S software*

A SOFTWARE GMBH BRAND

Natural

Natural Optimizer Compiler

Version 9.2.4

October 2025

ADABAS & NATURAL

This document applies to Natural Version 9.2.4 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1979-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATMF-NOC-924-20251013

Table of Contents

PTOACE ..t v
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3

I NOC - General Informationccccooviiiiiiiiiiiiiiiii 5
2 NOC - General Informationccceeviiiiiiiiiiiiiii 7
Natural Nucleus Optimizationccccovviiiiiiiiiniiiiii, 8

Natural Optimizer Compiler ..o 10

IT Using the Optimizer Compiler - OVerviewcccevviiiiiiiiiiiiiiiiiiiicccee 11
3 What is Compiled and What is NOtcccocoiiiiiiiiiii, 13
Statements Compiled by the Natural Optimizer Compilerc.cccceeenenee. 14
Statements that are Not Compiledcccoocoiiiiiiiiiiiiiii 15

4 NOCSTAT Commandcccocviiiiiiiiiiiiiiiiiiceieccic e 17
Invoking NOCSTATc.cooiiiiiiiiiiiiiiie e 18
Generating RepPOTtScccoovviiiiiiiiiiii 19

Report FOrmats ... 22

Batch EXeCUtioncccocoiiiiiiiiiiiiiii 28

5 Displaying the Size of the Machine Codec.cccociiiiiiiiiniiiiiiiiiiicceee, 31

6 Optimizer Usage EXamplesccccocoiviiiiiiiiiiiiiiiiiiiiecccc 33
Example 1 - No Improvementcccoooooiiiiiiiiiiiiie, 34

Example 2 - Considerable Improvementcccccocviviiiiiiniiiiiiniiiii, 34
Examples 3 and 4 - CPU USagec.cocvevuiiiiiiiiiiiicciciceccec e 36

TIL e 39
7 Activating the Optimizer Compilerccooviiiiiiiiiiiii 41
Macro NTOPT ... 42
Dynamic Profile Parameter OPTcccccccoiiiiiiiiiiiiiiiiiiiiicccce 42

System Command NOCOPTcccciiiiiiiiiii 43

Natural Statement OPTIONSccooiiiiiiiiiiiiic 43

8 Optimizer OPtiONScciiiiiiiiiii 45

List Of OPHONS ...eeiuiiiiiiiiiiiiiciici e 46

ARCH OPHON .. 50
ARROPT OPHON ...cccviiiiiiiiiiiiiiiicicci s 54

PGEN OPHION .ooviiiiiiiiiiiiiiiiciciccc e 55

UNICC OPHON ..ottt 61
Prerequisites for Code Generation with Unicode Operandsccc........ 61
Influence of other Natural Parameterscccociiviiiiiiiiiiiiini 62

9 Performance Considerationsccccoevuiiiiiiiiiiiiiiiiiic 63
FOrmatsc.oooiiiiiiiiiiii 64

ATTAYS 1ottt 64
Alphanumeric Fieldsccccooiiiiiiiiiiiiiiiiiiiii 65

DECIDE ON ...ooiiiiiiiiiiiiiic e 65

Numeric Valuesccccoiiiiiiiiiiiiiiiicc 65

Natural Optimizer Compiler

Variable POSItioNINgccccoviiiiiiiiiiiiiiiiiiii 66
Variable Cachingccooiiiiiiiiii 66
INODBG ...ttt 67
10 LiStNG ZAPS .ooviieiiiiiiieiieie s 69

iv Natural Optimizer Compiler

Preface

General Information

Various aspects of the Natural Optimizer Compiler and how to benefit
most from the Natural Optimizer Compiler.

Using the Optimizer Compiler

Statements and programs used for compilation.

Statistical data on programs suitable for processing by the Natural
Optimizer Compiler: NOCSTAT command.
Examples of when to use the Optimizer Compiler.

Activating the Optimizer
Compiler

How to switch on the Natural Optimizer Compiler.

Optimizer Options

Various options of the Natural Optimizer Compiler.

How to apply PGEN to output generated code and internal Natural
structures for examination.
Influence by other Natural parameters.

Performance Considerations

How to achieve best performance considering data formats, arrays, alpha
fields, DECIDE ON and numeric values.

Listing Zaps

How to receive an overview of the Zaps that have been applied to the
Natural Optimizer Compiler.

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Natural Optimizer Compiler

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Natural Optimizer Compiler 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I NOC - General Information

2 NOC - General Information

m Natural Nucleus OptimiZationooiiiiiiii e e 8

= Natural Optimizer Compiler

NOC - General Information

This documentation for Natural Optimizer Compiler describes various aspects which should be
taken into consideration when the Natural Optimizer Compiler is installed at your site.

In the remainder of the Natural Optimizer Compiler documentation the Natural Optimizer
Compiler is also referred to as NOC, which is the product code.

For an explanation of the format abbreviations used in this documents, see the section Possible
Formats in the Natural Statements documentation.

This section describes various aspects which should be taken into consideration when the Natural
Optimizer Compiler is installed at your site. The information provided in this documentation
helps you to make full use of the benefits offered by the Natural Optimizer Compiler.

Related Documentation:

Installing the Natural Optimizer Compiler on z/OS in the Natural Installation documentation

Natural Nucleus Optimization

The Natural nucleus optimizes simple arithmetic, assignment, and comparison statements by
translating parts of them into machine code. All programs are optimized automatically in this
way.

The following graphic illustrates how the Natural Optimizer Compiler generates machine code
when a Natural object is compiled or executed:

8 Natural Optimizer Compiler

NOC - General Information

Generated

Natural object

FUSER Natural system file
(Adabas, VSAM)

Genarated
Matural object

MNOC-generated
maching code

PERFORM, FETCH, CALLNAT, EXECUTE

Generated
Natural object

Natural buffer pool

Genarated
Matural object

MNOC-generated
maching code

Natural
object source
STOW, CATALOG

Natural Optimizer Compiler

NOC - General Information

Natural Optimizer Compiler

The Natural Optimizer Compiler goes one step further than standard optimization. It compiles
not only simple statements to machine code, but also complex statements and statement sequences.

The compiled code is further optimized as far as array range operations, field concatenation, and
optimum base register assignment are concerned.

All statements (including arithmetic operations) optimized with the Natural Optimizer Compiler
provide the same results as the same statements generated by standard Natural.

To activate the Natural Optimizer Compiler (see the relevant section), use the macro NTOPT in
the Natural parameter module, the dynamic profile parameter OPT, the system command NOCOPT,
or the OPTIONS statement.

All programs that are cataloged (STOW or CATALOG system command) with the Natural Optimizer
Compiler activated are compiled to machine code. This will also result in the object code size of
the programs being larger than usual, depending on how much of the program can be optimized.

A program executed with the RUN system command is compiled to machine code if the Natural
Optimizer Compiler is activated with the system command NOCOPT, the macro NTOPT or the OPTIONS
statement for all or part of the program.

To see if a program is suitable for compilation with the Natural Optimizer Compiler, use the
NOCSTAT command as described in the relevant section.

| Note: The dynamic recatalog feature (profile parameter RECAT set to ON) cannot be used with

programs compiled to machine code.

To execute programs that have been compiled with the Natural Optimizer Compiler, it is not ne-
cessary that the Natural Optimizer Compiler is installed.

10 Natural Optimizer Compiler

I I Using the Optimizer Compiler - Overview

What is Compiled and What is Not
NOCSTAT Command
Displaying the Size of the Machine Code

Optimizer Usage Examples

11

12

3 What is Compiled and What is Not

= Statements Compiled by the Natural Optimizer COMPIIErovviiiiiiiiieee e

= Statements that are Not Compiled

13

What is Compiled and What is Not

The Natural Optimizer Compiler is particularly effective for programs that contain a considerable
amount of data manipulation, such as computation, transfer, and logical condition processing.

This section contains an overview of the statements which are compiled to machine code and those
which are not compiled.

| Note: The options the Natural Optimizer Compiler provides cannot be used for specifying
statements to be optimized as described in the Optimizer Options.

Statements Compiled by the Natural Optimizer Compiler

The Natural Optimizer Compiler compiles the following statements to machine code:

® Statements for Arithmetic and Data Movement Operations:

= ADD

= ASSIGN

= COMPRESS

= COMPUTE

= DIVIDE

" EXAMINE, with the following clauses:
" DIRECTION (with constant values only; that is FORWARD or BACKWARD),
® GIVING NUMBER, GIVING POSITION (also concurrently),
® GIVING LENGTH

" EXAMINE .. FOR FULL <f1d1> REPLACE FULL <f1d2> if the EXAMINE field is of type (Al-
pha/Binary) and the Search/Replace fields have the same length in the range (1:256)

" EXAMINE .. FOR <f1d1> REPLACE <f1d2> if the EXAMINE field is of type (Alpha/Binary)
and the Search/Replace fields are of type (Al) or (B1)

® TRANSLATE INTO (UPPER/LOWER) CASE

Example:

EXAMINE #TEXT FOR #A GIVING NUMBER #NMB1
EXAMINE #TEXT FOR #A GIVING POSITION #POSEX5
EXAMINE #TEXT FOR #A GIVING LENGTH #LGHEX6

Restrictions:
" GIVING INDEX is not optimized.

" operandl and operand4 can be fix array occurences; that is, no ranges are admissible, for
example:

14 Natural Optimizer Compiler

What is Compiled and What is Not

EXAMINE #A(#£J) FOR #B(#K)

® MOVE (ROUNDED, SUBSTRING, BY NAME, LEFT/RIGHT JUSTIFIED,)
" MOVE ALL
" MULTIPLY
® RESET
B SUBTRACT
® Statements for Processing of Logical Conditions:
BIF
® DECIDE FOR
® DECIDE ON
® Statements for Loop Execution:
" FOR
" ESCAPE
B REPEAT

Statements that are Not Compiled

The Natural Optimizer Compiler does not compile the following statements:

= T/O statements (DISPLAY, WRITE, READ/WRITE WORK FILE).
" complex special statements such as SEPARATE.
" statements that pass control to another object such as FETCH, PERFORM, CALLNAT, CALL.

" statements that perform database access (READ, FIND, HISTOGRAM, GET, UPDATE, DELETE, END
TRANSACTION, BACKOUT TRANSACTION)

Natural Optimizer Compiler 15

16

4

NOCSTAT Command
B NVOKING NOCSTAT L.ttt ettt et e et e s e e 18
B GENETAtNG REPOMS ... ittt ettt e e et e e ettt e e e ettt e e e et a e e et ae e 19
B REPOM FOMALS ...ttt e e ettt e e e e e e e 22
= Batch Execution 28

17

NOCSTAT Command

For programs optimized with the Natural Optimizer Compiler, certain statements can be directly
converted into machine code when cataloged. As a result, when executing the optimized objects
with Natural at runtime, the performance can be improved considerably.

The NOCSTAT command analyses cataloged objects and provides statistical information to help
decide whether program statements benefit from optimization with the Natural Optimizer Compiler
and, if so, to what extent they can be optimized.

If a program is cataloged (STOW, CATALL), the Natural compiler generates an internal (pseudo) object
code based on the statements in the source program. In most cases, one source statement is trans-
formed into one pseudo-code instruction. However, for complex statements, such as FOR and
REPEAT, several pseudo-code instructions are generated. The NOCSTAT analyses are based on the
generated pseudo-code instructions. Therefore, the number of statements indicated in the statist-
ical reports may exceed the number of statements in the source program.

Invoking NOCSTAT

> To use the Natural NOCSTAT command

s Enter the direct command NOCSTAT.

The main NOCSTAT screen is displayed:

18 Natural Optimizer Compiler

NOCSTAT Command

16:05:43 **xx%*% NATURAL NOCSTAT COMMAND **#***
Name,
Library SAGTEST_

NOCable Objects only .. _

Qutput Report X Statement Category
_ Statement Type
_ Code Profile

Qutput Destination X Screen
_ CSV to Work File
_ XML to Work File
with XSL

2017-05-29

Progress Control X
Download to PC

Command ===

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit

Generating Reports

Canc

To obtain field-specific help information, either enter a question mark in the relevant field and
press ENTER, or place the cursor in the field and press PF1. Press PF3 to exit NOCSTAT.

The main NOCSTAT menu provides the following options:

You can generate statistical reports for a single program or a set of programs. If you analyze more
than one program at a time, the reports are produced in series. When you have finished looking
at one report, press ENTER to view the next report.

Explanation

Name

Enter a name or a range of names to specify the program(s) you want to examine:

value is any combination of one or more characters.

value Single program.
* All programs.
value* All programs whose names begin with va/lue.

Natural Optimizer Compiler

19

NOCSTAT Command

Destination

Field Explanation
value> All programs whose names are greater/equal value.
value< All programs whose names are less/equal value.
Library Enter the name of a library or specify a range; the same applies as described for the Name
field above.
The current library is the default.
NOCabTe Mark this option to exclude programs already compiled with the Natural Optimizer
Objects Compiler.
only
Otherwise, the NOCSTAT command selects all Natural programs specified in the Name and
Library fields by default, including NOC-compiled programs.
Output Mark any of the options to select statements by category, type or code profile.
Report
See Statement Category, Statement Type and Code Profile below.
Output Mark any of the following options to determine the output format and destination:

Screen Displays the report on the screen or writes the report data

to PrintFile 7if Download to PCisselected for processing.
CSV to Generates spreadsheets with comma-separated values.
Work File

The report data is written to either of the following files:

1. Work File 7 if running online and Download to PCis
selected.
2. Work File 1 in all other cases.

Use the file extension . csv to write the work file directly to
your PC for further processing.

You can only route reports to a PC if Entire Connection is
installed.

XML to Generates XML documents.

Work File
The report data is written to either of the following files:

1. Work File 7 if running online and Download to PCis
selected.

2. Work File 1 in all other cases.

Use the file extension . txt to write the work file data

directly to your PC and change the file name afterwards to
the extension . xm] for further processing.

You can only route reports to a PC if Entire Connection is
installed.

If a value is entered in the field with XSL, a processing
instruction is added at the top of the XML output document:

20

Natural Optimizer Compiler

NOCSTAT Command

Field

Explanation

<?xml-stylesheet type="text/xsl1" href="
value "7?>

The value entered should be the absolute or relative URL
of the style sheet, for example:

nocstat.xs]

or

http://natural.software-ag.de/nocstat.xs]

The processing instruction causes the document to be
transformed according to the given style sheet when it is
viewed by an XSLT-capable browser or transformed by a
batch XSLT run. A typical use of this feature is to convert
the output XML to an HTML page.

There are two XSLT style sheets delivered with Natural as
text objects NOCSTLS1 and NOCSTLSZ in the Natural library
SYSEXUEX in the FNAT system file.

NOCSTLS1 provides formatting instructions for report type
Statement Category, NOCSTLS?2 for report type Statement
Type as described below.

Download the style sheets with file extension . xs1 to the
same directory in which the XML work files are stored.

Progress
Control

Only applies in an online environment and if one of the following options is selected for
processing:

1. CSVY to Work File,

2. XML to Work File,

3. Download to PC.

If one of these options is selected, a brief message appears for each program listed in the
generated report.

Download to
PC

Only applies if Entire Connection is installed, and if you run online with Print/Work File 7
defined as the PC file (see the WORK and PRINT profile parameters).

Download report output data with Entire Connection to a PC by using either of the following:

1. Print File 7 for the Screen destination.

2. Work File 7 for CSV or XML output.

Natural Optimizer Compiler 21

NOCSTAT Command

Report Formats

You can choose between three output formats described below to display the statistics NOCSTAT
provides for the statements analyzed. Different report layouts are produced for programs already
optimized with the Natural Optimizer Compiler and for programs to be considered for optimization.
The example reports below show the difference. Press PF3to interrupt report processing and return
to the NOCSTAT menu.

Below is information on:

= Statement Category
= Statement Type
= Code Profile

Statement Category

The statistical report generated with the option Statement Category lists various categories of
statements with the corresponding number of occurrences and the total number of statements
already optimized or suitable for optimization, depending on whether or not the program was
optimized with the Natural Optimizer Compiler.

Example of Program without NOC Optimization:

11:49:46 FHxxxkx NATURAL NOCSTAT COMMAND ****%* 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

No NOC NOCable
Database Loop: 0 0
Database Simple: 0 0
SORT / WORK I/0: 0 0
FOR / REPEAT: 0 1
Screen / Printer: 1 0
String Manipulation: 6 34
Arith / Logical: 0 996
Program Calls: 20 0
Control Transfer: 2 182
Block Start: 1 0
Set Environment: 7 0
System Functions: 2 0
Miscellaneous: 0 1
Total Statements: 1254

NOC optimizable: 1214 (Ratio: 96 %)

Longest NOC Run: 216 Statements

22 Natural Optimizer Compiler

NOCSTAT Command

Example of NOC-Optimized Program:

11:51:25

Library SAGTEST

MCG Options:

xxxxkx NATURAL NOCSTAT COMMAND *A***%*
Name NOCTEST1 Type Program

2017-05-29

(ON,OVFLW, INDX,MIX,I0)

Database Loop: 0
Database Simple: 0
SORT / WORK I/0: 0
FOR / REPEAT: 0
Screen / Printer: 1
String Manipulation: 36
Arith / Logical: 0
Program Calls: 20
Control Transfer: 2
Block Start: 1
Set Environment: 7
System Functions: 2
Miscellaneous: 1
Total Statements: 1255
NOC optimized: 1185 (Ratio: 94 %)
Longest NOC Run: 136 Statements
Report Columns and Fields:
Column Explanation
No NOC Statements not suitable for optimization.
NOCable Statements suitable for optimization.
Note: The number of NOCab1e statements is only a reasonable assumption but
cannot be considered an absolutely reliable value. This is because the NOCSTAT
command cannot perform all analytical queries and, occassionally, very complex
code investigations that definitely decide whether a statement can be optimized
with the Natural Optimizer Compiler.
Field

Database Loop

The number of database statements that generate a processing loop, such as FIND
and READ.

Database Simple

Database statements that do not generate a processing loop, such as STORE,
UPDATE, DELETE and GET.

SORT / WORK 1/0

SORT and work file statements.

FOR / REPEAT

Statements generating loops.

Screen / Printer

Screen and printer 1/O, such as WRITE, DISPLAY and INPUT.

String Manipulation

String statements, such as EXAMINE and COMPRESS.

Natural Optimizer Compiler

23

NOCSTAT Command

Column

Explanation

Arith / Logical

Arithmetic and logical statements, such as MOVE, COMPUTE and IF.

Program Calls

Transfer of control to a subroutine or subprogram, such as PERFORM, CALLNAT
and FETCH.

Control Transfer

Jumps within the program, such as ESCAPE BOTTOM, FOR and REPEAT loops.

Block Start

Non-executed statements that demarcate code blocks, such as DEFINE
SUBROUTINE and AT END. These statements are never optimized because they
are never executed.

Set Environment

Statements that set the environment, such as SET CONTROL, SET GLOBALS and
SET KEY.

System Functions

Statements, such as TOTAL, SUM, COUNT, MAX, MIN and *COUNT.

Miscellaneous

Pseudo-code statements not relevant for optimization and, therefore, ignored by
the NOC.

Totals

Total Statements

The total number of statements found in the program. This number may not
correspond to the actual source statements as described in the introduction to
NOCSTAT command above.

NOC optimized

For an optimized program, these are the actual pseudo-code statements (as
described in the introduction to NOCSTAT command above) that have been
NOC-optimized to machine code.

NOC optimizable

For non-optimized programes, this is the possible number of statements that could
be optimized. The figure may be slightly higher than the actual number, since
certain factors are not considered in the NOCSTAT program. For example, a
SUBSTRING statement that has more than four arrays will be indicated as
“optimizable” though it will not be optimized.

Ratio

Relation between Total Statements and NOC-optimized statements or Total
Statements and NOC-optimizable statements in percent.

Longest NOC Run

NOC-optimized program:

The number of contiguous optimized statements - the fewer fragment sequences,
the better the performance.

Non-optimized program:

The number of contiguous statements to be expected if the program were
optimized.

24

Natural Optimizer Compiler

NOCSTAT Command

Statement Type

The statistical report generated with the option Statement Type lists single statements with the
corresponding number of occurrences and the NOC coding generated for optimized objects.

Example of Program without NOC Optimization:

12:29:23 xxFxxx NATURAL NOCSTAT COMMAND *#**** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

Statement No NOC NOCabTe
MOVE/COMPUTE/ASSIGN 0 615
EXAMINE 6 0
SEPARATE 0 30
COMPRESS 0 4
MOVE TO SYSTEM FUNCTION 2 0
CALLNAT/PERFORM EXTERNAL 17 0
MOVE EDITED 1 0
ELSE/CLOSE LOOP 0 182
ON ERROR 1 0
END 1 0
STOP 1 0
IF 0 51
IF IN REPEAT UNTIL 0 1
REPEAT 0 1
RESET 0 74
IF 0 255
FETCH 3 0
IGNORE 0 1
STACK TOP CMD/DATA 2 0
MCG OPTIONS 1 0
OPTIONS 1 0
SET CONTROL 4 0

Natural Optimizer Compiler 25

NOCSTAT Command

Example of NOC-Optimized Program:

12:31:30 xxxxkx NATURAL NOCSTAT COMMAND *A***%* 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program
MCG Options: (ON,OVFLW,INDX,MIX,I0)

Statement Number
EXAMINE 6
SEPARATE 30
MOVE TO SYSTEM FUNCTION 2
CALLNAT/PERFORM EXTERNAL 17
MOVE EDITED 1
NOC CODE 1183
ON ERROR 1
END 1
STOP 1
FETCH 3
IGNORE 1
STACK TOP CMD/DATA 2
MCG OPTIONS 2
OPTIONS 1
SET CONTROL 4

Code Profile

The statistical report generated with the option Code Profile displays contiguous sequences of
statements grouped by categories in a source program suitable for optimization, or lists the NOC
coding generated for an optimized program. Occurrences are highlighted.

26 Natural Optimizer Compiler

NOCSTAT Command

Example of Program without NOC Optimization:

12:38:52 xxxxkx NATURAL NOCSTAT COMMAND *A***%* 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

Line Statement

0000 ON ERROR

0000 MCG OPTIONS

0000 OPTIONS

0295 CALLNAT/PERFORM EXTERNAL

0295 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0295 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0295 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0295 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0740 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0745 IF <-- NOCabTe
0750 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0755 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0760 CALLNAT/PERFORM EXTERNAL

0765 IF <-- NOCabTe
0770 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0775 ELSE <-- NOCable
0780 MOVE/COMPUTE/ASSIGN <-- NOCabTe
0810 RESET <-- NOCabTe
MORE

Natural Optimizer Compiler 27

NOCSTAT Command

Example of NOC-Optimized Program:

12:39:47 xAFxxx NATURAL NOCSTAT COMMAND *#**** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

Line Statement

0000 MCG OPTIONS

0005 MCG OPTIONS

0000 OPTIONS

0295 CALLNAT/PERFORM EXTERNAL
0295 NOC CODE

0295 NOC CODE

0295 NOC CODE

0295 NOC CODE

0740 NOC CODE

0745 NOC CODE

0750 NOC CODE

0755 NOC CODE

0760 CALLNAT/PERFORM EXTERNAL
0765 NOC CODE

0770 NOC CODE

0775 NOC CODE

0780 NOC CODE

0810 NOC CODE

Batch Execution

Below are job examples for processing NOCSTAT reports in batch mode to create a CSV work file.
After job execution, the work files generated can be transferred from host to PC for further pro-
cessing with standard transfer tools.

Example Job:

//NOCBATCH J0B (NOC,,,30),CLASS=K,MSGCLASS=X 00000100
//NATEX EXEC PGM=NATvrsBA,REGION=6200K,PARM=("IM=D") 00000200
//STEPLIB DD DISP=SHR,DSN=TESTNAT.LOAD 00000300
//CMPRINT DD SYSOUT=X 00000400
//CMWKFO1 DD DSN="NOC.NOCSTAT.OUT",DISP=(NEW,CATLG), 00000500
SPACE=(CYL,(1,1)),UNIT=SYSDA,VOL=SER=SAGOO01 00000600

//SYSOUT DD SYSOUT=X 00000700
//CMSYNIN DD * 00000800
NOCSTAT 00000900
*, library,.X,,,.X 00001000
00001100

28 Natural Optimizer Compiler

NOCSTAT Command

FIN 00001200
/7 00001300

Natural Optimizer Compiler 29

30

5 Displaying the Size of the Machine Code

With the Natural system command LIST DIRECTORY, you can see whether a program has been
compiled to machine code and also the size of the machine code.

> To list compiled programs
= Enter the Natural system command

LIST DIR object-name

The directory information for the specified object will be displayed, showing at the bottom of the
screen the size of the machine code, the 0PT parameters used for the compilation and the Natural
Optimizer Compiler version under which the program was cataloged.

Further details of the LIST command are provided in the System Commands documentation.

31

32

6 Optimizer Usage Examples

= Example 1 - No Improvement ...

= Example 2 - Considerable IMPrOVEMENLcoouiiiiiiiiieci e

= Examples 3 and 4 - CPU Usage

33

Optimizer Usage Examples

The examples below illustrate when to use the Natural Optimizer Compiler to the best advantage
and to give an indication of its power.

Example 1 - No Improvement

Nothing would be gained by using the Natural Optimizer Compiler for the following program,
since it contains a statement that performs database access and an I/O statement (see Statements
that are Not Compiled):

DEFINE DATA LOCAL
1 EMPLOYEES VIEW OF EMPLOYEES
2 JOB-TITLE
2 BIRTH
2 NAME
END-DEFINE
FIND EMPLOYEES WITH JOB-TITLE "PROGRAMMER" OR = "ANALYST'
OR = '"PROGRAMMER/ANALYST'
OR = "SYSTEM ANALYST'
DISPLAY JOB-TITLE BIRTH NAME
END-FIND
END

Example 2 - Considerable Improvement

If the following program is compiled with the Natural Optimizer Compiler, you will see a perform-
ance improvement of approximately 30 % (that is a 30 % reduction in CPU load). The program
performs a statistical analysis of the age of IT-employees. Optimized statements are indicated in
boldface.

In this example, the Natural Optimizer Compiler increases the object size by 20.5 %, due to 952
bytes of additional machine code:

Profile Parameter Setting | Size in Buffer Pool |Size of Machine Code Generated by NOC

OPT=NODBG 5768 952
OPT=0FF 4784 0

34 Natural Optimizer Compiler

Optimizer Usage Examples

DEFINE DATA
LOCAL

1 EMPLOY VIEW OF EMPLOYEES

2 JOB-TITLE
2 BIRTH

I

CDATE

NUMB

SUMM

SQUARE

DEVI
DEVIATION
MEAN

AGEDIS
AGEMAX

AGEH

AGE

AGEDAYS
LINE
REDEFINE LINE
2 POINTS
END-DEFINE

*

L b b b b b b e e e e b e e

(A25)
(D)
(I1)
(D)
(N4)
(P7.2)
(F8)
(F8)
(N3.4)
(P2.3)
(F8/1:70)
(F8)

(P3)

(P3)

(P15)
(A71/1:20)

INIT <1>

(A1/1:20,0:70)

MOVE *DATX TO CDATE

*

FIND EMPLOY WITH JOB-TITLE = "PROGRAMMER' OR = "ANALYST'
OR = '"PROGRAMMER/ANALYST' OR = 'SYSTEM ANALYST'
AGEDAYS:= CDATE - BIRTH
AGE :=AGEDAYS / 365

ADD 1 TO AGEDIS(AGE)

ADD 1 TO NUMB
ADD AGE TO SUMM

COMPUTE SQUARE =

END-FIND

*

/* DISTRIBUTION

SQUARE + AGE * AGE

R R b R b b R b b S b R R b b e i b e i b b e b b S e i R e S i e b b b e b b

* COMPUTE ESTIMATES

R R b R R b R R b b S b R b b e b b R e i b b e b b b e b S R e b b b e e b b b R e b b

*

COMPUTE DEVI = NUMB * SQUARE / (SUMM * SUMM) - 1

COMPUTE DEVIATION

= SQRT(DEVI)

COMPUTE MEAN = SUMM / NUMB

*

R R b R R e b R R S b b e S b b S e S b b e e b b e e b b e b b b S S b S R e b b i e e b b b e b b b

* GRAPHIC DISPLAY

B R R R R b R R b R e R b R i e B R e R e I e e S e e S b b b S S b e b b i b b b b i i e b 4

*

FOR I 1 70

IF AGEDIS(I) > AGEMAX MOVE AGEDIS(I) TO AGEMAX

END-IF
END-FOR

Natural Optimizer Compiler

35

Optimizer Usage Examples

FOR I 1 70
COMPUTE AGEDIS(I) = AGEDIS(I) * 20 / AGEMAX
END-FOR
FOR I 1 70
COMPUTE AGEH = 21 - AGEDIS(I)
IF AGEH < 21 MOVE '*' TO POINTS(AGEH:20,I)
END-IF
END-FOR

*
*hkkhkkhkhkhkhkkhkhkhhkhhhkkhkkhhkhhkhkhkhhkhhhkkhkhkhhhkhkhkhhkhhkhkhhkhhhkhkhhkhhhkhkhhrhhkhkhhkhhkhkhkhitx
* COMPLETE GRAPHIC DISPLAY
khkkhkkhkkhkhkhkhkhkhkhkhkhhkkhkhhkhhkhkhkhhhhhkhkhkhhhkhkhkhhhhkhkhhkhhhkhkhhkhhhkhkhhrhhkhkhhkkikhkhkix

*

MOVE "!' TO POINTS(*,0)

WRITE TITLE LEFT

AGEMAX(EM=999) 20X 'DISTRIBUTION OF IT-EMPLOYEES BY AGE'
WRITE NOTITLE NOHDR

LINEC*) /

/ "MEAN='

Examples 3 and 4 - CPU Usage

The following program illustrates the difference in CPU usage, depending on the options you select
when compiling the program. The table below lists the CPU usage in seconds and percent. The
figures provided in the table were determined during a test run in an IBM z/OS environment.
They can only serve as general orientation, since absolute values vary depending on the hardware
applied.

DEFINE DATA LOCAL

1 411 (I4) INIT <1>
1 412 (I4) INIT <2>
1 411 (I4) INIT <3>
1 4,32 (I4) INIT <4>
1 #F (14)

1 #fARR1 (N7/10,5)

1 ffARR2 (N5/10,5)
END-DEFINE

*

FOR #F = 1 TO 1000000
MOVE #FARRI(#I1,#12) TO #ARR2(#J1.#J2)
END-FOR

*

END

36 Natural Optimizer Compiler

Optimizer Usage Examples

Option CPU seconds |[CPU percentage
OFF 8.78 100
ON 0.63 7.18
INDX 0.85 9.68
QVFLW 1.71 19.48
INDX,QVFLW 2.00 22.78
INDX,QVFLW,NODBG 1.61 18.34
INDX,OVFLW,NODBG,NOSGNTR 1.61 18.34
NODBG 0.44 5.01
NOSGNTR 0.63 7.18
NODBG,NOSGNTR 0.44 5.01
DEFINE DATA LOCAL
1 #I11 (P7) INIT <1>
1 412 (P7) INIT <2>
1 ##1 (N7) INIT <3>
1 42 (N7) INIT <4>
1 #K1 (I4) INIT <5>
1 #K2 (I4) INIT <6>
1 #F (14)
1 #FIELD1 (P5)
1 #fFIELD2 (N5)
1 #FIELD3 (12)
END-DEFINE
*
FOR #fF = 1 TO 500000
*
#FIELDL:= #I1 - #I2 + (13 * 10 / 5)
#FIELD2:= #J1 - #J2 + (13 * 10 / 5)
#FIELD3:= #K1 - #K2 + (13 * 10 / 5)
*
END-FOR
*
END
Option CPU seconds |CPU percentage
OFF 18.61 100.00
ON 4.95 26.60
INDX 4.95 26.60
QVFLW 5.38 28.91
INDX,QVFLW 5.38 28.91
INDX,OVFLW,NODBG 5.26 28.26
INDX,OVFLW,NODBG,NOSGNTR 5.09 27.35

Natural Optimizer Compiler

37

Optimizer Usage Examples

Option CPU seconds | CPU percentage
NODBG 4.79 25.74
NOSGNTR 4.81 25.85
NODBG,NOSGNTR 4.63 24.88
NODBG,NOSGNTR, ZD=0FF 451 24.23
NODBG,NOSGNTR, ZD=0FF,SIGNCHCK=0FF 441 23.70

38

Natural Optimizer Compiler

I11

m 7 Activating the Optimizer COMPIIET ... 41
B 8 OPHMIZET OPLONS ©..viiieiieiiii ittt e e e e e e e e e e e e e et e e e e e e e 45
B 9 Performance CONSIABIAtIONSviiieieei ittt e e et e e e e e e et a e e e e e e e 63
B0 LISHING ZAPS ettt 69

39

40

7 Activating the Optimizer Compiler

® Macro NTOPTcooeovni.

= Dynamic Profile Parameter OPToiiiiiiiiiiii e

= System Command NOCOPT
= Natural Statement OPTIONS

41

Activating the Optimizer Compiler

To activate the Natural Optimizer Compiler (NOC), use one of the methods described in the fol-
lowing sections. The methods are listed from most static to most dynamic.

Before you activate the Natural Optimizer Compiler, you must have a valid license file for the
NOC installed. Trying to activate the NOC without a valid license file results in warnings or errors
at session start. In addition, the NOC is switched off (MCG=OFF) if the license key does not allow
to use the NOC. For information about the steps for installing the Natural Optimizer Compiler
on z/OS, see Installing Natural Optimizer Compiler on z/OS.

All alternatives use the Optimizer options as described in the section Optimizer Options. Using
these options you can control how and when machine code is generated, what tracing options are
to be used and what the target architecture will be. The Optimizer options are the only control
mechanism for the Natural Optimizer Compiler.

Macro NTOPT

With the macro NTOPT in the Natural parameter module, you can activate the Natural Optimizer
Compiler statically for a linked Natural nucleus. Every time this Natural nucleus is started, the
same Optimizer options are used again.

Example 1:

NTOPT "INDX,OVFLW,ZD=0FF"

Example 2:

NTOPT "INDX,OVFLW,ZD=0FF,TRGPT", *
"TRSTMT,OPTLEVO3"'

ey

Note the continuation character in column 72.

See the section Optimizer Options for an explanation of the options setting used.

Dynamic Profile Parameter OPT

When starting a Natural session, you can dynamically activate the Optimizer Compiler by specifying
the Natural profile parameter OPT. As a synonym for 0PT, you can use MCG. The specification of
the parameter module is overwritten. The options are only valid for the current session.

42 Natural Optimizer Compiler

Activating the Optimizer Compiler

Example:

OPT=CINDX,OVFLW, ZD=0FF)

or

MCG=(INDX,OVFLW, ZD=0FF)

See the section Optimizer Options for an explanation of the option setting used.

System Command NOCOPT

When you have started a Natural session, you can invoke the Optimizer command screen with
the Natural system command NOCOPT. The screen monitors the current setting of the Natural Op-
timizer Compiler options as they were specified during Natural startup. You can now modify the
setting online.

The updated parameter setting is only valid for the current session.

Natural Statement OPTIONS

The MCG parameter of the Natural compiler statement OPTIONS provides the most flexible and
powerful control over machine code generation, since different options can be set for individual
statements in a program. So, within one Natural program, the Natural Optimizer Compiler can
be activated and deactivated several times to enclose ranges of statements with different options
settings.

Example

OPTIONS MCG=(OVFLW,INDX,ZD=0FF)

or

Natural Optimizer Compiler 43

Activating the Optimizer Compiler

OPTIONS MCG=0VFLW, INDX,ZD=0FF

The options string of the MCG parameter may start with a plus (+) or minus (-) sign, indicating that
the values of options not mentioned should be left unaltered, and only the options present should
be set (+) or reset (-), for example:

Example:

OPTIONS MCG=+PGEN /* turns tracing on
(statements to be traced)
OPTIONS MCG=-PGEN /* turns tracing off

“” 7

If the string starts with anything other than “+” or “-”, all options are reset before the string is

parsed.

| Note: The Natural statement OPTIONS also provides other Natural compiler parameters than
MCG.

See the section Optimizer Options for an explanation of the options setting used.

Activation of the Optimizer Compiler with OPTIONS MCG results in error NAT7049 if the license
file does not allow to use the Optimizer Compiler.

44 Natural Optimizer Compiler

8 Optimizer Options

List of OptioNSvvvveiieeiiiiee e
ARCH Optionoooiiiiiiiiieeii e,
ARROPT OPHON ©..veeiiiiiieeieiiie e
PGEN Optioncooeeiiiiiiiieeee e
UNICC Option ...oeeeeeeiiiiiiiieeeeee e

Prerequisites for Code Generation with Unicode Operands

Influence of other Natural Parametersccccccovevvnn...

45

Optimizer Options

When the Natural Optimizer has been activated, you can specify checks by setting the options
explained in this section.

The options cannot be used for specifying statements to be optimized.

List of Options

The following table lists and describes the Natural Optimizer Compiler options. Default values
are underlined (this is the value that will be assumed if the option is not present).

A Natural Optimizer Compiler option consists of a string surrounded by brackets or single quotation
marks (except in the Natural OPTIONS statement), with options separated by commas. Some options
have values, while the very existence of some options in the option string is sufficient to modify
the environment.

The following rules apply:

® Optional clauses are surrounded by square brackets [].
® Choices are surrounded by curly braces { }.
1“ | /I.

® Each choice is separated by vertical lines

® Only one of these choices can be specified;
ON is equivalent to Y (Yes),

OFF to N (No).

® Options specified without the optional clause ON or 0FF (if applicable), or their equivalent values,
are interpreted as set to ON. For example, 0VFLW is identical to OVFLW=0N.

" Except for the option 0FF, any specified option switches on optimizing (as if ON was specified)
and the default values apply. For example, INDEX is identical to ON, INDEX.

Option Explanation

ABEND Forces the Natural Optimizer Compiler to generate code which causes Natural
to be abnormally terminated immediately when the ABEND option is encountered
by the Natural Optimizer Compiler during compilation. The option must appear
by itself or it will be ignored. Other parameters are not changed or reset by this
option. This option can be useful for debugging purposes.

ARCH Specifies the architecture level to be used for code generation. For more
information, see ARCH Option in the following section.

ARROPT Specifies the generation to be used for array assignments of the type A(*):=scalar.
For more information, see ARROPT Option in the following section.

CACHE[={ON| QOFF Switches variable caching on or off. See also Variable Caching in the section

[YIN}] Performance Considerations.

46 Natural Optimizer Compiler

Optimizer Options

Option

Explanation

CPU= /370

Specifies the target architecture.

DIGTCHCKL=(ON| OFF
[Y|N}]

Specifies whether the digits of packed and unpacked numeric fields (formats P
and N) are to be checked when moving to another variable of the same type and
precision. For example, if DIGTCHCK is ON and an unpacked numeric variable
(format N) contains an invalid digit, such as X' FA', moving to another unpacked
numeric variable with the same precision will generate a SOC7 (or NAT0954)
error. If DIGTCHCK is OFF, no error is generated but the generated code is much
faster.

ERRDUMP[={ON| QFF
YN}

Specifies whether NOC should abend if an error condition is detected during
the compile phase. This is useful for debugging the Natural Optimizer Compiler
itself.

INDEX[={ON| OFF
[Y|N}]

Specifies whether array indexes will be checked for out-of-bound values in the
optimized code.

See also the following Note.

INDX[={ON| QFF
[Y|N}]

Specifies whether array indexes will be checked for out-of-bound values in the
optimized code.

Additionally, RANGE will be set on. Therefore, this option is equivalent to
INDEX=0ON, RANGE=ON.

See also the following Note.

TOL=(ON| QFE|Y[N}]

Provided for compatibility reasons only. No effect.

LOOPSL={ON| OQFF
[YN)T

Provided for compatibility reasons only. No effect.

MIX[=(ON| OFF [Y[N}]

Provided for compatibility reasons only. No effect.

NODBGL={ON|
OFF|Y[N}]

If NODBG=0OFF /N (default), the Natural Debugger can be used to debug optimized
code (then, additional code is generated to check whether TEST mode has been
set on).

If NODBG=0N/Y, less code will be generated, the program will run faster and
consume less CPU time. On the other hand, the functionality of the Natural
Debugger will be limited, because the Natural Debugger might not receive
control for optimized statements.

See also NODBG in the section Performance Considerations.

NOSGNTRL={ON| OFF
[Y|N}]

Applies to packed numbers only.

If NOSGNTR=0FF (default), signs of positive packed numbers which are the result
of an arithmetic operation or the target of an assignment are set according to
the COMPOPT parameter PSIGNF. If NOSGNTR=0N, the signs resulting from
execution of the generated machine instruction are left unchanged. See also the
section Influence of other Natural Parameters.

ON

Switches on optimizing. If no additional option is specified, the default value
defined for each option is in effect. As indicated in the following Nofte, this may

Natural Optimizer Compiler

47

Optimizer Options

Option Explanation
cause unintended results, in particular regarding the options INDEX, INDX,
OVFLW, and RANGE.

OFF Switches off optimizing.

OPTLEV={ 2|3} Specifies optimization level - roughly equivalent to the number of passes through

the program.

OPTLEV=3 is useful when PGEN is specified, since some branch targets cannot
be determined during the first pass and PGEN output is made during the last
pass. Thus, some values may be shown improperly.

OVFLW[={ON| OFF
[Y[N}]

Specifies whether checks for overflow in arithmetic operations or assignments
will be included in the optimized code.

See also the following Note.

PGEN[={ON| QFF
[Y|N}]

Specifies whether a disassembly of the optimized code should be output. This
option also enables all other tracing options: see PGEN Option in the following
section.

RANGEL={ON| QFF
[Y|N}]

Specifies whether range checks will be performed in operations with arrays.
This ensures that array ranges will have an equal number of elements in
corresponding dimensions of all operands.

See also the following Note.

SIGNCHCKI={ Specifies whether the result of a multiplication with a packed or unpacked

ON|OFF|Y|N}] numeric multiplier should be checked for a negative zero. If zero is multiplied
by a negative number, the MP machine instruction generates a negative zero
result. If STGNCHCK is on, this negative zero is converted to a positive zero. The
check for a negative zero is done for every multiplication with a packed or
unpacked numeric multiplier.

TRENTRY For internal use only. Do not change the setting of this parameter.

UNICC Specifies whether the optimized code is generated for IF and DECIDE statements

with Unicode operands. For more information, see UNICC Option in the
following section.

ZD[={ ON[OFF[Y[N}]

Specifies whether divisors should be checked for zero. If this option is specified,
then code is inserted, so that the program behaves according to the /D profile
parameter of Natural, that is, Natural error NAT1302 is issued or the result is
zero. If this option is not specified, Natural error NAT0954 occurs if the divisor
is zero.

See also ZD - Zero-Division Check in the Natural Parameter Reference
documentation.

Note for INDEX, INDX, OVFLW and RANGE:

If the option INDEX, INDX, OVFLW or RANGE is set, extra instructions are added to the generated code
to detect data overflow and index-out-of-range situations should they occur during program exe-
cution. Although the use of these options slightly increases the generated code, we recommend

48

Natural Optimizer Compiler

Optimizer Options

to use them to guarantee that erroneous programs are detected and cannot lead to unpredictable
results, storage corruptions or abnormal program terminations.

= Example of INDEX and OVFLW
= QOptimum Code Generation

Example of INDEX and OVFLW

DEFINE DATA LOCAL
1 P1 (P1/9)
1 P3 (P3/9)

I (I4)
J (I4)
K (I4)
L (I4)
ND-DEFINE

M — = = .

P1(I:J) := P3(K:L)
END
Explanation of Example

With INDX=0N or INDEX=0N set, code is generated to verify that I, J, K and L are within the ranges
defined for P1 and P3 respectively.

With INDX=0N or RANGE=ON set, code is generated to verify that I:J and K: L denote ranges of the
same length.

With 0VFLW=0N set, code is generated to verify that the value of P3 fits into the corresponding P1
variable.

For example: Value 100 would cause an overflow here.
Example Error Situation:

If one of the occurrences of P3 contains the value 100, with OVFLW=0FF set, the value assigned to
the corresponding P1 occurrence will be zero. If the index variable I is zero or greater than 9, with
INDX=0FF set, storage areas that do not belong to Array P1 will be corrupted. If these options (0VF LW
and INDX) are set to ON, a Natural error occurs like it does in standard Natural runtime.

For the NOC option specified above, additional code is generated. However, this is well com-
pensated for by the advantage of a check that, for example, protects against hard-to-debug errors.
Undetected errors can, of course, lead to unpredictable results.

Natural Optimizer Compiler 49

Optimizer Options

Optimum Code Generation
To assure that the least amount of code is generated and thus achieve optimum performance, use:

OPT="NODBG,NOSGNTR, SIGNCHCK=0FF, ZD=0FF"

However, only apply this setting to objects that have been thoroughly debugged; see also Note
for INDEX, INDX, OVFLW and RANGE.

ARCH Option

The ARCH option specifies the hardware architecture level to be used for generating code for execut-
able Natural objects.

When you specify an ARCH value, the Natural Optimizer Compiler generates newer and faster
machine instructions that can improve the performance of the generated code. You cannot specify
a value that is higher than the architecture level of your current machine. An executable Natural
object cataloged with an ARCH level can only run on a machine with the same or a higher architecture
level. Therefore, we recommend not to use the ARCH option if the cataloged objects are intended
to execute on any machine, especially on a machine with a lower architecture level.

For detailed information on architecture levels, see the related literature from IBM (z/Architecture,
Principles of Operation).

The following architecture levels are supported by the ARCH option of the Natural Optimizer
Compiler:

Architecture Level | IBM Hardware Facility Required

0 Specifies that no architecture level is used. This is the default setting for compatibility
with all mainframe platforms supported by Natural.

lto4 These values are not evaluated and treated as ARCH=0.

5to 6 = z800 or z900

Extended-Translation Facility 2

= 2890 or z990
HFP Multiply-and-Add/Subtract Facility

7 = z9 to z109
Extended-Immediate Facility

8 = 710
General-Instructions-Extension Facility
Execute-Extensions Facility

9 = zEnterprise 196

50 Natural Optimizer Compiler

Optimizer Options

Architecture Level | IBM Hardware Facility Required

Load/Store-on Condition Facility
Floating-Point-Extension-Facility
Distinct-Operands Facility
High-Word-Facility

10 = zEnterprise EC12 (zEC12)
Decimal Floating-Point Facility
Decimal Floating-Point Zoned-Conversion Facility

11 ® zEnterprise z13
Decimal Floating-Point Packed-Conversion Facility

12 = zEnterprise z14
Vector Packed-Decimal Facility

| Note: With an ARCH value greater zero, the Natural Optimizer Compiler generates instructions

up to the facility level described in the table above. An ARCH value higher than the architecture
level of the underlying machine is rejected at compile time. The attempt to start a program
compiled with an ARCH level on a machine with a lower architecture level, causes a NAT1394
runtime error. You can display information on the current machine by using the TECH system
command.

This section covers the following topics:

= Support for Architecture Level 10

= Support for Architecture Level 11

= Support for Architecture Level 12

= Compatibility for Architecture Level 10 and 11
= Compatibility for Architecture Level 12

Support for Architecture Level 10

When ARCH=10 is set, the Natural Optimizer Compiler generates instructions provided by the
Decimal-Floating-Point (DFP) Zoned-Conversion Facility for the numeric operations described in
the following section. This can significantly improve the execution speed for statements that use
these operations.

Operations Optimized by ARCH=10
The following arithmetic operations on variables of the Natural data formats I (integer), N
(numeric unpacked) and P (packed numeric) benefit from ARCH=10:

" Value assignments:

P:=1

Natural Optimizer Compiler 51

Optimizer Options

P:=N
N:=I
N:=N

N:=P only if the number of packed digits is less than or equal to 15.

I:=N

" Arithmetic operations, such as ADD, SUBTRACT, DIVIDE and MULTIPLY statements, but only if
both of the following conditions apply:

At least one of the operands used is in the format N or L
The operation result does not exceed 34 (integer + precision) digits.

® Comparisons, such as IF and DECIDE statements, but only if both of the following conditions

apply:

At least one of the operands used is in the format N.
Both operands are in different formats.

Support for Architecture Level 11

When ARCH=11 is set, the Natural Optimizer Compiler uses machine instructions introduced with
the DFP Packed-Conversion Facility. In addition to the numeric operations optimized with ARCH=10,
ARCH=11 also optimizes operations that use packed variables only.

Support for Architecture Level 12

When ARCH=12 is set, the Natural Optimizer Compiler generates machine instructions newly intro-
duced with the Vector-Packed-Decimal Facility (VPD) in the z14 hardware class. This can improve
the execution speed for assignments, comparisons, and calculations if at least one packed operand
is involved.

VPD machine instructions are generated for the same Natural operations described for Architecture
Level 11, except they are applied only to arithmetic operations whose results do not exceed 31
(integer + precision) digits.

52 Natural Optimizer Compiler

Optimizer Options

Compatibility for Architecture Level 10 and 11

When ARCH=10 is used, the Natural Optimizer Compiler generates machine instructions introduced
with the Decimal-Floating-Point (DFP) Zoned-Conversion Facility, DFP Packed-Conversion Facility
or the Vector Packed-Decimal Facility (VPD). These instructions execute faster than the standard
machine code instructions for arithmetic operations, but they do not accept data which is improper
in terms of the zoned numeric data type (N).

This may cause runtime errors, when an N-field is defined within a REDEFINE section of an alpha
or binary variable and the N-field is not properly initialized before used in an arithmetic operation.

A numeric zoned field carries one digit in one byte. Usually, each byte contains x'F” in the left
halfbyte (Zone bits) and the digit value (0-9) in the right halfbyte (Numeric bits). This applies for
all bytes, except for the last one, which contains (A-F) in the left halfbyte (Sign bits).

A sign halfbyte (C,A,FE) represents a positive value, whereas (B,D) stands for a negative value.

A value other than (0-9) inside the numeric halfbytes (N) and a value other than (A-F) inside the
sign halfbyte (S) is considered invalid. The data inside the zone halfbytes (Z) is not regarded by

arithmetic conversion instructions and can have any value (0-F).

Example for a variable defined as (N6):

ZN\ZN|ZN N \ZN \SN| - Signis ValUe 1S \\Works with ARCH<=9 |Works with ARCH>=10
F1 |F2 |F3 |F4 |F5 |F6 | F=positive | 123456, ok yes yes

F3 |F2 |F6 |F3 |F3 |D2|D=negative| 323662, ok yes yes

40 40 |40 (40 |40 |40 | 4=invalid 000000, ok yes NAT7024

00 (00 {00 |00 |00 |00 | O=invalid 000000, ok yes NAT7024

12 |13 |14 |15 |16 |17 | l=invalid 234567, ok yes NAT7024

51 |6B |72 |7A |12 |F1 | F=positive |1B2A21, invalid NAT0954 NAT7024

When ARCH=9 (or lower) is used, invalid sign halfbytes (0-9) are automatically corrected by the
generated code to a positive sign (F). This turns N-fields with a blank contents into valid data with
value zero. The same applies for Hexa zero data.

When ARCH=10 (or higher) is used, invalid sign halfbytes (0-9) remain unchanged and lead to a
program check (Data exception) when accessed by a DFP or VPD instruction. If such an abend
occurs, Natural issues a NAT7024 error instead of a NAT(0954 to clearly indicate that the error is
caused by an N-variable that does not contain valid numeric data.

If a numeric halfbyte (N) contains a value other than (0-9), a program check (Data exception)
happens regardless of the ARCH level used.

Natural Optimizer Compiler 53

Optimizer Options

Conclusion:

Do not use ARCH=10 (or higher) to catalog a program which operates unclean numeric data, with
a sign value other than (A-F).

For example:

OPTIONS MCG=(PGEN,ARCH=9)
DEFINE DATA LOCAL

1 A (A6)
1 REDEFINE #A

2 N (N6)
END-DEFINE /* ARCH=9 ARCH=10
#A := H'F1F2F3F4F5F6" ADD 1 TO #N WRITE #N /* ok ok
#A := H'F3F2F6F3F3D2"' ADD 1 TO #N WRITE #N /* ok ok
#A := H'404040404040" ADD 1 TO #N WRITE #N /* ok NAT7024
#A := H'000000000000" ADD 1 TO #N WRITE #N /* ok NAT7024
#A := H'121314151617" ADD 1 TO #N WRITE #N /* ok NAT7024
fiA := H'516B727A12F1' ADD 1 TO #N WRITE #N /* NAT0954 NAT7024

END

Moreover, when ARCH=10 (or higher) is used, Natural can issue a NAT1305 (truncated numeric
value) instead of a NAT1301 error (intermediate result too large) for the following reason: The
DFP or VPD numeric format is used for calculating intermediate results and an overflow is only
detected at the end of the arithmetic operation when the DFP is converted into the format of the
result.

Compatibility for Architecture Level 12

When ARCH=12 is used, the Natural Optimizer Compiler generates machine instructions introduced
with the Vector Packed-Decimal Facility (VPD) which are compatible in terms of data incorrectness
with the code generated with ARCH=9 or below.

Numeric data fields (N) with incorrect sign representations (0-9) are converted into the positive
sign value (F). This accepts numeric fields with a blank or hex00 content and treats them as value
zero. A data exception (abend) does not occur in these cases.

ARROPT Option

The ARROPT option determines the generation algorithm to be used for array assignments of the
type A(*):=scalar.

Valid values for ARROPT are:

54 Natural Optimizer Compiler

Optimizer Options

Value (Explanation

ON |Recommended setting for arrays with a minimum of 50 occurrences.

ON is the default setting.

OFF |Recommended setting for arrays with less than 50 occurrences.

PGEN Option

The PGEN option causes the Natural Optimizer Compiler to output the generated code and internal
Natural structures. Thus, code and structures can be examined, for example, for bug fixing, per-
formance review and support issues.

An understanding of IBM's /370 assemb]er is required to interpret the results produced by the
PGEN option.

We recommend that you use this option with the assistance of support.

= Setting PGEN

= Sub-Options of the PGEN Option
= Qutput of the PGEN Option

= Working with the PGEN Output

Setting PGEN

To use the PGEN facility, set the PGEN option when activating on the Optimizer Compiler.

Since the buffer is kept in memory; it is possible that the user thread will not be big enough to
hold the trace information. In this case, try setting PGEN on only for the portion of the program
which is to be traced, for example:

OPTIONS MCG=(PGEN=ON, TRGPT=ON) |Turns tracing on, including tracing of the GPT entries
or
OPTIONS MCG=+PGEN,TRGPT

OPTIONS MCG=(PGEN=OFF) Turns tracing off
or
OPTIONS MCG=-PGEN

Various options affect the content of the output. The basic PGEN option causes a formatted listing
of Natural source lines and a disassembly of the corresponding code to be generated and kept in
memory for extraction by the NOCSHOW utility as described below, under Output of the PGEN
Option.

The TRSTMT, TRGPT, TRMPT and TRVDT options cause hex dumps of internal data structures associated
with each line to be output.

Natural Optimizer Compiler 55

Optimizer Options

The TRBASES and TRCACHE options cause information on base registers and cache variables to be
printed out.

Sub-Options of the PGEN Option

The following table describes the options when PGEN=0N. For an explanation of the syntax used
see the introduction to List of Options above.

Option Explanation

LPP={5]. | 5]..]255} |Lines-per-page for the trace output, only used when TREXT=0N.
NOsrcE[={ON| QFE |Y|N}]1 |IfNOsrcE=0FF, the Natural source statement is included in the output.
TRACELEV={ 0 |..[255} Specifies the trace level. Each bit in this one byte value specifies a buffer

type to trace; these bits can be set on by using the TRxxx options as well.

TRBASES[={ON| QEE |Y|N}]|Specifies whether base register allocations are traced.

TRCACHEL={ON| QEE|Y|N}] |Specifies whether CACHE entries are traced.

TREXTL={ON| OFF |Y|N}] |If TREXT=ON, traceis directed to the user exit NOCPRINT as described below.
TRGPTL={ON| OFF |Y|N}] |Specifies whether GPT entries are traced.

TRMPTL=ON| QFF |Y|N}] Specifies whether MPT entries are traced.

TRSTMT[={ON \ OFF |Y \ N}] |Specifies whether STMT entries are traced.

TRVDTL={ON| OFF |Y|N} Specifies whether VDT entries are traced.

See also the examples below.
Output of the PGEN Option

There are two places to where the Natural Optimizer Compiler can direct the output of PGEN:

= |nternal Buffer
m User Exit NOCPRINT

Internal Buffer
The contents of this buffer is overwritten each time a CHECK, CAT, STOW or RUN command is executed.

A system utility NOCSHOW is provided whereby the contents of this buffer can be viewed, searched
or printed.

~ To invoke the NOCSHOW utility

= Enter the direct command NOCSHOW after a CHECK, STOW, CAT or RUN where the Natural Optimizer
Compiler has been active.

The following PF keys are available on the screen:

56 Natural Optimizer Compiler

Optimizer Options

Key |Function

PF2 |Position to top of output

PF4 |Position one line backward

PF5 |Position one line forward

PF6 |Print to report (1)

PF7 |Position one page backward

PF8 |Position one page forward

PF9 |Print via Entire Connection to report (7)

PF10|Scan for text string

PF11|Repeat scan

User Exit NOCPRINT

If TREXT=0N is specified, the Natural Optimizer Compiler passes every output line to the user exit
NOCPRINT instead of adding it to the trace buffer.

NOCPRINT is invoked following normal OS register conventions. Register 1 points to a full word
containing the address of the 81 byte print line with ANSI carriage control characters in position
1. Register 13 points to an area of 18*4 bytes which may be used as a save area. Register 14 contains
the return address and Register 15 contains the entry address of NOCPRINT.

The user exit NOCPRINT can be written in any language which supports the register conventions
described above. It must be linked to the Natural nucleus together with the Natural Optimizer
Compiler nucleus.

Working with the PGEN Output

This section provides hints and explanations on how to interpret the output created with the PGEN
option.

® At the top of the PGEN output are some disassembled lines which do not appear to belong to any
source line. These are the instructions which make up the prologue, which is executed
whenever control passes from non-optimized to optimized code. Permanent base registers are
loaded and control is passed to the correct point in the prologue. See Example Section A below.

" Sometimes a lot of source lines are printed without any code. This indicates that there was no
code required or that these statements are excluded from the NOC optimization. See Example
Section B below.

Moreover, when the code generated for a Natural statement consists only of:

Natural Optimizer Compiler 57

Optimizer Options

BAS R14,RETH
DC X'ooo0!

this indicates a return back to the standard runtime, as this statement could not be NOC optimized
(see line 0170).

= If the NODBG=0FF (default) has been specified, a sequence of instructions is generated at the start
of each Natural statement:

BALR R9,RI1
DC X'....'

This sequence sets the line number (in case of error) and checks whether the TEST mode is
switched ON. Without this sequence, debugging of NOC-compiled statements by the Natural
Debugger is not possible. See Example Section C below.

" Sometimes there is a line break between disassembled lines. This break indicates an internal
statement separation. It happens because often a single Natural statement will generate multiple
internal (pseudo-code) statements.

® The Natural variables operated are inserted in the Assembler code.

® The items on the right side (e.g. “START 8FEC”) are of internal nature. They document the path
how the code was generated by the NOC modules.

® All kind of addresses inside the code are resolved and provided in the form “=(00044)". It
documents the offset in the code to which the branch is executed.

® The first and the last code instruction contains the NOC version used to compile this program.
The meaning of “4700 8410” is NOC V841.

Example Section A:

000000 4700 8410 NOP 1040(,R8) START 8FEC
000004 5880 D354 L R8,CONST D9DC
000008 5870 D370 L R7,LOCAL DIDC
00000C 4810 6006 LH R1,6(,R6) 90A0
000010 1F60 SLR R6,R0 90BA
000012 47F1 AOOO B 0(R1,R10) 90C0
000016 4DEO BO40 BAS R14,RETH RETN FOAA
00001A 0034 DC X'0034" FOCO

58 Natural Optimizer Compiler

Optimizer Options

Example Section B:

0010 0010 OPTIONS MCG=(PGEN,OVFLW, INDX)

0020
0030
0040
0050
0060
0070
0080
0090

DEFINE DATA LOCAL
1 I(14)

1 P(P7.2)

1 T(P7.2)
END-DEFINE

*

SETTIME

*

Example Section C:

0100 FOR I=1 TO 100000 ©
00001C 0D9B BASR R9,R11 MOVE 1724A
00001E 004A DC X'004A" 17278
000020 D203 7000 8148 MVC 1(4),#KST0148 97D2
000026 47F0 A044 B 68(,R10) =(00044) GOTO EF44
00002A 0D9B BASR R9,R11 ADD 1724A
00002C 006A DC X'006A" 17278
00002E BFOF 7000 ICM RO,B"1111",1 BB20
000032 5A00 8148 A RO,#KST0148 1E4AE
000036 0D90 BASR R9,0 F12A
000038 4710 B15C BO NAT1301 1E9E
00003C BEOF 7000 STCM RO,B'1111',I A9CC
000040 0D9B BASR R9,RI11 IF 1724A
000042 007/C DC X'007C' 17278
000044 BFOF 7000 ICM RO,B'1111",I BB20
000048 5900 819B C RO,#KST019B 3FDA
00004C 47D0 AO54 BNH 84(,R10) =(00054) EF44
000050 47F0 A078 B 120(,R10) =(00078) GOTO EF44 <
0110 ADD 1.00 TO P
000054 0D9B BASR R9,RI11 ADD 1724A
000056 0092 DC X'0092" 17278
000058 FA41 7004 819F AP P(5),#fKSTO19F(2) 20A0
00005E 0D90 BASR R9,0 F12A
000060 4710 B15C BO NAT1301 1071C
000064 910D 7008 ™ P+4,X'0D' 12080
000068 4710 A070 BO 112(,R10) =(00070) 120F6
00006C 960F 7008 01 P+4,X'0F" 1210¢
Natural Optimizer Compiler 59

Optimizer Options

0120 END-FOR

0130 *

000070
000072
000074

0140 T:

000078
00007A
00007C
000080

000084
00008A
00008E
000092
000094
000098
00009C
0000AO
0000A6
0000A8
0000AC
0000BO

0150 T:
0160 *

0000B4
0000B6
0000B8
0000BE
0000C4
0000CA
0000CE
0000D2

0170 DISPLAY '"ELAPSED TIME

0D9B
00A4
47F0

AO2A

=*TIMD(0080)

OD9B
00AE
4DEO
0190

F246
910F
4710
17EE
43E0
43EE
42E0Q
F040
17EE
43E0
43EE
42EQ

I/

OD9B
00CO
F864
FD61
F844
910D
4710
960F

BOD8
B881

7009
700D
AOAQ

700D
B488
700D
7009

700D
B488
700D

10

D100
D100
7009
700D
AOD6
700D

0000D6 4DEO B040

0000DA

00D2

0180 END

0000DC 40D6 D7E3 F844 2000

0000E4 0000 0000
O0O00OE8 40D5 D6C3 F8F4 F140 DC

8190

0002

7009
81A1
D100

BASR R9,RI11 GOTO 1724A
DC X'00A4" 17278
B 42(,R10) =(0002A) EF44 ©
BASR R9,RI11 SYFU 1724A
DC X'00AE" 17278
BAS R14,SYSFUNC 5F1A
DC X'0190B881" 5F28
PACK T(5),#KST0190(7) MOVE ADIS8
™ T+4,X'0F" 12130
BO 160(,R10) =(000AO0) 12176
XR R14,R14 1218E
IC R14,T+4 12194
IC R14,PSGNTR(R14) 121AA
STC R14,T+4 121B2
SRP T(5),2,0 ACA2
XR R14,R14 1218E
IC R14,T+4 12194
IC R14,PSGNTR(R14) 121AA
STC R14,T+4 121B2 <
BASR R9,RI1 DIV 1724A
DC X'00CO" 17278
ZAP OPI1(7),T(5) AC60
DP OP1(7),#KSTO1A1(2) 327A
ZAP T(5),0P1(5) AC60
™ T+4,X'0D" 120B0
BO 214(,R10) =(000D6) 120F6
0I T+4,X'0F" 1210A <
(S)" T
BAS R14,RETH RETN FOAA
DC X'00D2" FOCO
DC X'40D6D7E3F8442000' =" OPT8a..' END 927E
DC X'00000000" nf
X'40D5D6C3F8F4F140" =" NOC841 ' 92E4

60

Natural Optimizer Compiler

Optimizer Options

UNICC Option

The UNICC option controls the generation of optimized code for IF, DECIDE FOR and DECIDE ON
statements that contain Unicode operands.

Valid values for UNICC are:

Value

Explanation

ON

Generates optimized code and checks whether COLLATE=0FF is set (see the CFICU profile parameter
in the Parameter Reference documentation).

If COLLATE=O0N is set, execution of the optimized code will fail with a NAT7023 Natural system
error.

FORCE

Generates optimized code analogous to ON but without COLLATE=0FF check.

The code optimized with FORCE performs better than the code optimized with ON but can cause
wrong results if COLLATE=0N is set.

OFF

Optimized code is not generated.

OFF is the default setting.

Prerequisites for Code Generation with Unicode Operands

The Natural Optimizer Compiler generates optimized code for Natural statements with Unicode
strings if the following requirements are met:

RESET

Statement Requirement
All statements All operands used in the statement must be of the type Unicode.
EXAMINE The ARCH option must be set to a value greater than or equal to 6.
IF = All Unicode character strings must be normalized.
DECIDE FOR ® The ARCH option must be set to a value greater than or equal to 5.
® The UNICC option must be set to ON or FORCE.
DECIDE ON
® The COLLATE option of the CFICU profile parameter must be set to OFF (see the
Parameter Reference documentation).
MOVE

MOVE SUBSTRING

The ARCH option must be set to a value greater than or equal to 5.

Natural Optimizer Compiler 61

Optimizer Options

Influence of other Natural Parameters

The global parameter 7D influences the behavior of the NOC compiler. See the description of the
7D option as described under List of Options above.

The COMPOPT parameter PSIGNF (see also the system command COMPOPT in the Natural System
Commands documentation) influences the behavior by forcing the signs of positive packed
decimal numbers to F if ON, and to C if OFF. The parameter is applied if NOSGNTR=0FF is specified.

See the chart below for packed data (Format P) “:”

NOSGNTR=0FF|and [PSIGNF=0N

All signs are normalized to F (default).

NOSGNTR=0FF |and [PSIGNF=0FF

All signs are normalized to C.

NOSGNTR=0N

All signs are left as they were generated by the last operation.

For numeric data (Format N) the signs are always normalized to F, regardless of the settings of

NOSGNTR and PSIGNF.

62

Natural Optimizer Compiler

9 Performance Considerations

B V/AriabIE POSIIONING ...
B VAMADIE CACNINGvviiiie e

63

Performance Considerations

Formats

Best performance is achieved when you use the data formats packed numeric (P) and integer (14)
in arithmetic operations.

Avoid converting data between the formats packed numeric (P), unpacked numeric (N), integer
(I), and floating point (F), as this causes processing overhead even with optimized code.

As there is no interpretation overhead with optimized code, the differences between the various
data formats become much more prominent: with optimized code the performance improvement
gained by using format P instead of N, for example, is even higher than with normal code.

Example:

A=A+1
In the above numeric calculation

® with non-optimized code, format P executes approximately 13 % faster than format N.

" with optimized code, however, format P executes approximately 56 % faster than format N.

The performance gain which would be achieved by applying the Natural Optimizer Compiler to
this simple statement is

* with unpacked operands (N): 8 times faster

® with packed operands (P): 15 times faster

Arrays

Array range operations, such as
MOVE A(*) TO B(*)

are executed more efficiently than if the same function were programmed using a FOR statement
processing loop. This is also true for optimized code.

When indexes are used, integer format 14 should be used to achieve optimum performance.

64 Natural Optimizer Compiler

Performance Considerations

Alphanumeric Fields

We recommend that you adjust the length of the alphanumeric constant to the length of the variable,
when moving an alphanumeric constant to an alphanumeric variable (format A), or when comparing
an alphanumeric variable with an alphanumeric constant. This will significantly speed up operation,
for example:

ACA5) :="XYZAB'

IF A= "ABC ' THEN ...

is faster than

IF A = "ABC' THEN

DECIDE ON

When using the DECIDE ON statement with a system variable, array or parameter operandl, it is
more efficient to move the value to a scalar variable of the same type and length defined in the
LOCAL storage section.

Numeric Values

When using numeric constants in assignments or arithmetic operations, try to force the constants
to have the same type as the operation.

Rules of Thumb

" Any numeric constant with or without a decimal but without an exponent is compiled to a
packed number having the minimum length and precision to represent the value, unless the
constant is an array index or substring starting position or length, in which case it becomes a
four-byte integer (I4). This rule applies irrespective of the variable types participating in the
operation.

" Operations containing floating point will be executed in floating point. Add E00 to numeric
values to force them to be floating point, for example:

Natural Optimizer Compiler 65

Performance Considerations

ADD 1E0O0 to F(F8)

" Operations not containing floating point, but containing packed numeric, unpacked numeric,
date or time variables will be executed in packed decimal. For ADD, SUBTRACT and IF, force nu-
meric constants to have the same number of decimal places as the variable with the highest

precision by adding a decimal place and trailing zeros, for example:

ADD 1.00 TO P(P7.2)

This technique is unnecessary for MULTIPLY and DIVIDE.

Variable Positioning

To ease the optimization process, try to keep all scalar references at the front of the data section
and all array references at the end of the data section.

Variable Caching

The Natural Optimizer Compiler contains an algorithm to enhance the performance even further.
In terms of performance, a statement will differ depending on the types of operands. The statement
will execute more slowly if one or more of the operands is a parameter, array or scalar field of
Type N (numeric) or combinations of these operands. The NOC analyzes the program flow and
determines which variables with one or more of these characteristics are read two or more times
without being written to. It then moves the value of each variable to a temporary cache area where
it can be accessed quickly under the following conditions:

® The variable is accessed often but seldom modified and
® The variable is an array of any type or a scalar field of Type N (numeric).
Most suitable for variable caching are programs with long sequences that repeatedly access the

same variable, in particular if the variable is an array. Variable caching then avoids complex and
recurring address computation.

66 Natural Optimizer Compiler

Performance Considerations

Example of Variable Caching

The example program displayed below demonstrates the advantage of variable caching. Cataloged
with NODBG (see below) and CACHE=0N, executing this program in a test environment took 47 % of
the time required to execute the program with NODBG and CACHE=0FF. Cataloging the program with
CACHE=O0N, reduces the code generated by the NOC from 856 bytes to 376 bytes.

DEFINE DATA LOCAL
1 ARR(N2/10,10,10)
1 I(I4) INIT <5>
1 J(I4) INIT <6>
1 K(I4) INIT <7>
END-DEFINE
DECIDE ON EVERY ARR(CI,J,K)
VALUE 10 IGNORE
VALUE 20 IGNORE
VALUE 30 IGNORE
VALUE 40 IGNORE
VALUE 50 IGNORE
VALUE 60 IGNORE
VALUE 70 IGNORE
VALUE 80 IGNORE
VALUE 90 IGNORE
NONE IGNORE
END-DECIDE

@ Caution: If the content of a cached variable is modified with the command MODIFY VARIABLE

of the Natural Debugger, only the content of the original variable is modified. The cached
value (which may still be used in subsequent statements) remains unchanged. Therefore,
variable caching should be used with great care if the Natural Debugger is used. See also
the Natural Debugger documentation.

NODBG

Once a program has been thoroughly tested and put into production, you should catalog the
program with the NODBG option as described in the section Optimizer Options. Without debug
code, the optimized statements will execute from 10% to 30% faster.

The code to facilitate debugging is removed when this option is specified, even with INDX or OVFLW
options turned on.

Natural Optimizer Compiler 67

68

10 Listing Zaps

If you want to have an overview of the Zaps that have been applied to the Natural Optimizer
Compiler at your site, use the DUMP system command.

~ To obtain a Zap overview
= Enter the Natural system command
DUMP ZAPS NOC

A list of the Zaps that have been applied is displayed.

If no Zaps have been applied to the Natural Optimizer Compiler, you will receive the appropriate
message.

69

70

	Natural Optimizer Compiler
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I NOC - General Information
	2 NOC - General Information
	Natural Nucleus Optimization
	Natural Optimizer Compiler

	II Using the Optimizer Compiler - Overview
	3 What is Compiled and What is Not
	Statements Compiled by the Natural Optimizer Compiler
	Statements that are Not Compiled

	4 NOCSTAT Command
	Invoking NOCSTAT
	Generating Reports
	Report Formats
	Statement Category
	Statement Type
	Code Profile

	Batch Execution

	5 Displaying the Size of the Machine Code
	6 Optimizer Usage Examples
	Example 1 - No Improvement
	Example 2 - Considerable Improvement
	Examples 3 and 4 - CPU Usage

	III
	7 Activating the Optimizer Compiler
	Macro NTOPT
	Dynamic Profile Parameter OPT
	System Command NOCOPT
	Natural Statement OPTIONS

	8 Optimizer Options
	List of Options
	Example of INDEX and OVFLW
	Optimum Code Generation

	ARCH Option
	Support for Architecture Level 10
	Support for Architecture Level 11
	Support for Architecture Level 12
	Compatibility for Architecture Level 10 and 11
	Compatibility for Architecture Level 12

	ARROPT Option
	PGEN Option
	Setting PGEN
	Sub-Options of the PGEN Option
	Output of the PGEN Option
	Internal Buffer
	User Exit NOCPRINT

	Working with the PGEN Output

	UNICC Option
	Prerequisites for Code Generation with Unicode Operands
	Influence of other Natural Parameters

	9 Performance Considerations
	Formats
	Arrays
	Alphanumeric Fields
	DECIDE ON
	Numeric Values
	Rules of Thumb

	Variable Positioning
	Variable Caching
	Example of Variable Caching

	NODBG

	10 Listing Zaps

