S software~

A SOFTWARE GMBH BRAND

Natural

Debugger

Version 9.2.4

October 2025

ADABAS & NATURAL

This document applies to Natural Version 9.2.4 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1979-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATMF-DEBUG-924-20251013

Table of Contents

PTEfaceeeeiiiiiiie e e vii
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 Debugger Tutorialcccooviiiiiiii 5
PrerequiSitesccociiiiiiiiiiiiii 6
Fundamentals of Debuggingcccccciiviiiiiiiiiiiiiii 6
Session 1 - Analyzing a Natural Error ..o, 7
Session 2 - Using a Breakpointccccovviiiiiiiiiiiiiiiiici e 12
Session 3 - Using a Watchpointccooooviiiiiiiiiiiiicc 18
Session 4 - Tracing the Logical Flow of Programsccccccevviiiiiniiiiniinicnnnennnn. 24
Session 5 - Using Statistics about the Program Executioncccccooiiiiiiiiinins 28
Additional Hints for Using the Debuggerccoceeviiiiiiiiiniiiiiiiccieeeeee, 31
Example SOUICEScocuiiiiiiiiiiiiiiiii i 35
3 Concepts of the Debugger ... 39
Session Control and Control FUNCtioNScccooiiiiiiiiiiiiiiii 40
Debug ENtries/Spiesc.cocvevuiiiiiiiiiiiiiiciccc 41
Debug Break WINAOWcccoioiiiiiiiiiiiiiiiiiicccec e 43
4 Start the Debuggercccoooiiiiiiiiiiiiiiiiii i 45
Debugger under Natural Securityccccocoiiiiiiiiiiiiii 46
Operational ReqUITEMENLScccocuiiiiiiiiiiiiiiiiiii e 46
Invoke the Debuggerc.coooiiiiiiiiii 47
Default OBJectoocviiiiiiiiiiiiiiii 48
5 Switch Test Mode On and Offccoooiiiiiiiiiiiiii 51
6 Debug Environment Maintenancecccoocuieiiiiiiiiiiiiiiiiciiccecee e 53
Set Test Mode ON/OFFc.cccooiiiiiiiiiiiiiccc 54
Load Debug Environmentcccocooiiiiiiiiiiii 55
Save Debug ENvironmentcocceviuiiiiiiiiiiiiiiiiiiiiccicc s 55
Reset Debug Environmentcoccoocvoiiiiiiiiiiiiicccc 56
Delete Debug ENvironmentccccoeviiiiiiiiiiiiiiiiiiiiiiicceccceccccee e 56
Maintain Debug Environments in Different Librariescccoccooiiiin, 57
7 Spy MaINtenanceccccoouiiiiiiiiiiiiiiiiiii e 59
Set Test Mode ON/OFFc.ccooiiiiiiiiiiiiiiiccce 60
ACHVAte SPY .o 60
Deactivate SPYcccuiiiiiiiiiiiiiii i 61
Delete SPY v 61
DiSPlay SPY ..veoiiiiiiiiiiii 61
MOIfY SPY .t 62
8 Breakpoint Maintenanceccooieiiiiiiiiiiiic e 63
Conditions Of USEc.oovuiiiiiiiiiiiiiiiciccc s 64
Set Test Mode ON/OEFFcccccoiiiiiiiiiiiiiiiiiii e 65
Activate Breakpointccooiiiiiiiiiiiiiiiiiiic 65

Debugger

Deactivate Breakpointccccciviiiiiiiiiiiiiiiii 66
Delete Breakpointccooiiiiiiiiiiii 66
Display Breakpointccccoocuiiiiiiiiiiiiiiiiiiii 66
Modify Breakpointccoooviiiiiiiiiii 68
Set BreakPOintcocuiiiiiiiiiiiiiiiiiiciicie e 69
Fields and Columns on Breakpoint Screenscccooveviiiiiiiciiiiciiciieccn, 70
9 Watchpoint Maintenancecccooocuiiiiiiiiiiiiiiiiiii e 73
Set Test Mode ON/OFFc.ccooiiiiiiiiiiiiiiicccec 74
Activate Watchpoint ... 75
Deactivate WatChpointccccoooiiiiiiiiiiiiiiiiiicccc e 75
Delete Watchpointcoooviiiiiiiiiii 75
Display WatChpointccociiiiiiiiiiiiiiiiiiic e 76
Modify Watchpointc.ocoeviiiiiiiiii 78
Set WatChpOiIntcccoiiiiiiiiiiiii 79
Fields and Columns on Watchpoint Screensccccccevviiiiiiniiiiiiiiiiiiiinne 81
10 Call Statistics MaiNtenancecccoviriiiiiiiiiiiiicc 85
Set Test Mode ON/OFF ..o 86
Set Call Statistics On/OSfc.oooviiiiiiiiiiii 86
Display Al ODJECESc..eivuiiiiiiiiiiiieiieee e 87
Display Called ObjJectsccciiviiiiiiiiiiiiiiiiiiiie e 87
Display Non-Called ObjJectsccoieiiiiiiiiiiiiiic e 88
Print ODJECtSooiiiiiiiiiiiiiiiii i 89
11 Statement Execution Statistics Maintenanceccccooviiiiiiiiiiiiiiiii 91
Set Test Mode ON/OFF ..o 92
Set Statement Execution Statistics ON/OFF/COUNTccccoviiiiiiiiiiiiine, 92
Delete Statement Execution Statisticsccccvviiiiiiiiiiiiiiii, 94
Display Statement Execution Statisticsccccceviiviiiiiiiiiiiiiiiiiiie, 95
Print Statements ..o 98
12 Variable Maintenanceccccociiiiiiiiiiiiiiiccec 101
Display User-Defined, Global and DB-Related System Variables 102
Display System Variablescccooiiiiiiiiiiiiiiiiiiiiiii 105
Modify Variable ... 106
13 List ODbJect SOUTCEc..ooiuiiiiiiiiiiiiiiicccc e 107
Maintain Breakpointscccccoiiiiiiiiiiiiiiiiiiiii 109
14 Error Handlingc.coooooiiiiiiiiiic e 111
Errors during Application EXecutionccccoeciiiiiiiiiiiiiiiiniiiiiice, 112
Errors during Debugger Executioncccociviiiiiiiiiiiic 112
15 Execution Control Commandscccooviiiiiiiiiiiiiiiiiicc 115
ESCAPE BOTTOM ...ccoiiiiiiiiiiiiiiiiicici e 116
ESCAPE ROUTINEccooiiiiiiiiiiiiiiiicicic s 116
EXIT e 116
GO s 117
INEXT e 117
RUN L e 117
STEP ..o 117

Debugger

Debugger

STEP SKIPSUBLEVELcooiiiiiiiiiiiiiiiiicicciice e 117
STEP SKIPSUBLEVEL Noouiiiiiiiiiiiiiiiiiicicccce e 118
STOP .o 118

16 Navigation and Information Commandsccccoocieiiiiiiiiiiiii 119
BREAK ..o 120
FLIP oo 120
LAST e s 120
OBJCHAIN ..ot 120
ON/OFF ..ot 121
PROFILEooiiiiiiiiiiiiiieece ettt 121
SCAN L. 122
SCREEN ...ttt 122

SET OBJECT ..ottt 122
STACK .o s 122
SYSVARS ..o 123
TEST OIN/OFF ..ot 123

17 Command Summary and SYntaxcccccceevviiiiiiiiiiiiiiiiii 125
All Debug Commandsccocoiviiiiiiiiiiiicec e 126
Syntax Diagramsccccciiiiiiiiiiiiiiiiiii 131

18 Preparing Natural for Attached Debuggingc.cccoviiiiiiiiiiiiiic, 135
INtroduction ..o 136
Prerequisites for Attached Debuggingcccccoocviiiiiiiiiiiiiiiiiiiiiiiiice, 136
EXAMPIE ..oeeiiiiiic s 137
Debugger v

vi

Preface

The debugger is used to detect, locate and correct program errors, test or optimize program
execution, or analyze a Natural error that interrupts program execution.

Tutorial

First steps with the debugger.

Concepts of the Debugger

Basic concepts of the debugger.

Start the Debugger

Operational requirements and instructions for invoking the
debugger.

Switch Test Mode On and Off

Setting the test mode to activate and deactivate debugging.

Debug Environment Maintenance

Saving and using a predefined debug environment.

Spy Maintenance

Setting, modifying, deleting and activating both breakpoints
and watchpoints.

Breakpoint Maintenance

Setting, modifying, deleting and activating breakpoints.
Explanations of breakpoint screen contents.

Watchpoint Maintenance

Setting, modifying, deleting and activating watchpoints.
Explanations of watchpoint screen contents.

Call Statistics Maintenance

Obtaining statistics about invoked objects.

Statement Execution Statistics
Maintenance

Obtaining statistics about executed statement lines.

Variable Maintenance

Displaying and modifying variables.

List Object Source

Displaying an object source.

Error Handling

Handling errors that can occur during application or debugger
execution.

Execution Control Commands

Debugger commands for program flow control.

Navigation and Information Commands

Debugger commands for screen navigation, object information
and debugger profile settings.

Command Summary and Syntax

All debugger commands and appropriate command syntax.

Preparing Natural for Attached Debugging

Using a debug attach server running under NaturalONE.

Notation vrs or vr

When used in this document, the notation vrs or vr represents the relevant product version (see

also Version in the Glossary).

Vii

viii

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Debugger

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Debugger 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Debugger Tutorial

B PTEIBGUISIEES . oeeii ittt e ettt ettt e e e ettt et e e e et e e e e e e ettt e e e e e e e n bt e e e eaaaan e 6
® Fundamentals Of DEDUGGINGvvvviieiiiiie ettt ettt e e e e e e et e e e e e e e 6
® Session 1 - Analyzing @ Natural EFTOToeei i 7
m Session 2 - USING @ BreaKPOiNtccouuiiiiiiiiii e 12
B Session 3 - Using @ WatChpOintuviiii e 18
= Session 4 - Tracing the Logical FIow Of Programscoooviiiiiiiiiciiiiic e 24
= Session 5 - Using Statistics about the Program EXeCULIONccooiiiiiiiiiiiiiiii e 28
= Additional Hints for USing the DEDUGGETcoiuiiiiiiiiie et 31
B EXAMPIE SOUICES ...ttt ettt et e et e e oot e e e ettt e e e e ettt e e e et e e e e st e e e e nneees 35

Debugger Tutorial

This tutorial introduces the basic features of the debugger and discusses different debugging
methods. It takes you through a simple scenario that demonstrates how the debugger can be used
to analyze runtime errors and control program execution.

It is important that you work through Sessions 1 to 5 in sequence.

) Notes:

1. For ease of use, the tutorial primarily quotes direct commands to demonstrate the debugger
features and not the alternative menu functions.

2. For a full description of all debugger features mentioned in this tutorial, refer to the relevant
sections in the remainder of the Debugger documentation.

Prerequisites

® You should be familiar with programming in Natural.

® Before you start with Session 1, you need to create all example programs (DEBUGI1P and DE-
BUG2P) and subprograms (DEBUGLN, DEBUG2N, DEBUG3N and DEBUG4N) provided in the section
Example Sources later in this tutorial. Save and catalog these objects with the system command
STOW.

Fundamentals of Debugging

The debugger can be used to interrupt the execution flow of a Natural object at a particular debug
event and obtain information on the current status of the interrupted object such as the next
statement to be executed, the value of a variable and the hierarchy (program levels) of objects
called.

You basically need to take the following two major steps to pass control to the debugger for program
interruption:

1. Activate the debugger with the system command TEST ON.

This allows the debugger to receive control for each statement to be executed by the Natural
runtime system.

2. Set one or more debug entries (breakpoints and watchpoints) for the Natural objects to be ex-

ecuted.

This allows the debugger to decide when to take over control from the Natural runtime system
and interrupt the program execution.

6 Debugger

Debugger Tutorial

A Natural error always interrupts the program execution. No debug entry is required then, the
debugger steps in automatically.

The following is an overview of all possible program interruptions:

Program Interruption

Explanation

Breakpoint

Causes a program interruption for a statement line in a Natural object.

The debugger interrupts the program execution whenever the statement line for which
a breakpoint is set is to be executed, that is, before the statement contained in this line
is processed.

Watchpoint

Causes a program interruption for a variable in a Natural object.

The debugger interrupts the program execution whenever the contents of the variable
for which a watchpoint is set have changed, that is, after the statement that references
this variable is processed.

Step mode

Steps through the object during the program execution.

Step mode is initiated by a debugger command and requires that the debugger
previously received control because of a breakpoint or a watchpoint. In step mode, the
debugger interrupts the program execution before each executable statement contained
in this object is processed.

Natural error

Causes an automatic program interruption.

Session 1 - Analyzing a Natural Error

This session describes investigation methods for a Natural error that occurs during program exe-

cution.

~ To simulate a Natural error

= From the NEXT prompt, execute DEBUG1P.

The following Natural error message appears: DEBUGIN 0180 NAT0954 Abnormal termination

SOC7 during

program execution.

The message points to line 180 in the subprogram DEBUGIN: BONUS := SALARY * PERCENT /
100. This indicates that incorrect values are returned for one or more of the variables referenced.
However, at this point, this is no clear evidence of what actually causes the problem; and it
could be difficult to determine the cause if the variable values were retrieved from a database
(as is typical for employee records).

Debugger

Debugger Tutorial

~ To activate the debugger for further problem investigation

1 At the NEXT prompt, enter the following:

TEST ON
The message Test mode started. indicates that the debugger is activated.

Note: TEST ON remains active for the duration of the current session or until you enter
TEST OFF to deactivate the debugger.

2 Again, execute DEBUG1P from the NEXT prompt.

A Debug Break window similar to the example below appears:

to e Debug Break ------------------- +
Break by ABEND SOC7 at NATARI2+2A4-4 (NAT0954)

at 1ine 180 in subprogram DEBUGIN (level 2)

in library DEBUG in system file (10,32).

|
|
|
|
Go |
List break |
Debug Main Menu |
Next break command |
Run (set test mode OFF)
Step mode |
Variable maintenance
|
|
|
|
|

== u»vwox==XTr @

|
|
|
|
|
|
|
|
|
|
|
|
| Code .. G
|

| Abnormal termination SOC7 during program execution
| PF2=Step,PF13=Next,PFl4=Go,PFl5=Menu,PF17=Skip$S

Since a Natural error occurs, the debugger steps in automatically and displays the Debug
Break window.

Additional information on where the error occurs is displayed at the top of the window: the
module (NATARI?2) in the Natural nucleus (helpful for support), the type of object (subprogram)
the library (DEBUG) and the database ID and file number (10, 32) of the system file.

The Debug Break window also provides debugger functions that can be used, for example,
to continue the program execution (Go or Run), invoke the debugger maintenance menu
(Debug Main Menu) or activate step mode. You execute a function by using either the appro-
priate function code or PF key.

8 Debugger

Debugger Tutorial

~ To inspect the erroneous statement line

» In the Code field, replace the default entry G by L to execute the List break function.

The source of DEBUGIN is displayed:

13:48:54 FAFxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUGIN

Bottom of data
Co Line Source Message

0070 2 NUMCHILD (N2) |
0080 2 ENTRYDATE (D) |
0090 2 SALARY (P7.2) |
0100 2 BONUS (P7.2) |
0110 LOCAL |
0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5>
0150 END-DEFINE |
0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
|
|
|
|
|

__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN last Tine
__ 0180 BONUS := SALARY * PERCENT / 100 * NAT0954 *
_ 0190 END-IF

__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA

__ 0210 END

Command ===

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

Tast 1ineindicates that the statement contained in line 170 is the last statement that executed
successfully.

The statement in line 180 which causes the problem is highlighted and annotated with *
NAT0954 =*,

This indicates that the error is caused by either the contents of the variable SALARY or PERCENT.
Most likely, this is SALARY since PERCENT is properly initialized.

> To check the contents of SALARY

1 Inthe Command line, enter the following:

DIS VAR SALARY

A Display Variable screen similar to the example below appears for the variable SALARY:

Debugger 9

Debugger Tutorial

18:59:51 FAAHA NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variable (Alphanumeric) - Object DEBUGIN

Name EMPLOYEE.SALARY
Fmt/Len ... P 7.2
Type parameter

Position
Contents

Command ===

Variable contains invalid data.

SiEER= [PIFIL= = = [PFZ= S S PEe) = = PSS SRl & S P R(E = = S F7/ = = S Rt = S pR) = = SRR 0)= S[PIRILL S SR 2= ==
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

The message Variable contains invalid data. indicates that the contents of the variable,
which seems to be blank, does not match the format of the variable. This becomes clear when
you view the hexadecimal representation of the variable contents as described in the next
step.

2 Press Pr11 (Hex) to display the hexadecimal contents of the variable.
The screen now looks similar to the example below:
11:13:33 xxxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variable (Hexadecimal) - Object DEBUGIN
Name EMPLOYEE.SALARY
Fmt/Len ... P 7.2
Type parameter
Index
Range
Position ..
Contents .. 4040404040
Command ===
Enter=PFl===PF2===PF3===PFl===PF5===PFG===PF7===PFE===PF9===PFL0==PFL11==PFl2===
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc
10 Debugger

Debugger Tutorial

The hexadecimal value shows that the variable is not in packed numeric format, thus leading
to a calculation error during the program execution. DEBUG1P obviously provides DEBUGIN
with an incorrect value for SALARY.

Tip: You can press PF10 (Alpha) to switch back to the alphanumeric representation.

3 Inthe Command line, enter the following:

GO

The command GO returns control from the debugger to the Natural runtime system, which
continues the program execution until the end of the program or the next debug event. In this
case, thereisno additional debug event and the NEXT prompt appears with the known Natural
error message.

~ To correct SALARY in the object source

1 Open DEBUGLP with the program editor and remove the comment sign (*) entered for SALARY
:= 99000.

2 Save and catalog the program with the system command STOW.

3 Execute DEBUGLP.

The debugger does not interrupt the program though TEST 0N is still set. The program executes
successfully and outputs a report:

Page 1 07-09-06 15:28:06

EMPLOYEE RECEIVES: 100800.00
PLUS BONUS OF: 3465.00

NEXT LIB=DEBUG

Debugger "

Debugger Tutorial

Session 2 - Using a Breakpoint

You can interrupt the program execution at a specific statement line by setting a breakpoint for
this line.

~ To set a breakpoint for a statement line in DEBUG1N

1 At the NEXT prompt, enter the following;:

TEST SET BP DEBUGIN 170

The message Breakpoint DEBUGINO170 set at line 170 of object DEBUGIN. confirms
that a breakpoint with the name DEBUGIN0170 is set for statement line 170 in the DEBUGIN
subprogram.

] Notes:

1. A breakpoint can only be set for an executable statement. If you try to set a statement for
a non-executable statement, an appropriate error message appears.

2. A breakpoint is usually only valid during the current Natural session. If required, you can
save a breakpoint for future sessions: see Saving Breakpoints and Watchpoints in Additional
Hints for Using the Debugger.

2 Execute DEBUGLP.

The debugger now interrupts the program execution at the statement line, where the new
breakpoint is set. The Debug Break window appears:

12 Debugger

Debugger Tutorial

oo Debug Break ------------------- +
Break by breakpoint DEBUGINO170

at 1Tine 170 in subprogram DEBUGIN (level 2)
in library DEBUG in system file (10,32).

Go

List break

Debug Main Menu

Next break command

Run (set test mode OFF)
Step mode

Variable maintenance

= nxu==Xrr @D

The window indicates the name of the breakpoint, the corresponding statement line and object
and the library that contains the object. It also indicates the operational level of subprogram
DEBUGIN.

~ To view the statement indicated in the Debug Break window

s Execute the List break function.

The source of DEBUGIN is displayed on the List Object Source screen:

Debugger 13

Debugger Tutorial

11:36:45 xHxFxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUGIN

Bottom of data
Co Line Source Message

0070 2 NUMCHILD (N2) |
0080 2 ENTRYDATE (D) |
0090 2 SALARY (P7.2) |
0100 2 BONUS (P7.2) |
0110 LOCAL |
0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
0130 1 DIFFERENCE (P3.2) |
0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |
|
|
|
|
|
|

_ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 last Tine
_ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN DEBUGINO170
__ 0180 BONUS := SALARY * PERCENT / 100

0190 END-IF

0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA
0210 END

Command ===

Enter=PFl===PF2===PF3===PFl===PF5===PFE===PF7 == =PFG===PFY===PFLO=-PFLil-==PFl2---
Help Step Exit Last Scan Flip - + Li Br < > Canc

Statement line 170 indicated in the Debug Break window is highlighted. The Message column
indicates the name of the breakpoint (DEBUGIN0170) set for this statement line and the last
statement line executed (line 160 as indicated by Tast 1ine).

Remember: A breakpoint interrupts the program execution before the statement for which the
breakpoint is set is processed.

There are several direct commands you can enter on the List Object Source screen to obtain
more information on the current object. As an example, you can view all variables as described
in the following step.

~ To display a list of variables contained in DEBUGLN

In the Command line, enter the following:

DIS VAR

A Display Variables screen similar to the example below appears:

14

Debugger

Debugger Tutorial

11:06:13 xHxFxxx NATURAL TEST UTILITIES ***** 2007-09-06

Test Mode ON - Display Variables (Alphanumeric) - Object DEBUGIN
A1l

Co Le Variable Name F Leng Contents Msg.

1 EMPLOYEE

__ 2 NAME A 20 MEIER

__ 2 ENTRYDATE D 1989-01-01

__ 2 SALARY P 7.2 99000.00

__ 2 BONUS P 7.2 *** ipvalid data ***

_ 1 TARGETDATE D 2009-01-01

__ 1 DIFFERENCE P 3.2 20.00

__ 1 PERCENT P 2.2 3.50

Command ===

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Zoom Flip - + Li Br Alpha Hex Canc

The screen lists all variables defined in DEBUGIN. You can neglect the remark invalid data
for BONUS. In this case, it is not essential whether BONUS is properly initialized since it is used
as a target operand only. However, to exercise another debugger command, change the contents
of BONUS in the following step.

~ To check and modify the contents of BONUS

1 Inthe Co column, next to BONUS, enter the following:

MO

Or:

In the Command line, enter the following;:

MOD VAR BONUS

A Modify Variable screen similar to the example below appears:

Debugger 15

Debugger Tutorial

11:29:50 xHxFxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Modify Variable (Alphanumeric) - Object DEBUGIN

Name EMPLOYEE.BONUS
Fmt/Len ... P 7.2
Type parameter

Position .. 1
Contents

Command ===

Variable contains invalid data.

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PFl0--PF11--PF12---

Help Step Exit Last Save Flip Li Br Alpha Hex Canc
2 You can use the hexadecimal display to verify that the variable is not in packed numeric
format. Press PF10 (Alpha) to switch back to the alphanumeric representation.
3 Inthe Contents field, enter a value in packed numeric format, for example, 12345.00 and
press PF5 (Save).
The screen now looks similar to the example below:
16 Debugger

Debugger Tutorial

11:50:00 FAAHK NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variable (Alphanumeric) - Object DEBUGIN

Name EMPLOYEE.BONUS
Fmt/Len ... P 7.2
Type parameter

Position ..
Contents .. 12345.00

Command ===

Variable BONUS modified.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

A message confirms the modification of Contents.

4 Press Pr9 (Li Br) or pF3 (Exit).

The List Object Source screen appears.

5 In the Command line, enter the following:

GO

The debugger returns control to the Natural runtime system, which finishes executing DE-
BUGTIP since no further debug event occurs. The report produced by the program is output:

Page 1 07-09-06 10:02:51
EMPLOYEE RECEIVES: 100800.00

PLUS BONUS OF: 3465.00
NEXT LIB=DEBUG

6 Before you continue with the next session, delete all current breakpoints by entering the fol-
lowing at the NEXT prompt:

TEST DEL BP * =

Debugger 17

Debugger Tutorial

A message appears confirming that all breakpoint (in this case, only one breakpoint) are de-
leted.

Session 3 - Using a Watchpoint

DEBUGLP and DEBUGLN perform a calculation for a single employee's bonus and salary payment. If
multiple employee records were processed, you would probably test whether the variable BONUS
isnow updated correctly. This is done by setting a watchpoint for this variable. A watchpoint allows
the debugger to interrupt the program execution when the contents of the specified variable
change.

~ To set a watchpoint for the variable BONUS

1 At the NEXT prompt, enter the following:

TEST SET WP DEBUGIN BONUS

The message Watchpoint BONUS set for variable EMPLOYEE.BONUS. confirms thata
watchpoint is set for the variable BONUS in the DEBUGIN example subprogram.

] Notes:

1. If you enter a debugger direct command in the Command line of a debugger screen, you
must omit the keyword TEST. For example, instead of TEST SET WP DEBUGIN BONUS, you
would then enter SET WP DEBUGIN BONUS only.

2. A watchpoint is usually only valid during the current Natural session. If required, you can
save a watchpoint for future sessions: see Saving Breakpoints and Watchpoints in Addi-
tional Hints for Using the Debugger.

2 Execute DEBUG1P from the NEXT prompt.

The debugger interrupts the program execution at the new watchpoint and invokes the Debug
Break window:

18 Debugger

Debugger Tutorial

fFe=====c=cc----===== Debug Break ------------------- +
Break by watchpoint BONUS

at 1ine 180 in subprogram DEBUGIN (level 2)

in Tibrary DEBUG in system file (10,32).

|
|
|
|
Go |
List break
Debug Main Menu |
Next break command
Run (set test mode OFF)
Step mode |
Variable maintenance
|
|
|
|
|

= unwox==Xr @

The window indicates that a watchpoint was detected in line 180. This line contains the
statement that processes the variable BONUS.

The debugger interrupted the program execution after the statement for BONUS was processed.
Only then could the debugger recognize that the contents of the variable had changed.

3 Execute the List break function.

The List Object Source now looks similar to the example below:

Debugger 19

Debugger Tutorial

16:24:46 xHxFxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUGIN

Bottom of data
Co Line Source Message

0070 2 NUMCHILD (N2) |
0080 2 ENTRYDATE (D) |
0090 2 SALARY (P7.2) |
0100 2 BONUS (P7.2) |
0110 LOCAL |
0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5>
0150 END-DEFINE |
0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
|
|
|
|
|

_ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN DEBUGINO170
__ 0180 BONUS := SALARY * PERCENT / 100 BONUS
0190 END-IF

0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA
0210 END

Command ===
Enter=PFl===PF2===PF3===PFl===PF5===PFE===PF7 == =PFG===PFY===PFLO=-PFLil-==PFl2---
Help Step Exit Last Scan Flip - + Li Br < > Canc

The statement which references the variable BONUS is highlighted and the Message column
indicates the name of the watchpoint set for the variable.

~ To check for changes in BONUS

In the Command line, enter the following:

DIS VAR BONUS

The Display Variable screen appears and displays a value of 3465.00 in the Contents field.
This shows that the contents of the variable BONUS have changed.

Press PF3 (Exit) to return to the List Object Source screen.

> To check for changes in SALARY

1 Totest the contents of the variable SALARY in a later step, set a breakpoint for SALARY by entering
the following in the Co column of line 200:
SE
From the List Object Source screen, a line command such as SE is a convenient alternative to
using the SET BP direct command.

20 Debugger

Debugger Tutorial

The Message column indicates that a breakpoint (BP) is set for line 200:

17:55:58 *FHxxxx NATURAL TEST UTILITIES *****
Test Mode ON - List Object Source -
Co Line Source
__ 0070 2 NUMCHILD (N2)
__ 0080 2 ENTRYDATE (D)
__ 0090 2 SALARY (P7.2)
__ 0100 2 BONUS (P7.2)
__ 0110 LOCAL
_ 0120 1 TARGETDATE (D) INIT <D'2009-01-01"'>
_ 0130 1 DIFFERENCE (P3.2)
_ 0140 1 PERCENT (P2.2) INIT <3.5>
_ 0150 END-DEFINE
_ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365
__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN
__ 0180 BONUS := SALARY * PERCENT / 100
_ 0190 END-IF
0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA

0210

Command

END

2007-09-06
Object DEBUGIN
Bottom of data

Message

DEBUGINO170
BONUS

BP set

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Step Exit Last Scan Flip - 4 Li Br < > Canc
2 Inthe Command line, enter the following:
GO
The Debug Break window appears:
Debugger 21

Debugger Tutorial

fFe=====c=cc----===== Debug Break ------------------- +
Break by breakpoint DEBUGIN0200

at 1ine 200 in subprogram DEBUGIN (level 2)

in Tibrary DEBUG in system file (10,32).

|
|
|
|
Go |
List break
Debug Main Menu |
Next break command
Run (set test mode OFF)
Step mode |
Variable maintenance
|
|
|
|
|

= unwox==Xr @

3 Execute the List break function.

The List Object Source screen now looks similar to the example below:

10:49:31 waswasss NATURAL TEST UTILITIES s 2007-09-06
Test Mode ON - List Object Source - Object DEBUGIN

Bottom of data
Co Line Source Message

0070 2 NUMCHILD (N2)

0080 2 ENTRYDATE (D)

0090 2 SALARY (P7.2)

0100 2 BONUS (P7.2)

0110 LOCAL |

0120 1 TARGETDATE (D) INIT <D'2009-01-01"'>

0130 1 DIFFERENCE (P3.2)

_ 0140 1 PERCENT (P2.2) INIT <3.5>

0150 END-DEFINE |

0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
|
|
|
|
|

_ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN DEBUGINO170
__ 0180 BONUS := SALARY * PERCENT / 100 last Tine
_ 0190 END-IF

__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA DEBUGIN0200
__ 0210 END

Command ===

Enc@r=PFl===PF2===PF3===PFl===PF5===PFE===PF7 == =PFE===PFY===PFLO==PFLL-=PFl2---
Help Step Exit Last Scan Flip - + Li Br < > Canc

Since this is a breakpoint, the statement that references (and updates) SALARY has not yet been
executed. As a result, the contents of the variable have not changed.

22 Debugger

Debugger Tutorial

4 Inthe Command line, enter DIS VAR SALARY to verify that the contents of SALARY are un-
changed.

The variable screen proves that SALARY still contains 99000, the initial value assigned in
DEBUGILP.

5 To view the update of the variable contents, step to the next statement by choosing either of
the following methods:

In the Command line, enter the following:

STEP
Or:
Press Pr2 (Step).

The screen now looks similar to the example below:

13:38:24 waswasss MATURAL TEST UTILITIES s 2007-09-06
Test Mode ON - List Object Source - Object DEBUGIN

Bottom of data
Co Line Source Message

0070 2 NUMCHILD (N2)

0080 2 ENTRYDATE (D)

0090 2 SALARY (P7.2)

0100 2 BONUS (P7.2)

0110 LOCAL |

0120 1 TARGETDATE (D) INIT <D'2009-01-01">

0130 1 DIFFERENCE (P3.2)

_ 0140 1 PERCENT (P2.2) INIT <3.5>

0150 END-DEFINE |

0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
|
|
|
|
|

_ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN DEBUGINO170
__ 0180 BONUS := SALARY * PERCENT / 100

_ 0190 END-IF

__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA last line
__ 0210 END step mode
Command ===

Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

You skipped one line and processed the next executable statement in line 200, which updates
SALARY. The Message column indicates that step mode is set. In step mode, the debugger
continues the program execution at the next executable statement.

6 In the Command line, enter DIS VAR SALARY to check the variable contents.

Debugger 23

Debugger Tutorial

The Display Variable screen appears and displays a value of 100800. 00 in the Contents field.
This proves that the contents of the variable SALARY have changed.

In the Command line, enter the following:

GO

The debugger returns control to the Natural runtime system, which finishes executing DEBUGLP
since no further debug event occurs. The report produced by the program is output.

Session 4 - Tracing the Logical Flow of Programs

This session describes debugging methods you can use to better understand, overview and control
a complex Natural application with numerous objects.

The session starts out with instructions for analyzing the logical flow of an application on the
statement level. It then demonstrates how breakpoints can be used to find out the sequence in
which programs are executed.

The instructions in this session are based on a simple (but sufficient for demonstration) example
application that consists of one program (DEBUG2P) and three subprograms (DEBUG2N, DEBUG3N and
DEBUGAN).

~ To set a breakpoint at program begin or end

1 Set a breakpoint for DEBUG2P by entering the following at the NEXT prompt:
TEST SET BP DEBUG2P BEG
The message Breakpoint DEBUG2P-BEG set at line BEG of object DEBUG2P. confirms
that a breakpoint is set in DEBUG2N.
Using the keyword BEG instead of a specific line number has the effect that the breakpoint is
set at the beginning of the program, that is, for the first statement to be executed. This can
even be the DEFINE DATA statement, for example, if an INIT clause is used, which generates
an executable statement when the program is cataloged.

- Tip:

You can also specify the keyword END to set a breakpoint for the last statement to be executed.
This can be the END statement but also the FETCH or CALLNAT statement.

2 Execute DEBUG2P.
The Debug Break window appears:

2% Debugger

Debugger Tutorial

fFe=====c=cc----===== Debug Break ------------------- +
Break by breakpoint DEBUG2P-BEG

at 1ine 130 in program DEBUG2P (level 1)

in Tibrary DEBUG in system file (10,32).

|
|
|
|
Go |
List break
Debug Main Menu |
Next break command
Run (set test mode OFF)
Step mode |
Variable maintenance
|
|
|
|
|

= unwox==Xr @

The debugger now steps in at the first breakpoint set for the program.

3 Execute the List break function to check the source and see that the debugger now steps in
at the first executable statement NAME := 'MEIER'.

~ To step through an application

1 Onthe List Object Source screen, set step mode by either pressing Pr2 (Step) or entering STEP
in the Command line.

The last statement executed is annotated with Tast 1ine. The next statement to be executed
is highlighted and annotated with step mode.

Tip:

If you do not want the debugger to pause at every single statement but step through an ap-
plication more quickly, in the STEP command, specify the number of statements you want to
skip, for example: STEP 2 or STEP 10.

2 Press rr2 (Step) repeatedly until the CALLNAT statement is annotated with step mode.
3 Continue with Pr2 (Step) and execute the CALLNAT.

The invoked subprogram DEBUG2N is displayed, where the next statement to be executed is
highlighted:

Debugger 25

Debugger Tutorial

11:59:19 xHxFxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG2N

Top of data
Co Line Source Message

0010 ** SUBPROGRAM DEBUG2N: CALLS 'DEBUG3N' AND 'DEBUGAN'FOR |
0020 B R R R R e e e e e R R b e e e e e e R i e e e e e S e e e e e R R 4 |
0030 DEFINE DATA | step mode
0040 PARAMETER |
0050 1 EMPLOYEE |
0060 2 NAME (A20)

0070 2 NUMCHILD (N2)

__ 0080 2 ENTRYDATE (D)

0090 2 SALARY (P7.2)

0100 2 BONUS (P7.2)

0110 LOCAL |
0120 1 TARGETDATE (D) INIT <D'2009-01-01">

0130 1 DIFFERENCE (P3.2)

0140 1 PERCENT (P2.2) INIT <3.5>

0150 END-DEFINE |

Command ===

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

As an alternative, you could skip the CALLNAT by entering STEP SKIP in the Command line.

You would then only step through the statements in the invoking program DEBUG2 but not
through the statements within an invoked subprogram.

~ To view the levels at which the objects are executed

1

In the List Object Source screen of DEBUG2N, enter the following in the Command line:

0BJCHAIN

A Break Information screen similar to the example below appears:

13:45:34 xxAxENATURAISSTES T UTTEITIES ***=*= 2007-09-06
- Break Information -

No GDA active for the current program.

Break by step mode

at line 30 in subprogram DEBUGZN (level 2)
in library DEBUG in system file (10,32).

In addition to the object information already known, this screen indicates whether the program
references a GDA (global data area).

26

Debugger

Debugger Tutorial

2 Press ENTER to scroll down one page.

The screen now looks similar to the example below:

13:46:34 wevwases MATURAL TEST UTTLITIES s 2007-09-06
- Current Object Chain -

Level Name Type Line Library DBID FNR
2 DEBUG2N Subprogram 0 DEBUG 10 32
1 DEBUG2P Program 170 DEBUG 10 32

This screen indicates the operational levels at which the objects are executed: subprogram
DEBUGZN is executed at level 2 and program DEBUG2P (which invokes the subprogram) is ex-
ecuted at the superior level 1.

3 Press ENTER.

The List Object Source screen appears.

4 In the Command line, enter the following:

GO

The debugger returns control to the Natural runtime system, which finishes executing DEBUG2P
since no further debug event occurs. The report produced by the program is output:

Page 1 07-09-06 10:04:21
EMPLOYEE RECEIVES: 99300.00

PLUS BONUS OF: 3565.00
NEXT LIB=DEBUG

5 Delete all breakpoints currently set by entering the following at the NEXT prompt:

TEST DEL BP * =

A message appears confirming that all breakpoints are deleted.

~ To set breakpoints to follow the program execution

1 At the NEXT prompt, enter the following:

TEST SET BP ALL BEG

The message Breakpoint ALL-BEG set at line BEG of object ALL. appears.

Debugger 27

Debugger Tutorial

This indicates that you have set a breakpoint for the first executable statement of each object
to be executed.

Execute DEBUG2P.

A Debug Break window appears for DEBUG2P.

Execute the Go function repeatedly.

Each time you execute Go, the next object invoked is indicated in the Debug Break window
(DEBUG2N first and then DEBUG3N and DEBUG4N). Thus, you can easily determine which objects

are invoked at what point during the program execution. Additionally, for each object, you
can apply the menu functions of the Debug Break window.

When the NEXT prompt appears, delete all breakpoints currently set by entering the following:

TEST DEL BP * =

A message appears confirming that all breakpoints are deleted.

Session 5 - Using Statistics about the Program Execution

You can use the debugger to view statistical information on which objects are called and how often
they are called. Additionally, you can find out which statements are executed, and how often.

~ To check what objects are called during program execution

1 At the NEXT prompt, enter the following:
TEST SET CALL ON
The message Call statistics started. confirms that the statistics function is activated.
2 Execute DEBUG2P.
The debugger logs all object calls executed, and the report produced by the program is output.
3 Atthe NEXT prompt, enter the following:
TEST DIS CALL
A Display Called Objects screen similar to the example below appears:
28 Debugger

Debugger Tutorial

10:43:47 xHxFxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Called Objects - Object

A1l
Object Library Type DBID FNR S/C Ver Cat Date Time Calls
= DEBUG____
DEBUG2P DEBUG Program 10 32 S/C 4.2 2007-08-30 13:48 1
DEBUG2N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48 1
DEBUG3N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48 1
DEBUG4N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48 1
Command ===

Efter=PFl===PF2===PFI===PFl===PF5===PF6===PF7 == =PFB===PF9===PFLO==PFILL==PFl2===
Help Exit Last Flip 4 Canc

The screen lists all objects executed: the invoking program (DEBUG2P) and all other objects in-
voked (DEBUG2N, DEBUG3N and DEBUG4N). It also indicates how frequently each object is invoked
(CALLS), the type of object called, where the object is stored and under which Natural version,
whether source and cataloged objects exist, and when the object was cataloged.

Press Pr3 (Exit) or PF12 (Canc) until the NEXT prompt appears.

~ To check which statements are executed during program execution

1

At the NEXT prompt, enter the following:

TEST SET XSTAT COUNT

The message Statement execution counting started for Tibrary/object */*. confirms
that the statistics function is activated for all objects contained in the current library and all
steplibs concatenated with this library.

Execute DEBUG2P.

The debugger logs all statements processed by the program before the report produced by
the program is output.

At the NEXT prompt, enter the following;:

TEST DIS XSTAT

A List Statement Execution Statistics screen similar to the example below appears:

Debugger 29

Debugger Tutorial

11:39:10 xHxFxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Statement Execution Statistics - Object

A1l

Co Object Library Type DBID FNR Obj.Called Exec Exec % Total No.

* = n Times able uted Executions

__ DEBUG2P DEBUG Program 10 32 1 8 8 100 8

__ DEBUGZN DEBUG Subprogram 10 32 1 8 8 100 8

__ DEBUG3N DEBUG Subprogram 10 32 1 2 2 100 2

__ DEBUGA4N DEBUG Subprogram 10 32 1 10 7 70 7

Command ===

Efter=PFl===PF2===PF3I===PFl===PF5===PF6===PF7 == =PFB===PF9===PFLO==PFLL==PFl2===
Help Exit Last Flip - 4 Canc

The screen lists the number of calls (0bj. Called n Times), the number of executable state-
ments (Exec able), the number of executed statements (Executed), the percentage of executed
statements as related to the total number of executable statements (%), and the total number
of executed statements (Total No. Executions).

4 Inthe Co column, next to DEBUG4N, enter the following:
DS
A statistics screen similar to the example below appears:
30 Debugger

Debugger Tutorial

12:11:19 *#xxxx NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Statement Lines - Object DEBUGAN
Line Source Count
0010 ** SUBPROGRAM 'DEBUG4N': CALCULATES SPECIAL SALARY INCREASE

0020 KAk Ak Ak kA hkAhhhkh kA hhkhkhhArhhkhkhkhhhhkhhkhhhkhkhhkrhhkhkhkhkhhkhkhkhhhhkhkkhkhkkrhhkhkhtx

0030 DEFINE DATA

0040 PARAMETER

0050 1 SALARY (P7.2)

0060 END-DEFINE

0070 DECIDE FOR FIRST CONDITION 1
0080 WHEN SALARY < 50000 1
0090 SALARY := SALARY + 1800 not executed
0100 WHEN SALARY < 70000 1
0110 SALARY := SALARY + 1200 not executed
0120 WHEN SALARY < 90000 1
0130 SALARY := SALARY + 600 not executed
0140 WHEN NONE 1
0150 SALARY := SALARY + 300 1
Command ===

Emt@r=PFl===PF2===PF3===PFi===PF5===PFo===PF/===PF===PF9===PF10==PF11==PFl2===
Help Exit Last Flip A Canc

The screen indicates how often a statement was executed and the executable statements that
were not processed.

Additional Hints for Using the Debugger

This section provides additional hints for using the debugger.

= Time Stamps of Objects

= Saving Breakpoints and Watchpoints

= Debug Main Menu for Maintenance Functions

= Help for Commands on Maintenance Screens

= Major Functions Available during Program Interruption

= Next Option for Additional Commands During Program Interruption
= Displaying Large Variables and Arrays

= Printing Debugger Statistics

Debugger 31

Debugger Tutorial

= Using the Debugger in Batch Mode
Time Stamps of Objects

A cataloged object that does not exactly correspond to the source object can cause debugging errors.
If you want to guarantee that source and cataloged object correspond to each other, save and
catalog them with the system command STOW.

For details, see the section Operational Requirements.
Saving Breakpoints and Watchpoints

You can save the breakpoints and watchpoints set in the current session as a debug environment
and load this environment for use in a future session. This is helpful if you want to repeatedly test
an application with the same debug entries.

For details, see the section Debug Environment Maintenance.
Debug Main Menu for Maintenance Functions

All debugger maintenance functions, such as setting a breakpoint or creating statistics, can be ex-
ecuted by using either a direct command or the maintenance functions provided in the Debug
Main Menu. You open this menu by entering one of the following:

® TEST
at a command prompt.

= MENU

at the Command line of a debugger screen.
=M

in the Code field of the Debug Break window.

Help for Commands on Maintenance Screens

For a list of direct commands available on a debugger maintenance screen, press Pr1 (Help) or
enter a question mark (?) in the Command line.

A debugger maintenance screen that contains list items usually also provides line commands that
can be used to further process an item. You enter a line command in the Co column, next to the
required item. For a list of valid line commands, enter a question mark (?) in this column.

32 Debugger

Debugger Tutorial

Major Functions Available during Program Interruption

The major functions available during the program interruption are listed in the following section.
They can be executed from either the Debug Break window or the Command line of a debugger
maintenance screen.

Code in Debug |Alternative Direct Function

Window Command

G GO Continues the program execution until the next debug event occurs.

L LIST BREAK Lists the object source at the statement line where the debug event
occurs.

N NEXT Executes the next break command if specified for a breakpoint or

watchpoint. See also Next Option for Additional Commands During
Program Interruption.

R RUN Switches test mode off and continues the program execution.
S STEP Processes the executable statements line by line.
v DIS VAR Displays a list of variables defined for the interrupted object.

Next Option for Additional Commands During Program Interruption

When displaying or modifying a breakpoint or watchpoint, you will notice that the debugger
command BREAK is attached to each of them. This command invokes the Debug Break window
and must not be removed. However, you can specify additional debugger commands to be executed
during the program interruption after the BREAK command. An additional command is executed
when you enter either the command NEXT in the Command line or the function code N in the Debug
Break window.

You enter the debugger commands in the Commands field of the appropriate breakpoint or
watchpoint maintenance screen as shown in the following example:

Debugger 33

Debugger Tutorial

11:38:55 wxxxx NATURAL TEST UTILITIES ****x% 2007-09-06
Test Mode ON - Modify Breakpoint - Object
Spy number 1
Initial state A (A = Active, I = Inactive)
Breakpoint name DEBUGIP0170_ DBID/FNR 10/32
Object name DEBUG1P_ Library DEBUG
Line number 0170
Labelo ...,
Skips before execution .. ____ 0
Max number executions ... 0
Commands ... BREAK
STACK

DIS VAR BONUS

Command ===

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Save Flip Canc

In the example above, the command STACK instructs the debugger to view the Natural stack. The
command DIS VAR BONUS instructs the debugger to display the specified variable. This is helpful,
for example, if you set a breakpoint in a loop and always want to view the value of one particular
variable only. You then do not have to enter the DIS VAR command repeatedly.

For details, see the description of the field Commands in the sections Fields and Columns on
Breakpoint Screens and Fields and Columns on Watchpoint Screens.

Displaying Large Variables and Arrays

The Display Variable screen shows all definitions of a variable and displays its contents in alpha-
numeric or hexadecimal format. For the display features available for large variables, whose contents
extend beyond the current screen or variables with array definitions, see the section Display
Variable - Individual.

34 Debugger

Debugger Tutorial

Printing Debugger Statistics

You can print the statistical reports produced by the debugger or download them to a PC.

For details, see Print Objects in the section Call Statistics Maintenance and Print Statements in the
section Statement Execution Statistics Maintenance.

Using the Debugger in Batch Mode

The debugger is mainly designed for interactive operations in online mode. Although you can, in
principle, execute all debugger features in batch mode, processing online operations in batch (for
example, the use of PF keys) can require complex batch programming. However, there are also
debugger features for which batch processing is a convenient alternative. One example is collecting
and printing statistical data about an application as described in Example of Generating and
Printing Statistics in Batch in the section Batch Processing.

Example Sources

This section contains the source code of the example programs and subprograms required in Ses-
sions 1 to 5.

Program DEBUG1P

** PROGRAM 'DEBUGIP: CALLS 'DEBUGIN' FOR SALARY AND BONUS CALCULATION
khkhkkhkkhkhkhkhhkhkhhkhkhkhkhkhhhkhhkhkhhkhhkhkhkhhhhhkhkhhkhhhkhkhhhhkhkhkhhkhhkhkhkhkhkrhhkhhkhkhhkhkhhkirkikisk
DEFINE DATA
LOCAL
1 EMPLOYEE (A42)
1 REDEFINE EMPLOYEE

2 NAME (A20)

2 NUMCHILD (N2)

2 ENTRYDATE (D)

2 SALARY (P7.2)

2 BONUS (P7.2)
END-DEFINE
NAME = 'MEIER'
NUMCHILD := 2
ENTRYDATE := D'1989-01-01"
* SALARY := 99000
CALLNAT 'DEBUGIN' NAME NUMCHILD ENTRYDATE SALARY BONUS
WRITE 'EMPLOYEE RECEIVES:' SALARY
WRITE ' PLUS BONUS OF:' BONUS
END

Debugger 35

Debugger Tutorial

Subprogram DEBUGLN

** SUBPROGRAM 'DEBUGIN': CALCULATES BONUS AND SALARY INCREASE
Kkhkhkkhkhkkhkhkkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhhkhhkkhhkhhkhkrkhhkhkrkhhkhkhkhhkhrkhhkhkrkhhkhkrkhhkhrkhhrkhkrkhkrkhxk
DEFINE DATA
PARAMETER
1 EMPLOYEE
2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2 BONUS (P7.2)
LOCAL
1 TARGETDATE (D) INIT <D'2009-01-01'>
1 DIFFERENCE (P3.2)

1 PERCENT (P2.2) INIT <3.5>

END-DEFINE

DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365

IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPANY
BONUS := SALARY * PERCENT / 100

END-IF

SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREASE
END

Program DEBUG2P

** PROGRAM 'DEBUGZP': CALLS 'DEBUGZN'FOR SALARY AND BONUS CALCULATION
Sk ok o o o o o ok ok ok ko ok o ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko ok ok o ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok
DEFINE DATA
LOCAL
1 EMPLOYEE (A42)
1 REDEFINE EMPLOYEE
2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)

2 BONUS (P7.2)
END-DEFINE
NAME = 'METER'
NUMCHILD =7
ENTRYDATE := D'1989-01-01"
SALARY := 99000
CALLNAT 'DEBUG2N" NAME NUMCHILD ENTRYDATE SALARY BONUS
WRITE 'EMPLOYEE RECEIVES:' SALARY
WRITE ' PLUS BONUS OF:"' BONUS
END
36 Debugger

Debugger Tutorial

Subprogram DEBUG2N

** SUBPROGRAM DEBUGZ2N: CALLS 'DEBUG3N' AND 'DEBUGAN'FOR SPECIAL RATES
ok o ok ok ok o ok ko ok o ok ok ok ok ok o ko ko ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ko
DEFINE DATA
PARAMETER
1 EMPLOYEE
2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2 BONUS (P7.2)
LOCAL
1 TARGETDATE (D) INIT <D'2009-01-01">
1 DIFFERENCE (P3.2)

1 PERCENT (P2.2) INIT <3.5>
END-DEFINE
DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365
IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPANY
BONUS := SALARY * PERCENT / 100
END-IF
IF NUMCHILD > 0
CALLNAT 'DEBUG3N' NUMCHILD BONUS /* SPECIAL BONUS
END-IF
CALLNAT 'DEBUG4AN' SALARY /* SPECIAL SALARY INCREASE
END ©

Subprogram DEBUG3N

** SUBPROGRAM 'DEBUG3N': CALCULATES SPECIAL BONUS

R R R R B b B R b S B e i e b B b b S b b b e B b b e S i b e e e i b e e b e i S b b b b e i b b
DEFINE DATA

PARAMETER

1 NUMCHILD (N2)

1 BONUS (P7.2)

END-DEFINE
BONUS := BONUS + NUMCHILD * 50
END

Subprogram DEBUG4AN

** SUBPROGRAM 'DEBUGAN': CALCULATES SPECIAL SALARY INCREASE
R R R R R e R R R R R R R R R R e I e e e e b e S e i e b 4
DEFINE DATA
PARAMETER
1 SALARY (P7.2)
END-DEFINE
DECIDE FOR FIRST CONDITION

WHEN SALARY < 50000

SALARY := SALARY + 1800
WHEN SALARY < 70000

Debugger 37

Debugger Tutorial

SALARY :=

WHEN SALARY

SALARY + 1200
< 90000

SALARY := SALARY + 600
WHEN NONE
SALARY := SALARY + 300
END-DECIDE
END
38

Debugger

3 Concepts of the Debugger

m Session Control and Control FUNGHONSeiee e

= Debug Entries/Spies .

= Debug Break Window

39

Concepts of the Debugger

The debugger takes over control of a Natural session for debugging purposes while a Natural
object is executing. This allows you to follow the process flow of a program and perform various
program investigations.

You can specify the places in a program where you want the debugger to pause by setting debug
entries (breakpoints or watchpoints) for that program.

When program execution pauses, you can review the contents of the variables or parameters used
in the program to analyze the program logic, or you can determine the reason for a Natural error.

This section provides general information on the functionality of the debugger.

Session Control and Control Functions

The debugger obtains control over a Natural session when test mode is set to ON (see Switch Test
Mode On and Off). If the profile parameter DBGERR is set to ON (see the Parameter Reference docu-
mentation) the debugger is invoked when a Natural error occurs, irrespective of any debug entries
and the test mode setting (ON or OFF).

When the debugger controls a session, the debugger performs one or more of the following func-
tions:

® Checks debug entries.

* Interrupts a Natural object at a statement line for which a breakpoint was set.

® Interrupts a Natural object when the value of a variable for which a watchpoint was set has
changed.

® Displays information on the debug entries (watchpoint and/or breakpoint) found.

" Provides statistics on the Natural objects called.

® Provides statistics on the statements executed in a Natural object.

® Interrupts a Natural object when a Natural error occurs. See also the section Error Handling.

The following graphicillustrates an example of the process flow when a Natural object is executed
with the debugger:

40 Debugger

Concepts of the Debugger

Natural Object

Statement 1

- Statement 2

Statement 3

Goto
next
statement

Execute
Statement 1

Debug Entries/Spies

Call
- Debugger?

no

yes

MNatural Debugger

Debug entries are also referred to as spies in the debugger environment. Two types of debug
entries (spies) are available: breakpoints and watchpoints.

The following topics are covered below:

= Maintenance and Validation
= Names of Debug Entries

= |nitial or Current State

= Counter for Debug Events

Debugger

41

Concepts of the Debugger

= Commands for Debug Entries
Maintenance and Validation

Debug entries for the current debug session can be set, modified, listed, displayed, activated, de-
activated and deleted by using the appropriate debugger maintenance functions described in the
relevant sections of the debugger documentation. Debug entries can also be saved for future use
as described in Debug Environment Maintenance.

The validity check of debug entries is either performed immediately when a breakpoint or
watchpoint is defined on the appropriate maintenance screen or during program execution.

If a validity check fails during program execution, the note Check for invalid spy definition
appears in the Debug Break window (see Debug Break Window). In addition, the invalid breakpoint
or watchpoint is marked on the relevant breakpoint or watchpoint maintenance screens.

When a debug entry is set or modified, Natural internally stores the library, database ID and file
number where the object is located. The object may be located in the current library or in one of
its steplibs. If an object of the same name is later executed from another library, the corresponding
debug entry is not executed.

Names of Debug Entries

The debugger assigns a name and a unique number (spy number) to each debug entry. The name
assigned to a debug entry (also referred to as spy name) can be either a name specified by the user
or a default name created by the debugger. A debug entry can be selected by its number with the
corresponding debugger commands. If more than one debug entry has to be executed at a specific
statement line, they are executed in ascending order of their numbers.

Initial or Current State

Each debug entry has an initial state and a current state. Possible values are A (active) and I (inact-
ive). The initial value is specified when setting or modifying the breakpoint or watchpoint and
determines the state of the debug entry at environment start or after reset. During the debug session,
the state can be changed with the debug commands ACTIVATE and DEACTIVATE (see also the syntax
diagrams in Command Summary and Syntax).

42 Debugger

Concepts of the Debugger

Counter for Debug Events

Each debug entry has an event count, which is increased every time the debug entry is executed.
A debug entry is not executed if the current state is inactive. The event count of the breakpoint or
watchpoint is not increased either.

The number of executions of a debug entry can be restricted in two ways:
" A number of skips can be specified before the debug entry is executed. The debug entry is then

ignored until the event count is higher than the number of skips specified.

" A maximum number of executions can be specified, so that the debug entry is ignored, as soon
as the event count exceeds the specified number of executions.

Commands for Debug Entries

For each debug entry (breakpoint or watchpoint), up to six debug commands can be specified.
These commands are executed at execution time of the breakpoint or watchpoint. You can use all
debugger commands that can be applied during a debug interrupt. The default command is the
BREAK command, which displays the Debug Break window as shown in the following section.

(Caution: If you delete the BREAK command when setting a debug entry and you do not enter

any command that issues a dialog, there is no way to assume control during program inter-
ruption.

Debug Break Window

When the debugger obtains control of the session, a Debug Break window similar to the example
below appears:

Debugger 43

Concepts of the Debugger

=== Debug Break ------------------- +
Break by breakpoint DEBPGM-ALL

at 1ine 180 in program DEBPGM (level 1)

in library SAG in system file (10,32).

Go

List break

Debug Main Menu

Next break command

Run (set test mode OFF)
Step mode

Variable maintenance

—»nVIo==XTrT O

Code .. G
Note: Check for invalid spy definition.

PF2=Step,PF13=Next,PF1l4=Go,PF15=Menu,PF17=SkipS

The Debug Break window shows the type and name of the debug entry that has caused the break
(that is, the name of the corresponding breakpoint or watchpoint), its source-code line number,
and the name of the interrupted Natural object.

In addition, at the bottom of the Debug Break window, messages may appear that either indicate
a Natural error (see also Errors during Application Execution in Error Message Handling) and/or
the possibility of an invalid debug entry.

The functions provided in the Debug Break window are described in the following table. For
further details, see Execution Control Commands.

Function Code |Description

Go G |Continues the execution of the Natural object up to the next debug entry
specified.

List break L |Lists the code of the Natural object currently active. The last statement

executed is highlighted.

Debug Main Menu M |Invokes the Debug Main Menu which provides all functions needed to
maintain debug entries at which control is to be assumed.

Next break command [N |Executes the next command specified for the current breakpoint or
watchpoint.

Run (set test mode OFF) R |Continues the execution of the Natural object with test mode set off.

Step mode S |Continues the execution of the Natural object in step mode.

Variable maintenance |V |Displays the variables in the Natural object currently active and modifies
the contents of these variables.

44 Debugger

4 Start

the Debugger

= Debugger under Natural SECUMYcoiiiiiieiii e
B Operational REQUIFEBMENTSviiiiii it e e e e e e aaes

= |nvoke the Debugger

= Default Object

45

Start the Debugger

This section describes basic operational requirements and provides a rough guideline on how to
proceed when planning to apply the debugger.

Debugger under Natural Security

The use of the debugger can be controlled by Natural Security:

" You can protect the debugger against unauthorized use by disallowing the TEST system command,
which invokes the debugger; see Command Restrictions in the section Library Maintenance in the
Natural Security documentation.

" You can disallow or restrict the use of the debugger as described in Components of an Environment
Profile in the Natural Security documentation.

Operational Requirements

The debugger is only invoked when you execute a cataloged object stored in the current library
in the current Natural system file. The debugger is not invoked when you execute source code
contained in the work area by using the RUN command.

Efficient and correct debugging requires that the source code in the source object corresponds to
the compiled source code in the cataloged object which can be guaranteed with the system command
STOW. If you change a source object after you cataloged it, it is possible that a debug entry (breakpoint
or watchpoint) does not function properly because the referenced statement or variable has changed
or no longer exists. When the debugger detects that a source object has an earlier time stamp than
the corresponding cataloged object, the following warning appears Time stamps of source and
cataloged object do not match.

The debugger investigates all Natural objects contained in the current library or in one of its
steplibs. The debugger does not investigate Natural objects stored in the Natural system library
SYSLIB or SYSLIBS.

The following restriction applies to the use of the debugger:

® The debugger can only be applied to objects of Natural Version 2.3 and above, but not to Natural
objects cataloged with any previous version. The debugger supports only debug environments
which were created with Natural Version 2.3 and above; debug environments created with any
previous version will be ignored. For detailed information on debug environments, see Debug
Environment Maintenance.

46 Debugger

Start the Debugger

Batch Processing

Although the debugger is mainly designed for interactive usage in online mode, the debugger
commands can also be used for batch execution such as for setting breakpoints or watchpoints.

Note: There are restrictions for batch processing which can cause a debugger command to

be rejected. For example, the debugger does not support the commands ++ and +4.
Example of Generating and Printing Statistics in Batch

The following is an example of using debugger direct commands in batch mode to generate and
print a report about call statistics:

//NATBATCH EXEC PGM=NATBAT42,

// PARM=("INTENS=1, IM=D,CF=$,PRINT=((1-2),AM=STD)")
//STEPLIB DD DISP=SHR,DSN=NATURAL.VZ.TEST.NUCLEUS
//CMPRINT DD SYSOUT=X

//SYSOUT DD SYSOUT=X

//CMPRTO1 DD SYSOUT=X

//CMSYNIN DD *

LOGON DEBUGLIB

TEST PROFILE

,»,,CMPRTO1

TEST ON

TEST SET XSTAT COUNT
DEBUGZP

TEST PRINT XSTAT

FIN

/%

Invoke the Debugger

~ To invoke the debugger

1 Establish a debug environment for a Natural object or application:
* Invoke the Debug Main Menu by entering the Natural system command TEST.

Or:
From within a running application, enter the terminal command %<TEST.

® Use the functions of the Debug Main Menu to specify debug entries for a Natural object
or application:

Debug environment maintenance

Debugger 47

Start the Debugger

Spy maintenance

Breakpoint maintenance

Watchpoint maintenance

Call statistics maintenance

Statement execution statistics maintenance
Variable maintenance

List object source

2 Activate the debugger:
® Ata command prompt, enter the command TEST ON.

Or:
In the Debug Main Menu, enter function code T.

3 Execute the Natural object or application.

The debugger pauses program execution at the specified debug entries and invokes the Debug
Break window.

~ To invoke the debugger for error handling

m At session start, set the profile parameter DBGERR to ON.

See also DBGERR - Automatic Start of Debugger at Runtime Error in the Parameter Reference
documentation.

Or:

During the session, enter the command TEST ON ata command prompt or enter function code
T in a main debug maintenance menu.

The debugger invokes the Debug Break window when a Natural error occurs.

See also the section Error Handling.

Default Object

The maintenance functions of the debugger as described in the relevant sections refer to objects

you specify either in the corresponding name fields of menus or with direct commands. If you do
not specify an object name, by default, the debugger assumes the name of the current object as it
is displayed in the Object field, in the upper right corner of the Debug Main Menu. With a default
object specified, no object name is required in direct commands and menu options used to specify

48 Debugger

Start the Debugger

breakpoints or watchpoints. To change the default object, see the syntax of the command SET in
the section Command Summary and Syntax.

Debugger 49

50

5 Switch Test Mode On and Off

To activate a previously established debug environment, test mode must be set to ON.

> To set test mode on or off

= Inamain debug maintenance menu, enter function code T to switch test mode on or off.
Or:
Enter one of the following direct commands:
TEST ON

or
TEST OFF

When executing a Natural object with test mode set to 0N, the debugger continuously checks all
debug entries for any required action.

When executing a Natural object with test mode set to 0FF, all debug entries are ignored.

The command TEST, and with it the whole application, can be protected by Natural Security as
described in Command Restrictions in the section Library Maintenance in the Natural Security docu-
mentation.

51

52

6

Debug Environment Maintenance

Set Test Mode ON/OFFccvveiiiiiiiiiiiii,
Load Debug Environmentccccoeeiiiinnnnnn.
Save Debug Environmentcccccooiiiiiene
Reset Debug Environmentcccooiiieennn
Delete Debug Environmentcccoeeeeeennn.

Maintain Debug Environments in Different Libraries

53

Debug Environment Maintenance

Since a debug environment mainly consists of debug entries, it is established by setting breakpoints
and watchpoints as described in the relevant maintenance sections.

Once established, a debug environment can be stored for subsequent usage. The file where debug
environments are stored can be specified with the debugger command PROFILE (see Navigation
and Information Commands). You can also delete a debug environment or reset its counters to their
initial values.

| Note: See also the usage restrictions described in Operational Requirements.

The following items are also part of a debug environment and are therefore saved or loaded every
time you save or load a debug environment:

" the test mode setting (ON or 0FF);

= all options that can be set with the debugger command PROFILE (except the file for loading or
saving debug environments);

= the settings of the Statement execution statistics maintenance function (ON, OFF or COUNT).

~ To invoke the debug environment maintenance function

s In the Debug Main Menu, enter function code E.
Or:

Enter the following direct command:

EM
The Debug Environment Maintenance menu appears.

This section describes the functions provided in the Debug Environment Maintenance menu and
provides instructions for performing maintenance functions in different libraries.

With each function selected, you must enter the name of the debug environment to be maintained.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

54 Debugger

Debug Environment Maintenance

Load Debug Environment

~ To load a debug environment from your user system file (FUSER)

= In the Debug Environment Maintenance menu, enter function code L and the name of an
environment.

Or:

Enter the following direct command:

LOAD ENVIRONMENT name
The specified debug environment is loaded.
If you do not specify a name, the default environment with the name Noname is loaded.

Enter an asterisk (¥) to obtain a list all available debug environments. On the list, you can mark
the desired environment with the line command L0 to load it into the debug buffer, or with the
line command DE to delete it.

Save Debug Environment

~ To save a debug environment

= In the Debug Environment Maintenance menu, enter function code S and the name of an
environment.

Or:

Enter the following direct command:

SAVE ENVIRONMENT name

The specified environment is reset (see below) and saved to the file location specified with
the debugger command PROFILE (see the section Navigation and Information Commands).

If you do not specify a name, the environment is saved with the name Noname.

If a debug environment with the specified name already exists, you are prompted for confirmation
to overwrite the old environment.

Debugger 55

Debug Environment Maintenance

Reset Debug Environment

The debug environment should be reset before each test run. Resetting the environment leads to
the following results:

® The current states of all debug entries are set to their initial states;
= All event counts are set to zero;

® The call statistics in the debug buffer are cleared as described in the section Call Statistics
Maintenance.

~ To reset a debug environment

= In the Debug Environment Maintenance menu, enter function code R and the name of an
environment.

Or:

Enter the following direct command:

RESET ENVIRONMENT name
The specified debug environment is reset.

If you do not specify an environment name, the current debug environment is reset.

Delete Debug Environment

~ To delete a debug environment

1 In the Debug Environment Maintenance menu, enter function code D and the name of the
environment.

Or:

Enter the following direct command:

DELETE ENVIRONMENT name

The confirmation window appears.

2 In the confirmation window, enter Y (Yes) to confirm the deletion.

The debug specified environment is deleted.

56 Debugger

Debug Environment Maintenance

If you do not specify an environment name, the current debug environment is deleted.

Maintain Debug Environments in Different Libraries

The SYSMAIN utility provides the functions to copy or move debug environments between different
libraries and/or system files and to delete, list or rename a debug environment.

When a debug environment has been moved or copied from one library to another, the breakpoints
and watchpoints still refer to the old (source) library. You adapt the debug environment to the
new (target) library by modifying the corresponding breakpoints (see also Modify Breakpoint in
Breakpoint Maintenance) or watchpoints (see also Modify Watchpoint in Watchpoint Maintenance).
When you perform the modify function, you do not have to change any of the existing definitions;
upon executing the save command (PF5), the library reference automatically changes to the new
library as can be seen in the Library field entry on the Modify Breakpoint or Modify Watchpoint
screen.

Related Topic:

® Processing Debug Environments - SYSMAIN Utility, Utilities documentation

Debugger 57

58

7

Spy Maintenance

= Set Test Mo

A8 ONJOFF ..

B ATV AIE Sy .ttt ettt e e e e e et e e et e e et e e nneae s
B DBACHVAE SPY ittt e

= Delete Spy
= Display Spy
= Modify Spy

59

Spy Maintenance

This function is used to activate, deactivate, list or delete all debug entries (spies) that is, breakpoints
and watchpoints. Besides, Spy maintenance is an alternative method of accessing the breakpoint
or watchpoint maintenance screens. These screens are explained in the sections Breakpoint Main-
tenance and Watchpoint Maintenance.

~ To invoke the spy maintenance function
= In the Debug Main Menu, enter function code S.
Or:

Enter the following direct command:

SM
The Spy Maintenance menu appears.

The functions provided in the Spy Maintenance menu are described in the following section.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Activate Spy

~ To set the current state of specified spies to active

= In the Spy Maintenance menu, enter function code A and a spy number or a spy name.
Or:

Use the direct command ACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are ac-
tivated.

60 Debugger

Spy Maintenance

Deactivate Spy

~ To set the current state of specified spies to inactive

= Inthe Spy Maintenance menu, enter function code B and a spy number or a spy name.
Or:

Use the direct command DEACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
deactivated.

Delete Spy

~ To delete specified spies

= In the Spy Maintenance menu, enter function code C and a spy number or a spy name.
Or:

Use the direct command DELETE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
deleted.

Display Spy

~ To display specified spies
= In the Spy Maintenance menu, enter function code D and a spy number or a spy name.
Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

Debugger 61

Spy Maintenance

If the specified spy is unique, the Display Breakpoint or Display Watchpoint screen appears
respectively and all specifications of this breakpoint or watchpoint are displayed.

If the specified spy is not unique, a list of the spies concerned is displayed. On the list, you
can activate, deactivate, display, modify or delete a spy by marking it with the line command
AC, DA, DI, MO or DE respectively.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
displayed.

Modify Spy

~ To modify specified spies

In the Spy Maintenance menu, enter function code M and a spy number or a spy name.
Or:

Use the direct command MODIFY, the syntax of which is described in the section Command
Summary and Syntax.

If the specified spy is unique, the Modify Breakpoint or Modify Watchpoint screen appears
respectively and the breakpoint or watchpoint specifications can be modified.

If the specified spy is not unique, a list of the spies concerned is displayed. On the list, you
can activate, deactivate, display, modify or delete a spy by marking it with the line command
AC, DA, DI, MO or DE respectively.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
displayed for selection and modification.

62

Debugger

8 Breakpoint Maintenance

B CONAIIONS OF USE ...ttt e e et e e e e e e e ettt e e e e e e e et eaeaaen e
B St TEStMOE ONJOFF ...t et e et e et e e et e e et e e e e nnees
B ACHVALE BreaKPOINT ... e
m Deactivate Breakpoint
B Delete BreakPOint
B DiSPlay BreakPOiNteeeiii ettt e e e e e aaaa s
B MOdify BreaKPOINtoviiiiiii et
B St BrEaKPOIN ..ttt a e e e e e e e a
= Fields and Columns 0N Breakpoint SCrEENSeiiiiiiiiieeiiiit ettt e

63

Breakpoint Maintenance

A breakpoint causes the execution of a Natural object to be interrupted at a specific statement line.
This section describes how and when to set breakpoints. Note that the maintenance functions de-
scribed here may also be invoked from an object source by using the List object source function.

~ To invoke Breakpoint Maintenance

s In the Debug Main Menu, enter function code B.
Or:

Enter the following direct command:

BM
The Breakpoint Maintenance menu appears.

This section describes conditions for using breakpoint maintenance, the functions provided in the
Breakpoint Maintenance menu and the fields and columns contained in a breakpoint screen.

Conditions of Use

A breakpoint is set by specifying the name of the Natural object to be processed and the line
number in the object's source code where the breakpoint is to be executed.

Once a breakpoint has been specified, it remains set for the entire Natural session, unless you delete
it.

A breakpoint refers to a specific line number in source code. A subsequent change of the source
code itself may therefore lead to the breakpoint no longer applying to the desired statement, and
thus the Natural object not being interrupted at the desired position. To circumvent this problem
with program loops, labels can be set within these loops. Breakpoints set for these labels are adjusted
to the correct line number if statement lines are inserted or deleted.

The unique identifier for a breakpoint is the spy number as assigned by the debugger.

Breakpoints cannot be set on comment lines, on any statement line other than the first one (if a
single statement occupies more than one program line), and on lines that contain one of the follow-
ing statements only:

= AT BREAK OF

" AT END OF DATA

= AT END OF PAGE

= AT START OF DATA

= AT TOP OF PAGE

64 Debugger

Breakpoint Maintenance

" BEFORE BREAK

" DECIDE
See also the usage restrictions described in Operational Requirements.

® DEFINE SUBROUTINE

= DEFINE WINDOW

" FORMAT

® IF NO RECORDS FOUND

" ON ERROR

= OPTIONS

Whether it is possible or not to set breakpoints for lines compiled with the Natural Optimizer

Compiler depends on the NODBG option of the 0PTIONS statement described in Switching on the
Optimizer Compiler in the Natural Optimizer Compiler documentation.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Activate Breakpoint

~ To set the current state of specified breakpoints to active

= In the Breakpoint Maintenance menu, enter function code A, an object name and/or a line
number.

Or:

Use the direct command ACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a line number, all breakpoints are activated.

Debugger 65

Breakpoint Maintenance

Deactivate Breakpoint

~ To set the current state of specified breakpoints to inactive

In the Breakpoint Maintenance menu, enter function code B, an object name and/or a line
number.

Or:

Use the direct command DEACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a line number, all breakpoints are deactivated.

Delete Breakpoint

~ To delete specified breakpoints

In the Breakpoint Maintenance menu, enter function code C, an object name and/or a line
number.

Or:

Use the direct command DELETE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a line number, all breakpoints are deleted.

Display Breakpoint

~ To display a breakpoint

In the Breakpoint Maintenance menu, enter function code D, an object name and a line
number.

If you do not enter an object name, the default object (if specified) is used.

Or:

66

Debugger

Breakpoint Maintenance

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

If a breakpoint has been set for the specified object and line number, a Display Breakpoint
screen with all breakpoint definitions appears similar to the example below:

11:16:12 eassesds NMATURAL TEST UTILITIES s 2006-02-07

Test Mode ON - Display Breakpoint - Object

Spy number 1

Initial state active Current state .. active

Breakpoint name BRKO130 DBID/FNR 10/32

Object name DEBPGM1 Library SAG

Line number 0130

Label

Skips before execution .. 0

Max number executions ... 0

Number of activations ... 0

Error in definition - none -

Commands ... BREAK

Command ===

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Mod Flip Canc

If no unique breakpoint is found, the List Breakpoints screen described below appears.

The fields on the Display Breakpoint screen are described in Fields and Columns on Breakpoint
Screens.

~ To list breakpoints

= Inthe Breakpoint Maintenance menu, enter function code D, an object name or a line number.
You can use asterisk (*) notation to specify a range of object names, for example, ABC*. If you
enter an asterisk (*) only, all object names are selected. If you do not enter an object name, the
default object (if specified) is used.

Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

Debugger 67

Breakpoint Maintenance

A List Breakpoints screen similar to the example below appears which lists all breakpoints
set for the specified object(s) or line number:

11:41:56 xHxFxxx NATURAL TEST UTILITIES ***** 2006-01-30
Test Mode ON - List Breakpoints - Object
A1l

Co No. BP Name Library Object Line DBID FNR Stat Skips Execs Count E

23 & = 0000 I C
[1 BRKO130 SAG DEBPGM1 0130 10 32 A A 0 0 0
| 2 BRKPGM3-END SAG DEBPGM3 END 10 32 A A 0 0 0
__ 3 BRKPGM3-300 SAG DEBPGM3 0300 10 32 A A 0 0 0
__ 4 BRKPGM2-400 SAG DEBPGM2 0400 10 32 A A 0 0 0
- 5 BRKPGM2-430 SAG DEBPGM2 0430 10 32 A A 0 0 0
__ 6 BRKPGMI-END SAG DEBPGM1 END 10 32 A A 0 0 0
__ 7 BRKPGMI-ALL SAG DEBPGM1 ALL 10 32 A A 0 0 0
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PFl2---

Help Exit Last Flip - A Canc

The list is sorted in ascending order by the spy numbers contained in the No. column.

For details on the columns contained in the List Breakpoints screen and the line commands
that can be executed on any list item, refer to Fields and Columns on Breakpoint Screens.

Modify Breakpoint

~ To modify a breakpoint

1

In the Breakpoint Maintenance menu, enter function code M, an object name and a line
number. If you do not enter an object name, the default object (if specified) is used.

Or:

Use the direct command MODIFY, the syntax of which is described in the section Command
Summary and Syntax.

68

Debugger

Breakpoint Maintenance

If a unique breakpoint has been specified, the Modify Breakpoint screen appears where you
can change the field entries. The fields on the Modify Breakpoint screen are described in
Fields and Columns on Breakpoint Screens.

If no unique breakpoint is found, the List Breakpoints screen (see Display Breakpoint) appears.

2 When you have finished editing the breakpoint definitions, choose Pr3 (Exit) or PF5 (Save) to
save any modification. See also Maintenance and Validation for information on validity
checks of debug entries. If you choose PF12 (Canc), the breakpoint remains unchanged.

Set Breakpoint

~ To add a breakpoint for a session

= In the Breakpoint Maintenance menu, enter function code S, an object name and/or a line
number.

Or:

Use the direct command SET, the syntax of which is described in the section Command Summary
and Syntax.

If you specify not an object name but a valid line number, the name of the default object (see
the section Start the Debugger) is assumed. If no default object is specified, a selection window
appears that displays all objects available in the current library.

If object name and line number are specified correctly, the breakpoint is usually set and con-
firmed immediately.

However, a breakpoint set for copycode can only be validated when a program that contains
the copycode is executed. See also Maintenance and Validation for information on validity
checks of debug entries.

The breakpoint receives the default command (BREAK), its initial and current states are set to
active and no execution restrictions are specified. Note that if you delete the command BREAK
when setting a breakpoint and you do not enter any command that issues a dialog, there is
no way for the debugger to receive control during program interruption.

Debugger 69

Breakpoint Maintenance

Fields and Columns on Breakpoint Screens

The fields contained in a Display Breakpoint or a Modify Breakpoint screen and the columns of
a List Breakpoints screen are described in the following table:

Field Column |Explanation
Test Mode Indicates whether test mode is set to ON or OFF.
Object Displays the name of the default object (see Start the Debugger) if specified.
Co Input field for any of the following line commands:
AC Activate breakpoint
DA Deactivate breakpoint
DI Display breakpoint
MO Modify breakpoint
DE Delete breakpoint
? List valid line commands
Exit breakpoint screen
Spy number No. A unique number assigned by the debugger when setting the breakpoint.
Initial state Stat I Specifies the initial state and the current state of the breakpoint: active (A)
Current state StatCc |or inactive (I).
Breakpoint name |BP Name|The name of the breakpoint.
Valid values: 1 to 12 characters.
The default name for a breakpoint consists of the object name and the line
number.
DBID/FNR DBID The database ID (DBID) and file number (FNR) of the system file where
FNR the Natural object is stored.
Library Library |The name of the library that contains the object.
Object name Object |The name of the object available in the current library or one of its steplibs.
Line number Line The line number of a statement in the object source code. See also

Conditions of Use above.

You can also specify BEG, END or ALL as line numbers:

BEG Specifies the breakpoint that is to interrupt program execution at the
first statement executed in an object.

BEG breakpoints cannot be specified for copycode.

END Specifies the breakpoint that is to interrupt program execution at the
last statement executed in an object, for example, an END ora FETCH
statement.

70

Debugger

Breakpoint Maintenance

Field Column |Explanation
END breakpoints cannot be specified for copycode.
ALL Specifies that a breakpoint is to interrupt program execution at each
program line that contains an executable statement.
Label Refers to a label set earlier in the source code of an object for statements
that define processing loops: see also Conditions of Use above.
Valid values: 1 to 32 characters.
Skips before Skips Determines that the breakpoint is not to be executed until the corresponding
execution statement line has been executed a certain number of times.
Valid values: 0 (default) to 32767.
Max number Execs Any value greater than zero (0) determines the maximum number of
executions breakpoint executions.
Valid values: 0 (default) to 32767.
Number of Count |Indicates how many times a breakpoint was activated for the relevant
activations statement line.
The counter is reset when a program is started at Level 1.
Error in definition |E Indicates that the statement line in the breakpoint definition cannot be

found in the cataloged object during program execution.

This error can be caused if the source of an object is changed and
recataloged during debugging.

Commands

Up to six debug commands. Enter one command per line. For a summary
of all available commands, see Command Summary and Syntax.

Caution: If you delete the command BREAK when modifying a breakpoint

and you do not enter any command that issues a dialog, there is no way
for the debugger to receive control during program interruption.

Debugger

7"

72

9 Watchpoint Maintenance

= Set Test Mode ON/OFF

Activate Watchpoint
Deactivate Watchpoint ..
Delete Watchpoint
Display Watchpoint
Modify Watchpoint
Set Watchpoint
Fields and Columns on WatChpoint SCrEENSvvvviiiiiieiei e

73

Watchpoint Maintenance

A watchpoint causes the execution of a Natural object to be interrupted whenever the value of a
variable changes. In addition, you can make the interruption dependent on a condition related to
a specific variable value as described under Watchpoint Operators (see also Set Watchpoint) below.

The use of watchpoints allows you to detect unintended alterations of variables caused by objects
that contain errors.

A variable is considered to have changed either when its current value differs from the value re-
corded when the watchpoint was last triggered or when it differs from the initial value. Compar-
ative validation of watchpoint values is restricted to a field length of 253 bytes. For large variables
that exceed the maximum length, only the first 253 bytes are used in the comparison.

A watchpoint is defined by specifying the name of the Natural object and the name of the appro-
priate variable.

The unique identifier for a watchpoint is the spy number assigned by the debugger.

Once a watchpoint has been specified, it remains set for the entire Natural session, unless you
delete it.

~ To invoke the watchpoint maintenance function

s In the Debug Main Menu, enter function code W.
Or:

Enter the following direct command:

WM
The Watchpoint Maintenance menu appears.

This section describes the functions provided in the Watchpoint Maintenance menu and the fields
and columns contained in a watchpoint screen.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

74 Debugger

Watchpoint Maintenance

Activate Watchpoint

~ To set the current state of specified watchpoints to active

= Inthe Watchpoint Maintenance menu, enter function code A, an object name and/or a variable
name.

Or:

Use the direct command ACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object or a variable (or leave the default asterisk in the Variable field), all
watchpoints are activated.

Deactivate Watchpoint

~ To set the current state of specified watchpoints to inactive

= Inthe Watchpoint Maintenance menu, enter function code B, an object name and/or a variable
name.

Or:

Use the direct command DEACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a variable (or leave the default asterisk in the Variable
field), all watchpoints are deactivated.

Delete Watchpoint

~ To delete specified watchpoints

= Inthe Watchpoint Maintenance menu, enter function code C, an object name and/or a variable
name.

Or:

Debugger 75

Watchpoint Maintenance

Use the direct command DELETE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a variable (or leave the default asterisk in the Variable
field), all watchpoints are deleted.

Display Watchpoint

~ To display a watchpoint

In the Watchpoint Maintenance menu, enter function code D, an object name and/or a variable
name. If you do not enter an object name, the default object (if specified) is used.

Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

If a watchpoint has been set for the specified object and variable name, a Display Watchpoint
screen with all watchpoint definitions appears similar to the example below:

10:25:32 weswasss MATURAL TEST UTILITIES s 2006-02-14

Test Mode ON - Display Watchpoint - Object

Spy number 12

Initial state active Current state .. active

Watchpoint name WATCHTEST1 DBID/FNR 10/32

Object name WATCHPGM Library SAG

Variable name WATCHVARIABLE

Skips before execution .. 0 Format/length .. A 10

Max number executions ... 0 Persistent N Act.level ... 0

Number of activations ... 0

Error in definition - none -

Commands ... BREAK

Command ===

Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PFl2---
Help Exit Last Mod Flip Alpha Hex Canc

76

Debugger

Watchpoint Maintenance

The fields on the Display Watchpoint screen are described in Fields and Columns on
Watchpoint Screens.

If no unique watchpoint is found, the List Watchpoints screen (see below) appears.

2 On the Display Watchpoint screen, you can view the condition for watchpoint activation as
specified with the watchpoint operator (see also Watchpoint Operators):

Choose Pr10 (Alpha) to display the operator and/or operand value in alphanumeric format. .
Or:
Choose Pri1 (Hex) to display the operator and/or operand value in hexadecimal format.

Choose Pr22 (Cmds) to switch back to the default view of the Display Watchpoint screen,
which contains the Commands field.

> To list watchpoints

= In the Watchpoint Maintenance menu, enter function code D, an object name or a variable
name. You can use asterisk (*) notation to specify a range of object names and/or variable
names, for example, ABC*. If you enter an asterisk (*) only, all names are selected. If you do
not enter an object name, the default object (if specified) is used.

Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

A List Watchpoints screen similar to the example below appears which lists all watchpoints
set for the specified object(s) or variable name:

Debugger 77

Watchpoint Maintenance

10:14:05 FAAHA NATURAL TEST UTILITIES ***** 2006-02-14
Test Mode ON - List Watchpoints - Object
Top of data
Co No. WP Name Library Object DBID FNR Stat Skips Execs Count P E
* * * I C
*
1 NAME SAG DEBPGM 10 32 A A 0 0 0N
EMPLOYEES-VIEW.NAME
__ 5 {MAKE SAG DEBPGM 10 32 A A 0 0 0N
#IMAKE
__ 10 LEAVE-DUE SAG DEBPGM 10 32 A A 0 0 0N
EMPLOYEES-VIEW. LEAVE-DUE
_ 11 WATCHTEST?2 SAG DEBPGM 10 32 A A 0 0 0N
TESTWP
__ 12 WATCHTEST1 SAG WATCHPGM 10 32 A A 0 0 0 N
WATCHVARTABLE
__ 13 WATCHTEST3 SAG DEBPGM 10 32 A A 0 0 0 N
WPTEST
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Flip - + Canc

The list is sorted in ascending order by the spy numbers contained in the No. column.

For details on the columns contained in the List Watchpoints screen and the line commands
that can be executed on any list item, refer to Fields and Columns on Watchpoints Screens.

Modify Watchpoint

~ To modify a watchpoint

1

In the Watchpoint Maintenance menu, enter function code M, an object name and a variable
name. If you do not enter an object name, the default object (if specified) is used.

Or:

Use the direct command MODIFY, the syntax of which is described in the section Command
Summary and Syntax.

If a unique watchpoint has been specified, the Modify Watchpoint screen appears where you
can change field entries. The fields on the Modify Watchpoint screen are described in Fields
and Columns on Watchpoint Screens.

If no unique watchpoint is found, the List Watchpoints screen (see Display Watchpoint) appears.

78

Debugger

Watchpoint Maintenance

2 On the Modify Watchpoint screen, you can change the condition for watchpoint activation
as specified with the watchpoint operator (see also Watchpoint Operators):

Choose Pr10 (Alpha) to modify the operator and/or operand value in alphanumeric format. .
Or:
Choose prri11 (Hex) to modify the operator and/or operand value in hexadecimal format.

Choose Pr22 (Cmds) to switch back to the default view of the Modify Watchpoint screen,
which contains the Commands field.

3 When you have finished editing the watchpoint definitions, choose Pr3 (Exit) or PF5 (Save) to
save any modification. If you choose PFi12 (Canc), the watchpoint remains unchanged.

Set Watchpoint

~ To add a watchpoint for a session

= In the Watchpoint Maintenance menu, enter function code S, an object name and a variable
name.

Or:

Use the direct command SET, the syntax of which is described in the section Command Summary
and Syntax.

Or:
Before executing a Natural object:

* Invoke the List Object Source screen (see List Object Source).

* In the Source column, position the cursor at a variable name and choose rri8 (Se Wp).

If you specify not an object name but a valid variable name, the name of the default object
(see the section Start the Debugger) is assumed. If no default object is specified, a selection
window appears that displays all objects available in the current library. If no default object
is specified, a selection window appears that displays all objects available in the current library.

If object name and variable names are specified correctly, the watchpoint is set immediately
and a corresponding confirmation message is displayed on the screen. A watchpoint set for
a dynamic variable or an X-array is only validated during program execution. See also
Maintenance and Validation for information on validity checks of debug entries.

The watchpoint receives the default command (BREAK), its initial and current state are set to
active and no execution restrictions are specified. Note that if you delete the default command

Debugger 79

Watchpoint Maintenance

BREAK when setting a watchpoint and you do not enter any command that issues a dialog,
there is no way for the debugger to receive control during program interruption.

This section covers the following topics:

® Watchpoint Operators

Watchpoint Operators

You can specify a condition for watchpoint activation by entering an operator and an appropriate
operand (if relevant) on a watchpoint maintenance screen.

~ To specify watchpoint operators

1 On the Set Watchpoint or Modify Watchpoint screen of the selected watchpoint, choose PF10
(Alpha) if you want to specify an operator operand in alphanumeric format.
Or:
On the Set Watchpoint or Modify Watchpoint screen of the selected watchpoint, choose PFi11
(Hex) if you want to specify an operator operand in hexadecimal format.
Two input fields appear in the lower half of the screen.
2 Inthe left input field, enter one of the watchpoint operators listed in the following table.
In the right input field, if relevant, enter the operand value to be compared with the variable.
For watchpoints with operators specified for dynamic variables (alphanumeric or binary),
the operand values will be compared from left to right. Since the field length of a dynamic
variable varies, up to 253 bytes can be entered as comparative value. If the current length of
the dynamic variable is shorter than the maximum comparative length of 253 bytes, the
comparison is made only in the current length of the dynamic variable.
Operator |Explanation
MOD Modification.
Activates the watchpoint each time a modification of the variable occurs.
This is the default setting.
EQ Equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is equal to the specified operand value.
NE Not equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is not equal to the specified operand value.
GT Greater than.
80 Debugger

Watchpoint Maintenance

Operator

Explanation

Activates the watchpoint when the variable has been modified and when the current value
of the variable is greater than the specified operand value.

GE

Greater than or equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is greater than or equal to the specified operand value.

LT

Less than.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is less than the specified operand value.

LE

Less than or equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is less than or equal to the specified operand value.

INV

Invalid contents.
Activates the watchpoint each time the value assigned to a variable of the Type N, P, Dor T
does not comply with the following conditions:

Numeric unpacked.

Packed numeric.

Date range from 1582-01-01 to 2700-12-31.

Time range from 1582-01-01 00:00:00.0 to 2700-12-31 23:59:59.9.

— O ©w =

You can choose PF22 (Cmds) to switch back to the default view of the Set Watchpoint or
Modify Watchpoint screen, which contains the Commands input field.

3 Choose PF5 (Save) to save the operator definitions.

Or:

Choose Pr12 (Canc), to leave the operator definitions unchanged and exit the Modify Watch-
point screen.

Fields and Columns on Watchpoint Screens

The fields contained in a Display Watchpoint or a Modify Watchpoint screen and the columns
of a List Watchpoints screen are described in the following table:

Debugger

81

Watchpoint Maintenance

Field Column Explanation
Test Mode Indicates whether test mode is set to ON or OFF.
Object Displays the name of the default object (see Start the Debugger) if specified.
Co Input field for any of the following line commands:
AC Activate watchpoint
DA Deactivate watchpoint
DI Display watchpoint
MO Modify watchpoint
DE Delete watchpoint
? List valid line commands
Exit watchpoint screen
Spy number No. A unique number assigned by the debugger when setting the watchpoint.
Initial state Stat I Specifies the initial state and the current state of the watchpoint: active (A)
Current state Stat C or inactive (I).
Watchpoint name |WP Name |The name of the watchpoint.
The default name for a watchpoint is the name of the variable concerned.
Valid values: 1 to 12 characters. Names that exceed the field size will be
truncated after 12 characters.
On the List Watchpoints screen, the watchpoint name is listed in the first
line, above the variable name.
DBID/FNR DBID The database ID (DBID) and file number (FNR) of the system file where
FNR the Natural object is stored.
Library Library |The name of the library that contains the object.
Object name Object | The name of the object available in the current library or one of its steplibs.

If you want to specify a system variable as a watchpoint, enter an asterisk
(*) in the Object name field.

Variable name

The name of a user-defined, global or system variable.
If the variable is part of a group, it may be prefixed by the group name.

If you want to specify a system variable, enter an asterisk (*) in the Object
name field.

For an array, an index description has to be specified (watchpoints can be
defined for single elements only).

On the List Watchpoints screen, the variable name is listed in the second
line, below the watchpoint name.

See also Variable Maintenance for further details.

82

Debugger

Watchpoint Maintenance

Field

Column

Explanation

Skips before
execution

Skips

Determines that the watchpoint is not to be executed until the condition
set for the watchpoint has been fulfilled (see also Watchpoint Operators).

Valid values: 0 (default) to 32767.

Max number
executions

Execs

Any value greater than zero (0) determines the maximum number of
watchpoint executions.

Valid values: 0 (default) to 32767.

Number of
activations

Count

Indicates how many times the watchpoint condition for the variable was
met as specified with the watchpoint operator.

The counter is reset when a program is started at Level 1.

Format/length

The Natural data format and length of the variable, for example, A10.

Persistent

Marks a watchpoint as persistent. Persistent watchpoints are not restricted
to the Natural object for which they are defined, but apply additionally to
all subordinate program levels.

Persistent watchpoints only make sense for variables that are passed to a
subprogram by reference and not BY VALUE RESULT: see the relevant
parameter description of the CALLNAT statement in Parameters - operand?2,
in the Statements documentation.

Restriction:
Persistent watchpoints are not allowed for variables defined in a parameter
or context clause.

Valid value: Y (Yes) or N (No). N is the default.

Act. level

Refers to Persistent.

Indicates the program level at which a persistent watchpoint was activated
automatically.

Error in definition

E

Indicates an invalid watchpoint definition. This error may occur if the
executing program is recataloged during debugging after the respective
variable definition was modified.

A watchpoint set for a dynamic variable or an X-array (eXtensible array)
is only validated during program execution.

Commands

Up to six debug commands. Enter one command per line. For a summary
of all available commands, see Command Summary and Syntax.

Caution: If you delete the command BREAK and you do not enter any

command that issues a dialog, there is no way for the debugger to receive
control during program interruption.

Debugger

83

84

10 Call Statistics Maintenance

B Set TeStMOAE ONJOFF ...t e e e e e e e e e e e e e e 86
B Set Call StatiStics ON/OMf ... e 86
B DiISPIAY All ODJECS ...ttt 87
m Display Called ODJECESeiiiiiiiii e s 87
= Display NON-Called ODJECESvviiiiiiiiee e 88
B PLINE ODJBCS .t eei ittt 89

85

Call Statistics Maintenance

This function is used to obtain statistical information on which Natural objects were invoked
during the execution of an application, and information on how often an object was invoked. Call
statistics are deleted after resetting the debug environment.

> To invoke the call statistics maintenance function
= In the Debug Main Menu enter function code C.
Or:

Enter the following direct command:

CS
The Call Statistics Maintenance menu is displayed.

The functions provided in the Call Statistics Maintenance menu are explained in the following
section whereas all print functions are described in Print Objects.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Set Call Statistics On/Off

When executing a Natural object with call statistics set to 0N, all calls made to a specific object are
counted and the resulting statistics can afterwards be displayed or printed.

> To set call statistics to ON or OFF

s In the Call Statistics Maintenance menu, enter function code C to activate or deactivate call
statistics.

Or:

Enter one of the following direct commands:

SET CALL ON

or

SET CALL OFF

86 Debugger

Call Statistics Maintenance

) Note: If the call statistics function is switched off and no call statistics have been created or

call statistics have been deleted by resetting the debug environment, the information stored
for statement execution statistics (see Statement Execution Statistics Maintenance) is used for
display. This allows you to detect the non-invoked Natural objects during the execution of
an application.

Display All Objects

This function provides an overview of the call frequency of all objects contained in a library.

~ To display the call frequency of all objects in a library

= In the Call Statistics Maintenance menu, enter function code 1 and a library name.
Or:

Enter the following direct command:
DISPLAY OBJECT Tibrary

See also the syntax of DISPLAY in Command Summary and Syntax.

If you do not specify a library name, the library where you are currently logged on is assumed
by default.

A Display Call Statistics screen similar to the example screen shown in Display Called
Objects appears.

The Display Call Statistics screen lists all objects in the specified library and indicates their
call frequency in the Calls column on the right-hand side. For each call statement, such as
FETCH or CALLNAT, an entry with the name of the object and a counter variable is written into
the debug buffer. The counter is then increased for each call of the corresponding object.

Display Called Objects

The screen invoked by this function corresponds to the Display Call Statistics screen, but only
the objects that have been invoked are displayed.

~ To display called objects of a library

= In the Call Statistics Maintenance menu, enter function code 2 and a library name.

Or:

Debugger 87

Call Statistics Maintenance

Enter the following direct command:

DISPLAY CALL Tibrary
See also the syntax of DISPLAY in Command Summary and Syntax.

The Display Called Objects screen appears:

16:06:53 *xHF% NATURAL TEST UTILITIES ***** 2002-02-15
Test mode ON - Display Called Objects - Object

AT1
Object Library Type DBID FNR S/C Ver Cat Date Time Calls
% SAG
MAINPGM SAG Program 10 32 S/C 3.1 2002-02-15 11:51 1
SUBPGM SAG Subprogram 10 32 S/C 3.1 2002-02-15 11:50 3
EMP-PGM SAG Program 10 32 S/C 3.1 2002-01-22 11:49 2
EMPLIND SAG Program 10 32 S/C 3.1 2001-08-13 11:18 1

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

Display Non-Called Objects

The screen invoked by this function corresponds to the Display Call Statistics screen, but only
the objects that have not been invoked are displayed.

~ To display non-called objects

In the Call Statistics Maintenance menu, enter function code 3 and a library name.
Or:

Enter the following direct command:

DISPLAY NOCALL Tibrary

See also the syntax of DISPLAY in Command Summary and Syntax.

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

For an example screen, see Display Called Objects above.

88

Debugger

Call Statistics Maintenance

Print Objects

With the print functions, you can directly route a generated list of call statistics to a printer or
download the list to a PC. You specify a printer as the output device on the User Profile screen
of the debugger. Use the debugger command PROFILE (see the section Navigation and Information
Commands) to invoke this screen.

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

As indicated under Print Options below, to invoke one of the print functions, you can enter either
a function code in the Statement Execution Statistics Maintenance menu, a line command on the
Display Statement Lines screen, or a direct command at the command prompt.

Print Options

Print Function Function Code | Direct Command

All Objects 4 PRINT OBJECT Tibrary
Called Objects 5 PRINT CALL Tibrary
Non-Called Objects |6 PRINT NOCALL Tibrary

See also the syntax of PRINT in Command Summary and Syntax.
Related Topic:

® Example of Generating and Printing Statistics in Batch in the section Batch Processing
Example of a PC Download

If Entire Connection and Natural Connection are installed at your site, you can download a stat-
istics list to a PC as described in the following instructions.

> To download a list to a PC

1 At session start, specify the profile parameter PRINT as follows:

PRINT=((1),AM=PC)

2 After session start, activate the PC connection using the following terminal command:

%+

3 Invoke and activate the debugger.

Debugger 89

Call Statistics Maintenance

4 Invoke the User Profile screen by entering the debugger command PROFILE (see Navigation
and Information Commands).

5 On the User Profile screen, in the Output device field, replace the current entry by PCPRNTO1
and choose Pr3 (Exit) to save the settings.

6 Activate the call statistics function and execute the application for which you want the debug-
ger to collect statistics data.

7 From the statistics screen, choose a print function.

In the Entire Connection window that appears, you can specify the output file and the PC
directory.

90 Debugger

11 Statement Execution Statistics Maintenance

Set TESEMOAE ONJOFF ... e ettt 92
Set Statement Execution Statistics ON/OFF/COUNToovviiiiiiiiiieeeeeeeeeeeee 92
Delete Statement Execution Statistics ... 94
Display Statement EXCULION STAtISTICScoiiuiriiiiiiiiii e 95
0TS £=1 (=T 111 0 98

91

Statement Execution Statistics Maintenance

This function is used to obtain statistical information on which statement lines of invoked Natural
objects were executed. The function also provides information on how often an object was invoked
and how often a statement line was executed.

Statement execution statistics can be used for the following purposes:

® To detect dead (never gets executed) programming code in an application;

® To estimate the coverage of an application test (how many statement lines have not been executed
at least once for testing);

* To locate frequently executed code segments that could have an impact on the application's
performance.

> To invoke the statement execution statistics maintenance function

s In the Debug Main Menu, enter function code X.
Or:

Enter the following direct command:

XS
The Statement Execution Statistics Maintenance menu is displayed.

The functions provided in the Statement Execution Statistics Maintenance menu are explained
in the following section whereas all print functions are described in Print Statements.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Set Statement Execution Statistics ON/OFF/COUNT

This function is used to activate statistics about executed statement lines of Natural objects.
This section covers the following topics:

= Setup Options

92 Debugger

Statement Execution Statistics Maintenance

= Activate and Deactivate Statistics
Setup Options

When executing a Natural object with statement execution statistics set to ON or COUNT, all statement
lines executed within a specific object are listed in a statistical report.

With the option 0N, the debugger only retains whether a specific statement line was executed or
not; with the option COUNT, it counts how often a statement line was executed. You can specify a
library and an object name to restrict statement execution statistics to the desired Natural objects.
The default is to collect statistics for all objects of the current library. Asterisk (*) notation is possible.

If you switch statement execution statistics from ON to COUNT or vice versa, existing statistics are
not affected, that is, their status of ON or COUNT remains.

The statistical data collected is stored in the debug buffer. The amount of storage that is required
to store statistical information for a Natural object is approximately

(number of source lines) / 8 + 100 bytes with statement execution statistics set to ON and
(number of source lines) * 4 + 100 bytes with statement execution statistics set to COUNT.

If you modify a Natural object by inserting or deleting lines and you do not renumber the object
lines before you STOW it, the amount of storage required for the object's statistics may increase. To
avoid this, set Auto Renumber to Y (Yes) in your editor profile (see Editor Profile in the Editors
documentation), or use the system command CATALL (see the System Commands documentation)
with the Renumber source-codes lines option enabled (this is the default).

You can use the debugger command PROFILE (see Navigation and Information Commands) to limit
the size of the debug buffer. With statement execution statistics set to COUNT, no statement execution
statistics are collected for objects with more than 8000 statement lines.

Statement execution statistics are part of the debug environment; therefore, they are affected by
the direct commands SAVE ENVIRONMENT and LOAD ENVIRONMENT (see also the section Debug Envir-
onment Maintenance).

Activate and Deactivate Statistics

This section provides instructions for activating or deactivating statement execution statistics.

You can specify a library and/or an object name to restrict statement execution statistics to the
desired Natural objects. The default is to collect statistics for all objects of the current library. As-
terisk (*) notation is possible.

> To activate statement execution statistics

s In the Statement Execution Statistics Maintenance menu, enter function code S, the name
of a library and/or the name of an object. In the State field, change the value to ON.

Debugger 93

Statement Execution Statistics Maintenance

Or:

Enter one of the following direct commands:
SET XSTATISTICS ON Tibrary (object)
or

SET XSTATISTICS COUNT Tibrary (object)

See also the syntax of SET in Command Summary and Syntax.

If you do not specify a library and/or an object, the statistics data about all objects in your current
library are activated.

> To deactivate statement execution statistics

In the Statement Execution Statistics Maintenance menu, enter function code S, the name
of a library and/or the name of an object. In the State field, change the value to OFF.

Or:

Enter the following direct command:

SET XSTATISTICS OFF [Iibrary (object)

See also the syntax of SET in Command Summary and Syntax.

If you do not specify a library and/or an object, the statistics data about all objects in your current
library are deactivated.

Delete Statement Execution Statistics

> To delete statement execution statistics

In the Statement Execution Statistics Maintenance menu, enter function code C and the name
of a library and/or the name of an object.

Or:

Enter the following direct command:

DELETE XSTATISTICS Tibrary (object)

See also the syntax of DELETE in Command Summary and Syntax.

94

Debugger

Statement Execution Statistics Maintenance

If you do not specify a library and/or an object, the statistics data about all objects in your current
library are deleted.

Display Statement Execution Statistics

This function invokes a screen with a list of the specified statement execution statistics.

> To invoke the List Statement Execution Statistics screen
1 In the Statement Execution Statistics Maintenance menu, enter function code D.
Or:

Enter the following direct command:

DISPLAY XSTATISTICS

The List Statement Execution Statistics screen is displayed:

16:02:01 FxxEkx NATURAL TEST UTILITIES ***** 2002-02-15
Test Mode ON - List Statement Execution Statistics - Object

A1

Co Object Library Type DBID FNR Obj.Called Exec Exec % Total No.

% % n Times able uted Executions

_ TEST SAG Program 10 32 4 20 17 85 95

__ MAPO1 SAG Map 10 32 6 2 2 100 12

__ SPGMO2 SAG Subprogram 10 32 2 6 2 33 4

_ SAGTEST1 SAG Program 10 32 2 20 10 50 17

__ DEBPGM SAG Program 10 32 1 6 6 100 34

For each object, the following information is displayed:

* the call frequency;

" the number of executable statements;

" the number of executed statements;

" the percentage of executed statements as related to the total number of executable statements;

" the total number of executed statements.

A list entry is highlighted if data is missing or possibly inconsistent.

2 On the statistics list, you can mark an item with a line command for further processing:

Debugger 95

Statement Execution Statistics Maintenance

Line Command | Explanation

DE Deletes statement execution statistics as described above.
DS Displays all statement lines.

DX Displays executed statement lines only.

DN Displays non-executed statement lines only.

I Displays information on the cataloged object and errors.
PS Prints all statement lines.

PX Prints executed statement lines only.

PN Prints non-executed statement lines only.

For further information on print functions, see Print Statements.

The following section describes the screens, which can be invoked with the display commands:

= Display All
= Display Ex

Statement Lines
ecuted Statement Lines

= Display Non-Executed Statement Lines

Display All Statement Lines

The Display Statement Lines screen shows the object source and indicates whether or not a

statement line has

been executed.

~ To invoke the Display Statement Lines screen

= On the List Statement Execution Statistics screen, mark an entry with the line command DS.

Or:

Enter the following direct command:

DISPLAY STATEMENT Tibrary (object)

See also the syntax of DISPLAY in Command Summary and Syntax.

The Display Statement Lines screen appears. If statement execution statistics has been set
to COUNT, the execution frequency of the statement line is displayed as shown in the example

screen below:

96

Debugger

Statement Execution Statistics Maintenance

16:04:01 xHxFxxx NATURAL TEST UTILITIES ***** 2002-02-15
Test Mode ON - Display Statement Lines - Object SAGTEST
Line Source Count
0200 RD1. READ EMPLOYEES-VIEW BY NAME 2
0210 STARTING FROM #NAME-START THRU #NAME-END

0220 *

0230 IF LEAVE-DUE >= 20 1
0240 PERFORM MARK-SPECIAL-EMPLOYEES not executed
0250 ELSE not executed
0260 RESET #MARK 1
0270 END-IF

0280 *

0290 RESET {MAKE #MODEL 1
0300 CALLNAT 'SPGMO2' PERSONNEL-ID 4MAKE 4MODEL 1
0310 *

0320 WRITE TITLE / '"*** PERSONS WITH 20 OR MORE DAYS LEAVE DU 1
0330 f 0 Esess ARE MARKED WITH AN ASTERISK LR

0340 DISPLAY "//N AME" NAME 2

If no unique object has been specified, the List Statement Execution Statistics screen is displayed.

Display Executed Statement Lines

The Display Executed Statement Lines screen corresponds to the Display Statement Lines screen,
but only the statement lines that have been executed are displayed.

~ To invoke the Display Executed Statement Lines screen

= On the List Statement Execution Statistics screen, mark an entry with the line command DX.

Or:

Enter the following direct command:

DISPLAY EXEC Tibrary (object)

See also the syntax of DISPLAY in Command Summary and Syntax.

If no unique object has been specified, the List Statement Execution Statistics screen is dis-

played.

Debugger

97

Statement Execution Statistics Maintenance

Display Non-Executed Statement Lines

The Non-Executed Statement Lines screen corresponds to the Display Statement Lines screen,
but only the statement lines that have not been executed are displayed.

> To invoke the Display Non-Executed Statement Lines screen

= On the List Statement Execution Statistics screen, mark an entry with the line command DN.
Or:

Enter the following direct command:

DISPLAY NOEXEC Tibrary (object)
See also the syntax of DISPLAY in Command Summary and Syntax.

If no unique object has been specified, the List Statement Execution Statistics screen is dis-
played.

Print Statements

With the print functions, you can directly route a generated list of statement execution statistics
to a printer or download the list to a PC. You define a printer as the output device on the User
Profile screen of the debugger. Use the debugger command PROFILE (see the section Navigation
and Information Commands) to invoke this screen.

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

As indicated under Print Options below, to invoke one of the print functions, you can either enter
a function code in the Statement Execution Statistics Maintenance menu, enter a line command
on the Display Statement Lines screen or enter a direct command.

Print Options
Print Function Function Line Command | Direct Command

Code
Print statement execution statistics |1 PRINT XSTATISTICS Tibrary (object)
Print all statements 2 PS PRINT STATEMENT Tibrary (object)
Print executed statements 3 PX PRINT EXEC Tibrary (object)
Print non-executed statements 4 PN PRINT NOEXEC Tibrary (object)

See also the syntax of PRINT in the section Command Summary and Syntax.

98 Debugger

Statement Execution Statistics Maintenance

Related Topics:

® Example of a PC Download in Print Objects in the section Call Statistics Maintenance

® Example of Generating and Printing Statistics in Batch in the section Batch Processing

Debugger 99

100

12 Variable Maintenance

= Display User-Defined, Global and DB-Related System Variablesccccoiiiiiiiii 102
® Display SYStemM VAriabIEsccuuiiiiiiiiiie e 105
B MOy VANADIE ... 106

101

Variable Maintenance

This function is used to display and modify variables within the debugger when a Natural object
has been interrupted.

For the interrupted Natural object, the Variable maintenance function displays user-defined
variables, global variables and the database-related system variables *COUNTER, *ISN and *NUMBER
together with Natural data formats, lengths and contents.

Display User-Defined, Global and DB-Related System Variables

This section provides instructions for invoking either the Display Variables (summary) screen
with a list of all variables, or the Display Variable (individual) screen with all details on a partic-
ular variable.

= Display Variables - Summary
= Display Variable - Individual

Display Variables - Summary

~ To display a summary of user-defined, global and database-related system variables

s In the Debug Main Menu or in the Debug Break window, enter function code V.
Or:

Enter the following direct command:

DISPLAY VARIABLE variable,variable, ...

The Display Variables (summary) screen provides a list of the variables specified for the interrupted
Natural object. Long values may be displayed truncated on the screen. For arrays, only the contents
of the first occurrence are displayed.

To switch between alphanumeric and hexadecimal representation of the variable contents, choose
PF10 (Alpha) and pr11 (Hex).

To toggle between the truncated display of a variable and the full name display with the group
name, variable name and indices (if relevant), choose PF5 (Zoom).

For variable, a system variable can also be specified. See Display System Variables for more in-
formation.

102 Debugger

Variable Maintenance

Display Variable - Individual

~ To display an individual variable in its entirety

s From the Display Variables (summary) screen, select a variable by marking it with the line
command DI.

Or:

Enter the following direct command:

DISPLAY VARIABLE variable

Or:

On the List Object Source screen, in the Source column, position the cursor at a variable
name and choose PF18 (Di Va).

® The following restrictions apply when using Pr18 (Di Va):

If a variable name (including the occurrences of an array) spans more than one line, only
the contents of the first line are evaluated.

If an array name is not followed by an index, the entire array is displayed.

If the index of an array is constant, for example, array (3,2,6), only this occurrence is dis-
played.

If the index of an array is variable, for example, array (i,j) or array (3:i), the variables are
evaluated before the respective occurrences of the array are displayed.

Or:

On the List Object Source screen, in the Source column, position the cursor at a variable
name and choose ENTER.

® When using ENTER, the same restrictions apply as for PFi8, see above. However, the variable
or array occurrence is displayed in a window instead of using the Display Variable (indi-
vidual) screen, if the index for an array does not denote more than one occurrence. If the
index for an array denotes more than one occurrence, data is displayed using the Display
Variable (individual) screen.

Or:

Instead of positioning the cursor manually and choosing ENTER you can also use Entire
Connection for ease of use. Here, a double click with the left mouse button positions the
cursor and simulates the ENTER key.

The Display Variable (individual) screen, or a window appears with all relevant specifications
for the particular variable.

Debugger 103

Variable Maintenance

If data is displayed using a window and the length of the contents of the variable exceeds 256
bytes, only the first 256 bytes are displayed. For the Display Variable (individual) screen there is
no such limit and you can navigate through the entire contents of the variable as described in the
instructions below.

~ To display the entire contents of the variable or navigate within the contents
= Choose PF22 to page backward or Pr23 to page forward.
Or:
In the Position field, enter a numeric value to start the display at a particular position.

You can choose PF10 (Alpha) and Pr11 (Hex) to switch between alphanumeric and hexadecimal
representation of the variable contents.

~ To display all occurrences of an array using screen functions

= From the Display Variables screen, select a variable by marking it with the line command
DI.

Or:

Choose PF7 (-) and PFs (+) to page between the individual occurrences.

~ To display one or more occurrences of an array using direct commands

m Use the following direct command:

DISPLAY VARIABLE variable-name(index-specification)

where variable-name denotes the name of the variable, and index-specification denotes
any of the following: an index notation, an index range, or asterisk (*) for all occurrences of
a dimension. Variables that are part of the index-specification are evaluated before the
respective occurrences are displayed.

Examples:

DISPLAY VARIABLE ARRAY1(*) |One-dimensional array:

Displays all occurrences of the one-dimensional array ARRAY1.
DISPLAY VARIABLE ARRAYI(1) |One-dimensional array:

or Displays the first occurrence of the one-dimensional array

ARRAYTI.
DISPLAY VARIABLE ARRAY1

104 Debugger

Variable Maintenance

DISPLAY VARIABLE Two-dimensional array:

ARRAYZ2(2,3:4)
Displays the second occurrence of the first dimension and the

index notation of the second dimension of the two-dimensional
array ARRAY 2.

DISPLAY VARIABLE Three-dimensional array:
ARRAY3(1,3:4,*)

Displays the first occurrence of the first dimension, the index
notation of the second dimension, and all occurrences of the
third dimension of the three-dimensional array ARRAY 3.

DISPLAY VARIABLE ARRAY4(I,J |Two-dimensional array:
+ 1)

Displays the occurrence of the two-dimensional array ARRAY4
specified by the value of variable I and the value of the
expression J + 1.

Display System Variables

~ To display system variables (except database-related system variables)
= Enter the following direct command:
SYSVARS

The System Variables screen appears with a limited set of system variables.

~ To display a single system variable

m Use the following direct command:

DISPLAY VARIABLE system-variable-name

where system-variable-nameis the name of the system variable which can also be displayed
using the SYSVARS direct command.

For variables of the type Handle, the name of the class of the instance that the Handle refers to is
displayed in alphanumeric representation. If the class name is not available, the Globally Unique
Identifier (GUID) is displayed instead. If the class was defined within Natural, the class name or
GUID is suffixed with (NAT).

The contents of properties of an instance of a class cannot be displayed within the debugger.

Debugger 105

Variable Maintenance

Modify Variable

This function does not apply to system variables.

This function is used to change the value of user-defined and global variables and the database-
related system variables.

~ To modify the contents of a variable from the Modify Variable screen

1 Invoke the Modify Variable screen by marking the variable with the line command MO.
Or:

On the Display Variable screen, choose PF5 (Mod).
2 On the Modify Variable screen, in the Contents field, change the value of the variable.

The new contents must be valid for the Natural data format of the modified variable since
the format of a variable cannot be modified within the debugger.

On the Modify Variable screen, you can toggle between alphanumeric and hexadecimal
representation of the variable value using PF10 (Alpha) and pr11 (Hex).

> To modify the contents of a variable via direct command

= Enter the following direct command:

MODIFY VARIABLE variable = new value
A message appears that confirms modification of the variable value.

Note: The Modify Variables function or the MODIFY VARIABLE command can be disallowed

by Natural Security as described in Components of an Environment Profile in the Natural Se-
curity documentation.

106 Debugger

13 List Object Source

B Maintain BreakPOiNtSciieiii ittt e e e e e e 109

107

List Object Source

This function is used to display the source code of an object and maintain breakpoints. For you to
be able to use List object source, the corresponding source must be in your current library or in
one of its steplibs.

~ To list the source code of an object

= In the Debug Main Menu, enter function code L and an object name.
Or:

Enter the following direct command:

LIST object
See also the syntax of LIST in Command Summary and Syntax.

The List Object Source screen appears and the object source is displayed with all current
breakpoints listed in the Message column on the right-hand side of the screen.

Choose PF7 (-) or PF8 (+) to scroll up or down one page.

If you execute a Natural object, the debugger interrupts execution at each breakpoint or watchpoint
you have set and the Debug Break window appears (see Debug Break Window in Concepts of the
Debugger).

~ To list the source code of an interrupted Natural object

s From the Debug Break window, choose function code L for List break.
Or:

If relevant, on a debugger screen, choose PF9 (Li Br) or enter the following direct command:

LIST BREAK

The List Object Source screen appears with the source code of the object displayed at the
position where a break (breakpoint or watchpoint) occurred. The name of the breakpoint or
watchpoint is displayed in the Message column on the right-hand side of the screen. The
corresponding source code line is highlighted.

108 Debugger

List Object Source

Maintain Breakpoints

The List object source function may be used to invoke or directly execute breakpoint maintenance
functions from within an object source. For instructions on how to set breakpoints and general
information on breakpoints, see Conditions of Use in Breakpoint Maintenance.

~ To invoke a breakpoint maintenance function from an object source

1 In the Debug Main Menu, enter function code L and an object name.
Or:

Enter the following direct command:

LIST object
See also the syntax of LIST in Command Summary and Syntax.
The source code of the specified object is displayed.

The names of breakpoints already set are displayed in the Message column on the right-hand
side of the screen.

* To navigate in the source list, enter one of the following commands in the command line:
+ (plus sign) or - (minus sign) to scroll down or up one page,
TOP to scroll to the beginning,
BOTTOM to scroll to the end,
LEFT to scroll to the left,

RIGHT to scroll to the right.

2 Inthe object source, mark the line(s) desired with any of the commands listed below:

Line Command |Explanation

AC Activates breakpoints.

DA Deactivates breakpoints.

DE Deletes breakpoints.

DI Displays breakpoints.

MO Goes to the Modify Breakpoint maintenance screen.
SE Sets breakpoints.

Debugger 109

List Object Source

Line Command

Explanation

SM

Goes to the Set Breakpoint maintenance screen.

Upon successful command execution, a corresponding message is displayed in the Message
column on the right-hand side of the screen.

110

Debugger

14 Error Handling

= Errors during Application Execution
= Errors during Debugger Execution

M

Error Handling

This section provides information on handling errors when using the debugger.

Errors during Application Execution

You can use the debugger to analyze any Natural system error that interrupts program execution.
With test mode set to ON (see Switch Test Mode On and Off) or DBGERR set to ON (see the Parameter
Reference documentation), the debugger takes control if an error occurs. In this case, a Debug Break
window similar to the example below appears:

Fo e Debug Break -------------------
Break by NATURAL error 1316

at line

Code ..

—»no==XTT D

G

60 in program SAGTEST (level 1)

Go

List break

Debug Main Menu

Next break command

Run (set test mode OFF)
Step mode

Variable maintenance

Index not within array structure.
PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS

Using the List break function, you can display the source code of the program at the position
where the last statement was executed. The Natural error number is displayed in the Message
column on the right-hand side of the screen and the corresponding source code line is highlighted.

You can then, for example, review the contents of the variables in the program to determine the
reason for the error.

Errors during Debugger Execution

If an error is detected while debugging an application, the debugger will terminate and invoke a

window with an error message similar to the example shown below:

12

Debugger

Error Handling

tocccm e NATURAL Debug Error --------------------------- +
I NATURAL error 3009 has occurred in the NATURAL Debugger.
Last transaction backed out of database 10. Subcode 3

|
|
|
! Error occurred on level 5 in Tine 4150 in

I subprogram DBGTEST in Tibrary TEST.

! DBGTEST has been loaded from FNAT=(10,932).

I DBGTEST has been cataloged on 2005-04-12 14:43:07.
|
|
|

I Debugging terminates.
Pass this error to application for error processing ? (Y/N): N

If you confirm this error message with an N (No - this is the default setting), the following happens:

® The debugger stops debugging and sets the test mode to OFF.

® The Natural runtime system ignores the error and continues executing the application.
If you confirm this message with a Y (Yes), the following happens:

® The debugger stops debugging and sets the test mode to OFF.
® The Natural runtime system reacts to the error and passes it to the application:
If an ON ERROR statement (see the Statements documentation) is used, the application determines

how to proceed after an execution time error occurs. For example, in the case of a NAT3009
where a transaction is backed out of a database, the application can take appropriate action.

If no ON ERROR statement is used, the Natural runtime system terminates application execution
and returns to a Natural command prompt.

Debugger 13

14

15 Execution Control Commands

B ESCAPE BOTTOM ...ttt 116
B ESCAPE ROUTINE ...t 116
LT e 116
B G0 e 117
B N KT s 117
B RUN e 117
B S TP s 117
B STEP SKIPSUBLEVELooiiiiiieii e 117
B STEP SKIPSUBLEVEL N ..ot 118
B ST O e 118

15

Execution Control Commands

This section describes the direct commands the debugger provides for controlling the program
flow during a debugging session. For a summary of all commands available with the debugger,
refer to Command Summary and Syntax.

The commands listed below only apply when the debugger interrupts program execution.

ESCAPE BOTTOM

This command can only be used when a Natural object has been interrupted within a processing
loop.

When you enter this command, the interrupted Natural object will be continued with the first
statement following the processing loop.

| Note: This command can be disallowed by Natural Security as described in Components of
an Environment Profile in the Natural Security documentation.

ESCAPE ROUTINE

When you enter this command, processing of the interrupted Natural object will be stopped and
processing will continue with the object from which the interrupted Natural object was invoked;
it will continue with the statement following the corresponding CALLNAT, PERFORMor FETCH RETURN
statement.

If you apply the command ESCAPE ROUTINE to a main program, Natural ends the program and
returns to the command mode.

| Note: This command can be disallowed by Natural Security as described in Components of

an Environment Profile in the Natural Security documentation.

EXIT

If you are displaying the Debug Main Menu and want to invoke the exit function, choose PF3
(Exit) or enter the execution control command EXIT, the debugger returns either to the calling
program (that is, to the interrupted Natural object which is then continued) or to a command
prompt, if the debugger has been invoked with the direct command TEST, or to the corresponding
input field if it has been invoked by the terminal command %<TEST. However, if a breakpoint or
watchpoint is currently active, the next command of this breakpoint or watchpoint is executed.

116 Debugger

Execution Control Commands

If you are not in the Debug Main Menu and enter the direct command EXIT or choose PF3 (Exit),
you leave the current function and return to the previous step of your debugging session.

GO

When you enter the direct command GO (or choose PF14), the debugger returns control to the exe-
cution of the interrupted Natural object. If a breakpoint or watchpoint was active at the time the
Natural object was interrupted, the remaining commands of this break or watchpoint are not ex-
ecuted.

NEXT

When you enter the direct command NEXT (or choose PF13), the next command specified for a
breakpoint or watchpoint is executed. If no further command has been specified, program execution
continues.

RUN

When you enter the direct command RUN, test mode is switched off and program execution contin-
ues, without investigating any further breakpoints and watchpoints.

STEP

When you enter the direct command STEP, an interrupted Natural object is continued for n execut-
able statement. The default value for nis 1.

STEP SKIPSUBLEVEL

When you enter the direct command STEP SKIPSUBLEVEL upon a statement which invokes another
object (for example, CALLNAT), processing is continued with the next executable statement in the
current object instead of the first executed statement in the invoked object).

If this command is applied to a statement that does not invoke another object, the debugger reacts
as if the command STEP had been entered.

Debugger 117

Execution Control Commands

STEP SKIPSUBLEVEL n

With the command STEP SKIPSUBLEVEL, you can specify a superior level number n. Step mode
then continues within the next object at the specified level. For example: If you enter STEP
SKIPSUBLEVEL 2 in an object at level 4, you continue step mode in the object at level 2.

Object level information can be obtained with the command 0BJCHAIN as described in the section
Navigation and Information Commands.

STOP

When you enter the direct command STOP, both the debugger and any interrupted Natural object
are terminated.

| Note: This command can be disallowed by Natural Security as described in Components of

an Environment Profile in the Natural Security documentation.

118 Debugger

16 Navigation and Information Commands

B B R A e 120
B P s 120
B L A ST e 120
B OBUCHAIN L. 120
B ON O e e 121
B PROFILE L. 121
B S AN L e 122
B SCREEN L. 122
B BT OBUECT s 122
B S T A K s 122
B Y S AR S s 123
B TEST ONIOFF .o 123

19

Navigation and Information Commands

This section describes the direct commands the debugger provides for navigating through the
debugging areas, scrolling screen displays, obtaining various information on objects and variables,
and specifying profiles. For a summary of all commands available with the debugger, refer to
Command Summary and Syntax.

BREAK

The command BREAK is the default command which is automatically set when creating a new debug
entry. It displays the Debug Break window described in Debug Break Window in the section
Concepts of the Debugger.

When the command BREAK is deleted upon modification of the corresponding debug entry, no
Debug Break window appears. However, other specified commands are executed and the event
count is increased.

FLIP

The command FLIP switches between the display of the two PF-key lines (PF1 to PF12 and PF13 to
PF24).

LAST

The command LAST displays the command last entered. The last three commands are stored and
can be recalled.

OBJCHAIN

The command 0BJCHAIN can only be used when a Natural object has been interrupted.

This command displays the objects on the current level and all superior levels, as well as the current
GDA (global data area), if applicable, and provides information on the interruption.

120 Debugger

Navigation and Information Commands

ON/OFF

When you enter the command ON or 0FF in the debugger, test mode is switched on or off respect-
ively. See also TEST ON/OFF.

PROFILE

The command PROFILE displays the User Profile screen where you can modify the profile of the

debugger.

User Profile Screen

The User Profile screen provides the following options:

Option

Explanation

Reset debug environment
automatically on exit

Specifies an automatic reset of your current debug environment once you
exit the debugger. The default is N (No).

File for loading/saving
debug environments

Specifies to/from which system file debug environments are to be
saved/loaded: FUSER (default), FNAT or SPAD (scratch-pad file).

Confirm EXIT/CANCEL
before execution

Specifies a confirmation of an EXIT or CANCEL command before execution.
The defaultis N (No).

Stack unknown commands

Specifies that any unknown debug command which is entered (for example,
the name of a called program) is to be stacked. If so, once you enter an
unknown debug command, you immediately exit the debugger and the
command is executed. If this option has not been specified, an unknown
debug command leads to a corresponding error message. The default is Y
(Yes).

Output device

Specifies a printer for the functions Call statistics maintenance (see Print
Objects) and Statement execution statistics maintenance (see Print
Statements).

The default value is HARDCOPY. If you want to route the output to another
printer, replace HARDCOPY by a valid printer name provided by your Natural
system administrator.

Maximum debug buffer size
in KB

Specifies the maximum size (in kilobytes) of the debug buffer. The debug
buffer is automatically enlarged as required, but only up to the specified
maximum. Enter 0 to indicate no limit or enter a value from 4 - 16384 (must
be a multiple of 4). If the limit would be exceeded, no further debug entries
can be defined and no additional call or statement execution statistics entries
are generated.

Debugger

121

Navigation and Information Commands

SCAN

Only applies to the List object source function (see List Object Source).
This command searches for a string of characters within an object source:

" SCAN searches for the value specified which may be delimited by blanks or any characters that
are neither letters nor numeric characters.

" SCAN ABS results in an absolute scan of the source code for the specified value regardless of what
other characters may surround the value.

See also the syntax diagrams in Command Summary and Syntax.

SCREEN

When you enter the command SCREEN upon interruption of a Natural object, the current screen
output of the interrupted Natural object is displayed. ENTER takes you back to debug mode.

SET OBJECT

The command SET 0BJECT changes the name of the default object as described in the relevant
section in Start the Debugger. See also the syntax of SET in the section Command Summary and Syntax.

STACK

When you enter the command STACK, the contents of the entry at the top of the Natural stack is
displayed. Up to 15 individual top entry elements can be displayed. Elements longer than 55
characters are truncated and marked with an asterisk (*).

| Note: An error message is displayed if any single element is longer than 249 characters.

122 Debugger

Navigation and Information Commands

SYSVARS

When you enter this command, the current values of a limited set of system variables are displayed.

TEST ON/OFF

The command TEST ONor TEST OFF switches test mode on or off respectively. In the debugger,
you only need to enter ON or OFF as described above.

| Note: The TEST command can be disallowed by Natural Security as described in Command

Restrictions in the section Library Maintenance in the Natural Security documentation.

Debugger 123

124

17 Command Summary and Syntax

B Al DEDUG COMMENGS ... et 126
B SYNEAX DIAGIAMS ...ttt e e e et e e e et e e e ees 131

125

Command Summary and Syntax

This section describes all debugger commands that directly execute debug functions or navigate
in debugger screens.

For an explanation of more complex command structures with user-defined operands, see Syntax
Diagrams below.

All Debug Commands

The debug commands listed in the table below can be entered in the command line of any debugger
screen. An underlined portion of a debug command or subcommand represents its minimum ab-

breviation.
Command Subcommand(s) Explanation
- Scrolls one page up in a list.
- Scrolls to the beginning of a list.
TOP
+ Scrolls one page down in a list.
++ Scrolls to the end of a list.
BOTTOM
ACTIVATE BREAKPOINT Activates breakpoints as described in Breakpoint Maintenance.
(syntax or
below)
BP
SPY Activates breakpoints and watchpoints: see also Activate Spy in Spy
Maintenance.
WATCHPOINT Activates watchpoints as described in Watchpoint Maintenance.
or
WP
BM Invokes the Breakpoint Maintenance menu described in Breakpoint
Maintenance.
BREAK Displays the Debug Break window: see also BREAK in Navigation and
Information Commands.
CANCEL Cancels the current operation and/or exits screens without saving
modifications.
DBLOG A Invokes the DBLOG utility (see the Utilities documentation) from
within the debugger.
or
To specify a database environment, use one of the subcommands:
Q
® A = Adabas (this is the default)
126 Debugger

Command Summary and Syntax

Command Subcommand(s) Explanation
= 0 =5QL
Note: During a debug interrupt, you can only specify one of the
subcommands listed above.
DEACTIVATE |BREAKPOINT Deactivates breakpoints as described in Breakpoint Maintenance.
or or
DA BP
(syntax SPY Deactivates breakpoints and watchpoints: see also Deactivate Spy.
below) WATCHPOINT Deactivates watchpoints as described in Watchpoint Maintenance.
or
WP
DELETE BREAKPOINT Deletes breakpoints as described in Breakpoint Maintenance.
(syntax or
below)
BP
SPY Deletes breakpoints and watchpoints: see also Delete Spy.
WATCHPOINT Deletes watchpoints as described in Watchpoint Maintenance.
or
WP
ENVIRONMENT Deletes the specified debug environment: see also Delete Debug
Environment.
DISPLAY BREAKPOINT Displays breakpoints as described in Breakpoint Maintenance.
(syntax or
below)
BP
SPY Displays breakpoints and watchpoints: see also Display Spy.
WATCHPOINT Displays watchpoints as described in Watchpoint Maintenance.
or
WP
CALL Displays statistics on Natural objects invoked during the execution
of an application: see also Display Called Objects.
EXEC Displays statistics on executed statement lines of invoked Natural
objects: see also Display Executed Statement Lines.
HEXADECIMAL Displays the contents of variables in hexadecimal format.

Debugger

127

Command Summary and Syntax

Command Subcommandy(s) Explanation
NOCALL Displays statistics on Natural objects that have not been invoked
during the execution of an application: see also Display Non-Called
Objects.
NOEXEC Displays statistics on non-executed statement lines of invoked Natural
objects: see also Display Non-Executed Statement Lines.
OBJECT Displays statistics on the call frequency of objects: see also Display
All Objects.
STATEMENT Display statistics on executed and non-executed statement lines of
invoked Natural objects: see Display All Statement Lines .
VARTABLE Displays variables for interrupted Natural objects as described in
Variable Maintenance.
XSTATISTICS Displays a statistical summary of execution statistics: see also Display
Statement Execution Statistics.
EM Invokes the Debug Environment Maintenance menu described in
Debug Environment Maintenance.
ESCAPE BOTTOM Stops processing a loop and escapes to the first statement after the
loop: see ESCAPE BOTTOM in Execution Control Commands.
ROUTINE Stops processing an interrupted Natural object and continues with
another object, if available: see ESCAPE ROUTINE in Execution Control
Commands.
EXIT Leaves the current screen: see EXIT in Execution Control Commands.
ELIP Switches between the display of the two PF-key lines (PF1 to PF12 and
PF13 to PF24).
GO Returns control to the execution of the interrupted Natural object:
see GO in Execution Control Commands.
LAST Displays the command entered last. The last three commands are
stored and can be recalled.
LEFT Shifts to the left side of a source code listing.
LIST Displays the source code of an object.
BREAK Shows the object source with the current break. The relevant statement
(syntax line is highlighted
below) ine is highlighted.
LASTLINE Shows the object source with the last line executed before the current
break.
LOAD ENVIRONMENT Loads the debug environment specified: see Load Debug
Environment.
(syntax
below)
MENU Invokes the Debug Main Menu.
MODIFY BREAKPOINT Modifies breakpoints as described in Breakpoint Maintenance.
(syntax or
below)
128 Debugger

Command Summary and Syntax

Command Subcommand(s) Explanation
BP
SPY Invokes the Modify Breakpoint or Modify Watchpoint screen: see
also Modify Spy in Spy Maintenance.
WATCHPOINT Modifies watchpoints as described in Watchpoint Maintenance.
or
WP
HEXADECIMAL Modifies the contents of variables in hexadecimal format.
VARTABLE Invokes the Display Variable screen for modification as described
in Modify Variable (using PF5).
NEXT Executes the next command specified for a breakpoint or watchpoint.
OBJCHAIN Displays executed objects at various program levels: see 0BJCHATN
in Navigation and Information Commands.
ON Switches test mode on or off. See also Switch Test Mode On and Off.
or
OFF
PRINT CALL Prints statistics on Natural objects invoked during the execution of
an application: see also Display Called Objects.
(syntax . . : -
below) EXEC Prints statistics on executed statement lines of invoked Natural
objects: see also Display Executed Statement Lines.
NOCALL Prints statistics on Natural objects that have not been invoked during
the execution of an application: see also Display Non-Called Objects.
NOEXEC Prints statistics on non-executed statement lines of invoked Natural
objects: see also Display Non-Executed Statement Lines.
OBJECT Prints statistics on the call frequency of objects: see also Display All
Objects.
STATEMENT Prints statistics on executed and non-executed statement lines of
invoked Natural objects: see also Display All Statement Lines.
XSTATISTICS Prints statistics on executed statement lines: see also Display
Statement Execution Statistics.
PROFILE Displays the User Profile screen where you can modify the profile
of the debugger as described in Navigation and Information
Commands.
RESET ENVIRONMENT Resets the current debug environment: see Reset Debug Environment.
(syntax
below)
RIGHT Shifts to the right side of a source code listing.
RUN Switches off test mode and continues program execution.

Debugger

129

Command Summary and Syntax

Command Subcommandy(s) Explanation

SAVE ENVIRONMENT Resets the current environment and saves the debug specifications.
See also Save Debug Environment.

(syntax

below)

SCAN ABS Only applies when using the function List object source (see List
Object Source).

Searches for a value in the source code of an object: see SCAN in
Navigation and Information Commands and Syntax Diagrams below.

SCREEN When entered upon interruption of an object, displays the current
screen output of the interrupted Natural object. ENTER takes you back
to debug mode.

SET BREAKPOINT Invokes the Set Breakpoint screen described in Breakpoint
Maintenance.

(syntax or

below)

BP

CALL ON Activates or deactivates call statistics as described in Call Statistics
Maintenance.

or

CALL OFF

OBJECT Changes the default object specified for the debugger. See also SET
OBJECT in Navigation and Information Commands.

WATCHPOINT Invokes the Set Watchpoint screen described in Watchpoint
Maintenance.

or

WP

XSTATISTICS ON Activates (ON or COUNT) deactivates (OF F) the statement execution
statistics as described in Set Statement Execution Statistics.

or

XSTATISTICS COUNT

or

XSTATISTICS OFF

SM Invokes the Spy Maintenance menu described in Spy Maintenance.

STACK Displays the contents of the entry at the top of the Natural stack: see
STACK in Navigation and Information Commands.

STEP [n] Continues an interrupted Natural object for the number (/1) of
executable statements specified with the command. If you do not
specify n, one executable statement is skipped by default. See also
STEP in Execution Control Commands.

130 Debugger

Command Summary and Syntax

Command Subcommandy(s) Explanation
SKIPSUBLEVEL [n] |Continues step-mode processing of Natural objects without entering

programs at sub-levels. You can specify a level number (n). See also
STEP SKIPSUBLEVEL in Execution Control Commands.

STQOP Terminates both the debugger and any interrupted Natural object;
the NEXT prompt appears.

SYSVARS Displays the current values of a limited set of system variables (except
the database-related system variables). See also Display System
Variables.

TEST ON Switches test mode on or off. See also Switch Test Mode On and Off.

or

TEST OFF

WM Invokes the Watchpoint Maintenance menu described in Watchpoint
Maintenance.

Syntax Diagrams

The syntax diagrams listed below refer to more complex command sequences.

For detailed explanations of the symbols used within the syntax descriptions, see the section System
Command Syntax in the System Commands documentation.

For better readability, synonymous keywords are omitted from the syntax diagrams below. An
underlined portion of a keyword represents an acceptable abbreviation.

Valid synonyms are:

Keyword Synonym

BREAKPOINT|BP
DEACTIVATE|DA
WATCHPOINT [WP

= ACTIVATE

= DEACTIVATE
= DELETE

= DISPLAY

= LIST

= LOAD

= MODIFY

= PRINT

= RESET

Debugger

131

Command Summary and Syntax

= SAVE
= SET
ACTIVATE
name
l]
number
ACTIVATE § BREAKPOINT [object][T7ne]
WATCHPOINT [object]variab]e]
DEACTIVATE
name
SPY {]
number

DEACTIVATE § BREAKPOINT [object][Tine]

WATCHPOINT [object]variable

DELETE

PY

{ name
number
BREAKPOINT [object][Tine]

DELETE WATCHPOINT [object] variable

XSTATISTICS [7ibrary]object

ENVIRONMENT [name]

DISPLAY

132 Debugger

Command Summary and Syntax

name
o {
number
BREAKPOINT [object][1ine]
WATCHPOINT [object]variable
CALL
0BJECT
DISPLAY 1 NOCALL
XSTATISTICS library[object]
STATEMENT
EXEC
NOEXEC
YARIABLE variable-name
HEXADECIMAL [index-specification),..
LIST
LASTLINE
LIST ‘ BREAK]
object[Tine]
LOAD

LOAD ENVIRONMENT [name]

MODIFY
name
o { b
number
BREAKPOINT [object][Tine]
MODIFY
WATCHPOINT [object] variable]
VARTABLE
variable[=new va7ue]]
HEXADECIMAL

Debugger

133

Command Summary and Syntax

PRINT

CALL
OBJECT
NOCALL
PRINT XSTATISTICS Tibrary[object]
STATEMENT
EXEC
NOEXEC

RESET

[RESET ENVIRONMENT [name] |

SAVE

‘S_AVE ENVIRONMENT [name] ‘

SET
OBJECT object
Iine
BREAKPOINT object { }
Tabel
WATCHPOINT [object] variable]
SET OFF
CALL }
ON
OFF
XSTATISTICS ON [library[object]] ’
COUNT
134 Debugger

18 Preparing Natural for Attached Debugging

L 1211 (0o 1o o) PSP PPPPTPRRR 136
= Prerequisites for Attached DEDUGGINGvvviiiiiiie e 136
LI 1oL OSSPSR 137

135

Preparing Natural for Attached Debugging

Introduction

This document provides information on activating the debug attach server (DAS) to debug an
external Natural application with NaturalONE.

An external application runs in a Natural environment but stores its sources in a NaturalONE
project. The DAS is used to access a Natural ONE project.

For more information on using the DAS, refer to the Natural ONE documentation.

Prerequisites for Attached Debugging

The following prerequisites must be met to access the NaturalONE debugger from a z/OS Natural
session:

The Natural session runs in a z/OS environment.

Natural ONE is installed.

Natural Development Server is installed and the version installed must support attached debug-
ging.

Module NATADvrs (or NCIADvrs for a CICS session on z/OS) is generated from the Natural De-
velopment Server library and can be accessed for the Natural session.

The profile parameter DBGAT is specified, see DBGAT.
The profile parameter RCA is set to NATATDBG.

The profile parameter RCALIAS is set to (NATATDBG,NATADvrs), for CICS on z/OS to
(NATATDBG,NCIADvrs).

The DAS is running and can be addressed through TCP/IP. The DAS is shipped with NaturalONE
as NATDAS . EXE file.

For detailed information on the profile parameters mentioned above, refer to the Parameter Reference
documentation.

136 Debugger

Preparing Natural for Attached Debugging

Example

A Natural batch application is to be debugged with NaturalONE. The DAS server is available
under the TCP/IP name DASSERV and listens to port 50882. The NaturalONE debugger has identified
itself to the DAS with client ID FRED. The attached debug interface resides in DSN NDVvrs. LOAD:

//NATBAT EXEC PGM=NATBATvr

//STEPLIB DD DISP=SHR,DSN=NATvrs.LOAD

// DD DISP=SHR,DSN=NDVvrs.LOAD

//CMPRMIN DD *
RCA=NATATDBG,RCALIAS=(NATATDBG,NATADvrs)
DBGAT=(ACTIVE=ON,HOST=DASSERV,PORT=50882,CLID=FRED)
/%

Debugger 137

138

	Debugger
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Debugger Tutorial
	Prerequisites
	Fundamentals of Debugging
	Session 1 - Analyzing a Natural Error
	Session 2 - Using a Breakpoint
	Session 3 - Using a Watchpoint
	Session 4 - Tracing the Logical Flow of Programs
	Session 5 - Using Statistics about the Program Execution
	Additional Hints for Using the Debugger
	Time Stamps of Objects
	Saving Breakpoints and Watchpoints
	Debug Main Menu for Maintenance Functions
	Help for Commands on Maintenance Screens
	Major Functions Available during Program Interruption
	Next Option for Additional Commands During Program Interruption
	Displaying Large Variables and Arrays
	Printing Debugger Statistics
	Using the Debugger in Batch Mode

	Example Sources

	3 Concepts of the Debugger
	Session Control and Control Functions
	Debug Entries/Spies
	Maintenance and Validation
	Names of Debug Entries
	Initial or Current State
	Counter for Debug Events
	Commands for Debug Entries

	Debug Break Window

	4 Start the Debugger
	Debugger under Natural Security
	Operational Requirements
	Batch Processing

	Invoke the Debugger
	Default Object

	5 Switch Test Mode On and Off
	6 Debug Environment Maintenance
	Set Test Mode ON/OFF
	Load Debug Environment
	Save Debug Environment
	Reset Debug Environment
	Delete Debug Environment
	Maintain Debug Environments in Different Libraries

	7 Spy Maintenance
	Set Test Mode ON/OFF
	Activate Spy
	Deactivate Spy
	Delete Spy
	Display Spy
	Modify Spy

	8 Breakpoint Maintenance
	Conditions of Use
	Set Test Mode ON/OFF
	Activate Breakpoint
	Deactivate Breakpoint
	Delete Breakpoint
	Display Breakpoint
	Modify Breakpoint
	Set Breakpoint
	Fields and Columns on Breakpoint Screens

	9 Watchpoint Maintenance
	Set Test Mode ON/OFF
	Activate Watchpoint
	Deactivate Watchpoint
	Delete Watchpoint
	Display Watchpoint
	Modify Watchpoint
	Set Watchpoint
	Watchpoint Operators

	Fields and Columns on Watchpoint Screens

	10 Call Statistics Maintenance
	Set Test Mode ON/OFF
	Set Call Statistics On/Off
	Display All Objects
	Display Called Objects
	Display Non-Called Objects
	Print Objects
	Print Options
	Example of a PC Download

	11 Statement Execution Statistics Maintenance
	Set Test Mode ON/OFF
	Set Statement Execution Statistics ON/OFF/COUNT
	Setup Options
	Activate and Deactivate Statistics

	Delete Statement Execution Statistics
	Display Statement Execution Statistics
	Display All Statement Lines
	Display Executed Statement Lines
	Display Non-Executed Statement Lines

	Print Statements
	Print Options

	12 Variable Maintenance
	Display User-Defined, Global and DB-Related System Variables
	Display Variables - Summary
	Display Variable - Individual

	Display System Variables
	Modify Variable

	13 List Object Source
	Maintain Breakpoints

	14 Error Handling
	Errors during Application Execution
	Errors during Debugger Execution

	15 Execution Control Commands
	ESCAPE BOTTOM
	ESCAPE ROUTINE
	EXIT
	GO
	NEXT
	RUN
	STEP
	STEP SKIPSUBLEVEL
	STEP SKIPSUBLEVEL n
	STOP

	16 Navigation and Information Commands
	BREAK
	FLIP
	LAST
	OBJCHAIN
	ON/OFF
	PROFILE
	User Profile Screen

	SCAN
	SCREEN
	SET OBJECT
	STACK
	SYSVARS
	TEST ON/OFF

	17 Command Summary and Syntax
	All Debug Commands
	Syntax Diagrams
	ACTIVATE
	DEACTIVATE
	DELETE
	DISPLAY
	LIST
	LOAD
	MODIFY
	PRINT
	RESET
	SAVE
	SET

	18 Preparing Natural for Attached Debugging
	Introduction
	Prerequisites for Attached Debugging
	Example

