1 SECOND

AE F2 40 40 40 40 40 40 40 40 40 40 40 40 40 E3 C8 C9 D9 D4 40 40 (hex)

+ 2 THIRD

4E F3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 C5 (hex)
+ 3 F

Sample JCL for Laser Printer Usage

[/ xxxx JOB xxxxx,....
[/ xxxxx EXEC PGM= XXXXXX;......
// PARM='"INTENS=4,6 XXXX,.......

//0UT1 OUTPUT PAGEDEF=XXXX,FORMDEF=XXXX, TRC=ON
I I

[[=> 3800 form definition
I

. I => 3800 page definition .

//CMPRTO1 DD SYSOQUT=Y

// DCB=(RECFM=FBA,LRECL=133),0UTPUT=*,0UT1

// CHARS=(WWWW, XXXX,YYYY, 7777)

I
I => IBM font names

248 Operations

31 Double-Byte Character Sets

= Natural Profile Parameter SOSIooi oot 250
m Qutput Format SPeCifiCationvviiiiiiiiii e 250
= Parameter Definitions for DBCS SUPPOIcouiiiieeiiiii e 250
B EIHOr Profile OPtONS 251
B NPUE DAt ChECK ... e 251
m Qutput Data AJUSIMENL ... 252
B NQLUFAl SEACK DAA ... 252
= Application Programming Interfaces for DBCS Handlingccooiiiiiiiiiiiieiiiiice e 252
= Alternate Text Module NATTXT2Uoeeiiiiiii et e e e e 253

249

Double-Byte Character Sets

This document is only relevant for Asian countries which use double-byte character sets. It describes
all features implemented in Natural to support DBCS terminals and printers.

Natural Profile Parameter SOSI

In alphanumeric fields with SBCS and DBCS characters mixed, the DBCS character strings are
separated from the SBCS strings by shift codes called SO (shift-out) and SI (shift-in). The Natural
profile parameter SOSI is used to pass the values of the shift-in and shift-out codes used in the
current environment to Natural.

It is strongly recommended to use the IBM characters X'0E' and X' 0F ' internally. With this tech-
nique, all applications and data can be handled in a compatible manner, which means that a network
supporting different mainframe types can still use the same Natural applications and process the
same data.

For detailed information on this parameter, see SOSI.

Output Format Specification

The Natural session parameter PM=D is used to define DBCS-only fields. A DBCS-only field must
contain only valid DBCS characters; shift-out/shift-in characters (SO/SI) are not allowed within
such a field. To display a field with the session parameter PM=D specified, the screen attribute
X"'43F8" is added for IBM terminals.

Parameter Definitions for DBCS Support

The following parameters must be specified in the setup for Natural for the support of double-
byte character sets:

Parameter Explanation

TS=0N If Latin lower-case characters are not available, this parameter translates all
Natural system output using the translation table defined by the macro NTTABL
in the NATCONFG module.

SOSI=(0E,QOE,QOF,0F, 1) |Defines the DBCS shift-out and shift-in values for IBM hardware.

LC=0N Does not translate all input data to uppercase, which again would destroy
possible DBCS input data.

250 Operations

Double-Byte Character Sets

In addition to TS=0N, further parameters to provide for translation of messages into upper case
are provided by several Natural components. For detailed information, see Other Parameters to
Provide Upper Case Translation in the TS profile parameter documentation.

Editor Profile Options

If you want to enter DBCS or half-width Katakana characters in one of the Natural editors, the
following editor general default options should be set in the editor profile to avoid that character
constants or field names containing DBCS or half-width Katakana characters are unintentionally
converted to upper case:

Option Value |Explanation

Editing in Lower Case Y Lower-case characters in the source code are not automatically
converted to upper case. This option is required if you are using
DBCS or half-width Katakana characters.

Dynamic Conversion of Lower |N Any source code remains as you enter it. This option is required if
Case you are using half-width Katakana characters.

For detailed information on the editor general default options, see General Defaults. For detailed
information on the editor profile, see Editor Profile in the Editors documentation. To avoid the need
to change these options for every user, you can modify the default profile for your installation by
means of the user exit routine USR0070P, which also supports DBCS; see USR0070P - User Exit for
Editor Profiles in the section Configuring Natural.

Input Data Check

If the session parameter PM=D is set for a field, it is verified that the input data

" contains an even number of bytes,
® contains only valid DBCS characters,
® does not contain shift-out/shift-in characters (SO/SI).

Because the detection of non-DBCS characters requires ICU, this check will not be performed if
ICU is not available (that is, if the profile parameter CFICU=0FF has been set).

Operations 251

Double-Byte Character Sets

Output Data Adjustment

If a window is to be displayed for user interaction, the window might overlay DBCS characters
that are already displayed, or the window might itself contain DBCS characters which are truncated
because of the window size. An overlay may also occur if the NO ERASE option is used with an

INPUT statement. In order to prevent screen corruption in case of such an overlay, the following

actions are performed to adjust the output data, if necessary:

if the session parameter PM=D is set for a field, an orphan byte (that is, a single byte left at the
beginning or end of the data to be displayed as a result of a partial overlay of a DBCS character)
is replaced by an attribute; this operation assures that only valid DBCS characters are displayed;

if the profile parameter SOSI has been set, the field contents of an alphanumeric field for which
PM=D is not specified is examined for shift-out/shift-in characters (SO/SI); if a shift-out character
(SO) is found for which the correlating shift-in character (SI) is missing, either the last character
of the output data is replaced by a shift-in character (SI) or the last two characters are replaced
by a shift-in character (SI) followed by a blank; if a shift-in character (SI) is found for which the
correlating shift-out character (5O) is missing, either the first character of the output data is re-
placed by a shift-out character (SO) or the leading two characters are replaced by a blank followed
by a shift-out character (SO); this operation assures that DBCS characters are enclosed properly
by shift-out/shift-in characters (SO/SI).

Natural Stack Data

To avoid unintentional interpretation of DBCS characters as delimiter or control characters, the
FORMATTED option of the STACK statement should be used if the data to be placed on the Natural
stack contains DBCS characters.

See the Statements documentation for further information on the STACK statement.

See the Programming Guide for further information on the Natural Stack.

Application Programming Interfaces for DBCS Handling

The following user application programming interfaces (API) are available to support DBCS
handling:

= USR4211N - Get DBCS Characters

252 Operations

Double-Byte Character Sets

= USR4213N - String Handling for DBCS Support

These APIs are contained as subprograms in the Natural library SYSEXT. Detailed information on
how to use an APl is included in the corresponding text object (USRxxxxT). See also SYSEXT Utility
- Natural Application Programming Interfaces in the Utilities documentation.

USR4211N - Get DBCS Characters

The application programming interface USR4211N can be used to obtain information on the avail-
ability of DBCS support and the defined SOSI characters.

USR4213N - String Handling for DBCS Support

The application programming interface USR4213N can be used to perform the following functions:

® Convert a normal Latin character string into the corresponding DBCS character string.

® Convert a DBCS character string that contains Latin data only into a single-byte character string.
" Add the current shift codes at the beginning and at the end of a character string.

® Remove leading and trailing shift codes from a character string.

The last two functions can be used to either produce native DBCS strings or generate mixed-mode
data out of native DBCS strings.

Alternate Text Module NATTXT2U

The alternate text module NATTXT2U contains certain keywords for English language in all upper
case which are contained in mixed case in text module NATTXT2. NATTXT2U should be linked to the
Natural nucleus instead of NATTXT2 in environments where lower case code points H'81" toH'A9"
are used to display national characters.

Operations 253

254

32 Asynchronous Processing

= |dentifying ASynchronous Natural SESSIONScceiiiiiiiiiiiii e 256
= Handling Output of an Asynchronous Natural SESSIONc..uviiiiiiiiiiiiie e 256
= Handling Unexpected or Unwanted INPULoeiriiii e 257
= QOther Profile Parameter ConSIderationscooouiiiiiiiiiii i 257

255

Asynchronous Processing

This document describes asynchronous Natural processing, a method which is available under
all TP monitors supported by Natural.

An asynchronous Natural session is a session which is not associated with any terminal and
therefore cannot interact with a terminal user. It can be used to execute a time-consuming task “in
the background” without the user having to wait for the task to finish.

Related Topics:

= Asynchronous Natural Processing under CICS

" Asynchronous Natural Processing under Com-plete/ SMARTS

Identifying Asynchronous Natural Sessions

To identify a session as being asynchronous, the Natural system variable *DEVICE is assigned the
value ASYNCH.

Note: The value of *DEVICE may be modified by the Natural profile parameter TTYPE and

by any SET CONTROL 'T=xxxx' statement; see also profile parameter TTYPE in the Parameter
Reference documentation and terminal command %7= in the Terminal Command documenta-
tion.

Handling Output of an Asynchronous Natural Session

As an asynchronous session is a session that is not associated with any terminal, this means that
any output produced by the session cannot simply be displayed on the screen; instead, you have
to explicitly specify an output destination. You specify this destination with the Natural profile
parameter SENDER when invoking Natural. The SENDER destination applies to hardcopy output
and primary reports; any additional reports are sent to the destinations specified with the DEFINE
PRINTER statement, just as in a synchronous online session.

As an asynchronous session can also cause a Natural error, the destination to which any Natural
error message is to be sent must also be specified; this is done with the Natural profile parameter
OUTDEST. This parameter also provides an option to have error messages sent to the operator console.
After an error message has been sent, Natural terminates the asynchronous session.

The profile parameters SENDER and OUTDEST should be set accordingly to be prepared for unexpected
output by the asynchronous Natural session; otherwise, the asynchronous Natural session may
abend in such a scenario.

256 Operations

Asynchronous Processing

Handling Unexpected or Unwanted Input

An asynchronous Natural session only has the Natural stack to enter the name of Natural programs
and Natural system commands to be executed. If a Natural program or a Natural system command
fails with an unhandled Natural error or if the entire Natural stack is exhausted and NEXT mode

would be entered, the asynchronous Natural session is terminated with termination message
NAT9943.

Depending on the TP monitor in use and depending on the TTYPE setting, either the CLEAR key
or the EOF indicator is passed back to Natural on an INPUT request by default. This measure helps
to prevent error loop situations if a program unintentionally executes an INPUT statement. To pass
the ENTER key indicator back, you can issue a SET CONTROL 'N' statement prior to the INPUT
statement.

¢ Tip: You can make your application compatible with asynchronous sessions by evaluating
the system variable *SCREEN-I0 accordingly.

Other Profile Parameter Considerations

The following Natural profile parameters should be considered in the case of an asynchronous
Natural session:

Profile Parameter |Comment

AUTO Asynchronous sessions may have non-alphabetical user IDs. In this case, AUT0=0N will
fail.

CM An unwanted input situation may happen if the Natural session accidentally falls onto
the NEXT level. Setting CM=0FF will terminate the session immediately in such a
situation.

ENDMSG The error message NAT9995 (normal termination message) can be suppressed by
specifying ENDMSG=0FF.

IMSG Natural initialization error messages and warnings can be suppressed by specifying
IMSG=0FF.

MENU Asynchronous sessions only have the Natural stack for command inputs; therefore, it
is recommended to specify MENU=0FF and to navigate through Natural by using direct
commands.

PLOG Dynamic parameter logging is executed by sending all parameters line by line to the

SENDER destination.

PROGRAM If a standard back-end program/transaction is defined in your installation, it should
be checked if this program can run asynchronously or if it is desired to deal with
terminal-bound sessions only. Specifying PROGRAM=0 bypasses the back-end logic.

Operations 257

258

	Operations
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Configuring Natural
	2 Linking Natural Objects to the Natural Nucleus
	Benefits
	ULDOBJ Utility
	Using ULDOBJ to Generate an Object Module
	Additional Considerations for Linking Subroutines
	Operating System Dependency of Object Module Generation
	Example of Linking a Natural Object to the Natural Nucleus

	3 Natural User Exits
	NATUEX1 - User Exit for Authorization Control
	NATSREX2 and NATSREX3 - User Exits for Sort Processing
	NATUSKnn - User Exit for Computation of Sort Keys
	NATPM - User Exit for Inverted Output
	Inversion Logic
	Field User Exit

	NREXPG - User Exit for NATRJE
	USR0070P - User Exit for Editor Profiles
	USR2002P - User Exit for Help Window Text Strings
	USR2003P - User Exit for Main Menu

	4 Natural User Access Method for Print and Work Files
	NATAMUSR Module Description
	NATAMUSR Module Installation
	Invoking the Third Party Product

	5 Natural System Files
	Natural Scratch-Pad File
	Recordings
	Screen Captures - NATPAGE
	File Maintenance

	6 Natural Text Modules and Macros
	Function and Usage of Text Modules
	NATTEXT - Natural Keyword Definitions
	Modifying NATTEXT
	Example of Modifying the NATTEXT Module

	NATTXT2 - Output Text, Keywords and User Termination Messages (Mixed Case)
	Standard Natural Output Texts
	Keywords and Alternative Keywords for Natural System Commands and Utilities
	User-Written Termination Messages

	NATTXT2U - Output Text, Keywords and User Termination Messages (Uppercase)
	NATTXT3 - Text Fragments for Placeholders in Natural Error Messages
	NTERMSG - Natural Termination Messages and Return Codes

	7 Natural Configuration Tables
	NATCONFG - Natural Configuration Tables
	General Overview of Macros Used by NATCONFG
	NTDVCE - Terminal-Device Specification Table
	NTMSG - Message Log Table Definitions
	NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus
	NTCPAGE - Code Page Definitions
	NTCPAGE Macro Syntax
	NTCPAGE Macro Parameters

	Code Page Support
	Output Devices Supported
	Sequential Output Devices for Batch, Additional Reports
	Line-Oriented Online Terminals
	Block-Mode-Oriented Online Terminals

	Translation Tables
	Upper-/Lower-Case Translation
	CMULT Entry
	Output Translation
	Input Translation
	Code Translation of DBCS Data
	NTTZ - Time Zone Definitions
	NTTZ Macro Considerations and Restrictions
	NTTZ Macro Syntax
	NTTZ Macro Parameters
	Example of NTTZ Macro

	8 Natural Storage Management
	Thread and Non-Thread Environments
	Buffer Types
	Fixed Buffers
	Variable Buffers
	Customization of Buffer Characteristics

	II Profile Parameter Usage
	9 Natural Parameter Hierarchy
	Natural Parameter Hierarchy Overview
	General Rules for Parameter Usage
	Natural Parameter Module
	Alternative Natural Parameter Module

	Predefined Dynamic Parameter Sets
	Predefined User Parameter Profiles
	Dynamic Parameter Entry
	Natural Security Definitions
	Session Settings for Profile Parameters
	Program/Statement Level Settings
	Development Environment Settings
	Examples of Parameter Evaluation

	10 Assignment of Parameter Values
	Sources for Parameter Value Assignment
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Session Parameters for Runtime Assignment of Parameter Values

	11 Building a Natural Parameter Module
	NTPRM Parameter Macro
	Additional Macros in the Natural Parameter Module
	Naming Conventions and Overview of Macros

	Example of Macros in the Natural Parameter Module

	III z/OS Environment
	12 Natural under z/OS
	Natural Subsystem
	TP Monitor Interfaces
	Interfaces to Database Management Systems
	Natural in Batch Mode under z/OS
	Natural as a Server under z/OS

	13 Authorized Services Manager under z/OS
	ASM Overview
	ASM System Requirements
	APF Authorization
	System Linkage Index
	CF Structure
	XCF Signaling Paths

	Starting the ASM
	Parameters in the JCL EXEC Statement
	Parameters in the Parameter File

	ASM Operator Commands
	Resetting the Coupling Facility Structure for ASM
	ASM Messages, Condition Codes and Abend Codes

	14 Natural Roll Server Functionality
	Natural Roll Server - Overview
	Roll Server in a Single z/OS System
	Illustration of the Roll Server in a Single z/OS System

	Roll Server in a z/OS Parallel Sysplex Environment
	Illustration of Roll Servers in a z/OS Parallel Sysplex Environment

	Roll File and LRB

	15 Natural Roll Server Operation
	Roll Server System Requirements
	APF Authorization
	System Linkage Index
	Virtual Storage
	CF Structure
	XCF Signaling Paths

	Formatting the Roll File
	NATRSRFI Output
	Notes Concerning the Formatting or Resetting of Roll Files

	Starting the Roll Server
	Parameters in the JCL EXEC Statement
	Parameters in the Parameter File
	Examples for Starting the Roll Server as a Batch Job

	Roll Server Messages, Condition Codes and Abend Codes
	Condition Codes of the Roll Server Started Task
	User Abend Codes

	Return Codes and Reason Codes of the Roll Server Request
	Operating the Roll Server
	Resetting the Coupling Facility Structure
	Roll Server Performance Tuning
	Roll Server User Exits
	NATRSU14 User Exit
	NATRSU24 User Exit

	IV Natural in Batch Mode
	16 Natural in Batch Mode under z/OS
	Natural z/OS Batch Interface
	Driver Parameters for z/OS Batch
	Data Sets Used by Natural in z/OS Batch Mode
	CMEDIT - Software AG Editor Work File
	CMHCOPY - Optional Report Output for Hardcopy
	CMOBJIN - Input for Natural INPUT Statements
	CMPLOG - Dynamic Profile Parameter Report Output
	CMPRINT - Primary Report Output
	CMPRMIN - Dynamic Parameter Data Set
	CMPRTnn - Additional Reports 01 - 31
	CMSYNIN - Primary Command Input
	CMTRACE - Optional Report Output for Natural Tracing
	NATRJE - Job Submit Output
	STEPLIB - Load Library for External Modules
	CMWKFnn - Work Files 01-32

	17 Natural in Batch Mode (All Environments)
	Adabas Data Sets
	Sort Data Sets
	Subtasking Session Support for Batch Mode Environments
	Purpose
	Prerequisites
	Functionality
	Starting a Natural Session
	Starting a Subtask
	Accessing the User Parameter Area

	V Natural Buffer Pools
	18 Natural Buffer Pool - General
	Natural Buffer Pool Principle of Operation
	Objects in the Buffer Pool
	Directory Entries
	Text Pool
	Buffer Pool Hash Table
	Buffer Pool Initialization
	Buffer Pool Search Methods
	Local Buffer Pool
	Global Buffer Pool
	Buffer Pool Cache

	Buffer-Pool Monitoring and Maintenance
	Preload List
	Blacklist
	Propagation of Buffer-Pool Changes
	Performance Considerations

	Natural Global Buffer Pool
	Profile Parameters Used
	Buffer Pool Opening / Closing Procedure

	19 Natural Global Buffer Pool under z/OS
	Using a Natural Global Buffer Pool
	Purpose
	Benefits

	Prerequisites
	Operating the Natural Global Buffer Pool
	Allocation of the Natural GBP
	Setting up the Natural GBP
	Starting the Natural GBP Operating Program
	Stopping the Natural GBP Operating Program

	Global Buffer Pool Manager Parameter Module
	UCTRAN - Lower/Mixed Case Support

	Global Buffer Pool Operating Functions
	HELP - Shows an overview of the available syntax
	ADDCACHE - Allocate Cache for an Existing Global Buffer Pool
	CREATE - Create Global Buffer Pool
	DELCACHE - Release Cache of a Global Buffer Pool
	FSHUT - Shut Down Global Buffer Pool
	GLOBALS - Show Global Parameter Settings
	LISTCACHE - List All Global Buffer Pool Caches Owned by Job
	NOP - No Operation
	REFRESH - Re-initialize Global Buffer Pool
	SHOWBP - Show Existing Buffer Pools
	TERMINATE - Terminate GBP Operating Program
	ZAPS - Display Zaps Applied to GBP

	Global Buffer Pool Function Parameters
	BPNAME - Name of Global Buffer Pool
	BPLIST - Name of Preload List
	BPCSIZE - Buffer Pool Cache Size
	C64 - Type of Buffer Pool Cache Storage
	CC - Count Condition Code
	CONFIRM - FSHUT Confirmation
	IDLE - Wait Time before Check
	METHOD - Search Algorithm for Allocating Space in Buffer Pool
	NATBUFFER - Buffer Size, Mode, Text Block Size
	RESIDENT - Behavior after Function Execution
	SUBSID - Natural Subsystem ID
	TYPE - Type of Buffer Pool

	Examples of NATBUFFER Specifications
	Sample NATGBPvr Execution Jobs
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Localization
	Messages

	VI Message Buffer Pool
	20 Message Buffer Pool
	Purpose
	Prerequisites
	Operating the Message Buffer Pool
	Setting up the Message Buffer Pool
	Starting the Message Buffer Pool Operating Program
	Stopping the Message Buffer Pool Operating Program

	Sample NATMBPvr Execution Jobs
	Example 1
	Example 2
	Example 3

	Message Buffer Pool Operating Functions
	HELP - Shows an overview of the available syntax
	CREATE - Create a Message Buffer Pool
	FSHUT - Shut Down Message Buffer Pool
	TERMINATE or STOP- Terminate Message Buffer Pool Operating Program
	ZAPS - Display Zaps Applied to Message Buffer Pool

	Function Parameters
	BPNAME - Name of Message Buffer Pool
	BPLIST - Name of Preload List
	SUBSID - Natural Subsystem ID
	SIZE - Size of Message Buffer Pool

	Messages

	VII System Spool Access
	21 System Spool Access
	Purpose
	Prerequisite
	Using the Write-to-Spool Feature
	Defining Your Printer
	Examples for z/OS

	VIII Natural 3GL CALLNAT Interface
	22 Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions
	Purpose of 3GL CALLNAT Interface
	Availability

	Prerequisites
	Space Requirements
	Linking
	Environment Dependencies

	Restrictions
	Terminating a Natural Subprogram
	Inadmissible Natural Statements
	Parameter Values Passed by the 3GL Program
	Dynamic Arrays
	TP-Monitor-Specific Restrictions

	23 Natural 3GL CALLNAT Interface - Usage, Examples
	Usage
	Overview
	Call Structure
	Parameter Handling

	Sample Environments
	Sample Environment for CICS
	More Samples
	Sample for Any Other Supported Environment

	IX Operating the Software AG Editor
	24 Editor Work File
	Editor Work File Structure
	Control Record
	Work Records
	Recovery Records

	Editor Work File under z/OS
	Using the Editor Work File Formatting Utility
	Formatting during Initialization
	Maintaining the Editor Work File
	Editor Work File under Complete/SMARTS

	25 Editor Buffer Pool
	Purpose of the Editor Buffer Pool
	Obtaining Free Blocks
	Initializing the Editor Buffer Pool
	Buffer Pool Cold Start
	Buffer Pool Warm Start

	Restarting the Editor Buffer Pool
	Editor Buffer Pool Parameters
	Buffer Pool Initialization for Multi-User Environments

	X Natural as a Server
	26 Natural as a Server under z/OS
	Functionality under z/OS
	Natural Server Stub
	Natural Batch Driver

	Natural Nucleus Installation in a Server Environment
	Print and Work File Handling with External Data Sets in a Server Environment

	27 Natural as a Server under CICS
	Functionality under CICS
	Natural as a Server
	Natural Server Stub

	Natural CICS Interface Installation in a Server Environment
	Restrictions

	XI Natural Execution - Miscellaneous Topics
	28 Natural 31-Bit Mode Support
	29 Support and Use of Natural and Non-Natural Objects
	Support for Natural Objects from Previous Natural Versions
	Back-End Program Calling Conventions
	Back-End Program Calling Conventions (Batch Mode)
	Special Considerations under CICS
	Special Considerations under IMS TM
	Sample Back-End Programs

	LE Subprograms
	Support of IBM LE Subprograms
	Enabling Natural Support of LE Subprograms
	Passing LE Runtime Options
	LE Abend Handling

	External Sort Programs
	Support of External Sort Programs
	Special Considerations

	30 Input/Output Devices
	Terminal Support
	Light Pen Support
	Sample Natural Program for Light Pen Usage

	Printer Support
	Printer-Advance Control Characters
	Natural Laser-Printer Support

	31 Double-Byte Character Sets
	Natural Profile Parameter SOSI
	Output Format Specification
	Parameter Definitions for DBCS Support
	Editor Profile Options
	Input Data Check
	Output Data Adjustment
	Natural Stack Data
	Application Programming Interfaces for DBCS Handling
	USR4211N - Get DBCS Characters
	USR4213N - String Handling for DBCS Support

	Alternate Text Module NATTXT2U

	32 Asynchronous Processing
	Identifying Asynchronous Natural Sessions
	Handling Output of an Asynchronous Natural Session
	Handling Unexpected or Unwanted Input
	Other Profile Parameter Considerations

