

webMethods JIS:

XHTML Client User’s Guide

Version 9.0

November 2009
(originally released January 2005)

This document applies to webMethods JIS Version 9.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992–2009 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America, and/or
their suppliers. All rights reserved.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://
documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to “License
Texts, Copyright Notices and Disclaimers of Third-Party Products”. This document is part of the product documentation, located at http://
documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: JIS-XHTMLCLIENT-UG-90-20121115

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

About This Guide . 19
Documentation Set . 20
Document Conventions . 21
Viewing the Documentation Online . 22

Chapter 1. webMethods JIS: XHTML Client . 23
JIS Terminology . 23
Introducing webMethods JIS . 25

Problems Solved by the XHTML Client . 25
Runtime Architecture . 25

The Host . 26
The JIS Server . 26

Function . 26
Components . 27

The Client . 27
Function . 27
Components . 28

Runtime Dataflow . 28
Implementing the XHTML Client . 29

The Development Phase . 29
The Deployment Phase . 29

Chapter 2. The Development Environment . 31
Schematic Diagram of Development Architecture . 31

The Host . 31
The Development Machine . 32

Software Used for test Development . 32
ACE . 32
Java Compiler . 32
WISE InstallBuilder . 32
Web Server . 33
Web Browser . 33

Workflow for Developing the JIS Application . 33
Setting up the Development Environment . 34

Installing ACE on the Development Machine . 34
Installing Multiple Versions . 34

Additional Installations . 35

Chapter 3. Creating the JIS Application . 37
Working in ACE . 37

KnowledgeBase . 38
Screen Image . 38
webMethods JIS: XHTML Client User’s Guide Version 9.0 3

 Table of Contents

Subapplication . 38
Application . 38
Library . 39

Converting the Host Application. 39
Creating an Application . 40
Creating Screen Images . 40
iSeries Applications and Screen Definition Files . 41

Creating Screen Images . 41
Mainframe Applications and Screen Definition Files . 45

Creating Screen Images . 45
Capturing Your Host Application . 46
Combining a Screen Capture and a BMS or MFS File . 46
Maintaining Screen Images . 47
Glossary of File Formats. 47

Creating Subapplications . 48
Optimizing the Converted Application . 49

Considerations When Working in ACE . 49
HTML Limitations . 50

Combo Boxes . 50
Check Boxes and Radio Buttons . 51
Spin Controls . 51
Masking Text. 51

Date Controls . 51
Tab Controls . 52
Host Paging from Within Tables.. 52

HTTP Limitations . 52
DIL Messages. 53
Message Handling . 53
Message Boxes . 53

Browser Limitations . 54
Wait for Screen . 54

General Explanation . 55
The SetWaitForScreenState DoMethod . 56
The UserAcceptScreen System-Triggered Method . 57

Customizing the SetWaitForScreen Function . 57
Using GetCurrentContextParm with UserAcceptScreen . 58

Example of the Use of SetWaitForScreen . 58
Using Wait for Screen on the First Screen of an Application . 61

Common Problems . 61
Limitations. 62

Generating a Runtime . 62
Setting Runtime Generation Options . 63
How to Generate a Runtime . 65
The Runtime Generation Process . 66

The Application HTML Files Generated During Compilation . 66
Testing the Generated Runtime . 67

Activating a Web Server . 67
Running the Application from within ACE . 67
4 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Table of Contents

Starting the Application Manually . 68
Activating the JIS Server . 68
Sending an HTTP Request from your Browser . 68

Testing the Runtime . 69
Functionality . 70
Misidentified Screens . 70

Packing and Unpacking Applications . 71
Section 508 Guidelines . 71

General Guidelines . 71
Colors and Graphics . 72
Controls . 72
ASCII Art . 73
Tables . 75

Chapter 4. Deploying the JIS Runtime Application . 77
The JIS Runtime . 77

Creating the Runtime Installation . 78
Installing Your Runtime . 78

Keyboard Emulation . 78
The JIS Runtime on Windows . 79

Creating a Runtime Installation . 79
Installing Your Runtime on Windows . 80

The JIS Runtime on iSeries . 80
Creating a Runtime Installation . 80
Installation Files to be Copied on an iSeries . 81

Installing the Runtime on the iSeries . 81
Mapping the PC to the iSeries IFS . 82
Transferring the Runtime Environment to the iSeries via a Mapped Network Drive 83
Transferring the Runtime Environment to the iSeries Manually . 86
Transferring the Server Package to the iSeries . 87
Running the Install Program on the iSeries . 88

Activating the JIS Server on the iSeries . 91
Activating the JIS Server Using the RUNJACSRV Command . 91

The JIS Runtime on Solaris . 92
Preparing the Solaris Directory Structure . 93

Creating a User ID for the JIS Application . 93
Creating a Working Directory Under the User Directory. 93

Creating a Runtime Installation . 93
Pre-Installation Checklist for the Solaris Platform . 94
Installing Your Runtime on a Solaris Machine . 95

Installing the Runtime Environment Using Samba . 95
Mapping the PC to Solaris . 95
Transferring the Runtime Environment to the Solaris Machine . 96
Installing the Runtime Environment Using FTP . 98
Installing the Runtime Environment on a Temporary PC Directory . 99
Compressing and Transferring the Runtime Environment to the Solaris Machine. 101
Deploying the Runtime Environment into a Pre-defined Working Directory 101

Activating the JIS Server on Solaris . 101
webMethods JIS: XHTML Client User’s Guide Version 9.0 5

 Table of Contents

The Jacadasv Script . 102
The JIS Server Command Line Parameters . 103

Chapter 5. Optimizing the JIS Server . 105
JIS Server INI File Settings . 105

Location of INI Settings: A Recommendation . 105
The INI Settings . 106

Scalability . 139
The Scalable System Structure of the JIS Server . 139

Single Server-Computer System . 139
Structure . 140
Function . 140

Multiple Server-Computer System . 141
Structure . 142

Function . 142
Client Connection to the System . 143

Identifying Server Modules . 144
The Integrator Process . 145
Setting up the Scalable Server System . 145

Customized jacadasv.ini File . 146
General Structure of the jacadasv.ini File . 146

The jacadasv.ini File is Composed of Sections . 146
Targeting ini Parameters to a Particular Machine or Server-Node Level 147
Precedence of Targeted ini File Sections . 148

Redirection Proxy . 153
The Redirection Process . 153
Starting the Redirection Process . 154
Using a Load Balancer or Another Proxy with the JIS Redirection Proxy 156
The Proxy Log File . 157
Running a Proxy on Each of your Machines. 157
HTTPS Communication Described. 158
Using HTTPS Communication . 158

JIS Server Logging Support . 159
JIS Server Logging Architecture . 159

JIS Server Log Information Flow . 161
The Server System Log Classes . 161

SessionLog Log Class . 161
Viewing the SessionLog Output . 163

Setting the LogClasses and Their jacadasv.ini File Parameters . 163
LogClasses Section . 164
SessionLog Section . 164
XMLLog Section . 165
XMLServer Section. 165

How to Create a Server Log File . 165
Advanced Logging Features . 166

Controlling the Size of the Log File. 166
The Start Log . 166
Debug Filters . 166
6 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Table of Contents

Analyzing Abnormal Runtime Termination. 168
Information Included in Dump Files . 168
Dump File Generation . 169
Dump File Name and Location . 169
Enabling Dump File Generation . 169
Dump File Structure . 170

Java Client Core Dump File . 170
Session Core Dump File . 172

Adding Messages . 177
Checking Server Configuration . 178

Server Configuration Checker . 179
Enabling the Server Configuration Checker . 180

Server Mode. 180
Offline Mode . 181

Range of Valid Properties . 181
JIS Administrator . 184

JIS Administrator for the JIS Proprietary Server . 184
Starting the JIS Administrator. 185
Connecting Online to the JIS Server . 185
Debugging the JIS Administrator . 187

JIS Administrator for the J2EE Environment . 188
Running the JIS Administrator Under J2EE . 188

The JIS Administrator Interfaces . 188
The Server Monitor Interface . 188
The Properties and Sessions Tabs. 192
The License Tab . 198
Operations you Perform Using the Server Monitor . 200
The Runtime Configuration Interface . 204

Running the JIS Server as a Windows Service . 218
Registering the JIS Server in Windows . 218

Parameters of JBSToService.exe. 218
More Examples of the Use of JBSToService.exe: . 219
Caution . 220

Invoking the JIS Server as a Service . 220
Logging off from the machine . 222

Printing Emulation . 222
Sending a Printing Request to the Host . 222
Viewing Print Job Results . 223

The Available Print Jobs Window. 225

Chapter 6. Language Localization . 227
How the Localization Feature Works . 227

The Localization Feature Workflow . 228
Activating the Localization feature . 228

The Resource Files . 229
The Original Resource File . 229
The Translated Resource File . 229

Resource Maintenance . 230
webMethods JIS: XHTML Client User’s Guide Version 9.0 7

 Table of Contents

Setting the Runtime Localization Mechanism . 230
String Types Handled by Localization . 231
ISO Language and Country Codes . 231
Current Limitations . 232

Chapter 7. XHTML Runtime Architecture . 233
JIS Server Components . 233
XHTML Processing Module . 234

HTTP Request Processing - Client to Host . 235
HTTP Response Processing - Host to Client . 235

XHTML Processing . 236
Static and Dynamic Subapplication Information . 236
On-going Processing Between Host and Client . 236
Building a Static XHTML with HTML Extensions . 237

Building the Base XHTML. 238
Merging HTML Extensions with the Base XHTML . 238

Updating the Static XHTML with Dynamic Information . 238
Writing Java Extensions . 239

Chapter 8. Enhancing Your Application Using HTML Extensions . 243
HTML Extensions. 243

Location of Files on the JIS Server. 244
Converting User HTML Extension Files to DOM XHTMLs . 245
Merging the XHTMLs Into One File . 246
The Merged XHTML . 246

The Merging Process During Development . 247
Creating HTML Extensions . 248

Configuring the JIS Server to Enable HTML Extensions . 248
Writing a User HTML Extensions File . 248
Naming and Placing a User HTML Extension File . 249

Application Level. 249
Library Level . 249
Subapplication Level. 250

Incorporating an Extension File into Your Application . 250
During Deployment . 250
During Development . 250

The OutOfSync Screen . 250
Customizing the OutOfSync Screen . 252

Using JavaScript in HTML Extensions . 252
Creating a <Script> Tag in the HTML’s <Head> . 253
Creating an Event Handler in the HTML’s <Body> . 253

Examples of User HTML Extensions . 254
Changing the Title of all HTML Pages to Your Company’s Name . 255
Setting a Different Background Image for Each Subapplication . 255
Inserting a JavaScript-Driven Animation into Your Application . 255
Enabling FKey Support . 256

In Version 9.0 . 256
8 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Table of Contents

For All Versions . 256
Customizing HTML Error Pages . 258

Error Page Configuration . 260
Writing HTML Error Pages . 261

Including Original Error Text . 262
Naming HTML Error Pages . 262

Client-side Errors . 263
Server-side Errors . 263

Saving HTML Error Pages . 263
Error Code Explanations . 263

CSS Usage in the JIS XHTML Client. 267
CSS – A Basic Explanation . 267

Style Information Levels . 267
The CSS File in JIS . 268

The CSS Modifies the XHTML Pages . 271
KBInformation.xml File Not to be Modified . 273
<ApplName>.ini File Setting. 274

Modifying the Generated CSS File . 274
General Recommendations Regarding CSS . 274

Java Skins vs. Custom CSS. 274
Using Your Own Style Sheet . 275

Adding a Custom CSS file via an HTML Template. 275
For Advanced Users Only: Additional Methods for CSS . 275

Invoking a Custom CSS file via a Java Extension . 277
Limitations in the Use of External CSS Style Sheets . 277

Chapter 9. Enhancing Your Application Using Java Extensions . 279
JIS’s Javadoc Files . 279
Events for Activating Java Extensions. 279

Extension Types . 280
Page-Level Extensions . 281

Extensions Activated Before Sending Page to Client - onPageLoad Event 281
Extensions Activated After Submitting Page - onPageSubmit Event . 281
Extension Scope, Hierarchy and Files . 282

Extension Scope . 282
Extension Hierarchy . 282
Extension Files . 282

Java API - onPageLoad, onPageSubmit . 286
Controls Package . 287
Context Package . 288

Control-level Extensions - onControlReady. 289
Applying Skins Across Applications . 290

Setting Up an Application to Use Skins . 290
Skin-related DoMethods. 292

Java API - onControlReady . 292
Java Extension Examples . 293

COOKIES . 294
LOGON.java. 294
webMethods JIS: XHTML Client User’s Guide Version 9.0 9

 Table of Contents

BROWSERS . 296
LOGON.java . 296

BADINPUT . 298
MAINMENU.java. 298
MBF001.java. 300

RETRIEVE . 301
MBF006R1.java . 302

SKINDEMO . 305
Runtime INI Settings. 305
The "skin.butterfly" Skin Package. 306
Colors.java . 308
XhtmlControlExtension.java . 308
StaticExtension.java . 309
ButtonExtension.java . 310
TableExtension.java . 310
TableHeaderExtension.java . 311
EditExtension.java . 312
WindowExtension.java . 312
PromptExtension.java. 313

Extensions to the Date Calendar Window . 314
The Date Calendar Window . 314
Changing the Appearance of the Date Calendar Window . 315

Types of Changes Available . 315
Scope of Changes . 316

Additional APIs. 323
Combo Box Methods . 323

addItem. 323
addItem. 323
cloneControl . 323
deleteAllItems . 324
deleteItem. 324
 deleteItem . 324
getItem . 324
getItemCount . 324
getSelectedIndex . 325
getSelectedItem . 325
getText . 325
setSelectedItem . 325
setSelectedItem . 326
setText . 326

Chapter 10. Conducting XML-based Transactions from the Client . 327
XML-Based Transactions. 327

The Transaction Dataflow . 328
Assembling a Transaction . 329

Transaction Methods . 329
XML-based DoMethods . 330

The DOM-based API . 330
10 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Table of Contents

The JIS Template API. 339
List of XML-based DoMethods . 347

Navigating Through Host Screens. 350
Navigation Types . 351
Example: Navigating Through a SignOn Screen . 352
Retrieving Information from Host Screen Fields. 353
Writing Information into Host Screen Fields . 353
Skipping Windows . 353
Navigation Continuity . 354
Navigation Strategies . 354
Overcoming Navigation Obstacles . 356

Chapter 11. The Server Configuration File . 359
How the Server Configuration File Works . 359

Three-tier Hierarchy . 359
The Client . 360
The Transaction . 360
The Session . 360

Overriding Dataflow . 361
<SessionDefinitions> . 361
<ActionDefinitions> . 361
Session Definitions. 362
Action Definitions . 362

Getting Started. 362
Changing a Transaction’s Name . 363
Specifying a Default JIS Application Name . 363

Writing the Server Configuration File. 364
The Main Elements . 364
Creating Session Definitions . 365
Creating Action Definitions . 368
Server Configuration File Minimum Requirements . 370

Action Definition Essentials . 370
Session Definition Essentials . 370

Enabling Action Definitions to be Overridden by the Client . 371
On the Client Side . 371
On the Transaction Side . 372

Linking the Action Definition <Parameter> Tags . 372
Enabling Session Definitions to be Overridden by Actions . 376

On the Transaction Side . 376
On the Session Side . 377

Linking the Session Definition <Parameter> Tags . 378
Example Server Configuration File . 381
XML Tag Reference . 387

Chapter 12. Application Server Deployment . 405
Web Application Deployment. 405

*.INI File Settings When Running as Web Application . 405
webMethods JIS: XHTML Client User’s Guide Version 9.0 11

 Table of Contents

Creating the Runtime Installation . 405
Using the Create Runtime Installation Wizard . 406
The package.log Files . 407
Contents of the Application Server Runtime Installation . 407

Deploying Your Application to WebSphere . 407
Running Your Application with WebSphere under Windows . 408
The JIS Administrator. 408
jacadasv.ini File Is Optional When Running as Web Application . 409
JIS Application Debug Logging . 410

Chapter 13. Special to the XHTML Client . 411
Modifying the Appearance of RMB Pop-up Menus . 411

Introduction . 411
Related INI File Setting . 411
Controlling the Appearance of the Pop-Up Menus . 412

APIs for Setting RMB Pop-Up Menu Characteristics . 412
APIs for Querying RMB Pop-Up Menu Characteristics . 412

*.ini Settings for the XHTML Client. 413
[XHTML] Section of jacadasv.ini . 413
HTTPClient . 413
PopupSupport ini setting . 413
Keep Alive Implementation for the XHTML Client . 414

Appendix A. Troubleshooting . 415
12 webMethods JIS: XHTML Client User’s Guide Version 9.0

List of Figures

XHTML client runtime architecture . 25
The host . 26
The JIS Server . 26
The XHTML client . 27
Host-server-client information flow . 28
The development architecture . 31
Create screen images dialog box . 42
Handling hidden and protected fields . 44
Combo box style tab . 50
Masking text dialog box . 51
Date control in ACE . 51
Date control in runtime . 51
A sample subapplication. 59
The button component dialog box . 59
A method using SetWaitForScreenState . 60
Runtime generation options dialog box . 63
Error message during compilation . 65
Generating the runtime dialog box . 66
Application’s SignOn HTML page. 69
ASCII image . 74
Map network drive . 82
RT transfer to the iSeries via mapped network drive . 84
RT transfer to the iSeries via mapped network drive (next) . 85
RT transfer to the iSeries via mapped network drive (next) . 85
Manual RT transfer to the iSeries . 87
JIS Server installation on the iSeries . 88
JIS Server installation on the iSeries: options . 89
Run JIS Server (RUNJACSRV) screen . 91
RT transfer to Solaris . 97
RT transfer to Solaris on a temporary PC directory . 100
Single server computer system . 140
Control flow upon session start. 141
Multiple-server computer system . 142
Identifying server modules . 144
Redirection proxy mechanism . 154
JIS Server logging architecture. 159
Connect online dialog box . 186
The system status log pane, with the Properties tab selected . 189
The Sessions tab . 190
The Debug tab . 196
The License tab . 198
Stop JIS Server dialog box . 201
The runtime configuration interface . 204
webMethods JIS: XHTML Client User’s Guide Version 9.0 13

 List of Figures

Sending a printing request . 223
Printed jobs button . 224
Available print jobs window. 224
The outcome of the printing request . 225
Language localization of JIS applications . 227
Information flow in runtime . 233
JIS Server components. 234
The XHTML processing module . 235
Client-host information flow. 237
Base XHTML generation. 238
Update of dynamic XHTML. 239
Event activation. 241
XHTML generation . 244
HTML-containing directories . 245
user extensions directory . 247
The out-of-sync screen . 251
The hidden button’s method . 257
Standard HTTP error message. 259
Customized HTTP error message. 260
Events in the XHTML processing module . 280
The MAINMENU subapplication . 298
The MBF001 subapplication . 300
The MBF006R1 subapplication. 302
Skins directory structure . 306
The SKINDEMO screen “before” . 306
The SKINDEMO screen “after” . 307
The date control . 314
The date calendar window . 314
A typical XML transaction . 328
SignOn screen . 352
Navigation through several screens . 355
Server configuration file dataflow . 361
Server configuration file structure . 365
A typical <SessionDefinition> element . 367
<ActionDefinition> with <ContentHandler> . 369
<ActionDefinition> with <DefaultHandler> . 369
URL command line in an XML transaction . 371
Values from URL request override default values. 372
Children of transaction element are overridden by parameters . 375
The action definition’s SessionManagement element. 376
Parameter tags override session default settings . 377
Parameters in session management element override values in session definition 380
Installation: select Application Server deployment . 406
Installation: select application server . 406
14 webMethods JIS: XHTML Client User’s Guide Version 9.0

List of Tables

webMethods JIS documentation set . 20
Documentation conventions . 21
JIS terminology . 23
ACE file formats . 47
 ACE views . 49
Parameters in SetWaitForScreenState . 56
Parameters for first use of SetWaitForScreenState . 61
Troubleshooting of the Wait for Screen feature . 62
HTTP request elements . 68
Troubleshooting misidentified screens . 70
Keyboard emulation . 78
JIS Server command line parameters . 103
Jacadasv.ini: [General Parameters] section . 107
Jacadasv.ini: [HTTP] section . 115
Jacadasv.ini: [XHTML] section . 119
Jacadasv.ini: [Applications] section . 124
Jacadasv.ini: [<ApplName>] section . 124
Jacadasv.ini: [VMCommandLine] section . 125
Jacadasv.ini: [ServerMachines] section . 125
Jacadasv.ini: [Sessions] section . 126
Jacadasv.ini: [SessionTimeouts] section . 126
Jacadasv.ini: [ScoreWeights] section . 127
Jacadasv.ini: [ProcessCheck] section . 128
Jacadasv.ini: [LogClasses] section . 130
Jacadasv.ini: [Log Java Class Name] section . 131
Jacadasv.ini: [SessionLog] section . 133
Jacadasv.ini: [SessionCountLog] section . 135
Jacadasv.ini: [XMLLog] section . 137
Jacadasv.ini: [XMLServer] section . 138
JIS Server logging system . 160
SessionLog records . 162
LogClass parameters . 164
Dump files data . 168
Setting dump parameters . 169
Client dump: general process information . 170
Client dump: session level information . 171
Client dump: exception information . 172
Session dump: general process information . 173
Session dump: session level information . 175
Session dump: exception information . 177
Server configuration errors . 179
Server configuration warnings . 180
Jacadasv.ini: valid numeric parameters . 182
webMethods JIS: XHTML Client User’s Guide Version 9.0 15

 List of Tables

Connect Online parameters .186
JAM debugging feature: activating parameters .187
Properties in the Properties and Sessions tabs .192
Elements in the JIS Administrator Debug tab .196
Elements in the JIS Administrator Debug tab .199
Stop JIS Server instructions .202
Runtime configuration interface components .204
Runtime configuration: dynamic controls parameters .207
Runtime configuration: navigation parameters .208
Runtime configuration: miscellaneous parameters .208
Runtime configuration: list parameters .209
Runtime configuration: runtime behavior parameters .210
Runtime configuration: emulator type parameters .211
Runtime configuration: emulator settings parameters .213
Runtime configuration: bleedthrough parameters .214
Runtime configuration: display parameters .214
Runtime configuration: display parameters .215
International standards for localization .231
jacadasv.ini: error page parameters .261
HTML error codes .264
Prefixes of CSS class names .271
XML-based DoMethods .347
16 webMethods JIS: XHTML Client User’s Guide Version 9.0

List of Examples

jacadasv.ini for a Single Server-Computer System . 148
jacadasv.ini file for a Multiple Server-Computer System . 150
 Setting up a Server Log file . 165
JAM startup command . 187
The resource file for Canadian French. 229
Link to a JavaScript file in a <script> tag . 253
An onClick event handler . 254
HTML code for error page . 262
CSS and style information priorities . 268
Contents of a JIS CSS file . 269
XHTML template referring to CSS . 272
Library-scope extension . 284
Subapplication-scope extension. 285
Use of skins - <ApplName>.ini settings . 292
Extending the static controls . 293
Use of skins- <ApplName>.ini settings. 322
Client overrides Transaction. 373
Transaction overrides Session . 378
webMethods JIS: XHTML Client User’s Guide Version 9.0 17

 List of Examples

18 webMethods JIS: XHTML Client User’s Guide Version 9.0

About This Guide

The XHTML client is one of several available client types. This manual
specifically covers topics related to the XHTML client. This manual is
accompanied by webMethods JIS: Basic User’s Guide, which covers all topics
related to the processing of host application screens and their development.

This manual is structured as follows:

• Chapter 1 - "webMethods JIS: XHTML Client". An introduction to the
product and guidelines for using this manual.

• Chapter 2 - "The Development Environment". An introduction to the
development environment as well as instructions for setting up the
development environment on the Development Machine.

• Chapter 3 - "Creating the JIS Application". Instructions for creating the
webMethods JIS Application in ACE

• Chapter 4 - "Deploying the JIS Runtime Application". Instructions for
deploying the webMethods JIS runtime on the Server Machine.

• Chapter 5 - "Optimizing the JIS Server". Instructions for customizing and
optimizing the JIS Server.

• Chapter 6 - "Language Localization". Information about implementing the
localization feature in your application.

• Chapter 7 - "XHTML Runtime Architecture". An examination of the XHTML
runtime components and architecture.

• Chapter 8 - "Enhancing Your Application Using HTML Extensions".
Instructions for creating user HTML extension files and incorporating them
into the webMethods JIS Application.

• Chapter 9 - "Enhancing Your Application Using Java Extensions". A detailed
examination of a set of examples for incorporating Java extensions into your
application.

• Chapter 10 - "Conducting XML-based Transactions from the Client".
Introduction to XML Transactions and instructions for creating and using
them.

• Chapter 11 - "The Server Configuration File". An introduction to the Server
Configuration File and instructions for modifying and configuring it, as well
as creating a new Server Configuration File from scratch.

• Chapter 12 - "Application Server Deployment". An explanation of how to run
webMethods JIS applications on a J2EE application server.
webMethods JIS: XHTML Client User’s Guide Version 9.0 19

 About This Guide

Documentation Set

webMethods JIS is supplied with the manuals shown below. The documentation
is delivered in Adobe Acrobat Reader Portable Document Format (PDF). No
hardcopy documentation is provided, but you can print the PDF files on your
local printer.

Table 1. webMethods JIS documentation set

This book... Contains...

webMethods JIS: Getting
Started with the Automated
Conversion Environment

Startup information and an introduction to
the Automated Conversion Environment
(ACE).

webMethods JIS: Basic User’s
Guide

Full explanations of the ACE Views and how
to use them

webMethods JIS: Advanced
Topics

Explanations of advanced features that give
your application extra functionality.

webMethods JIS:
KnowledgeBase User’s Guide

In-depth information about the way the ACE
KnowledgeBase is designed and how to work
with it.

webMethods JIS: Java Client
User’s Guide

Information for migrating your host
application to Java.

webMethods JIS: XHTML
Client User’s Guide

Information for migrating your host
application to an XHTML web application.
20 webMethods JIS: XHTML Client User’s Guide Version 9.0

 About This Guide

Document Conventions

The following conventions are used throughout this manual.

Table 2. Documentation conventions

Convention Description

Click Position the mouse pointer on the control and quickly
press and release the left mouse button once. (Unless the
right mouse button is explicitly specified, you should click
the left mouse button.)

Double-click Position the mouse pointer on the control and quickly
press and release the left mouse button twice. (Unless the
right mouse button is explicitly specified, you should
double-click the left mouse button.)

UPPERCASE Uppercase letters are used for the names of files. For
example, a panel file with the name Menu, will be
expressed as MENU.PNL.

italics Names of applications, programs, menus, dialog boxes,
and libraries.

Bold Menu options, and items, dialog boxes and items to be
selected from a dialog box. The names of pull-down
menus.

Bold Italics Pattern definitions, representation definitions, message
definitions, method names, layout names, section names,
selection definitions, function definitions.

BOLD +
UPPERCASE

Keyboard shortcuts: Press the SHIFT key. Press CTRL + Z.
webMethods JIS: XHTML Client User’s Guide Version 9.0 21

 About This Guide

Viewing the Documentation Online

You can also access the latest version of the documentation for Software AG
products at http://documentation.softwareag.com/. As new versions become
available, the documentation on this web site will be updated and the previous
versions will be migrated to the Software AG documentation web site at http://
servline24.softwareag.com/public/. If you have a maintenance contract, you can
view all versions of documentation on this web site. You will find instructions for
registering and obtaining a userid and password on the documentation web site.
22 webMethods JIS: XHTML Client User’s Guide Version 9.0

http://documentation.softwareag.com/
http://servline24.softwareag.com/public/
http://servline24.softwareag.com/public/

Chapter 1. webMethods JIS: XHTML Client

webMethods JIS is an automated development architecture that generates
XHTML clients for enterprise applications. It uses webMethods JIS’s Automated
Conversion Environment to convert character-based host screens into feature-
rich graphical XHTML clients. Consequently, mainframe and iSeries applications
can be delivered over the internet using an XHTML-capable client interface.

This chapter discusses the various aspects of the XHTML Client and provides
guidelines for using this manual.

The following topics are discussed:

• “JIS Terminology” on page 23
• “Introducing webMethods JIS” on page 25
• “Runtime Architecture” on page 25
• “Runtime Dataflow” on page 28
• “Implementing the XHTML Client” on page 29

JIS Terminology

Working with webMethods JIS, you encounter the following terms:

Table 3. JIS terminology (Sheet 1 of 2)

Term Description

Host
Computer,
Host Machine

Runs the Host, a 5250 or 3270-style application. The Host
can be either an iSeries or a Mainframe computer.

Host
Application

The actual program that operates on the Host computer. A
Host computer may have more than one Host application
on it.

Client The XHTML web-based interface through which an end-
user connects to the host in order to gain access to Host
applications.
webMethods JIS: XHTML Client User’s Guide Version 9.0 23

Chapter 1. webMethods JIS: XHTML Client

Server
Machine

The Server computer hosts the webMethods JIS
deployment environment.

JIS Server The JIS Server opens a session on the Host from one side
and interacts with the end-user on the other. The JIS Server
program must be installed on the Server Machine.

Host session,
Session

A live connection to the host. On a Host session, a user may
navigate through the different host screens.

Development
Machine

The computer that hosts the webMethods JIS Automated
Conversion Environment (ACE).

ACE Automated Conversion Environment - is used to analyze
the host interface and create the webMethods JIS
development environment.

JIS
Application

A collection of all the converted host screens, methods and
other attached information developed in ACE.

JIS Runtime,
Runtime

The executable form of a completed webMethods JIS
application. The runtime is installed on the Server Machine.

ACE Method,
Method

A short program comprised of actions and commands. The
webMethods JIS Application developer may create new
methods or change existing ones. Methods enhance an
Application’s functionality.

XML
Transaction

A concise pre-structured exchange of information between
Host and Client. An XML Transaction is comprised of
several ACE Methods. It is configured in the Server
Configuration File.

Table 3. JIS terminology (Sheet 2 of 2)

Term Description
24 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 1. webMethods JIS: XHTML Client

Introducing webMethods JIS

webMethods JIS extends the functionality of your legacy application to generate
an XHTML Client, so that using a web browser with HTTP connectivity, end-
users may connect to your legacy system and browse through it. In this way your
end-users receive an attractive and enhanced GUI representation of your legacy
system’s screens. Through these screens, the client may connect to your legacy
system just as a standard “green screen” dumb terminal would.

Problems Solved by the XHTML Client

webMethods JIS specializes in integrating MainFrame and iSeries business logic
with dynamic web pages. If your company relies on legacy applications and you
wish to extend your connectivity to the internet, then webMethods JIS is your
solution.

The webMethods JIS solution:

• Enables organizations to respond more quickly to business opportunities
represented by new interface alternatives.

• Eliminates the extraneous expense incurred by IT departments to retool and
react to the ever changing interface standards.

• Significantly improves employee productivity by providing a common look
and feel across new and existing applications - including seamless desktop
integration with today’s Customer Relationship Management (CRM)
applications.

Runtime Architecture

The following sketch outlines the XHTML Client runtime architecture:

Figure 1. XHTML client runtime architecture

The XHTML Client runtime architecture includes three components:

• The Host
• The JIS Server
• The Client
webMethods JIS: XHTML Client User’s Guide Version 9.0 25

Chapter 1. webMethods JIS: XHTML Client

The Host

The host application resides on a Legacy system. The host application interacts
with the JIS Server in the host application’s language.

Figure 2. The host

During runtime, the host keeps working just like it did before integration with
webMethods JIS, thinking that it is communicating with just another dumb
terminal.

The JIS Server

The JIS Server houses the JIS Runtime Application. The JIS Server interacts with
the host application on one side and with the end-user on the other.

Figure 3. The JIS Server

Information transferred between the JIS Server and the end-user is transferred as
XHTML via HTTP. Information transferred between the host application and the
JIS Server is transferred using the host system’s communication protocol.

The JIS Server resides on the Server Machine. In some forms of deployment the
JIS Server may reside together with the host application on the host machine.

Function

During runtime, the JIS Server:

• Communicates with the Host Application by emulating a “green screen”
dumb terminal. The JIS Server receives host screens from the host.

• Identifies each received host screen and matches it with a corresponding GUI
screen. Such GUI screens are also known as Subapplications.
26 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 1. webMethods JIS: XHTML Client

• Composes each Subapplication together with dynamic information received
from the host into an XHTML page known as a Subapplication XHTML.

• Sends Subapplication XHTMLs to the end-user.
• Receives form data from the end-user. This happens each time the end-user

submits the form, contained in the last received Subapplication XHTML, back
to the JIS Server.

• Updates the host application with new information. This is done by filling in
fields and pressing accelerators on the current host screen.

Components

The JIS Server is comprised of files generated from the resulting efforts of the JIS
Application Development. Once the JIS runtime Application is fully developed,
it is packaged into an executable. This executable is then extracted onto the Server
Machine.

The Client

The Client is the XHTML web-based interface, through which the end-user
communicates with the host application. The Client interacts with the JIS Server
HTTP using a web browser.

Figure 4. The XHTML client

The Client may work on any computer with an internet connection.

Function

During runtime, the Client:

• Initiates a connection with the host, by sending an HTTP request to the JIS
Server through a web server.

• Receives a GUI representation of the host screens in the form of a well-formed
HTML.

• Sends HTML form data back to the JIS Server.
webMethods JIS: XHTML Client User’s Guide Version 9.0 27

Chapter 1. webMethods JIS: XHTML Client

Components

The only component the Client requires is a web browser.

Runtime Dataflow

What happens in runtime is described in Figure 5.

Figure 5. Host-server-client information flow

This is the sequence of events:

1 The Client sends an HTTP request to the JIS Server.
After the initial connection, the browser displays the JIS application GUI. The
client fills in fields and submits forms via HTTP to the JIS Server.

2 The JIS Server processes the information submitted from the Client.
The JIS Server processes the information received from the client and
translates it into a language the host can understand.

3 The JIS Server communicates with the host.
The JIS Server emulates a standard “green screen” dumb terminal, filling the
appropriate fields and pressing the appropriate accelerator keys on the host.

4 The host updates itself and generates a new screen.
The host sends the new screen back to the JIS Server.

5 The JIS Server generates a GUI.
The JIS Server recognizes the new host screen, matches it with a
corresponding GUI equivalent, known as a Subapplication, and updates the
Subapplication’s fields with dynamic information from the host.

6 The JIS Server sends a well-formed HTML page to the Client.
The JIS Server composes the Subapplication into an XHTML page known as a
Subapplication XHTML. The JIS Server sends this XHTML page to the Client
via HTTP.

7 The Client displays a GUI representation of the current host screen.
28 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 1. webMethods JIS: XHTML Client

For more detailed information, see Chapter 7 - "XHTML Runtime Architecture"
on page 233.

Implementing the XHTML Client

The workflow for implementing the XHTML Client consists of two main phases:

• The development phase.
• The deployment phase.

Each of these phases requires different prior knowledge and skills.

The Development Phase

In the development phase, the JIS Application is created.

The following actions are performed in this phase:

• Preparing the host screens for conversion.
• Installing ACE on the development machine.
• Creating the JIS Application in ACE.
• Testing the JIS Application.
• Creating an executable.

The Deployment Phase

In the deployment phase, the system, on which the JIS Application will operate,
is assembled, fine-tuned and launched.

The following actions are performed in this phase:

• Installing the executable on the server machine.
• Optimizing the JIS Server.
• Enhancing the Application’s look and feel.
• Performance testing.
• Launching the finalized product.
webMethods JIS: XHTML Client User’s Guide Version 9.0 29

Chapter 1. webMethods JIS: XHTML Client

30 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 2. The Development Environment

The JIS Application is developed on a development machine. Most of the
development work is conducted using ACE, webMethods JIS’s Automated
Conversion Environment, which is installed on the development machine.

This chapter provides an overall view of the development environment and the
development workflow, listing the various building blocks of the development
environment and what is needed in order to set it up the development
environment.

The following topics are discussed:

• “Schematic Diagram of Development Architecture” on page 31
• “Software Used for test Development” on page 32
• “Workflow for Developing the JIS Application” on page 33
• “Setting up the Development Environment” on page 34

Schematic Diagram of Development Architecture

The following sketch outlines the development architecture:

Figure 6. The development architecture

The development architecture consists of two components:

• The host
• The development machine

The Host

While creating the JIS Application, you need to access the host application for the
purpose of extracting the host screens for conversion. Once the JIS Application is
created, you will need to test it by simulating a live connection with the host.
webMethods JIS: XHTML Client User’s Guide Version 9.0 31

Chapter 2. The Development Environment

The Development Machine

The JIS Application is created, tested and packaged for production on the
development machine. First, ACE is installed on the development machine. In
ACE, you create the JIS Application and create a runtime. Then, you must test the
JIS Application created in ACE. To do this, the development machine simulates a
live runtime connection with the host, in which both components, JIS Server and
Client, are housed in the development machine.

Software Used for test Development

The development environment is comprised of various software components. To
set up the development environment, you have to install each one of these.

The following software is used for development:

• ACE
• Java compiler
• WISE InstallBuilder (optional)
• Web server (optional)
• Web browser

ACE

webMethods JIS’s Automated Conversion Environment (ACE) is used for
converting the host screens into GUI equivalents known as Subapplications and
composing these into a JIS Application. You then use ACE to create the
distributable, which is later deployed on the server machine.

Java Compiler

To compile your JIS Application you need a Java compiler. This process is known
as Runtime Generation. It is an automated process that is performed in ACE
using the Java compiler supplied with the ACE installation package.

WISE InstallBuilder

To create the distributable, ACE enables you to create a WISE installation. This is
an automated process performed in ACE, but it requires the prior installation of
WISE Installation Studio 7.0 or higher on your development machine.
32 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 2. The Development Environment

Web Server

The JIS Server uses a web server to handle HTTP communication with the client.
The Jetty HTTP Server is an integral part of the JIS Server. By default, a JIS
Application’s GIF files are handled by the Jetty HTTP Server. This is done using
the ResourceBase setting in the [HTTP] section of the JIS Server INI file. For more
information, see “JIS Server INI File Settings” on page 105.

Web Browser

To test the JIS runtime, you will need a web browser that supports HTML 4.

webMethods JIS supports the following web browsers:

• Internet Explorer 7.0 and higher
• Firefox 3.0 and higher

Workflow for Developing the JIS Application

Following is the entire workflow for developing the JIS Application.

To develop the JIS Application:

1 Install ACE on the Development Machine. See “Installing ACE on the
Development Machine” on page 34.

2 Install additional software. See “Additional Installations” on page 35.
3 Create the JIS Application in ACE. See “Working in ACE” on page 37.
4 Generate a runtime. See “Generating a Runtime” on page 62.
5 Test the generated runtime. See “Testing the Generated Runtime” on page 67.
6 Create a distributable. See “Creating the Runtime Installation” on page 78.

For information on enhancing your application using HTML extensions, see
Chapter 8 - "Enhancing Your Application Using HTML Extensions" on page 243.

For information on enhancing your application using Java extensions, see
Chapter 9 - "Enhancing Your Application Using Java Extensions" on page 279.

Note: You may choose a different installation packaging tool with which to
create the distributable.
webMethods JIS: XHTML Client User’s Guide Version 9.0 33

Chapter 2. The Development Environment

Setting up the Development Environment

The webMethods JIS Application developer’s first task is to prepare the
development environment. The development machine must be set up so that you
can use it for converting the host screens into GUIs to create the JIS Application,
and for simulating a full deployment environment to test the JIS Application.

To set up the development environment:

1 Install ACE on the development machine.
2 Perform additional installations.

Installing ACE on the Development Machine

Before installing ACE make sure you have:

• The webMethods JIS installation CD.
• Your installation code.

To install ACE on the PC:

1 Turn on the PC. Place the CD in the drive, and run setup from the root
directory.

2 Follow the directions in the Setup wizard. You will be asked to supply the
installation code during the course of the installation. Make a note of the
installation drive and installation directory name.

Installing Multiple Versions

You can install more than one version of ACE. If you have a previous version of
ACE installed on your machine, the Setup wizard gives you the choice of either
upgrading your existing version or making a separate installation for the new
version.

If you choose to upgrade, you will not be able to reinstall the older version unless
you first uninstall the upgraded version of ACE.

Note: ACE requires the Borland Database Engine. This is supplied with the
webMethods JIS installation package.
34 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 2. The Development Environment

Additional Installations

After successfully installing ACE on the development machine, you must install
an application installation builder, such as Wise InstallBuilder.

In order to set WISE registry entries correctly, open Wise as a stand-alone
application. You need to do this only once.
webMethods JIS: XHTML Client User’s Guide Version 9.0 35

Chapter 2. The Development Environment

36 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

The JIS Application is created in webMethods JIS’s Automated Conversion
Environment (ACE), which comes accompanied by the ACE documentation.
These are books, which guide you through every step of the way as you create the
JIS Application.

This chapter provides guidelines for creating the JIS Application while using the
ACE documentation.

The following topics are discussed:

• “Working in ACE” on page 37
• “Converting the Host Application” on page 39
• “Considerations When Working in ACE” on page 49
• “Wait for Screen” on page 54
• “Generating a Runtime” on page 62
• “Testing the Generated Runtime” on page 67
• “Packing and Unpacking Applications” on page 71
• “Section 508 Guidelines” on page 71

Working in ACE

ACE takes the screens you have chosen in your host application and generates JIS
screen-equivalents and fields in an off-line conversion process. These are
displayed in ACE in the form of a GUI window, in which any host screen
component is displayed as a GUI element. These GUI elements are referred to as
“controls”. During compilation (Runtime Generation) the converted host screens
are compiled into Java classes.

The JIS application’s screens and fields are automatically generated from each
host screen. The automation is based on the proprietary KnowledgeBase which
identifies the information present on a host screen.

To work in ACE you must be familiar with the following terms:

• KnowledgeBase
• Screen Image
• Subapplication
• Application
• Library
webMethods JIS: XHTML Client User’s Guide Version 9.0 37

Chapter 3. Creating the JIS Application

KnowledgeBase

The KnowledgeBase is a set of rules for reading and understanding host screens.
The rules are based on the fact that host applications present information in
standard ways.

The KnowledgeBase is both flexible enough to account for wide variation within
the standard ways that host screens present information and robust enough to
correctly discern between similar character combinations and generate the
appropriate field.

Screen Image

A screen image is a “picture” of a host screen. ACE cannot work directly on the
host, so for each host screen you must create a screen image file on your
development platform. A screen image can be a screen capture—a simple
snapshot of the host screen, or the screen image can be an ACE readable form of
a host Screen Definition File: Mainframe BMS/MFS or iSeries DDS.

Screen images are created step-by-step in the Create Screen Images wizard. The
wizard includes complete explanations of how to configure the screen images.
You can create more than one screen image from a single host screen or SDF.

Subapplication

A Subapplication is the host screen-equivalent ACE generates from a screen
image. A single screen image can generate only one Subapplication. However,
you can create more than one screen image from a single Screen Definition File.
You can also capture and save a single screen many times. Therefore, you can
create more than one Subapplication for each host screen, whether from captures
or SDFs. However, each Subapplication necessarily represents one host screen.

ACE displays a Subapplication in the form of a window. This window contains
several controls, which are graphical equivalents of each host screen element,
such as static text, input/output fields etc. A Subapplication is created step-by-
step in the New Subapplication wizard.

Application

The ACE engine generates a graphical equivalent for each host screen of a host
application. The collection of all these graphical equivalents form an Application.

An Application is created step-by-step in the New Application wizard.
38 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Library

A library is a number of Subapplications grouped together, with the group
having a name. An Application can have many libraries, with each library
containing many Subapplications. Libraries are therefore an intermediate level of
organization between Applications and Subapplications.

Libraries are logically equivalent to Applications: You can set global properties
for a library without affecting the properties of the other libraries.

Libraries are most useful when your host application’s screens divide up
naturally into categories, either because the screens belong to different modules,
or because a number of screens have similar characteristics.

A library is created step-by-step in the New Library wizard.

Converting the Host Application

The Host application first undergoes a conversion in ACE so as to properly
identify and name the host screens and fields.

To Convert a Host Application Using ACE:

1 Create an Application.
2 Create Screen Images.
3 Create Subapplications.
4 Work through the views to optimize the converted application.
5 Compile the Application (Generate Runtime).

When the host information has been processed, the JIS Application’s deployment
environment is generated and the processed host screen information—in the
form of Subapplications—is converted into Java classes. These classes are then
installed on the JIS Server computer.

In ACE you perform the following:

• Create GUI representations of each host screen (Subapplications).
• Design the GUIs to fit your needs.
• Generate runtime.
• Create the distributable.
webMethods JIS: XHTML Client User’s Guide Version 9.0 39

Chapter 3. Creating the JIS Application

Creating an Application

Each time you start up ACE, you must establish an Application to work in. Either
create a new Application by running the New Application wizard or open an
Application that you have already created during a previous ACE session.

When you have established your working Application, you can do any
following:

• Transfer data from the host to your development platform and create new
screen images or maintain existing screen images

• Create new Subapplications from an existing screen image. New
Subapplications are automatically converted and then presented for further
optimization.

• Open an existing Subapplication.
• Create and run an executable composed of any existing Subapplications of

the application.

Creating Screen Images

As a first step in the host application conversion, you must prepare host
application data for ACE development. This involves either transferring host
files to the PC and/or capturing the screens of the host application in a live
connection.

• Convert information about the host application into a form that ACE can read.
• Make the information available to ACE.

These two procedures are performed in different ways, and in different order,
depending on the type of host and whether you are using screen definition files
or screen captures.

The workflow for creating screen definition files on the iSeries is:

1 Compile DDS files into DDO files on the iSeries using the ACE DDS compiler.
See the appendix about the DDS compiler in webMethods JIS: Getting Started
with the Automated Conversion Environment.

2 Transfer the DDO files to your development platform.
3 Create screen images from the DDO files using the Create Screen Images

wizard. Use the Create Screen Images wizard also to resume work on a DDO
file. See “iSeries Applications and Screen Definition Files” on page 41.
40 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

The workflow for mainframe screen definition files is:

1 Transfer the BMS/MFS/SDF source files to your development platform as text
files.

2 Create screen images from the source files using the Create Screen Images
wizard. See “Mainframe Applications and Screen Definition Files” on
page 45. To resume work on a screen definition file use the Maintain Screen
Images wizard. See “Maintaining Screen Images” on page 47.

The workflow for mainframe and iSeries screen captures is:

1 Establish an Application in ACE.
2 From the File menu select Create Screen Images. ACE starts the Create

Screen Images wizard. The wizard prompts you for the information you
need to create images from screen captures. See “Capturing Your Host
Application” on page 46.

iSeries Applications and Screen Definition Files

DDS (Data Description Specification) files are iSeries files that describe the
screens of the application. iSeries applications that have been developed with
DDS have special files that contain the DDS screen information. Code is added to
the program that loads the DDS object in runtime.

The DDS information is the precise information needed for understanding the
screens. When this information is retrieved it can be used effectively by ACE to
create a GUI interface for your application. Thus the DDS files can be an
important tool for migrating iSeries applications to GUI.

ACE can convert screens with or without using DDS. This section describes the
ACE conversion process with DDS.

Creating Screen Images

From the File menu select Create Screen Images. ACE starts the Create Screen
Images wizard.

The wizard prompts you for the information you need to create screen images
from DDO files. You will need to know the name and path to the temporary
directory where you stored the DDO files.

The Create Screen Images From Compiled DDS Dialog Box

Within the Create Screen Images wizard you will need to build screen images
from the records contained in the DDO files. You do this within the Create Screen
Images From Compiled DDS dialog box.
webMethods JIS: XHTML Client User’s Guide Version 9.0 41

Chapter 3. Creating the JIS Application

The Create Screen Images - From Compiled DDS dialog box has the following
appearance:

Figure 7. Create screen images dialog box

To create a new screen image or edit an existing screen image:

1 From the DDO Files list box select the DDO file from which you wish to
define a new screen image or from which a screen image has already been
defined.

2 Define a new screen image. Select <untitled> from the Screen Image list box.
OR-
Edit an already defined screen image. Select the defined screen image’s name
from the Screen Image list box.

3 To include record formats: From the Record formats list, select the record
formats to be included and click Add to transfer them to the Formats in
screen image list. The screen image displayed in the Host Session window is
updated to include the added record format.

4 To remove record formats: From the Formats in screen image list select the
record formats to be removed and click Remove to return them to the Record
formats list. The record format name is removed from the Formats in screen
image list and now appears in the Record formats list. The screen image
displayed in the Host Session window is updated to exclude the removed
record format.

5 From the Formats in Screen Image list box select each format one at a time
and configure the indicators associated with the record format in the
Indicators list, where applicable.

6 Click the Save button. If you are working on a new screen image, <untitled>,
you are prompted to provide the new screen image with a name.

Note: The defined screen images are not actually created until you complete
the Create New Screen Images wizard.
42 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Features of the Create Screen Images From Compiled DDS Dialog Box

DDO Files The DDO files list contains the names of all the DDO files that are
available for processing. These files form the raw material that you use to create
screen images. When you select a DDO file from the DDO files list, all the screen
images already defined from the selected DDO file appear in the Screen image
list.

The word <untitled> also appears in the Screen image list.

Record Formats and Formats in Screen Image

DDO files are composed of smaller units called record formats. A DDO file may
contain a single record format or a number of record formats.

• The record formats used in the defined screen image appear in the Formats in
screen image list. The image created from these records appears in the Host
Session window.

• The record formats not used in the defined screen image appear in the Record
Formats list box.

Indicators Some record formats have multiple versions, controlled by indicators.
When you select such a record from the Formats in screen image list, the
Indicators list box lists all the different indicators associated with the record.

Enable or disable an indicator by setting or clearing the check box next to it. The
screen image displayed in the Host Session window updates to reflect the
indicator settings.

Screen Image The Screen image list contains the names of all the screen images
defined from the DDO file selected in the DDO Files list. To change an existing
defined image, select the defined image in the Screen images list. To define a new
image from the selected DDO file, select <untitled> in the Screen images list.

The selected image appears in the Host Session window.

Preview The Host Session window displays the screen image defined by the
record formats included in the Formats in screen image list and the Indicator
settings. You can preview the effect of transferring a record from the Record
formats list to the Formats in screen images list by setting the Preview check box.

Note: Selecting <untitled> in the Screen image list begins the definition of a
new screen image. At this point you have not yet added any record formats
to the new screen image, so all of the selected DDO file’s record formats
appear in the Record formats list box.
webMethods JIS: XHTML Client User’s Guide Version 9.0 43

Chapter 3. Creating the JIS Application

When the Preview check box is set, the screen image displayed in the Host
Session window includes the selected record in the Record formats list.

The Preview feature allows you to quickly see each individual record format’s
effect on the screen image, since it is faster to select records in the Record formats
list than it is to transfer records back and forth between the Record formats list
and the Formats in screen images list box.

Save Click the Save button to save the selected configuration of records and
indicators as a screen image.

• If you are working on a new screen image—<untitled> is selected in the Screen
image list—you are prompted to give a name to the new screen image. The
new name appears in the Screen image list.

• If you are working on a named screen image—the name is selected in the
Screen image list—then the new image “overwrites” the old image.

Delete Removes the selected screen image from the Screen image list and deletes
it from the Application.

Rename Click Rename to give a new name to the selected screen image. The new
name appears in the Screen image list.

Handling Protected and Hidden Fields Certain screen images represent two or more
screens. If screens generated from a single screen image are used in an
Application, ACE must be presented with all the necessary information
regarding these screens in order to convert them properly. This entails displaying
all extra fields, as well as protected fields.

Figure 8. Handling hidden and protected fields

Extra Fields The Extra Fields check box refers to fields which are either not
shown because of indicators or are not initially displayed. These fields are hidden
or withheld from a screen. When the Extra Fields check box is set, the hidden
property of all fields is overridden, and all the fields are displayed.

The display of all fields is necessary for the conversion in ACE, even if not all
fields can be displayed when the Application is running. In runtime, ACE refers
to the host screen to determine which fields will be presented in the individual
screens.

If colors or other keywords are conditioned by indicators that are currently
switched off, they are not shown or “forced” by setting the Extra Fields check
box. The Extra Fields check box only forces hidden fields to appear.
44 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Remove Protections The Remove Protections check box refers to input fields
which are considered “protected.” Protected fields are fields that have received a
keyword DSPATR (PR) which indicates that the specified field may not receive
input. When the Remove Protections check box is set, all protected input fields
are displayed as plain input fields, even if this cannot happen when the
application is running.

In runtime, ACE refers to the host screen to determine which fields are protected
in the individual screens.

Mainframe Applications and Screen Definition Files

BMS (Basic Mapping Support) and MFS (Message Format Service) are two forms
of mainframe files that define application screens. They are types of Screen
Definition Files. The information contained in them is processed and then used
by ACE.

ACE can convert screens with or without using SDF. The following describes the
process of creating screen images from BMS or MFS files.

Creating Screen Images

From the File menu select Create Screen Images. ACE starts the Create Screen
Images wizard.

The wizard prompts you for the information you need to create screen images
from BMS or MFS files. You will need to know the name and path to the
temporary directory where you stored the BMS or MFS files.

Screen Image Name Source

The wizard asks you which parameter you want ACE to use as a screen image
name.

You can select one of three options:

• Map Name
• Mapset Name
• Field at Position

Note: The field to be used by its location. Enter the XY coordinates for the
attribute of the field to be used as the name. The X and Y coordinates start
from zero.
webMethods JIS: XHTML Client User’s Guide Version 9.0 45

Chapter 3. Creating the JIS Application

If a second screen image has the same name as a previously created screen image,
ACE names the new screen image by adding a character to the name. In cases
where the name is too long, a character is removed from the name.

Capturing Your Host Application

Where an application was developed without the use of Screen Definition Files
or where individual host screens within an application lack Screen Definition
Files, you create screen images by capturing screens online from the host
application using ACE’s screen capture facility. You need to have a live
connection to the host, either through TCP/IP, a router or other channels. You
may also need to know the address of your host.

Creating Screen Images From Screen Captures

To create screen images from screen captures:

1 Establish an Application in ACE.
2 From the File menu select Create Screen Images. ACE starts the Create

Screen Images wizard.

The wizard prompts you for the information you need to create screen images
from screen captures.

Combining a Screen Capture and a BMS or MFS File

The host application has the ability to modify the content of fields and their
attributes, as defined in a BMS or MFS file.

In some cases, the screen image created by the BMS support in ACE, may lack
important information added by the host application. This situation might occur
when an output list is filled and divided into columns in runtime, while the BMS
or MFS file just defines empty lines without any division into columns
whatsoever. Without the screen capture ACE is missing some of the important
information. Such a situation can be rectified by combining the screen capture
with the BMS or MFS derived screen image.

You can combine the screen image with a screen capture by using the Edit Screen
Image wizard available in Host View’s Host menu.

You will need to:

1 Perform the screen capture.
2 Open the BMS or MFS screen image’s Subapplication in ACE.
3 Invoke the Edit Screen Image wizard to combine the screen capture with the

BMS or MFS file. You will need to know the path to the captured screen.
46 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Maintaining Screen Images

When the host screens change as a result of developing the host application, you
can update your screen images to reflect these changes. You may have fine tuned
the Subapplication created from the original image. The Maintain Screen Images
process preserves the fine tuning connected to unchanged parts of the host
screen.

To maintain screen images:

• From the File menu select Maintain Screen Images.
ACE starts the Maintain Screen Images wizard.

The operation of the wizard is essentially the same as for creating screen images.
When the wizard prompts you for the required information, you will need to
know the name and path to the temporary directory, where you stored the
updated DDOs (for iSeries users) or updated BMS or MFS files (for mainframe
users).

If new fields were added to the DDS file, then the Extra Fields check box should
be cleared and set in the wizard’s Create Screen Images From Compiled DDS
step. This re-evaluates and recalculates the fields.

Glossary of File Formats

Table 4 shows the different file formats used in ACE.

Table 4. ACE file formats(Sheet 1 of 2)

Format Description

MFS These files contain the source code that defines the screen as
transferred from the mainframe. The source code comprises
hierarchically arranged units called Mapsets, Maps and Fields.

BMS These files contain the source code that defines the screen as
transferred from the mainframe. The source code comprises
hierarchically arranged units called Mapsets, Maps and Fields.

SDF Processed BMS or MFS files. They contain all the useful
information that was extracted from the source screen definition
files. ACE uses the information in this form to create SDI and PNL
files.
webMethods JIS: XHTML Client User’s Guide Version 9.0 47

Chapter 3. Creating the JIS Application

Creating Subapplications

ACE automatically converts host screen images into JIS screen-equivalents. Run
this conversion by creating a Subapplication for each screen image:

• When you finish creating a new screen image, the Create Screen Images
wizard prompts you to create a Subapplication for the screen image.

• At any time, you can create a Subapplication for an existing screen image.

In either case, the New Subapplication wizard takes you through the steps of
creating the Subapplication.

SDI These files contain all of the BMS information to be used by ACE
in the conversion process for a single screen image.

IND These files provide ACE with the ability to find screen images that
were created using a given map or mapset in the Create Screen
Images dialog box. They contain references from each map to the
screen images that were created using the map.

DDS These files contain the source code that defines the screen as
transferred from the iSeries.

DDO DDS files converted into a format that can be used by ACE. ACE
uses this format to create DDI and PNL files.

DDI These files contain all of the DDO information to be used by ACE
for creating a single screen image.

PNL
(Panel)

The image of a particular screen. PNL files are either screen
captures combined with BMS screen images, files generated by
the BMS support or files generated by the DDO support.

Note: For each Mapset, one BMS/MFS, one SDF, and one IND file are
produced. For each Screen image, one SDI and one PNL file are produced.

Table 4. ACE file formats(Sheet 2 of 2)

Format Description
48 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Optimizing the Converted Application

You optimize the automatic conversion output using the tools available in the
different ACE Views. The order in which you work is up to you. Table 5 offers a
brief description of each View in a typical working order.

Considerations When Working in ACE

Since ACE is used for more than one product, it is important to know which
features of ACE do not apply to the XHTML client and, therefore, are not
supported by this product. These ACE features are not supported by this product

Table 5. ACE views

ACE views Description

Host View In Host View you see the original screen image. Examine
the contents of the screen image and verify that it is
correct.

Layout View In Layout View you use the sections provided to define
fields as Input/Output enabled or to ignore fields you do
not require. See the chapter about Layout View
operations in webMethods JIS: Basic User’s Guide.

Design View In Design View you retrieve or rename field names. This
is also where you create or modify methods. See the
chapter about subapplication-specific modifications of
the design in webMethods JIS: Basic User’s Guide.

Runtime Screen
Identification View

In Runtime Screen Identification View you change, if
necessary, the markings that uniquely identify the host
screen during runtime. Note that it is imperative that all
screens be identified during runtime. See the chapter
about the Runtime Screen Identification View in
webMethods JIS: Basic User’s Guide.

Analysis View In Analysis View you change, if desired, ACE’s analysis
of host screen lists. You need to work in Analysis View
only when a Subapplication contains lists. See the
chapter about operations performed in the Analysis
View in webMethods JIS: Basic User’s Guide.
webMethods JIS: XHTML Client User’s Guide Version 9.0 49

Chapter 3. Creating the JIS Application

because ACE is used to manufacture different clients, such as a Java client, which
uses TCP/IP. Various limitations, therefore, should be taken in to consideration,
when working in ACE.

These limitations can be categorized in the following manner:

• HTML limitations
• HTTP limitations
• Browser limitations

HTML Limitations

Due to limitations in HTML, the XHTML client cannot fully exploit all features
available in Ace.

These features are:

• Combo boxes - drop-down list property not supported
• Check boxes, Radio buttons - control and text treated as separate controls
• Spin controls
• Masking text
• Date controls - based on JavaScript
• Tab controls - based on JavaScript; multi-line tabs not supported

Combo Boxes

HTML does not support the “drop-down list” property of a combo box.

Figure 9. Combo box style tab

You should, therefore, select one of the other combo box styles.
50 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Check Boxes and Radio Buttons

HTML cannot display a check box with its caption as one single control. Instead,
they can be displayed as two separate controls. The same applies for radio
buttons. Therefore, you must take this into consideration when designing the
GUI.

Spin Controls

HTML cannot display Spin controls. Even though it is possible to choose these
controls in ACE while designing the GUI, you should not use them. If you do, the
XHTML client displays them as normal empty edit boxes with static text.

Masking Text

HTML does not support the ability to mask text. Therefore, when selecting a text
format in the Style tab, you should not choose the text masking option.

Figure 10. Masking text dialog box

Date Controls

In ACE, a date control looks as follows:

Figure 11. Date control in ACE

In runtime, however, the date control is displayed with a calendar icon instead of
the arrow icon

Figure 12. Date control in runtime
webMethods JIS: XHTML Client User’s Guide Version 9.0 51

Chapter 3. Creating the JIS Application

You use the calendar icon to open a calendar window. The calendar window, the
validity checking and the formatting of the date string from and to the server,
are all based on JavaScript. There are two cases in which JavaScript cannot be
activated:

1 In browsers that do not support JavaScript - the date control is displayed as a
regular text box.

2 In browsers in which JavaScript has been disabled - the date control will look
like a Date control, but will not have the functionality of a date control.

Tab Controls

The following limitations apply to Tab controls:

• Tab controls are supported only in browsers in which JavaScript is enabled.
• Multi-line tabs are not supported.

Host Paging from Within Tables.

Provides functionality for Page Up/Down keys to perform host paging from
within a table.

There are two scenarios:

• Multi-page table containing multiple pages of information contained within a
single table structure.

• Self contained table that does not contain a scroll bar, although the table itself
contains more rows that those displayed.

Multi-page table: If the table contains multiple pages, they can be accessed by
using the Page Up/Down keys, paging down a table will retrieve the next page to
be displayed on the table from the host machine.

Single table without additional pages: Tables that do not have enough display
lines, due to space or design restrictions, or do not have a scroll bar can retrieve
extra lines present in cache by holding down the Control Key and pressing the
Page Up/Down Keys. Thus enabling the user to scroll down the table adding a
single line with each key stroke on the Page Up/Down keys.

HTTP Limitations

The nature of HTTP dictates that any change of the screen that is displayed on the
client’s web browser is the result of a process that was initiated by the client.
Therefore, any spontaneous updates from the host may not be sent to the client
until the next time that the client initiates a process.
52 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Certain ACE features cannot be fully exploited with a client that is connected via
HTTP.

These features are:

• DIL messages
• Message handling
• Message boxes

DIL Messages

Dynamic Information Lines (DIL) are sent from the host during runtime. If the
host sends such a spontaneous message while the end-user is on a screen, there
is no way that the end-user can receive this message right when it is sent. Instead,
as the end-user enters a new screen, the last DIL message is incorporated into the
next screen’s HTML. DIL messages are displayed at the top or the bottom of the
HTML page. This is determined in the JIS Server INI file’s [XHTML] section by
setting the DILPosition parameter.

Message Handling

The JIS Server is designed to react towards spontaneous messages sent from the
host. However, you cannot set a Message-Handling method to change anything
in the Client’s display, because, as mentioned earlier, changes to the Client’s
display are the result of a process initiated by the Client itself.

Message Boxes

Message boxes can be displayed to the runtime end-user by using the MsgBox
method line type in an ACE method. The developer chooses the type of message
box in the MsgBox method dialog. Three types of message boxes are supported
in the XHTML client: Exclamation, Yes/No, and OK/Cancel.

The Exclamation message box looks like this:
webMethods JIS: XHTML Client User’s Guide Version 9.0 53

Chapter 3. Creating the JIS Application

Choosing either the Yes/No message box or the OK/Cancel message box
generates an OK/Cancel message box that looks like this:

If the OK/Cancel message box was chosen, the message box returns 1 for OK and
0 for Cancel. If the Yes/No message box type was chosen, the message box returns
7 for Yes and 6 for No.

There is a limitation to the message box feature in the XHTML client in that you
cannot set the text value of the title bar. The message text, of course, can be set to
any string value.

Browser Limitations

The XHTML client is displayed differently on different browsers. Each browser
has its own limitations, which affect the XHTML client differently.

There is also a general browser limitation:

• Accelerator keys such as Ctrl, Alt, Page Up, and so on, are not currently
supported in the XHTML client. FKey support is available for keys F1
through F24, provided the FkeySupport parameter is set to 1 (this is the
default value) in the XHTML Section of the runtime INI file.

Wait for Screen

Depending on the design of the host application, it can happen that in the
interval between a user action and the display of the resulting screen:

• An intermediate screen or screens are briefly displayed by the host, or
• The desired screen is sent by the host to the terminal in more than one RU

(request unit - a bundle of data), giving a flashing appearance to the screen
until it has been completely assembled on the host terminal.

Note: The following section requires you to have read the chapters relating to
Methods in the ACE documentation.
54 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

These phenomena are undesirable, because you want the end user to see a
complete and correct screen, and not an intermediate or partially assembled
screen.

The Wait for Screen feature was designed to give the server the opportunity to
wait for the desired screen to appear, while ignoring unexpected and/or
incomplete screens. The feature consists of two elements:

• A DoMethod called SetWaitForScreenState.
• A System-Triggered Method called UserAcceptScreen.

We first explain on a general level how to implement the wait function of the Wait
for Screen feature. More detailed explanations are then given about each of its
components.

If you want to use the Wait for Screen feature for the first screen of an Application,
special considerations apply, which are discussed in “Using Wait for Screen on
the First Screen of an Application” on page 61.

General Explanation

During a transaction’s execution, behind-the-scenes navigation may occur when
an AID key is sent to the host and the JIS Server starts waiting for a response.
The most common situation where this may occur is when a method is
composed of:

• A HostType line followed by a MoveAccordingToHost DoMethod line,
OR

• A SendAIDKeyByString DoMethod line followed by a
MoveAccordingToHost DoMethod line.

To implement the waiting function, the SetWaitForScreenState DoMethod
must be added before the HostType line or the SendAIDKeyByString
DoMethod line. The parameters which you enter for SetWaitForScreenState
control the behavior of the wait function.

With these parameters, you specify:

• The list of screens that the server should accept or ignore.
• The maximum length of time the server is to wait before it accepts the screen

that is currently presented by the host, even if that screen is on the “ignore”
list or is not on the “accept” list.

The SetWaitForScreenState DoMethod with its parameters is presented
below in detail.

The Wait function does not directly use the parameters from
SetWaitForScreenState. Instead, it passes them on to the System-Triggered
method UserAcceptScreen. This System-Triggered method is activated
webMethods JIS: XHTML Client User’s Guide Version 9.0 55

Chapter 3. Creating the JIS Application

immediately after the server receives a screen from the host, before that screen is
displayed on the end-user’s browser. UserAcceptScreen decides whether to
accept the screen or not, according to the parameters that were set in
SetWaitForScreenState. If the method returns true, the current screen is
accepted. If it returns false, the current screen is ignored, i.e., not displayed, and
the system waits for an acceptable screen until the time-out limit is reached.

The SetWaitForScreenState DoMethod

The SetWaitForScreenState DoMethod tells the server how long to wait for
the correct screen to be sent from the host.

The correct screen and the wait interval are defined by three parameters listed in
Table 6:

Table 6. Parameters in SetWaitForScreenState

Parameter Description

screenList This parameter is of String type, so it must be enclosed in
quotation marks. This value is usually expressed as a constant
consisting of a list of one or more screen names (Subapplication
names) separated by semi-colons. The list specifies screens to be
accepted, or screens to be ignored. The second parameter,
accept, sets whether the screens on the list are accepted or
ignored.

When this parameter is set to a blank value (“”), the list is
empty.

accept This parameter is of Boolean type, i.e., _TRUE or _FALSE.

When set to _TRUE, the runtime allows ONLY screens specified
in screenList to be accepted by the runtime.

When set to _FALSE, if any of the screens specified in screenList
are received from the host by the server, they are ignored.

timeout This parameter is of Integer type.

In this parameter you specify the timeout value in milliseconds.
The timeout is the time after which the server accepts the last
screen sent by the host, irrespective of whether or not the screen
fulfills the conditions imposed by first two parameters. If a time
of zero (0) is specified, the wait function is not activated at all,
and all screens received from the host are displayed.
56 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

The UserAcceptScreen System-Triggered Method

UserAcceptScreen is a System-Triggered method that is activated
automatically after the host sends a screen to the server, and before that screen is
accepted. UserAcceptScreen returns either true or false. You can modify
UserAcceptScreen if you want to do further processing or examination of the
parameters used by SetWaitForScreenState before deciding whether to
accept or ignore a screen. If you have no need for such additional processing, do
not modify UserAcceptScreen.

When the new screen arrives from the host, UserAcceptScreen searches for
the screen’s name in the screenList parameter list. The method accepts the screen
and returns true if:

• The name appears in the list, and the list is of the “accept” type, i.e., the accept
parameter is set to _TRUE.
-OR-

• The name does not appear in the list, and the list is of the “ignore” type, i.e.,
the accept parameter is set to _FALSE.

When UserAcceptScreen returns true, the screen is sent to the user, otherwise, the
screen is ignored, the method returns false and the screen is not displayed. The
JIS Server keeps waiting until the timeout period has elapsed. When this
happens, the method returns true, the server accepts the last screen that arrived
from the host and sends it to the end-user.

Customizing the SetWaitForScreen Function

You can use the UserAcceptScreen method to customize the behavior of the
SetWaitForScreenState DoMethod. To get to the UserAcceptScreen method,
in Design View, in the Design menu select System Triggered Methods.
UserAcceptScreen can be modified only at the General Methods level; that is,
any changes to it affect all Subapplications in the Application.

If you wish to modify UserAcceptScreen, use the following guidelines:

• The method’s return type is boolean. It must return either true or false, no
other values are possible.

• Returning false causes the server to ignore the screen and wait. Returning true
accepts the screen immediately.

Note: When the timeout parameter’s value is zero, UserAcceptScreen is
not activated. In this case, the screen arriving from the host is immediately
sent to the end-user.
webMethods JIS: XHTML Client User’s Guide Version 9.0 57

Chapter 3. Creating the JIS Application

• When the timeout is over, the method is not activated any more, and the last
screen that arrived from the host is sent to the end-user.

• In order to get the SetWaitForScreenState parameters that are passed to
UserAcceptScreen, use the GetCurrentContextParm DoMethod. This
is explained below.

Using GetCurrentContextParm with UserAcceptScreen

UserAcceptScreen receives the SetWaitForScreenState values as strings
contained in the Context Parameter. The GetCurrentContextParm
DoMethod is used to retrieve a string containing these values.
GetCurrentContextParm has one parameter, parmNumber, which can take
one of four values: 0, 1, 2, or 3.

• GetCurrentContextParm (0) returns the name of the screen sent by the
host, for example: “MBF001”.

• GetCurrentContextParm (1) returns the list of screens from the
screenList parameter.

• GetCurrentContextParm (2) returns the value of the accept parameter -
“true” or “false”.

• GetCurrentContextParm (3) returns the value of the timeout parameter.

Example of the Use of SetWaitForScreen

This section presents an example of how to use the Wait for Screen feature. The
example illustrates the functionality that makes the Wait for Screen feature
useful.

Note: When the timeout parameter is set to zero, UserAcceptScreen is not
activated, and modifications to the method are meaningless. The Context
Parameter is read only once by the method.
58 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Figure 13. A sample subapplication

Figure 13 shows a Sub application designed for testing the Wait for Screen
feature. Menu option 1 causes the display of six screens in sequence, screens A,
B, C, D, E, and F. In our example, we use the Wait for Screen function to modify
the operation of this menu option so that only the last screen, screen F, is
displayed.

In ACE’s Design View, we double click on the button control for menu option 1
in order to display the Button Component dialog box, shown in Figure 14

Figure 14. The button component dialog box
webMethods JIS: XHTML Client User’s Guide Version 9.0 59

Chapter 3. Creating the JIS Application

We see in the Events tab that the SelectMenuOption method is already
attached to this button. It was attached automatically during screen generation.
Because we want to add the Wait for Screen function, we will build a new method
to be linked to this button in place of SelectMenuOption. If we added our
changes to SelectMenuOption they would affect all screens, because the
SelectMenuOption method can only be modified globally.

Figure 15. A method using SetWaitForScreenState

The first line of the new method uses the DoMethod
SetWaitForScreenState. It uses the string “BBM25” as the screen name
parameter (BBM25 is the name of the Subapplication for the host screen called “F”
on the menu), sets accept to _TRUE, and sets a time limit of seven seconds. In
other words, we are telling the server to wait up to seven seconds for screen
BBM25 to appear, and to not display any screens except for BBM25 before the time
limit elapses.

The HostType line in the method types data in the host screen - in this case, a
menu option, and sends the AID key “Enter” to the host.

The final line of the method instructs the server to let the GUI window reflect the
reactions of the host.
60 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Using Wait for Screen on the First Screen of an Application

UserAcceptScreen and SetWaitForScreenState, as they have been
described above, are activated from the current Subapplication. This is a limiting
factor in case no Subapplication has yet been entered, a situation typical to the
“login” screen, or the first screen of the Application.

To allow the Wait for Screen feature to work in the first screen of the Application,
create an [Initialization] section in the <ApplName>.ini file, and add the
parameters of the SetWaitForScreenState DoMethod to it, as shown in
Table 7:
[Initialization]
screenList=<list of screens, separated by semi-colons>
accept=0 or 1
timeout=

Common Problems

Table 8 lists common problems you may encounter while working with the Wait
for Screen feature

Note: The screen list need not be enclosed in quotation marks. The accept
parameter, which is Boolean, should be 0 for false, or 1 for true.
SetWaitForScreenState is called automatically when the Application
loads.
Also, for a first screen situation, a customized UserAcceptScreen method
is not called, the default implementation is called instead.

Table 7. Parameters for first use of SetWaitForScreenState

Parameters
Behavior of wait
function Comments

screenList=”MBF001”
accept=_TRUE
timeout=30000

Screen MBF001 is
accepted
immediately. Any
other screen is
ignored, until thirty
seconds have passed.
After that time, the
current screen is
accepted.

This is the usual use of
the method.
webMethods JIS: XHTML Client User’s Guide Version 9.0 61

Chapter 3. Creating the JIS Application

:

Limitations

The DoMethods used to send a key to the host, SendASpecificKey,
SendKeyWithoutReset, and SendKeyByString do not work like
SendAIDKeyByString. To use any of these methods, call the DoMethod
NonBlockingWait just after them.

Generating a Runtime

This section describes the compilation process. This process, called Runtime
Generation, is the last stage in the conversion process. Use the Generate Runtime
command in ACE to compile your Application and create the JIS Server.

Table 8. Troubleshooting of the Wait for Screen feature

Problem Common Cause Solution

All screens are
accepted.

Timeout value is zero. Change the timeout to
a non-zero value.

A dialog box “server
not responding”
appears.

The timeout between
end-user and JIS Server
is too short and
interferes with the
waiting function
timeout.

Increase the timeout
value in the HTML
setting CommTimeOut.
The user should click
Yes to instruct the end-
user to keep waiting.

Compilation error in
Runtime Generation.

UserAcceptScreen was
modified with a wrong
return value type, or no
return value.

The method must
return true or false. No
other return value is
possible.

Screens continue to
appear after the
desired screen has
arrived.

The host keeps sending
screens without
waiting.

There is no solution.
The normal emulator
behavior is to send
incoming screens.
Modifying
UserAcceptScreen may
provide a workaround.
62 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

During runtime generation, Java code that corresponds to each Subapplication is
generated. Each Subapplication has its own Java class. Furthermore, static XMLs,
CSS files and binary data corresponding to each Subapplication are also
generated. The Java classes and static XMLs form part of the JIS Server.

The generated XMLs are then processed and converted to XHTML. These
XHTML files are only used as references and will not used by the server.

The runtime generation process works in the following manner:

• Generating Java sources and binary data.
• Invoking the Java compiler in order to compile these Java sources into Java

class files.
• Composing static XMLs.
• Converting these XMLs to XHTMLs.

Setting Runtime Generation Options

Before generating a runtime, the following options must be defined in ACE:

1 From ACE’s Options menu, select Runtime Generation Options.
The Runtime Generation Options dialog box opens:

Figure 16. Runtime generation options dialog box
webMethods JIS: XHTML Client User’s Guide Version 9.0 63

Chapter 3. Creating the JIS Application

2 Specify the following:
:

Java root directory Choose the directory under which the JIS Server files
reside.

Java compiler Choose a Java compiler.

Java compiler
command

The default command for the chosen compiler
appears. If the Java compiler is not in your path, you
can change the command line to specify the full path.

The information that is written in the Java compiler
command line, is dependent upon the compiler
which is used. The Java compiler command default is
the Sun Java SDK Compiler. However, if you are
using a different compiler, you should change the
Java compiler command.

You can use the following internal variables in the
Java Compiler Command:

• $RootDir

At compile time this variable is automatically
replaced with the Java root directory that you
specified above.

• $File

The $File variable is required. At compile time
this variable is automatically replaced with the
name of the file to be compiled.

Compile Java classes
in batches of

Specify the number of Java classes you wish to be
compiled in each invocation of the compiler.
Reducing the number of classes compiled at a time
reduces the memory consumption of the compiler.

Client Language
Localization

Set this check box to enable the Language
Localization feature. For a detailed discussion about
this feature, refer to Chapter 6 - "Language
Localization" on page 227.
64 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

How to Generate a Runtime

Before you initiate the Generate Runtime process, make sure that the Server is
closed. Trying to compile your application while the JIS Server is running causes
the runtime generation process to fail, and the following message appears:

Figure 17. Error message during compilation

Following is a description of how to run the runtime generation process and the
information you get from the Generating the Runtime dialog box.

To generate a runtime:

1 From the File menu, select Generate Runtime. This activates the Generate
Runtime wizard which generates the JIS Server.

Enable method debug
messages

When checked, this option causes code for the
printing of detailed debug messages to be generated
along with the method code. The method debug
messages are written to the JIS Server log at runtime.
The method debug messages assist in the tracing and
debugging of user-written methods.

You can use the METHOD log filter to suppress the
printing of all other log messages except for the
method debug messages. See “Debug Filters” on
page 166.

Minimum debug level
for printing method
debug messages

The debug level at which method debug messages
are triggered. See “Enable method debug messages”
above.

Prefix text for method
debug messages

Allows you to specify a message prefix to be printed
at the start of the method debug messages. Default
prefix is “METHOD_DEBUG”.
webMethods JIS: XHTML Client User’s Guide Version 9.0 65

Chapter 3. Creating the JIS Application

2 In the Generate Runtime wizard, choose the platform(s) the Server will run
on, such as Windows, OS/400 RISC or Solaris SPARC

3 Continue the wizard to its final step.

The Runtime Generation Process

When generating the runtime, the JIS Server and its associated sources are
generated. The Java sources are automatically compiled. Compilation errors or
warnings are displayed in the Generating the Runtime dialog box.

Figure 18. Generating the runtime dialog box

A more detailed log is written to the makevgs.log file and xml.log file in the
ACE root directory.

The Application HTML Files Generated During Compilation

The compilation process generates the following HTML references to the archive
files:

<ApplName>-xhtml.html Runs a client on the JIS proprietary server.

<ApplName>-
webapp.html

Runs a client on a J2EE application server. See
Chapter 12 - "Application Server Deployment" on
page 405 for more information.
66 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Testing the Generated Runtime

After generating a runtime, you must test the JIS Application, before creating the
distributable. Some problems in the conversion can only be detected through
functional testing.

You test the generated runtime by running the Application on the development
machine. In this process, the development machine acts as both XHTML client
and JIS Server.

When testing the runtime, you check the following:

• Connectivity with the host.
• Does the JIS Server correctly identify the host screens?
• Each Subapplication’s appearance and function in runtime.

There are two ways to run your Application on the development machine:

• Running the Application from within ACE.
• Starting the Application manually.

Activating a Web Server

The JIS Server requires a web server to handle HTTP communication with the
client.The default is to use the Jetty HTTP Server, which is an integral part of the
JIS Server. Unless specified otherwise, the documentation assumes the Jetty
HTTP Server is being used as the runtime Application’s web server.

Running the Application from within ACE

To start the Application from within ACE:

1 In ACE, select File > Run Application.
The Run Application wizard opens.

2 Follow the wizard’s steps to completion. Make sure to specify XHTML for
Runtime Type. As for the rest of the settings, you can work with the default
settings.

After completing the wizard, ACE starts the JIS Server and runs the application
on your default browser.

Note: The runtime Application appears exactly as it would during full
deployment.
webMethods JIS: XHTML Client User’s Guide Version 9.0 67

Chapter 3. Creating the JIS Application

Starting the Application Manually

To start the application manually:

1 Activate the JIS Server.
2 Send an HTTP request from your web browser.
3 Test the runtime.

Activating the JIS Server

To activate the JIS Server, click the JIS Server shortcut icon under your
computer’s Start menu > Programs > JIS> JIS Server.

You can also activate the JIS Server by selecting the file
<InstallDir>\jacadasv.bat

A DOS prompt window opens and after a few seconds the bottom line reads
“Server ready: STARTED”.

Sending an HTTP Request from your Browser

After activating the JIS Server, you can now start the Application. To do this, you
write a specific HTTP request in the browser’s URL address bar.

The HTTP request should have the following format:
http://<IPAddress>:<Port>/<ApplName>-xhtml.html

For example:
http://localhost:8080/MYAPPL-xhtml.html

The HTTP request is comprised of the building blocks listed in Table 9:

Note: As a result of activating the JIS Server, the Jetty web server is also
activated.

Table 9. HTTP request elements (Sheet 1 of 2)

HTTP element Description

IP Address The IP address is the JIS Server’s IP address. In the above
example, the IP address is “localhost” because the client is
being run from the same machine the JIS Server is installed
on.
68 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Testing the Runtime

Once the correct HTTP request is entered, the browser should display the
corresponding XHTML of the Host Application’s SignOn screen.

Figure 19. Application’s SignOn HTML page

You may then browse through the host Application. This is done by filling the
appropriate fields and clicking the appropriate buttons on the displayed web
page.

Port The Port is the port number through which the Web Server is
set to accept HTTP requests from the Client. The default port
number is 8080.

Application
HTML

The name of the Application HTML is composed of the ACE
Application name followed by the string “-xhtml”. The
runtime generation process places this html file in the
following directory: <InstallDir>\JacadaFiles\

Table 9. HTTP request elements (Sheet 2 of 2)

HTTP element Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 69

Chapter 3. Creating the JIS Application

You should check your Application for each of the following:

• Functionality
• Misidentified Screens

Functionality

Testing a window for functionality means making sure that:

• All controls have functionality attached to them.
• Each control executes the functionality assigned to it. For example, verify that

clicking a certain button in the window causes the correct key on the host to
be pressed.

Misidentified Screens

When ACE encounters an inconsistency between the host screen and the screen
image, the runtime does not display the corresponding GUI. Either a simple GUI
is presented or the host screen bleeds through depending on whether or not the
Just-in-Time GUI feature was used.

Table 10 will help you track down the reason for the misidentified screens:

Table 10. Troubleshooting misidentified screens

Problem Solution

An unconverted
screen

Create a new Subapplication.

A screen that
changed on the host
after conversion

Take the updated screen image through the
Maintain Screen Image wizard and then to
Runtime Screen Identification View to update
identification.

Incorrect coloring in
Runtime Screen
Identification

Identify the fields that are colored incorrectly, by
using the Compare to Captured Screen utility, and
then change their coloring.
70 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Packing and Unpacking Applications

Pack/Unpack allows you to create packages of Applications, and to unpack them
on your computer or on other computers. For easy transfer, you can define the
package to consist of one file, or of a number of files whose size you can set.

For example, Pack/Unpack is useful in the following situations:

• When several developers work on different parts of the same Application.
• When you want to send part or all of your Application to customer support.
• For backup purposes.

In a situation where one central developer works on Application-level elements
such as methods, formatting dictionaries, INI files and KnowledgeBases, and
other developers work on libraries belonging to the Application, the main use of
Pack/Unpack is easy transfer of Applications and libraries between the central
and the other developers.

The need for Application/library transfer generally arises when the database files
on the machine of a library developer require additions or fine tuning. The library
developer then transfers the library to the central developer. The central
developer modifies the Application-level elements as needed, and transfers the
updated development environment to the library developer.

This ensures constant updating of the development environment and efficient
work assignment amongst developers.

For detailed information on packing applications, refer to the Packaging
Applications chapter in webMethods JIS: Advanced Topics.

Section 508 Guidelines

Section 508 is the US Federal regulation that defines the standard that all
computer applications in government offices should accommodate for people
with disabilities. The resulting XHTML runtime application consists of HTML
pages that meet these guidelines. Each HTML page represents a SubApplication
in ACE. Since developers can and should modify SubApplications in ACE, there
are a few recommendations and guidelines to follow while working in ACE, to
ensure that the resulting HTML page complies with Section 508 guidelines. The
guidelines are as follows:

General Guidelines

• WCAG Guideline 14
Use simple and clear language throughout the Application.
webMethods JIS: XHTML Client User’s Guide Version 9.0 71

Chapter 3. Creating the JIS Application

• WCAG Guideline 14
Use consistent presentation style throughout the Application.

• 1194.22 (d), WCAG Guideline 6
Tabbing order and text flow should be reasonable, and should accurately
represent the flow of controls on the screen.

Colors and Graphics

• 1194.22 (a), WCAG Guideline 1
Make sure to provide any non-text content with a text equivalent. Make sure
no information is conveyed solely in graphic format.

• Make sure that all information available with colors is also available without
colors.

• 1194.22 (c), WCAG Guideline 2
Make sure background and foreground color combinations provide sufficient
contrast.

• 1194.22 (j), WCAG Guideline 7
Application pages and animated controls should not flicker at a frequency
greater than 2Hz and lower than 55Hz.

Controls

• 1194.22 (n), WCAG Guideline 9
Group related controls together, using a Frame or a GroupBox.

• 1194.22 (n), WCAG Guideline 12
Make sure that any input control, such as an edit, prompt or combo box, has
the correct text before it. The static text usually appears left of the control or
above the control. You must make sure that the static text's position in the
tabbing order is one less than the control it describes. This static text becomes
the control's label, for screen reading purposes.

• 1194.22 (n), WCAG Guideline 9
It is recommended to add accelerators to controls. This can be done through
ACE as follows:
• For controls that contain their own text, such as buttons and check boxes,

insert an ampersand (&) character in the control’s text, before the letter to
be used as the accelerator.

Note: This is not necessary for check box and RadioButton controls, since
these have their own text as part of the control.
72 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

• For controls that do NOT contain their own text, such as text boxes and
combo boxes, you insert the ampersand (&) character into the text of the
static control, that is attached to this control. Add the ampersand (&)
character before the letter to be used as the accelerator.

• User Extension controls are placed before or after the original Subapplication
controls. Regardless of their position on the screen, the order of controls in the
HTML source should always be reasonable. Therefore, when writing a User
Extension, you must take into consideration how the extension is merged with
the original page, and the order of controls in the merged XHTML. To place
extension controls AFTER original controls, do the following:
• In the extension file, insert an empty <Form> tag named jacadaform.
• After the empty <Form> tag, insert a new <Form> tag with the extension’s

controls.
This ensures that the extension controls appears after the original controls.

• 1194.22 (a), WCAG Guideline 1
Each Button control defined in ACE must have a text description. A Button
control’s text description is defined in one of the following ways:
• The contents of the Button control’s Balloon Help text.
• If no Balloon Help text is provided, then the button text is used as the

Button control’s description.
• If neither Balloon Help text nor button text are defined in ACE, then the

name of the button’s image is used as the Button control’s description.
• 1194.22 (n), WCAG Guideline 10

It is recommended to use default place-holding characters in Subapplications.
You add place-holding characters in Design View.

ASCII Art

1194.22 (a), WCAG Guideline 1

ASCII art refers to text characters and symbols that are combined to create an
image. These constructions can be a simple emoticon, such as a smiley ":-)" or
something complex, such as a graph. In either case, a person using a screen reader
will find it very difficult to understand what you are attempting to communicate,
since screen readers interpret ASCII art as a series of independent characters that
do not convey any intended message.

Note: In the attached static controls’ Style tab, make sure that the No Prefix
check box is NOT checked!
webMethods JIS: XHTML Client User’s Guide Version 9.0 73

Chapter 3. Creating the JIS Application

Therefore:

• Avoid using any form of ASCII art. If any form of ASCII art, such as “===>”,
exists on the original host screen, you must remove it in ACE.

• If a host screen contains a vital piece of information in ASCII art, then replace
it with an image with attached descriptive text, which describes exactly what
the ASCII art is displaying.

Example:

A host screen contains the following ASCII chart, which describes the number of
entries to a web page per year during the years 1995 through 2000.

Figure 20. ASCII image

You should remove the ASCII chart and replace it with an image accompanied by
descriptive text. A possible replacement image and its descriptive text are:

ll

This Chart is entitled "Hits to
the USNA WWW Site". The chart
has a
Y-axis of "Millions of Hits" and
an X-axis of "Years".

The Chart contains the following
data :

1995 255,240
1996 1,011,612
1997 4,882,279
1998 8,060,021
1999 13,580,689
2000 19,335,682
74 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 3. Creating the JIS Application

Tables

1194.22 (a), WCAG Guideline 5

• Tables contain a Summary option. ACE does not assign a default value for the
Summary. You may fill in this option.

• Folded tables are not recommended. Folded tables are represented as single-
column tables. Most screen readers read the information from single-column
tables, but do not regard these as tables. As a result, some table information is
lost. To avoid folded tables in ACE, make sure that the Fold columns check
box in the table's Style tab is NOT checked.
webMethods JIS: XHTML Client User’s Guide Version 9.0 75

Chapter 3. Creating the JIS Application

76 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

In order to deploy the JIS runtime Application once it is fully developed, a
distributable runtime installation must be created. The runtime environment,
contained in this distributable, is then installed on the Server machine that will be
running the JIS Application.

This chapter deals with installation aspects of the JIS Server and its associated
classes on the platform that will run them.

The following topics are discussed:

• “The JIS Runtime” on page 77
• “The JIS Runtime on Windows” on page 79
• “The JIS Runtime on iSeries” on page 80
• “The JIS Runtime on Solaris” on page 92
• “The JIS Server Command Line Parameters” on page 103

Making the JIS runtime operational on these machines includes creating a JIS
Server runtime installation, installing the runtime on the Server machine, and
activating the JIS Server.

The JIS Runtime

Once you have successfully created the JIS runtime, you are now ready to install
the JIS runtime on the Server machine and run it.

To make a JIS runtime operational you must:

1 Create a runtime installation.
2 Install the runtime.
3 Activate the JIS Server on the Server machine.

The following sections contain background information about the webMethods
JIS runtime architecture, and detailed instructions on how to make the JIS
runtime operational on Windows, iSeries, and Solaris.

Note: This chapter assumes that the Jetty HTTP Server, which is an integral
part of the JIS Server, is being used as the runtime application’s web server.
When using an external web server, you must map the web server root
directory to the directory under which the runtime is installed.
webMethods JIS: XHTML Client User’s Guide Version 9.0 77

Chapter 4. Deploying the JIS Runtime Application

Creating the Runtime Installation

The runtime installation process involves copying the runtime environment from
the computer ACE runs on to the computer acting as the Server computer. The
first step in this process is to prepare the runtime environment for installation by
packaging it. This task is achieved using the Create Runtime Installation wizard.

Installing Your Runtime

The JIS Server application classes that were generated by the runtime generation
process must be installed on the machine you have designated as your Server
machine. This machine can be a PC running Windows, an iSeries, or a Solaris.

Keyboard Emulation

By default, the webMethods JIS runtime interprets certain keystrokes and
keystroke combinations in special ways, as shown in Table 11.

To enable the support of Fkeys you must set on the FkeySupport flag in the
XHTML section of the jacadasv.ini file.

Note: Starting with release 9.0 of the webMethods JIS, your runtime can be
also deployed to a J2EE application server. The instructions for creating and
installing a runtime for a J2EE environment are covered separately, in
Chapter 12 - "Application Server Deployment" on page 405.

Table 11. Keyboard emulation

Key seen by runtime Key sent to host

F1 through F12 PF1 through PF12

Shift+F1 through Shift+F12 PF13 through PF24

Ctrl+Z Reset

Esc Attn
78 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

The JIS Runtime on Windows

This section describes how to install and operate the webMethods JIS runtime on
a Windows Server.

Creating a Runtime Installation

To create a runtime installation:

1 In ACE, from the Utility menu choose Create Runtime Installation.
This opens the Create Runtime Installation wizard.

2 In the Create Runtime Installation wizard choose the following settings:
• Deployment Type. For deployment under the proprietary JIS Server,

choose JIS Server Deployment. For deployment to an application server or
servlet engine, see Chapter 12 - "Application Server Deployment" on
page 405.

• Automatic or manual packaging. It is recommended that you use the
Wise Installation Studio. If you choose to use WISE, then the Create
Runtime Installation wizard produces an information file that WISE can
read. If you do not choose WISE, then the Create Runtime Installation
wizard produces a text file listing the directory structure and files that
make up a working runtime on an end-user system.

• If you are using WISE then you can choose a bitmap to be displayed
during the installation on the end user’s system.

• For Runtime Type, choose XHTML.
• For the JIS Server Platform(s) option, choose Windows.

3 Continue the wizard’s steps to the end. At the end of the process ACE creates
the following files:
• setupjav.exe—This program installs the JIS Server for your runtime

Application.
• setup.txt—if you choose to install the runtime without using the Wise

installation program, this text file lists the files that should be included in
the runtime Application. This text file also includes an indication of the
precise place in the Application runtime directory in which each file
appears.

These files are placed under the ACE root directory, under the directory:
<InstallDir>\appls\<ApplName>\install\javasrvr

The entire runtime environment is contained in the setupJav.exe file. To
distribute the webMethods JIS runtime, copy the setupJav.exe file into a
distributable media.
webMethods JIS: XHTML Client User’s Guide Version 9.0 79

Chapter 4. Deploying the JIS Runtime Application

Installing Your Runtime on Windows

Run the setupJav.exe file (the installation wizard for the webMethods JIS
runtime) to automatically install the runtime on Windows. All you have to do is
provide the installation wizard with the location to which the runtime is to be
installed. The installation wizard installs the JIS Server for your runtime
application and creates the JIS Server icons.

To activate the runtime installation wizard:

• Double click the setupJav.exe file, in the following directory:
<InstallDir>\appls\<ApplName>\install\javasrvr\setupJav.exe

If you choose to install the runtime without using the installation wizard,
follow the instructions given in the setup.txt file. You can install the necessary
runtime application files on your Server Computer manually, or using a
software-installing utility program.

The JIS Runtime on iSeries

In this section, learn how to install and operate the webMethods JIS runtime on
an iSeries.

Creating a Runtime Installation

To create a runtime installation:

1 In ACE, from the Utility menu, choose Create Runtime Installation. This
opens the Create Runtime Installation wizard.

2 In the Create Runtime Installation wizard choose the following settings:
• Automatic or manual packaging. It is recommended that you use the

WISE Installation Studio. If you choose to use WISE, then the Create
Runtime Installation wizard produces an information file that WISE can
read. If you do not choose WISE, then the Create Runtime Installation
wizard produces a text file listing the directory structure and files that
make up a working runtime on an end-user system.

• If you are using WISE then you can choose a bitmap to be displayed
during the installation on the end user’s system.

• For Runtime Type, choose XHTML.
• For the JIS Server Platform(s) option, choose AS/400 (RISC).

3 Continue the wizard’s steps to the end.
At the end of the process ACE creates the following files:
• setupjav.exe—This program will install the JIS Server for your runtime

application.
80 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

• setup.txt—if you install the runtime without using the Wise installation
program, this text file lists the files that should be included in the runtime
application. This text file also includes an indication of the precise place in
the application runtime directory in which each file should appear.

• finst400.txt—contains a list of records. The iSeries installation uses these
records as parameters to install the JIS Server.

These files are placed under the ACE root directory, under the directory:
<InstallDir>\appls\<ApplName>\install\javasrvr

The entire runtime environment is contained in the setupJav.exe file. To
distribute the XHTML Client runtime, copy the setupJav.exe file into a
distributable media.

Installation Files to be Copied on an iSeries

When installing the runtime on an iSeries, installation files must be copied from
the conversion machine and included with the runtime environment. These files
are contained within the Jbs directory which sits under the ACE root directory:
<InstallDir>\Install\AS400\Jbs\

Installing the Runtime on the iSeries

The iSeries Integrated File System (IFS) enables you to view and manipulate the
iSeries’s directory and file structure from the PC. Map a local drive on your PC to
the iSeries. Then transfer the runtime environment from the PC to the iSeries.

The following sequence and short description that follows outline the steps for
installing the runtime on the iSeries. A detailed discussion of each step can be
found in the subsequent sections.

To install the runtime on the iSeries:

1 Map the PC to the iSeries IFS.
2 Transfer the runtime environment to the iSeries.
3 Transfer the Server Package to the iSeries.

Mapping the PC to the iSeries IFS enables you to carry out part of the installation
process on the iSeries via a PC (step 1 above). If you are unable to map a network
drive to the iSeries, you must manually transfer the directories and files that
make up the webMethods JIS runtime environment to the iSeries. Both methods
are described below.

Note: Make sure that these files are included on the distributable media
containing the runtime environment.
webMethods JIS: XHTML Client User’s Guide Version 9.0 81

Chapter 4. Deploying the JIS Runtime Application

The installation process itself is performed in two steps. First, you transfer
runtime Java classes to the iSeries (step 2 above). This step is wizard driven. Then,
you transfer the JIS Server to the iSeries and create libraries on the iSeries to
accommodate the runtime environment (step 3 above).

Mapping the PC to the iSeries IFS

If you are unable to map a network drive to the iSeries, skip this section and
continue with “Transferring the Runtime Environment to the iSeries Manually”
on page 86.

Use a drive sharing mechanism such as Client Access to map a local drive on your
PC to the iSeries. Opening the mapped drive on your PC then provides you with
direct access to the iSeries’s directory and file structure.

There are two ways to map a Network Drive to the iSeries Machine: You can map
the drive using Network Neighborhood, or with Windows Explorer.

To map a PC drive to the iSeries machine using Network Neighborhood:

1 From the Network Neighborhood, find the name of your iSeries and double-
click on it.

2 Locate the “Shared directory” on the iSeries which represents the “root” of
the IFS. This directory is typically labeled “home”. If a “home” directory does
not exist, consult the iSeries administrator to locate the correct directory.

Example:

\\<host name>\home\

Click on the “shared directory” with the right mouse button.
3 From the shortcut menu, choose Map Network Drive.

Figure 21. Map network drive
82 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

4 In the Map Network Drive dialog box, choose a local drive.
For example: S:

5 Create a folder on the newly mapped drive to house the runtime
environment.
For example, create a folder called jis.
Following the previous example, the mapped directory path is: S:\jis
The corresponding iSeries directory path is /home/jis.
Take note to record the iSeries directory path. You will need to enter it in the
webMethods JIS installation wizard.

To map a PC drive to the iSeries machine using Windows Explorer:

1 From the Tools menu in Windows Explorer, click on Map Network Drive.
The Map Network Drive dialog box appears.

2 Windows offers you the first available network drive. This is fine, unless for
some reason you want to assign a specific drive letter.

3 Choose the “Shared directory” which represents the “root” of the IFS.
Typically, this directory is labeled “home”. If you are not sure what directory
to use, consult the iSeries administrator.
If the desired path does not appear in the dropdown list you can type it
manually into the Path field.

Example:

\\12.34.56.78\home

or, with a DNS name
\\OURAS400\home

4 Click OK.
5 Create a folder on the newly mapped drive to house the runtime

environment, if such a folder has not already been prepared for you.

Transferring the Runtime Environment to the iSeries via a Mapped
Network Drive

The first step in the installation process involves transferring the runtime
environment to the iSeries. This step is wizard-driven.

Note: The runtime environment files must be transferred to the iSeries in their
binary form. Therefore, make sure that the mechanism you use for
transferring to the iSeries does not translate files from ASCII to EBCDIC.
webMethods JIS: XHTML Client User’s Guide Version 9.0 83

Chapter 4. Deploying the JIS Runtime Application

To transfer the runtime environment to the iSeries via a network drive:

1 From the PC, run the webMethods JIS runtime executable by double-clicking
on the setupJav.exe file, in the following directory:
<InstallDir>\appls\<ApplName>\install\javasrvr\setupJav.exe

This invokes the webMethods JIS installation wizard.
2 Enter the User information and click Next.
3 The wizard prompts you with the Select Destination Directory dialog box:

Figure 22. RT transfer to the iSeries via mapped network drive

In the Select Destination Directory dialog box, provide a destination
directory and click Next.
Since the runtime is installed on the IFS on the iSeries, the previously-
mapped drive is used to specify the destination directory. As shown above,
following the example presented earlier, the destination directory is F:\jis.

4 In this step, the wizard asks if you are transferring the webMethods JIS file
structure to the iSeries via a shared network drive or if you are doing the job
manually.

Note: The JIS Server Installation wizard automatically appends the
Application name to the runtime root directory. The Application name can be
deleted. If you choose to leave it, it will become part of the root directory.
84 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Figure 23. RT transfer to the iSeries via mapped network drive (next)

In the File Transfer Method dialog box, choose Shared folders.
5 The wizard then opens the Installing on iSeries dialog box:

Figure 24. RT transfer to the iSeries via mapped network drive (next)

In the Installing on AS/400 dialog box, set the following options:
webMethods JIS: XHTML Client User’s Guide Version 9.0 85

Chapter 4. Deploying the JIS Runtime Application

6 Click Next. This initiates the automatic installation of the JIS Server and the
Client for your runtime Application. At the end of this process the XHTML
Client is transferred to the iSeries.

This completes the first part of the three-part installation process. The second part
of the process involves the transfer of the JIS Server from the PC to the iSeries.

Transferring the Runtime Environment to the iSeries Manually

If you were unable to transfer the webMethods JIS runtime environment to the
iSeries via a shared network drive, you must do the transfer manually.
Otherwise, skip this section and continue with “Transferring the Server Package
to the iSeries” on page 87. This process is partially wizard-driven.

To transfer the runtime environment to the iSeries manually:

1 This step invokes the webMethods JIS installation wizard.
From the PC, run the webMethods JIS runtime executable by double-clicking
on the setupJav.exe file, in the following directory:
<InstallDir>\appls\<ApplName>\install\javasrvr\

2 Enter the User information and click Next.
3 The wizard prompts you with the Select Destination Directory dialog box

box:

Option Description

Full path to shared
folder on runtime
machine

The path on the iSeries under which the runtime will be
installed. Using the example from above, the path
would be /home/jis.

Full iSeries
directory path

A URL including the iSeries address followed by the
directory to which you are transferring the runtime
environment.

Note: Skip the next section, “Transferring the Runtime Environment to the
iSeries Manually”, and continue with “Transferring the Server Package to the
iSeries” on page 87.
86 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Figure 25. Manual RT transfer to the iSeries

In the Select Destination Directory dialog box, select a new or empty
destination directory on your PC for installing the webMethods JIS runtime
files.

4 Continue the wizard to the end.
5 Using PKZIP, FTP, PKUNZIP—or similar utilities—copy the installed runtime

files from your PC to the iSeries machine, preserving the directory structure.

Transferring the Server Package to the iSeries

The second part of the installation process uses a batch program to move the JIS
Server installation files to the iSeries, in preparation for installing the JIS Server
there. You need the IP address of the iSeries along with a valid iSeries login name
and password. The batch program copies the JSERVER file to the QGPL library on
the iSeries and restores the installation program to the same library.

To execute the batch program:

1 From the Windows Start menu, select Run.
2 Type command and press OK. This opens up a command window.
3 In the command window, type cd <your ACE

path>\install\as400\jbs

Example: cd c:\jis\install\as400\jbs
4 Type jsinstall
5 You are prompted for the following parameters:

iSeries IP
Address

The address of the iSeries machine where the Server is to be
installed.

User Your iSeries login name.
webMethods JIS: XHTML Client User’s Guide Version 9.0 87

Chapter 4. Deploying the JIS Runtime Application

The batch program copies the save file JSERVER to the iSeries library called QGPL,
and restores the installation program to the same library.

Running the Install Program on the iSeries

After executing JSINSTALL on the PC as described in the previous section, you
have an installation program, also called JSINSTALL, in the QGPL library on the
iSeries.

To run the installation program on the iSeries:

1 Establish a connection to the iSeries and logon.
2 Make sure QGPL is in your library list (it should be there by default).
3 Type JSINSTALL and press F4.

The following screen is presented:

Figure 26. JIS Server installation on the iSeries

4 Fill in the name of the library where you want the Server to be installed. If the
library you specify does not exist, it is created.
Several additional parameter fields are then displayed:

Password Your iSeries password.
88 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Figure 27. JIS Server installation on the iSeries: options
webMethods JIS: XHTML Client User’s Guide Version 9.0 89

Chapter 4. Deploying the JIS Runtime Application

5 Fill in the fields according to the following instructions:

6 After filling in the parameters, press Enter to start the installation. The
installation process is activated.

The system issues messages to help you follow the progress of the installation
procedure. In case of a problem, an error message is displayed.

Field Instructions

JIS Server root
directory

This is the directory you specified above, in the screen
“Installing on OS/400 (RISC)” in the section “Transferring
the Runtime Environment to the iSeries”. If the library
specified in ‘Server destination library’ already contains a
Server, the root directory of that Server appears as default.

Install Server Type *YES if you want the Server to be [re]installed. Type
*NO if you want to install only the Application. If the
destination library already contains a Server, the default is
*NO.

Application
name

The name of the Application being installed with the
Server.

DLR
destination
library

During the installation, certain files—called DLR files—are
saved to the library designated here. If the library name you
specify does not exist, it is created.

Create
optimized Java
program

This parameter indicates whether the Java programs are
recompiled and optimized for better performance.

Type *YES or *NO.

This step is technically optional, but it is recommended.
Performing the compilations at this time eliminates the
need for the iSeries to compile Java objects from Java classes
each time they are invoked by the client. By compiling the
objects now, application runtime performance is
considerably improved. Depending on the capacity of the
iSeries, the size of the application, and the optimization
level you select, compiling the Java objects now may add
up to several hours to the install process.
90 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Activating the JIS Server on the iSeries

You activate the JIS Server by typing a command in the iSeries command line.

There are two ways you can run the JIS Server.

• By typing the RUNJACSRV command. This runs the Server and allows you to
define two parameters to determine how the Server runs.

• By typing a customizable command. This is used for defining several
parameters by which the JIS Server runs, and the class paths it reads.

Activating the JIS Server Using the RUNJACSRV Command

To activate the JIS Server using RUNJACSRV:

1 In the command line type the following command and press Enter:
RUNJACSRV
The following screen appears:

Figure 28. Run JIS Server (RUNJACSRV) screen

2 Fill in the fields according to the following instructions:
webMethods JIS: XHTML Client User’s Guide Version 9.0 91

Chapter 4. Deploying the JIS Runtime Application

Depending on the capacity of the iSeries, it takes the Server up to a minute after
invocation time before it is ready to serve clients.

The JIS Runtime on Solaris

In this section, we describe how to install and operate the webMethods JIS
runtime on a Solaris machine. In doing so we have made some basic
assumptions, which include:

• The Solaris machine is an integral part of your company’s network.
• If you use Samba as a means to install the runtime installation on a Solaris

machine, it is assumed that your Systems Administrator knows to configure
Samba so that a PC drive can be mapped to a directory on the Solaris
machine.

Field Instructions

Root Directory
Name

Enter the directory name under which the JIS Server is
installed

Application DLR
library

Put the name of the DLR library that you specified when
you ran the JSINSTALL command.

Define parameters that determine how the JIS Server
runs. Note that this is optional.

Mode Choose between Batch and Interactive.

Batch - The Server is activated and works in the
background

Interactive - Activity taking place on the Server is
displayed

Logging detail
level

“Debug” level. See “The JIS Server Command Line
Parameters” on page 103.

Note: Commands given in UNIX are case sensitive. Take care to correctly
enter directory paths and commands.
92 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

The section is divided as follows:

• Preparing the Solaris directory structure
• Creating a runtime installation
• Installing the runtime to the Solaris machine
• Activating the JIS Server on Solaris

Preparing the Solaris Directory Structure

You need to perform some operations on the Solaris machine to prepare it to
accept and run the runtime installation. This initial preparation must be
performed irrespective of whichever means you use to transfer and install the
runtime installation onto the Solaris machine.

The operations include:

• Creating a User ID for the JIS Application
• Creating a working directory under the user directory

Creating a User ID for the JIS Application

Have the System Administrator create a User ID.

Creating a Working Directory Under the User Directory

The working directory serves to house the runtime deployment.

To create a working directory:

• From within the <user name> directory create a working directory:
/export/home/<user name>/<Working Directory>

Creating a Runtime Installation

To create a runtime installation:

1 In ACE, from the Utility menu choose Create Runtime Installation.
This opens the Create Runtime Installation wizard.

2 In the Create Runtime Installation wizard choose the following settings:
• Automatic or manual packaging. It is recommended that you use the

WISE packaging system. If you choose to use WISE, then the Create
Runtime Installation wizard produces an information file that WISE can
read. If you do not choose WISE, then the Create Runtime Installation
webMethods JIS: XHTML Client User’s Guide Version 9.0 93

Chapter 4. Deploying the JIS Runtime Application

wizard produces a text file listing the directory structure and files that
make up a working runtime on an end-user system.

• If you are using WISE then you can choose a bitmap to be displayed
during the installation on the end user’s system.

• For Runtime Type, choose XHTML.
• For the JIS Server Platform(s) option, choose Solaris SPARC.

3 Continue the wizard’s steps to the end.
At the end of the process ACE creates the following files:
• setupjav.exe—an executable for the Wise Installation System software.

This program installs the JIS Server for your runtime Application.
• setup.txt—if you choose to install the runtime without using the Wise

installation program, this text file lists the files that should be included in
the runtime Application. This text file also includes an indication of the
precise place in the Application runtime directory in which each file
should appear.

These files are placed under the ACE root directory, under the directory:
<InstallDir>\appls\<ApplName>\install\javasrvr

The entire runtime environment is contained in the setupJav.exe file. To
distribute the webMethods JIS runtime, copy the setupJav.exe file to a
distributable media

Pre-Installation Checklist for the Solaris Platform

Before deploying the webMethods JIS runtime on the Solaris machine, check the
following:

• The runtime was generated for the Solaris SPARC platform.
• The Runtime Installation was created for the Solaris SPARC platform.
• Check the version of the operating system and JDK that are installed on the

Solaris machine.
• Check the amount of physical memory available on the Solaris. Each

application session requires approximately 1.5 MB.
• See that the Domain Name Server is properly configured.
• Verify that you have UNIX permission for transferring the runtime files and

for executing the Server.
• See that you have a file sharing utility like Samba or NFS installed and

configured on the Solaris; alternatively, check that you can transfer files to the
Solaris via FTP.

• Check that JIS default ports 1100, 1101, and 2100 are not in use by another
process on the Solaris and are not blocked by a firewall.
94 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Installing Your Runtime on a Solaris Machine

There are several types of utilities you can use to transfer and install the runtime
from the PC to the Solaris machine. These include:

• Samba
• FTP
• Other utilities

Installing the Runtime Environment Using Samba

Use the Samba utility to view and manipulate the Solaris machine’s directory and
file structure from the PC. In this way you can transfer the runtime installation
file directly from the PC to the Solaris machine, and then deploy the runtime.

To use Samba in this way:

1 Designate a directory on the Solaris machine to view from the PC.
2 Map a drive on the PC to the Solaris machine.
3 Install the runtime environment on the Solaris machine.
4 Manipulate deployed runtime files.

Mapping the PC to Solaris

There are two ways to map a Network Drive to the Solaris Machine. You can map
the drive using Network Neighborhood, or with Windows Explorer.

To map a PC drive to a Solaris machine using Network Neighborhood:

1 From the Network Neighborhood, find the name of the Solaris machine and
double-click on it.

2 Locate the “Shared directory” on Solaris to which you wish to map the local
drive. For example: \\<host name>\home\jis. Click on it with the right
mouse button.

3 From the shortcut menu, select Map Network Drive.
4 In the Map Network Drive dialog box, choose a local drive.

Note: If for whatever reason you are not able to use a file sharing utility to
map a network drive to your Solaris, skip ahead to “Installing the Runtime
Environment Using FTP” on page 98.
webMethods JIS: XHTML Client User’s Guide Version 9.0 95

Chapter 4. Deploying the JIS Runtime Application

To map a PC drive to the Solaris machine using Windows Explorer:

1 From the Tools menu in Windows Explorer, select Map Network Drive. The
Map Network Drive dialog box appears.

2 Windows offers you the first available network drive. This is fine, unless for
some reason you want to assign a specific drive—perhaps you want to use
the “S” drive, for “Solaris”.

3 Chose the appropriate path to the “Shared directory” which has been
assigned to you on the Solaris. If the desired path does not appear in the
dropdown list you can type it manually into the Path field.
\\12.34.56.78\jis or, with a DNS name: \\OURSOLARIS\jis

4 Click OK.

You should now be able to view the contents of the <working directory> on the
Solaris machine from the PC.

Transferring the Runtime Environment to the Solaris Machine

To transfer the runtime environment to the Solaris machine:

1 From the PC, run the webMethods JIS for XHTML runtime executable by
activating the setupJav.exe file.
This invokes the JIS Server Installation wizard.

2 In the Select Destination Directory dialog box, enter the directory under
which the JIS Server files will be installed.
Enter a directory according to the following criteria:
• If you are using Samba, enter the runtime directory as defined when

mapping your PC drive to the Solaris machine.
• If you are using FTP, enter the name of a temporary directory.
• When working with Solaris it is important to remember that UNIX is case

sensitive. When creating an Application, ACE forces its name to
uppercase. Therefore, where the Application name appears in a pathname
in any of the runtime classes, it is also in uppercase, and the name of the
directory where the Application resides must also be in uppercase.

3 The Installing on Solaris (SPARC) dialog box is displayed:

Note: You should record the Solaris directory path. You will need to enter it in
the JIS Server Installation wizard.
96 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Figure 29. RT transfer to Solaris

4 In the Installing on Solaris (SPARC) dialog box, set the following options:
webMethods JIS: XHTML Client User’s Guide Version 9.0 97

Chapter 4. Deploying the JIS Runtime Application

:

The installation wizard automatically transfers and installs the runtime
environment to the directory you have defined. In doing so the installation
wizard installs both JIS Server and XHTML client for your runtime
application.

Installing the Runtime Environment Using FTP

A simpler installation technique was introduced in JIS 9.0.3. Refer to the JIS 9.0.3 release
notes for more information. This section is for those who are unable to use Samba
or another file sharing utility. If you have successfully installed the Runtime
Install using a file sharing utility, skip forward to “Activating the JIS Server on
Solaris” on page 101.

Option Description

The full path on the Solaris
to the directory where the
application is installed

If the directory for your work on the Solaris is:

/export/home/jis

and you have designated the sub-directory
SOLTST01 to contain the runtime environment,
then the full Solaris directory for your runtime
environment will be:

/export/home/jis/SOLTST01

Full path on the Solaris to
the Java runtime
environment

The default is: /usr/java, the installation will
automatically append /bin/java to this path.

URL for accessing the
application

A URL including the Solaris machine’s address
followed by the directory to which you are
transferring the runtime environment, in the
following format:

http://<your Solaris’s address>:8080/<shared
folder>/<appl directory>/

Example:

http://oursolaris:8080/jis/SOLTST01/
98 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Use FTP as a means to transfer the runtime installation from a drive on the PC to
the Solaris machine in situations where you cannot use a utility such as Samba.
Before transferring the runtime via FTP you must first install the runtime on one
of your PC’s local drives. You can then zip the runtime environment and FTP it to
the Solaris machine.

All modifications to the Solaris machine’s directory structure described in
“Preparing the Solaris Directory Structure” on page 93, must be performed prior
to transferring the compressed runtime environment.

To install the runtime environment on the Solaris machine:

1 Install the runtime environment on a temporary PC directory.
2 Compress and transfer the runtime environment to the Solaris machine.
3 Deploy the runtime environment into a pre-defined working directory.
4 Manipulate deployed runtime files.

Installing the Runtime Environment on a Temporary PC Directory

Run the installation file, setupjav.exe, to install the runtime environment on a
directory on your PC. Running the installation file starts the JIS Server
Installation wizard.

The wizard has the following steps:

• Registration Information
• File Transfer Method
• Select Destination Directory
• Installing on SPARC/Solaris

In the Registration Information step, enter:

• User Name
• Company Name

In the File Transfer Method step, enter:

• FTP

In the Select Destination Directory step, enter:

• The directory under which the JIS Server files will be installed on the PC. It
may be useful to install under a directory structure that mirrors the structure
that you established on the Solaris machine.

• The drive and directory on the PC that will act as a temporary location for
deploying the runtime. Where the destination directory is DEMO and the
working directory is JIS, enter: <Drive>:\JIS\DEMO.
webMethods JIS: XHTML Client User’s Guide Version 9.0 99

Chapter 4. Deploying the JIS Runtime Application

In the Installing on SPARC/Solaris step, provide:

• Full directory path to destination directory as viewed on the Solaris machine.
Where you have designated the directory DEMO as the destination directory,
then the full Solaris directory for your runtime environment is:
/export/home/<UserName>/<WorkingDir>/<DestinationDir>

Example: /export/home/john/JIS/DEMO
• Full path on Solaris where the Java utilities are installed. The default is:

/usr/java

• A URL including the Solaris machine’s address followed by the path to the
Destination Directory:
http://Solaris/~<user name>/<Destination Directory>

If the administrator installed the JDK in a non-standard manner then you need to
change this path to reflect the directory on the Solaris machine that houses the
JDK.

Figure 30. RT transfer to Solaris on a temporary PC directory

The installation wizard automatically transfers and installs the runtime
environment to the directory you have defined. In doing so the installation
wizard installs both the JIS Server and the Client for your runtime application.

Note: All directory path entries refer to the installations destination on the
Solaris machine and not the temporary directory being used on the PC.
100 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

Compressing and Transferring the Runtime Environment to the Solaris
Machine

To compress and transfer the runtime environment to the Solaris machine:

1 From the temporary directory established on the PC, select and compress the
runtime environment into a ZIP or TAR file.

2 Open an FTP session with the Solaris machine.
3 FTP the compressed runtime environment to your target Solaris machine.

Deploying the Runtime Environment into a Pre-defined Working
Directory

The next step is to deploy the runtime environment on the Solaris machine.

To deploy the runtime environment into a pre-defined working directory:

1 Using Telnet or any other means, open a session on the Solaris machine.
2 Navigate to the location where the compressed file is held.
3 UNZIP or “un-TAR” the runtime environment from the compressed file into

the pre-defined working directory.

Activating the JIS Server on Solaris

The file system on the Solaris machine is case-sensitive. Therefore, before you run
the JIS Server on Solaris, you should be aware of restrictions regarding case
sensitivity.

Make sure that:

• References to files are written exactly like the files themselves.
• All INI files are written in lower case.
• Any directory with the same name as the Application is in uppercase, and the

Application name itself is always uppercase.

To run the JIS Server from Solaris:

1 Open a session on the Solaris machine and enter your user name and
password.

2 Change the directory to the ‘bin’ directory under which the runtime
environment is installed. Type: cd /<RT directory>/bin
webMethods JIS: XHTML Client User’s Guide Version 9.0 101

Chapter 4. Deploying the JIS Runtime Application

3 Make a backup copy of the jacadasv file by executing the following
command: cp jacadasv jacadasv_copy

4 Execute the dos2unix command to change the end-of-line characters in the
jacadasv file from MS DOS-style to UNIX-style:
dos2unix jacadasv_copy jacadasv

5 If this is the first time you are running the JIS Server, after having installed,
you must grant the user permission to execute certain JIS Server files.
Type: chmod u+x jacadasv solaris/*.so
-OR- type: chmod 755 jacadasv solaris/*.so
JIS

6 Run the JIS Server by typing the following command: ./jacadasv from the
directory under which the runtime environment is installed.

7 Start up a web browser and enter the following URL in the address bar:
http://<your Solaris’s IP addr>:8080/<ApplName>-xhtml.html

The Jacadasv Script

The jacadasv shell script contains parameters relating to the JIS Server
executable file. These parameters can be changed.

The jacadasv script contains the following parameters:
set CST_DIR=/<runtime_directory>/

set JAVA_INTERPRETER=/usr/java/bin/jre

set JAVA_CLASSES=/usr/java/lib/rt.jar

if ($?LD_LIBRARY_PATH) then

setenv LD_LIBRARY_PATH $CST_DIR/bin/solaris:
$LD_LIBRARY_PATH

else

setenv LD_LIBRARY_PATH $CST_DIR/bin/solaris

endif

limit descriptors unlimited

exec $JAVA_INTERPRETER -classpath $JAVA_CLASSES\: $CST_DIR/
classes:$CST_DIR/classes/cst/jacadasv.zip: $CST_DIR/utils/xml/parser/
xml.jar cst.server.module.ServerStarter -d0 $*

Note: <RT directory> must be replaced with the directory in which the JIS
installation resides.

Note: You can have the JIS Server started and running in the background
during the Solaris’s initialization process. To do so, add the executable
command to the initialization path and add an ampersand (&) at the end of
it—jacadasv&.
102 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 4. Deploying the JIS Runtime Application

The JIS Server Command Line Parameters

You can manipulate the way the JIS Server runs by adding command lines to its
script file.

Table 12 lists the parameters you can use for this purpose:

Table 12. JIS Server command line parameters (Sheet 1 of 2)

Parameter Description

-i
<Initialization
file path name>

Default:

-i<User’s working directory>jacadasv.ini

Example: -ic:\JacadaFiles\jacadasv_ex.ini

-d <Debug level> Default: -d1

Example: -d30

The debug level can be set to any integer from zero to
1000. The greater the integer, the greater the amount of
information that is recorded in the logfile. A debug
level of “70” produces an extremely detailed log file. A
debug level of “1” is recommended when running the
server in production mode.

The debug facility is extremely useful for diagnosing
problems that may occur during setup and testing of
your JIS Server, but Software AG recommends that
debug level larger than 10 will not be used on a regular
basis during normal production operation. This is
because the JIS Server generates many log entries for
each action (every time “Enter” or an Fkey is pressed)
of every user. Especially with the higher debug levels, a
handful of users with moderate activity could result in
an enormous log file in just a short time. After a certain
point the logging of such a large number of entries may
negatively impact system throughput.
webMethods JIS: XHTML Client User’s Guide Version 9.0 103

Chapter 4. Deploying the JIS Runtime Application

-l <Debug
logging file
directory>

Default: log to console

Example: write log to directory \temp on the c: drive

-lc:\temp

The logfile directory you specify must exist before you
bring up the JIS Server. If the directory does not exist,
the Server startup fails.

-h The JIS Server console displays the syntax of the
webMethods JIS startup command, and the list of
command line options.

-n Disables the user’s option to insert such commands as
‘check’ and ‘quit’ in the JIS Server console. This flag is
neccessary when running the server as a backround
process.

-c Runs the Server Configuration Checker in Offline
Mode. The Checker analyzes the configuration of all the
defined server machines, reports errors and warnings
to a log, and closes without starting the server.

-f <Debug
Filters>

(if specifying
multiple
filters,
separate them
with a comma
[“,”])

Debug Filters are tools to help you accomplish specific
types of logging. See “Debug Filters” on page 166 for
more information.

Table 12. JIS Server command line parameters (Sheet 2 of 2)

Parameter Description
104 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

The following topics are discussed:

• “JIS Server INI File Settings” on page 105
• “Scalability” on page 139
• “JIS Server Logging Support” on page 159
• “Analyzing Abnormal Runtime Termination” on page 168
• “Checking Server Configuration” on page 178
• “JIS Administrator” on page 184
• “Running the JIS Server as a Windows Service” on page 218
• “Printing Emulation” on page 222

JIS Server INI File Settings

This section provides you with a list of the parameters that can be set in the JIS
Server initialization file (JIS Server INI file). The actual file name of the JIS Server
INI file is jacadasv.ini, and it is located in
<JIS Root Directory>\JacadaFiles\classes.

Many of the parameters in the JIS Server INI file deal with aspects of connectivity
between the JIS Server and the XHTML client Application. For many of the
parameters, the default values are satisfactory and need never be modified. For
other parameters, you should supply custom values reflecting your environment.

Location of INI Settings: A Recommendation

Beginning with webMethods JIS version 9.0, Software AG recommends that INI
settings that have until now been defined in the XHTML section of the
jacadasv.ini file, be moved to the XHTML section of the runtime INI file
(<APPLNAME>.ini). This is to ease the task of deploying your applications to a
J2EE application server, if you should choose this path in the future.

In a J2EE deployment, the jacadasv.ini file contains only debug-related
settings. For any of the XHTML section’s INI settings to be effective under J2EE,
they must be located in the runtime INI file (<APPLNAME>.ini).

Under the webMethods JIS proprietary server, the only difference between an INI
setting in the jacadasv.ini file and one in the runtime INI file is the setting’s
scope. A setting in the jacadasv.ini applies to all applications running under
the JIS Server; a setting in the runtime INI file applies only to the application
webMethods JIS: XHTML Client User’s Guide Version 9.0 105

Chapter 5. Optimizing the JIS Server

associated with that runtime INI file. If an XHTML setting is defined in both the
jacadasv.ini file and the runtime INI file, the runtime INI value takes
precedence.

The remainder of this chapter is written from the perspective of a deployment to
the JIS standalone Server; that is, it assumes the settings are to be placed in the
jacadasv.ini file. However, please keep the above recommendation in mind.

Other Factors Affecting Performance

Several factors can affect the performance of the JIS Server in addition to the
Server’s settings and the users’ activity profiles.

• The Server platform’s CPU and memory configuration has the most profound
impact on capacity and performance.

• Network capacity and congestion directly affect performance.
• Optimization of load balancing configuration parameters can dramatically

affect performance.
• The performance of the JVM also influences overall performance.

The INI Settings

The JIS Server INI file is called jacadasv.ini. It resides under the Classes
directory, in the directory in which you have installed your runtime Application.

For example: c:\JacadaRuntime\classes\jacadasv.ini

The INI file is divided into sections. Each section begins with a header line that
consists of the name in the section in square brackets, like so: [SectionName].
This section of the book is organized into sections like those in the INI file itself.

Note: For changes to take effect you should restart the JIS Server.
106 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[GeneralParameters]

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 1 of 9)

Parameter Description

BindIPAddressFor-
GUIClient

Defines the IP address(es) on which the JIS
Server listens. The following values are
available:

All - listens to all the IP addresses available
on a specific machine. This is the default
value.

AsListed - listens to the IP address(es)
listed in the [ServerMachines] section of
the jacadasv.ini file.

ExplicitIPAddress - listens to an explicit IP
address available on a specific machine.

CheckServerConfiguration On startup, checks the configuration of the
currently running server. To disable, set to 0.
Default value is 1.

HTTPClient Defines whether or not to enable HTTP Client
support.

1 = enable HTTP Client support
0 = disable HTTP Client support

Default value: 1

Note: In order to enable the XHTML client,
this value must be set to 1.

InitialTransactionsTo
Ignore

This parameter is used in calculating the
average duration of transactions, for logging
purposes. The initial transactions’ duration
are longer due to Java class loading, so you
have the option of not counting them when
calculating the average. Defines the number
of initial transactions that are ignored.

The default value is 1.
webMethods JIS: XHTML Client User’s Guide Version 9.0 107

Chapter 5. Optimizing the JIS Server

IniVersion Optional parameter. The developer can use
this parameter to specify a character string
that appears in the debug log to identify the
ini file being used.

KeepAliveTimeout Timeout for sub-processes to send a keep-
alive notification to the main process. If the
main process does not receive a keep-alive
notification before the timeout expires, the
reference to the sub-process is removed. The
value is calculated as multiples of the
KeepAliveTimerTick parameter.

Default value: 10 (x KeepAliveTimerTick).

KeepAliveTimerTick Interval at which sub-processes send a keep-
alive notification to the main process. Default
value: 60 seconds.

MaxMachineApplications Maximum number of applications to be run
concurrently on the server machine. Default
value is no limit.

MaxProcessApplications Maximum number of applications to be run
concurrently in the server process. Default
value is no limit.

MaxProcesses Maximum number of processes to be run
concurrently on the server machine. Default
value: 1

PortScanRetries Defines the number of times the process looks
for a free port within the port range before
giving up. Default value: 2

ProcessRespawnEnabled In case of system failure, defines whether or
not to destroy and re-spawn corrupted
processes.

Valid values: 0 (no), 1 (yes). Default value: 0.

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 2 of 9)

Parameter Description
108 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

RegistryPortRange Range of port allocations for the RMI Registry
(minimum of one port is needed).

Format: <low port> - <high port>

Example: 1900-1901

Default port number is 2100.

RegistrySpawnTimeout The time in milliseconds the server waits for
the NodeRegistry process to start. Default is
45000 milliseconds.

Do not use a comma when specifying the
value.

ReportsToMachine Alias of the root machine.

Note: required only in multi-machine
scenarios, for machines that are not running
the root server process. The machine running
the root process must remain undefined.

ReverseDNS Enables the DNS name lookup in a DNS
server. When set to 1, the client’s host name is
written to the SessionLog and XMLLog file.

Valid values: 1 | 0. Default setting 0, writes
the numeric IP address to the log.

RMISocketTimeout Defines the time in seconds that an RMI client
waits for a server to respond. When a remote
method is called on a remote object it times
out after the defined time, throwing a
'RemoteException'. Default value: 20 seconds

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 3 of 9)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 109

Chapter 5. Optimizing the JIS Server

RtDebugFileMaxSize Specifies the maximum size of the server log
file in bytes, if desired. When the logfile
reaches this size, wraparound occurs.

Example: RtDebugFileMaxSize=1000000

Limits the webMethods JIS log file to 1 Mb in
size.

The maximum size of the server log file can
also be specified on the JIS Server command
line (See “The JIS Server Command Line
Parameters” on page 103.) If the parameter is
specified in both places, the value specified
on the command line takes precedence.

RtDebugFilters Specify any debug filters that you want set on
automatically at Server startup.

Example: RtDebugFilters=SCREEN_IMG_NL

If you desire to use more than one debug
filter, separate the filter names with commas.

Debug Filters are tools to help you
accomplish specific types of logging. See
“Debug Filters” on page 166 for more
information.

Debug filters can also be specified on the JIS
Server command line. (See “The JIS Server
Command Line Parameters” on page 103.) If
debug filters are specified in both places, the
values specified on the command line take
precedence.

Debug filters can also be turned on and off
while the JIS Server is running. See “Debug
Filters” on page 166 for more information.

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 4 of 9)

Parameter Description
110 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

RtDebugLevel The debug level can be set to any integer from
zero to 1000. The greater the integer, the
greater the amount of information that is
recorded in the logfile. A debug level of “70”
produces an extremely detailed log file.

The debug level can also be specified on the
JIS Server command line (See “The JIS Server
Command Line Parameters” on page 103.) If
the debug level is specified in both places, the
value specified on the command line takes
precedence.

 The debug facility is extremely useful for
diagnosing problems that may occur during
setup and testing of your JIS Server, but
Software AG recommends that debug mode
not be used on a regular basis during normal
production operation. This is because the JIS
Server generates many log entries for each
action (every time Enter or an Fkey is
pressed) of every user. Especially with the
higher debug levels, a handful of users with
moderate activity could result in an
enormous log file in just a short time. After a
certain point the logging of such a large
number of entries may negatively impact
system throughput.

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 5 of 9)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 111

Chapter 5. Optimizing the JIS Server

RtLogsDir Use this parameter to specify the location of
the log files. For example:
RtLogsDir=$RootDir\classes\logs

Alternatively, you can specify the log file
location on the command line. (See “The JIS
Server Command Line Parameters” on
page 103.)

The debug level must be higher than zero for
a Server Log File to be created.

The log directory specified (either via the
RtLogsDir parameter or on the command
line) must already exist in order for logging to
take place. The debug file itself is called
Debug_1.log. If there is more than one
server session, a numeric suffix is
automatically affixed so that the file name
becomes Debug_1.0.log, for example.

RtRootDir The runtime root directory.

C:\ACE\JacadaFiles

Note: The string "$RootDir" in settings that
include it in their path are replaced in
runtime with the root directory defined in
this setting.

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 6 of 9)

Parameter Description
112 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

ServerPortRange Range of port allocations for the initial
communication port number. A minimum
range of at least one port is required.

Note: If no ServerPortRange2 parameter is
specified:

- This range also applies to the secondary
server port. For this to be effective, a
minimum range of at least two ports is
required.

- When the ServerPortRange parameter is
set to a range of only two ports, the lower
value of the range is reserved for port1 and
the higher value is reserved for port2.

Format: <low port> - <high port>

Example: 1900-1901

Default value: 1100-1100.

Note:this setting is only used by the Java
Client

ServerPortRange2 Optional range for the secondary
communication port number.

Format: <low port> - <high port>

Example: 1900-1901

Default is the port range defined in
ServerPortRange.

Note:this setting is only used by the Java
Client

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 7 of 9)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 113

Chapter 5. Optimizing the JIS Server

SocketImplFactory The fully qualified classname of a custom
implementation of the socket factory class on
the server side.

appls.applname.server.user.
MySocketFactoryImp

Note: When undefined, uses regular Java
sockets.

SoftLimitMarginPercent An integer that defines a secondary "soft"
limit below the maximum sessions limit.
When the soft limit is reached, the main node
stops directing new clients to this node until
all nodes have reached this value. The node,
however, does not reject clients that contact it
directly. The value is defined as a percentage
of MaxProcessSessions.

Do not type the percent sign.

Default value is 10.

SpawnInterval Time, in milliseconds, that the main server
process waits before spawning the next
process.

The default value is zero, which means that
the main process does not wait before
spawning other processes.

StartScanAtRandomPort To avoid a situation in which all processes vie
for the same free port, this setting defines a
random starting point within the range of
allocated ports for each process.

If the port range is 2000-3000 and the random
starting point is 2500, then the process starts
looking for the free port at port 2500-3000,
and if not found, from port 2000-2499.

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 8 of 9)

Parameter Description
114 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[HTTP]

StdoutEncoding Specifies the Encoding setting the Server
processes use when reading the output of
spawned processes. This is dependent on the
iSeries operating system.

OS V4R2 requires the following setting:
Stdout=Cp037

SystemConnection
Timeout

On startup, the interval in seconds for which
the main node tries to establish a connection
with a root node on another machine.

Default value is 120.

WaitForSpawned Maximum waiting time in seconds for a
server process to start and initialize. After
this interval the spawned process is
considered to have failed.

Default value is 60.

Table 14. Jacadasv.ini: [HTTP] section (Sheet 1 of 4)

Parameter Description

ExternalErrorPages
Dir

Specifies the directory where your custom-written
HTML error pages reside. Used in conjunction with
the UseExternalErrorPages parameter. Code this
parameter as follows, using the folder names
shown, substituting your root directory for the first
node:

<InstallDir>\JacadaFiles\classes\HttpErrors

Table 13. Jacadasv.ini: [General Parameters] section (Sheet 9 of 9)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 115

Chapter 5. Optimizing the JIS Server

HTTPPortRange Specifies the port range of the JIS Server's HTTP
connection.

Format: <low port>-<high port>

Example: 8080-8084

Default: 8080-8080

HTTPSPortRange Defines the ports which listen for HTTPS requests.
Use different ports than those used for
HTTPPortRange.

Format: <low port>-<high port>

Example: 8085-8089

Default: 8443-8443

JettyConfiguration
File

Setting indicates that jetty loads the
proxyHttp.xml configuration file which tells jetty
to run the redirection proxy.

See “Redirection Proxy” on page 153

Valid value: proxyHttp.xml

Default value: http.xml

MaxSession
InactivityTimeout

Maximum period of inactivity, in minutes, after
which the session is ended by the Server. Default is
60 minutes. In regards to this parameter, the “keep
alive” messages automatically sent by the client are
not considered a user action, and do not cause the
MaxSessionInactivityTimeout timer to be reset.

This parameter is defined in the HTTP section of the
jacadasv.ini file.

See also “Keep Alive Implementation for the
XHTML Client” on page 414.

Table 14. Jacadasv.ini: [HTTP] section (Sheet 2 of 4)

Parameter Description
116 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

NeedClient
Authentication

Defines whether the server requires client
authentication for an HTTPS connection. This
means that the client must present a certificate in
order to prove its identity.

Valid values: 1 (yes), 0 (no). Default: 0

This new setting is effective only if
SupportHTTPS=1.

webMethods JIS does not provide the trusted
certificates. To use this feature you must insert the
trusted certificate in the JettyKeyStore. Contact
Software AG Support for information on how to do
this.

ProxyConfiguration
File

This parameter is relevant if you are using the
redirection proxy.

 See “Redirection Proxy” on page 153.

Valid value:
<InstallDir>\JacadaFiles\classes\
proxyconfiguration.xml

Default value: null

ResourceBase Specifies the base directory from which the location
of image files is defined. The value of the [XHTML]
section’s ImagesLocation= parameter relates to
this directory. Usually, this is the runtime root
directory.

C:/ACE/JacadaFiles

ResponseTimeout Defines the time in milliseconds that HTTP support
waits for the method to complete writing the
response, before aborting the action.

Default is 100000 (100 sec.).

Table 14. Jacadasv.ini: [HTTP] section (Sheet 3 of 4)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 117

Chapter 5. Optimizing the JIS Server

SessionIdleTimeout Specifies, in seconds, how long an HTTP session
remains open if the end-user makes no submission
to the JIS Server. In regards to this parameter, the
“keep alive” messages automatically sent by the
client are considered user actions, and cause the
SessionIdleTimeout timer to be reset.

The default inactivity time-out of XML sessions is
configurable via the SessionIdleTimeout
property in the ServerConfiguration.xml file
for the JIS Server, and via the session-timeout
parameter in the web.xml file when using a J2EE
application server. The installation default for both
of these files is 180 seconds (3 minutes).

Under the proprietary JIS Server, the Server looks
for the SessionIdleTimeout value in the
ServerConfiguration.xml file first. If it does
not find it there, it then looks in the [HTTP] section
of the jacadasv.ini file. If the value is not
defined there, then the default value of 3600
seconds is used.

See also “Keep Alive Implementation for the
XHTML Client” on page 414.

SupportHTTPS Provides support for HTTPS, when set to 1.

Valid values: 1 (yes), 0 (no). Default: 0

The HTTPClient parameter in the
[GeneralParameters] section must be set in
order to use HTTPS.

UseExternalError
Pages

Valid values: 1 (yes), 0 (no)

This parameter affects the Server’s response to
HTTP errors. When this parameter is set to 1, if an
HTTP error occurs, the Server looks in the directory
specified by the ExternalErrorPagesDir
parameter for a user-written HTML page named
<error_code>.html and displays it instead of the
standard error page.

Table 14. Jacadasv.ini: [HTTP] section (Sheet 4 of 4)

Parameter Description
118 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[XHTML]

Table 15. Jacadasv.ini: [XHTML] section (Sheet 1 of 5)

Parameter Description

DefaultButton Use to enable or disable default button
functionality.

0 = Disables default button functionality

1 = Enables default button functionality

Default value is 1.

See the note at the end of this section.

DILPosition Specifies whether the DIL messages appear on the
top or the bottom of the web page.

Valid values: Top | Bottom.

Default is Bottom.

DisplayHostImage
WhenOutOfSync

Specifies whether the Out of Sync error page
includes the screen currently displayed on the host.

0 = Do not display host screen.

1 = Display host screen.
webMethods JIS: XHTML Client User’s Guide Version 9.0 119

Chapter 5. Optimizing the JIS Server

DocTypeDeclaration Sometimes the doctype and xml declarations in
our XHTML forms cause problems; for example,
they can cause the browser to display the html
source instead of a GUI object.

The xml declaration looks like this:

<?xml version="1.0" encoding="UTF-8"?>

The doctype declaration looks like this:

<!DOCTYPE html SYSTEM "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional">

This INI setting lets you control whether or not
doctype and xml declarations appear in the
XHTML form.

Valid values are:
1 (add the declarations) and
0 (do not add them).

Default value is 1.

DoHTMLMerge Specifies whether or not to enable HTML
extensions.

0 = disable HTML extensions

1 = enable HTML extensions

Default is 0.

FkeySupport Indicates whether the client should support Fkey
usage or not. 1 = yes, 0 = no. Default value is 1.

This setting is used in the XHTML section of the
<APPLNAME>.ini file. It makes Fkeys PF1 through
PF24 available to subapplication methods, but not
other accelerator keys such as Ctrl, Alt, Page Up,
and so on.

Table 15. Jacadasv.ini: [XHTML] section (Sheet 2 of 5)

Parameter Description
120 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

ImagesLocation Specifies the location of application image files as
they are accessed through the web server

For handling images through the internal Jetty
HTTP Server, specify the relative path to the image
location.

Enter: /classes/appls

Default: <Server Address>/classes/appls.

JavascriptLocation Specifies the directory where the JIS JavaScripts
reside. This parameter works slightly differently
depending on the setting of the RunAsWebApp
parameter (also part of the XHTML section). The
RunAsWebApp parameter indicates whether the
application is to run on the webMethods JIS
proprietary server or on a J2EE application server.

For the JIS Server:

The default is <InstallDir>\classes\js

If you specify a value, \classes\js is
automatically concatenated to the value.

For a J2EE application server:

The default is <InstallDir>\<applname>\js

If you specify a value, \<applname>\js is
automatically concatenated to the value.

Example:

JavascriptLocation=c:\appserver\domains

Table 15. Jacadasv.ini: [XHTML] section (Sheet 3 of 5)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 121

Chapter 5. Optimizing the JIS Server

KeepAliveInterval-
InSeconds

Time interval in seconds at which the XHTML
client sends “keep alive” messages to the server.
Default value is 60.

This parameter can be defined either in
jacadasv.ini or in the runtime *.ini file
(<applname>.ini).

See also “Keep Alive Implementation for the
XHTML Client” on page 414.

OutOfSync The behavior of the application when it encounters
an “out-of-sync” condition can be customized. An
out-of-sync condition is an error condition in which
the screen being seen by the end-user does not
represent the current host screen.

Valid values:

• Page – Sends an “out-of-sync” message page to
the user.·

• StatusLine – Sends the next page to the user,
and add a message to the status line of the
browser.·

• Silent – Sends the next page to the user
without letting him know what happened.

Example:
OutOfSync=Silent

The default value is Page so that the behavior of
existing applications does not change.The default
for new applications is StatusLine.

Table 15. Jacadasv.ini: [XHTML] section (Sheet 4 of 5)

Parameter Description
122 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

PopupSupport Valid values: 0 | 1

The default value for existing applications (if the
entry does not exist) is 0. For new applications, the
value of 1 is automatically defined in the newly
created runtime INI file.

When enabled, in “New Subapplication Wizard”
you can define a subapplication as a pop-up
window. When a host screen is identified as a
popup window, a new browser window is open on
top of the already existing window. The existing
page is not refreshed, and all elements of the
existing page are disabled.When a popup window
is closed, the window beneath it is enabled. When
the main window is closed, all open popup
windows are closed as well.

RMBSupport Valid values: 0 | 1

This setting indicates whether the Right Mouse
Button popup menu feature is to be supported.

0 = RMB popup menus not supported
1 = RMB popup menus supported
The default value is 1.

RuntimeDirectory Specifies the location of runtime-generated
Subapplication XHTML files.

Default value: <InstallDir>\classes\appls

ShowTableUpDown
Buttons

Specifies whether the Up and Down buttons are
shown on tables.

Valid values: 0 (no), 1 (yes)

Default value: 1

Table 15. Jacadasv.ini: [XHTML] section (Sheet 5 of 5)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 123

Chapter 5. Optimizing the JIS Server

[Applications]

[<ApplName>]

One of these sections is created for each Application listed in the
[Applications] section.

Note: A button is a “Default” button if developer defines it as such in the
button style tab. In a Subapplication, if the focus is on a text field, a button, a
check box, or a Radio control, and the user presses the Enter key, the XHTML
client submits the form as if the default button was clicked. If the
Subapplication contains more than one button which is defined as a default
button, the first one is the effective one.

Table 16. Jacadasv.ini: [Applications] section

Parameter Description

Application_Name1

Application_Name2

A list of Applications that are installed on the JIS
Server. For each Application listed in this section,
there should be a separate section created with the
same name as the Application.

Table 17. Jacadasv.ini: [<ApplName>] section

Parameter Description

WorkingDirectory The full path to the application’s resources.

Example: $RootDir\classes\appls\<ApplName>\
server\resources\

IniDir The full path to the application initialization files.

Example: $RootDir\appls\<ApplName>\rt32
124 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[VMCommandLine]

[ServerMachines]

Table 18. Jacadasv.ini: [VMCommandLine] section

Parameter Description

Classpath The classpath used by the Java VM for spawned
processes.

Note: The existing Server '-classpath' command line
option (or its equivalent in accordance with the VM
implementation in use) has to be prepended to the
parameter value.

JavaMemory Subset of the Java VM specific command line
options used for memory settings.

Example: -ms10m -mx50m

Note: If not set, the Java VM uses its own defaults.

JavaOptions Java VM specific command line options.

Note: If not set, the Java VM uses its own defaults.

Example: -Djava.security.policy=$RootDir\
classes\jacadasv.policy

JavaVM File path of the Java VM used for spawning
processes.

Example: $RootDir\utils\jre16\bin\java

Table 19. Jacadasv.ini: [ServerMachines] section

Parameter Description

(M1, M2,) Associates the machine name/IP address/local host
with a user-defined alias.

Example: 191.96.15.2=M1
webMethods JIS: XHTML Client User’s Guide Version 9.0 125

Chapter 5. Optimizing the JIS Server

[Sessions]

[SessionTimeouts]

Table 20. Jacadasv.ini: [Sessions] section

Parameter Description

MaxProcessSessions Maximum sessions to be allocated in a server
process.

MaxMachineSessions Maximum sessions to be allocated in a server
machine.

StartUpSessions
Percent

Specifies the portion of 'MaxMachineSessions'
that must be provided by the server on start-up.
Server processes are spawned in order to provide
the required space for session allocation. Note that
when the value=100, dynamic process spawning is
disabled. Default is 0.

Note: This parameter is similar to
SpareSessionsPercent with the exception that
this parameter has effect only on startup.

The actual number of processes is limited by the
MaxProcesses parameter.

SpareSessions
Percent

Specifies the portion of MaxMachineSessions that
must be provided during runtime. Server processes
are spawned in order to provide the required space
for session allocation. Default is 0.

Note: The sessions designated by this parameter are
allocated below the margin defined in the
SoftLimitMarginPercent parameter.

Table 21. Jacadasv.ini: [SessionTimeouts] section(Sheet 1 of 2)

Parameter Description

MsgboxTimeout Time in seconds that the Server waits for the Client
to respond to a message box before terminating the
session. Default is 36000.
126 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[ScoreWeights]

These parameters are used in load balancing and scalability calculations.

PanelTimeout Time in seconds that the Server waits for the Client
to select a panel (when working in File mode),
before terminating the session. Default is 36000.

GetTextFromUser
Timeout

Time in seconds that the Server waits for the Client
to reply to a GetTextFromUser prompt before
terminating the session. Default is 36000.

KeepAlive Time in seconds during which the Server checks the
connection with the Client. If the Client does not
respond within RecvTimeout, the session
terminates. Default is 240.

Note: This setting is only used by the Java Client.

RecvTimeout Time in seconds that the Server waits for a response
from the Client before terminating the session. This
applies to server messages that require a reply from
the client, such as KeepAlive. Default is 200.

Note: This setting is only used by the Java Client.

Table 22. Jacadasv.ini: [ScoreWeights] section (Sheet 1 of 2)

Parameter Description

MachineApplications The penalty weight of the number of running
applications on the server machine. Specify as an
integer, without percent sign. Default value is 0
percent of the total score weight.

MachineSessions The penalty weight of the number of running
sessions on the server machine. Specify as an
integer, without percent sign. Default is 45 percent
of the total score weight.

Table 21. Jacadasv.ini: [SessionTimeouts] section(Sheet 2 of 2)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 127

Chapter 5. Optimizing the JIS Server

[ProcessCheck]

MultiMachines The penalty difference that overrides the 'Preferred
Machine' feature. If the penalty difference of two
processes on two machines is greater than the
specified value, then the session allocation occurs in
the process with the lower penalty score. Specify as
an integer, without percent sign. Default is 75
percent.

ProcessApplications The penalty weight of running a new application in
the server process. Specify as an integer, without
percent sign. Default value is 10 percent.

ProcessSessions The penalty weight of the number of running
sessions on the server process. Specify as an integer,
without percent sign. Default is 45 percent.

Table 23. Jacadasv.ini: [ProcessCheck] section (Sheet 1 of 2)

Parameter Description

CheckEnable When set to 1, enables the checking function of the
integrator process. This ensures the server system
integrity on each machine. Default is 0.

CheckInterval Interval in seconds between server integrity checks.
Default is 60.

CheckProcessTimeout When integrity checking is enabled, the server
makes sure that the processes are checked
regularly. Otherwise, when this timeout expires,
the server process starts the integrator recovery
procedure. The timeout is calculated as multiples of
CheckInterval. Default is 3.

Table 22. Jacadasv.ini: [ScoreWeights] section (Sheet 2 of 2)

Parameter Description
128 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

CheckTimeout Time in seconds that the integrator waits for a
server process to respond to a check request before
declaring the process as “corrupted”. Default is 30
seconds.

IgnoreOpenSessions When set to 1, a server process declared
“corrupted” by the integrator is shut down even if
there are currently sessions running on the process.
By default, a server process waits for the sessions to
close down first.

KillFaultyProcess This setting specifies whether or not a process
should be killed if it has become corrupted (stalled);
that is, if it has not responded within the period of
time specified by CheckTimeout.

Valid values:
1 (kill stalled processes)
0 (do not kill stalled processes)

Default is 1.

If you set this value to zero, you may want to
implement a server extension to handle the stalled
process on your own, in a customized way. The
class RunTimeApplication has a function
named u_UserHandleFaultyProcess that
you can override to implement your own logic to
handle a stalled process. The function receives the
name of the faulty process as a parameter.

Table 23. Jacadasv.ini: [ProcessCheck] section (Sheet 2 of 2)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 129

Chapter 5. Optimizing the JIS Server

[LogClasses]

The log classes described in this section log usage data. This is separate and
distinct from debug logging.

Table 24. Jacadasv.ini: [LogClasses] section

Parameter Description

<Log Java Class
Name>

This parameter specifies if any of the following log
classes are to be used: SessionLog,
SessionCountLog, XMLLog, XMLServer.

A value of 1 means yes, 0 means no. Default is 0.

Note: This parameter only gives you the ability to
use the log class. To actually enable the log class,
you must create a
[<Log Java Class Name>]section for the class in
question, and include the Enable parameter in that
section.

Format:
<Name of the Java log class>=<value>.

Example:

SessionLog=1
SessionCountLog=1
XMLLog=
XMLServer=;
130 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[<Log Java Class Name>]

This section is used to set parameters for the log classes you chose in the
[LogClasses] section. For each log class that you set to 1 in the [LogClasses]
section, you must create a separate [<Log Java Class Name>]section. The four
possible log classes are SessionLog, SessionCountLog, XMLLog, and
XMLServer.

Table 25. Jacadasv.ini: [Log Java Class Name] section (Sheet 1 of 2)

Parameter Description

SessionLog The SessionLog writes the session status
information to a log file in the format of a comma
delimited list. For each active session, the
SessionLog contains information such as: Server Id,
Session Id, Time Connected, Time Disconnected,
User Name, Profile, User Address, Application
Name, Last Transaction, Total Transactions, Total
Duration, Net Avg Duration, Avg Since Reset,
Library Name, Current Screen, Last Event.

SessionCountLog The SessionCountLog provides statistics about
sessions running on the server.

The following is a typical log entry:

[10/16/2000 at 16:46:00] Session count: 3, max:
3, avg: 1.55

count - number of active sessions.

max - highest number of active sessions seen since
logging began.

avg - the average number of active sessions for the
entire logged session.

XMLLog The XMLLog class writes status information about
the entire server system to a log file in standard
XML format. The XMLLog includes information
about the number, identity, and status of active
processes, sessions, and applications; Server
address, RMI port number, status of the processes,
active applications.
webMethods JIS: XHTML Client User’s Guide Version 9.0 131

Chapter 5. Optimizing the JIS Server

XMLServer The XMLServer receives the same status
information that is written to a file by the XMLLog
class. The XMLServer makes the status information
available for an online connection to the JIS
Administrator.

Table 25. Jacadasv.ini: [Log Java Class Name] section (Sheet 2 of 2)

Parameter Description
132 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[SessionLog]

If you set SessionLog to 1 in the LogClasses section, you must include the
[SessionLog] section in the INI file.

Table 26. Jacadasv.ini: [SessionLog] section (Sheet 1 of 2)

Parameter Description

TimerTick Interval in seconds at which the Session log file is
updated. Default is 3600 seconds (1 hour).

The Server waits for this interval to elapse before
writing its first log records to disk. Subsequent
writes to the log file are also spaced at this interval.
During the interval between writes, any new log
information is buffered in memory, so log
information is not lost.

Note: If the JIS Server is closed down before the first
TimerTick interval has elapsed, no Session log is
created.

Enable Specifies whether or not to enable Session logging.

0 = disable Session logging
1 = enable Session logging

Default is 0.

File The full pathname of the log output file. This
parameter is required only when logging is
enabled. If this parameter is omitted, the log file is
not created.

Example: File=C:\temp\Session.log

webMethods JIS automatically inserts a timestamp
in the file name. For example, if you specify
Session.log as the file name and a FileInterval of
1d, the log file is created with the name
Sessionyymmdd.log, where yymmdd is the date of
the file’s creation.
webMethods JIS: XHTML Client User’s Guide Version 9.0 133

Chapter 5. Optimizing the JIS Server

FileInterval The interval for periodic creation of new Session log
files. Supported time codes are: s - second, m -
minute, h - hour, d - day. Precede the time code
with an integer.

Example: 12h. Default value is 1d.

When the specified time has elapsed, the existing
Session logfile is closed and a new Session logfile is
created and opened automatically. For example, if
you specify a file interval of 2h, a new Session log
file is created every two hours. The old file is not
deleted. Duplicate filenames are avoided by the
timestamp which is automatically added to the file
name.

Table 26. Jacadasv.ini: [SessionLog] section (Sheet 2 of 2)

Parameter Description
134 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[SessionCountLog]

If you set SessionCountLog to 1 in the LogClasses section, you must include the
[SessionCountLog] section in the INI file.

Table 27. Jacadasv.ini: [SessionCountLog] section (Sheet 1 of 2)

Parameter Description

TimerTick Interval for updating the SessionCount log file.
Default is 3600 seconds (1 hour).

The Server waits for this interval to elapse before
writing its first log records to disk. Subsequent
writes to the log file are also spaced at this interval.
During the interval between writes, any new log
information is preserved in memory, so no log
information is lost.

Note: If the JIS Server is closed down before the first
TimerTick interval has elapsed, no SessionCount
log is created.

Enable Specifies whether or not to enable SessionCount
logging.

0 = disable SessionCount logging
1 = enable SessionCount logging

Default is 0.

File The full pathname of the SessionCount log output
file. This parameter is required only when
SessionCount logging is enabled. If this parameter
is omitted, the SessionCount log file is not created.

Example: File=C:\temp\SessionCount.log

webMethods JIS automatically inserts a timestamp
in the file name. For example, if you specify
SessCt.log as the file name and a FileInterval of
1d, the log file is created with the name
SessCtyymmdd.log, where yymmdd is the date of
the file’s creation.
webMethods JIS: XHTML Client User’s Guide Version 9.0 135

Chapter 5. Optimizing the JIS Server

FileInterval The interval for creating new SessionCount log
files. Supported time codes are: s - second, m -
minute, h - hour, d - day. Precede the time code
with an integer.

Example: 12h. Default value is 1d.

When the specified time has elapsed, a new
SessionCount logfile is created automatically. For
example, if you specify a file interval of 2h, a new
SessionCount log file is created every two hours.
The old file is not deleted. Duplicate filenames are
avoided by the timestamp which is automatically
added to the file name.

Table 27. Jacadasv.ini: [SessionCountLog] section (Sheet 2 of 2)

Parameter Description
136 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[XMLLog]

If you set XMLLog to 1 in the LogClasses section, you must include the [XMLLog]
section in the INI file.

Table 28. Jacadasv.ini: [XMLLog] section

Parameter Description

TimerTick Interval in seconds at which the XML log file is
updated. Default: 60.

Enable Determines whether or not the XML log file is
created. Valid values are 1 (yes) and 0 (no). Default:
0.

File The pathname of the log output file. The setting is
required only when logging is enabled.

Example: C:\temp\XMLlog.xml
webMethods JIS: XHTML Client User’s Guide Version 9.0 137

Chapter 5. Optimizing the JIS Server

[XMLServer]

If you set XMLServer to 1 in the LogClasses section, you must include the
[XMLServer] section in the INI file.

Table 29. Jacadasv.ini: [XMLServer] section

Parameter Description

TimerTick Refresh interval of the XML data that is sent to the
JIS Administrator. Default is 60 seconds.

Enable Defines whether or not the XMLLog data is sent to
the JIS Administrator.

Valid values are 1 (yes) and 0 (no). Default: 0.

If you want to use the JIS Administrator, this
parameter must be set to 1.
138 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Scalability

This section provides you with information required to implement a scalable JIS
Server system that dynamically balances the load in response to runtime
demands.

Scalability provides you with a mechanism for creating a JIS Server system that
can comprise a single server computer or a cluster of computers linked in a
network. A single server computer can run several server processes. Any single
process can handle multiple client/host sessions. The JIS Server system responds
to client requests by dynamically opening and closing sessions on the server
processes. The Scalability feature also provides a means for load balancing across
the JIS Server system.

The Scalable System Structure of the JIS Server

The scalable JIS Server can consist of a single server computer or a series of server
computers arranged in a network. In either case, the system derives its scalable
nature from a structure of hierarchically arranged units called server modules.
This section describes the position and relative function of server modules within
the server system. During runtime a server module functions as a process. In
terms of the hierarchical structure of the system each server module is uniquely
identified by a server ID.

In this way each process is represented and identified as a node within the server
system. First we describe the structure and terminology used for a server system
that uses a single server computer. Second we describe a multiple server-
computer system.

The hierarchical and functional relationship between the server processes, and if
more than one server computer is used, between the server computers, is defined
in the jacadasv.ini file. This is discussed in “Setting up the Scalable Server
System” on page 145. Each server computer has its own jacadasv.ini file.

Single Server-Computer System

You can best understand the scalable nature of the JIS Server system if you first
look at the structure of a simple system, one that consists of a single server
computer with a limited number of server modules. Each process is represented
by a node within the server system.
webMethods JIS: XHTML Client User’s Guide Version 9.0 139

Chapter 5. Optimizing the JIS Server

Structure

Figure 31 shows a single server computer that has three open processes. The
highest level process on a server computer is referred to as the main node. Here
the main node has two lower level nodes that are connected to it. These are
referred to as sub-nodes.

Figure 31. Single server computer system

Function

The simple structure of the system used in this scenario imposes a number of
functional requirements on the main node. Functionally, when the lower level
processes are first created it is the main node that is responsible for creating them.
Any node that has sub-nodes attached to it is referred to as a parent node.
Therefore in addition to being the structurally highest level node on the server
computer, the main node also functions as the parent node of the two sub nodes.
At set intervals each sub-node sends its status information to its parent node.

Status information updates include information such as:

• Whether the process is active.
• The number of host applications initialized by a process.
• The number of client/host sessions running.
• The number of client/host sessions that can run on a process.

In this way the parent node maintains status information on each of its sub-
nodes.
140 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

This information is used to:

• Scale the system.
• Perform load balancing on the system.

In this scenario, the main node is also the highest level parent node in the entire
system. The parent node in this position is referred to as the root node. The root
node for any system maintains the most inclusive status information base for the
server system. This node is the primary target of a client request for connection
to a host application.

Client Connection to the System

In Figure 32, a client directs an initial request for a host connection to the root
node. The root node has the most inclusive status information for the system, so
it is the node that determines which process can most readily open a session with
the host. It sends a message to the client, directing the client to send a second
request for a host connection to a particular sub-node. The client sends a request
to the particular sub-node and the process identified with the sub-node opens a
client session with the host application.

Figure 32. Control flow upon session start

Multiple Server-Computer System

The multiple server-computer system—also called a server farm—is organized as
a hierarchically arranged group of server computers linked in a network. The
hierarchical and functional relationship between server computers is defined in
the jacadasv.ini file. See “Setting up the Scalable Server System” on page 145.
webMethods JIS: XHTML Client User’s Guide Version 9.0 141

Chapter 5. Optimizing the JIS Server

Structure

The illustration shows four server-computers, each with an identical internal
process structure. While structurally an apparent similarity exists between the
main nodes and the parent nodes, they differ functionally with respect to the
position a server computer holds within the network.

Figure 33. Multiple-server computer system

Each node in the server system is uniquely identifiable by a combination of the IP
address of the computer it resides on and the node number, shown in parenthesis
in Figure 33.

Function

The main node on any given server-computer is responsible for:

• Maintaining status information on each of the processes running on the
computer.
142 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

• Transferring status information on each of its lower-level processes, to its
designated system parent-node.

• Initializing lower level processes on that particular computer.

The functional difference between main nodes in a multiple server-computer
system depends on the position the server-computer holds within the network.

In the scenario presented in Figure 33, server-computers 3 and 4 are the lowest
level server computers. Each of their main-nodes maintains data on its sub-nodes
and transfers the information to the main node on server-computer 2.

Any main node that receives status information from lower level main nodes is
referred to as a system parent-node. In Figure 33 the main node on server-
computer 2 is acting as the system parent-node.

Server-computer 2 maintains information on its own processes and those of
server-computers 3 and 4, and transfers this information to server-computer 1’s
main node. This being the highest level server computer, its main-node functions
as the root-node. The root node maintains the most inclusive amount of
information available from the system.

You can see from the scenario provided that status information is transferred
from the lowest level in the hierarchy to the highest level, exclusively via main
nodes.

Client Connection to the System

The process here is slightly different to that described for a single server
computer system. Again the client directs its initial request for a host connection
to the root node. Again the root node has the most inclusive status information
for the system; however, in this case it determines which server computer has the
least load and re-directs the client request for a host connection to a sub-node of
the computer server that presents the least load. The sub-node then takes
responsibility for opening a client session.

If server computer 4 presents the least load, then the following occurs:

• The client directs its initial host connection request to the root-node on server-
computer 1.

• The root-node examines its status information and determines that server-
computer 4 has the least load.

• Server-computer 1 redirects the client request to the process on server-
computer 4’s main that carries the least load.

Note: The hierarchical structure presented in the example is designed to
illustrate system elements. The structure of a working multiple server
computer system is flexible and should be designed to best support your
hardware, application and client needs.
webMethods JIS: XHTML Client User’s Guide Version 9.0 143

Chapter 5. Optimizing the JIS Server

This example describes the general flow of events that occurs when a client-host
connection request is redirected from the main server machine to a secondary
server machine in the system.

Identifying Server Modules

During runtime, Server modules act as processes. Each process can be identified
from any other process on a server computer by a combination of the IP address
of the machine it resides on and its process ID. Process IDs can be the same on
different machines, so the IP address is needed to differentiate them.

For example, in Figure 33, the ID of the main node on server-computer 4 is
11.22.33.48.1, and 11.22.33.48.1.1 is one of its sub-nodes.

The server ID indicates:

• The hierarchical level that the process belongs to on the server computer.
• The position that the process holds within the level.

Figure 34. Identifying server modules

The root node is the only node on the highest level and so its server ID is 1. The
root node has created two sub-nodes so their processes are identified as 1.1 and
1.2. The existence of a second digit indicates that processes are located on the
second level of the hierarchy, and the value of the second digit indicates the
position held within the level. If the sub-node 1.2 was directed to create a sub-
node of its own then the first process on the third level would be created and its
server ID would be 1.2.1.

Note: This naming system exists within a server computer and not across
server computers.
144 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

The Integrator Process

In Figure 33, note that each Server machine includes a sub-node numbered 1.0.
These nodes are known as integrator processes. At server start-up, each integrator
process is responsible for the creation (or spawning) of all processes on the
machine on which it resides, based on the decisions of the main node.

When dynamic process spawning is used, each main node analyzes the load on
its own machine and instructs the integrator process to spawn new processes as
needed.

An integrator process is automatically created on each server machine that has
more than one level of processes defined. Software AG generally recommends
that the integrator process not handle any client sessions itself, so that it is
devoted to load processing. Do this by including the following lines in the
jacadasv.ini file for each server machine.
[<Machine>.Integrator.Sessions]

MaxProcessSessions=0

Setting up the Scalable Server System

To set up the scalable system of JIS Server:

1 Perform the runtime installation process on each machine that functions as a
server computer for the system.

2 Follow all regular server setup procedures, as indicated in the manual. This
must be performed for each machine functioning as a server computer.

3 Replace the jacadasv.ini file supplied during runtime installation with the
customized jacadasv.ini file produced for running the scalable server
system.

Note: Be aware that the jacadasv.ini file produced at runtime generation
contains an [Applications] section which contains information about the
runtime Applications. A section for each Application listed in the
[Applications] section is also created in the jacadasv.ini file at runtime
generation. These sections must be reflected in the customized
jacadasv.ini file produced for running the scalable server system.
webMethods JIS: XHTML Client User’s Guide Version 9.0 145

Chapter 5. Optimizing the JIS Server

Customized jacadasv.ini File

A customized version of the jacadasv.ini is used when running a scalable
server system, which contains different information to the regular
jacadasv.ini that is supplied as part of the runtime installation. This special
jacadasv.ini contains specific parameters which are used by the scalability
feature.

These parameters are used for:

• Defining the startup state of the system.
• Indicating how the system is to behave, with respect to scaling and load-

balancing, in response to client requests to open a host session.

The contents of the customized jacadasv.ini file reflect the hardware,
application and client requirements that best support your needs. To gain the best
results from your system we recommend you customize the jacadasv.ini file
in consultation with a Software AG representative.

The following sections provide:

• A description of the general structure of a customized jacadasv.ini file.
• Examples of the jacadasv.ini file for single server-computer and multiple

server-computer systems.

General Structure of the jacadasv.ini File

The jacadasv.ini file provides a generic layout of the server system to be
constructed. When a process is started it looks up the information that belongs to
its hierarchical level and task in the system, according to its local address and the
identification it received on the command line. A unique initialization set is
provided for each server computer and for each node’s hierarchy level on the
server computer. Parameters defined in one section can be overridden by
parameters set in another section according to certain rules, explained below.

The jacadasv.ini File is Composed of Sections

The jacadasv.ini file is composed of sections. Each section is headed by a line
with the section name in square brackets; for example:
[Sessions]

Under the section header are one or more lines of parameters. For a complete
listing of all of the section names and their parameters, see “JIS Server INI File
Settings” on page 105.
146 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Targeting ini Parameters to a Particular Machine or Server-Node Level

It is possible to selectively target the parameters in a jacadasv.ini file section
to a particular machine or even to a particular node-level within a specific
machine. This is done by specifying additional information in the section header
line. The general format is

<Machine>.<Section> or <Machine>.<NodeLevel>.<Section>

If you use the format <Machine>.<Section> in a jacadasv.ini file section
header, the parameters in that section apply only to the machine specified in the
header.

If you use the format <Machine>.<NodeLevel>.<Section> in a
jacadasv.ini file section header, the parameters in that section apply only to
the machine and node-level combination specified.

Permitted values for <Machine> are determined by the machine names you
specify in the jacadasv.ini file [ServerMachines] section.

Permitted values for <Level> are:

• Level1 - for the main node.
• Integrator - for the integrator node.
• Level2 - for the nodes immediately subordinate to the main node (except the

integrator node).
• Level3 - for the nodes immediately subordinate to Level2 nodes, and so on.

Examples

The sample jacadasv.ini file shown in Example 2, "jacadasv.ini file for a Multiple
Server-Computer System", includes several file sections related to Sessions
parameters:

• The section headed [M1.Level1.Sessions] affects only the main node
(always node 1) on machine M1. (The identity of computer M1 is defined in
the [ServerMachines] section.)

• The section labelled [M1.Integrator.Sessions] applies only to the
integrator node (always node 1.0) on machine M1.

• The section headed [M2.Level1.Sessions] affects only the main node
(always node 1) on machine M2.

• The section labelled [M2.Integrator.Sessions] applies only to the
integrator node (always node 1.0) on machine M2.

• The section labelled [M1.Sessions] applies to all the nodes on machine
M1, except the nodes specifically targeted by other sections.
webMethods JIS: XHTML Client User’s Guide Version 9.0 147

Chapter 5. Optimizing the JIS Server

Precedence of Targeted ini File Sections

The general rule is: for a given node or node-level, the settings under a more
specific section header take precedence over the settings under a less specific
section header.

Example: In a multiple server-computer environment, you could have a
jacadasv.ini file with three different types of [GeneralParameters] section
headings:

[M2.Level2.GeneralParameters]

[M2.GeneralParameters]

[GeneralParameters]

In such a case, the section headed [GeneralParameters] applies to all nodes,
with the following exceptions:

• On machine 2, any settings in the [M2.GeneralParameters] section take
precedence over the settings in the [GeneralParameters] section.

• For the Level2 nodes on machine M2, the parameter settings in the section
labelled [M2.Level2.GeneralParameters] take precedence over the
settings in the [M2.GeneralParameters] and [GeneralParameters]
sections.

Example 1. jacadasv.ini for a Single Server-Computer System

[GeneralParameters]

RtRootDir=i:\java\

HTTPClient=1

[Xhtml]

RuntimeDirectory=$RootDir\classes\appls

ImagesLocation=/classes/appls

DoHTMLMerge=1

[HTTP]

HTTPPortRange=8081-8180

HTTPSPortRange=8152-8250

SupportHTTPS=0

ResourceBase=I:\java\

[ServerMachines]

//The addresses of the server machines are defined here. “M1” stands for

//“machine 1”. It’s an arbitrary convention for distinguishing one server

//computer from another. This setup uses only one server computer.
148 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

10.11.12.101=M1

[M1.Level1.HTTP]

HTTPPortRange=8080-8080

HTTPSPortRange=8151-8151

//If using HTTP proxy, the HTTPSPortRange parm

// should be in the M1.Integrator.HTTP section.

[M1.GeneralParameters]

//This machine will handle a maximum of 12 processes.

MaxProcesses=12

[M1.Level1.Sessions]

//The root node will not process client sessions.

MaxProcessSessions=0

[M1.Integrator.Sessions]

//The integrator node will not process client sessions.

MaxProcessSessions=0

[Sessions]

//A maximum of 600 total sessions will be created.

//A maximum of 12 total processes were defined above, in the

//GeneralParameters section. One of those processes will be the root node,

//another will be the integrator process. Those two processes were defined

//as handling zero client sessions. That leaves 10 processes to handle

//client sessions. Each of the 10 processes are define as handling up to

//60 sessions,for a maximum of 600 client sessions.

StartUpSessionsPercent=100

SpareSessionsPercent=0

MaxProcessSessions=60

MaxMachineSessions=600

[LogClasses]

XMLServer=1

[XMLServer]

Enable=1

TimerTick=20

[M1.VMCommandLine.NodeRegistry]

JavaMemory=-ms50m -mx100m
webMethods JIS: XHTML Client User’s Guide Version 9.0 149

Chapter 5. Optimizing the JIS Server

[M1.VMCommandLine.Server]

JavaMemory=-ms300m -mx600m

[M1.Integrator.VMCommandLine.Server]

JavaMemory=-ms100m -mx200m

[M1.Level1.VMCommandLine.Server]

JavaMemory=-ms50m -mx100m

[Applications]

PRODAP01=

[LOADTEST]

WorkingDirectory=$RootDir\classes\appls\LOADTEST\server\resources\

IniDir=$RootDir\classes\appls\LOADTEST\server\resources\

Example 2. jacadasv.ini file for a Multiple Server-Computer System

[GeneralParameters]

RtRootDir=i:\java\

HTTPClient=1

[Xhtml]

RuntimeDirectory=$RootDir\classes\appls

ImagesLocation=/classes/appls

DoHTMLMerge=1

[ServerMachines]

//The addresses of the server machines are defined here. “M1” stands for

//“machine 1”, “M2” is “machine 2”. It’s an arbitrary convention for

//distinguishing one server machine from another. This setup uses 2 servers.

10.11.12.105=M1

10.11.12.110=M2

[M1.GeneralParameters]

MaxProcesses=12

[M2.GeneralParameters]

MaxProcesses=4
150 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[M2.GeneralParameters]

ReportsToMachine=M1

[M1.Level1.Sessions]

//The main node on machine 1 will not process client sessions.

MaxProcessSessions=0

[M1.Integrator.Sessions]

//The integrator node on machine 1 will not process client sessions.

MaxProcessSessions=0

[M2.Level1.Sessions]

//The main node on machine 2 will not process client sessions.

MaxProcessSessions=0

[M2.Integrator.Sessions]

//The integrator node on machine 2 will not process client sessions.

MaxProcessSessions=0

[M1.Sessions]

StartUpSessionsPercent=100

SpareSessionsPercent=0

MaxProcessSessions=60

MaxMachineSessions=600

[M2.Sessions]

StartUpSessionsPercent=100

SpareSessionsPercent=0

MaxProcessSessions=20

MaxMachineSessions=50

[M1.Level1.HTTP]

HTTPPortRange=8080-8080

HTTPSPortRange=8151-8151

[M2.Level1.HTTP]

HTTPPortRange=8090-8090

HTTPSPortRange=8161-8161

[M1.HTTP]

HTTPPortRange=8081-8180
webMethods JIS: XHTML Client User’s Guide Version 9.0 151

Chapter 5. Optimizing the JIS Server

HTTPSPortRange=8152-8250

ResourceBase=I:\java\

[M2.HTTP]

HTTPPortRange=8091-8190

HTTPSPortRange=8162-8260

ResourceBase=I:\java\

[LogClasses]

XMLServer=

[XMLServer]

Enable=1

TimerTick=20

[M1.VMCommandLine.NodeRegistry]

JavaMemory=-ms50m -mx100m

[M1.VMCommandLine.Server]

JavaMemory=-ms300m -mx600m

[M1.Integrator.VMCommandLine.Server]

JavaMemory=-ms100m -mx200m

[M1.Level1.VMCommandLine.Server]

JavaMemory=-ms50m -mx100m

[M2.VMCommandLine.NodeRegistry]

JavaMemory=-ms50m -mx100m

[M2.VMCommandLine.Server]

JavaMemory=-ms300m -mx600m

[M2.Integrator.VMCommandLine.Server]

JavaMemory=-ms100m -mx200m

[M2.Level1.VMCommandLine.Server]

JavaMemory=-ms50m -mx100m

[Applications]

PRODAP01=
152 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

[PRODAP01]

WorkingDirectory=i:\java\classes\appls\PRODAP01\
server\resources\

IniDir=I:\guisysd\appls/PRODAP01\rt32\

Redirection Proxy

The redirection proxy handles redirections of connections sent from the JIS
Server. When using the redirection proxy, the end-user is unaware of the
redirection event. You can use the redirection proxy to bar end-users from
gaining access to your IP address and port numbers.

The Redirection Process

The redirection proxy runs as a part of the JIS Server integrator process.

The redirection process is as follows:

1 The end-user sends a request to the proxy, instead of the JIS Server.
2 The proxy connects to the JIS Server’s IP address and handles redirection

events, if any, from the JIS Server.
3 The proxy encrypts the address of the redirected machine and port and

appends it to the URL.

In subsequent requests, the end-user’s browser displays the encrypted JIS
Server’s IP address as the JBS parameter concatenated to the URL.
webMethods JIS: XHTML Client User’s Guide Version 9.0 153

Chapter 5. Optimizing the JIS Server

Figure 35. Redirection proxy mechanism

Starting the Redirection Process

To start the redirection process:

1 Configure the jacadasv.ini file to enable the redirection process.
2 Configure the proxy configuration file.

Configuring the jacadasv.ini File to Enable the Redirection Process

To configure the jacadasv.ini file to enable the redirection process:

Insert the following settings into the jacadasv.ini file:
[M1.Integrator.HTTP]

HTTPPortRange=8080-8080

JettyConfigurationFile=proxyHttp.xml

ProxyConfigurationFile=$RootDir\classes\proxyconfiguration.xml
154 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

This configures the M1 integrator process’s HTTP settings as follows:

• The HTTPPortRange parameter indicates that the process runs the proxy on
port 8080.

• The JettyConfigurationFile parameter setting indicates that the Jetty
HTTP server loads the proxyHttp.xml configuration file. This file tells Jetty
to run the redirection proxy.

• The ProxyConfigurationFile setting assigns the proxy configuration file
name: proxyconfiguration.xml.

Configuring the Proxy Configuration File

The redirection proxy is a servlet, and is configured by the
proxyconfiguration.xml file.

The proxyconfiguration.xml file looks like this:
<Settings>

<JacadaServerAddress>
<IPAddress>localhost</IPAddress>
<Port>8081</Port>

</JacadaServerAddress>
<DebugInfo>

<LogPath>c:\temp</LogPath>
<DebugLevel>50</DebugLevel>

</DebugInfo>
 <RedirectionProxy>

<RunProxyOnEachMachine>Yes</ <RunProxyOnEachMachine>
<ProxyPort>8080</ProxyPort>
<ProxyHTTPSPort>8443</ProxyHTTPSPort>
<UseGzip>No</UseGzip>
<CloseStreamToClient>No</CloseStreamToClient>

 </RedirectionProxy>
</Settings>

Settings in the proxyconfiguration.xml file

The proxyconfiguration.xml file contains the following settings:
<JacadaServerAddress>

This tag is used for defining the JIS Server root process address.

The <JacadaServerAddress> tag contains the following tags:

• The <IPAddress> tag defines the JIS Server’s IP address.
• The <Port> tag defines the port number of the rootprocess (level1) of the

server machine.
webMethods JIS: XHTML Client User’s Guide Version 9.0 155

Chapter 5. Optimizing the JIS Server

<DebugInfo>

This tag is for defining the proxy’s debug information settings.

The <DebugInfo> tag contains the following tags:

• The <LogPath> tag defines the path to the log file.
• The <LogFileName> tag is no longer relevant and is ignored if present. See

“The Proxy Log File” on page 157 for more information.
• The <DebugLevel> tag defines the debug level.

<RedirectionProxy>

This tag is used for running the proxy on each of your machines.

The <RedirectionProxy> tag contains the following settings:

• The <RunProxyOnEachMachine> tag specifies whether or not run the proxy
on each of your machines. The tag’s value can be YES or NO.

• The <ProxyPort> tag defines the port on which all proxies listen.
• The <ProxyHTTPSPort> tag defines the port which listens for HTTPS

requests.
• The <UseGzip> tag controls whether or not the redirection proxy can send

GZIP compressed content to the browser. The proxy sends GZIP only if the
browser sends an HTTP header "accept-encoding" that contains the value
"gzip" inside and the setting specifies that GZIP compression is to be used.
Most browsers support GZIP compression.

• The <CloseStreamToClient> tag is discussed in the following section.

Using a Load Balancer or Another Proxy with the JIS Redirection Proxy

In some customer environments, an additional proxy or a load balancer may be
present in front of webMethods JIS’s redirection proxy. A small number of
customers with this arrangement have reported problems related to the fact that
the webMethods JIS redirection proxy closes the stream to the client after
handling the client HTTP request.

The problem occurs if the additional proxy or load balancer expects the stream to
remain open for a certain period of time after the completion of the request.

To address this (somewhat rare) issue, a setting has been added to the
webMethods JIS proxyConfiguration.xml to give control over whether or
not the stream to the client is closed by the JIS proxy after the HTTP request has
been handled.

Note: The <DebugInfo> tag is now deprecated. By default, the redirection
proxy will log messages to the integrator process log file debug_1.0.log
156 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

The setting is CloseStreamToClient, in the RedirectionProxy section of
the proxyConfiguration.xml file. Setting CloseStreamToClient to No
instructs the JIS proxy to leave the stream to the client open. The default behavior
is to close the stream.

Here is an example of a configuration:
<Settings>
 ...
 <RedirectionProxy>
 ...
 <CloseStreamToClient>No</CloseStreamToClient>
 ...
 </RedirectionProxy>
</Settings>

When CloseStreamToClient stream is set to No, at debug level 50 a message
is written to the proxy log stating: Not closing stream to client.

The Proxy Log File

As of webMethods JIS version 9.0, when running the webMethods JIS proprietary
server, the proxy runs inside the integrator process (1.0) and the proxy's debug
messages are written to debug_1.0.log. There is no longer a separate proxy
log when running with the JIS Server.

The old setting LogFileName in the proxyConfiguration.xml file is no
longer relevant and if present is ignored.

Running a Proxy on Each of your Machines

You can run a proxy on each machine for scalability. When doing so, the end-user
still connects to the root machine proxy. If redirected to a different machine, then
the end-user is redirected to that machine’s proxy. The URL appearing on the
end-user’s browser also changes to the specific machine’s proxy.

To run the proxy on each of the machines:

Set the jacadasv.ini file as follows:
[M1.Integrator.HTTP]
HTTPPortRange=8080-8080
JettyConfigurationFile=proxyHttp.xml
ProxyConfigurationFile=$RootDir\classes\proxyconfiguration.xml

[M2.Integrator.HTTP]
HTTPPortRange=8080-8080
JettyConfigurationFile=proxyHttp.xml
ProxyConfigurationFile=$RootDir\classes\proxyconfiguration.xml
webMethods JIS: XHTML Client User’s Guide Version 9.0 157

Chapter 5. Optimizing the JIS Server

[M3.Integrator.HTTP]
HTTPPortRange=8080-8080
JettyConfigurationFile=proxyHttp.xml
ProxyConfigurationFile=$RootDir\classes\proxyconfiguration.xml

HTTPS Communication Described

HTTPS is a means of ensuring secure communication.

HTTPS works through the use of certificates. A certificate is a file that has been
digitally signed by a Certificate Authority, and contains information about the
web server. The browser can check that the information and the digital signature
are correct, provided that it recognizes the Certificate Authority that has issued
the certificate.

In order to get a real certificate, you must first create a certificate signing request
and then send that request to a Certificate Authority, who will then check that
you are who you claim to be, and then give you a certificate that they have
digitally signed. The process can take several days or more, so plan accordingly.

Using HTTPS Communication

You enable HTTPS slightly differently, depending on whether or not you are
using the redirection proxy.

To enable HTTPS communication when not using the redirection proxy:

1 In the jacadasv.ini file’s [<Machine>.Level1.HTTP] section, insert an
HTTPSPortRange parameter in addition to the existing HTTPPortRange
parameter. Provide a different port number to the one assigned for HTTP.
Example: HTTPSPortRange=8443-8443

2 In the same jacadasv.ini file section, insert the parameter
HTTPSSupport=1

To enable HTTPS communication when using the redirection proxy:

1 In the jacadasv.ini file’s [<Machine>.Integrator.HTTP] section, insert
an HTTPSPortRange parameter in addition to the existing HTTPPortRange
parameter. Provide a different port number to the one assigned for HTTP.
Example: HTTPSPortRange=8443-8443

2 In the same jacadasv.ini file section, insert the parameter
HTTPSSupport=1

Note: All proxies must run on the same port. You must indicate this in both
in the jacadasv.ini file (via the HTTPPortRange parameter) and in the
proxyconfiguration.xml file (via the ProxyPort tag).
158 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

3 In the proxyConfiguration.xml file, set the <ProxyHTTPSPort> tag’s
value to the same port number set in the jacadasv.ini file.
Example: <ProxyHTTPSPort>8443</ProxyHTTPSPort>

JIS Server Logging Support

This section introduces the JIS Server mechanism for tracking and viewing the
session status information for each process on your server system. Periodically
this information is written to a log file that is then available for you to read.

Figure 36. JIS Server logging architecture

JIS Server Logging Architecture

The JIS Server logging structure is composed of several units that communicate
with each other and with the server system’s root node. These units include the
Log Manager and each of three Log Classes; the Session Log, the XMLLog and the
XMLServer.
The following table lists and explains the Server System’s logging support
components:
webMethods JIS: XHTML Client User’s Guide Version 9.0 159

Chapter 5. Optimizing the JIS Server

Table 30. JIS Server logging system

Component Function

Log Manager The Log Manager is responsible for storing session
status information. Information held by the Log
Manager is periodically updated in response to
log class requests.

SessionLog The SessionLog writes the session status
information to a log file in the format of a comma
delimited list. The log file location is read from the
SessionLog section in the jacadasv.ini file.
Status information written to the SessionLog is
limited to specific data parameters for each
session.

XMLLog The XMLLog writes the status information to a log
file in standard XML format. The log file location
is indicated in the XMLLog section of the
jacadasv.ini file. The status information
written by the XMLLog class includes a record of
the complete status information across the entire
server system.

XMLServer The XMLServer receives the same set of status
information as that for the XMLLog class. Instead
of writing the information to a log file, the
XMLServer makes the status information
available for an online connection to the JIS
Administrator.

JIS Administrator When connected to the server system’s root node
the JIS Administrator provides a user interface for
viewing the XMLServer output online, and by
remote access.
160 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

JIS Server Log Information Flow

Session status information is directed to the root node in response to two
different types of events:

• When a process opens or closes on a server module.
-OR-

• When there is a log class request.

When a process either opens or closes, its session status information is sent to the
root node. This information is then available to the Log Manager. In addition, the
Log Manager responds to periodic Log Class requests for session status
information by instructing the processes to send session status information. The
type of information sent to root node is dependent on the Log class performing
the request.

The Server System Log Classes

SessionLog Log Class

The SessionLog log class writes session status information to a log file in the
format of a comma delimited list. The first record in the list is a set of column
headers. Each remaining record contains data associated with each of the column
headers. Each record in the list represents information about a particular session
on a particular process.

Processes record information concerning any one of their sessions when:

• A session opens
• A session closes
• A screen changes
• A session command event occurs

In this way the information written to the session log forms an incremental record
of the information and events occurring on processes and their sessions.

Table 31 indicates the record parameters written to the SessionLog and provides
a description of each parameter:
webMethods JIS: XHTML Client User’s Guide Version 9.0 161

Chapter 5. Optimizing the JIS Server

Table 31. SessionLog records (Sheet 1 of 2)

Parameter Description

Server Process ID The server IP address and Port1. Separated by a
colon (:).

Example: 192.90.14.4: 1100

Session ID A numeral representing the session’s position in
the process relative to any other session.

Example: 10 indicates that the session is the tenth
session to be opened by the process.

Time Connected A time stamp indicating the date and time that
the session connected to the process. The time is
given in hours:minutes:seconds.

Example: 2/18/99 12:19:40

Time Disconnected A time stamp indicating the date and time that
the session was disconnected from the process.
The time is given in hours:minutes:seconds.

Example: 2/18/99 12:50:30

User Name The user name taken at login.

_Default_User_

User Profile User profile name

User Address The Client address.

Localhost/127.0.0.3

Application The name of the Application running on the host.

MBF

Time of Last
Transaction

The time of the last recorded server activity in the
current session.
162 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Viewing the SessionLog Output

The SessionLog output is written to a log file as defined in the jacadasv.ini.
This is a text file that is best viewed by importing the contents into any
spreadsheet or application that is capable of displaying comma delimited lists.
For example, Excel, Access or Lotus 1-2-3.

Setting the LogClasses and Their jacadasv.ini File Parameters

The jacadasv.ini file contains a number of sections that are relevant to the
Server Logging support feature: A section called [LogClasses] for defining the
log classes that are available for use by the server, and a separate section for each
specific log class. The specific log class sections define parameters specific for the
logclass’ operation.

These include:

• Whether the LogClass is enabled or disabled.
• The frequency at which a LogClass sends a request to update data.
• The path of the log file to which the LogClass writes data.

Total Transact
Duration

Time taken from request reception to the return
of a response.

Number of Transactions The total number of transactions performed by
the process.

Aver Transact Duration The average transaction duration - calculated by
dividing Total Transaction Duration by
Number of Transactions.

Current Screen Provides the name of the current Subapplication.

Session Event The session event for which the parameters were
taken.

Session_New

Table 31. SessionLog records (Sheet 2 of 2)

Parameter Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 163

Chapter 5. Optimizing the JIS Server

LogClasses Section

You define the LogClasses for use by JIS Server logging support during runtime
in the [LogClasses] section of the jacadasv.ini file. Each entry in the section
represents a different LogClass. The section appears similar to this:
[LogClasses]

;XMLLog=

;XMLServer=

SessionLog=

SessionLog Section

[SessionLog]

Enable=1

Table 32. LogClass parameters

INI Entry Values and Description

Enable Defines whether the LogClass is available for use
by the server during runtime. 1 indicates that the
LogClass is enabled. 0 indicates that the LogClass
is disabled. In future versions this parameter will
behave as a flag that can be set from a remote
location.

TimerTick Defines the amount of time between successive
log class requests for data updates. This is given
by a numeral that indicates time in seconds.

FileInterval Defines the interval for creating new log files.
The supported time codes are: s - second, m -
minute, h - hour, d - day.

Example: 12h

File Defines the location and file name to which the
LogClass writes data.

Note: In the section illustrated, the XMLLog and XMLServer have been
commented out by including a semi-colon (;) before the LogClass name. This
is one method of disabling the use of the LogClass.
164 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

TimerTick=30

File=C:\log\Jacadasv.log

XMLLog Section

[XMLLog]

Enable=0

TimerTick=20

FileInterval=6h

File=C:\log\Jacadasv.xml

XMLServer Section

[XMLServer]

Enable=1

TimerTick=30

How to Create a Server Log File

To create a Server Log File, in the jacadasv.bat file, specify a debug level higher
than zero on the batch statement; for example: -d50.

You can also name the log file and place it in a location of your choice, by
specifying -l<drive and path>\FileName.

Alternately, you can specify the location of the logfiles by adding a parameter to
the [GeneralParameters] section of the jacadasv.ini file:
RtLogsDir=$RootDir\<directory>

For example: RtLogsDir=$RootDir\classes\logs

Example 3. Setting up a Server Log file

c:\jis>jacadasv.bat -d70 -lc:\temp
webMethods JIS: XHTML Client User’s Guide Version 9.0 165

Chapter 5. Optimizing the JIS Server

Advanced Logging Features

This section discusses some advanced logging features:

• Controlling the absolute size of the server log file.
• Using filters to limit log output.

Controlling the Size of the Log File

The command line option -m lets you specify the maximum size of the log file, in
bytes. Once the specified size is reached, wraparound occurs; that is, the log file
is overwritten from the top.

The Start Log

During JIS Server startup, log messages are written describing the server
environment, including the operating system version, JVM number, server build
number, and INI file settings. This information can be very useful for debugging

These startup messages are written to a separate log file, named
debug_start.log. They are written to a separate log file so that they are
preserved even when logfile wraparound is in effect.

Debug Filters

Debug Filters are tools to help you accomplish specific types of logging. They are
implemented by using the command line parameter
-f<Debug Log Filters (comma delimited)>

We recommend that the Debug Filters be used with a low debug level, even
debug level 1 or 2; this makes it easy to find the filtered messages in the output.
No filtered messages are printed, however, when the debug level is 0.

Example: -fSCREEN_IMG_NL -d2

Activating Debug Filters While the JIS Server is Running

Debug filters can also be activated or deactivated while the JIS Server is running,
without stopping and restarting the Server. This is done by entering a command
in the server window.

addfilter <FILTERNAME> - Turns on the specified filter. Specify just one filter.
If you want to turn on more than one filter, execute the addfilter command
once for each filter desired.

If you specify no operand, the addfilter command lists on the JIS Server
console the names of all existing predefined filters.
166 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

removefilter <FILTERNAME> -Turns off the specified filter. Specify just one
filter. If you want to turn off more than one filter, execute the removefilter
command once for each filter desired.

displaycurrentfilters - Lists to the JIS Server console the names of all filters
currently in use.

Example: addfilter SCREEN_IMG

Printing the Host Screen

When debugging an Application, it can sometimes be useful to print the host
screen. Debug filters are one way of accomplishing this.

webMethods JIS comes with three built-in Debug Filters that let you print the
host screen. When a Debug Filter is turned on, it is in effect for all sessions, and
for the complete lifetime of a session.

Following is a description of the debug filters for printing host screens.

Filter name: SCREEN_IMG This log filter prints the host screen as one long string,
including attribute bytes.

Filter name: SCREEN_IMG_NL This log filter prints the host screen as seen from the
client host view, in a rectangular format, including attribute bytes.

Filter name: SCREEN_IMG_PROG Prints the screen image in a rectangular format
after every progress message that the server receives from the host. The screen
image printed includes attributes.

Scalability Filter

Filter name: SCALABILITY The scalability filter provides log information that is
relevant to load testing and server tuning, performance monitoring, and screen
identification problems. Because the scalability filter is intended for use in
servers running a large number of users, its output is limited to information
essential to scalability debugging. Among the information displayed by the
scalability filter is:

• new data arriving from the host.
• keyboard unlock events.
• screen identification results.
• SetWaitForScreenState information.
webMethods JIS: XHTML Client User’s Guide Version 9.0 167

Chapter 5. Optimizing the JIS Server

Method Debug Filter

Filter name: METHOD

The method debug filter limits output to the method debug messages. See
“Setting Runtime Generation Options” on page 63 for more information about
generating method debug messages. The method debug messages assist in the
tracing and debugging of user-written methods.

Analyzing Abnormal Runtime Termination

To provide a means of analyzing abnormal runtime termination, specific
information about session termination is written to logs called Dump Files.

Information Included in Dump Files

Dump files record events such as client disconnections, server exceptions, and
host failure. The information in these log files is recorded just before the session
closes.

Dump files contain three levels of information:

Table 33. Dump files data

Level Description

General Process Level
Information

This level includes information that stays the
same for all sessions running under a given
server process.

This information is updated when the server
process is started.

Session Level Information This level includes session exceptions and
information regarding the current state of a
given session.

Session level information is updated whenever
the session state is changed. Each property in this
section of the dump file includes a timestamp of
the last update.

Exception Information The first exception of each exception class is
included in the data of the dump file.
168 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Dump File Generation

The server generates dump files anytime a session closes without the user’s
intervention.

Dump File Name and Location

A separate dump file is created for each problematic session.

The server dump file is named: jbs_<machine>_<process>_<session).log

and is located in: <InstallDir>\JacadaFiles\classes\logs.

Enabling Dump File Generation

The behavior of dump files can be set in both the runtime *.ini file
(<applname>.ini) and the jacadasv.ini file. Set the following parameters
to enable dump file generation and determine the various logging properties:

[SessionCoreDump]

Table 34. Setting dump parameters

Parameter Value Description

AlwaysDump 0

1

Default value. Dump files are only
generated on abnormal termination.

Always generates dump files on the
server, regardless of how the session
ended.

DumpFast 1

0

Default value. Only saves information
pertaining to abnormal termination.

Additional information is saved,
including detailed descriptions of the
current Subapplication’s emulator
events and variables. This causes
approximately 5% performance
deterioration.
webMethods JIS: XHTML Client User’s Guide Version 9.0 169

Chapter 5. Optimizing the JIS Server

Dump File Structure

The dump files contain three types of information:

• General Process Level information.
• Session Level information.
• Exception information.

This section contains an example of a Java Client Core Dump file and a Session
Core Dump file. Each example lists the type of information contained in the
dump file and then illustrates the information in an extraction from a dump file.

Java Client Core Dump File

The Client Core Dump file includes the following details:

Table 35 lists the type of information found in the General Process information
section.

Table 36 lists the type of information found in the Session Level information
section.

Table 37 lists the type of information found in the Exception information section.
:

Table 35. Client dump: general process information (Sheet 1 of 2)

Information Type Example

Java vendor and
version number

Java vendor: Sun Microsystems Inc., version:
1.4.2_02

OS name and
architecture number

OS name: Windows 2000, architecture: x86

JIS version or PTF
name

Version/PTF Name = 8.1

JIS version Build
number

BuildNumber = 8,1,0,54

Machine IP address Machine IP address: 10.90.18.149

JVM memory
consumption

Memory: Free: 49 Kb (3%) Total: 1488Kb
170 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

:

Session termination
details

Session was terminated due to: 2/12/03 11:36:00 AM
Quit reason: Exception in CommServer:
java.lang.NullPointerException

Reference to a session
log file

A matching dump file may have been created on
server M1, named 10.90.18.149_1_1.log

Table 36. Client dump: session level information (Sheet 1 of 2)

Information Type Example

Server details • Machine number
• Process number
• Client number
• Application name
• Language details
• User profile information
• Cookies

Details about the
connection process

• First connection, including server name,
connect port, redirect.

• First port’s connection, including, initial socket,
port, local port, server name, connect port,
server application name, username, password,
profile and shared variables.

• First connection timestamp.
• Second connection timestamp.

Details about
CreateFrame messages

2/12/03 11:35:55 AM CreateFrame: hComp=21,
libraryName PRN400X, lpszFormName = JITGUI,
lpWindowName = , hCompParent= 1, X= -32768, Y
= 0, nWidth = -32768, nHeight = 0

Keep alives sent List of KeepAlive messages sent by the Client.

Keep alives received List of KeepAlive messages received by the Client.

Table 35. Client dump: general process information (Sheet 2 of 2)

Information Type Example
webMethods JIS: XHTML Client User’s Guide Version 9.0 171

Chapter 5. Optimizing the JIS Server

:

Session Core Dump File

The Session Core Dump file includes the following details:

Table 38 lists the type of information found in the General Process information
section.

Outgoing requests 2/12/03 11:35:50 AM Client ->Server:
Command hComp=0, id=22, action=8

Incoming requests 2/12/03 11:36:00 AM Server -> Client:
createWindowControls

Sent shared user
variables

2/12/03 11:35:50 AM Sent user variables:[]

Received shared user
variables

A list of received shared user variables

User messages 2/12/03 11:35:41 AM Hello world

Chronological order of
events

A list of all the session’s events in chronological
order.

Table 37. Client dump: exception information

Information Type Example

A list of exceptions java.lang.Exception: Quit Stack - Stack trace of the
terminating thread

at cst/debug/CoreDump.saveStackTrace

at cst/common/general/
CoreDump.storeQuitReason

at cst/client/comm/CommServer.run

Table 36. Client dump: session level information (Sheet 2 of 2)

Information Type Example
172 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Table 39 lists the type of information found in the Session Level information
section.

Table 40 lists the type of information found in the Exception information section.

Table 38. Session dump: general process information (Sheet 1 of 3)

Information Type Example

Java vendor and
version number

Java vendor: Sun Microsystems Inc., version:
1.4.2_02

OS name and
architecture number

OS name: Windows 2000, architecture: x86

JIS version or PTF
name

Version/PTF Name = 8.1

JIS version Build
number

BuildNumber = 8,1,0,54

Machine IP address Machine IP address: 10.90.18.149

JVM memory
consumption

Memory: Free: 49 Kb (3%) Total: 1488Kb

Session termination
details

Session was terminated due to: 2/12/03 11:36:00 AM
Quit reason: Exception in CommServer:
java.lang.NullPointer Exception

Session details • Session ID
• Application name
• Application directory
• Connection settings
webMethods JIS: XHTML Client User’s Guide Version 9.0 173

Chapter 5. Optimizing the JIS Server

Recent Subapplications 2/12/03 12:03:26 PM SubApplication: Name =
MAIN, With window = true, With screen = false,
Library number = 0, Library name = PRN400X, To
bleed through = false, Auto synchronize = false,
Screen ID = null, Is master = false, Is dependent =
false, Cursor place =
cst.server.struct.GALPoint@8df60, Focused control
name = , Is principal = false, Is dependent = false,
Transition type = , Host screen name = MAIN, Is
GDS = false, GDS type = 0, Next transaction = null,
Next program = null, Auto synchronize = false

Emulator events 2/12/03 12:03:24 PM [Session 1 Telnet] Screen
changed = false, Keyboard state changed = true,
Keyboard locked = false, Cursor moved = false, MW
state changed = false, MW = false, Screen size = 0

CreateFrame messages 2/12/03 12:03:22 PM CreateFrame: PRN400X,
JITGUI,

Input XMLs • Last EndUserAction message
• Last SendWindowData message

Output XMLs • Last EndUserAction message
• Last SendWindowData message

Keep alives sent A list of KeepAlive messages sent by the session.

Keep alives received A list of KeepAlive messages received by the
session.

Outgoing requests 2/12/03 12:03:32 PM Server -> Client:
DestroyWindow

Incoming requests 2/12/03 12:03:18 PM Client -> Server:
SendWindowData

Sent shared user
variables

A list of sent shared user variables.

Table 38. Session dump: general process information (Sheet 2 of 3)

Information Type Example
174 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Received shared user
variables

A list of received shared user variables.

Activated methods 1/13/04 11:53:36 AM u_SelectMenuOption lp: 0

User messages A list of method comments.

Cycle number Information about internal data structure.

Chronological order of
events

A list of all the session’s events in chronological
order.

A list of exceptions java.lang.Exception: Quit Stack - Stack trace of the
terminating thread

at cst.debug.CoreDump.save
StackTrace(CoreDump.java:94)

at cst.common.general.Core
Dump.storeQuitReason(CoreDump.java:112)

at cst.server.applicat.MainSub Application.window
Destroyed(MainSubApplication.java:60)

Table 39. Session dump: session level information (Sheet 1 of 3)

Information Type Example

Session details • Session ID
• Application name
• Application directory
• Connection settings

Table 38. Session dump: general process information (Sheet 3 of 3)

Information Type Example
webMethods JIS: XHTML Client User’s Guide Version 9.0 175

Chapter 5. Optimizing the JIS Server

Recent Subapplications 2/12/03 12:03:26 PM SubApplication: Name =
MAIN, With window = true, With screen = false,
Library number = 0, Library name = PRN400X, To
bleed through = false, Auto synchronize = false,
Screen ID = null, Is master = false, Is dependent =
false, Cursor place =
cst.server.struct.GALPoint@8df60, Focused control
name = , Is principal = false, Is dependent = false,
Transition type = , Host screen name = MAIN, Is
GDS = false, GDS type = 0, Next transaction = null,
Next program = null, Auto synchronize = false

Emulator events 2/12/03 12:03:24 PM [Session 1 Telnet] Screen
changed = false, Keyboard state changed = true,
Keyboard locked = false, Cursor moved = false, MW
state changed = false, MW = false, Screen size = 0

CreateFrame messages 2/12/03 12:03:22 PM CreateFrame: PRN400X,
JITGUI

Input XMLs • Last EndUserAction message
• Last SendWindowData message

Output XMLs • Last EndUserAction message
• Last SendWindowData message

Keep alives sent A list of KeepAlive messages sent by the session.

Keep alives received A list of KeepAlive messages received by the
session.

Outgoing requests 2/12/03 12:03:32 PM Server -> Client:
DestroyWindow

Incoming requests 2/12/03 12:03:18 PM Client -> Server:
SendWindowData

Sent shared user
variables

A list of sent shared user variables.

Table 39. Session dump: session level information (Sheet 2 of 3)

Information Type Example
176 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Adding Messages

In addition to the messages provided by webMethods JIS, you can add your own
messages to the session dump file. This is done using the function:

Received shared user
variables

A list of received shared user variables.

Activated methods 1/13/04 11:53:36 AM u_SelectMenuOption lp: 0

User messages A list of method comments.

Cycle number Information about internal data structure.

Chronological order of
events

A list of all the session’s events in chronological
order.

Table 40. Session dump: exception information

Information Type Example

A list of exceptions java.lang.Exception: Quit Stack - Stack trace of the
terminating thread

at cst.debug.CoreDump.save
StackTrace(CoreDump.java:94)

at cst.common.general.Core
Dump.storeQuitReason(CoreDump.java:112)

at cst.server.applicat.MainSubApplication.window
Destroyed(MainSubApplication.java:60)

Table 39. Session dump: session level information (Sheet 3 of 3)

Information Type Example
webMethods JIS: XHTML Client User’s Guide Version 9.0 177

Chapter 5. Optimizing the JIS Server

public void storeUserMessage(String message) defined in the
cst.common.general.ICoreDump interface.

• To retrieve the implementation of this interface from a client extension code:
Use the function getClientDump() from the JacadaStarter.java file.
For example, add a function:
getClientDump().storeUserMessage(“message”); in
<ApplName>\user\JacadaStarter.java, method init()

• To retrieve the implementation of this interface from a server extension code:
Use the function getSessionDump() from the Global.java file.
For example, add a function:
globals_parm.getSessionDump().storeUserMessage (“message”);
in the constructor of <ApplName>\user\TheApplication.java

Checking Server Configuration

Checking the configuration of the server is an important stage in the
development of the application. By using the Server Configuration Checker you
can check that your server configuration is free of inaccuracies, before deploying
the application. Certain inaccuracies in the jacadasv.ini file prevent the server
from running, whereas others can cause unexpected behavior.

There are two types of server inaccuracies:

• Local inaccuracies, where single properties are not defined according to their
legal properties, such as missing property definitions, non-numeric values for
numeric properties, and illegal characters in property definitions.

• System inaccuracies, where combinations of property definitions are not
defined correctly. For example, if the port range does not fit the number of
processes.

Most local inaccuracies are reported in the debug logs. However, some local
mistakes are not reported, such as non-reasonable values. For example, if a
parameter that should be defined in milliseconds is defined in seconds, this is
considered a non-reasonable value.

System inaccuracies are more elusive due to the decentralized nature of the JIS
Server. Each server process reads the jacadasv.ini on its own machine, but only
extracts definitions that relate to the placement of the process in the scalability
tree. There is no central location responsible for validating the entire server
configuration.
178 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Server Configuration Checker

The Server Configuration Checker analyzes the jacadasv.ini file and identifies
local and system-level inaccuracies at all scalability levels. The checker looks for
and reports configuration errors (see Table 41) and configuration warnings (see
Table 42) at different debug levels.

In addition to running in Server Mode in every server process, the Server
Configuration Checker can also be run in Offline Mode.

Table 41. Server configuration errors

Configuration Element Possible Error

ServerMachines
Section

Section is not defined.

Section does not define a machine.

Server Port Range Range definition is invalid.

Not all server processes have two ports.

http and https Port
Range

Range definitions are invalid.

Not all server processes have one http and one https
port.

The http test is only executed if
HttpClient = TRUE.

The https test is only executed if
HttpsClient = TRUE.

Registry/RMI Port
Range

Port range is invalid.

Not all processes have one RMI registry and one
node registry port.

Session Handling None of the processes can handle sessions.

jacadasv.ini File Exceptions occur when reading and analyzing the
jacadasv.ini file.
webMethods JIS: XHTML Client User’s Guide Version 9.0 179

Chapter 5. Optimizing the JIS Server

Enabling the Server Configuration Checker

Server Mode

In Server Mode, the Server Configuration Checker tests the configuration of the
machine on which it is run. By default, the main process of every server machine
executes the checker upon starting. If the checker identifies an error, the server
aborts. If the checker identifies a warning, information is written to a log, but the
checker does not prevent the server from starting.

In Server Mode, the Server Configuration Checker reports errors and warnings
at the following debug levels:

• Errors are reported at debug level 0.

Table 42. Server configuration warnings

Configuration Element Possible Warning

http/https Port Range http/https Level1 port range contains more than
one port.

Session Handling A process does not handle sessions.

This warning is not issued for Level1.

Property Values A property value lies outside the allowed range. See
“Range of Valid Properties” on page 181 for a list of
valid ranges.

Unrecognized
Properties

The server does not recognize known properties.
The warning acts as protection against spelling
mistakes.

maxProcessSessions The maxMachineSessions value is smaller than the
sum of maxProcessSessions values for the required
processes.

Numeric Properties Numeric properties have non-numeric values.

Negative Values Properties have negative values.
180 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

• Warnings are reported at debug level 1.
• Normal report messages are reported in debug level 50.

In Server Mode, the Server Configuration Checker writes the configuration
information to:
:

To disable the Server Configuration Checker:

In the jacadasv.ini file, in the [GeneralParameters] section, set the
checkServerConfiguration parameter to 0.

Offline Mode

You can also run the Server Configuration Checker offline. When run offline, the
checker reads the jacadasv.ini file and analyses the configuration of all the
defined server machines. The checker tests the configuration and then exits,
without starting the server.

In Offline Mode, the Server Configuration Checker writes the configuration
information to:
:

To enable the Server Configuration Checker in Offline Mode:

In the jacadasv.bat file, add the -c command line option.

See “The JIS Server Command Line Parameters” on page 103 for information
about the jacadasv.bat command line options.

Range of Valid Properties

One of the tasks that the Server Configuration Checker performs is to identify
non-reasonable property values. Following is a list of the valid ranges of the
numeric properties in the jacadasv.ini file:

Log Name debug_1.txt

Log Location <InstallDir>\JacadaFiles\classes\logs

Log Name debug_start.txt

Log Location <InstallDir>\JacadaFiles\classes\logs
webMethods JIS: XHTML Client User’s Guide Version 9.0 181

Chapter 5. Optimizing the JIS Server

Table 43. Jacadasv.ini: valid numeric parameters (Sheet 1 of 3)

Property Name Description

Default
Value
(seconds)

Valid
Range

KeepAliveTimerTick Time interval for sending
keep alive to parent
process.

60 10-600

KeepAliveTimeout Process inactivity
timeout.

10 1-100

SystemConnection
TimeOut

Time interval for
establishing connection
between machines.

120 20-1200

RegistrySpawn
TimeOut

Timeout for spawning
the registry.

45 10-450

WaitForSpawned Time interval for waiting
for a spawned process.

60 20-600

WaitForStatus Time interval for session
allocation.

100ms 10-1000

AllocLockTimeout Timeout for process lock
during session allocation.

10 1-600

ExpectingSession
Timeout

Timeout for client
redirection.

300 10-3000

SessionIdleTimeout Idle timeout for XML and
JCS sessions.

180*

3600**

0-86400

RMISocketTimeout Timeout for RMI calls. 20 10-200

MsgboxTimeout Timeout for message box
reply.

36000 3600-
360000
182 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

PanelTimeout Timeout for next panel
selection.

36000 3600-
360000

GetTextFromUser
Timeout

Timeout for getting user
text.

36000 3600-
360000

KeepAlive Client keep alive. 240 0-2400

RecvTimeout Timeout for client reply. 200 60-2000

ResponseTimeout Http response timeout. 100 20-1000

SessionInitialization
TimeoutInSeconds

Timeout for preloaded
session initialization.

300 10-3000

MaxNewSessions
PerSecond

Maximum number of
pool sessions that can be
created per second.

5 1-30

PoolCreationDelay
InSeconds

Number of seconds that
the server waits before
starting to fill the pools.

30 1-1800

InitialPoolSize Initial size of the pool. 10 0-1000

OnGoingPoolSize Ongoing size of the pool. 10 0-100

ValidityCheck
IntervalInSeconds

Frequency of the validity
checks.

300 10-3600

SizeCheckInterval
InSeconds

Frequency of the checks
whether the pool should
be refilled.

10 1-3600

StartUpSessions
Percent

Percent of sessions
supported in server start.

0 0-100

Table 43. Jacadasv.ini: valid numeric parameters (Sheet 2 of 3)

Property Name Description

Default
Value
(seconds)

Valid
Range
webMethods JIS: XHTML Client User’s Guide Version 9.0 183

Chapter 5. Optimizing the JIS Server

* This is the default value as defined in the ServerConfiguration.xml file for
the JIS Server, and in the session-timeout parameter in the web.xml file
when using a J2EE application server.

** This is the default value when using the JIS Server if no value is defined in the
ServerConfiguration.xml file nor in the [HTTP] section of the
jacadasv.ini file.

JIS Administrator

There are two versions of the JIS Administrator: one for use with the proprietary
JIS Server, and one for use with a third-party application server or Web container.

This section about the JIS Administrator is divided into three main subsections:

• JIS Administrator for the webMethods JIS Proprietary Server
• JIS Administrator for the J2EE Environment
• JIS Administrator Interfaces Common to Both Environments

JIS Administrator for the JIS Proprietary Server

The JIS Administrator (JAM) provides the system administrator with a means of
viewing and controlling the JIS Server

You can view the structure of the JIS Server, and the process and session activity
taking place on the server system.

SpareSessions
Percent

Percent of spare sessions
in ongoing state.

0 0-100

Note: JIS 9.0.4 introduces a 3rd option for running the J2EE version of Jam
using the proprietary server. For more information see the JIS 9.0.4 release
notes.

Table 43. Jacadasv.ini: valid numeric parameters (Sheet 3 of 3)

Property Name Description

Default
Value
(seconds)

Valid
Range
184 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

You can control the JIS Server’s operation as follows:

• Pause and resume its activity.
• Stop its execution altogether.
• Change selected JIS Server configuration settings.
• Change JIS Server debug settings for the current run or permanently.

Starting the JIS Administrator

You can start the JIS Administrator from either the Server Machine, where the
server machine is running Windows, or remotely from a Windows workstation
mapped to the Server Machine. Use the latter case to run the JIS Administrator
from a remote site, or when the server is not installed on Windows.

Starting the JIS Administrator from the Server Machine

In the Startup menu, select Programs > JIS > JIS Administrator.

A wait cursor is displayed until the JIS Administrator interface opens on the
screen.

running Windows

Connecting Online to the JIS Server

To connect online to the JIS Server you either need to supply the complete URL
for the server machine, or the server machine’s IP address. This information is
entered in the Connect Online dialog box.

To open the Connect Online dialog box:

1 Either click the button on the tool bar or select Connect from the Connect
menu.
The Connect Online dialog box opens:

Note: If the JIS Server is not running, the interface will open without
displaying any contents.If the server is running then when the interface
opens, it displays the server’s status.

Note: Make sure -p http://localhost:8080/port is present in the jam.bat
command line. You can replace //localhost:8080/ with the IP address of the
server on which jam.bat is located.
webMethods JIS: XHTML Client User’s Guide Version 9.0 185

Chapter 5. Optimizing the JIS Server

Figure 37. Connect online dialog box

2 Choose either:
• The Port File URL option.
-OR-
• The RMI Registry option.

3 Enter the appropriate information as indicated in Table 44.

Table 44. Connect Online parameters

Parameter Description

Port File URL Enter the complete URL as indicated in the illustration.

Make sure to include the:

• IP address and port of the JIS Server.
• followed by /port.

RMI Registry When using the RMI registry you must supply the:

• Server Machines IP address.
• Registry Port as indicated in the jacadasv.ini file.

Server Machine Enter the server machine’s IP address in the text box.

Registry Port Enter the default value unless it was changed in the
jacadasv.ini file. In that case, enter the value recorded
in the jacadasv.ini file.

The default registry port is 2100.
186 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Debugging the JIS Administrator

The JIS Administrator debugging feature enables you to keep track of the activity
registered in the JIS Administrator.

The debug information is written to a log file called debug_JAM.log. This file is
created automatically once the debugging feature is activated. The file is placed
under a designated directory.

To activate the JAM debugging feature:

Add any of the following switches in Table 45 to the JIS Administrator parameter
line:

Example 4. JAM startup command

The following is an example of the JIS Administrator startup command:
JAM.bat -d 50 -l c:\temp

Do not forget to leave a space between the parameter and its value.

Table 45. JAM debugging feature: activating parameters

Switch Values and Description

-d Debug level.

Example: -d 50

-l Debug logging file directory.

Example: -l c:\temp

-h Optional parameter that prompts the JIS Administrator console.
The console includes the syntax of the JIS Administrator startup
command and a list of other command line options.
webMethods JIS: XHTML Client User’s Guide Version 9.0 187

Chapter 5. Optimizing the JIS Server

JIS Administrator for the J2EE Environment

The JIS Administrator provides the system administrator with a means of
viewing the process and session activity taking place on the a given server or
cluster of servers. Specific session and application properties can also be
modified through the JIS Administrator.

Running the JIS Administrator Under J2EE

To run the JIS Administrator Runtime Configuration interface, open a browser
and go to the URL
http://<AppServer IP addr>:<port number>/JacadaAdmin/admin

Be sure to use the correct port number of the application server (administrative
or stand-alone) to which the JacadaAdminApplication.ear was deployed.

The JIS Administrator Interfaces

The JIS Administrator tool is divided into two interfaces:

• The Server Monitor interface
• The Runtime Configuration interface

To move between interfaces, use the appropriate tabs on the bottom left corner of
the tool.

The Server Monitor Interface

The Server monitor interface is divided into five main regions:

• The System Status Log pane.
• The Properties tab.
• The Sessions tab.
• The Debug tab.
• The License tab.
188 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Figure 38. The system status log pane, with the Properties tab selected

The System Status Log Pane

The System Status Log pane displays a hierarchical representation of the JIS
Server system structure. The System Status Log pane displays the hierarchy in a
tree structure composed of three levels: Server Machines resident on the System,
Processes running on any particular Server Machine, and Applications and
Sessions active on any process.

You can expand and collapse the System Status Log to display any particular
level by double clicking the system element that interests you.

The or symbol appears immediately before each interface element.

The symbol indicates that the system element can be further expanded to
display its sub elements, whereas the symbol indicates that the system
element is expanded and is displaying its sub elements.

The Properties Tab

The Properties tab displays Server System information relevant to the particular
level or system element highlighted in the System Status Log Pane. Information
is categorized in the form of Property and Value of each property. Table 46
describes the fields in the Properties tab.
webMethods JIS: XHTML Client User’s Guide Version 9.0 189

Chapter 5. Optimizing the JIS Server

The Sessions Tab

The Session tab lists each and every session that is active on the server system
and displays the values for the properties in a tabular format. The column order
can be arranged to view the information that is important at the time, and the
columns can be sorted alphanumerically from top to bottom or from bottom to
top.

Figure 39. The Sessions tab

The fields displayed in the Session tab include:

• Server • CurrentScreen

• ID • State

• Created • Transactions

• User • TotalDuration

• UserAddress • AvgDuration

• ApplicationName • LastTransaction

• LibraryName • LastTransactionDuration
190 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

See the section for the Specific Session element in Table 46 for a description of
these fields.
webMethods JIS: XHTML Client User’s Guide Version 9.0 191

Chapter 5. Optimizing the JIS Server

The Properties and Sessions Tabs

The properties and values listed in the Properties tab vary according to the
element in focus in the System Status Log pane. The properties in the Properties
and Sessions tabs are described in Table 46.

Table 46. Properties in the Properties and Sessions tabs(Sheet 1 of 4)

System
Status Log
Pane
Element Property Name Value Description

System Status Log

Type JIS Server System.

Ver webMethods JIS version release
number.

IniVersion Lists the IniVersion, if specified in
the INI file.

Updated Last time that the information in the
display was refreshed.

Processes Total number of processes running
on the system.

TotalSessions Total number of sessions running
on the system.

Server Machine

Address Server Machine IP Address.

RMI Port RMI port number.

Processes Total number of processes running
on the server machine.
192 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

TotalSessions Total number of sessions running
on the server machine.

Process

Alias A number describing the
hierarchical position of the process
within the system.

Port1 Port Number the process uses.

HttpPort The HTTP port number.

HttpsPort The HTTPS port number.

State Indicates the activity state of the
process. Possible values:
INITIALIZING, STARTED,
PAUSED, STOPPED,
PENDING_START,
PENDING_STOP, FAILED

Application

Applications Number of Applications running
on the process.

<ApplName>

Name Application name.

Sessions Number of sessions on the process
that are being used by the
Application.

Table 46. Properties in the Properties and Sessions tabs(Sheet 2 of 4)

System
Status Log
Pane
Element Property Name Value Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 193

Chapter 5. Optimizing the JIS Server

TotalPenalty Total penalty ranking experienced
by the process.

Sessions Folder

Spare The number of free sessions
available for use on the process.

Size The number of sessions in use on
the process.

Specific Session

Server Server the session is running on.

ID Unique numeric Session ID, since
the server was started.

Created Date and time session initiated.

User User profile.

User address IP address of the client machine.

ApplicationName Name of Application being run by
the session.

LibraryName Name of library being used by the
session, if any.

CurrentScreen Screen name currently active.

State Event occurring on screen. See “JIS
Server Logging Support” on
page 159 for details.

Table 46. Properties in the Properties and Sessions tabs(Sheet 3 of 4)

System
Status Log
Pane
Element Property Name Value Description
194 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

The Debug Tab

The Debug tab displays settings of the jacadasv.ini file that are related to
debugging. When the tab is opened, it displays the current values of the settings.
The values of the displayed debug settings can be changed, for the duration of the
current server run, or permanently, if so desired. If you choose to make the
changes permanent, the jacadasv.ini file is updated with the new values.

The facilities available on the Debug Tab are:

• The Debug level can be changed.
• The Debug Log File size can be changed.
• The Debug Log directory can be changed.
• Log Filters can be turned on and off.
• A text string of your choice can be written to the log as a marker.

An example of the contents of the Debug tab is shown in Figure 40. The fields in
the Debug tab are described in Table 47 on page 196.

Transactions Total number of host application
transactions since initiating current
session.

TotalDuration Total server processing time for
transactions in milliseconds.

AvgDuration Average duration of each
transaction in milliseconds.

LastTransaction Start time of last transaction.

LastTransactionDuration Duration of the last transaction in
milliseconds.

Table 46. Properties in the Properties and Sessions tabs(Sheet 4 of 4)

System
Status Log
Pane
Element Property Name Value Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 195

Chapter 5. Optimizing the JIS Server

Figure 40. The Debug tab

Table 47. Elements in the JIS Administrator Debug tab (Sheet 1 of 2)

Debug Tab Element Description

Apply to current run
only

When selected, the changes you specify in the debug
tab of the JIS Administrator are effective only for the
duration of the current run of the Server.

Apply to future runs,
too

When selected, the changes you specify are effective
for the current run and for all future runs until
changed. The new values you specify are written to
the jacadasv.ini file.

Debug Settings

Debug Level Corresponds to the RtDebugLevel INI file setting,
described in “RtDebugLevel” on page 111.

Log File Size Corresponds to the RtDebugFileMaxSize INI file
setting, described in “RtDebugFileMaxSize” on
page 110.

Log Directory Corresponds to the RtLogsDir INI file setting,
described in“RtLogsDir” on page 112.
196 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Filters Log filters give you the ability to selectively print
specific classes of log messages to the debug log.
Instead of setting a high debug level and examining
the entire debug log for messages related to a
particular issue, you would set the debug level to 1
simply to turn on debugging, and utilize a log filter or
filters to produce only those messages related to the
issue in question.

You normally use log filters in the process of
investigating a particular application problem or
performance issue. The messages produced by many
of the debug filters are rather obscure and of limited
use to the customer unassisted. There are a few debug
filters, though, that can be of practical use to the
customer unassisted; see “Debug Filters” on page 166.

Log Text Lets you specify any character string to be written to
the log file as a marker. For example, you may want a
marker in the logfile to signal the point in time where
you modified the debug settings.

Apply Writes the character string to the log file.

Other buttons

Apply Applies the modifications to the server.

Cancel Nullifies any changes applied to the debug settings on
the screen since the last time the “Apply” button was
clicked.

Clear Logs Use the Clear Logs button to reset the logging point to
the beginning of the log file.

Help Invokes JIS Administrator online help.

Table 47. Elements in the JIS Administrator Debug tab (Sheet 2 of 2)

Debug Tab Element Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 197

Chapter 5. Optimizing the JIS Server

The License Tab

The License tab of the JIS Administrator is used for displaying the details of the
runtime license, and for updating the runtime license when necessary. An
example of the contents of the License tab is shown in Figure 41. The fields in the
License tab are described in Table 48.

Figure 41. The License tab
198 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Table 48. Elements in the JIS Administrator Debug tab

License Tab Element Description

Updated The date the product license was last updated.

License Type Possible license types are:

• Regular - specifies a maximum permitted number
of simultaneous user sessions, and expires on the
date shown.

• Date Limited - license expires on the date shown;
no limit on number of simultaneous users.

• Users Limited - no expiration date, but sets a
maximum permitted number of simultaneous
users.

• Unlimited

Expiration date Date license expires. Contact your Software AG
representative at least two to four weeks before the
expiration date to arrange for a license update.

Expiration grace Additional days after the formal expiration date
during which the current license will continue to be
valid.

Max users reached Greatest number of simultaneous users seen by the
Server during the current Server execution.

Replace license This is a button, for use when the time comes to
update your license.

To update the license: paste or type the new license
key in the text box to the right of the Replace license
button and click on the button.
webMethods JIS: XHTML Client User’s Guide Version 9.0 199

Chapter 5. Optimizing the JIS Server

Operations you Perform Using the Server Monitor

The most typical use of the Server Monitor is to manipulate the JIS Server and to
view the distribution of Server machines, Applications, processes and sessions
on the server system. Under certain circumstances your needs may require you
to:

• Pause/Resume/Stop the JIS Server.
• Save/Open the System Status Log to file.
• Close sessions.

You can use the JIS Administrator to Pause, Resume or Stop the JIS Server. Each
of these can be performed on either a single machine or on the entire farm.

You can either:

• Click the Machine icon and choose the action you wish to
perform on a single machine.
-OR-

• Click the SystemStatusLog icon and choose the action you
wish to perform on the entire server farm.

Pausing the JIS Server

The Pause action changes the Server’s status from Started to Paused. Once the
status of the Server has changed, it will no longer allow new sessions to connect.

To pause the JIS Server:

1 Stand on the Machine icon or on the SystemStatusLog icon.
2 Click the button on the tool bar or select Pause from the Command

menu.

Resuming the JIS Server

The Resume action changes the Server’s status from Paused to Started. Once the
status of the Server has changed, it allows new sessions to connect.

Note: When you pause or stop a single machine, the JIS Server remains active
for other machines in the server farm.

Note: Once the status of the Server changes to Paused, the Pause button is
disabled and the Resume button is enabled.
200 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

To resume the JIS Server:

1 Stand on the Machine icon or on the SystemStatusLog icon.
2 Click the button on the tool bar or select Resume from the Command

menu.

Stopping the JIS Server

The Stop action shuts down the JIS Server, terminating thereby all of its processes.
Before shutting down, the JIS Server enters a Pending_Stop stage, during which
it behaves as if it were paused. The time the JIS Server remains in Pending_Stop
status depends on the setting defined in the Stop JIS Server dialog box. This is
seen in the image below.

To stop the JIS Server:

1 Stand on the Machine icon or on the SystemStatusLog icon.
2 Click the button on the tool bar or select Stop from the Command menu.

The Stop JIS Server dialog box opens:

Figure 42. Stop JIS Server dialog box

3 Fill in the fields according to the instructions in Table 49.

Note: Once the status of the Server changes to Started, the Resume button is
disabled and the Pause button is enabled.
webMethods JIS: XHTML Client User’s Guide Version 9.0 201

Chapter 5. Optimizing the JIS Server

4 Click OK.

Saving the System Status Log to File

The System Status Log display is periodically updated with new information.
The interval between updates is set in the jacadasv.ini file. By default, the
update interval is set to 30 seconds. Background information can be found in the
sections on “Scalability” on page 139, and “JIS Server Logging Support” on
page 159.

For any number of reasons you may need to save an instance of the System Status
Log display in order to review the state of the server system. JIS Administrator
saves the System Status Log in XML format.

To save the System Status Log to file:

1 From the File menu, select Save.
The Save XML File dialog box opens.

2 Select a directory to store the log file.
3 Enter a name for the log file in the File Name edit box.
4 Click Save.

Table 49. Stop JIS Server instructions

Field Description

Machine name Displays the name of the machine that will be closed, or
“All Machines”, if you have chosen to shut down the
server.

Total number of
running processes

Displays the number of processes currently running.

Total number of
active sessions

Displays the number of sessions currently active.

Number of minutes
before stopping

Determines the number of minutes the server will be in
Pending_Stop status before stopping. This field can
be edited.

Message to End
Users

Defines the message to be displayed to the end user
when stopping the JIS Server. This field can be edited.
202 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Opening a Saved System Status Log

To open a saved system status log file:

1 From the File menu, select Open.
The Open XML File dialog box opens.

2 Browse for the directory that houses the saved log file, and select the file.
3 Click Open.

The log file opens and the System Status Log is displayed in JIS Administrator.

Closing Sessions

You can either close a specific session or close all the sessions of a specific server
process.

To close a specific session:

1 Select the specific session node in the System Status Log pane.
2 From the Command menu, select Close Session or press the keyboard Delete

key.
3 A confirmation message appears with the message:

Do you want to close session <sessionID> in process
<processAlias> machine <machineName>?

4 Click Yes. The session closes.

This option is only enabled if a session is selected in the System Status Log pane.

To close all sessions of a server process:

1 Select the process node in the System Status Log pane.
2 From the Command menu, select Close Process Sessions or press the

keyboard Delete button.
3 A confirmation message appears with the message:

Do you want to close all the sessions in process
<processAlias> machine <machineName>?

4 Click Yes. The sessions close.

This option is only enabled if a process is selected in the System Status Log pane.

Viewing All Columns on the Session Tab

Not all columns in the Sessions tab are always in view.

To view a particular column you may have to use the horizontal scroll bar to bring
a particular column into view.
webMethods JIS: XHTML Client User’s Guide Version 9.0 203

Chapter 5. Optimizing the JIS Server

The Runtime Configuration Interface

This section applies to JIS Administrator on the webMethods JIS Proprietary Server, and
also to JIS Administrator running on a third-party (J2EE) application server.

The behavior of the runtime environment is independent of any specific
application. Runtime behavior can be reset each time the runtime environment is
entered—without touching the application executable. When you run an
application for the first time, the runtime environment is created with certain
default values. You can, if you wish, change these values. The new values are then
automatically preserved between runtime sessions.

Figure 43. The runtime configuration interface

The Runtime Configuration interface provides you with an option to implement
these changes:

Table 50. Runtime configuration interface components (Sheet 1 of 2)

Component Description

Application Tree In the left pane, displays a list of Applications,
libraries, and user profiles you can run on the JIS
Server. Highlight the desired component whose
runtime values you wish to view or change.
204 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Application Level vs. User Profile Level

Changes to values can be performed on two levels:

• An Application level
-OR-

• A User Profile level.

Changes on an Application level affect all users of the specific Application or
library; changes on a User Profile level affect only that user whose profile is being
used.

Hierarchically, User Profile level settings have precedence over Application level
settings, which, in turn, have precedence over the hard-coded default settings
provided by webMethods JIS.

Category The runtime options are grouped into logical
categories. The categories are listed in the Category
combo box.

Property Lists all the parameter names included within a
specific category.

Value Insert parameter values, or change existing ones.

Level Depending upon whether you are running an
Application or a User Profile this column’s heading
reads Application Level or User Profile Level
respectively. Accordingly, setting a parameter’s check
box determines the level on which the changes take
place. For more information, see “Application Level
vs. User Profile Level” on page 205.

Apply Automatically writes the changes you have made to
this session of the Application to the runtime ini file.

Revert Clears ALL the changes you have made to this session
of the Application.

Table 50. Runtime configuration interface components (Sheet 2 of 2)

Component Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 205

Chapter 5. Optimizing the JIS Server

To change parameter values on an Application or Library level:

1 In the Application Tree, in the left hand pane, select the Application whose
values you wish to change.

2 In the Application Level column, check the parameter you wish to change.
The following message appears:
“Do you want to explicitly set the current value for this
Application Level?”

3 Click Yes.
4 In the Value column, set the value you wish to change.

To change parameter values on a User Profile Level:

1 In the Application Tree, in the left hand pane, select the Application and then
the Profile whose values you wish to change.

2 In the User Profile Level column, check the parameter you wish to change.
The following message appears:
“Do you want to explicitly set the current value for this User Profile Level?”
Click Yes.

3 In the Value column, set the value you wish to change.

The Runtime Configuration Categories

The runtime configuration categories are as follows:

• Dynamic Controls
• Navigation
• Miscellaneous
• List
• Runtime Behavior
• Emulator Type
• Emulator Settings
• Bleedthrough
• Display
• XHTML

The parameters in each category are described in the following tables.

Note: The applied changes take effect in the next session.

Note: The applied changes take effect in the next session.
206 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Dynamic Controls

Table 51. Runtime configuration: dynamic controls parameters

Property Description

Edit box width factor Represents a percentage relative to the original width
of the Edit box control.

Edit box height factor Represents a percentage relative to the original height
of the Edit box control.

Minimum characters
in Edit box for
maximum width

Sets the width to be used when calculating the size of
the Edit box control.

Static width factor Represents a percentage relative to the original width
of the Static control.

Static height factor Represents a percentage relative to the original height
of the Static control.

Picture button width
factor

Represents a percentage relative to the original width
of the Picture button control.

Picture button height
factor

Represents a percentage relative to the original height
of the Picture button control.

Horizontal spacing Sets the amount of horizontal space, in pixels,
between controls.

Vertical spacing Sets the amount of vertical space, in pixels, between
controls.

Push button
arrangement

Push button arrangement for one dynamic group. The
first puts all buttons in one line while the INI setting
DynamicControlsOrder in the [SubAppl] name
group can define a preferred order. The others leave
the order as on the screen.
webMethods JIS: XHTML Client User’s Guide Version 9.0 207

Chapter 5. Optimizing the JIS Server

Navigation

Miscellaneous

Table 52. Runtime configuration: navigation parameters

Property Description

Application libraries List of libraries to be used during the
current session. The list also includes the
Application’s name.

Maximum
milliseconds for
input inhibited

The maximum amount of time (in
milliseconds) in which the hourglass is
displayed.

Polling time Frequency (in milliseconds) of polling the
emulator connection.

Table 53. Runtime configuration: miscellaneous parameters (Sheet 1 of 2)

Property Description

Load public formats Displays common values from the INI file.

Multiple session
support

Option to support multiple sessions.

Session title prefix Sets the prefix of the main window title for each
session.

Prefix character Character that represents the Windows prefix
character for accelerators.

Display message box
on exit application

Displays the warning message before exiting an
Application.

Application full name Overwrites the short name given to the Application in
ACE.

AutoStart Skips the Application’s Startup menu (the Run
option).
208 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

List

AutoSaveWindows
Placement

When the user changes the size and position of a
specific Subapplication in runtime, the new size and
position are written to the application ini file. When
the Subapplication is re-entered, its size and position
are restored the size and position set by the user.

Table 54. Runtime configuration: list parameters (Sheet 1 of 2)

Property Description

Save new column
order

Saves column order after the user has dragged a
column to a new position.

Tab stop on editable
fields only

Tab stops only on editable fields only. Use the
keyboard arrow keys to move into protected fields.

Tabbing from first/
last cell exits in table

Pressing the Tab keys on the first or last cell of a table
exits the table.

Allow multi-page
table

Displays as many host pages as fit into the table.

Multi-page multiplier
value

The number of list pages read from the host and
displayed in the table is a multiple of this value. For
example, if the table displays two pages and the
multiplier is three, then six pages are read from the
host.

Check two
consecutive pages
for identical content

When set, two identical pages are recognized as the
end of the list.

Move cursor before
paging

Moves the host cursor to the list before paging.

Table 53. Runtime configuration: miscellaneous parameters (Sheet 2 of 2)

Property Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 209

Chapter 5. Optimizing the JIS Server

Runtime Behavior

Multi-select rows on
RMB

Allows multiple selection of rows with a right mouse
button click.

Host command
characters for
unselected records

A list of characters that are treated as an empty list
command.

Table 55. Runtime configuration: runtime behavior parameters (Sheet 1 of 2)

Property Description

Protected combo box
handling

Select the default handling for empty protected
combo boxes. Choose between:

• Disable
• Disable or Hide if blank
• Hide when blank is not a valid screen value
• As on host

Hide protected check
box with no text

Hides a check box with no header and no text when
protected on the host.

Protected Edit box
handling

When an Edit box field with text is protected on the
host it can be disabled or made read-only with colors
defined in the ini file. Choose between:

• Disable
• Disable or Hide if blank
• ReadOnly with colors or Hide if blank
• ReadOnly with colors
• As on host

Ignore leading
blanks in format

Ignores leading blanks when formatting values.

Table 54. Runtime configuration: list parameters (Sheet 2 of 2)

Property Description
210 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Emulator Type

Do not skip
Subapplications

Used for debugging purposes only. When this option
is checked, the runtime displays a window for all
Subapplications that were set as either ‘Never Display
Window’ or ‘Conditionally Display Window’.

Refresh window
when updated by
host

When set, the runtime refreshes the window each time
it is updated by the host. When cleared, any change to
the window is ignored.

Date Base Year The first year in a 100 year interval represented by a
two-digit year format.

For example, if 1949 is the base year, then 50
represents the year 1950 whereas 48 represents the
year 2048.

Table 56. Runtime configuration: emulator type parameters (Sheet 1 of 3)

Property Description

Emulator type Choose the type of emulator you wish to work with:

• File
• TN3270
• TN5250

File Emulator

First panel to display The first screen to be displayed out of the pool of
panels. The advance mechanism of the panels is
determined in the panels.ini file.

Internal TN3270

Host address Contains the name or the IP address of the host
mainframe.

Table 55. Runtime configuration: runtime behavior parameters (Sheet 2 of 2)

Property Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 211

Chapter 5. Optimizing the JIS Server

Host port Contains the port number for the Telnet 3270 protocol.
The port number is usually 23.

Short name Can usually left as default. Some systems may require
multiple sessions to be named A, B, etc.

Use TN3270E if
available

Enables to use the extended protocol of the 3270E
emulator for printing emulation purposes.

TN3270E device
name

When the Use TN3270E if available parameter is set,
specifies the device name for the printing session.

Support extended
attributes

Used for compatibility between the converted screens
and the current runtime. Clear check box if screens
without extended attributes were converted.

Support extended
data stream

Used for compatibility between the converted screens
and the current runtime. Clear check box if screens
without extended data stream were converted.

Host code page The number and name of the EBCDIC code page on
the host. This is used for choosing the EBCDIC/ANSI
conversion table and during negotiation with the host.

Internal TN5250

Host address Contains the name or the IP address of the host
iSeries.

Host port Contains the port number for the Telnet 5250 protocol.
The port number is usually 23.

Short name Can usually be left as default. Some systems may
require multiple sessions to be named A, B, etc.

LU name Specify the device (LU) name for the session. Verify
that the OS/400 supports external LU name
recognition.

Table 56. Runtime configuration: emulator type parameters (Sheet 2 of 3)

Property Description
212 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Emulator Settings

ASCII/EBCDIC
conversion table

Choose the host application language.

Table 57. Runtime configuration: emulator settings parameters (Sheet 1 of 2)

Property Description

25 message line
appears in line 25

Directs the emulator to receive messages in line 25 of
the host screen.

Session short name Forces webMethods JIS to work with a given HLLAPI
short name.

Field exit for any field Automatic Field Exit for any field (not only numeric).

Host session color
table name

Enters a color table to use for host session to override
the green on black colors.

Minimum Host Quiet
Time

Minimum amount of time (in milliseconds) the host
screen must remain unchanged for the screen to be
recognized. 0 - do no wait.

Maximum Host Quiet
Time

Maximum amount of time (in milliseconds) to wait for
the host screen to stabilize.

Display attributes Option to display attributes in the host session.

Display DBCSSO/SI When set, the host screen displays Shift-Out/shift-In
characters. When cleared, these characters are
replaced by blanks.

Erase EOF for all
fields

Erases the remainder of a field using the ‘erase to End
of field’ key instead of using blanks.

Table 56. Runtime configuration: emulator type parameters (Sheet 3 of 3)

Property Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 213

Chapter 5. Optimizing the JIS Server

Bleedthrough

Display

Dual Emulators Determines whether webMethods JIS can work in
dual emulator mode: GDS emulator and Telnet
emulator. Note that this parameter is enabled only if
you choose the GDS or the TN5250 emulators for
Emulator Type.

Table 58. Runtime configuration: bleedthrough parameters

Property Description

Use Just-in-time GUI Option to use the Just-in-time GUI feature, if it is
included in the Application. This option has no effect
if the Application was compiled without Just-in-time
GUI.

Table 59. Runtime configuration: display parameters

Property Description

Enable help on
message line

Activates the Help button on the DIL.

Table 57. Runtime configuration: emulator settings parameters (Sheet 2 of 2)

Property Description
214 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

XHTML

Table 60. Runtime configuration: display parameters (Sheet 1 of 3)

Property Description

Runtime Directory Specifies the location of the subapplication XHTML
files that were created at runtime generation. Default
location is
<JIS Root Directory>\classes\appls

Changes to this setting are effective only after server
restart.

Images Location Specifies the location of application image GIF files as
they are accessed through the web server. For
handling images through the internal Jetty HTTP
Server, specify the relative path to the image location.
Enter: /classes/appls

Default: http://localhost/classes/appls

Changes to this setting are effective only after server
restart.

Javascript Location Specifies the directory where the JIS Javascripts
reside. This parameter works slightly differently
depending on whether the application is running on
the webMethods JIS proprietary server or on a J2EE
application server.

For the JIS Server:
The default is
<Install directory>\classes\js

If you specify a value, \classes\js is automatically
concatenated to the value.

For a J2EE application server:
The default is

<Install directory>\<applname>\js

If you specify a value, \<applname>\js is
automatically concatenated to the value.

Example: JavascriptLocation=
c:\appserver\domains

Changes to this setting are effective only after server
restart.
webMethods JIS: XHTML Client User’s Guide Version 9.0 215

Chapter 5. Optimizing the JIS Server

Do HTML Merge Specifies whether or not to enable HTML extensions.

Unselected = disable HTML extensions

Selected = enable HTML extensions

Changes to this setting are effective only after server
restart.

Merge Original Specified whether to activate the merge of the original
HTML files with the runtime HTML files, when no
user templates are found. Changes to this setting are
effective only after server restart.

DIL Position Specifies whether the DIL messages appear at the top
or the bottom of the Web page. The default is Bottom.
Changes to this setting are effective only after server
restart.

Default Button Used to enable or disable default button functionality. Changes to
this setting are effective only after server restart.

Show Table Up/Down
Buttons

Specifies whether the Up and Down buttons are shown on tables.
Changes to this setting are only effective after server restart.

Display Host Image
When Out Of Sync

Specifies whether or not to show the host screen image if an Out-
OfSync condition occurs. Changes to this setting are effective
immediately.

Host Paging Specifies whether the Page Up / Page Down keyboard events acti-
vate webMethods JIS’s paging behavior or the browser’s.
Changes to this setting are effective only after server restart.

Use CSS Definitions Specifies whether or not CSS definitions are to be used. Changes
to this setting are effective only after server restart.

Fkey Support Specifies whether or not Fkey support is enabled. Changes to this
setting are effective only after server restart.

Keep Alive Interval in
Seconds

Interval in seconds at which the JIS Server checks the connection
with the Client. Changes to this setting are effective only after
server restart.

Table 60. Runtime configuration: display parameters (Sheet 2 of 3)

Property Description
216 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Out Of Sync
Handling

Specifies how the application is to behave when it
encounters an “out-of-sync” condition. An out-of-
sync condition is an error condition in which the
screen being seen by the end-user does not represent
the current host screen.

• Page – Sends an “out-of-sync” message page to
the user.

• StatusLine – Sends the next page to the user, and
add a message to the status line of the browser.

• Sleep – Sends the next page to the user without
informing him that an out-of-sync condition
occurred.

The default value for applications created with
versions of webMethods JIS prior to version 9.0 is
Page. The default for new applications under
webMethods JIS version 9.0 and higher is StatusLine.

Changes to this setting are effective immediately.

Popup Support If enabled, when a host screen is identified as a popup
window, a new browser window is open on top of the
already existing window. The existing page is not
refreshed, and all elements of the existing page are
disabled.When a popup window is closed, the
window beneath it is enabled. When the main
window is closed, all open popup window are closed
as well. Changes to this setting are effective only after
server restart.

RMB Support This setting indicates whether the Right Mouse Button
popup menu feature is to be supported.

• When unchecked: RMB popup menus not
supported

• When checked: RMB popup menus supported.
For more information about Right Mouse Button
popup support, see in Chapter 14 the section Right
Mouse Button Pop-Up Menus. Changes to this setting
are effective only after server restart.

Table 60. Runtime configuration: display parameters (Sheet 3 of 3)

Property Description
webMethods JIS: XHTML Client User’s Guide Version 9.0 217

Chapter 5. Optimizing the JIS Server

Running the JIS Server as a Windows Service

You have the option of running the JIS Server as a Windows service. Two utilities
are provided to help you accomplish this. One of the utilities registers the JIS
Server in Windows’ services database; the other utility is used by Windows to
invoke the jacadasv.bat file used to start the JVM and load the server classes.
There are a few new INI settings related to this procedure as well.

Registering the JIS Server in Windows

Use the utility JBSToService.exe to register the JIS Server in the Windows
services database. The JBSToService.exe utility uses standard Win32 API
calls, as well as direct registry access, for compatibility between different
Windows versions. (e.g. Win2000 Server and Win2003 Server.)

JBSToService.exe accepts a variety of command line parameters by which
you define the service's behavior. JBSToService.exe resides in the JIS root
directory.

Parameters of JBSToService.exe

To list of all the parameters, simply run JBSToService.exe with no
parameters. The following description is the same as that listed by the utility
itself:

 -c Create a new service

 Create options:

 -i<Name of the service> (mandatory)

 -n<Displayed name of the service> (mandatory)

 -x<Full path to the executable file> (mandatory)

 -a Start the service automatically during system startup

 -m Start the service manually

 -l<Load ordering group of this service>

 -d<List of dependencies, separated by semicolons>

 -s<Account name for the service process>

 -p<Password of the account name>

 -h<Description of the service>

 -r Remove a service

 Remove options:

 -i<Name of the service> (mandatory)
218 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

The services database knows each service by a unique service name. This name is
different than the display name, which is the name that appears in the Windows
Services Application. To invoke to the Windows Services Application, from the
Windows Start menu select Programs > Administrative Tools > Services.

To order to find the name of a service, right-click on its name, and choose
"Properties". At the top of the properties dialog, you can see the service name. Just
below it is the display name. The service name must be used whenever
JBSToService is called to change the service's configuration. When removing
a service, for instance, you need only supply this name.

The -c ("create") option is used for both creating and updating parameters.
Repeatedly calling this utility, with different parameters, for the same service
name, would apply the changes. However, note that parameters left out will be
unchanged. Consider the following three lines
JBSToService.exe -c -iJac -a -h"First description" -n"JAC" <...
other parameters...>

JBSToService.exe -c -iJac -a -h"Second description" -n"JIS Service" <...
other parameters...>

JBSToService.exe -c -iJac <... other parameters...>

The result would be a service named Jac, with a display name JIS Service, and
a description of Second description, and the service would be started manually.
When the type of startup (-a or -m) is not explicitly specified, -m (manual
startup) becomes the startup type by default.

The -x parameter specifies the executable that is launched when the service is
started. When launching our JBS as a service, you must specify the full path to
JBSService.exe, including the name of the executable itself.

A list of dependencies may be given, using a semicolon delimited list of service
names. This list contains unique service names, not display names.

The rest of the parameters affect other settings of the service. Note that some of
the parameters are mutually exclusive (-a and -m, for example) and the account
name must be a valid account ("LocalSystem" is one default valid name).

More Examples of the Use of JBSToService.exe:

Create a service with a dependency list, starting automatically: JBSToService.exe -c -
iJac -a -n"JIS Service" -h"This is a test service" -d"Apache" -
x"I:\guisysd\jbsservice.exe"

Update the service, delete its dependency list:

Note: As of JIS 9.0.4 the JBSToService.exe command line has been
considerably simplified. Refer to the JIS 9.0.4 release notes for more
details.
webMethods JIS: XHTML Client User’s Guide Version 9.0 219

Chapter 5. Optimizing the JIS Server

JBSToService.exe -c -iJac -d""

Update the service, start manually:

JBSToService.exe -c -iJac -m

Update the Jac service, to use the INI file in a location I:\guisysd\jacadasv.ini, and change
its description:

JBSToService.exe -c -iJac -a -n"JIS Service" -
x"\"I:\guisysd\jbsservice.exe\" -I:\guisysd\jacadasv.ini" -h"Description"

Remove the service:

JBSToService.exe -r -iJac

Caution

The JBSToService.exe utility uses Win32 API to process most of the
parameters. JBSToService.exe does not perform any "reasonability check" on
the values you choose. Using the JBSToService.exe utility carelessly could
result in a damage to the operating system. Software AG is not responsible for
any damage to your computer system as a result of improper usage of this utility.

Invoking the JIS Server as a Service

The JBSService.exe utility program reads the file jacadasv.bat, and
creates a process from the command line written there. JBSService.exe uses
I/O redirection to determine whether or not the JIS Server is running. If the JIS
Server is running, JBSService.exe sends the string "quit" to the server's
standard input, in order to stop it. This guarantees that all of the JIS Server’s
processes are down.

The JBSService.exe utility should not be called directly. Rather, it should be
registered as the executable file for the JIS Server, by the JBSToService utility
described above.

There are a few configuration parameters that must be set before running
JBSService.exe. The parameters must be saved in a special INI file named
JBSService.ini. The full list of parameters is described in the INI parameters
section. Below is an example of a minimal INI file.

[JBSService]

ServiceName=JISService

CommandFile=C:\Ace\jacadasv.bat

LaunchFolder=C:\Ace
220 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

You may, however, place the INI file in any folder, provided you use the special
syntax for the executable file (the -x parameter in JBSToService.exe). The
syntax, is to pass the INI full name and path to the JBSService.exe, as a
command line parameter. For instance, the following command line:

C:\Ace\JBSService.exe -C:\Ace\JacadaFiles\classes\
jacadasv.ini

instructs JBSService to extract the parameters from the jacadasv.ini file. In
this case, you should edit jacadasv.ini file and add the [JBSService]
section. In order to use such a command line, you should use the double-quotes
syntax for the -x parameter.

The following examples demonstrate this:

 No quotes needed, name without spaces:

JBSService -iJac -xC:\Ace\JBSService.exe

Quotes needed, because of the space character in "Program Files": JBSService -iJac -
x"C:\Program Files\JBSService.exe"

Two sets of quotes needed:

JBSService -iJac -x"\"C:\Program Files\JBSService.exe\" -
C:\Ace\JacadaFiles\jacadasv.ini"

In this example, one outer pair of quotes is used in order to pass the whole string
C:\...jacadasv.ini as a single parameter. The inner (escaped) pair is used,
in order to register a command line with one executable file and one parameter.
When inspecting the properties of this service, the "Path To Executable" box
would contain exactly
"C:\Program Files\JBSService.exe" -C:\Ace\JacadaFiles\jacadasv.ini

A final example:

JBSService -iJac -x"\"C:\Program Files\JBSService.exe\" -C:\Program
Files\JacadaFiles\jacadasv.ini"

This example is the same as the previous one, except that in this case the
jacadasv.ini is placed under a long name folder hierarchy (Program Files).
Note that unlike the executable name, you do not need to double quote this name.

Log File

The log file of JBSService.exe contains important information, for debugging
a launching failure. It dumps the INI file name, the launching file and the home
folder, as well as the Java command (if jacadasv.bat is found), and the
server's input (e.g. "STARTED").
webMethods JIS: XHTML Client User’s Guide Version 9.0 221

Chapter 5. Optimizing the JIS Server

Note that the file jacadasv.bat contains wildcards for additional parameters
(for example, %1 %2). These should be removed. You may place some default
command line parameters, but you need to erase all of the %n's. It is best to save
a copy of the original batch file so that you can easily revert to the original if
necessary.

Logging off from the machine

It is common to start a list of services, using the administrator's login, and then
logoff and let the services run. However, the JVM normally terminates all of its
processes at logoff. In order to avoid this behavior, add the JVM parameter -Xrs
to both the jacadasv.bat file and jacadasv.ini file.

 [VMCommandLine]
JavaOptions=-Xrs -Djava.security.policy=$RootDir\classes\jacadasv.policy

Printing Emulation

This section introduces the Printer Emulator and explains how to set it up and use
it. The Printer Emulator enables your end-users to send printing requests to the
host and receive the printing results on their own computer.

This section covers the following topics:

• Sending a Printing Request to the Host
• Viewing Print Job Results
• Enabling Printing Emulation on the JIS Server

Sending a Printing Request to the Host

During runtime, an end-user can send a printing request to the host. Sending a
printing request to the host is done as you would normally do so on a green-
screen dumb terminal.

To send a printing request to the host:

1 Browse through the host screens to the screen which enables host printing.
2 Next to the desired host file, or files, insert the proper selection for host

printing, as seen in this example:
222 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

Figure 44. Sending a printing request

3 Press OK to submit the request to the host.

The outcome of this request is sent to the JIS Server’s printing emulator. Upon
request, the JIS Server sends the outcome of this request to the end-user.

Viewing Print Job Results

Once printing jobs have been sent to the host, the end-user can view them. Upon
request, a new browser window opens on the end-user’s computer displaying the
print jobs performed by the host. From these, the end-user can select and print
any desired print job.

To view a print job result:

1 Perform a Host Printing request as seen on the preceding page.
2 Click the Printed Jobs button, located on the bottom right of each screen:
webMethods JIS: XHTML Client User’s Guide Version 9.0 223

Chapter 5. Optimizing the JIS Server

Figure 45. Printed jobs button

Doing this causes a new window to open, without disrupting the flow of the
Application. This window is the Available Print Jobs window.
The Available Print Jobs window displays a list of the printing job results:

Figure 46. Available print jobs window
224 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 5. Optimizing the JIS Server

3 Click the View button next to the desired print job.
The browser displays an HTML page with the contents of the printing
request:

Figure 47. The outcome of the printing request

4 To print the outcome, select File > Print.

The Available Print Jobs Window

In this window, you can do the following:

• View a print job, by clicking the View button next to the desired print job.
• Update the contents of the screen, by clicking the Refresh button. As you send

more printing jobs to the host, you need to update the Available Print Jobs
window.

• Connect or Disconnect from the host LUName, by clicking either the Connect
button or the Disconnect button. This disables printing job viewing.
webMethods JIS: XHTML Client User’s Guide Version 9.0 225

Chapter 5. Optimizing the JIS Server

226 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 6. Language Localization

The language localization feature enables an application running on the Server in
one language to be displayed by the client in any other language, or
simultaneously by several clients using different languages. Moreover, this
feature can be customized to display regional variations and specific professional
jargon.

The following topics are described:

• “How the Localization Feature Works” on page 227
• “The Resource Files” on page 229
• “Setting the Runtime Localization Mechanism” on page 230
• “String Types Handled by Localization” on page 231
• “ISO Language and Country Codes” on page 231
• “Current Limitations” on page 232

How the Localization Feature Works

The localization feature has two main advantages: first, a legacy application
designated to be used by a multi-lingual clientele will only have to be converted
once, to a GUI representing the original language of the host application. An end-
user who wishes to use the GUI application in a different language needs only to
be provided with the translation of the strings present in the original application.
Secondly, only one runtime, in the original language, needs to be installed on the
server. This runtime then serves as the basis for running applications in other
languages.

Figure 48. Language localization of JIS applications

Host
Computer

Legacy
Application

Server
Computer

GUI Application
(Original Language)

Client 1
Language 1

Client 2
Language 2

Client 3
Language 3
webMethods JIS: XHTML Client User’s Guide Version 9.0 227

Chapter 6. Language Localization

The Localization Feature Workflow

When using the Localization feature, the client displays strings translated into
the desired language, instead of displaying the application’s original strings.
These translated strings are imported into the application from external
resources during runtime.

1 During the compilation process, a resource file is created and placed in
<JavaRootDir>\JacadaFiles\classes\appls\
<ApplName>\resources\
This file lists all the original static strings gathered from all the
Subapplications making up a library or an application.

2 For each desired language, make a copy of the resource file. These files
become the translated resource files.

3 Translate the original strings into the desired language(s).
4 Add the translated strings to the appropriate translated resource file.

What Happens During Runtime:

1 The appropriate translated resource file is either preloaded with the library
classes through a JAR file or when the client places its first request for the
string information.

2 The Application runs displaying the translated strings.

Activating the Localization feature

The Localization feature is predefined as disabled.

To activate the Localization feature:

1 In the JIS converter, from the Options menu, select Runtime Generation
Options.

2 Set the Client Language Localization check box.
3 Generate a full runtime.

During the compilation process a text file containing all the application’s strings
is generated. The strings contained in this file appear in the original host
application language and form the base for translation into other languages.

The translated resource files contain a series of Key and Value pairs. The original
language string acts as the key and the translated string is the value.
228 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 6. Language Localization

The Resource Files

The Localization feature relies upon two resource files:

• An Original resource file which is created during compilation
• A Translated Resource file which should be created for each additional

language.

The Original Resource File

When you generate a runtime, a text file named StringResource.res is
generated and is placed in the following directory:
<JavaRootDir>\JacadaFiles\classes\appls\<ApplName>\resources\
StringResource.res

This file is created based on the collective input of all the Subapplication-specific
string resource files. The file contains a column of key strings in quotation marks
followed by a space and an equal sign: “<original string>”[<space>]=

Example: "Hello World" ="Goodbye World"

The Translated Resource File

After the creation of the original resource file, proceed as follows:

1 Make one copy of the StringResource.res file for each desired language.
The file is named according to the language using the system, and should be
written in the following format:
StringResource_<locale code>.res

2 Append the translated strings to the original language strings in the
following manner:
“<key>”[<space>]=[<space>]”<value>”<line break>

Example5. The resource file for Canadian French

The translated resource file for Canadian French is named
StringResource_fr_CA.res

Within this file, the original and translated language strings appear as
follows:
“Hello World” = “Bonjour le Monde”

Note: Using the Java standard Locale code is recommended.
webMethods JIS: XHTML Client User’s Guide Version 9.0 229

Chapter 6. Language Localization

“Goodbye World” = “Au revoir le Monde”

There can be only one pair on each line. Blank lines are ignored as are lines
starting with a double slash (//). Take this into account when writing
comments or commenting out strings.

Resource Maintenance

The translation of the string resource is performed after completing application
development. The generated string resource serves as the basis for the creation of
resources in the desired languages. When modifications are made to the
application at a later stage, a new list is generated. The translated resources thus
lose their fidelity to the application. It is necessary then to merge the list that
contains the translated string with the new and untranslated strings that were
generated in the new resource. This is currently done manually.

Setting the Runtime Localization Mechanism

The localization parameter is transferred to the server via a URL parameter.

Let’s say that you have translated the static strings in your Application into
Canadian French and named the translated resource file
StringResource_fr_CA.res. By adding the following string to the
Application HTML file, your runtime is displayed translated into Canadian
French:
src="/Xhtml?JacadaApplicationName=<ApplName>&Language=fr_ca"

If no resource file named StringResource_fr_CA.res exists, the runtime
displays the original strings.

Note: The size of each control in the GUI does not increase to accommodate
the length of the translated strings. If a string exceeds the allocated space it is
truncated.
When creating a control, or when allotting space for a field during the
conversion, make allowance for eventual longer translated strings. When
translating resources, be aware of the length limitation.
In runtime, the original language strings are used for missing or untranslated
entries.
If you need to add special characters such as a quotation mark (”) in your
translation, use the Java escape sequence convention.
230 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 6. Language Localization

String Types Handled by Localization

The localization feature supports a large array of static string types. Below find a
list of place holders from which static strings are gathered.

• Window captions
• Main Window (application independent strings)
• Subapplication
• Bubble help
• Labels
• Tab controls
• Button / check box / option box labels
• HTML—from client, server
• Message Box—from host, client, server
• About dialog box text and buttons

ISO Language and Country Codes

Although not mandatory, we recommend that you use the two letter language
code and country code standard when naming your translated resource files. The
codes are derived from the ISO 639 standard (for language code) and the ISO 3166
standard (for country code). Complete lists can be easily found over the Internet.
Table 61 constitutes an example of some locales.

Note: You may inadvertently change the status of a string while modifying a
Subapplication in the converter. Changing a string’s status from static to
dynamic or vice versa will also result in changes in the newly generated
resource file. Static strings are written to the resource file, dynamic ones are
not.

Table 61. International standards for localization (Sheet 1 of 2)

Language Name Language Code Country code

English (Australian) en AU

English (Canadian) en CA

English (United States) en US
webMethods JIS: XHTML Client User’s Guide Version 9.0 231

Chapter 6. Language Localization

Current Limitations

This feature supports localization of static strings only, it does not attempt to
translate variable field values. Use the server’s dictionary to translate variable
fields.

• DIL messages can pass localization. However, the string that appears in the
DIL is not automatically added to the original resource file
StringResource.res. You must add the original and translated strings to
their appropriate files manually.

• For the application-independent JIS string resources, only partial translations
are provided.

• Unicode escape sequences in resources are not supported.
• Language localization is not implemented on IBM’s NC. This is due to a bug

in its NSM version 2.
• In XHTML, dates are formatted according to the locale of the end-user’s

machine. Therefore, dates are not affected by the Localization feature.
• Decimal points are not supported by the XHTML client and therefore are not

affected by Localization.
• HTML error pages cannot be localized. You can, however, write an error page

using JavaScript that finds the end-user’s locale and translates the HTML
page according to this locale.

French (Swiss) fr CH

French (France) fr FR

Spanish (Spain) es ES

Table 61. International standards for localization (Sheet 2 of 2)

Language Name Language Code Country code
232 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 7. XHTML Runtime Architecture

The core of the XHTML runtime is in the JIS Server. As already discussed earlier
in this manual, the JIS Server is a component that mediates between the clients
and the host application. In order to understand the XHTML runtime
architecture, it is necessary to examine the structure of the JIS Server and the
XHTML Processing Module within the server. XHTML processing is reviewed in
detail, including references to how user HTML and Java extensions can be
incorporated into the runtime application.

The following topics are discussed:

• “JIS Server Components” on page 233
• “XHTML Processing Module” on page 234
• “XHTML Processing” on page 236

JIS Server Components

The diagram below illustrates the general flow of information between the host,
the JIS Server and the XHTML client.
l

Figure 49. Information flow in runtime

In order to understand the XHTML runtime architecture, it is necessary to
examine the structure of the JIS Server. The JIS Server is composed of the
following components:

• Server Logic
• XHTML Processing Module
• HTTP Support
webMethods JIS: XHTML Client User’s Guide Version 9.0 233

Chapter 7. XHTML Runtime Architecture

Figure 50. JIS Server components

The Server Logic component is responsible for communicating with the host.
This includes performing tasks such as identifying the current screen received
from the host, building the current Subapplication, managing variables, sending
Subapplication data to the host, and more.

The HTTP Support is built into the JIS Server to enable clients to communicate
with the JIS Server using HTTP.

The XHTML Processing Module resides between the Server Logic and the HTTP
Support. This module is responsible both for sending the current Subapplication
XHTML to the client, and then receiving the user data and conveying it back to
the host. These processes include incorporating user HTML extensions and
activating Java extensions.

This chapter describes in detail the various processes that take place in the
XHTML Processing Module. The details are exposed in a gradual manner. Each
section focuses on a different part of the XHTML Processing module. The
accompanying diagrams highlight the components under discussion to help you
concentrate on them. The other components remain greyed out, serving as a
reference.

XHTML Processing Module

The XHTML Processing Module in the JIS Server is responsible both for receiving
the user data and conveying it back to the server logic, and for building the
current Subapplication XHTML to send to the client.

Note: The relative size of the components in all diagrams is not necessarily
proportionate to their real size. The XHTML Processing Module and its
components have been enlarged for the sake of clarity.
234 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 7. XHTML Runtime Architecture

The XHTML Processing Module is composed of two parts: one that is responsible
for the on-going processing between the client and the server logic, and another
component that generates and caches the static XHTMLs. The static XHTMLs are
generated once per Subapplication and per browser type, and then each XHTML
is retrieved from the cache by the on-going processing as needed.

The structure of the XHTML Processing Module is shown in the following
diagram:

Figure 51. The XHTML processing module

HTTP Request Processing - Client to Host

The on-going processing between the client and the host involves receiving the
user data from the client, implementing Java extensions, if in use, and conveying
this information, via the server logic, to the host.

HTTP Response Processing - Host to Client

The on-going processing between the server logic and the client involves
building the current Subapplication XHTML using:

• Static XHTMLs stored on the JIS Server, which include HTML user extensions,
if in use.

• Dynamic Subapplication information, received from the host.
• Implementing Java extensions, if in use.
webMethods JIS: XHTML Client User’s Guide Version 9.0 235

Chapter 7. XHTML Runtime Architecture

XHTML Processing

The following sections provide more details on XHTML processing that takes
place within the XHTML Processing Module, including the following topics:

• Static and dynamic Subapplication information.
• On-going processing between the host and the client.
• Building the static XHTML, including HTML extensions.
• Updating the static XHTML with dynamic information.
• Writing Java extensions.

Static and Dynamic Subapplication Information

The current Subapplication XHTML contains two types of data: static
information and dynamic information.

The static information includes both content that is constant, such as headers, as
well as general characteristics of the HTML page, such as its fonts. The static
information is generated by the Runtime Generation process in ACE, and then
updated during runtime in the JIS Server with runtime settings and HTML
extensions if they are being used.

Dynamic information, on the other hand, depends on the current contents of the
current host screen. For example, the contents of an employee details screen
change according to each specific employee.

The HTML page viewed by the client, must contain the combination of the static
and the dynamic Subapplication data.

On-going Processing Between Host and Client

The following diagram focuses on the on-going processing between the client
and the host, and the host back to the client, after an initial connection has already
been established:
236 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 7. XHTML Runtime Architecture

Figure 52. Client-host information flow

The steps below describe a cycle of a user sending an HTTP request to the host,
and then receiving an XHTML from the host as the HTTP response:

1 The user updates the current form and submits it as an HTTP request.
2 The user data is assigned to fields and sent back to the host, via the Server

Logic component.
3 The host application reacts to the user data received from the client, and as a

result displays the suitable screen.
4 The Server Logic component identifies the current Subapplication and sends

the dynamic runtime information to the XHTML Processing Module.
5 The XHTML Processing Module creates an XML with the dynamic

Subapplication information.
6 The Update process retrieves the current Subapplication’s static XHTML and

updates it with the dynamic information from the XML.
7 The result of the Update process is an updated XHTML for the current

Subapplication.
8 The updated XHTML is sent, as the HTTP response, to the client.
9 The page is displayed in the client browser. The cycle begins once again (see

step 1).

Building a Static XHTML with HTML Extensions

The XHTML Processing Module contains a component that generates and caches
an Application’s static XHTMLs. Within the lifetime of a JIS Server, a static
XHTML is created once for each Subapplication, according to the browser type
currently in use. Each time the JIS Server encounters a new combination of a
Subapplication and browser type, the static XHTML is generated and added to
the cache, for future use. The static XHTML is created using a base XHTML, and
then merging any user HTML extensions.
webMethods JIS: XHTML Client User’s Guide Version 9.0 237

Chapter 7. XHTML Runtime Architecture

Building the Base XHTML

The base XHTML is created using the following input:

• The Subapplication XML. This XML was created during the Runtime
Generation process in ACE.

• The browser XSL. Each browser type has its own XSL.
• The runtime settings that appear in the jacadasv.ini file. For example, the

location of the DIL (Dynamic Information Line).

The XSL that corresponds to the current client browser is applied to the current
Subapplication XML, taking into account the runtime settings in the jacadasv.ini.

The following diagram illustrates the creation of the base XHTML:

Figure 53. Base XHTML generation

Merging HTML Extensions with the Base XHTML

When user HTML extensions are in use, they need to be merged with the base
XHTML, in order to create the static XHTML. After merging any extensions, the
static XHTML is cached on the JIS Server.

Updating the Static XHTML with Dynamic Information

The following diagram illustrates how the static XHTML is updated with the
dynamic information received from the host:

Per
Subappl.

XML

Per
Browser

XSL

Base

XHTML

Runtime
Settings
238 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 7. XHTML Runtime Architecture

Figure 54. Update of dynamic XHTML

The following steps take place in the XHTML processing module:

1 After an XML is created from the dynamic Subapplication information, the
static XHTML is searched for in the cache, according to the Subapplication
and the client browser type.

2 If this combination already exists in the cache, the corresponding XHTML is
retrieved.

3 Otherwise, the XHTML needs to be created by merging between the base
XHTML and the user template extension HTML, if it exists. Once merged, the
XHTML is retrieved for the current Subapplication and then added to the
cache.

Writing Java Extensions

In addition to HTML extensions, it is also possible to write Java extensions,
using events. These events are activated during the on-going processing
between the server logic and the client. The first two events are activated during
the process of building the XHTML to send to the client, whereas the last event is
activated after the client submits the form:

• onControlReady
webMethods JIS: XHTML Client User’s Guide Version 9.0 239

Chapter 7. XHTML Runtime Architecture

• onPageLoad

• onPageSubmit

The onControlReady event enables you to write extensions that affect a
particular control type across the entire Application. For example, replace all the
date controls in the Application with a customized date control. This event occurs
during the updating of the static XHTML with the dynamic runtime information.
For each control, after it is ready, if a Java extension exists for this control type, it
is applied. Control-level extensions are Application independent, and can be
used to apply “skins” across different Applications.

The onPageLoad event is activated after the page has been updated and before
it is sent to the client. This event enables you to control the contents and the look
of the HTML page. For example, you can set control properties such as size,
location, text, font and color, etc. You can also add or delete controls, add
JavaScript functions, and more.

The onPageSubmit event occurs immediately after the client submits the form
and before any server processing operations, such as formatting or applying
dictionaries, are done on the user data. The onPageSubmit event can be used to
manipulate the user data. For example, to write Java code that converts user data
to the required host format, by removing masking; or to save the user data to an
external database. Note that you cannot use the onPageSubmit event to stop the
submission of the page.

Both the onPageLoad and onPageSubmit events are specific to an Application,
and can be used to write extensions for a Subapplication, a library or an
Application. These extensions are activated in a hierarchical manner, and Java
inheritance exists between these classes.

The following diagram illustrates when these events take place within the
XHTML Processing Module:
240 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 7. XHTML Runtime Architecture

Figure 55. Event activation
webMethods JIS: XHTML Client User’s Guide Version 9.0 241

Chapter 7. XHTML Runtime Architecture

242 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML
Extensions

After developing your Application in ACE, it is still possible to improve your
Application’s look and feel. Such improvements are made outside of ACE and are
manually incorporated into the JIS Application. This can be done by creating
HTML extensions. During runtime, the JIS Server merges these HTML extensions
with your runtime Application. User-created HTML extensions enable you to
incorporate JavaScripts, VBScripts and various other HTML features into
runtime-generated XHTMLs.

This chapter discusses HTML extensions, teaches how to create them, and
provides several examples of the added functionality that they can provide.

The following topics are discussed:

• “HTML Extensions” on page 243
• “Creating HTML Extensions” on page 248
• “The OutOfSync Screen” on page 250
• “Using JavaScript in HTML Extensions” on page 252
• “Examples of User HTML Extensions” on page 254
• “Customizing HTML Error Pages” on page 258
• “CSS Usage in the JIS XHTML Client” on page 267

HTML Extensions

In the JIS Server, the XHTML Processing Module contains a component that
generates and caches an Application’s static XHTMLs. Within the lifetime of a JIS
Server, a static XHTML is created once for each Subapplication, according to the
browser type currently in use, and then it is cached on the JIS Server.

The static XHTML is created by merging a base XHTML with a user HTML
template extension. Then, the static XHTML is updated with the dynamic
information received from the host. The following diagram illustrates these
processes in the XHTML Processing Module:
webMethods JIS: XHTML Client User’s Guide Version 9.0 243

Chapter 8. Enhancing Your Application Using HTML Extensions

Figure 56. XHTML generation

Location of Files on the JIS Server

The original runtime-generated XHTMLs and the user HTML extension files are
each located under separate directories under on the server machine, as shown
in Figure 57:

• The original directory contains the original runtime-generated XHTMLs.
• The user directory contains the user HTML extension files.

Note: For more information, see Chapter 7 - "XHTML Runtime Architecture"
on page 233.
244 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

l

Figure 57. HTML-containing directories

During runtime, the JIS Server knows to look in the user directory for extension
files and incorporate them into the XHTMLs that it sends to the Client. If no
extension files are found in the user directory, the JIS Server takes the files from
the original directory.

Converting User HTML Extension Files to DOM XHTMLs

During runtime, when the JIS Server locates a user HTML extension file, using
the HTML Syntax Checker, it first “cleans up” the extension file converting it to
standardized DOM XHTML format.

The HTML Syntax Checker performs the following tasks:

• Detecting and correcting missing, mismatched or misplaced end tags.
• Fixing problems with heading emphasis.
• Placing <HR> horizontal line tags in the right position.
• Adding missing quotes around attribute values.
• Recovering from mixed up tags.
• Perfecting lists by putting in tags missed out.

After a user HTML extension file is standardized and converted to DOM
XHTML, the JIS Server can merge the converted extension file with its
corresponding base XHTML.
webMethods JIS: XHTML Client User’s Guide Version 9.0 245

Chapter 8. Enhancing Your Application Using HTML Extensions

Merging the XHTMLs Into One File

After the user HTML extension file is converted to XHTML, the JIS Server merges
HTML extension file with its corresponding base XHTML.

The merging is carried out according to the following rules:

• The user file’s <Body> tag attributes override the runtime-generated file’s
<Body> tag attributes.

• The user file’s <Title> tag overrides the original file’s <Title> tag.
• The runtime-generated file’s <jacadaform> and <jacadaprinting> tag

overrides the user file’s <jacadaform> and <jacadaprinting> tag.

The Merged XHTML

The merged XHTML file is structured as follows:
DOCTYPE line

<Title>extension title</Title>

Content of user extension Head

Content of runtime-generated Head

Body(extension attributes)>

Content of user extension Body

<form name=”jacadaform”>

Content of Runtime Generated Form

Note: In the runtime generated file, there are two form tags called
<jacadaform> and <jacadaprinting>. When the user and runtime generated
files are merged, these tags are added to the user file. Do not try to add a
<jacadaform> or a <jacadaprinting> to the user file, since the tags in the
runtime generated file take precedence and your changes will be overwritten
when the user and runtime generated files are merged.

H
EA

D
B

O
D

Y
an

d
FO

R
M

246 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

</form>

</Body>

The Merging Process During Development

When developing the Application in ACE, you can incorporate HTML extensions
into your Application, in order to test the runtime Application before
distribution.

To incorporate an HTML extension file for testing while working in the
development environment, you need to place it in the Application’s XHTML user
templates directory - <InstallDir>\JacadaFiles\classes\appls\
<ApplName>\xhtml\templates\user

Figure 58. user extensions directory

Later, when you test your runtime on the development machine, the JIS Server
merges the user or original XHTMLs with dynamic XHTMLs created during
runtime.
webMethods JIS: XHTML Client User’s Guide Version 9.0 247

Chapter 8. Enhancing Your Application Using HTML Extensions

Creating HTML Extensions

To create XHTML Extensions you do the following:

1 Configure the JIS Server to enable HTML extensions.
2 Write the user HTML extension file.
3 Incorporate the extension into your Application.

Configuring the JIS Server to Enable HTML Extensions

This is done in the JIS Server INI file.

To configure the JIS Server to enable HTML extensions:

1 Open the JIS Server INI file, jacadasv.ini, in a text editor. During
development, the file is located in the following directory:
<InstallDir>\JacadaFiles\Classes\
During deployment, the file is located in the following directory:
<InstallDir>\Classes\

2 Under the [XHTML] section, find the DoHTMLMerge= parameter. Give the
DoHTMLMerge= parameter the value 1. The [XHTML] section should read as
follows:
[XHTML]
RuntimeDirectory=f:\ACE\JacadaFiles\classes\appls
ImagesLocation=http://10.10.10.10/jacada/classes/appls
DoHTMLMerge=1
XSLDriver=XT
DILPosition=bottom

3 Save and close the file.

Writing a User HTML Extensions File

The user HTML extension file can be any HTML or XHTML file. When you
write the file, keep in mind the following points:

• Do not try to add <jacadaform> or <jacadaprinting> tags to the user file,
since the tags in the runtime generated file take precedence and your changes
will be overwritten when the user and runtime generated files are merged.

Note: The JIS Server first searches for files in the user directory,
and then searches the original directory.
248 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

• The title of the user HTML wins. If no title is specified in the user HTML, the
title of the JIS-generated HTML is taken instead.

• The attributes of the <BODY> tag of the user HTML win. If, for example, no
background color is specified in the user HTML, the runtime-generated HTML
color is taken.

• The merging process does not require the user HTML page or tags to be in a
certain case. The XHTML tags of the outcome of the merging process are in
lower case. Contents of the XHTML, tag values and strings, remain in their
original case.

• The format of the output of the merging is always XHTML, even if the user
HTML is not well-formed.

Naming and Placing a User HTML Extension File

It is important to correctly name and position your user HTML extension file. The
file’s name has a direct bearing on the level at which the extension file is
incorporated into the Application.

Extension files can exist on one of three levels:

• Subapplication Level
• Library Level
• Application Level

These three levels appear in order of priority. Subapplication level extensions
take the highest priority and override both Library and Application level
extensions. Library level extensions take priority and override Application level
extensions. Application level extensions have the lowest level of priority.

Application Level

To merge a user extension file with the whole Application, you must name it
"appl.html" and save it in the JIS Server’s user directory. The extension file is
then incorporated into the whole Application and is set into all of the screens.

Library Level

To merge a user extension file with a whole library you must also give it the name
"appl.html". You must place the file in the library’s user directory.
webMethods JIS: XHTML Client User’s Guide Version 9.0 249

Chapter 8. Enhancing Your Application Using HTML Extensions

Subapplication Level

To merge a user extension file with a specific Subapplication, you must give it the
name of the Subapplication. If the Subapplication’s name is "MBF005", then you
must name your extension file "MBF005.htm" and save it in the JIS Server’s user
directory. The extension file is then incorporated only into that one screen.

Incorporating an Extension File into Your Application

The process of incorporating extension files into your Application is different,
depending on whether you are deploying the runtime Application or still
developing the Application in ACE.

During Deployment

To incorporate a user extension into your Application during deployment:

1 Place the HTML file in the following directory on the server machine:
<InstallDir>\classes\appls\<ApplName>\xhtml\templates\
user

2 Make sure that the file bears the correct name.
3 Restart the JIS Server.

During Development

To incorporate a user extension into your Application during development:

1 Place the HTML file in the following directory on the development machine:
<InstallDir>\JacadaFiles\classes\appls\<ApplName>\xhtml\
templates\user

2 Make sure that the file bears the correct name.
3 Run the Application.

The OutOfSync Screen

When the Client and the JIS Server lose synchronization, and the end-user
submits a form to the server, the JIS Server returns the out-of-sync screen:
250 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

Figure 59. The out-of-sync screen

The out-of-sync screen informs you that the end-user is displaying a window
which does not represent the current host screen. If the out-of-sync screen
appears, to fix this situation, the end-user must click the Synchronize button. The
JIS Server then returns the correct window, which represents the current host
screen. All of the recently submitted data, however, is lost.

A common cause for this is if the end-user navigates using the browser’s Back
and Forward buttons and submits a form different to the one previously sent by
the JIS Server.

Another possible cause is erratic host behavior. To reduce such occurrences, it is
recommended to use the SetWaitForScreenState DoMethod.

Note: By default, the out-of-sync screen appears without showing the screen
currently displayed on the host. To display the host screen on the out-of-sync
screen, add DisplayHostImageWhenOutOfSync=1 to the [XHTML] section
of the jacadasv.ini file:
webMethods JIS: XHTML Client User’s Guide Version 9.0 251

Chapter 8. Enhancing Your Application Using HTML Extensions

To regain lost data:

1 Click the browser’s Back button, until you get to the screen, in which the lost
data is displayed.

2 Copy the lost data.
3 Click the browser’s Forward button, until you return to the correct screen.
4 Insert the lost data.

Customizing the OutOfSync Screen

The out-of-sync screen is similar to any Subapplication XHTML, except that the
out-of-sync screen does not represent a host screen.

The process of creating an HTML extension for the out-of-sync screen is the same
as for a Subapplication XHTML.

You name the HTML extension "OutOfSync.html" and place the file in the
following directory as you would place any other HTML extension:
<InstallDir>/Classes/appls/<ApplName>/xhtml/user/

To make use of a custom OutOfSync screen, the runtime INI setting OutOfSync
should be set to Page.

Using JavaScript in HTML Extensions

A JavaScript is a small program designed to run inside your XHTML, and
automate some task, or to enhance a feature of your XHTML page. A JavaScript
program consists of one or more instructions included with the HTML tags that
form your user HTML extension files. When a browser encounters a JavaScript
instruction, it stops to process it. For example, the instruction might tell the
browser to format and display text and graphics on the page. JavaScript
instructions are mixed together with the familiar HTML markup tags. You can
use JavaScripts for various purposes, such as validating forms, enabling
accelerator support, etc.

To incorporate a JavaScript into a user HTML extension file:

1 Create a <Script> tag in the user HTML’s <Head>.
2 Create an event handler in the user HTML’s <Body>.

Note: You must be careful to return back to the correct screen. Otherwise you
will lose synchronization again.
252 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

Creating a <Script> Tag in the HTML’s <Head>

There are two ways of creating a <Script> tag in the user HTML’s <Head>:

• Creating a <Script> tag which contains the JavaScript.
• Creating a <Script> tag with a reference to an external JavaScript file.

To create a <Script> tag which contains the JavaScript:

1 Create the opening and closing <Script> tags in the HTML’s <Head>.
2 Insert the JavaScript between the opening and closing tags.

To create a <Script> tag with a reference to an external JavaScript file:

1 Save your JavaScript as a separate *.js file.
2 Create the opening and closing <Script> tags in the HTML’s <Head>. Make

sure there is a space between the opening and closing tags.
3 Inside the opening tag insert an "src=" attribute with a reference to the *.js

file. You must provide the full URL path to the *.js file, so that the Client
can access it via the web server.

Example 6. Link to a JavaScript file in a <script> tag

This example shows how to create a <script> tag which points to an external
Javascript file.
<Script type="text/javascript" src="http://190.40.17.770/appls/Xhtml01/
xhtml/user/script.js">

Creating an Event Handler in the HTML’s <Body>

You insert an event handler either as an attribute of the <Body> opening tag itself
or as an attribute of a tag within the HTML’s <Body>, such as <Input>,
<Button> or .

You may use the following event handlers to invoke a JavaScript function:

• onClick

Note: If your JavaScript code consists of special XML character, such as “<“,
“>”, and “&”, then you must create the <Script> tag with a reference to an
external JavaScript file.
webMethods JIS: XHTML Client User’s Guide Version 9.0 253

Chapter 8. Enhancing Your Application Using HTML Extensions

• onDblClick

• onMouseDown

• onMouseMove

• onMouseUp

• onMouseOver

• onMouseOut

• onLoad

• onUnload

• onFocus

• onBlur

• onKeyDown

• onKeyPress

• onKeyUp

• onReset

• onSelect

• onChange

Example 7. An onClick event handler

In the following example, a button with an onClick event handler initiates a
JavaScript function named “JFunction”:
<Input type="button" name="Validate" value="Submit"

onClick="JFunction()">

Examples of User HTML Extensions

This section provides several examples of the use of user HTML extensions.

The following examples are provided:

• Changing the title of all HTML pages to your company’s name
• Setting a different background image for each Subapplication
• Inserting a JavaScript-driven animation into your Application
• Enabling FKey support
254 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

Changing the Title of all HTML Pages to Your Company’s Name

The following user HTML extension file is named appl.html and placed under
the JIS Server’s user directory. The <Title> tag in this file overrides the original
JIS-generated XHTMLs’ <Title> tag on an Application level.
<Html>

<Head>
<Title>Orange Planet Industries</Title>

</Head>

</Html>

Setting a Different Background Image for Each Subapplication

For three Subapplications you create the following three HTML files:
<html>

<body bgcolor="blue"/>
</html>

<html>
<body bgcolor="green"/>

</html>

<html>
<body bgcolor="yellow"/>

</html>

You must give each of these three files the name of their respective
Subapplication XHTMLs and place them in the user directory.

Inserting a JavaScript-Driven Animation into Your Application

The following user HTML extension file contains a JavaScript, which calls upon
a series of 10 GIF files named Animation1.gif, Animation2.gif,
Animation3.gif, etc. These GIF files are repeatedly displayed one after the
other in set intervals, forming an animation effect. To use GIF files in the
extension, the GIF files must be stored under the JIS Server’s images directory.

The location of the GIF files is given as a URL address in the SRC attribute, as they
are accessed through the web server.
<HTML>

<BODY BGCOLOR="aqua">

<IMG NAME="Animation" SRC="http://226.19.18.120/classes/appls/<ApplName>/
images/Animation1.gif"/>

<SCRIPT LANGUAGE="JavaScript">

var i,d;

i=0;
webMethods JIS: XHTML Client User’s Guide Version 9.0 255

Chapter 8. Enhancing Your Application Using HTML Extensions

function anime() {

d=i%10+1;

document.images.Animation.src='http://226.19.18.120/classes/
appls/<ApplName>/images/Animation'+d +'.gif';

setTimeout("anime()",1000);

i=i+1;

}

anime();

</SCRIPT>

</BODY>

</HTML>

Enabling FKey Support

There are two methods of enabling FKey support for your application.

In Version 9.0

As of version 9.0, webMethods JIS has simplified the process of enabling FKey
support in the XHTML client.

To enable support for FKeys:

Set the parameter FkeySupport to 1. The FkeySupport parameter is in the
XHTML section of the <ApplName>.ini file.
[XHTML]

FkeySupport = 1

For All Versions

In all versions of webMethods JIS, FKey support can be implemented via an
HTML extension.

In this example we implement FKey support through an HTML extension to your
JITGUI Subapplication. You must name this file jitgui.html and place it in
your <InstallDir>\appls\<ApplName>\xhtml\user\ directory.

Note: The FkeySupport runtime ini parameter enables Fkeys only, but not
other accelerators such as CTRL+C, PAGE-UP, and so on.
256 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

Add the following controls to the JITGUI Subapplication in ACE:

• A hidden edit field, named commandEdit.
This edit is going to contain the command executed.

• A hidden button, named fbutton.
This button is going to simulate all FKeys.

Both the edit field and the button are hidden using the HideControl event in the
UserInitSubApplication System-Triggered method. Note that both need to have
their Runtime Data Flow set in both directions, for the HideControl to work.

The process invoked by this extension, captures the FKey, writes a designated
string per fkey in the hidden edit, and then simulates a pressing of the button.

In ACE, a method attached to the new hidden button checks the string in the
hidden text box, and activates a specific fkey function according to that string.

Figure 60. The hidden button’s method

<html><head><script>

if (!document.all) {

document.captureEvents(Event.KEYDOWN);

}

document.onkeydown =writeAndSubmit;

function writeAndSubmit(event){

var key;

if (document.all) {

 key = window.event.keyCode;

}

else {

key = event.keyCode;

}

webMethods JIS: XHTML Client User’s Guide Version 9.0 257

Chapter 8. Enhancing Your Application Using HTML Extensions

 var val = 0;

if (key ==112) {

 val = "1";

 }

else if (key ==113) {

val = "2";

}

else if (key ==114) {

val = "3";

}

else if (key ==115) {

val = "4";

}

else if (key ==116) {

val = "5";

}

else return true;

document.jacadaform.elements["commandEdit"].setAttribute("value",val);

document.jacadaform.elements["btn_fbutton"].click();

if (document.all) {

 window.event.keyCode = 0;

 window.event.returnValue = false;

 window.event.cancelBubble = true;

}

else {

event.keyCode = 0;

 event.returnValue = false;

 event.cancelBubble = true;

}

}

</script></head></html>

Customizing HTML Error Pages

The JIS Server responds to each client request by returning a status code. If the
status code indicates an error, then the client displays an error message.

Note: This script cancels the default browser handling of the F1 key and
works on both Netscape and Internet Explorer.
258 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

The “HTTP 500 - Internal Server Error” message, seen below, is typical of
standard error pages that leave many end-users at a loss as to how to proceed:

Figure 61. Standard HTTP error message

With little effort, you can replace these standard error pages with customized
error pages that inform your end-users of the error, indicate what may have
caused this error, and how to deal with the error, as well as provide useful links.

This way, the same “HTTP 500 - Internal Server Error” message, seen previously,
may be displayed like this:

Note: The response is browser-dependent and subject to each browser’s
settings.
webMethods JIS: XHTML Client User’s Guide Version 9.0 259

Chapter 8. Enhancing Your Application Using HTML Extensions

Figure 62. Customized HTTP error message

To customize HTML Error Pages, you must:

• Write the replacement HTML Error Pages.
• Name the replacement HTML Error Pages correctly.
• Save the replacement HTML Error pages.

Error Page Configuration

In the jacadasv.ini file on the JIS Server, you can define the settings of the
External Error Pages feature. This is done in the INI file’s [HTTP] section.

You can set the following parameters:

• UseExternalErrorPages=
• ExternalErrorPagesDir=

Note: The settings for this feature are configured in the jacadasv.ini file.
260 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

Writing HTML Error Pages

Any valid HTML page is acceptable. This page should contain an indication of
the error type it represents. You can provide the cause of this error, as specifically
pertaining to your Application, as well as a procedure for dealing with this error.
You may also provide links to other pages, such as a troubleshooting page.

Table 62. jacadasv.ini: error page parameters

Parameter Explanation

UseExternalErrorPages Specifies whether or not to enable customized
HTML Error Pages.

1 - External Error Pages are enabled
0 - External Error Pages are disabled

Default value is 1.

ExternalErrorPagesDir Defines the directory, in which HTML Error Pages
are placed.

By default, this parameter is set to:

<InstallDir>\classes\HttpErrors

Note: By default, the feature is enabled. You do not have to change the INI file
settings, to use customized Error Pages.

Note: It is possible to provide an HTML Error Page with a link that initiates a
new host session. For this, you must provide the correct URL entry for
invoking the webMethods JIS runtime.
webMethods JIS: XHTML Client User’s Guide Version 9.0 261

Chapter 8. Enhancing Your Application Using HTML Extensions

Example 8. HTML code for error page

This example shows the HTML code for the previous error page:

This error page informs of the error type, indicates what may have caused this
error and how the end-user can deal with it. Also provided are two links.

Including Original Error Text

When you write new error pages you must write the entire text that is to appear
on the page. You can, however, utilize the error message text from the original
error page by adding the string $jacadaerror$ to the HTML code.

In runtime, when the error page appears, $jacadaerror$ is replaced with the
text from the original error message.

Naming HTML Error Pages

Each error status has its own code. By convention you name an HTML Error Page
file <ErrorCode>.html, according to the error code it represents. The
customized error page seen on the previous page would, therefore, be named
500.html.
262 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

All possible error codes are listed at the end of this section.

There are two error types for which you can customize HTML Error Pages:

• Client-side errors
• Server-side errors

Client-side Errors

The 4xx class of status code is intended for cases in which the client seems to have
erred. Except when responding to a HEAD request, the server should include an
entity containing an explanation of the error situation, and whether it is a
temporary or permanent condition. These status codes are applicable to any
request method. User agents should display any included entity to the user.

Server-side Errors

Response status codes beginning with the digit "5" indicate cases in which the
server is aware that it has erred or is incapable of performing the request. Except
when responding to a HEAD request, the server should include an entity
containing an explanation of the error situation, and whether it is a temporary or
permanent condition. User agents should display any included entity to the user.
These response codes are applicable to any request method.

Saving HTML Error Pages

Save the HTML Error Pages into the correct directory.

This directory is specified in the jacadasv.ini file’s [HTTP] section, as the
value for the ExternalErrorPagesDir parameter.

If for example the INI file code reads:
ExternalErrorPagesDir=C:\JacadaRuntime\classes\HttpErrors

Then save the file under C:\JacadaRuntime\classes\HttpErrors\.

Error Code Explanations

The following tables list and explain all error codes and their respective HTML
file names. This list is for your convenience and does not imply that you need to
create a replacement for every error type.

For further explanations, you can also see the official W3C website at:

http://www.w3.org/protocols/rfc2616/rfc2616-sec10.html
webMethods JIS: XHTML Client User’s Guide Version 9.0 263

Chapter 8. Enhancing Your Application Using HTML Extensions

Table 63. HTML error codes (Sheet 1 of 4)

Error Code Error Status Explanation File Name

Client-side

400 Bad Request The client request was not
understood by the server due to
malformed syntax.

400.html

401 Unauthorized The URL request requires user
authentication. The client may
repeat the request with a
suitable Authorization header
field.

401.html

402 Payment
Required

Code is reserved for future use. 402.html

403 Forbidden The server understood the client
request, but is refusing to fulfill
it.

403.html

404 Not Found The server has not found
anything matching the client
Request.

404.html

405 Method Not
Allowed

The method specified in this
URL is not allowed for the
resource identified by the
request.

405.html

406 Not Acceptable The resource identified by the
request is only capable of
generating response entities
which have content
characteristics not acceptable
according to the Accept headers
sent in the request.

406.html
264 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

407 Proxy
Authentication
Required

This code indicates that the
client must first authenticate
itself with the proxy. The client
may repeat the request with a
suitable Proxy-Authorization
header field.

407.html

408 Request Timeout The client did not produce a
request within the time that the
server was prepared to wait.

408.html

409 Conflict The request could not be
completed due to a conflict with
the current state of the resource.

409.html

410 Gone The requested resource is no
longer available at the server
and no forwarding address is
known.

410.html

411 Length Required The server refuses to accept the
request without a defined
Content- Length.

411.html

412 Precondition
Failed

The precondition given in one or
more of the request-header
fields evaluated to false when it
was tested on the server.

412.html

413 Request Entity
Too Large

The server is refusing to process
a request because the request
entity is larger than the server is
willing or able to process.

413.html

414 Request-URI Too
Long

The server is refusing to service
the request because the request-
URI is longer than the server is
willing to interpret.

414.html

Table 63. HTML error codes (Sheet 2 of 4)

Error Code Error Status Explanation File Name
webMethods JIS: XHTML Client User’s Guide Version 9.0 265

Chapter 8. Enhancing Your Application Using HTML Extensions

415 Unsupported
Media Type

The server is refusing to service
the request because the entity of
the request is in a format not
supported by the requested
resource for the requested
method.

415.html

416 Request Range
Not Satisfiable

The client request included a
Range request-header field, and
none of the range-specifier
values in this field overlap the
current extent of the selected
resource, and the request did
not include an If-Range request-
header field.

416.html

417 Expectation
Failed

The server could not meet the
expectation given in an Expect
request-header field.

417.html

Server-side

500 Internal Server
Error

The server encountered an
unexpected condition which
prevented it from fulfilling this
request.

500.html

501 Not
Implemented

The server does not support the
functionality required to fulfill
the client request.

501.html

502 Bad Gateway While acting as a gateway or
proxy, the server received an
invalid response from the
upstream server it accessed in
attempting to fulfill the request.

502.html

Table 63. HTML error codes (Sheet 3 of 4)

Error Code Error Status Explanation File Name
266 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

CSS Usage in the JIS XHTML Client

webMethods JIS generates CSS files to reduce the size of the application’s
XHTML pages. Customers can take advantage of this feature to apply their own
CSS style sheets to their application windows. You can use CSS to create a style
sheet that supplies a generic layout to several pages, creating a uniform look for
all of the pages.

CSS – A Basic Explanation

Cascading Style Sheets, or CSS, is a simple style sheet mechanism that allows
authors and readers to attach style (e.g. fonts, colors and spacing) to HTML
documents. CSS lets you separate the content of a page from its appearance. The
CSS language is human-readable and -writable, and expresses style in common
desktop publishing terminology.

Style Information Levels

Style information for an HTML page can be supplied at different levels:

1 Inside the HTML element, called inline style declaration.

503 Service
Unavailable

The server is unable to handle
the request due to a temporary
overloading or maintenance of
the server.

503.html

504 Gateway
Timeout

While acting as a gateway or
proxy, the server did not receive
a timely response from the
auxiliary server it needed to
access in attempting to complete
the request.

504.html

505 HTTP Version
Not Supported

The server does not support, or
refuses to support, the HTTP
protocol version used in this
request.

505.html

Table 63. HTML error codes (Sheet 4 of 4)

Error Code Error Status Explanation File Name
webMethods JIS: XHTML Client User’s Guide Version 9.0 267

Chapter 8. Enhancing Your Application Using HTML Extensions

2 Inside the <head> tag; also called an embedded or internal style declaration.
3 In an external style sheet
4 By browser default settings.

The style information levels listed above are in order of priority, with inline style
having the highest priority and browser defaults having the lowest priority.This
means that a style declared inline overrides any similar style element defined
inside the <head> tag, or in an external style sheet, or as a browser default.

Example 9. CSS and style information priorities

We have an external CSS (named example.css) containing the following rule:
h1, h2 {color: blue; font-size: 20}

/* selects all elements with tag <h1> or <h2>*/

And our page looks like this:
<head>

 <link REL="stylesheet" TYPE="text/css" href="example.css">

<style>
 h2 {color:red}
 h3 {font-size: 10}
 </style>
</head>

<body>
 <h1>This is header 1</h1>
 <h2>This is header 2</h2>
 <h3 style=”font-size:15”>This is header 3</h3>
</body>

Results:

The “h1” line will be blue with font-size 20.

The “h2” line will be red with font-size 20.

The “h3” line will get the color from the browser’s default, and its font size will
be 15.

The CSS File in JIS

At runtime generation, CSS files are created, one for Microsoft Internet Explorer
browsers and one for Netscape browsers. The files are called kb_IE.css and
kb_NETSCAPE.css.
268 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

These files contain rules with class selectors, corresponding to the
KnowledgeBase definitions used in the application. These files are recreated at
every runtime generation. Example 10 shows an example of the contents of a JIS-
generated CSS file.

The generated CSS files should not be modified. If you want to apply custom CSS
to your screens, see “Using Your Own Style Sheet” on page 275.

The CSS files are created in:
<InstallDir>\JacadaFiles\classes\appls\<ApplName>\xhtml\CSS

Example 10. Contents of a JIS CSS file

.btn2 { /* .WebLook_Border.Button */

font-family:”System”;

font-size:10px;

background-position:center top;

font-weight:normal;

width:1020;

background-repeat:no-repeat;

border-width:0;

font-style:normal;

background-color:transparent;

text-decoration:none;

background-image:url(/classes/appls/TEST03/images/weblookborder_1024.jpg);

}

.btn1 { /* JITGDynamicFKey.Button_MenuItem_
Accelerator_GeneralUTMethod.Button */

font-family:”MS Sans Serif”;

font-size:11px;

color:#000080;

font-weight:bold;

border-width:0;

font-style:normal;

background-color:#ffffff;

text-decoration:underline;

}

.txt1 { /* JITGInputFieldNumeric.TextBox.TextBox */

font-family:”Courier New”;

font-size:13px;

border-style:inset;

font-weight:normal;
webMethods JIS: XHTML Client User’s Guide Version 9.0 269

Chapter 8. Enhancing Your Application Using HTML Extensions

text-align:right;

border-width:2;

font-style:normal;

text-transform:none;

text-decoration:none;

}

.lbl1 { /* JITGDynamicOutputFieldBright.Static.Static */

font-family:”Courier New”;

font-size:15px;

font-weight:bold;

text-align:left;

overflow:hidden;

font-style:normal;

text-decoration:none;

}

.date1 { /* .Date.Date */

font-family:”MS Sans Serif”;

font-size:11px;

color:WindowText;

font-weight:normal;

text-align:left;

font-style:normal;

background-color:#ffffff;

text-decoration:none;

}

The CSS file consists of rule classes containing descriptions of the properties of
the controls used in the application. For each control used in the subapplication
screens and defined in the KnowledgeBase, a class is created in the CSS file. If a
particular control definition is used multiple times in the application, it is still
represented by just one class in the CSS file.

The name of each class is formed according to the rules shown in Table 64, where
each general type of control is assigned a specific abbreviation. For example,
classes related to buttons have names that begin with btn. The names are
completed by the addition of a numeric suffix. For example, if the application
uses a Frame control and a GroupBox control, since each of these controls exist
as separate entities in the KnowledgeBase, a separate rule class for each appears
in the CSS file.
270 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

According to Table 64, a Frame and a GroupBox both receive the CSS class
name fra. To distinguish one from the other, a numeric suffix is assigned to all
rule classes. So the class rules for a Frame and a GroupBox could be named
fra01 and fra02. The description beside the name helps you determine the
specific button definition being described by the class.

The CSS Modifies the XHTML Pages

Example 11 shows a much simplified example of an XHTML page that was
created at runtime generation. It represents a single subapplication screen. The
bolded elements are related to the CSS in Example 10, also created at runtime
generation.

Note the link command:
<link rel=”stylesheet” type=”text/css” href=”/classes/appls/kb_IE.css”/>.

It was added automatically to the generated XHTML page. This command points
to the CSS style sheet that was automatically created for this screen.

Further down, in several places the class keyword appears, for example:
class=”lbl1”

Table 64. Prefixes of CSS class names

Control Type Abbr. Control Type Abbr.

Button btn Link lnk

Check box chk Prompt prm

Combo box cbo RadioGroup rdg

Date date Spin spn

Edit box Control txt Static lbl

Frame fra SubWindow swn

GroupBox fra Table tbl

Line lin Text box txt
webMethods JIS: XHTML Client User’s Guide Version 9.0 271

Chapter 8. Enhancing Your Application Using HTML Extensions

Each use of the class keyword is a reference to specific a rule class in the CSS file
pointed to by the link command. You can see the rule classes in Example 10.
The properties defined in CSS class lbl1, for example, apply to the Static002
object in this example. The properties defined in the CSS class override any
similar, implicit properties in the XHTML template. However, all properties
explicitly stated in the XHTML template have priority (unless the important
keyword is used in the CSS definition, which will not be the case with respect to
the generated CSS files). Refer again to Example 9 if this is not clear.

Example 11. XHTML template referring to CSS

This is an example of an XHTML template with referral to an external CSS style
sheet:

<?xml version=”1.0” encoding=”UTF-8”?>

<html lang=”en” xmlns=”http://www.w3.org/1999/xhtml”>

<head xmlns=””>

<meta http-equiv=”EXPIRES” content=”0”/>

<meta http-equiv=”Pragma” content=”no-cache”/>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”/>

<title>TEST03 - Main Menu</title>

<script language=”JavaScript1.2” type=”text/javascript” src=”/classes/js/
jacada.js”> </script>

<link rel=”stylesheet” type=”text/css” href=”/classes/appls/kb_IE.css”/>

</head>

<body tabindex=”-1” onload=”setFocusedControl("Sub1103201006");
displayMessageBox(); setTitle(); formatLoadedDates(); writeSessionId();”
bgcolor=”#ffffff” xmlns=””>

<form name=”jacadaform” id=”jacadaform” action=”http://” method=”post”
onsubmit=”formatSubmitedDates();”>

<pre style=”position: absolute; top: 55; left: 18; height: 21; width: 240;
overflow: hidden;”>
<label id=”Static002” class=”lbl1” style=”position: absolute; left: 0; top:
0; width: 240; height: 21;

overflow: hidden; color: ButtonText; background-color: #ffffff; font-family:
Arial Black; font-size: 16px; font-weight: bold; font-style: normal; text-
decoration: none;

text-align: left; line-height: 21px;”>Enter account number</label>

</pre>

<pre style=”position: absolute; top: 74; left: 15; height: 22; width: 277;
overflow: hidden;”>

<label id=”Static” class=”lbl1” for=”Sub1103201006” style=”position:
absolute; left: 0; top: 0; width: 277; height: 22; overflow: hidden; color:
#000000; background-color: #ffffff; font-family: Arial Black; font-size:
16px; font-weight: bold; font-style: normal; text-decoration: none; text-
align: left; line-height: 22px;”>and select desired option</label>
272 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

</pre>

<input type=”text” name=”date_Date” id=”Date” class=”date1” value=””
tabindex=”8” title=”” onfocus=”saveFocusedControl("Date");”
style=”font-family: MS Sans Serif; font-size: 11px; font-weight: normal;
font-style: normal; text-decoration: none; text-align: left;
position:absolute; left: 0; top: 0; width: 80; height: 21; color:
WindowText; background-color: #ffffff;” maxlength=”10”
onchange=”validateDate(this.value, this)” onkeydown=”tabDate(this.value,
this)”/>

<img name=”date_Date” src=”i:\java\classes/appls/TEST03/images/_DATE7.gif”
tabindex=”8” style=”position: absolute; top: 0px; left: 77; height: 17;
width: 16px; border-style: outset; border-width: 2px; cursor: hand;”
onclick=”showDate("Date")”
onkeypress=”dateBtnPressed("Date")”/>

<input type=”submit” name=”btn_Sub0500501004” id=”Sub0500501004”
class=”btn1” value=”ADD” tabindex=”9” title=””

onfocus=”saveFocusedControl("Sub0500501004");” alt=”ADD”
style=”font-family: Arial Black; font-size: 13px; font-weight: bold; font-
style: normal; text-decoration: none; position:absolute; left: 59; top: 233;

 width: 103; height: 35; color: #000000; background-color: ButtonFace;
background-image: url(i:\java\classes/appls/TEST03/images/button1.gif);
background-repeat: no-repeat; background-position: center center; text-
align: center; cursor: hand;”/>

<input type=”submit” name=”btn_Sub0600501007” id=”Sub0600501007”
class=”btn2” value=”UPDATE” tabindex=”10” title=””
onfocus=”saveFocusedControl("Sub0600501007");” alt=”UPDATE”
style=”font-family: Arial Black; font-size: 13px; font-weight: bold; font-
style: normal; text-decoration: none; position:absolute; left: 60; top: 274;
width: 100; height: 35; color: #000000; background-color: ButtonFace;
background-image: url(i:\java\classes/appls/TEST03/images/button1.gif);
background-repeat: no-repeat; background-position: center center; text-
align: center; cursor: hand;”/>

<pre style=”position: absolute; top: 692px;”>

<label id=”DIL” style=”position: absolute; left: 0; top: 0;”> </label>

</pre>

</form>

</body>

</html>

KBInformation.xml File Not to be Modified

Along with the CSS files created at runtime, the KBInformation.xml file is also
created. It is created in the <InstallDir>\appls\<LibName> directory if you
are using subapplication libraries; otherwise the CSS files are created in
<InstallDir>\appls\<ApplName> directory. The KBInformation.xml
webMethods JIS: XHTML Client User’s Guide Version 9.0 273

Chapter 8. Enhancing Your Application Using HTML Extensions

file is used by webMethods JIS to ensure that the class names for the CSS rules in
the CSS files stay the same from one runtime generation to another. Do not
modify the KBInformation.xml file.

<ApplName>.ini File Setting

The use of CSS by the application is controlled by a runtime *.ini file setting (in
file <applname>.ini) in the XHTML section of the file. The setting is
UseCSSDefinitions; valid values are 1 (yes) and 0 (no). The default setting is 1.
[Xhtml]

UseCssDefinitions=1

Modifying the Generated CSS File

The generated CSS files should not be modified. If you want to apply custom CSS
to your screens, see “Using Your Own Style Sheet” on page 275.

General Recommendations Regarding CSS

The following generic recommendations apply when using CSS:

• To keep your HTML pages as small as possible, modify the appearance of your
subapplication screen appearance via the KnowledgeBase, rather than
through CSS.

• A subapplication with no local modifications results in the smallest HTML
page.

• Local modifications in a subapplication produce a larger page because those
modifications now appear “inline” in the HTML page.

• Be aware that, when skins are used, if the skin sets a value for a control that is
different from the value specified in the KnowledgeBase for that control, the
skin values appear as inline modifications to the HTML page.

• Remember that if you can change the KnowledgeBase definition to reflect
your desired changes, you eliminate the need to deal with it through CSS.
This, indeed, is the preferred approach.

Java Skins vs. Custom CSS

If you want to modify the look-and-feel of your application without applying the
changes permanently to your KnowledgeBase, you have at least two robust
options: you can use Java skins (discussed in "Applying Skins Across
Applications" beginning on page 290) or you can use custom CSS. Which of these
two options is best?
274 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

From a purely programing-oriented perspective, skins are probably the easier
solution. To use custom CSS it is necessary to use Java extensions anyway, to
change the CSS rule class used by the XHTML controls or to remove inline
properties, and you must add a link to your custom CSS file to the original
XHTML template. So using Java extensions works out to be less work overall for
the developer.

However, in a development environment where the web design function is
separate from the programming function, custom CSS may be more convenient.
The designer of a web site is usually familiar with colors, graphics, and HTML.
He probably knows or can easily learn how to write a CSS file, but may not know
how to write Java code. In such a case, it makes sense for the designer to write a
CSS file and hand it off to the application developer, who will then do the
additional work of applying the CSS file to the application through skins or
through HTML extensions.

Using Your Own Style Sheet

You can use your own CSS file by referencing it from your HTML template, or by
invoking it through a Java extension.

Adding a Custom CSS file via an HTML Template

Code your CSS rule classes and save them in a file with the .css suffix.

Edit the HTML template for the screen on which you want to apply your CSS
style sheet.In the head section, add a statement like the following to link to your
style sheet:
<link rel=”stylesheet” type=”text/css” href=”/mydirectory/myfile.css”/>

To use your style sheet along with the automatically generated style sheet, make
sure that you place the link statement for your CSS file after the link statement for
the generated CSS file, so that your CSS sheet will have precedence.

Software AG recommends you use the “link” command and not the “@import”
command to invoke the CSS through the HTML template, to insure proper
behavior.

For Advanced Users Only: Additional Methods for CSS

The methods described in this section modify the class com.jacada.jis
.runtime.server.frontend.xhtml.controls.XhtmlControl.
Only advanced users should make use of these methods.
webMethods JIS: XHTML Client User’s Guide Version 9.0 275

Chapter 8. Enhancing Your Application Using HTML Extensions

Methods to Set the CSS Class for a Control

public void setCSSClass (String className)

Sets a CSS class to the control. The class attribute is added to the XML element
that contains the style of the control. If the class already exists, the new class
overrides the old one.

public void setCSSClass (Collection classNames)

Sets all the CSS class names in this collection to the control.

public void addCSSClass (String className)

Adds the class to the control without removing the old class definition.

public void removeCSSClass ()

Detaches the control from all classes.

public void removeCSSClass (String className)

Detaches the control from a specific class.

public Collection getCSSClass ()

Returns the class names that this control belongs to.

Methods to Remove Style Definitions

The following methods remove style definitions from the inline style attribute so
that a CSS class rule can affect the control.

public void removeInlineStyle ()

Removes all inline style properties, with the exception of size (width, height) and
location (top, left).

public void removeInlineStyle (InlineStyleProperty
property)

Removes a specific property.

public void removeInlineStyle (Collection properties)

Removes a set of properties.
276 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 8. Enhancing Your Application Using HTML Extensions

Invoking a Custom CSS file via a Java Extension

You can apply a custom, external CSS file to an HTML page in the XHTML client
through the use of a specific method in a Java extension.

The method is addExternalCSSFile in class:
com.jacada.jis.runtime.server.frontend.xhtml.controls.Window

Its syntax is: public void addExternalCSSFile(String url)

Use the url parameter to pass the URL of the CSS file. This URL can be a path
that is relative to the root directory of the web server or any other valid URL.

Limitations in the Use of External CSS Style Sheets

The following limitations apply to the use of CSS in an file external to the
application’s HTML template.

Inline Property Definitions Have Priority

Be aware that any inline property definitions in the HTML template have
precedence over CSS style sheet definitions, unless the important keyword is
used in the CSS definition. Inline property definitions include the result of
changes applied to KnowledgeBase objects locally (i.e., changes applied to the
object in your application and not in the KnowledgeBase itself).

“Get” Methods Considerations

The “get” methods (of class XhtmlControl) that return style-related information
(such as methods getBorderColor, getFontStyle, getFontSize) always
return information from inline style declaration or from the system generated
CSS file, even if custom CSS files of your own are in effect.
webMethods JIS: XHTML Client User’s Guide Version 9.0 277

Chapter 8. Enhancing Your Application Using HTML Extensions

278 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java
Extensions

After the conversion of an application, you may want to further enhance its look
or functionality. This can be done using user code extensions. It is possible to
write HTML extensions and also Java extensions. This chapter focuses on
enhancing your application using Java extensions.

The following topics are discussed:

• “Events for Activating Java Extensions” on page 279
• “Page-Level Extensions” on page 281
• “Control-level Extensions - onControlReady” on page 289
• “Java Extension Examples” on page 293
• “Extensions to the Date Calendar Window” on page 314

JIS’s Javadoc Files

webMethods JIS provides you with a set of html files that include explanations of
how to work with the generated Java classes in your application, and the methods
they contain.

The javadoc files relevant to the XHTML client are installed under the following
directory: <InstallDir>\JacadaFiles\docs\xhtml

Events for Activating Java Extensions

In order to activate Java extensions, a set of three events is provided. These events
occur during the on-going processing between the host and the client, which
takes place in the XHTML Processing Module on the JIS Server.

There are three events available. The first two events occur during the process of
building the XHTML to send to the client, whereas the last event is activated
after the client submits the form:

• onControlReady - This event enables you to write extensions that affect a
particular control type across the entire Application.

Note: Only public methods are documented in the javadoc.
webMethods JIS: XHTML Client User’s Guide Version 9.0 279

Chapter 9. Enhancing Your Application Using Java Extensions

• onPageLoad - This event enables you to control the contents and the look of
the HTML page. It occurs after the page has been updated and before it is sent
to the client.

• onPageSubmit - This event enables you to manipulate user data after the
client submits the form and before any server processing operations take
place.

The following diagram illustrates when the events take place within the XHTML
Processing Module on the JIS Server:

Figure 63. Events in the XHTML processing module

See Chapter 7 - "XHTML Runtime Architecture" on page 233 for more details on
the XHTML Processing Module.

Extension Types

There are two main types of extensions that can be written:

• Page-level extensions
• Control-level extensions

To write page-level extensions, you use the onPageLoad and onPageSubmit
events.

To write control-level extensions, you use onControlReady event.

The following sections describe in detail how to write extensions of each type.
280 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Page-Level Extensions

In page-level extensions, you can manipulate the contents of the form either
before the page is loaded onto the client browser, or manipulate user data
immediately after the form is submitted by the client.

For this purpose, you use two events:

• onPageLoad - Use this event to manipulate the page before it is sent to the
client browser.

• onPageSubmit - Use this event to manipulate user data after the client
submits the form and before any server processing operations take place.

Extensions Activated Before Sending Page to Client - onPageLoad
Event

The onPageLoad event occurs after the page has been updated and before it is
sent to the client browser. This event enables you to control the contents and the
look of the HTML page before it is displayed to the user.

The following extension capabilities are available:

• Adding and removing controls.
• Setting or retrieving control properties and values. For example, you can set/

get control properties such as: size, location, text, fonts, colors, show/hide,
enable/disable, balloon help, Z-order, etc.

• Adding JavaScript event handlers for a control. For example: onClick,
onMouseOver, onLoad, onFocus, onKeyDown, etc.

• Adding JavaScript functions to be activated by one of the event handlers
above. For example, a JavaScript activated by a button’s onClick event.

• Retrieving data from a shared user variable and setting it in the page.
• Retrieving and setting cookies.

Extensions Activated After Submitting Page - onPageSubmit Event

The onPageSubmit event occurs immediately after the Client submits the page
and before any server processing operations, such as formatting or applying
dictionaries, are done on the user data.

The following extension capabilities are available:

• Changing post data before it is processed by the JIS Server and sent to the host.
webMethods JIS: XHTML Client User’s Guide Version 9.0 281

Chapter 9. Enhancing Your Application Using Java Extensions

• Storing data in a shared user variable.
• Creating and saving cookies.

This event can be used, for example, to manipulate the user data by converting
data from user format to host format by removing masking. Another example is
saving the submitted user data to an external database. Note, however, that you
cannot use the onPageSubmit event to stop the submission of the page.

Extension Scope, Hierarchy and Files

The structure of a JIS Application is hierarchical. An Application may contain one
or more Subapplications, and may also contain one or more libraries. A library
contains one or more Subapplications. This hierarchy is at the base of the Java
extensions mechanism.

Extension Scope

Page-level extensions are specific to an Application. Within an Application, the
scope of an extension is determined by the user:

• Subapplication scope - affects a specific Subapplication only.
• Library scope - affects all the Subapplications in a specific library.
• Application scope - affects all the Subapplications in the entire Application.

Extension Hierarchy

Page-level extensions are activated in a hierarchical manner. For each
Subapplication, first a Subapplication level extension is searched for. If it is found,
the Subapplication level extension is activated. Otherwise, a library level
extension is searched for. If it is found, the library level extension is activated.
Otherwise, an Application level extension is searched for and if found, activated.

Additionally, Java inheritance exists between these three classes, where the
Subapplication class inherits the library class, and the library class inherits the
Applications class.

Extension Files

The onPageLoad code and the onPageSubmit code both reside in same file. All
the user extension files reside in the following package:
appls.<ApplName>.xhtml.user

The name and location of the file depends on the scope of the extension.
282 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Application Scope

For code that affects an entire application, the extension file must be named
Appl.java.

The runtime generation process generates the following two files automatically:

• Appl.java - a skeleton file that enables you to add the user code.
• jacc.bat - a batch file for compiling the java code in this package.

Both these files are placed in the following Application source code directory:
<InstallDir>\jacadafiles\src\appls\<ApplName>\xhtml\user

After using jacc.bat to compile the Java source code, the classes are placed in
the Application classes directory:
<InstallDir>\jacadafiles\classes\appls\<ApplName>\xhtml\user

For an application named APPL1, this is the code in the Appl.java file:
package appls.APPL1.xhtml.user;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

/** description : Appl.java */

public class Appl implements
com.jacada.jis.runtime.server.frontend.xhtml.extension.IUserPageExtension {

public Appl () {

}

public void onPageLoad(OnPageLoadContext context) {

}

public void onPageSubmit(OnPageSubmitContext onSubmitContext) {

}

}

Library Scope

For code that affects all the Subapplications in a specific library, the extension file
must be named Appl.java.

The runtime generation process generates the following two files automatically:

• Appl.java - a skeleton file that enables you to add the user code.
• jacc.bat - a batch file for compiling the java code in this package.

Both these files are placed in the following library source code directory:
<InstallDir>\jacadafiles\src\appls\<LibName>\xhtml\user
webMethods JIS: XHTML Client User’s Guide Version 9.0 283

Chapter 9. Enhancing Your Application Using Java Extensions

After using jacc.bat to compile the Java source code, the classes are placed in the
library classes directory:
<InstallDir>\jacadafiles\classes\appls\<LibName>\xhtml\user

Both the Application extension file and the library extension file have the same
name - Appl.java. The difference between the files is their location, and in the
fact that the library extension code extends the Application extension code.

Example 12. Library-scope extension

For a library named LIB1, in an Application named APPL1, this is the code in the
skeleton Appl.java file:
package appls.LIB1.xhtml.user;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

/** description : Appl.java */

public class Appl extends appls.APPL1.xhtml.user.Appl {

public Appl () {

super();

}

public void onPageLoad (OnPageLoadContext context) {

super.onPageLoad(context);

}

public void onPageSubmit (OnPageSubmitContext onSubmitContext) {

super.onPageSubmit(onSubmitContext);

}

}

Subapplication Scope

For code that affects a specific Subapplication only, the extension file must be
named according to the Subapplication name: <SubApplName>.java.

For example, for a Subapplication named SUBAPP1, the name of the file is
SUBAPP1.java.

In contrast to the skeleton files created automatically for Application and library
extensions, a Subapplication extension file must be created by the user. The
location and contents of the Subapplication file depend on whether the
Subapplication resides in the main Application or in a library.
284 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Subapplications Residing in a Library When a Subapplication resides in a library,
the <SubApplName>.java file must be placed in the library source code
directory, together with the library’s Appl.java file:
<InstallDir>\jacadafiles\src\appls\<LibName>\xhtml\user

After using jacc.bat to compile the Java source code, the classes are placed in
the library classes directory:
<InstallDir>\jacadafiles\classes\appls\<LibName>\xhtml\user

The Subapplication class should extend the library class. In such a case, the
onPageLoad and onPageSubmit methods may call their super methods, as
defined in the library extension.

Subapplications Residing in an Application When a Subapplication resides in an
Application, the <SubApplName>.java file must be placed in the Application
source code directory, together with the Applications’s Appl.java file:
<InstallDir>\jacadafiles\src\appls\<ApplName>\xhtml\user

After using jacc.bat to compile the Java source code, the classes are placed in
the Application classes directory:
<InstallDir>\jacadafiles\classes\appls\<ApplName>\xhtml\user

The Subapplication class should extend the Application class. In such a case, the
onPageLoad and onPageSubmit methods may call their super methods, as
defined in the Application extension.

Example 13. Subapplication-scope extension

Subapplication SA1 is in Application APPL1. To create a Subapplication scope
extension, create a file named SA1.java and use the skeleton below:
package appls.APPL1.xhtml.user;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

public class SA1 extends Appl {

public void onPageLoad(OnPageLoadContext context) {

... // Subapplication specific code

super.onPageLoad(context);

}

public void onPageSubmit(OnPageSubmitContext onSubmitContext) {

... // Subapplication specific code

super.onPageSubmit(onSubmitContext);

}

}

webMethods JIS: XHTML Client User’s Guide Version 9.0 285

Chapter 9. Enhancing Your Application Using Java Extensions

This example demonstrates how extensions are activated in runtime.

• Application APPL1 contains a library named LIB1.
• LIB1 contains two Subapplications - SA1 and SA2.

• APPL1 has an Application scope extension.
• LIB1 has a library scope extension.
• SA1 has a Subapplication scope extension.
• SA2 does not have a Subapplication scope extension.

In runtime, after SA1 is ready, its Subapplication extension code is activated. This
code may call the library scope extension. The library extension code may call the
Application scope extension.

After SA2 is ready, the LIB1 library extension code is activated. This code may call
the APPL1 Application scope extension.

Java API - onPageLoad, onPageSubmit

A Java API is provided to enable you to write extensions. The full details of the
Java API are described in a Javadoc that is provided with the product. The
Javadoc can be found at <InstallDir>\JacadaFiles\docs\xhtml. This
section, however, reviews a few highlights of the following packages included in
the API:

• com.jacada.jis.runtime.server.frontend.xhtml.controls

• com.jacada.jis.runtime.server.frontend.xhtml.context

Note: When the Subapplication resides in a library, all you need to do is
replace the Application name in the first line with the library name.

Note: If a Subapplication scope extension exists only for one event, such as
onPageLoad for example, then for the onPageSubmit event the library or
Application extension will be executed, depending on the implementation.
286 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Controls Package

The controls package defines the control classes to be used in extensions.

These classes can be divided into the following categories:

• Simple Controls
• Container Controls
• Table Controls

Simple Controls
• Button
• Check box
• Combo box
• Date
• Line
• Link
• Multiline Text box
• Prompt
• RadioButton
• Static
• Text box
• UserControl

The purpose of the UserControl class is to provide the user the ability to define
customized controls that cannot be defined using the standard control classes.
For example, you can use this class to define ActiveX objects, or unique HTML
controls. A UserControl must have a name and must be an XML element.

Container Controls
• GroupBox
• Window

Table Controls
• Table
• TableHeader
webMethods JIS: XHTML Client User’s Guide Version 9.0 287

Chapter 9. Enhancing Your Application Using Java Extensions

Context Package

The context package contains the EventContext class.

This is an abstract class which contains the following methods:

• getSubApplName, getLibraryName, getApplicationName -
retrieve the name of the current Subapplication, library or Application.

• getBrowserType - retrieves the current browser type.
• getSharedUserVariable, writeSharedUserVariable,

deleteSharedUserVariable - used to work with shared user variables
within Java extensions. Shared user variables are used in ACE methods as a
means of transferring information between Subapplications in an Application.

• getUserPerSessionData - used to access a hashtable object named
userPerSessionData.
The XHTML Processing Module provides access to a hashtable object, named
userPerSessionData, which you can use to store and retrieve data for a
specific session. You use standard Hashtable methods to store and retrieve
the data. This is useful, for example, for saving data entered in a specific
screen so that upon the next entry to this same screen the information already
appears in the fields.

Example:

When submitting the LOGON page, you may want to save the User ID and
Password details for the current session. Thus, upon the next entry to the LOGON
screen, these details will automatically appear in their corresponding fields.

To implement this, you need write a Subapplication scope extension in which the
User ID and Password are saved in the onPageSubmit code, and retrieved in the
onPageLoad code.

The EventContext class is the parent of the following event-specific classes:

• OnPageLoadContext
• OnPageSubmitContext
• OnControlReadyContext - for more information, see “Java API -

onControlReady” on page 292.

onPageLoadContext

The onPageLoadContext class extends the EventContext class. In addition
to the methods it inherits from EventContext, onPageLoadContext contains
the following methods:

• addCookie, getCookie - add or retrieve a specific cookie object.
• getWindow - retrieves the current window control.
288 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

onPageSubmitContext

The onPageSubmitContext class extends the EventContext class. In
addition to the methods it inherits from EventContext,
onPageSubmitContext contains the following methods:

• addCookie, getCookie - add or retrieve a specific cookie object.
• getPostData - retrieves the post-data hashtable, which contains the user

data that is sent from the client. Use this method when you need to
manipulate the user data before it is processed by the server.

Control-level Extensions - onControlReady

The onControlReady event is used to perform control-level extensions. This
event enables you to write extensions that affect the properties of a particular
control type across an entire Application. For example, you can replace all the
date controls in the Application with a customized date control.

This event occurs after the updating of the static XHTML with the dynamic
runtime information. For each control, after it is ready, a Java extension is
searched for. If a Java extension exists for this control type, it is applied. In this
manner, the extension is applied to all the controls of a certain type.

The following extension capabilities are available:

• Setting (set) or retrieving (get) control properties.
For example, you can set/get control properties such as: size, location, text,
fonts, colors, show/hide, enable/disable, balloon help, Z-ordering, etc.

• Replacing existing controls with new controls.
• Adding JavaScript event handlers for each control.

For example: onClick, onMouseOver, onFocus, onKeyDown, onLoad, etc.
• Adding JavaScript functions to be activated by one of the event handlers

above.
For example, a JavaScript function to be activated by the onClick event
attached to a button.

Note: The onControlReady event is activated before the onPageLoad event.
This means that the onPageLoad event may still change properties set by
onControlReady.
webMethods JIS: XHTML Client User’s Guide Version 9.0 289

Chapter 9. Enhancing Your Application Using Java Extensions

Applying Skins Across Applications

Control-level extensions are used to apply different skins to your Applications.
The term “skin” is used to reference a specific look and feel that you apply to the
user interface of your Application. Skins may affect graphic elements such as the
background of your Application, control color schemes, graphics, etc.

In contrast to page-level extensions, which are Application specific, control-level
extension files are Application independent. You can apply control-level
extensions across different Applications.

Setting Up an Application to Use Skins

Setting up an Application to use skins involves two main steps:

• Writing the control-level extension files
• Configuring the Application INI file

Writing Control-level Extension Files

Control-level extensions must be written in files with specific names, according
to the control type.

The following file names must be used:

• ButtonExtension.java

• CheckBoxExtension.java

• ComboBoxExtension.java

• DateExtension.java

• GroupBoxExtension.java

• LineExtension.java

• LinkExtension.java

• MultilineTextBoxExtension.java

• PromptExtension.java

• RadioButtonExtension.java

• StaticExtension.java

• TableExtension.java

• TableHeaderExtension.java

• TextBoxExtension.java

• WindowExtension.java

Note: You can also set and remove skins via DoMethods in ACE. For more
information, see “Skin-related DoMethods” on page 292.
290 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

The location of the control-level extension files can be determined by the user, as
long as it is in the server classpath.

To modify the classpath, use the following guidelines:

• Development environment - anywhere under the following directory:
<InstallDir>\JacadaFiles\

• Deployment environment - anywhere under the runtime installation
directory.

Configuring the Application INI File

To use control-level extensions, you need to configure the Application INI file.

The Application INI file is named according to the Application, and is located in
the following directory of the development environment:
<InstallDir>\appls\<ApplName>\rt32\<ApplName>.INI

To configure the Application INI file to use control-level extensions, or skins,
follow these steps:

• Add a new section - [Skins]
• Within the [Skins] section, define all the skins to be used in this Application,

as follows:
skinName1=<packagename for skin1>
skinName2=<packagename for skin2>

For example:
skinName1=skins.red
skinName2=skins.green

The package specified must correspond to the location of the extension files.
• Specify the active skin, as follows:

Active = skinName1

In order for the extensions in the package to be activated when the
Application is loaded, the active skin name value must be a valid name from
the list. Otherwise, none of the extensions are activated.
webMethods JIS: XHTML Client User’s Guide Version 9.0 291

Chapter 9. Enhancing Your Application Using Java Extensions

Example 14. Use of skins - <ApplName>.ini settings

The runtime installation of Application A1 is at c:\JIS. The directory
c:\JIS\skins\ contains two subdirectories, red and green, in which extension
files were placed. These extension files contain the properties of each one of the
skins. The current active skin is green. Below is an example of the [Skins]
section in the A1.ini file.

[Skins]
red = skins.red

green = skins.green

Active = green

Skin-related DoMethods

In order to enable referencing skins within ACE methods, the following
DoMethods are provided:

• SetSkin - sets the current active skin to be used in the Application.
Executed by the Application
Uses one parameter - skinName, of type string. The value of this parameter
must correspond to one of the skin names in the Application INI file
Returns _TRUE if successful, _FALSE otherwise.

• RemoveSkin - removes the current active skin, leaving the default look and
feel that was set in ACE.
Executed by the Application.
Returns _TRUE if successful, _FALSE otherwise.
If no skin was set, returns _TRUE.

Java API - onControlReady

A Java API is provided to enable you to write extensions. The full details of the
Java API are described in a Javadoc that is provided with the product. This
section, however, reviews a few highlights of the following package included in
the API:

com.jacada.jis.runtime.server.frontend.xhtml.context

The context package contains the EventContext class, which contains a set of
methods. For details on these methods, see “Context Package” on page 288.
292 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

The EventContext class is the parent of the OnControlReadyContext class.
The OnControlReadyContext class contains the following methods:

• getControlType - retrieves the type of the current control.
• getXHTMLControl - retrieves the XHTML control.

Example 15. Extending the static controls

This example demonstrates an extension file for extending the Static controls in
an Application to have green text. The package which contains the extension files
is skins.green. The file name is StaticExtension.Java.
package skins.green;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.
IControlExtension;

import com.jacada.jis.runtime.server.frontend.xhtml.context.
OnControlReadyContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

public class StaticExtension implements IControlExtension

{

public void onControlReady(OnControlReadyContext context) {

Static myStaticControl = (Static)context.getXhtmlControl();

myStaticControl.setForeground(“green”);

}

}

Java Extension Examples

To illustrate the advantages gained through attaching Java extensions, the
following code examples are presented and explained in this section:

• COOKIES
• BROWSERS
• BADINPUT
• RETRIEVE
• SKINDEMO

Note: Each one of the names of these examples is the name of a JIS
Application created for the purpose of illustrating the example. Hence the
upper-case.
webMethods JIS: XHTML Client User’s Guide Version 9.0 293

Chapter 9. Enhancing Your Application Using Java Extensions

COOKIES

This example shows:

• How to write a Subapplication extension.
• How to create a cookie.
• How to set and retrieve a cookie’s value.
• How to find a specific control in a page and set this control’s text.
• How to read PostData.

In this example, the last user name is saved and then loaded the next time the
browser loads this page. A Subapplication-level extension named
"LOGON.java" is associated with the LOGON Subapplication.

LOGON.java

This Java extension is associated with the LOGON Subapplication. The instructions
in this file are executed every time the LOGON Subapplication is entered.

The LOGON class in this file contains two methods:

• onPageLoad

• onPageSubmit

onPageLoad

This method:

• Checks if the "CookiesApplicationUserName" cookie exists.
• If the cookie exists, the method retrieves the cookie and assigns its value into

the "user_text_box" text box.

onPageSubmit

This method:

• Retrieves the value of the "user_text_box" text box.
• Creates a cookie with that value.
• Saves the cookie.

Note: These actions are pointed out in the following code.
294 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

LO
G

O
N

C

Sa
Following is the code for the LOGON.java file:
package appls.COOKIES.xhtml.user;

import javax.servlet.http.Cookie;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

import java.util.Hashtable;

public class LOGON extends Appl {

public void onPageLoad(OnPageLoadContext context) {

super.onPageLoad(context);

Cookie cookie = context.getCookie
("CookiesApplicationUserName");

if (cookie != null) {]

String value = cookie.getValue();

if (value != null) {

Window window = context.getWindow();

XhtmlControl textBox = window.getControlByName
("user_text_box");

textBox.setText(value);

}

}

}

public void onPageSubmit(OnPageSubmitContext context) {

super.onPageSubmit(context);

Hashtable postData = context.getPostData();

String name = "txt_user_text_box";

String[] value = (String[]) postData.get(name);

if (!(value[0].equals(""))) {

Cookie cookie = new Cookie
("CookiesApplicationUserName", value[0]);

cookie.setMaxAge(Integer.MAX_VALUE);

context.addCookie(cookie);

}

}

}

Imports

Retrieve
Cookies

onPageLoad

reate Cookie

onPageSubm
itve Cookie
webMethods JIS: XHTML Client User’s Guide Version 9.0 295

Chapter 9. Enhancing Your Application Using Java Extensions

BROWSERS

This example shows:

• How to write a Subapplication extension.
• How to check browser type.
• How to create a user control and add it to a page.
• How to set a background image for a page.

In this example, varying XHTML elements are added into a specific page,
depending on the browser type. To accomplish this, a Subapplication-level Java
extension is associated with the Application’s LOGON Subapplication.

LOGON.java

This Java extension is associated with the LOGON Subapplication.

The onPageLoad method creates the appropriate XHTML element for setting
the window’s background music, and adds this element to the page. The
XHTML element used for this is dependent on the browser type in that:

• If the browser type is Netscape, the following XHTML element is created:
<EMBED SRC="sound/strauss.mid" width="0" height="0"
loop="true" autostart="true" />

• If the browser type is Microsoft Internet Explorer, the following XHTML
element is created:
<BGSOUND SRC="sound/strauss.mid" LOOP="infinite"/>

The onPageLoad method also sets a background image for the page irrespective
of the browser type.

Following is the code for the LOGON.java file:
package appls.BROWSERS.xhtml.user;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.general.*;

import com.jacada.jis.runtime.server.frontend.xhtml.general.*;

public class LOGON extends Appl {

public void onPageLoad (OnPageLoadContext context) {

Window window = context.getWindow();

Imports
296 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

LO
G

O
N

LO
G

O
N

window.setImage("/images/emusic.gif");

String browserType = context.getBrowserType();

Element el = null;

DocumentBuilderFactory dFactory =
DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = null;

Document doc = null;

try {

dBuilder = dFactory.newDocumentBuilder();

doc = dBuilder.newDocument();

}

catch (Exception e) {

e.printStackTrace();

return;

}

if (browserType.equals(BrowserTypes.MSIE) ||
browserType.equals(BrowserTypes.MSIE4)) {

el = doc.createElement("BGSOUND");

el.setAttribute("SRC", "sound/strauss.mid");

el.setAttribute("LOOP", "infinite");

}

else if (browserType.equals(BrowserTypes.Netscape)) {

el = doc.createElement("EMBED");

el.setAttribute("SRC", "sound/strauss.mid");

el.setAttribute("width", "0");

el.setAttribute("height", "0");

el.setAttribute("loop", "true");

el.setAttribute("autostart", "true");

}

if (el != null) {

UserControl newControl = new UserControl("myMusic", el);

window.appendChild(newControl);

}

}

}

Set back-
ground
image

Get
browser
type

onPageLoad

Browser
MSIE

Browser
Netscape

onPageLoad

Insert new
element
webMethods JIS: XHTML Client User’s Guide Version 9.0 297

Chapter 9. Enhancing Your Application Using Java Extensions

BADINPUT

This example shows:

• How to read and change PostData.
• How to add a JavaScript to a page.
• How to set an event handler to a control.

How to avoid posting data.

To accomplish this, two Subapplication-level Java extensions are added:

• MAINMENU.java
• MBF001.java

MAINMENU.java

This Java extension is associated with the MAINMENU Subapplication:

Figure 64. The MAINMENU subapplication

The Java extension contains a reference to the validityCheck1.js JavaScript
file. The JavaScript contains the isInputValid() method, which performs a
validity check on the option the end-user selects from the combo box. The
onPageLoad method connects the OK button’s "onClick" event to the
JavaScript file’s "isInputValid(inputTextBox)" method. If the method
returns false, then the page is not submitted.

Following is the code for the MAINMENU.java file:
package appls.BADINPUT.xhtml.user;

import java.util.*;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

Imports
298 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

M
A

IN
M

EN
U

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

import com.jacada.jis.runtime.server.frontend.xhtml.general.*;

public class MAINMENU extends Appl {

public void onPageLoad (OnPageLoadContext context) {

super.onPageLoad(context);

Window window = context.getWindow();

window.addExternalJavaScriptFile
("/classes/js/validityCheck1.js");

XhtmlControl okButton = window.getControlByName("Button");

okButton.setEventHandler("onClick", "return isInputValid
(inputTextBox)");

return;

}

}

validityCheck1.js

Following is the code for the validityCheck1.js file. This is the JavaScript file
referred to in the MAINMENU.java file for performing the validity check:
function isInputValid(elem) {

var index = elem.selectedIndex;

if (index == -1) {

return false;

}

input = elem.options[index].text;

if (input == 'mbfuser' || input == 'sign off') {

return true;

}

return false;

}

Activate
external
JavaScript

Set event
handler

onPageLoad
webMethods JIS: XHTML Client User’s Guide Version 9.0 299

Chapter 9. Enhancing Your Application Using Java Extensions

MBF001.java

This Java extension is associated with the MBF001 Subapplication:

Figure 65. The MBF001 subapplication

In this Java extension, the onPageSubmit method looks in the postData to see
if the input value of the combo box is a valid value. A valid value can only be
one of the following:

• "4"
• "04"
• "7"
• "07"
• "90"

If the value is an invalid value, then this value is replaced with "90".

Following is the code for the MBF001.java file:
package appls.BADINPUT.xhtml.user;

import java.util.*;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

public class MBF001 extends Appl {

static Set validOptions;

Imports
300 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

M
B

F0
01
static {

validOptions = new HashSet();

validOptions.add("4");

validOptions.add("04");

validOptions.add("7");

validOptions.add("07");

validOptions.add("90");

}

public void onPageSubmit (OnPageSubmitContext onSubmitContext) {

super.onPageSubmit(onSubmitContext);

Hashtable postData = onSubmitContext.getPostData();

Enumeration paramNames = postData.keys();

String name;

while (paramNames.hasMoreElements()) {

name = (String) paramNames.nextElement();

if (name.equals("cbo_DDSOPTION")) {

String [] value = (String[]) postData.get(name);

String optionString = value[0];

if (validOptions.contains(optionString)) {

}

else {

value[0] = "90";

}

break;

}

}

return;

}

}

RETRIEVE

This example shows:

• How to write a Subapplication-level Java extension.
• How to use PostData.
• How to use "User Per Session Data".

This example demonstrates how you can save the information typed on a page
and retrieve this information later when re-entering that specific page. This might
prove useful, for example, when a spontaneous screen appears on the host which
causes the data entered by the end-user to be erased. Using a Subapplication-
level Java extension, you can prevent this data from being lost.

Valid
options

onPageSubm
it

Replace
invalid
data in
PostData
webMethods JIS: XHTML Client User’s Guide Version 9.0 301

Chapter 9. Enhancing Your Application Using Java Extensions

MBF006R1.java

This Java extension is associated with the MBF006R1 Subapplication:

Figure 66. The MBF006R1 subapplication

This Java extension uses the following methods:

• onPageLoad

• onPageSubmit

onPageLoad

This method prepares a key from the data in the Customer ID text box and does
the following.

• If "userPerSessionData" previously contains an entry with this key:
• The current key entry is removed.
• The key’s data is retrieved.
• The controls of the Subapplication are filled with their corresponding

data.
• Writes the "myKeyIs" entry to the "userPerSessionData", so when the

"onSubmit" occurs, it will know which key to use.
302 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

M
B

F0
06

R
1

onPageSubmit

This method creates a new Hashtable object called "dataToKeep" and goes
over all post data in a loop which does the following:

• Keeps the data from text boxes, combo boxes, and check boxes in the
"dataToKeep" object.

• If the end-user has pushed the Exit or the Cancel buttons, then the loop is
broken.

• At the end of the loop, the "myKeyIs" entry is read from the
"userPerSessionData" in order to know which key to use. This key is used
for keeping the "dataToKeep" in the "userPerSessionData".

Following is the code for the MBF006R1.java file:
package appls.RETRIEVE.xhtml.user;

import java.util.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

import com.jacada.jis.runtime.server.frontend.xhtml.general.*;

public class MBF006R1 extends Appl {

public void onPageLoad (OnPageLoadContext context) {

super.onPageLoad(context);

Window window = context.getWindow();

Hashtable upsd = context.getUserPerSessionData();

XhtmlControl customerIdControl = window.getControlByName
("DDSDCUSTN");

String key = customerIdControl.getText();

upsd.put("MyKeyIs", key);

Hashtable retrievedData = (Hashtable) upsd.remove(key);

if (retrievedData == null) {

return;

}

Enumeration paramNames = retrievedData.keys();

String controlName;

String controlValue;

XhtmlControl inputControl;

while (paramNames.hasMoreElements()) {

controlName = (String) paramNames.nextElement();

controlValue = (String) retrievedData.get(controlName);

inputControl = window.getControlByName(controlName);

Imports

onPageLoad
webMethods JIS: XHTML Client User’s Guide Version 9.0 303

Chapter 9. Enhancing Your Application Using Java Extensions

M
B

F0
06

R
1

if (inputControl != null) {

if (inputControl.getJacadaControlType().equals
(JacadaControlTypes.CHECKBOX_CTRL)) {

boolean checked = (controlValue.equals
(String.valueOf(true)));

((CheckBox) inputControl).setChecked(checked);

}

else {

inputControl.setText(controlValue);

}

}

}

return;

}

public void onPageSubmit (OnPageSubmitContext context) {

super.onPageSubmit(context);

Hashtable postData = context.getPostData();

Hashtable dataToKeep = new Hashtable();

String name;

String[] value;

String textPrefix = "txt_";

String comboPrefix = "cbo_";

String checkboxPrefix = "chk_";

String buttonPrefix = "btn_";

Enumeration paramNames = postData.keys();

while (paramNames.hasMoreElements()) {

name = (String) paramNames.nextElement();

System.out.println(name);

value = (String[]) postData.get(name);

if (name.startsWith(textPrefix)) {

dataToKeep.put(name.substring(textPrefix.length()),
value[0]);

}

else if (name.startsWith(comboPrefix)) {

dataToKeep.put(name.substring(comboPrefix.length()),
value[0]);

}

else if (name.startsWith(checkboxPrefix)) {

boolean checked = (value.length == 2);

dataToKeep.put(name.substring(checkboxPrefix.length()),
String.valueOf(checked));

onPageLoad
onPageSubm

it
304 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

M
B

F0
06

R
1

}

else if (name.startsWith(buttonPrefix)) {

if (name.substring(buttonPrefix.length()).equals
("Exit")) {

return;

}

if (name.substring(buttonPrefix.length()).equals
("Sub2202301006")) {

return; }

}

}

Hashtable upsd = context.getUserPerSessionData();

String key = (String) upsd.get("MyKeyIs");

upsd.put(key, dataToKeep);

return;

}

}

SKINDEMO

This example shows:

• How to set the Runtime INI file to enable customized skins.
• Some skin code examples.
• How to change control attributes.

Runtime INI Settings

The [skins] section in the SKINDEMO.ini file is as follows:
[skins]

skin1=skins.butterfly

skin2=skins.fairy

skin3=skins.theGreen

;Active=skin1

In this example:

• "skin1", "skin2" and "skin3" are skin names.
• "skin.butterfly", "skin.fairy" and "skin.theGreen" are skin

package names.
The skin packages are placed in their respective directories as seen below:

If EXIT button
is pressed

If CANCEL
button is
pressed

onPageSubm
it
webMethods JIS: XHTML Client User’s Guide Version 9.0 305

Chapter 9. Enhancing Your Application Using Java Extensions

Figure 67. Skins directory structure

• The active skin is "skin1", however this code line is commented out.

The "skin.butterfly" Skin Package

Following is one of the SKINDEMO application’s screens:

Figure 68. The SKINDEMO screen “before”

The screen includes the following control types:

• Button
• Prompt
• Table
• TableHeader
• Combo box
• Check box
306 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

• Text box
• Static

Applying the "skin.butterfly" skin package results as follows:

Figure 69. The SKINDEMO screen “after”

In this screen each control type is differently treated in that:

• Window control has a butterfly wallpaper decorating its background.
• Static text is painted purple with a transparent background.
• Button controls are painted pink and have a thicker border.
• Prompt controls have an image of a flower on their button.
• Table headers are painted pink and their text is black.
• Table rows are alternately painted blue and white.

The "skin.butterfly" skin package includes the following Java files:

• Colors.java
• XhtmlControlExtension.java
• StaticExtension.java
• ButtonExtension.java
• PromptExtension.java
• TableExtension.java
• TableHeaderExtension.java
• EditExtension.java
webMethods JIS: XHTML Client User’s Guide Version 9.0 307

Chapter 9. Enhancing Your Application Using Java Extensions

C
ol

or
s

• WindowExtension.java
• PromptExtension.java

Colors.java

This Java extension is not specific to a control type. The Colors class in this Java
extension contains a color conversion table that defines color names. The color
names are used in control extensions for color definition settings.

Following is the code for the Colors.java file:
package skins.butterfly;

import java.util.Hashtable;

class Colors {

public static String lightPink;

public static String darkPink;

public static String white;

public static String black;

public static String automatic;

public static String transparent;

public static String lightBlue;

static {

lightBlue = "#D2DCE6";

lightPink = "#E3C4D2";

darkPink = "#853F5F";

white = "white";

black = "black";

automatic = "Automatic";

transparent = "transparent";

}

}

XhtmlControlExtension.java

This Java extension is not associated with a specific control. However, other
control extensions, such as StaticExtension, extend this Java extension’s
XhtmlControlExtension class. In a control extension that extend this class, all
settings from this class apply, except for settings in the control extension, which
override the settings in the XhtmlControlExtension class. The
onControlReady method in this class sets color properties.

Color
conversion
table
308 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Xh
tm

lC
on

tr
ol

Ex
te

ns
io

n

Following is the code for the XhtmlControlExtension.java file:
package skins.butterfly;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.
IControlExtension;

import com.jacada.jis.runtime.server.frontend.xhtml.context.
OnControlReadyContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.
XhtmlControl;

public class XhtmlControlExtension implements com.jacada.jis.
runtime.server.frontend.xhtml.extension.IControlExtension {

public void onControlReady(OnControlReadyContext context) {

XhtmlControl control = context.getXhtmlControl();

control.setBackground(backgroundColor());

control.setForeground(foregroundColor());

control.setBorderColor(borderColor());

return;

}

String backgroundColor() {

return Colors.transparent;

}

String foregroundColor() {

return Colors.darkPink;

}

String borderColor() {

return Colors.automatic;

}

}

StaticExtension.java

This Java extension is associated with Static controls. The only function of the
StaticExtension class is to extend the XhtmlControlExtension class, as
mentioned earlier.

Following is the code for the StaticExtension.java file:
package skins.butterfly;

public class StaticExtension extends XhtmlControlExtension {

}

Imports

Set color
properties

onC
ontrolR

eady
webMethods JIS: XHTML Client User’s Guide Version 9.0 309

Chapter 9. Enhancing Your Application Using Java Extensions

B
ut

to
nE

xt
en

si
on
ButtonExtension.java

This Java extension is associated specifically with Button controls. The
onControlReady method sets Button controls’ border width and color
definitions.

Following is the code for the ButtonExtension.java file:
package skins.butterfly;

import com.jacada.jis.runtime.server.frontend.xhtml.context.
OnControlReadyContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.
XhtmlControl;

public class ButtonExtension extends XhtmlControlExtension {

public void onControlReady(OnControlReadyContext context) {

super.onControlReady(context);

XhtmlControl control = context.getXhtmlControl();

control.setBorderWidth(3);

return;

}

String backgroundColor() {

return Colors.lightPink;

}

String borderColor() {

return Colors.darkPink;

}

}

TableExtension.java

This Java extension is associated with Table controls. onControlReady sets
color properties in such a way that table rows are alternately colored blue and
white.

Following is the code for the TableExtension.java file:
package skins.butterfly;

import com.jacada.jis.runtime.server.frontend.xhtml.context.
OnControlReadyContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.Table;

Imports

Set border
width

onC
ontrolR

eady

Set color
properties

Imports
310 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Ta
bl

eE
xt

en
si

on

import com.jacada.jis.runtime.server.frontend.xhtml.controls.
XhtmlControl;

public class TableExtension extends XhtmlControlExtension {

public void onControlReady(OnControlReadyContext context) {

super.onControlReady(context);

Table table = (Table) context.getXhtmlControl();

String colors [] = {Colors.white, Colors.lightBlue};

XhtmlControl currControl;

String newBackgroundColor;

String newForegroundColor = Colors.darkPink;

for (int i = 0, numOfRows = table.getRowsNumber();
i < numOfRows; i++) {

newBackgroundColor = colors[i % 2];

for (int j = 0, numOfColumns = table.getColumnsNumber();
j < numOfColumns; j++) {

currControl = table.getCell(i, j);

currControl.setBackground(newBackgroundColor);

currControl.setForeground(newForegroundColor);

}

}

return;

}

}

TableHeaderExtension.java

This Java extension is associated with TableHeader controls. The
TableHeaderExtension class sets background color and border color.

Following is the code for the TableHeaderExtension.java file:
package skins.butterfly;

public class TableHeaderExtension extends XhtmlControlExtension {

String backgroundColor() {

return Colors.lightPink;

}

Set Table
color
properties

onC
ontrolR

eady

Set background
color
webMethods JIS: XHTML Client User’s Guide Version 9.0 311

Chapter 9. Enhancing Your Application Using Java Extensions

String borderColor() {

return Colors.darkPink;

}

}

EditExtension.java

This Java extension is associated with Edit box controls. The EditExtension
class contains background and border color settings.

Among the control extensions that extend this class are:

• PromptExtension

• WindowExtension

Following is the code for the EditExtension.java file:
package skins.butterfly;

public abstract class EditExtension extends XhtmlControlExtension {

String backgroundColor() {

return Colors.white;

}

String borderColor() {

return Colors.lightPink;

}

}

WindowExtension.java

This Java extension is associated with Window controls. The WindowExtension
class in this Java extension extends EditExtension, as mentioned earlier, in
“EditExtension.java” on page 312.

The onControlReady method sets the butterfly.gif file as the window’s
background image.

Following is the code for the WindowExtension.java file:
package skins.butterfly;

import java.util.Vector;

import com.jacada.jis.runtime.server.frontend.xhtml.context.
OnControlReadyContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

Ta
bl

eH
ea

de
rE

xt
en

si
on Set border

color

Ed
itE

xt
en

si
on

Imports
312 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

W
in

do
w

Ex
te

ns
io

n
Pr

om
pt

Ex
te

ns
io

n

public class WindowExtension extends EditExtension {

public void onControlReady(OnControlReadyContext context) {

super.onControlReady(context);

Window window = (Window) context.getXhtmlControl();

window.setImage("/images/butterfly.gif");

return;

}

}

PromptExtension.java

This Java extension is associated with Prompt controls. The PromptExtension
class in this Java extension extends from EditExtension, as mentioned earlier
in “EditExtension.java” on page 312

The onControlReady method sets an image for the control’s button.

Following is the code for the PromptExtension.java file:
package skins.butterfly;

import com.jacada.jis.runtime.server.frontend.xhtml.context.
OnControlReadyContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

public class PromptExtension extends EditExtension {

public void onControlReady(OnControlReadyContext context) {

super.onControlReady(context);

Prompt prompt = (Prompt) context.getXhtmlControl();

prompt.setImage("/images/prompt_flower.gif");

return;

}

}

onC
ontrolR

eady

Set back-
ground
image

Imports

onC
ontrolR

eady

Set button
image
webMethods JIS: XHTML Client User’s Guide Version 9.0 313

Chapter 9. Enhancing Your Application Using Java Extensions

Extensions to the Date Calendar Window

The purpose of this section is to describe the use of the DateExtension java
extension to modify the appearance of the Date Calendar Window. The
procedures discussed in this section apply specifically to extending the Date
Calendar window, but can be used as a model for extending any of the other
controls listed on page 287.

When you have completed this section, you should be able to use the
DateExtension class to change the appearance of the Date Calendar Window.

The Date Calendar Window

Attached to the default Date control in ACE is a Calendar Window. It is activated
by pressing the calendar icon next to the Date control, as shown in Figure 70.

Figure 70. The date control

The Calendar Window itself is shown in Figure 71.

Figure 71. The date calendar window
314 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Changing the Appearance of the Date Calendar Window

Figure 71 shows the default appearance of the Date Calendar Window. You can
change its appearance through the use of the DateExtension.java class.

Types of Changes Available

The changes that can be made to the Calendar Window’s appearance and the
associated method syntax are listed below.

• The week can be changed to start with a day other than Sunday. Use an integer
to indicate the desired day. 2=Monday, 3=Tuesday, and so on. For example, to
change the calendar to show Monday as the first day of the week, code:
date.setCalendarFirstWeekDay(2);

• The background color can be modified. Standard java colors can be specified.
For example, to change the background color of the Calendar Window to
orange, code: date.setCalendarBackgroundColor(“orange”);

• The color of the calendar text and dates can be modified. Specify a standard
java color. For example, to change the color of the calendar text and dates to
green, code: date.setCalendarColor(“green”);

• The text font used in the calendar can be modified. Use one the java standard
font families. For example: date.setCalendarFontFamily(“serif”);

• The color of the selected day in the calendar can be changed. Use a standard
java color. For example, to change the color of the selected day to blue, code:
date.setCalendarSelectedDayColor(“blue”);

• The text in the Calendar Window’s title bar can be changed. For example:
date.setCalendarTitle(“mytitle”);

• You can specify the initial location of the window, in pixels. For example:
date.setCalendarWindowLocation(10,10);

• The line object that sits over and under the days of the week can be changed.
Point to the object you wish to use:
date.setCalendarLineGif(“http://localhost:8081/images/myline.gif”)

• The names of the months can be changed. Separate the names with an asterisk.
date.setCalendarMonths(“jan*fev*mar*avr*mai*jui*jui*aou*
sep*oct*nov*dec”)

• You can change the button images used for navigating to Next Month, Next
Year, Previous Month, Previous Year.
date.setCalendarNextMonthGif(“http://localhost:8081/images/mybutton1.gif”)

date.setCalendarNextYearGif(“http://localhost:8081/images/mybutton1.gif”)

date.setCalendarPrevMonthGif(“http://localhost:8081/images/mybutton1.gif”)

date.setCalendarPrevYearGif(“http://localhost:8081/images/mybutton1.gif”)
webMethods JIS: XHTML Client User’s Guide Version 9.0 315

Chapter 9. Enhancing Your Application Using Java Extensions

Scope of Changes

The directory location of the DateExtension class determines its scope. The
DateExtension.java class can be applied across an entire application, for a
particular library, or for a specific subapplication. This class can also be used as
part of an application skin. The simplest approach is to use an application skin
(See “Modifying the Date Calendar Window in a Skin” on page 320), but for the
sake of completeness we also provide examples of how to apply the
DateExtension class application-wide, library-wide, and to a specific
Subapplication.

The package name and the location of the extension determine the scope of the
extension, as explained in continuation.

If you have extensions of different scopes defined for a given application, only
one of the extensions will be applied. The priority of extensions, from strongest
to weakest, is: Subapplication scope, Library scope, Application scope.

Application Scope

If you want your extension code to affect an entire application, the extension file
must be named Appl.java; the package name must be
appls.<ApplName>.xhtml.user

The runtime generation process generates the following two files automatically:

Appl.java - a skeleton file in which you insert your code.

jacc.bat - a batch file used to compile the code in the appl.java file.

The above two files are generated in the directory:
<InstallDir>\jacadafiles\src\appls\<ApplName>\xhtml\user

Use jacc.bat to compile the Java source code. The resulting classes are placed
in the application classes directory:
<InstallDir>\jacadafiles\classes\appls\<ApplName>\
xhtml\user

For an application named APPL1, this is the code in the Appl.java file:
//---

package appls.APPL1.xhtml.user;

import com.jacada.jis.runtime.server.frontend.xhtml.context.OnPageLoadContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

import com.jacada.jis.runtime.server.frontend.xhtml.general.JacadaControlTypes;

import java.util.Vector;

import java.util.Enumeration;

public class Appl {

 public void onPageLoad(OnPageLoadContext context) {

 Window window = context.getWindow();
316 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

 // you can either get the control by its name

 Date dateControl = (Date)window.getControlByName(“Date”);

 dateControl.setCalendarBackground(“red”);

 // Or you can get all the controls of a certain type

 Vector controls = window.getControlsByType(JacadaControlTypes.DATE_CTRL);

 // Iterating through all the date control on page

for(Enumeration e = controls.elements();e.hasMoreElements();){

 Date date = (Date)e.nextElement();

 date.setCalendarBackground(“green”);

 }

 }

}

//--

Library Scope

If you want your extension code to affect all of the subapplications in a specific
library, the extension file must be named Appl.java; the package name must be
appls.<LibName>.xhtml.user

The runtime generation process generates the following two files automatically:

Appl.java - a skeleton file in which you insert your code

jacc.bat - a batch file used to compile the code in the appl.java file.

The above two files are generated in the directory:
<InstallDir>\jacadafiles\src\appls\<LibName>\xhtml\user

Use jacc.bat to compile the Java source code. The resulting classes are placed
in the application classes directory:
<InstallDir>\jacadafiles\classes\appls\<LibName>\xhtml\user

For a library named LIB1, in an Application named APPL1, this is the code in the
skeleton Appl.java file:
//---

package appls.LIB1.xhtml.user;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.OnPageLoadContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

import com.jacada.jis.runtime.server.frontend.xhtml.general.JacadaControlTypes;

import java.util.Vector;

import java.util.Enumeration;

public class Appl extends app.<ApplName>.xhtml.user.Appl {

 public void onPageLoad(OnPageLoadContext context) {

 Window window = context.getWindow();

 // you can either get the control by its name

 Date dateControl = (Date)window.getControlByName(“Date”);
webMethods JIS: XHTML Client User’s Guide Version 9.0 317

Chapter 9. Enhancing Your Application Using Java Extensions

 dateControl.setCalendarBackground(“red”);

 // Or you can get all the controls of a certain type

 Vector controls = window.getControlsByType(JacadaControlTypes.DATE_CTRL);

 // Iterating through all the date control on page

for(Enumeration e = controls.elements();e.hasMoreElements();){

 Date date = (Date)e.nextElement();

 date.setCalendarBackground(“green”);

 }

 }

}

//---

Subapplication Scope

For code that affects a specific Subapplication only, the extension file must be
named according to the Subapplication name: <SubApplName>.java.

For example, for a Subapplication named SUBAPP1, the name of the file is
SUBAPP1.java.

In contrast to the skeleton files created automatically for Application and library
extensions, a Subapplication extension file must be created by the user. The
location and contents of the Subapplication file depend on whether the
Subapplication resides in the main Application or in a library.

Subapplications Residing in a Library When a Subapplication resides in a library,
the <SubApplName>.java file must be placed in the library source code
directory, together with the library’s Appl.java file:
<InstallDir>\jacadafiles\src\appls\<LibName>\xhtml\user

After using jacc.bat to compile the Java source code, the classes are placed in
the library classes directory:
<InstallDir>\jacadafiles\classes\appls\<LibName>\xhtml\user

The Subapplication class should extend the library class. In such a case, the
onPageLoad and onPageSubmit methods may call their super methods, as
defined in the library extension.

Subapplications Residing in an Application When a Subapplication resides in an
Application, the <SubApplName>.java file must be placed in the Application
source code directory, together with the Application’s Appl.java file:
<InstallDir>\jacadafiles\src\appls\<ApplName>\xhtml\user

After using jacc.bat to compile the Java source code, the classes are placed in
the Application classes directory:
<InstallDir>\jacadafiles\classes\appls\<ApplName>\xhtml\user

The Subapplication class should extend the Application class. In such a case, the
onPageLoad and onPageSubmit methods may call their super methods, as
defined in the Application extension.
318 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Subapplication SA1 is in Application APPL1. To create a Subapplication scope
extension, create a file named SA1.java and use the skeleton below:
//--

package appls.APPL1.xhtml.user;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.*;

import com.jacada.jis.runtime.server.frontend.xhtml.context.*;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.*;

import com.jacada.jis.runtime.server.frontend.xhtml.general.JacadaControlTypes;

import java.util.Vector;

import java.util.Enumeration;

public class SA1 extends Appl {

Window window = context.getWindow();

 // you can either get the control by its name

 Date dateControl =
 (Date)window.getControlByName(“Date”);

 dateControl.setCalendarBackground(“red”);

 // Or you can get all the controls of a certain type

 Vector controls = window.getControlsByType(JacadaControlTypes.DATE_CTRL);

 // Iterating through all the date control on page

for(Enumeration e = controls.elements();e.hasMoreElements();){

 Date date = (Date)e.nextElement();

 date.setCalendarBackground(“green”);

 }

 }

}

//---

public void onPageLoad(OnPageLoadContext context) {

... // Subapplication specific code

super.onPageLoad(context);

}

public void onPageSubmit(OnPageSubmitContext onSubmitContext) {

... // Subapplication specific code

super.onPageSubmit(onSubmitContext);

}

}

//---

Note: When the Subapplication resides in a library, all you need to do is
replace the Application name in the first line with the library name.
webMethods JIS: XHTML Client User’s Guide Version 9.0 319

Chapter 9. Enhancing Your Application Using Java Extensions

Modifying the Date Calendar Window in a Skin

Setting up an Application to use skins involves two main steps:

• Writing the control-level extension files
• Configuring the Application INI file

Writing Control-level Extension Files

Control-level extensions must be written in files with specific names, according
to the control type.

The following file name must be used for the java code that is to modify the Date
Calendar Window: DateExtension.java

For the file names to use for extensions for other controls, see “Writing Control-
level Extension Files” on page 320.

The location of the control-level extension files can be determined by the user, as
long as it is in the server classpath.

To modify the classpath, use the following guidelines:

• Development environment - anywhere under the following directory:
<InstallDir>\JacadaFiles\

• Deployment environment - anywhere under the runtime installation
directory.

Note: You can also set and remove skins via DoMethods in ACE. For more
information, see “Skin-related DoMethods” on page 292.
320 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Here is an example of a java extension that modifies the Date Calendar Window.
The extension is for use in a skin.
//--

package skins.Green;

import com.jacada.jis.runtime.server.frontend.xhtml.extension.
IControlExtension;

import com.jacada.jis.runtime.server.frontend.xhtml.context.
OnControlReadyContext;

import com.jacada.jis.runtime.server.frontend.xhtml.controls.Date;

public class DateExtension implements IControlExtension {

 public void onControlReady(OnControlReadyContext context) {

 date.setCalendarBackgroundColor(“orange”);

 date.setCalendarTitle(“mytitle”);

 }

}

//--

You would compile the above file with the jacc.bat procedure. The output class
will go to <InstallDir>\JacadaFiles\classes\skins\Green

Configuring the Application INI File

To use control-level extensions, you need to configure the Application .ini file.

The Application INI file is named according to the Application, and is located in
the following directory of the development environment:
<InstallDir>\appls\<ApplName>\rt32\<ApplName>.INI

To configure the Application INI file to use control-level extensions, or skins,
follow these steps:

• Add a new section - [Skins]
• Within the [Skins] section, define all the skins to be used in this Application,

as follows:
skinName1=<skin1 packagename>
skinName2=<skin2 packagename>

For example:
skinName1=skins.red
skinName2=skins.green

The package specified must correspond to the location of the extension files.
• Specify the active skin, as follows:

Active = skinName1

In order for the extensions in the package to be activated when the
Application is loaded, the active skin name value must be a valid name from
the list. Otherwise, none of the extensions are activated.
webMethods JIS: XHTML Client User’s Guide Version 9.0 321

Chapter 9. Enhancing Your Application Using Java Extensions

Example 16. Use of skins- <ApplName>.ini settings

The runtime installation of Application A1 is at c:\JIS. The directory
c:\JIS\skins\ contains two subdirectories, red and green, in which extension files
were placed. These extension files contain the properties of each one of the skins.
The current active skin is green. Below is an example of the [Skins] section in
the A1.ini file.

[Skins]
red = skins.red

green = skins.green

Active = green
322 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

Additional APIs

This section contains additional APIs for modifying controls.

Combo Box Methods

The following methods are available in the GUIComboBox class, for working
with the Combo Box control.

addItem

public void addItem(java.lang.String newItemStr)

Adds an item to a Combo Box.

Parameters:

newItemStr - the item to add to the Combo Box

addItem

public void addItem(java.lang.String item,

 int index)

Adds an item to a Combo Box by index value.

Parameters:

item - the text string to add to the Combo Box

index - the position the item will be inserted, zero based.

cloneControl

public ComboBox cloneControl(java.lang.String newName)

Clones a Combo Box.

Parameters:

newName - the name of the new control

Returns:

a new Combo Box control
webMethods JIS: XHTML Client User’s Guide Version 9.0 323

Chapter 9. Enhancing Your Application Using Java Extensions

deleteAllItems

public void deleteAllItems()

Remove all the items in the Combo Box

deleteItem

public void deleteItem(int index)

Remove an item from the Combo Box

Parameters:

index - the index of the item to be removed

 deleteItem

public void deleteItem(java.lang.String item)

Deletes an item from a Combo Box.

Parameters:

item - the item to remove from the Combo Box

getItem

public java.lang.String getItem(int index)

Get an item from the Combo Box.

Parameters:

index - the index of the item in the combo box items list - zero based

Returns:

the items string value

getItemCount

public int getItemCount()

Get the number of items in the Combo Box.

Returns:

the number of items in the Combo Box.
324 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 9. Enhancing Your Application Using Java Extensions

getSelectedIndex

public int getSelectedIndex()

Get the number of items in the Combo Box.

Returns:

the index of the selected item or -1.

getSelectedItem

public java.lang.String getSelectedItem()

Returns the selected item in a Combo Box.

Returns:

the selected item in the Combo Box

See Also:

getText

getText

public java.lang.String getText()

Returns the selected item in a Combo Box.

Overrides:

getText in class XhtmlControl

Returns:

the selected item in the Combo Box

See Also:

getSelectedItem

setSelectedItem

public void setSelectedItem(int index)

Select an item by its index.

Parameters:

index - the index of the item to be selected
webMethods JIS: XHTML Client User’s Guide Version 9.0 325

Chapter 9. Enhancing Your Application Using Java Extensions

setSelectedItem

public void setSelectedItem(java.lang.String text)

Sets the selected item in a Combo Box.

Parameters:

text - the item to select in the Combo Box

See Also:

setText

setText

public void setText(java.lang.String text)

Sets the selected item in a Combo Box.

Overrides:

setText in class XhtmlControl

Parameters:

text - the item to select in the Combo Box

See Also:

setSelectedItem
326 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the
Client

It is possible to grant end-users partial controlled access to your host application,
for the purpose of conducting B2B transactions. End-users can submit a URL
request with an attached XML object, and receive an answer from the host, also
in the form of an XML object. This is known as an XML Transaction. In this case,
end-users communicate with the host, but are not privy to the host’s inner
workings.

As far as end-users are concerned, such communication is usually in the form of
a structured query, which is part of a larger web application’s HTML form. The
end-users merely submit this HTML form and receive a reply to their query.
During this time, the end-users are completely oblivious of the XML Transactions
and the real-time processing of these transactions by the JIS Server.

The following topics are discussed:

• “XML-Based Transactions” on page 327
• “XML-based DoMethods” on page 330
• “Navigating Through Host Screens” on page 350

XML-Based Transactions

This chapter discusses XML-based Transactions, how XML-based Transactions
work, how to construct XML-based Transaction, and how to merge XML
Transactions with an existing XHTML Client Application.

Chapter 11 - "The Server Configuration File" on page 359 also addresses XML-
based Transactions.
webMethods JIS: XHTML Client User’s Guide Version 9.0 327

Chapter 10. Conducting XML-based Transactions from the Client

The Transaction Dataflow

The following sketch outlines a typical transaction’s dataflow:

Figure 72. A typical XML transaction

The Transaction Dataflow:

1 The end-user sends a URL request via HTTP to the JIS Server with an
attached XML object.

2 The JIS Server:
• Receives and analyzes the request.
• Opens a host session.
• Invokes a transaction method.

3 A transaction method performs the following:
• Parses the attached XML object.
• Navigates through the host application’s screens.
• Retrieves information from the host
-OR-
• Writes information to the host.

4 The JIS Server creates an XML object, which contains the requested
information.

5 The JIS Server sends a response back to the end-user with the attached XML
object.
328 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

Assembling a Transaction

Once a host session is established, you can execute a transaction. To assemble a
transaction, you must carefully plan your steps, according to the transaction
workflow.

You enable the use of transactions by doing the following:

• Create transaction methods in ACE.
• Create (or modify) the Server Configuration File.

Transaction Methods

A transaction method is a User-Triggered method that is triggered upon the end-
user’s request. When the end-user requests a transaction, the JIS Server analyzes
the request according to the Server Configuration File’s settings and invokes a
transaction method.

A typical transaction method does the following:

1 Receives an XML document from the end-user through an input stream.
2 Parses the XML document.
3 Logs into the host application.
4 Navigates through the host screens to the appropriate screen.
5 Either:

• Retrieves the desired information from host screen fields.
-or-
• Inserts information into host screen fields.

6 Writes a new XML document containing the reply.
7 Sends an XML document to the end-user through an output stream.

All of these steps are governed by ACE methods.

Note: The order above is merely a recommendation. You can change the
order to fit your needs. For example, you can perform step 3 before step 2.
webMethods JIS: XHTML Client User’s Guide Version 9.0 329

Chapter 10. Conducting XML-based Transactions from the Client

XML-based DoMethods

To write transaction methods, you must be familiar with XML-based DoMethods.
This section lists these DoMethods and explains how to use them.

webMethods JIS provides two ways of implementing XML:

• The JIS DOM-based API
• The JIS template API

The process of reading, parsing and creating XML documents is outlined
separately for these two implementations.

The DOM-based API

DOM (Document Object Model), a programming interface specification being
developed by the World Wide Web Consortium (W3C), lets a programmer create
and modify HTML pages and XML documents as full-fledged program objects.
Currently, HTML and XML are ways to express a document in terms of data
structure. DOM is a strategic and open effort to specify how to provide
programming control over documents.

You can create XML documents based on this document object model by using
the JIS DOM-based API.

Since the JIS Server is written in Java, the interface resembles the Java Sun API for
XML. This API contains quite a few objects with a few dozens of methods. The set
of objects and functions is minimal, allowing you to perform simple tasks like
creating and manipulating an XML file.

The DoMethods in the DOM-based API use the following objects as receivers:

• XMLEngine
• XMLTreeDocument
• XMLElementList
• XMLElement
• ExternalData (partially)
330 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

DoMethods Used with the DOM-based API

The following tables explain the DoMethods most commonly used with the
DOM-based API. In the end of this chapter is a full list of XML DoMethods.

DoMethod Name GetExternalInputStream

Description Returns the input stream object containing the request
data

Receiver ExternalData

Return type and
value

Returns a JSInputStream.

Parameters This DoMethod has no parameters.

DoMethod Name ReadXMLTreeDocument

Description Reads and builds a DOM-based XML document object
from the input stream.

Receiver XMLEngine

Return type and
value

Returns an XMLTreeDocument.

Parameters inStream - Enter the Input Stream object, the outcome
of the GetExternalInputStream DoMethod.

validate - Specify whether to perform validation on the
document that was read (boolean). This parameter is
applicable only if the XML document contains a
reference to a DTD.

DoMethod Name GetDocumentElement

Description Returns the root element of a document.
webMethods JIS: XHTML Client User’s Guide Version 9.0 331

Chapter 10. Conducting XML-based Transactions from the Client

Receiver XMLTreeDocument - Apply this DoMethod to the
outcome of the ReadXMLTreeDocument DoMethod.

Return type and
value

Returns the root element of a document which is an
XMLElement.

Parameters This DoMethod has no parameters.

DoMethod Name GetElementsByTagName

Description Returns a list of nodes that have the same tag name
from the document. Useful for data manipulations.

Receiver XMLTreeDocument - Apply this DoMethod to the
outcome of the ReadXMLTreeDocument DoMethod.

Return type and
value

Returns an XMLElementList.

Parameters name - Enter the tag name.

DoMethod Name GetChildNodes

Description Returns a list of this node’s child elements. Useful for
searching within a node.

Receiver XMLElement - Apply this DoMethod to the outcome of
the GetDocumentElement DoMethod or to a specific
node.

Return type and
value

Returns an XMLElementList.

Parameters This DoMethod has no parameters.
332 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name GetItem or Item

Description Returns the item at a specified position index in the
node list.

Receiver XMLElementList - Apply this DoMethod to the
outcome of the GetChildNodes DoMethod or the
GetElementsByTagName DoMethod.

Return type and
value

Returns an XMLElement.

Parameters index - Enter the index number of the element’s
position in the list. The list may include only one
element, or possibly even no elements whatsoever.

DoMethod Name GetTagName

Description Gets this node’s tag name.

Receiver XMLElement - Apply this DoMethod to a specific node.

Return type and
value

String

Parameters This DoMethod has no parameters.
webMethods JIS: XHTML Client User’s Guide Version 9.0 333

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name GetNodeTextValue

Description Gets the text value of a node.

Example: <last_name>Melville</last_name>

The method returns "Melville".

Receiver XMLElement - Apply this DoMethod to a specific node.

Return type and
value

String

Parameters This DoMethod has no parameter

DoMethod Name GetAttribute

Description Gets a value of an attribute of this node

Example: <book ISBN="465467" >

The method gets "ISBN" and returns "465467".

Receiver XMLElement - Apply this DoMethod to a specific node.

Return type and
value

String

Parameters attributeName - Enter the attribute name.
334 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name NewXMLTreeDocument

Description Creates a new empty XMLTreeDocument object.

Receiver XMLEngine

Return type and
value

XMLTreeDocument

Parameters This DoMethod has no parameters.

DoMethod Name CreateElement

Description Creates a new element and provides it with a tag name.

Receiver XMLTreeDocument - Apply this DoMethod to the
outcome of the NewXMLTreeDocument DoMethod.

Return type and
value

XMLElement

Parameters tagName - Enter the node tag name.

DoMethod Name AppendChild

Description Appends an element as a child node of another
element. When appending to a
NewXMLTreeDocument, the node becomes the root
element.

Receiver XMLElement or NewXMLTreeDocument

Return type and
value

Boolean

Parameters node - Enter the child node object or the root node
object.
webMethods JIS: XHTML Client User’s Guide Version 9.0 335

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name SetAttribute

Description Adds an attribute to a node and sets its value.

Receiver XMLElement

Return type and
value

Boolean

Parameters name - Enter the attribute name.

value - Enter the attribute value.

DoMethod Name AppendTextChild

Description Inserts the text specified in the parameter into the
element.

Receiver XMLElement - Apply this method to a specific node.

Return type and
value

Boolean

Parameters text - Enter the node’s text.

DoMethod Name GetExternalOutputStream

Description Returns an output stream object in order to send data
from the JIS Server to the end-user.

Receiver ExternalData

Return type and
value

JSOutputStream

Parameters This DoMethod has no parameters.
336 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

Parsing XML Documents Using the DOM API

To read an XML document, you parse it and retrieve its parameters’ values.

The following DoMethods are used for each step of the process.

1 Establish an input stream using the GetExternalInputStream
DoMethod.

2 Build an XMLTreeDocument from the input stream using the
ReadXMLTreeDocument DoMethod and referencing it to the outcome of the
GetExternalInputStream method line.

3 Identify the XML object’s root element using the GetDocumentElement
DoMethod.

4 Search within the XML object’s nodes, by doing one of the following:
• Extract a list of nodes with a specific name, using the

GetElementsByTagName DoMethod. This list may contain only one
element, when only one element with this name exists in the document.
The list may even be empty, if there is no element with this name in the
document.

-OR-
• Search the tree for a node with a specific characteristic such as a specific

attribute, using the GetChildNodes DoMethod to produce a list, and
then search through it, element by element.

5 Pick an element from the list using the GetItem DoMethod or the Item
DoMethod.

6 Use the FileOpenRead DoMethod instead of using an HTTP stream to open
an XML file and read the information from it.

7 Use the ReadToString DoMethod to transform the InputStream into a
string.

DoMethod Name WriteXMLTreeDocument

Description Writes a DOM-based XML document to an output
stream.

Receiver XMLEngine

Return type and
value

Boolean

Parameters doc - Enter the DOM-based XML document object.

outStream - Enter the Output Stream object.
webMethods JIS: XHTML Client User’s Guide Version 9.0 337

Chapter 10. Conducting XML-based Transactions from the Client

Retrieving the Data Using the DOM API

After finding the desired XML element, you will probably need to retrieve the
element value or attribute.

To retrieve an element’s name, value or attribute:

1 Retrieve a tag’s name using the GetTagName DoMethod.
2 Retrieve a tag’s value using the GetNodeTextValue DoMethod.
3 Retrieve the value of a tag’s attribute using the GetAttribute DoMethod.

Construction of XML Documents Using the DOM API

When you are ready to pack all the data that you collected into an XML file, you
must create a new XML document object.

To construct an XML document:

1 Create a new XML document, using the NewXmlTreeDocument DoMethod.
2 Create the root node, by applying the CreateElement DoMethod to the

outcome of the NewXMLTreeDocument method line.
3 Append the root node to the XML tree, by referencing the AppendChild

DoMethod to the NewXmlTreeDocument method line.
4 Create a new node using the CreateElement DoMethod.
5 Give the newly created node an attribute, if needed, using the

SetAttribute DoMethod.
6 Give the newly created node a tag value, if needed, using the

AppendTextChild DoMethod.
7 Subject the newly created node to its parent node, referencing the

AppendChild DoMethod to the parent node’s CreateElement method
line.

8 Repeat steps 4-7 for every additional element, as needed.

Writing an XML Tree Document and Sending it Back to the End-user

In order to complete the transaction you will need to send a response back to the
end-user who initiated the transaction.

To write an XML document and send it back to the end-user:

1 Establish output stream, using the GetExternalOutputStream
DoMethod.

2 Transmit your newly created XML document through the output stream,
using the WriteXMLTreeDocument DoMethod.
338 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

3 Use the FileOpenWrite DoMethod instead of using an HTTP stream to
open an XML file and write the information to it.

4 You can use the PrintString DoMethod to write a simple string into the
OutputStream object.

The JIS Template API

A JIS Template is an XML file that you create with a .tpl suffix. JIS Templates
simplify work by prescribing the structure of the XML files. By working with a
template, you are able to determine what the XML document should look like. A
template contains JIS attributes and is structured to fit the transaction’s
requirements.

To construct a new XML document according to an existing JIS template, you use
the ACE methods discussed in this section, referring to nodes by their JIS names.
In order to add new nodes, the developer must duplicate existing nodes in the
template and change the tags and attribute values using special methods.

The JIS names in the template file are unique and should appear only once as a
node’s identifier.

Example of a template file:
<Receipt>

 <Item Type="Type" Name="Name" JISName="Item">

 <Price JISName="Price">Value</Price>

 <Quantity JISName="Quantity">Value</Quantity>

 <Comment JISName="Comment">Value</Comment>

 </Item>

</Receipt>

DoMethods Used With the JIS Template API

The following tables explain the DoMethods most commonly used with the JIS
Template API. A full list of XML DoMethods can be found in Table 65.

Note: You can close Input/Output streams using the Close DoMethod.
However, even if you do not close the streams, they will close automatically
upon method’s completion.

Note: This file contains one node named Item. The <Item> node contains
attributes and child nodes. Each node has a JIS name. The JIS name enables
you to refer to this node directly, without navigating to it. The JISName
attribute does not have to be the same as the tag name. You can change the
values of the nodes, or leave them as they are. You can add a node by
duplicating an existing node.
webMethods JIS: XHTML Client User’s Guide Version 9.0 339

Chapter 10. Conducting XML-based Transactions from the Client

.

DoMethod Name GetExternalInputStream

Description Returns the input stream object containing the data
from the request.

Receiver ExternalData

Return type and
value

Returns a JSInputStream.

Parameters This DoMethod uses no parameters.

DoMethod Name ParseDocumentByTemplate

Description Parses an XML object read from the input stream,
according to the specified template, and inserts
JISNames into the nodes.

Receiver XMLEngine

Return type and
value

XMLTemplateDocument

Parameters inStream - Enter the Input Stream object.

templateName - Enter the template file’s path and
name.

validate - Enter whether or not to perform validation on
the input document.
340 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name MatchNextNode

Description When parsing the document, using the
ParseDocumentByTemplate DoMethod, only the
first node matching each JISName is returned. If there
is more then one node in the document that matches the
same JISName, use this DoMethod to move to the next
node that matches the same JISName.

Once another match is found, it is not possible to return
to the previous one using this DoMethod.

Receiver XMLTemplateDocument

Return type and
value

Boolean

Parameters nodeJISName - Enter the node’s JIS name.

DoMethod Name GetNodeValue

Description Gets the text value of a node.

Example: <last_name>Melville</last_name>

The method returns "Melville".

Receiver XMLTemplateDocument.

Return type and
value

String

Parameters nodeJISName - Enter the node’s JIS name.
webMethods JIS: XHTML Client User’s Guide Version 9.0 341

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name GetNodeAttribute

Description Gets a value of an attribute of this node.

Example: <book ISBN="465467" >

The method gets "ISBN" and returns "465467".

Receiver XMLElement - Apply this method to a specific node.

Return type and
value

String

Parameters attributeName - Enter the attribute name.

nodeJISName - Enter the JIS node name.

DoMethod Name NewDocumentFromTemplate

Description Builds a new XML document based on the template
specified in the parameter.

Receiver XMLEngine

Return type and
value

XMLTemplateDocument

Parameters templateName - Enter the template file’s path and
name.
342 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name DuplicateNode

Description Adds a sibling node to the node specified in the
parameter according to its JISName.

Receiver XMLTemplateDocument

Return type and
value

Boolean

Parameters nodeJISName - Enter the JIS node name.

DoMethod Name RemoveNode

Description Removes a node and all its child nodes from a
document.

Receiver XMLTemplateDocument

Return type and
value

Boolean

Parameters nodeJISName - Enter the JIS node name.

DoMethod Name SetNodeValue

Description Inserts the text into the node. The node is identified by
its JISName.

Receiver XMLTreeDocument

Return type and
value

Boolean

Parameters nodeJISName - Enter the JIS node name.

str - Enter the text of the node.
webMethods JIS: XHTML Client User’s Guide Version 9.0 343

Chapter 10. Conducting XML-based Transactions from the Client

DoMethod Name SetNodeAttribute

Description Sets the value of a node attribute If the attribute already
has a value, it is replaced. The node is identified by its
JISName.

Receiver XMLTreeDocument

Return type and
value

Boolean

Parameters nodeJISName - Enter the JIS node name.

attributeName - Enter the attribute name.

value - Enter the attribute value.

DoMethod Name GetExternalOutputStream

Description Returns an output stream object in order to send data
from the server to the end-user.

Receiver ExternalData

Return type and
value

JSOutputStream

Parameters This DoMethod uses no parameters.
344 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

Parsing Documents Using the Template API

The template applied to the document is read from a stream. You must make sure
that the document being parsed has the same structure as the template.
Otherwise, it will not be parsed. If the template cannot be applied, the function
returns a return code indicating an error.

To parse the XML document:

1 Establish an input stream using the GetExternalInputStream
DoMethod.

2 Use the ParseDocumentByTemplate DoMethod and reference it to the
GetExternalInputStream method line.
The ParseDocumentByTemplate DoMethod returns the first node that
matches each JISName.

3 Get to the next node with a matching JISName, using the MatchNextNode
DoMethod.

Retrieving the Data of a Template-based Document

After parsing a template-based document, you will want to retrieve its elements’
values.

To retrieve an element’s value or attribute:

1 Retrieve a tag’s value, using the GetNodeValue DoMethod.
2 Retrieve the value of a tag’s attribute, use the GetNodeAttribute

DoMethod.

DoMethod Name WriteXMLTemplateDocument

Description Writes a Template-based XML document to an output
stream.

Receiver XMLEngine

Return type and
value

Boolean

Parameters doc - Enter the Template-based XML document object.

outStream - Enter the Output Stream object.
webMethods JIS: XHTML Client User’s Guide Version 9.0 345

Chapter 10. Conducting XML-based Transactions from the Client

Constructing New XML Documents Using the Template API

You can use a template-based document as a response to the end-user.

To construct a template-based XML document:

1 Create a new XML document based on a template using the
NewDocumentFromTemplate DoMethod.

2 Duplicate nodes from the template as needed using the DuplicateNode
DoMethod.

3 Remove unnecessary nodes using the RemoveNode DoMethod.
4 Change the values of nodes and their attributes as needed by doing the

following:
• Set an element’s value, using the SetNodeValue DoMethod.
• Set an element’s attribute, using the SetNodeAttribute DoMethod.

Writing an XML Template-based Document and Sending it Back to the End-user

Once you have finished creating the document, you must send a response back
to the end-user who requested the transaction.

To send a template-based XML file to the end-user:

1 Establish an output stream using the GetExternalOutputStream
DoMethod.

2 Using the WriteXMLTemplateDocument DoMethod, send the XML file to
the end-user through the output stream.

Note: Remember to navigate to the desired node using the MatchNextNode
DoMethod, before retrieving its values.

Note: Use existing nodes from the template. Duplicate them or delete the ones
you do not need.

Note: You can close the Input/Output streams using the Close DoMethod.
However, even if do not do close the streams, they will close automatically
upon the method’s completion
346 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

List of XML-based DoMethods

Table 65 presents a full list of XML-based DoMethods.

Table 65. XML-based DoMethods (Sheet 1 of 4)

DoMethod Name Description Return type

AppendChild Appends an element as child node to
other elements. When appended to a
NewXMLTreeDocument, the node
becomes the root element. Use in
DOM-based XML methods.

Boolean

AppendTextChild Inserts the text, specified in the
parameter, into the element. Use in
DOM-based XML methods.

Boolean

Close Closes an InputStream or an
OutputStream.

Void

CreateElement Creates a new XML element. Use in
DOM-based XML methods.

XML
Element

DuplicateNode Adds a brother node to the node
specified in the parameter by its JIS
name. Use in template-based XML
methods.

Boolean

GetAttribute Returns the value of a node’s attribute.
The attribute’s name is specified in the
parameter. Use in DOM-based XML
methods.

String

GetChildNodes Returns a list of the child XML
elements of a node. Use in DOM-based
XML methods.

XML
Element
List

GetDocumentElement Returns the root element of an XML
document. Use in DOM-based XML
methods.

XML
Element
webMethods JIS: XHTML Client User’s Guide Version 9.0 347

Chapter 10. Conducting XML-based Transactions from the Client

GetElementsBy
TagName

Returns a list of the elements named
according to name used in the
parameter. Use in DOM-based XML
methods.

XML
Element
List

GetExternalInput
Stream

Returns an InputStream object from an
external data source.

JSInput
Stream

GetExternalOutput
Stream

Returns an output stream object in
order to send data from the server to
the end-user.

JSOutput
Stream

GetItem Returns an XML element from a list.
The element's index in the list is
specified in the parameter. Use in
DOM-based XML methods.

XML
Element

GetLength Returns the number of elements
contained in a list of elements. Use in
DOM-based XML methods.

Int

GetNodeAttribute Returns the value of a node’s attribute.
The attribute is specified in a
parameter. Use in a template-based
XML method.

String

GetNodeTextValue Returns the text found in a node. Use in
DOM-based XML methods.

String

GetNodeValue Returns the text found in a node. Use in
template-based XML methods.

String

GetTagName Returns the name of an element’s tag.
Use in DOM-based XML methods.

String

GetXMLElement
ByName

Returns a DOM-based element from a
node in a template-based XML
document. This DoMethod connects
the JIS template interface with the
DOM interface.

XML
Element

Table 65. XML-based DoMethods (Sheet 2 of 4)

DoMethod Name Description Return type
348 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

GetXmlLastError Returns a description of the last error to
occur during the execution of the
method. Use in DOM-based or
template-based XML methods.

String

Item Returns an XML element from a list.
The element's index in the list is
specified in the parameter. Use in
DOM-based XML methods.

XML
Element

MatchNextNode Moves to the next node that has the
same JISName, as specified in the
parameter. Use in template-based XML
methods.

Boolean

NewDocumentFrom
Template

Builds a new XML document based on
the template specified in the parameter.
Use in template-based XML methods.

XML
Template
Document

NewXMLTreeDocument Creates a new empty XML document.
Use in DOM-based XML methods.

XMLTree
Document

ParseDocument
ByTemplate

Parses an XML object read from the
input stream, according to the specified
template, and inserts JISNames into the
nodes. Use in template-based XML
methods.

XML
Template
Document

PrintString Prints a string into the OutputStream. Void

ReadToString Transforms an InputStream into a
string. This function empties the input
stream.

String

RemoveNode Removes a node and all its child nodes
from a document. Use in template-
based XML methods.

Boolean

Table 65. XML-based DoMethods (Sheet 3 of 4)

DoMethod Name Description Return type
webMethods JIS: XHTML Client User’s Guide Version 9.0 349

Chapter 10. Conducting XML-based Transactions from the Client

Navigating Through Host Screens

Once a session is allocated, the JIS runtime Application navigates through the
host screens to the desired screen, in which information is inserted or extracted,
according to the transaction’s specifications.

Navigation is accomplished by logging into the host application and skipping
screens.

SetAttribute Adds an attribute to a node and sets its
value. If the attribute already exists, its
value is changed to the new value. Use
in DOM-based XML methods.

Boolean

SetNodeAttribute Sets the value of a node’s attribute. If
the attribute already has a value, it is
replaced by the new value. Use in a
template-based XML method.

Boolean

SetNodeValue Inserts the text specified in the
parameter into a node. The node is
identified by its JISName. Use in
template-based XML methods.

Boolean

ToXMLTreeDocument Converts a template-based XML
document into a DOM-based XML
document.

XMLTree
Document

WriteXMLTemplate
Document

Writes a template-based XML
document to the output stream. Use in
template-based XML methods.

Boolean

WriteXMLTree
Document

Writes an XML document based on
DOM syntax to the output stream. Use
in DOM-based XML methods.

Boolean

Table 65. XML-based DoMethods (Sheet 4 of 4)

DoMethod Name Description Return type
350 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

Navigation Types

There are two ways to navigate through the host screens:

• Single-method navigation
• Multiple-method navigation

Both are acceptable. However, we recommend multiple-method navigation.

Single-method Navigation

Single-method navigation is accomplished by performing all of the navigation
within one method.

To perform single-method navigation:

1 In the transaction method, after parsing the XML object (if any), log into the
host application.

2 For the next screen, fill the appropriate field to move to the next screen.
Usually you will have to insert a number in the menu command field, press
the Enter key and move-according-to-host.

3 Repeat step 2 for every new screen, until you reach the desired screen.
4 For the desired screen, use the appropriate DoMethods to write information

to the desired fields and/or retrieve information from the desired fields.

Advantage of Single-method Navigation Simple. You can view the whole transaction
at once in a linear order.

Disadvantage of Single-method Navigation Bulky. The method is very long,
especially with large host applications requiring navigation through many
screens.

Multiple-method Navigation

Multiple-method navigation is accomplished by performing the navigation with
many methods. This is done either by calling more methods from the transaction
method, or by modifying the UserInitSubApplication System-Triggered
method of every Subapplication in the course of the navigation.

To perform multiple-method navigation:

1 In the transaction method, after parsing the XML object (if any), log into the
host application. This takes about three method lines.

2 Do one of the following:
• Call another method, by inserting a DoMethod method line and choosing

a method from the DoMethod list. This new method can be a method that
webMethods JIS: XHTML Client User’s Guide Version 9.0 351

Chapter 10. Conducting XML-based Transactions from the Client

you have prepared in ACE to perform all or part of the navigation to the
desired screen.

-OR-
• In the next screen’s Subapplication, modify the

UserInitSubApplication System-Triggered method so that it moves
to the next screen. You can repeat this for every screen until you reach the
desired screen.

Advantage of Multiple-method Navigation Short. Every method is short.

Disadvantage of Multiple-method Navigation Complex. Many intertwined methods
make it difficult to comprehend the navigation process.

Example: Navigating Through a SignOn Screen

In the following example, the JIS Server has allocated a session and the first host
screen the runtime identifies is a SignOn screen.

Figure 73. SignOn screen

The method must do the following on the host:

1 Fill in the “UserName” and “Password” fields.
2 Press the Enter key.
3 Move according to host.

These are performed using the following method lines:
HostType: Text: `"JOSEPH"` Field: User MoveCursor: False
AidKey: AidNone RemainInScreen: False
352 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

HostType: Text: `"JO77"` Field: Password MoveCursor: False
AidKey: AidEnter RemainInScreen: False

DoMethod: Receiver: `SubApplication` Method: MoveAccordingToHost Parms: ()

The first method line types “JOSEPH” in the User field. The second method line
types “JO77” in the Password field and presses Enter. The third method line
moves according to host.

Retrieving Information from Host Screen Fields

You retrieve information from host screen fields and/or table cells using a series
of Get DoMethods. DoMethods used for retrieving information from the host:

• GetDataFromScreen

• GetString

• GetVarValueByName
• GetUserVariable

• GetTableVar

• GetTopIndex

• GetStringByColumnIndex

• GetStringByColumnName

Writing Information into Host Screen Fields

You write information into host screen fields by inserting a HostType method
line. You can also select a field or table cell and then modify its contents.
DoMethods used for selecting and modifying host screen fields:

• SetCurTableSel

• MoveCursorToFieldByName

• MoveCursorToRowCol

• Add

• ClearHostFieldByName

Skipping Windows

To effectively navigate through host screens, a Subapplication can be processed
in runtime without displaying its window, as long as information can be received
from the host, and sent to the host, without the end-user’s intervention.
Essentially the Subapplication’s window-display is skipped over.

By utilizing the Skipping Windows feature you can improve the performance
time of your converted Application. With less information to process and less
GUIs to build, the Application works faster.
webMethods JIS: XHTML Client User’s Guide Version 9.0 353

Chapter 10. Conducting XML-based Transactions from the Client

Windows can be configured to always be skipped or skipped only when certain
conditions exist. You choose the methods that control the skipping process.

It is important to remember that when using this technique the host window is
not skipped. Rather, only the GUI equivalent of a host window is skipped.

For complete details about the Skipping Windows feature including a description
of the various methods used for Skipping Windows, see the chapter in
webMethods JIS: Advanced Topics.

Navigation Continuity

This section discusses advanced host screen navigation topics. To provide your
transactions with good navigation fluidity, you must carefully plan every stage
of the host screen navigation. This way you will minimize the possibility of
communication problems between the JIS Server and the host, during the
working of a transaction.

This section discusses the following:

• Navigation Strategies
• Overcoming Navigation Obstacles

Navigation Strategies

You will probably want to enable the JIS Server to perform several different
transactions, each requiring navigation to different host screens. This requires
intricate strategic planning. Here we shall outline several strategies for doing this.

User-Triggered Screen Skipping

User-triggered screen skipping is defined using user-triggered methods. This can
be done with one or more methods. Usually, this form of navigation requires
more than one user-triggered method. However, in some cases you may prefer to
define all of the navigation in a single method.

For example, when a transaction requires a very short navigation through no
more than three host screens, it is preferred to define all of the navigation within
one method. This can be accomplished by performing all of the navigation within
the initial transaction method. In this way, you have all of the navigation and
XML-based method lines in on method. This is also known as single-method
navigation.

System-Triggered Screen Skipping

When a transaction must navigate through many host screens, a common way of
accomplishing this is through the use of system-triggered screen skipping.
354 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

This is accomplished by doing the following:

1 In the transaction method, log into the host application and
MoveAccordingToHost.

2 In the following screen’s UserInitSubApplication or UserSkipScreen
system-triggered method, fill in the appropriate host screen fields to skip to
the next screen and MoveAccordingToHost.

3 Repeat step 2 in every new host screen until you reach the desired screen.

Common-Navigation Methods

When several transactions use a common navigation route until they reach an
“intersection”, from which they split to different directions, it is recommended
that they all use a common-navigation method to take them through these
common host screens.

Example of Common Navigation Methods’ Use There are three transactions named
A, B and C:

1 Transaction A navigates through all the host screens from screen 1 to screen
11.

2 Transaction B navigates through all the host screens from screen 1 to screen 7,
and from screen 7 it jumps to host screen 12.

3 Transaction C navigates through all the host screens from screen 1 to screen
10, and from screen 10 it jumps to host screen 13.

These transactions share common navigation routes on the way to their
destination screens as seen below:

Figure 74. Navigation through several screens

1 A B C

8 B C

2

9

3

10
 B C

4

5

6

7
 A B C

11
Destionation A

12
Destination B

13
Destination C

#
Host Screen
webMethods JIS: XHTML Client User’s Guide Version 9.0 355

Chapter 10. Conducting XML-based Transactions from the Client

The common navigation routes are as follows:

• Transactions A, B and C all navigate through host screens 1, 2, 3, 4, 5, 6 and 7.
• Transactions A and C both navigate through host screens 7, 8, 9 and 10.

This is where common-navigation methods come into place.

To make your work simpler, you can:

• Create a navigation method named NavigateOneToSeven for navigating
from host screen 1 to host screen 7.

• Create a navigation method named NavigateSevenToTen for navigating
from host screen 7 to host screen 10.

Transaction A In its transaction method, transaction A can now call for the
NavigateOneToSeven method and then skip to host screen 11.

Transaction B In its transaction method, transaction B can now call for the
NavigateOneToSeven method, then call for the NavigateSevenToTen
method and then skip to host screen 12.

Transaction C In its transaction method, transaction C can now call for the
NavigateOneToSeven method, then call for the NavigateSevenToTen
method and then skip to host screen 13.

Overcoming Navigation Obstacles

A situation called “behind-the-scenes navigation” may occur on a mainframe
computer, and also, less commonly, on an iSeries computer. This situation can
sometimes lead to problems which ultimately cause the JIS Server to fail to
recognize some screens, and even to stop running altogether. This ultimately
causes the OutputStream to close before navigation is completed.

The navigation process:

1 The host starts navigating between screens, filling in and retrieving data from
fields.

2 The host screen is updated by the host.
3 After a few moments, the completed output screen is sent back to the JIS

Server.

Note: This manner of navigating through host screens is recommended when
your Application enables many transactions.
356 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 10. Conducting XML-based Transactions from the Client

In most cases, the JIS Server has no problem recognizing new or refreshed
screens. Sometimes, however, the host sends an unexpected or an incomplete
screen. Such screens are not recognized by the webMethods JIS runtime, and may
block the runtime. As a result of this, the JIS Server may possibly produce a
JITGUI.

To overcome this problem it is advised to use the Wait For Screen feature. See
“Wait for Screen” on page 54
webMethods JIS: XHTML Client User’s Guide Version 9.0 357

Chapter 10. Conducting XML-based Transactions from the Client

358 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

The Server Configuration File is an XML document that defines each and every
transaction and its relation to the Client URL request, and provides the settings
for the host sessions that house these transactions.

In order to successfully optimize the Server Configuration File, you should be
familiar with the file’s structure and its different element tags.

This document outlines the Server Configuration File’s structure and provides
guidelines for understanding the Server Configuration File and writing a new
one.

The following topics are discussed:

• “How the Server Configuration File Works” on page 359
• “Getting Started” on page 362
• “Writing the Server Configuration File” on page 364
• “Enabling Action Definitions to be Overridden by the Client” on page 371
• “Enabling Session Definitions to be Overridden by Actions” on page 376
• “Example Server Configuration File” on page 381
• “XML Tag Reference” on page 387

How the Server Configuration File Works

The Server Configuration File regulates the flow of information between the
Client application, the JIS application and the Host application.

Three-tier Hierarchy

The Server Configuration File is based on the principle of a three-tier hierarchy,
in which one element overrides another.

The three elements of this hierarchy are:

Client Requests a transaction and overrides the transaction’s
default settings.
webMethods JIS: XHTML Client User’s Guide Version 9.0 359

Chapter 11. The Server Configuration File

The Client

The Client sends a URL request for a specific transaction.

The parameters contained in this request override the default transaction
settings. This means that the transaction’s settings are subject to the Client’s
request.

The Transaction

When requested, a transaction accommodates itself within a session.

The implementation of a transaction is pre-defined within default transaction
settings. These settings may change to accommodate the Client’s request. The
transaction’s parameters override the default session settings. This means that the
session settings are subject to the transaction it “houses”.

A pre-defined transaction is known as an Action Definition.

The Session

When initiated, a session is opened on the host.

The opening, maintaining and freeing of a host session, are pre-defined within
default session settings. These settings may change to accommodate the
transaction. A pre-defined session is known as a Session Definition.

Transaction Designates a session and overrides the session’s default
settings.

Session Connection to the host.
360 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

Overriding Dataflow

The overriding dataflow of the Server Configuration File is seen below:

Figure 75. Server configuration file dataflow

The Server Configuration File contains two main elements:

• <SessionDefinitions>
• <ActionDefinitions>

<SessionDefinitions>

This element defines session definitions.

In the flowchart above, you can see how a session definition receives overriding
parameters from the action definition.

<ActionDefinitions>

This element defines action definitions.

In the flowchart above, you can see how an action definition receives overriding
parameters from the client and how the action definition overrides session
parameters.
webMethods JIS: XHTML Client User’s Guide Version 9.0 361

Chapter 11. The Server Configuration File

Session Definitions

A session definition contains the settings required for one host session. Session
definitions are defined within the <SessionDefinitions> element.

A session definition specifies the settings for:

• Opening, maintaining and freeing host sessions and providing the host
application with the information it requires for login.

• Initiating a JIS runtime Application and providing it with the information it
requires.

• Receiving overriding data from the Transaction.

A session definition’s settings may be overridden by the specific transaction it
hosts.

Action Definitions

An action definition contains the settings required for one transaction. Action
definitions are defined within the <ActionDefinitions> element.

An action definition specifies the settings for:

• Designating a session definition to house the transaction and providing this
session definition with the information it requires for accommodating the
transaction.

• Invoking an ACE method from within the webMethods JIS runtime and
providing the method with the parameters it requires.

• Receiving overriding data from the Client.

A transaction’s settings may be overridden by the client who requests the
transaction.

Getting Started

The XML tags, which comprise the Server Configuration file, are, in fact, the
building blocks of a whole new Markup Language, such as HTML. A firm
understanding of XML is needed, in order to study the Server Configuration File
in depth.

This section, however, provides several actions you can perform on the Server
Configuration File, which is supplied with the webMethods JIS product, without
the need to study the file in depth.
362 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

The following instructions are provided:

• Change a transaction’s name.
• Specify a default JIS Application name.

Changing a Transaction’s Name

When invoking a JIS Application from a browser, the Transaction’s name is
written right after the JIS Server’s IP address and port number in the URL entry.

To change the XML Transaction Server’s default transaction name:

1 Open the ServerConfiguration.xml file in a text editor and browse to the
<ActionDefinitions> tag, where you will see the following line:
<ActionDefinition Name="TransactionTest" Default="Yes">

This is the tag that opens the default transaction named “TransactionTest”.
2 Change the value of the Name= attribute to the name you desire.
3 Save the file.

To change the XHTML Client default transaction name:

1 Open the ServerConfiguration.xml file in a text editor and browse to the
<ActionDefinitions> tag, where you will see the following line:
<ActionDefinition Name="XHTML">

This is the tag that opens the default transaction named “XHTML”.
2 Change the value of the Name= attribute to the name you desire.
3 Save the file.

Specifying a Default JIS Application Name

When you enter a URL from a browser to invoke a JIS Application, you are
required to supply a JacadaApplicationName parameter in the URL. You can
avoid this by specifying a default JIS Application Name in the Server
Configuration File. First, however, you must know the name of the transaction.
The Transaction’s name is written right after the JIS Server’s IP address and port
number in the URL entry.

To specify a default JIS Application name:

1 Open the ServerConfiguration.xml file in a text editor.
2 Under the <ActionDefinitions> tag, browse to the <ActionDefinition>

tag, which has a Name= attribute bearing the correct transaction name.
Example: <ActionDefinition Name="XHTML">
This is the tag which opens the XHTML transaction’s action definition.
webMethods JIS: XHTML Client User’s Guide Version 9.0 363

Chapter 11. The Server Configuration File

3 Within this tag, continue browsing down to this line:
<Parameter Name="JacadaApplicationName" AssignTo="SessionManagement/
SessionProperties/Parameter
[@Name=JacadaApplication]">Test1</Parameter>

4 Change the tag’s value from Test1 to the desired JIS Application name.
5 Save the file.

From now on, if you fail to supply the JacadaApplicationName parameter in
the URL entry, the JIS Server invokes the JIS Application you specified in the tag’s
value in the Server Configuration File.

Writing the Server Configuration File

The Server Configuration File, ServerConfiguration.xml, must be placed in
the <InstallDir>/JacadaFiles/classes/ directory on the development PC.

You can either:

• Create a new file.
-OR-

• Modify the existing ServerConfiguration.xml file provided with the
product.

The Main Elements

Under the DOCTYPE line, create the main elements as follows:
<!DOCTYPE ServerConfiguration SYSTEM "ServerConfiguration.dtd">

<ServerConfiguration>

<SessionDefinitions/>

<ActionDefinitions/>

</ServerConfiguration>

The main elements in the Server Configuration File are:

Note: If you change this parameter’s Name= attribute, then in order to specify
the JIS Application name in the URL request, you must enter the new
parameter name instead of “JIS Application Name”.
For example: ...ApplName=Test1

<Server
Configuration>

The root element.
364 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

The Server Configuration File’s main elements are outlined below:

Figure 76. Server configuration file structure

Creating Session Definitions

<SessionDefinition> elements define session definitions. Each
<SessionDefinition> element is identified by a Name attribute and may
contain the following elements:
<SessionDefinition>

<Parameters>
<Parameter/>
<Parameter/>

</Parameters>

<ClientLinkProperties>
<BufferedResponse/>
<SessionIdleTimeout/>
<TrackSequenceNumbers/>

</ClientLinkProperties>

<JacadaApplication>
<Name/>

</JacadaApplication>

<User>
<Profile/>
<UserId/>
<Password/>

</User>

<SessionDefinitions> Defines session definitions. Each session
definition is defined within one
<SessionDefinition> element.

<ActionDefinitions> Defines action definitions. Each action
definition is defined within one
<ActionDefinition> element.

ServerConfiguration

SessionDefinitions ActionDefinitions

SessionDefinition

SessionDefinition

SessionDefinition

ActionDefinition

ActionDefinition

ActionDefinition

webMethods JIS: XHTML Client User’s Guide Version 9.0 365

Chapter 11. The Server Configuration File

<SharedUserVariables>
<Variable/>
<Variable/>

</SharedUserVariables>

</SessionDefinition>

The main elements in a session definition are:

<JacadaApplication>

REQUIRED

Specifies the JIS Application that runs
on the server.

It is essential for session definitions to
contain this element.

<Parameters> Enables session settings to be
overridden by a Transaction.

<User> Specifies settings for logging onto the
Host.

<ClientLinkProperties> Defines the nature of the link to the
Client.

<SharedUserVariables> Defines variables used for session
initialization.
366 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

Figure 77. A typical <SessionDefinition> element
webMethods JIS: XHTML Client User’s Guide Version 9.0 367

Chapter 11. The Server Configuration File

Creating Action Definitions

<ActionDefinition> elements define action definitions. Create one
<ActionDefinition> element for each transaction. Each
<ActionDefinition> element you create is distinguished by a different Name
attribute and may contain the following elements:
<ActionDefinition>

<Parameters>
<Parameter/>
<Parameter/>
<Parameter/>

</Parameters>

<SessionManagement>
<SessionProperties>

<SessionDefinitionName/>
<Parameter/>
<Parameter/>

</SessionProperties>
<PostAction>

<Free/>
</PostAction>
<SharedUserVariables/>

<Variable/>
<Variable/>

</SharedUserVariables>
</SessionManagement>

<ContentHandler>
<Transaction>

<MethodName/>
<MethodParameter/>
<MethodParameter/>

</Transaction>
</ContentHandler>

</ActionDefinition>

The main elements in an action definition are:

<Parameters> Enables action settings to be overridden by
the Client.

<SessionManagement> Specifies a session definition and overrides
session settings.
368 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

Figure 78. <ActionDefinition> with <ContentHandler>

Figure 79. <ActionDefinition> with <DefaultHandler>

<ContentHandler>

or <DefaultHandler>

REQUIRED

Define the transaction characteristics, i.e.
specifying an ACE method or defining a
default action.

It is essential for an action definition to
contain one of these elements.

Parameters ParameterActionDefinition

 SessionManagement

DefaultHandler

SessionDefinitionNameSessionProperties

Name

Parameter

Parameter
webMethods JIS: XHTML Client User’s Guide Version 9.0 369

Chapter 11. The Server Configuration File

Server Configuration File Minimum Requirements

The simplest form of a working Server Configuration File is one which contains
only the most essential elements.

You must create at least one session definition and one action definition as
follows:
<ServerConfiguration>

<SessionDefinitions>

<SessionDefinition>

<JacadaApplication>

<Name>MyApplicationName</Name>

</JacadaApplication>

</SessionDefinition>

</SessionDefinitions>

<ActionDefinitions>

<ActionDefinition>

<ContentHandler>

<Transaction>

<MethodName>MyMethodName</MethodName>

</Transaction>

</ContentHandler>

</ActionDefinition>

</ActionDefinitions>

</ServerConfiguration>

Action Definition Essentials

The <ActionDefinition> element requires only the <ContentHandler>
element or <DefaultHandler> (in case of a default action). The
<Transaction> element contained in <ContentHandler> requires a
<MethodName> element with an appropriate value, i.e. an ACE method’s name.
<Transaction> does not require <MethodParameter> elements.

Session Definition Essentials

The <SessionDefinition> element requires only the <JacadaApplication>
element. The <Name> element contained in <JacadaApplication> must have
an appropriate value, i.e. a JIS Application name.
370 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

Enabling Action Definitions to be Overridden by the Client

The following section explains how to enable default transaction settings to be
overridden by the client.

• On the client side, you must specify the parameters that override the
transaction settings.

• On the transaction side, you must “prepare” the action definition for
receiving the client-specified parameter values and channel these values to
override the appropriate transaction settings.

On the Client Side

The Client’s relation with the transaction is defined in the URL command line.
The client may either type a command line manually in the URL command entry
box, or pre-define the URL command as part of an application.

Once the URL command line is executed, the request is sent to the XML
Transaction Server, and this triggers the transaction. The transaction receives the
parameter values specified in the client request and sends these values to
override the appropriate action definition element values.

The URL command line includes the following:

• The XML Transaction Server’s IP address and port number.
• The transaction name.
• The parameter names to override and their values.

This is seen in Figure 80:

Figure 80. URL command line in an XML transaction

To manually set the Client URL to override transaction settings:

1 In any internet browser, select the URL entry box.
2 After the http:// prefix, enter the XML Transaction Server’s URL address, a

colon (:) character and the port number (usually 8080), followed by a slash (/)
character.

3 Enter the transaction name, which is the value of the Name attribute of the
desired transaction’s <ActionDefinition> tag, followed by a question
mark (?) character.

4 Enter the parameter name, which is the Name attribute of the transaction’s
<Parameter> tag you wish to override, followed by an equal sign (=)
character.

5 Enter the desired value that will override this parameter.
webMethods JIS: XHTML Client User’s Guide Version 9.0 371

Chapter 11. The Server Configuration File

6 If you wish to override an additional parameter, enter an ampersand (&)
character and repeat steps 4-5. Do this for every additional parameter.

7 Press Enter to send this URL request to the XML Transaction Server.

On the Transaction Side

A transaction’s relation with the client is defined in the action definition’s
<Parameters> element. This element contains several <Parameter> tags.

These <Parameter> tags are responsible for:

• Receiving tag values from the client.
• Passing on these values to action definition elements.

The transmitted values override the action definition elements’ default values.

This is sketched below:

Figure 81. Values from URL request override default values

You can create as many <Parameter> tags as you need. Each of these
<Parameter> tags may receive a tag value from the Client URL request, which
overrides its value. Then, the <Parameter> tag sends its value to override an
action definition element value.

Linking the Action Definition <Parameter> Tags

The <Parameter> tags must be linked to the appropriate elements.

An action definition’s <Parameter> tag must be linked to:

Note: The above refers to manual activation of a transaction from a browser.
The URL command line, however, may also be pre-defined as part of an
Application.

Client The HTTP request, in which a value is sent for this
<Parameter> tag.
372 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

To link an action definition <Parameter> tag to the Client:

1 Create a <Parameter> tag in the <Parameters> element. The tag should be
empty.

2 Give the tag a Name attribute.
3 Give the Name attribute a value that is a logical name to which the client can

relate.

To link an action definition <Parameter> tag to the action definition element it
overrides:

1 Give the <Parameter> tag an AssignTo attribute.
2 Give the AssignTo attribute a value, which identifies the action definition

element you wish the tag’s value to override. The value of the AssignTo
attribute is written in XPath syntax.
For example, if the AssignTo attribute’s value is “SessionManagement/
SessionProperties/SessionDefinitionName”, then the tag value overrides the
<SessionDefinitionName> element tag located in the
<SessionProperties> element located in the <SessionManagement>
element of the current action definition.

Example 17. Client overrides Transaction

1. The Client sends a URL request for a transaction

In the following URL entry, the client establishes a connection with the XML
Transaction Server residing in the IP address 190.200.74.84 (port no. 8080):
http://190.200.74.84:8080/NameList?ActionMethod=NameSearch&
MethodParameterA=John&MethodParameterB=Smith

The Client requests the following:

• Activate the “NameList” transaction, defined in the “NameList” action
definition.

• Give the “ActionMethod” <Parameter> tag the value “NameSearch”, and
give the “ActionParameterA” and “ActionParameterB” <Parameter> tags the
values “John” and “Smith”.

Transaction The action definition element this <Parameter> tag’s
received value overrides.
webMethods JIS: XHTML Client User’s Guide Version 9.0 373

Chapter 11. The Server Configuration File

2. The action definition <Parameter> tags are overridden by the Client

The “NameList” action definition <Parameters> element seen below contains
three <Parameter> tags:
<Parameters>

<Parameter Name="ActionName"

AssignTo="ContentHandler/Transaction/MethodName"/>

<Parameter Name="ActionParameterA"

AssignTo="ContentHandler/Transaction/MethodParameter

[@Name=MethodParameterA]"/>

<Parameter Name="ActionParameterB"

AssignTo="ContentHandler/Transaction/MethodParameter

[@Name=MethodParameterB]"/>

</Parameters>

These <Parameter> tags’ values are overridden by the client URL request:

• The “ActionName” <Parameter> tag receives the value “NameSearch”.
• The “ActionParameterA” <Parameter> tag receives the value “John”.
• The “ActionParameterB” <Parameter> tag receives the value “Smith”.

3. The <Parameter> tags override the Transaction settings

The “NameList” action definition’s <ContentHandler> element is as follows:
<ContentHandler>

<Transaction>

<MethodName>purchase</MethodName>

<MethodParameter Name="MethodParameterA">100</MethodParameter>

<MethodParameter Name="MethodParameterB">200</MethodParameter>

</Transaction>

</ContentHandler>

It contains the <Transaction> element, whose child elements are overridden:
374 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

Figure 82. Children of transaction element are overridden by parameters

The "ActionName" <Parameter> tag

This tag’s AssignTo attribute is “ContentHandler/Transaction/MethodName”.

This means that its newly received value overrides the value “purchase” of the
<MethodName> tag, located in the action definition’s <Transaction> element:

The "ActionParameterA" and "ActionParameterB" <Parameter> tags

These <Parameter> tags’ AssignTo attributes are set as:

• ContentHandler/Transaction/MethodParameter
[@Name=MethodParameterA]

• ContentHandler/Transaction/MethodParameter
[@Name=MethodParameterB]

This means that their newly received values override the values “100” and “200”
of the <MethodParameter> tags named “MethodParameterA” and “Method
ParameterB”, located in the action definition’s <Transaction> element.

To sum up the overriding process in this example:

1 The <Parameter> tag named “ActionName” receives the value
“NameSearch” from the Client URL request, and this value overrides the
action definition <MethodName> tag value “purchase”.

2 The <Parameter> tags named “ActionParameterA” and “ActionParameterB”
receive the values “John” and “Smith” from the Client, and these values
override the action definition <MethodParameter> tag values “100” and
“200”.
webMethods JIS: XHTML Client User’s Guide Version 9.0 375

Chapter 11. The Server Configuration File

Enabling Session Definitions to be Overridden by Actions

The following section explains how to enable a transaction to override the
default settings of the session that houses it.

• On the transaction side, you must define the transaction-specific parameters
that override the session settings.

• On the session side, you must “prepare” the session definition for receiving
the transaction-specific parameters and channel these parameters to override
the appropriate session settings.

On the Transaction Side

Each transaction’s relation with the session is defined in the action definition’s
<SessionManagement> element sketched below:

Figure 83. The action definition’s SessionManagement element

To set the <SessionManagement> element:

1 Create the <SessionProperties> element.
2 In the <SessionProperties> element, create the

<SessionDefinitionName> tag.
This tag’s value is the name of the session this transaction will use.

3 In the <SessionProperties> element, create one or more <Parameter>
tags, which define the session parameters you wish to override.

4 Give each <Parameter> tag a Name attribute. The Name attribute will be used
by the session definition to identify the parameter.

5 Give each <Parameter> tag a value. This value will override the session
settings.

Note: The next two steps are optional. Follow these steps if you wish to
specify what happens to the session upon the transaction’s completion.
376 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

6 Create the <PostAction> element. This element defines what happens to the
session once the transaction is finished.

7 In the <PostAction> element, create the <Free> element tag. This tag
specifies whether or not to free the session once the transaction ends.
If you give the tag a “Yes” value, then the session is freed immediately upon
the transaction’s completion, regardless of the time specified in the session
definition.

On the Session Side

A session’s relation with the transaction is defined in the session definition’s
<Parameters> element. This element contains <Parameter> tags.

These <Parameter> tags are responsible for:

• Receiving tag values from the transaction.
• Passing on these values to session definition elements.

The transmitted values override session definition elements’ default values. This
is sketched below:

Figure 84. Parameter tags override session default settings

You can create as many <Parameter> tags as you need. Each of these
<Parameter> tags corresponds to an action parameter, from which it receives a
tag value, and then uses this received value to override one of the session
definition’s default settings.
webMethods JIS: XHTML Client User’s Guide Version 9.0 377

Chapter 11. The Server Configuration File

Linking the Session Definition <Parameter> Tags

The <Parameter> tags must be linked to the appropriate elements. A session
definition’s <Parameter> tag must be linked to:

To link a session definition <Parameter> tag to the action parameter:

1 Create a <Parameter> tag in the <Parameters> element. The tag should be
empty.

2 Give the tag a Name attribute.
3 Give the Name Attribute the same value as its corresponding action

parameter. The corresponding action parameter is located in the action
definition’s <SessionProperties> element.

To link a session definition <Parameter> tag to the session definition element it
overrides:

1 Give the tag an AssignTo attribute.
2 Give the AssignTo attribute a value, which identifies the session definition

element you wish the tag’s received value to override.
The value of the AssignTo attribute is written in XPath syntax.
For example: If the AssignTo attribute’s value is “User/Profile”, then the tag
value will override the <Profile> element tag located in the <User>
element of the current session definition.

Example 18. Transaction overrides Session

1. The action definition’s <SessionManagement> element specifies a session and
defines the overriding of session settings

An action definition’s <SessionManagement> element is as follows:
<SessionManagement>

<SessionProperties>

<SessionDefinitionName>Session1</SessionDefinitionName>

<Parameter Name="MyProfile">Manager</Parameter>

<Parameter Name="MyApplication">Test</Parameter>

</SessionProperties>

Transaction The action parameter whose value overrides the
<Parameter> tag.

Session The session definition element this <Parameter> tag’s
received value overrides.
378 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<PostAction>

<Free>Yes</Free>

</PostAction>

<SharedUserVariables>

<VariableName="GenerateDebugLogs"/>

<VariableName="ServerDebugLevel"/>

</SharedUserVariable>

</SessionManagement>

It contains <SessionProperties>, <PostAction> and
<SharedUserVariables> elements.

<SessionProperties>

Inside the <SessionProperties> element:

• The <SessionDefinitionName> tag’s value is “Session1”.
This means that the transaction will use the session definition named
“Session1”.

• The <Parameter> tags are distinguished by their Name attributes:

These tags’ values will override the values of the corresponding tags in the
“Session1” session definition.

<PostAction>

The <Free> tag’s value is “Yes”. This means that the session is instructed to free
itself upon the transaction’s completion.

2. The “Session1” session definition receives overriding values

The session definition <Parameters> element contains two <Parameter> tags:
<Parameters>

<Parameter Name="MyProfile"

AssignTo="User/Profile"/>

<Parameter Name="MyApplication"

AssignTo="JacadaApplication/Name"/>

“MyProfile” Corresponds to the session parameter, whose Name
attribute is also “MyProfile”.

“MyApplication” Corresponds to a session parameter, whose Name
attribute is also “MyApplication”.
webMethods JIS: XHTML Client User’s Guide Version 9.0 379

Chapter 11. The Server Configuration File

</Parameters>

These <Parameter> tags receive values from their corresponding
<Parameter> tags, which reside in the action definition’s
<SessionProperties> element:

• The “MyProfile” <Parameter> tag receives the value “Manager”.
• The “MyApplication” <Parameter> tag receives the value “Test”.

3. The <Parameter> tags override the Session settings

The session definition’s <User> and <JacadaApplication> elements are as
follows:
<User>

<Profile>Administrator</Profile>

<UserId>JLENO</UserId>

<Password>SATURDAY</Password>

</User>

<JacadaApplication>

<Name Mandatory="Yes">MyAppl</Name>

</JacadaApplication>

Their child elements are overridden by the <Parameter> tags as follows:

Figure 85. Parameters in session management element override values in session defini-
tion

The "MyProfile" <Parameter> tag

The <Parameter> tag’s AssignTo attribute is set as “User/Profile”. This means
that its newly received value “Manager” overrides the value “Administrator” of
the <Profile> tag, in the <User> element.
380 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

The "MyApplication" <Parameter> tag

The <Parameter> tag’s AssignTo attribute is set as “JISApplication/Name”.
This means that its newly received value “Test” overrides the value “MyAppl” of
the Name tag, located in the session definition’s <JacadaApplication> element.

To sum up the overriding process in this example

1 The action parameter value “Manager” will override the session parameter
value “Administrator”.

2 The action parameter value “Test” will override the session parameter value
“MyAppl”.

Example Server Configuration File

The following file is the Server Configuration file that is provided with the
product. Instead of creating a new file, you may modify this one to suit your
needs.
<!DOCTYPE ServerConfiguration SYSTEM "ServerConfiguration.dtd">

<ServerConfiguration>

<SessionDefinitions>

<SessionDefinition Name="Session1">

<Parameters>

<!-- A list of Session parameters, accessible to the Action. -->

<Parameter Name="Profile" AssignTo="User/Profile"/>

<Parameter Name="JacadaApplication" AssignTo="JacadaApplication/Name"/>

<Parameter Name="Password" AssignTo="User/Password"/>

<Parameter Name="UserId" AssignTo="User/UserId"/>

<Parameter Name="UserLanguage" AssignTo="User/Language"/>

</Parameters>

<ClientLinkProperties>

<BufferedResponse>Yes</BufferedResponse>

<SessionIdleTimeout>180</SessionIdleTimeout>

<TrackSequenceNumbers>No</TrackSequenceNumbers>

</ClientLinkProperties>

<JacadaApplication>

<Name/>

</JacadaApplication>

<User>

<Profile>John</Profile>

<!-- Logon information. Used by Innovator. -->

<UserId>UserName</UserId>
webMethods JIS: XHTML Client User’s Guide Version 9.0 381

Chapter 11. The Server Configuration File

<Password>UserPassword</Password>

<Language></Language>

</User>

<!-- May be used by the UserInitApplication method. -->

<SharedUserVariables>

<Variable Name="GenerateDebugLogs">0</Variable>

<Variable Name="ServerDebugLevel">0</Variable>

<Variable Name="Var1">1</Variable>

<Variable Name="Var2">2</Variable>

<Variable Name="Var3">3</Variable>

</SharedUserVariables>

</SessionDefinition>

</SessionDefinitions>

<ActionDefinitions>

<ActionDefinition Name="TransactionTest" Default="Yes">

<Parameters>

<!-- A list of Action parameters, accessible to the URI. -->

<Parameter Name="SessionName" AssignTo="SessionManagement/
SessionProperties/SessionDefinitionName">Session1</Parameter>

<Parameter Name="JacadaApplicationName" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=JacadaApplication]"/>

<Parameter Name="ActionParameterA" AssignTo="ContentHandler/Transaction/
MethodParameter[@Name=MethodParameterA]">200</Parameter>

<Parameter Name="ActionParameterB" AssignTo="ContentHandler/Transaction/
MethodParameter[@Name=MethodParameterB]">300</Parameter>

<Parameter Name="MethodName" AssignTo="ContentHandler/Transaction/
MethodName">Method</Parameter>

<Parameter Name="GenerateDebugLogs" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=GenerateDebugLogs]"/>

<Parameter Name="ServerDebugLevel" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=ServerDebugLevel]"/>

<Parameter Name="Var3" AssignTo="SessionManagement/SharedUserVariables/
Variable[@Name=Var3]">300</Parameter>

</Parameters>

<SessionManagement>

<SessionProperties>

<SessionDefinitionName>A Default Session</SessionDefinitionName>

<!-- Action parameters sent to the Session. -->

<Parameter Name="Profile">John</Parameter>

<Parameter Name="JacadaApplication"/>

</SessionProperties>

<PostAction>

<Free>No</Free>

</PostAction>

<SharedUserVariables>

<Variable Name="GenerateDebugLogs"/>

<Variable Name="ServerDebugLevel"/>
382 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<Variable Name="Var3">30</Variable>

<Variable Name="Var4">40</Variable>

</SharedUserVariables>

</SessionManagement>

<ContentHandler>

<Transaction>

<MethodName>A Default Method</MethodName>

<!-- Action parameters sent to the Method. -->

<MethodParameter Name="MethodParameterA">100</MethodParameter>

<MethodParameter Name="MethodParameterB">200</MethodParameter>

</Transaction>

</ContentHandler>

</ActionDefinition>

<!--

 An example for the action that defines "subapplication" mode.

 It differs from it's "transaction" counterpart by the ContentHandler element.

 -->

<ActionDefinition Name="SubapplTest">

<Parameters>

<Parameter Name="SessionName" AssignTo="SessionManagement/
SessionProperties/SessionDefinitionName">Session1</Parameter>

<Parameter Name="JacadaApplicationName" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=JacadaApplication]">Test1</Parameter>

<Parameter Name="GenerateDebugLogs" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=GenerateDebugLogs]"/>

<Parameter Name="ServerDebugLevel" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=ServerDebugLevel]"/>

</Parameters>

<SessionManagement>

<SessionProperties>

<SessionDefinitionName>A Default Session</SessionDefinitionName>

<Parameter Name="JacadaApplication">Test</Parameter>

</SessionProperties>

<SharedUserVariables>

<Variable Name="GenerateDebugLogs"/>

<Variable Name="ServerDebugLevel"/>

</SharedUserVariables>

</SessionManagement>

<ContentHandler>

<Subapplication/>

</ContentHandler>

</ActionDefinition>

<!--Xhtml -->

<ActionDefinition Name="Xhtml">

<Parameters>

<Parameter Name="SessionName" AssignTo="SessionManagement/
webMethods JIS: XHTML Client User’s Guide Version 9.0 383

Chapter 11. The Server Configuration File

SessionProperties/SessionDefinitionName">Session1</Parameter>

<Parameter Name="JacadaApplicationName" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=JacadaApplication]">Test1</Parameter>

<Parameter Name="LauncherUserName" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=UserId]">UserName</Parameter>

<Parameter Name="LauncherPassword" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=Password]">UserPassword</Parameter>

<Parameter Name="Language" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=UserLanguage]"/>

<Parameter Name="GenerateDebugLogs" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=GenerateDebugLogs]"/>

<Parameter Name="ServerDebugLevel" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=ServerDebugLevel]"/>

</Parameters>

<SessionManagement>

<SessionProperties>

<SessionDefinitionName>A Default Session</SessionDefinitionName>

<Parameter Name="JacadaApplication">Test</Parameter>

<Parameter Name="UserId">John</Parameter>

<Parameter Name="Password">John</Parameter>

<Parameter Name="UserLanguage"/>

</SessionProperties>

<PreAction>

<AddPostDataToParams>Yes</AddPostDataToParams>

<AddHeaderDataToParams>No</AddHeaderDataToParams>

</PreAction>

<SharedUserVariables>

<Variable Name="GenerateDebugLogs"/>

<Variable Name="ServerDebugLevel"/>

</SharedUserVariables>

</SessionManagement>

<ContentHandler>

<Xhtml/>

</ContentHandler>

</ActionDefinition>

 <!-- CSS files for subapplication specific rules -->

 <ActionDefinition Name="XhtmlCSS" IncreaseSequenceNumber="false">

 <Parameters>

 <Parameter Name="JacadaApplicationName" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=JacadaApplication]"/>

 <Parameter Name="SessionId" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=SessionId]" Mandatory="Yes"/>

 <Parameter Name="LibraryName" AssignTo="ContentHandler/
MethodParameter[@Name=LibraryName]"/>

 <Parameter Name="SubapplName" AssignTo="ContentHandler/
MethodParameter[@Name=SubapplName]"/>
384 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

 </Parameters>

 <SessionManagement>

 <SessionProperties>

 <SessionDefinitionName/>

 <Parameter Name="JacadaApplication"/>

 <Parameter Name="SessionId"/>

 </SessionProperties>

 </SessionManagement>

 <ContentHandler>

 <XhtmlCSS>

 <MethodParameter Name="LibraryName"/>

 <MethodParameter Name="SubapplName"/>

 </XhtmlCSS>

 </ContentHandler>

 </ActionDefinition>

 <!-- ********* The Special Actions ********* -->

<!--

 Special action for session allocation.

 It hasn't a content handler, because

 its used for session initialization only. Any

 Subsequent requests on this allocated session

 will actually execute methods.

 -->

<ActionDefinition Name="AllocateSession">

<Parameters>

<Parameter Name="SessionName" AssignTo="SessionManagement/
SessionProperties/SessionDefinitionName">Session1</Parameter>

<Parameter Name="JacadaApplicationName" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=JacadaApplication]" Mandatory="Yes"/>

<Parameter Name="GenerateDebugLogs" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=GenerateDebugLogs]"/>

<Parameter Name="ServerDebugLevel" AssignTo="SessionManagement/
SharedUserVariables/Variable[@Name=ServerDebugLevel]"/>

</Parameters>

<SessionManagement>

<SessionProperties>

<SessionDefinitionName>A Default Session</SessionDefinitionName>

<Parameter Name="JacadaApplication"/>

</SessionProperties>

<SharedUserVariables>

<Variable Name="GenerateDebugLogs"/>

<Variable Name="ServerDebugLevel"/>

</SharedUserVariables>

</SessionManagement>

<DefaultHandler>

<Name>AllocateSession</Name>
webMethods JIS: XHTML Client User’s Guide Version 9.0 385

Chapter 11. The Server Configuration File

</DefaultHandler>

</ActionDefinition>

<!--

 Special action for session freeing.

 Again it hasn't a ContentHandler element.

 -->

<ActionDefinition Name="FreeSession">

<Parameters>

<!-- The following decleration is required, although empty. -->

<Parameter Name="SessionId" AssignTo="SessionManagement/
SessionProperties/Parameter[@Name=SessionId]" Mandatory="Yes"/>

</Parameters>

<SessionManagement>

<SessionProperties>

<SessionDefinitionName/>

<Parameter Name="SessionId"/>

</SessionProperties>

</SessionManagement>

<DefaultHandler>

<Name>FreeSession</Name>

</DefaultHandler>

</ActionDefinition>

</ActionDefinitions>

</ServerConfiguration>
386 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

XML Tag Reference

This appendix is an alphabetical reference to all the XML tags that are used in the
Server Configuration File.

Each tag is provided with a brief explanation of its functions and attributes.

For each tag, the following information is provided:

• Parent element
• Required child elements
• Optional child elements
• Required attributes
• Optional Attributes
• Tag value

<ActionDefinition>

This element defines one transaction.

Name=String

Specifies the name of the transaction.

Default=Boolean

Specifies whether or not this transaction is the default one. If this attribute is set
as “yes”, then the server addresses this transaction, unless specified otherwise in
the URL command entry. If there is more than one default transaction, then the
last one is addressed.

Parent Element <ActionDefinitions>

Required Child Elements <ContentHandler>

or <DefaultHandler>

Optional Child Elements <Parameters>, <SessionManagement>

Required Attributes Name=

Optional Attributes Default=
webMethods JIS: XHTML Client User’s Guide Version 9.0 387

Chapter 11. The Server Configuration File

<ActionDefinitions>

This element defines the different desired transactions. It must contain at least
one <ActionDefinition> element, but you may probably want to define
several <ActionDefinition> elements for different transactions.

<BufferedResponse>

This element tag specifies whether or not the JIS Server waits until the transaction
has finished before sending all the information in bulk back to the Client
Application.

Parent Element <ServerConfiguration>

Required Child Elements <ActionDefinition>

Optional Child Elements none

Required Attributes none

Optional Attributes none

Parent Element <ClientLinkProperties>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value Boolean
388 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<ClientLinkProperties>

This element defines the type and nature of the communication between the JIS
Server and the XHTML client Application.

<ContentHandler>

This element serves as a linking element between the current transaction and the
JIS Server. Its child elements specify which ACE method the current transaction
invokes.

Parent Element <SessionDefinition>

Required Child Elements none

Optional Child Elements <BufferedResponse>,
<SessionIdleTimeout>,
<TrackSequenceNumbers>

Required Attributes none

Optional Attributes none

Parent Element <ActionDefinition>

Required Child Elements <Transaction>

Optional Child Elements none

Required Attributes none

Optional Attributes none
webMethods JIS: XHTML Client User’s Guide Version 9.0 389

Chapter 11. The Server Configuration File

<DefaultHandler>

This element is used instead of the <ContentHandler> element to define a
default action, which is a simple transaction that does not invoke an ACE
method.

<Free>

This element tag specifies whether or not to free the session right after the
completion of the transaction. If its value is No, the session remains open until the
time specified under <SessionIdleTimeout> runs out.

Parent Element <ActionDefinition>

Required Child Elements <Name>

Optional Child Elements none

Required Attributes none

Optional Attributes none

Parent Element <PostAction>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value Boolean
390 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<JacadaApplication>

This element defines the JIS Application that runs on the JIS Server.

<MethodName>

This element tag specifies the ACE method invoked by the current transaction.
The tag’s value is the name of the ACE method.

Parent Element <SessionDefinition>

Required Child Elements <Name>

Optional Child Elements none

Required Attributes none

Optional Attributes none

Parent Element <Transaction>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value String
webMethods JIS: XHTML Client User’s Guide Version 9.0 391

Chapter 11. The Server Configuration File

<MethodParameter>

This element tag defines one ACE method parameter. The tag’s value is the
method parameter value.

<Name>

When under <DefaultHandler>

This element tag specifies the name of the default action. The tag’s value is
identical to the current <ActionDefinition> element’s Name attribute.

Parent Element <Transaction>

Required Child Elements none

Optional Child Elements none

Required Attributes Name=

Optional Attributes none

Tag Value String

Parent Element <DefaultHandler>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value String
392 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<Name>

When under <JacadaApplication>

This element tag defines the name of the JIS Application in which this transaction
runs on the JIS Server.

Mandatory=Boolean

Specifies whether or not the JIS Server expects a value for this element. If the
Mandatory attribute is set as Yes, failing to provide this element with a value
results in a connection failure.

<Parameter>

When under <Parameters>

This element tag defines one overriding parameter.

Parent Element <JacadaApplication>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes Mandatory=

Tag Value String

Parent Element <Parameters>

Required Child Elements none

Optional Child Elements none

Required Attributes Name= ,AssignTo=

Optional Attributes Mandatory=
webMethods JIS: XHTML Client User’s Guide Version 9.0 393

Chapter 11. The Server Configuration File

There are two types of <Parameter> tags:

• Action Parameters, residing within an action definition, which receive their
value from the Client and override local transaction settings.

• Session Parameters, residing within a session definition, which receive their
value from the Transaction and override global session settings.

Name=String

Specifies the name of this parameter. This attribute is used for identification
purposes. If this is a session parameter, then the Transaction overrides its value
identifying the parameter by this name. If this is an action parameter, then the
Client provides it with a value addressing the parameter by this name.

AssignTo=String

Identifies the element whose value this parameter’s value overrides. This
attribute’s value is written in XPath syntax.

Mandatory=Boolean

Specifies whether or not the JIS Server expects a value for this element. If the
Mandatory attribute is set as Yes, failing to provide this element with a value
results in a connection failure.

<Parameter>

When under <SessionProperties>

Contained in <SessionProperties>, this element tag defines an overriding
parameter whose value overrides default session settings.

Name=String

Specifies the name of the parameter for identification purposes. The parameter
must bear the same name as the session parameter it is to override.

Parent Element <SessionProperties>

Required Child Elements none

Optional Child Elements none

Required Attributes Name=

Optional Attributes none
394 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<Parameters>

When under <ActionDefinition>

This element serves as a linking element between the Client and the transaction.
The <Parameter> tags it contains receive their value from the Client and
override local transaction settings.

<Parameters>

When under <SessionDefinition>

This element serves as a linking element between the Transaction and the Session.
The <Parameter> tags it contains receive their value from the transaction and
override global session settings.

Parent Element <ActionDefinition>

Required Child Elements <Parameter>

Optional Child Elements none

Required Attributes none

Optional Attributes none

Parent Element <SessionDefinition>

Required Child Elements <Parameter>

Optional Child Elements none

Required Attributes none

Optional Attributes none
webMethods JIS: XHTML Client User’s Guide Version 9.0 395

Chapter 11. The Server Configuration File

<Password>

This element tag specifies the user’s password. The tag’s value is the password
that is used to log onto the host.

<PostAction>

This element defines what will happen after the transaction has finished.

Parent Element <User>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value String

Parent Element <SessionManagement>

Required Child Elements none

Optional Child Elements <Free>

Required Attributes none

Optional Attributes none
396 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<Profile>

This element tag specifies the profile of the user on whose behalf the connection
to the host is being made. The tag value is the profile that is used to log onto the
host.

<ServerConfiguration>

This is the Server Configuration File’s root element. It has no attributes.

It contains two main elements:

• <ActionDefinitions>, for defining the transactions.
• <SessionDefinitions>, for defining the host sessions.

Parent Element <User>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value String

Parent Element none (root element)

Required Child Elements <ActionDefinitions>,
<SessionDefinitions>

Optional Child Elements none

Required Attributes none

Optional Attributes none
webMethods JIS: XHTML Client User’s Guide Version 9.0 397

Chapter 11. The Server Configuration File

<SessionDefinition>

This element defines one session definition, which contains the global settings of
one host session.

Name=String

Specifies the name of the session definition.

<SessionDefinitionName>

This element tag specifies the desired session. The value of this tag specifies
which of the <SessionDefinition> elements is used to “house” this
transaction.

Parent Element <SessionDefinitions>

Required Child Elements <JacadaApplication>

Optional Child Elements <Parameters>, <SharedUserVariables>,
<ClientLinkProperties>, <User>

Required Attributes Name=

Optional Attributes none

Parent Element <SessionProperties>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value String
398 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<SessionDefinitions>

This element defines the different possible host sessions. In this element, you
must define at least one <SessionDefinition> element, but you may possibly
want to define several <SessionDefinition> elements for different host
session types.

<SessionIdleTimeout>

This element tag specifies how long, in seconds, a session remains open. If a
session is not freed at the end of a transaction, it stays open until the specified
time runs out. If a transaction gets “stuck”, then the session automatically frees
itself when the specified time runs out. Default is 180 seconds (3 minutes).

Parent Element <ServerConfiguration>

Required Child Elements <SessionDefinition>

Optional Child Elements none

Required Attributes none

Optional Attributes none

Parent Element <ClientLinkProperties>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value Integer (default is 180)
webMethods JIS: XHTML Client User’s Guide Version 9.0 399

Chapter 11. The Server Configuration File

<SessionManagement>

This element defines the relation between the transaction and the session.

<SessionProperties>

This element links the transaction to the session, by specifying a session
definition and channeling specific transaction parameter values to override
session settings.

Parent Element <ActionDefinition>

Required Child Elements none

Optional Child Elements <SessionProperties>, <PostAction>

Required Attributes none

Optional Attributes none

Parent Element <SessionManagement>

Required Child Elements none

Optional Child Elements <SessionDefinitionName>, <Parameter>

Required Attributes none

Optional Attributes none
400 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<SharedUserVariables>

This element defines variables used for session initialization. This is an optional
element, because these variables are not always needed. However, if used, it
requires at least one <Variable> tag. Two user variables are included by default:
ServerDebugLevel and GenerateDebugLogs. These variables enable the
generation of logs for specific sessions.

<TrackSequenceNumbers>

Track sequence numbers are automatically sent from the JIS Server to the Client
Application, for synchronization purposes. However, not all Client Applications
are inclined to receive these numbers. This element tag specifies whether or not
the JIS Server should expect track sequence numbers from the Client Application.

<Transaction>

Parent Element <SessionDefinition>

Required Child Elements <Variable>

Optional Child Elements none

Required Attributes none

Optional Attributes none

Parent Element <ClientLinkProperties>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value Boolean

Parent Element <ContentHandler>
webMethods JIS: XHTML Client User’s Guide Version 9.0 401

Chapter 11. The Server Configuration File

This element defines the ACE method invoked by the current transaction.

<User>

This element defines the user information required for logging on to the host.

Required Child Elements <MethodName>

Optional Child Elements <MethodParameter>

Required Attributes none

Optional Attributes none

Parent Element <SessionDefinition>

Required Child Elements none

Optional Child Elements <Password>, <Profile>, <UserId>

Required Attributes none

Optional Attributes none
402 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 11. The Server Configuration File

<UserId>

This element tag specifies the name of the user on whose behalf this connection
is being made. The tag’s value is the name used for logging onto the host.

<Variable>

This element tag defines one variable. The tag’s value is the value of the variable.

Name=String

Specifies the name of the variable.

Parent Element <User>

Required Child Elements none

Optional Child Elements none

Required Attributes none

Optional Attributes none

Tag Value String

Parent Element <SharedUserVariables>

Required Child Elements none

Optional Child Elements none

Required Attributes Name=

Optional Attributes none

Tag Value String
webMethods JIS: XHTML Client User’s Guide Version 9.0 403

Chapter 11. The Server Configuration File

404 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 12. Application Server Deployment

webMethods JIS applications can now run on a J2EE application server. This
chapter discusses how to run webMethods JIS as a web application.

The following topics are discussed:

• “Web Application Deployment” on page 405
• “Creating the Runtime Installation” on page 405
• “Deploying Your Application to WebSphere” on page 407
• “Running Your Application with WebSphere under Windows” on page 408
• “The JIS Administrator” on page 408
• “jacadasv.ini File Is Optional When Running as Web Application” on page 409
• “JIS Application Debug Logging” on page 410

Web Application Deployment

The first step in deploying your application is to create a runtime installation.
This is discussed in “Creating the Runtime Installation” on page 405.

After you have created the runtime installation, you must deploy it to an
application server.

*.INI File Settings When Running as Web Application

When running as web application, the jacadasv.ini file contains only debug-
related settings. Any other INI settings for your applications that you have until
now placed in jacadasv.ini should be moved to the runtime INI file
(<APPLNAME>.ini).

Creating the Runtime Installation

In order to deploy your application to an application server, you must first create
a Runtime Installation. In the context of a web application, we also call the
Runtime Installation a deployment package.The creation of a deployment package
is required whether you are deploying to WebLogic, to WebSphere, or to Tomcat;
to a Windows operating system or to Solaris.
webMethods JIS: XHTML Client User’s Guide Version 9.0 405

Chapter 12. Application Server Deployment

Create a runtime installation for web application deployment by using the
Create Runtime Installation wizard on the Utility menu on the ACE menu bar
and specifying Application Server deployment type.

Using the Create Runtime Installation Wizard

The runtime creation wizard is invoked by selecting Create Runtime Installation
from the Utility menu on the ACE menu bar. On the dialog box for selecting
deployment type, select Application Server Deployment.

Figure 86. Installation: select Application Server deployment

The next step in the wizard asks you to indicate the desired target server or
servers. The supported servers are listed. Select one or more of the servers and
click Next.

Figure 87. Installation: select application server

Complete the Create Runtime Installation wizard as usual.

Details of the packaging process are saved in the package.log file. See “The
package.log Files” on page 407.

Note: Before continuing, make sure that when you created the runtime you
did so for use on the appropriate platform. This is done at Generate Runtime,
in the wizard step JIS Server Platform. If you did this correctly, then, in the
following directory
<InstallDir>\JacadaFiles\classes\appls\<ApplName>\
server\resources
you should have a subdirectory named bige.
406 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 12. Application Server Deployment

The package.log Files

During the packaging process, a console window opens up to display progress
messages. These progress messages are saved in a file named package.log, in
the webMethods JIS install directory. In case an error is detected during the
packaging process this package.log file will contain a reference to a more
detailed log file.

The detailed log file is also called package.log. It records the operations
performed during the packaging process, and is always created. The detailed
package.log file is first written to the temp directory (as defined by the
Windows environment variable %TEMP%). If the packaging process completes
successfully the detailed log file is then copied to the
<JIS Root>\JacadaFiles\deployment\<APPLNAME>
directory. If the packaging fails, the detailed log file is left in the temp directory.
In that case, a message notifying the user of the existence of the file in the temp
directory is issued to the console window and also recorded in the less detailed
package.log file in the webMethods JIS install directory.

Contents of the Application Server Runtime Installation

The results of the Create Runtime Installation wizard is a set of files and folders
created in the directory
<InstallDir>\JacadaFiles\deployment\<ApplName>

The use of each of these folders and files is explained in detail later. A brief
description of each follows.

• The ForApplicationServer folder contains an EAR file for deployment to
an application server such as WebLogic or WebSphere.

• The ForServletEngine folder contains a WAR file for deployment to a web
container such as Tomcat.

Deploying Your Application to WebSphere

Deploy your application to WebSphere:

1 Open the WebSphere administrative console.
2 Sign on to the administrative console.
3 In the navigation tree in the left panel of the administrative console, select

Application > Install New Application.
webMethods JIS: XHTML Client User’s Guide Version 9.0 407

Chapter 12. Application Server Deployment

4 Indicate the path of your application EAR file. It is named <ApplName>.ear
and is located in the deployment package that you copied to the WebSphere
machine, under the subdirectory ForApplicationServer.
i.e., the path is:
<deployment package>\ForApplicationServer\<ApplName>.ear
After specifying the path to the EAR file, click Next.

5 On the Generate Default Bindings screen, click Next.
6 On the AppDeployment Options screen, click Next.
7 On the Map Virtual Hosts screen, click Next.
8 On the Map Modules to Application Server screen, click Next.
9 On the Summary screen, click Finish.
10 On the next screen, click Save to Master Configuration.
11 On the Save screen, again click Save.

Running Your Application with WebSphere under Windows

To execute your JIS Application:

1 Make sure that the WebSphere application server is running.
2 Open a browser window and go to URL

http://<ServerMachine addr>:<9080>/<ApplName>/
<ApplName>-webapp.html

or just http://<ServerMachine addr>:<9080>/<ApplName>/

The JIS Administrator

The JIS Administrator gives you the ability to query and change the configuration
of your runtime environment without modifying the runtime executable. Use of
the JIS Administrator is discussed in detail in the XHTML client book, under the
heading “The Runtime Configuration Interface” in “Chapter 5 - Optimizing the
JIS Server”.

Here, we explain how to install the JIS Administrator Runtime Configuration
interface under WebSphere on the Windows operating system.

Deploying the JIS Administrator:

1 Open the WebSphere administrative console.

Note: 9080 is WebSphere’s default application port. If you have changed this
default, your URL must reflect this.
408 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 12. Application Server Deployment

2 In the navigation tree in the left panel of the administrative console, select
Application > Install New Application.
Indicate the path of the JIS Administrator EAR file. It is named
JacadaAdmin.ear and is located in the JIS Common Files directory that you
created above, when you ran windows-install.exe. The path is therefore
<JacadaCommonFiles>\JacadaAdminApplication\
JacadaAdmin.ear

After specifying the path to the EAR file, click Next.
3 On the Generate Default Bindings screen, click Next.
4 On the AppDeployment Options screen, click Next.
5 On the Map Virtual Hosts screen, click Next.
6 On the Map Modules to Application Server screen, click Next.
7 On the Summary screen, click Finish.
8 On the next screen, click Save to Master Configuration.
9 On the Save screen, again click Save.

To run the JIS Administrator, open a browser and go to the following URL:
http://<WebSphere IPAddr>:9080/JacadaAdmin/admin

jacadasv.ini File Is Optional When Running as Web
Application

When running your application under an application server, the jacadasv.ini
file is not required, but can be used to set certain parameters. When the web
application is first initialized, an empty jacadasv.ini file is created in the
common directory. This jacadasv.ini file is read in subsequent runs.

The following parameters can be defined in the GeneralParameters section
of the jacadasv.ini file when running as a web application:

• RtDebugLevel

• RtDebugFilters

• RtDebugFileMaxSize

The MaxSessionInactivityTimeout parameter, an *.ini file parameter when
running with the Standalone Server, can be set as an initialization parameter of
the web application when running under an application server. This is done
using the web.xml configuration file.

Note: 9080 is WebSphere’s default application port. If you have changed this
default, your URL must reflect this.
webMethods JIS: XHTML Client User’s Guide Version 9.0 409

Chapter 12. Application Server Deployment

See “JIS Server INI File Settings” on page 105 for details of how to use these
settings.

When running as a web application, if you do not set the runtime root directory
(RtRootDir) and runtime log files directory (RtLogsDir) in the
jacadasv.ini file, the values are set internally to point to the JIS common
directory.

JIS Application Debug Logging

If you want to generate a debug log for your application:

• Set the detail level of the log via the RtDebugLevel parameter in the
GeneralParameters section of the jacadasv.ini file. The debug level can
be set to any integer from 1 to 1000. The greater the integer, the greater the
amount of information recorded in the log file. A debug level 70 produces an
extremely detailed and voluminous log file. The default value is 1.
Example:
[GeneralParameters]

RtDebugLevel=70

By default, webMethods JIS creates a logs directory under the common
directory that you specified in step 3 of the packaging procedure. The
application logs are written to this directory. If you want the application log
files to be created in a different directory, use the RtLogsDir parameter in
the GeneralParameters section of the jacadasv.ini file.
Example:
[GeneralParameters]

RtLogsDir=c:\mylogs

The name of the application log file is:
debug_jacada_<yyyy-mm-dd>_<random number>.log

The random number is used to distinguish between different servlet processes.

webMethods JIS can also produce session dumps. See “Enabling Dump File
Generation” on page 169”.
410 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 13. Special to the XHTML Client

The webMethods JIS is available with more than one client type. For example,
two of the most popular clients are the XHTML client and the Java client. This
chapter discusses miscellaneous features and settings specific to the webMethods
JIS XHTML client.

Modifying the Appearance of RMB Pop-up Menus

In the XHTML client, you can control the appearance of the right mouse button
(RMB) popup menus through several Java APIs for the Window control.

Introduction

webMethods JIS lets you define pop-up menus that appear when a user clicks
the right mouse button. You can define two kinds of such pop-up menus:

• A pop-up menu to appear when the main window is right-clicked. This pop-
up menu lists the items defined for the Commands menu, if any.

• A pop-up menu to appear when a table is clicked. This pop-up menu lists the
items defined for the List menu, if any.

The contents of these right mouse button pop-up menus is defined in ACE. In
Design view, from the menu bar choose Design > Subapplication Menu Editor.

For a complete discussion of the use of the Subapplication Menu Editor, see the
chapter about editing menus Design View in webMethods JIS: Basic User’s Guide. If
for a given window or table no Commands or List menu items are defined, no
pop-up menu appears when the user right-clicks.

Related INI File Setting

This feature can be disabled with a setting in the <Application_name>.ini
file, in the [Xhtml] section of the file:
RMBSupport=0

The default value of this setting is 1, which means the feature is working.
webMethods JIS: XHTML Client User’s Guide Version 9.0 411

Chapter 13. Special to the XHTML Client

Controlling the Appearance of the Pop-Up Menus

You can control the appearance of the right-mouse button pop-up menus by
means of several java methods.

APIs for Setting RMB Pop-Up Menu Characteristics

Set the menu’s foreground color
public void setRMBMenuForegroundColor (String color)

Set the menu’s background color

public void setRMBMenuBackgroundColor(String color)

Set the font of the menu items
public void setRMBMenuFontName(String fontName)

Set the font size of the menu items
public void setRMBMenuFontSize(int size)

Set the color used to highlight a specific item

public void setRMBMenuHighlightColor(String color)

Set the color of an item’s text when the item is highlighted
public void setRMBMenuHighLightTextColor(String color)

APIs for Querying RMB Pop-Up Menu Characteristics

Get the menu’s foreground color

public String getRMBMenuForegroundColor()

Get the menu’s background color

public String getRMBMenuBackgroundColor()

Get the color defined as the menu’s highlight color

public String getRMBMenuHighlightColor()

Get the name of the typeface used for the menu items
public String getRMBMenuFontName()
412 webMethods JIS: XHTML Client User’s Guide Version 9.0

Chapter 13. Special to the XHTML Client

Get the font size of the menu items
public String getRMBMenuFontSize()

Get the text color used for a highlighted item
public String getRMBHighLightTextColor()

*.ini Settings for the XHTML Client

This section lists some of the *.ini settings that you should be especially aware of
when using the XHTML client. Detailed instructions for using these settings can
be found in "JIS Server INI File Settings", which begins on page 105.

[XHTML] Section of jacadasv.ini

All of the settings in the [XHTML] section of jacadasv.ini can alternately be
defined in the runtime *.ini file (<APPLNAME>.ini). This is now the
recommended procedure, as it will ease the task of migrating your application to
a J2EE application server, should you decide to do so in the future. In a J2EE
deployment, the settings of the [XHTML] must be located in the runtime *.ini file.

HTTPClient

When using the proprietary JIS Server for the XHTML client, the setting
HTTPClient in the [GeneralParameters] section of the jacadasv.ini file
must be set on.

PopupSupport ini setting

If you convert an application from the Java Client to the XHTML Client, be aware
that you must set the PopupSupport INI setting in the [XHTML] section of the
runtime INI file to 1 (its default is 0). This setting provides support for
subapplication screens that are designated as pop-up windows when processing
them in the New Subapplication wizard.
webMethods JIS: XHTML Client User’s Guide Version 9.0 413

Chapter 13. Special to the XHTML Client

Keep Alive Implementation for the XHTML Client

In the XHTML client there is a mechanism for freeing unused sessions. A session
is considered unused after a specific time period has elapsed with no activity.

(The *.ini settings discussed in this section are described fully inTable 15,
"Jacadasv.ini: [XHTML] section", on page 119.)

The way that extended periods of session inactivity are handled is as follows:

• The client sends a “keep alive” HTTP request at an interval specified by the
*.ini parameter KeepAliveIntervalInSeconds. The default value of this
parameter is 60 seconds. Whenever the client receives a new XHTML page, the
time counter is reset to zero. The KeepAliveIntervalInSeconds
parameter can be set in the jacadasv.ini file or in the runtime *.ini file
(<applname>.ini).

• Keep alive requests are sent by the client as long as the browser is open and
within the application. When the JIS Server receives the keep alive request, it
updates the last access time of the session. If the user closes the browser or
exits the application, keep alive messages are no longer sent and the session is
closed after the inactivity time-out SessionIdleTimeout is reached.

• The default inactivity time-out of XHML sessions is 3 minutes. This value is
configurable via the SessionIdleTimeout in the
ServerConfiguration.xml file for the JIS Server, and via the session-
timeout parameter in the web.xml file when using a J2EE application
server.

• The MaxSessionInactivityTimeout parameter limits the inactivity time
of the session. For this time-out the keep alive messages are not considered as
activity. This setting handles the situation of a browser left open for an
extended period with no user activity. For the JIS Server,
MaxSessionInactivityTimeout is configurable in the HTTP section of the
jacadasv.ini file. For J2EE implementation,
MaxSessionInactivityTimeout is set in the web.xml file. The implied
units for this parameter are minutes, and the default setting is 60 (one hour).

• When a message box is open, no keep alive messages are sent, because
browsers do not execute java scripts when a message box is open. Before the
message box is sent, the client sends a special keep alive request. When the
server receives this special request it stops waiting for keep alive requests and
ignores the session inactivity parameter. (The session inactivity parameter for
applications running on the JIS Server is SessionIdleTimeout; for
applications running on a J2EE application server session activity is set via the
session-timeout parameter in the web.xml file.) Only the
MaxSessionInactivityTimeout is active when a message box is open.
When the client returns from the message box the keep alive mechanism
returns to its normal behavior.
414 webMethods JIS: XHTML Client User’s Guide Version 9.0

Appendix A. Troubleshooting

This section describes some of the problems that you may encounter and some
solutions that may help you when working with the XHTML client.

Problem / Message Possible Reasons Solution(s)

Unable to connect to
the Server. (The
message appears as an
HTML on the
browser).

JIS Server is not
activated.

Communication
problems.

Activate the JIS Server

Contact System Administrator,
and check if communication
exists between the Client and
Server.

For example, use the Ping
command followed by the server
computer’s address to verify that
communication exists between
the client and the server.

You are behind a
firewall.

In order to run the webMethods
JIS delivered applications you
will need to use HTTP
communication, or enable
communication through the Ports
that webMethods JIS uses. The
Ports are 1100 and 1101.

Application xxx is not
installed on the Server.
Try another
Application.

Application was
not found in the
jacadasv.ini file.

The <applname>.ini
file is missing.

Install the application on the
Server computer

Recompile the Application to
generate the <applname>.ini
file.
webMethods JIS: XHTML Client User’s Guide Version 9.0 415

Appendix A. Troubleshooting

The maximum number
of users are currently
connected. Please try
again later.

Maximum number
of simultaneous
clients was
exceeded.

Try again later.

The default port range for user
TCP connections is 1024-5000.
Change the MaxUserPort
setting in the Windows registry to
65534 to increase the total number
of available ports.

Warning: Using the Windows
registry editor incorrectly can
cause serious, system-wide
problems that may require you to
reinstall Windows. Neither
Software AG nor Microsoft
guarantee that any problems
resulting from the use of the
registry editor can be solved. Use
this tool carefully and at your
own risk.

Generate runtime fails
and you get the
following message:
Error: Unable to delete
the file: c://JISFiles/
classes/appls/<appname>
...cvrecord.dir

Generate runtime
cannot complete
while the JIS Server
is running.

Close the JIS Server.

When connecting to
the JIS Server you get
the following message:
Application not installed

An application INI
file <applname>.ini
is missing.

Make sure all <applname>.ini
files referenced in the jacadasv.ini
actually exist.

The [ServerMachines]
section is missing from
jacadasv.ini

The section
[ServerMachines]
was not found in
jacadasv.ini.
jacadasv.ini is
probably empty or
corrupted.

Ensure jacadasv.ini is properly
transferred to the runtime
environment. On the mainframe,
ensure it is in ASCII and not in
EBCDIC.

Problem / Message Possible Reasons Solution(s)
416 webMethods JIS: XHTML Client User’s Guide Version 9.0

Index

A
Abnormal runtime termination 168
ACE 32

applications 38
capturing screen images 46
installation procedure 34
KnowledgeBase 38
libraries 39
screen images 38
subapplications 38
views 49
workflow 39
working with 37
XHTML client, special considerations in 49

Action Definitions 362, 387
creating 368
overridden by the client 371

Action Parameters 372, 395
Activating the Jacada Server

on an AS/400 91
on Solaris 101

ApplicationName
...see jacadasv.ini

Applications 38
creating 40
sharing 71

Applying skins across applications 290, 320
AS/400

activating the Jacada Server 91
creating a runtime installation 79, 80
installing the runtime 81
mapping the PC to 82

B
BindIPAddressForGUIClient

...see jacadasv.ini
BMS 47

creating screen images 45

C
Capturing screen images 46
Cascading Style Sheets

...see CSS
Check boxes

in the XHTML client 51
CheckEnable

...see jacadasv.ini
CheckInterval

...see jacadasv.ini
CheckProcessTimeout

...see jacadasv.ini
CheckServerConfiguration

...see jacadasv.ini
CheckTimeout

...see jacadasv.ini
ClassPath

...see jacadasv.ini
Client 27
Combo box

methods for 323
Combo boxes

in the XHTML client 50
Command line parameters 103
Compiling the converted application

...see Runtime creating
Control-level Extensions 289
Creating a runtime installation

about 78
for an AS/400 79, 80
for an NT 79
for Solaris 93

Creating an application 40
Creating BMS/MFS screen images 45
Creating screen images 40

DDO files 43
DDS files 41
for mainframe sdf applications 45
screen captures and SDF 46

Creating subapplications 48
Creating the Jacada Application 37
CSS

basic explanation 267
CSS (Cascading Style Sheets) 267 to 277
webMethods JIS: XHTML Client User’s Guide Version 9.0 417

 Index

D
Date Calendar Window

...see Java extensions, for the Date Calendar Window
Date controls

in the XHTML client 51
DDO files 43
DDS files 41, 43

creating DDS screen images 41
indicators 43
record formats 43

Debug tab 195
Debugging the Jacada Administrator 187
DefaultButton

...see jacadasv.ini
Development 31

diagram of development architecture 31
software used for test 32
system requirements 31
workflow 33

Development Environment 31
setting up 34

Development Machine 32
DIL messages 53
DILPosition

...see jacadasv.ini
DisplayHostImageWhenOutOfSync

...see jacadasv.ini
DocTypeDeclaration

...see jacadasv.ini
DoHTMLMerge

...see jacadasv.ini
DOM API 330

constructing new XML documents 338
DoMethods used with 331
parsing XML documents 337
retrieving data 338
writing and sending XML documents 338

DoMethods
SetWaitForScreenState 56
XML-based 330, 347

Dump Files 168

E
Enable (session count log)

...see jacadasv.ini
Enable (session log)

...see jacadasv.ini

Enable (XML log)
...see jacadasv.ini

Enable (XML server)
...see jacadasv.ini

Enhancing the Application 243
Events for activating Java Extensions 239, 279

onControlReady 289
onPageLoad 281
onPageSubmit 281

Extra Fields 44

F
File (session count log)

...see jacadasv.ini
File (session log)

...see jacadasv.ini
File (XML log)

...see jacadasv.ini
File formats

BMS 47
IND 48
MFS 47
PNL 48
SDF 47
SDI 48

FileInterval (session count log)
...see jacadasv.ini

FileInterval (session log)
...see jacadasv.ini

FKey support
enabling 256 to 258

FkeySupport
...see jacadasv.ini

G
GetTextFromUserTimeout

...see jacadasv.ini

H
Hidden fields 45
Host 26
Host application

capturing 46
converting 39

Host paging within tables 52
418 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Index

HTML
and the XHTML client 50

HTML error pages
customizing 258 to 267

HTML Extensions 243
creating 248
examples 254
incorporating into application 250
merging process during development 247
merging process in runtime 244
naming and placing 249
using JavaScript with 252

HTTP
limitations 52

HTTPPortRange
...see jacadasv.ini

I
IgnoreOpenSessions

...see jacadasv.ini
ImagesLocation

...see jacadasv.ini
Implementing the XHTML Client 29
IND 48
Indicators 43
INI File settings

...see jacadasv.ini 105
IniDir

...see jacadasv.ini
InitialTransactionsToIgnore

...see jacadasv.ini
IniVersion

...see jacadasv.ini
Installing ACE on the Development Machine 34
Installing the runtime

about 78
on an AS/400 81
on an NT 80
on Solaris 95

J
J2EE ?? to 410
Jacada Administator

Debug tab 195
Jacada Administrator 184

debugging 187

for the J2EE environment 188
for the Jacada Proprietary Server 184 to ??
interface 188
Properties tab 189
Sessions tab 190
starting 185
System Status Log pane 189

Jacada Application
creating 37

Jacada Server 26
activating from Solaris 101
activating on an AS/400 91
command line parameters 103
components 233
installing on an AS/400 81
installing on an NT 80
installing on Solaris 95
Jacada Administrator 184
logging support 159
optimizing 105
running as a Windows service 218
scaleable system structure 139
XHTML Processing 233

Jacada template API
... See Template API

jacadasv.inc
range of valid properties 181

jacadasv.ini 106, 146
ApplicationName 124
BindIPAddressForGUIClient 107
CheckEnable 128
CheckInterval 128
CheckProcessTimeout 128
CheckServerConfiguration 107
CheckTimeout 129
Classpath 125
DefaultButton 119
DILPosition 119
DisplayHostImageWhenOutOfSync 119
DocTypeDeclaration 120
DoHTMLMerge 120
Enable (session count log) 135
Enable (session log) 133
Enable (XML log) 137
Enable (XML server) 138
example for a multiple-server system 150
example for a single-server system 148
File (session count log) 135
webMethods JIS: XHTML Client User’s Guide Version 9.0 419

 Index

File (session log) 133
File (XML log) 137
FileInterval (session count log) 136
FileInterval (session log) 134
FkeySupport 120
for scaleable server system 146
general structure 146
GetTextFromUserTimeout 127
HTTPClientHTTPClient

...see jacadasv.ini
HTTPPortRange 116
IgnoreOpenSessions 129
ImagesLocation 121
IniDir 124
InitialTransactionsToIgnore 107
IniVersion 108
JavaMemory 125
JavaOptions 125
JavaVM 125
KeepAlive 127
KeepAliveIntervalInSeconds 122
KeepAliveTimeout 108
KeepAliveTimerTick 108
log class 130
MachineApplications 127
MachineSessions 127
MaxMachineApplications 108
MaxMachineSessions 126
MaxProcessApplications 108
MaxProcesses 108
MaxProcessSessions 126
MaxSessionInactivityTimeout 116
MsgboxTimeout 126
MultiMachines 128
PanelTimeout 127
PortScanRetries 108
ProcessApplications 128
ProcessRespawnEnabled 108
ProcessSessions 128
RecvTimeout 127
RegistryPortRange 109
RegistrySpawnTimeout 109
ReportsToMachine 109
ResourceBase 117
ResponseTimeout 117
ReverseDNS 109
RMISocketTimeout 109
RtRootDir 112

RuntimeDirectory 123
ServerPortRange 113
ServerPortRange2 113
SessionCountLog 131
SessionIdleTimeout 118
SessionLog 131
setting LogClasses 163
SocketImplFactory 114
SoftLimitMarginPercent 114
SpareSessionsPercent 126
SpawnInterval 114
StartScanAtRandomPort 114
StartUpSessionsPercent 126
StdoutEncoding 115
SupportHTTPS 118
SystemConnectionTimeout 115
TimerTick 133
TimerTick (session count log) 135
TimerTick (XML log) 137
TimerTick (XML server) 138
UseExternalErrorPages 118
WaitForSpawned 115
WorkingDirectory 124
XMLLog 131
XMLServer 132

Jacservr.exe 80
JAM

...see Jacada Administrator
Java

documentation for generated classes 279
Java Compiler 32, 64
Java Extensions 279

applying skins across applications 290, 320
events 239, 279

onControlReady 289
onPageLoad 281
onPageSubmit 281

examples 293, 316 to 326
files 282
for the Date Calendar Window 314 to 322
hierarchy 282
Java API

onControlReady 292
onPageLoad 286
onPageSubmit 286

scope 282
application scope 283
library scope 283, 317
420 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Index

subapplication scope 284, 318
types 280

control-level extensions 289
page-level extensions 281

writing 239
Javadoc 279
JavaMemory

...see jacadasv.ini
JavaOptions

...see jacadasv.ini
JavaScripting 252
JavaVM

...see jacadasv.ini
JBSService.exe 220
JBSToService.exe 218
JITGUI 357
Just-in-Time GUI 70

K
KeepAlive

...see jacadasv.ini
KeepAliveIntervalInSeconds

...see jacadasv.ini
KeepAliveTimeout

...see jacadasv.ini
KeepAliveTimerTick

...see jacadasv.ini
Keyboard emulation 78
KnowledgeBase 38

L
language localization

activating 228
current limitations 232
resource files 229
resource maintenance 230
setting the mechanism

through the JacadaStarter API 230
string types handled by 231
work flow 228

Libraries 39
Load Balancing 141
Log class

...see jacadasv.ini
log class

Logging support

architecture 159
components 159
log classes 161

M
MachineApplications

...see jacadasv.ini
MachineSessions

...see jacadasv.ini
Mainframe applications

creating screen images with sdf 45
Masking text

in the XHTML client 51
MaxMachineApplications

...see jacadasv.ini
MaxMachineSessions

...see jacadasv.ini
MaxProcessApplications

...see jacadasv.ini
MaxProcesses

...see jacadasv.ini
MaxProcessSessions

...see jacadasv.ini
MaxSessionInactivityTimeout

...see jacadasv.ini
Message boxes 53
Message handling 53
Methods

transaction methods 329
UserAcceptScreen 57

MFS 47
creating screen images 45

MsgboxTimeout
...see jacadasv.ini

MultiMachines
...see jacadasv.ini

Multiple Server-Computer System 141

N
Navigating through host screens 350

continuity of 354
different strategies 354
example 352
overcoming obstacles 356

NT
creating a runtime installation 79
webMethods JIS: XHTML Client User’s Guide Version 9.0 421

 Index

installing the runtime 80

O
onControlReady 289, 292
onPageLoad 281, 286
onPageSubmit 281, 286

P
Pack/Unpack 71
Page-level Extensions 281
Paging

within tables 52
PanelTimeout

...see jacadasv.ini
Parameter Tags 393
Parsing XML documents

using DOM API 337
using template API 345

PNL 48
PortScanRetries

...see jacadasv.ini
ProcessApplications

...see jacadasv.ini
ProcessRespawnEnabled

...see jacadasv.ini
ProcessSessions

...see jacadasv.ini
Properties tab 189
Protected fields 45
Proxy 153

R
Radio buttons

in the XHTML client 51
Record Formats 43
RecvTimeout

...see jacadasv.ini
Redirection Proxy 153
RegistryPortRange

...see jacadasv.ini
RegistrySpawnTimeout

...see jacadasv.ini
Remove Protections 45
ReportsToMachine

...see jacadasv.ini

ResourceBase
...see jacadasv.ini

ResponseTimeout
...see jacadasv.ini

ReverseDNS
...see jacadasv.ini

RMISocketTimeout
...see jacadasv.ini

RtRootDir
...see jacadasv.ini

Runtime
deploying 77
how to generate 65
testing 67

Runtime Architecture 25, 233
Runtime Arcitecture Components

the Client 27
the Host 26
the Jacada Server 26

Runtime configuration
categories 206

Runtime Dataflow 28
Runtime Generation 63, 66

operation instructions 65
Runtime Installation

creating 78
installing 78

Runtime termination 168
RuntimeDirectory

...see jacadasv.ini

S
Scalability 139

client-host connection 143
jacadasv.ini 146
load balancing 141
multiple server computer system 141
single server computer system 139

Screen captures
creating 41
creating screen images 46
screen captures and SDF 46

Screen definition files
DDS 41

Screen images 38
BMS/MFS, SDF 40
creating 40
422 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Index

creating from screen captures 46
DDS, DDO 40
file formats 47
maintaining 47
record formats 43

SDF 47
SDF and screen captures 46
SDI 48
Server Configuration Checker 178

Offline Mode 181
Server Mode 180

Server Configuration File
action definitions 362
example 381
how it works 359, 362
main elements 364
minimum requirements 370
session definitions 362
writing 364
XML tag reference 387 to 403

ServerPortRange
...see jacadasv.ini

ServerPortRange2
...see jacadasv.ini

Service
running the Jacada Server as a 218

Session Definitions 362, 399
creating 365
overridden by actions 376

Session Log^
...see jacadasv.ini

Session parameters 377, 394
SessionCountLog

...see jacadasv.ini
SessionIdleTimeout

...see jacadasv.ini. See also ServerConfiguration.xml.
Sessions tab 190
Setting up the Development Environment 34
SetWaitForScreenState 56
Sharing subapplications 71
Single server computer system 139
Skins 290, 320
Skipping screens 353, 354
SocketImplFactory

...see jacadasv.ini
SoftLimitMarginPercent

...see jacadasv.ini
Solaris

activating the Jacada Server 101
creating a runtime installation 93
installing the runtime 95
mapping the PC to 95

SpareSessionsPercent
...see jacadasv.ini

SpawnInterval
...see jacadasv.ini

Spin controls
in the XHTML client 51

StartScanAtRandomPort
...see jacadasv.ini

StartUpSessionsPercent
...see jacadasv.ini

StdoutEncoding
...see jacadasv.ini

Subapplications 38
creating 48
sharing 71

SupportHTTPS
...see jacadasv.ini

System requirements
development 31

System Status Log pane 189
SystemConnectionTimeout

...see jacadasv.ini
System-triggered methods

SetWaitForScreenState 56
UserAcceptScreen 57

T
Tab controls

in the XHTML client 52
Tables

paging within 52
Template API 339

constructing new XML documents 346
DoMethods used with 339
parsing XML documents 345
retrieving data from an XML document 345
writing and sending XML documents 346

Testing the Generated Runtime 67
The XHTML Client

development environment 31
implementation 29
runtime architecture 25
runtime dataflow 28
webMethods JIS: XHTML Client User’s Guide Version 9.0 423

 Index

TimerTick
...see jacadasv.ini

TimerTick (session count log)
...see jacadasv.ini

TimerTick (XML log)
...see jacadasv.ini

TimerTick (XML server)
...see jacadasv.ini

Transaction
methods 329

Transaction Methods 329
Transactions

assembling 329
Troubleshooting 415
Types of Java Extensions 280

control-level extensions 289
page-level extensions 281

U
Unpack 71
UseExternalErrorPages

...see jacadasv.ini
UserAcceptScreen 57

V
Views 49

W
Wait for Screen 54
WaitForSpawned

...see jacadasv.ini
Web Browser 33
Web Server 33
web.xml 409
Windows service

running the Jacada Server as 218
WISE 79, 80, 93
WISE InstallBuilder 32
WorkingDirectory

...see jacadasv.ini
Writing Java Extensions 239
Writing the Server Configuration File 364

X
XHTML

runtime architecture 233
XHTML Client

introduction 25
XHTML client

ACE, special considerations in 49
HTML limitations 50

XHTML Processing 234, 236
between host and client 236
building a static XHTML 237
Java extensions 239
static and dynamic subapplication information 236
updating a static XHTML with dynamic information

238
XHTML Processing Module 234
XML-based DoMethods 330

list of 347
XMLLog

...see jacadasv.ini
XMLServer

...see jacadasv.ini
424 webMethods JIS: XHTML Client User’s Guide Version 9.0

 Index

webMethods JIS: XHTML Client User’s Guide Version 9.0 425

 Index

426 webMethods JIS: XHTML Client User’s Guide Version 9.0

	Title Page
	Copyright and Document ID
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	About This Guide
	Documentation Set
	Document Conventions
	Viewing the Documentation Online

	Chapter 1. webMethods JIS: XHTML Client
	JIS Terminology
	Introducing webMethods JIS
	Problems Solved by the XHTML Client

	Runtime Architecture
	The Host
	The JIS Server
	Function
	Components

	The Client
	Function
	Components

	Runtime Dataflow
	Implementing the XHTML Client
	The Development Phase
	The Deployment Phase

	Chapter 2. The Development Environment
	Schematic Diagram of Development Architecture
	The Host
	The Development Machine

	Software Used for test Development
	ACE
	Java Compiler
	WISE InstallBuilder
	Web Server
	Web Browser

	Workflow for Developing the JIS Application
	Setting up the Development Environment
	Installing ACE on the Development Machine
	Installing Multiple Versions

	Additional Installations

	Chapter 3. Creating the JIS Application
	Working in ACE
	KnowledgeBase
	Screen Image
	Subapplication
	Application
	Library

	Converting the Host Application
	Creating an Application
	Creating Screen Images
	iSeries Applications and Screen Definition Files
	Creating Screen Images

	Mainframe Applications and Screen Definition Files
	Creating Screen Images
	Capturing Your Host Application
	Combining a Screen Capture and a BMS or MFS File
	Maintaining Screen Images
	Glossary of File Formats

	Creating Subapplications
	Optimizing the Converted Application

	Considerations When Working in ACE
	HTML Limitations
	Combo Boxes
	Check Boxes and Radio Buttons
	Spin Controls
	Masking Text

	Date Controls
	Tab Controls
	Host Paging from Within Tables.

	HTTP Limitations
	DIL Messages
	Message Handling
	Message Boxes

	Browser Limitations

	Wait for Screen
	General Explanation
	The SetWaitForScreenState DoMethod
	The UserAcceptScreen System-Triggered Method
	Customizing the SetWaitForScreen Function
	Using GetCurrentContextParm with UserAcceptScreen

	Example of the Use of SetWaitForScreen
	Using Wait for Screen on the First Screen of an Application
	Common Problems
	Limitations

	Generating a Runtime
	Setting Runtime Generation Options
	How to Generate a Runtime
	The Runtime Generation Process
	The Application HTML Files Generated During Compilation

	Testing the Generated Runtime
	Activating a Web Server
	Running the Application from within ACE
	Starting the Application Manually
	Activating the JIS Server
	Sending an HTTP Request from your Browser

	Testing the Runtime
	Functionality
	Misidentified Screens

	Packing and Unpacking Applications
	Section 508 Guidelines
	General Guidelines
	Colors and Graphics
	Controls
	ASCII Art
	Tables

	Chapter 4. Deploying the JIS Runtime Application
	The JIS Runtime
	Creating the Runtime Installation
	Installing Your Runtime
	Keyboard Emulation

	The JIS Runtime on Windows
	Creating a Runtime Installation
	Installing Your Runtime on Windows

	The JIS Runtime on iSeries
	Creating a Runtime Installation
	Installation Files to be Copied on an iSeries
	Installing the Runtime on the iSeries
	Mapping the PC to the iSeries IFS
	Transferring the Runtime Environment to the iSeries via a Mapped Network Drive
	Transferring the Runtime Environment to the iSeries Manually
	Transferring the Server Package to the iSeries
	Running the Install Program on the iSeries

	Activating the JIS Server on the iSeries
	Activating the JIS Server Using the RUNJACSRV Command

	The JIS Runtime on Solaris
	Preparing the Solaris Directory Structure
	Creating a User ID for the JIS Application
	Creating a Working Directory Under the User Directory

	Creating a Runtime Installation
	Pre-Installation Checklist for the Solaris Platform
	Installing Your Runtime on a Solaris Machine
	Installing the Runtime Environment Using Samba
	Mapping the PC to Solaris
	Transferring the Runtime Environment to the Solaris Machine
	Installing the Runtime Environment Using FTP
	Installing the Runtime Environment on a Temporary PC Directory
	Compressing and Transferring the Runtime Environment to the Solaris Machine
	Deploying the Runtime Environment into a Pre-defined Working Directory

	Activating the JIS Server on Solaris
	The Jacadasv Script

	The JIS Server Command Line Parameters

	Chapter 5. Optimizing the JIS Server
	JIS Server INI File Settings
	Location of INI Settings: A Recommendation
	Other Factors Affecting Performance
	The INI Settings

	Scalability
	The Scalable System Structure of the JIS Server
	Single Server-Computer System
	Structure
	Function

	Multiple Server-Computer System
	Structure
	Function
	Client Connection to the System

	Identifying Server Modules
	The Integrator Process
	Setting up the Scalable Server System
	Customized jacadasv.ini File

	General Structure of the jacadasv.ini File
	The jacadasv.ini File is Composed of Sections
	Targeting ini Parameters to a Particular Machine or Server-Node Level
	Precedence of Targeted ini File Sections

	Redirection Proxy
	The Redirection Process
	Starting the Redirection Process
	Using a Load Balancer or Another Proxy with the JIS Redirection Proxy
	The Proxy Log File
	Running a Proxy on Each of your Machines
	HTTPS Communication Described
	Using HTTPS Communication

	JIS Server Logging Support
	JIS Server Logging Architecture
	JIS Server Log Information Flow

	The Server System Log Classes
	SessionLog Log Class
	Viewing the SessionLog Output

	Setting the LogClasses and Their jacadasv.ini File Parameters
	LogClasses Section
	SessionLog Section
	XMLLog Section
	XMLServer Section

	How to Create a Server Log File
	Advanced Logging Features
	Controlling the Size of the Log File
	The Start Log
	Debug Filters

	Analyzing Abnormal Runtime Termination
	Information Included in Dump Files
	Dump File Generation
	Dump File Name and Location
	Enabling Dump File Generation
	Dump File Structure
	Java Client Core Dump File
	Session Core Dump File

	Adding Messages

	Checking Server Configuration
	Server Configuration Checker
	Enabling the Server Configuration Checker
	Server Mode
	Offline Mode

	Range of Valid Properties

	JIS Administrator
	JIS Administrator for the JIS Proprietary Server
	Starting the JIS Administrator
	Connecting Online to the JIS Server
	Debugging the JIS Administrator

	JIS Administrator for the J2EE Environment
	Running the JIS Administrator Under J2EE

	The JIS Administrator Interfaces
	The Server Monitor Interface
	The Properties and Sessions Tabs
	The License Tab
	Operations you Perform Using the Server Monitor
	The Runtime Configuration Interface

	Running the JIS Server as a Windows Service
	Registering the JIS Server in Windows
	Parameters of JBSToService.exe
	More Examples of the Use of JBSToService.exe:
	Caution

	Invoking the JIS Server as a Service
	Log File
	Logging off from the machine

	Printing Emulation
	Sending a Printing Request to the Host
	Viewing Print Job Results
	The Available Print Jobs Window

	Chapter 6. Language Localization
	How the Localization Feature Works
	The Localization Feature Workflow
	Activating the Localization feature

	The Resource Files
	The Original Resource File
	The Translated Resource File
	Resource Maintenance

	Setting the Runtime Localization Mechanism
	String Types Handled by Localization
	ISO Language and Country Codes
	Current Limitations

	Chapter 7. XHTML Runtime Architecture
	JIS Server Components
	XHTML Processing Module
	HTTP Request Processing - Client to Host
	HTTP Response Processing - Host to Client

	XHTML Processing
	Static and Dynamic Subapplication Information
	On-going Processing Between Host and Client
	Building a Static XHTML with HTML Extensions
	Building the Base XHTML
	Merging HTML Extensions with the Base XHTML

	Updating the Static XHTML with Dynamic Information
	Writing Java Extensions

	Chapter 8. Enhancing Your Application Using HTML Extensions
	HTML Extensions
	Location of Files on the JIS Server
	Converting User HTML Extension Files to DOM XHTMLs
	Merging the XHTMLs Into One File
	The Merged XHTML
	The Merging Process During Development

	Creating HTML Extensions
	Configuring the JIS Server to Enable HTML Extensions
	Writing a User HTML Extensions File
	Naming and Placing a User HTML Extension File
	Application Level
	Library Level
	Subapplication Level

	Incorporating an Extension File into Your Application
	During Deployment
	During Development

	The OutOfSync Screen
	Customizing the OutOfSync Screen

	Using JavaScript in HTML Extensions
	Creating a <Script> Tag in the HTML’s <Head>
	Creating an Event Handler in the HTML’s <Body>

	Examples of User HTML Extensions
	Changing the Title of all HTML Pages to Your Company’s Name
	Setting a Different Background Image for Each Subapplication
	Inserting a JavaScript-Driven Animation into Your Application
	Enabling FKey Support
	In Version 9.0
	For All Versions

	Customizing HTML Error Pages
	Error Page Configuration
	Writing HTML Error Pages
	Including Original Error Text

	Naming HTML Error Pages
	Client-side Errors
	Server-side Errors

	Saving HTML Error Pages
	Error Code Explanations

	CSS Usage in the JIS XHTML Client
	CSS – A Basic Explanation
	Style Information Levels

	The CSS File in JIS
	The CSS Modifies the XHTML Pages
	KBInformation.xml File Not to be Modified
	<ApplName>.ini File Setting

	Modifying the Generated CSS File
	General Recommendations Regarding CSS
	Java Skins vs. Custom CSS

	Using Your Own Style Sheet
	Adding a Custom CSS file via an HTML Template
	For Advanced Users Only: Additional Methods for CSS

	Invoking a Custom CSS file via a Java Extension
	Limitations in the Use of External CSS Style Sheets

	Chapter 9. Enhancing Your Application Using Java Extensions
	JIS’s Javadoc Files
	Events for Activating Java Extensions
	Extension Types

	Page-Level Extensions
	Extensions Activated Before Sending Page to Client - onPageLoad Event
	Extensions Activated After Submitting Page - onPageSubmit Event
	Extension Scope, Hierarchy and Files
	Extension Scope
	Extension Hierarchy
	Extension Files

	Java API - onPageLoad, onPageSubmit
	Controls Package
	Context Package

	Control-level Extensions - onControlReady
	Applying Skins Across Applications
	Setting Up an Application to Use Skins
	Skin-related DoMethods

	Java API - onControlReady

	Java Extension Examples
	COOKIES
	LOGON.java

	BROWSERS
	LOGON.java

	BADINPUT
	MAINMENU.java
	MBF001.java

	RETRIEVE
	MBF006R1.java

	SKINDEMO
	Runtime INI Settings
	The "skin.butterfly" Skin Package
	Colors.java
	XhtmlControlExtension.java
	StaticExtension.java
	ButtonExtension.java
	TableExtension.java
	TableHeaderExtension.java
	EditExtension.java
	WindowExtension.java
	PromptExtension.java

	Extensions to the Date Calendar Window
	The Date Calendar Window
	Changing the Appearance of the Date Calendar Window
	Types of Changes Available
	Scope of Changes

	Additional APIs
	Combo Box Methods
	addItem
	addItem
	cloneControl
	deleteAllItems
	deleteItem
	deleteItem
	getItem
	getItemCount
	getSelectedIndex
	getSelectedItem
	getText
	setSelectedItem
	setSelectedItem
	setText

	Chapter 10. Conducting XML-based Transactions from the Client
	XML-Based Transactions
	The Transaction Dataflow
	Assembling a Transaction
	Transaction Methods

	XML-based DoMethods
	The DOM-based API
	The JIS Template API
	List of XML-based DoMethods

	Navigating Through Host Screens
	Navigation Types
	Example: Navigating Through a SignOn Screen
	Retrieving Information from Host Screen Fields
	Writing Information into Host Screen Fields
	Skipping Windows
	Navigation Continuity
	Navigation Strategies
	Overcoming Navigation Obstacles

	Chapter 11. The Server Configuration File
	How the Server Configuration File Works
	Three-tier Hierarchy
	The Client
	The Transaction
	The Session

	Overriding Dataflow
	<SessionDefinitions>
	<ActionDefinitions>
	Session Definitions
	Action Definitions

	Getting Started
	Changing a Transaction’s Name
	Specifying a Default JIS Application Name

	Writing the Server Configuration File
	The Main Elements
	Creating Session Definitions
	Creating Action Definitions
	Server Configuration File Minimum Requirements
	Action Definition Essentials
	Session Definition Essentials

	Enabling Action Definitions to be Overridden by the Client
	On the Client Side
	On the Transaction Side
	Linking the Action Definition <Parameter> Tags

	Enabling Session Definitions to be Overridden by Actions
	On the Transaction Side
	On the Session Side
	Linking the Session Definition <Parameter> Tags

	Example Server Configuration File
	XML Tag Reference

	Chapter 12. Application Server Deployment
	Web Application Deployment
	*.INI File Settings When Running as Web Application

	Creating the Runtime Installation
	Using the Create Runtime Installation Wizard
	The package.log Files
	Contents of the Application Server Runtime Installation

	Deploying Your Application to WebSphere
	Running Your Application with WebSphere under Windows
	The JIS Administrator
	jacadasv.ini File Is Optional When Running as Web Application
	JIS Application Debug Logging

	Chapter 13. Special to the XHTML Client
	Modifying the Appearance of RMB Pop-up Menus
	Introduction
	Related INI File Setting
	Controlling the Appearance of the Pop-Up Menus
	APIs for Setting RMB Pop-Up Menu Characteristics
	APIs for Querying RMB Pop-Up Menu Characteristics

	*.ini Settings for the XHTML Client
	[XHTML] Section of jacadasv.ini
	HTTPClient
	PopupSupport ini setting
	Keep Alive Implementation for the XHTML Client

	Appendix A. Troubleshooting
	Index

