This document applies to MashZone NextGen Version 10.3 and to all subsequent releases. Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013 - 2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).
Contents

1 Preface ... 1
2 Open the Admin Console .. 2
3 MashZone NextGen Security ... 3
 3.1 Manage your MashZone NextGen profile ... 4
 3.1.1 Manage your locale and account information ... 4
 3.1.2 Change your password ... 4
 3.2 MashZone NextGen server .. 4
 3.3 MashZone NextGen repository ... 5
 3.4 Change technical user password .. 5
 3.5 Authentication and Guest Access ... 6
 3.5.1 User Authentication .. 6
 3.5.2 Valid Credentials .. 7
 3.5.3 Sessions and Timeouts ... 7
 3.6 Default User Accounts .. 8
 3.7 Authentication with Single Sign-On Solutions .. 8
 3.7.1 Configuration for Agent-Based SSO Solutions .. 8
 3.7.2 Implementing a Custom SSO Filter .. 10
 3.7.3 SSO integration in My webMethods .. 11
 3.8 Authorization Policies and Permissions .. 12
 3.8.1 Grant User Access to MashZone NextGen with Built-in Groups 12
 3.9 Built-In MashZone NextGen User Groups and Permissions 13
 3.9.1 Access Policies Using MashZone NextGen Built-In Groups 13
 3.10 Protect MashZone NextGen Event Service access .. 14
 3.11 Anti-Clickjacking prevention when using iFrame .. 15
 3.11.1 MashZone NextGen HTTP header security filter 15
 3.11.1.1 Example ... 16
 3.11.2 MashZone NextGen Content Security Policy 16
 3.11.3 Add a trusted site to allow iFrame .. 17
 3.11.4 Add multiple trusted sites to allow iFrame ... 17
 3.11.5 Content-Security-Policy using wildcards .. 18
 3.12 Handle personal data in log files ... 18
4 Getting Started with the MashZone NextGen Server ... 19
 4.1 Additional MashZone NextGen System and Software Requirements 20
 4.1.1 Additional Recommendations for MashZone NextGen 20
 4.2 What is Installed with MashZone NextGen .. 20
 4.3 Start and Stop the MashZone NextGen Server ... 21
 4.3.1 Start the MashZone NextGen Event Service .. 21
 4.3.2 Start the MashZone NextGen Server .. 21
 4.3.3 Stop the MashZone NextGen Event Service .. 22
 4.3.4 Stop the MashZone NextGen Server .. 22
 4.4 Startup Considerations ... 23
 4.5 Manage Licenses for MashZone NextGen and BigMemory 23
 4.6 Move the MashZone NextGen repository to a robust database solution 24
 4.6.1 Troubleshooting Connections to the MashZone NextGen Repository 25
 4.6.2 Move the MashZone NextGen repository to Microsoft SQL Server 25
 4.6.3 Move the MashZone NextGen repository to MySQL 28
 4.6.4 Move the MashZone NextGen repository to Oracle 30
4.6.5 Move the MashZone NextGen repository to PostGres 32
4.7 Integrate Your LDAP Directory with MashZone NextGen 34
 4.7.1 Defining LDAP Connection Configuration ... 35
 4.7.2 Defining the Authentication Scheme .. 36
 4.7.3 Defining the Authorization Scheme .. 37
 4.7.4 Enabling MashZone NextGen Application Queries for All LDAP Users or Groups for Permissions 39
4.8 Use the Default MashZone NextGen User Repository 40
 4.8.1 Manage Users .. 40
 4.8.1.1 Create Users ... 41
 4.8.1.2 Edit, Grant Permissions and other User Management Tasks 41
 4.8.2 Manage User Groups ... 42
 4.8.3 Automatically Assign New Users to Groups 43
 4.8.4 Grant dashboard and data feed permissions via API console 43
 4.8.4.1 Enable dashboard and data feed creation 44
 4.8.5 Install MashZone NextGen and MashZone NextGen Event Service as Windows services .. 45
4.9 Command Central .. 45
 4.9.1 MashZone NextGen plug-in .. 45
 4.9.1.1 Required installer modules .. 45
 4.9.1.2 Instance Overview ... 46
 4.9.1.3 Instance Configuration .. 46
 4.9.1.4 Instance Logs .. 48
 4.9.1.5 Enable remote JMX connection ... 48
 4.9.2 MashZone NextGen Event Service plug-in 49
 4.9.2.1 Instance overview ... 49
 4.9.2.2 Instance configuration .. 49
 4.9.2.3 Instance Logs .. 52
 4.9.3 Configure MashZone NextGen Digital Event Service (DES) 52
 4.9.4 Configure ports ... 52
 4.9.5 Configure keystores .. 53
 4.9.6 Configure truststores .. 54
 4.9.7 Configure SSL certifcates ... 54
 4.9.8 Manage licenses ... 55
5 MashZone NextGen Server Configuration .. 56
 5.1 Memory Configuration for the MashZone NextGen Server 56
 5.1.1 Configuration When MashZone NextGen Uses Only Heap Memory 56
 5.1.2 Configuration When MashZone NextGen Uses Heap and Off-Heap Memory .. 57
 5.2 Support International Character Sets and Locales 58
 5.2.1 Set the Repository Character Encoding ... 59
 5.2.2 Set the Repository Timezone or Offset .. 59
 5.2.3 Date, Time and Numeric Display Options 59
 5.2.4 Message Log and Default Locales .. 60
 5.3 Edit style templates .. 60
 5.4 Configure the MashZone NextGen server with custom ports 61
 5.4.1 Change MashZone NextGen Server Ports 61
 5.4.2 Change MashZone NextGen Repository Ports 62
 5.4.3 Tomcat Application Server Port .. 62
5.5 Configure the MashZone NextGen server to work with a proxy server 62
5.6 Embedding MashZone NextGen in external system environments 63
 5.6.1 Configure MashZone NextGen server to work with iFrame 63
 5.6.2 Post data .. 64
 5.6.3 URL selection .. 65
5.7 Define a Proxy Server Whitelist for MashZone NextGen 65
 5.7.1 Using Regular Expressions in a Whitelist 65
 5.7.2 Specifying Literal Dot Separators .. 66
 5.7.3 Specifying Domains ... 66
 5.7.4 Specifying Host Names .. 66
5.8 Configure MashZone NextGen for SSL and Digital Certificates 67
 5.8.1 The Certificate Store and Certificates ... 67
 5.8.2 Key Certificate Pairs ... 68
 5.8.3 Trusted Peer Certificates ... 68
 5.8.4 The Certificate Store ... 68
 5.8.5 Configure Mutual SSL Between Users and MashZone NextGen 68
 5.8.6 One-Way SSL to MashZone NextGen ... 69
 5.8.7 One-Way SSL to Information Sources .. 69
 5.8.8 Configure HTTPS and Certificate Stores in the Application Server 69
 5.8.9 Update SSL Configuration for Java ... 71
5.9 MashZone NextGen Logging ... 71
 5.9.1 Configure Logging for the MashZone NextGen Server 72
 5.9.2 Audit logging for dashboards, data feeds, aliases, and permissions 73
5.10 MashZone NextGen Notifications .. 74
 5.10.1 Configuring a Mail Server for MashZone NextGen 74
 5.10.2 Update the User Email Attribute from LDAP 75
5.11 BigMemory for Caching, Connections and In-Memory Stores 75
 5.11.1 Caching for the MashZone NextGen Server 76
 5.11.1.1 Artifact Caching .. 76
 5.11.1.2 Response Caching ... 77
 5.11.1.3 Distributed Caching for MashZone NextGen Clusters 77
 5.11.1.4 Configure BigMemory Servers for MashZone NextGen Caching 77
 5.11.2 Working with BigMemory Stores for RAQL 79
 5.11.2.1 Declared In-Memory Stores ... 79
 5.11.2.1.1 Declare a new In-Memory Store 80
 5.11.2.1.2 Modify a Declared In-Memory Store 81
 5.11.2.1.3 View Details for Declared In-Memory Stores 82
 5.11.3 Dynamic In-Memory Stores .. 82
 5.11.3.1 Manage Dynamic BigMemory Stores for MashZone NextGen Analytics .. 83
 5.11.3.2 Add an External Dynamic In-Memory Store Connection 83
 5.11.3.3 Delete External Dynamic In-Memory Store Connections 84
5.12 Manage Terracotta DB connections .. 84
 5.12.1 Register Terracotta DB connections .. 85
 5.12.2 Edit Terracotta DB connections .. 86
 5.12.3 Test Terracotta DB connections .. 86
 5.12.4 Share Terracotta DB connections ... 87
 5.12.5 Delete Terracotta DB connections ... 87
5.13 Manage data sources and drivers .. 88
 5.13.1 Add a data source .. 88
 5.13.2 Edit, test or remove data sources ... 90
 5.13.3 Share data sources .. 90
MashZone NextGen Server Administration ... 103

Clustering MashZone NextGen Servers .. 117

Using the API Console ... 99

Use the Admin Console .. 99

Use the API Console .. 99

Use the server administration tool ... 100

Use server web services ... 101

6 MashZone NextGen Server Administration ... 103

6.1 Manage Files for MashZone NextGen Features or Artifacts 103

Add External Resources as MashZone NextGen Files 103

Find MashZone NextGen Files .. 104

Update or Delete MashZone NextGen Files .. 104

6.2 Manage resource directories ... 104

Create resource directory .. 105

Change resource directory .. 105

Delete resource directory ... 105

Share resource directory ... 106

6.3 Manage URL aliases .. 106

Create URL alias ... 106

Change URL alias ... 107

Delete URL alias ... 107

Share URL alias ... 108

6.4 Deploying MashZone NextGen Instances, Clusters or Artifacts 108

Deploying the Core Widgets ... 108

Deploying MashZone NextGen Artifacts and Other Metadata 109

Export users, user metadata and groups ... 112

Export dashboards ... 113

Export data feeds .. 114

Import users, user metadata and groups .. 115

Import dashboards ... 115

Import data feeds .. 116

Deploying multiple MashZone NextGen servers in one host 117

6.5 Clustering MashZone NextGen Servers .. 117

Setting Up a New Cluster .. 118

Adding New Members to an Existing Cluster 119
6.6 Sharing the MashZone NextGen Repository in Clustered Environments 120
 6.6.1 Create and Share a New MashZone NextGen Repository 120
 6.6.2 Share an Existing MashZone NextGen Repository 121
6.7 Setting Up an External MashZone NextGen Configuration Folder 121
 6.7.1 MashZone NextGen File-Based Configuration and Extensions 123
 6.7.2 MashZone NextGen Configuration Files That Can Be External 123
 6.7.3 MashZone NextGen Configuration Files That Must Be Internal 124
 6.7.4 MashZone NextGen Extensions ... 125
6.8 MashZone NextGen dashboards in a clustered scenario 125
 6.8.1 Preliminary ... 125
 6.8.2 Configuration ... 126
 6.8.2.1 MashZone NextGen Event Service .. 126
 6.8.3 rtbs.properties .. 126
 6.8.4 zookeeper.properties .. 127
 6.8.5 server.properties ... 128
 6.8.6 MashZone NextGen nodes ... 128
 6.8.6.1 Customizing dashboards .. 128
 6.8.7 Custom styles ... 128
 6.8.8 Custom widgets .. 129
 6.8.9 Using JDBC drivers ... 129
 6.8.10 Local file resources ... 129
7 Event Service Configuration and Administration .. 130
 7.1 About the Event Service and Event Data ... 130
 7.2 Use Events as Information Sources ... 130
 7.3 Manage EDA Event Sources .. 131
 7.3.1 Create EDA Event Sources .. 131
 7.3.2 Edit EDA Event Sources ... 135
 7.3.2.1 Simple and Hybrid Throttling Strategies 138
 7.3.3 Duplicate EDA Event Sources ... 139
 7.3.4 Delete EDA Event Sources .. 139
 7.3.5 Share EDA Event Sources .. 140
 7.4 Manage Apama Event Sources .. 141
 7.4.1 Create Apama Event Sources .. 141
 7.4.2 Duplicate Apama Event Sources .. 146
 7.4.3 Delete Apama Event Sources .. 146
 7.4.4 Edit Apama Event Sources .. 147
 7.4.5 Share Apama Event Sources .. 151
 7.5 Manage DES Event Sources .. 152
 7.5.1 Create DES Event Source .. 153
 7.5.2 Edit DES Event Sources ... 157
 7.5.2.1 Simple and Hybrid Throttling Strategies 160
 7.5.3 Duplicate DES Event Sources ... 161
 7.5.4 Delete DES Event Sources .. 161
 7.5.5 Share DES Event Sources .. 161
 7.5.6 Activate DES in MashZone NextGen .. 162
 7.6 Start or Stop an Event Source ... 162
 7.7 Restart all Event Sources .. 163
 7.8 Manage Apama Instances ... 163
 7.8.1 Create Apama Instances ... 163
 7.8.2 Edit Apama Instances ... 164
 7.8.3 Delete Apama Instances ... 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9</td>
<td>Manage Apama Event Targets</td>
<td>165</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Create Apama Event Targets</td>
<td>165</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Edit Apama Event Targets</td>
<td>166</td>
</tr>
<tr>
<td>7.9.3</td>
<td>Delete Apama Event Targets</td>
<td>167</td>
</tr>
<tr>
<td>7.9.4</td>
<td>Share Apama Event Target</td>
<td>167</td>
</tr>
<tr>
<td>8</td>
<td>Process Performance Manager Integration</td>
<td>169</td>
</tr>
<tr>
<td>8.1</td>
<td>Manage PPM Connections</td>
<td>169</td>
</tr>
<tr>
<td>8.2</td>
<td>Create PPM Connections</td>
<td>169</td>
</tr>
<tr>
<td>8.3</td>
<td>Edit PPM Connections</td>
<td>170</td>
</tr>
<tr>
<td>8.4</td>
<td>Delete PPM Connections</td>
<td>171</td>
</tr>
<tr>
<td>8.5</td>
<td>Share PPM connections</td>
<td>172</td>
</tr>
<tr>
<td>9</td>
<td>webMethods Business Console Integration</td>
<td>173</td>
</tr>
<tr>
<td>9.1</td>
<td>Example</td>
<td>173</td>
</tr>
<tr>
<td>9.2</td>
<td>Authentication</td>
<td>173</td>
</tr>
<tr>
<td>9.3</td>
<td>Example URL</td>
<td>174</td>
</tr>
<tr>
<td>9.4</td>
<td>Configuration</td>
<td>174</td>
</tr>
<tr>
<td>9.5</td>
<td>Outbound API</td>
<td>174</td>
</tr>
<tr>
<td>9.6</td>
<td>Inbound API</td>
<td>175</td>
</tr>
<tr>
<td>10</td>
<td>MashZone NextGen Repositories</td>
<td>176</td>
</tr>
<tr>
<td>10.1</td>
<td>Maintenance Suggestions</td>
<td>176</td>
</tr>
<tr>
<td>10.2</td>
<td>Tuning the MashZone NextGen Repository Connection Pool</td>
<td>176</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Connection Pool Size Properties</td>
<td>177</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Idle Pool Connection Properties</td>
<td>177</td>
</tr>
<tr>
<td>10.3</td>
<td>Synchronize the MashZone NextGen Repository and MashZone NextGen Server Time Zones</td>
<td>178</td>
</tr>
<tr>
<td>11</td>
<td>Additional Information and Support</td>
<td>179</td>
</tr>
<tr>
<td>11.1</td>
<td>Samples, Help and Other Documentation</td>
<td>179</td>
</tr>
<tr>
<td>11.2</td>
<td>Version and License Information</td>
<td>179</td>
</tr>
<tr>
<td>12</td>
<td>Legal information</td>
<td>180</td>
</tr>
<tr>
<td>12.1</td>
<td>Documentation scope</td>
<td>180</td>
</tr>
<tr>
<td>12.2</td>
<td>Data protection</td>
<td>180</td>
</tr>
<tr>
<td>12.3</td>
<td>Disclaimer</td>
<td>181</td>
</tr>
</tbody>
</table>
1 Preface

The MashZone NextGen Administration Guide includes information for administrators to configure and manage MashZone NextGen.
Open the Admin Console

MashZone NextGen includes the Admin Console, a web based tool for MashZone NextGen administrators to configure and manage the MashZone NextGen Server. This simple, easy to use tool offers a wide degree of control to inspect, configure, and manage the features of MashZone NextGen.

Procedure

1. Click the user icon in the program bar.
2. Click Admin Console.

The Admin Console opens.
3 MashZone NextGen Security

MashZone NextGen provides control of user interactions to register or create dashboards and data feeds, and secure access for all users to work with these artifacts based on policies that you define.

- **Change password**: For reasons of security, we strongly recommend that the MashZone NextGen administrator should change the standard MashZone NextGen password after installation. See Change technical user password (Seite 5).

- **Change password of target data sources**: For reasons of security, we strongly recommend to change the key that is used to encrypt or decrypt passwords of target data sources (for example, source operators, URL aliases, JDBC configurations). The key is included in the `authTokenKey` file located in `<MashZone NextGen installation>/webapps/mashzone/WEB-INF/classes/`. It can be changed by using the `padmin generateKey -a AES -f authTokenKey` command that creates a new `authTokenKey` file. First of all we recommend to create a backup of the existing `authTokenKey` file and then to copy the new file to that folder. The file should only be changed with an empty repository, as already encrypted passwords can not be decrypted any longer. The same applies to exported content. The system where the content should be imported, has to use the same key to be able to decrypt the passwords.

- **User Authentication**: based on the protocols shown above. You can also allow anonymous access if needed. See Authentication and Guest Access (page 6) for details.

- Incorporate password policies and expiring passwords.

Please consider the following security-relevant aspects:

- Always keep your operating system, installed widgets and applications updated. Run necessary security updates on a regular basis, in particular for your Web-Browser and installed plug-ins.

- Always keep your MashZone NextGen installation updated. Regularly check if new fixes are available for your installation and install them.

- To prevent unauthorized access to your system, only a limited number of users should be granted direct system access (for example, remote RDP access or directly via a management console).

- Limit network access by operating the server widgets behind a firewall. Only necessary services should be open in the firewall (for example, database).

- Hide network ports used solely for internal communication between server widgets.

- Set up a secured communication between client and server using HTTPS. For details, see Configure HTTPS and Certificate Stores in the Application Server (page 69).

- Install the latest security updates of your operating system, browsers and plug-ins, for example, Adobe Flash.
3.1 Manage your MashZone NextGen profile

Your user profile shows basic information about your account in MashZone NextGen and allows you to:

- Manage your locale and account information (page 4), if permitted
- Change your password (page 4), if permitted

3.1.1 Manage your locale and account information

In most cases, you cannot update any other account information because this comes from account information for your entire organization. In development or test environments where your account information is stored in the default MashZone NextGen Repository, you can save changes to this information.

Procedure

1. In the program bar, click the user name by which you are logged in to MashZone NextGen.
2. Click About Me.
3. Make your settings.
4. Click Save changes.
Your settings are applied.

3.1.2 Change your password

In most cases, you cannot update your password in MashZone NextGen because this comes from account information for your entire organization. In development or test environments where your account information is stored in the default MashZone NextGen Repository, however, you can reset your password from your profile.

Procedure

1. In the program bar, click the user name by which you are logged in to MashZone NextGen.
2. Click My Password.
3. Enter your new password and confirm this.
4. Click Update Password.
Your password is updated.

3.2 MashZone NextGen server

Security: this includes both authentication and authorization for users when dashboards and data feeds are viewed or run. The MashZone NextGen server also handles authentication with dashboards and data feeds information sources when they are run.
The MashZone NextGen server is integrated with your user repository (page 5) or identity server for user authentication. This can be basic authentication, secure connections and certificates or a single sign-on solution.

You define authorization policies for MashZone NextGen resources determining who can view or run dashboards and data feeds. Generally, users must be authenticated, but you can also define unlimited access, allowing 'guest' users without authentication to work with apps that are published to web sites, wikis or other environments.

3.3 MashZone NextGen repository

The MashZone NextGen repository contains information on users and groups, authorization policies, server configuration, notifications and much more.

User Data: for authentication and determining authorization.

Typically user data comes from your organization's LDAP directory which you integrate with MashZone NextGen. This may also use a single sign-on solution and an identity manager. However, MashZone NextGen also has a built-in user repository which you may use. User or group meta-data from LDAP allows MashZone NextGen to relate authorization policies with users.

3.4 Change technical user password

For reasons of security we strongly recommend that the MashZone NextGen administrator should change the standard technical user password after installation. The technical user password is encrypt and stored in two modules. You have to change both occurrences.

<code>
<code>MashZoneNG-install>/apache-tomcat/webapps/mashzone/WEB-INF/classes/mz.properties
<code>MashZoneNG-install>/apache-tomcat/webapps/mashzone/WEB-INF/mashzone.properties
</code>

Note: This procedure is only required for MashZone NextGen 3.9.01.

Procedure

1. Change the password in .../mz.properties.

 a. Encrypt a new password using the padmin tool. Open the command line and enter following command. Replace the variable `<password>` by your new password, for example, newPassword.

   ```
   $ <MashZoneNG-install>/prestocli/bin/padmin encryptProperty -u Administrator -w manage -p <password>
   ```

 b. Copy the output of the command line into mz.properties, for example,

   ```
   {ENC}A+yyI2FYYBy33lqNCWGQIQ==
   ```

2. Change the password in .../mashzone.properties.
a. Encrypt a new password using the encryptpassword tool. Open the command line and enter following command. Replace the variable <password> by your new password, for example, newPassword.

$ <MashZoneNG-install>mashzone/tools/runtool encryptpassword -password <password>

b. Copy the output of the command line into mashzone.properties, for example, 46f712a61dc8d7ed244bf0fffd266ae1e.

presto.basicAuthPassword=46f712a61dc8d7ed244bf0fffd266ae1e

The technical user password is changed.

3.5 Authentication and Guest Access

MashZone NextGen accepts requests from both unauthenticated (guests) and authenticated users.

Authentication is required:

- To use any feature in any MashZone NextGen Add-On that accesses the MashZone NextGen Server, unless that Add-On also supports guest access.

Requests are rejected with an authentication error when they do not provide one of:

- A valid MashZone NextGen session cookie. Sessions that have timed out are rejected with an appropriate error. See Sessions and Timeouts (page 7) for more information.
- Valid credentials. See Valid Credentials (page 7) for more information.
- Guest access header or parameter information.

3.5.1 User Authentication

MashZone NextGen is initially installed with a set of Default User Accounts (page 8) that you can use to get started. You configure MashZone NextGen to work with your LDAP Directory or you can continue to use the Default User Repository and simply add users and user groups to MashZone NextGen. See Use the Default MashZone NextGen User Repository (page 40), Manage Users (page 40) and Manage User Groups (page 42) for more information.

Authentication to verify user identities is performed against LDAP or the default User Repository and uses one of these protocols:

- Basic authentication with username and password
- This is the default authentication mechanism. No additional configuration is needed.
- SSL and User Certificates
- A configurable Single Sign-On solution
- See Authentication with Single Sign-On Solutions (page 8) for configuration instructions.

Permission to work with MashZone NextGen artifacts can also be granted to guests (unauthenticated users), if needed.
3.5.2 Valid Credentials

When authentication is required, requests must have a valid MashZone NextGen session for an existing authenticated user or must supply either user credentials or digital certificate for authentication or an SSO token or ticket for a user that has been authenticated by the SSO solution. MashZone NextGen uses certificates, tokens or tickets to obtain the user’s identity. MashZone NextGen supports the following mechanisms to obtain user credentials or user IDs:

- Basic authentication using username and passwords. This is authenticated against the MashZone NextGen User Repository which may be a database or your LDAP Directory. See Use the Default MashZone NextGen User Repository (page 40) for more information.

- SSL and Certificate authentication where the user identifier in certificate information is configurable. This is authenticated against the MashZone NextGen User Repository which may be a database or your LDAP Directory, unless Dynamic User Support is enabled. See Use the Default MashZone NextGen User Repository (page 40) for more information.

- Single Sign-On (SSO) solutions which are configurable. With SSO enabled, MashZone NextGen delegates authentication to the SSO solution. Typically, configuration identifies an SSO token, ticket or cookie that MashZone NextGen uses to verify authentication with the SSO solution and to obtain the user ID. See Authentication with Single Sign-On Solutions (page 8) for more information.

If an authenticated request has no MashZone NextGen session, MashZone NextGen starts a new session and generates a MashZone NextGen session cookie. See Sessions and Timeouts (page 7) for more information.

3.5.3 Sessions and Timeouts

MashZone NextGen is based on the standard J2EE session mechanism supported by your application server. MashZone NextGen maintains a separate HTTP session for each authenticated user that has a unique session cookie. Each request with a valid MashZone NextGen session cookie extends the timeout limit for that user session.

SSO solutions maintain their own sessions and may use their own session cookies. SSO session cookies can be used to authenticate users in MashZone NextGen. SSO sessions and MashZone NextGen session are separate.

The default session timeout for MashZone NextGen is 30 minutes, defined in the web-apps-home/mashzone/WEB-INF/web.xml configuration file. In general, HTTP session timeouts can be configured in web.xml, unless the application server provides other configuration mechanisms. Please see your application server documentation for additional information on session configuration.
3.6 Default User Accounts

MashZone NextGen has four user accounts that you can use ‘out-of-the-box’ to access MashZone NextGen dashboards and data feeds. These default users also illustrate the basic permissions to features in MashZone NextGen. See Built-In MashZone NextGen User Groups and Permissions (page 13) for more information on permissions.

<table>
<thead>
<tr>
<th>Username</th>
<th>Password</th>
<th>Built-in Group / Permissions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>manage</td>
<td>Presto_Administrator</td>
<td>A MashZone NextGen administrator.</td>
</tr>
<tr>
<td>dev</td>
<td>devdev</td>
<td>Presto_Developer</td>
<td>A developer.</td>
</tr>
<tr>
<td>power</td>
<td>powerpower</td>
<td>Presto_PowerUser</td>
<td>A domain expert or power user.</td>
</tr>
<tr>
<td>user</td>
<td>useruser</td>
<td>Presto_AuthenticatedUser</td>
<td>An end user or any user in the MashZone NextGen User Repository.</td>
</tr>
</tbody>
</table>

If you configure MashZone NextGen to use your LDAP Directory as the MashZone NextGen User Repository, these default user accounts are automatically disabled. If you use the Default User Repository, you can delete these user accounts in the Admin Console.

Important: You must make sure that at least one user account has MashZone NextGen administrator permissions.

3.7 Authentication with Single Sign-On Solutions

With a single sign-on (SSO) solution, MashZone NextGen delegates authentication to the SSO layer. MashZone NextGen has the following pre-configured options to integrate with SSO solutions:

- Agent-based SSO solutions, such as Netegrity SiteMinder. See Configuration for Agent-Based SSO Solutions (page 8) for instructions.
- MashZone NextGen provides the integration under My webMethods in a SSO scenario by SAML (Security Assertion Markup Language).
- See SSO integration in My webMethods (page 11) for details.

3.7.1 Configuration for Agent-Based SSO Solutions

MashZone NextGen delegates authentication to the SSO layer, but expects user identity information from the SSO layer in the request in either an HTTP header or a parameter in the request URL. MashZone NextGen uses an extractor to find identity information in the header or parameter, and uses a transformer, to derive the user ID from the identity information. MashZone NextGen then uses the user ID to perform authorization and process the request.
To configure MashZone NextGen to work with an agent-based SSO layer, you configure the extractor and the transformer layers to work with your SSO solution and the identity information for your environment. MashZone NextGen provides a default extractor that looks for an HTTP header or parameter by name. MashZone NextGen also provides default transformers that handle cases where the identity information is just the user ID or can be found within the identity information using a regular expression.

You can also implement custom extraction or transformation layers to integrate MashZone NextGen with your SSO solution. See Implementing a Custom SSO Filter (page 10) for details.

Procedure

1. If needed, configure the MashZone NextGen User Repository. See Use the Default MashZone NextGen User Repository (page 40) for more information.

 In previous releases, MashZone NextGen only supported SSO solutions with LDAP as the MashZone NextGen User Repository. This restriction no longer applies.

2. Change the SSO filter in the applicationContext-security.xml configuration file for the MashZone NextGen Server:

 a. Open applicationContext-security.xml in any text or XML editor. This file is located in the web-apps-home/mashzone/WEB-INF/classes folder.

 b. Comment out the SSO filter bean (<bean id="ssoProcessingFilter">) for agent-based solutions (class="com.jackbe.jbp.sas.security.ui.sso.SSONullPreAuthenticatedFilter"). For example:

      ```xml
      <bean id="ssoProcessingFilter"> <property name="authenticationManager" ref="authenticationManager" /> <property name="continueFilterChainOnUnsuccessfulAuthentication" value="true" /> ... </bean>
      ```

 Comment out the complete XML element with its children.

 c. Comment in the bean `<bean id="ssoProcessingFilter" class="com.jackbe.jbp.sas.security.ui.sso.SSOPreAuthenticatedFilter">`.

 Comment in the complete XML element with its children.

3. In the agent-based SSO filter bean, configure the principalExtractor property:

 The default extractor uses a bean with the `HttpHeaderOrParamTokenExtractor` class.

   ```xml
   <bean id="ssoProcessingFilter"> <property name="authenticationManager" ref="authenticationManager" /> <property name="continueFilterChainOnUnsuccessfulAuthentication" value="true" /> <property name="principalExtractor"> <bean> <property name="httpHeaderName" value="SM_USER"/> </bean> </property> ... </bean>
   ```

 Change the value of the `httpHeaderName` property for this extractor bean to the name of the HTTP header or parameter that contains user identify information from your SSO solution.

 If you have a custom extractor class, replace the default extractor bean with configuration for your custom class.

4. In the agent-based SSO filter bean, configure the principalTransformer property:
The default transformer property uses a bean with the `RegexExtractionStringTransformation` class. This uses a regular expression to extract some portion of the value for the SSO header or parameter to get the final user ID that MashZone NextGen can use for authorization checks.

```
<bean id="ssoProcessingFilter" >
  <property name="authenticationManager" ref="authenticationManager" />
  <property name="continueFilterChainOnUnsuccessfulAuthentication" value="true" />
  <property name="principalExtractor"> 
    <bean >
      <property name="httpHeaderName" value="SM_USER"/></bean>
  </property>
  <property name="principalTransformation"> 
    <bean >
      <constructor-arg index="0" value="CN=(.*?)," /></bean>
  </property>
</bean>
```

If the value of the SSO solution header or parameter contains more than just the user ID, for example a full DN from LDAP for a user, you can change the regular expression in the `<constructor-arg/>` parameter for the default bean to extract the user ID. The default regular expression extracts the CN portion of a user DN from an LDAP Directory.

If the value of the SSO solution header or parameter is just the user ID, no further transformation is needed. Change the `principalTransformer` bean to do nothing using the `NoOpStringTransformation` bean:

```
<bean id="ssoProcessingFilter" >
  <property name="authenticationManager" ref="authenticationManager" />
  <property name="continueFilterChainOnUnsuccessfulAuthentication" value="true" />
  <property name="principalExtractor"> 
    <bean >
      <property name="httpHeaderName" value="SM_USER"/></bean>
  </property>
  <property name="principalTransformation"> 
    </bean>
</property>
```

If you have a custom transformation class, replace the default transformer bean with configuration for your custom class.

5. Save this file and restart the MashZone NextGen Server. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

3.7.2 Implementing a Custom SSO Filter

If the default extractor and transformer filters available in MashZone NextGen do not provide the functionality needed to allow MashZone NextGen to work with your SSO solution, you can create custom filters using the MashZone NextGen SSO Filter API MashZone NextGen SSO Filter API.

Procedure

1. Add the following JARs and classes to your classpath:
 - Classes in the web-apps-home/mashzone/WEB-INF/classes folder.

2. Implement one or both filters:
 - To create a custom extractor, implement the `SSOTokenExtractor` interface, typically using the `AbstractSSOTokenExtractor` base class.
 - To create a custom transformer, implement the `Transformation` interface.

3. Add these classes to the classpath. Copy either the compiled class file or a JAR containing the compiled class file to one of these folders, respectively:
The external configuration folder, if any, for the MashZone NextGen Server. See Setting Up an External MashZone NextGen Configuration Folder (page 121) for more information.

Important: Deploying additional resources, such as custom SSO filters, to an external configuration folder simplifies future deployments or MashZone NextGen Server clusters.

web-apps-home/mashzone/WEB-INF/classes. This is the default location, but is not recommended as it complicates MashZone NextGen Server deployments.

web-apps-home/mashzone/WEB-INF/lib. This is the default location, but is not recommended as it complicates MashZone NextGen Server deployments.

3.7.3 SSO integration in My webMethods

You can integrate MashZone NextGen under My webMethods in an SSO scenario by SAML (Security Assertion Markup Language).

MashZone NextGen can accept SAML tokens for authentication in a SSO environment. Specifically, My webMethods can act as an Identity Provider (IdP).

MashZone NextGen verifies the signature used to sign the SAML assertion is trusted by looking the comparing the signature to the `platform_truststore.jks` file. This file is a Java Keystore file, and can be managed using the Java "keytool" command. If the certificate used to sign the SAML assertion is not present in the `platform_truststore.jks` file, the assertion is rejected. The `platform_truststore.jks` file is configurable in `SAG_HOME/MashZoneNG/apache-tomcat/webapps/mashzone/WEB-INF/classes/presto.config`.

Information on the Java "keytool" command can be found in the Java documentation: http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html.

Procedure

1. Within the `presto.config` file, the `saml.truststore.file` parameter contains the full path to the file. The default configuration uses the `SAG_HOME/common/conf/platform_truststore.jks` file. By default, the file contains the certificate used to sign My webMethods SAML assertions. No further configuration is needed in the My webMethods SAML case.

2. Within the `presto.config` file, the `saml.truststore.passwd` parameter contains the keystore password. The default configuration uses the password for the `SAG_HOME/common/conf/platform_truststore.jks` file. The default password is manage.

3. To accept SAML assertions signed by a third party, the signing certificate must be either imported as a "trusted certificate" to the currently configured `platform_truststore.jks` file, or the `presto.config` file must be altered to point to a different keystore file, where this signing certificate is already imported as a "trusted certificate".
3.8 Authorization Policies and Permissions

Authorization policies determine the actions that users can perform.

By default, authorization is enabled in MashZone NextGen. All actions are forbidden unless explicitly granted in a policy.

The categories of authorization policies that are defined in MashZone NextGen are shown below.

- **Access/Create Permissions**: are defined using MashZone NextGen built-in user groups as the principals. See the Built-In MashZone NextGen User Groups and Permissions (page 13) topic for detailed information these policies.

- To grant access to MashZone NextGen tools and enable users to create artifacts, you add users to these built-in groups. See Grant User Access to MashZone NextGen with Built-in Groups (page 12) for instructions.

- **Owner/Admin Permissions**: users automatically obtain owner permissions when they create artifacts. Administrator permissions are defined when you assign users to the Presto_Administrator built-in group (see Access/Create policies).

- Owners have full permissions to all actions for the artifacts they create. Administrators have owner permissions for all artifacts.

- You can also grant guest access to use artifacts. Guest access grants permission for anyone to run that artifact, even users who are not logged in. See Authentication and Guest Access (page 6) for instructions.

3.8.1 Grant User Access to MashZone NextGen with Built-in Groups

All users in the MashZone NextGen User Repository automatically belong to the Presto_AuthenticatedUsers built-in group which has permission to access the MashZone NextGen welcome page. To enable users to work in MashZone NextGen, you must add them to the Presto_PowerUser, Presto_Developer or Presto_Administrator groups.

See the Built-In MashZone NextGen User Groups and Permissions (page 13) topic for information on the specific access policies for these groups. Or use the Default User Accounts (page 8) in MashZone NextGen to better understand the permissions for these groups, or give them the respective access rights.

Procedure

1. If you are using the Default User Repository with MashZone NextGen, both groups and users are defined with the Admin Console. To grant users permissions with the MashZone NextGen built-in groups:
 a. Add users to the MashZone NextGen Repository. See Create Users (page 41) for instructions.
 b. Assign users to the appropriate built-in groups. See Edit, Grant Permissions and other User Management Tasks (page 41) for instructions.
c. If desired, you can also automatically add users as members to groups when you create users. See Automatically Assign New Users to Groups (page 43) for instructions.

2. If you have configured MashZone NextGen to use your LDAP Directory as the User Repository, you relate users to the MashZone NextGen built-in groups in LDAP. To grant users permissions with the MashZone NextGen built-in groups:
 a. Add Presto_Administrator, Presto_Developer and Presto_PowerUser as new groups in LDAP.

 Note: To map users and groups in LDAP to MashZone NextGen built-in permissions, you add these predefined names to your LDAP Directory. Mapping from configuration in MashZone NextGen based on LDAP attributes is possible. Or defining alias names for these built-in groups is also possible. For more information and assistance, please contact your Software AG sales representative.

 b. Assign users to these new groups in LDAP.

3.9 Built-In MashZone NextGen User Groups and Permissions

MashZone NextGen has a set of built-in user groups that define access permissions to the various features in MashZone NextGen. These built-in groups also define permissions for all artifact actions.

For more details on the permissions for these built-in groups, see Access Policies Using MashZone NextGen Built-In Groups (page 13).

3.9.1 Access Policies Using MashZone NextGen Built-In Groups

- **Guests** = users who are not authenticated. Guests can work with dashboards if the dashboards and all other artifacts that it depends on have granted permissions to the Presto_Guest built-in group.

 The most common use is to allow dashboards to be shown in public web sites or other environments where secure access is not needed.

 Note: Granting guest access to dashboards does not implicitly grant permissions to the artifact to any authenticated MashZone NextGen.

- **End Users** = all authenticated users (in the MashZone NextGen Repository) that are not in another built-in group. Authenticated users can access MashZone NextGen welcome page to find artifacts, but they can only use the artifacts to which they have been granted run permissions. They also have **no access** to tools that create artifacts.

- **Developers** = users in the Presto_Developer group can find and create dashboards and data feeds using visual tools. Developers also have access to other technical information, such as the API Console.
• This group is typically used for IT or line-of-business developers involved in developing dashboards and data feeds for specific projects.

• **Administrators** = users in the **Presto_Administrator** group have unrestricted permissions in MashZone NextGen. They can work with any tools, features or artifacts. They also have permissions to use the Admin Console to configure and manage MashZone NextGen.

 Administrators are the only built-in group that is required. You can use the other built-in groups to grant access to specific MashZone NextGen tools and features.

3.10 Protect MashZone NextGen Event Service access

You can use your own keystore and truststore to protect MashZone NextGen Event Service of unauthorized access.

After the installation, MashZone NextGen uses a default keystore and truststore. For security reason we recommend to change that configuration for production environments. Please make sure that the truststore, referenced by Event Service, contains the appropriate certificate for the key, referenced by MashZone NextGen. Event Service is only available if the configuration is valid.

If multiple MashZone NextGen nodes are used in a clustered scenario, it is recommended to use the same key for all MashZone NextGen instances.

The default keystore and truststore are located in the **common** and **conf** folders of the MashZone NextGen installation.

For authentication MashZone NextGen webapp sends an HTTP header "Authorization" with "Bearer [JWT]" as value.

Procedure

1. Edit the following parameters, used by MashZone NextGen, to use your own keystore file to generate the JWT required for authentication.

 - `jwt.keystore.file`
 - `jwt.keystore.passwd`
 - `jwt.keystore.alias`

 The parameters are contained in the **presto.config** file in the following directory.
 `<MashzoneNG_install>\apache-tomcat\webapps\mashzone\WEB-INF\classes`

2. Edit the following parameters, used by Event Service, to use your own truststore file to verify the JWT.

 - `rtbs.truststore.file`
 - `rtbs.truststore.passwd`

 The parameters are contained in the **rtbs.properties** file in the following directory.
 `<MashzoneNG_install>\rtbs\conf\`
3.11 Anti-Clickjacking prevention when using iFrame

For security reasons, we recommend configuring your iFrame settings to protect your MashZone NextGen installation against clickjacking attacks.

Clickjacking is a vulnerability where an attacker creates a page that uses iFrame to render another page, then creates invisible controls on top of the rendered page that may be able to sniff user input.

General information on the clickjacking attack vector can be found on https://www.owasp.org/index.php/Clickjacking.

MashZone NextGen offers two ways to prevent successful clickjacking attacks. In order to allow iFrame on trusted sites, MashZone NextGen uses X-Frame-Options providing the ALLOW-FROM value. Using this, a website A can configure the header to carry the top level URI of a website B which is allowed to iframe website A. A second way to prevent clickjacking attacks is using the Content-Security-Policy that is supported by most web browsers.

Details on how to use iFrame with MashZone NextGen can be found in Embedding MashZone NextGen in external system environments (page 63).

3.11.1 MashZone NextGen HTTP header security filter

MashZone NextGen provides a specific HTTP header security filter included in the web.xml file. By default, this filter always sends the X-Frame-Option: SAMEORIGIN, that can be configured to send ALLOW-FROM to any number of trusted websites. This HTTP response header instructs the browser to refuse to render any content from MashZone NextGen in an iFrame, unless the iFrame is within MashZone NextGen itself.

 HttpHeadersSecurityFilter

Following the commented configuration in the web.xml file.

<filter> <filter-name>HTTP Header Security Filter</filter-name> <filter-class> com.jackbe.jsp.sas.security.ui.http.HttpHeaderSecurityFilter </filter-class> <!-- Init Param: antiClickJackingEnabled Should the anti click-jacking header (X-Frame-Options) be set on the response. Valid options: true or false When true, X-Frame-Options will always contain "SAMEORIGIN". This instructs browsers to disallow iframing of MzNG content outside of the MzNG application itself. If false, X-Frame-Options will not be sent at all, which completely disables clickjacking protection allows any site to iframe MzNG) Note: X-Frame-Options is superseded by Content-Security-Policy. https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options --> <init-param> <param-name>antiClickJackingEnabled</param-name> <param-value>true</param-value> </init-param> <!-- Init Param: antiClickJackingUris List of comma separated URIs for sites allowed to iframe content in MzNG. To allow external sites to iframe MzNG content, uncomment this init param, and add the site uri to the list. Also configure the 'Content Security Policy' filter below. If the request to MzNG contains a referer value matching the scheme, host and port of one of the URIs in the list, the X-Frame-Options header will send "ALLOW-FROM uri'. This allows the browser to render the iframe. If there is no match (or the list is empty) X-Frame-Options will send "SAMEORIGIN" and the browser will refuse to render the iframe. Any site added to this list should also be added to 'Content Security Policy' header. --> <init-param> <param-name>antiClickJackingUris</param-name> <param-value>http://some-server.com</param-value> </init-param> --></filter>
param: hstsEnabled Enable HTTP Strict Transport Security (HSTS) header (Strict-Transport-Security) to be set on the response for secure requests -->
<init-param> <param-name>hstsEnabled</param-name> <param-value>true</param-value>
</init-param> <!-- Init Param: hstsMaxAgeSeconds The max age value that should be used in the HSTS header. Negative values will be treated as zero. If not specified, the default value of 0 will be used. --> <init-param>
<param-name>hstsMaxAgeSeconds</param-name> <param-value>604800</param-value>
</init-param> </filter> <filter-mapping>
<filter-name>HTTP Header Security Filter</filter-name>
<url-pattern>/</url-pattern>
</filter-mapping>

The **antiClickJackingUris** parameters can take a list of comma separated URIs. The parameter is commented out by default. Any request for a MashZone NextGen resource containing a "Referer" header field matching the scheme, host and port of a URI in the **antiClickJackingUris** parameter will result in a response containing the X-Frame-Options response header with the appropriate ALLOW-FROM value. If there is no match, then the X-Frame-Options will carry the SAMEORIGIN value.

3.11.1.1 Example

The website http://website-a.com is configured as trusted, and therefore it is listed in the **antiClickJackingUris** parameter, and contains a page that uses iFrame to embed a MashZone NextGen dashboard. When a user visits this page on website-a.com, the browser will attempt to fetch the iFramed dashboard from MashZone NextGen. The request generated by the browser will carry the HTTP request header "Referer" containing the full URI to the page containing the iFrame. MashZone NextGen will match the "Referer" URI with the trusted URI from **antiClickJackingUris** parameter, and recognize that the website is trusted. As a result, the response will carry the HTTP response header "X-Frame-Options: ALLOW-FROM http://website-a.com ". The browser will then allow the iFrame to render.

3.11.2 MashZone NextGen Content Security Policy

Most modern browsers such as Microsoft Edge, Chrome, Firefox and Safari check for the newer Content-Security-Policy HTTP header instead of X-Frame-Options. Within the MashZone NextGen **web.xml** file is a second HTTP filter class that sends the HTTP Header Content-Security-Policy. This filter is configured by default to send the value frame-ancestors 'self' which is equivalent to SAMEORIGIN in that it instructs the browser to only allow iFrame if the iFrame is already in the originating website.

The Content-Security-Policy is not supported by Microsoft Internet Explorer.

```xml
<filter> <!-- Allows setting of HTTP header Content-Security-Policy
http://www.w3.org/TR/CSP2/ To prevent clickjacking attacks default is
"frame-ancestors 'self'" which disallows external iframing of MzNG content. To allow
additional websites to iframe MzNG content, add the site Uri after 'self'. For example:
"frame-ancestors http://*.example.com/ 'self'
Content-Security-Policy/frame-ancestors --> <filter-name>Content Security
Policy</filter-name>
```
3.11.3 Add a trusted site to allow iFrame

The default settings do not allow external sites to iframe internal MashZone NextGen assets such as dashboards, apps, etc. Specifically, "X-Frame-Options: SAMEORIGIN" and "Content-Security-Policy: frame-ancestors 'self'" are set, which instructs the browser to disallow rendering MashZone NextGen content in any external iFrame. Via configuration and re-start, we can relax this restriction.

Procedure

1. Open the web.xml file in a text editor. The file is located in <MashZone NextGen installation>/MashZoneNG/apache-tomcat/webapps/[presto|mashzone]/WEB-INF/.
2. Find the <filter> entry of the HTTP Header Security Filter and uncomment the antiClickJackingUris parameter.
3. Replace the sample URI 'http://some-server' with the URI of the website allowed to iframe MashZone NextGen content.
4. Find the <filter> entry for Content-Security-Policy. Insert the URI of the website allowed to iframe MashZone NextGen content into the policy parameter, between frame-ancestors and 'self'

 Example:

   ```
   <init-param> <param-name>policy</param-name> <param-value>frame-ancestors http://*.eur.ad.sag:* 'self'</param-value> </init-param>
   ```

3.11.4 Add multiple trusted sites to allow iFrame

To allow more than one website, perform the steps as shown in Adding a trusted site to allow iFrame.

Procedure

1. In the HTTP Header Security filter, add a comma separated list of URIs as the antiClickJackingUris value:

   ```
   ```
2. In the Content-Security-Policy filter, add the URI to the policy parameter value, separated by a space:

   ```
   ```
3.11.5 Content-Security-Policy using wildcards

The Content-Security-Policy allows wildcards to be used in the policy. For example, to allow any website on any port hosted in the "eur.ad.sag" domain, you can specify:

```xml
<init-param> <param-name>policy</param-name> <param-value>frame-ancestors http://*.eur.ad.sag:* 'self' </param-value> </init-param>
```

3.12 Handle personal data in log files

For some actions MashZone NextGen tracks the user ID, IP address, email ID and full name of the executor. This data is used to analyze and fix potential problems that occur during the system operation. The data is also stored after deletion of a user account. This ensures that no past user data is lost and all user data are accounted for in future audits.

You can remove this personal data from your MashZone NextGen system for General Data Protection Regulation (page 180) (GDPR) compliance.

To remove the relevant personal user data, you must delete the corresponding log files from the MashZone NextGen system.

The relevant log files are stored in the following directories.

- IP address and user ID
 `<MashZone NextGen Installation>\apache-tomcat\logs\...
 For example, localhost_access_log.2018-05-24`

- Username
 `MashZone NextGen Installation>\apache-tomcat\logs\MashZone-AuditLog.log`

- IP Address
 `MashZone NextGen Installation>\apache-tomcat\logs\wrapper.log`

Warning

If you delete the log files, all logged data is lost and cannot be restored.

Procedure

In the Windows® Explorer, go to the directories mentioned above and delete all relevant log files.

The user data is deleted from the MashZone NextGen system.
4 Getting Started with the MashZone NextGen Server

You install MashZone NextGen using the Software AG Installer. See the Installing Software AG Products guide for instructions.

The post-installation tasks you must complete to allow users to start working with MashZone NextGen include.

Procedure

1. Start the MashZone NextGen. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

2. Login to MashZone NextGen:
 If you used a different port number when you installed MashZone NextGen or the MashZone NextGen Server is running on a different host, change the domain and port number appropriately.
 b. Use the credentials for the default administrator account:
 User name = Administrator
 Password = manage

3. If you are using the default MashZone NextGen User Repository rather than an LDAP Directory to manage users and groups for MashZone NextGen, it is a good practice to change the password for this default administrator account.
 a. Open your profile from the MashZone NextGen Hub menu bar and click My Password.
 b. Enter your new password and confirm this.
 c. Then click Change Password.
 If you will use your LDAP Directory as the MashZone NextGen User Repository, this default account is disabled once LDAP configuration is complete.

4. Set up a robust database to use as the MashZone NextGen Repository.
 MashZone NextGen is installed with Derby as an embedded database hosting the MashZone NextGen Repository for trial purposes only. The default Derby database should not be used for serious development environments or for staging or production.
 See Move the MashZone NextGen repository to a robust database solution (page 24) for instructions.

5. If you want MashZone NextGen to use your LDAP Directory as the repository for user and group information, you must update configuration. See Integrate Your LDAP Directory with MashZone NextGen (page 34) for instructions.

6. Configure the Event Service. See Event Service Configuration and Administration (Seite 130) for instructions.

7. If you have also installed Terracotta BigMemory and received your BigMemory license, add this license to MashZone NextGen and configure MashZone NextGen to work with BigMemory. See Manage Licenses for MashZone NextGen and BigMemory and Configure
BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page 77) for instructions.

4.1 Additional MashZone NextGen System and Software Requirements

- For basic requirements to install MashZone NextGen, see the System Requirements for Software AG Products guide.

4.1.1 Additional Recommendations for MashZone NextGen

In addition to the basic recommendations in the System Requirements for Software AG Products guide, you should also consider the following recommendations for MashZone NextGen:

- A robust, compatible database to host the MashZone NextGen Repository is required.

 Important: The MashZone NextGen repository is initially installed in a Derby database suitable only for trial purposes. For proof-of-concept, development or production uses, move the repositories to a robust and compatible solution. See System Requirements for Software AG Products for more information.

- Architecture and memory requirements or recommendations include:

 - 64-bit architecture
 - 2G minimum of memory if only small to medium datasets are involved
 - 4G minimum of memory if large datasets are involved

 Important: Actual memory and disk space requirements vary widely based on load, throughput, performance and other requirements unique to your environment. Please contact your Software AG representative for more information.

- To ensure a secure connection between MashZone NextGen server and client it is recommended to operate your MashZone NextGen system via HTTPS as communication protocol. You can configure your application server accordingly after you have installed MashZone NextGen. See Configure HTTPS and Certificate Stores in the Application Server (page 69) for details.

4.2 What is Installed with MashZone NextGen

MashZone NextGen initially installs these WAR files:

<table>
<thead>
<tr>
<th>WAR</th>
<th>Server and/or Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>presto.war</td>
<td>MashZone NextGen Server</td>
</tr>
</tbody>
</table>

MashZone NextGen also installs the following additional software:
Apache's Tomcat Servlet Container, version 8.5.15
Derby Database, version 10.5.3.0.

Important: The MashZone NextGen repository is initially installed in a Derby database suitable only for trial purposes. For proof-of-concept, development or production uses, move the repositories to a robust and compatible solution. See Move the MashZone NextGen repository to a robust database solution (page 24) for details.

4.3 Start and Stop the MashZone NextGen Server

Most MashZone NextGen widgets depend on the MashZone NextGen Server.
The MashZone NextGen Server depends on the MashZone NextGen Repository.
Startup and shutdown of MashZone NextGen Server does not automatically start and stop the integrated event service. Instead, the event service must be started separately, if required.

4.3.1 Start the MashZone NextGen Event Service

You can manually start the integrated Event Service, if required.
There are two ways to start the integrated Event Service for Windows systems.
On Windows Server operating systems MashZone NextGen Event Service must be started as Administrator.

Procedure
1. Run Start MashZone NextGen Event Service <version> in the program group Software AG > Start Servers of the Windows start menu.
 To run MashZone NextGen Event Service as administrator, right click Start MashZone NextGen Event Service <version> and select Run as administrator.
2. Enter the following command in a command window.
 `c:>MashZoneNG-install/rtbs/bin/startup.bat`
 Starting startup.bat from the file system using Windows Explorer does not work.
For Linux, Mac OS X or UNIX systems, open a new terminal window and move to the `% cd MashZoneNG-install/rtbs/bin` folder and enter the `% startup.sh` command.

4.3.2 Start the MashZone NextGen Server

Procedure
1. If the MashZone NextGen Repository has been moved from the default Derby database and they are not already running, manually start these databases following the instructions for their host database.
2. Do one of the following to start the MashZone NextGen Server:
a. For Windows systems, either:
 From the Start menu, select Software AG > Start Servers > Start MashZone NextGen version.
 Enter this command in a command window:
 \c:\MashZoneNG-install/apache-tomcat/bin/startup.bat
 On Windows Server operating systems MashZone NextGen Server must be started as Administrator. To run MashZone NextGen Server as Administrator, right click on the Start MashZone NextGen version shortcut and select Run as administrator.
 Starting startup.bat from the file system using Windows Explorer does not work.

b. For Linux, Mac OS X or UNIX systems, open a new terminal window and move to this folder:
 \% cd MashZoneNG-install/apache-tomcat/bin
 Then enter this command:
 \% startup.sh

3. Open the MashZone NextGen at http://app-server:port/mashzone and log in.
 You can now access all the MashZone NextGen tools: Feed Editor, Dashboard Editor, Dashboard Viewer and the Admin Console.

4.3.3 Stop the MashZone NextGen Event Service

You can manually stop the integrated Event Service, if required.

There are two ways to stop the integrated Event Service for Windows systems.

Procedure
1. Run Stop MashZone NextGen Event Service <version> in the program group Software AG > Stop Servers of the Windows start menu.
2. Enter the following command in a command window.
 \c:\MashZoneNG-install/rtbs/bin/shutdown.bat

For Linux, Mac OS X or UNIX systems, open a new terminal window and move to the \% cd MashZoneNG-install/rtbs/bin folder and enter the \% shutdown.sh command.

4.3.4 Stop the MashZone NextGen Server

Procedure
1. Do one of the following:
 For Windows systems, either:
 From the Start menu, select Software AG > Stop Servers > Stop MashZone NextGen.
 Enter this command in a command window:
 \c:\MashZoneNG-install/apache-tomcat/bin/shutdown.bat
For Linux, Mac OS X or UNIX systems, open a new terminal window and move to this folder:

```
% cd MashZoneNG-install/apache-tomcat/bin
```

Then enter this command:

```
% shutdown.sh
```

2. If the MashZone NextGen Repository has been moved from the default Derby database, you can also choose to stop this database. See documentation for the host database for instructions.

4.4 Startup Considerations

When the MashZone NextGen Repository is hosted in a robust database solution, it must be started before the MashZone NextGen Server for a successful startup. With the default Derby database, the MashZone NextGen Repository runs as an **embedded** database that is automatically started with the MashZone NextGen Server.

In environments where your application server is started automatically with the host, this can create timing errors. You may need to stop and restart the MashZone NextGen Server after the MashZone NextGen Repository has been restarted.

If you host the MashZone NextGen Repository in a MySQL or Oracle database, you may also be able to have the database start automatically with the host.

4.5 Manage Licenses for MashZone NextGen and BigMemory

To use MashZone NextGen a license is required.

If you are using BigMemory features that require this, you also need to make your BigMemory license available to the MashZone NextGen Server and/or the Integrated MashZone Server. See BigMemory for Caching, Connections and MashZone NextGen Analytics (page 75) for features that require this additional license.

You can apply licenses when you install MashZone NextGen, or you can install and use MashZone NextGen without a license for a trial period of 30 days. If you purchase MashZone NextGen after installation, you must manually apply the MashZone NextGen license. If needed, you can also manually apply a BigMemory license.

When MashZone NextGen runs with a READ ONLY license, all tools to create and edit data feeds and dashboards are unavailable.

Procedure

1. Save the attached license file(s) from the email(s).
2. For MashZone NextGen licenses, copy the MashZoneNGLicense.xml file into the MashZoneNG-install/apache-tomcat/conf folder.
If MashZone NextGen is deployed in a cluster, copy the license file to this folder in every cluster member.

3. If a BigMemory license is required:
 a. Copy the license file terracotta.key to the MashZoneNG-install/apache-tomcat/conf folder.
 If MashZone NextGen is deployed in a cluster, you must copy this file to every cluster member.
 b. Add the following Java system property to the MashZone NextGen server configuration file <MashZone NextGen installation>/apache-tomcat/conf/wrapper.conf:

 \texttt{wrapper.java.additional.<n+1>=-Dcom.tc.productkey.path=MashZoneNG-ins
tall/apache-tomcat/conf/terracotta.key}

 Where \(n \) is the number of last additional Java parameter.
 If MashZone NextGen is deployed in a cluster, you must update the server configuration files for every cluster member.

4. Restart the MashZone NextGen Server. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

4.6 \textbf{Move the MashZone NextGen repository to a robust database solution}

The MashZone NextGen repository is initially installed in a Derby database suitable only for trial purposes. For proof-of-concept, development or production uses, move the repositories to a robust and compatible solution.

You can host the MashZone NextGen repository in any database that MashZone NextGen supports. See Additional MashZone NextGen System and Software Requirements (page 20) in System Requirements for details.

You can move the repository to one of the following databases:

- \textbf{Microsoft SQL Server}: see Move MashZone NextGen repository to Microsoft SQL Server (page 25) for instructions.
- \textbf{MySQL}: see Move the MashZone NextGen repository to MySQL (page 28) for instructions.
- \textbf{Oracle}: see Move the MashZone NextGen repository to Oracle (page 30) for instructions.
- \textbf{PostGres}: see Move the MashZone NextGen repository to PostGres (page 32) for instructions.
4.6.1 Troubleshooting Connections to the MashZone NextGen Repository

The most common problem when the MashZone NextGen Server server does not restart successfully after you move the MashZone NextGen Repository to a new database is that it cannot connect to the MashZone NextGen Repository. To verify that this is the problem:

- Open the MashZone NextGen Server log file `prestoserver.log` in your web application server’s log directory. For Tomcat, this is:
 `web-apps-home/logs/prestoserver.log`
- Check for a log entry for `Cannot create PoolableConnectionFactory` near the end of the file. This error indicates the MashZone NextGen Server could not successfully connect to the new database.

Common causes for this error include:

- The database hosting the MashZone NextGen Repository is not running.
- If this is true, start the MashZone NextGen Repository and verify that it is up. Then restart the MashZone NextGen Server and confirm that this starts successfully.
- There are one or more firewalls between the MashZone NextGen Repository and the MashZone NextGen Server that are not configured to allow this connection. This can only happen when the database for the MashZone NextGen Repository is hosted on a different server than the MashZone NextGen Server.
- Update the firewall configuration to allow this connection. Then restart the MashZone NextGen Server and confirm that this starts successfully.
- The URL or other connection configuration that you entered in MashZone NextGen for the MashZone NextGen Repository is incorrect.
- To correct an error in this case, edit the resource properties for the MashZone NextGen Repository in the MashZoneNG-install/apache-tomcat/conf/context.xml file.
- Then restart the MashZone NextGen Server and confirm that this starts successfully.
- Port or connection configuration for the database is not set up properly to allow connections from the MashZone NextGen Server. See documentation for your database for more information.

4.6.2 Move the MashZone NextGen repository to Microsoft SQL Server

Procedure

1. If you are using your LDAP Directory as the MashZone NextGen User Repository, make sure that at least one user in your LDAP Directory has administrator privileges for MashZone NextGen before you move the MashZone NextGen Repository. See Grant User Access to MashZone NextGen with Built-in Groups (page 12) for instructions.
When the MashZone NextGen User Repository is your LDAP Directory, the default administrator account (Administrator user) is disabled.

2. If you are hosting the MashZone NextGen Repository or MashZone Repository in a new database, create the database following SQL Server documentation. Keep the following points in mind:

Make sure this database is supported by MashZone NextGen. See Additional MashZone NextGen System and Software Requirements (page 20) for details.

The jTDS driver and the original Microsoft driver are available for Microsoft SQL Server. You must make different settings depending on the driver type selected. For details see the following steps.

If you want MashZone NextGen to support international characters in meta-data for artifacts, make sure the database uses the UTF-16 character encoding and case insensitive collation. See documentation for your database for specific instructions.

It is a best practice to require passwords for every database account that can access the MashZone NextGen Repository.

If you do not use the default dbo schema, you have to specify the name of the used schema (value="schema_name") in the bean PMF in the rdsApplicationContext.xml file.

The file is located in <MashZone NextGen installation>\apache-tomcat\webapps\mashzone\WEB-INF\classes\.

```
<bean id="pmf" class="com.jackbe.jbp.sas.rds.impl.jdo.PersistenceManagerFactoryBean"> <property name="lifecycleListener" ref="entityLifecycleLsnr"/> <property name="dataSource" ref="dataSource" /> <property name="configLocation" value="classpath:datanucleus.properties"/>
<!-- overwrite settings in configLocation file --> <property name="jdoProperties"> <map> <entry key="datanucleus.ConnectionFactoryName" value="java:comp/env/MashzoneNextGenRepository"/> <entry key="datanucleus.storeManagerType" value="rdbms"/> <entry key="datanucleus.mapping.Schema" value="schema_name"/> </map> </property>
</bean>
```

3. Start the database that will become host to the MashZone NextGen Repository, if it is not already up.

4. Using the SQL tool for the database that will be host, add MashZone NextGen Repository tables with the scripts shown below from the corresponding folder in MashZoneNG-install/prestorepository/mssqldb:

 - createDBTables.txt for MetaData and the default User Repository
 - createSnapsTables.sql for Snapshots
 - createSchedulerTables.sql for Scheduler

This folder also contains scripts to drop the corresponding MashZone NextGen Repository tables, if needed.

5. Copy the JAR file for the JDBC driver for your database to the following folder for each MashZone NextGen Server that uses this MashZone NextGen Repository:

 MashZoneNG-install/apache-tomcat/lib

6. Replace the JAR for the MashZone NextGen Repository:
a. Remove the web-apps-home/mashzone/WEB-INF/lib/jackbe-presto-rds-postgresql-derby.jar JAR file for each MashZone NextGen Server that uses this MashZone NextGenMashZone NextGen Repository. You can delete this JAR or simply move it to a folder that is not in the classpath for the application server that hosts MashZone NextGen.

b. Copy this JAR file:
MashZoneNG-install/prestorepository/jackbe-presto-rds-oracle-mysql-mssql.jar
To the web-apps-home/mashzone/WEB-INF/lib folder.

7. Update snapshot scheduler configuration for the MashZone NextGen Server:
 a. In the text editor of your choice, open the applicationContext-scheduler.xml file in the webapps-home/mashzone/WEB-INF/classes/ folder for the MashZone NextGen Server.
 b. Find the bean for org.springframework.scheduling.quartz.SchedulerFactoryBean in default profile.
 c. Update the org.quartz.jobStore.driverDelegateClass property to the org.quartz.impl.jdbcjobstore.MSSQLDelegate appropriate delegate for this database:
 d. Save this change.
 e. If this is a clustered environment, copy the updated applicationContext-scheduler.xml configuration file to each MashZone NextGen Server in the cluster.

8. Open the MashZoneNG-install/apache-tomcat/conf/context.xml configuration file in the text editor of your choice.

9. For the MashZone NextGen Repository, edit the <Resource> element with an ID of MashzoneNextGenRepository and:
 a. Update the JDBC driver, URL and credential properties:

 Example for jTDS driver

 <Resource name="MashzoneNextGenRepository" auth="Container" type="javax.sql.DataSource" maxTotal="200" maxIdle="30" maxWaitMillis="10000" username="app" password="app"
driverClassName="net.sourceforge.jtds.jdbc.Driver"
url="jdbc:jtds:sqlserver://host-name:port/database" />

 The JTA managed property must be false.

 Example for original Microsoft driver

 <Resource name="MashzoneNextGenRepository" auth="Container"
type="javax.sql.DataSource" maxTotal="200" maxIdle="30"
maxWaitMillis="10000" username="app" password="app"
driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
url="jdbc:sqlserver://host-name:port;databaseName=your_database" />

 b. If needed, update optional properties. See Tomcat Datasource Properties (http://commons.apache.org/proper/commons-dbcp/configuration.html) for a complete list of optional properties and information on defaults.

 Some common properties you may need to set include:

 validationQuery = select 1

 Common tuning properties for connections pools. See Tuning the MashZone NextGen Repository Connection Pool (page 176).
10. Save your changes to this file.
 If the MashZone NextGen Server does not start up successfully, see Troubleshooting Connections to the MashZone NextGen Repository (page 25) for suggestions.

11. Restart the MashZone NextGen Server to apply these changes.
 If the MashZone NextGen Server does not start up successfully, see Troubleshooting Connections to the MashZone NextGen Repository (page 25) for suggestions.

4.6.3 Move the MashZone NextGen repository to MySQL

Procedure

1. If you are using your LDAP Directory as the MashZone NextGen User Repository, make sure that at least one user in your LDAP Directory has administrator privileges for MashZone NextGen before you move the MashZone NextGen Repository. See Grant User Access to MashZone NextGen with Built-in Groups (page 12) for instructions.
 When the MashZone NextGen User Repository is your LDAP Directory, the default administrator account (Administrator user) is disabled.

2. If you are hosting the MashZone NextGen Repository in a new database, create the database following MySQL documentation (http://dev.mysql.com/doc/). Keep the following points in mind:
 Make sure this database is supported by MashZone NextGen. See Additional MashZone NextGen System and Software Requirements (page 20) for details.
 If you want MashZone NextGen to support international characters in meta-data for artifacts, set the character encoding and collation to UTF-8 when you create the database. See documentation for your database for specific instructions.
 For medium or larger MySQL databases that will host the MashZone NextGen Repository, you should increase the maximum allowed packet size, which defaults to 1MB, for the database.

3. Start the database that will become host to the MashZone NextGen Repository, if it is not already up.

4. Using the SQL tool for the database that will be host, add MashZone NextGen Repository tables with the scripts shown below from the corresponding folder in MashZoneNG-install/preparepository/mysql:
 a. Create a Database to hold the MashZone NextGen Repository tables. See the file createDB.txt for an example.
 b. Create a User with rights to the database created in step a. See the file createUser.txt for an example.
 c. Connect to the MySQL database created in step a using a SQL tool (for example MySQL command line client) using the user created in step b. See the comments in the file createDBTables.txt for examples.
d. Execute the statements in the file createDBTables.txt to create the tables using the SQL tool (for example, use the MySQL source command: "source /path/to/createDBTables.txt").

e. Execute the statements in the file createSchedulerTables.sql (for example: "source /path/to/createSchedulerTables.sql").

f. Execute the statements in the file createSnapsTables.sql (for example: "source /path/to/createSnapsTables.sql").

This folder also contains scripts to drop the corresponding MashZone NextGen Repository tables, if needed.

5. Replace the JAR for the MashZone NextGen Repository:

a. Remove the

MashZoneNG-install/apache-tomcat/mashzone WEB-INF/lib/jackbe-presto-rds-postgresql-derby.jar JAR file for each MashZone NextGen Server that uses this MashZone NextGen Repository. You can delete this JAR or simply move it to a folder that is not in the classpath for the application server that hosts MashZone NextGen.

b. Copy this JAR file:

MashZoneNG-install/prestorepository/jackbe-presto-rds-oracle-mysql-mssql.jar

To the web-apps-home/mashzone WEB-INF/lib folder.

6. Copy the MySQL JDBC driver jar file to MashZoneNG-install/apache-tomcat/lib.

7. Open the MashZoneNG-install/apache-tomcat/conf/context.xml configuration file in the text editor of your choice.

8. For the MashZone NextGen Repository, edit the <Resource> element with an ID of MashzoneNextGenRepository and:

a. Update the JDBC driver, URL and credential properties:

```xml
name="MashzoneNextGenRepository" auth="Container"
type="javax.sql.DataSource" maxTotal="200" maxIdle="30"
maxWaitMillis="10000" username="app" password="app"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://host-name/databasename" />
```

For MySQL databases, it is recommended that you include the database name in data source URLs. If this information is omitted, testing the data source fails and may also cause errors with access to stored procedures.

The JTA managed property must be false.

b. If needed, update optional properties. See Tomcat Datasource Properties (http://commons.apache.org/proper/commons-dbcp/configuration.html) for a complete list of optional properties and information on defaults.

Some common properties you may need to set include:

- `validationQuery = select 1 from dual`

Common tuning properties for connections pools. See Tuning the MashZone NextGen Repository Connection Pool (page 176).
9. Start the MashZone NextGen Server to apply these changes. This also starts the MashZone Server.

 If the MashZone NextGen Server does not start up successfully, see Troubleshooting Connections to the MashZone NextGen Repository (page 25) for suggestions.

4.6.4 Move the MashZone NextGen repository to Oracle

Procedure

1. If you are using your LDAP Directory as the MashZone NextGen User Repository, make sure that at least one user in your LDAP Directory has administrator privileges for MashZone NextGen before you move the MashZone NextGen Repository. See Grant User Access to MashZone NextGen with Built-in Groups (page 12) for instructions.

 When the MashZone NextGen User Repository is your LDAP Directory, the default administrator account (Administrator user) is disabled.

2. If you are hosting the MashZone NextGen Repository in a new database, create the database following Oracle documentation (http://www.oracle.com/technetwork/database/enterprise-edition/documentation/index.html).

 Make sure this database is supported by MashZone NextGen. See Additional MashZone NextGen System and Software Requirements (page 20) for details.

 If you want MashZone NextGen to support international characters in meta-data for artifacts, set the character encoding to AL32UTF8 when you create the database. See documentation for your database for specific instructions.

 It is a best practice to require passwords for every database account that can access the MashZone NextGen Repository.

3. Start the database that will become host to the MashZone NextGen Repository, if it is not already up.

4. Using the SQL tool for the database that will be host, add MashZone NextGen Repository tables with the scripts shown below from the corresponding folder in MashZoneNG-install/prestorepository/oracledb:

 - createDB.txt
 - createDBTables.txt for MetaData and the default User Repository
 - createSnapsTables.sql for Snapshots
 - createSchedulerTables.sql for Scheduler

 This folder contains other scripts to drop the corresponding MashZone NextGen Repository tables.

5. Replace the JAR for the MashZone NextGen Repository:

 a. Remove the

 web-apps-home/mashzone/WEB-INF/lib/jackbe-presto-rds-postgresql-derby.jar JAR file for each MashZone NextGen Server that uses this MashZone NextGenMashZone
NextGen Repository. You can delete this JAR or simply move it to a folder that is not in the classpath for the application server that hosts MashZone NextGen.

b. Copy this JAR file:
MashZoneNG-install/prestorepository/jackbe-presto-rds-oracle-mysql-mssql.jar
To the web-apps-home/mashzone/WEB-INF/lib folder.

6. Copy the JAR file for the JDBC driver for your database to the following folder for each MashZone NextGen Server that uses this MashZone NextGen Repository:
MashZoneNG-install/apache-tomcat/lib

7. Update snapshot scheduler configuration for the MashZone NextGen Server:
 a. In the text editor of your choice, open the applicationContext-scheduler.xml file in the webapps-home/mashzone/WEB-INF/classes/ folder for the MashZone NextGen Server.
 b. Find the bean for org.springframework.scheduling.quartz.SchedulerFactoryBean in default profile.
 c. Update the org.quartz.jobStore.driverDelegateClass property to the org.quartz.impl.jdbcjobstore.oracle.OracleDelegate delegate.
 The configuration would now look like:
      ```xml
      ... <bean id="scheduler"> <property name="applicationContextSchedulerContextKey"> <value>applicationContext</value> </property> <property name="quartzProperties"> <props> <prop key="org.quartz.scheduler.instanceId">AUTO</prop> <prop key="org.quartz.jobStore.class">org.quartz.impl.jdbcjobstore.JobStoreTX</prop> <prop key="org.quartz.jobStore.tablePrefix">QRTZ_</prop> <prop key="org.quartz.jobStore.driverDelegateClass">org.quartz.impl.jdbcjobstore.oracle.OracleDelegate</prop> <prop key="org.quartz.jobStore.dataSource">schedulerDS</prop> ... </props> </property> </bean> ...
      ```
 d. Save this change.
 e. If this is a clustered environment, copy the updated applicationContext-scheduler.xml configuration file to each MashZone NextGen Server in the cluster.

8. Open the MashZoneNG-install/apache-tomcat/conf/context.xml configuration file in the text editor of your choice.

9. For the MashZone NextGen Repository, edit the <Resource> element with an ID of MashzoneNextGenRepository and:
 a. Update the JDBC driver, URL and credential properties:
      ```xml
      <Resource name="MashzoneNextGenRepository" auth="Container" type="javax.sql.DataSource" maxTotal="200" maxIdle="30" maxWaitMillis="10000" username="app" password="app" driverClassName="oracle.jdbc.OracleDriver" url="jdbc:oracle:drivertype:@host-name:port:dbname" />
      ```
 The JTA managed property must be false.
 b. If needed, update optional properties. See Tomcat Datasource Properties (http://commons.apache.org/proper/commons-dbcp/configuration.html) for a complete list of optional properties and information on defaults.
 Some common properties you may need to set include:
validationQuery = select 1 from dual

Common tuning properties for connections pools. See Tuning the MashZone NextGen Repository Connection Pool (page 176).

10. Save your changes to this file.

If the MashZone NextGen Server does not start up successfully, see Troubleshooting Connections to the MashZone NextGen Repository (page 25) for suggestions.

11. Restart the MashZone NextGen Server to apply these changes.

If the MashZone NextGen Server wedoes not start up successfully, see Troubleshooting Connections to the MashZone NextGen Repository (page 25) for suggestions.

4.6.5 Move the MashZone NextGen repository to PostGres

Procedure

1. If you are using your LDAP Directory as the MashZone NextGen User Repository, make sure that at least one user in your LDAP Directory has administrator privileges for MashZone NextGen before you move the MashZone NextGen Repository. See Grant User Access to MashZone NextGen with Built-in Groups (page 12) for instructions.

When the MashZone NextGen User Repository is your LDAP Directory, the default administrator account (Administrator user) is disabled.

2. If you are hosting the MashZone NextGen Repository or MashZone Repository in a new database, create the database following PostGreSQL documentation (http://www.postgresql.org/docs/). Keep the following points in mind:

Make sure this database is supported by MashZone NextGen. See Additional MashZone NextGen System and Software Requirements (page 20) for details.

If you want MashZone NextGen to support international characters in meta-data for artifacts, set the character encoding to UTF8 when you create the database. See documentation for your database for specific instructions.

It is a best practice to require passwords for every database account that can access the MashZone NextGen Repository.

When you initialize the PostGres database that will host the MashZone NextGen Repository, you may need to specifically set the locale used by the database to ensure case-insensitive sorting.

3. Start the database that will become host to the MashZone NextGen Repository, if it is not already up.

4. Using the SQL tool for the database that will be host, add MashZone NextGen Repository tables with the scripts shown below from the corresponding folder in MashZoneNG-install/prestorepository/postgresdb:

 createDBTables.txt for MetaData and the default User Repository
 createSnapsTables.sql for Snapshots
 createSchedulerTables.sql for Scheduler
There are also scripts to drop the corresponding MashZone NextGen Repository tables in these folders, if needed.

5. Update snapshot scheduler configuration for the MashZone NextGen Server:
 a. In the text editor of your choice, open the applicationContext-scheduler.xml file in the webapps-home/mashzone/WEB-INF/classes/ folder for the MashZone NextGen Server.
 b. Find the bean for org.springframework.scheduling.quartz.SchedulerFactoryBean in default profile.
 c. Update the org.quartz.jobStore.driverDelegateClass property to the org.quartz.impl.jdbcjobstore.PostgreSQLDelegate delegate.

 The configuration would now look like:

   ```
   ... <bean id="scheduler" > <property name="applicationContextSchedulerContextKey"> <value>applicationContext</value> </property> <property name="quartzProperties"> <props> <prop key="org.quartz.scheduler.instanceId">AUTO</prop> <prop key="org.quartz.jobStore.class">org.quartz.impl.jdbcjobstore.JobStoreTX</prop> <prop key="org.quartz.jobStore.tablePrefix">QRTZ_</prop> <prop key="org.quartz.jobStore.driverDelegateClass">org.quartz.impl.jdbcjobstore.PostgreSQLDelegate</prop> <prop key="org.quartz.jobStore.dataSource">schedulerDS</prop> ... </props> </property> </bean> ...
   
   d. Save this change.
   e. If this is a clustered environment, copy the updated applicationContext-scheduler.xml configuration file to each MashZone NextGen Server in the cluster.

6. Copy the JAR file for the JDBC driver for your database to the following folder for each MashZone NextGen Server that uses this MashZone NextGen Repository: MashZoneNG-install/apache-tomcat/lib.

7. Open rdsApplicationContext.xml under MashZoneNG-install/apache-tomcat/classes and add the following keys to:

   ```
 <property name="jdoProperties"> ... <map> ... <entry key="javax.jdo.mapping.Schema" value="public"/> <entry key="datanucleus.identifier.case" value="LowerCase"/> ... </map> </property>
   ```

8. If you are using PostgreSQL version 9.x please open postgresql.conf under PostgreSQL-install/9.x/data and un-comment the following property and make sure it is set to off: standard_conforming_strings = off.

9. Open the MashZoneNG-install/apache-tomcat/conf/context.xml configuration file in the text editor of your choice.

10. For the MashZone NextGen Repository, edit the <Resource> element with an ID of MashzoneNextGenRepository and:

    a. Update the JDBC driver, URL and credential properties:

    ```
 name="MashzoneNextGenRepository" auth="Container" type="javax.sql.DataSource" maxTotal="200" maxIdle="30" maxWaitMillis="10000" username="app" password="app" driverClassName="org.postgresql.Driver" url="jdbc:postgresql://host-name:port/databasename" />
    ```
b. The JTA managed property **must be false**.
   
   If needed, update optional properties. See Tomcat Datasource Properties (http://commons.apache.org/proper/commons-dbcp/configuration.html) for a complete list of optional properties and information on defaults.
   
   Some common properties you may need to set include:
   
   **validationQuery = select 1**
   
   Common tuning properties for connections pools. See Tuning the MashZone NextGen Repository Connection Pool (page 176).

11. Save your changes to this file.
   
   If the MashZone NextGen Server does not start up successfully, see Troubleshooting Connections to the MashZone NextGen Repository (page 25) for suggestions.

12. Restart the MashZone NextGen Server to apply these changes. This also restarts the MashZone Server.
   
   If the MashZone NextGen Server wedoes not start up successfully, see Troubleshooting Connections to the MashZone NextGen Repository (page 25) for suggestions.

### 4.7 Integrate Your LDAP Directory with MashZone NextGen

In many cases, users and authentication information for an organization is defined in an existing LDAP Directory. You can configure MashZone NextGen to use your LDAP Directory as the source for user and group information.

See the System Requirements for Software AG Products guide for information on MashZone NextGen support for specific LDAP Directory solutions.

**Procedure**

1. If the MashZone NextGen Server is not yet started, start MashZone NextGen. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

2. Change MashZone NextGen configuration to use LDAP as the authentication provider.
   
   a. Edit the userRepositoryApplicationContext.xml file in the MashZoneNG-config folder with any text editor.
      
      This folder may be in the default location or in an external location. See Setting Up an External MashZone NextGen Configuration Folder (page 121) for more information.

   b. Remove the comment markers around this statement: `<import resource="/userRepositoryApplicationContext-ldap.xml">.`

   c. Comment out this statement: `<import resource="/userRepositoryApplicationContext-jdbc.xml"> property.
      
      You cannot use both default authentication and LDAP authentication.

   The configuration should look something like this:
<beans>
<!-- Choose between the internal JDBC repository and LDAP comment/uncomment these two import statements -->
<import resource="/userRepositoryApplicationContext-ldap.xml"/>
<import resource="/userRepositoryApplicationContext-jdbc.xml"/>
</beans>

3. Change MashZone NextGen configuration for the user attribute provider.
   a. If it is not already open, edit the userRepositoryApplicationContext.xml file in the
      MashZoneNG-config folder with any text editor.
      This folder may be in the default location or in an external location. See Setting Up an
      External MashZone NextGen Configuration Folder (page 121) for more information.
   b. Find the userAttributeProvider bean:
      <bean id="userAttributeProvider"/>
   c. Remove comment markers around the ldapAttributeProvider bean reference in the
      providers property list.
      The configuration should now look something like this:
      <bean id="userAttributeProvider">
      <property name="providers">
      <list>
      <ref bean="ldapAttributeProvider"/>
      <ref bean="internalUserAttributeProvider"/>
      </list>
      </property>
      </bean>
   d. Save your changes to this file.
      Do not restart the MashZone NextGen Server until all other LDAP configuration steps
      have been completed.

4. Define configuration in the Admin Console in MashZone NextGen Hub for:
   Connections to the LDAP Directory. See Defining LDAP Connection Configuration (page 35).
   Authentication mechanisms. See Defining the Authentication Scheme (page 36).
   Authorization mechanisms. See Defining the Authorization Scheme (page 37).
   All user and group queries used in MashZone NextGen applications. See Enabling MashZone
   NextGen Application Queries for All LDAP Users or Groups for Permissions (page 39).

5. Add the built-in MashZone NextGen user groups to LDAP as new groups and assign at least
   one user as a MashZone NextGen administrator.
   See Grant User Access to MashZone NextGen with Built-in Groups (page 12) for instructions.

6. Restart the MashZone NextGen Server.
   MashZone NextGen now uses LDAP as the user repository. You can now login using the user
   account assigned in earlier steps as a MashZone NextGen administrator.
   To grant access to other users, add them to an appropriate built-in MashZone NextGen user
   group in LDAP. See Grant User Access to MashZone NextGen with Built-in Groups (page 12)
   for instructions.

4.7.1 Defining LDAP Connection Configuration

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand **MashZone NextGen Repositories** and click **User Repository - LDAP**.

3. Set these properties for your LDAP Directory:
   - **LDAP URL** = the URL to your LDAP directory. For example:
     
     \[\text{ldap://localhost:389/dc=somecompany,dc=com}\]
   - **Directory User Name** = the distinguished name for the user account to connect to this LDAP Directory. This must be a privileged account. For example:
     
     \[\text{uid=admin,ou=system}\]
   - **Directory Password** = the password for the user to connect to this LDAP Directory.

4. Change any advanced options (see Defining the Authentication Scheme (page 36), Defining the Authorization Scheme (page 37) and Enabling MashZone NextGen Application Queries for All LDAP Users or Groups for Permissions (page 39)).

5. Save your changes.

### 4.7.2 Defining the Authentication Scheme

Authentication against LDAP determines if a distinguished name exists for a user. This searches for a user entry based on a specific username. Search-based authentication works, for example, if user names are users' email addresses.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Expand **MashZone NextGen Repositories** and click **User Repository - LDAP**.
3. Click **Advanced Options**.
4. Set these properties in the Authentication Properties section:
   - **User Search Base** = the base context for a user search in authentication. This produces a list of all users which is filtered with a combination of the User Search Filter and User Search Subtree properties to authenticate a user. For example:
     
     \[\text{ou=users,ou=system}\]
   - **User Search Filter** = the relative filter to apply to search for users during authentication. The variable \{0\} is replaced with the user's username from login.
     
     This filter is based from the context defined in User Search Base. For example:
     
     \[\text{email=\{0\}}\]
     
     This attribute must be the same attribute used in the **User ID Attribute Name** property.
   - **User Search Subtree** = set this option if the search should be recursive through all levels of the Directory under the search base. If you clear this option, search only checks direct children of the search base.
   - **Use LDAP VLV Control for Sorting and Paging** = this option is set by default to allow MashZone NextGen to use **virtual list views** (VLV) to paginate and sort LDAP search results.
Most LDAP directories support VLV, so in most cases you can leave this option set. If your LDAP directory logs errors for "unsupported search control", you can use this option to turn VLV off.

**User ID Attribute Name** = the LDAP attribute that contains the username that users login with. For example:

email

This value becomes the user ID for all further security contexts, unless the User ID Pattern property is also set.

**User ID Pattern** = a regular expression that is applied to user login names to extract the user ID for all further security contexts. This is only applied after authentication occurs.

### 4.7.3 Defining the Authorization Scheme

MashZone NextGen permissions are assigned to user groups or to individual users. To set up authorization when LDAP is the user repository, you must relate MashZone NextGen user groups to user groups in LDAP and define how users are assigned to groups in LDAP. User membership in LDAP groups can be defined by adding users to group entries or by adding group names to user entries, but **not** both.

In previous releases, MashZone NextGen user groups were called roles that could be implemented as user roles in LDAP instead of user groups. To use roles in LDAP for authorization in MashZone NextGen, please contact your Software AG representative for more information.

You must add the built-in MashZone NextGen groups that define basic permissions as groups in LDAP. You assign users to these built-in groups to assign basic MashZone NextGen permissions. Your existing LDAP groups can then be used in MashZone NextGen to define permissions for specific dashboards, data feeds and aliases. For more information on authorization, see Authorization Policies and Permissions (page 12).

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Expand **MashZone NextGen Repositories** and click **User Repository - LDAP**.
3. Click **Advanced Options**.
4. If user membership is defined in group entries in your LDAP directory, set these properties:
   - **Search Groups for User Membership** option.
   - Enter the beginning context for user group searches in the **Group Search Base** property.
   - This is combined with the User Group Search Filter to find LDAP groups to determine user membership in groups that may have MashZone NextGen permissions. For example:
     ou=groups
   - Enter the filter to apply in group searches in the **User Group Search Filter** property.
   - This is combined with Group Search Base to find LDAP groups to determine user membership in groups that may have MashZone NextGen permissions. The variable `{0}` is replaced with the user's username from login. For example:
uniquemember={0}

Enter the LDAP attribute in group entries that identifies a group in the **Group Name Attribute** property.

This attribute contains the name of user groups that is used in MashZone NextGen permissions. The default value is the group common name:

**cn**

If you change this property, you **must** also update the **Group Name Pattern** property.

If group IDs in your LDAP Directory are not simple common names (see Group Name Attribute), enter a regular expression in **Group Name Pattern** to identify the built-in MashZone NextGen groups.

For example:

**cn=(PRESTO_.*)**

MashZone NextGen expects specific names for the built-in groups that you add to your LDAP Directory. These values are defined in the common name of the group. This property allows MashZone NextGen to find the expected values for built-in groups, but use the full correct group names for the groups for your organization.

5. If user membership is defined solely in user entries, set these properties:

   Clear the **Search Groups for User Membership** option.

   Enter the name of the LDAP attribute in user entries that identifies the groups that users belong to in the **User Membership Attribute** property.

   If group IDs in your LDAP Directory are not simple common names, enter a regular expression in **Group Name Pattern** to identify the built-in MashZone NextGen groups.

   For example:

   **cn=(PRESTO_.*)**

   MashZone NextGen expects specific names for the built-in groups that you add to your LDAP Directory. These values are defined in the common name of the group. This property allows MashZone NextGen to find the expected values for built-in groups, but use the full correct group names for the groups for your organization.

   With these properties set, for example:

   **Search Groups for User Membership = true**  **Group Search Base = ou=groups,ou=system**  **User Group Search Filter=uniquemember={0}**  **Group Name Attribute = cn**

   And a username of **jwalker**, MashZone NextGen would search all entries in **ou=groups** where **uniquemember=jwalker**. The names for any of these groups would be the common name (cn) for the group entry.

   If these properties were set instead:

   **Search Groups for User Membership = false**  **User Membership Attribute = memberOf**

   The list of groups would consist of all values in the **memberOf** attribute in the **jwalker** user entry.

   This list of group names would be compared to the built-in MashZone NextGen groups and to groups with permissions for artifacts to determine the full set of permissions for **jwalker**.
4.7.4 Enabling MashZone NextGen Application Queries for All LDAP Users or Groups for Permissions

MashZone NextGen queries the User Repository for user groups and users to enable you and other users to assign permissions for MashZone NextGen resources. To enable these queries you set properties in the Admin Console.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand MashZone NextGen Repositories and click User Repository - LDAP.
3. Click Advanced Options.
4. To enable queries for all users, set these properties:
   - **User Search Base** (in Authentication Properties) = the base context for a search for all users. This is used with the All Users Search Filter and Search Subtree For All Users properties to get a result. For example:
     \[\text{ou=People}\]
   - **All Users Search Filter** (in MashZone NextGen Queries) = the search filter, combined with User Search Base that is used to find all user entries. For example:
     \[\text{objectclass=inetOrgPerson}\]
   - Ensure that the **objectclass=inetOrgPerson** attribute is set on the LDAP server.
5. To support wildcard searches and define the sort order for results, you must also define these properties:
   - **Attributes Used in Wildcard Search** (in MashZone NextGen Queries) = a list of LDAP attributes, separated by commas, to search in for wildcard searches. This defaults to:
     \[\text{cn, uid}\]
   - **User Sort By Attribute** (in MashZone NextGen Queries) = the LDAP attribute that should be used to sort the results of wildcard searches. This defaults to:
     \[\text{cn}\]
6. You must also define these properties so that Admin Console can display minimal user information:
   - **User First Name Attribute** (in MashZone NextGen Queries) = the LDAP attribute that holds users' first names.
   - **User Last Name Attribute** (in MashZone NextGen Queries) = the LDAP attribute that holds users' last names.
   - **User Email Attribute** (in MashZone NextGen Queries) = the LDAP attribute that holds users' email addresses.
7. To enable queries for LDAP groups that can be used to assign MashZone NextGen permissions:
**Group Search Base** (in Authorization Properties) = the beginning context, combined with Filter to Find All Groups for Roles to find all LDAP groups that can be used to assign MashZone NextGen permissions. For example:

ou=groups

This property is also used to search for MashZone NextGen permissions during authorization. Consider both uses before changing its value.

**Filter to Find All Groups for Permissions** = the search filter, combined with Group Search Base that is used to find all LDAP groups that may be used to assign MashZone NextGen permissions. For example:

objectclass=groupOfUniqueNames

Trouble shooting: If your LDAP user with role Presto_Administrator does not work, it might be helpful to stop MashZone NextGen first, deactivate and reactivate your LDAP connection in MashZone NextGen and then restart MashZone NextGen again.

### 4.8 Use the Default MashZone NextGen User Repository

MashZone NextGen authenticates users against a repository and retrieve authorization from the repository. This can be either a database or an LDAP Directory.

MashZone NextGen is installed with a default user repository within the MashZone NextGen Repository. You can use this initially as you explore MashZone NextGen or keep as the permanent source for user information, if desired. The default user repository also contains Default User Accounts (page 8) that you can use initially.

The MashZone NextGen repository is initially installed in a Derby database suitable only for trial purposes. For proof-of-concept, development or production uses, move the repositories to a robust and compatible solution.

No configuration is required to use the default user repository. If you use this default, you manage user and group information using functions in the Admin Console. See these topics for more information:

- Manage Users (page 40)
- Manage User Groups (page 42)
- Automatically Assign New Users to Groups (page 43)

### 4.8.1 Manage Users

If you are using the default MashZone NextGen User Repository, MashZone NextGen administrators can add users, assign them to groups to grant them permissions for various actions, and otherwise manage users in the Admin Console to. See Create Users (page 41) and Edit, Grant Permissions and other User Management Tasks (page 41) for instructions.

If you have configured MashZone NextGen to use your LDAP Directory as the User Repository, you manage users and groups and assign permissions in LDAP.
4.8.1.1 Create Users

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the Users and Groups tab and click Users.
3. Click Add new user and complete the following information:
   - **User Name** must be unique. This is the end-user's login name and primary key for the user record. User names cannot exceed 256 characters.
   - **First Name** and **Last Name** are optional.
   - **Email**
   - **Password** cannot exceed 50 characters. Confirm the password.
   Valid characters for the User Name and Password fields are defined by the database you use for the default MashZone NextGen User Repository.
4. Set the Active option, if needed, and click Add this User.
5. Add another user or click Cancel to close this form.

The new user is now active in MashZone NextGen and has permissions as an authenticated user. They can also access any artifact that grants permissions to the All Authenticated Users group.

To give new users access to the MashZone NextGen to create artifacts or simply to work with artifacts from other users, you must add them to other groups, either manually or automatically.

For more information, see:
- Automatically Assign New Users to Groups (page 43)
- Edit, Grant Permissions and other User Management Tasks (page 41)

4.8.1.2 Edit, Grant Permissions and other User Management Tasks

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the Users and Groups tab and click Users.
3. Find the user in the list using Search or scrolling. Management options include.
4. Click Reset password and enter a new password.
5. Click Edit to change the user’s name, login name or email.
6. Click Change user status to activate the user or click Change user status to deactivate.
7. Click Manage User Groups to grant or manage permissions for this user.
a. Enter part of a group name, if needed, and click **Search** to see a list of user groups with permissions and the user groups/permissions currently assigned to this user.

b. Click a group from the left column to assign a user group/permission to this user. Click a group from the right pane to remove a user group/permission.

c. See Built-In MashZone NextGen User Groups and Permissions (page 13) for information on the permissions for the built-in user groups in MashZone NextGen.

d. Click **Save changes** to update groups and permissions for this user.

8. Click **Delete** and confirm. Note that you cannot delete the default administrator account (the **admin** user) for MashZone NextGen.

### 4.8.2 Manage User Groups

Groups are used to grant permissions to users for specific actions in MashZone NextGen. If you are using the default MashZone NextGen User Repository, MashZone NextGen administrators add and manage user groups in the Admin Console. If you have configured MashZone NextGen to use your LDAP Directory as the User Repository, you define and manage user groups in your LDAP Directory.

User groups contain a set of users. Groups also have one or more permissions assigned. **Built-in MashZone NextGen groups** have a set of permissions predefined that allow users to work in MashZone NextGen. See Built-In MashZone NextGen User Groups and Permissions (page 13) for details.

Note: MashZone NextGen administrators and artifact owners automatically have permission to all artifacts or the artifacts they own respectively.

User-defined groups are groups that administrators add to MashZone NextGen. These groups are used to grant access permissions to group members for the specific artifacts that the group has been added to.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).

2. Expand the **Users and Groups** tab and click **Groups**.

   A list of groups displays. You can filter this list by entering part of a group name and clicking **Search**.

3. Click **Add new user group** and:

   a. Enter a unique name in the **Group** field.

   b. Click **Add this Group**.

   c. Add more groups or click **Cancel** to close this form.

4. To delete a user group, click **Delete** and confirm this.

   Do **not** delete any of the built-in groups for MashZone NextGen: **Presto_Administrator**, **Presto_Developer**, **Presto_PowerUser**, **Presto_AuthenticatedUser** or **Presto_Guest**.
4.8.3 Automatically Assign New Users to Groups

If you are using the Default MashZone NextGen User Repository, you can automatically assign new users to groups when you add them to MashZone NextGen. This can simplify some of the process of granting permissions to users.

The feature is not available if you are using your LDAP Directory as the MashZone NextGen User Repository.

You can add both built-in MashZone NextGen groups or groups that you have added for your organization to the list of default groups to automatically assign to new users. If you make **Presto_Developer** a default group, for example, every new user would be granted access to MashZone NextGen dashboard and data feed editors and API console.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the **Users and Groups** tab and click **Default Groups**.
3. Enter part of a group name and click **Search**.
   - A list of groups that start with that name displays.
4. Drag a group and drop it in the Default User Groups bucket.
   - Continue to find and add groups as needed.
5. Click **Save these changes**.

New user will automatically be assigned to all groups in the default list. This change does **not** affect any existing users.

4.8.4 Grant dashboard and data feed permissions via API console

You can use the API console to grant the permissions to create and edit dashboards and data feeds to MashZone NextGen users and user groups.

You have two options to assign the permissions to specific users and user groups. Using the Admin Console, as described in Manage Users (page 40) and Manage User Groups (page 42), and in addition, by using the API console.

By default, the permissions to create and edit dashboard and data feeds is only assigned to members of the **Presto_Developer** group, see Built-In MashZone NextGen User Groups and Permissions (page 13) for details. By using the API console you can assign the permissions required to other MashZone NextGen users.

**Procedure**

1. Open the API Console.
2. Enter the following code blocks if you want to assign the permissions to a specific user. Enter the relevant user name for the userID parameter.

   ```json
 { "version": "1.1", "sid": "PolicyService", "svcVersion": "0.1", "oid": "addPermissions", "params": ["Mashzone", "type.entity.uiObject",
   ```
"accessDashboardEditor", [ { "principalId": "userID", "principalTypeId": "User" } ] } ] } { "version": "1.1", "sid": "PolicyService", "svcVersion": "0.1", "oid": "addPermissions", "params": [ "Mashzone", "type.entity.uiObject", "accessDashboardEditor", [ { "principalId": "userID", "principalTypeId": "User" } ] ] } ] } { "version": "1.1", "sid": "PolicyService", "svcVersion": "0.1", "oid": "addPermissions", "params": [ "Mashzone", "type.entity.uiObject", "accessFeedEditor", [ { "principalId": "userID", "principalTypeId": "User" } ] ] } ] }

3. Enter the following code blocks if you want to assign the permissions to a specific user group. Enter the relevant group name for the groupID parameter.

```
{ "version": "1.1", "sid": "PolicyService", "svcVersion": "0.1", "oid": "addPermissions", "params": ["Mashzone", "type.entity.uiObject", "accessDashboardEditor", [{ "principalId": "groupID", "principalTypeId": "Group" }]] } { "version": "1.1", "sid": "PolicyService", "svcVersion": "0.1", "oid": "addPermissions", "params": ["Mashzone", "type.entity.uiObject", "accessFeedEditor", [{ "principalId": "groupID", "principalTypeId": "Group" }]] }
```

4. Click Run.

The permissions to create and edit dashboards and data feeds are assigned to the relevant user or user group.

### 4.8.4.1 Enable dashboard and data feed creation

The creation of dashboards and data feeds is restricted in MashZone NextGen by default. You can enable a user to create dashboards and data feeds by assigning the user to the Presto_Developer group.

If an existing MashZone NextGen repository is used (for example, after a migration to a newer MashZone NextGen version) the permissions might be missing in the Presto_Developer group. You can add the required permissions to the repository.

**Procedure**

1. Open the PolicyEngineConfiguration.xml file located in the following directory using a text editor.
   ```
 <MashZone NextGen installation>\apache-tomcat\webapps\mashzone\WEB-INF\classes
   ```
2. Add the following code block to the Presto_Developer_PermiissionSet and save the file.
   ```
 <Permission resourceName="Mashzone" resourceType="type.entity.uiObject">
 <Action name="accessDashboardEditor"/>
 <Action name="accessFeedEditor"/>
 </Permission>
   ```
3. Open the API Console.
4. Enter the following code block.
   ```
 { "sid": "PolicyService", "oid": "reloadPermissionSets", "version": "1.1", "params": {} }
   ```
5. Click Run.

The permissions are added to the MashZone NextGen repository.
4.8.5 Install MashZone NextGen and MashZone NextGen Event Service as Windows services

You can install MashZone NextGen Server and MashZone NextGen Event Service as Windows services by running the `mashzonenextgen-service.bat` file. The file is located in the `<MashZone NextGen installation>\apache-tomcat\bin` directory.

Procedure

1. Run `mashzonenextgen-service.bat -install` to install MashZone NextGen Server and MashZone NextGen Event Service as Windows services.
2. Run `mashzonenextgen-service.bat -remove` to uninstall MashZone NextGen Server and MashZone NextGen Event Service as Windows services.

The Windows services `Software AG MashZone NextGen <version>`, `Software AG MashZone NextGen Event Service Core <version>`, `Software AG MashZone NextGen Event Service Zookeeper <version>`, and `Software AG MashZone NextGen Event Service HA-Store <version>` are installed or uninstalled.

4.9 Command Central

Using the Software AG Command Central web user interface and command line interface you can manage some MashZone NextGen functionalities in your Software AG products environment. The Command Central is a tool to administer hundreds of managed product installations in your IT landscape from a central location. Command Central is built on top of Software AG Common Platform and product-specific features are in the form of plug-ins.

MashZone NextGen provides an own Command Central Platform Manager plug-in. The MashZone NextGen plug-in (page 45) is available as a separate item in the SAG Installer product tree. It is automatically selected when installing the MashZone NextGen product. With MashZone NextGen 10.2, a separate plug-in for MashZone NextGen Event Service (page 49) is available. It is automatically installed with the MashZone NextGen Command Central plug-in. Detailed information on how to use the Software AG Command Central can be found in the Command Central User Guide.

4.9.1 MashZone NextGen plug-in

4.9.1.1 Required installer modules

If you want to use the MashZone NextGen Command Central integration, you need to install the following modules from the installer's product tree.

- MashZone NextGen#Server
- Infrastructure#Command Central
4.9.1.2 Instance Overview

- The **Instances** tab provides information about the run-time status and installation details.
- By clicking MashZone NextGen on the **Instances** tab you can open the **Overview** page of the MashZone NextGen instance. The overview tab contains information about the runtime status and allows triggering some life-cycle actions like starting and stopping the instance.
- By clicking on the status icon or the link below you can start or stop the MashZone NextGen instance.
- By clicking the flag icon you can open the alerts. You can also clear the alerts by clicking on the number in the circle.

The KPIs shown are available only if the server is configured for remote JMX connections, see chapter **Remote JMX connection** for a configuration example. The following table gives an overview of the supported KPIs.

<table>
<thead>
<tr>
<th>KPI</th>
<th>Description</th>
<th>Max value</th>
<th>Marginal value</th>
<th>Critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Calculation</td>
<td>The number of currently running feed calculations</td>
<td>10</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Heap Memory</td>
<td>The actually used heap memory of the JVM</td>
<td>Configured max. value (parameter &quot;wrapper.java.maxmemory&quot; in wrapper.conf)</td>
<td>80% of max</td>
<td>90% of max</td>
</tr>
<tr>
<td>Calc. Queue Size</td>
<td>The number of waiting feed calculations in the queue</td>
<td>20</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

4.9.1.3 Instance Configuration

The instance configuration supports four different configuration types:

- General properties contained files "presto.config" and "mashzone.properties"
- Java service wrapper properties contained in file "wrapper.conf" resp. "custom_wrapper.conf"
- Java system properties contained in file "wrapper.conf" resp. "custom_wrapper.conf"
- Memory configuration contained in file "wrapper.conf" resp. "custom_wrapper.conf"
The following table gives an overview of the supported configuration types, their location and which configuration aspects they cover.

<table>
<thead>
<tr>
<th>Configuration type</th>
<th>Configuration instance</th>
<th>Location</th>
<th>Covered aspects</th>
</tr>
</thead>
</table>
| General Properties | MashZone NextGenMashZone NextGen properties | <TOMCAT_ROOT>/webapps/WEB-INF/mashzone.properties | - Initial resource folder  
- Import/Export folder  
- JDBC drivers folder  
- Feed calculation settings  
- Feed related and general cache settings  
- Event Service endpoit URL  
- PPM connection timeout |
| General Properties | Presto Config | <TOMCAT_ROOT>/webapps/WEB-INF/classes/presto.config | - UI mode "MashZone" or "Classic"  
- SAML2 configuration  
- JWT configuration  
- Landing page welcome text  
- Parts of the SSL configuration (selfsigned, anyhosts)  
- Parameters to control DAO/DB code generation  
- Database DAO service registration options |
| Memory | - | <TOMCAT_ROOT>/conf/wrapper.conf <TOMCAT_ROOT>/conf/custom_wrapper.conf | - JVM initial heap size  
- JVM maximum heap size |
| Jaca Service Wrapper | - | <TOMCAT_ROOT>/conf/wrapper.conf <TOMCAT_ROOT>/conf/custom_wrapper.conf | - Java home and Java command locations  
- Java Main class to be used  
- Java classpath  
- Wrapper log settings  
- Wrapper Display Name  
- Windows service settings  
- Wrapper files locations  
- ...and some more settings of lower importance |
<table>
<thead>
<tr>
<th>Configuration type</th>
<th>Configuration instance</th>
<th>Location</th>
<th>Covered aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java System Properties</td>
<td>-</td>
<td>&lt;TOMCAT_ROOT&gt;/conf/wrapper.conf</td>
<td>▪ Tomcat location settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&lt;TOMCAT_ROOT&gt;/conf/custom_wrapper.conf</td>
<td>▪ File encoding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Some RAQL settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Presto classic resource folder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Terracotta license key and config timeout</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Derby locks settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Some file locations concerning event services</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Optional: Remote JMX settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▪ Optional: Remote debugging settings</td>
</tr>
</tbody>
</table>

<TOMCAT_ROOT> usually is <INSTALL_ROOT>/MashZoneNG/apache-tomcat.

The latter three configuration types are handled by the Tanuki Service Wrapper. It supports a "cascaded" configuration. That means, that only the default configuration is contained in file wrapper.conf. Parameters that were added or manipulated are stored in file custom_wrapper.conf which is included by wrapper.conf. If parameters are contained in both files, the ones in custom_wrapper.conf overwrite the original values in wrapper.conf.

Note: Some important configuration aspects of MashZone NextGen are currently not supported by Command Central. They can be configured by using the MashZone NextGen user interface or by editing specific configuration files. Detailed information on how to configure MashZone NextGen can be found in MashZone NextGen Server Configuration (page 56).

### 4.9.1.4 Instance Logs

The Logs tab provides the MashZone NextGen's log files located in the <TOMCAT_HOME>/logs directory.

### 4.9.1.5 Enable remote JMX connection

In order to enable the remote JMX connection that allows monitoring the KPIs, please add the following parameters via Command Central Configuration Type "Java System Properties" and restart the server using the Command Central life-cycle actions.

com.sun.management.jmxremote.port=9607
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

The SPM plug-in detects the JMX port automatically.
4.9.2 MashZone NextGen Event Service plug-in

4.9.2.1 Instance overview

The Instances tab provides information about the run-time status and installation details.

By clicking MashZone NextGen Event Service on the Instances tab you can open the Overview tab of the MashZone NextGen Event Service instance. The Overview tab contains information about the runtime status and allows triggering some life-cycle actions like starting and stopping the instance. By clicking on the status icon or the link below you can start or stop the MashZone NextGen Event Service instance.

By clicking the flag icon you can open the alerts. You can also clear the alerts by clicking on the number in the circle.

4.9.2.2 Instance configuration

The instance configuration supports five different configuration types:

- General properties contained in files rtbs.config, zookeeper.properties, server.properties
- Keystore Configuration (rtbs.properties)
- Truststore Configuration (rtbs.properties)
- Ports (rtbs.properties, zookeeper.properties, server.properties)
- Other: Cluster Configuration (rtbs.properties, zookeeper.properties, server.properties)

The following table gives an overview of the supported configuration types, their location, and which configuration aspects they cover.

<table>
<thead>
<tr>
<th>Configuration type</th>
<th>Configuration instance</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Properties</td>
<td>Event Service Core Properties</td>
<td><code>&lt;EventService_ROOT&gt;/conf/rtbs.properties</code></td>
<td>EDA Configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• EventTypeStore location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(com.softwareag.event.routing.eventtypestore.location)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DES Configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• TypeRepository location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(com.softwareag.events.repository.location)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• License location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(com.softwareag.events.license.location)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Routing Configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(com.softwareag.events.routing.location)</td>
</tr>
<tr>
<td>Configuration type</td>
<td>Configuration instance</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>General Properties</td>
<td>HA-Store</td>
<td><code>&lt;EventService_ROOT&gt;/ha-store/conf/server.properties</code></td>
<td>Persistence settings for high availability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Retention time (log.retention.hours, time in hours before buffered data becomes eligible for deletion). Defaults to 168 hours (7 days)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Retention size (log.retention.bytes, maximum size of buffered data, per buffer). Defaults to infinity, i.e., the size is only bound by retention time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>It is not recommended to make other changes to the configuration file. Especially <code>broker.id</code> should only be changed using the Other configuration type (cluster configuration, see below). Port settings should be changed using the ports configuration type (see below).</td>
</tr>
<tr>
<td>General Properties</td>
<td>Zookeeper</td>
<td>Apache Zookeeper configuration. It is not recommended to make any manual changes to the file. All relevant aspects can be configured using the configuration types listed in this table.</td>
<td></td>
</tr>
<tr>
<td>Keystores</td>
<td><code>&lt;EventService_ROOT&gt;/conf/rtbs.properties</code></td>
<td>Keystore location, alias, type, location, password</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Clusters</td>
<td>Cluster configuration:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Replication Factor: determines how many replicas of persisted data (for high availability) will be created. The number must be &gt;= 1 and &lt;= the number of Event Service instances in the cluster. The number must be &gt;= 2 to achieve any fault tolerance. As a rule of thumb: the higher the number of replicas the more Event Service node failures can be tolerated. However, the</td>
<td></td>
</tr>
<tr>
<td>Configuration type</td>
<td>Configuration instance</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>amount of storage required on the Event Service machines increases linearly with the number of replicas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Note:</strong> The replication factor setting only affects buffers that are created after the replication factor was changed, that is, changing the replication factor does not affect existing buffers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Zookeeper-URLs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Format: <strong>hostname:port</strong>, for example, <strong>machine1.mycompany.com: 12181</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- To form a cluster, Zookeeper URLs must contain a comma-separated list of all machines that should be part of the cluster. To form a cluster of the machines machine1, machine2, and machine3, enter: <strong>machine1:12181,machine2:12181, machine3:12181</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Instance ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The instance ID must be a number between 1 and 255 and must be unique among all cluster members. It is used to identify cluster members. The ID is internally used to configure Event Service Core's rtbs.id, Zookeeper's ID (myid), and HA-Store's broker.id.</td>
</tr>
<tr>
<td>Ports</td>
<td></td>
<td></td>
<td>Port configuration for Event Service (non-TLS/TLS), Zookeeper, HA-Store</td>
</tr>
<tr>
<td>Truststores</td>
<td>&lt;EventService_ROOT&gt;/conf/rtbs.properties</td>
<td></td>
<td>Truststore location, alias, type, location, password, and period. The truststore is required to validate (JWT) tokens that MashZone NextGen uses to authenticate against MashZone NextGen Event Service. Make sure to use a truststore that contains a public key matching the private key used in MashZone NextGen (see section Protect MashZone NextGen Event Service access (page 14)).</td>
</tr>
</tbody>
</table>

<EventService_ROOT> usually is <INSTALL_ROOT>/MashZoneNG/rtbs
4.9.2.3 Instance Logs

The Logs tab provides the MashZone NextGen Event Service log files located in the `<EventService_ROOT>/log` directory.

4.9.3 Configure MashZone NextGen Digital Event Service (DES)

You can configure the URL that subscribes to an external Universal Messaging (UM) instance in MashZone NextGen using the Command Central.

The configuration type **Messaging Services** contains configuration options for Universal Messaging. It is pre-configured to use a Universal-Messaging Server running on local host (URL: `nsp://localhost:9000`). You must reconfigure the URL if you call a UM instance that is either remote (not localhost) or if the instance is running on another port than the UM default (9000).

**Procedure**

1. Open a MashZone NextGen instance in Command Central.
2. Open the MashZone NextGen - DES component, a subcomponent of the MashZone NextGen component.
3. Open the Configuration tab.
4. Select **Messaging Services** in the drop-down menu.
5. Click **UniversalMessaging** in the **Service Name** column to open the settings.
6. Click **Edit** on the upper right-hand side to edit the settings.
7. Make your settings. For details on the UM settings see Create DES Event Source (Seite 153).
8. Save your settings.
9. Restart the MashZone NextGen server.

Your settings are applied.

If you do not use the Command Central, you can edit the UM URL in a corresponding configuration file stored the MashZone NextGen installation. Edit the file in a text editor, and replace the value of the messaging provider URL field in the JSON content.

The configuration file is located in the following directory.

```
<MashZone NextGen installation>/apache-tomcat/conf/DigitalEventServices/services/UniversalMessaging/service-UniversalMessaging.json
```

4.9.4 Configure ports

You can configure the ports in MashZone NextGen using the Command Central.

By default, the **HTTP** port is enabled, and the **HTTPS** port is disabled.
Procedure
1. Open a MashZone NextGen instance in Command Central.
2. Open the **Configuration** tab.
3. Select **Ports** in the drop-down menu.
4. Click an alias in the **Alias** column to open the port settings.
5. Click **Edit** on the upper right-hand side to edit the port settings.
6. Make your settings. The alias is not editable.
   a. Additionally, enable the **HTTPS** port to run MashZone NextGen in **HTTPS** mode.
   b. Deactivate the **HTTP** port and activate the **HTTPS** port to run MashZone NextGen only in **HTTPS** mode.
   c. Change the port number if required.
   d. Activating the HTTPS port activates the SSL mode.
      If you want to run the SSL mode, you must also configure the Keystores and Truststores in Command Central (page 53).
7. Save your settings.
8. Restart the MashZone NextGen server.
   Your settings are applied.

4.9.5 **Configure keystores**

You can configure keystores in MashZone NextGen using the Command Central.

The default keystore type is JKS, but you can change it to PKCS12.

You can only configure the keystores if you previously have activated the SSL mode in the ports configuration (page 52).

**Procedure**
1. Open a MashZone NextGen instance in Command Central.
2. Open the **Configuration** tab.
3. Select **Keystores** in the drop-down menu.
4. Click an alias in the **Alias** column to open the keystore settings.
5. Click **Edit** on the upper right-hand side to edit the keystore settings.
6. Make your settings. The alias and description are not editable.
   a. Select the keystore type in the **Type** drop-down menu.
   b. Specify the location of the keystore file in the file system.
   c. Specify the password of the keystore, and confirm it.
   d. Specify a key alias of the key within the keystore you want to use.
      If there are multiple keys in the keystore, and you do not specify a key alias, the first one present in the keystore is used.
7. Save your settings.
8. Restart the MashZone NextGen server.
Your settings are applied.

4.9.6 Configure truststores

You can configure truststores in MashZone NextGen using the Command Central. You can only configure the truststores if you previously have activated the SSL mode in the ports configuration (page 52).

Procedure
1. Open a MashZone NextGen instance in Command Central.
2. Open the Configuration tab.
3. Select Truststores in the drop-down menu.
4. Click an alias in the Alias column to open the truststore settings.
5. Click Edit on the upper right-hand side to edit the truststore settings.
6. Make your settings. The alias and description are not editable.
   a. Select the keystore type in the Type drop-down menu.
      JKS or PKCS12 are currently supported.
   b. Specify the location of the truststore file in the file system.
   c. Specify the password of the truststore, and confirm it.
7. Save your settings.
8. Restart the MashZone NextGen server.
Your settings are applied.

4.9.7 Configure SSL certificates

You can configure SSL certificates using the Command Central.

Procedure
1. Enable in SSL mode in the port configuration (page 52).
2. Configure a keystore (page 53).
3. Configure a truststore (page 54).
Your settings are applied.
4.9.8 Manage licenses

You can manage the licenses of MashZone NextGen and the optional internally used product Terracotta (BigMemory) using the Command Central.

The list contains always two entries, one for the MashZone NextGen license and one for the optional internal Terracotta license.

- The first column shows the license type, either MashZone NextGen or Terracotta.
- The second column shows the current license status. This is either **Not present** if no license is available, **Valid** if the license is valid, **Invalid** if the license is invalid, **Expiring soon** if the license will expire within the next few days.
- The third column shows the actual expiration date of the license. If a license has no expiration date, this field will remain empty.

**Procedure**

1. Open a MashZone NextGen instance in Command Central.
2. Open the **Configuration** tab.
3. Select **Licenses** in the drop-down menu.
4. Click a license type in the **License Type** column to open the license settings.
5. Click **Edit** on the upper right-hand side to edit the license settings.
   
   A drop-down box is now displayed that shows the currently available licenses in the Command Central license repository. The license list contains only the licenses for the license type you have selected. If no license is offered, you must first upload a license to the Command Central license repository. Detailed information on how to upload a license file can be found in the Command Central User Guide.

6. Select a license in the drop-down list.
7. Save your settings.
8. Restart the MashZone NextGen server.

Your settings are applied.
5 MashZone NextGen Server Configuration

5.1 Memory Configuration for the MashZone NextGen Server

MashZone NextGen is initially installed with default memory settings for a small web application. Your actual memory requirements may vary significantly based on your expected load, throughput and environment.

Note: With release 3.7, MashZone NextGen is no longer supported on 32-bit architectures which have memory access limitations from Java.

If you are working with large datasets in MashZone NextGen Analytics or you are deploying MashZone NextGen in a staging or production environment, you may need to tune this default memory configuration. Which options you can configure depends on your usage and environment considerations:

<table>
<thead>
<tr>
<th>If</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Your computer has less than 4G of RAM memory, or</td>
<td>Configuration When MashZone NextGen Uses Only Heap Memory (page 56)</td>
</tr>
<tr>
<td>• You have not installed BigMemory Server(s).</td>
<td></td>
</tr>
<tr>
<td>• You have installed BigMemory Server(s), or</td>
<td>Configuration When MashZone NextGen Uses Heap and Off-Heap Memory (page 57)</td>
</tr>
<tr>
<td>• Your computer has more than 4G of RAM memory.</td>
<td></td>
</tr>
</tbody>
</table>

5.1.1 Configuration When MashZone NextGen Uses Only Heap Memory

The initial default Java heap memory settings for MashZone NextGen are appropriate for small applications or development environments 2G as the maximum heap size. The Event Service that is deployed with MashZone NextGen also uses this heap space.

If you are using MashZone NextGen with large datasets and limited memory (less than the recommended 4G minimum), configuring BigMemory to use off-heap memory is not recommended as it can adversely affect performance.

Some portion of available memory must be reserved for the operating system and any other applications on this host.

How much memory to allocate to MashZone NextGen depends on available memory, requirement for the Event Service and what other applications may run on this computer.

Procedure

1. In a text editor of your choice, open the application server configuration file
   MashZoneNG-install/apache-tomcat/conf/wrapper.conf
2. Change any of these Java memory options:
   wrapper.java.initmemory, Default = **512**
   wrapper.java.maxmemory, Default = **2048**

3. Save your changes and restart the MashZone NextGen Server. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

### 5.1.2 Configuration When MashZone NextGen Uses Heap and Off-Heap Memory

MashZone NextGen should be configured to use both heap and off-heap memory only when the available memory supports this adequately and you have also installed BigMemory Servers.

You must have installed a copy of your BigMemory license in MashZone NextGen to use off-heap memory. See Manage Licenses for MashZone NextGen and BigMemory (page 23) for instructions.

With combination heap and off-heap memory, as this figure shows, BigMemory uses off-heap memory for the MashZone NextGen Analytics In-Memory Stores and MashZone NextGen caches. All other MashZone NextGen processing, including the Event Service that is deployed with MashZone NextGen, remains in heap.

The total available off-heap memory may be limited to local off-heap memory as shown above, or it may include additional off-heap memory on external hosts if you have installed BigMemory Server arrays.

**Procedure**

1. In a text editor of your choice, open the application server configuration file MashZoneNG-install/apache-tomcat/conf/wrapper.conf.

2. Change or add either of these memory options used with BigMemory, see table below.

3. Change or set any of these Java memory options.
   
   wrapper.java.initmemory, Default = **512M**
   wrapper.java.maxmemory, Default = **2G**

   See the Java Tuning White Paper for more information and suggestions.

4. Save your changes and restart the MashZone NextGen Server. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

<table>
<thead>
<tr>
<th>Memory options used with BigMemory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wrapper.java.additional.&lt;n+1&gt; =-Dpresto.bm.maxOffHeap</td>
<td>Default = <strong>1G</strong> Where n is the number of last additional Java parameter. This is the maximum size of local off-heap memory that BigMemory can use for the MashZone NextGen Analytics In-Memory Stores and MashZone NextGen caches. This property sets off-heap memory limits in the</td>
</tr>
</tbody>
</table>
### Memory options used with BigMemory

<table>
<thead>
<tr>
<th>Memory options used with BigMemory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MashZoneNG-config/ehcache.xml configuration file. The total size of off-heap memory may include additional, external memory depending on how BigMemory is deployed.</td>
<td></td>
</tr>
<tr>
<td>wrapper.java.additional.&lt;n+2&gt; =-XX:MaxDirectMemorySize</td>
<td>Default = 1500M Where n is the number of last additional Java parameter. This Java memory option must be set to allow access to both off-heap and an additional allocation for Java. The value of this option must always be larger than the memory allocated to off-heap. A good rule of thumb is at least 500M more.</td>
</tr>
</tbody>
</table>

---

### 5.2 Support International Character Sets and Locales

International character sets are the alphabets, characters, glyphs and other symbols used in any non-English language. Technically, this includes any non-ASCII characters. To handle these characters properly, MashZone NextGen must know the character set and how it is digitally represented - the **character encoding**.

MashZone NextGen uses the UTF-8 character encoding to handle character sets for all languages. Both UTF-8 and UTF-16 can represent any Unicode character.

Unicode defines a unique encoding for every character in world languages that are currently in active use as well as some well-known dead languages, such as ancient Greek.

Locale identifies the language used and potentially specific regional spelling or usage aspects of the language, such as differences between American English (EN_us) versus Australian English (EN_au). Locale also identifies the formats used to present dates, times and numbers for that region.

Both the character encoding and locale help to ensure that MashZone NextGen properly handles and presents data to users. The areas of configuration involved in this support include:

- **MashZone NextGen Repository**: the character encoding for this repository determines what character sets users can use when they create artifacts. The timezone for the MashZone NextGen Repository also affects timestamps shown in MashZone NextGen.
- **Display options**: in most cases, date, time and numeric data are shown to users based on browser settings or a default locale. Some views allow users to choose date and time formats.
- **See Date, Time and Numeric Display Options (page 59) for details.**
- **Logging**: you can also support international characters and different locales for the messages sent to MashZone NextGen logs. **See Message Log and Default Locales (page 60) for details.**
5.2.1 Set the Repository Character Encoding

The character encoding for the MashZone NextGen Repository is defined when you create the database that will host the repository. To support international character sets, this should be set to UTF-8, or for some databases UTF-16.

**Important:** Because of known issues, artifact names and the IDs that are generated from these names are restricted to ASCII characters. The syntax and encoding names you must use are specific to each database. For more information, see:

- Documentation for your database
- And either:
  - Move MashZone NextGen repository to Microsoft SQL Server (page 25)
  - Move the MashZone NextGen repository to MySQL (page 28)
  - Move the MashZone NextGen repository to Oracle (page 30)
  - Move the MashZone NextGen repository to PostGres (page 32)

5.2.2 Set the Repository Timezone or Offset

The default timezone that is used to record timestamps such as the created date and time for an artifact is the timezone for the host of the MashZone NextGen Repository. You can change the timezone used to save repository timestamps or set an offset so that repository timestamps are displayed in a different timezone:

- Force the timezone that the MashZone NextGen Repository usesto match the timezone for the MashZone NextGen Server. See Synchronize the MashZone NextGen Repository and MashZone NextGen Server Time Zones (page 178) for instructions.
- Configure the display timezone in MashZone NextGen as an offset from UTC. Note that this does not affect the actual timezonerecorded in the MashZone NextGen Repository.
- This offset is defined in the `repositoryTimezoneOffset` property in `web-apps-home/mashzone/hub/config.js` file. This property is undefined by default.
- Edit this JSON property, setting the number of minutes as a UTCoffset. For example, 300 sets this to Eastern Standard Time while -180 sets this to Arabic Standard Time.
- Once the property is saved, restart the MashZone NextGen Server.

5.2.3 Date, Time and Numeric Display Options

In general, MashZone NextGen displays dates, times and numeric data using the formats defined by the browser’s locale for the current user. If no locale information is available from the browser, MashZone NextGen use the default system locale which typically is EN_us.

Some built-in views in MashZone NextGen, allow users to choose a date and time pattern for result data such as **mm/yyyy**, for the month and year, or **EEE MMM dd, yyyy**, for the day of the week, month name, day and year. This pattern determines the widgets of dates or times that
display in that view, but the language, order and delimiters used in the display are determined by the user’s locale or the default locale.

5.2.4Message Log and Default Locales

MashZone NextGen uses the default locale defined for the JVM for all messages that are added to MashZone NextGen logs. These defaults may also be used as the locale for artifacts if no locale is defined by users or provided by the client browser.

To set the locale for the JVM for MashZone NextGen using Java properties

- In a text editor of your choice, open the file `<MashZoneNG-installation>/apache-tomcat/conf/wrapper.conf`.
- Add the lines just below the line which sets the last additional Java parameter:
  - `wrapper.java.additional.<n+1>=-Duser.language=language-code`
  - `wrapper.java.additional.<n+2>=-Duser.language=language-code`
- Where n is the number of last additional Java parameter.

For example: `wrapper.java.additional.20=-Duser.county=CA`  
`wrapper.java.additional.21=-Duser.language=fr`

- Save your changes to the file.
- Restart the MashZone NextGen Server. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

5.3Edit style templates

You have MashZone NextGen administrator permissions.

You can edit the style templates supplied with MashZone NextGen. Editing the style templates enables you to customize the look and feel of your dashboards and the dashboard editor, for example, colors schemes, fonts, brand logo, or background colors.

If you change the style template at the application level your settings are also applied in the MashZone NextGen Feed Editor.

The application style template file `application.less` is located in the following folder on the MashZone NextGen server.

`<MashZone NextGen installation>\apache-tomcat\webapps\mashzone\hub\dashboard\assets\custom-look-and-feel\application`.

The dashboard style template files are located in the following folder on the MashZone NextGen server. The default dashboard template file is named `default.less`.

`<MashZone NextGen installation>\apache-tomcat\webapps\mashzone\hub\dashboard\assets\custom-look-and-feel\dashboard`
The style templates provide basic variables that are used as default variables by many widgets, for example, @header-color. You can override the basic variables by defining more specific, customized variables, for example, @header-dashboard-name-color.

For example, if @header-color is black and @header-dashboard-name-color is red, and both variables are the only ones defined, all labels in the header will be black, except for the dashboard name label, which will be red.

All application and dashboard variables available are described in the corresponding style template files.

Procedure
1. Open the relevant template style file in your text editor.
2. Edit the style parameters according to your requirements.
3. Save your changes.
4. Reload the changed style template files.
   a. Open a dashboard in the MashZone NextGen Dashboard Editor.
   b. Click Manage > Change style template in the dashboard main menu.
   c. To reload the application style template click Activate.
   d. To reload the dashboard style template select the relevant dashboard style template in the drop-down menu and click Update.
5. Click OK.

The changed style template has been reloaded and the style templates are applied to the application or dashboard.

5.4 Configure the MashZone NextGen server with custom ports

Port configuration is initially set when you install MashZone NextGen. If you change these ports or you need to host multiple MashZone NextGen Servers on one host, you must update configuration in the MashZone NextGen Server. You may also need to change ports for the MashZone NextGen Repository and for Tomcat.

5.4.1 Change MashZone NextGen Server Ports

The host name and port for the MashZone NextGen Server defaults to localhost and 8080 respectively. The port is typically defined in configuration for Tomcat, the application server that hosts MashZone NextGen.

Procedure
1. Update port configuration for the application server that hosts MashZone NextGen in MashZoneNG-install/apache-tomcat/conf/server.xml in the <Connector> elements for HTTP and/or HTTPS.
2. Restart the MashZone NextGen Server. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

5.4.2 Change MashZone NextGen Repository Ports

If you are running multiple instances of the MashZone NextGen Server in one host with separate instances of the MashZone NextGen Repository, you may need to use different ports for each database instance.

- The default MashZone NextGen Repository. No updates to ports are needed as the Derby database is embedded.
- The MashZone NextGen Repository is hosted in a robust database. You must use different ports for each MashZone NextGen Repository instance.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the **MashZone NextGen Repositories** section.
3. Select **Metadata Repository** and:
   a. Change the JDBC URL to the correct host and port number.
   b. Click **Save**.
4. Restart the MashZone NextGen Server. See Start and Stop the MashZone NextGen Server (page 21) for instructions.

5.4.3 Tomcat Application Server Port

If you are running multiple instances of the MashZone NextGen Server in one host, you must have separate application server instances for each. You must update the following ports:

<table>
<thead>
<tr>
<th>Configuration File</th>
<th>Element</th>
</tr>
</thead>
</table>
| MashZoneNG-install/apache-tomcat/conf/server.xml | `<Server>` to set the command port  
`<Connector>` for the HTTP port  
`<Connector>` for the HTTPS port |

5.5 Configure the MashZone NextGen server to work with a proxy server

MashZone NextGen is **only** compatible with HTTP proxy servers.

If you have a proxy server in your environment that MashZone NextGen should use, you **must** add configuration information to the MashZone NextGen Server for the proxy server. You can also define a **whitelist** of addresses that do not require proxy server access. See Define a Proxy Server Whitelist for MashZone NextGen (page 65) for more information.
**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. In the Server section, click **Proxy Settings**.
3. Set the **Enable Proxy** option.
4. Set the following connection properties for your proxy server:
   - **Host** = the host name or IP address for the proxy server. This is required.
   - **Port** = the port number for the proxy server. This is required.
   - **Username** = the user name that the MashZone NextGen Server should use to connect to the proxy server. This is only required if your proxy server requires credentials.
   - **Password** = the password that the MashZone NextGen Server should use to connect to the proxy server. This is only required if your proxy server requires credentials.
5. If needed, define a whitelist of addresses that should not use the proxy server. See Define a Proxy Server Whitelist for MashZone NextGen (page 65) for instructions.
6. Click Save proxy settings.

5.6 **Embedding MashZone NextGen in external system environments**

You can use MashZone NextGen as a widget in external products, for example, webMethods Business Console. As embedded widget MashZone NextGen is enabled to send data via outbound API (Post data) to the embedding system and receive data via inbound API (URL selection) from the embedding system.

5.6.1 **Configure MashZone NextGen server to work with iFrame**

By default, MashZone NextGen can be embedded using HTML inline frames (iFrame) if the MashZone NextGen server and the server of the embedding system use the same protocol, same host and same port.

To embed MashZone NextGen within another HTML document the iFrame source points to the MashZone NextGen dashboard as shown in the following example.

```html
<iframe id="embedded-mzng-dashboard" width="600px" height="600px"
src="http://mzngServerHost:mzngServerPort/mashzone/hub/
dashboard/dashboard.jsp?mzngDashboardGUID"> <p>Your browser does not support iframes.</p> </iframe>
```

If the embedding system is running on a different host or uses a different protocol or port, the MashZone NextGen server must be configured as follows. The MashZone NextGen server configuration file **applicationContext-security-filters.xml** needs to be configured by adding filters for **X-Frame-Options** and content security policies.
The `applicationContext-security-filters.xml` server configuration file is located in following directory. `<MashZone NextGenInstall>/apache-tomcat/webapps/mashzone/WEB-INF/classes`.

**Procedure**

1. Open the `applicationContext-security-filters.xml` configuration file in a text editor of your choice.
2. Adapt the security settings as follows and exchange the string "http://otherServerHost:otherServerPort" with the system origin MashZone NextGen is to be embedded in.

```xml
<beans:beans xmlns="http://www.springframework.org/schema/security"...
 <http pattern="/hub/(login|reset_password).html.*" security="none"
 request-matcher="regex" />
 <http pattern="/help/.*" security="none"
 request-matcher="regex" />
 <http pattern="/**/*.jsp" use-expressions="false"
 authentication-manager-ref="authenticationManager"
 entry-point-ref="mzngAuthenticationEntryPoint" >
 <anonymous enabled="false"/>
 <headers>
 <!--frame-options policy="SAMEORIGIN"/--> <frame-options
 value="http://otherServerHost:otherServerPort" />
 </headers>
 </http>
 <http pattern="/**/*.html" security="none"
 request-matcher="regex" />
 <http pattern="/**/*.jsp" use-expressions="false"
 authentication-manager-ref="authenticationManager"
 entry-point-ref="mzngAuthenticationEntryPoint" >
 <anonymous enabled="false"/>
 <headers>
 <!--frame-options policy="SAMEORIGIN"/--> <frame-options
 value="http://otherServerHost:otherServerPort" />
 </headers>
 </http>
</beans:beans>
```
3. Save changes.

Your changes will be applied with the next MashZone NextGen server start.

Further details on the topic **Using iFrame** can be found in the spring security documentation: https://docs.spring.io/spring-security/site/docs/current/reference/html/headers.html#headers-frame-options.

### 5.6.2 Post data

The **Post data** action creates an outbound API to pass data from MashZone NextGen dashboards to an embedding system, for example, an external web application. The action is available for most widgets.
5.6.3 URL selection

With the **URL selection** MashZone NextGen provides an inbound API to receive data from an embedding system, for example, an external web application. The action is available for most widgets.

5.7 Define a Proxy Server Whitelist for MashZone NextGen

If you have configured a proxy server for the MashZone NextGen Server, you can define a whitelist of domains, hosts or IP addresses that do **not** require access through the proxy server.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. In the **Server** section, click **Proxy Settings**.
3. Set the following properties:
   - **Bypass IP List** = enter one or more IP address, separated by commas, that the MashZone NextGen Server should access without the proxy server. To use wildcards in IP addresses, see Using Regular Expressions in a Whitelist (page 65).
   - **Bypass Host List** = enter one or more fully-qualified host names, separated by commas, that the MashZone NextGen Server should access without the proxy server. To use wildcards in IP addresses, see Using Regular Expressions in a Whitelist (page 65).
   - **Bypass Domain List** = enter one or more domain names, separated by commas, that the MashZone NextGen Server should access without the proxy server. To use wildcards in IP addresses, see Using Regular Expressions in a Whitelist (page 65).
4. Click **Save proxy settings**.
5. Log out of MashZone NextGen.
6. Stop and restart the MashZone NextGen Server to apply these changes.

5.7.1 Using Regular Expressions in a Whitelist

All of the whitelist properties accept **regular expressions** to define sets of IP, host or domain name addresses using wildcards. You can use any valid regular expression character, however, the most common wildcard characters that you may use are:

<table>
<thead>
<tr>
<th>Replace Any Single Character</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace Any Number of Characters</td>
<td>.*</td>
</tr>
</tbody>
</table>

Examples and solutions for the most common patterns include:

- Specifying Literal Dot Separators (page 66)
5.7.2 Specifying Literal Dot Separators

Because the dot character is used as a wildcard in regular expressions and is also the standard separator for groups in IP addresses, domain names and host names, you can get unintended results when using wildcards. For example, this is a valid regular expression for IP addresses:

```
139.16.1.*
```

On Windows systems, many administrators would expect this to expression to "match any IP address with first-through-third groups of 139, 16 and 1 respectively" such as **139.16.1.10** and **139.16.1.35**.

This would actually match either of these IP addresses:

- **139.16.1.10**
- **139.16.11.120**

In most cases, the difference between a literal dot and the dot as a wildcard character doesn’t make a difference. If you need to clarify a whitelist entry to match a literal dot, use `\.` instead.

The expression **139\.16\.1\..*\** would correctly match **139.16.1.10** and **139.16.1.35** but would not match **139.16.11.120**. In many cases, you could also simplify this to **139.16.1\..*\** to get the correct behavior.

5.7.3 Specifying Domains

With domains, you must specify a wildcard at the beginning of the domain name. This example is not a valid domain name expression:

```
mydomain.com
```

This entry would **not** match a host name of **east.mydomain.com** or **east.customers.mydomain.com**. To specify the domain correctly, enter:

```
.*mydomain.com
```

5.7.4 Specifying Host Names

In whitelist properties, host names are fully-qualified. Thus **stives** is not a valid host name while **stives.customers.mydomain.com** is valid. A host name expression of **.*customers.mydomain.com** would match all of these hosts:

- **stives.customers.mydomain.com**
- **cour.customers.mydomain.com**
- **tempcustomers.mydomain.com**
Note that an expression of `*.customers.mydomain.com` would also match these same three hosts.

You may need to specify literal dot separators in host names also to properly clarify the expressions. If in this example you did not want `tempcustomers.mydomain.com` to be matched, you would need an expression such as `.*\customers.mydomain.com`. See Specifying Literal Dot Separators (page 66) for more information.

5.8 Configure MashZone NextGen for SSL and Digital Certificates

MashZone NextGen expects HTTP as the default transport protocol from clients to the MashZone NextGen Server.

MashZone NextGen supports HTTPS and SSL for connections from clients or connections to many types of information sources.

The certificate store, certificates and configuration needed to support SSL in MashZone NextGen depends on the connection requirements, as shown below:

<table>
<thead>
<tr>
<th>Certificate Store and Certificates</th>
<th>Store Configuration</th>
<th>MashZone NextGen Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Trust Java App Server MashZone NextGen MashZone NextGen Authentication Security Profiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-Way SSL to MashZone NextGen (page 69).</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mutual to MashZone NextGen See Configure Mutual SSL Between Users and MashZone NextGen (page 68).</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>One-Way SSL to Mashable Information Sources (page 69).</td>
<td>✓ can be in either</td>
<td></td>
</tr>
</tbody>
</table>

See also The Certificate Store and Certificates (page 67) for more information:

5.8.1 The Certificate Store and Certificates

Both key stores and trust stores are certificate stores to store and manage the key certificate pairs or public certificates used in secure connections with the SSL protocol. Key stores manage key certificate pairs and trust stores manage the public certificates of trusted peers.
5.8.2  Key Certificate Pairs

For MashZone NextGen, the key certificate pair stored in the key store identifies the MashZone NextGen Server to users, for both one-way and mutual SSL. The key certificate pair identifies the MashZone NextGen Server to information sources for mutual SSL.

You must generate a key certificate pair for MashZone NextGen. Typically you also have the key certificate pair signed by a Certificate Authority and import this into the certificate store using the Java `keytool` utility or other certificate management tools.

5.8.3  Trusted Peer Certificates

The public certificates from peers are stored in the trust store and identify users, for mutual SSL, or identify information sources, for one-way or mutual SSL.

When public certificates for peers are signed by well known Certificate Authorities, they are automatically verified and imported into the trust store. If public certificates are self-signed or signed by an unknown Certificate Authority (the CA root certificate is not found in the trust store), you must obtain and import the public certificates to the trust store before the first connection occurs during user login.

5.8.4  The Certificate Store

You can use a single certificate store as both the key store and trust store for MashZone NextGen or you can use separate certificate stores. You can use an existing certificate store for MashZone NextGen, such as the default certificate store shipped with some application servers. Or you can create a new certificate store using the Java `keytool` utility.

See Java keytool documentation (http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html) for more information, commands and instructions on managing key certificate pairs, trusted certificates and certificate stores.

5.8.5  Configure Mutual SSL Between Users and MashZone NextGen

The MashZone NextGen Server and users both exchange certificates. MashZone NextGen can also be configured to use user digital certificates for authentication. The connection requires:

- Store and Certificates:
  - A certificate store as key store and trust store for the MashZone NextGen Server.
  - A key certificate pair for the MashZone NextGen Server.
  - Public certificates in the trust store for any user public certificates that are self-signed.
You must add self-signed certificates to the trust store before these users login. See Trusted Peer Certificates (page 68) for more information.
See The Certificate Store and Certificates (page 67) for more information.

- Configuration in the application server hosting MashZone NextGen to use the HTTPS port. This also includes configuration identifying the key store and trust store for the MashZone NextGen Server. See Configure HTTPS and Certificate Stores in the Application Server (page 69) for instructions.

5.8.6 One-Way SSL to MashZone NextGen

This requires:
1. A key store and a key certificate pair for MashZone NextGen. See The Certificate Store and Certificates (page 67) for more information.
2. Configuration in your application server for the HTTPS port to MashZone NextGen and the key store. See Configure HTTPS and Certificate Stores in the Application Server (page 69) for instructions.

5.8.7 One-Way SSL to Information Sources

This requires:
- A trust store for MashZone NextGen. See The Certificate Store and Certificates (page 67) for more information.
  Configuration for the trust store in either:
  The application server hosting the MashZone NextGen Server. See Configure HTTPS and Certificate Stores in the Application Server (page 69) for instructions.
  Java. See Update SSL Configuration for Java (page 71) for instructions.
  Self-signed certificates, if any, for mashable information source using one-way SSL. You must add these certificates to the trust store before the mashable information source can be registered. See Trusted Peer Certificates (page 68) for more information.

5.8.8 Configure HTTPS and Certificate Stores in the Application Server

Configuration for SSL for MashZone NextGen can be defined in the application server that hosts the MashZone NextGen Server. These instructions discuss the basic steps for configuring SSL in Tomcat. See Tomcat documentation (http://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html#SSL_and_Tomcat) or the documentation for your application server for detailed information.
Procedure

1. If you do not yet have a key store, trust store and certificate for the MashZone NextGen Server, find or create these stores and certificate. See The Certificate Store and Certificates (page 67) for instructions.

2. Configure Tomcat for secure connections from clients to the MashZone NextGen Server.

   **Warning**
   
   We recommend that you do not use TLSv1.0 in your production environments, as TLSv1.0 is considered unsafe for network communication.
   
   You can add the `sslEnabledProtocols` and `sslProtocols` parameters to the `server.xml` file to disable TLSv1.0. The parameters allow limiting the supported protocols. For details, see the Tomcat documentation (http://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html#SSL_and_Tomcat).

   a. Edit the `server.xml` file for Tomcat to uncomment and configure the `<Connector>` element for SSL/HTTPS 1.1. For example:

   ```xml
 <Connector port="8443" protocol="org.apache.coyote.http11.Http11Nio2Protocol" SSLEnabled="true" maxHttpHeaderSize="8192" maxThreads="150" minSpareThreads="25" maxSpareThreads="75" enableLookups="false" disableUploadTimeout="true" acceptCount="100" scheme="https" secure="true" clientAuth="true" sslProtocol="TLS" keystoreFile="conf/tomcat.jks" keystorePass="keystrpwd" truststoreFile="conf/tomcat.jks" truststorePass="truststrpwd" />

 This example uses the default Tomcat port, 8443, and mutual SSL, based on the `clientAuth` value. If this was a one-way connection, you would set `clientAuth` to false.

 This example also uses the default Tomcat certificate store, `conf/tomcat.jks`, as both the key store and the trust store. See Tomcat documentation for information on other properties.

 b. Once you have configured an HTTPS port in your application server, update port configuration for the MashZone NextGen Server to listen to that port. See Configure the MashZone NextGen server with custom ports (page 61) for more information on this step.

 c. Enable MashZone NextGen to use secure session cookies:

 Open the `web.xml` file located in `<MashZone NextGen installation>/apache-tomcat/webapps/mashzone/WEB-INF/` in a text editor.

 Find the `session-config/cookie-config/secure` element and change the value to `true`.

 Example

   ```xml
   <session-config><session-timeout>30</session-timeout> <!-- Set the "secure" flag to true when using HTTPS for enhanced security --> <cookie-config> <secure>true</secure> </cookie-config> </session-config>
   
   Once this is set to true, only HTTPS access will be allowed.
5.8.9 Update SSL Configuration for Java

For the data acquisition using HTTPS, certificates for secure endpoints are validated against the default trust store for Java (JRE).

For more information on the default JRE trust store, see
http://download.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
#CustomizingStores
(http://download.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
#CustomizingStores).

Initially, this may not be the trust store you have configured for the MashZone NextGen Server in the application server. This can cause security errors for information sources.

To avoid these errors, you can configure the JRE to use the trust store for the MashZone NextGen Server.

Procedure

1. Open the application server configuration file
   MashZoneNG-install/apache-tomcat/conf/wrapper.conf in a text editor of your choice.
2. Add the following Java system properties:
   wrapper.java.additional.<n+1>=-Djavax.net.ssl.trustStore=/path/to/mashup-server/trust
   store
   This is the absolute path to the trust store for the MashZone NextGen Server.
   wrapper.java.additional.<n+2>=-Djavax.net.ssl.trustStorePassword=truststore-password
   This is only required if the MashZone NextGen Server’s trust store uses a password.
   Where n is the number of last additional Java parameter.
3. Save your changes to the script and restart the MashZone NextGen Server. See Start and
   Stop the MashZone NextGen Server (page 21) for instructions.

5.9 MashZone NextGen Logging

In addition to logging from your application server, MashZone NextGen provides the following types of logging:

- Basic logging for MashZone NextGen Server startup, shutdown and exceptions based on a
  configured logging level. See Configure Logging for the MashZone NextGen Server (page 72)
  for more information.
- Audit logging for dashboards, data feeds, aliases, and permissions. See Audit logging for
  dashboards, data feeds, aliases, and permissions (page 73) for details.
5.9.1 Configure Logging for the MashZone NextGen Server

The MashZone NextGen Server log, **prestoserver.log**, logs all exceptions from startup through shutdown. See MashZone NextGen Logging (page 71) for links to additional types of logging you can use with MashZone NextGen.

For clustered environments, updating logging configuration affects logging only for the MashZone NextGen Server where you are currently logged in. Generally, this is the behavior you want.

To change logging for all MashZone NextGen Servers in the cluster, update logging configuration for one server and copy the updated MashZoneNG-install/apache-tomcat/conf/log4j.properties file to each of the other MashZone NextGen Servers in the cluster. You do not need to restart MashZone NextGen Servers.

Procedure

1. Open the **log4j** configuration file in `<MashZone NextGen installation>/apache-tomcat/conf/log4j.properties` with a text editor of your choice.
2. Edit any of the following properties:
   - **Root Log Warning** = the general logging level to use, such as **ERROR**. All exceptions for that level and above will be logged, so this contributes directly to how quickly logs may grow. **DEBUG** is the most verbose logging level.
   - **Log file path** = both the folder where the log files for the MashZone NextGen Server should be saved and the name to use for log files. This defaults to `tomcat-install/logs/prestoserver.log`.

You can use an absolute path or a relative path. Relative paths are relative to the web-apps-home folder.

   - **Maximum log file size** = maximum size for a log file. Once a file has reached this size is it saved as a numbered backup, such as **prestoserver.log.1** and a new log file is started.
   - **Data nucleus logging level** = This property should only be changed when requested by MashZone NextGen technical support to help debug specific issues. It is the logging level to use in the data mapping layer for MashZone NextGen.
   - **HTTP client logging level** = This property should only be changed when requested by MashZone NextGen technical support to help debug specific issues. It is the logging level to use for requests/responses between the MashZone NextGen Server and information sources.
   - **NET SF logging level** = This property should only be changed when requested by MashZone NextGen technical support to help debug specific issues. It is the logging level to use for JSON serialization and deserialization.
   - **ACEGI security logging level** = This property should only be changed when requested by MashZone NextGen technical support to help debug specific issues. It is the logging level to use with the MashZone NextGen security layer.
   - **Apache logging level** = This property should only be changed when requested by MashZone NextGen technical support to help debug specific issues. It is the logging level to use with many of the third party libraries used in MashZone NextGen.
**Spring framework logging level** = This property should only be changed when requested by MashZone NextGen technical support to help debug specific issues. It is the logging level to use for server initialization, shutdown and the request/response pipeline for the MashZone NextGen Server.

3. If desired, click **Advanced Options** to set any of these properties:
   - **Log class for normal logging** = the java class that handles appending log entries to the log file. This defaults to `org.apache.log4j.RollingFileAppender`.
   - **Layout class for normal logging** = the Java class that handles the layout pattern for entries to log files. This defaults to `org.apache.log4j.PatternLayout`.
   - **Layout pattern for normal logging** = the expression defining the pattern for entries to the log file. This defaults to `%d %p [%c - %m%n`.
   - **Maximum normal log file backups** = how many log backups are kept. This defaults to seven.

   The advanced properties are defined by Log4J, the underlying logging framework for MashZone NextGen. For more information, see [http://logging.apache.org/log4j/1.2](http://logging.apache.org/log4j/1.2).

   This change becomes effective automatically within 60 seconds.

---

**5.9.2 Audit logging for dashboards, data feeds, aliases, and permissions**

The audit logging tracks various events concerning dashboards, data feeds, aliases, and permissions. Logins, logouts and failed logins are also tracked. This logging is enabled by default.

The following events are logged.

- create, edit, and delete of dashboards
- create, edit, and delete of data feeds
- create, edit, and delete of aliases
- edit permissions
- logins, logouts and failed logins

The tracked events are logged in the **MashZone-AuditLog.log** file. The file is located in the following directory.

`<MashZone NextGen installation>/logs`  

The audit logging can be switched on and off in the **log4j2.xml** file. You can edit the XML file with any text or XML editor. If you want to disable the audit logging, set the value of the **level** parameter to **OFF**. The default value is **info**.

The file is located in the following directory.

`<MashZone NextGen installation>/conf`
5.10 MashZone NextGen Notifications

MashZone NextGen sends notifications to users for many events, such as change password requests, password changes, etc. You can also configure MashZone NextGen to send notifications as email messages.

Procedure

1. Configure an email server in MashZone NextGen. See Configuring a Mail Server for MashZone NextGen (page 74) for instructions.
2. Optionally define the host and port to use for MashZone NextGen in links within email notices. See Configure the MashZone NextGen server with custom ports (page 61) for more information.
3. Turn on email notifications in the Admin Console:
   a. Open the MashZone NextGen Admin Console (page 2).
   b. If needed, expand the Server section and click Mail Notifications.
   c. Set the Turn ON Notifications option and click Save mail notification settings.
4. If you are using your LDAP Directory as the MashZone NextGen User Repository, MashZone NextGen expects to find the email address for a user in the mail attribute in LDAP user entries. If your LDAP Directory stores email addresses in a different LDAP user attribute, you must configure MashZone NextGen to look for the correct LDAP user attribute. See Update the User Email Attribute from LDAP (page 75) for instructions.

5.10.1 Configuring a Mail Server for MashZone NextGen

By default, MashZone NextGen sends notices for a variety of administrator and user actions within MashZone NextGen. If you choose to send these notifications as email message, you must add connection configuration to the MashZone NextGen Server for your mail server.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. In the Server section, select Mail Server.
3. Complete the connection properties:
   - **Host** = your mail server domain name or host IP address.
   - **Port** = the port number for your mail server. This defaults to 25, for SMTP.
4. Set the Requires authentication if your SMTP server requires credentials and complete these properties:
   - **Username** = the user account the MashZone NextGen Server should use to connect to your mail server.
   - **Password** = the password the MashZone NextGen Server should use to connect to your mail server.
5. If your mail server uses a secure connection, choose the protocol for Connection security:
**STARTTLS** = a transport layer security (TLS) that does not require a different port for the mail server.

**SSL/TLS** = transport layer security (TLS) using the secure socket layer (SSL).

6. Click Save mail server settings.

### 5.10.2 Update the User Email Attribute from LDAP

When MashZone NextGen is configured to use your LDAP Directory as the User Repository, MashZone NextGen is configured by default to expect user email addresses in the `mail` attribute for LDAP user entries. If your LDAP Directory uses a different user attribute to store email addresses, you must update LDAP configuration information in MashZone NextGen to ensure that email notifications are successfully delivered.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the MashZone NextGen Repositories section and click User Repository - LDAP.
3. Click Advanced Options and scroll down to find MashZone NextGen Query Properties.
4. Change the User Email address property to the name of the LDAP user attribute that contains user email addresses.
5. You may also want to update the list of attributes in Export User Attributes as MashZone NextGen Attributes and Attributes Used in Wildcard Search fields as these properties commonly include the mail attribute.
6. Click Save the changes.
7. Restart the MashZone NextGen Server to apply these updates.

### 5.11 BigMemory for Caching, Connections and In-Memory Stores

By default MashZone NextGen uses local memory for caching. This uses BigMemory as a local client that is installed with MashZone NextGen and requires only your MashZone NextGen license. In specific cases, you must also install BigMemory Servers on one or more additional hosts and configure MashZone NextGen and the Integrated MashZone Server to work with them. MashZone NextGen requires BigMemory Servers with a BigMemory license to support:

- Significant, extensible amounts of memory, most commonly for very large datasets used with MashZone NextGen.
  
  BigMemory Servers can be deployed in clusters, also known as Terracotta Server Arrays, that can easily be extended for scalable memory requirements.

- Distributed caching when MashZone NextGen is deployed in clusters.
  
  With clusters, some of the internal MashZone NextGen caches must be distributed and managed by BigMemory Servers.
• Access to off-heap memory
  BigMemory Servers also can manage memory outside of heap both for better scalability and
  performance improvements.
• Access to In-Memory Stores created and populated dynamically by external systems.
  BigMemory manages the In-Memory Stores created dynamically by other systems and
  makes connection information available to MashZone NextGen through the Terracotta
  Management Console (TMC) to allow MashZone NextGen to work with this data. Apama, for
  example, dynamically creates distributed stores for the Apama MemoryStore which
  MashZone NextGen can connect to and query.
  MashZone feeds that use BigMemory connections as a data source.

  See Configure BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page
  77) for instructions on configuring MashZone NextGen to work with BigMemory Servers.
  You also need to provide configuration and connection information for In-Memory Stores that are
  created by other systems. For more information on these tasks, see:
  • Declare BigMemory Stores for MashZone NextGen (page 79)
  • Manage Dynamic BigMemory Stores for MashZone (page 83).

  See Caching for the MashZone NextGen Server (page 76) for an overview of MashZone NextGen
  caching. For caching configuration, see Distributed Caching for MashZone NextGen Clusters
  (page 77).

### 5.11.1 Caching for the MashZone NextGen Server

The MashZone NextGen Server caches artifact metadata, for internal purposes. By default,
caches are stored in local memory. See Artifact Caching (page 76) and Response Caching (page
77) for details.

All MashZone NextGen caches can be distributed when MashZone NextGen is deployed in
clusters. See Distributed Caching for MashZone NextGen Clusters (page 77) for an overview of
distributed caching for MashZone NextGen.

#### 5.11.1.1 Artifact Caching

Artifact caching caches metadata for feeds and other internal operational data when they are run
in MashZone NextGen.

Because updates to artifacts are typically infrequent, this cache is long-lived. It is not persisted to
disk. Cache entries are flushed only when an artifact is updated or when the server hosting the
cache is restarted. No additional configuration is required to enable local artifact caching for
MashZone NextGen.
5.11.1.2  Response Caching

Response caching caches the responses from dashboards and data feeds when they are run. This is a short lived cache that caches response data based on the unique signature of each request to dashboards and data feeds.

Configuration for response caching gives you fine grained control for which dashboards and data feeds use response caching and the expiration periods for their cache entries.

5.11.1.3  Distributed Caching for MashZone NextGen Clusters

When MashZone NextGen is deployed in clusters, artifact caching must be distributed to maintain cache integrity. Response caching, however, can be left in local memory for each MashZone NextGen Server or it can be distributed.

In many environments, local caching provides both good performance and acceptable cache integrity for response caching. Local caching is "eventually consistent", but can result in visible differences as cached responses are not guaranteed to be identical for different cluster members. For environments that cannot tolerate any loss of cache integrity, distributed response caching is recommended.

Distributed caching is only available if you purchase and deploy BigMemory Servers. You use BigMemory Servers to handle distributed caching for MashZone NextGen.

With BigMemory Servers, data for most MashZone NextGen caches can use the total off-heap memory configured for the cluster plus any heap and off-heap memory configured for the MashZone NextGen local host.

The BigMemory Servers manage consistency and memory across the cluster. They also support failover, with mirror servers, for high availability and many other advanced capabilities that may be useful for enterprise production systems.

To configure distributed caching, see Configure BigMemory Servers for MashZone NextGen Caching (page 77) for set up instructions.

5.11.1.4  Configure BigMemory Servers for MashZone NextGen Caching

You can configure MashZone NextGen to work with one or an array of BigMemory Servers to provide additional memory, provide reliability and support specific other features. See BigMemory for Caching, Connections and In-Memory Stores (page 75) for more information on features that require BigMemory servers.

Procedure

1. Copy your license for BigMemory to MashZone NextGen and update MashZone NextGen startup scripts:
a. Copy the license file terracotta.key to the MashZoneNG-install/apache-tomcat/conf folder.
   If MashZone NextGen is deployed in a cluster, you must copy this file to every cluster member.

b. Add the following Java system property to the MashZone NextGen server configuration file <MashZone NextGen installation>/apache-tomcat/conf/wrapper.conf:
   
   wrapper.java.additional.<n+1>=Dcom.tc.productkey.path=MashZoneNG-install/apache-tomcat/conf/terracotta.key
   
   Where n is the number of last additional Java parameter.
   If MashZone NextGen is deployed in a cluster, you must update the server configuration files for every cluster member.

2. Edit the ehcache.xml file for MashZone NextGen in a text editor of your choice.

3. Find the line in ehcache.xml with <terracottaConfig> that is commented out like this:
   <!-- <terracottaConfig url="localhost:9510" /> -->
   Remove the comment markers and change the url attribute to the host (or IP address) and port for the BigMemory server(s) you installed. For example:
   <terracottaConfig url="tcHost1:9510" />
   
   There are several ways to identify one or more BigMemory servers for MashZone NextGen. See BigMemory documentation (http://terracotta.org/documentation/) for more information.

4. Find the line in ehcache.xml with <terracotta> that is commented out and uncomment this line for each of the following named <cache> elements:
   
   SEARCH_RESULTS_CACHE = one part of the MashZone NextGen Artifact cache.
   SERVICES_BY_ID_CACHE = one part of the MashZone NextGen Artifact cache.
   SERVICE_RESPONSE_CACHE = the MashZone NextGen Response cache for dashboards and data feeds. This is optional. Update this cache only if you want it to be distributed.
   
   This <terracotta> element allows the In-Memory Store and MashZone NextGen caches to use heap and off-heap memory in both the local host and BigMemory hosts. This combined memory is managed by BigMemory.
   
   For more information on the <terracotta> element, see Distributed Configuration topics in BigMemory documentation (http://terracotta.org/documentation/).

5. Save these changes to ehcache.xml.
   
   For clusters where this configuration file is not stored in a shared external folder, copy this file to the same location for each MashZone NextGen cluster member.

6. Start BigMemory Server(s).

7. If needed, adjust memory configuration for the local MashZone NextGen host. See Memory Configuration for the MashZone NextGen Server (page 56) for instructions.

8. Restart MashZone NextGen. See Start and Stop the MashZone NextGen Server (page 21) for instructions.
5.11.2 Working with BigMemory Stores for RAQL

Declaring In-Memory Stores for MashZone NextGen allows MashZone NextGen to connect to stores in BigMemory that may have been created and populated by other systems. These In-Memory Stores allow you to store large datasets for quick access and to retrieve them for analysis using RAQL.

Each In-Memory Store holds one dataset with any number of rows, also known as entries, within the memory constraints defined for the store. In previous releases you could store many different datasets in one store with a dataset being one entry in the store.

To allow RAQL to work with external data, external memory stores must be configured with:

- The name of the cache manager that manages memory for the in-memory store.
  Note: BigMemory does not require cache manager names, but they are a best practice for caches used as RAQL In-Memory Stores. Cache manager names prevent potential name collisions for stores.
- Search attributes for the dataset that identify the columns in the dataset and the datatype of the data in each column.

There are two types of In-Memory Stores that differ in the way they are configured in MashZone NextGen: declared and dynamic In-Memory Stores.

5.11.2.1 Declared In-Memory Stores

Declared stores are defined in BigMemory configuration files (ehcache.xml files) that MashZone NextGen administrators add to the MashZone NextGen Server to allow you to work with these stores.

Declared In-Memory Stores can contain data loaded by external systems. With declared in-memory stores, the producer system that stores data in the store is the system that creates the store. MashZone NextGen is always the consumer system that retrieves data from the store for analysis using RAQL.

Declaring stores before use allows you to:

- Customize store properties for each store, providing better memory management and data retention.
- Define search attributes for the columns in the dataset in each store.
- Column search attributes are required to allow RAQL to work with datasets stored by external systems.
- Defining search information also allows RAQL to delegate filtering and sorting to the In-Memory Store which provides better performance.

Configuration for declared stores specifies the cache manager, search attributes and connection information for the store. For an example, see Declare a New In-Memory Store (page 80).
5.11.2.1.1 Declare a new In-Memory Store

Define configuration for one or more In-Memory Stores in a cache configuration file for BigMemory (an ehcache.xml file).

It is a best practice to change the default file name `ehcache.xml` for this configuration file to something more meaningful, such as `myCRM-cache.xml`. This makes it easier to identify when multiple configuration files are uploaded to MashZone NextGen.

Procedure

1. Add a name attribute to the `<ehcache>` element and assign a unique name.
   This is the cache manager name which must be unique for this MashZone NextGen Server. It should consist solely of letters, numbers, underscores(_) or dashes (-).

2. Add a `<cache>` element for each store you need to declare. The following example shows some common properties. See BigMemory documentation ([http://terracotta.org/documentation/](http://terracotta.org/documentation/)) for more information.

   You can find this example configuration file, `sample-cache.xml`, for declared stores in the `<MashZone NextGen installation> /prestocli/raql-samples` folder.

   ```xml
 <ehcache name="sample-cache">
 <diskStore path="java.io.tmpdir"/>
 ...<cache name="StocksDeclCache" maxBytesLocalHeap="50M" memoryStoreEvictionPolicy="LRU" timeToIdleSeconds="0" timeToLiveSeconds="0"> ... </cache>
 ... </ehcache>
   ```

   If this In-Memory Store will be populated by external systems with datasets that are Java objects, add `<searchable>` to the `<cache>` element and define a `<searchAttribute>` with the name, datatype and extractor class for each property in these Java objects that will contain data.

   For the `class` attribute, use the `net.sf.ehcache.search.AttributeExtractor` interface provided in the BigMemory Search API or an implementation class of `AttributeExtractor`.

   See BigMemory documentation ([http://terracotta.org/documentation/](http://terracotta.org/documentation/)) for details.

   MashZone NextGen is only able to access searchable attributes of datasets stored by external systems. For Apama used as external system, search attributes are no more required.

   Since version 9.9 MashZone NextGen supports the native Apama RowValue format. MashZone NextGen can consume RowValues stored by Apama and convert them into the RAQL record format. In case of caches written by Apama searchable attributes are no more needed for accessing the data at all but they are still required for processing filters, aggregations and sorting directly in BigMemory.

3. Save this file.

4. Copy the JAR file containing the classes used as search attributes to extract data from the dataset in this cache to `MashZoneNG-config/lib`.

   See documentation for the external system that created this dynamic store to determine what JAR files are needed. For Apama, see documentation on the MemoryStore.

   The default location for this folder in MashZone NextGen is `<MashZone NextGen> installation/apache-tomcat/mashzone/WEB-INF/lib`. If MashZone NextGen is deployed in a
cluster, however, this location may be a separate external folder. For more information, see Setting Up an External MashZone NextGen Configuration Folder (page 121).

5. Restart the MashZone NextGen Server. For instructions, see Start and Stop the MashZone NextGen Server (page 21).

6. Open the MashZone NextGen Admin Console (page 2).

7. Click Server to expand this section of the Administration menu.

8. Click BigMemory.

9. Open the BigMemory Cache tap.

The Big Memory Cache tab lists any In-Memory Store configuration files that have already been upload.

10. Click Register a new EhCache Configuration File.

11. Enter the name assigned to <ehcache> in this configuration file (in step 1) as the Big Memory Data Source Name. This name is used as a prefix for all stores defined in this configuration file to uniquely identify each store.

   Data source names must be unique for this MashZone NextGen Server. They should contain only letters, numbers, underscores (_) or dashes (-).

   If any of the declared In-Memory Stores for this connection have data populated by external systems, the data source name must also match the name assigned to the <ehcache> element in the configuration file.

12. Click Browse to find and select the Cache Configuration File ehcache.xml you created in step 1.

13. Click Add this file.

The file is uploaded to the MashZone NextGen Repository in the standard path bigmemory/caches/file-name and shown in the list by data source name. The URL shown is the relative path in MashZone NextGen to this resource.

Administrators can also manage resources files in the Admin Console. See Manage Files for MashZone NextGen Features or Artifacts (page 103) for more information.

5.11.2.1.2 Modify a Declared In-Memory Store

1. Update the configuration file for a declared In-Memory Store as needed.

For example, you may need to add configuration to allow an In-Memory Store to use memory in external BigMemory hosts when you add servers or deploy MashZone NextGen in staging or production environments.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).

2. Click Server to expand this section of the Administration menu.

3. Click BigMemory.

4. Open the BigMemory Cache tap.
5. The **Big Memory Cache** tab lists any In-Memory Store configuration files that have already been upload.
6. Select the existing BigMemory data source for this store and click **Delete**.
7. Add this data source with the updated configuration file. See Declare a New In-Memory Store (page 80) for instructions.

### 5.11.2.1.3 View Details for Declared In-Memory Stores

You can view configuration information for declared In-Memory Stores.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Server** to expand this section of the Administration menu.
3. Click **BigMemory**.
4. Open the **BigMemory Cache** tap.
   - This lists any configuration files for declared In-Memory Store that have already been upload.
5. Click the title for a configuration file to see detailed information for the In-Memory Stores declared in that file.
6. To see the configuration file contents, click the URL for that file.

### 5.11.3 Dynamic In-Memory Stores

Dynamic stores are created programmatically on the fly when:

- An external system creates a store dynamically in BigMemory. These stores are also known as dynamic external stores because the external system is also the system the stores data in the store.
  
  **Note:** Access to dynamic external stores requires BigMemory be installed as a server or server array. MashZone NextGen must also have access to the BigMemory license.

- To connect to dynamic external stores, a MashZone NextGen administrator must define connection configuration. See Add an External Dynamic In-Memory Store Connection (page 453) for more information. The Terracotta Management Console (TMC) must also be running to successfully connect to a dynamic external in-memory store.

- RAQL uses the connection configuration to retrieve configuration for the store from the Terracotta Management Console (TMC) that manages the BigMemory host for this store. This includes search attribute information that is required to allow RAQL to work with the columns in this dataset.

- One common example is the use of a dynamic external store to allow MashZone NextGen to work with datasets from distributed stores in the Apama MemoryStore.

With dynamic stores that hold external data, the external system must set a name for the cache manager and define search attributes programmatically when the external system creates the
store, using the BigMemory API. See BigMemory documentation (http://terracotta.org/documentation/) for more information and examples.

Configuration defined in MashZone NextGen for the dynamic store allows RAQL to retrieve this configuration information.

5.11.3.1 Manage Dynamic BigMemory Stores for MashZone NextGen Analytics

You must define connections and identify configuration information for BigMemory stores that are created by and store data from external systems and then are used as In-Memory Stores in MashZone NextGen Analytics. For in-memory stores that are created dynamically by other systems, MashZone NextGen retrieves configuration and connection information from the Terracotta Management Console (TMC) that manages the host BigMemory Server.

You can also define connections to external in-memory stores that are not created dynamically. See Declare BigMemory Stores for MashZone NextGen Analytics (page 79) for more information.

For information on the requirements for in-memory stores that act as dynamic external stores for MashZone NextGen Analytics. For instructions on adding and managing external dynamic store configuration, see Add an External Dynamic In-Memory Store Connection (page 83) and Delete External Dynamic In-Memory Store Connections (page 84).

5.11.3.2 Add an External Dynamic In-Memory Store Connection

Procedure

1. Verify that the Terracotta Management Console (TMC) that manages the Big Memory Server hosting this dynamic store is running and that the store exists.
2. You should also verify that the dynamic store meets minimum requirements for MashZone NextGen.
3. Copy the JAR file containing the classes used as search attributes to extract data from the dataset in this store to <MashZone NextGen-installation/lib. See documentation for the external system that created this dynamic store to determine what JAR files are needed. For Apama, see documentation on the MemoryStore.

   The default location for the target folder in MashZone NextGen is <MashZone NextGen-installation>/apache-tomcat/mashzone/WEB-INF/lib. If MashZone NextGen is deployed in a cluster, however, this location may be a separate external folder. For more information, see Setting Up an External MashZone NextGen Configuration Folder (page 121).
4. Restart the MashZone NextGen Server. For instructions, see Start and Stop the MashZone NextGen Server (page 21).
5. Open the MashZone NextGen Admin Console (page 2).
6. Click Server to expand this section of the Administration menu.
7. Click **Big Memory**.

8. Open the **Terracotta Management Server** tab.
   This tab lists connections to any existing external dynamic In-Memory Stores.

9. Click **Register a new Terracotta Management Server**.

10. Enter a unique Big Memory data source name for this connection to the dynamic external cache that will act as an In-Memory Store.

11. Enter the domain and port, or IP address and port for the Terracotta Management Server. For example: localhost:9889.

12. Enter the Terracotta Management Server connection name.
   Connection names cannot include periods (.), spaces or other common symbols or punctuation characters.

13. Enter the name of the Cache Manager for this cache. This name is assigned by the external system that created the cache in Big Memory.
   Cache Manager names are a best practice for dynamic external stores. If the external system does not assign a cache manager name, Big Memory uses a default name which can lead to name collisions and errors.

14. If the TMC requires SSL for connections, change the Security type to SSL.

15. You can enter an user name and a password optionally.

16. Click **Add this external cache** to save this connection.

### 5.11.3.3 Delete External Dynamic In-Memory Store Connections

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).

2. Click **Server** to expand this section of the Administration menu.

3. Click **Big Memory**.

4. Open the **Terracotta Management Server** tab.
   This tab lists connections to any existing **Terracotta Management Server**.

5. Click **Delete** for the specific connection you want to delete.

### 5.12 Manage Terracotta DB connections

You can register, edit, delete and test Terracotta DB connections. Additionally, you can assign ACLs to an existing Terracotta DB connection.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).

2. Click **Server** to expand this section of the administration menu.
3. Click **Terracotta DB**.

4. Follow the procedure of the remaining steps:
   - Register Terracotta DB connections (Seite 85)
   - Edit Terracotta DB connections (Seite 86)
   - Test Terracotta DB connections (Seite 86)
   - Delete Terracotta DB connections (Seite 87)
   - Share Terracotta DB connections (Seite 87)
   - Register Terracotta DB connections (Seite 85)
   - Edit Terracotta DB connections (Seite 86)
   - Test Terracotta DB connections (Seite 86)
   - Delete Terracotta DB connections (Seite 87)
   - Share Terracotta DB connections (Seite 87)

You can share Terracotta DB connections with particular users and user groups so that these have access to the Terracotta DB dataset.

### 5.12.1 Register Terracotta DB connections

You can configure a connection to the Terracotta DB server. The alias is used to refer to that specific connection.

By having a connection to the Terracotta DB server configured, the dashboard developer can access all datasets available on that server. The datasets are provided in the corresponding Terracotta DB source operator. The alias is unique with respect to all Terracotta DB connections. Different connections can point to the same Terracotta DB server.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Server** to expand this section of the **Administration** menu.
3. Click **Terracotta DB**.
4. Click **Register new Terracotta DB connection**.
5. Enter a name for the Terracotta DB connection in the **Terracotta DB alias** field. The connection data is saved under this alias.
6. Enter the URI to the Terracotta DB. The format is terracotta://hostname:port.
7. Enable the **Materialized Feed support** option if you want to manage Materialized Feeds with this Terracotta DB connection.
   a. Specify the **Off-heap resource** configured on the Terracotta DB server that you want to use to materialize the data feed results.
   b. Terracotta DB provides a fast restart capability by writing the contents of a dataset in addition to the hard disk. If you want to use that feature, specify the name of the disk resource configured on the Terracotta DB server.
8. Click **Add connection**.

The **Terracotta DB** connection is created and listed by alias name.

Click ➤ **Test connection** for the alias created to test the Terracotta DB server connection.

**Parent topic:** Manage Terracotta DB connections (Seite 84)

### 5.12.2 Edit Terracotta DB connections

You can edit the URI of an already existing connection to the Terracotta DB server. The alias is not editable.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Server** to expand this section of the **Administration** menu.
3. Click **Terracotta DB**.
4. Click 📋 **Edit**.
5. Enter the URI to the Terracotta DB. The format is terracotta://hostname:port.
6. Enable the **Materialized Feed support** option if you want to manage Materialized Feeds with this Terracotta DB connection.
   a. Specify the **Off-heap resource** configured on the Terracotta DB server that you want to use to materialize the data feed results.
   b. Terracotta DB provides a fast restart capability by writing the contents of a dataset in addition to the hard disk. If you want to use that feature, specify the name of the disk resource configured on the Terracotta DB server.
7. Click **Update connection**.

Your changes are applied.

Click ➤ **Test connection** to test the Terracotta DB server connection.

### 5.12.3 Test Terracotta DB connections

You can test the connection to the Terracotta DB server if the connection works correctly.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Server** to expand this section of the **Administration** menu.
3. Click **Terracotta DB**.
4. Click ➤ **Test connection** for an alias to test the Terracotta DB server connection.

If the connection is used for Materialized Feeds, the provided values for off-heap and optional disk resource are tested as well.

The server connection is tested and a test result is displayed.
## 5.12.4 Share Terracotta DB connections

You can share Terracotta DB connections with particular users and user groups so that these have access to the Terracotta DB dataset and manage datasets with feed results. Regardless of which users and user groups you have shared with, users with administration privilege can access all Terracotta DB aliases.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Server** to expand this section of the **Administration** menu.
3. Click **Terracotta DB**.
4. Click the **Edit URL alias permissions** icon of the Terracotta DB connection you want to share.
5. Enter a term in the search field and click **Search**. Clicking on Search without any input values fetches all users and groups.
6. Click **Show MashZone NextGen default groups** to show only default MashZone NextGen users or user group in the **Search results** field.
7. Drag an user or user group from the **Search result** field and drop it into the **Principals with permissions** field.
   By default, the owner of the Terracotta DB connection is already present in the **Principals with permissions** list. This owner is non editable and cannot be removed from the list.
8. Activate or deactivate the **Display** or **Usage** privileges of a user or user group.
   A user or user group with the **Display** privilege can see the relevant source data from the datasets in the data feed or dashboard, including datasets used for Materialized Feeds. A user or user group with the **Usage** privilege has access to the relevant Terracotta DB connection of the data source operator in the data feed editor. To access datasets with data feed results in the source operator, the user or user group needs the **Usage** privilege for the Materialized Feed alias and the **Usage** privilege for the Terracotta DB connection. To materialize data feed results in a dataset, the user or user group needs the **Usage** privilege for the materialized data feed alias, the **Usage** privilege for the associated Terracotta DB connection and the **Display** privilege for the corresponding data feed.
   See also Share Materialized Feeds (page 98).
9. Click **OK**.
Your changes are applied.

## 5.12.5 Delete Terracotta DB connections

You can delete a Terracotta DB server connection.
Warning
A Terracotta DB server connection deleted can not be restored. Deleting a connection affects dashboards using datasets available over that connection as data input.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Server to expand this section of the Administration menu.
3. Click Terracotta DB.
4. Click Delete.
The Terracotta DB connection selected is deleted.

5.13 Manage data sources and drivers

Data sources combine the connection and driver information needed to work with both the MashZone NextGen Repository and with other databases. Data sources can use either JDBC connections or a JNDI connection pool.

See Add a data source (page 88), Edit, test or remove data sources (page 90) and Add or manage JDBC drivers (page 91) for instructions.

5.13.1 Add a data source

If you use connection pools to connect to databases, configure JNDI in your application server to enable access to the connection pools as needed.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the JDBC Configuration tab.
3. If needed, add the JDBC driver for this database to MashZone NextGen. See Add or manage JDBC drivers (page 91) for instructions.
4. Click Data Sources to see a list of existing data sources.
5. Click Add data source to create a new data source.
6. Enter a data source name for a new data source.
   Data source names may contain ASCII alphabetic characters and numbers only. Data source names may not contain any punctuation or symbols, such as periods (.), dashes (-) or underscores (_).
7. Select the appropriate driver for this datasource in the JDBC Driver drop-down menu.
8. In the JDBC URL field, enter either the URL for a JDBC connection or the JNDI name for a connection pool to connect to this data source. Common URL or JNDI forms include: jdbc:mysql://hostname/databasename
For MySQL databases, it is **recommended** that you include the database name in data source URLs. If this information is omitted, testing the data source fails and may also cause errors with access to stored procedures.

```
jdbc:oracle:driver-type@hostname:port
jdbc:postgresql://hostname:port/database-name
jdbc:jtds:sqlserver://hostname:port;database-name
jdbc:sqlserver://hostname:port;databaseName=database-name
jdbc:sybase:Tds:hostname:port
java:context-path/jndi-resource-name or context-path/jndi-resource-name
```

9. Optionally, enter the username and password to use to connect to this database.

10. Click **Show connection pooling options** to display further options.

11. Optionally, set connection pooling options for this data source:

   - **Initial Size** = the initial number of connections to create when the pool for this data source starts up. This defaults to 0.
   - **Maximum Active** = the maximum number of connections that can be allocated at one time for this data source. This defaults to 8. Set this to -1 to remove all limits.
   - **Maximum Wait** = the maximum number of milliseconds that the pool will wait when no connections are available before failing. Defaults to -1 which is an indefinite wait.
   - **Maximum Idle** = the maximum number of connections that can be idle without connections being released for this data source. Defaults to 8. Set this to -1 to prevent any connections being released.
   - **Minimum Idle** = the minimum number of idle connections that can exist before new connections are added to the pool for this data source. This defaults to 0, indicating no new connections should be created.
   - **Pool Prepared Statement** = set this option to allow prepared statements for the database mashables that use this datasource to be pooled. This is disabled by default.

   The usefulness and effect of pooling prepared statements depends on the type of database for this connection. See documentation for your database for more information or recommendations.

   - **Validation Query** = the SQL query that is used to validate connections in the pool for this datasource.
   - **Validation Call Timeout** = the number of milliseconds before a connection validation check is considered to have failed, causing the pool to invalidate and discard the connection. If you set this property to a number less than zero, validation calls do not expire, which is the default behavior.
   - **Time Between Eviction Runs** = the number of milliseconds between tests for idle connections for this datasource. This defaults to -1, which prevents all idle connection testing.
   - **No of tests per run** = the number of connections to test during any idle test run for this datasource. This defaults to 3.
Minimum Evictable Idle Time = the minimum number of milliseconds that a connection can be idle before being tested for eviction. This defaults to 30 minutes (1800000 milliseconds).
For more details on connection pooling properties, see Apache DBCP Documentation.
12. Click **Save changes**.

### 5.13.2 Edit, test or remove data sources

**Procedure**
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the **JDBC Configuration** tab.
3. Click **Data Sources** to see a list of existing data sources.
   Initially, this lists the data source for the MashZone NextGen Repository and for the Snapshots repository.
4. To edit a data source, click the **Edit** icon on the line for that data source and change properties.
   See Add a data source (page 88) for information on specific data source properties.
5. To test the connection to a data source, click the **Test** icon on the line for that data source.
6. To delete a data source, click the **Delete** icon on the line for that data source.
   Do not delete the data source for either the MashZone NextGen Repository or the Snapshots repository.

### 5.13.3 Share data sources

You can share data sources with particular users and user groups so that these have access to **JDBC data sources**.
You have administration privileges.
Regardless of the share, users with administration privilege can access all data sources.

**Procedure**
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **JDBC Configuration** to expand this section of the **Administration** menu.
3. Click **Data Sources**.
4. Click the **Edit** data source permissions icon of the data source you want to share.
5. Enter a term in the search field and click **Search**. Clicking on **Search** without any input values fetches all users and groups.
6. Click **Show MashZone NextGen default groups** to show only default MashZone NextGen users or user group in the **Search results** field.
7. Drag an user or user group from the Search result field and drop it into the Principals with permissions field.
   By default, the owner of the data source is already present in the Principals with permissions list. This owner is non editable and cannot be removed from the list.

8. Activate or deactivate the Display or Usage privileges of a user or user group.
   A user or user group with Display privilege can see the relevant source data in the data feed or dashboard. A user or user group with the Usage privilege has access to the relevant alias in the data source operator.

9. Click Ok.
   Your changes are applied.

5.13.4 Add or manage JDBC drivers

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the JDBC Configuration tab.
3. Click JDBC Drivers.
   A list of existing drivers displays. This initially contains just the driver for the default MashZone NextGen Repository.
4. To remove a driver, click Delete on the line for that driver.
   Do not delete the driver for the MashZone NextGen Repository.
5. To add a new driver:
   a. Click Add new JDBC driver.
   b. Enter a Name for a new driver.
   c. Enter the Java Class name for this driver.
   d. Click Browse and find the JAR file for this driver.
   e. Click Add this JDBC driver.

5.13.5 Migrate JDBC connections

With the MashZone NextGen version 9.10 release the persistence of JDBC drivers and connections have been changed. And only one type of JDBC connections is still available. The current version of MashZone NextGen supports the import of JDBC connections from MashZone legacy, Presto legacy and MashZone NextGen version 9.10.
5.13.5.1 Migrate JDBC configuration of Presto to MashZone NextGen

You can import the JDBC configuration of Presto (version 3.9 and 9.9) in MashZone NextGen.

Procedure
1. To export all existing JDBC configurations from Presto version 3.9 and 9.9 go to the \prestocli\bin folder of the Presto installation, open a dos command line and call:
   ```
   ```
   The created zip file contains all information about JDBC configurations of Presto, including the related drivers.
2. Copy the **JDBCConnections_backup.zip** file to the \prestocli\bin folder in your MashZone NextGen installation.
3. Go to \prestocli\bin folder in your MashZone NextGen installation, open a dos command line and call:
   ```
pAdmin importDatasource -f JDBCConnections_backup.zip -u Administrator -w manage -o
   ```
   All Presto JDBC configurations will be imported into MashZone NextGen.

5.13.5.2 Migrate JDBC connections of Presto to MashZone NextGen

You can import the JDBC connections of Presto (version 3.9 and 9.9) in MashZone NextGen.

Procedure
This upgrade is relevant for MashZone legacy JDBC connections.
1. Copy all drivers located in the jdbcdrivers folder of your Presto installation into the jdbcdrivers folder of the MashZone NextGen installation and restart the MashZone NextGen MashZone NextGen Server.
2. Check if the MashZone tab exists in the Admin Console of Presto. If not, open the<br>presto.config file located in <Presto installation>\apache-tomcat\webapps\mashzone\WEB-INF\classes\ and set the mashzone.administration.disabled=false flag and restart the Presto server.
3. Export the required connections in the Presto Admin Console (Admin Console -> MashZone -> Database Connections tab. You have to export each connection separately. See Presto online help for details.
   The exported JDBC connections are stored as mzp files, starting with A_DATABASE..., in the importexport folder of your Presto installation.
4. Copy all database related mzp files in the importexport folder of your Presto installation to the dbconnections subfolder of the importexport folder in your MashZone NextGen installation.
5. Start the MashZone NextGen server if not already done. Then go to the runtool folder (located under Presto\mashzone\tools), open a dos command line and call:

```
migrationtool -user Administrator -password manage -folder dbconnections
```

All JDBC connections from the `dbconnections` folder will be imported into MashZone NextGen.

In the MashZone NextGen Admin Console the JDBC connections are separated in two parts, the driver part and the data source part. You can find all JDBC related items in the **JDBC Configuration** tab of the Admin Console.

If you need to upgrade a connection using a JDBC driver that consists of multiple JAR files, you will have to create a new driver JAR which bundles all the individual files into one single file. After that, you will have to copy the newly created JAR file to the MashZone NextGen installation.

### 5.13.5.3 Migrate JDBC configuration of MashZone NextGen 9.10

You can import the JDBC configurations of MashZone NextGen version 9.10 in the current MashZone NextGen version.

**Procedure**

1. To export all existing JDBC configurations from MashZone NextGen 9.10 go to the `\prestocli\bin` folder of the MashZone NextGen 9.10 installation, open a dos command line and call:

   ```
   ```

   The created zip file contains all information about JDBC configurations of MashZone NextGen 9.10, including the related drivers.

2. Copy the `JDBCConnections_backup.zip` file to the `prestocli\bin` folder in your current MashZone NextGen installation.

3. Go to `prestocli\bin` folder in your current MashZone NextGen installation, open a dos command line and call:

   ```
pAdmin importDatasource -f JDBCConnections_backup.zip -u Administrator -w manage -o
   ```

   All MashZone NextGen 9.10 JDBC configurations will be imported into the current MashZone NextGen version.

### 5.13.5.4 Migrate JDBC connections of MashZone legacy to MashZone NextGen

You can import the JDBC connections of MashZone legacy (versions 9.5 to 9.12) in MashZone NextGen.

See the [MashZone NextGen Migration Guide](#) for details.
5.14   Manage map files

5.14.1   Manage geoJSON files

GeoJSON is an open standard format designed for representing simple geographical features, along with their non-spatial attributes. It is based on JSON, the JavaScript Object Notation. You can upload GeoJSON files to MashZone NextGen to use in a custom map style.

All geoJSON files are stored in the following directory.

<\MashZone NextGen installation>\apache-tomcat\webapps\mashzone\hub\dashboard\assets\geomap\{tenant\}\vectormaps

To support multi-tenancy, you must replace {tenant} in the path above by the corresponding tenant name. If there are no tenants, default is used in place of {tenant} (tenant name). If a tenant does not have a folder, the shared folder is used.

By default, MashZone NextGen is shipped with a few default geoJSON files in the following path.

<\MashZone NextGen installation>\apache-tomcat\webapps\mashzone\hub\dashboard\assets\geomap\default\vectormaps

The map styles are available in the Vector map widget and can be selected there by file name in the Template drop-down menu.

The following map style templates are included.

- world-countries-by-name (default)
- world-countries-by-iso3
- world-continents-by-name
- us-states-by-name

If you add your own map style templates, we recommend that all regions (features) defined should be polygons - all non-polygon regions (features) are ignored. The ID attribute is the default identifier for each region (feature). The data assigned to the map widget must contain a column with values matching the ID attribute. Hence any polygon without an ID attribute is also ignored. In case there is no data assigned, the vector map could be used to select a region and publish such a selection using the region ID.

5.14.2   Manage tile server configuration files

TMS (Tile Map Service) is a protocol for serving maps as tiles, that is splitting the map up into a pyramid of images at multiple zoom levels. You can upload your own tile server configuration files to MashZone NextGen.

All tile server configuration JSON files are in the following directory.
To support multi-tenancy, you must replace {tenant} in the path above by the corresponding tenant name. If there are no tenants, default is used in place of {tenant} (tenant name). If a tenant does not have a folder, the shared folder is used. By default, MashZone NextGen is shipped with a default tile server configuration. It enables you to use the Open Street Map tile servers, which has been included as a point of reference.

The maps are available in the **Map with markers** widget and can be selected there in the **Base map** drop-down menu.

You can also add a LeafletJS compatible tile server configuration to host an Open Street Map data based tile server yourself. Please note, that you must be aware of all terms and licensing conditions that may apply when using a third-party tile server, including servers hosted by Open Street Map.

**Example**

The following configuration example points to Open Street Map tile servers hosted by Stamen.

```
{
 "label": "Stamen (watercolor)",
 "url":"http://{s}.tile.stamen.com/watercolor/{z}/{x}/{y}.jpg",
 "subdomains": ["a","b","c","d"]
}
```

### 5.15 Tune memory/caching for MashZone NextGen

In large installations with many users and/or many calculations, it makes sense to increase the Java heap memory, the sizes of the feed result caches and the number of calculation threads using the following techniques:

- Tune MashZone NextGen memory and cache configuration manually (page 95).
- Manual tuning gives you control to balance memory requirements for MashZone NextGen, but does require manual updates to several configuration files.

#### 5.15.1 Tune MashZone Memory and Cache Configuration Manually

To manually update memory and cache configuration:

- Update Cache Memory Settings (page 96)
- Update MashZone ThreadSize Properties (page 96).
- Then restart the MashZone NextGen Server to apply this change. See Start and Stop the MashZone NextGen Server (page 21) for instructions.
5.15.2 Update Cache Memory Settings

- In the text editor of your choice, open the `ehcache.xml` file in the `web-apps-home/mashzone/WEB-INF/classes` folder.
- Update the `maxBytesLocalHeap` value on the `<cache>` elements with the following names:
  - `RESULT_FEED_BASE`
  - `RESULT_FEED_TOP`
  - `RESULT_FEED_DEBUG`
- Save your changes

5.15.3 Update MashZone ThreadSize Properties

- In the text editor of your choice, open the `mashzone.properties` file in the `web-apps-home/mashzone/WEB-INF` folder.
- Update the following properties:
  - `calculation.threadpool.coresize`
  - `calculation.threadpool.maxsize`
- Save your changes

5.16 Manage Materialized Feeds

5.16.1 Configure Materialized Feeds

Using Materialized Feeds you can materialize the results of a data feed evaluation in Terracotta DB.
In order to work with those results, you can run RAQL queries over the corresponding dataset using the Terracotta DB data source operator.

Prerequisite
You have configured a Terracotta DB connection to use materialized data feeds. (Seite 85)

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Materialized Feeds > Materialized Feeds** to expand this section of the **Administration** menu.
3. Click **Create**.
4. Enter a unique name for this Materialized Feed in the **Alias** input box. The configuration is saved under this alias.
5. Select a data feed in the **Feed** drop-down menu. The menu contains all data feeds you can access.

6. Select a Terracotta DB connection in the **Terracotta DB connection** drop-down menu. The menu contains all Terracotta DB connections supporting Materialized Feeds.
   The dataset for materializing feed results will be created on the Terracotta DB server defined for this Terracotta DB connection.

7. Enter a name of the dataset used for materializing feed results in the **Dataset name** input box.
   Either use the predefined name or set your own name. The name mandatory begins with the prefix **MZNG**. The dataset is created if it not already exists. Note that the dataset contents must have the same schema. Trying to insert data with a different schema into an existing dataset fails with an exception.

8. Click **Save**.
   The configuration for Materialized Feeds is created and listed by alias name.

### 5.16.2 Edit Materialized Feeds

You can edit existing configurations of Materialized Feeds.

The alias and the associated data feed cannot be edited.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Materialized Feeds > Materialized Feeds** to expand this section of the **Administration** menu.
3. Click the **Edit** icon of the configuration you want to edit.
4. Select a Terracotta DB connection in the **Terracotta DB connection** drop-down menu. The menu contains all Terracotta DB connections supporting Materialized Feeds.
   The dataset for materializing feed results will be created on the Terracotta DB server defined for this Terracotta DB connection.
5. Enter a name of the dataset used for materializing feed results in the **Dataset name** input box.
   A new, empty dataset will be created with the new dataset name. The old dataset will not be deleted.
6. Click **Update**.
   Your changes will be applied.

### 5.16.3 Delete Materialized Feeds

You can delete existing configurations of Materialized Feeds.
Warning
A deleted configuration cannot be restored. Deleting a configuration affects dashboards using the dataset with data feed results as data input.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Materialized Feeds > Materialized Feeds to expand this section of the Administration menu.
3. Click the Delete icon of the configuration you want to delete.
4. In the confirmation dialog you can decide if you want to delete the associated dataset. Enable the corresponding option.
5. Click Yes.
Your selected configuration is deleted.

5.16.4 Share Materialized Feeds

You can share Materialized Feeds with particular users and user groups so that these can work with Materialized Feed results.

You must grant the appropriate privileges to the users or user groups with whom you want to share the Materialized Feeds.

Regardless of which users and user groups you have shared with, users with administration privilege can manage all Materialized Feeds.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Materialized Feeds > Materialized Feeds to expand this section of the Administration menu.
3. Click the Edit alias permission icon for the Materialized Feed you want to share.
4. Enter a term in the Search input box and click the Search icon. Clicking the Search icon without any input values fetches all users and groups.
5. Click Show MashZone NextGen default groups to show only default MashZone NextGen users or user group in the Search results field.
6. Drag an user or user group from the Search results field and drop it into the Principals with permissions field.
   By default, the owner of the Materialized Feed is already present in the Principals with permissions list. This owner is non editable and cannot be removed from the list.
7. Enable or disable the Display or Usage privileges of a user or user group.
8. Click OK.
Your changes are applied.
In addition to configuring the sharing settings for Materialized Feeds, you must also configure the required privileges for the data feed and the Terracotta DB connection used. For details, see Which privileges are required for Materialized Feeds?

5.16.5 Materialize data feed results in Terracotta DB

When you have configured a Materialized Feed, you can trigger the calculation of data feed results and the subsequent materialization of the results in the corresponding Terracotta DB dataset. That process cannot be run multiple times in parallel for the same Materialized Feed. If you want to trigger a new run, you must wait until the current run is completed. Each time a new run is started, the contents of the dataset are deleted so that it contains only the results of the latest run.

You have various options for materializing data feed results.

5.16.5.1 Use the Admin Console

You can materialize data feed results in Terracotta DB using the MashZone NextGen Admin Console.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Materialized Feeds > Materialized Feeds to expand this section of the Administration menu.
3. Click the Upload icon to calculate and materialize the data feed results.
   For feeds with input parameters, the default values of those input parameters are used for feed execution.
4. Click Yes to confirm.

The data feed results are calculated and materialized using the configured Terracotta DB connection.

After the feed calculation and the subsequent materialization of results are completed, you can access the feed results using the Terracotta DB source operator.

Tip
Additional information like duration or potential execution errors is available in the MashZone NextGen log file.

5.16.5.2 Use the API Console

You can materialize data feed results in Terracotta DB using the MashZone NextGen API Console.
1. Open the API Console.
2. Under Pick an API click MaterializedFeedService > materializeFeed.
   In the request template adapt the alias. For the case of feeds with input parameters, specify the list of input parameters of the data feed and their values to be used for calculating the data feed results. The list is represented in JSON as name/value pairs, for example, 
   `{"param1": "ABC", "numberList": ["123", "456"]}`. If the input parameters are not defined, default values as defined in the data feed are used.
3. Click Run.
The data feed results are calculated and materialized using the configured Terracotta DB connection.
After the feed calculation and the subsequent materialization of results is completed, you can access the feed results using the Terracotta DB source operator.

Tip
Additional information like duration or potential execution errors are available in the MashZone NextGen log file.

**5.16.5.3 Use the server administration tool**

You can materialize data feed results in Terracotta DB using the MashZone NextGen server administration tool.
You can use the server administration tool for scheduling the materializing procedure.

**Procedure**

1. Open a command window and move to the `<MashZone NextGen installation>/prestocli/bin` directory.
2. Run the following command.

   ```
 padmin materializeFeed -a alias -i input-parameters [-l prestoURL] -u username -w password
   ```

   - `-a alias`: Is the alias of the Materialized Feed configuration.
   - `-i input-parameters`: Is the list of input parameters of the data feed and their values to be used for calculating the data feed results. The list is represented in JSON as name/value pairs, for example, `{"param1": "ABC", "numberList": ["123", "456"]}`. If the input parameters are not defined, default values as defined in the data feed are used.
   - `-u username`: Is the MashZone NextGen username to log in with. This account must have MashZone NextGen administrator permissions.
   - `-w password`: Is the MashZone NextGen password to log in with.

   The data feed results are calculated and materialized using the configured Terracotta DB connection.
General messages and errors from the export process are sent to the command window (stdout).
After the feed calculation and the subsequent materialization of results is completed, you can access the feed results using the Terracotta DB source operator.

**Tip**
Additional information like duration or potential execution errors are available in the MashZone NextGen log file.

### 5.16.5.4 Use server web services

You can materialize data feed results in Terracotta DB using the MashZone NextGen server web services. You can use a public REST web service such as cUrl. In addition, you can combine those calls with an external scheduling tool, such as cron jobs, to schedule the executions.

**Procedure**

1. You can use the public login service to authenticate and set a cookie.
   **Authentication using basic credentials**, see below.
2. Using that authentication cookie, you can trigger the data feed calculation and materialization using
   - Relative service URL: `/mashzone/mzservices/tcstore/materializefeed`
   - Method: POST
   - Parameter: `name=materializedFeed`, value="the name of the Materialized Feed alias to use"
   - Parameter: `name=inputParameters`, value="[{"param1":"someValue", "param2":"anotherValue"}]"
3. Using above authentication cookie, you can use the public logout service to finish your session.
   **Authentication using basic credentials**, see below.

The data feed results are calculated and materialized using the configured Terracotta DB connection.

After the feed calculation and the subsequent materialization of results is completed, you can access the feed results using the Terracotta DB source operator.

**Tip**
Additional information like duration or potential execution errors are available in the MashZone NextGen log file.

**AUTHENTICATION USING BASIC CREDENTIALS**

For authentication using basic credentials, you must use the REST API method to login to create a MashZone NextGen session and authenticate the user. This adds a cookie with session information which is then included in all subsequent requests. You can also use the REST API method to logout and end the session or simply let the session expire (based on MashZone NextGen timeout configuration).
- **Login**: use this URL:
  

  Both parameters must be in clear text.

  Successful logins set a session cookie and return an XML response in the form:

  ```xml
 <?xml version="1.0"?>
 <ServiceResponseObject>
 <version>2.0</version>
 <appId></appId>
 <sid>UserManagerService</sid>
 <svcVersion>1.0</svcVersion>
 <oid>login</oid>
 <response>
 <authToken>Token is set as HTTP cookie</authToken>
 </response>
 <errorCode></errorCode>
 <invId></invId>
 </ServiceResponseObject>
  ```

  Unsuccessful logins return a simple text response: **Authentication failed.**

- **Logout**: use this URL:
  
  `http://app-server:port/mashzone/edge/api/rest/UserManagerService/logout`
6 MashZone NextGen Server Administration

6.1 Manage Files for MashZone NextGen Features or Artifacts

MashZone NextGen uploads and hosts files for dashboards and data feeds that are not accessible via HTTP (spreadsheets, CSV or XML files). These files are saved and managed in the MashZone NextGen Repository to ensure better management of resources and easier deployment or migration across different environments and versions.

MashZone NextGen administrators may need to manually add files to MashZone NextGen to provide data files or resources for dashboards or data feeds.

Common management tasks for files include: Add External Resources as MashZone NextGen Files (page 103), Find MashZone NextGen Files (page 104) or Update or Delete MashZone NextGen Files (page 104).

6.1.1 Add External Resources as MashZone NextGen Files

You can add external resources to MashZone NextGen to make them easily accessible in dashboards and data feeds.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the Platform Features section and click File Resources.
3. Click Upload New Files.
4. Click Browse, find and select the file you want to upload and click Open.
   The location and file name fill in and a new set of fields open to upload another file.
5. If needed, add to the path or change the file name.
   The name of the file defaults to /file-name. If you accept the default, the URL to access this file becomes http://app-server:port/mashzone/files/file-name.
   You can organize files into 'pseudo folders' by adding to the path, using / as the separator.
   For example, a file name of /images/reports.png has a URL of http://app-server:port/mashzone/files/images/reports.png and can be found in file search (along with any other files in the 'images folder') by searching for images as the file name.
   You can also upload files that are normally loaded automatically, such as thumbnails. Simply specify the standard path.
6. Repeat the steps, as needed, to find and name any other files you want to upload.
7. Click Delete to close the empty file upload fields.
8. Click Upload files.
The files are added to the MashZone NextGen Repository and are now available via a MashZone NextGen URL.

### 6.1.2 Find MashZone NextGen Files

**Procedure**
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the Platform Features section and click File Resources.
3. Enter either:
   - Part of the file name(s).
   - Part of the path to the file(s).
4. Click Search.
   - File search results are always sorted by path and file name.

### 6.1.3 Update or Delete MashZone NextGen Files

Although rare, you may occasionally need to update or even delete files from MashZone NextGen.

**Procedure**
1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the Platform Features section and click File Resources.
3. Find the specific file you need to update or delete. See Find MashZone NextGen Files (page 104) for techniques.
4. To upload an updated file:
   a. Click Edit on the line for that file.
   b. Click Browse and find the updated file you want to replace the existing file in MashZone NextGen.
   c. Click Upload this file.
5. To delete a file, click Delete on the line for that file.

### 6.2 Manage resource directories

Resource directories hold file-based data sources, such as Excel spreadsheets, CSV or XML files. The resource aliases can be used by the data source operators to read local files.
6.2.1 Create resource directory

To work with data sources in MashZone NextGen Feed Editor that are file-based, such as Excel spreadsheets, CSV files or XML files, you must store the files in a resource directory that the Integrated MashZone NextGen Server knows. This can be the default resource directory: MashZoneNG-install/mashzone/data/resources

Or it can be any subdirectory of the default.

You can also use resource directories to control access to data source files to specific users or groups.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click File resource -> File resource to open the resource alias page.
3. Click Create.
4. Give the directory an alias name of your choice in the Resource directory input box.
   You cannot modify the alias name later.
5. Enter the Path of the new resource directory.
6. Click Add resource.

The new resource directory is created and is displayed in the list with the specified alias.

6.2.2 Change resource directory

You can adapt the path of already existing resource directories.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click File resource -> File resource to open the resource alias page.
3. Click the Edit resource alias icon of the resource you want to edit.
4. Enter the Path of the resource directory.
5. Click Save resources.

Your changes are applied.

6.2.3 Delete resource directory

You can delete existing resource directories.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click File resource -> File resource to open the resource alias page.
3. Click the Delete resource alias icon of the resource you want to delete.
4. Click **Yes**.
The directory selected is deleted from the list.

### 6.2.4 Share resource directory

You can share resource directories with particular users and user groups so that these have access to the directory content.

You have administration privileges.

Regardless of the share, users with administration privilege can access all resource directories.

**Procedure**

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Resource alias -> Resource alias** in the **Administration** menu.
3. Click the **Edit resource permissions** icon of the resource you want to share.
4. Enter a term in the search field and click **Search**. Clicking on **Search** without any input values fetches all users and groups.
5. Click **Show MashZone NextGen default groups** to show only default MashZone NextGen users or user group in the **Search results** field.
6. Drag an user or user group from the **Search result** field and drop it into the **Principals with permissions** field.
   
   By default, the owner of the resource directory is already present in the **Principals with permissions** list. This owner is non editable and cannot be removed from the list.
7. Drag an user or user group from the Search result field and drop it into the Principals with permissions field.
   
   By default, the owner of the **Apama Event Services** is already present in the **Principals with permissions** list. This owner is non editable and cannot be removed from the list.
8. Click **Ok**.

Your changes are applied.

### 6.3 Manage URL aliases

You can manage your URL aliases in the Admin console.

Using an URL alias is always recommended to shorten the link used in, for example, dashboards and data feeds. You have to enter the path where the data are stored only, and not the complete URL. The resource aliases can be used by the data source operators to read local files.

### 6.3.1 Create URL alias

You can create URL aliases to shorten a link used in, for example, dashboards and data feeds.
Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **URL aliases** -> **URL aliases** to open the **URL alias** page.
3. Click **Create**.
4. Give the URL an alias name of your choice in the **Alias** input box. You cannot modify the alias name later.
5. Enter the URL.
6. Activate the **Use basic authentication** option if an authentication is required for using the URL.
   a. Enter a user name.
   b. Enter the password associated with the user name.
7. Click **Add alias**.
The new URL alias is created and is displayed in the **URL alias** list.

### 6.3.2 Change URL alias

You can adapt the URL and the authentication credentials of already existing URL aliases.

**Procedure**
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **URL aliases** -> **URL aliases** to open the **URL alias** page.
3. Click the **Edit URL alias** icon of the URL alias you want to edit.
4. Make your changes.
5. Click **Save alias**.
Your changes are applied.

### 6.3.3 Delete URL alias

You can delete existing URL aliases.
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **URL aliases** -> **URL aliases** to open the **URL alias** page.
3. Click the **Delete URL alias** icon of the URL alias you want to delete.
4. Click **Yes**.
The URL alias selected is deleted from the list.
6.3.4 Share URL alias

You can share URL aliases with particular users and user groups so that these have access to the directory content.

You have administration privileges.

Regardless of the share, users with administration privilege can access all URL aliases.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click URL aliases -> URL aliases to open the URL alias page.
3. Click the Edit URL alias permissions icon of the alias you want to share.
4. Enter a term in the search field and click Search. Clicking on Search without any input values fetches all users and groups.
5. Click Show MashZone NextGen default groups to show only default MashZone NextGen users or user group in the Search results field.
6. Drag an user or user group from the Search result field and drop it into the Principals with permissions field.
   
   Note: By default, the owner of the URL alias is already present in the Principals with permissions list. This owner is non editable and cannot be removed from the list.
7. Activate or deactivate the Display or Usage privileges of a user or user group.
   
   A user or user group with Display privilege can see the relevant source data in the data feed or dashboard. A user or user group with the Usage privilege has access to the relevant alias in the data source operator.
8. Click OK.

Your changes are applied.

6.4 Deploying MashZone NextGen Instances, Clusters or Artifacts

Deploying MashZone NextGen to new hosts or new environments typically involves Deploying the Core Widgets (page 108), shown below, and optionally Deploying MashZone NextGen Artifacts and Other Metadata (Seite 109).

6.4.1 Deploying the Core Widgets

The core widgets include the MashZone NextGen Server, the MashZone NextGen Repository, which is typically installed in a database other than the default Derby database, and the MashZone NextGen Analytics In-Memory Stores and MashZone NextGen caches.
In earlier releases, the MashZone NextGen Hub and AppDepot were deployed in a separate web application from the MashZone NextGen web application. Effective in 3.2, all the core widgets are deployed in the single web-apps-home/presto web application.

For individual MashZone NextGen servers, you typically do a default installation (see Installing Software AG Products). You may also move the MashZone NextGen Repository to a database of your choice. See Move the MashZone NextGen repository to a robust database solution (page 24) for instructions.

You can leave the MashZone NextGen Analytics In-Memory Stores and MashZone NextGen caches in local memory for a single MashZone NextGen server. This uses the default client installation of BigMemory. If additional memory or reliability is required, you can also deploy BigMemory as an add-on in a separate host or cluster. See Working with MashZone NextGen Analytics In-Memory Stores for more information and links.

To deploy multiple unclustered servers, see Deploying Multiple MashZone NextGen Servers in One Host (page 117). To deploy MashZone NextGen servers in clusters, see Clustering MashZone NextGen Servers (page 117) for requirements and links.

### 6.4.2 Deploying MashZone NextGen Artifacts and Other Metadata

You deploy specific artifacts and metadata from a source MashZone NextGen Server to a target MashZone NextGen Server using the export and import commands.

**Important:** You cannot use export and import commands when the MashZone NextGen version for the source and target MashZone NextGen Servers are different:

- For major upgrades, use the migrate command instead.
- For minor upgrades, please contact Technical Support or your Software AG representative.

In addition to the basic metadata for an artifact, a successful deployment must include related metadata, related files, extensions the artifact may use and any other artifacts that the artifact depends on.

The export and import commands automate deployment for most of this data, with some specific limitations that require manual deployment steps.

**Procedure**

1. Export the specific artifacts that you want to deploy to another MashZone NextGen Server and any artifacts that they may use.

   See the following topic for instructions using these MashZone NextGen export commands:
   - Export users, user metadata and groups (page 112)
   - Export dashboards (page 113)
   - Export data feeds (page 114)

2. Copy the files for any extensions used by the exported artifacts from the MashZoneNG-config folder for the source MashZone NextGen Server to the MashZoneNG-config folder for the target MashZone NextGen Server.
Note: The MashZoneNG-config folder may be an external configuration folder outside of the source and target MashZone NextGen Servers or it may be in the default locations. See Setting Up an External MashZone NextGen Configuration Folder (page 121) for more information on MashZoneNG-config locations.

3. Define datasources in the Admin Console for the target MashZone NextGen Server with matching names and JDBC drivers to the datasources in the source MashZone NextGen Server.

See Manage data sources and drivers (page 88) for instructions.

4. Use the export files created earlier to import dashboards and data feeds, users, groups and user group assignments from the source MashZone NextGen Server.

See the following topics for information on using these commands:
Import dashboards (Seite 115)
Import data feeds (Seite 116)
Import users, user metadata and groups (page 115)

---

Table 1. Known Export/Import Limitations

<table>
<thead>
<tr>
<th>Exported</th>
<th>Not Exported</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Artifact Metadata</strong></td>
<td><strong>User rating and feedback.</strong></td>
<td></td>
</tr>
<tr>
<td>Basic metadata such as provider, category, tags and description.</td>
<td>Snapshots.</td>
<td></td>
</tr>
<tr>
<td>Ownership (who created the artifact).</td>
<td>Snapshot schedules.</td>
<td></td>
</tr>
<tr>
<td>On/off status.</td>
<td>Caching configuration.</td>
<td></td>
</tr>
<tr>
<td>Run permissions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Views.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artifact attributes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For apps, the AppDepot status.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Related Metadata/ User Metadata</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providers.</td>
<td>Datascources and their JDBC drivers that are used by database mashables or by mashups.</td>
<td></td>
</tr>
<tr>
<td>Categories.</td>
<td>Data sources <strong>must</strong> be added to the target MashZone NextGen Server before you import any artifacts that use them or the import will fail.</td>
<td></td>
</tr>
<tr>
<td>Global and user MashZone NextGen attributes.</td>
<td>For apps that are published to the AppDepot, any user preferences for Favorite Apps.</td>
<td></td>
</tr>
<tr>
<td>Users, groups and user group assignments if this data is tracked in the default MashZone NextGen User Repository and not in your LDAP Directory.</td>
<td>User preferences for apps in</td>
<td></td>
</tr>
<tr>
<td>Resource Files</td>
<td>Dependencies</td>
<td>Extensions</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| - Thumbnails for apps or pluggable views.  
- Screenshots for apps.  
- HTML, JavaScript, CSS, images or any other file uploaded in the package for a custom app. | Optionally can export dependent artifacts:  
- For workspace apps, this always exports all the apps used in the workspace.  
- For individual apps, you can choose to also export any mashables or mashups explicitly declared and used by those apps.  
- If you choose to include dependencies, all dependencies for basic apps are handled because MashZone NextGen automatically declares dependencies for basic apps.  
- For custom apps, export handles any dependencies that are explicitly declared with a `<dependson>` element in the App Specification. App developers must supply this information.  
- For mashups, this always exports any other mashups or mashables that are used by the mashup.  
- For pluggable views or pluggable libraries you can choose to export any library dependencies. | - Registered macros, for use in mashups.  
- Attribute definitions for extension attributes in mashups. |
| Mashboard or the Mashboard state for workspace apps. | Thumbnails for mashables or mashups. | Any snapshots used by apps. |
### Export users, user metadata and groups

You can export all users, user groups, user group assignments from the MashZone NextGen Repository to an export file. You can then import this file to another MashZone NextGen Repository.

**Important:** If you have configured MashZone NextGen to work with your LDAP Directory, this command **only** exports MashZone NextGen User Attributes. Data for users, user groups and user group assignments resides in LDAP.

**Procedure**

1. If it is not running, start the MashZone NextGen Server for the MashZone NextGen Repository with the user groups that you wish to export. See Start and Stop the MashZone NextGen Server (page 21) for instructions.
2. Open a command window and move to the MashZoneNG-install/prestocli/bin folder.
3. Enter this command:

   ```
 padmin exportUsersRoles -f output-file [-l prestoURL] -u username -w password [-v]
   ```

   - `output-file`: is the path and name of the export file to hold the metadata.
   - `prestoURL`: is optional. Use this if the MashZone NextGen Server is remote or if it is not running in Tomcat on the default Tomcat port. If you omit this option, this defaults to `http://localhost:8080/mashzone/edge/api`.
   - `username`: is the MashZone NextGen username to log in with. This account must have MashZone NextGen administrator permissions.
   - `password`: is the MashZone NextGen password to log in with.
   - `v`: is an optional flag to turn on verbose logging.

   All messages and errors from the export process are sent to the command window (stdout). Once the export command completes successfully, you can use the output file to import the data to another MashZone NextGen Repository.
6.4.4 Export dashboards

You can export your MashZone NextGen dashboards. You can use the export zip file to create a backup or to import your dashboards into another MashZone NextGen installation.

Procedure

1. Open a command window and move to the **MashZoneNG-install/prestocli/bin** folder.

2. Enter this command:


   - `-i` identifier: Mandatory dashboard identifier. It can be "id=", "name=" or "all", enclosed in quotes.
   - `-i "name=dashboardname": If there are multiple dashboards with the same name only the first dashboard found will be exported.
   - `-i "id=43243244434432": The dashboard ID (GUID) is unique in the MashZone NextGen system.
   - `-i "all": Exports all dashboards for that user.
   - `-f` output-file: Optional path and name for the export. If omitted, an output zip file is created in the folder in which this command is executed:

     Single export with option `-i "id=3456" or "name=name" create a new file with name "name_guid.zip"

     Multiple export with option `-i "all" create a new file dashboard-export-timestamp.zip
   - `-l` prestoUrl: is optional. Use this if the MashZone NextGen Server is remote or if it is not running in Tomcat on the default Tomcat port. If you omit this option, this defaults to **http://localhost:8080/mashzone/esd/api**.
   - `-u` username: MashZone NextGen user name to log in with. This account must have MashZone NextGen administrator permissions.
   - `-w` password: is the MashZone NextGen password to log in with.
   - `-v`: is an optional flag to activate verbose logging.
   - `-o`: Optional flag to overwrite an existing export file.

Once the export command completes successfully, you can use the output file to import dashboards into MashZone NextGen.

Permissions for each dashboard were automatically stored in the zip file. If no permissions are assigned to the dashboard, the permission file saved is empty.

The zip file also includes information about the dashboard creator.
6.4.5 Export data feeds

You can export your MashZone NextGen data feeds. Export creates an export file that you can use to import data feeds to MashZone NextGen.

Procedure

1. Open a command window and move to the `<MashZone NextGen installation>/prestocli/bin` folder.

2. Enter this command:

   ```bash
 padmin exportFeed -i identifier [-f output-file] [-l prestoURL] -u username -w password [-v] [-o]

 -i identifier: mandatory data feed identifier. It can be "id=", "name=" or "all", enclosed in quotes.

 -i "name=feedname": If there are multiple data feeds with the same name then only the first founded data feed will be exported.

 -i "id=43243244434432": The data feed id (Guid) is unique in the MashZone NextGen system.

 -i "all": Export of all data feeds for that user.

 -f output-file: an optional path and name for the export file to put data feeds. If omitted, this generates an output zip file in the folder where this command is executed:

 Single export with option -i "id=3456" or "name=name" create a new file with name "name_guid.zip"

 Multiple export with option -i "all" create a new file datafeed-export-timestamp.zip

 This file must not already exist, unless you also use the -o option.

 -l prestoUrl: is optional. Use this if the MashZone NextGen Server is remote or if it is not running in Tomcat on the default Tomcat port. If you omit this option, this defaults to `http://localhost:8080/mashzone/esd/api`.

 -u username: is the MashZone NextGen username to log in with. This account must have MashZone NextGen administrator permissions.

 -w password: is the MashZone NextGen password to log in with.

 -v: is an optional flag to turn on verbose logging.

 -o: an optional flag to overwrite an existing export file. If you omit this option, the output file must not already exist.

Once the export command completes successfully, you can use the output file to import data feeds to MashZone NextGen.

Permissions for each data feed were automatically stored into the zip file. If there are not any permissions assigned to the data feed an empty permission file is stored.

There is also an information about the data feed creator stored in the zip file.
6.4.6 Import users, user metadata and groups

You must have a users export file to import. See Export users, user metadata and groups (page 112) for instructions.

This command is available only in MashZone NextGen 3.2 or later.

A user export file contains MashZone NextGen User Attributes. It may also contain users, user groups and user group assignments if you are using the default MashZone NextGen User Repository rather than an LDAP Directory.

Procedure

1. If it is not started, start the MashZone NextGen Server for the MashZone NextGen Repository where you wish to import data. See Start and Stop the MashZone NextGen Server (page 21) for instructions.
2. Open a command window and move to the <MashZone NextGen installation>/prestocl/bin folder.
3. Enter this command:
 `padmin importUsersRoles -f input-file [-l prestoURL] -u username -w password [-c] [-o] [-v]`
 -f input-file: is the path and name of the export file to import data from.
 -l prestoUrl: is optional. Use this if the MashZone NextGen Server is remote or is not running in Tomcat on the default Tomcat port. If you omit this option, this defaults to http://localhost:8080/mashzone/edge/api.
 -u username: is the MashZone NextGen username to log in with. This account must have MashZone NextGen administrator permissions.
 -w password: is the MashZone NextGen password to log in with.
 -c: is an optional flag to allow the import process to continue if errors occur during the import. By default, any import errors stop all further processing.
 -o: is an optional flag to allow import information for a MashZone NextGen global attribute to overwrite an existing user, group, user group assignments or MashZone NextGen User Attribute with the same ID.
 -v: is an optional flag to turn on verbose logging.

Messages and errors from the import process are sent to the console window (stdout). Once the import is successfully finished, you may confirm that the appropriate data has been imported in MashZone NextGen.

6.4.7 Import dashboards

You can import dashboards in MashZone NextGen.

The dashboards are saved in a zip containing the dashboard definition, resource policy, and dashboard permissions, etc.. If you import a dashboard including permissions, the creator of the dashboard can view and edit the dashboard. The importer of a dashboard automatically becomes the creator of the dashboard if the dashboard is imported without permissions.
Procedure
1. Open a command window and move to the <MashZoneNG-installation>/prestocli/bin folder.
2. Enter this command:

```
padmin importDashboard [-l prestoURL] -f input-file -p importPermissions -u username -w password [-v] [-o]
```
- `-f input-file`: Path and name of the import zip file.
- `-p importPermissions`: Imports the resource policy and permissions saved in the import zip file.
- `-l prestoUrl`: Optional. Use this if the MashZone NextGen Server is remote or if it is not running in Tomcat on the default Tomcat port. If you omit this option, this results in `http://localhost:8080/mashzone/esd/api`.
- `-u username`: is the MashZone NextGen user name to log in with. This account must have MashZone NextGen administrator permissions.
- `-w password`: is the MashZone NextGen password to log in with.
- `-v`: is an optional flag to turn on verbose logging.

Once the import command completes successfully, you can use the imported dashboards in MashZone NextGen.

If you have imported dashboards from Presto 3.9 into MashZone NextGen, save the imported dashboards in edit mode of the widget before you display them in view mode. Otherwise, an error message is displayed.

6.4.8 Import data feeds

You can import data feeds to MashZone NextGen.

The data feeds are saved in a zip file that contains among other things the data feed definition, resource policy and data feed permissions. If you import a data feed including the permissions then the creator of the data feed can view and edit the data feed. Importing data feeds without the relevant permissions makes the importer automatically to the creator of these data feeds.

Procedure
1. Open a command window and move to the `<MashZone NextGen installation>/prestocli/bin` folder.
2. Enter this command:

```
padmin importFeed [-l prestoURL] -f input-file -p importPermissions -u username -w password [-v] [-o]
```
f input-file: path and name for the import zip file.

p importPermissions Imports the resource policy and permissions saved in the import zip file.

If you import data feeds without permissions makes the importer automatically to the creator of these data feeds and the data feeds has no explicit permissions which means that only administrators can see and work with the data feeds.

o: is optional. Allows to overwrite an existing data feeds.

l prestoUrl: is optional. Use this if the MashZone NextGen Server is remote or if it is not running in Tomcat on the default Tomcat port. If you omit this option, this defaults to http://localhost:8080/mashzone/esd/api.

u username: is the MashZone NextGen username to log in with. This account must have MashZone NextGen administrator permissions.

w password: is the MashZone NextGen password to log in with.

v: is an optional flag to turn on verbose logging.

Once the import command completes successfully, you can use the imported data feeds in MashZone NextGen feed editor.

6.4.9 Deploying multiple MashZone NextGen servers in one host

You can deploy several different, independent MashZone NextGen Servers on a single host. Each MashZone NextGen Server must be hosted in its own application server and have its own MashZone NextGen Repository.

To host multiple, independent servers, simply install each being sure to change the ports assigned to each MashZone NextGen Server, MashZone NextGen Repository and the administration port for Tomcat.

Note: You can also create clusters of MashZone NextGen Servers to provide load balancing. See Clustering MashZone NextGen Servers (page 117) for information.

6.5 Clustering MashZone NextGen Servers

In production environments, it is common to use clustering solutions to provide better performance for various loads, to provide high availability or to provide both. Because MashZone NextGen is a web application, using an HTTP session based on J2EE standards, you can apply the same cluster architectures and solutions to MashZone NextGen that you use with other web applications.

See Setting Up a New Cluster (page 118) or Adding New Members to an Existing Clusters (page 119) for the tasks you need to complete.
6.5.1 Setting Up a New Cluster

The configuration and deployment of a new cluster requires these basic steps:

- **Setting Up an External MashZone NextGen Configuration Folder (page 121):** this allows you to keep most of the configuration and extensions for MashZone NextGen in a single set of folders that can be shared across the entire cluster. This simplifies both the initial configuration as well as ongoing updates and deployment of new mashables, mashups or apps.

 Note: This step is highly recommended, but not required. If you do not use a shared configuration folder, all subsequent updates to configuration or extensions for new artifacts must be manually copied to each member of the cluster.

- This folder should reside in a file system that is shared or mounted across the cluster. You may also need to provide data redundancy or failover capabilities for this shared file system.

- As part of this step, you also typically deploy one MashZone NextGen Server in the cluster and complete most of the basic configuration that will be shared across the cluster.

- **Sharing the MashZone NextGen Repository in Clustered Environments (page 120):** all nodes in the cluster work with a shared MashZone NextGen Repository which you must create and configure.

 Sharing the MashZone NextGen Repository does not, by itself, provide any data redundancy, load balancing or failover capabilities for the database. These requirements are handled in the data layer by your database server or other replication/synchronization solutions, such as DRBD. For more information, see documentation for your database or replication/synchronization solution.

- **Configuring Caching for the Cluster:** each MashZone NextGen Server has a local cache for mashable and mashup responses as well as local caches for updates to artifacts. If MashZone NextGen Analytics is enabled in your MashZone NextGen license, the MashZone NextGen Analytics In-Memory Stores are also local.

 In clusters you:

 - Can leave the response cache as a local cache or you can configure a distributed cache that all MashZone NextGen Servers in the cluster share.

 - **Must** configure a distributed cache for artifact updates that all MashZone NextGen Servers in the cluster share.

 - **Must** configure a distributed cache for the MashZone NextGen Analytics In-Memory Stores that all MashZone NextGen Servers in the cluster share.

 - See Configure BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page 77) for instructions on how to configure BigMemory, or other caching solutions, as a distributed cache for .MashZone NextGen

- **Defining the Application Server Cluster:** the application servers that host each MashZone NextGen Server define and handle clustering requirements at the application layer. You can also add a load balancer to the cluster.
In addition to the basic cluster configuration required by your application server and load balancer, MashZone NextGen has a single requirement for application-layer cluster configuration. You must either:

- Enable session replication in each application server in the cluster.
- Enable session affinity, sometimes also called ‘sticky sessions,’ in the load balancer.
- Or do both.

See documentation for your application server and/or load balancer for information on how to do this.

Adding Additional MashZone NextGen Servers to the Cluster: once you have set up the shared resources, you can deploy and add additional members to the cluster. See Adding New Members to an Existing Cluster (page 119) for instructions.

Add MetaData and Deploy Artifacts: for this new environment. For artifacts, you can automate some parts of this process using export and import commands. See Deploying MashZone NextGen Artifacts and Other Metadata (Seite 109) for instructions.

6.5.2 Adding New Members to an Existing Cluster

To add additional MashZone NextGen Servers to an existing cluster:

1. Install the MashZone NextGen Server. See Installing Software AG Products for instructions.
2. Configure the MashZone NextGen Server to use the shared MashZone NextGen Repository for the cluster. See Share an Existing MashZone NextGen Repository (page 121) for instructions.
3. If the cluster has a shared external configuration folder, add this folder and any subfolders to the classpath for the MashZone NextGen Server's application server to enable access to this shared configuration.

 Depending on your application server, you may update the classpath in the administration console, in configuration files or in the startup script for the application server. See documentation for your application server for more information.
4. If the cluster does not have a shared external configuration folder, copy the configuration and extension files from an existing MashZone NextGen Server in the cluster to the new MashZone NextGen Server.

 See MashZone NextGen File-Based Configuration and Extensions (page 123) for a list of files and folders to copy.
5. Copy the server configuration that cannot be shared from an existing MashZone NextGen Server in the cluster to the new MashZone NextGen Server. See MashZone NextGen File-Based Configuration and Extensions (page 123) for details on the files and locations for this step.
6. Update the application server that hosts the new MashZone NextGen Server with the same cluster configuration as other cluster members.
In addition to the basic cluster configuration required by your application server and load balancer, MashZone NextGen has a single requirement for application-layer cluster configuration. You must either:

- Enable session replication in each application server in the cluster.
- Enable session affinity, sometimes also called ‘sticky sessions,’ in the load balancer.
- Or do both.

See documentation for your application server and/or load balancer for information on how to do this.

7. Restart the new MashZone NextGen Server.

6.6 Sharing the MashZone NextGen Repository in Clustered Environments

In clustered environments, all MashZone NextGen Servers in the cluster must work with a single, shared MashZone NextGen Repository. You can Create and Share a New MashZone NextGen Repository (page 120) with cluster members, typically when you are creating new environments. Or you can Share an Existing MashZone NextGen Repository (page 121) within a cluster.

6.6.1 Create and Share a New MashZone NextGen Repository

To create a new shared repository

1. Create a new MashZone NextGen Repository in the appropriate database for your environment. See the table below.
2. Copy the JAR file for the JDBC driver for your database to the `<MashZone NextGen installation>/apache-tomcat/lib` folder on all cluster nodes.
3. If this is a new cluster, update configuration information for the MetaData, User and Snapshot repositories for one MashZone NextGen Server in the cluster. See steps 3 onward in Move the MashZone NextGen repository to a robust database solution (page 24) for instructions.
4. Enable distributed caching for artifacts. See Configure BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page 77) for more information and instructions.
5. If the MashZone NextGen Repository is hosted in Microsoft SQL Server, MySQL or Oracle, change the repository JAR in the MashZone NextGen Server.
6. Restart each MashZone NextGen Server in the cluster.

Using the SQL tool for the database that will be host, add MashZone NextGen Repository tables with the scripts shown below from the corresponding folder in MashZoneNG-install/prestorepository:
1. Database	Folder	SQL Scripts
Microsoft SQL Server | mssql | • `createDBTables.txt` for MetaData and the default User Repository
MySQL | mysql | • `createSnapsTables.txt` for Snapshots
Oracle | oracledb | • `createSchedulerTables.txt` for Scheduler
PostgreSQL | postgres |

There are also scripts to drop the corresponding MashZone NextGen Repository tables in these folders, if needed.

6.6.2 Share an Existing MashZone NextGen Repository

If you are creating a cluster using an existing MashZone NextGen Repository or simply adding members to an existing cluster, you simply update each new MashZone NextGen Server in the cluster to use the existing repository.

Procedure

1. If the cluster does not have a shared JDBC driver folder and a shared external configuration folder. Copy the JAR file for the JDBC driver for your database to the MashZoneNG-install/apache-tomcat/lib folder for the new MashZone NextGen Server cluster member.

 See Setting Up an External MashZone NextGen Configuration Folder (page 121) for more information on shared configuration for clusters.

2. Enable distributed caching for artifacts (required) and optionally distributed caching for mashable/mashup responses. See Configure BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page 77) for more information and instructions.

3. If the MashZone NextGen Repository is hosted in Microsoft SQL Server, MySQL or Oracle, change the repository JAR in the MashZone NextGen Server.

4. Restart the new MashZone NextGen Server for this cluster.

6.7 Setting Up an External MashZone NextGen Configuration Folder

Most configuration for MashZone NextGen and most of the extensions that you add for your organization’s use are stored in the MashZone NextGen Repository. However, some MashZone NextGen configuration and extensions are file based.

By default, MashZone NextGen keeps configuration and extensions in the MashZone NextGen Server web application in these folders:
- <MashZone NextGen installation/apache-tomcat/mashzone/WEB-INF/classes for class, configuration and extension files
- <MashZone NextGen installation/apache-tomcat/mashzone/WEB-INF/lib and
- <MashZone NextGen installation/apache-tomcat/mashzone/WEB-INF/config for JAR files.
You can move most of these configuration and extension files to folders that are external to the MashZone NextGen Server.

Important: MashZone NextGen documentation refers to all of these folders as MashZoneNG-config.

Using external configuration folders for MashZone NextGen is a best practice as they simplify deployment and upgrades of the MashZone NextGen Server. They also simplify configuration management for clustered environments. External configuration folders are not required, however.

To create and use an external configuration folder for MashZone NextGen
- Create the top-level external folder to use for MashZone NextGen configuration, such as **PrestoConfig**. In clustered environments, share or mount this folder across the entire cluster.
- You can create subfolders under this external folder to organize configuration and extensions.
- For clustered environments, create subfolders under the top-level external configuration folder for:
 - The standard **classes** and **lib** folders.
 - Built-in and user-defined functions for use in RAQL queries for MashZone NextGen Analytics. See Configure, Compile, Deploy and Test User-Defined Functions for more information.
 - If not complete, finish configuration for the MashZone NextGen Server and move the configuration and extension files to the external configuration folder or an appropriate subfolder. See the MashZone NextGen File-Based Configuration and Extensions (page 123) section for the specific configuration steps, files and locations.
- Add the external MashZone NextGen configuration folder, **and any subfolder** that contains extensions or JAR files, to the classpath for the application server(s) hosting the MashZone NextGen Server.
- You may update the classpath in configuration files or in the startup script for the application server.
- For Windows environments, for example, you can edit the tomcat-install/bin/setenv.bat file and update the classpath environmental variable to be something like this:
  ```bash
  set "CLASSPATH=%CLASSPATH%;C:\PrestoConfig;C:\PrestoConfig\classes;C:\PrestoConfig\lib;C:\PrestoConfig\db\jdbc"
  ```
- On Linux, Mac OS X or UNIX systems, you would update tomcat-install/bin/setenv.sh to something like this:
  ```bash
  CLASSPATH="$CLASSPATH":/users/PrestoConfig:/users/PrestoConfig/classes:/users/PrestoConfig/lib:/users/PrestoConfig/db/jdbc
  ```
6.7.1 MashZone NextGen File-Based Configuration and Extensions

Most file-based configuration or extensions involve information that MashZone NextGen needs to connect to the MashZone NextGen Repository or extensions that must be added to the application server’s classpath. In clustered environments, you can share extensions and some of this file-based configuration using an external configuration folder. See MashZone NextGen Configuration Files That Can Be External (page 123) and MashZone NextGen Extensions (page 125) for details on resources that can be shared across a cluster.

Some file-based configuration, however, **must** reside in the web application for each MashZone NextGen Server. In clusters, this configuration must be replicated in each cluster member. See MashZone NextGen Configuration Files That Must Be Internal (page 124) for details.

6.7.2 MashZone NextGen Configuration Files That Can Be External

<table>
<thead>
<tr>
<th>File</th>
<th>Description and Configuration</th>
<th>Default Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamiccache.xml</td>
<td>Default configuration information for dynamic In-Memory Stores created by MashZone NextGen Analytics.</td>
<td>MashZoneNG-install/apache-tomcat/mashzone/WEB-INF/classes</td>
</tr>
<tr>
<td>ehcache.xml</td>
<td>Configuration information for MashZone NextGen caches. This also contains configuration for MashZone NextGen Analytics In-Memory Stores from version 3.6.</td>
<td></td>
</tr>
<tr>
<td>presto.config</td>
<td>Miscellaneous MashZone NextGen properties, including the path to the deployed web app home folder.</td>
<td></td>
</tr>
<tr>
<td>The Terracotta BigMemory license file</td>
<td>The license file for BigMemory, used for MashZone NextGen caches and MashZone NextGen Analytics In-Memory Stores, is a separate license file from the MashZone NextGen license. You can keep the BigMemory license in an external folder shared across the cluster. See Configure BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page 77) for required configuration steps to enable a shared license.</td>
<td></td>
</tr>
<tr>
<td>userRespositoryLdap.pr</td>
<td>Connection information for your LDAP</td>
<td></td>
</tr>
</tbody>
</table>
6.7.3 MashZone NextGen Configuration Files That Must Be Internal

The file-based configuration that must remain in each MashZone NextGen Server web application resides in the `web-apps-home/mashzone/WEB-INF/classes` folder.

For upgrades to new MashZone NextGen versions, you can generally copy these configuration files from your existing MashZone NextGen version to the new version. Review the MashZone NextGen Release Notes for changes or new features that may require updates to configuration.

For clustered environments, you must copy these configuration files to each cluster member. In most cases, you change configuration once, when you first deploy a MashZone NextGen Server in the cluster. Any subsequent changes to this configuration for one cluster member, however, must be copied to all other cluster members manually, using a scheduled job or using another replication scheme.

<table>
<thead>
<tr>
<th>File</th>
<th>Description and Configuration</th>
<th>Default Location</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>properties</code></td>
<td>Directory. See Integrate Your LDAP Directory with MashZone NextGen (page 34) for details.</td>
<td></td>
</tr>
<tr>
<td><code>applicationContext</code></td>
<td>You edit configuration in this file if you choose to use distributed response caching for MashZone NextGen. See Configure BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page 77) for more information. You may need to update this configuration, as needed, to add additional distributed cache nodes to tune performance.</td>
<td></td>
</tr>
<tr>
<td><code>applicationContext</code></td>
<td>You edit this file initially to enable either SSO authentication or X509 certificate authentication for MashZone NextGen. See Authentication with Single Sign-On Solutions (page 8) for more information.</td>
<td></td>
</tr>
<tr>
<td><code>applicationContext</code></td>
<td>You edit this file when you move the MashZone NextGen Repository from the default Derby database to a robust solution. See Move the MashZone NextGen repository to a robust database solution (page 24) for more information.</td>
<td></td>
</tr>
<tr>
<td><code>log4j.properties</code></td>
<td>This file is updated automatically when you change logging configuration in the Admin Console. See Configure Logging for the MashZone NextGen Server (page 72) for details. When you change logging for MashZone NextGen Servers in a cluster, only the specific MashZone NextGen Server that the Admin Console is connected to is affected. To change logging for the entire cluster, you</td>
<td></td>
</tr>
</tbody>
</table>
must update this file and copy it to each cluster member.

<table>
<thead>
<tr>
<th>Application Context xml</th>
<th>You edit these files when you configure MashZone NextGen to use your LDAP Directory as the user repository. See Integrate Your LDAP Directory with MashZone NextGen (page 34) for details.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Context-l</td>
<td>You edit these files when you configure MashZone NextGen to use your LDAP Directory as the user repository. See Integrate Your LDAP Directory with MashZone NextGen (page 34) for details.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File</th>
<th>Default Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom filter classes for single sign-on authentication. See Implementing a Custom SSO Filter (page 10) for details.</td>
<td><MashZone NextGen installation>/apache-tomcat/mashzone/WEB-INF/classes or <MashZone NextGen installation>/apache-tomcat/mashzone/WEB-INF/lib (for JARs)</td>
</tr>
<tr>
<td>Classes and third-party libraries for a user-defined function library to use with RAQL. See Create and Add User-Defined Functions for RAQL Queries for more information.</td>
<td><MashZone NextGen installation>/apache-tomcat/mashzone/WEB-INF/classes or <MashZone NextGen installation>/apache-tomcat/mashzone/WEB-INF/lib (for JARs)</td>
</tr>
</tbody>
</table>

6.7.4 MashZone NextGen Extensions

Some extensions, such as macros, are registered and reside in the MashZone NextGen Repository. Any of the following file-based extensions can reside in an external folder:

6.8 MashZone NextGen dashboards in a clustered scenario

You can use MashZone NextGen dashboards in a clustered scenario.

The following chapters describe how to configure MashZone NextGen to use dashboards and data feeds in a multiple master-client scenario.

6.8.1 Preliminary

Before you can configure MashZone NextGen using in a clustered scenario you have to perform the following steps.

Procedure

1. Install at least two regular MashZone NextGen instances on two different machines.
Software AG Installer enables you to install MashZone NextGen. Detailed information on how to use Software AG Installer is available in the documentation **Using the Software AG Installer**.

2. Connect all instances to the same central database according to section Move the MashZone NextGen repository to a robust database solution (page 24).

3. If MashZone NextGen should consume event-based data, make sure that MashZone NextGen Event Service is started on at least one machine. To run Event Service in high-availability mode, you must run it on at least three different machines.

The preliminary for configuring MashZone NextGen are completed.

6.8.2 Configuration

The following chapters describe the relevant configurations of MashZone NextGen Dashboard in a clustered scenario.

From MashZone NextGen 10.2 on, Event Service can be run in clustered high-availability mode. There is no distinction between MashZone NextGen master and slave servers anymore. This means, to achieve high availability, you can now deploy multiple instances of Event Service to form a cluster. Cluster management is implemented using Apache Zookeeper.

Each MashZone NextGen server may connect to an arbitrary Event Service instance in the cluster and receive data from it. In case of an Event Service node failure, MashZone NextGen will automatically and transparently fail over to another alive node. When an Event Service node re-joins the cluster after a node failure, it will restore its state from Event Service’ internal HA-Store.

6.8.2.1 MashZone NextGen Event Service

It is not recommended to configure Event Service clustering manually. The service contains of three sub-components (Event Service Core, HA-Store, Zookeeper) and the configuration of those components must be coherent. The only officially supported way to configure Event Service is using Command Central plugin.

For illustration purposes, we assume that the Event Service cluster should contain of three machines: machine1, machine2, and machine 3.

Configure the following parameters on your MashZone NextGen Event Service nodes.

6.8.3 rtbs.properties

Edit the **rtbs.properties** file and set **rtbs.id**, **rtbs.zookeeper.urls**, and **rtbs.replication.factor** as described below.

The **rtbs.properties** file is located in the `<MashZone NextGen installation> /rtbs/conf/` directory.
- `rtbs.id=<Unique id per node between 1 and 255>`, for example, 1 for machine 1, 2 for machine 2, 3 for machine 3
- `rtbs.zookeeper.urls=machine1:12181,machine2:12181,machine3:12181`

Replace the host names `machine1`, `machine2`, and `machine3` by your real servers' host names and also set the right ports. You must enumerate all Event Service cluster members.

- `rtbs.replication.factor=<number>`

<number> in replication factor determines how many replicas of persisted data (for high availability) should exist. The number must be >= 1 and <= the number of Event Service instances in the cluster. The number must be >= 2 to achieve any fault tolerance. As a rule of thumb: the higher the number of replicas the more Event Service node failures can be tolerated. However, the amount of storage required on the Event Service machines increases linearly with the number of replicas.

Note: The replication factor setting only affects buffers that are created after the replication factor was changed, that is, changing the replication factor does not affect existing buffers.

6.8.4 zookeeper.properties

Edit the `zookeeper.properties` file and add the parameters described below.

The `zookeeper.properties` file is located in the `<MashZone NextGen installation>/rtbs/zookeeper/conf/` directory

Add the parameters:
- `initLimit=5`
- `syncLimit=2`

The `initLimit` parameter is the time in seconds Zookeeper waits for other nodes to join the cluster (Zookeeper Ensemble). If the cluster initialization fails (especially relevant if nodes are not started in an automated and coordinated way), increase the value, for example, to 60.

For each Event Service server in the cluster, add a line as follows:

- `server.<number>=<hostname>:2888:3888`

Here, <number> is a strictly monotonic increasing number starting at 1. It is not necessarily equivalent to `rtbs.id`, that is, if you decide to use `rtbs.id=42` for machine1, the entry would still be `server.1=machine1:2888:3888`

For our example, this means that we need to add the following three lines:

- `server.1=machine1:2888:3888`
- `server.2=machine2:2888:3888`
- `server.3=machine3:2888:3888`

Create the file `<MashZone NextGen installation>/rtbs/zookeeper/data/zk-snapshot/myid`. Add the machine's `rtbs.id` to the file, that is, just the digit 1 for machine 1, digit 2 on machine 2, digit 3 for machine 3.
6.8.5 server.properties

Edit the file server.properties, adjust the broker.id parameter to the machine's Event Service ID and adjust the zookeeper.connect parameter.

The server.properties file is located in the <MashZone NextGen installation>/rtbs/ha-store/conf/ directory.

- broker.id=<rtbs.id>, that is 1 on machine 1, 2 on machine 2, 3 on machine 3
- zookeeper.connect=machine1:12181,machine2:12181,machine3:12181

6.8.6 MashZone NextGen nodes

Configure the following parameters on your MashZone NextGen nodes.

Edit the mashzone.rtbs.url parameter in the mashzone.properties file and set host name and port accordingly.

<MashZone NextGen installation>/apache-tomcat/webapps/mashzone/WEB-INF/mashzone.properties

- mashzone.rtbs.url=machine1:12181,machine2:12181,machine3:12181

Replace the host names machine1, machine2, and machine3 by your real servers' host names and also set the right ports. You must enumerate all Event Service cluster members.

Note: Calls to the Event Service API are server-to-server calls which usually happen behind the load balancer. In some cases it might be necessary to route these calls through the load balancer as well. In this case, make sure that you configure your load balancer accordingly. Set the load balancer's host name and port in the parameters mentioned above.

6.8.6.1 Customizing dashboards

MashZone NextGen dashboards can be customized by adding custom style templates for the dashboard application and the dashboard content. Additionally custom widgets can be created via the pluggable widget framework. If these options shall be applied in a clustered scenario, you must synchronize the relevant folders and restart MashZone NextGen on all nodes of the cluster.

6.8.7 Custom styles

By default, custom style templates available are stored in the following folders.

- <MashZone NextGen installation>/apache-tomcat/webapps/mashzone/hub/dashboard/assets/custom-look-and-feel/application
6.8.8 Custom widgets

By default, custom widgets available are stored in the following folders.

To make the custom widgets available on all cluster nodes, make sure that the folders is synchronized on all machines. In this case, restarting MashZone NextGen on all cluster nodes is required as well.

6.8.9 Using JDBC drivers

JDBC driver binaries have to be available on every cluster node to allow class loading in the JVM. Since MashZone NextGen version 9.10 the binaries are stored in the DB and restored in all cluster nodes if not available. Automatic class loading on demand works fine, so that no further steps have to be taken to make JDBC resources available in a clustered scenario.

6.8.10 Local file resources

Local file resources are not recommended and not supported in a clustered scenario due to synchronization issues.

In a Windows landscape it might be possible to use such file resources by mapping the same network drive to the same network share. There may also be other file sharing mechanisms working in other OS landscapes, but URL based access is preferable.
7 Event Service Configuration and Administration

7.1 About the Event Service and Event Data

The Event Service allows MashZone NextGen to connect to the Event Bus for Software AG and subscribe to events published by other Software AG applications.

The Event Bus handles events published by event producers which may be a variety of Software AG applications. It routes events as they are published to event consumers, such as MashZone NextGen, who have subscribed to specific event types.

MashZone NextGen also uses the Event Service to connect to Apama and to subscribe to and work with events from scenarios (also sometimes called dataviews). Apama scenarios have event data that has been specifically transformed for use in dashboards.

For MashZone NextGen, each Event Bus or Apama subscription feeds an event source which is managed by the Event Service. Event sources receive events for subscriptions, store them in memory and act as the data source for the corresponding EDA, DES, or Apama event.

From MashZone NextGen 10.2 on, Event Service provides high-availability mode and horizontal scalability. It can be run in a cluster to achieve both tolerance against failure of cluster members and horizontal scalability by distributing requests from MashZone NextGen to all cluster members.

Cluster members may be restarted (for example, after a fault or maintenance reboot) and automatically re-join the cluster and restore their state from disk. See MashZone NextGen dashboards in a clustered scenario (page 125), MashZone NextGen Event Service (page 126) and Command Central plug-in (page 45) for details concerning cluster configuration.

7.2 Use Events as Information Sources

To use events as information sources, you must create EDA, DES, or Apama event sources. Unlike other sources, only MashZone NextGen administrators can create EDA, DES and Apama event sources for other users to work with.

To create these sources, administrators must create event sources as needed. MashZone NextGen retrieves event data from these event sources when users run the corresponding EDA, DES or Apama event source. If views for the event source are real-time views, events are pushed to the view automatically.

- Create EDA Event Sources (Seite 131)
- Create DES Event Source (Seite 153)
- Create Apama Event Sources (Seite 141)
- Start or Stop an Event Source (Seite 162)

You can also Manage Apama Event Sources (page 141), Manage DES Event Sources (Seite 152), and Manage EDA Event Sources (page 131).
7.3 Manage EDA Event Sources

To identify, create, edit, delete, import or export EDA Event Sources:
1. In the program bar click the user name by which you are logged in to MashZone NextGen.
2. Click Admin Console.
3. Click Event Service to expand this section of the Administration menu.
4. Click Event Service. The Event Service page will be displayed.
5. Open the EDA tab.
6. Select further steps:
 - Create EDA Event Sources (Seite 131)
 - Edit EDA Event Sources (Seite 135)
 - Duplicate EDA Event Sources (Seite 139)
 - Delete EDA Event Sources (Seite 139)
 - Share EDA Event Sources (Seite 140)

7.3.1 Create EDA Event Sources

You can register subscriptions with the Event Bus. This creates EDA Event Sources that hold published events in memory and a corresponding event mashable in MashZone NextGen.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page is displayed.
4. Open the EDA tab.
5. Click Create EDA Event Source.
6. Set the properties for this event source. See table EDA Event Source properties below.
7. Click Save.

The EDA Event Source is created and listed by alias name.

EDA Event Source properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this event source.</td>
</tr>
<tr>
<td>Start event source automatically on server startup</td>
<td></td>
<td>This option is set by default, which automatically starts this event source when MashZone NextGen Server starts. Clear this option if you need to manually control startup for this event source.</td>
</tr>
<tr>
<td>Event type</td>
<td>yes</td>
<td>Click Refresh to update the list of event types. Select the</td>
</tr>
<tr>
<td>Filter predicates</td>
<td>Enter a filter expression defining the events to be published to this event source.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Check validity</td>
<td>Available only if Strategy is set to Buffer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determines whether saved events are valid with respect to the current time frame for the application (ta) and removes invalid events from the event source.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• An event has a time stamp in the form of a time interval (I) = Start time - End time [ts - te); with ts being an element of I, and te not being an element of I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The current time of the application is determined by the start time of the last received event.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• An event is valid if the current time of the application is within the interval, i.e., [ts <= ta < te).</td>
<td></td>
</tr>
<tr>
<td>Preprocess and filter heartbeats</td>
<td>Removes empty events with no data from the event source. Empty events can, however, update the application time and thus can force a consolidation of the event source content.</td>
<td></td>
</tr>
<tr>
<td>Strategy</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The strategy that this event source uses for saving and removing events published from the Event Bus. Valid strategies are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BUFFER = FIFO (first in-first out). Events are stored until event source memory reaches capacity and then the event source removes the oldest events.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DELTA= Events are stored by ID and added, updated or removed based on a command within the event. An event with an Insert command is saved in event source memory, any existing event with the same ID is overwritten. An event with a Remove command removes an existing event with the same ID.</td>
<td></td>
</tr>
<tr>
<td>Consider dimension</td>
<td>Available only when Strategy is set to BUFFER.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set this option to save events in separate series (or buckets) for each unique value of the Dimension attribute.</td>
<td></td>
</tr>
<tr>
<td>Dimension attribute</td>
<td>conditional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select the event attribute whose unique values determine separate event series (buckets) for this event source.</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Condition</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Max. number of dimension values</td>
<td>conditional</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Enter the maximum number of unique dimension values (buckets) that can be tracked. This is the maximum number of series that can store events. Default value: 1 (Max: 100,000). The product of Max. number of dimension values and Capacity per dimension value must not be greater than 100,000.</td>
</tr>
<tr>
<td>Dimension Squeeze-out</td>
<td>conditional</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Determines how additional events are handled if they have new unique values for the dimension that defines buckets in this event source but the maximum number of unique values (buckets) has already been reached. This option is clear by default which discards new events with new unique dimension values once the maximum number of buckets has been reached. Set this option to change the bucket strategy to FIFO (first-in, first-out) which discards events for older series (buckets) and stores the newer event in a new series (bucket). Default value: false</td>
</tr>
<tr>
<td>Capacity per dimension value</td>
<td>conditional</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Enter the maximum number of events that can be stored in a specific event series (bucket) for each unique dimension value. Default value: 10 The product from Max number of dimension values and Capacity per dimension value must not be more than 100,000.</td>
</tr>
<tr>
<td>Event ID attribute</td>
<td>yes</td>
<td>Available only when Strategy is set to DELTA. Select the attribute that identifies an event. The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
<tr>
<td>Command attribute</td>
<td>yes</td>
<td>Available only when Strategy is set to DELTA. Select the attribute that contains the event command (Insert or Remove). The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
<tr>
<td>Capacity</td>
<td>yes</td>
<td>Enter the maximum number of events to store in this event source.</td>
</tr>
</tbody>
</table>
| **Memory model** | Determines where events are stored:
- **Internal**: the default which stores events in local memory for this event source.
- **BigMemory**: stores events in a local BigMemory cache. |
| **Throttling** | Controls the speed and volume of event data that is pushed to views that subscribe to this event source. By default, event sources push event data every 500 milliseconds. You can:
- Change the number of milliseconds to control throttling.
- Change the measurement (Default=500) to **Events** to have throttling wait until a specific number of events are received and change the number, if needed.
See example below. |
| **Exception** | Set this option to support a hybrid throttling strategy, typically involving both time and event limitations. Then set the exception criteria (Default=1):
- A number
- **Milliseconds** or **Events** as the measurement for the exception criteria
See example below |

Simple and Hybrid Throttling Strategies

Simple throttling strategies cause an event source to wait for either a specific time interval or for the receipt of a specific number of events and then push all new events to any subscribing real-time views. Throttling can slow event updates to real-time views when the volume or frequency for events causes rendering issues.

The default behavior is to push events to views based on a time interval of every 500 milliseconds. You can change the time interval or change the criteria to push events once a minimum count of events are received, such as 10 events. For example:

```
Throttling = 500 Milliseconds ▼ □ Exception...
```

```
-- or --
```

```
Throttling = 10 Events ▼ □ Exception...
```

Simple strategies may still not even out event flow adequately. Instead, you can create hybrid strategies, such as "generally push every 50 milliseconds, but at most 10 events."
Hybrid strategies define the general throttling with the **Throttling** fields. You set the **Exception** option and define the exception that should break the general rule in the **Exception** criteria fields:

![Throttling Fields](image)

With the example hybrid throttling strategy shown above:

- The event source would wait 50 milliseconds after pushing events to subscribing views.
- If less than 10 events are received in that 50 milliseconds, they are pushed at the end of the interval.
- If a tenth event is received within the 50 milliseconds, these 10 events are pushed to subscribing views and both the time interval and the count of events begins again.
- If no events are received within the time interval, the event source waits until it receives an event. When an event is received, the event source pushes this event to subscribing views and restarts the time interval.

On the EDA Event Source overview page you can click on the **Alias** to show a preview of the specific Event Source properties.

7.3.2 Edit EDA Event Sources

You can edit already existing EDA Event Source. Changes in EDA connection properties can immediately affect data feed calculations so that they may not execute properly.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**. The **Event Service** page is displayed.
4. Open the **EDA** tab.
5. Click the **Edit** icon to configure a specific **EDA** connection.
6. Set the properties for this event source:

Table 1. EDA Event Source properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this event source.</td>
</tr>
<tr>
<td>Start event</td>
<td></td>
<td>This option is set by default, which automatically starts this event</td>
</tr>
<tr>
<td>source automatically on server startup</td>
<td>source when MashZone NextGen Server starts. Clear this option if you need to manually control startup for this event source.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Event type</td>
<td>yes Click Refresh to update the list of event types. Select the type of the event this event source should subscribe to. The XML schema files for these event types must exist in the Event Type Store directory of MashZone NextGen Event Service. The Event Type Store directory can be configured using Command Central.</td>
<td></td>
</tr>
<tr>
<td>Filter predicates</td>
<td>Enter a filter expression defining the events to be published to this event source.</td>
<td></td>
</tr>
</tbody>
</table>
| **Check validity** | Available only if **Strategy** is set to **Buffer**. Determines whether saved events are valid with respect to the current time frame for the application (ta) and removes invalid events from the event source.
- An event has a time stamp in the form of a time interval \(I = (ts - te) \); with ts being an element of I, and te not being an element of I.
- The current time of the application is determined by the start time of the last received event.
- An event is valid if the current time of the application is within the interval, i.e., \([ts \leq ta < te) \). |
| **Preprocess and filter heartbeats** | Removes empty events with no data from the event source. Empty events can, however, update the application time and thus can force a consolidation of the event source content. |
| **Strategy** | yes The strategy that this event source uses for saving and removing events published from the Event Bus. Valid strategies are:
- **BUFFER** = FIFO (first in-first out). Events are stored until event source memory reaches capacity and then the event source removes the oldest events.
- **DELTA**= Events are stored by ID and added, updated or removed based on a command within the event. An event with an **Insert** command is saved in event source memory, any existing event with the same ID is overwritten. An event with a **Remove** command removes an existing event with the same ID. |
| **Consider dimension** | Available only when **Strategy** is set to **BUFFER**. Set this option to save events in separate series (or buckets) for each unique value of the **Dimension attribute**. |
| **Dimension condition** | Available only when **Strategy** is set to **BUFFER** and required when
<table>
<thead>
<tr>
<th>attribute</th>
<th>al</th>
<th>the Consider dimension option is set.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Select the event attribute whose unique values determine separate event series (buckets) for this event source.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max. number of dimension values</th>
<th>condition al</th>
<th>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Enter the maximum number of unique dimension values (buckets) that can be tracked. Thus this is the maximum number of series that can store events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default value: 1 (Max: 100.000).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The product of Max. number of dimension values and Capacity per dimension value must not be greater than 100.000.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimension Squeeze-out</th>
<th>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Determines how additional events are handled if they have new unique values for the dimension that defines buckets in this event source but the maximum number of unique values (buckets) has already been reached.</td>
</tr>
<tr>
<td></td>
<td>This option is clear by default which discards new events with new unique dimension values once the maximum number of buckets has been reached.</td>
</tr>
<tr>
<td></td>
<td>Set this option to change the bucket strategy to FIFO (first-in, first-out) which discards events for older series (buckets) and stores the newer event in a new series (bucket).</td>
</tr>
<tr>
<td></td>
<td>Default value: false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacity per dimension value</th>
<th>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the maximum number of events that can be stored in a specific event series (bucket) for each unique dimension value.</td>
</tr>
<tr>
<td></td>
<td>Default value: 10</td>
</tr>
<tr>
<td></td>
<td>The product from Max number of dimension values and Capacity per dimension value must not be more than 100 000.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event ID attribute</th>
<th>yes</th>
<th>Available only when Strategy is set to DELTA.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Select the attribute that identifies an event. The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command attribute</th>
<th>yes</th>
<th>Available only when Strategy if set to DELTA.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Select the attribute that contains the event command (Insert or Remove). The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
<tr>
<td>Capacity</td>
<td>yes</td>
<td>Enter the maximum number of events to store in this event source. (Max: 100,000) Default value: 10</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>--</td>
</tr>
</tbody>
</table>
| Memory model | | Determines where events are stored:
| | - **Internal**: the default which stores events in local memory for this event source.
| | - **BigMemory**: stores events in a local BigMemory cache. |
| Throttling | | Controls the speed and volume of event data that is pushed to views that subscribe to this event source. By default, event sources push event data every 500 milliseconds. You can:
| | - Change the number of milliseconds to control throttling.
| | - Change the measurement (Default=500) to **Events** to have throttling wait until a specific number of events are received and change the number, if needed. |
| Exception | | Set this option to support a hybrid throttling strategy, typically involving both time and event limitations. Then set the exception criteria (Default=1):
| | - A number
| | - **Milliseconds** or **Events** as the measurement for the exception criteria |

7.3.2.1 Simple and Hybrid Throttling Strategies

Simple throttling strategies cause an event source to wait for either a specific time interval or for the receipt of a specific number of events and then push all new events to any subscribing real-time views. Throttling can slow event updates to real-time views when the volume or frequency for events causes rendering issues.

The default behavior is to push events to views based on a time interval of every 500 milliseconds. You can change the time interval or change the criteria to push events once a minimum count of events are received, such as 10 events. For example:

```
Throttling = 500 (Milliseconds)  Exception...
```

or

```
Throttling = 10 (Events)  Exception...
```
Simple strategies may still not even out event flow adequately. Instead, you can create hybrid strategies, such as "generally push every 50 milliseconds, but at most 10 events."

Hybrid strategies define the general throttling with the Throttling fields. You set the Exception option and define the exception that should break the general rule in the Exception criteria fields:

With the example hybrid throttling strategy shown above:

- The event source would wait 50 milliseconds after pushing events to subscribing views.
- If less than 10 events are received in that 50 milliseconds, they are pushed at the end of the interval.
- If a tenth event is received within the 50 milliseconds, these 10 events are pushed to subscribing views and both the time interval and the count of events begins again.
- If no events are received within the time interval, the event source waits until it receives an event. When an event is received, the event source pushes this event to subscribing views and restarts the time interval.

Related tasks

Create EDA Event Sources (Seite 131)

7.3.3 Duplicate EDA Event Sources

You can duplicate existing EDA Event Source.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page will be displayed.
4. Open the EDA tab.
5. Click the Copy icon to duplicate a specific EDA Event Source.

The selected EDA Event Source is duplicated and listed with the prefix `copy_` in the Alias.

7.3.4 Delete EDA Event Sources

You can delete existing EDA Event Source.
Warning
Deleting EDA Event Sources may cause data feeds to fail.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page is displayed.
4. Open the EDA tab.
5. Click the Delete icon to delete a specific EDA Event Source.
The selected EDA Event Source is deleted from the list.

7.3.5 Share EDA Event Sources

You can share EDA Event Sources with particular users and user groups so that these have access to EDA Event Services.

Prerequisite
You have administration privileges.
Regardless of the share, users with administration privilege can access all EDA Event sources.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service.
4. Open the EDA tab.
5. Click the Edit event service permissions icon of the EDA Event Service you want to share.
6. Enter a term in the search field and click Search. Clicking on Search without any input values fetches all users and groups.
7. Click Show MashZone NextGen default groups to show only default MashZone NextGen users or user group in the Search results field.
8. Drag an user or user group from the Search result field and drop it into the Principals with permissions field.
 By default, the owner of the EDA Event Services is already present in the Principals with permissions list. This owner is non editable and cannot be removed from the list.
9. Activate or deactivate the Display or Usage privileges of a user or user group.
 A user or user group with Display privilege can see the relevant source data in the data feed or dashboard. A user or user group with the Usage privilege has access to the relevant alias in the data source operator.
10. Click OK.
Your changes are applied.
7.4 Manage Apama Event Sources

You can create, edit, delete, import, and share Apama Event Sources:

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page is displayed.
4. Open the Apama tab.
5. Select further steps:
 - Create Apama Event Sources (Seite 141)
 - Edit Apama Event Sources (Seite 147)
 - Duplicate Apama Event Sources (page 146)
 - Delete Apama Event Sources (Seite 146)
 - Share Apama Event Sources (Seite 151)

7.4.1 Create Apama Event Sources

MashZone NextGen can work with events published from Apama through the Event Bus. In many cases, however, the events and data you need are defined in Apama scenarios which are not accessible through the Event Bus.

To work with Apama scenario events, you must create an Apama Event Source to receive scenario events.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service.
4. Open the Apama tab.
5. Click Create Apama Event Source.
6. Set the properties for this event source. See table below.
7. Click Save.

The Apama Event Source is created and listed by alias name.

Apama Event Source properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this event source.</td>
</tr>
<tr>
<td>Start event source automatically on server startup</td>
<td></td>
<td>This option is set by default, which automatically starts this event source when MashZone NextGen Server starts. Clear this option if you need to manually control startup for this</td>
</tr>
<tr>
<td>Apama instance</td>
<td>yes</td>
<td>event source. Aliases with the pre-configured connection specification of a running Apama system (local or remote). See Manage Apama Instances (Seite 163) for details.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Apama Scenario</td>
<td>yes</td>
<td>Click Refresh to update the list of Apama scenarios for the selected Apama Event Source. If the Apama URL is set to a valid Apama system, then it is possible to select a scenario this event source should subscribe to.</td>
</tr>
<tr>
<td>Strategy</td>
<td>yes</td>
<td>The strategy that this event source uses for saving and removing events published from the Event Bus. Valid strategies are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- BUFFER = FIFO (first in-first out). Events are stored until event source memory reaches capacity and then the event source removes the oldest events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DELTA = Events are stored by ID and added, updated or removed based on a command within the event. An event with an Insert command is saved in event source memory, any existing event with the same ID is overwritten. An event with a Remove command removes an existing event with the same ID.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PARTIAL EVENTS = Each event has a unique identifier defined by one or more key fields (see Key attributes). Events contain additional fields, but may not contain all fields possible for the event. Simply put, each event may contain partial data. The event source maintains a single row for each unique event key representing the current full status for that event. Events published by Apama scenarios update the fields in that event source row that are included in the event, leaving other existing data for that event source row intact. Events that have a new unique key are saved as a new row until event source memory is full. Once the event source memory is full, new events are discarded.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SCENARIO = Events are stored according to the respective Apama Scenario Definition. MashZone NextGen automatically determines the unique identifier of each event, defined by one or more key fields. It maintains a single row for each event key, updating its values by processing the Apama scenario InstanceUpdated Events.</td>
</tr>
</tbody>
</table>
This strategy also supports the Apama scenario **InstanceRemoved Events**. When an **InstanceRemoved** event is received, the corresponding row is removed from the Apama Event Source.

Apama Event Sources using the **SCENARIO** strategy do not store events in the Event Service HA-Store. When a **SCENARIO** Event Source is restarted, it always receives the current scenario state from its Apama instance connection.

<table>
<thead>
<tr>
<th>Consider dimension</th>
<th>Available only when Strategy is set to BUFFER. Set this option to save events in separate series (or buckets) for each unique value of the Dimension attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension attribute</td>
<td>conditional Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Select the event attribute whose unique values determine separate event series (buckets) for this event source.</td>
</tr>
<tr>
<td>Max. number of dimension values</td>
<td>conditional Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Enter the maximum number of unique dimension values (buckets) that can be tracked. Thus this is the maximum number of series that can store events. Default value: 10 (Max: 100,000). The product of Max. number of dimension values and Capacity per dimension value must not be greater than 100,000.</td>
</tr>
<tr>
<td>Dimension Squeeze-out</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Determines how additional events are handled if they have new unique values for the dimension that defines buckets in this event source but the maximum number of unique values (buckets) has already been reached. This option is clear by default which discards new events with new unique dimension values once the maximum number of buckets has been reached. Set this option to change the bucket strategy to FIFO (first-in, first-out) which discards events for older series (buckets) and stores the newer event in a new series (bucket).</td>
</tr>
<tr>
<td>Feature</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Default value</td>
<td>false</td>
</tr>
<tr>
<td>Capacity per dimension value</td>
<td>conditional</td>
</tr>
<tr>
<td>Event ID attribute</td>
<td>yes</td>
</tr>
<tr>
<td>Command attribute</td>
<td>yes</td>
</tr>
<tr>
<td>Key attributes</td>
<td>yes</td>
</tr>
<tr>
<td>Capacity</td>
<td>yes</td>
</tr>
</tbody>
</table>
| Memory model | | Determines where events are stored:
 - **Internal**: the default which stores events in local memory for this event source.
 - **BigMemory**: stores events in a local BigMemory cache. |
| Throttling | | Controls the speed and volume of event data that is pushed to views that subscribe to this event source. By default, event sources push event data every 500 milliseconds. You |
can:
- Change the number of milliseconds to control throttling.
- Change the measurement (Default=500) to **Events** to have throttling wait until a specific number of events are received and change the number, if needed.

See Example below.

| Exception | Set this option to support a hybrid throttling strategy, typically involving both time and event limitations. Then set the exception criteria (Default=1):
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- A number</td>
<td></td>
</tr>
<tr>
<td>- Milliseconds or Events as the measurement for the exception criteria</td>
<td></td>
</tr>
</tbody>
</table>

See Example below.

Simple and Hybrid Throttling Strategies

Simple throttling strategies cause an event source to wait for either a specific time interval or for the receipt of a specific number of events and then push all new events to any subscribing real-time views. Throttling can slow event updates to real-time views when the volume or frequency for events causes rendering issues.

The default behavior is to push events to views based on a time interval of every 500 milliseconds. You can change the time interval or change the criteria to push events once a minimum count of events are received, such as 10 events. For example:

<table>
<thead>
<tr>
<th>Throttling</th>
<th>500</th>
<th>Milliseconds</th>
<th>Exception...</th>
</tr>
</thead>
</table>

-- or --

| Throttling | 10 | **Events** | Exception... |

Simple strategies may still not even out event flow adequately. Instead, you can create hybrid strategies, such as "generally push every 50 milliseconds, but at most 10 events."

Hybrid strategies define the general throttling with the **Throttling** fields. You set the **Exception** option and define the exception that should break the general rule in the **Exception** criteria fields:

<table>
<thead>
<tr>
<th>Throttling</th>
<th>50</th>
<th>Milliseconds</th>
<th>Exception...</th>
</tr>
</thead>
</table>

| Throttling | 10 | **Events** | **Exception...** |
With the example hybrid throttling strategy shown above:

- The event source would wait 50 milliseconds after pushing events to subscribing views.
- If less than 10 events are received in that 50 milliseconds, they are pushed at the end of the interval.
- If a tenth event is received within the 50 milliseconds, these 10 events are pushed to subscribing views and both the time interval and the count of events begins again.
- If no events are received within the time interval, the event source waits until it receives an event. When an event is received, the event source pushes this event to subscribing views and restarts the time interval.

On the Apama Event Source overview page you can click on the **Alias** to show a preview of the specific Event Source properties.

7.4.2 Duplicate Apama Event Sources

You can duplicate an existing Apama Event Source.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**.
4. Open the **Apama** tab.
5. Click the ![Copy](copy.png) icon to duplicate a specific Apama Event Source.

The selected Apama Event Source is duplicated and listed with the prefix **copy** in the **Alias**.

7.4.3 Delete Apama Event Sources

You can delete an Apama Event Source.

Note: Deleting an Apama Event Source may cause data feeds to fail.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**.
4. Open the **Apama** tab.
5. Click the ![Delete](delete.png) icon to delete a specific Apama Event Source.
6. Click **Save**.

The selected Apama Event Source is deleted from the list.
7.4.4 Edit Apama Event Sources

You can edit an already existing Apama Event Source.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service.
4. Open the Apama tab.
5. Click the Edit icon to configure an Apama Event Source.
6. Set the properties for this event source. See table Apama Event Source properties below.
7. Click Save.

The Apama Event Source is created and listed by alias name.

Apama Event Source properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>1. Enter a unique name for this event source.</td>
</tr>
<tr>
<td>Start event source automatically on server startup</td>
<td></td>
<td>This option is set by default, which automatically starts this event source when MashZone NextGen Server starts. Clear this option if you need to manually control startup for this event source.</td>
</tr>
<tr>
<td>Apama instance</td>
<td>yes</td>
<td>Alias with the pre-configured connection specification of a running Apama system (local or remote). See Manage Apama Instances (Seite 163) for details.</td>
</tr>
<tr>
<td>Apama Scenario</td>
<td>yes</td>
<td>Click Refresh to update the list of Apama scenarios for the selected Apama Event Source. If the Apama URL is set to a valid Apama system, then it is possible to select a scenario this event source should subscribe to.</td>
</tr>
<tr>
<td>Strategy</td>
<td>yes</td>
<td>The strategy that this event source uses for saving and removing events published from the Event Bus. Valid strategies are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ BUFFER = FIFO (first in-first out). Events are stored until event source memory reaches capacity and then the event source removes the oldest events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ DELTA= Events are stored by ID and added, updated or removed based on a command within the event. An event with an Insert command is saved in event source memory, any existing event with the same ID is overwritten. An event with a Remove command removes an existing event with the same ID.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ PARTIAL_EVENTS = Each event has a unique identifier defined by one or more key fields (see Key attributes). Events</td>
</tr>
</tbody>
</table>

147
contain additional fields, but may not contain all fields possible for the event. Simply put, each event may contain partial data.

The event source maintains a single row for each unique event key representing the current full status for that event. Events published by Apama scenarios update the fields in that event source row that are included in the event, leaving other existing data for that event source row intact.

Events that have a new unique key are saved as a new row until event source memory is full. Once the event source memory is full, new events are discarded.

- **SCENARIO** = Events are stored according to the respective Apama Scenario Definition.

MashZone NextGen automatically determines the unique identifier of each event, defined by one or more key fields. It maintains a single row for each event key, updating its values by processing the Apama scenario **InstanceUpdated Events.**

This strategy also supports the Apama scenario **InstanceRemoved Events.** When an **InstanceRemoved** event is received, the corresponding row is removed from the Apama Event Source.

Apama Event Sources using the **SCENARIO** strategy do not store events in the Event Service HA-Store. When a **SCENARIO** Event Source is restarted, it always receives the current scenario state from its Apama instance connection.

Consider dimension	Available only when **Strategy** is set to **BUFFER.**
	Set this option to save events in separate series (or buckets) for each unique value of the **Dimension attribute.**
Dimension attribute	**condition**
	Available only when **Strategy** is set to **BUFFER** and required when the **Consider dimension** option is set.
	Select the event attribute whose unique values determine separate event series (buckets) for this event source.
Max. number of dimension values	**condition**
	Available only when **Strategy** is set to **BUFFER** and required when the **Consider dimension** option is set.
	Enter the maximum number of unique dimension values (buckets) that can be tracked. Thus this is the maximum number of series that can store events.
	Default value: 10 (Max: 100.000).
	The product of **Max. number of dimension values** and
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity per dimension value</td>
<td>Must not be greater than 100,000.</td>
</tr>
<tr>
<td>Dimension Squeeze-out</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set.</td>
</tr>
<tr>
<td></td>
<td>Determines how additional events are handled if they have new unique values for the dimension that defines buckets in this event source...</td>
</tr>
<tr>
<td></td>
<td>This option is clear by default which discards new events with new unique dimension values once the maximum number of buckets has been reached.</td>
</tr>
<tr>
<td></td>
<td>Set this option to change the bucket strategy to FIFO (first-in, first-out) which discards events for older series (buckets) and stores the newer event in a new series (bucket).</td>
</tr>
<tr>
<td>Default value: false</td>
<td></td>
</tr>
<tr>
<td>Capacity per dimension value</td>
<td>Condition</td>
</tr>
<tr>
<td></td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set.</td>
</tr>
<tr>
<td></td>
<td>Enter the maximum number of events that can be stored in a specific event series (bucket) for each unique dimension value.</td>
</tr>
<tr>
<td></td>
<td>Default value: 10; The product from Max number of dimension values and Capacity per dimension value must not be more than 100,000.</td>
</tr>
<tr>
<td>Event ID attribute</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Available only when Strategy is set to DELTA.</td>
</tr>
<tr>
<td></td>
<td>Select the attribute that identifies an event. The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
<tr>
<td>Command attribute</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Available only when Strategy is set to DELTA.</td>
</tr>
<tr>
<td></td>
<td>Select the attribute that contains the event command (Insert or Remove). The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
<tr>
<td>Key attributes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Available only when Strategy is set to PARTIAL_EVENT.</td>
</tr>
<tr>
<td></td>
<td>The field(s) in events with partial data that uniquely identify an event. The event ID is used to ensure that events with partial data properly insert or update events in this event source.</td>
</tr>
<tr>
<td></td>
<td>Select one or more attributes that uniquely identify events for this Apama scenario. If multiple fields are required, the order in which you select attributes determines how fields are combined to determine event IDs.</td>
</tr>
<tr>
<td>Capacity</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Enter the maximum number of events to store in this event source.</td>
</tr>
<tr>
<td>Memory model</td>
<td>Determines where events are stored:</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>- Internal: the default which stores events in local memory for this event source.</td>
<td></td>
</tr>
<tr>
<td>- BigMemory: stores events in a local BigMemory cache.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Throttling</th>
<th>Controls the speed and volume of event data that is pushed to views that subscribe to this event source. By default, event sources push event data every 500 milliseconds. You can:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Change the number of milliseconds to control throttling.</td>
<td></td>
</tr>
<tr>
<td>- Change the measurement (Default=500) to Events to have throttling wait until a specific number of events are received and change the number, if needed.</td>
<td></td>
</tr>
</tbody>
</table>

See Example below.

<table>
<thead>
<tr>
<th>Exception</th>
<th>Set this option to support a hybrid throttling strategy, typically involving both time and event limitations. Then set the exception criteria (Default=1):</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A number</td>
<td></td>
</tr>
<tr>
<td>- Milliseconds or Events as the measurement for the exception criteria</td>
<td></td>
</tr>
</tbody>
</table>

See Example below.

Simple and Hybrid Throttling Strategies

Simple throttling strategies cause an event source to wait for either a specific time interval or for the receipt of a specific number of events and then push all new events to any subscribing real-time views. Throttling can slow event updates to real-time views when the volume or frequency for events causes rendering issues.

The default behavior is to push events to views based on a time interval of every 500 milliseconds. You can change the time interval or change the criteria to push events once a minimum count of events are received, such as 10 events. For example:

```
Throttling = 500 Milliseconds
```

--- or ---

```
Throttling = 10 Events
```

Simple strategies may still not even out event flow adequately. Instead, you can create hybrid strategies, such as "generally push every 50 milliseconds, but at most 10 events."
Hybrid strategies define the general throttling with the **Throttling** fields. You set the **Exception** option and define the exception that should break the general rule in the **Exception** criteria fields:

```
<table>
<thead>
<tr>
<th>Throttling</th>
<th>50</th>
<th>Milliseconds</th>
<th>Exception...</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Events</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

With the example hybrid throttling strategy shown above:

- The event source would wait 50 milliseconds after pushing events to subscribing views.
- If less than 10 events are received in that 50 milliseconds, they are pushed at the end of the interval.
- If a tenth event is received within the 50 milliseconds, these 10 events are pushed to subscribing views and both the time interval and the count of events begins again.
- If no events are received within the time interval, the event source waits until it receives an event. When an event is received, the event source pushes this event to subscribing views and restarts the time interval.

On the Apama Event Source overview page you can click on the **Alias** to show a preview of the specific Event Source properties.

7.4.5 Share Apama Event Sources

You can share Apama Event Sources with particular users and user groups so that these have access to **Apama Event Services**.

Prerequisite

You have administration privileges.

Regardless of the share, users with administration privilege can access all Apama Event sources.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**.
4. Open the **Apama** tab.
5. Click the **Edit event service permissions** icon of the Apama Event Service you want to share.
6. Enter a term in the search field and click **Search**. Clicking on **Search** without any input values fetches all users and groups.
7. Click **Show MashZone NextGen default groups** to show only default MashZone NextGen users or user group in the **Search results** field.
8. Drag an user or user group from the Search result field and drop it into the Principals with permissions field.

By default, the owner of the Apama Event Services is already present in the Principals with permissions list. This owner is non editable and cannot be removed from the list.

9. Activate or deactivate the Display or Usage privileges of a user or user group.

A user or user group with Display privilege can see the relevant source data in the data feed or dashboard. A user or user group with the Usage privilege has access to the relevant alias in the data source operator.

10. Click OK.

Your changes are applied.

7.5 Manage DES Event Sources

You can manage your DES Event Sources in the Admin console.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page is displayed.
4. Open the Digital Event Services tab.
5. Select further steps:
 - Create DES Event Source (Seite 153)
 - Edit DES Event Sources (Seite 157)
 - Duplicate DES Event Sources (Seite 161)
 - Delete DES Event Sources (Seite 161)
 - Share DES Event Sources (Seite 161)
 - Create DES Event Source (Seite 153)
 - Edit DES Event Sources (Seite 157)
 - Duplicate DES Event Sources (Seite 161)
 - Delete DES Event Sources (Seite 161)
 - Share DES Event Sources (Seite 161)

You can share DES Event Sources with particular users and user groups so that these have access to DES Event Services.

Activate DES in MashZone NextGen (Seite 162)

To use Digital Event Services (DES), a valid DES license file must be present in the MashZone NextGen installation.
7.5.1 Create DES Event Source

You can register subscriptions with the Event Bus. This creates **DES Event Services** that hold published events in memory and a corresponding event mashable in MashZone NextGen. Starting with MashZone NextGen 10.2, Event Service subscribes using a durable subscription. The durable subscription remains active until the Event Source is deleted, that is, Universal Messaging will buffer events until MashZone NextGen Event Service consumes them. This ensures that no event data is lost in situations where MashZone NextGen Event Service is unavailable. Event Service uses the defined alias name (see below) as the subscription’s identifier. Thus, you need to make sure that there must not be configured two independent Event Service installations that access the same Universal Messaging Channel using the same alias name. That is, if you operate two Event Service Clusters (single or multi-node) and they share a single Universal Messaging Instance, make sure to use different alias names for the same channels.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**. The **Event Service** page is displayed.
4. Open the **Digital Event Services** tab.
5. Click **Create DES Event Source**.
6. Set the properties for this event source. See table below.
7. Click **Save**.

The DES Event Service is created and listed by alias name.

DES Event Services properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this event source.</td>
</tr>
<tr>
<td>Start event source automatically on server startup</td>
<td></td>
<td>This option is set by default, which automatically starts this event source when MashZone NextGen Server starts. Clear this option if you need to manually control startup for this event source.</td>
</tr>
<tr>
<td>Event type</td>
<td>yes</td>
<td>Select the type of the event this event source should subscribe to.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The XML schema files for these event types must exist in the Event Type Store directory of MashZone NextGen Event Service. The Event Type Store directory cab be configured using Command Central.</td>
</tr>
<tr>
<td>Strategy</td>
<td>yes</td>
<td>The strategy that this event source uses for saving and removing events published from the Event Bus. Valid strategies are:</td>
</tr>
</tbody>
</table>
- **BUFFER** = FIFO (first in-first out). Events are stored until event source memory reaches capacity and then the event source removes the oldest events.
- **DELTA** = Events are stored by ID and added, updated or removed based on a command within the event. An event with an **Insert** command is saved in event source memory, any existing event with the same ID is overwritten. An event with a **Remove** command removes an existing event with the same ID.

<table>
<thead>
<tr>
<th>Consider dimension</th>
<th>Available only when Strategy is set to BUFFER. Set this option to save events in separate series (or buckets) for each unique value of the Dimension attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension attribute</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Select the event attribute whose unique values determine separate event series (buckets) for this event source.</td>
</tr>
<tr>
<td>Max. number of dimension values</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Enter the maximum number of unique dimension values (buckets) that can be tracked. Thus this is the maximum number of series that can store events. Default value: 1 (Max: 100.000). The product of Max. number of dimension values and Capacity per dimension value must not be greater than 100.000.</td>
</tr>
<tr>
<td>Dimension Squeeze-out</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Determines how additional events are handled if they have new unique values for the dimension that defines buckets in this event source but the maximum number of unique values (buckets) has already been reached. This option is clear by default which discards new events with new unique dimension values once the</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Maximum number of buckets</td>
<td>true</td>
</tr>
<tr>
<td>Capacity per dimension value</td>
<td>conditional</td>
</tr>
<tr>
<td>Event ID attribute</td>
<td>yes</td>
</tr>
<tr>
<td>Command attribute</td>
<td>yes</td>
</tr>
<tr>
<td>Capacity</td>
<td>yes</td>
</tr>
</tbody>
</table>
| Memory model | | Determines where events are stored:
 - **Internal**: the default which stores events in local memory for this event source.
 - **BigMemory**: stores events in a local BigMemory cache. |
| Throttling | | Controls the speed and volume of event data that is pushed to views that subscribe to this event source. By default, event sources push event data every 500 milliseconds. You can:
 - Change the number of milliseconds to control throttling. |
• Change the measurement (Default=500) to **Events** to have throttling wait until a specific number of events are received and change the number, if needed. See Example below.

Exception

Set this option to support a hybrid throttling strategy, typically involving both time and event limitations. Then set the exception criteria (Default=1):

• A number

• **Milliseconds** or **Events** as the measurement for the exception criteria

See Example below.

SIMPLE AND HYBRID THROTTLING STRATEGIES

Simple throttling strategies cause an event source to wait for either a specific time interval or for the receipt of a specific number of events and then push all new events to any subscribing real-time views. Throttling can slow event updates to real-time views when the volume or frequency for events causes rendering issues.

The default behavior is to push events to views based on a time interval of every 500 milliseconds. You can change the time interval or change the criteria to push events once a minimum count of events are received, such as 10 events. For example:

```
Throttling = 500  Milliseconds  Exception...
```

```
Throttling = 10  Events  Exception...
```

Simple strategies may still not even out event flow adequately. Instead, you can create hybrid strategies, such as "generally push every 50 milliseconds, but at most 10 events."

Hybrid strategies define the general throttling with the **Throttling** fields. You set the **Exception** option and define the exception that should break the general rule in the **Exception** criteria fields:

```
Throttling = 50  Milliseconds  Exception...
```

```
10  Events  Exception...
```
With the example hybrid throttling strategy shown above:

- The event source would wait 50 milliseconds after pushing events to subscribing views.
- If less than 10 events are received in that 50 milliseconds, they are pushed at the end of the interval.
- If a tenth event is received within the 50 milliseconds, these 10 events are pushed to subscribing views and both the time interval and the count of events begins again.
- If no events are received within the time interval, the event source waits until it receives an event. When an event is received, the event source pushes this event to subscribing views and restarts the time interval.

On the EDA Event Source overview page you can click on the **Alias** to show a preview of the specific Event Source properties.

7.5.2 Edit DES Event Sources

You can edit already existing DES Event Sources. **Note:** Changes in DES connection properties can immediately affect data feed calculations so that they may not execute properly.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**. The **Event Service** page is displayed.
4. Open the **Digital Event Services** tab.
5. Click the **Edit** icon to configure a specific DES connection.
6. Set the properties for this event source. See the table below.
7. Click **Save**.

Your changes are applied.

Table 1. DES Event Services properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this event source.</td>
</tr>
<tr>
<td>Start event source automatically on server startup</td>
<td></td>
<td>This option is set by default, which automatically starts this event source when MashZone NextGen Server starts. Clear this option if you need to manually control startup for this event source.</td>
</tr>
<tr>
<td>Event type</td>
<td>yes</td>
<td>Select the type of the event this event source should subscribe to. The XML schema files for these event types must exist in the Event Type Store directory of MashZone NextGen Event Service. The Event Type Store directory cab be configured</td>
</tr>
</tbody>
</table>
| Strategy | yes | The strategy that this event source uses for saving and removing events published from the Event Bus. Valid strategies are:
|---------------------|-----|---|
| | | • **BUFFER** = FIFO (first in-first out). Events are stored until event source memory reaches capacity and then the event source removes the oldest events.
| | | • **DELTA** = Events are stored by ID and added, updated or removed based on a command within the event. An event with an **Insert** command is saved in event source memory, any existing event with the same ID is overwritten. An event with a **Remove** command removes an existing event with the same ID.
| Consider dimension | | Available only when **Strategy** is set to **BUFFER**.
| Set this option to save events in separate series (or buckets) for each unique value of the **Dimension attribute**.
| Dimension attribute | conditional | Available only when **Strategy** is set to **BUFFER** and required when the **Consider dimension** option is set.
| Select the event attribute whose unique values determine separate event series (buckets) for this event source.
| Max. number of dimension values | conditional | Available only when **Strategy** is set to **BUFFER** and required when the **Consider dimension** option is set.
| Enter the maximum number of unique dimension values (buckets) that can be tracked. Thus this is the maximum number of series that can store events.
| Default value: 1 (Max: 100,000).
| The product of **Max. number of dimension values** and **Capacity per dimension value** must not be greater than 100,000.
| Dimension Squeeze-out | | Available only when **Strategy** is set to **BUFFER** and required when the **Consider dimension** option is set.
| Determines how additional events are handled if they have new unique values for the dimension that defines buckets in this event source but the maximum number of unique values (buckets) has already been reached.
| This option is clear by default which discards new events with new unique dimension values once the maximum number of buckets has been reached.
| Set this option to change the bucket strategy to FIFO (first-in, first-out) which discards events for older series (buckets) and
<table>
<thead>
<tr>
<th>Feature</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stores the newer event in a new series (bucket).</td>
<td></td>
<td>Default value: false</td>
</tr>
<tr>
<td>Capacity per dimension value</td>
<td>conditional</td>
<td>Available only when Strategy is set to BUFFER and required when the Consider dimension option is set. Enter the maximum number of events that can be stored in a specific event series (bucket) for each unique dimension value. Default value: 10. The product of Max number of dimension values and Capacity per dimension value must not be more than 100 000.</td>
</tr>
<tr>
<td>Event ID attribute</td>
<td>yes</td>
<td>Available only when Strategy is set to DELTA. Select the attribute that identifies an event. The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
<tr>
<td>Command attribute</td>
<td>yes</td>
<td>Available only when Strategy is set to DELTA. Select the attribute that contains the event command (Insert or Remove). The event ID and command determines which events are stored, updated or removed in this event source.</td>
</tr>
<tr>
<td>Capacity</td>
<td>yes</td>
<td>Enter the maximum number of events to store in this event source. (Max: 100.000) Default value: 10.</td>
</tr>
<tr>
<td>Memory model</td>
<td></td>
<td>Determines where events are stored: • Internal: the default which stores events in local memory for this event source. • BigMemory: stores events in a local BigMemory cache.</td>
</tr>
<tr>
<td>Throttling</td>
<td></td>
<td>Controls the speed and volume of event data that is pushed to views that subscribe to this event source. By default, event sources push event data every 500 milliseconds. You can: • Change the number of milliseconds to control throttling. • Change the measurement (Default=500) to Events to have throttling wait until a specific number of events are received and change the number, if needed. See Example below.</td>
</tr>
<tr>
<td>Exception</td>
<td></td>
<td>Set this option to support a hybrid throttling strategy, typically involving both time and event limitations. Then set the exception criteria (Default=1): • A number</td>
</tr>
</tbody>
</table>
• **Milliseconds** or **Events** as the measurement for the exception criteria
 See Example below.

7.5.2.1 Simple and Hybrid Throttling Strategies

Simple throttling strategies cause an event source to wait for either a specific time interval or for the receipt of a specific number of events and then push all new events to any subscribing real-time views. Throttling can slow event updates to real-time views when the volume or frequency for events causes rendering issues.

The default behavior is to push events to views based on a time interval of every 500 milliseconds. You can change the time interval or change the criteria to push events once a minimum count of events are received, such as 10 events. For example:

- **Throttling** = 500 **Milliseconds**
- **Throttling** = 10 **Events**

Simple strategies may still not even out event flow adequately. Instead, you can create hybrid strategies, such as "generally push every 50 milliseconds, but at most 10 events."

Hybrid strategies define the general throttling with the **Throttling** fields. You set the **Exception** option and define the exception that should break the general rule in the **Exception** criteria fields:

- **Throttling** = 50 **Milliseconds**
- **Throttling** = 10 **Events**

With the example hybrid throttling strategy shown above:

- The event source would wait 50 milliseconds after pushing events to subscribing views.
- If less than 10 events are received in that 50 milliseconds, they are pushed at the end of the interval.
- If a tenth event is received within the 50 milliseconds, these 10 events are pushed to subscribing views and both the time interval and the count of events begins again.
If no events are received within the time interval, the event source waits until it receives an event. When an event is received, the event source pushes this event to subscribing views and restarts the time interval.

7.5.3 Duplicate DES Event Sources

You can duplicate existing DES Event Sources.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page will be displayed.
4. Open the Digital Event Services tab.
5. Click the Copy icon to duplicate a specific DES Event Source.

The selected DES Event Source is duplicated and listed with the prefix copy_ in the Alias.

7.5.4 Delete DES Event Sources

You can delete existing DES Event Sources.

Warning
Deleting DES Event Sources may cause data feeds to fail.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page will be displayed.
4. Open the Digital Event Services tab.
5. Click the Delete icon to delete a specific DES Event Source.

The selected DES Event Source is deleted from the list.

7.5.5 Share DES Event Sources

You can share DES Event Sources with particular users and user groups so that these have access to DES Event Services.

Prerequisites
You have administration privileges.

Regardless of the share, users with administration privilege can access all DES Event sources.
Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**.
4. Open the **Digital Event Services** tab.
5. Click the **Edit event service permissions** icon of the DES Event Service you want to share.
6. Enter a term in the search field and click **Search**. Clicking **Search** without any input values fetches all users and groups.
7. Click **Show MashZone NextGen default groups** to show only default MashZone NextGen users or user group in the **Search** results field.
8. Drag an user or user group from the Search result field and drop it into the **Principals with permissions** field.
 By default, the owner of the **DES Event Services** is already present in the **Principals with permissions** list. This owner is non-editable and cannot be removed from the list.
9. Activate or deactivate the **Display** or **Usage** privileges of a user or user group.
 A user or user group with **Display** privilege can see the relevant source data in the data feed or dashboard. A user or user group with the **Usage** privilege has access to the relevant alias in the data source operator.
10. Click **OK**.
 Your changes are applied.

7.5.6 Activate DES in MashZone NextGen

To use Digital Event Services (DES), a valid DES license file must be present in the MashZone NextGen installation.

The default path to the license is `<MashZone NextGen installation>/common/DigitalEventServices/license/license.xml`. After installation, a 30-days trial license is present in this location. To use DES, you must replace it by a valid license after 30 days.

7.6 Start or Stop an Event Source

To begin receiving events from the Event Bus, you must start the event source configured for that event type. You can also stop individual event sources.

Stopping an event source causes any existing events currently stored in memory to be deleted.

Procedure

Open the MashZone NextGen Admin Console (page 2).

1. Click **Event Service** to expand this section of the **Administration** menu.
2. Click Event Service. The Event Service page will be displayed.
3. Open the event source tab EDA, Digital Event Services, or Apama and either:
 - Select a specific event source and click Start to start just that event source.
 - Or select a specific event source and click Stop to stop that event source.
 The selected event sources are stopped respectively started.

7.7 Restart all Event Sources

To begin receiving events from the Event Bus, you must start the event source configured for that event type. You can restart all event sources at once.

Note: Restarting all event sources causes any existing events currently stored in memory to be deleted.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service. The Event Service page will be displayed.
4. Click Restart all to restart all event source instances of the selected event source type.
 All event sources are restarted.

7.8 Manage Apama Instances

By creating an Apama instance (Apama correlator) you can specify the connection to an Apama system.
You can create, edit and delete instances.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Apama instances.
4. Select further steps:
 - Create Apama Instances (Seite 163)
 - Edit Apama Instances (Seite 164)
 - Delete Apama Instances (Seite 165)

7.8.1 Create Apama Instances

Creating an Apama instance (Apama correlator) you can specify the connection to an running Apama system.
Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Apama instances**.
4. Click **Create**.
5. Set the properties of the Apama instance. See table below.
6. Click **Save**.

The Apama instance is created and listed by alias name.

Apama instance properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this Apama instance.</td>
</tr>
<tr>
<td>Host</td>
<td>yes</td>
<td>Host name to the running Apama system (local or remote)</td>
</tr>
<tr>
<td>Port</td>
<td>yes</td>
<td>Port number of the running Apama system (local or remote)</td>
</tr>
</tbody>
</table>

7.8.2 **Edit Apama Instances**

You can edit an already existing Apama instances.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Apama instances**.
4. Click the **Edit** icon to configure an Apama instance.
5. Set the properties of the Apama instance. See table below.
6. Click **Save**.

Your changes are applied.

Apama instance properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this Apama instance.</td>
</tr>
<tr>
<td>Host</td>
<td>yes</td>
<td>Host name to the running Apama system (local or remote)</td>
</tr>
<tr>
<td>Port</td>
<td>yes</td>
<td>Port number of the running Apama system (local or remote)</td>
</tr>
</tbody>
</table>
7.8.3 Delete Apama Instances

You can delete Apama instances.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Apama instances.
4. Click the Delete icon to delete a specific Apama instance.
The selected Apama instance is deleted from the list.

7.9 Manage Apama Event Targets

An Apama event target specifies an Apama system that can receive events sent by MashZone NextGen.

You can create, edit and delete Apama event targets.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service.
4. Open the Apama tab.
5. Select further steps:
 - Create Apama Event Targets (Seite 165)
 - Edit Apama Event Targets (Seite 166)
 - Delete Apama Event Targets (Seite 167)
 - Share Apama Event Target (Seite 167)

7.9.1 Create Apama Event Targets

Creating an Apama event target you can specify an Apama system as target, receiving events from MashZone NextGen.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click Event Service to expand this section of the Administration menu.
3. Click Event Service.
4. Open the Apama tab.
5. Click Create Apama Event Target.
6. Set the properties for this event target. See table below.

7. Click **Save**.

The Apama event target is created and listed by alias name.

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this event target.</td>
</tr>
<tr>
<td>Apama instance</td>
<td>yes</td>
<td>Alias with the pre-configured connection specification of a running Apama system (local or remote). See Manage Apama Instances (Seite 163) for details.</td>
</tr>
<tr>
<td>Event type</td>
<td>yes</td>
<td>Click ☰ Refresh to update the list of Apama event types. Only event types are available that are present in the Apama instance selected. Select the type of the event this event target should subscribe to. Event types including not supported data types by MashZone NextGen are also available; these event types can be used for sending events, but the offending fields are not usable for data assignment to widgets.</td>
</tr>
</tbody>
</table>

7.9.2 Edit Apama Event Targets

You can edit an already existing Apama event target.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**.
4. Open the **Apama** tab.
5. Click the ☰ **Edit** icon to configure an Apama event target.
6. Set the properties for this event target. See table below.
7. Click **Save**.

Your changes are applied.

Apama event target properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>yes</td>
<td>Enter a unique name for this event target.</td>
</tr>
<tr>
<td>Apama instance</td>
<td>yes</td>
<td>Alias with the pre-configured connection specification of a running Apama system (local or remote). See Manage Apama Instances</td>
</tr>
</tbody>
</table>
(Seite 163) for details.

<table>
<thead>
<tr>
<th>Event type</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Click ⚡ Refresh to update the list of Apama event types. Select the type of the event this event target should subscribe to. Event types including not supported data types by MashZone NextGen are also available; these event types can be used for sending events, but the offending fields are not usable for data assignment to widgets.</td>
</tr>
</tbody>
</table>

7.9.3 Delete Apama Event Targets

You can delete Apama event targets.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**.
4. Open the **Apama** tab.
5. Click the 🗑️ **Delete** icon to delete a specific Apama event target. The selected Apama event target is deleted from the list.

7.9.4 Share Apama Event Target

You can share Apama event targets with particular users and user groups so that these have access to Apama event targets.

Prerequisite

You have administration privileges.

Regardless of the share, users with administration privilege can access all Apama event targets.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **Event Service** to expand this section of the **Administration** menu.
3. Click **Event Service**.
4. Open the **Apama** tab.
5. Click the ⌖ **Edit permissions** icon of the Apama event target you want to share.
6. Enter a term in the search field and click **Search**. Clicking on **Search** without any input values fetches all users and groups.
7. Click **Show MashZone NextGen default groups** to show only default MashZone NextGen users or user group in the **Search results** field.
8. Drag an user or user group from the **Search result** field and drop it into the **Principals with permissions** field.

By default, the owner of the **Apama Event Services** is already present in the **Principals with permissions** list. This owner is non editable and cannot be removed from the list.

9. Activate or deactivate the Display or Usage privileges of a user or user group.

 A user or user group with **View** privilege can see the relevant source data in the data feed or dashboard. A user or user group with the **Edit** privilege has access to the relevant alias in the data source operator.

10. Click **OK**.

Your changes are applied.
8 Process Performance Manager Integration

ARIS Process Performance Manager (PPM) lets you discover and analyze processes that are not formally managed by a business process management solution (BPMS), such as webMethods BPMS. Using data sources throughout your enterprise, such as transactional data from your business systems, event streams from webMethods BPMS or database records from trading partners, PPM can model a process and assess its performance across various dimensions, such as region, product line, volume, or time. You can also use PPM analytic tools to mine other data in your enterprise for meaningful patterns, trends, or correlations.

Information from PPM can be used as a source of data for MashZone NextGen dashboards and data feeds.

MashZone NextGen is compatible with PPM version 10.0 or above.

8.1 Manage PPM Connections

You can manage your PPM Connections in the Admin console.

Procedure
1. Open the MashZone NextGen Admin Console (page 2).
2. Click PPM connections to expand this section of the Administration menu.
3. Click PPM connections.
4. Follow the procedure of the remaining steps:
 - Create PPM Connections (page 169)
 - Edit PPM Connections (Seite 170)
 - Delete PPM Connections (Seite 171)
 - Share PPM connections (Seite 172)

8.2 Create PPM Connections

You define connections for one or more PPM clients to allow users to use PPM as a data source for MashZone feeds or to allow users to add charts from PPM to workspace apps in MashZone NextGen.

MashZone NextGen is compatible with PPM 10.0 or above.

For MashZone NextGen to connect and retrieve PPM data or charts, the following PPM applications must be started:
- PPM
- PPM client

For details on your PPM installation, contact the system administrator in charge. You can enter PPM connection information manually or you can have MashZone NextGen determine them using
the URL of a PPM favorite (favorites path). For information on copying the URL of a PPM favorite, see PPM on-line help topics.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **PPM connections** to expand this section of the **Administration** menu.
3. Click **PPM connections**.
4. Click **Create**.
5. Enter a name for the PPM connections in the Alias field, for example, the client name. The connection data is saved under this alias. Users may choose PPM connections by their alias.
6. To retrieve the connection data from the URL of a favorite from PPM:
 a. Click **Retrieve data**.
 b. Enter the URL of the PPM favorite that you copied earlier in the URL field.
 c. Click **Resolve URL** to retrieve the required parameters from the URL. MashZone NextGen uses the favorite URL to complete the remaining fields for this connection.
7. To enter connection information manually:
 a. Select the protocol (HTTP or HTTPS) to use for the web application server that hosts the PPM query interface.
 For safety reason, we recommend to use the HTTPS protocol.
 b. In the **Host** field, enter the fully qualified domain name of the PPM load balancer.
 c. In the **Port** field, enter the port number of the PPM load balancer.
 d. Specify the PPM client name of your PPM connection in the **Client** field.
8. Click **Check availability** to verify that the data is correct and that the PPM client is available.
9. Click **Save**.

The PPM connection is created and listed by alias name. This also lists the PPM version and availability of the PPM client.

8.3 Edit PPM Connections

You can edit already existing PPM connections.

Changes in PPM connection properties can immediately affect data feed calculations so that they may not execute properly.

For MashZone NextGen to connect and retrieve PPM data or charts, the following PPM applications must be started:

- **PPM**
- **PPM client**

For details on your PPM installation, contact the system administrator in charge. You can enter PPM connection information manually or you can have MashZone NextGen determine them using
the URL of a PPM favorite (favorites path). For information on copying the URL of a PPM favorite, see PPM on-line help topics.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **PPM connections** to expand this section of the **Administration** menu.
3. Click **PPM connections**. A list of all available PPM connections is displayed.
4. Click the 📊 **Edit** icon to configure a PPM connection.
5. The **Alias** field of an already configured PPM connection is not editable. The connection data is saved under this alias.
6. To retrieve the connection data from the URL of a favorite from PPM:
 a. Click **Retrieve data**.
 b. Enter the URL of the PPM favorite that you copied earlier in the **URL** field.
 c. Click **Resolve URL** to retrieve the required parameters from the URL. MashZone NextGen uses the favorite URL to complete the remaining fields for this connection.
7. Enter the connection information manually.
 a. Select the protocol (HTTP or HTTPS) to use for the web application server that hosts the PPM query interface.
 For safety reason, we recommend to use the HTTPS protocol.
 b. In the **Host** field, enter the fully qualified domain name of the PPM load balancer.
 c. In the **Port** field, enter the port number of the PPM load balancer.
 d. Specify the PPM client name of your PPM connection in the **Client** field.
8. Click **Check availability** to verify that the data is correct and that the PPM client is available.
9. Click **Save**.
 Your changes are applied.

8.4 Delete PPM Connections

You can delete existing PPM connections.

Warning
Deleting PPM connections may cause data feeds to fail.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click **PPM connections** to expand this section of the **Administration** menu.
3. Click **PPM connections**. A list of all available PPM connections is displayed.
4. Click the 🗑 **Delete** icon to delete a PPM connection.
5. Confirm the deletion.
 The selected PPM connections are deleted from the list.
8.5 Share PPM connections

You can share PPM connections with particular users and user groups so that these have access to PPM server.

You have administration privileges.

Regardless of the share, users with administration privilege can access all PPM connections.

Regardless of the share, users with administration privilege can access all EDA Event sources.

Procedure

1. Open the MashZone NextGen Admin Console (page 2).
2. Click PPM Connections.
3. Click the Edit PPM alias permissions icon of the PPM connection you want to share.
4. Enter a term in the search field and click Search. Clicking on Search without any input values fetches all users and groups.
5. Click Show MashZone NextGen default groups to show only default MashZone NextGen users or user group in the Search results field.
6. Drag an user or user group from the Search result field and drop it into the Principals with permissions field.

 By default, the owner of the PPM connection is already present in the Principals with permissions list. This owner is non editable and cannot be removed from the list.
7. Activate or deactivate the Display or Usage privileges of a user or user group.

 A user or user group with Display privilege can see the relevant source data in the data feed or dashboard. A user or user group with the Usage privilege has access to the relevant alias in the data source operator.
8. Click OK.

Your changes are applied.
9 webMethods Business Console Integration

MashZone NextGen can be easily embedded in webMethods Business Console using a native Business Console gadget. The gadget is called MashZone NextGen and can be found in the Business Console Common section. Detailed information on how to use webMethods Business Console can be found in the documentation Working with webMethods Business Console.

In order to access a MashZone NextGen dashboard, the Dashboard URL must be provided in the gadget settings. The URL must contain the MashZone NextGen dashboard GUID as an URL parameter.

9.1 Example

http://sbrvpresto4.eur.ad.sag:8080/mashzone/hub/dashboard/dashboard.jsp?guid=e35c1619-0b06-42ac-b343-b16e7d5dcc12

In the section UI Settings the gadget height, title and border can be specified. The section Data Mapping specifies the parameters required for the communication between MashZone NextGen dashboards and Business Console gadgets.

- **Mapping Id**: Identifier used in Business Console for gadget to gadget communication. The Mapping Id is needed to identify and map the data send from one gadget to the data structure of another gadget. In case of two MashZone NextGen gadgets, exchanging data, the mapping can be used to take a selection value from one embedded MashZone NextGen widget and use it as selection value in the other MashZone NextGen widget.

- **Widget Id**: Specifies the external identifier of the MashZone NextGen widget to communicate with.

- **Widget Parameter**: Specifies a measure or dimension name used in the MashZone NextGen widget.

- **Default Value**: Optionally, it is possible to define a default value, that is used for example as a default selection for the MashZone NextGen widget after loading the gadget in Business Console.

All data required can be found in MashZone NextGen, see Use dynamic URL selection for details.

9.2 Authentication

You can integrate MashZone NextGen under My webMethods in an SSO scenario by SAML (Security Assertion Markup Language).

MashZone NextGen can accept SAML tokens for authentication in a SSO environment. See Authentication with Single Sign-On Solutions (page 8) for details.
A BASE64 encoded SAML token is expected. Since it is send via URL it needs to be URL encoded before.

9.3 Example URL

9.4 Configuration

To enable access to MashZone NextGen you need to list the URL(s) of the webMethods Business Console server(s) in the Content Security Policy of MashZone NextGen.

The content security settings are done in the server configuration file applicationContext-security-filters.xml by adding filters for X-Frame-Options and Content Security Policies. The file is located in <MashZone NextGen installation>\apache-tomcat\webapps\mashzone\WEB-INF\classes.

applicationContext-security-filters.xml (abstract)

```xml
```

9.5 Outbound API

MashZone NextGen provides an outbound API to pass data from MashZone NextGen dashboards to an embedding system, for example, an external web application like webMethods Business Console.
See Post data for details.

9.6 Inbound API

By using iFrame MashZone NextGen can be used as a widget in external products, for example, webMethods Business Console. As embedded widget MashZone NextGen is enabled to send data via outbound API (Post data) to the embedding system and receive data via inbound API (URL selection) from the embedding system.

See Embedding MashZone NextGen in external system environments (page 63) for details.
10 MashZone NextGen Repositories

The MashZone NextGen Repository is the database that the MashZone NextGen Server uses to store meta-data, attributes and configuration for MashZone NextGen including:

- Artifacts (dashboards and data feeds)
- Configuration properties for the MashZone NextGen Server

If you are using the default User Repository, user and group data is also stored in the MashZone NextGen Repository.

The MashZone NextGen repository is initially installed in a Derby database suitable only for trial purposes. For proof-of-concept, development or production uses, move the repositories to a robust and compatible solution.

Configuration and administration tasks for these two repositories include:

- Move the MashZone NextGen repository to a robust database solution (page 24)
- Support International Character Sets and Locales (page 58)
- Use the Default MashZone NextGen User Repository (page 40)
- Change MashZone NextGen Repository Ports (page 62)
- Tuning the MashZone NextGen Repository Connection Pool (page 176)
- Synchronize the MashZone NextGen Repository and MashZone NextGen Server Time Zones (page 178)
- Sharing the MashZone NextGen Repository in Clustered Environments (page 120)
- Configure BigMemory Servers for MashZone NextGen Caching and In-Memory Stores (page 77)
- Maintenance Suggestions (page 176)

10.1 Maintenance Suggestions

Your existing standards for database backups, security and maintenance can be applied to the MashZone NextGen repositories. In addition, you should set up procedures to monitor or regularly manage growth for the MashZone NextGen Auditable Events table. This table tracks audit information for updates to the MashZone NextGen Repository.

You may also want to move snapshot data to a separate database to more easily manage growth and other operations for these datasets.

10.2 Tuning the MashZone NextGen Repository Connection Pool

In addition to basic connection configuration, you can configure the connection pools for the MashZone NextGen Repository. In many cases, you need to tune this configuration to optimize your MashZone NextGen environments.
For a complete list of connection properties, see Tomcat Datasource Properties (http://commons.apache.org/proper/commons-dbcp/configuration.html).

To tune the connection pool, you update properties in the `<Resource>` element for the MashZone NextGen repository in the `<MashZone NextGen installation>/apache-tomcat/conf/context.xml` file and then restart MashZone NextGen to apply these changes.

10.2.1 Connection Pool Size Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialSize</td>
<td>The initial number of connections to create when the pool starts up. This defaults to 0.</td>
</tr>
<tr>
<td>maxWaitMillis</td>
<td>The maximum number of milliseconds that the pool will wait when no connections are available before failing. Defaults to -1 which is an indefinite wait.</td>
</tr>
</tbody>
</table>

10.2.2 Idle Pool Connection Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxIdle</td>
<td>The maximum number of connections that can be idle without connections being released. Defaults to 20. Set this to -1 to prevent any connections being released.</td>
</tr>
<tr>
<td>minIdle</td>
<td>The minimum number of idle connections that can exist before new connections are added to the pool. This defaults to 0, indicating no new connections should be created.</td>
</tr>
<tr>
<td>testWhileIdle</td>
<td>Whether connections should be tested when idle.</td>
</tr>
<tr>
<td></td>
<td>If this is enabled, idle connections are tested using the Validation query. See Move the MashZone NextGen repository to a robust database solution (page 24) for more information on validation queries.</td>
</tr>
<tr>
<td>timeBetweenEvictionRunsMillis</td>
<td>The number of milliseconds between tests of idle connections.</td>
</tr>
<tr>
<td></td>
<td>This defaults to -1, which prevents all idle connection testing.</td>
</tr>
<tr>
<td>numTestsPerEvictionRun</td>
<td>The number of connections to test during any idle connection test run.</td>
</tr>
<tr>
<td>minEvictableIdleTimeMillis</td>
<td>The minimum number of milliseconds that a connection can be idle before being tested for eviction. Default is 3 minutes.</td>
</tr>
</tbody>
</table>
10.3 Synchronize the MashZone NextGen Repository and MashZone NextGen Server Time Zones

Creation and modification timestamps for artifacts and other MashZone NextGen Repository metadata can be different than times when events occurred in the MashZone NextGen Server in two cases:

- If the server hosting the MashZone NextGen Repository is located in a different time zone from the server hosting the MashZone NextGen Server
- If the time zone setting for the database hosting the MashZone NextGen Repository is set to a different time zone from the server hosting the MashZone NextGen Server

You can correct this problem by specifying a time zone in configuration for the MashZone NextGen Repository.

The instructions in this topic are specific to MySQL databases. For other types of databases, please consult documentation for that database to determine the appropriate updates.
11 Additional Information and Support

11.1 Samples, Help and Other Documentation

You can find samples, help and other documentation for MashZone NextGen in:

- **MashZone NextGen User and Developer Guide**: You can download MashZone NextGen documentation at https://empower.softwareag.com/ for offline access. An Empower account is required.

- **Online Help**: is accessible in MashZone NextGen from ? help buttons.

- **Documentation for Other Software AG Products**: is available online at http://documentation.softwareag.com with an Empower or from http://techcommunity.softwareag.com/welcome-documentation with a Software AG Tech Communities account.

11.2 Version and License Information

You can find version and other system information for MashZone NextGen in the Admin Console. For system information:

1. Open the MashZone NextGen Admin Console (page 2).
2. Expand the **Server** menu section.
3. Click **System Info** and select the **Platform Information** or **System Information** tabs.
4. Click **License Info** for MashZone NextGen license information.
12 Legal information

12.1 Documentation scope

The information provided describes the settings and features as they were at the time of publishing. Since documentation and software are subject to different production cycles, the description of settings and features may differ from actual settings and features. Information about discrepancies is provided in the Release Notes that accompany the product. Please read the Release Notes and take the information into account when installing, setting up, and using the product.

If you want to install technical and/or business system functions without Software AG's consulting services, you require extensive knowledge of the system to be installed, its intended purpose, the target systems, and their various dependencies. Due to the number of platforms and interdependent hardware and software configurations, we can only describe specific installations. It is not possible to document all settings and dependencies.

When you combine various technologies, please observe the manufacturers' instructions, particularly announcements concerning releases on their Internet pages. We cannot guarantee proper functioning and installation of approved third-party systems and do not support them. Always follow the instructions provided in the installation manuals of the relevant manufacturers. If you experience difficulties, please contact the relevant manufacturer.

If you need help installing third-party systems, contact your local Software AG sales organization. Please note that this type of manufacturer-specific or customer-specific customization is not covered by the standard Software AG software maintenance agreement and can be performed only on special request and agreement.

If a description refers to a specific ARIS product, the product is named. If this is not the case, names for ARIS products are used as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Includes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIS products</td>
<td>Refers to all products to which the license regulations of Software AG standard software apply.</td>
</tr>
<tr>
<td>ARIS Clients</td>
<td>Refers to all programs that access shared databases via ARIS Server, such as ARIS Architect or ARIS Designer.</td>
</tr>
<tr>
<td>ARIS Download clients</td>
<td>Refers to ARIS clients that can be accessed using a browser.</td>
</tr>
</tbody>
</table>

12.2 Data protection

Software AG products provide functionality with respect to processing of personal data according to the EU General Data Protection Regulation (GDPR).

Where applicable, appropriate steps are documented in the respective administration documentation.
12.3 Disclaimer

ARIS products are intended and developed for use by persons. Automated processes, such as the generation of content and the import of objects/artifacts via interfaces, can lead to an outsized amount of data, and their execution may exceed processing capacities and physical limits. For example, processing capacities are exceeded if models and diagrams transcend the size of the modeling area or an extremely high number of processing operations is started simultaneously. Physical limits may be exceeded if the memory available is not sufficient for the execution of operations or the storage of data.

Proper operation of ARIS products requires the availability of a reliable and fast network connection. Networks with insufficient response time will reduce system performance and may cause timeouts.

If ARIS products are used in a virtual environment, sufficient resources must be available there in order to avoid the risk of overbooking.

The system was tested using scenarios that included 100,000 groups (folders), 100,000 users, and 1,000,000 modeling artifacts. It supports a modeling area of 25 square meters.

If projects or repositories are larger than the maximum size allowed, a powerful functionality is available to break them down into smaller, more manageable parts.

Some restrictions may apply when working with process administration, ARIS Administration, ARIS document storage, and ARIS Process Board, and when generating executable processes. Process Governance has been tested and approved for 1000 parallel process instances. However, the number may vary depending on process complexity, for example, if custom reports are integrated.

ARIS document storage was tested with 40,000 document items. We recommend monitoring the number and overall size of stored document items and archiving some document items if needed.