

webMethods JIS:

Java Client User’s Guide

Version 9.0

November 2009
(originally released January 2005)

This document applies to webMethods JIS Version 9.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992–2009 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America, and/or
their suppliers. All rights reserved.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://
documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to “License
Texts, Copyright Notices and Disclaimers of Third-Party Products”. This document is part of the product documentation, located at http://
documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: JIS-JAVACLIENT-UG-90-20121109

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

About this Guide . 17
Documentation Set . 18
Document Conventions . 19
Viewing the Documentation Online . 20

Chapter 1. Making the Java Client Runtime Operational . 21
Creating a Java Client Runtime. 21

How The Compilation Process Works . 22
Two Results of Generating a Runtime in webMethods JIS . 22

Setting Runtime Generation Options . 22
How To Generate your Runtime . 24

The Runtime Generation Process . 25
Converting Images . 25

Testing Your Runtime. 26
Installing the Java Client Runtime . 26

Creating the Runtime Installation . 26
Installing Your Runtime . 26
JIS Server Installation Options . 27
Activating the Java Client Runtime . 28

How Does the JIS Runtime Work?. 29
The Java Client Runtime Deployment Architecture . 29

The JIS Runtime on Windows . 30
Creating a Runtime Installation . 30
Installing Your Runtime on Windows . 31
Activating the JIS Server on Windows . 31

The JIS Runtime on iSeries . 32
Creating a Runtime Installation . 32

Installation Files to be Copied on an iSeries . 33
Installing Your Runtime on the iSeries . 33

Mapping the PC to the iSeries IFS . 34
Transferring Environment to iSeries via Mapped Network Drive . 36
Transferring the Runtime Environment to the iSeries Manually . 39
Transferring the Server Package to the iSeries . 40
Running the Install Program on the iSeries . 40

Activating the JIS Server on the iSeries . 43
Activating the JIS Server Using the RUNJACSRV Command . 43

The JIS Runtime on Solaris . 45
Creating a Runtime Installation . 45
Pre-Installation Checklist for the Solaris Platform . 46
Installing Your Runtime on Solaris . 47

Installing the Runtime Environment Using Samba . 47
Mapping the PC to Solaris:. 47
Transferring the Runtime Environment to the Solaris Machine . 48
webMethods JIS: Java Client User’s Guide Version 9.0 3

 Table of Contents

Installing Runtime Environment on the Solaris Using FTP . 50
Installing Runtime Environment to a PC Directory . 50
Compressing and Transferring Runtime Environment to Solaris . 52
Deploying Runtime Environment into Pre-defined Directory . 52

Activating the JIS Server from Solaris . 53
The Jacadasv Script . 54

Installing Multiple Applications on the Same JIS Server . 54
The JIS Server Command Line Parameters . 55

Operating the Runtime on a Client Computer . 57

Chapter 2. The Java Client Runtime . 59
HTML File Settings. 59

HTML Parameters That Can be Changed by the User . 60
GUI Settings . 60
Localization. 65
Communication. 65
Debugging . 67
HTML Pages. 68
Session Initialization . 69
Configurable User Messages . 69
Scalability: Server Farm . 70
Printing . 71

Archive Files Provided by JIS . 71
Server Side Archive Files . 71
Client Side Archives Files . 71
Java Client Administrator Related Archive . 72
Signed and Unsigned Archive Files . 73
The Application HTML Files Generated During Compilation . 74

Running the Java Client from an Applet Using a Launcher . 75
JacadaBasicLauncher . 75
JacadaLoginLauncher . 75

Running the Java Client from a Java Application. 76
The Application’s Params File . 76

Customized Application Settings . 77
Running the Java Client Inside a Browser Window . 78

Fitting the Application Window into the Browser . 78
Changing the Application's Look . 79
Limitations . 79

Use Archives to Reduce Download Time of Java Classes . 79
Referencing Application Specific Archive in Application HTML File . 80

Referencing a JAR File in the Application HTML File. 80
Improving Download Time of an Unsigned Application . 80

Excluding the Downloading of the clhost.jar File . 80
Optimizing Fonts for Non-Windows Platforms . 81

The Font Substitution Resource File . 81
The Resource File Location and Name . 81
Contents of the Font Substitution Resource File . 82

Debugging the Font Substitution Mechanism . 83
4 webMethods JIS: Java Client User’s Guide Version 9.0

 Table of Contents

Chapter 3. Optimizing the JIS Server . 85
Other Factors Affecting Performance . 85
JIS Server *.ini File Settings . 86
Scalability. 101

The Scalable System Structure of the JIS Server . 101
Single Server-Computer System . 102

Structure. 102
Function . 102

Multiple Server-Computer System . 104
Structure . 104

Function . 105
Client Connection to the System . 105

Identifying Server Modules . 106
The Integrator Process . 107
Setting up the Scalable Server System . 107

Customized jacadasv.ini File . 108
General Structure of the jacadasv.ini File . 108

The jacadasv.ini File is Composed of Sections . 109
Targeting ini Parameters to a Particular Machine or Node Level . 109
Precedence of Targeted ini File Sections . 110

HTTP/S Communication . 115
JIS Server Logging Support. 116

JIS Server Logging Architecture . 116
JIS Server Log Information Flow . 117
The Server System Log Classes . 118

SessionLog Log Class . 118
Viewing the SessionLog Output . 120

Setting the LogClasses and Their jacadasv.ini File Parameters . 120
LogClasses Section . 121
SessionLog Section . 121
XMLLog Section . 121
XMLServer Section . 121

How to Create a Server Log File . 121
Advanced Logging Features . 122

Controlling the Size of the Log File . 122
The Start Log . 122
Debug Filters . 122

Analyzing Abnormal Runtime Termination. 124
Information Included in Dump Files . 124
Dump File Generation . 125
Dump File Name and Location . 125
Enabling Dump File Generation . 125
Dump File Structure . 126

Client Core Dump File . 127
Session Core Dump File . 129

Checking Server Configuration . 132
Server Configuration Checker . 133

Reported Errors . 133
webMethods JIS: Java Client User’s Guide Version 9.0 5

 Table of Contents

Reported Warnings . 134
Enabling the Server Configuration Checker . 134

Server Mode . 134
Offline Mode . 135

Range of Valid Properties . 136
JIS Administrator . 138

Starting the JIS Administrator Command Line Utility . 139
Starting JIS Server from the Server Machine . 139

Connecting Online to the JIS Server . 139
Debugging the JIS Administrator . 141
The JIS Administrator Interfaces . 141

The Server Monitor Interface . 141
The Properties and Sessions Tabs . 144
The License Tab . 150
Operations you Perform Using the Server Monitor. 151
The Runtime Configuration Interface . 156

Running the JIS Server as a Windows Service . 158
Registering the JIS Server in Windows . 158

Parameters of JBSToService.exe . 158
More Examples of the Use of JBSToService.exe: . 160
Caution . 160

Invoking the JIS Server as a Service . 160
Logging off from the machine . 161

Managing User Profiles . 161
The User’s INI Files Location . 161
Creating a separate HTML file for each user . 162
Using the LoginLauncher . 162
Maintaining the User’s Application INI File . 163
To remove a user from an application or all applications . 163

Chapter 4. Language Localization . 165
How the Localization Feature Works . 166

Localization Feature Workflow . 166
Activating the Localization Feature. 166

The Resource Files . 167
The Original Resource File . 167
The Translated Resource File . 168

The General Resource File. 169
Resource Maintenance. 169

Setting the Runtime Localization Mechanism . 169
Setting Through the Application HTML File . 170
Setting Through the JacadaStarter API . 170

String Types Handled by Localization . 171
Debugging your Localized Application . 172

How to Work in Debug Mode . 172
On the Runtime Window. 172
The Log File . 173
ISO Language and Country Codes. 174
6 webMethods JIS: Java Client User’s Guide Version 9.0

 Table of Contents

Current Limitations . 175

Chapter 5. Printing Features . 177
Host-to-Client Printing . 177

The Host-to-Client Printing Architectures . 177
Host to Client Printer Emulation Connection via JIS Server. 178

Making the Printer Emulation Operational . 178
Configuring the Host to Recognize the Printer LU Name. 179
Establishing Print Parameters in the <ApplName>.ini File. 179
Adding HTML Parameter to Read Printer Emulation Archive . 181
Initializing a Default Printer Emulation Session . 182

Tracing Printer Emulation Problems . 182
Using the Printer . 183

Print Options Dialog Box . 183
Printing Via the Java Page Setup Dialog Box . 184
The Printer Emulation User Interface . 186
Limitations . 188
Troubleshooting . 188

Extending the Printer Emulation . 189
The Printer Emulation API Architecture . 190
Creating a Printer Emulation Instance . 190

Determining the Printer Emulation Type. 191
The Default Settings. 191
The Extension Class Path . 192
Initializing an Extended Printer Emulation Session . 192

The Application Runtime.ini File Settings . 193
Special Runtime.ini Parameters Used with JIS Examples . 195

HTML Parameters . 195
Sending the Print Stream to the Client . 196
Providing Client and Server Security Permissions . 196

Client Security Permissions . 196
Server Security Permissions . 196

Examples of How to Use the Extended Printer Emulation . 197
Saving Data on Server Example . 197
HTML Printing Example . 197
Printing via the Server and the Client. 198

Printing the Client Window. 199
Activating the GUI Printing Feature . 199

Eliminating the Print Setup Dialog . 200
Modifying the GUI Printing Feature Through Code Extension . 200
Granting Permission to Print the Client Window . 201
Changing the Background Color of the Printed Window . 202
Controlling the Scale of the Window’s Printout . 202
webMethods JIS: Java Client User’s Guide Version 9.0 7

 Table of Contents

Printing the Client Host Screen . 203

Chapter 6. Extending the Java Code . 205
The Client Java Code Produced During Compilation. 205

Java Sources in the Original Sub-directory . 205
Java Sources in the User Sub-directory . 206

Compiling the User’s Java Sources . 207
Automatic Overwriting of User Files During Version Upgrading . 207

Java .class Files . 208
JIS’s Javadoc Files . 208

Working with the Java Code . 208
About Event Handling . 208
About Deprecated Methods . 209
Where Can Code Extension Be Performed . 210

Extending the Code of a Subapplication. 210
Extending the Code of the Main Window . 211
Extending the Code of All Subapplications. 212

Understanding the Generated Java Code . 212
Creating Controls . 212
Creating Logic Peers . 213
Event Handling . 213
Focus and Tabbing Management . 214
Keyboard Management . 215

Examples of Code Extension . 216
Adding a Background Image . 216
Adding Action Buttons to a Subapplication. 217
Adding Action Buttons to the Main Window Tool Bar . 219
Querying a Button to Determine Its Characteristics . 219
Adding Bubble Help to Components. 220
Adding Animated Buttons to Subapplications. 222
Updating Menu Items in Runtime . 223
Defining Number and Length of Lines in Multi-line Edits . 223
Selecting One Cell in Table Rows Using Right Click . 224
Adding Content to a Table Cell . 224
Handling Table Selection Events: Enabling the List Menu . 225
Manipulating Host Originated Data. 226
The Java Client RMB Floating Menus Support. 228
Modifying the Default Floating Menus Behavior . 229
Changing the Titles of Tab Control Folders During Runtime. 231
Displaying Message Boxes . 231
Creating Custom Validity Checks . 232

Application-Wide GUI Settings . 235
The Application's Color Scheme. 235
Multi-Character Search in Combo Boxes . 236

Data Sharing between Client and Server . 236
Manipulating the Varpool from the Server Using Methods . 237
Manipulating the Varpool from the Client Using Code Extensions . 237

The JacadaStarter's addWindow Method . 239
8 webMethods JIS: Java Client User’s Guide Version 9.0

 Table of Contents

Launching the Java Client from an Applet . 240
The Java Client Launchers. 241
Customizing a Launcher. 241

Controlling the Java Client Application . 243
Methods for Controlling the Java Client Application. 244
Code Examples . 247

Implementing Localization Using the Java Localization API . 250
Loading Specific Strings from Resource Files . 250
Initialization of Language Localization . 251
Displaying System Messages in the Launcher Applet . 251

Formatting Text . 252
Technical Notes . 252
ExternalFormat interface Functions . 253
MyExternalFormat Class Example . 253

Extending the Server’s Java Code . 254
When are Server Extensions Used . 254
Server Java Sources Created During Compilation . 255
Server Code Extension Types . 256
Creating a Server Code Extension. 256
The Server API. 258
The Server API. 259
JIS’s javadoc Files . 260
Example of How to Write a Java Server Extension . 260
Summary: Client vs. Server Code Extensions . 262

Appendix A. Java Client Limitations . 265
JIS Server Method Limitations . 270

Appendix B. Troubleshooting . 275

Appendix C. Directory and File Structures . 279
Development Environment Directory Trees . 279
The Users Runtime Directory Tree . 282

Appendix D. Glossary of Terms . 283
webMethods JIS: Java Client User’s Guide Version 9.0 9

 Table of Contents

10 webMethods JIS: Java Client User’s Guide Version 9.0

List of Figures

Runtime generation options dialog box . 23
Two-tier architecture . 27
Three-tier architecture . 28
Series of events that takes place during runtime . 29
JIS Server dialog box . 32
Map Network Drive . 35
Select destination directory dialog box . 37
Transferring JIS file structure . 37
Installing on OS/400 (RISC) dialog box . 38
Select Destination Directory dialog box . 39
Adding parameters in the HTML file . 60
Plugin warning dialog box. 74
BasicLauncher . 75
LoginLauncher . 76
A Single Server. 102
Control Flow When Starting a Session . 103
A Server Farm . 104
Identifying Server Modules . 106
JIS Server logging architecture. 116
Connect Online dialog box . 140
Server monitor interface . 142
Sessions tab . 143
The Debug tab in the JIS Administrator . 148
The License tab in the JIS Administrator . 150
Stop JIS Server dialog box . 153
Runtime Configuration interface . 156
Language localization schema . 165
Host-to-client printer emulation connection via JIS Server . 178
MSIE Print dialog box running on Windows . 184
Java Page setup dialog box . 184
Printer emulation user interface . 186
Printer Emulation Setup dialog box . 187
Error message on printer fail . 189
Optional ways to use the printer emulation. 190
Method Parameters dialog box. 193
Print dialog box . 200
Print dialog . 204
Total label added to the bottom of the table’s second column . 228
Launching the Java client from an applet . 240
Extending the JacadaLoginLauncher . 243
Method syntax error . 272
Method syntax error 2. 272
Java root directory file structure . 279
webMethods JIS: Java Client User’s Guide Version 9.0 11

 List of Figures

Client and Server Java source file directory structure. 280
Client and Server Java class file directory structure . 281
Users runtime directory structure . 282
12 webMethods JIS: Java Client User’s Guide Version 9.0

List of Tables

webMethods JIS documentation set . 18
Documentation conventions . 19
Runtime generation options - Java tab settings . 23
JIS Server command line parameters . 56
GUI settings that can be changed by user . 60
 Localization settings that can be changed by user . 65
Communication settings that can be changed by user . 65
Debug settings that can be changed by user . 67
HTML page settings that can be changed by user . 68
Session Initialization settings that can be changed by user . 69
 Configurable User Message settings that can be changed by user . 69
Scalability settings that can be changed by user . 70
 Printing settings that can be changed by user . 71
Application HTML files generated during compilation . 74
Server System’s logging support components . 116
Record parameters written to the SessionLog . 118
Setting LogClasses and their jacadasv.ini parameters . 120
Information included in dump files . 124
SessionCoreDump parameters . 126
HTML parameters . 126
Client core dump file examples . 127
Session core dump file examples . 129
Reported errors . 133
Reported warnings . 134
Range of valid numeric properties in the jacadasv.ini . 136
Parameters Used in the Connect Online Dialog Box . 140
Properties in the Properties and Sessions tabs . 144
Elements in the JIS Administrator Debug tab . 148
Elements in the JIS Administrator License tab . 151
Stop JIS Server parameters . 154
Runtime Configuration interface parameters . 156
Locale examples . 174
Settings in the Printer Emulation Setup dialog box . 188
Printer fail reasons and solutions . 189
Default handler settings . 191
Extension class paths and locations . 192
Parameters in [TN3270 Printer] or [TN5250 Printer] . 193
Special runtime.ini file parameters . 195
HTML parameters . 195
Choosing a scale for a printed window . 203
Depreciated methods and their replacements . 209
cst.server.export.api package . 259
Client and server side extensions types and usage . 262
webMethods JIS: Java Client User’s Guide Version 9.0 13

 List of Tables

Partially supported ACE controls .265
Partially supported features .268
Supported fonts .269
ACE versus Java font sizes .269
System-Triggered Methods included with ACE .273
Troubleshooting and solutions .275
Glossary of terms .283
14 webMethods JIS: Java Client User’s Guide Version 9.0

List of Examples

Image file placement directory structure . 25
Runtime installation file directory structure on Windows . 31
Runtime installation file directory structure on iSeries . 33
Locating the shared directory . 35
Shared directory examples. 36
Executing the batch program . 40
Creating a runtime installation on Solaris. 46
Locating the Shared Directory on Solaris. 48
Shared Directory examples on Solaris . 48
URL to the Solaris machine . 51
Copying applications . 54
Add references to all applications in the jacadasv.ini. 55
Copy HTML files. 55
Adding parameters to the HTML file. 60
Customized application settings. 77
Optimize the application window size within the browser. 79
Referencing a JAR File in the Application HTML File . 80
Font substitution mechanism . 81
File name examples . 82
Font substitution . 83
Debugging the font substitution mechanism . 83
Example of jacadasv.ini for a multiple server-computer environment . 110
Example of jacadasv.ini for a single server-computer system . 110
Example of jacadasv.ini for a multiple server-computer system . 112
 Server log file . 122
Debug filters . 123
Addfilter . 123
Original resource file . 167
Translated resource file . 168
Setting through the application HTML file . 170
String types handled by localization . 171
How to work in debug mode. 172
Question Mark . 173
Asterisk. 173
Parameter containing the handler and classes . 191
Activate the GUI printing feature through code extension . 200
Preventing popup windows from being printed . 201
Controlling the scale of the printed window . 202
Activating Host screen printing via code extension . 204
Adding controls in the createGUIControls method . 212
Adding a background image. 217
Adding a Paste button . 220
Displaying an animation sequence repeatedly. 222
webMethods JIS: Java Client User’s Guide Version 9.0 15

 List of Examples

Updating menu items during runtime . 223
Adding contents to a table cell . 225
Manipulating host originated data. 227
Displaying a floating menu for a specific control type. 229
Displaying a floating menu copied from the menu-bar . 230
Display a floating menu not attached to a control. 230
Adding the validity method . 233
Writing the validity check . 234
Using the validity check . 235
Application’s color scheme . 235
Manipulating the varpool from the server using webMethods JIS methods . 237
Manipulating the varpool from the client using code extensions . 238
Standard replacement of a Subapplication with a GUI . 239
Preloading a class during initialization . 239
Extending the JacadaLoginLauncher . 243
SetCurrentPanel . 244
activate . 245
Skipping the login screen . 247
Manipulating information, navigation and acceleration. 248
Waiting . 249
Initialization of language localization . 251
Location of code for u_UserInitSubApplication. 257
Extending GUTMs . 258
JIS’s javadoc file location . 260
Placement of classes after runtime generation. 281
16 webMethods JIS: Java Client User’s Guide Version 9.0

About this Guide

webMethods JIS is an automated development architecture that generates Java
clients for enterprise applications. It uses webMethods JIS’s Automated
Conversion Environment to convert character-based host screens into feature-
rich graphical Java clients in 100% Java source code. Consequently, mainframe
and iSeries applications can be delivered through an intranet, or over the Internet
using a Java-capable client interface.

This book deals with the following topics:

• Chapter 1 - "Making the Java Client Runtime Operational". This chapter
walks you through the steps that bring your converted application to a fully
operational webMethods JIS runtime working on a Java-capable client.

• Chapter 2 - "The Java Client Runtime". This chapter discusses advanced
topics that are related to the Client side of the webMethods JIS runtime. You
will find here information about how to improve download time, how to
enhance the runtime application by configuring various runtime settings, and
the various possibilities for running the Java client.

• Chapter 3 - "Optimizing the JIS Server". This chapter configure the JIS Server
to serve large number of sessions and how to administer the JIS Server.

• Chapter 4 - "Language Localization".This chapter provides you with all the
information you require to implement the localization feature in your
Application.

• Chapter 5 - "Printing Features".This chapter introduces the Java client
printing options:
• The Printer Emulation feature enables you to command the host to send

print jobs to a printer connected to your desktop computer, or to save
them on the server.

• The Client Window printing feature enables the printing of the window
currently present on the client’s screen.

• The Client Host Screen printing feature enables the printing of the host
screen currently displayed on the client’s screen.

• Chapter 6 - "Extending the Java Code"- This chapter introduces you to a wide
array of enhancements that you can perform on your application by extending
the Java code.

• Appendix A - "Java Client Limitations"
• Appendix B - "Troubleshooting"
• Appendix C - "Directory and File Structures"
• Appendix D - "Glossary of Terms"
webMethods JIS: Java Client User’s Guide Version 9.0 17

 About this Guide

Documentation Set

webMethods JIS is supplied with the manuals shown below. The documentation
is delivered in Adobe Acrobat Reader Portable Document Format (PDF). No
hardcopy documentation is provided, but you can print the PDF files on your
local printer.

Table 1. webMethods JIS documentation set

This book... Contains...

webMethods JIS: Getting
Started with the Automated
Conversion Environment

Startup information and an introduction to
the Automated Conversion Environment
(ACE).

webMethods JIS: Basic User’s
Guide

Full explanations of the ACE Views and how
to use them

webMethods JIS: Advanced
Topics

Explanations of advanced features that give
your application extra functionality.

webMethods JIS:
KnowledgeBase User’s Guide

In-depth information about the way the ACE
KnowledgeBase is designed and how to work
with it.

webMethods JIS: Java Client
User’s Guide

Information for migrating your host
application to Java.

webMethods JIS: XHTML
Client User’s Guide

Information for migrating your host
application to an XHTML web application.
18 webMethods JIS: Java Client User’s Guide Version 9.0

 About this Guide

Document Conventions

The following conventions are used throughout this manual.

Table 2. Documentation conventions

Convention Description

Click Position the mouse pointer on the control and quickly
press and release the left mouse button once. (Unless the
right mouse button is explicitly specified, you should click
the left mouse button.)

Double-click Position the mouse pointer on the control and quickly
press and release the left mouse button twice. (Unless the
right mouse button is explicitly specified, you should
double-click the left mouse button.)

UPPERCASE Uppercase letters are used for the names of files. For
example, a panel file with the name Menu, will be
expressed as MENU.PNL.

italics Names of applications, programs, menus, dialog boxes,
and libraries.

Bold Menu options, and items, dialog boxes and items to be
selected from a dialog box. The names of pull-down
menus.

Bold Italics Pattern definitions, representation definitions, message
definitions, method names, layout names, section names,
selection definitions, function definitions.

BOLD +
UPPERCASE

Keyboard shortcuts: Press the SHIFT key. Press CTRL + Z.
webMethods JIS: Java Client User’s Guide Version 9.0 19

 About this Guide

Viewing the Documentation Online

You can also access the latest version of the documentation for Software AG
products at http://documentation.softwareag.com/. As new versions become
available, the documentation on this web site will be updated and the previous
versions will be migrated to the Software AG documentation web site at http://
servline24.softwareag.com/public/. If you have a maintenance contract, you can
view all versions of documentation on this web site. You will find instructions for
registering and obtaining a userid and password on the documentation web site.
20 webMethods JIS: Java Client User’s Guide Version 9.0

http://documentation.softwareag.com/
http://servline24.softwareag.com/public/
http://servline24.softwareag.com/public/

Chapter 1. Making the Java Client Runtime Operational

webMethods JIS is an automated development tool that generates Java clients for
host applications. Using webMethods JIS can be discussed as a three step process:
converting the host application, installing the webMethods JIS runtime, and
running the Application. This chapter supplies you with all the information you
require to bring your legacy application from a converted stage to a fully
operational Application running on a Java enabled client.

This chapter describes:

• Creating a Java Client Runtime. The webMethods JIS runtime is created on the
conversion computer during the final stage of conversion, through a
compilation process called Generate Runtime.

• Testing Your Runtime. After compiling your Application, check your runtime
Application in the same type of environment you intend to deploy it.

• Making the Java Client Runtime Operational. To make the Java Client runtime
operational, you must create a webMethods JIS runtime, install it on the Server
computer, and run it. This section provides you with background information
about the webMethods JIS runtime architecture, and detailed instructions on
how to make the webMethods JIS runtime operational for an Windows, iSeries
and Solaris.

• Installing Multiple Applications on the Same JIS Server
• The JIS Server Command Line Parameters

Creating a Java Client Runtime

This section describes the compilation process. This process, called Runtime
Generation, is the last stage in the conversion process. Use the Generate Runtime
command in webMethods JIS to compile your Application and create the Java
classes and the JIS Server.

During the compilation process, Java code that corresponds to each
Subapplication is generated. Each Subapplication has its own Java class. These
are the Java classes that are sent by the Web Server when requested by the Client.
webMethods JIS: Java Client User’s Guide Version 9.0 21

Chapter 1. Making the Java Client Runtime Operational

How The Compilation Process Works

The compilation process works in the following manner:

1 First, it generates Java sources and an HTML file.
2 Then, it invokes the Java compiler in order to compile these Java sources into

Java .class files.

Two Results of Generating a Runtime in webMethods JIS

The two results of generating a runtime in webMethods JIS are:

• The Java client must be stored on the Web Server for the Clients to download
and execute.

• JIS Server application specific classes that run on the Server Computer.

Setting Runtime Generation Options

Before you execute the Generate Runtime command, specify the runtime
generation options.

To set the runtime generation options:

1 Open webMethods JIS.
2 From the File menu, select Open Application, then select the Application that

you want to compile and press OK.
3 From the Options menu, select Runtime Generation Options.
22 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Figure 1. Runtime generation options dialog box

4 On the Java tab, specify the setting according to Table 3 on page 23.
5 When you have finished filling out the Java panel, press OK.

Table 3. Runtime generation options - Java tab settings (Sheet 1 of 2)

Java root
directory

Choose the directory under which the Java Client files
reside.

Java compiler Choose a Java compiler.
webMethods JIS: Java Client User’s Guide Version 9.0 23

Chapter 1. Making the Java Client Runtime Operational

How To Generate your Runtime

The following is a description of how to generate a runtime and the information
you get from the Generating the Runtime dialog box.

To generate a runtime:

1 From the File menu, select Generate Runtime. This activates the Generate
Runtime wizard which generates the JIS Server and the Java client.

Java compiler
command

The default command for the chosen compiler appears. If
the Java compiler is not in your path, you can change the
command line to specify the full path.

The information written in the Java compiler command
line depends upon the specific compiler that is used. The
Java compiler command default is for the Sun Java SDK
Compiler. However, if you are using a different compiler
you should change the Java Compiler command.

You can use the following internal variables in the Java
Compiler Command:

$RootDir

At compile time this variable is automatically replaced
with the Java root directory that you specified above.

$File

The $File variable is required. At compile time this variable
is automatically replaced with the name of the file to be
compiled.

Compile Java
classes in
batches of

Specify the number of Java classes you wish to be compiled
in each invocation of the compiler. The compiler is
automatically invoked as many times as necessary until all
classes have been compiled. Reducing the number of
classes compiled in each invocation reduces the memory
consumption of the compiler.

Client
Language
Localization

Set this check box to enable the Language Localization
feature. For a detailed discussion about this feature, refer to
Chapter 4 - "Language Localization" on page 165.

Table 3. Runtime generation options - Java tab settings (Sheet 2 of 2)
24 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

2 In the Generate Runtime wizard, choose the following settings:
• For a Runtime type, choose Java.
• For the JIS Server Platform(s) option, choose one or more of the given

platforms.
3 Continue the wizard to its final step.

The runtime environment will be generated for the platform(s) you have
specified in the Generate Runtime wizard.

The Runtime Generation Process

When generating a runtime, the Java client and Server and their associated
sources are generated. The Java sources are automatically compiled. Compilation
errors or warnings are displayed in the Generating the Runtime window. A more
detailed log is written to the makevgs.log file in the directory under which
webMethods JIS is installed; for example, “<InstallDir>\makevgs.log”.

Converting Images

To run the Java Client using a browser, all of the images that were used in the
Application must be converted to an image format supported by Java. Images
supplied with webMethods JIS are automatically installed both in BMP and GIF
format. Any other image must be converted and placed in the images directory
under:
<InstallDir>\classes\appls\<ApplName>\images

Example 1. Image file placement directory structure

<InstallDir>\JacadaFiles\classes\appls\<ApplName>\images

When during the runtime generation process webMethods JIS encounters images
that do not exist in the images directory, a warning message is displayed in the
Generating the Runtime output screen. Following this message you are requested
to copy the missing image to the appropriate directory. The list of the missing
images is written to the log file makevgs.log in the directory under which
webMethods JIS is installed.

Note: Make sure that no two files have identical names (image.gif and
image.jpeg, for example). If such is the case, then one of these files is
randomly chosen.
webMethods JIS: Java Client User’s Guide Version 9.0 25

Chapter 1. Making the Java Client Runtime Operational

Testing Your Runtime

In order to test your runtime, you must run the application. To run your
application:

1 If the Application that you want to run is not already open within
webMethods JIS, then from webMethods JIS’s File menu select Open
Application, then select the Application that you want to compile, and click
OK.

2 From webMethods JIS’s File menu, choose Run Application.

Installing the Java Client Runtime

Once you have created the webMethods JIS runtime, you are now ready to install
the webMethods JIS runtime on the Server machine and run it.

In order to make a Java Client runtime operational you must:

• Create a runtime installation
• Install the runtime
• Activate the JIS Server on the Server machine

In the following sections you will get background information about the
webMethods JIS runtime architecture, and detailed instructions on how to make
the webMethods JIS runtime operational running on Windows, iSeries, and
Solaris.

Creating the Runtime Installation

The runtime installation process involves copying the runtime environment from
the computer webMethods JIS runs on to the computer acting as the Server
computer. The first step in this process is to prepare the runtime environment for
installation by packaging it. This task is achieved using the Create Runtime
Installation wizard.

Installing Your Runtime

Both the Java client and the JIS Server application classes that were generated by
Generate Runtime must be installed on the Server Computer. After creating a
runtime installation, you are ready to install the runtime. The runtime can be
installed on Windows, iSeries and Solaris , depending on the choice made earlier.
26 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

JIS Server Installation Options

There are two major installation options. In the first scenario, the host computer
functions as a server. In this case, the JIS Server is installed directly on the host
computer. This is referred to as the “two-tier” architecture model, since this
configuration consists of two machines that communicate between each other.

Figure 2. Two-tier architecture

In the second scenario, a server computer is designated, and the JIS Server is
installed on the server computer. This is referred to as the “three-tier”
architecture model, since this configuration consists of three machines that
communicate between each other.
webMethods JIS: Java Client User’s Guide Version 9.0 27

Chapter 1. Making the Java Client Runtime Operational

Figure 3. Three-tier architecture

Activating the Java Client Runtime

Once you have installed the JIS Server, you are now ready to operate the Java
Client runtime. Operating the Java Client runtime involves activities on both the
Server Computer and the Client Computer.

The following sections will give you a theoretical understanding of the way the
webMethods JIS runtime functions, and practical information about how to
operate the Java Client from the Server computer and from the Client computer.
28 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

How Does the JIS Runtime Work?

Figure 4 illustrates the series of events that takes place upon connecting to the
Server Computer. For simplicity, it is recommended to use the Jetty Web Server
embedded inside the JIS Server.

Figure 4. Series of events that takes place during runtime

The Java Client Runtime Deployment Architecture

The series of events that takes place upon connecting to the Server Computer is:

1 The user connects to the application on the Web Server using any Java-
enabled Web Browser. In the Browser, the user types the URL address of the
application's HTML on the Web Server. (In the URL address
“http://localhost:8080/demo.html”, “localhost:8080” is the
actual address of the Web Server, and “demo” is the Application name.)

The Web Server Program then sends the HTML page to the Web Browser.
2 The HTML contains a call to the applet that initiates the GUI session. The

Web browser, therefore, requests the Web Server Program for that Java
applet. The applet, together with some other Java classes, is loaded to the
Browser.

3 The Java applet begins to run. It initiates a TCP/IP connection with the JIS
Server Program.

4 The JIS Server Program starts a new 3270/5250 session with the host
application. The JIS Server identifies the first screen and sends a request to the
Client to display the first window.
webMethods JIS: Java Client User’s Guide Version 9.0 29

Chapter 1. Making the Java Client Runtime Operational

The JIS Runtime on Windows

In this section you learn how to install and operate the webMethods JIS runtime
on Windows.

Creating a Runtime Installation

To create a runtime installation:

1 In webMethods JIS, from the Utility menu choose Create Runtime
Installation. This opens the Create Runtime Installation wizard.

2 In the Create Runtime Installation wizard choose the following settings:
• Automatic or manual packaging. It is recommended that you use the

WISE Installation Studio. If you choose to use WISE, then the Create
Runtime Installation wizard produces an information file that WISE can
read. If you do not choose WISE, then the Create Runtime Installation
wizard produces a text file listing the directory structure and files that
make up a working runtime on an end-user system. In this case you
“install” the runtime to a standalone directory on your PC, create the
directory structure yourself on the target system for the JIS Server, and
copy the JIS Server files from the standalone directory on your PC to the
target system.

• If you are using WISE then you can choose a bitmap to be displayed
during the installation on the end user’s system.

• For Runtime Type, choose Java.
• For the JIS Server Platform(s) option, choose Windows.

3 Continue the wizard’s steps to the end. At the end of the process webMethods
JIS creates the following files:

These files are placed in the webMethods JIS root directory, under the
directory:
<InstallDir>\appls\<ApplName>\install\javasrvr

setupjav.exe This program installs the JIS Server for your runtime
Application.

setup.txt If you choose to install the runtime without using the Wise
installation program, this text file lists the files that should be
included in the runtime Application. This text file also
includes an indication of the precise place in the Application
runtime directory in which each file should appear.
30 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Example 2. Runtime installation file directory structure on Windows

<InstallDir>\appls\MYAPPL01\install\javasrvr

The entire runtime environment is contained in the setupJav.exe file. To
distribute the Java Client runtime, copy the setupJav.exe file into a
distributable media.

Installing Your Runtime on Windows

Run the setupJav.exe file—the installation wizard for the Java Client
runtime—to automatically install the runtime on Windows. All you have to do is
provide the installation wizard with the location to which the runtime is to be
installed. The installation wizard installs both the JIS Server and the Client for
your runtime Application and creates the JIS Server icons.

To activate the runtime installation wizard, double click the setupJav.exe file
in the following directory:
<InstallDir>\appls\<ApplName>\install\javasrvr\setupJav.exe

If you choose to install the runtime without using the installation wizard, follow
the instructions given in the setup.txt file. You can install the necessary
runtime application files on your server computer manually or using a software
installation utility program.

Activating the JIS Server on Windows

On your PC, open the Start menu and select Programs > JIS > JIS Server.

When the JIS Server is activated, the screen in Figure 5 appears:
webMethods JIS: Java Client User’s Guide Version 9.0 31

Chapter 1. Making the Java Client Runtime Operational

Figure 5. JIS Server dialog box

The JIS Runtime on iSeries

In this section , learn how to install and operate the webMethods JIS runtime on
the iSeries.

Before creating the runtime installation you need to have generated a runtime for
the OS/400 (RISC) platform. See “Creating a Java Client Runtime” on page 21 for
more information.

Creating a Runtime Installation

To create a runtime installation:

1 In webMethods JIS, from the Utility menu, choose Create Runtime
Installation. This opens the Create Runtime Installation wizard.

2 In the Create Runtime Installation wizard choose the following settings:
• Automatic or manual packaging. It is recommended that you use the

WISE Installation Studio. If you choose to use WISE, then the Create
Runtime Installation wizard produces an information file that WISE can
read. If you do not choose WISE, then the Create Runtime Installation
wizard produces a text file listing the directory structure and files that
make up a working runtime on an end-user system. The file is setup.txt
in the directory
<InstallDir>\appls\<ApplName>\install\JavaSrvr.

• If you are using WISE then you can choose a bitmap to be displayed
during the installation on the end user’s system.

• For Runtime Type, choose Java
• For the JIS Server Platform(s) option, choose AS/400 (RISC).
32 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

3 Continue the wizard’s steps to the end. At the end of the process webMethods
JIS creates the following files:

These files are placed under the webMethods JIS root directory, under:
<InstallDir>\appls\<ApplName>\install\javasrvr

Example 3. Runtime installation file directory structure on iSeries

<InstallDir>\appls\<ApplName>\install\javasrvr

The entire runtime environment is contained in the setupJav.exe file. To
distribute the Java Client runtime, copy the setupJav.exe file into a
distributable media.

Installation Files to be Copied on an iSeries

When installing the runtime on an iSeries, installation files must be copied from
the conversion machine and included with the runtime environment. These files
are contained within the Jbs directory which sits under the webMethods JIS root
directory:
<InstallDir>\Install\AS400\Jbs\

Installing Your Runtime on the iSeries

The iSeries Integrated File System (IFS) lets you view and manipulate the
iSeries’s directory and file structure from the PC. Map a local drive on your PC to
the iSeries. Then transfer the runtime environment from the PC to the iSeries.

setupjav.exe This program installs the JIS Server for your runtime
Application.

setup.txt If you choose to install the runtime without using the Wise
installation program, this text file lists the files that should
be included in the runtime Application. This text file also
includes an indication of the precise place in the
Application runtime directory in which each file should
appear.

finst400.txt Contains a list of records. The iSeries installation uses these
records as parameters to install the JIS Server.
webMethods JIS: Java Client User’s Guide Version 9.0 33

Chapter 1. Making the Java Client Runtime Operational

The following sequence and the short description that follows, outline the steps
for installing the runtime on the iSeries. A detailed discussion of each step can be
found in the subsequent sections.

To install the runtime on the iSeries:

1 Map the PC to the iSeries IFS.
2 Transfer the runtime environment to the iSeries.
3 Transfer the Server Package to the iSeries.
4 Map the Web Server on your iSeries to the webMethods JIS runtime files.

Mapping the PC to the iSeries IFS enables you to carry out part of the installation
process on the iSeries via a PC (step 1 above). If you are unable to map a network
drive to the iSeries you must manually transfer to the iSeries the directories and
files that make up the webMethods JIS runtime environment. Both methods are
described below.

The installation process itself is performed in two steps. First, you transfer
runtime Java classes to the iSeries (step 2 above). This step is wizard driven. Then,
you transfer the JIS Server to the iSeries and create libraries on the iSeries to
accommodate the runtime environment (step 3 above).

The client connects to the application installed on the iSeries via a web server. You
must therefore have a web server installed on your iSeries and you must map that
web server to the directory in which the JIS Server is installed (step 4).

Mapping the PC to the iSeries IFS

If you are unable to map a network drive to the iSeries, skip this section and
continue with “Transferring the Runtime Environment to the iSeries Manually”
on page 39.

Use a drive sharing mechanism such as Client Access to map a local drive on your
PC to the iSeries. Opening the mapped drive on your PC then provides you with
direct access to the iSeries’s directory and file structure.

There are two ways to map a Network Drive to the Solaris Machine. You can map
the drive using Network Neighborhood, or with Windows Explorer.

To use Network Neighborhood to map a PC drive to the Solaris machine:

1 From the Network Neighborhood, find the name of your iSeries and double-
click on it.

2 Locate the “Shared directory” on the iSeries which represents the “root” of
the IFS. This directory is typically labeled “home”. If a “home” directory does
not exist, consult the iSeries administrator to locate the correct directory.
34 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Example 4. Locating the shared directory

\\<HostName>\home\

Click on the “shared directory” with the right mouse button.

3 From the floating menu that appears, choose Map Network Drive.

Figure 6. Map Network Drive

4 In the Map Network Drive dialog box, choose a local drive.
For example S:

5 Create a folder on the newly mapped drive to house the runtime
environment.
For example, create a folder called JIS.
Following the previous example, the mapped directory path will be
S:\JIS
The corresponding iSeries directory path is /home/JIS.
Take note to record the iSeries directory path. You will need to enter it in the
JIS Server Installation wizard.

To use Windows Explorer to map a PC drive to the iSeries:

1 From the Tools menu in Windows Explorer, click on Map Network Drive.
The Map Network Drive dialog box appears.

2 Windows offers you the first available network drive. This is fine, unless for
some reason you want to assign a specific drive letter.

Note: The runtime environment files must be transferred to the iSeries in
their binary form. Therefore, make sure that the mechanism you use for
transferring to the iSeries does not translate files from ASCII to EBCDIC.
webMethods JIS: Java Client User’s Guide Version 9.0 35

Chapter 1. Making the Java Client Runtime Operational

3 Choose the “Shared directory” which represents the “root” of the IFS.
Typically this directory is labeled “home”. If you are not sure what directory
to use, consult the iSeries administrator.
If the desired path does not appear in the drop down list you can type it
manually into the Path field.

Example 5. Shared directory examples

\\12.34.56.78\home

or, with a DNS name
\\OURAS400\home

4 Click OK.
5 Create a folder on the newly mapped drive to house the runtime

environment, if such a folder has not already been prepared for you. For
example, create a folder called JIS.

Transferring Environment to iSeries via Mapped Network Drive

The first step in the installation process involves transferring the runtime
environment to the iSeries. This step is wizard driven.

To transfer the runtime environment to the iSeries via a network drive:

1 From the PC, run the Java Client runtime executable by double-clicking on
the setupJav.exe file, in the following directory:
<InstallDir>\appls\<ApplName>\install\javasrvr\setupJav.exe

This invokes the JIS Server Installation wizard.
2 Enter the User information.

The wizard prompts you with the Select Destination Directory dialog box:
36 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Figure 7. Select destination directory dialog box

3 Provide a destination directory.
Since the runtime is installed on the IFS on the iSeries, the previously mapped
drive is used to specify the destination directory. As shown above, following
the example presented earlier, the destination directory is F:\JIS.

4 The wizard asks if you are transferring the webMethods JIS file structure to
the iSeries via a shared network drive or if you are doing the job manually.

Figure 8. Transferring JIS file structure

Note: The runtime installation wizard automatically appends the application
name to the runtime root directory. The application name can be deleted. If
you choose to leave it, it will become part of the root directory.
webMethods JIS: Java Client User’s Guide Version 9.0 37

Chapter 1. Making the Java Client Runtime Operational

5 Choose Shared folders.
The wizard then prompts with the Installing on OS/400 (RISC) dialog box:
Application

Figure 9. Installing on OS/400 (RISC) dialog box

6 Provide the following information:

7 Press Next to initiate the automatic installation of the JIS Server and the Client
for your runtime Application. At the end of this process the Java client is
transferred to the iSeries.

This completes the first part of the three-part installation process. The second part
of the process involves the transfer of the JIS Server from the PC to the iSeries.

Skip the next section, “Transferring the Runtime Environment to the iSeries
Manually” on page 39, and continue with “Transferring the Server Package to the
iSeries” on page 40.

Full path to
shared folder on
runtime machine

The path on the iSeries under which the runtime will be
installed.
Using the example from above, this would be:
/home/JIS.

Full iSeries
directory path

A URL including the iSeries address followed by the
directory to which you are transferring the runtime
environment.
38 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Transferring the Runtime Environment to the iSeries Manually

If you were unable to transfer the webMethods JIS runtime environment to the
iSeries via a shared network drive, you must do the transfer manually. Otherwise,
skip this section and continue with “Transferring the Server Package to the
iSeries” on page 40. This process is partially wizard driven.

To transfer the runtime environment to the iSeries manually:

1 From the PC, run the Java Client runtime executable by double-clicking on
the setupJav.exe file, in the following directory:
<InstallDir>\appls\<ApplName>\install\javasrvr\setupJav.exe

This invokes the JIS Server Installation wizard.
2 Enter the User information.

The wizard prompts you with the Select Destination Directory dialog box:

Figure 10. Select Destination Directory dialog box

3 Select a new or empty destination directory on your PC for installing the
webMethods JIS runtime files.

4 Continue the wizard to the end.
5 Using PKZIP, FTP, PKUNZIP—or similar utilities—copy the installed runtime

files from your PC to the iSeries machine, preserving the directory structure.
webMethods JIS: Java Client User’s Guide Version 9.0 39

Chapter 1. Making the Java Client Runtime Operational

Transferring the Server Package to the iSeries

The second part of the installation process uses a batch program to move the JIS
Server installation files to the iSeries, in preparation for installing the JIS Server
there. You need the IP address of the iSeries along with a valid iSeries login name
and password. The batch program copies the JSERVER file to the QGPL library on
the iSeries and restores the installation program to the same library.

To execute the batch program:

1 Go to the Windows Start menu and choose Run.
2 Type command and press OK. This opens up a command window.
3 In the command window, type

cd <InstallDir>\install\as400\jbs

Example 6. Executing the batch program

cd c:\JIS\install\as400\jbs

4 Type jsinstall
5 You are prompted for the following parameters:

The batch program copies the save file JSERVER to the iSeries library called QGPL,
and restores the installation program to the same library.

Running the Install Program on the iSeries

After executing JSINSTALL on the PC as described in the previous section, you
have an installation program, also called JSINSTALL, in the QGPL library on the
iSeries.

To run the installation program on the iSeries:

1 Establish a connection to the iSeries and logon.
2 Make sure QGPL is in your library list (it should be there by default).

iSeries IP
Address:

The address of the iSeries machine where the Server is to
be installed

User: Your iSeries login name

Password: Your iSeries password
40 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

3 Type JSINSTALL and press F4.
The following screen is presented:
Application

4 Fill in the name of the library where you want the Server to be installed.
If the library you specify does not exist, it will be created.
Several additional parameter fields are then displayed:
webMethods JIS: Java Client User’s Guide Version 9.0 41

Chapter 1. Making the Java Client Runtime Operational

5 Fill them in according to the following instructions:

JIS Server root
directory

This is the directory you specified above, in the screen
Installing on OS/400 (RISC) in the section “Transferring
Environment to iSeries via Mapped Network Drive” on
page 36. If the library specified in ‘Server destination
library’ already contains a Server, the root directory of that
Server appears as default.

Install Server Type *YES if you want the Server to be [re]installed. Type
*NO if you want to install only the application. If the
destination library already contains a Server, the default is
*NO.

Application
name

The name of the application being installed with the Server
42 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

6 After filling in the parameters, press Enter to start the installation.
The installation process is activated.

The system issues messages to help you follow the progress of the installation
procedure. In case of a problem, an error message is displayed.

Activating the JIS Server on the iSeries

You activate the JIS Server by typing a command in the iSeries command line.
There are two ways you can run the JIS Server.

• By typing the RUNJACSRV command. This runs the Server and allows you to
define two parameters to determine how the Server will run.

• By typing a customizable command. This is for users who wish to have the
option to define several parameters by which the JIS Server runs, and the
class paths it reads.

Activating the JIS Server Using the RUNJACSRV Command

In the command line, type the following command and press Enter:
RUNJACSRV

DLR
destination
library

During the installation, certain files—called DLR files—are
saved to the library designated here. If the library name
you specify does not exist, it is created.

Create
optimized Java
program

This parameter indicates whether the Java programs will
be recompiled and optimized for better performance.

Type *YES or *NO.

This step is technically optional, but it is recommended.
Performing the compilations at this time eliminates the
need for the iSeries to compile Java objects from Java
classes each time they are invoked by the client. By
compiling the objects now, application runtime
performance is considerably improved. Depending on the
capacity of the iSeries, the size of the Application, and the
optimization level you select, compiling the Java objects
now may add up to several hours to the install process.
webMethods JIS: Java Client User’s Guide Version 9.0 43

Chapter 1. Making the Java Client Runtime Operational

The following screen appears:

Note: The RUNJACSRV command is included within the JACADASRVR library. If
this library is not found in the iSeries library list, you must add it. To do so,
type: ADDLIBLE JACADASRVR.

Root Directory
Name

Enter the directory name under which the JIS Server is
installed

Application DLR
library

Put the name of the DLR library that you specified
when you ran the JSINSTALL command.

Define parameters that determine how the JIS Server
will run. Note that this is optional.
44 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Depending on the capacity of the iSeries, it takes the Server up to a minute after
invocation time before it is ready to serve clients.

The JIS Runtime on Solaris

In this section you learn how to install and operate the webMethods JIS runtime
on Solaris. Before creating the runtime installation you need to have generated a
runtime for the Solaris platform. “Creating a Java Client Runtime” on page 21

Creating a Runtime Installation

To create a runtime installation:

1 In webMethods JIS, from the Utility menu choose Create Runtime
Installation. This opens the Create Runtime Installation wizard.

2 In the Create Runtime Installation wizard choose the following settings:
• Automatic or manual packaging. It is recommended that you use the

WISE Installation Studio. If you choose to use WISE, then the Create
Runtime Installation wizard produces an information file that WISE can
read. If you do not choose WISE, then the Create Runtime Installation
wizard produces a text file listing the directory structure and files that
make up a working runtime on an end-user system.

• If you are using WISE then you can choose a bitmap to be displayed
during the installation on the end user’s system.

• For Runtime Type, choose Java.
• For the JIS Server Platform(s) option, choose Solaris SPARC.

3 Continue the wizard’s steps to the end. At the end of the process webMethods
JIS creates the following files:
• setupjav.exe—an executable for the Wise Installation System software.

This program installs the JIS Server for your runtime Application.

Mode Choose between Batch and Interactive.

Batch - The Server is activated and works in the
background

Interactive - Activity taking place on the Server is
displayed

Logging detail level “Debug” level. “The JIS Server Command Line
Parameters” on page 55
webMethods JIS: Java Client User’s Guide Version 9.0 45

Chapter 1. Making the Java Client Runtime Operational

• setup.txt—if you choose to install the runtime without using the Wise
installation program, this text file lists the files that should be included in
the runtime Application. This text file also includes an indication of the
precise place in the Application runtime directory in which each file
should appear.

These files are placed under the webMethods JIS root directory, under the
directory:
<InstallDir>\appls\<ApplName>\install\javasrvr

Example 7. Creating a runtime installation on Solaris

<InstallDir>\appls\<ApplName>\install\javasrvr

The entire runtime environment is contained in the setupJav.exe file. To
distribute the Java Client runtime, copy the setupJav.exe file to a
distributable media.

Pre-Installation Checklist for the Solaris Platform

Before deploying the webMethods JIS runtime on the Solaris machine, check the
following points.

• The JIS Server (JBS) runs without problems on NT, and the Java Client show
the GUI as expected.

• The runtime was generated for the Solaris SPARC platform
• The runtime installation was created for the Solaris SPARC platform.
• Check the version of the operating system and JDK that are installed on the

Solaris machine.
• Check the amount of physical memory available on the Solaris. Each

application session requires approximately 1.5 MB.
• Verify that the Domain Name Server is properly configured.
• Verify that you have UNIX permission for transferring the runtime files and

for executing the Java Server.
• See that you have a file sharing utility like Samba or NFS installed and

configured on the Solaris; alternatively, check that you can transfer files to the
Solaris via FTP. Samba and NFS are much easier to use than repeated FTPs.
Samba is to be preferred over NFS, unless you already have NFS drivers
installed on your PC. If you do transfer the files via FTP, verify that the files
keep their names unchanged, without case translation.

• Check that JIS default ports 1100, 1101, and 2100 (or any alternative ports that
you have configured the JIS Server to use) are not in use by another process on
the Solaris.
46 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Installing Your Runtime on Solaris

There are several types of utilities you can use to transfer directories and file
structure from the PC to the Solaris machine:

• Samba
• FTP
• Other utilities

In addition, you are provided with an installation wizard that automatically
transfers the runtime environment to a directory you have pre-defined. The next
section details the way you work with the JIS Server installation wizard. The
following sections describe the ways to use the Samba and FTP utilities.

Installing the Runtime Environment Using Samba

If for whatever reason you are not able to use a file sharing utility to map a
network drive to your Solaris, skip ahead to the section “Installing Runtime
Environment on the Solaris Using FTP” on page 50.

There are several utilities available for use on UNIX that let you view and
manipulate its directories and file structure from the PC. Samba is a popular
freeware filesharing utility that accomplishes this.

Use this utility to map a local drive on your PC to the Solaris machine.

To install the runtime environment on the Solaris machine

1 Map a local drive on your PC to Solaris. See next section for instructions.
2 Transfer the runtime environment to the Solaris machine using the JIS Server

Installation wizard. See “Transferring the Runtime Environment to the Solaris
Machine” on page 48.

Mapping the PC to Solaris:

There are two ways to map a Network Drive to the Solaris Machine. You can map
the drive using Network Neighborhood, or with Windows Explorer.

Use Network Neighborhood to map a PC drive to the Solaris machine:

1 From the Network Neighborhood, find the name of the Solaris machine and
double-click on it.

2 Locate the “Shared directory” on Solaris to which you wish to map the local
drive.
webMethods JIS: Java Client User’s Guide Version 9.0 47

Chapter 1. Making the Java Client Runtime Operational

Example 8. Locating the Shared Directory on Solaris

\\<HostName>\home\JIS

Click on it with the right mouse button.

3 From the shortcut menu that appears, choose Map Network Drive.
4 In the Map Network Drive dialog box, choose a local drive.

Use Windows Explorer to map a PC drive to the Solaris machine:

1 From the Tools menu in Windows Explorer, click on Map Network Drive.
The Map Network Drive dialog box appears.

2 Windows offers you the first available network drive. This is fine, unless for
some reason you want to assign a specific drive—perhaps you want to use
the “S” drive, for “Solaris”.

3 Chose the appropriate path to the “Shared directory” which has been
assigned to you on the Solaris. If the desired path does not appear in the drop
down list you can type it manually into the Path field.

Example 9. Shared Directory examples on Solaris

\\12.34.56.78\JIS

or, with a DNS name
\\OURSOLARIS\JIS

4 Click OK.

Take note to record the Solaris directory path. You will need to enter it in the JIS
Server Installation wizard.

Transferring the Runtime Environment to the Solaris Machine

From the PC, run the Java Client runtime executable by activating the
setupJav.exe file. This invokes the JIS Server Installation wizard.

In the Installation wizard, in the Select Destination Directory dialog box, enter
the directory under which the JIS Server files will be installed

• If you are using Samba, enter the runtime directory as defined when mapping
your PC drive to the Solaris machine.

• If you are using FTP, enter the name of a temporary directory.
• When working with Solaris it is important to remember that UNIX is case

sensitive. When creating an Application, webMethods JIS forces its name to
48 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

uppercase. Therefore, where the Application name appears in a pathname in
any of the runtime classes, it is also in uppercase, and the name of the
directory where the Application resides must also be in uppercase.

In the Installing on Solaris (SPARC) dialog box, provide the following:

The installation wizard automatically transfers and installs the runtime
environment to the directory you have defined. In doing so the installation
wizard installs both the JIS Server and the Client for your runtime Application.

The full path on the
Solaris to the directory
where the application is
installed

If the directory for your work on the Solaris is:
/export/home/JIS
and you have designated the subdirectory
SOLTST01 as the subdirectory to contains the
runtime environment, then the full Solaris
directory for your runtime environment will be:
/export/home/JIS/SOLTST01

Full path on the Solaris
to the Java utilities

The default is: /usr/java, the installation will
automatically append /bin/java to this path.

URL for accessing the
application

A URL including the Solaris machine’s address
followed by the directory to which you are
transferring the runtime environment, in the
following format:
http://<SolarisIPAddress>:8080/
<SharedFolder>/<ApplDir>/

For Example:

http://oursolaris:8080/JIS/SOLTST01/
webMethods JIS: Java Client User’s Guide Version 9.0 49

Chapter 1. Making the Java Client Runtime Operational

Installing Runtime Environment on the Solaris Using FTP

A simpler installation technique was introduced in JIS 9.0.3. Refer to the JIS 9.0.3
release notes for more information.

This section is for those who are unable to use Samba or another file sharing
utility. If you have successfully installed the runtime using a file sharing utility,
skip forward to “Activating the JIS Server from Solaris” on page 53.

Use FTP as a means to transfer the runtime installation from a drive on the PC to
the Solaris machine in situations where you cannot use a utility such as Samba.
Before transferring the runtime via FTP you must first install the runtime on one
of your PC’s local drives. You can then zip the runtime environment and FTP it to
the Solaris machine.

To install the runtime environment on the Solaris machine:

1 Install the runtime environment on a temporary PC directory.
2 Compress and transfer the runtime environment to the Solaris machine.
3 Deploy the runtime environment into a pre-defined working directory.
4 Manipulate deployed runtime files.

Installing Runtime Environment to a PC Directory

Run the installation file, setupjav.exe, to install the runtime environment on a
directory on your PC. Running the installation file starts the JIS Server
Installation wizard.

The wizard has the following steps:

• Registration information
• File transfer method
• Select destination directory
• Installing on SPARC/Solaris

In the Registration Information step, enter:

• User name
• Company name

Note: The client connects to the Application installed on the Solaris machine
via a web server. You must therefore have a web server installed on your
Solaris machine and you must map that web server to the directory in which
the JIS Server is installed.
50 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

In the File Transfer Method step, enter:

• FTP

In the Select Destination Directory step, enter:

The directory under which the JIS Server files will be installed on the PC. It may
be useful to install under a directory structure that mirrors the structure that you
established on the Solaris machine.

• The drive and directory on the PC that will act as a temporary location for
deploying the runtime.
Where the destination directory is DEMO and the working directory is JIS,
then enter: <Drive>:\JIS\DEMO.

In the Installing on SPARC/Solaris step, provide:

• Full directory path to destination directory as viewed on the Solaris machine.
Where you have designated the directory DEMO as the destination directory,
then the full Solaris directory for your runtime environment will be:
/export/home/<UserName>/<WorkingDir>/<DestinationDir>

For example: /export/home/john/JIS/DEMO
• Full path on Solaris where the Java utilities are installed.

The default is: /usr/java
• A URL including the Solaris machine’s address followed by the path to the

destination directory.
http://Solaris/~<UserName>/<DestinationDir>

Example 10. URL to the Solaris machine

http://Solaris/~John/DEMO

If the administrator installed the JDK in a non-standard manner then you need to
change this path to reflect the directory on the Solaris machine that houses the
JDK.

Note: All directory path entries refer to the installation’s destination on the
Solaris machine and not the temporary directory being used on the PC.
webMethods JIS: Java Client User’s Guide Version 9.0 51

Chapter 1. Making the Java Client Runtime Operational

The installation wizard automatically transfers and installs the runtime
environment to the directory you have defined. In doing so the installation
wizard installs both the JIS Server and the Java client for your runtime
Application.

Compressing and Transferring Runtime Environment to Solaris

To compress and transfer the runtime environment to the Solaris machine:

1 From the temporary directory established on the PC, select and compress the
runtime environment into a ZIP or TAR file

2 Open an FTP session with the Solaris machine.
3 FTP the compressed runtime environment to your target Solaris machine

Deploying Runtime Environment into Pre-defined Directory

The next step is to deploy the runtime environment on the Solaris machine.

To deploy the runtime environment into a pre-defined working directory:

1 Using Telnet or any other means, open a session on the Solaris machine.
2 Navigate to the location where the compressed file is held.
3 UNZIP or “un-TAR” the runtime environment from the compressed file into

the pre-defined working directory.

Note: The client connects to the Application installed on the Solaris machine
via a web server. You must therefore have a web server installed on your
Solaris machine and you must map that web server to the directory in which
the JIS Server is installed.
52 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Activating the JIS Server from Solaris

Before you run the JIS Server on Solaris, you should be aware that the file system
on the Solaris machine is case sensitive. Make sure that references to files are
written in the exact way as the files themselves.

All *.ini files must be written in lower case. Any directory with the same name as
the Application is in uppercase, and the Application name itself is always
uppercase.

To run the JIS Server from Solaris:

1 Open a session on the Solaris machine and enter your user name and
password.

2 Change the directory to the ‘bin’ directory under which the runtime
environment is installed.
Type: cd /<RTDir>/bin

3 Make a backup copy of file jacadasv by executing the command
cp jacadasv jacadasv_copy

4 Execute the dos2unix command to change the end-of-line characters in file
jacadasv from MS DOS-style to UNIX-style:
dos2unix jacadasv_copy jacadasv

5 If this is the first time you run the JIS Server after having installed you must
grant the user permission to execute certain JIS Server files.
Type: chmod u+x jacadasv solaris/*.so
OR
Type: chmod 755 jacadasv solaris/*.so

6 Run the JIS Server. To do so, from the directory under which the runtime
environment is installed type:
jacadasv

7 Start up a web browser and type in the URL:
<SolarisIPAddress>:8080/<ApplName>.html

Note: <RTDir> must be replaced with the directory in which the Java
installation resides.

Note: You can have the JIS Server started and run in the background during
the Solaris’s initialization process. To do so, add the executable command to
the initialization path and add an ampersand at the end of it—jacadasv&.
webMethods JIS: Java Client User’s Guide Version 9.0 53

Chapter 1. Making the Java Client Runtime Operational

The Jacadasv Script

The jacadasv shell script contains parameters relating to the JIS Server executable
file. These parameters can be changed. The jacadasv script contains the following
parameters:
set CST_DIR=/<RuntimeDir>/

set JAVA_INTERPRETER=/usr/java/bin/jre

set JAVA_CLASSES=/usr/java/lib/rt.jar

if ($?LD_LIBRARY_PATH) then

 setenv LD_LIBRARY_PATH $CST_DIR/bin/solaris:$LD_LIBRARY_PATH

else

 setenv LD_LIBRARY_PATH $CST_DIR/bin/solaris

endif

limit descriptors unlimited

exec $JAVA_INTERPRETER -classpath $JAVA_CLASSES\:$CST_DIR/classes:$CST_DIR/
classes/cst/jacadasv.zip:$CST_DIR/utils/xml/xml.jar
cst.server.module.ServerModule -d0 $*

Installing Multiple Applications on the Same JIS Server

The JIS Server has the capacity of running multiple Applications. This section
explains how you install multiple Applications so they can run on the same
server.

To install multiple Applications on your server

1 Compile all the Applications and install them on the JIS Server.
2 Choose one Application as the “main” Application. Its root directory will

serve as a base for all other Applications.
3 Copy the other Applications from their respective

<RootDir>\classes\appls\<ApplName> directories to the directory
under which the “main” Application, say application ‘A’, was installed on the
server.

Example 11. Copying applications

If application ‘A’ is installed on the server under /home/runtime/A/
classes/appls and you are copying application ‘B’, then
54 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

copy: /home/runtime/B/classes/appls/B
to: /home/runtime/A/classes/appls/B

4 In the jacadasv.ini file, add references to all the applications you wish to run
on the same server.

Example 12. Add references to all applications in the jacadasv.ini

[Applications]

B=

C=

[B]

WorkingDirectory= $RootDir/classes/appls/B/server/resources/

5 Copy the applications’ HTML files to the <RootDir> directory of application
‘A’ (where the HTML file of application ‘A’ is stored on the server).

Example 13. Copy HTML files

Copy: /home/runtime/B/B.html
to: /home/runtime/A

The JIS Server Command Line Parameters

You can manipulate the way the JIS Server runs by adding command lines to its
script file. Following is the list of parameters you can use for this purpose:
webMethods JIS: Java Client User’s Guide Version 9.0 55

Chapter 1. Making the Java Client Runtime Operational

Table 4. JIS Server command line parameters (Sheet 1 of 2)

- d<Debug level> Default: -d1

For Example:

-d30

The debug level can be set to any integer from zero to 1000. The
greater the integer, the greater the amount of information that
is recorded in the logfile. A debug level of “50” produces an
extremely detailed log file. A debug level of "1" is
recommended when running the server in production
environment.

The debug facility is extremely useful for diagnosing problems
that may occur during setup and testing of your JIS Server, but
Software AG recommends that debug level larger than 10 will
not be used on a regular basis during normal production
operation. This is because the JIS Server generates many log
entries for each action (every time Enter or an Fkey is pressed)
of every user. Especially with the higher debug levels, a
handful of users with moderate activity could result in an
enormous log file in just a short time. After a certain point the
logging of such a large number of entries may negatively
impact system throughput.

-l<Debug log
file
directory>

Default: log to console

For Example:

(write log to directory \temp on the c: drive)

-lc:\temp

The logfile directory you specify must exist before you bring
up the JIS Server. If the directory does not exist, the Server
startup fails.

-m<number> Specifies the maximum size of the server log file in bytes, if
desired.

Example:

-m1000000
Limit the JIS log file to 1 Mb in size.

-b<number> Specifies the number of server log file revisions to keep.
56 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 1. Making the Java Client Runtime Operational

Operating the Runtime on a Client Computer

To run a Java Client application on a Client computer:

1 Invoke a Web Browser that supports Java.
2 Type the URL address of the application's HTML page on the Web Server, for

example http://mycomputer.com/demo.html, where mycomputer.com
is the actual name of the Web Server, and demo is the Application name. Once
the initial portion of the JIS classes has been loaded the Client computer tries
to connect to the JIS Server. While connection is being established, the
following message appears:

-i<path of
server
initializatio
n file>

Default: -i<User’sWorkingDir>\jacadasv.ini

For Example:

-ic:\JacadaFiles\jacadasv_example.ini

-h The JIS Server console displays the syntax of the JIS startup
command, and the list of command line options.

-n Disables the user’s option to insert such commands as ‘check’
and ‘quit’ in the JIS Server console. This flag is necessary
when running the server as a background process.

-c Runs the Server Configuration Checker in Offline Mode. The
Checker analyzes the configuration of all the defined server
machines, reports errors and warnings to a log, and closes
without starting the server.

-f<Debug
Filters>
(if
specifying
multiple
filters,
separate them
with a comma
[“,”])

Debug Filters are tools to help you accomplish specific types of
logging. See “Debug Filters” on page 122 for more information.

Table 4. JIS Server command line parameters (Sheet 2 of 2)
webMethods JIS: Java Client User’s Guide Version 9.0 57

Chapter 1. Making the Java Client Runtime Operational

3 At this stage you can minimize the Web Browser if desired, but do not close it.
Once a connection with the JIS Server has been established, the main window
of the application appears enabling you to run your application. The
following figure is the main window which appears on the Client.

4 After the main window appears, select Application > Run to begin running
the application.

Note: Whenever a problem occurs in the connection between the Client
Computer and the JIS Server, the Web Browser prompts a relevant HTML
page. These pages contain detailed information about the possible reasons
for the aborted connection.

Note: On the right hand side of the Main Window is the Java Client runtime
icon. When this icon blinks, communication is executed between the Client
and the Server.
58 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

By the time you reach this chapter, your Java Client runtime should be fully
operational. This chapter discusses advanced topics that are related to the Client
side of the JIS runtime. You will find here information about how to improve
download time; how to enhance the runtime application by configuring various
runtime settings; the various possibilities for running the Java client.

In this chapter you will learn about:

• HTML File Settings
• Archive Files Provided by JIS
• Running the Java Client from an Applet Using a Launcher
• Running the Java Client from a Java Application
• Running the Java Client Inside a Browser Window
• Optimizing Fonts for Non-Windows Platforms

HTML File Settings

In order to run a Java applet, an HTML file is required. The HTML file is
generated during the compilation process and stored under:
<InstallDir>\JacadaFiles\<ApplName>.html

Within the HTML file, certain parameters of the applet are pre-defined. These
parameters can be changed by the user, in order to control certain runtime
properties of the Java Client. The HTML file is not overwritten during subsequent
executions of the Generate Runtime command, to prevent any editing performed
on it from being destroyed.

In addition, you can add parameters to the html file.
webMethods JIS: Java Client User’s Guide Version 9.0 59

Chapter 2. The Java Client Runtime

Example 14. Adding parameters to the HTML file

<PARAM name = "UseHttp" value = "TRUE">

Figure 11. Adding parameters in the HTML file

HTML Parameters That Can be Changed by the User

The HTML parameters in Table 5 to Table 13 can be changed by the user.

GUI Settings

The GUI settings in Table 5 can be changed by the user.

Table 5. GUI settings that can be changed by user (Sheet 1 of 5)

Parameter Description

HideMenus When set to TRUE, the menu bar is not
displayed in the Subapplication window. The
default value is FALSE.

HideToolbar When set to TRUE, the tool bar at the top of
the main window and the Java Client runtime
icon are not displayed. The default value is
FALSE.
60 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

HideApplicationMenu When set to TRUE, the Application menu is
hidden. The default value is FALSE.

ComboFitWidth Determines the width of an open combo box
list:

FALSE - the list opens as wide as the closed
combo box. This is the default behavior.

TRUE - the list opens as wide as the width of
the longest item in it.

ComboFitHeight When set to TRUE, combo boxes open as tall
as needed to show all their items. The height is
limited by the window's size.

The default FALSE opens the drop-down
combo as tall as defined in webMethods JIS.

UseModalPopups When set to TRUE, popup windows open as
modal dialog boxes. This means that the user
cannot give focus to the main window while
the popup is open. The default value for this
parameter is FALSE. See limitations under
“Java Client Limitations” on page 265.

DefaultDateFormat This parameter enables to set the format of
date controls from the HTML.

When the parameter does not appear, the
locale's format is used.

When the parameter’s value is "ShortLocale",
the locale's format is used with a 2-digit year.

When the parameter’s value is "LongLocale",
the locale's format is used with a 4-digit year.

Otherwise, you may determine your own
format by typing it in as the parameter’s value,
for example: "dd/mm/yyyy", "yyyy-mm-dd",
etc.

Table 5. GUI settings that can be changed by user (Sheet 2 of 5)

Parameter Description
webMethods JIS: Java Client User’s Guide Version 9.0 61

Chapter 2. The Java Client Runtime

HostScreenDisplaySize The percentage that represents the ratio
between initial host screen dimensions (height
and width) and display resolution. The
default is 70 percent. The actual window size
is implementation dependent, since fonts are
different for each Java version or Windows
system. Note that the font size is determined
by the screen’s dimensions.

AnimatedLogoVisible Determines whether or not to display the
animated Software AG logo shown in the
main window when the Server is running. The
animated logo is displayed by default. Change
the default value to FALSE to disable this
feature.

AnimatedLogoImages Contains the list of files where the images are
placed. The file names must be separated by ','
or ';'.
When the file names have no extension the
default extension is ".gif".

AnimatedLogoLocation Contains the directory where the logo images
reside. This can be a path relative to the
codebase, or a full URL address.

AnimatedLogoDelay The time, in milliseconds, that each frame of
an animated logo is displayed. The default is
250 milliseconds.

ButtonRolloverBackground Defines the background color of a button
when the mouse rolls over it. Used for giving
the button a web-like look. The colors must be
specified in the standard HTML format: RGB
value as hexadecimal digits, with a # before
the value, e.g. value = "#666666".

Table 5. GUI settings that can be changed by user (Sheet 3 of 5)

Parameter Description
62 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

ButtonRolloverForeground Defines the foreground text color of a button
when the mouse rolls over it. Used for giving
the button a web-like look. The colors must be
specified in the standard HTML format: RGB
value as hexadecimal digits, with a # before
the value, e.g. value = "#FFFFFF" for white.

ButtonCursorType When the mouse rolls over a button, defines
whether the shape of the cursor is that of a
hand or an arrow. Used for giving the button
a web-like look. The default value "Default"
displays an arrow. Change the value to
"Hand" to display a hand.

AllowSaveHostScreenImage When set to TRUE the Emulator menu is
added to the runtime menu bar. The Emulator
menu contains the Save Host Screen Image
menu item. Choosing this menu item prompts
a dialog box in which the desired panel file
name (.pnl) must be given. The default value
is FALSE.

GUIPrintingBackground Defines the background color of a printed
window. The color must be specified in the
standard HTML format: RGB value as
hexadecimal digits, with a # before the value,
e.g. value = "# FFFFFF" for white. This
setting also affects the background color of
group boxes, frames, radio groups, tab folders,
labels, check boxes and radio buttons. See
“Printing the Client Window” on page 199.

GUIPrintingScale In percents, defines the scale of the window’s
printout. For example: value = "70" causes
the printout to be 70% of its full size. The
default is 100 percent. Note: do not write the
“%” character.

GUIPrintingInMonochrome When set to TRUE, the GUI is printed in pure
black and white. The default value is FALSE.

Table 5. GUI settings that can be changed by user (Sheet 4 of 5)

Parameter Description
webMethods JIS: Java Client User’s Guide Version 9.0 63

Chapter 2. The Java Client Runtime

ApplicationIconLarge Defines the location of the icon used in the
About dialog box. This choice overrides the
default icon. All Java supported image
formats are valid. When no extension is given,
.GIF is the default.

ApplicationIconSmall Defines the location of the icon used for the
System menu. This choice overrides the
default icon. All Java supported image
formats are valid. When no extension is given,
.GIF is the default.

UseMultirowTabFolders Defines whether the multi-row folder tabs
feature is enabled or not. When set to FALSE,
the folder tabs are lined up in one row
regardless of whether they fit in the screen or
not. The default values is TRUE.

RunInsideBrowser When set to TRUE, the client runs inside the
browser. When FALSE (the default value), the
client runs in a separate window.

WindowHScrollIncrement Defines the number of pixels a single click of
the increment/decrement buttons of the
horizontal scroll bar scrolls the Subapplication
window. The default value is 10.

WindowVScrollIncrement Defines the number of pixels a single click of
the increment/decrement buttons of the
vertical scroll bar scrolls the Subapplication
window. The default value is 10.

WindowScrollRepeatInterval Defines the time interval in milliseconds
between each repeated firing, when clicking
and holding the increment/decrement buttons
on the horizontal/vertical scroll bars. The
default value is 100 milliseconds.

Table 5. GUI settings that can be changed by user (Sheet 5 of 5)

Parameter Description
64 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Localization

The following localization settings can be changed by the user:

Communication

The following communication settings can be changed by the user:

Table 6. Localization settings that can be changed by user

Setting Description

Locale_Language Defines the language that is used in the
runtime Application. The value takes a two
letter language code which is derived from the
ISO 639 standard. For example: "fr" for French,
"sp" for Spanish, etc. For more information,
see Chapter 4 - "Language Localization" on
page 165.

Locale_Country Defines the language as spoken in a specific
country that is used in the runtime
Application. The value takes a two letter
country code which is derived from the ISO
3166 standard. For example: "AU" for
Australia, "CH" for Switzerland, etc. For more
information see Chapter 4 - "Language
Localization" on page 165.

Locale_Variant Defines the language variant as spoken in a
specific country that is used in the runtime
Application. The value is vendor and browser-
specific. For more information see Chapter 4 -
"Language Localization" on page 165.

Table 7. Communication settings that can be changed by user (Sheet 1 of 3)

Setting Description

CommTimeOut Specifies the time the Client waits for a
response from the Server, before prompting
the user with the message "Server not
responding". The default value is 50 seconds.
webMethods JIS: Java Client User’s Guide Version 9.0 65

Chapter 2. The Java Client Runtime

UsePorts Defines whether or not to use the two direct
communication ports for connecting the
Client and the Server. The default value is
TRUE.

ConnectPort Determines which port is used in case the port
file is not found. The default value 0 means
that the default port 1100 is used.

ConnectPortURL Indicates the full or partial path to the port file.

This allows overriding the default place of the
port file which is in the classes directory, or
one directory level above that.

Server Java Client’s server name. You require the
name when running the Java Client as an
Application. The default name is null. In this
case the Server is the one from which the Java
classes are downloaded.

UseHttp Defines whether to use an HTTP
communication method. The default value is
FALSE.

HttpAddr Overrides the automatically calculated URL
address. Allows for customized setting of the
Web Server and for HTTPS communication
even when classes are downloaded using
HTTP.

For Example:

HttpAddr = http://localhost:80/servlet/
JISProxyServlet

Note that the port number is required even
when it is default port 80.

Table 7. Communication settings that can be changed by user (Sheet 2 of 3)

Setting Description
66 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Debugging

The following debug settings can be changed by the user:

HttpReuseConnection Determines whether clients working on the
same JVM use a single connection to the
servlet. When set to FALSE, the connection
reuse mechanism is disabled. The default is
TRUE.

ConnectionRetryTimeout Determines the maximum total time in
seconds during which the client continues its
attempts to establish a connection with the
server. The default is 20 seconds.

ConnectionRetryInterval Determines the maximum time, in seconds,
between connection attempts. The actual time
is calculated randomly but does not exceed the
specified value. The default is 10 seconds.

Table 8. Debug settings that can be changed by user (Sheet 1 of 2)

Setting Description

DebugLevel Controls the amount of debug information
that can be logged to the Java Console.

For Example:

50=detailed debug printing, 1000=full debug
printing. The default 0 specifies no debug
printing,

LocaleDebugMode Determines whether the Application prints
localization-related information to the debug
log. The Application runs in localization
debug mode when the parameter is set to
TRUE. The default is FALSE.

Table 7. Communication settings that can be changed by user (Sheet 3 of 3)

Setting Description
webMethods JIS: Java Client User’s Guide Version 9.0 67

Chapter 2. The Java Client Runtime

HTML Pages

The following HTML page settings can be changed by the user:

DebugTimeStamp When TRUE, each line in the client debug log
is preceded by a timestamp. The default is
FALSE.

Table 9. HTML page settings that can be changed by user

Setting Description

ExitPage Defines which html to move to after the
Application is finished. The default value is to
remain in the current HTML page.

ConnectionFailedPage Defines an html page that is displayed when
failing to connect to the JIS Server. The default
page is ConnectionFailed.html and it
contains a list of the common reasons for this
failure.

VersionMismatchPage Defines an html page that is displayed in case
of mismatch between the Client’s code and the
JIS Server’s code. The default page is called
VersionMismatch.html, and it contains a
list of the common reasons for such an error.

LanguageNotSupported Defines an html page that is displayed when
the language used in the Application is not
supported. The default page is called
Language NotSupported.html and it
contains a message saying that the JVM you
are using does not support the Application's
language.

Table 8. Debug settings that can be changed by user (Sheet 2 of 2)

Setting Description
68 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Session Initialization

The following Session Initialization settings can be changed by the user:

Configurable User Messages

The following Configurable User Message settings can be changed by the user:

Table 10. Session Initialization settings that can be changed by user

Setting Description

RequestProfile Before launching the session, allows the user
to specify the profile of the session. When set
to TRUE, prompts the profile dialog box
where the user’s profile must be inserted.
When the setting is FALSE (default), the
general <ApplName>.ini file is used, unless
the "Profile" parameter is specified.

Profile Determines the profile that is used. When the
RequestProfile parameter is set to TRUE,
initializes the session using the value
displayed to the user. The default setting
leaves the profile name field empty. When left
empty, the <ApplName>.ini file is used.

Table 11. Configurable User Message settings that can be changed by user

Setting Description

ClientConnectionMessage The following default message is displayed in
the browser during the connection to the
server: “Connecting to JIS Server”. This
message can be overridden by modifying the
parameter’s value.

ClientTerminationMessage The following default message is displayed in
the browser when the session has terminated:
“Application terminated”. This message can
be overridden by modifying the parameter’s
value.
webMethods JIS: Java Client User’s Guide Version 9.0 69

Chapter 2. The Java Client Runtime

Scalability: Server Farm

The following Scalability settings can be changed by the user:

Table 12. Scalability settings that can be changed by user

Setting Description

FullClientURL In conjunction with UseNewHTML=TRUE, when
downloading a new applet, specifies the URL
address of the applet. When left empty, the
current applet’s URL is used (only the web
server’s name is replaced).

FullClientFrame Defines the type of frame in which the
redirected Web page is displayed. Possible
values are:

“_self” - show in the window (frame) that
contains the applet.

“_parent” - show in the applet’s parent frame.
If the applet has no parent frame, acts as in
“_self”.

“_top” - show in the top level frame of the
applet’s window. If the applet’s frame is the
top-level frame, acts as in “_self”.

“_blank” - show in a new, unnamed top-level
window.

Name - show in a frame or window called
<WindowName>.

UseNewHTML When the client is redirected to another
machine, defines whether to download a new
applet based on the address given in the
FullClientURL html parameter (TRUE), or
connect directly to another server without
downloading a new applet (FALSE).
70 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Printing

The following Printing settings can be changed by the user:

Archive Files Provided by JIS

Server Side Archive Files

jacadasv.jar - This archive file contains the JIS Server classes.

Client Side Archives Files

Table 13. Printing settings that can be changed by user

Setting Description

UseJavaPrintDialog Enables printing via the Java Page Setup
dialog box when a Java plug-in version 1.2 and
higher is installed. From Java plug-in version
1.4 this is the default behavior. Setting this
parameter to FALSE disables the feature and
the operating system’s Print dialog box is
used.

PrintPageOrientation Enables you to set the printed page’s
orientation to either Portrait or Landscape,
when using a Java plug-in version 1.2 or
higher. When set, this setting is then the
default for all printing jobs.

clbase.jar This archive file contains the core classes of the Java client.

clbase-
signed.jar

A signed version of the clbase.jar archive file.

clhost.jar This archive file contains the classes required for viewing
host screens on the client.
webMethods JIS: Java Client User’s Guide Version 9.0 71

Chapter 2. The Java Client Runtime

Choose the archive file to use according to the features you wish to have
available:

Java Client Administrator Related Archive

clprint.jar Contains the XML parser and all the printing emulation
classes.

clfull-signed.jar This archive file exists only in a signed version. It contains:

• The core classes of the Java client.
• The classes required for viewing host screens on the

client.
• The classes required for printing emulation.

Basic
client

Screen
emulation

Window
printing

Printing
emulation

System
clipboard

clbase x

clbase &
clhost

x x

clbase &
clprint

x x

clbase-
signed

x x x

clfull-
signed

x x x x x

Note: The clhost archive cannot be used separately from the clbase archive.

jam.jar This archive file contains the JIS Administrator classes.
72 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Signed and Unsigned Archive Files

JIS class archives are available in either signed or unsigned versions. Due to
security restrictions imposed by the Java Virtual Machine (JVM), some of the
features JIS provides can only work using signed files. Following is the list of
signed and unsigned archive files JIS provides:

Using Signed Files

Using signed files gives you the benefit of using the following features:

• Host-to-Client Printing
• Host screen and GUI window printing
• System clipboard activities (cut, paste) on non-Java programs
• Redirecting a client to other servers with a single class-download. See

“Scalability” on page 101.

Sun Java Plugin prompts the following message when you download the signed
archive:

Note: The archive files are placed under: <InstallDir>\classes\cst\

Unsigned Archives Signed Archives

clbase.jar clbase-signed.jar

clhost.jar

clprintjar

jacstart.jar

clfull-signed.jar

Note: Using a signed archive file prompts a security warning dialog box.
webMethods JIS: Java Client User’s Guide Version 9.0 73

Chapter 2. The Java Client Runtime

Figure 12. Plugin warning dialog box

The Application HTML Files Generated During Compilation

The compilation process generates the following HTML references to the archive
files:

Table 14. Application HTML files generated during compilation

HTML File Description

<ApplName>.html Runs an unsigned client

<ApplName>-signed.html Runs a signed client using signed archives

<ApplName>-browser.html Runs the Java client inside the browser, not
in a separate window. The applet opens in
the top left-hand corner of the browser
window. This option provides a more “web-
like” look compared to the
<ApplName>.html file.
74 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Running the Java Client from an Applet Using a Launcher

The cst.client.startup package includes two different launchers which are
used by the standard applet—as created by the compilation process:

• JacadaBasicLauncher – the standard launcher.
• JacadaLoginLauncher – a launcher that waits for the user to enter a profile

name and click OK. It is used when the RequestProfile parameter in the
application’s HTML file is set to TRUE.

In addition, this package contains two other classes:

• JacadaLauncherInterface – an interface that must be implemented by all Java
Client launchers. It defines a small set of services that the Application expects
to receive from the launcher.

• JacadaLauncherCreator – a class that creates a tailored launcher, according to
the parameter settings in the HTML file.

JacadaBasicLauncher

The basic launcher automatically starts the Application when its init method is
called. This launcher only displays system messages.

Figure 13. BasicLauncher

JacadaLoginLauncher

This launcher allows you to enter your user name (login) and start the
Application using the personalized application setting. It shows messages from
the Server in the lower half of its display. In addition, it allows you to restart the
Application once it is finished.
webMethods JIS: Java Client User’s Guide Version 9.0 75

Chapter 2. The Java Client Runtime

Figure 14. LoginLauncher

Running the Java Client from a Java Application

The Java Client can run from any Java application. It does not require an applet
to be launched. This means that a Java client can either run as a standalone
application, or be integrated with the code of other Java-based applications.

To run a standalone Java Client application, from the command prompt, use the
JAVA command to run the class appls.<ApplName>.user.Applet.

The following requirements apply:

• You must include the directory <InstallDir>\classes in your
CLASSPATH.

• You must also include one or more “Client Side Archive Files” in your
CLASSPATH; for example:
<RootDir>\classes\cst\clbase.jar
The specific archive file or files that you choose depends on the features you
wish to make available in your application. See “Client Side Archives Files” on
page 71

The applet class contains a main () method that allows it to run as an application
too.

The Application’s Params File

The compilation process generates the params file. This file contains the default
parameters and their settings. The params file supports, where relevant, the same
parameters that are set for an applet in the html file.

The generated params file sits under:

<RootDir>/classes/appls/<ApplName>/user/params.txt.
76 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

In addition, the params file includes the following two parameters:

ApplicationClass=appls.<ApplName>.user.JacadaStarter - The JacadaStarter
class that initializes the application. The setting indicates which application is
initialized.

CodeBase= <FullyQualifiedURL> (default http://localhost/classes) - The setting
indicates where the application’s files that are loaded during runtime are stored.

Customized Application Settings

Application parameters setting may be set differently for different usage. Each
customized parameters setting should be stored in a separate params file.

To create an additional params file:

1 Duplicate the default params file, using a different name.
2 Change the setting as desired.

To initialize an application with the desired params file, run the following class:
cst.client.startup.JacadaBasicLauncher

With the following argument:
appls/<ApplName>/user/<ParamsFileName>

Example 15. Customized application settings

java cst.client.startup.JacadaBasicLauncher appls/mbf/user/params1.txt

The following requirements apply:

• You must include the directory <RootDir>\classes in your CLASSPATH.
• You must also include one or more “Client Side Archive Files” in your

CLASSPATH; for example:
<RootDir>\classes\cst\clbase.jar
The specific archive file or files that you choose depends on the features you
wish to make available in your application. See “Client Side Archives Files” on
page 71
webMethods JIS: Java Client User’s Guide Version 9.0 77

Chapter 2. The Java Client Runtime

Running the Java Client Inside a Browser Window

The Java client can run inside a Browser window instead of in a separate window.

To run the Java client inside a browser window:

1 Launch the <ApplName>-browser.html file. The client window is aligned
with the upper left-hand corner of the browser window.

Alternatively, you can:

1 Add the following parameter to the application’s <ApplName>.html file:
<PARAM name=”RunInsideBrowser” value=”true”>

2 Run your Application.

Fitting the Application Window into the Browser

This section applies to users of the <ApplName>.html file. The <ApplName>-
browser.html file is automatically created with these modifications in place.

The space for an Application running within a browser is reduced by the space
taken up by the browser itself. This must be taken into account when converting
your application and setting up the runtime.

You can solve the problem of space by first reducing the application window’s
size and then fine-tuning it to fit the space available in the Browser’s window.

To reduce the application window size:

Convert the application in a lower resolution than the screen resolution. For
example, if your screen is set to a 1024x768 resolution, convert the application as
800x600.

To optimize the application window size within the browser:

• In the application HTML file, increase the HEIGHT and WIDTH parameter, to
enlarge the application window:

Note: The popup windows and the host screen are displayed in separate
windows.
78 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Example16. Optimize the application window size within the browser

<APPLET…..
 WIDTH=760
 HEIGHT=450>

• In the application HTML file, decrease the applet’s margins to zero:
<BODY TOPMARGIN=0 LEFTMARGIN=0 MARGINGEIGHT=0
 MARGINWIDTH=0>

Changing the Application's Look

The Application runs inside the browser using a default look. This includes a thin
gray border around the application window, and white text on a blue
background caption.

The customer can change this look using code extension. The compilation process
creates a file called SubApplContainer.java in the directory
JacadaFiles/src/appls/<ApplName>/user. This file implements the default
look, but customers can change it in order to modify the look as they see fit.

Limitations

Since the Application runs in a browser it does not have its own menu bar. As a
result, all the Application’s commands must be made available as buttons or
accelerators.

Use Archives to Reduce Download Time of Java Classes

Application-specific Java classes are downloaded to the client one class at a time,
and in an uncompressed format. Due to the inefficiency of the HTTP protocol,
this process is time consuming. One way of reducing download time is by
collecting the class files into one archive file. This way, all the application classes
are downloaded to the client in one go.

webMethods JIS provides you with a batch file that collects application-specific
classes into JAR files. This batch file—makejar.bat—is included with
webMethods JIS and resides under the webMethods JIS installation directory:

Note: When you create a menu bar, though it remains invisible, parts of it are
accessible using the RMB popup menus, e.g. the List menu when right-
clicking a table control.
webMethods JIS: Java Client User’s Guide Version 9.0 79

Chapter 2. The Java Client Runtime

<InstallDir>\JacadaFiles\utils\makejar\makejar.bat

For more information about the makejar.bat utility, consult the readme.txt
file that resides under the same directory.

Referencing Application Specific Archive in Application HTML File

Application specific classes that have been placed in archive files must be
referenced in the application HTML file.

Referencing a JAR File in the Application HTML File

The following reference to the Client core JAR file is automatically added to the
application html file during the compilation process:
ARCHIVE="cst/clbase.jar".

If you wish the browser to recognize other JAR files, put down their names,
separated by a comma.

Example 17. Referencing a JAR File in the Application HTML File

If you have compressed the classes of an Application called MyAppl into a JAR
file, add the file name as follows:
ARCHIVE="cst/clbase.jar,MyAppl.jar"

Improving Download Time of an Unsigned Application

This feature allows the downloading of host screens only if needed.

The classes required for viewing host screens on the client are contained in an
archive file called clhost.jar

The clhost.jar archive file is downloaded to the client during initialization. If you
have no need to view the host screen during runtime, you can choose not to load
this archive file during initialization. This saves on download time.

Excluding the Downloading of the clhost.jar File

A reference to the clhost.jar file is added to the <ApplName>.html file during
the compilation process:
80 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

ARCHIVE="cst/clbase.jar,cst/clhost.jar"

The reference to the clhost.jar file must be removed.

Optimizing Fonts for Non-Windows Platforms

The font settings you define in webMethods JIS are best displayed on Windows-
based platforms. When running an Application on a different platform a non-
standard font may be displayed. This can have unexpected effects on the GUI
display.

To avoid this from happening, you can control the way the font is displayed on
the Java client by using the font substitution mechanism. This mechanism
constitutes a substitution table that shows the original font setting beside the font
setting you wish to display.

Example 18. Font substitution mechanism

Dialog-11=Dialog-20

Whenever the Java client is supposed to display Dialog font in 11 points, as
defined in webMethods JIS, it will display Dialog font, 20 points.

The Font Substitution Resource File

This section deals with the location and contents of the font substitution resource
file.

The Resource File Location and Name

Place the resource file under the following directory:
<InstallDir>\JacadaFiles\classes\cst\client\resources\<FileName>.res

File names are derived from the type of system running the client. If you have
doubts as to the name of the file, run your application in Debug mode. The file
name you should use appears in the JVM’s Java console output.

The font substitution resource file name is a combination of the following factors

Note: You may add a font substitution resource file, containing a font
substitution table to each Application.
webMethods JIS: Java Client User’s Guide Version 9.0 81

Chapter 2. The Java Client Runtime

Combined, the file name looks as follows:
fonts_<OS>_<Vendor>_<Version>.res

The JDK version number is optional. When not including the JDK version
number, the file name looks as follows: fonts_<OS>_<Vendor>.res

Example 19. File name examples

• When running the client on Windows XP with Sun’s JRE 1.6.15, the file’s name
is:
fonts_Windows_XP_Sun_Microsystems_Inc_1.6.0_15.res

or:
fonts_Windows_XP_Sun_Microsystems_Inc.res

Contents of the Font Substitution Resource File

In the resource file create a list of the fonts’ original settings and their
substitutes. The syntax used for each line in this file is as follows:
FontName-[Style-]Size=NewFontName-[NewStyle-]NewSize

Note: When both options exist, the version-specific file is read.

FontName Dialog

Times Roman

Helvetica

Courier

ZapfDingbats

Style bold

italic

bolditalic

(Note that the Style setting is optional)

Size Font size
82 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 2. The Java Client Runtime

Example 20. Font substitution

The following settings will effect the dialog box font in the described way:

Debugging the Font Substitution Mechanism

To run your Application in Debug mode, set the DebugLevel parameter to 10 in
the application html file.

Example 21. Debugging the font substitution mechanism

<PARAM name = "DebugLevel" value = "10">

Information Retrieval From Font Debugging

Debug the font substitution mechanism to retrieve the following information:

• The name of the substitution resource file
When running in Debug mode, the name of the font resource file is printed to
the log in the following manner: "Looking for fonts resource at: <FileName>"

Dialog-11=Dialog-20 Increases the size of Dialog font from 11 to
20 points

Dialog-11=Dialog-bold-20 Increases the size of Dialog font from 11 to
20 points and makes it bold

Dialog-11=Courier-italic-20 Uses Courier italic, 20 points, instead of
plain Dialog, 11 points

Note: The font names in the substitution table are those used by the Java
clients. Windows, and consequently webMethods JIS, use different font
names. The font sizes and types supported by Java are shown in “Java Client
Limitations” on page 265.
webMethods JIS: Java Client User’s Guide Version 9.0 83

Chapter 2. The Java Client Runtime

• Font activity in the application
The fonts’ settings are also printed to the log file, in the following manner:
"Using font: Dialog-20 (original font requested: Dialog-11)"—this entry shows
the original GUI request: Dialog font, size 11, and the font that is displayed
instead: Dialog font size 20. A font setting is logged on its first appearance in
the Application.

Note: The debugging results are printed to the JVM’s Java console output.
84 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

The following topics are discussed:

• JIS Server *.ini File Settings - Provides you with a list of the JIS *.ini file settings.
Many of the settings in the JIS *.ini file deal with aspects of connectivity
between the JIS Server and the Client Application.

• Scalability - Provides you with information required to implement a scalable
JIS Server system that dynamically balances the load in response to runtime
demands.

• JIS Server Logging Support - Introduces the JIS Server mechanism for tracking
and viewing the session status information for each process on your server
system.

• JIS Administrator - Introduces the JIS Administrator system. The JIS
Administrator’s function is twofold: You use it to monitor the JIS Server and it
serves as a utility to configure the runtime application.

• Running the JIS Server as a Windows Service - Describes two utilities you may
use to install the JIS Server as a Windows service. A Windows service allows
you to provide continuous, unattended access to your application without
compromising the security of the server machine.

• Managing User Profiles - Each application has a runtime INI file in which its
various settings are stored. The JIS Server allows for a separate runtime INI file
to be assigned to each user.

Other Factors Affecting Performance

Several factors can affect the performance of the JIS Server in addition to the
Server’s settings and the users’ activity profiles.

• The Server platform’s CPU and memory configuration has the most profound
impact on capacity and performance.

• Network capacity and congestion directly affect performance.
• Optimization of load balancing configuration parameters can dramatically

affect performance.
• The performance of the JVM also influences overall performance.
webMethods JIS: Java Client User’s Guide Version 9.0 85

Chapter 3. Optimizing the JIS Server

JIS Server *.ini File Settings

The JIS Server initialization file contains settings that deal, to a large extent, with
aspects of connectivity between the JIS Server and the client Application. The
settings are editable and their values can be changed to enhance the performance
of the JIS Server.

The JIS Server *.ini file is called jacadasv.ini. It resides under the Classes
directory, in the directory in which you have installed your runtime Application.

For example: c:\JacadaRuntime\classes\jacadasv.ini

The *.ini file is divided into sections. Each section begins with a header line that
consists of the name in the section in square brackets, like so: [SectionName].
This section of the book is organized into sections like those in the *.ini file itself.

[GeneralParameters]

Note: For changes to take effect you should restart the JIS Server.

IniVersion Optional parameter. The developer can use this
parameter to specify a character string that will
appear in the debug log to identify the ini file
being used.

KeepAliveTimeout Time-out for sub-processes to send a keep-alive
notification to the main process. If the main
process did not receive a keep-alive notification
until the time-out expires, the reference to the
sub-process is removed. The value is calculated
as multiples of ‘KeepAliveTimerTick’. The
default value is 10 (x ‘KeepAliveTimerTick’).

KeepAliveTimerTick Interval at which sub-processes send a keep-
alive notification to the main process.
Default value is 60 seconds.

MaxMachine-
Applications

Maximum number of applications to be run
concurrently on the server machine.

MaxProcess-
Applications

Maximum number of applications to be run
concurrently in the server process.
Default value is no limit.
86 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

MaxProcesses Maximum number of processes to be run
concurrently on the server machine.
Default value: 1

PortScanRetries Defines the number of times the process will
look for a free port, within the port range,
before giving up. Default value: 2.

RegistryPortRange Range of port allocations for the RMI Registry
(minimum of one port is needed).
Format: <LowPort> - <HighPort>
Example: 1900-1901
Default port number is 2100.

RegistrySpawn
Timeout

The time in milliseconds the server waits for the
NodeRegistry process to start. The default is
45,000 milliseconds. Do not use a comma when
specifying the value.

ReportsToMachine Alias of the root machine. Note: required only
in multi-machine scenarios, for machines that
are not running the root server process. The
machine running the root process must remain
undefined.

RMISocketTimeout Defines the time in seconds that a RMI client
waits for a server to respond. When a remote
method is called on a remote object it will time-
out after the defined time, throwing a
'RemoteException'.
Default value: 20 seconds.
webMethods JIS: Java Client User’s Guide Version 9.0 87

Chapter 3. Optimizing the JIS Server

RtDebugFileMaxSize Specifies the maximum size of the server log file
in bytes, if desired.

Example:

RtDebugFileMaxSize=1000000
Limit the JIS log file to 1 Mb in size.

The maximum size of the server log file can also
be specified on the JIS Server command line
(See “The JIS Server Command Line
Parameters” on page 55.) If the parameter is
specified in both places, the value specified on
the command line takes precedence.

RtDebugMaxFiles Specifies the number of revisions of server log
files to keep.

The maximum size of the server log file can also
be specified on the JIS Server command line
(See “The JIS Server Command Line
Parameters” on page 55.) If the parameter is
specified in both places, the value specified on
the command line takes precedence.

RtDebugFilters Specify any debug filters that you want set on
automatically at Server startup.
Example:

RtDebugFilters=ACCESS,METHOD

If you desire to use more than one debug filter,
separate the filter names with commas.

Debug Filters are tools to help you accomplish
specific types of logging. See “Debug Filters”
on page 122 for more information.

Debug filters can also be specified on the JIS
Server command line (See “The JIS Server
Command Line Parameters” on page 55.) If
debug filters are specified in both places, the values
specified on the command line take precedence.

Debug filters can also be turned on and off
while the JIS Server is running. See “Debug
Filters” on page 122 for more information.
88 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

RtDebugLevel The debug level can be set to any integer from
zero to 1000. The greater the integer, the greater
the amount of information that is recorded in
the logfile. A debug level of “70” produces an
extremely detailed log file. A debug level of “1”
results in few log records being written.

The debug level can also be specified on the JIS
Server command line (See “The JIS Server
Command Line Parameters” on page 55.) If the
debug level is specified in both places, the value
specified on the command line takes precedence.

 The debug facility is extremely useful for
diagnosing problems that may occur during
setup and testing of your JIS Server, but
Software AG recommends that debug level
larger than 70 will not be used on a regular
basis during normal production operation. This
is because the JIS Server generates many log
entries for each action (every time Enter or an
Fkey is pressed) of every user. Especially with
the higher debug levels, a handful of users with
moderate activity could result in an enormous
log file in just a short time. After a certain point
the logging of such a large number of entries
may negatively impact system throughput.

RtLogsDir Use this parameter to specify the location of the
log files. For example:
RtLogsDir=$RootDir\classes\logs

Alternatively, you can specify the log file
location on the command line. (See “The JIS
Server Command Line Parameters” on
page 55.)

The debug level must be higher than zero for a
Server Log File to be created.

The log directory specified (either via the
RtLogsDir parameter or on the command line)
must already exist in order for logging to take
place. The debug file itself is called
Debug_1.log. If there is more than one server
process, a numeric suffix is automatically
affixed so that the file name becomes
Debug_1.0.log, for example.
webMethods JIS: Java Client User’s Guide Version 9.0 89

Chapter 3. Optimizing the JIS Server

RtRootDir The runtime root directory.
For example: <InstallDir>\JacadaFiles.

Note that the string "$RootDir" in settings that
include it in their path will be replaced in
runtime with the root directory defined in this
setting.

ServerPortRange Range of port allocations for the initial
communication port number. A minimum
range of at least one port is required.

Note: If no 'ServerPortRange2' parameter is
specified:
- This range also applies to the secondary server
port. For this to be effective, a minimum range
of at least two ports is required.
- When the ServerPortRange parameter is
set to a range of only two ports, the lower value
of the range is reserved for port1 and the higher
value is reserved for port2.

Format: <LowPort> - <HighPort>
Example: 1900-1901
Default value: 1100-1100

ServerPortRange2 Optional range for the secondary
communication port number.
Format: <LowPort> - <HighPort>
Example: 1900-1901
Default is the port range defined in
ServerPortRange.

SocketImplFactory The fully qualified classname of a custom
implementation of the socket factory class on
the server side.

Example:
appls.applname.server.user.MySocketF
actoryImp

When undefined, uses regular Java sockets.
90 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

SoftLimitMargin-
Percent

An integer that defines a secondary "soft" limit
below the maximum sessions limit. When the
soft limit is reached, the main node stops
directing new clients to this node until all nodes
have reached this value. The node, however,
will not reject clients that contact it directly. The
value is defined as a percentage of
MaxProcessSessions.
Do not type the percent sign.

Default value is 10.

SpawnInterval Time in milliseconds that the main server
process waits before spawning the next
process. The default value is zero, which means
that the main process does not wait before
spawning all other processes.

StartScanAtRandom
Port

To avoid a situation in which all processes vie
for the same free port, this setting defines for
each process a random starting point within the
range of allocated ports.

If the port range is 2000-3000 and the random
starting point is 2500, then the process will start
looking for the free port at port 2500-3000, and
if not found, from port 2000-2499.

StdoutEncoding Defines which Encoding setting the Server
processes use when reading the output of
spawned processes. This is dependent on the
iSeries operating system.

For example, OS V4R2 requires the following
setting: Stdout=Cp037

SystemConnection-
Timeout

On startup, the interval in seconds in which the
main node tries to establish a connection with a
root node on another machine.

Default is 120 seconds.

WaitForSpawned Maximum waiting time for a server process to
start and initialize. After this interval the
spawned process is considered to have failed.
The default value is 60 seconds.
webMethods JIS: Java Client User’s Guide Version 9.0 91

Chapter 3. Optimizing the JIS Server

[HTTP]

[Applications]

[Application_Name]

One of these sections is created for each application listed in the
[Applications] section.

HTTPPortRange Specifies the port range of the JIS Server's HTTP
connection. Specify as two ports separated by a
dash, low port first. Default is 8080-8080

ResourceBase Specifies the base directory from which the
location of image files is defined.
Usually, this should be the runtime root
directory.
For example: C:/webMethods JIS/
JacadaFiles

Application_Name1
Application_Name2
...

A list of applications that are installed on
the JIS Server. For each application listed
in this section, there should be a separate
section created with the same name as the
application.

WorkingDirectory The full path to the application’s resources.

Example:
<RootDir>\classes\appls\<ApplName>
\server\resources\

IniDir The full path to the application initialization
files.

Example:
<RootDir>\classes\appls\<ApplName>
\server\resources
92 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

 [VMCommandLine]

[ServerMachines]

[Sessions]

Classpath The classpath used by the Java VM for spawned
processes.

Note: The '-classpath' command line option
(or its equivalent in accordance with the VM
implementation in use) has to be prefixed to the
parameter value.

JavaMemory Subset of the Java VM specific command line
options used for memory settings.

Note: If not set, the Java VM uses its own
defaults. Example: -ms10m -mx50m

JavaOptions Java VM specific command line options.

Note: If not set, the Java VM uses its own
defaults. Example: -
Djava.security.policy=<RootDir>\
security\jacadasv.policy

JavaVM File path of the Java VM used for spawning
processes.

Example: <RootDir>\utils\jre\bin\java

(M1, M2,...) Associates the machine name/IP address/local
host with a user-defined alias.

Example: 191.96.15.2=M1

MaxProcessSessions Maximum sessions to be allocated in a server
process. Default is 1000.

MaxMachineSessions Maximum sessions to be allocated in a server
machine. Default is 1000.
webMethods JIS: Java Client User’s Guide Version 9.0 93

Chapter 3. Optimizing the JIS Server

[SessionTimeouts]

StartUpSessions
Percent

Specifies the portion of 'MaxMachineSessions'
that must be provided by the server on start-up.
Server processes are spawned in order to
provide the required space for session
allocation. Note that when the value=100%,
dynamic process spawning is disabled. Default
is 0.

Note: This parameter is similar to the
'SpareSessionsPercent' with the exception that
this parameter has effect only on startup.

The actual number of processes is limited by
the 'MaxProcesses' parameter.

SpareSessions
Percent

Specifies the portion of 'MaxMachineSessions'
that must be provided during runtime. Server
processes are spawned in order to provide the
required space for session allocation. Default is
0.

Note: The sessions specified by this parameter
are allocated below the margin defined in the
'SoftLimitMarginPercent' parameter.

MsgboxTimeout Time in seconds that the Server waits for the
Client to respond to a message box before
terminating the session. Default is 36000.

PanelTimeout Time in seconds that the Server waits for the
Client to select a panel (when working in File
mode), before terminating the session.
Default is 36000.

GetTextFromUser
Timeout

Time in seconds that the Server waits for the
Client to reply to a "GetTextFromUser" prompt
before terminating the session. Default is 36000.

KeepAlive Time in seconds during which the Server
checks the connection with the Client. If the
Client does not respond within 'RecvTimeout',
the session terminates. Default is 240.
94 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

[ScoreWeights]

These parameters are used in load balancing and scalability calculations.

RecvTimeout Time in seconds that the Server waits for a
response from the Client before terminating the
session. This applies to server messages that
require a reply from the client, such as
'KeepAlive'.
Default is 200.

MachineApplications The penalty weight of the number of running
applications on the server machine. Specify as
an integer, without percent sign.
Default value is 0 percent of the total score
weight.

MachineSessions The penalty weight of the number of running
sessions on the server machine. Specify as an
integer, without percent sign.
Default is 45 percent of the total score weight.

MultiMachines The penalty difference that overrides the
'Preferred Machine' feature. If the penalty
difference of two processes on two machines is
greater than the specified value, then the
session allocation occurs in the process with the
lower penalty score. Specify as an integer,
without percent sign.
Default is 75 percent.

ProcessApplications The penalty weight of running a new
application in the server process. Specify as an
integer, without percent sign. Default value is
10 percent.

ProcessSessions The penalty weight of the number of running
sessions on the server process. Specify as an
integer, without percent sign. Default is 45
percent.
webMethods JIS: Java Client User’s Guide Version 9.0 95

Chapter 3. Optimizing the JIS Server

[LogClasses]

The log classes described in this section log usage data. This is separate and
distinct from debug logging.

[<Log Java Class Name>]

This section is used to set parameters for the log classes you chose in the
[LogClasses] section. For each log class that you set to 1 in the [LogClasses]
section, you must create a separate [<LogJavaClassName>]section. The four
possible log classes are SessionLog, SessionCountLog, XMLLog, and
XMLServer. The table below describes the log classes.

<LogJavaClassName> This parameter specifies if any of the following
log classes are to be used: SessionLog,
SessionCountLog, XMLLog, XMLServer.
A value of 1 means yes, 0 means no.
Default is 0.

Note: This parameter just gives you the ability
to use the log class. To actually enable the log
class, you must create a
[<LogJavaClassName>]section for the class
in question, and include the Enable parameter
in that section.

Format: <JavaLogClass>=<value>.

SessionLog=1
SessionCountLog=1
XMLLog=
XMLServer=;

SessionLog The SessionLog writes the session status
information to a log file in the format of a
comma delimited list. The SessionLog contains
information For each active session such as:
Server Id, Session Id, Time Connected, Time
Disconnected, User Name, Profile, User
Address, Application Name, Last Transaction,
Total Transactions, Total Duration, Net Avg
Duration, Avg Since Reset, Library Name,
Current Screen, Last Event
96 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

[SessionLog]

If you set SessionLog to 1 in the LogClasses section, you must include the
[SessionLog] section in the *.ini file.

SessionCountLog The SessionCountLog provides statistics about
sessions running on the server.

The following is a typical log entry:

[10/16/2000 at 16:46:00] Session count: 3,
max: 3, avg: 1.55

count - number of active sessions.
max - highest number of active sessions at any
time.
avg - the average number of active sessions for
the entire logged session.

XMLLog The XMLLog class writes status information
about the entire server system to a log file in
standard XML format. The XMLLog includes
information about the number, identity, and
status of active processes, sessions, and
applications; Server address, RMI port number,
status of the processes, active Applications.

XMLServer The XMLServer receives the same status
information that is written to a file by the
XMLLog class. The XMLServer makes the status
information available for an online connection
to the JIS Administrator.

TimerTick Interval in seconds at which the Session log file
is updated. Default is 3600 seconds (1 hour).
The Server waits for this interval to elapse
before writing its first log records to disk.
Subsequent writes to the log file are also spaced
at this interval. Between writes, new log
information is buffered in memory, so log
information is not lost.
Note: If the JIS Server is closed down before the
first TimerTick interval has elapsed, no Session
log is created.
webMethods JIS: Java Client User’s Guide Version 9.0 97

Chapter 3. Optimizing the JIS Server

[SessionCountLog]

If you set SessionCountLog to 1 in the LogClasses section, you must include
the [SessionCountLog] section in the *.ini file.

Enable Specifies whether or not to enable Session
logging.
0 = disable Session logging
1 = enable Session logging
Default is 0.

File The full pathname of the log output file. This
parameter is required only when logging is
enabled.
If this parameter is omitted, the log file is not
created.
Example: File=C:\temp\Session.log

JIS automatically inserts a timestamp in the file
name. For example, if you specify
Session.log as the filename and a
FileInterval of 1d, the log file is created with the
name Sessionyymmdd.log, where yymmdd is
the date of the file’s creation.

FileInterval Interval for periodic creation of new Session log
files. Supported time codes are: s-second, m-
minute, h-hour, d-day. Precede the time code
with an integer.
Example: 12h
Default value is 1d.

When the specified time has elapsed, the
existing logfile is closed and a new Session
logfile is created and opened automatically. For
example, if you specify a file interval of 2h, a
new Session log file is created every two hours.
The old file is not deleted. Duplicate filenames
are avoided by the timestamp which is
automatically added to the file name.
98 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

TimerTick Interval for updating the SessionCount log file.
Default is 3600 seconds (1 hour).
The Server waits for this interval to elapse
before writing its first log records to disk.
Subsequent writes to the log file are also spaced
at this interval. During the interval between
writes, any new log information is preserved in
memory, so no log information is lost.
Note: If the JIS Server is closed down before the
first TimerTick interval has elapsed, no
SessionCount log is created.

Enable Specifies whether or not to enable
SessionCount logging.
0 = disable SessionCount logging
1 = enable SessionCount logging
Default is 0.

File The full pathname of the SessionCount log
output file. This parameter is required only
when SessionCount logging is enabled. If this
parameter is omitted, the SessionCount log file
is not created.

Example:
File=C:\temp\SessionCount.log

JIS automatically inserts a timestamp in the file
name. For example, if you specify SessCt.log
as the file name and a FileInterval of 1d, the log
file is created with the name
SessCtyymmdd.log, where yymmdd is the date
of the file’s creation.
webMethods JIS: Java Client User’s Guide Version 9.0 99

Chapter 3. Optimizing the JIS Server

[XMLLog]

If you set XMLLog to 1 in the LogClasses section, you must include the [XMLLog]
section in the *.ini file.

[XMLServer]

If you set XMLServer to 1 in the LogClasses section, you must include the
[XMLServer] section in the *.ini file.

FileInterval The interval for creating new SessionCount log
files. Supported time codes are: s - second, m -
minute,
h - hour, d - day. Precede the time code with an
integer.
Example: 12h
Default value is 1d.

When the specified time has elapsed, a new
SessionCount logfile is created automatically.
For example, if you specify a file interval of 2h,
a new SessionCount log file is created every
two hours. The old file is not deleted. Duplicate
filenames are avoided by the timestamp which
is automatically added to the file name.

TimerTick Interval in seconds at which the XML log file is
updated. Default: 60.

Enable Determines whether or not the XML log file is
created. Valid values are 1 (yes) and 0 (no).
Default: 0.

File The pathname of the log output file. The setting
is required only when logging is enabled.
Example: C:\temp\XMLlog.xml

TimerTick Refresh interval of the XML data that is sent to
the JIS Administrator. Default is 60 seconds.
100 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Scalability

Scalability provides you with a mechanism for creating a JIS Server system that
can comprise a single server computer or a bank of computers linked in a
network. A single server computer can run several server processes. Any single
process can handle multiple client/host sessions. The JIS Server system responds
to client requests by dynamically opening and closing sessions on the server
processes. The Scalability feature also provides a means for load balancing across
the JIS Server system.

The Scalable System Structure of the JIS Server

The scalable JIS Server can consist of a single server computer or a series of server
computers arranged in a network. In either case, the system derives its scalable
nature from a structure of hierarchically arranged units called server modules.
This section describes the position and relative function of server modules within
the server system. During runtime a server module functions as a process. In
terms of the hierarchical structure of the system each server module is uniquely
identified by a server ID.

In this way each process is represented and identified as a node within the server
system. First we describe the structure and terminology used for a server system
that uses a single server computer. Second we describe a multiple server-
computer system.

The hierarchical and functional relationship between the server processes, and if
more than one server computer is used, between the server computers, is defined
in the jacadasv.ini file. This is discussed in “Setting up the Scalable Server
System” on page 125. Each server computer has its own jacadasv.ini file.

Enable Defines whether or not the XMLLog data is sent
to the JIS Administrator.
Valid values are 1 (yes) and 0 (no).
Default: 0.

If you want to use the JIS Administrator, this
parameter must be set to 1.
webMethods JIS: Java Client User’s Guide Version 9.0 101

Chapter 3. Optimizing the JIS Server

Single Server-Computer System

You can best understand the scalable nature of the JIS Server system if you first
look at the structure of a simple system, one that consists of a single server
computer with a limited number of server modules. Each process is represented
by a node within the server system.

Structure

Figure 15 shows a single server computer that has three open processes. The
highest level process on a server computer is referred to as the main node. Here
the main node has two lower level nodes that are connected to it. These are
referred to as sub-nodes.

Figure 15. A Single Server

Function

The simple structure of the system used in this scenario imposes a number of
functional requirements on the main node. Functionally, when the lower level
processes are first created it is the main node that is responsible for creating them.
Any node that has sub-nodes attached to it is referred to as a parent node.
Therefore in addition to being the structurally highest level node on the server
computer, the main node also functions as the parent node of the two sub nodes.
At set intervals each sub-node sends its status information to its parent node.

Status information updates include information such as:

• Whether the process is active.
102 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

• The number of host applications initialized by a process.
• The number of client/host sessions running.
• The number of client/host sessions that can run on a process.

In this way the parent node maintains status information on each of its sub-
nodes.

This information is used to:

• Scale the system.
• Perform load balancing on the system.

In this scenario, the main node is also the highest level parent node in the entire
system. The parent node in this position is referred to as the root node. The root
node for any system maintains the most inclusive status information base for the
server system. This node is the primary target of a client request for connection
to a host application.

Client Connection to the System

In Figure 16, a client directs an initial request for a host connection to the root
node. The root node has the most inclusive status information for the system, so
it is the node that determines which process can most readily open a session with
the host. It sends a message to the client, directing the client to send a second
request for a host connection to a particular sub-node. The client sends a request
to the particular sub-node and the process identified with the sub-node opens a
client session with the host application.

Figure 16. Control Flow When Starting a Session
webMethods JIS: Java Client User’s Guide Version 9.0 103

Chapter 3. Optimizing the JIS Server

Multiple Server-Computer System

The multiple server-computer system—also called a server farm—is organized as
a hierarchically arranged group of server computers linked in a network. The
hierarchical and functional relationship between server computers is defined in
the jacadasv.ini file. See “Setting up the Scalable Server System” on page 107.

Structure

The illustration shows four server-computers, each with an identical internal
process structure. While structurally an apparent similarity exists between the
main nodes and the parent nodes, they differ functionally with respect to the
position a server computer holds within the network.

Figure 17. A Server Farm
104 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Each node in the server system is uniquely identifiable by a combination of the IP
address of the computer it resides on and the node number, shown in parenthesis
in Figure 17.

Function

The main node on any given server-computer is responsible for:

• Maintaining status information on each of the processes running on the
computer.

• Transferring status information on each of its lower-level processes, to its
designated system parent-node.

• Initializing lower level processes on that particular computer.

The functional difference between main nodes in a multiple server-computer
system depends on the position the server-computer holds within the network.

In the scenario presented in Figure 17, server-computers 3 and 4 are the lowest
level server computers. Each of their main-nodes maintains data on its sub-nodes
and transfers the information to the main node on server-computer 2.

Any main node that receives status information from lower level main nodes is
referred to as a system parent-node. In Figure 17 the main node on server-
computer 2 is acting as the system parent-node.

Server-computer 2 maintains information on its own processes and those of
server-computers 3 and 4, and transfers this information to server-computer 1’s
main node. This being the highest level server computer, its main-node functions
as the root-node. The root node maintains the most inclusive amount of
information available from the system.

You can see from the scenario provided that status information is transferred
from the lowest level in the hierarchy to the highest level, exclusively via main
nodes.

Client Connection to the System

The process here is slightly different to that described for a single server
computer system. Again the client directs its initial request for a host connection
to the root node. Again the root node has the most inclusive status information
for the system; however, in this case it determines which server computer has the

Note: The hierarchical structure presented in the example is designed to
illustrate system elements. The structure of a working multiple server
computer system is flexible and should be designed to best support your
hardware, application and client needs.
webMethods JIS: Java Client User’s Guide Version 9.0 105

Chapter 3. Optimizing the JIS Server

least load and re-directs the client request for a host connection to a sub-node of
the computer server that presents the least load. The sub-node then takes
responsibility for opening a client session.

If server computer 4 presents the least load, then the following occurs:

• The client directs its initial host connection request to the root-node on server-
computer 1.

• The root-node examines its status information and determines that server-
computer 4 has the least load.

• Server-computer 1 redirects the client request to the process on server-
computer 4’s main that carries the least load.

This example describes the general flow of events that occurs when a client-host
connection request is redirected from the main server machine to a secondary
server machine in the system.

Identifying Server Modules

During runtime, Server modules act as processes. Each process can be identified
from any other process on a server computer by a combination of the IP address
of the machine it resides on and its process ID. Process IDs can be the same on
different machines, so the IP address is needed to differentiate them.

For example, in Figure 17, the ID of the main node on server-computer 4 is
11.22.33.48.1, and 11.22.33.48.1.1 is one of its sub-nodes.

The server ID indicates the hierarchical level that the process belongs to on the
server computer.
The position that the process holds within the level.

Figure 18. Identifying Server Modules

The root node is the only node on the highest level and so its server ID is 1. The
root node has created two sub-nodes so their processes are identified as 1.1 and
1.2. The existence of a second digit indicates that processes are located on the
second level of the hierarchy, and the value of the second digit indicates the

Server ID
1

Server ID
1.2

Server ID
1.1
106 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

position held within the level. If the sub-node 1.2 was directed to create a sub-
node of its own then the first process on the third level would be created and its
server ID would be 1.2.1.

The Integrator Process

In Figure 17, note that each Server machine includes a sub-node numbered 1.0.
These nodes are known as integrator processes. At server start-up, each integrator
process is responsible for the creation (or spawning) of all processes on the
machine on which it resides, based on the decisions of the main node.

When dynamic process spawning is used, each main node analyzes the load on
its own machine and instructs the integrator process to spawn new processes as
needed.

An integrator process is automatically created on each server machine that has
more than one level of processes defined. Software AG generally recommends
that the integrator process not handle any client sessions itself, so that it is
devoted to load processing. Do this by including the following lines in the
jacadasv.ini file for each server machine.

[<Machine>.Integrator.Sessions]
MaxProcessSessions=0

Setting up the Scalable Server System

To set up the scalable system of JIS Server:

1 Perform the runtime installation process on each machine that functions as a
server computer for the system.

2 Follow all regular server setup procedures, as indicated in the manual. This
must be performed for each machine functioning as a server computer.

3 Replace the jacadasv.ini file supplied during runtime installation with the
customized jacadasv.ini file produced for running the scalable server
system.

Note: This naming system exists within a server computer and not across
server computers.
webMethods JIS: Java Client User’s Guide Version 9.0 107

Chapter 3. Optimizing the JIS Server

Customized jacadasv.ini File

A customized version of the jacadasv.ini is used when running a scalable
server system, which contains different information to the regular
jacadasv.ini that is supplied as part of the runtime installation. This special
jacadasv.ini contains specific parameters which are used by the scalability
feature.

These parameters are used for:

• Defining the startup state of the system.
• Indicating how the system is to behave, with respect to scaling and load-

balancing, in response to client requests to open a host session.

The contents of the customized jacadasv.ini file reflect the hardware,
application and client requirements that best support your needs. To gain the best
results from your system we recommend you customize the jacadasv.ini file
in consultation with a Software AG representative.

The following sections provide:

• A description of the general structure of a customized jacadasv.ini file.
• Examples of the jacadasv.ini file for single server-computer and multiple

server-computer systems.

General Structure of the jacadasv.ini File

The jacadasv.ini file provides a generic layout of the server system to be
constructed. When a process is started it looks up the information that belongs to
its hierarchical level and task in the system, according to its local address and the
identification it received on the command line. A unique initialization set is
provided for each server computer and for each node’s hierarchy level on the
server computer. Parameters defined in one section can be overridden by
parameters set in another section according to certain rules, explained below.

Note: Be aware that the jacadasv.ini file produced at runtime generation
contains an [Applications] section which contains information about the
runtime Applications. A section for each Application listed in the
[Applications] section is also created in the jacadasv.ini file at runtime
generation. These sections must be reflected in the customized
jacadasv.ini file produced for running the scalable server system.
108 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

The jacadasv.ini File is Composed of Sections

The jacadasv.ini file is composed of sections. Each section is headed by a line
with the section name in square brackets; for example:

[Sessions]

Under the section header are one or more lines of parameters. For a complete
listing of all of the section names and their parameters, see “JIS Server *.ini File
Settings” on page 86.

Targeting ini Parameters to a Particular Machine or Node Level

It is possible to selectively target the parameters in an ini file section to a
particular machine or even to a particular node-level within a specific machine.
This is done by specifying additional information in the section header line. The
general format is:

<Machine>.<Section>

or

<Machine>.<NodeLevel>.<Section>

If you use the format <Machine>.<Section> in a jacadasv.ini file section
header, the parameters in that section apply only to the machine specified in the
header.

If you use the format <Machine>.<NodeLevel>.<Section> in a
jacadasv.ini file section header, the parameters in that section apply only to
the machine and node-level combination specified.

Permitted values for <Machine> are determined by the machine names you
specify in the jacadasv.ini file [ServerMachines] section.

Permitted values for <Level> are:

• Level1 - for the main node.
• Integrator- for the integrator node.
• Level2 - for the nodes immediately subordinate to the main node

 (except the integrator node).
• Level3 - for the nodes immediately subordinate to Level2 nodes,

 and so on.

Examples

The sample jacada.ini file shown in Example 24, "Example of jacadasv.ini for
a multiple server-computer system", which begins on page 112, includes several
file sections related to Sessions parameters:
webMethods JIS: Java Client User’s Guide Version 9.0 109

Chapter 3. Optimizing the JIS Server

• The section headed [M1.Level1.Sessions] affects only the main node (always
node 1) on machine M1. (The identity of computer M1 is defined in the
[ServerMachines] section.)

• The section labelled [M1.Integrator.Sessions] applies only to the integrator
node (always node 1.0) on machine M1.

• The section headed [M2.Level1.Sessions] affects only the main node (always
node 1) on machine M2.

• The section labelled [M2.Integrator.Sessions] applies only to the integrator
node (always node 1.0) on machine M2.

• The section labelled [M1.Sessions] applies to all the nodes on machine M1,
except the nodes specifically targeted by other sections.

Precedence of Targeted ini File Sections

The general rule is: for a given node or node-level, the settings under a more
specific section header take precedence over the settings under a less specific
section header.

Example 22. Example of jacadasv.ini for a multiple server-computer environment

In a multiple server-computer environment, you could have a jacada.ini file
with three different types of [GeneralParameters] section headings:
[M2.Level2.GeneralParameters]
[M2.GeneralParameters]
[GeneralParameters]

In such a case, the section headed [GeneralParameters] applies to all nodes,
with the following exceptions:

• On machine 2, any settings in the [M2.GeneralParameters] section take
precedence over the settings in the [GeneralParameters] section.

• For the Level2 nodes on machine M2, the parameter settings in the section
labelled [M2.Level2.GeneralParameters] take precedence over the
settings in the [M2.GeneralParameters] and [GeneralParameters]
sections.

Example 23. Example of jacadasv.ini for a single server-computer system

This example provides the jacadasv.ini settings and parameters that you may
expect to see in a single server-computer system.

[GeneralParameters]
110 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

RtRootDir=i:\java\

HTTPClient=1

[Xhtml]

RuntimeDirectory=$RootDir\classes\appls

ImagesLocation=/classes/appls

DoHTMLMerge=1

[HTTP]

HTTPPortRange=8081-8180

HTTPSPortRange=8152-8250

SupportHTTPS=0

ResourceBase=I:\java\

[ServerMachines]

//The addresses of the server machines are defined here. “M1” stands for

//“machine 1”. It is an arbitrary convention for distinguishing one server

//computer from another. This setup uses only one server computer.

10.11.12.101=M1

[M1.Level1.HTTP]

HTTPPortRange=8080-8080

HTTPSPortRange=8151-8151

//If using HTTP proxy, the HTTPSPortRange parameter

// should be in the M1.Integrator.HTTP section.

[M1.GeneralParameters]

//This machine will handle a maximum of 12 processes.

MaxProcesses=12

[M1.Level1.Sessions]

//The root node will not process client sessions.

MaxProcessSessions=0

[M1.Integrator.Sessions]

//The integrator node will not process client sessions.

MaxProcessSessions=0

[Sessions]

//A maximum of 600 total sessions will be created.

//A maximum of 12 total processes were defined above, in the

//GeneralParameters section. One of those processes will be the root node,
webMethods JIS: Java Client User’s Guide Version 9.0 111

Chapter 3. Optimizing the JIS Server

//another will be the integrator process. Those two processes were defined

//as handling zero client sessions. That leaves 10 processes to handle

//client sessions. Each of the 10 processes are define as handling up to

//60 sessions, for a maximum of 600 client sessions.

StartUpSessionsPercent=100

SpareSessionsPercent=0

MaxProcessSessions=60

MaxMachineSessions=600

[LogClasses]

XMLServer=1

[XMLServer]

Enable=1

TimerTick=20

[M1.VMCommandLine.NodeRegistry]

JavaMemory=-ms50m -mx100m

[M1.VMCommandLine.Server]

JavaMemory=-ms300m -mx600m

[M1.Integrator.VMCommandLine.Server]

JavaMemory=-ms100m -mx200m

[M1.Level1.VMCommandLine.Server]

JavaMemory=-ms50m -mx100m

[Applications]

PRODAP01=

[LOADTEST]

WorkingDirectory=$RootDir\classes\appls\LOADTEST\server\resources\

IniDir=$RootDir\classes\appls\LOADTEST\server\resources\

Example 24. Example of jacadasv.ini for a multiple server-computer system

This example provides the jacadasv.ini settings and parameters that you may
expect to see in a multiple server-computer system.
112 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

[GeneralParameters]

RtRootDir=i:\java\

HTTPClient=1

[Xhtml]

RuntimeDirectory=$RootDir\classes\appls

ImagesLocation=/classes/appls

DoHTMLMerge=1

[ServerMachines]

//The addresses of the server machines are defined here. “M1” stands for

//“machine 1”, “M2” is “machine 2”. It is an arbitrary convention for

//distinguishing one server machine from another. This setup uses 2 servers.

10.11.12.105=M1

10.11.12.110=M2

[M1.GeneralParameters]

MaxProcesses=12

[M2.GeneralParameters]

MaxProcesses=4

[M2.GeneralParameters]

ReportsToMachine=M1

[M1.Level1.Sessions]

//The main node on machine 1 will not process client sessions.

MaxProcessSessions=0

[M1.Integrator.Sessions]

//The integrator node on machine 1 will not process client sessions.

MaxProcessSessions=0

[M2.Level1.Sessions]

//The main node on machine 2 will not process client sessions.

MaxProcessSessions=0

[M2.Integrator.Sessions]

//The integrator node on machine 2 will not process client sessions.

MaxProcessSessions=0
webMethods JIS: Java Client User’s Guide Version 9.0 113

Chapter 3. Optimizing the JIS Server

[M1.Sessions]

StartUpSessionsPercent=100

SpareSessionsPercent=0

MaxProcessSessions=60

MaxMachineSessions=600

[M2.Sessions]

StartUpSessionsPercent=100

SpareSessionsPercent=0

MaxProcessSessions=20

MaxMachineSessions=50

[M1.Level1.HTTP]

HTTPPortRange=8080-8080

HTTPSPortRange=8151-8151

[M2.Level1.HTTP]

HTTPPortRange=8090-8090

HTTPSPortRange=8161-8161

[M1.HTTP]

HTTPPortRange=8081-8180

HTTPSPortRange=8152-8250

ResourceBase=I:\java\

[M2.HTTP]

HTTPPortRange=8091-8190

HTTPSPortRange=8162-8260

ResourceBase=I:\java\

[LogClasses]

XMLServer=

[XMLServer]

Enable=1

TimerTick=20

[M1.VMCommandLine.NodeRegistry]

JavaMemory=-ms50m -mx100m

[M1.VMCommandLine.Server]

JavaMemory=-ms300m -mx600m
114 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

[M1.Integrator.VMCommandLine.Server]

JavaMemory=-ms100m -mx200m

[M1.Level1.VMCommandLine.Server]

JavaMemory=-ms50m -mx100m

[M2.VMCommandLine.NodeRegistry]

JavaMemory=-ms50m -mx100m

[M2.VMCommandLine.Server]

JavaMemory=-ms300m -mx600m

[M2.Integrator.VMCommandLine.Server]

JavaMemory=-ms100m -mx200m

[M2.Level1.VMCommandLine.Server]

JavaMemory=-ms50m -mx100m

[Applications]

PRODAP01=

[PRODAP01]

WorkingDirectory=i:\java\classes\appls\PRODAP01\server\resources\

IniDir=I:\guisysd\appls/PRODAP01\rt32\

HTTP/S Communication

The default for Java clients is to use direct port connections to connect to the JIS
Server. However, when the Server is placed behind a firewall, in a secured
network, direct access is usually banned. In such a case, we use the HTTP/S
communication as a bridge between the clients and the server, and wrap our
protocol with HTTP requests, since HTTP connections are usually available.

Note: JIS 9.0.4 introduces the option of running the HTTP/S communication
as part of the JIS standalone server. For more information refer to the JIS 9.0.4
release notes.
webMethods JIS: Java Client User’s Guide Version 9.0 115

Chapter 3. Optimizing the JIS Server

JIS Server Logging Support

The JIS Server provides a mechanism for tracking and viewing the session status
information for each process on your server system. Periodically this information
is written to a log file that is then available for you to read.

JIS Server Logging Architecture

The JIS Server logging structure is composed of several units that communicate
with each other and with the server system’s root node. These units include the
Log Manager, the Session Log, the XMLLog, and the XMLServer.

Figure 19. JIS Server logging architecture

The following table lists and explains the Server System’s logging support
components:

Table 15. Server System’s logging support components (Sheet 1 of 2)

Component Function

Log Manager The Log Manager is responsible for storing session
status information. Information held by the Log
Manager is periodically updated in response to log
class requests.
116 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

JIS Server Log Information Flow

Session status information is directed to the root node in response to two
different types of events:

• When a process opens or closes on a server module.
-OR-

• When there is a log class request.

When a process either opens or closes, its session status information is sent to the
root node. This information is then available to the Log Manager. In addition the
Log Manager responds to periodic Log Class requests for session status
information by instructing the processes to send session status information. The
type of information sent to the root node is dependent on the Log class
performing the request.

SessionLog The SessionLog writes the session status information
to a log file in the format of a comma delimited list.
The log file location is read from the SessionLog
section in the jacadasv.ini file. Status information
written to the SessionLog is limited to specific data
parameters for each session.

XMLLog The XMLLog writes the status information to a log file
in standard XML format. The log file location is
indicated in the XMLLog section of the
jacadasv.ini file. The status information written by
the XMLLog class includes a record of the complete
status information across the entire server system.

XMLServer The XMLServer receives the same set of status
information as that for the XMLLog class. Instead of
writing the information to a log file, the XMLServer
makes the status information available for an online
connection to the JIS Administrator.

JIS
Administrator

When connected to the server system’s root node the
JIS Administrator provides a user interface for
viewing the XMLServer output online, and by remote
access.

Table 15. Server System’s logging support components (Sheet 2 of 2)

Component Function
webMethods JIS: Java Client User’s Guide Version 9.0 117

Chapter 3. Optimizing the JIS Server

The Server System Log Classes

This section describes the Server system log classes in detail.

SessionLog Log Class

The SessionLog log class writes session status information to a log file in the
format of a comma delimited list. The first record in the list is a set of column
headers. Each remaining record contains data associated with each of the column
headers. Each record in the list represents information for a particular session on
a particular process.

Processes record information concerning any one of their sessions when:

• A session opens
• A session closes
• A screen changes
• A session command event occurs

In this way the information written to the session log forms an incremental record
of the information and events occurring on processes and their sessions.

The following table indicates the record parameters written to the SessionLog
and provides a description of each parameter:

Table 16. Record parameters written to the SessionLog (Sheet 1 of 2)

Parameter Description

Server Process ID The server IP address and Port1. Separated by a
colon (:).

192.90.14.4: 1100

Session ID A numeral representing the sessions position on
the process relative to any other session.

Time Connected A time stamp indicating the date and time that the
session connected to the process.

2/18/99 12:19:40
118 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Time Disconnected A time stamp indicating the date and time that the
session was disconnected from the process.

2/18/99 12:50:30

User Name The user name taken at login.

_Default_User_

User Profile User profile name

User Address The Client address.

Localhost/127.0.0.3

Application Name The name of the application.

Last Transaction The time of the last recorded server activity in the
current session.

Total Duration Time taken from request reception to the return of
a response.

Total Transactions The total number of transactions performed by the
process.

Net Avg Duration The average transaction duration - calculated by
dividing Total Transaction Duration by
Number of Transactions.

Current Screen Provides the name of the current Subapplication.

Last Event The session event for which the parameters were
taken.

Session_New

Table 16. Record parameters written to the SessionLog (Sheet 2 of 2)

Parameter Description
webMethods JIS: Java Client User’s Guide Version 9.0 119

Chapter 3. Optimizing the JIS Server

Viewing the SessionLog Output

The SessionLog output is written to a log file as defined in the jacadasv.ini
file. This is a text file that is best viewed by importing the contents into any
spreadsheet or application that is capable of displaying comma delimited lists.

Setting the LogClasses and Their jacadasv.ini File Parameters

The jacadasv.ini file contains a number of sections that are relevant to the
Server Logging support feature. A section called [LogClasses] for defining the
log classes that are available for use by the server, and a separate section for each
specific log class. The specific log class sections define parameters specific for the
logclass’ operation.

These include:

• Whether the LogClass is enabled or disabled.
• The frequency at which a LogClass sends a request to update data.
• The path of the log file to which the LogClass writes data.

Table 17. Setting LogClasses and their jacadasv.ini parameters

*.ini Entry Values and Description

Enable Defines whether the LogClass is available for use
by the server during runtime. 1 indicates that the
LogClass is enabled. 0 indicates that the LogClass
is disabled.

TimerTick Defines the amount of time between successive
log class request for data updates. This is given by
a numeral that indicates time in seconds.

FileInterval Defines the interval for creating new log files. The
supported time codes are: s - second, m - minute,
h - hour, d - day.

12h

File Defines the location and file name to which the
LogClass writes data.
120 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

LogClasses Section

You define the LogClasses for use by JIS Server logging support during runtime
in the LogClasses section of the jacadasv.ini file. Each entry in the section
represents a different LogClass. The example LogClasses section below requests
that only a SessionLog be produced; the XMLLog and XMLServer log are not
created.
[LogClasses]

;XMLLog=

XMLServer=0

SessionLog=1

SessionLog Section

[SessionLog]

Enable=1

TimerTick=30

File=C:\log\jacadasv.log

XMLLog Section

[XMLLog]

Enable=0

TimerTick=20

FileInterval=6h

File=C:\log\Jacadasv.xml

XMLServer Section

[XMLServer]

Enable=1

TimerTick=30

How to Create a Server Log File

To create a Server Log File, in the jacadasv.bat file, specify a debug level higher
than zero on the batch statement; for example: -d50.

Note: In the section illustrated the XMLLog and XMLServer have been
commented out by including a semi-colon (;) before the LogClass name. This
is one method of disabling the use of the LogClass.
webMethods JIS: Java Client User’s Guide Version 9.0 121

Chapter 3. Optimizing the JIS Server

You can also name the log file and place it in a location of your choice, by
specifying -l<Directory path>.

Alternately, you can specify the location of the logfiles by adding a parameter to
the [GeneralParameters] section of the jacadasv.ini file:
RtLogsDir=$RootDir\<Directory>

For example: RtLogsDir=$RootDir\classes\logs

If there is more than one server process, a numeric suffix is automatically affixed
so that the file name becomes Debug_1.0.log.

Example 25. Server log file

jacadasv.bat -d50 -lc:\temp

Advanced Logging Features

This section discusses some advanced logging features:

• Controlling the absolute size of the server log file.
• Using filters to limit log output.

Controlling the Size of the Log File

The command line option -m lets you specify the maximum size of the log file,
in bytes. Once the specified size is reached, the log file is renamed and a new log
file is started.

The Start Log

During JIS Server startup, log messages are written describing the server
environment, including the operating system version, JVM number, server build
number, and *.ini file settings. This information can be very useful for debugging

These startup messages are written to a separate log file, named
debug_start.log.

Debug Filters

Debug Filters are tools to help you accomplish specific types of logging. They are
implemented by using the command line parameter
-f<DebugLogFilters(colon delimited)>
122 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

We recommend that the Debug Filters be used with a low debug level; this makes
it easy to find the filtered messages in the output. No filtered messages are
printed, however, when the debug level is set to 0.

Example 26. Debug filters

-fPROFILING -d1

Activating Debug Filters While the JIS Server is Running

Debug filters can also be activated or deactivated while the JIS Server is running,
without stopping and restarting the Server. This is done by entering a command
in the server window.

addfilter <FilterName>
Turns on the specified filter. Specify just one filter. If you want to turn on more
than one filter, execute the addfilter command once for each filter desired.

If you specify no operand, the addfilter command lists on the JIS Server
console the names of all existing predefined filters.

removefilter <FilterName>
Turns off the specified filter. Specify just one filter. If you want to turn off more
than one filter, execute the removefilter command once for each filter desired.

displaycurrentfilters
Lists to the JIS Server console the names of all filters currently in use.

Example 27. Addfilter

addfilter PROFILING

Scalability Filter

Filter name: SCALABILITY The scalability filter provides log information that is
relevant to load testing and server tuning, performance monitoring, and screen
identification problems. Because the scalability filter is intended for use in servers
running a large number of users, its output is limited to information essential to
scalability debugging.

Among the information displayed by the scalability filter is:

• New data arriving from the host.
webMethods JIS: Java Client User’s Guide Version 9.0 123

Chapter 3. Optimizing the JIS Server

• Keyboard unlock events.
• Screen identification results.
• SetWaitForScreenState information.
• Host screen image.

Method Debug Filter

Filter name: METHOD

The method debug filter limits output to the method debug messages. See
“Setting Runtime Generation Options” on page 22 for more information about
generating method debug messages. The method debug messages assist in the
tracing and debugging of user-written methods.

Analyzing Abnormal Runtime Termination

The JIS Server and client log files include details about termination of the runtime
— be it regular termination by the end user, or abnormal termination of the client
or server. However, the server and client logging feature can be disabled by
changing the debug level to 0. To provide a means of analyzing abnormal runtime
termination, specific information about the process or session termination is
written to logs called Dump Files.

Information Included in Dump Files

Dump files record events such as client disconnections, server exceptions, and
host failure. The information in these log files is recorded just before the session
closes.

Dump files contain three levels of information:

Table 18. Information included in dump files (Sheet 1 of 2)

Level of Information Description

General Process Level
Information

This level includes information that stays the same
for all sessions running under a given server
process.
This information is updated when the server
process is started.
124 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Dump File Generation

The server generates dump files anytime a session closes without the user’s
intervention.

Dump File Name and Location

The dump file name and location are as follows:

• In the Java client, the dump file is written to the Java console.
• In the server, a separate dump file is created for each problematic session.

The server dump file is named
jbs_<Machine>_<Process>_<Session>.log

and is located in

<InstallDir>\JacadaFiles\classes\logs

Enabling Dump File Generation

The behavior of dump files can be set in the <ApplName>.ini file and in the
jacadasv.ini file. Set the following parameters to enable dump file generation
and determine the various logging properties:

Session Level
Information

This level includes session exceptions and
information regarding the current state of a given
session.

Session level information is updated whenever the
session state is changed. Each property in this
section of the dump file includes a timestamp of
the last update.

Exception Information The first exception of each exception class is
included in the data of the dump file.

Table 18. Information included in dump files (Sheet 2 of 2)

Level of Information Description
webMethods JIS: Java Client User’s Guide Version 9.0 125

Chapter 3. Optimizing the JIS Server

[SessionCoreDump]

[HTML]

Dump File Structure

The dump files contain three types of information:

• General Process Level Information.
• Session Level Information.
• Exception information.

Table 19. SessionCoreDump parameters

Parameter Value Description

AlwaysDump 0

1

Default value. Dump files are only
generated on abnormal termination.

Always generates dump files on the
server, regardless of how the session
ended.

DumpFast 1

0

Default value. Only saves
information pertaining to abnormal
termination.

Additional information is saved,
including detailed descriptions of
the current Subapplication’s
emulator events and variables. This
causes approximately 5%
performance deterioration.

Table 20. HTML parameters

Parameter Value Description

AlwaysDump 0

1

Default value. Dump information is
not added to the Java console.

Always adds dump information to the
Java console, regardless of how the
client session ended, and regardless of
the debug level.
126 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

This section contains an example of a Client Core Dump file and a Session Core
Dump file. Each example lists the type of information contained in the dump file
and then illustrates the information in an extraction from a dump file.

Client Core Dump File

The Client Core Dump file includes the following details:

Table 21. Client core dump file examples (Sheet 1 of 3)

Log Section Information Type Example

General
Process
Information

Java vendor and
version number

Java Version = 1.7.0_03
Java VM version = 22.1-b02
Java VM name = Java HotSpot(TM)
64-Bit Server VM
Java Vendor = Oracle Corporation
Java VM vendor = Oracle Corporation

OS name and
architecture number

Java Architecture = amd64
Java Data Model = 64
Operating system = Windows 7

JIS version or PTF
name

Version/PTF Name = 9.1.1

JIS version Build
number

BuildNumber = 9,0,0,561

Machine IP address Machine IP address: 12.34.56.789

JVM memory
consumption

Memory: Free: 49 Kb (3%) Total:
1488Kb

Session termination
details

Session was terminated due to:
09:26:33 22/10/12
Quit reason: Host communication
failed

Reference to a
session log file

A matching dump file may have
been created on server M1,
named 10.90.18.149_1_1.log
webMethods JIS: Java Client User’s Guide Version 9.0 127

Chapter 3. Optimizing the JIS Server

Session
Level
Information

Server details • Machine number
• Process number
• Client number
• Application name
• Language details
• User profile information
• Cookies

Details about the
connection process

• First connection, including
server name, connect port,
redirect.

• First port’s connection,
including, initial socket, port,
local port, server name, connect
port, server application name,
username, password, profile and
shared variables.

• First connection timestamp.
• Second connection timestamp.

Details about
CreateFrame
messages

2/12/03 11:35:55 AM CreateFrame:
hComp=21, libraryName PRN400X,
lpszFormName = JITGUI,
lpWindowName = , hCompParent= 1,
X= -32768, Y = 0, nWidth = -32768,
nHeight = 0

Keep alives sent List of KeepAlive messages sent by
the Client.

Keep alives received List of KeepAlive messages received
by the Client.

Outgoing requests 2/12/03 11:35:50 AM
Client ->Server:
Command hComp=0, id=22, action=8

Table 21. Client core dump file examples (Sheet 2 of 3)

Log Section Information Type Example
128 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Session Core Dump File

The Session Core Dump file includes the following details:

Incoming requests 2/12/03 11:36:00 AM
Server -> Client:
createWindowControls

Sent shared user
variables

2/12/03 11:35:50 AM
Sent user variables:[]

Received shared
user variables

A list of received shared user
variables

User messages 2/12/03 11:35:41 AM Hello world

Chronological order
of events

A list of all the session’s events in
chronological order.

Exception
Information

A list of exceptions java.lang.Exception: Quit Stack -
Stack trace of the terminating thread

at cst/debug/
CoreDump.saveStackTrace

at cst/common/general/
CoreDump.storeQuitReason

at cst/client/comm/CommServer.run

Table 22. Session core dump file examples (Sheet 1 of 4)

Log Section Information Type Example

General
Process
Information

Java vendor and
version number

Java Version = 1.7.0_03
Java VM version = 22.1-b02
Java VM name = Java HotSpot(TM)
64-Bit Server VM
Java Vendor = Oracle Corporation
Java VM vendor = Oracle Corporation

Table 21. Client core dump file examples (Sheet 3 of 3)

Log Section Information Type Example
webMethods JIS: Java Client User’s Guide Version 9.0 129

Chapter 3. Optimizing the JIS Server

OS name and
architecture
number

Java Architecture = amd64
Java Data Model = 64
Operating system = Windows 7

JIS version or PTF
name

Version/PTF Name = 9.1.1

JIS version Build
number

BuildNumber = 9,0,0,561

Machine IP
address

Machine IP address: 10.90.18.149

JVM memory
consumption

Memory: Free: 49 Kb (3%) Total:
1488Kb

Session
termination
details

Session was terminated due to: 2/12/03
11:36:00 AM
Quit reason: Exception in
CommServer: java.lang.NullPointer
Exception

Session
Level
Information

Session details • Session ID
• Application name
• Application directory
• Connection settings

Recent
Subapplications

Emulator events

CreateFrame
messages

Input XMLs • Last EndUserAction message
• Last SendWindowData message

Table 22. Session core dump file examples (Sheet 2 of 4)

Log Section Information Type Example
130 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Output XMLs • Last EndUserAction message
• Last SendWindowData message

Keep alives sent A list of KeepAlive messages sent by
the session.

Keep alives
received

A list of KeepAlive messages received
by the session.

Outgoing requests 2/12/03 12:03:32 PM
Server -> Client: DestroyWindow

Incoming requests 2/12/03 12:03:18 PM
Client -> Server:
SendWindowData

Sent shared user
variables

A list of sent shared user variables.

Received shared
user variables

A list of received shared user variables.

Activated
methods

1/13/04 11:53:36 AM
u_SelectMenuOption lp: 0

User messages A list of method comments.

Cycle number Information about internal data
structure.

Chronological
order of events

A list of all the session’s events in
chronological order.

Table 22. Session core dump file examples (Sheet 3 of 4)

Log Section Information Type Example
webMethods JIS: Java Client User’s Guide Version 9.0 131

Chapter 3. Optimizing the JIS Server

Checking Server Configuration

Checking the configuration of the server is an important stage in the development
of the application. By using the Server Configuration Checker you can check that
your server configuration is free of inaccuracies, before deploying the
application. Certain inaccuracies in the jacadasv.ini file may prevent the
server from functioning properly.

There are two types of server inaccuracies:

• Local inaccuracies, where single properties are not defined according to their
legal properties, such as missing property definitions, non-numeric values for
numeric properties, and illegal characters in property definitions.

• System inaccuracies, where combinations of property definitions are not
defined correctly. For example, if the port range does not fit the number of
processes.

Most local inaccuracies are reported in the debug logs. However, some local
mistakes are not reported, such as non-reasonable values. For example, if a
parameter that should be defined in milliseconds is defined in seconds, this is
considered a non-reasonable value.

System inaccuracies are more elusive due to the decentralized nature of the JIS
Server. Each server process reads the jacadasv.ini file on its own machine, but
only extracts definitions that relate to the placement of the process in the
scalability tree. There is no central location responsible for validating the entire
server configuration.

Exception
Information

A list of
exceptions

java.lang.Exception: Quit Stack - Stack
trace of the terminating thread

at cst.debug.CoreDump.save
StackTrace(CoreDump.java:94)

at cst.common.general.Core
Dump.storeQuitReason(CoreDump.ja
va:112)

at cst.server.applicat.MainSub
Application.window
Destroyed(MainSub
Application.java:60)

Table 22. Session core dump file examples (Sheet 4 of 4)

Log Section Information Type Example
132 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Server Configuration Checker

The Server Configuration Checker analyzes the jacadasv.ini file and identifies
local and system-level inaccuracies at all scalability levels. The checker looks for
and reports configuration errors and configuration warnings at different debug
levels.

In addition to running in Server Mode in every server process, the Server
Configuration Checker can also be run in Offline Mode.

Reported Errors

Table 23. Reported errors

Configuration Element Possible Error

ServerMachines Section Section is not defined.

Section does not define a machine.

Server Port Range Range definition is invalid.

Not all server processes have two ports.

http and https Port Range Range definitions are invalid.

Not all server processes have one http and one
https port.

The http test is only executed if
HttpClient = 1.
The https test is only executed if
SupportHTTPS = 1.

Registry/RMI Port Range Port range is invalid.

Not all processes have one RMI registry and one
node registry port.

Session Handling None of the processes can handle sessions.

jacadasv.ini file Exceptions occur when reading and analyzing the
jacadasv.ini file.
webMethods JIS: Java Client User’s Guide Version 9.0 133

Chapter 3. Optimizing the JIS Server

Reported Warnings

Enabling the Server Configuration Checker

This section deals with the enabling of the server configuration checker.

Server Mode

In Server Mode, the Server Configuration Checker tests the configuration of the
machine on which it is run. By default, the main process of every server machine
executes the checker upon starting. If the checker identifies an error, the server
aborts. If the checker identifies a warning, information is written to a log, but the
checker does not prevent the server from starting.

Table 24. Reported warnings

Configuration Element Possible Warning

http/https Port Range http/https Level1 port range contains more than
one port.

Session Handling A process does not handle sessions.

This warning is not issued for Level1.

Property Values A property value lies outside the allowed range.
See “Range of Valid Properties” on page 136 for a
list of valid ranges.

Unrecognized Properties The server does not recognize known properties.
This acts as protection against spelling mistakes.

maxProcessSessions The maxMachineSessions value is smaller than
the sum of maxProcessSessions values for the
required processes.

Numeric Properties Numeric properties have non-numeric values.

Negative Values Properties have negative values.
134 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

In Server Mode, the Server Configuration Checker reports errors and warnings
at the following debug levels:

• Errors are reported at debug level 0.
• Warnings are reported at debug level 1.
• Normal report messages are reported at debug level 50.

In Server Mode, the Server Configuration Checker writes the configuration
information to:

To disable the Server Configuration Checker:

In the jacadasv.ini file, in the [GeneralParameters] section, set the
checkServerConfiguration parameter to 0.

Offline Mode

You can also run the Server Configuration Checker offline. When run offline, the
checker reads the jacadasv.ini file and analyses the configuration of all the
defined server machines. The checker tests the configuration and then exits,
without starting the server.

In Offline Mode, the Server Configuration Checker writes the configuration
information to:

To enable the Server Configuration Checker in Offline Mode:

In the jacadasv.bat file, add the -c command line option.

See “The JIS Server Command Line Parameters” on page 55 for information
about the jacadasv.bat command line options.

Log Name debug_1.log

Log Location <InstallDir>\JacadaFiles\classes\
logs

Log Name debug_start.log

Log Location <InstallDir>\JacadaFiles\classes\logs
webMethods JIS: Java Client User’s Guide Version 9.0 135

Chapter 3. Optimizing the JIS Server

Range of Valid Properties

One of the tasks that the Server Configuration Checker performs is to identify
non-reasonable property values. Following is a list of the valid ranges of the
numeric properties in the jacadasv.ini file:

Table 25. Range of valid numeric properties in the jacadasv.ini (Sheet 1 of 3)

Property Name Description

Default
Value (In
Seconds)

Valid
Range

KeepAliveTimerTick Time interval for
sending keep alive
to parent process.

60 10-600

KeepAliveTimeout Process inactivity
time-out.

10 1-100

SystemConnection
TimeOut

Time interval for
establishing
connection between
machines.

120 20-1200

RegistrySpawn
TimeOut

Time-out for
spawning the
registry.

45 10-450

WaitForSpawned Time interval for
waiting for a
spawned process.

60 20-600

WaitForStatus Time interval for
session allocation.

100ms 10-1000

AllocLockTimeout Time-out for
process lock during
session allocation.

10 1-600

ExpectingSession
Timeout

Time-out for client
redirection.

300 10-3000
136 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

SessionIdleTimeout Idle time-out for
XML sessions.

3600 0-86400

RMISocketTimeout Time-out for RMI
calls.

20 10-200

MsgboxTimeout Time-out for
message box reply.

36000 3600-
360000

PanelTimeout Time-out for next
panel selection.

36000 3600-
360000

GetTextFromUser
Timeout

Time-out for getting
user text.

36000 3600-
360000

KeepAlive Client keep alive. 240 0-2400

RecvTimeout Time-out for client
reply.

200 60-2000

ResponseTimeout Http response time-
out.

100 20-1000

SessionInitialization
TimeoutInSeconds

Time-out for
preloaded session
initialization.

300 10-3000

MaxNewSessionsPer
Second

Maximum number
of pool sessions that
can be created per
second.

5 1-30

PoolCreationDelayIn
Seconds

Number of seconds
that the server waits
before starting to fill
the pools.

30 1-1800

Table 25. Range of valid numeric properties in the jacadasv.ini (Sheet 2 of 3)

Property Name Description

Default
Value (In
Seconds)

Valid
Range
webMethods JIS: Java Client User’s Guide Version 9.0 137

Chapter 3. Optimizing the JIS Server

JIS Administrator

The JIS Administrator (JAM) provides the system administrator with a means of
viewing and manipulating the JIS Server.

You can view the JIS Server system structure, as well as the process and session
activity taking place on the server system.

You can manipulate the JIS Server as follows:

• Pause and resume its activity.
-OR-

• Stop its execution altogether.

InitialPoolSize Initial size of the
pool.

10 0-1000

OnGoingPoolSize Ongoing size of the
pool.

10 0-100

ValidityCheckInterval
InSeconds

Frequency of the
validity checks.

300 10-3600

SizeCheckIntervalIn
Seconds

Frequency of the
checks whether the
pool should be
refilled.

10 1-3600

StartUpSessions
Percent

Percent of sessions
supported in server
start.

0 0-100

SpareSessions
Percent

Percent of spare
sessions in ongoing
state.

0 0-100

Table 25. Range of valid numeric properties in the jacadasv.ini (Sheet 3 of 3)

Property Name Description

Default
Value (In
Seconds)

Valid
Range
138 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Starting the JIS Administrator Command Line Utility

You can start the JIS Administrator from either the Server Machine, where the
server machine is running, or remotely from a Windows workstation mapped to
the Server Machine. Use the latter case, to run JIS Administrator from a remote
site, or when the server is not installed on Windows.

Starting JIS Server from the Server Machine

In the Startup menu, select Programs > JIS > JIS Administrator.

A wait cursor is displayed until the JIS Administrator interface opens on the
screen.

Connecting Online to the JIS Server

To connect online to the JIS Server you either need to supply the complete URL
for the server machine, or the server machine’s IP address. This information is
entered in the Connect Online dialog box.

To open the Connect Online dialog box:

1 Either:
• Click the button on the toolbar.

-or-
• From the Connect menu select Connect Online.

The Connect Online dialog box opens:

Note: JIS 9.0.4 introduces an option for running the JIS Administrator as a
web application using the proprietary server. For more information see the
product release notes.

Note: If the JIS Server is not running, the interface opens without displaying
any contents. If the server is running then when the interface opens, it
displays the server’s status.

Note: Make sure -p http://localhost:8080/port is present in the Jam.bat
command line. You can replace //localhost:8080/ with the address and port of
the monitored server.
webMethods JIS: Java Client User’s Guide Version 9.0 139

Chapter 3. Optimizing the JIS Server

Figure 20. Connect Online dialog box

2 Choose either:
• The Port File URL option.

-or-
• The RMI Registry option.

3 Enter the appropriate information as indicated in Table 26, "Parameters Used
in the Connect Online Dialog Box".

Table 26. Parameters Used in the Connect Online Dialog Box

Parameter Description

Port File URL Enter the complete URL as indicated in the illustration.
Make sure to include the:

• IP address and port for the server machine http web
server address

• followed by /port.

RMI Registry When using the RMI registry you must supply the:

• Server Machine’s IP address.
• Registry Port as indicated in the jacadasv.ini.

Server Machine Enter the server machine’s IP address in the text box.

Registry Port The default registry port is 2100.
Enter the default value unless it was changed in the
jacadasv.ini file. In that case enter the value
recorded in the jacadasv.ini file.
140 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Debugging the JIS Administrator

The JAM debugging feature enables you to keep track of the activity registered in
the JIS Administrator.

The debug information is written to a log file called debug_JAM.log. This file is
created automatically once the debugging feature is activated. The file is placed
under a designated directory.

To activate the JAM debugging feature:

Add to the JIS Administrator parameter line any of the following switches:

The following is an example of the JIS Administrator startup command:
jam.bat -d 50 -l c:\temp

The JIS Administrator Interfaces

The JIS Administrator tool is divided into two interfaces:

• The Server Monitor interface.
• The Runtime Configuration interface.

To move between interfaces, use the appropriate tabs on the bottom left corner of
the tool.

The Server Monitor Interface

The Server monitor interface is divided into five main regions:

• The System Status Log pane.
• The Properties tab.
• The Sessions tab.

-d Debug level. For example -d 50

-l Debug logging file directory. For example: -l c:\temp

-h Optional parameter that prompts the JIS Administrator console. The
console includes the syntax of the JIS Administrator startup command
and a list of other command line options.

Note: Do not forget to leave a space between the parameter and its value.
webMethods JIS: Java Client User’s Guide Version 9.0 141

Chapter 3. Optimizing the JIS Server

• The Debug tab.
• The License tab.

Figure 21. Server monitor interface

The System Status Log pane

The System Status Log pane displays a hierarchical representation of the JIS
Server system structure. The System Status Log pane displays the hierarchy in a
tree structure composed of three levels: Server Machines resident on the System,
Processes running on any particular Server Machine, and Applications and
Sessions active on any process.

You can expand and collapse the System Status Log to display any particular
level by double clicking the system element that interests you.

The or symbol appears immediately before each interface element.

The symbol indicates that the system element can be further expanded to
display its sub elements, whereas the symbol indicates that the system
element is expanded and is displaying its sub elements.

The Properties Tab

The Properties tab displays Server System information relevant to the particular
level or system element highlighted in the System Status Log Pane. Information
is categorized in the form of Property and Value of each property. A table
detailing the Properties and a description of their values is listed later in the
chapter.
142 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

The Sessions Tab

The Session tab lists each and every session that is active on the server system and
displays the values for the properties in a tabular format. The column order can
be arranged to view the information that is important at the time, and the
columns can be alpha-numerically sorted from top to bottom or from bottom to
top.

Figure 22. Sessions tab

The Sessions tab contains the following fields:

• Server • CurrentScreen

• ID • State

• Created • Transactions

• User • TotalDuration

• UserAddress • AvgDuration

• ApplicationName • LastTransaction
webMethods JIS: Java Client User’s Guide Version 9.0 143

Chapter 3. Optimizing the JIS Server

See the Session element section in “The Properties and Sessions Tabs” on
page 144, for a description of these fields.

The Properties and Sessions Tabs

The properties in the Properties and Sessions tabs are described in Table 27. The
properties and values listed on the Properties tab vary, according to the element
in the System Status Log pane that is in focus.

• LibraryName • LastTransactionDuration

Table 27. Properties in the Properties and Sessions tabs (Sheet 1 of 4)

System Status
Log Pane
Element Property Name Value Description

System Status Log

Type JIS Server System.

Ver JIS version release number.

IniVersion Lists the IniVersion, if specified in
the *.ini file.

Updated Last time that the information in
the display was refreshed.

Processes Total number of processes
running on the system.

TotalSessions Total number of sessions running
on the system.

Server Machine

Address Server Machine IP Address.

RMI Port RMI Port number.
144 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Processes Total number of processes
running on the server machine.

TotalSessions Total number of sessions running
on the server machine.

Process

Alias A number describing the
hierarchical position of the
process within the system.

Port1 Port Number that the process
uses.

HttpPort The HTTP port number.

HttpsPort The HTTPS port number.

State Indicates the activity state of the
process. Possible values:
INITIALIZING, STARTED,
PAUSED, STOPPED,
PENDING_START,
PENDING_STOP, FAILED

Applications

Applications Number of different applications
running on the process.

<ApplName>

Name Application Name.

Table 27. Properties in the Properties and Sessions tabs (Sheet 2 of 4)

System Status
Log Pane
Element Property Name Value Description
webMethods JIS: Java Client User’s Guide Version 9.0 145

Chapter 3. Optimizing the JIS Server

TotalSessions Number of sessions on the
process that are being used by the
application.

TotalPenalty Total penalty ranking experienced
by the process.

Session Folder

Spare The number of free sessions
available for use on the process.

Size The number of session in use on
the process.

Specific Session

ID Unique numeric ID for the
Session, since the server was
started.

Created Date and time the session was
initiated.

User User profile.

User address IP address of the client machine.

ApplicationName Name of Application being run by
the session.

LibraryName Name of library being used by the
session, if any.

CurrentScreen Screen name currently active.

Table 27. Properties in the Properties and Sessions tabs (Sheet 3 of 4)

System Status
Log Pane
Element Property Name Value Description
146 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

The Debug Tab

The Debug tab displays settings of the jacadasv.ini file that are related to
debugging. When the tab is opened, it displays the current values of the settings.
The values of the displayed debug settings can be changed, for the duration of the
current server run, or permanently, if so desired. If you choose to make the
changes permanent, the jacadasv.ini file is updated with the new values.

The facilities available on the Debug Tab are:

• The Debug level can be changed.
• The number of Debug Log files can be changed.
• The Debug Log File size can be changed.
• The Debug Log directory can be changed.
• Log Filters can be turned on and off.
• A text string of your choice can be written to the log as a marker.

An example of the contents of the Debug tab is shown in Figure 23. The fields in
the Debug tab are described in Table 28 on page 148.

State Event occurring on the screen. See
JIS Server logging support for
more details.

Transactions Total number of host application
transactions since initiating
current session.

TotalDuration Total server processing time for
transactions in milliseconds.

AvgDuration Average duration of each
transaction in milliseconds.

LastTransaction Start time of last transaction.

LastTransactionDu
ration

Duration of the last transaction in
milliseconds.

Table 27. Properties in the Properties and Sessions tabs (Sheet 4 of 4)

System Status
Log Pane
Element Property Name Value Description
webMethods JIS: Java Client User’s Guide Version 9.0 147

Chapter 3. Optimizing the JIS Server

Figure 23. The Debug tab in the JIS Administrator

Table 28. Elements in the JIS Administrator Debug tab (Sheet 1 of 3)

Debug Tab Element Description

Apply to current run
only

When selected, the changes you specify in the
debug tab of the JIS Administrator are effective
only for the duration of the current run of the
Server.

Apply to future runs, too When selected, the changes you specify are
effective for the current run and for all future runs
until changed. The new values you specify are
written to the jacadasv.ini file.

Debug Settings

Debug Level Corresponds to the RtDebugLevel INI file
setting, which is described in “RtDebugLevel” on
page 89.
148 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Log File Size Corresponds to the RtDebugFileMaxSize INI
file setting, which is described in
“RtDebugFileMaxSize” on page 88“.

Number of Log Files Corresponds to the RtDebugMaxFiles INI file
setting, which is described in
“RtDebugMaxFiles” on page 88.

Log Directory Corresponds to the RtLogsDir INI file setting,
which is described in “RtLogsDir” on page 89.

Filters Log filters give you the ability to selectively print
specific classes of log messages to the debug log.
Instead of setting a high debug level and examining
the entire debug log for messages related to a
particular issue, you would set the debug level to 1
simply to turn on debugging, and utilize a log filter
or filters to produce only those messages related to
the issue in question.

You normally use log filters in the process of
investigating a particular application problem or
performance issue. The messages produced by
many of the debug filters are rather obscure and of
limited use to the customer unassisted. There are a
few debug filters, though, that can be of practical
use to the customer unassisted; see “Debug Filters”
on page 122.

Log Text Lets you specify any character string to be written
to the log file as a marker. For example, you may
want a marker in the logfile to signal the point in
time where you modified the debug settings.

Apply Writes the character string to the log file.

Other buttons

Apply Applies the modifications to the server.

Table 28. Elements in the JIS Administrator Debug tab (Sheet 2 of 3)

Debug Tab Element Description
webMethods JIS: Java Client User’s Guide Version 9.0 149

Chapter 3. Optimizing the JIS Server

The License Tab

The License tab of the JIS Administrator is used for displaying the details of the
runtime license, and for updating the license when necessary. An example of the
contents of the License tab is shown in Figure 24. The fields in the License tab are
described in Table 29.

Figure 24. The License tab in the JIS Administrator

Cancel Cancels any changes applied to the debug settings
on the screen since the last time the “Apply” button
was clicked.

Clear Logs Use the Clear Logs button to reset the logging point
to the beginning of the log file.

Table 28. Elements in the JIS Administrator Debug tab (Sheet 3 of 3)

Debug Tab Element Description
150 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Operations you Perform Using the Server Monitor

The most typical use of the Server monitor is to manipulate the JIS Server and to
view the distribution of Server machines, applications, processes and sessions on
the server system. Under certain circumstances your needs may require you to:

• Pause/Resume/Stop the JIS Server.

Table 29. Elements in the JIS Administrator License tab

License Tab Element Description

Updated The date the product license was last updated.
Format is mm/dd/yy hh:mm:ss [AM|PM]

License Type Possible license types are:

• Regular - sets limit on number of simultaneous
user sessions, and expires on the date shown.

• Date Limited - license expires on the date
shown; no limit on number of simultaneous
users.

• Users Limited - no expiration date, but limited
by number of simultaneous users.

• Unlimited

Expiration date Date license expires. Contact your Software AG
representative well before the expiration date to
arrange for a license update.

Expiration grace Additional days after the formal expiration date
during which the license will continue to be valid.

Max users reached Highest number of maximum simultaneous users
seen by the Server during the current Server
execution.

Replace license This button is for use when the time comes to
update your license.

To update the license: paste or type the new license
key in the text box to the right of the “Replace
license” button and click on the button.
webMethods JIS: Java Client User’s Guide Version 9.0 151

Chapter 3. Optimizing the JIS Server

• Save/Open the System Status Log to file.
• Close sessions.

You can use the JIS Administrator to Pause, Resume or Stop the JIS Server. Each
of these activities can be performed on either a single machine or on the entire
farm.

You can either:

• Click the machine button and choose the action you wish to
perform on a single machine.
-or-

• Click the SystemStatusLog button and choose the action you
wish to perform on a the entire server farm.

Pausing the JIS Server

The Pause action changes the Server’s status from Started to Paused. Once the
status of the Server has changed, it will no longer allow new sessions to connect.

To pause the JIS Server:

1 Stand on the machine button or on the SystemStatusLog button.
2 Either:

• Click the button on the tool bar.
-or-

• From the Command menu select Pause.

Resuming the JIS Server

The Resume action changes the Server’s status from Paused to Started. Once the
status of the Server has changed, it will allow new sessions to connect.

To resume the JIS Server:

1 Stand on the machine button or on the SystemStatusLog button.
2 Either:

• Click the button on the tool bar.
-or-

Note: When you pause or stop a single machine, the JIS Server remains active
for other machines in the server farm.

Note: Once the status of the Server changes to Paused, the Pause button is
disabled and the Resume button is enabled.
152 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

• From the Command menu select Resume.

Stopping the JIS Server

The Stop action shuts down the JIS Server, terminating thereby all of its processes.
Before shutting down, the JIS Server enters a Pending_Stop stage during which
it behaves as if it were paused. The time the JIS Server remains in the
Pending_Stop status depends on the setting defined in the Stop JIS Server
dialog box. See below.

To stop the JIS Server:

1 Stand on the Machine button or on the SystemStatusLog button.
2 Either:

• Click the button on the tool bar.
-or-

• From the Command menu select Stop.

The Stop JIS Server dialog box opens:

Figure 25. Stop JIS Server dialog box

Note: Once the status of the Server changes to Resume, the Resume button is
disabled and the Pause button is enabled.
webMethods JIS: Java Client User’s Guide Version 9.0 153

Chapter 3. Optimizing the JIS Server

The following parameters can be found in the Stop JIS Server dialog box:

Saving the System Status Log to File

The System Status Log display is periodically updated with new information.
The interval between updates is set in the jacadasv.ini file. By default the
update interval is set to 30 seconds. Background information can be found in the
sections on Scalability and JIS Server Logging Support.

For any number of reasons you may need to save an instance of the System Status
Log display in order to review the state of the server system. JAM saves the
System Status Log in XML format.

To save the System Status Log to file:

1 From the File menu, select Save.
The Save XML File dialog box opens.

2 Select a directory to store the log file.
3 Enter a name for the log file in the File Name edit box.
4 Click Save.

Table 30. Stop JIS Server parameters

Parameter Description

Machine name Displays the name of the machine that will be closed,
or “All Machines”, if you have chosen to shut down
the server.

Total number of
running processes

Displays the number of processes currently running.

Total number of
active sessions

Displays the number of sessions currently active.

Number of minutes
before stopping

In this editable field, determine the number of
minutes the server will be in Pending_Stop status
before stopping.

Message to End
Users

In this editable field, define the message to be
displayed to the end user when stopping the JIS
Server.
154 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Opening a Saved System Status Log

To open a saved system status log file:

1 From the File menu, select Open. The Open XML File dialog box opens.
2 Browse for the directory that houses the saved log file.
3 Enter the saved log file name in the File Name edit box.
4 Click Open.

The log file is opened and the System Status Log is displayed in JAM.

Closing Sessions

You can either close a specific session or close all the sessions of a specific server
process.

To close a specific session:

1 Select the specific session node in the System Status Log pane.
2 From the Command menu, select Close Session.
3 A confirmation message appears with the message:

Do you want to close session <SessionID> in process
<ProcessAlias> machine <MachineName>?

4 Click Yes.
The session closes.

This option is only enabled if a session is selected in the System Status Log pane.

To close all sessions of a server process:

1 Select the process node in the System Status Log pane.
2 From the Command menu, select Close Process Session.

OR
Press the keyboard Delete button.

3 A confirmation message appears with the message:
Do you want to close all the sessions in process
<ProcessAlias> machine <MachineName>?

4 Click Yes.
The sessions close.

This option is only enabled if a process is selected in the System Status Log pane.

Viewing All Columns on the Session Tab

Not all columns in the Sessions tab are always in view. To view a particular
column you may have to use the horizontal scroll bar to bring a particular column
into view.
webMethods JIS: Java Client User’s Guide Version 9.0 155

Chapter 3. Optimizing the JIS Server

The Runtime Configuration Interface

The behavior of the runtime environment is independent of a specific application.
Runtime behavior can be reset each time the runtime environment is entered—
without touching the application executable. When you run an application for the
first time, the runtime environment is created with certain default values. You
may, if you wish, change these values and the new values are automatically
preserved between runtime sessions.

Figure 26. Runtime Configuration interface

The Runtime Configuration interface provides you with an option to implement
these changes:

Table 31. Runtime Configuration interface parameters (Sheet 1 of 2)

Parameter Description

Application Tree In the left pane, displays a list of applications, libraries,
and user profiles you can run on the JIS Server. Highlight
the desired component whose runtime values you wish
to view or change.
156 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Application Level vs. User Profile Level

Changes to values can be performed on two levels: an Application level or a User
Profile level. Changes on an Application level will affect all users of the specific
application or library; changes on a User Profile level will affect only that user
whose profile is being used.

Hierarchically, User Profile level settings have precedence over Application level
settings, which, in turn, have precedence over the hard-coded default settings
provided by webMethods JIS.

To change parameter values on an Application or Library Level:

1 In the Application Tree, in the left hand pane, select the application whose
values you wish to change.

Category The runtime options are grouped into logical categories.
The categories are listed within a combo box labeled
Category.

Property The column lists all the parameter names included
within a specific category.

Value In this column, insert parameter values, or change
existing ones.

Level Depending upon whether you are running an
application or a User Profile this column’s heading will
read Application Level or User Profile Level
respectively. Accordingly, setting a parameter’s check
box determines the level on which the changes will take
place. For more information, see section Application level
vs. User Profile level.

Apply Automatically writes the changes you have made to the
runtime application ini file.

Revert Reverts the changes you have made since the last Apply.

Table 31. Runtime Configuration interface parameters (Sheet 2 of 2)

Parameter Description
webMethods JIS: Java Client User’s Guide Version 9.0 157

Chapter 3. Optimizing the JIS Server

2 In the Application Level column, set the parameter you wish to change. The
following message appears “Do you want to explicitly set the current value
for this Application Level?” Click Yes.

3 In the Value column, set the value you wish to change.

To change parameter values on a User Profile level:

1 In the Application Tree, in the left hand pane, select the application and then
the Profile whose values you wish to change.

2 In the User Profile Level column, set the parameter you wish to change. The
following message appears “Do you want to explicitly set the current value
for this User Profile Level?” Click Yes.

3 In the Value column, set the value you wish to change.

Running the JIS Server as a Windows Service

You have the option of running the JIS Server as a Windows service. Two utilities
are provided to help you accomplish this. One of the utilities registers the JIS
Server in Windows’ services database; the other utility is used by Windows to
start the server. There are a few new INI settings related to this procedure as well.

Registering the JIS Server in Windows

Use the utility JBSToService.exe to register the JIS Server in the Windows
services database. The JBSToService.exe utility uses standard Win32 API
calls, as well as direct registry access, for compatibility between different
Windows versions.

Invoke JBSToService.exe accepts a variety of optional command line
parameters by which you define the service's behavior. JBSToService.exe
from the command line of a Windows runtime installation (not from the
development kit)..

Parameters of JBSToService.exe

To list of all the parameters, simply run JBSToService.exe with no
parameters. The following description is the same as that listed by the utility
itself:

Note: In most cases changes you make will not affect existing sessions. Some
changes will take effect for new sessions while other changes will only take
effect after server restart.
158 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

 -c Create a new service

 Create options:

 -i<Name of the service>

 -n<Displayed name of the service>

 -x<Full path to the executable file>

 -a Start the service automatically during system startup

 -m Start the service manually

 -l<Load ordering group of this service>

 -d<List of dependencies, separated by semicolons>

 -s<Account name for the service process>

 -p<Password of the account name>

 -h<Description of the service>

 -r Remove a service

 Remove options:

 -i<Name of the service>

The services database knows each service by a unique service name. This name is
different than the display name, which is the name that appears in the Windows
Services Application. To invoke to the Windows Services Application, from the
Windows Start menu select Programs > Administrative Tools > Services.

To order to find the name of a service, right-click on its name, and choose
"Properties". At the top of the properties dialog, you can see the service name. Just
below it is the display name. The service name must be used whenever
JBSToService is called to change the service's configuration. When removing
a service, for instance, you need only supply this name.

The -c ("create") option is used for both creating and updating parameters.
Repeatedly calling this utility, with different parameters, for the same service
name, would apply the changes. However, note that parameters left out will be
unchanged. Consider the following three lines

JBSToService.exe -c -iJac -a -h"First description" -n"JAC"

JBSToService.exe -c -iJac -a -h"Second description" -n"JIS Service"

The result would be a service named Jac, with a display name JIS Service,
and a description of "Second description", and the service would be started
manually. When the type of startup (-a or -m) is not explicitly specified, -m
(manual startup) becomes the startup type by default.

The -x parameter specifies the executable that is launched when the service is
started.

A list of dependencies may be given, using a semicolon delimited list of service
names. This list contains unique service names, not display names.
webMethods JIS: Java Client User’s Guide Version 9.0 159

Chapter 3. Optimizing the JIS Server

The rest of the parameters affect other settings of the service. Note that some of
the parameters are mutually exclusive (-a and -m, for example) and the account
name must be a valid account ("LocalSystem" is one default valid name).

More Examples of the Use of JBSToService.exe:

Create a service with a dependency list, starting automatically: JBSToService.exe -c -
iJac -a -n"JIS Service" -h"This is a test service" -d"Apache"

Update the service, delete its dependency list:

JBSToService.exe -c -iJac -d""

Update the service, start manually:

JBSToService.exe -c -iJac -m

Remove the service:

JBSToService.exe -r -iJac

Caution

The JBSToService.exe utility uses Win32 API to process most of the
parameters. JBSToService.exe does not perform any "validity checks" on the
values you choose. Using the JBSToService.exe utility carelessly could result
in a damage to the operating system.

Invoking the JIS Server as a Service

The JBSService.exe utility program reads the file jacadasv.bat, and
creates a process from the command line written there. JBSService.exe uses
I/O redirection to determine whether or not the JIS Server is running. If the JIS
Server is running, JBSService.exe sends the string "quit" to the server's
standard input, in order to stop it. This guarantees that all of the JIS Server’s
processes are down.

The JBSService.exe utility should not be called directly. Rather, it should be
registered as the executable file for the JIS Server, by the JBSToService utility
described above.

Note: As of JIS 9.0.4 the JBSToService.exe command line has been
considerably simplified. Refer to the JIS 9.0.4 release notes for more details.
160 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

Log File

The log file of JBSService.exe, which is created in <runtime installation
root>\classes\logs\JBSService.log, contains important information for
debugging a launching failure. It dumps the INI file name, the launching file and
the home folder, as well as the Java command (if jacadasv.bat is found), and
the server's input (e.g. "STARTED").

Logging off from the machine

It is common to start a list of services, using the administrator's login, and then
logoff and let the services run. However, the JVM normally terminates all of its
processes at logoff. In order to avoid this behavior, add the JVM parameter -Xrs
to both the jacadasv.bat file and jacadasv.ini file.

 [VMCommandLine]
JavaOptions=-Xrs -
Djava.security.policy=$RootDir\classes\jacadasv.policy

Managing User Profiles

Each application has a runtime INI file in which its various settings are stored.
The JIS Server allows for a separate runtime INI file to be assigned to each user
that connects to it. This INI file contains the user’s personalized settings. In
runtime, the settings contained in the personalized INI file override the
corresponding settings in the application’s INI file.

There are two ways to access the INI file containing the user’s personal settings:

• By creating a separate HTML file for each user
• By specifying the user’s name through the LoginLauncher

The User’s INI Files Location

When installing a JIS for Java runtime application for an end-user who requires a
personalized application setting, a special user’s runtime INI file should be
created. Create a separate INI file for each application the user may run. The
user’s runtime INI files are kept on the server computer under a separate
directory.

Note: Failing to perform this step correctly will cause the server to terminate
whenever the administrator logs off from the server machine.
webMethods JIS: Java Client User’s Guide Version 9.0 161

Chapter 3. Optimizing the JIS Server

The INI file for the user’s <username> for application <applname> should reside
under the runtime root directory:

$RuntimeRootDir\users\<username>\<applname>.ini.

Where $RuntimeRootDir represents:

<Product installation folder>\JacadaFiles - in the product installation.

<Runtime installation folder> - in a runtime installation.

Example

For User=Brad working on Application=Support, assuming the JIS for Java
runtime installation root directory is c:\JISRuntime, create the following file:

c:\JISRuntime\users\brad\support.ini

Creating a separate HTML file for each user

A User can be associated with the personalized INI file through an html file
specially created for this purpose. The user’s URL address points to the specific
html file which in turn calls the personalized INI file. To make this feature work

• Create an html file for each user. You do so by duplicating the original
application html file and renaming it.

• In the user’s html file, add the “Profile” parameter with the user’s name.

Example

<PARAM name = "Profile" value = "TEST">

Use this option when you have a small number of users. A possible scenario is
when two types of users work on an application in different modes: some in test
mode and some in live mode. Two separate html files will enable each user to
directly log into the desired mode.

Using the LoginLauncher

The LoginLauncher enables users to access their personalized ini file by simply
typing their name in the launcher’s edit box. To activate this feature, in the
application’s html page change the RequestProfile parameter default value to
true. As a result, when the client connects to the server, the following screen is
presented in the browser’s window:
162 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 3. Optimizing the JIS Server

If you have set the Profile parameter with the user’s name, this name will be
displayed in the Profile name field, as seen in the example above. If not, you can
type the user’s name in the empty Profile name field. The server looks for the
user’s personalized INI file. Should such a file not be found, an error message will
be issued.

If you choose to use the default INI setting, leave the Profile name field blank. In
either case, clicking the OK button establishes a connection with the server.

Use this option when you do not want to create a separate html file for each user,
e.g. when a large number of users requires access to separate INI files.

Maintaining the User’s Application INI File

To add a user to an application
• For the first user you define, create a users directory under the

$RuntimeRootDir directory explained above.
• For this user’s first application, create a <username> directory under

$RuntimeRootDir\users.
• Create an <applname>.ini file containing the user’s specific parameters and

place it in the user’s directory. Note that this INI file should only contain the
user’s specific parameters.

Remember: In runtime, the personal settings in the User’s ini file override the
corresponding default application ini file settings.

To remove a user from an application or all applications

• Remove a user’s access to a specific application by deleting the
$RuntimeRootDir\users\<username>\<applname>.ini file.

• Remove a user from all the applications by deleting the user’s directory
including all the files in it.

Note: When working in debug mode, a message is sent to the Client’s debug log
stating whether the user profile INI file was found or not.

If the INI file is found, the message reads - “User-profile ini found”.

If the INI file is not found, the server sends the path where the INI file was looked
for.
webMethods JIS: Java Client User’s Guide Version 9.0 163

Chapter 3. Optimizing the JIS Server

164 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 4. Language Localization

The language localization feature enables an application running on the Server in
one language to be displayed by the client in any other language, or
simultaneously by several clients using different languages. Moreover, this
feature can be customized to display regional variations and specific professional
jargon.

The feature has two main advantages: first, a legacy application designated to be
used by a multi-lingual clientele will only have to be converted once, to a GUI
representing the original language of the host application. An end-user who
wishes to use the GUI application in a different language needs only to be
provided with the translation of the strings present in the original application.
Secondly, only one runtime, in the original language, needs to be installed on the
server. This runtime then serves as the basis for running applications in other
languages.

Figure 27. Language localization schema

This chapter describes:

• How the Localization Feature Works
• The Resource Files
• Setting the Runtime Localization Mechanism
• String Types Handled by Localization
• Debugging your Localized Application
• ISO Language and Country Codes
• Current Limitations

Host
Computer

Legacy
Application

Server
Computer

GUI Application
(Original Language)

Client 1
Language 1

Client 2
Language 2

Client 3
Language 3
webMethods JIS: Java Client User’s Guide Version 9.0 165

Chapter 4. Language Localization

How the Localization Feature Works

When using the Localization feature, the client displays strings translated into the
desired language, instead of displaying the application’s original strings. These
translated strings are imported into the application from external resources
during runtime.

Localization Feature Workflow

The localization feature workflow is:

1 During the compilation process, a resource file is created and placed in
<InstallDir>\JacadaFiles\classes\appls\<ApplName>
This file lists all the original static strings gathered from all the
Subapplications making up a library or an Application.

2 For each desired language, make a copy of the resource file. These files
become the translated resource files.

3 Translate the original strings into the desired language(s).
4 Add the translated strings to the appropriate translated resource file.

What happens during runtime:
5 The appropriate translated resource file is either preloaded with the library

classes through a JAR file or when the client places its first request for the
string information.

6 The application runs displaying the translated strings.

Activating the Localization Feature

The Localization feature is predefined as disabled.

To activate the Localization feature:

1 In the JIS converter, from the Options menu, select Runtime Generation
Options.

Note: If the web server on your JIS Server machine is Internet Information
Services (IIS) 6.0, “.res” must be defined to IIS as a valid MIME type. (IIS
6.0 is the web server that is provided by Microsoft as part of Windows 2003.)
If “.res” is not defined to IIS 6.0 as a valid MIME type the localization
feature will not work, because the client code will fail to load the resource
files.
166 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 4. Language Localization

2 Set the Client Language Localization check box.
3 Generate a full runtime.

During the compilation process a text file containing all the application’s strings
is generated. The strings contained in this file appear in the original host
application language and form the base for translation into other languages.

The translated resource files contain a series of Key and Value pairs. The original
language string acts as the key and the translated string is the value.

The Resource Files

The Localization feature relies upon three resource files:

• An Original resource file which is created during compilation
• A Translated resource file which should be created for each additional

language
• A General resource file that includes strings common to all Java Client

runtime applications.

The Original Resource File

When you generate a runtime, a text file named StringResource.res is
generated and is placed in the following directory:
<InstallDir>\JacadaFiles\classes\appls\<ApplName>\resources\
StringResource.res

This file is created based on the collective input of all the Subapplication-specific
string resource files. The file contains a column of key strings in quotation marks
followed by a space and an equal sign: “<OriginalString>”[<space>]=

Example 28. Original resource file

"Hello World" ="Goodbye World"
webMethods JIS: Java Client User’s Guide Version 9.0 167

Chapter 4. Language Localization

The Translated Resource File

After the creation of the original resource file, proceed as follows:

1 Make one copy of the StringResource.res file for each desired language.
The file is named according to the language using the system, and should be
written in the following format:
StringResource_<LocaleCode>.res

2 Append the translated strings to the original language strings in the
following manner:
“<key>”[<space>]=[<space>]”<value>”<line break>

Example 29. Translated resource file

The translated resource file for Canadian French is named
StringResource_fr_CA.res

Within this file, the original and translated language strings appear as
follows:
“Hello World” = “Bonjour le Monde”

“Goodbye World” = “Au revoir le Monde”

There can be only one pair on each line. Blank lines are ignored as are lines
starting with a double slash (//). Take this into account when writing
comments or commenting out strings.

Note: You must use the country and language code exactly as they appear in
the Java standard Locale code.

Note: The size of each control in the GUI does not increase to accommodate
the length of the translated strings. If a string exceeds the allocated space it is
truncated. When creating a control, or when allotting space for a field during
the conversion, make allowance for eventual longer translated strings. When
translating resources, be aware of the length limitation. In runtime, the
original language strings are used for missing or untranslated entries. If you
need to add special characters such as a quotation mark (”) in your
translation, use the Java escape sequence convention.
168 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 4. Language Localization

The General Resource File

webMethods JIS provides a number of predefined string resources in several
languages. These application-independent strings form part of the Java Client.
You should not modify these strings. However, you can add support for
additional languages. For this purpose a file containing only the original
application key-strings is provided. The StringResource.res file is placed in
the following directory:
<JavaRootDir>\JacadaFiles\classes\cst\client\resources.

The work procedure for creating a General source file for an additional language
is identical to that of creating a Translated file based on an Original resource file.

Resource Maintenance

The translation of the string resource is performed after completing application
development. The generated string resource serves as the basis for the creation of
resources in the desired languages. When modifications are made to the
application at a later stage, a new list is generated. The translated resources thus
lose their fidelity to the application. It is necessary then to merge the list that
contains the translated string with the new and untranslated strings that were
generated in the new resource. This is currently done manually.

Setting the Runtime Localization Mechanism

The language the client displays is defined via the following three mechanisms.
Note that when two or three mechanisms are implemented simultaneously, the
one with the highest priority takes precedence.

• Setting through the system default language of the client Java VM. This is the
default choice and has the lowest priority.

• Setting through the application HTML file. This has the second priority.
• Setting through the JacadaStarter API. This has the highest priority.

Note: When localization is disabled, the runtime always runs using the
original host language.
webMethods JIS: Java Client User’s Guide Version 9.0 169

Chapter 4. Language Localization

Setting Through the Application HTML File

The language that the client displays can be defined through the Language
parameter setting in the application HTML file. When the client places a request
for an applet, the Language parameter points to the
StringResource_<LocaleCode>.res file that is associated with it.

The (optional) parameters are:
Locale_Language = <LanguageCode>

Locale_Country = <CountryCode>

Locale_Variant = <Variant>

Set these parameters to define the language variation that will be loaded to the
client. The third parameter allows you to choose a regional variant. Note that the
value for the variant parameter is vendor and browser-specific.

Example 30. Setting through the application HTML file

<parameter name=”Locale_Language” value= ”fr”>

<parameter name=”Locale_Country” value= ”CA”>

The parameters set in this manner point to the resource file containing strings
translated into Canadian French.

In addition, for a multi-lingual clientele, you can create a single HTML file
featuring an index of languages. Clicking a language name links the client to the
HTML file containing a call to the relevant translated resource file.

Setting Through the JacadaStarter API

You can control the language localization setting by extending the JacadaStarter
class. Use this class to predetermine which translated resource file is downloaded
to the client during the initialization process or create an interface to allow the
user to choose from among several languages.

Note: The Locale_Language parameter is generated during compilation when
the Localization feature is enabled. If not specified otherwise, the default
value is English.
170 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 4. Language Localization

String Types Handled by Localization

The localization feature supports a large array of static string types. Below find a
list of place holders from which static strings are gathered.

• Window captions
• Menu options
• Main Window (application independent strings)
• Subapplication
• Bubble help
• Labels
• Tab controls
• Button / check box / option box labels
• Error messages
• HTML—from client, server
• Message Box—from host, client, server
• Message box buttons (Yes, No, OK, Cancel, etc.)
• About dialog box text and buttons
• Date: different formatting possibilities, Day and Month display on the UI.
• Numeric fields: different formatting are supported.

Example 31. String types handled by localization

The number "1,000,000.99" will appear as "1 000 000,99" under a French
Locale. To set a specific language Locale you must change the default setting
in the application HTML file to the required language code. When typing the
number, the user will have to type according to the definitions of the Locale.

Note: You may inadvertently change the status of a string while modifying a
Subapplication in the converter. Changing a string’s status from static to
dynamic or visa versa will also result in changes in the newly generated
resource file. Static strings are written to the resource file, dynamic ones are
not.
webMethods JIS: Java Client User’s Guide Version 9.0 171

Chapter 4. Language Localization

Debugging your Localized Application

The localization feature includes a mechanism for testing the translated
application for eventual errors. You may wish to do so on two occasions:

• When a problem arises and you want to trace its source.
• When you want to QA the results of applying the Localization feature, before

transmitting the final product to the end user.

To test your translated application you will have to work in debug mode. In the
following sections you will learn how to activate this mode and use its tools.

How to Work in Debug Mode

To find problems and errors, work in debug mode. The application runs in debug
mode when the LocaleDebugMode parameter in the application html file is set to
TRUE.

Example 32. How to work in debug mode

<PARAM name = "LocaleDebugMode" value = "TRUE">

As a result of activating debug mode, two things happen:

1 In runtime, question marks (?) and asterisks (*) indicate that an error has
occurred.

2 A section detailing all the errors found while executing the Localization
feature is added to the browser’s log file.

On the Runtime Window

Question marks and asterisks on the runtime window indicate that an error has
occurred. You have to go through each and every window to verify that there are
no question marks or asterisk signs. The lack of such signs indicates that the
translated application is error free. These two signs indicate the following:

Question Mark

Indicates that a key is missing in the resource file. The question mark is followed
by the original string.
172 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 4. Language Localization

Example 33. Question Mark

?MyMissing OriginalString

The key can be missing for several reasons:

• The resource file was not found
• The line in which the specific key was written was not found
• A syntax error in the key prevented it from showing

Asterisk

Indicates that a value (a translated string) is missing in the resource file. The
asterisk is followed by the original string.

Example 34. Asterisk

*MyOriginalString

In addition, the asterisk indicates which original strings will be translated during
the Localization process. Consequently, any string without an asterisk preceding
it is by default dynamic.

The Log File

The existence of asterisks or question marks is an indication of a problem. To find
out the nature of the problem, refer to the log file. In the Localization section of
the Browser’s log file you get a “live” display of the translated resource file as it
is loaded into the cache.

In the log file find out:

• Whether the Translated Resource file was actually found.
When a file is missing, a MissingResourceException message is written to the
log.
A file can be missing for several reasons. For example, it could be placed in
the wrong directory, or the file name could be wrong.

• The parsing status.
This includes a list of valid pairs of original and translated strings, missing
values, syntax errors, and comments. The list shows the line number in the
resource file and the type of error found in that line.
webMethods JIS: Java Client User’s Guide Version 9.0 173

Chapter 4. Language Localization

• Which original string (keys) are requested and which translated strings are
retrieved during the creation of each new window.
The translated version of a string does not appear in the window when:
• The string was defined as dynamic rather than static.

In this case no request for its translation will be issued
• The string in the resource file has been commented out.
• The translation for the original string has not been provided.

How to enter the log file:

• For an application running under Microsoft Internet Explorer, view the log file
in the following directory: <WindowsInstallDir>\java\javalog.txt
To enable the logging option, in the browser choose Tools > Internet Options >
Advanced, and under the Java VM heading, set the Java logging enabled
check box.

• For an application running under Netscape (Navigator or Communicator),
view the log file in the browser’s Java Console.
To open the Java Console:
• In Netscape Navigator choose from the menu: Window > Java Console
• In Netscape Communicator choose from the menu: Communicator > Java

Console

ISO Language and Country Codes

The localization feature uses the two letter language code and country code
standard. The codes are derived from the ISO 639 standard (for language code)
and the ISO 3166 standard (for country code). Complete lists can be easily found
over the Internet. Table 32 constitutes an example of some locales.

Note: The log file gives a detailed report of syntax errors and missing
translated strings. However, keys missing for whatever reason are not
indicated.

Table 32. Locale examples (Sheet 1 of 2)

Language Name Language Code Country code

English (Australian) en AU

English (Canadian) en CA

English (United States) en US
174 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 4. Language Localization

Current Limitations

This feature supports localization of static strings only, it does not attempt to
translate variable field values. Use the server’s dictionary to translate variable
fields.

• DIL messages can pass localization. However, the string that appears in the
DIL is not automatically added to the original resource file
StringResource.res. You must add the original string and the translated
one to their appropriate files manually.

• For the application-independent JIS string resources, only partial translations
are provided.

• Unicode escape sequences in resources are not supported.
• Language localization is not implemented on IBM’s NC. This is due to a bug

in its NSM version 2.

French (Swiss) fr CH

French (France) fr FR

Spanish (Spain) es ES

Table 32. Locale examples (Sheet 2 of 2)

Language Name Language Code Country code
webMethods JIS: Java Client User’s Guide Version 9.0 175

Chapter 4. Language Localization

176 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

This chapter describes the following printing features:

• Host-to-Client Printing - Saving host print jobs on the server or sending them
to the client to be printed from the local printer
Use the printing emulation feature to print Host print jobs from a printer
connected to your desktop computer, or to save print jobs on the JIS Server.
The printer emulation includes an API that opens up the printing feature to a
wide range of possibilities.
The printing emulation feature operates on both the client and the server. In
order to be operational however, the printing feature must be configured. In
this chapter you will learn how to implement the printing emulation feature.
Note that this feature supports all SBCS languages supported in the display
emulation.

• Extending the Printer Emulation
Use the GUI printing feature to print windows currently present on your
screen. The information that will be printed depends on the way the windows
are configured to display in runtime.

• Printing the Client Host Screen
Use this feature to print the Host screen currently displayed on your client.

Host-to-Client Printing

This section deals with the issue of host-to-client printing.

The Host-to-Client Printing Architectures

• The printer emulation connection is initiated through the JIS Server. Data
received from the host is saved on the server or relayed to the client for
printing.
The main advantage of using the JIS Server as a means of connection is that
the JIS Server allows the printer emulation to connect to the host also when
the host is protected by a firewall.
webMethods JIS: Java Client User’s Guide Version 9.0 177

Chapter 5. Printing Features

Host to Client Printer Emulation Connection via JIS Server

The figure below and the explanation that follows describe the activity that takes
place from the moment a client connects to the JIS Server to the point that the host
sends print jobs to the printer connected to the client.

Figure 28. Host-to-client printer emulation connection via JIS Server

1 The client connects to the JIS Server by loading an HTML page. Application
initialization classes are sent back to the client.

2 The client runs the Application. As a result:
• The JIS Server initiates a connection with the host computer.
• Printer emulation classes are sent to the client. The client creates a printer

emulation session.
3 The client connects to the host using TN3270E (for mainframe) or TN5250E

(for iSeries) via the connection established by the JIS Server.
4 The Client sends printing requests, via the JIS Server, to the Host application.
5 The host returns printing jobs, via the JIS Server. The print job is saved on the

server for further use or sent to the client for printing.

Making the Printer Emulation Operational

Before you can use the printer emulation, you must perform some preliminary
operations.
178 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

To implement this feature:

• Configure the host to recognize the Printer’s Logical Unit (LU) name.
• In the <ApplName>.ini file:.

• Set printing parameters.
• In the application HTML file, add a parameter that reads the printer emulation

archive.
• If you wish to enhance the printing capabilities, extend the printing emulation

using the printing emulation API.
• Order the initialization of a printer emulation session. This is achieved either

through an INI file flag, or by activating an webMethods JIS DoMethod. See
Chapter 6 - "Extending the Java Code" on page 205.

• Make sure you have printing authorization on both the Client and the Server
side.

• In the runtime environment, run the application.

Configuring the Host to Recognize the Printer LU Name

In order to configure the host to recognize the printer LU name, follow the
instructions in this section.

Mainframe

The connection between the client and the mainframe is carried out using
TN3270E. Specification of the printing parameters is done in the runtime
<ApplName>.ini file.

iSeries

The iSeries must support TN5250E.

In addition, The iSeries system administrator will have to configure the Server to
recognize the printer LU.

Establishing Print Parameters in the <ApplName>.ini File

All parameters concerning connectivity between the client and the host, via the
JIS Server, as well as parameters defining print settings, must reside in the
<ApplName>.ini file. The majority of these parameters are added manually. The
<ApplName>.ini file resides under the following directory:
<RuntimeInstallDir>\appls\<ApplName>\RT32\<ApplName>.ini

Following is the list of parameters that must reside in the <ApplName>.ini file
webMethods JIS: Java Client User’s Guide Version 9.0 179

Chapter 5. Printing Features

.

[GUISys TN3270] or [GUISys TN5250]

Printer Set the value to 1 to open an emulation session on the
client. This parameter is automatically written to the
<ApplName>.ini file during the compilation process.

[TN3270 Printer] or [TN5250 Printer]

Host Name of host with which you wish to establish a
connection. When this value is left empty, it is
assumed that the host is the same one as for the
display session.

Port The number of the communication port. When no
value is given, the default is the port number used
for the display session.

LUName The LU name for the printer. When this is not
specified, the default printer is the one associated
with the current display session.

Note: When printing from an iSeries, this setting
MUST be specified, since TN5250E does not
automatically associate a printer with a display
session.

DefaultRows Number of text lines in a page. The default is 66.

TimeOut Number of seconds the printer emulation waits
before sending the text to the printer. For any
additional text that arrives during this period, the
count will start over.

DefaultColumns Number of characters in a line. The default is 80.
The host may specify a number that will override
this value.
180 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Adding HTML Parameter to Read Printer Emulation Archive

In order to use the printer emulation feature, printer emulation classes and
settings must be downloaded to the client. These classes are contained in the
following files:

IgnoreHostWidth When set to a non-zero value, the printer emulation
will ignore any attempt by the host to specify a page
width and will use the value specified in the
DefaultColumns setting.

Note: When printing from an iSeries, this setting is
ignored.

WrapText When set to a non-zero value, the printer emulation
will wrap any line that is longer than the current
line width, onto the next line.

MarginUnits Defines the units of measure used to specify the
margin values: 0 = inches, 1= millimeters.

LeftMargin The minimum distance from the left edge of the
page to the point where a line begins.

RightMargin The minimum distance from the right edge of the
page to the point where a line ends.

TopMargin The minimum distance from the top of the page to
the first line.

BottomMargin The minimum distance from the bottom of the page
to the last line.

IgnoreFFAtFirst Suppress form feed when it comes first, before any
printed page. Set to 1 to enable. The default value is
0.

clbase &
clprint.jar

For users of Sun Java plugin
webMethods JIS: Java Client User’s Guide Version 9.0 181

Chapter 5. Printing Features

These archive files are not automatically loaded to the client from the Web Server
during the initialization of an application since they are not referenced in the
default HTML settings. If you wish to enhance your application with printer
emulation capabilities, in the application html file change the default reference to
the basic archive clbase.jar with one of the archives mentioned above.

Initializing a Default Printer Emulation Session

There are two ways you can order the initialization of the printer emulation
feature:

• Through an INI file flag
• By activating a special webMethods JIS DoMethod

Initializing the printer emulation through the INI file

In the <ApplName>.ini file, set the following parameter:
[GUISys TN3270] or [GUISys TN5250] or [Emulator]

Printer=1

Initializing the printer emulation by activating an webMethods JIS method

You can order the initialization of the printer emulation through a call to the
following DoMethod:
OpenPrinterEmulation

Note that the method must be triggered by an action defined by the developer.

In addition, the following two DoMethods control the behavior of the printer
emulator:

Tracing Printer Emulation Problems

Use debug mode to trace problems in your printer emulation feature. The
information is written to a file you create for this purpose.

clfull-
signed.jar

For users of Sun Java plugin, requiring signed
applets

ClosePrinterEmulation Closes an open printer emulation session.

PrinterEmulationLUName Returns the last LU Name under which a
printer emulation session was opened.
182 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

To run the printer emulation feature in debug mode, configure the
<ApplName>.ini file as follows:

Using the Printer

The printer emulation feature is ready for use as soon as printer emulation
settings are defined. The end user need only run the application.

An error message appears when the printer is unable to connect.

Print Options Dialog Box

Each time the host sends a print job to the client, the client displays a dialog box.
This dialog box is used to assign the current print jobs to a local printer, to
determine the number of copies required, and to set other print related
parameters.

[TN3270 Printer] or [TN5250 Printer]

TraceLevel Determines the amount of information that
will be logged to the trace file.

TraceFile Determines the name of the file to which the
trace information is written. The default file
name is tn_print.trc.

ResetTraceFile Determines whether or not to reset the trace
file before a new session is created. The
default value 1 resets the trace file.

Note: The dialog box is platform dependent and may look different under
different platforms. The picture below is of a MSIE Print dialog box run on
Windows.
webMethods JIS: Java Client User’s Guide Version 9.0 183

Chapter 5. Printing Features

Figure 29. MSIE Print dialog box running on Windows

In addition the end user is provided with a printer emulation user interface. See
“The Printer Emulation User Interface” on page 186.

Printing Via the Java Page Setup Dialog Box

In addition to using the printing features available in the operating system’s Print
dialog box, you can also use the enhanced features available in the Java Page
Setup dialog box. This feature is available using Java plug-in and allows you to
further configure your page setup.

Figure 30. Java Page setup dialog box
184 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Options Available in the Java Page Setup Dialog Box

The Java Page Setup dialog box allows you to set the following:

• Paper size.
• Paper source.
• Page orientation - portrait or landscape.
• Page margins.

You only need to set the options in the Java Page Setup dialog box once. The next
time that you invoke the Java Page Setup dialog box, it opens with your
previously configured settings.

Enabling and Disabling the Java Page Setup Dialog Box

You enable printing via the Java Page Setup dialog box by adding a setting to the
<ApplName>.html file.

To enable the Java Page Setup dialog box:

In the <ApplName>.html file, add the following setting:
<PARAM name = “UseJavaPrintDialog” value = “true”>

With Java plug-in 1.4 and higher, the Java Page Setup dialog box opens by default
and you do not need to add this setting to the <ApplName>.html file. However,
you can disable this feature.

To disable the Java Print dialog box:

In the <ApplName>.html file, add the following setting:
<PARAM name = “UseJavaPrintDialog” value = “false”>

When set to false, the operating system’s Print dialog box is used, even if you
are working with the Java plug-in.

Setting Page Orientation

When using a Java plug-in you can set the page orientation to either Portrait or
Landscape in the <ApplName>.html file. This setting is then the default for all
printing jobs, including:

• GUI printing
• Host View printing
• Printer emulation

To set the default page orientation:

In the <ApplName>.html file, add the following parameter:
webMethods JIS: Java Client User’s Guide Version 9.0 185

Chapter 5. Printing Features

<PARAM name = “PrintPageOrientation” value = “Landscape”>

OR
<PARAM name = “PrintPageOrientation” value = “Portrait”>

The Printer Emulation User Interface

Use the printer emulation user interface for two main purposes:

• Checking and manipulating the printer status
• Changing printing parameters

To enter the user interface

1 Run the application
2 From the Runtime menu choose Application > Printer Emulation. The Printer

Emulation dialog box opens.

Figure 31. Printer emulation user interface

The Printer Emulation Dialog Box

In this dialog box find the following information about the printer:

Note: The printer emulation feature must be defined as enabled
in the <ApplName>.ini file.

Printer Status The state of the printer. Possible values are:

Disconnected

Connecting
186 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

In addition, the dialog box displays the following buttons:

The Printer Emulation Setup Dialog Box

Figure 32. Printer Emulation Setup dialog box

This dialog box contains three tabs. Table 33 lists these tabs, the settings they
contain and their corresponding <ApplName>.ini parameter names:

Connected and not
bound

Connected and bound

The host recognizes the printer but no
program is using it.

The printer is being used by a program.

LU Name The LU name by which this printer is
known to the host or gateway.

Disconnect /Connect This button's text alternates between
Disconnect and Connect depending on the
printer emulation's current state. The button
is disabled while the printer is connecting
and while it is servicing a print job.

Setup Opens the Printer Emulator Setup dialog
box.
webMethods JIS: Java Client User’s Guide Version 9.0 187

Chapter 5. Printing Features

The dialog's OK button is disabled while the printer emulator is servicing a print
job. The button will also be disabled if any parameter entered is illegal.

Limitations

The limitations of this feature is:

• Color printing is not supported.

Troubleshooting

The printer may fail to print for various reasons. When this happens, the system
issues an error message describing the nature of the error, for example:

Table 33. Settings in the Printer Emulation Setup dialog box

Tab Settings INI Parameter Name

Page Size Characters in a line DefaultColumns

Lines in a Page DefaultRows

Ignore host specified width IgnoreHostWidth

Wrap text at right margin WrapText

Margins Measurement units MarginUnits

Left margin LeftMargin

Right margin RightMargin

Top margin TopMargin

Bottom margin BottomMargin

Miscellaneous Time out TimeOut

Ignore leading form feed IgnoreFFAtFirst
188 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Figure 33. Error message on printer fail

Printing could fail for various reasons:

Extending the Printer Emulation

The printer emulation API opens up the printing feature to a wide range of
possibilities.

Enhancements can be made in three major fields of the printing domain; you can
decide upon:

• The destination of the printing data. This can include sending the printing
data to the client, saving the data on the server, sending a URL to the client, etc.

• The printing format: disk files, template reports, html forms
• The printing style: Font size, Graphics, printing from right to left, etc.

Table 34. Printer fail reasons and solutions

Problem Solution

The server does not exist.

The Server does not support
TN3270E/TN5250E.

Where possible, install the TN3270E/
TN5250E emulator. Otherwise,
connect to a gateway that does
support TN3270E/TN5250E.

The Server does not support
printing.

Define the printers logical name on
the Server and on the Host.

The LU name is invalid or belongs
to a display terminal.

In the <ApplName>.ini file, write the
correct LU name.
webMethods JIS: Java Client User’s Guide Version 9.0 189

Chapter 5. Printing Features

The printing emulation feature enables the creation of printer classes both on the
Server side and on the Client side.

The Printer Emulation API Architecture

Below is an illustration of the optional ways to use the printer emulation:

Figure 34. Optional ways to use the printer emulation

Data sent from the host can be put to use in several ways:

• Printer emulation contents saved on the Server. The IServerTextPrinter
interface parses the printer data stream, as received from the host, saves the
print job in XML form, and merges it into a report, prints it using some system
script, etc.

• Depracated direct Client printer emulation. The client receives the raw printer
data stream, directly from the host.

• Client printer emulation through the printer proxy. The printer mechanism is
split between the Server and the Client. On the Server side an interface parses
the printer data stream, as received from the host, and sends the contents of
the page, in XML form, to the client. On the client, a proxy receives the
contents, and sends it immediately to the final printer class. This is done using
the IPrintStreamRelay, IPrintStreamParser and IClientTextPrinter interfaces.

Creating a Printer Emulation Instance

To initiate a printer emulation instance, the appropriate instance name and the
classes implementing it must be registered and identified.

Host sends Printer
data

ITextPrinter

Client Printer
parses the data

stream

Server Printer
parses the data

stream

Client prints to the
local printer

XML files saved
on the Server

XML sent to the
Client and parsed

there

IPrintStreamRelay
IPrintStreamParser
IClientTextPrinter

IServerTextPrinter IClientTextPrinter
190 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Determining the Printer Emulation Type

The printer emulation type is determined in the [Printing Handlers] section of the
application runtime.ini file. For each different type of printer emulation, there is
a handler name and two class names

The parameter containing the handler and classes looks as follows:
[HandlerName]=[ServerClass],[ClientClass]

Example 35. Parameter containing the handler and classes

[Printing Handlers]

Printer1=HostToServer.class,ClientToPrinter

The Default Settings

The default handler name is ‘Default’. The class names may contain a user
extension, or use the JIS provided defaults. Two keywords are defined: ‘_none’
and ‘_default’. The first indicates that no class should be used, the second – use
our default. Otherwise, the name is treated as a class name. In the following table
are listed some simple examples for usage of the new parameter.

Handler name The handler identifies the printer emulation type.

Class name The classes that implement the Printer Emulation API.
The first class name relates to the Server side, the second
to the Client side.

Table 35. Default handler settings

Parameter
Setting Server Client

Default=
_default,_defa
ult

Data sent to the Server
ServerTextPrinterToXML

Data relayed to the
Client

IPrintStreamRelay

Default=
_default,_none

Data sent to the Server
ServerTextPrinterToXML

No class is created
webMethods JIS: Java Client User’s Guide Version 9.0 191

Chapter 5. Printing Features

The Extension Class Path

The server reads the class names from the runtime.ini file, according to the
handler name. The class names are passed to the client, so that both server and
client may load extension classes if requested. The classes are searched for in a
fixed path.

Initializing an Extended Printer Emulation Session

To initiate an extended printer emulation session or to allow activating a printer
by its handler name, call the following DoMethod:

1 OpenPrinterByHandler
This DoMethod has two parameters:

Table 36. Extension class paths and locations

Location Classpath

Server cst\server\printing\<ClassName>.class

Client cst\client\printing\<ClassName>.class

HandlerName Enter the printer’s handler name. This name must
correspond to the name that appears in the Printing
Handlers section of the runtime.ini file. The name must
be enclosed within quotation marks.

LUName Enter the LUName the new printer requests from the
host. The name must be enclosed within quotation
marks.
192 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Figure 35. Method Parameters dialog box

The Application Runtime.ini File Settings

This section describes the application runtime.ini file settings.

General runtime.ini file Parameters

The following parameters must appear under the [TN3270 Printer] or [TN5250
Printer] section of the application runtime.ini file
.

Table 37. Parameters in [TN3270 Printer] or [TN5250 Printer] (Sheet 1 of 2)

Parameter Description

WorkRootDirectory The location on the server where all the XML
files are saved. This parameter is obligatory
when using the server printing option.

For Example:

c:\java\xmls\user_1_1\fred_1_1.html
webMethods JIS: Java Client User’s Guide Version 9.0 193

Chapter 5. Printing Features

SpoolDirectory Prefix for the session print jobs folder. This
parameter is obligatory when using the
server printing option.

For Example:

SpoolDirectory=user

c:\java\xmls\user_1_1\fred_1_1.html

BaseFileName File name for the XML pages. The name is
appended with a unique ID.

For Example:

BaseFileName=fred

c:\java\xmls\user_1_1\fred_1_1.html

PagesToBuffer Maximum number of XML pages to buffer
on the server, before sending them to the
client.

UserDefinedParameters A string containing user parameters used by
new extensions.

CompressStream Determines whether to instruct the server to
compress the XML pages before they are sent
to the client. The recommended setting for
this parameter is the default 1.

Table 37. Parameters in [TN3270 Printer] or [TN5250 Printer] (Sheet 2 of 2)

Parameter Description
194 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Special Runtime.ini Parameters Used with JIS Examples

HTML Parameters

When the client classes are created, the IPrintStreamPrinter class is created by
using the runtime.ini parameter for the client class name. This class receives an
IClientRuntimeUtilities implementation, which it uses to query in the HTML file
for the IPrintStreamParser class. This second class also receives the same
implementation, looks up the HTML file for the IClientTextPrinter class, and
creates it. To create these two classes, the following parameters were added to the
HTML file

Table 38. Special runtime.ini file parameters

Parameter Description

WorkRootURL URL address, mapped to the server’s
WorkRootDirectory, where HTMLs are saved.
This is sent to the client.

For Example:

http://localhost/xmls/

XSLTforXMLtoHTML URL address for the XSL file that is used by the
HTML extension.

For Example:

file:///
c:\java\src\cst\server\printing\XMLtoHTML.xsl

Table 39. HTML parameters

Parameter Meaning Default Class Name

PrintStreamParser Implements
IPrintStreamParser

XMLPrintStreamParser

ClientTextPrinter Implements
IClientTextPrinter

ClientTextPrinter
webMethods JIS: Java Client User’s Guide Version 9.0 195

Chapter 5. Printing Features

Sending the Print Stream to the Client

The server implementation by default sends the parsed printer data to the client.
The printer data is sent in an XML format.

The XML format is used to refashion the host printer data stream, rendering it
easier to handle and convert to other formats. The JIS implementation creates the
XML on the server, using ServerTextPrinterToXML implementation of
ServerTextPrinter. The XML may be sent to the client, or saved on the server.

The XML tags we use are defined in the interface IXMLPrintConstants.
Extensions may use XML technologies such as XSLT that translates XML into
other formats, such as PDF, RTF, or HTML.

Providing Client and Server Security Permissions

This section discusses client and server security permissions.

Client Security Permissions

Printing on the client demands security permissions; extensions written for the
client must be granted permissions for any type of access. Extensions may also
require signing the applet.

Server Security Permissions

The JIS printer classes on the server have Java application’s permissions. This
allows files and the printer to access the server. However, to allow file system
access, so different session’s print jobs can be separated and secured, an
identification mechanism has been introduced.

Every extension is provided with a unique identifier, per session. The identifier
consists of both the session and the process number on the server. This, combined
with a time stamp provides a unique ID per user per print job. The identifier is
used for creating a folder for each user, and putting in it all the print jobs. Each
folder is deleted when the session closes. This is done through a call to a server-
side interface method; the method removes the storage object upon termination
of the session.

The path to the folder where all the users’ sub-folders are to be created must be
defined in the WorkRootDirectory parameter of the runtime.ini file.
196 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Examples of How to Use the Extended Printer Emulation

This section provides examples of how to use the extended printer emulation
feature.

Saving Data on Server Example

This example demonstrates how data sent from the host is saved on a specific
directory on the Server for later use.

In this example, the following activity takes place:

• A server side class is added.
• The server class receives the data stream from the host.
• The server saves the data sent from the host on a designated directory.

HTML Printing Example

This example demonstrates how the Client is sent a URL address to the location
of HTMLs sitting on the Server.

In this example, the following activity takes place:

• Two classes, on both client and server, are added. On the server side, the class
implements IServerTextPrinter; on the Client side, the class implements
IPageStreamRelay.

• The server class receives the data stream from the host.
• The server class translates the data stream into XML, then translates the XML

into HTML using XSL file.
• The server class saves the HTML on the server file system.
• The client receives a URL to the file system location.

Application runtime.ini Configurations

Default=_default,_none Server side class is added.

WorkRootDirectory=c:\xmls The root directory for the location of
the XMLs on the server.

SpoolDirectory=job The specific location of the XMLs on
the server, i.e. c:\xmls\job\.
webMethods JIS: Java Client User’s Guide Version 9.0 197

Chapter 5. Printing Features

• A new browser session is opened, allowing to print the HTML from it.
• Files are removed when the session closes.

Printing via the Server and the Client

This example demonstrates how to print on the client, using the standard DOS
Comm Ports (LPT1, etc.). In this example, the following activity takes place:

• The main class receives data from the host and relays it to the client.
• A Third level client side class generates a string of text, then sends it to a

Comm port using a utility class.
• The name of the Comm port is read from the application’s HTML file.

Application runtime.ini Configurations

Default=ServerTextPritnerToHTM
L, URLRelay

Server side and Client side
classes are added.

WorkRootURL=http://localhost/
xmls/

URL of the server file system.
This is sent to the Client.

WorkRootDirectory=i:\java\xmls The location of the HTML files on
the server.

SpoolDirectory=user Prefix for the folder name.

XSLTforXMLtoHTML=file:///
i:\java\src\cst\server\printin
g\XMLtoHTML.xsl

File URL to the XSL.

Note: The HTML printing quality relies on HTML capabilities, and therefore
does not support over-typing, margin sizes or data stream commands for
changing the position of the output on a single page. Margin sizes can be set
from the system printer dialog, opened by the browser. The classes in this
example do not need to be signed.

Application runtime.ini Configurations
198 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

Printing the Client Window

Use the GUI printing feature to print windows currently present on your screen.

Each Subapplication is printed on a separate page. In addition, a window caption
is printed above each Subapplication stating its title and the date and time it was
printed. Note that Date and Time are localized. They are calculated according to
the client's time zone.

Activating the GUI Printing Feature

The GUI printing feature can be activated:

• Through the runtime Application menu
• Through code extension

To activate the GUI printing feature through the runtime Application menu:

1 From the menu choose Application > File > Print GUI The Print dialog opens.

Default=_default,_default Server side and client side classes
are added.

HTML Configurations

ClientTextPrinter=
ClientTextPrinterToSerial

Third level, client side class is
added.

TextPrinterDestination= The Comm Port to use.

Note: The Comm printing feature is Windows-specific. It uses Java exec
command, to refer to the OS shell, and print to the port. Printing using
Overtype Bold and Underscore is not supported.

Note: The applet must be granted permission to use the printing option.
webMethods JIS: Java Client User’s Guide Version 9.0 199

Chapter 5. Printing Features

Figure 36. Print dialog box

2 In the Print dialog, press OK. The GUI will be printed.
To activate the GUI printing feature through Code extension:
Call the JacadaStarter's printGui() method.

Example36. Activate the GUI printing feature through code extension

In any Subapplication you can write:
getStarter().printGui();

Eliminating the Print Setup Dialog

Each time you go to print a GUI screen, the Java client by default shows a print
setup dialog, where you can modify the paper size and orientation and the page
margins to be used. You can eliminate the display of the print setup dialog if you
like.

To eliminate the display of the print setup dialog, add the following parameter to
the HTML page:

<PARAM name = “ShowPrintDialog” value = “false”>

The default value of ShowPrintDialog is “true”. The parameter
ShowPrintDialog works only when the Java client runs with a Sun Java plug-
in.

Modifying the GUI Printing Feature Through Code Extension

You can enhance the printing feature by extending the code in the JacadaStarter
class. The following methods can be overridden to meet your needs:
protected String getTitleToPrint (GUICSTPanel panel)

Note: Adding a TRUE parameter–printGui(true)–causes the calling thread to
block until the printing is done.
200 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

This method is called to determine which title to print above the Subapplication’s
panel. You can return any string you wish. The string can be separated into
several lines using the newline ('\n') character. If null is returned, no title will be
printed.

protected DateFormat getDateFormatToPrint ()

This method controls the format of the date and time in the printing. It should
return a DateFormat object, which is a standard Java class (in package java.text).
If the method returns null, the date and time will not appear in the printing at all.
By default, the date and time are printed in the following format: "December 15,
1999 6:30 AM".
protected boolean needToPrint (GUICSTPanel panel)

This method is called to determine whether a Subapplication should be printed.
By returning false, the user can prevent specific Subapplications from being
printed.

Example 37. Preventing popup windows from being printed

The following code will prevent popup windows from being printed:
protected boolean needToPrint (GUICSTPanel panel) {

 if (panel.getPanelType() == GUICSTPanel.POPUP) {

 return false;

 }

 else {

 return super.needToPrint(panel);

 }

 }

Granting Permission to Print the Client Window

Due to security restrictions imposed by the Java Virtual Machine (JVM), the
window printing feature can only work using signed files. JIS provides you with
the clbase-signed.jar archive file to allow you to use the printing feature.

The HTML reference to the Client core CAB file:
<PARAM name ="cabbase" value="cst/clbase-signed.cab">

Note: The clfull-signed.jar archive file also allows you to use the printing
feature but it contains other features you may not require.
webMethods JIS: Java Client User’s Guide Version 9.0 201

Chapter 5. Printing Features

If you try to run the application using an unsigned archive file, the following
message will be displayed: "The application does not have permission to print".

If you run as an application and not as an applet, there are no security restrictions;
the application can print by default.

Changing the Background Color of the Printed Window

The background color of a printed window can be changed. Typically, you will
change the background color to white to optimize printing costs. Note that
changing the Subapplication’s background color affects also the background
color of group boxes, frames, radio groups, tab folders, labels, check boxes and
radio buttons.

You control the printed window’s background color through the
GUIPrintingBackground HTML parameter setting. The value set in this
parameter must be an RGB color value in the standard HTML format. For
example, if you wish to color the window’s background white, set the
“GUIPrintingBackground” parameter as follows:
<PARAM name = "GUIPrintingBackground" value = "#FFFFFF">

Controlling the Scale of the Window’s Printout

Screen resolution, printing settings and other printer’s specifications may cause
the window you wish to print to be too large to fit the printer’s page.

You can control the scale of the printed window through the GUIPrintingScale
HTML parameter setting. The value set in this parameter is a number
representing the percent of the printout’s full size.

Example 38. Controlling the scale of the printed window

<PARAM name = "GUIPrintingScale" value = "70">

will cause the printout to be 70% of its full size.

Note: Reducing the printout scale may cause some distortion and loss of
detail in the printed output.
202 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 5. Printing Features

The following chart offers a gauge by which to choose the scale for the printed
window. These approximated values are based on screen resolution, page
orientation and paper size. The optimal value may depend upon the printer
brand and the printing settings you selected.
.

Printing the Client Host Screen

Use this feature to print the Host screen currently displayed on your client.

The Host printing feature can be activated:

• Through the runtime Application menu
• Through code extension

To activate the Host screen printing feature through the runtime Application
menu:

1 From the menu choose Application > File > Print Host Screen. The Print
dialog opens.

Table 40. Choosing a scale for a printed window

Screen Resolution Paper Size Page Orientation Recommended Scale

800x600 A4 Landscape 100%

800x600 A4 Portrait 70%

800x600 Letter Landscape 96%

800x600 Letter Portrait 73%

1024x768 A4 Landscape 77%

1024x768 A4 Portrait 55%

1024x768 Letter Landscape 75%

1024x768 Letter Portrait 57%
webMethods JIS: Java Client User’s Guide Version 9.0 203

Chapter 5. Printing Features

Figure 37. Print dialog

2 In the Print dialog, press OK. The Host screen will be printed.

To activate the Host screen printing feature using Code extension:
Call the JacadaStarter's printHostScreen() method.

Example39. Activating Host screen printing via code extension

In any Subapplication you can write:
getStarter().printHostScreen();

Note: Due to security restrictions imposed by the Java Virtual Machine (JVM),
the Host screen printing feature can only work using signed files. For more
information see “Granting Permission to Print the Client Window” on
page 201. Adding a TRUE parameter–printHostScreen(true)–causes the
calling thread to block until the printing is done. The printed copy presents a
reverse image of the client host screen. Also, a window caption is printed
above each host screen stating the date and time it was printed.
204 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Java code is generated by webMethods JIS for the Java client and the JIS Server.
The Client Java code can be modified in various ways in order to add
functionality beyond webMethods JIS’s capabilities, or change the appearance
and behavior of the GUI components. The Server Java code can also be modified
in order to solve security limitations and enhance performance. This chapter
describes how to achieve this, and gives concrete examples which demonstrate
the correct ways to do so.

This chapter describes:

• The Client Java Code Produced During Compilation
• Working with the Java Code

The Client Java Code Produced During Compilation

The following groups of files are generated during Compilation:

Java Sources in the Original Sub-directory

This code must not be edited by the user since it will be overwritten by
subsequent executions of the Generate Runtime command. Files containing the
Java source code are created as read-only.

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\original\Make
.pl

A Perl script used to generate the Java sources and then compile them.
• <InstallDir>\JacadaFiles\src\appls\<ApplName>\original\

TempMake<#>.java

A temporary Java file used to store all the Java sources of a compiled
application batch (those contained in the cst hierarchy, as well as in the user
hierarchy).

Note: <#> stands for the batch number, e.g. TempMake1.java. The
compilation process produces a TempMake<#>.java file for each compiled
batch.
webMethods JIS: Java Client User’s Guide Version 9.0 205

Chapter 6. Extending the Java Code

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\original\
MainWindow.java
The main window is application-specific (and therefore generated during
compilation) because it contains the tool bar which was defined in the
application.

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\original\
JacadaStarter.java

Contains the general initialization of the application.
• <InstallDir>\JacadaFiles\src\appls\<ApplName>\original\

<WindowName>.java
A Java code that generates the window. A java code is generated for each
Subapplication window of the application.

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\original\
ApplSubApplWindow.java
Contains the application wide Floating Menus.

Java Sources in the User Sub-directory

The user’s sub-directory files is where the user is expected to write his own Java
code. During compilation some skeletons are generated for the user to fill in.
These files will not be overwritten when other occurrences of the compilation
process take place. Therefore, any editing the user may have done will not get
lost.

The following Java source files exist in the User subdirectory

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\user\
ApplSubApplWindow.java
This class is a common parent of all the application’s windows.

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\user\Applet.ja
va
This class invoked from the HTML file. It activates the JacadaStarter class
which launches the Java Client runtime application.

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\user\
JacadaStarter.java
Contains the general initialization of the application, such as registration of
the application’s windows that the user wishes to extend. This class extends
the JacadaStarter class which resides in the
<InstallDir>\JacadaFiles\src\appls\<ApplName>\original
directory.

• <InstallDir>\JacadaFiles\src\appls\<ApplName>\user\
ValidityCheck.java
Contains the Skeleton for extending the default validity checks of the Java
Client. It is the user’s responsibility to update the class for additional checks.
206 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Compiling the User’s Java Sources

Use the <InstalDir>\JacadaFiles\src\appls\<ApplName>\
user\jacc.bat batch file to compile Java sources which you have modified.

These sources should reside in the directory:

<InstallDir>\JacadaFiles\src\appls\<ApplName>\user

Automatic Overwriting of User Files During Version Upgrading

During the compilation process, User files are created. These include the
following Java files:

<InstallDir>\JacadaFiles\src\appls\<ApplName>\user\
ApplSubApplWindow.java

<InstallDir>\JacadaFiles\src\appls\<ApplName>\user\
Applet.java

<InstallDir>\JacadaFiles\src\appls\<ApplName>\user\
JacadaStarter.java

<InstallDir>\JacadaFiles\src\appls\<ApplName>\user\
ValidityCheck.java

and the following HTML files:

<InstallDir>\JacadaFiles\<ApplName>.html

<InstallDir>\JacadaFiles\<ApplName>-signed.html

<InstallDir>\JacadaFiles\<ApplName>-start.html

These User files will not be overwritten during subsequent compilation
operations. However, when upgrading to a new version of webMethods JIS, the
application’s User files will be automatically updated, if needed. Note that the
changes the User has made to the file are not automatically updated.

Whenever a user file that was modified by the user is overwritten through the
upgrading process, a backup of the original file is created in the same directory.
This file bears the original file’s name with an *.old extension.

After generating a runtime with a new version of webMethods JIS for the first
time, the Generate Runtime log window will report which User files have been
updated. Edit the User files that have been updated, and insert your modification
back into them, using the *.old backup files as reference.
webMethods JIS: Java Client User’s Guide Version 9.0 207

Chapter 6. Extending the Java Code

After modifying a file in the user directory, run jacc.bat to recompile the Java
classes.

When a new version of Applet.java is created in the user directory, webMethods
JIS updates the Applet.java file and prepares a backup file named Applet.old in
the user directory. After the updating has taken place, the user should copy the
changes from Applet.old back into Applet.java.

Java .class Files

After the Java sources have been generated, the Generate Runtime process
invokes the Java compiler which generates Java .class files which reside for
example, under the c:\Ace\JacadaFiles\classes directory. Any error in the
compilation of the Java code aborts the Generate Runtime process.

JIS’s Javadoc Files

JIS provides you with a set of html files that include explanations about how to
work with the generated classes and the methods they contain.

The javadoc files are installed under the following directory:

<InstallDir>\JacadaFiles\docs\client

Working with the Java Code

This section describes working with the Java code.

About Event Handling

JDK 1.1 defines the Delegation Event Model, which replaces the event model of
the earlier JDK versions. webMethods JIS uses the newer model. Since it is
inadvisable to mix the two models in one application, any event handling that
your extended code performs should be according to the Delegation Event
Model.

Note: Only public methods are documented in the javadoc.
208 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

About Deprecated Methods

Some methods defined in JDK 1.02 were replaced by different methods in JDK
1.1, and were marked as deprecated. When writing Java code, you should avoid
using these deprecated methods, and choose the newer versions instead. This is
especially true when extending webMethods JIS Subapplications—JIS's
components use only the newer versions of the methods, and using the
deprecated methods might yield unexpected results. You can easily identify such
methods by the "deprecated" indication in their API documentation. Usually, the
newer version of the method will also be noted there.

For your convenience, here is a list of the most commonly used deprecated
methods, and their replacements.

Table 41. Depreciated methods and their replacements

Class Deprecated Methods Replacement Methods

java.awt.Component enable, disable setEnabled

show, hide setVisible

location getLocation

move setLocation

size getSize

resize setSize

bounds getBounds

reshape setBounds

preferredSize getPreferredSize

inside contains

locate getComponentAt

java.awt.Container countComponents getComponentCount

insets getInsets
webMethods JIS: Java Client User’s Guide Version 9.0 209

Chapter 6. Extending the Java Code

Where Can Code Extension Be Performed

You can extend the Java code of the following environments:

• A single Subapplication
• The main window
• All the Application’s Subapplications

Extending the Code of a Subapplication

The webMethods JIS’s Java Client creates a Java class for each Subapplication, as
well as a class for the main window of the application. These classes form the
appls.<ApplName>.original package, where <ApplName> is the
application’s name. You must not modify the classes of this package since they are
recreated every time the Generate Runtime process is performed. The correct way
to modify the Java code is to extend these classes; the inherited classes should be
a part of the appls.<ApplName>.user package.

The following procedure should be used for each Subapplication that will be
modified (the examples refer to a Subapplication called LOGIN):

To extend a Java code for a Subapplication called LOGIN:

1 In the appls.<ApplName>.user package create a class which will be an
extension on the original class appls.<ApplName>.original.LOGIN. To do
so, create a file called LOGIN.java in the
<InstallDir>\src\appls\<ApplName>\user directory (by convention,
the class name should have the same name as the Subapplication). This file
will contain the following class definition:

java.awt.Menu countItems getItemCount

java.awt.MenuBar countMenus getMenuCount

Note: The JIS API TabbingManager.isFocusable method has been marked
deprecated and was replaced by the isTabTraversalFocusable method.

Table 41. Depreciated methods and their replacements

Class Deprecated Methods Replacement Methods
210 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

package appls.<ApplName>.user;
import java.awt.*;
import cst.gwt.*;

public class LOGIN extends appls.<ApplName>.original.LOGIN {
}

2 Register this class in appls.<ApplName>.user.JacadaStarter by adding
a line to its registerUserGui method:
addWindow(ApplPackage + "LOGIN");

This line will because the application to use the descendant class
(appls.<ApplName>.user.LOGIN) instead of the original class
(appls.<ApplName>.original.LOGIN). For more information about the
addWindow method consult the section The JacadaStarter's addWindow
Method.

3 Add the desired functionality to the class you created, as described in the
following sections.

4 Compile your changes using the JACC batch file.

Extending the Code of the Main Window

Extending the code of the Main Window is useful when adding Java extensions
to the tool bar. This is done exactly as described in the previous section—
Extending the Code of a Subapplication—except for the following differences:

1 The Java file that you create in the
<InstallDir>\appls\<ApplName>\user directory should extend the
class: appls.<ApplName>.original.MainWindow.

2 Registering this class in appls.<ApplName>.user.JacadaStarter is
done by adding the following line to its registerUserGui method:
addWindow(ApplPackage + "MainWindow");

This line will cause the application to use the descendant class (MainWindow
in the user directory) instead of the original class (MainWindow in the original
one).

Note: Use this procedure whenever a specific Subapplication needs to be
modified.

Note: This should be the first call to addWindow(), before any other call to
addWindow() to extend any of the Subapplications.
webMethods JIS: Java Client User’s Guide Version 9.0 211

Chapter 6. Extending the Java Code

Extending the Code of All Subapplications

If you want to change the behavior of all Subapplications, you can modify the
class appls.<ApplName>.user.ApplSubApplWindow since all
Subapplication classes are its descendants. To do so

1 Add the desired functionality to the ApplSubApplWindow class.
2 Compile your changes using the JACC batch file.

However, some modifications should be performed only once, when the
application is started. These modifications are typically application-wide
properties, and should be performed in the
appls.<ApplName>.user.JacadaStarter class.

Understanding the Generated Java Code

This section describes the functions that the original Subapplication classes
perform. Since the users inherit these classes when extending a Java Client
Subapplication, it is important to understand their functions and the ways to
interface with them.

The subsequent sections provide examples that demonstrate the implementation
of these principles.

Creating Controls

The Subapplication classes are responsible for the creation of the controls they
contain, and the setting of each control's properties (fonts, colors, text, etc.). This
function is performed inside the createGUIControls method, as can be seen in
the Subapplication classes that webMethods JIS creates. It is important to note
that the Subapplication classes are containers, so their controls are added directly
to them. No layout is used for the positioning and sizing of the controls—the
coordinates and dimensions are the exact ones that were set in webMethods JIS.

Any control that you wish to add to the Subapplication should be created and
added in the createGUIControls method. Remember to call the super’s
method before doing anything else, otherwise the Subapplication will not work.

Example 40. Adding controls in the createGUIControls method

public void createGUIControls () {
 // First call the super's method

Note: The changes you make to the application's ApplSubApplWindow class
influence only the main Application’s Subapplications and not the
Subapplications contained within its libraries.
212 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

 super.createGUIControls();
 // Now add our own controls
 Label hello = new Label("Hello!");
 add(hello);
 hello.setBounds(50, 75, 100, 25);
}

Creating Logic Peers

In the webMethods JIS, the GUI is separated as much as possible from the
application's logic. This means that the controls are pure GUI, and contain no
application logic. This logic is kept instead inside Logic Peer objects—each GUI
control has a logic counterpart that connects it to the application as a whole, and
to the JIS Server. These Logic Peers form the cst.client.logic package, and
are created by the method createLogicControls. This method is called right
after createGUIControls.

Normally, no changes should be made to this part of the Subapplication class.

Event Handling

Another important function of the Subapplication classes is the handling of
events that happen inside them. The Java Client uses the Delegation Event Model
which was introduced in JDK 1.1. In this model, controls are sources of different
events, such as focus events, key events, mouse events, etc. Any object that wants
to receive these events from a specific source must register itself with the source
as a listener for a specific type of event. This also means that the listener object
must implement one or more interfaces which define the methods that are called
when an event occurs. For example, java.awt.Button sends an ActionEvent
when it is clicked. An object that wants to receive these events must implement
the ActionListener interface, and register itself with the button by calling the
button's addActionListener method. When the button is clicked, the listener's
actionPerformed method will be called. For details about the Delegation Event
Model, please refer to the API of the java.awt and java.awt.Event packages.

In the Java Client, the Subapplication classes listen to events from the controls
that they contain, and perform various functions according to the events
received. The Subapplication registers itself with each control as a listener for
different types of events in the setControl method.

The types of events vary according to the control's type:

• Focus events - all components.
• Mouse events - all components.
• Key events - all components.
webMethods JIS: Java Client User’s Guide Version 9.0 213

Chapter 6. Extending the Java Code

• Action events - buttons, prompt controls and menu items.
• Item events - check box menu items.
• Table events- tables. Events generated by the Java Client’s Table component.

The different event listener methods that the Subapplications implement perform
the relevant functions. For example, clicking a button will result in a call to
actionPerformed, and this method will result in sending the appropriate
command to the JIS Server.

To handle events from a control in a Subapplication, you must override the
appropriate listener method in the class of the Subapplication. For the default
behavior to be performed, call the super's method from your method. The
following examples will clarify this:
public void actionPerformed (ActionEvent evt) {
 if (evt.getSource() == myButton) {
 // Do something when myButton is clicked
 ...
 }
 else {
 // Handle the event in the default manner
 super.actionPerformed(evt);
 }
}
public void keyPressed (KeyEvent evt) {
 if (evt.getKeyCode() == KeyEvent.VK_HOME && evt.is-

AltDown()) {
// Do something when Alt+Home is pressed,

// anywhere in the subapplication
...

 }
 // Always perform the default handling
 // (even when it's Alt+Home).
 super.keyPressed(evt);
}

There are only two cases in which you need to register the Subapplication as a
listener with a specific control for a specific event type:

1 When the event type is not one of those listed above (for example,
ComponentEvent).

2 When you added the control (not webMethods JIS), and therefore the
Subapplication does not recognize it.

Focus and Tabbing Management

Focus events enable the Subapplication to keep track of the input focus location.
This task is delegated to a TabbingManager object, that knows which
component within the Subapplication has the input focus. In addition, the
214 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

TabbingManager keeps a list of the Subapplication’s components, sorted by their
tabbing order. This list is used when the user presses the tab key, in order to pass
the focus to the next or previous control on the list. The focus is passed only to
components that are visible, enabled, and defined as "focus traversable" (see
java.awt.Component.isFocusTraversable).

The tab order of the components is set in the setControl method. In case you
add components which you want to be a part of the tabbing order, you must add
them to the TabbingManager's list. You can either replace one component by
another or insert an additional component to the list. For example, the line
tabbingManager.addComponent(myButton, 10);

will add the component myButton as the tenth component on the tab-order list
overwriting the component originally in that place. The line
tabbingManager.insertComponent(myButton, 10);

will insert the component myButton in the tenth place of the tab-order list. In
addition, you can remove a component from the list. For example, the line
tabbingManager.removeComponent(myButton);

will remove the component myButton from the tab-order list. Make sure that
the component returns true from isFocusTraversable. Another possibility is
to locate your component after the location of another component. For example,
to add myButton after the component button17, use:
int pos = tabbingManager.getComponentPosition(button17);
tabbingManager.insertComponent(myButton, pos + 1);

You may also wish a certain component or several components to be skipped
over during the tabbing process. In this case, and assuming the component name
is myButton, you should add the following line:
myButton.setFocusTraversable(false);

Keyboard Management

As was mentioned earlier, the Subapplication classes listen to key events from
their components. These key events are used for three purposes:

1 Handling accelerators that were defined in webMethods JIS.
2 Tabbing between components, as described in the last section.
3 Activating the default button, which is the button that should be pressed

when the user presses Enter.
webMethods JIS: Java Client User’s Guide Version 9.0 215

Chapter 6. Extending the Java Code

Any key-press is first looked up in the list of the Subapplication’s accelerators. If
it is found there, the server is notified that a specific accelerator has been
activated. This means that if you want to block an accelerator, you should extend
the keyPressed method (see example under “Event Handling” on page 213).
Please note that the accelerator mechanism of the Java Client does not use the
"menu shortcuts" defined in JDK 1.1, because they are too limited.

The default button is set by the setDefaultButton method. When the user
presses ENTER inside a component that does not handle the ENTER on its own,
the default button is activated. More specifically, it is pressed in keyPressed and
released in keyReleased, and this results in its activation.

Examples of Code Extension

When writing a code extension, you must decide where to perform it. The
following guidelines should cover most cases:

1 If the desired functionality should be present in all Subapplications, add the
code extensions to the appls.<ApplName>.user.ApplSubApplWindow
class.

2 If the code extension should be performed only once, when the application is
first started, add it to the appls.<ApplName>.user.JacadaStarter or
appls.<ApplName>.user.Applet classes.

3 If you wish to add some controls that will always be present in the
application’s main window (e.g. a toolbar), extend the MainWindow class.

4 Otherwise, extend only the specific Subapplications that you want to modify.

The appropriate method to create these extensions was discussed in the section
Where Can Code Extension Be Performed. This section brings concrete examples
of code extensions, that can be adapted for your specific needs.

Adding a Background Image

The cst.gwt.GUIPanel class, which is the ancestor of all Subapplications,
supplies a method for displaying an image in its background. The image can be
displayed in one of several modes, as described below. To set the background
image for your Subapplication extend the Subapplication in the usual manner
and inside its constructor or inside createGUIControls call the following
method:
setBackgroundImage(spi, name, style);

The “spi” is the application’s SessionParmsInterface object, which is usually
the application’s JacadaStarter. You get it by calling getStarter().

The "name" parameter is the location of the desired image, in relation to the
applet's codebase (for example, IMAGE_DIR + "LOGO.gif", for an image that
resides in the same directory as the rest of the application's images).
216 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

The "style" parameter should be one of the following:

• PLAIN_BACKGROUND_IMAGE — the image is displayed at the top-left of the
Subapplication panel. This mode is suitable for images that are at least as large
as the Subapplication.

• CENTERED_BACKGROUND_IMAGE — the image is displayed at the center of the
Subapplication panel.

• SCALED_BACKGROUND_IMAGE — the image is scaled to cover the whole
Subapplication panel. The image's proportions are not preserved, so this mode
is suitable mainly for abstract background images.

• TILED_BACKGROUND_IMAGE — the image is tiled to cover the whole
Subapplication panel. This mode is not recommended for small images, as
their repetitive drawing would slow down the GUI considerably.

Example 41. Adding a background image

public void createGUIControls () {
 super.createGUIControl();
 setBackgroundImage(getStarter(),
 IMAGE_DIR + "LOGO.gif",
 CENTERED_BACKGROUND_IMAGE);
}

Adding Action Buttons to a Subapplication

This section describes how to add action buttons to a specific Subapplication.
Such buttons can perform various functions implemented in Java, such as the two
following examples: a button that opens an HTML page in your Internet browser,
and a button that plays an audio clip.

Perform the following to add action buttons to a Subapplication:

1 Add the desired buttons to the Subapplication using webMethods JIS. You
should give them descriptive names, such as urlButton and audioButton.

2 Using webMethods JIS, perform the compilation procedure.
3 Perform the steps described in Extending the Code of a Subapplication, in

order to inherit the Subapplication.

Note: When selecting a background image, consider its size in kilobytes—a
large size might result in a long delay when the Subapplication is displayed
for the first time.
webMethods JIS: Java Client User’s Guide Version 9.0 217

Chapter 6. Extending the Java Code

4 Let us assume that now you have a class in the user directory that inherits the
Subapplication class you wish to modify. In this class, add the
actionPerformed method as follows:
package appls.<ApplName>.user;

import java.net.*;
import java.awt.event.*;

public class LOGIN extends appls.<ApplName>.original.LOGIN {

public void actionPerformed (ActionEvent evt) {
 // Has the URL button been pressed?
 if (evt.getSource() == urlButton) {
 try {

URL url = new URL("http://www.jacada.com");
getApplet().getAppletContext().showDocument(url,
"A");

 }
 catch (MalformedURLException e) {

System.out.println("Malformed URL");
 }
 }
 // Has the audio clip button been pressed?
 else if (evt.getSource() == audioButton) {
 // The code assumes that the clip (in format .AU) is

stored
 // in <InstallDir>/classes/appls/applname/au-

dio/effect.au
 getApplet().getAudioClip(getApplet().getCodeBase(),
 "appls/APPLNAME/audio/effect.au").play();
 }
 else {
 // Handle the event in the default manner
 super.actionPerformed(evt);
 }
 }
}

Compile your Subapplication using the JACC batch file.

Test the Subapplication to verify that the action buttons operate as
specified.

The same method can be extended to include, for example, a button that
launches a calculator window. Add the following lines to the above method
(supposing the button you have added to the Subapplication is called
calcButton):

 // Has the calculator button been pressed?
 else if (evt.getSource() == calcButton) {
 cst.misc.PocketCalc calc = new cst.misc.PocketCalc();
 calc.setLocation(100, 200);
218 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

 calc.show();
 }

Adding Action Buttons to the Main Window Tool Bar

You can add action buttons to the main window's tool bar, by performing the
same steps as described in the previous section, but with the following
differences:

1 In webMethods JIS, add the desired buttons to the application’s GS_BAR, and
not to a specific Subapplication.

2 Inherit the appls.<ApplName>.original.MainWindow class, and add the
actionPerformed method there.

Querying a Button to Determine Its Characteristics

The following APIs have been added to the GUIEmptyButton class. The
GUIEmptyButton class is the parent of all button types. These APIs let you
extract information about a button control, such as its color, the thickness of its
border, and more.

Obtain the Index of the Accelerator Character

The following code shows how to obtain the index of the accelerator character
that is related to the button.
/* Return index of the accelerator char */

public int getAcceleratorIndex()

Get the Button Color
/* Returns the colors for drawing the button */

protected Color getShade(int shade)

Get the Thickness of the “LineBorder” Button Border
/* Returns the thickness of LineBorder border */

protected int getLineBorderThickness()

Note: You can make such changes directly in Java, without adding
components through webMethods JIS. Such changes, however, that will not
show in webMethods JIS.
webMethods JIS: Java Client User’s Guide Version 9.0 219

Chapter 6. Extending the Java Code

Get the Thickness of the “Border” Button Border
/* Returns the thickness of the “Border” button border */

protected int getButtonBorderThickness() /*

Get the Thickness of the “Dotted” button border
/* Returns the thickness of Dotted border */

protected int getDottedBorderThickness()

Adding Bubble Help to Components

Every Subapplication class has a GUIBubble component, which displays the
bubble help of the Subapplication’s components. Any component that
implements the cst.gwt.general.Describeable interface can have a bubble
help. Most of the Java Client components already implement this interface. In
case you want to have a bubble help attached to a component that you've added,
you must make sure that it implements the Describable interface. This interface
defines only two methods:
public void setDescription (String description);

public String getDescription ();

In addition, the component has to be registered with the Subapplication’s
GUIBubble, in the following manner:
bubble.addComponent((Describeable) comp);

The component's getDescription method should return the text to be
displayed as its bubble help. This text does not have to be constant—it can change
dynamically. For example, you can create an icon of a clock, whose bubble help
displays the current date and time, or you can create a component that displays
values, and whose bubble help gives a detailed explanation of the current value's
meaning (a sort of context-sensitive help).
The bubble help text can be broken into several lines using the newline character
('\n'), as shown in the following line:
comp.setDescription("Type your age\n(in years) here.");

Example 42. Adding a Paste button

The following example shows how to add a Paste button into the main window’s
toolbar. The button’s bubble help describes the exact text that will be pasted when
the button is pressed:

Note: This registration is not needed if the component was already given a
bubble help text in webMethods JIS.
220 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

package appls.<ApplName>.user;

import java.awt.*;
import java.awt.event.*;
import cst.gwt.*;
import cst.gwt.general.*;

public class MainWindow extends appls.<ApplName>.original.MainWindow

{
 PasteButton paste;

 public void createGUIControls () {
 super.createGUIControls();
 // create the paste button and add it to the toolbar
 paste = new PasteButton();
 toolbar.add(paste);
 paste.setBounds(300, 2, 50, 24);
 // listen for action events from the paste button
 paste.addActionListener(this);
 // register the paste button with the bubble help
 bubble.addComponent((Describeable) paste);
 }

 public void actionPerformed (ActionEvent evt) {
 if (evt.getSource() == paste) {
 // paste from the clipboard into the focused component
 cmdPaste();
 } else {
 super.actionPerformed(evt);
 }
 }

 // A button for pasting text. Its bubble help displays
 // the text that is currently in the clipboard.
 private class PasteButton extends GUIButton {

 public PasteButton () {
 super("Paste");
 // ensure that the button doesn't steal the focus,
 // otherwise the paste will fail.
 setFocusable(false);
 }

 // override the default getDescription() method
 public String getDescription () {
 // get the clipboard's contents
 String contents =
 ClipboardManager.getContentsAsString(this);
 // return the description accordingly
 if (contents == null) {
 return "No text to paste";
 }
webMethods JIS: Java Client User’s Guide Version 9.0 221

Chapter 6. Extending the Java Code

 return "Paste \"" + contents + "\"";
 }
 }
}

Adding Animated Buttons to Subapplications

Using the GUIAnimatedButton class, you can create a cartoon-like button.
Whenever the mouse pointer goes over the button, a sequence of images is
displayed.

The GUIAnimatedButton class is part of the cst.gwt package.

The constructor of this class gets 4 parameters:

1 The SessionParmsInterface (usually getStarter()).
2 An array of image names. The first name is the name of the default image, the

image that is displayed when there is no animation. The other names are
those of the animation images.

3 The animation delay, in milliseconds.
4 Whether to draw a border for the button (use "False" if the images already

have a border).

Another useful method is setRepeat().By default, the animation sequence is
displayed only once, whenever the mouse enters the button's area. By calling
setRepeat(true), you can tell the button to display the animation sequence
repeatedly.

Example 43. Displaying an animation sequence repeatedly

public void createGUIControls () {

 super.createGUIControls();

 SessionParmsInterface spi = getStarter();

 String images[] = {"cstimgs/JISA.gif",

 "cstimgs/JISB.gif",

 "cstimgs/JISC.gif",

 "cstimgs/JISA.gif"};

 GUIAnimatedButton button =

 new GUIAnimatedButton(spi, images, 250, true);

 button.setRepeat(true);

 add(button);

 button.setBounds(20, 20, 50, 50);

}

222 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Updating Menu Items in Runtime

The Java client supports runtime activity of menu options such as checking/
unchecking, enabling/disabling, and updating menu items text according to the
host. These effects are usually achieved through the use of user-methods in
webMethods JIS.

However, for the check/uncheck menu items feature to work, you must extend
the Java code and change these menu items’ type, from regular menu items
(GUIMenuItem) to a type that can be checked/unchecked
(GUICheckboxMenuItem).

To do so:

1 Extend the desired Subapplication as described in the section Extending the
code of a Subapplication.

2 Add the method overrideGUIControls and change the desired menu
item's type.

3 Compile your Subapplication using JACC.bat, and register it in the
JacadaStarter class by calling addWindow. See section “Extending the Code of
a Subapplication” on page 210.

Example 44. Updating menu items during runtime

For a menu item called View_HostScreen_18202, extend the code as follows:
public void overrideGUIControls () {

 String label =

 ((GUIMenuItem) View_HostScreen_18202).getOrigi-
nalLabel();

 View_HostScreen_18202 = new GUICheckboxMenuItem(label);

}

Defining Number and Length of Lines in Multi-line Edits

You can set by code extension the number of lines in the control, and the
maximum length of each line. This is done by calling the method
setMaxLengths().

For example, if you want the control to have 3 lines with 20 characters each, call:
comp.setMaxLengths(new int[] {20, 20, 20});

Doing so changes the control's behavior. It will now act very similarly to the way
a multi-line field acts on the iSeries or Mainframe. For example, when you type
and reach the end of one line, you will be automatically moved to the next one.
webMethods JIS: Java Client User’s Guide Version 9.0 223

Chapter 6. Extending the Java Code

In addition, the text that the control sends to the Server will not contain any
newline characters. Instead, each line will be padded with blanks up to the
maximum length required by the user.

Selecting One Cell in Table Rows Using Right Click

By default, clicking with the right mouse button (RMB) on any cell in a table
causes the entire row to be selected. However, some cases may require that only
a specific cell within a row be selected when clicking the RMB.

To achieve this:

In the Java Client, extend the code of the Subapplication containing the table
whose RMB behavior you wish to modify. To do so call the method
setSelectRowOnRMB in the following manner:
public void createGUIControls () {

 super.createGUIControls();

 myTable.setSelectRowOnRMB(false);

 }

Adding Content to a Table Cell

The setCellValue method enables you to insert information in editable Table
cells. In the method’s parameters you define the cell’s location and the text you
wish to insert, as follows:
public void setCellValue (int row, int col, String text)

Parameters

The following are parameters for the setCellValue method.

Note: myTable is the name given in this example. For each table you must
provide the table name as given in webMethods JIS.

row Sets the value of a specific cell. The cell's row index is 1 based.

col Sets the value of a specific column. The cell's column index is 1
based. col is the original column number as defined in the original
source code regardless of any runtime column reordering.

text The new cell value. Note that null value is not accepted.
224 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Example 45. Adding contents to a table cell

Pressing a button will cause a given cell’s numeric value to increment by 1. Note
the use of the getCellValue method for retrieving a cell’s content.
public void actionPerformed(ActionEvent evt) {

 if (evt.getSource() == myButton) {

 int val = new Integer(myTable.getCellValue(10,2)).
 intValue() + 1;

 myTable.setCellValue(10,2,""+val);

 } else {

 super.actionPerformed(evt);

}

Handling Table Selection Events: Enabling the List Menu

The tableSelectionChanged method is called (as a result of a TableEvent) each
time the user changes the current selection in a table inside the Subapplication. It
allows, for example, to disable the List menu when the current selection is not
appropriate. This method was added to the Subapplication classes.

Note that this method is only called after selection changes that the user made,
not after changes that originate from the server.

Below is an example that enables the List menu only when the table's selection
includes whole lines. In this example, the application is called MYAPPL, the
Subapplication is called MYSA, and the table is called MYTABLE:
package appls.MYAPPL.user;

import java.awt.*;

import cst.gwt.table.*;

public class MYSA extends appls.MYAPPL.original.MYSA {

 public void tableSelectionChanged (TableEvent evt) {

 updateListMenu();

 }

 public void windowReadyForAction () {

 updateListMenu();

 }

 void updateListMenu () {

 // Get the first selected cell in the table.

 TableSelection ts = MYTABLE.getSelection();

 Point cell = ts.getFirstSelectedCell();

 // Enable the List menu only if a whole row is selected.
webMethods JIS: Java Client User’s Guide Version 9.0 225

Chapter 6. Extending the Java Code

 // In such a case, the cell's column is 0.

 boolean enabled = (cell != null && cell.x == 0);

 if (List.isEnabled() != enabled) {

 List.setEnabled(enabled);

 }

 }

}

For more details, consult the javadoc of the following classes:
cst.gwt.table.TableEvent

cst.gwt.table.TableSelection

Manipulating Host Originated Data

You can display in the Subapplication information based on runtime field data.
This additional enhancement to the Subapplication is achieved by extending the
Java code and overriding the windowDataReady method.

The windowDataReady method is automatically invoked whenever a new
Subapplication is called or the current Subapplication is refreshed. The method is
activated after the window’s fields have been filled with the updated information
from the host and just before the Subapplication is displayed. As a result, actions
that are performed in this method will have taken effect when the Subapplication
is displayed, reflecting the updated runtime information.

Another method that is automatically called is windowReadyForAction. It is
always invoked after windowDataReady, when the Subapplication is displayed.
This method can be used, for example, to set the focus on a specific control in the
window. However, any data manipulation should probably be performed in
windowDataReady, to prevent the user from actually seeing the changes that are
being made.

You can override the windowDataReady method in the class of a given
Subapplication to enable such enhancements as:

• Associating a bitmap with the value of an output field. (You will have to set
the name of the bitmap file to be displayed in the windowDataReady method).

• Playing an audio-clip whose name is given in one of the fields.
• Changing text colors according to the meaning of the text (e.g., a label that

displays the name of a color can be colored according to its contents).
• Automatically setting the value of a field (possibly based on the current

values of other fields). This possibility is concretized with the next example:
226 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Example 46. Manipulating host originated data

In this example, the Total label is added to a Subapplication featuring a table. The
Total label shows the sum of the values appearing in the cells in the second
column from the left. The sum is displayed in the Total label as soon as the new
Subapplication is shown to the user.

The following class will create the Total label:
package appls.<ApplName>.user;

import cst.gwt.*;

public class MySubAppl extends appls.<ApplName>.original.SubAppl {
 public GUIMultiLineLabel total;

 // Create the window's GUI controls
 public void createGUIControls () {
 // Call createGUIControls that was generated during compilation
 super.createGUIControls();
 // Create the Total label
 total = new GUIMultiLineLabel("Total:");
 // Add the Total label to the window
 this.add(total);
 // Set size and location of the Total label
 total.setBounds(30, 270, 100, 20);
 }

 // The windowDataReady method is called after the
 // subapplication's controls get their data and before the
 // subapplication is displayed
 public void windowDataReady () {
 // the sum of the column's cells
 int sum = 0;
 // the number of rows in myTable
 int rowsNo = myTable.getNumRows();
 // loop over table's rows
 for (int i = 1; i <= rowsNo; i++){
 // get the contents of cell(i, 2) and add it to the sum
 // note that the row and column indices start with 1
 sum += Integer.parseInt(
 (myTable.getCellValue(i, 2).trim()));
 }

Note: You must not perform any blocking or time-consuming operations in
the windowDataReady method, since the client does not process any further
requests from the server, until this method returns. You may relax this
limitation by performing the time-consuming operation in a separate thread
which will be started in the windowDataReady method.
webMethods JIS: Java Client User’s Guide Version 9.0 227

Chapter 6. Extending the Java Code

 // display the sum in the Total label
 total.setLabel("Total: " + sum);
 }
}

As a result of this code enhancement, the Total label is added at the bottom of the
table’s second column, as illustrated below.

Figure 38. Total label added to the bottom of the table’s second column

The Java Client RMB Floating Menus Support

Controls created in webMethods JIS are supplied with a default response to right
mouse button clicks. The Java client supports the default RMB behavior as
defined in webMethods JIS.

Clicking the RMB displays a popup menu containing:

• The List menu for tables
• The Edit menu for editable controls (edit, prompt, date, combo...)
• The Commands menu for all other controls.

In addition, you can define your own customized floating menu and attach it to
a right mouse button click. Attaching a user-defined floating menu to a control
requires a Java code extension.

To create a user defined floating menu:

1 In webMethods JIS, create the floating menu and assign functionality to each
of the menu’s items. See Floating Menus in webMethods JIS: Basic User’s Guide.

2 In webMethods JIS, compile the application. Floating menus that were
defined in the application are now converted to Java source inside the parent-
class of all Subapplications,
appls.<ApplName>.original.ApplSubApplWindow. Each user-defined
228 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

floating menu has its own method that causes it to be displayed. This method
is called createMenu_MENUNAME where MENUNAME is the floating menu’s
name that was given in webMethods JIS.

3 Extend the Java code to display floating menus using the right mouse button
click, as described in the following section.

Modifying the Default Floating Menus Behavior

By using a code extension you can change the floating menu behavior that exists
in the Java Client. You may want to add floating menus that were defined in
webMethods JIS, or you can even apply your own logic as to which floating menu
to display.

Displaying a Floating Menu for a Specific Control Type

To specify a floating menu that will be displayed over a specific control type,
override one or more of the following methods:
UserRMBTable()

UserRMBPrompt()

UserRMBSpin()

UserRMBcombobox()

UserRMBDate()

UserRMBEditBox()

UserRMBStatic()

UserRMBRadioButton()

UserRMBCheckBox()

UserRMBGroupBox()

UserRMBButton()

UserRMBFrame()

UserRMBWindow()

In the overridden method you should add a call to the generated
createMenu_...() method.

Example 47. Displaying a floating menu for a specific control type

Displaying a menu called MYMENU over all combo boxes can be done by:

 protected void UserRMBcombo box(){

 createMenu_MYMENU();

 }
webMethods JIS: Java Client User’s Guide Version 9.0 229

Chapter 6. Extending the Java Code

Alternatively, you may call the copyMenuFromMenubar() method to display a
floating menu which is copied from the menu-bar.

Example 48. Displaying a floating menu copied from the menu-bar

Displaying a floating menu which is copied from the menu "MyMenu" in the
menu-bar, over buttons:
 protected void UserRMBButton(){

 copyMenuFromMenubar("&MyMenu");

 }

Displaying a Floating Menu that is Not Attached to Any Control

You can also apply your own logic (not necessarily based on the component type)
in order to decide which floating menu to display. To do so you need to override
the activateUserRMBMethod() method.

Example 49. Display a floating menu not attached to a control

Displaying a menu called MYMENU2 over all the enabled components can be
done by:
 protected void activateUserRMBMethod () {

 if (lastRMBTarget.isEnabled()) {

 createMenu_MYMENU2();

 }

 else

 {

 super.activateUserRMBMethod();

 }

 }

Note: In all RMB methods, the extended Java code can identify the
component over which the RMB was clicked by looking at the value of the
protected variable: lastRMBTarget
230 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Changing the Titles of Tab Control Folders During Runtime

Using code extension, you can update tab titles during runtime. This is enabled
through the following method included in the GUITab class:
public void setFolderName (int index, String name)

For example, suppose the variable name of a tab control is Var17, and you wish
to change the title of its second folder according to the text in a control
represented by the variable Var18. To do so, extend the Subapplication class, and
override the windowDataReady method:
 public void windowDataReady () {

 Var17.setFolderName(1, Var18.getText());

 }

Displaying Message Boxes

The standard message boxes in the Java Client can be used by your code
extensions to display messages to the users or receive input from them. To do
that, use the messageBox method in the JacadaStarter class. This method is
defined as follows:
 int messageBox (String text, String title,
 int type, boolean modal)

The method’s parameters are:

Note: The index is zero-based.

text The message to display.

title The message window’s caption.

type The type of message box to use. The possible types are defined in
cst.client.ApplWin.CSTInfoDialog, and include the
following:

OK_DIALOG
 YES_NO_DIALOG
 OK_CANCEL_DIALOG
 YES_NO_CANCEL_DIALOG
webMethods JIS: Java Client User’s Guide Version 9.0 231

Chapter 6. Extending the Java Code

After the user clicks on one of the buttons in the message box, an integer code is
returned according to the button which was clicked. The possible return codes
are:
 cst.client.ApplWin.DialogAnswer.OK

 cst.client.ApplWin.DialogAnswer.CANCEL

 cst.client.ApplWin.DialogAnswer.YES

 cst.client.ApplWin.DialogAnswer.NO

Assume that some Subapplication displays a database record and allows to user
to delete it. To prevent accidental deletion, you can display a message box asking
for confirmation before the record is actually deleted. Here’s how to achieve this:
public void actionPerformed (ActionEvent evt) {

 // Check if this is the “delete record” button
 if (evt.getSource() == deleteRecord) {
 // Ask for confirmation
 int answer = getStarter().messageBox(
 "Are you sure you want to delete this record?",
 "Delete Record Confirmation",
 CSTInfoDialog.YES_NO_DIALOG, true);
 // Do not delete the record if the user answered “no”
 if (answer == DialogAnswer.NO) {
 return;
 }
 }
 super.actionPerformed(evt);
}

Creating Custom Validity Checks

The Java Client allows you to devise custom validity checks which will test data
entered by the user for validity (in addition to the built-in validity checks that you
can set in webMethods JIS). This can be done by modifying the automatically-

modal Whether the message box should block input to all other windows
until it is dismissed. If this parameter is omitted, it is assumed to
be false (meaning not to use a modal message box).

Note: In case the method is invoked from within the AWT events thread (e.g.
as a response to a keyboard or a mouse event), a modal dialog must be used.
Otherwise, the events thread will be blocked and the application will hang.
232 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

generated appls.<ApplName>.user.ValidityCheck class. As an example,
we will create a custom validity check for testing whether the contents of a field
is a valid time in an HH:MM format.

Creating Custom Validity Checks is a three step process:

1 Adding the Validity Method
2 Writing the Validity Check
3 Using the Validity Check

Adding the Validity Method

Decide on a name for the custom validity method, and check for it in the
checkValidity method of the appls.<ApplName>.user.ValidityCheck
class.

Example 50. Adding the validity method

In this example, the name of the validity method will be “ValidTime”.
public void checkValidity (String validityMethod,
 int fieldLengthInBytes,
 String fieldText,
 int textLengthInBytes) {
 if (validityMethod.equals("ValidTime")) {
 checkValidTime(fieldText);
 }
 else {
 super.checkValidity(validityMethod, fieldLengthInBytes,
 fieldText, textLengthInBytes);
 }
}

Writing the Validity Check

Now we need to implement the method that actually tests the user-entered data
for validity. If the method finds the data valid, it should call setValid to mark
the text as valid. Otherwise, it should call setInvalid. The setValid and
setInvalid methods receive the number of characters that were found to be
valid until the first error. In addition, setInvalid receives an error message
which will be shown to the user.
webMethods JIS: Java Client User’s Guide Version 9.0 233

Chapter 6. Extending the Java Code

Example 51. Writing the validity check

Here the validity check is fairly simple—it finds the position of the colon
character, and checks that there are numbers to its left and right, and that these
numbers are in the correct range.
void checkValidTime (String text) {

String message = "value must be in HH:MM format";

// Find the colon character

int pos = text.indexOf(':');

if (pos < 1) {

setInvalid(0, message);

return;

}

// Get the hours and minutes

int hours = -1;

int minutes = -1;

try {

hours = Integer.parseInt(text.substring(0, pos));

minutes = Integer.parseInt(text.substring(pos + 1));

}

catch (NumberFormatException e) {

}

// Check that they’re in the correct range

if (hours < 0 || hours > 23 || minutes < 0 || minutes > 59) {

setInvalid(0, message);

return;

}

// If we got here, the text is valid

setValid(text.length());

}

Using the Validity Check

Now that we have a new validity check, we can apply it to any field in any
Subapplication. The way to do this is through the setValidityMethod of each
control’s logic peer. This method should be called inside the
createLogicControls method, after the logic peers have been created and
initialized.
234 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Example 52. Using the validity check

Suppose that we have a text-field called timeField in some Subapplication. We
can now extend that Subapplication in the usual manner, and apply the
“ValidTime” validity method to this field:
public void createLogicControls () {

super.createLogicControls();

timeField_peer.setValidityMethod("ValidTime");

}

Application-Wide GUI Settings

As was noted previously, some aspects of the application's GUI are relevant to
the whole application, and not to specific Subapplications. If you wish to modify
any of these aspects, do so close to the start of the application, before any GUI has
been created and displayed. This means that such settings should be made in the
user's Applet (in its init method) or in the constructor of the JacadaStarter
class.

The Application's Color Scheme

The class cst.gwt.general.Palette defines several colors which are based on
java.awt.SystemColor. These colors are used by the Java Client components
to draw themselves. If you change any of these palette colors, the components
will use the colors that you chose. You can change specific colors such as
Palette.control or Palette.windowText, or you can call the
assignColors method to make the Java Client use shades of your preferred
color.

Example 53. Application’s color scheme

// Use shades of gray as the color scheme
Palette.assignColors(Color.lightGray);

// Use blue on yellow for editable controls, such

// as text fields, combo boxes and check boxes

Palette.window = Color.yellow;

Palette.windowText = Color.blue;

Note: Since the settings are kept in static variables, they will apply to all
Java Client applications running on the same JVM.
webMethods JIS: Java Client User’s Guide Version 9.0 235

Chapter 6. Extending the Java Code

These settings should be made early in the execution of the applet - the init
method of the user's applet is a good place.

Please note that the palette colors are not updated dynamically. That is, changing
the system colors of the client computer will not affect any Java Client
applications that are already running.

For more information, please refer to the API of cst.gwt.general.Palette
and java.awt.SystemColor.

Multi-Character Search in Combo Boxes

Usually, typing a character in a combo box highlights the next entry that begins
with that character. A more advanced search mechanism allows the user to select
the exact entry in the combo list by typing the second letter, third letter etc. of the
entry.

For example: a combo box contains the entries ‘Cell’, ‘Cellular’, ‘Collision’,
‘Cosmic’, etc. When you use the regular search mechanism, typing C, E, L, L will
highlight the first entry beginning with C, then the first entry beginning with E,
and so on. When you use the multi-character search mechanism, typing C, E, L,
L will highlight the first entry beginning with C, E, L, L - ‘Cell’, or ‘Cellular’.

The Java Client drop-down list combo boxes support the multi-character search
mechanism. In order to it, add the following line inside the init method of the
user's applet:
cst.gwt.GUIcombo box.setSelectionByPrefixDelay(###);

‘###’ is the number of milliseconds that the user will need to wait before he can
start typing a new entry. For example, if the user typed CE and got the entry
‘Cell’, he will have to wait a few seconds before he can type COS and get
‘Cosmic’. 1500-3000 milliseconds are a reasonable delay. A way of bypassing the
delay is to press Delete or Backspace, after which the user can immediately type
a new entry. Also, if the user selects an item using the mouse or using Up/Down/
Page_UP/Page_Down/Home/End, he can start typing a new entry without
waiting.

Data Sharing between Client and Server

The Java Client development environment includes a varpool that enables the
Java client and Server to share information. The Server, using methods defined in
webMethods JIS, and the Client, using methods included in code extensions, can
write variables to, or retrieve and delete variables from this common varpool.
236 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Manipulating the Varpool from the Server Using Methods

To manipulate information in the varpool, the Server uses methods defined in
webMethods JIS. webMethods JIS includes the following three DoMethods:

Use these DoMethods to define methods according to the activity you wish to
perform in the varpool.

Example 54. Manipulating the varpool from the server using webMethods JIS methods

Example of how to use these methods in webMethods JIS

The following code writes the variable “Name” and the value “Beatrice” to the
varpool:
DoMethod: Receiver: ̀ System` Method: WriteSharedUserVariable Parms: [`Name`,
`Beatrice`]

Manipulating the Varpool from the Client Using Code Extensions

The Client manipulates information in the varpool through code extensions. The
following three methods are included within the JacadaStarter class:

WriteSharedUser
Variable

To write information to the varpool. This
DoMethod requires two parameters:

Value: The variable’s value

Key: The variable’s name

Returns: 1 for success, 0 for failure

GetSharedUser
Variable

To retrieve information from the varpool. This
DoMethod requires the following parameter:

Key: The variable’s name

Returns: Null or the variable’s name

DeleteSharedUser
Variable

To delete information from the varpool. This
DoMethod requires the following parameter:

Key: The variable’s name

Returns: 1 for success, 0 for failure
webMethods JIS: Java Client User’s Guide Version 9.0 237

Chapter 6. Extending the Java Code

Example 55. Manipulating the varpool from the client using code extensions

Example of how to use these methods within the code extension

The following code writes the variable “Name” to the varpool, retrieves the
variable “Name” from the varpool, and deletes the variable “Name” from the
varpool:
...

public void createGUIControls () {
 super.createGUIControls();
 JacadaStarter starter = getStarter();
}

public void actionPerformed(ActionEvent evt) {
 if (evt.getSource() == Var45) {
 starter.writeSharedUserVariable("Name","Beatrice");
 }
 else if (evt.getSource() == Var46) {
 String name = starter.getSharedUserVariable("Name");

 }
 else if (evt.getSource() == Var47) {
 starter.deleteSharedUserVariable("Name");
 }
 else {
 super.actionPerformed(evt);

void
writeSharedUserVariable
(String key, String
value)

To write information to the varpool. This
method requires two parameters:

Value: The variable’s value

Key: The variable’s name

String
getSharedUserVariable
(String key)

To retrieve information from the
varpool. This method requires the
following parameter:

Key: The variable’s name

void
deleteSharedUserVariable
(String key)

To delete information from the varpool.
This method requires the following
parameter:

Key: The variable’s name
238 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

 }
}

The JacadaStarter's addWindow Method

The addWindow method should be called when you wish to replace an existing
Subapplication with a new enhanced version of the GUI. When addWindow is
called, the class it refers to is loaded by the JVM.

The addWindow method exists in three forms:

1 For a standard replacement of a Subapplication with a user-GUI you should
use:
addWindow(String className);

In this standard form, the addWindow method requires only the class name.

Example56. Standard replacement of a Subapplication with a GUI

addWindow(ApplPackage + "LOGIN");

2 If you also want to preload the class during the initialization, you should use:
addWindow(String className, boolean preload);

Example57. Preloading a class during initialization

addWindow(ApplPackage + "LOGIN", true);

Note: Changes made to the user variables on the Server are sent to the Client
the next time a Subapplication is shown or refreshed. Changes made to the
user variables on the Client are sent to the Server upon the next action (button
click, menu item click, etc.) This means that whenever a Subapplication is
shown or refreshed, the Client and the Server hold the same shared user
variables.

Note: The preloading process involves, besides loading classes, various
initialization operations on the window to save time when displayed for the
first time.
webMethods JIS: Java Client User’s Guide Version 9.0 239

Chapter 6. Extending the Java Code

3 For special cases where a large number of user GUI classes should be
registered, and it is undesirable to load all of them into the JVM during
initialization, use:

addWindow(String libraryName, String windowName,
 String className, boolean preload);

This form of addWindow does not load the class into the JVM to determine the
names of the library and the window. Instead, it accepts the libraryName and
windowName values as parameters from the caller. LibraryName should be an
empty String ("") when the relevant Subapplication is not in any library.

Launching the Java Client from an Applet

A Web browser needs a Java applet to run an application. In the compilation
process, a standard applet for running the Java Client application is created. This
applet does not launch the application directly. It creates a Java Client launcher
object that starts the Java Client application. The Java Client launcher class can be
customized and can be called from other Java applets. This is the scheme of the
launching process:

Figure 39. Launching the Java client from an applet

The applet creates the launcher by calling its init method. The launcher creates
the JacadaStarter object by calling its init method.

Note: The windowName and libraryName should be written in upper case.
For example: addWindow("", "LOGIN", ApplPackage + "LOGIN",
true)
240 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

During the compilation process, a skeleton for the applet class is created in the
user’s package directory. This applet uses the default launchers that are a part of
the cst.client.startup package. The user can modify this class to fit his
needs, and can replace the default launchers with his own launcher. The process
of creating a new Java Client launcher is described in detail later this chapter.

The Java Client Launchers

The cst.client.startup package includes two different launchers which are
used by the standard applet, as created by the compilation process:

• JacadaBasicLauncher – a standard launcher that immediately runs the
application and displays messages from it.

• JacadaLoginLauncher – a more complicated launcher that requests the
user to enter his username, password and/or profile name before starting the
application. The choice of fields that will be displayed to the user is
configurable through the applet's HTML parameters.

In addition, this package contains two other classes:

• JacadaLauncherInterface – an interface that must be implemented by all
Java Client launchers. It defines a small set of services that the application
expects to receive from the launcher.

• JacadaLauncherCreator – a class that creates a JacadaLoginLauncher,
customized according to the appropriate HTML parameters.

Customizing a Launcher

It has been mentioned before that an existing launcher can be customized. The
following Java class is an example of how to extend an existing launcher’s code:
package appls.DEMO.user;

import java.awt.*;

import java.awt.event.*;

import cst.client.startup.*;

import cst.gwt.*;

public class MyLauncher extends JacadaLoginLauncher {

GUIButton quitButton;

/**

* Constructs a new MyLauncher.

*/
webMethods JIS: Java Client User’s Guide Version 9.0 241

Chapter 6. Extending the Java Code

public MyLauncher () {

// Call the JacadaLoginLauncher constructor, and request

// only the profile name from the user. The default

// profile will be the "Guest" profile.

super(false, false, true, "", "Guest");

}

/**

* Initializes the launcher.

* @param applet the applet.

* @param applicationClass application class full name.

* @return false if initialization fails.

*/

public boolean init (java.applet.Applet applet,
 String applicationClass) {

if (!super.init(applet, applicationClass)) {
 return false;
 }

 // Create the quit button
 quitButton = new GUIButton(" Quit ");
 quitButton.setFont(button.getFont());
 quitButton.addActionListener(this);
 // Add it to the original button's container
 button.getParent().add(quitButton);

 // Change the colors of the message
 message.setForeground(Color.cyan);
 message.setBackground(new Color(0, 0, 70));

 return true;

 }

 /**
 * Handle action events - quit when quitButton is pressed.
 */
 public void actionPerformed (ActionEvent evt) {
 if (evt.getSource() == quitButton) {
 getParent().remove(this);
 return;
 }
 super.actionPerformed(evt);
 }
}

242 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Example 58. Extending the JacadaLoginLauncher

In this example, the JacadaLoginLauncher was extended. Its appearance and
functionality have been modified in the following manner:

• A default profile name was set.
• A Quit button was added.
• The message color was changed to cyan on a dark blue background.

The changes are presented in the picture below:

Figure 40. Extending the JacadaLoginLauncher

Note that button is a field of JacadaLoginLauncher, and that applet,
message and messageBox are fields of JacadaBasicLauncher (which is the
parent of JacadaLoginLauncher).

To make the applet use MyLauncher instead of the default launchers, make the
following change in appls.<ApplName>.user.Applet.

Instead of
launcher = JacadaLauncherCreator.createLauncher(
 (java.applet.Applet) this);

write
launcher = new MyLauncher();

After compiling the Applet and MyLauncher classes (using JACC.BAT), the
applet will use the new customized launcher.

Controlling the Java Client Application

The JacadaStarter class supplies a set of methods that retrieve information
concerning the state of the Java Client application and send commands to it. The
Java programmer can use this set of methods to “remote-control” the Java Client
webMethods JIS: Java Client User’s Guide Version 9.0 243

Chapter 6. Extending the Java Code

– to move between Subapplications and fill their input fields in an automated
manner. This is done by incorporating these methods in powerful scripts that
simulate users’ actions.

This section discusses the methods that the JacadaStarter provides for this
purpose.

Methods for Controlling the Java Client Application

waitForFirstWindow

The first step in controlling the Java Client application is to make sure that it has
started. Calling this method locks the current thread until the webMethods JIS
displays the first Subapplication. In case the method is called after the application
has already started, it returns immediately.

Generally, methods that cause threads to wait until an action is completed should
not be called from the main thread of the applet, as this would cause the applet's
user interface to temporarily lock. Instead, a separate thread should be started
and all the waiting can be done by it, allowing the applet to continue its normal
execution.

getCurrentPanel

This method returns a cst.gwt.GUICSTPanel object. This is a subclass of
java.awt.Panel, which is the last Subapplication displayed. Since all
components in a Subapplication class are public, you can refer to specific
members and modify their values by casting this object to the correct
Subapplication class.

Example 59. SetCurrentPanel

For example, for a Subapplication called LOGIN that has members called
userField and passwordField, you can write the following code:
GUICSTPanel currPanel = application.getCurrentPanel();

 if (currPanel instanceof LOGIN) {

 LOGIN login = (LOGIN) currPanel;

 login.userField.setText("guest");

 login.passwordField.setText("welcome");

Note: To use this method, you must have AutoStart enabled in your
application. You can turn it on from the Option menu of the Windows
runtime application.
244 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

 }

activate

This method allows you to activate buttons, menu items and accelerators in the
current Subapplication. This method comes in two variations.

In the first format, the method is given a component (a button, a prompt control,
or a menu item), and it simulates the activation of that component. In addition,
the method can be instructed to block the executing thread until the action is
completed by passing true in the second argument of the call. This is needed for
cases in which you wish to do something in the new Subapplication that will
appear as a result of the action. You should be careful when instructing activate
to block; do not block the execution of activate threads, such as the awt
threads.

Example 60. activate

For example, let us assume that the LOGIN Subapplication from the previous
example also has a button called okButton:
// "Press" the button, and wait for the next sub-application

 application.activate(login.okButton, true);

// Now the sub-application is supposed to change to MENUS...

currPanel = application.getCurrentPanel();

if (!(currPanel instanceof MENUS)) {

 // We’re not where we expect to be! Maybe the Login
 // failed?

 }

The second format of the activate method simulates the action of an
accelerator. It takes a key-code and its modifiers (as defined in
java.awt.event.KeyEvent) and sends the key-press to the Subapplication.
Here too, you can lock the current thread until the action is finished. Continuing
with the example above, we will now send a key-press to the MENUS
Subapplication:
import java.awt.event.KeyEvent;

. . .

Note: Only components which were created in webMethods JIS can be
activated by this method. In case there are components that have been
manually added to the Subapplication, you must devise other ways in which
to activate them (invoke their appropriate method).
webMethods JIS: Java Client User’s Guide Version 9.0 245

Chapter 6. Extending the Java Code

// Press Ctrl+F1 and don't wait - the user will go on from here

application.activate(KeyEvent.VK_F1, KeyEvent.CTRL_MASK, false);

hideMainWindow

Calling this method with a true argument causes the application's main
window, and any Subapplications displayed within it, to remain hidden. This
allows you to move between Java Client Subapplications without the user seeing
the process, or to temporarily hide the application from the user's view. Note,
however, that any application popup windows or dialog boxes will be displayed.

Calling the method again with a false argument restores the main window to
view.

This method may be called even before the first window of the application
appears. This is useful when skipping the Login screen.

getMainWindow

This method returns a reference to the GUICSTPanel object that represents the
main window of an application. This allows for activities to be performed on the
main window, such as controlling menus and the status bar.

For example the following code will cause a message to be displayed in the status
bar:
getStarter().getMainWindow().displayMessage("this text will appear on the
bottom of the screen");

waitForNextWindow

This method locks the current thread until a new window arrives from the server.
The method returns immediately when it does not expect any new window.

isUserActionAllowed

Indicates whether a user action can be performed. The method returns FALSE to
indicate that the client is waiting for the server to reply and that no user action
will be performed while waiting. Otherwise the method returns TRUE.

Note: You must not perform any locking instructions in the
windowDataReady and windowReadyForAction methods with a true
argument. This may cause the application to hang.
246 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Code Examples

This section contains code examples for your use.

Example 61. Skipping the login screen

This code example skips the login screen.

This example demonstrates the following points:

• The basic technique of using an ApplicationController—a separate thread that
performs the waiting in order not to block the applet’s main thread.

• Hiding the GUI window from the user, and redisplaying it.
• Entering values into TextFields in the GUI (The Login window).
• Hitting a button on the GUI window and waiting for the action to finish.

...

import appls.<ApplName>.original.*;

...

public class Applet extends java.applet.Applet {

 JacadaLauncherInterface launcher;

 public void init () {

 ...

 // Create and initialize the Java Client Launcher

 launcher = JacadaLauncherCreator.createLauncher(this);

 launcher.init(this, "appls.<ApplName>.user.JacadaStarter");

// Run the application controller in a different thread.

 // Otherwise, the applet will become stuck until the end

 // of the process.

 ApplicationController ac = newApplicationController(this, launcher);

 new Thread(ac).start();

 }

}

class ApplicationController implements Runnable {

 java.applet.Applet applet;

 appls.<ApplName>.user.JacadaStarter application;

Note: While debugging the code it is useful to see the GUI. You should add
the hideMainWindow(true) only after the rest of the code is working as it
should.
webMethods JIS: Java Client User’s Guide Version 9.0 247

Chapter 6. Extending the Java Code

 public ApplicationController (java.applet.Applet applet,

 JacadaLauncherInterface launcher) {

 this.applet = applet;

 application = (appls.<ApplName>.user.JacadaStarter)

 launcher.getApplication();

 }

 public void run () {

 // Hide the GUI (we don’t want the user to see the

 // login screen at all)

 application.hideMainWindow(true);

 // Wait for the first window to appear

 // (The application must have “auto-start” enabled)

 application.waitForFirstWindow();

 // Enter the user & password and hit "OK"

 LOGIN login = (LOGIN) application.getCurrentPanel();

 login.userField.setText("guest");

 login.passwordField.setText("foobar");

 application.activate(login.okButton, true);

 // Redisplay the GUI when reaching the screen which is

 // after the login

 application.hideMainWindow(false);

 }

}

Example 62. Manipulating information, navigation and acceleration

This code example demonstrates the following points:

• How to extract information from the GUI.
• How to perform smart navigation, based on the screen that appears on the

host.
• How to invoke an accelerator (F3) on the GUI and wait for the action to finish.
• How to enter data into the GUI windows, using values that were given as

parameters of the applet in the html page.

import java.awt.event.KeyEvent;
248 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

 ...

 LOGIN login = (LOGIN) application.getCurrentPanel();

 // Extract a field from the Login screen

 // Use getText() to get the value of a TextField field

 // ("edit" in webMethods JIS)

 // Use getLabel() to get the value of a MultiLineLabel

 // field ("static" in webMethods JIS)

 String systemName = login.systemNameField.getLabel();

 System.out.println("The name of the system is: " +
 systemName);

 // Enter the user & password and hit "OK"

 login.userField.setText("guest");

 login.passwordField.setText("foobar");

 application.activate(login.okButton, true);

 // Skip the optional MESSAGE subappl

 Panel panel= application.getCurrentPanel();

 if (panel instanceof MESSAGE) {

 // Invoking the F3 accelerator defined in the GUI:

 application.activate(KeyEvent.VK_F3, 0, true);

 }

 // Fill in the data for the query using the ItemNum

 // HTML parameter of the applet:

 QUERYSER queryser = (QUERYSER)

 application.getCurrentPanel();

 queryser.itemNumField.setText
 (applet.getParameter("ItemNum"));

 application.activate(queryser .okButton, true);

Example 63. Waiting

This code example demonstrates how to wait for the user to hit a certain button
in the current GUI window. The example refers to a Subapplication called
RESULT.
 // Wait for the user to hit OK

 RESULT result = (RESULT) application.getCurrentPanel();
webMethods JIS: Java Client User’s Guide Version 9.0 249

Chapter 6. Extending the Java Code

 try {

 synchronized(result) {

 result.wait();

 }

 } catch (InterruptedException e) { }

 // The rest of the code (will be executed after the user

 // hits OK)

 ...

In order to release this thread from its waiting status, you should extend the
RESULT Subapplication class (as described in the section Extending the Java
code), and add the following code to it:
public void actionPerformed (ActionEvent evt) {

 if (evt.getSource() == okButton) {

 synchronized(this) {

 this.notify();

 }

 }

 super.actionPerformed(evt);

 }

Implementing Localization Using the Java Localization API

The following methods are implemented in the JacadaStarter class.

Loading Specific Strings from Resource Files

public String getLocalizedCstString(String key)

Returns the general string resource (pre-defined by JIS) for the specified key in
the current language. Useful when wishing to use a string that exists in the JIS
resources, and not in the translated resource.
public String getLocalizedString(String library, String key)

Returns the string resource for the specified library and key (original language)
string in the current language. If the resource file is not cached, it is located and
loaded first.
250 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

Initialization of Language Localization

public void setLocale(java.util.Locale loc)

Sets the language of the UI. Should be called before the first window is created.
Call the method within the init() method of the
appls.<ApplName>.user.JacadaStarter class. The init() method is
called just before returning from the call to JacadaLauncherInterface init (Applet,
String) in the applet.

Example 64. Initialization of language localization

protected void init() {

 setLocale(Locale.FRENCH)

 start();

}

Changing the Language in a Running Application

The JacadaStarter.SetLocale method can also be used to change the
language of the locale within a running application. In this case, the code line
must be inserted in the location you wish the switch in languages to take place.

In order to allow the dynamic switch in languages, when the caching mechanism
of previously used Subapplications has been applied on the application, the
clearCachedWindows method has been introduced. This method clears the
cache from all saved Subapplications, thereby allowing the SetLocale method
to take effect. The clearCachedWindows method must be inserted before
SetLocale.

For example:
GetStarter().clearCachedWindows();

GetStarter().setLocale(java.util.Locale.FRENCH);

Displaying System Messages in the Launcher Applet

public void displayMsg (String msg)

Note: The SetLocale method works under the following limitations:
• Main window menus will not change to the new locale
• The current Subapplication’s locale only changes after you have re-

entered it
• The setLocale method does not work in clustered applications
webMethods JIS: Java Client User’s Guide Version 9.0 251

Chapter 6. Extending the Java Code

This method is called when a system message is to be displayed in the launcher
applet. Normally a message is localized and passed on for displaying to the super
class. You can intercept this method call to process the messages in the original
language. Eventually, it is possible to pass the method on, to prevent messages
from displaying.
public int messageBox(String msgText, String msgTitle,
int msgBoxType, boolean modal)

The possible types are:
cst.client.ApplWin.CSTInfoDialog.OK_DIALOG

cst.client.ApplWin.CSTInfoDialog.YES_NO_DIALOG

This method is called when a message window is to be displayed.

Formatting Text

This feature gives you control over text presentation by creating a Java Class that
during runtime formats text from your host application to the GUI window and
vice-versa.

For example, a host field containing the text “CA” could be automatically
translated to “California” on the GUI window. Date fields, presented on the host
as “950211” could be formatted to “11-Feb-95” on the GUI window and typed
back to the host in the original format.

With webMethods JIS, you can write a new Java Class to provide external text-
formatting functions. The external Java Class adds on the many text formatting
options that come with the product. Creating a Java Class lets you define your
own text-formatting functions, suited to the unique aspects of your host
application.

This section describes the API functions that you must develop, in order to create
a Java Class for text-formatting to and from your GUI window.

Technical Notes

The following are technical notes:

• The class that you have developed must reside in the class path.
• The class must also be added to the <ApplName>.ini file as follows:

• If it does not already exist, add a section titled [User Defined Format].
• Add to the section the name of your class as follows:

[UserDefinedFormat]

Note: This procedure should be performed by Java programmers.
252 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

UseUserFormat=1

Classes=appls.my_appl.server.user.MyExternalFormat

UseStandardFormatsDLL=0

• You should write a Java class that implements the ExternalFormat interface.

ExternalFormat interface Functions

This section describes ExternalFormat interface functions.

Process_text
public String process_text(String function, String textBefore, String
parameter);

This function is called by the server whenever the text of a control has to be
formatted using an external function. The function performs the string
manipulation on the text in the textBefore string, and returns the result. If the
function has parameters, they are supplied in the parameter string.

List_of_functions
public GALString list_of_functions ();

The server uses this function to ask the implemented class for the list of functions
it supports. The programmer should fill the return String with the names of the
functions separated by a semicolon.

For example: AlignToLeft;AlignToRight;Add#AtBegining;........;

Function_parameters
public int function_parameters (String function);

The server uses this function to retrieve information about a class-supported
function. The method should return 0 if the function has no parameters, else it
should return 1.

MyExternalFormat Class Example

package appls.<ApplName>.server.user;

import cst.server.basic.*;

import cst.server.utils.formfunc.*;

import cst.server.general.Globals;

public class MyExternalFormat implements ExternalFormat {

 public String process_text(String function, String
 textBefore, String parameter){
webMethods JIS: Java Client User’s Guide Version 9.0 253

Chapter 6. Extending the Java Code

 // should return the formatted text according to the input
 // function name.

 return textBefore;

 }

 public int function_parameters (String function){

 // should return 0 if function does not need parameters
 // else return 1.

 return 0;

 }

 public GALString list_of_functions (){

 // should return list of all supported functions separated
 // with semicolons.

 return new GALString("MyFormatFunction;");

 }

 public ExternalFormat InitFormatText (Globals globals){

 return this;

 }

}

Extending the Server’s Java Code

Client code extensions are useful for performing GUI manipulations, however
you sometimes have to write code that is designed to extend the code that runs
on the server. Such server code extensions are required to manipulate data on the
server or to perform operations that you do not want the client to perform from
his computer.

When are Server Extensions Used

Server extensions are used when the client computer cannot perform certain
actions, or when you do not want the client computer to perform certain
procedures:

• Because of Java Applet Security limitations, the client computer can only
access the computer from which the applet was downloaded. If you want the
client to access data located on another computer, use a server extension to
access that data on behalf of the client.

• If you do not want the client computer to have unrestricted access to a file on
the server computer, use a server extension to access the file and send the data
to the client computer.

• Use server extensions for performance reasons. For example, when the client
needs to search over a large number of records that reside on the server. In
certain cases, it may be very inefficient to access all the records from the client
machines. The server itself can perform the query much faster and then send
254 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

results to the client. Another example is for host navigation scripts - in many
cases it is much more efficient to complete the navigation on the server and to
transfer only the target screen to the client.

Both webMethods JIS methods and server code extensions run on the server, but
there are two reasons to prefer a code extension to an webMethods JIS method:

• Some Java developers may be more familiar with writing Java code than with
writing webMethods JIS methods.

• webMethods JIS methods are limited in what they can perform as compared
to the Java programming language. For example, DB access (i.e., JDBC) is
most efficiently done via the Java language.

Server Java Sources Created During Compilation

The compilation process creates directories and Java source files, amongst which
are several that you modify when creating server-side extensions. This section
presents a list of such files.

The compilation process creates two directories that contain Java source files that
are used by the server:

• C:\Ace\JacadaFiles\src\appls\<ApplName>\server\original\
Contains application data needed by the server.

• C:\Ace\JacadaFiles\src\appls\<ApplName>\server\user\

Contains templates for server code extensions.

To extend your Java server code, only modify the files located in the directory
C:\Ace\JacadaFiles\src\appls\<ApplName>\server\user\

Files in the server\original Directory

During the compilation process, the webMethods JIS methods are translated into
Java code and stored in several files. Use this translated Java code for writing
server extensions. The translated code can be found in the following files:

• C:\Ace\JacadaFiles\src\appls\<ApplName>\server\original\Gen
eralInternalSubappl.java

Contains the code for the application’s General System-Triggered Methods
and General User-Triggered Method (GUTM).

Note: Never modify the source files located in the
<InstallDir>\JacadaFiles\src\appls\<ApplName>\server\
original directory, because the compilation process rewrites these files
every time it is performed.
webMethods JIS: Java Client User’s Guide Version 9.0 255

Chapter 6. Extending the Java Code

• For each Subapplication a file is created, whose name is:
C:\Ace\JacadaFiles\src\appls\<ApplName>\server\original\
<SubApplName>.java
This file contains the code for the Current Subapplication User-Triggered
Method and System-Triggered Methods.

When you write a GUTM called MyMethod, its code is located in
<InstallDir>\JacadaFiles\src\appls\<ApplName>\server\
original\GeneralInternalSubappl.java, and its name in the code is
u_MyMethod.

When you modify the Current Subapplication System-Triggered Method
UserInitSubApplication in the SUBAPPL Subapplication, its code is located in
C:\Ace\JacadaFiles\src\appls\<ApplName>\server\original\SUBAP
PL.java, and its name in the code is u_UserInitSubApplication.

Server Code Extension Types

Server code extension types are identical to webMethods JIS method types. You
can therefore extend the server’s code:

• By overriding a User-Triggered Method that is attached to a trigger. In this
case the extension’s execution is linked to the trigger’s activation by the user
during runtime.

• By overriding a System-Triggered Method. In this case the extension’s
execution is linked to the activation of the System-Triggered Method during
runtime.

Creating a Server Code Extension

webMethods JIS DoMethods can be written either using webMethods JIS’s
Method Editor tool or directly using the Server API feature (See “The Server API”
on page 258). The great advantage in writing the code yourself lies in the fact that
the compilation process can be avoided. However, make sure you are well versed
in the Server API feature before you attempt using it. Note also that methods that
have controls attached to them MUST be create using webMethods JIS.

To extend the Java server code:

1 In webMethods JIS, create the User-Triggered Method (UTM), or modify the
System-Triggered Method to be used for the server code extension.

2 If you create a UTM, attach it to a control.

Note: A method’s name in the Java code is made up of its name in
webMethods JIS’s GUI interface, preceded by a u and an underscore
character (u_).
256 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

3 Perform Generate Runtime.
4 Write the code extension. For detailed instructions, see the “Writing the Code

Extension” on page 257.
5 Use the jacc.bat batch file found in

<InstallDir>\JacadaFiles\src\appls\<ApplName>\server\
user\ to compile the Java sources.

Extending a Single Subapplication vs. an Application/Library

The type of webMethods JIS method you create depends on the application level
to which the extension is applied:

• To extend a specific Subapplication, use a Current Subapplication UTM or a
Current Subapplication System-Triggered Method.

• To extend an application/library, use a General UTM or a General System-
Triggered Method.

Writing the Code Extension

This section details where and how to write your code extension.

To extend a specific Subapplication:

1 In the server\user\ directory, create a file called <SubApplName>.java.
The class defined in \server\user\<SubApplName>.java must inherit
from the class defined in \server\original\<SubApplName>.java.

2 Copy the import lines from \server\original\<SubApplName>.java.
3 In \server\original\<SubApplName>.java, find the code for the

method you wish to extend.
4 Copy the code lines into \server\user\<SubApplName>.java.
5 Write your extension in the code.
6 Use C:\Ace\JacadaFiles\src\apls\<SubApplName>\ser-

ver\user\jacc.bat to compile the Java sources.

Example 65. Location of code for u_UserInitSubApplication

Suppose you want to extend the System-Triggered Method
UserInitSubApplication. Look for the code for u_UserInitSubApplication in
<InstallDir>\server\original\<SubApplName>.java, copy it into
server\user\<SubApplName>.java. Insert your extension into this code.

Note: If you are writing the methods directly in the user’s directory, steps 1-
3 are redundant.
webMethods JIS: Java Client User’s Guide Version 9.0 257

Chapter 6. Extending the Java Code

To extend an application or a library:

In the file server\user\GeneralSubapplication.java
write your extension, overriding the code of the GUTM you created, or of the
System-Triggered Method you modified.

Example 66. Extending GUTMs

Suppose you want to extend the GUTM MyMethod. In the file
server\user\GeneralSubapplication.java, override the method
U_MyMethod defined in
server\original\GeneralInternalSubappl.java.

Code Contents The code extension may contain any valid Java code. The code
may use any JDK 1.1 API or JDK 1.2 API when running the server using JDK 1.2
JVM. However, webMethods JIS provides you with a fixed API that corresponds
to the full set of webMethods JIS’s DoMethods.

The Server API

The Server API feature is a complementary utility for server-side code extensions.
Java code extensions can use this API to interact with JIS’s internal data
structures. Using the Server API enables you for example to

• Set the text of a field.
• Read from the INI file (see example).

The Server API Interfaces

The Server API consists of a multitude of interfaces. These different API server
Interfaces are included within the two sub-packages of the cst.server.export.api
package.

Note: If you are writing the methods directly in the user’s directory, steps 3-
4 are redundant.

Note: In this case there is no need to create a new file since the empty template
is automatically generated during the compilation process.
258 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

The two sub-packages are:

• cst.server.export.api.window — includes classes that implement all the
different controls.

• cst.server.export.api.general — includes classes that implement all
other objects. In addition, this package includes the JSString class that takes
care of all character related issues. This class inherits from the cst.server.basic
package.

The Server API

This section provides a detailed look at the Server API.

cst.server.export.api package

Table 42. cst.server.export.api package (Sheet 1 of 2)

cst.server.export.api.general cst.server.export.api.window

ISystem IWindow

IApplication IDubWindow

ISubApplication IListBox

IScreen IComboBox

IDBSession IEdit

IExternalData IAdjustableEdit

IGeneral IStatic

IJcsSession IGroupBox

IPushButton

ICheckBox

IRadioGroup
webMethods JIS: Java Client User’s Guide Version 9.0 259

Chapter 6. Extending the Java Code

JIS’s javadoc Files

JIS provides you with a set of HTML files that include a full listing of the server
API interfaces, the methods implementing them, and explanations about how to
work with them.

The javadoc files are installed under the following directory:
<InstallDir>\JacadaFiles\docs\server

Example 67. JIS’s javadoc file location

<InstallDir>\JacadaFiles\docs\server

Example of How to Write a Java Server Extension

In the following example, we show you how to write a Java server extension for
an application called MYAPPL. The extension is for a specific Subapplication called
SIGNON.

ITable

ITabs

IPictureButton

IDate

IPrompt

IFrame

IGUIObject

Table 42. cst.server.export.api package (Sheet 2 of 2)

cst.server.export.api.general cst.server.export.api.window
260 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

The code will extend the functionality of the u_UserInitSubApplication ()
method, by changing a value read from the INI file to upper case.

1 Create a new file in C:\Ace\JacadaFiles\src\appls\MYAPPL\
server\user called SIGNON.java.

2 In the new file, create a class called SIGNON (in the package
appls.MYAPPL.server.user) that extends
appls.MYAPPL.server.original.SIGNON

3 Open the file
C:\Ace\JacadaFiles\src\appls\MYAPPL\server\original\SIGNON.
java.

4 Into the new file, copy the import lines from the original file.
5 In the new file, write the code that extends the

u_UserInitSubApplication () method. The code extension reads a
value from the INI file and changes this value to upper case.

6 Save the new file.
7 Use C:\Ace\JacadaFiles\src\appls\MYAPPL\server\user\jacc.bat

to compile the Java sources.

This is the source code you finally obtain in the new file:
import cst.server.api.*;

import cst.server.applicat.convertr.runtime.*;

import cst.server.applicat.convertr.cvrt.*;

import cst.server.applicat.*;

import cst.server.window.*;

import cst.server.basic.*;

import cst.server.collect.*;

import cst.server.struct.*;

import cst.server.general.*;

import cst.server.gds.*;

import cst.util.*;

import cst.server.export.api.window.*;

import cst.server.export.api.general.*;

package appls.MYAPPL.server.user;

public class SIGNON extends appls.MYAPPL.server.original.SIGNON {

 public Object u_UserInitSubApplication () {

String rc_0 = null;

// Read profile from ini file and change value to
 // uppercase:

rc_0 = getSystem().getApplPrivateProfileString
 ("profile", "user" ,"");

rc_0 = rc_0.toUpperCase();
webMethods JIS: Java Client User’s Guide Version 9.0 261

Chapter 6. Extending the Java Code

System.out.println("Testing: " + rc_0);

// Set the text of an edit:

((IAdjustableEdit)getControl("User")).setText(rc_0);

return this;

 }

}

Summary: Client vs. Server Code Extensions

The table below summarizes the different files and operations that are involved
in the process of writing a code extension, depending on whether you extend
client or server code.

For lack of space, the entire path to a file is not indicated.

Insert C:\Ace\JacadaFiles\src\appls\<ApplName> at the beginning of the
path when extending the main application’s code or the code of a Subapplication
that belongs to the main application.

Insert <InstallDir>\JacadaFiles\src\appls\<LibName> at the beginning
of the path when extending a library’s code or the code of a Subapplication that
belongs to a library.

Table 43. Client and server side extensions types and usage(Sheet 1 of 2)

Client-side extension Server-side extension

The extension
applies to the
Application/
Library level

Modify the file:
\user\ApplSubappl
Window.java

Modify the file:
\server\user\
GeneralSubapplication
.java
262 webMethods JIS: Java Client User’s Guide Version 9.0

Chapter 6. Extending the Java Code

The extension
applies to a
Specific
Subapplication

Create the file:
\user\<SubApplName>
.java which inherits
from \original\
<SubApplName>.java
and write your
extension.

Register extension class
in
\user\JacadaStarter
.java by calling
addWindow ()
(See “Extending the
Code of a
Subapplication” on
page 210).

Create the file:
\server\user\
<SubApplName>.java
which inherits from
\server\original\
<SubApplName>.java
and write your extension.

Note: there is no need to
Register the extension class.

Compile the
code extension
using:

\user\jacc.bat \server\user\jacc.bat

Table 43. Client and server side extensions types and usage(Sheet 2 of 2)

Client-side extension Server-side extension
webMethods JIS: Java Client User’s Guide Version 9.0 263

Chapter 6. Extending the Java Code

264 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix A. Java Client Limitations

This section discusses limitations in the Java Client and special considerations
you must be aware of when developing a Java Client application in ACE. The
following tables list Controls, Control Attributes, Features and Fonts which are
either not supported or only partially supported in this version.

Partially Supported ACE Controls

The following controls are not supported or only partially supported in this
version. Control Attributes lists the control’s unsupported attributes. Under
Comments you will find the limitation of the control or of the control attribute.

Table 44. Partially supported ACE controls (Sheet 1 of 4)

Control Control Attribute Comments

Buttons Ampersand (&)
support

Splitting text into two lines using
the ^ character is not supported

Combo OEM convert

Auto horizontal scroll

Integral height

Edit Hide selection

Auto horizontal scroll

Default behavior
webMethods JIS: Java Client User’s Guide Version 9.0 265

Appendix A. Java Client Limitations

Multiline Edit Lowercase doesn’t
work in Appletviewer

RMB doesn’t work

Cut/copy/paste/undo

Horizontal scrollbar is
permanent. The
settings in Ace have no
effect.

Dynamic Area All dynamic controls are
supported, though their size
might be different than shown in
ACE.

Frame Hide selection Hiding the Frame control also
hides everything inside it.

Spin Hide selection

Auto horizontal scroll

Default behavior

Static Style type - Wrap

Prompt Hide Selection

Menus Ampersand (&)
support for menu items

Numeric field Color indicators are ignored.

Editing commands
(Cut/Copy/Paste/Undo)

Can only be performed using
signed applets. See “Signed and
Unsigned Archive Files” on
page 73.

Table 44. Partially supported ACE controls (Sheet 2 of 4)

Control Control Attribute Comments
266 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix A. Java Client Limitations

Table Control Methods that are
activated when a list is
in focus or when a
selection has changed

Three state check box

The text inside controls
such as edits is aligned
to the top, and not the
center as in ACE. This
is apparent when you
increase the size of the
table's rows

Masks for Controls

Headers

Splitting text into two lines using
the ^ character is not supported.
Refrain from changing the
default splitting mechanism.

Tabs Tabs are aligned on one
horizontal line. When you have
many tabs, their labels may be
reduced to small font sizes.

Folder caption Splitting text into two lines using
the ^ character is not supported

Popup Subwindow Not supported

Popup Windows When the main window is in
focus the popup Subapplication
disappears behind it. This
limitation can be overridden by
setting the “UseModalPopups”
html parameter to TRUE.

Table 44. Partially supported ACE controls (Sheet 3 of 4)

Control Control Attribute Comments
webMethods JIS: Java Client User’s Guide Version 9.0 267

Appendix A. Java Client Limitations

Partially Supported Features

The following feature is partially supported in this version

Modal Popups The popup window has no
menus. The main window's
menus are not accessible. This
means that the user cannot
perform such operations as
exiting the application, opening
the host window, etc. while the
popup is active. Message boxes
may disappear behind the popup,
if the user clicks the popup
window while the message box
is open.

When closing a calendar window
that has been opened from a date
control inside the popup, the
focus jumps back to the main
window.

In some browsers, closing a
modal dialog causes the screen to
flicker.

Note: If a Subapplication uses a control that is not supported, the compilation
process generates an error message and terminates.

Table 45. Partially supported features

Feature Supported Aspects of the Feature

MDI • Overlapping windows
• Child.

When maximized, the child’s caption is added to the main
window’s caption

Table 44. Partially supported ACE controls (Sheet 4 of 4)

Control Control Attribute Comments
268 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix A. Java Client Limitations

Supported Fonts

The following fonts are supported. If a Subapplication uses an unsupported font,
Generate Runtime generates a warning message and continues working, using a
different font. Note that Windows default fonts may look differently when
displayed in Java. We therefore recommend that you choose the following fonts,
supported by the Java Client:

The font size displayed in the Java runtime will automatically increase by
approximately 33% in order to match the original size selected in ACE

Table 46. Supported fonts

Font Selected in ACE Font Displayed in the Java Runtime

MS Sans Serif Dialog

Times New Roman Times Roman

Arial Helvetica

Courier New Courier

Table 47. ACE versus Java font sizes

ACE Font Size Java Font Size

8 11

9 12

10 13

11 15

12 16
webMethods JIS: Java Client User’s Guide Version 9.0 269

Appendix A. Java Client Limitations

Color Support

System colors—fixed system colors as well as system colors chosen from a color
table—are supported. Note, however, the following remarks:

• Color behavior may differ according to the browser running the application.
To minimize the difference we recommend you use a graphic system that
allows more than 256 colors.

• A difference in color presentation may occur since Java’s system colors are not
completely identical to Windows system colors.

• The ‘Scrollbar’ system color does not work when used in a color table.

Unpacking an Application Without its Libraries

Unpacking an application without all or part of its libraries (or unpacking an
application that has been packed without its libraries) requires special attention
in two cases:

• When unpacking to a new environment.
• When unpacking to an environment that contains the main application and

not the associated libraries.

In both cases, once you unpack you must modify the library list that is located
in:

• The <ApplName>.ini file.
The library list is located under the [Program] section, in the “Libraries=”
setting.

• The runtime environment window.
The library list is located in the General Options dialog box, under the
Navigation tab.

In both locations, you must delete the libraries that have not been unpacked.

If you neglect to do so, the webMethods JIS runtime will not work since it points
to nonexistent libraries.

JIS Server Method Limitations

The following limitations apply to JIS Server methods:

• Some methods that handle the window’s runtime behavior are not supported.
• Subapplication-specific methods do not work on the toolbar.
• The HasFocus and FocusedControlName methods are responsible for

identifying which control is in focus and reporting it. They correctly identify
and report a Table that is in focus, but not the exact control inside the Table.
270 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix A. Java Client Limitations

• Changes made to default RMB methods written in ACE are not supported by
the Java Client. RMB functionality is obtained through extension of the Java
code.

• When you run an application without a user profile, and the application calls
a DoMethod that writes information to the INI file, this information will be
effective for the current sessions only, and will not be saved to file.

Restrictions on JIS Server Supported Methods

All methods created in the converter are automatically translated into Java
during the compilation process.

Generating JIS Server Methods During Compilation When you create a new method
or update an existing one, make sure that the variable values are correct and in
accordance with other variables within the method’s syntax. This is important
since the Java compilation process requires data about method return types and
variables types. When during the compilation process a contradiction is detected
within a method’s syntax the method is not compiled.

Using the error messages issued by Generate Runtime and the Java compiler, you
must correct the syntax errors. This section provides you with a list of System-
Triggered Methods included with ACE and the Generate Runtime check-list
upon compiling a method for the JIS Server.

An error in a method’s syntax can be detected either:

• During Generate Runtime. Generate Runtime issues an error message
describing the nature of the problem.

• During the Java compilation. In the Java compiler prompt, error lines indicate
the error type and the location in the compiled Java file where the error was
detected.

Following is the Generate Runtime check-list upon compiling a method for the
JIS Server:

• Checks the data type of all the variables
Example of valid syntax:
#0 = DoMethod: Receiver: ‘Application’ Method: IsJavaServer Parms ()

• The variable is assigned a value: The IsJavaServer DoMethod returns a
Boolean value.
Example of invalid syntax:
#1 = DoMethod: Receiver: ‘System’ Method: Beep ()

• A variable has to be assigned a value. Since the Beep DoMethod returns ‘void’
(i.e. does not return a value), no value will be assigned to the variable.

• Check for consistency in the values returned by the method
Example of invalid syntax:
#0 = DoMethod: Receiver: ‘Screen’ Method: IsHostPopup Parms ()
webMethods JIS: Java Client User’s Guide Version 9.0 271

Appendix A. Java Client Limitations

If: Cond: ‘#0’

Return = False

Else:

Return = Fail

EndIf:

• The first return is of Boolean type and the second Null. This is wrong since a
method can not return more than one data type.

Figure 41. Method syntax error

• Checks the validity of IF and MSGBOX statements
• A condition of IF must be Boolean
• The Caption and Message of MSGBOX must be String

Example of invalid syntax:
#0 = DoMethod: Receiver: `SubApplication` Method: Name Parms: ()

#1 = DoMethod: Receiver: `#0` Method: FindSubSet Parms: (`0` , `"ABC"`)

If: Cond: `#1 != _FAIL `

 Return: NoValue

EndIf:

Figure 42. Method syntax error 2

• Checks that the data type of parameters that are passed to DoMethods is
correct
Example of valid syntax:
#0 = Expression: Expr: ‘TRUE’

Note: The JIS Server does not support the FindFrom and FindSubset
DoMethods. Instead you can use the corresponding FindFromInt and
FindSubsetInt DoMethods.
272 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix A. Java Client Limitations

DoMethod: Receiver: ‘Screen’ Method: TypeStringWithoutCheck: (‘#0’)

This is correct since the TypeStringWithoutCheck DoMethod expects and
receives a Boolean parameter.
Example of invalid syntax:
#0 = Expression: Expr: ‘TRUE’

DoMethod: Receiver: ‘Window’ Method: RunHelpFileByIndex Parms: (‘#0’)

This is wrong since the RunHelpFileByIndex DoMethod expects a String
parameter but receives a Boolean parameter instead.

System-Triggered Methods Included with ACE

ACE includes a number of hard-coded methods that you can customize to your
application. Note that the methods you customize must return the appropriate
values, as follows:

Note: The only line types that support returning values are DoMethod,
Expression and MsgBox.

Table 48. System-Triggered Methods included with ACE (Sheet 1 of 2)

Method Name Return Value

UserIsRealMessage TRUE / FALSE

UserInitSubApplication SUCCESS / FAIL

UserInitBeforeFirstSubAppl TRUE / FALSE

UserAfterRefreshSubApplication TRUE / FALSE

UserRefreshSubApplication TRUE / FALSE

UserShouldCloseSubApplWindow TRUE / FALSE

UserCloseSubApplWindow TRUE / FALSE

UserDestroySubApplication SUCCESS / FAIL

TableChangedSelection SUCCESS / FAIL

PageDown SUCCESS / FAIL
webMethods JIS: Java Client User’s Guide Version 9.0 273

Appendix A. Java Client Limitations

PageUp SUCCESS / FAIL

GetToTopOfList TRUE / FALSE

GetToBottomOfList TRUE / FALSE

Note: UserRMB methods are not supported. You can obtain Right Mouse
Button functionality by extending the Java code.

Table 48. System-Triggered Methods included with ACE (Sheet 2 of 2)

Method Name Return Value
274 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix B. Troubleshooting

This section describes some of the problems that you may encounter and some
solutions that may help you when working with the Java Client.

Table 49. Troubleshooting and solutions (Sheet 1 of 4)

Problem / Message Possible Reasons Solution/s

Unable to connect
to the Server. (The
message appears
as an HTML on
the browser).

JIS Server is not
activated.

Communication
problems.

You are behind a
firewall

Activate the JIS Server.

Contact System Administrator, and
check if communication exists between
the Client and Server.
For example use the Ping command
followed by the server computer’s
address to validate that communication
exists between the client and the server.

In order to run the JIS-delivered
applications you will need to use HTTP
communication, or enable
communication through the Ports that
webMethods JIS uses. The Ports are 1100
and 1101.

Java code may be
out of date.

Java client and JIS
Server were not
produced during
the same runtime
generation.

Generate runtime again.

Clear your Browser’s disk cache.

Application xxx is
not installed on
the Server. Try
another
Application.

Application was
not found in the
jacadasv.ini file.

The
<ApplName>.ini
file is missing

Install the application on the Server
computer

Recompile the Application to generate
the <ApplName>.ini file.
webMethods JIS: Java Client User’s Guide Version 9.0 275

Appendix B. Troubleshooting

The maximum
number of users
are currently
connected. Please
try again later.

Maximum
number of
simultaneous
clients was
exceeded.

Try again later.

The default port range for user tcp
connections is 1024-5000. Change the
MaxUserPort setting in the Windows
registry to 65534 to increase the total
number of available ports.

Warning: Using the Windows registry
editor incorrectly can cause serious,
system-wide problems that may require
you to reinstall Windows. Neither
Software AG nor Microsoft guarantee
that any problems resulting from the use
of the registry editor can be solved. Use
this tool carefully and at your own risk.

Application xxx is
not properly
installed.

The Application
was added to the
JIS *.ini file, but
was not specified
correctly.

Try to activate the Application on the JIS
Server Computer in the Java Client
runtime.

Re-install the Application.

Generate runtime
fails and you get
the following
message: Error:
Unable to delete the
file: c://
JacadaFiles/
classes/appls/
<ApplName>...
cvrecord.dir

Generate runtime
cannot process
while the JIS
Server is running.

Close the JIS Server.

When connecting
to the JIS Server
you get the
following
message:
Application not
installed

An application
INI file
<ApplName>.ini
is missing

Make sure all <ApplName>.ini files
referenced in the jacadasv.ini
actually exist.

Table 49. Troubleshooting and solutions (Sheet 2 of 4)

Problem / Message Possible Reasons Solution/s
276 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix B. Troubleshooting

The
[ServerMachines]
section is missing
from jacadasv.ini

The section
[ServerMachines]
was not found in
jacadasv.ini.
jacadasv.ini is
probably empty or
corrupted.

Ensure jacadasv.ini is properly
transferred to the runtime environment.
On the mainframe, ensure it is in ASCII
and not in EBCDIC.

Sluggish response
when using Host
View intensively
with an HTTPS
connection.

The client may be
generating more
traffic than your
network
connection can
comfortably
handle.

In the application’s applet (the file
named <ApplName>.html), add the
parameter
SendEmulatorKeyTypedEvent and
set its value to “false”, like so:
 <PARAM name =
"SendEmulatorKeyTypedEvent"
 value = "true">.
This parameter setting instructs the
applet to send one key event (pressed)
instead of sending two events (pressed
and typed) for each interaction. The
result is less network traffic and
improved response time.

Table 49. Troubleshooting and solutions (Sheet 3 of 4)

Problem / Message Possible Reasons Solution/s
webMethods JIS: Java Client User’s Guide Version 9.0 277

Appendix B. Troubleshooting

Client connection
to the JIS Server is
up to two minutes
when run from
another PC on the
network.

Erroneous
network
configuration of
the relevant PCs.
The problem is
usually in the
DNS
configuration.

Solution 1

1 Fix the DNS configuration of the
Client computer and Server
computer:

2 From Control Panel > Network >
TCP/IP > Properties, access the DNS
Configuration tab.

3 Verify that the DNS Host contains
the DNS IP address and that the
Domain is correct.

4 If the computers are not in the same
subnet, verify also that the gateway
setting is correct in Control Panel >
Network > TCP/IP > Properties >
Gateway.

Solution 2

If there is no DNS, provide each PC with
a table that contains the Host name’s
translation to the IP addresses. In each
PC:

1 Under the Win95 directory, create a
file called Hosts (look at hosts.sam
for an example).

2 Enter both computers’ names and
addresses.

3 Restart the PC for this change to
take effect.

4 From a DOS prompt, run
“ping<OtherHostName>” to verify
they recognize each other.
(<OtherHostName> should be
replaced with the actual name of the
other PC).

Table 49. Troubleshooting and solutions (Sheet 4 of 4)

Problem / Message Possible Reasons Solution/s
278 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix C. Directory and File Structures

This section details the directory structure of the development environment. Use
these pages as a reference when searching for specific files.

Development Environment Directory Trees

Figure 43. Java root directory file structure
webMethods JIS: Java Client User’s Guide Version 9.0 279

Appendix C. Directory and File Structures

Figure 44. Client and Server Java source file directory structure

<ACE_root>\JacadaFiles\src\appls\<applname>\

original

user

server

original

user

Contains all the application-specific sources relevant
for the . The code contained in this file should
not be edited by the User since it will be overwritten
by subsequent invocations of

Server

Generate Runtime

Contains user sources. These sources are
on the Java code generated during compilation

an extension

Contains user sources. These resources are an extension
on the Java code generated during compilation

Contains all the application specific sources relevant
for the Client. The code contained in this file should
not be edited by the user since it will be overwritten
by subsequent invocations of Generate Runtime
280 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix C. Directory and File Structures

Figure 45. Client and Server Java class file directory structure

Example 68. Placement of classes after runtime generation

<RuntimeRootDir>\classes\appls\<ApplName>.

Note: After performing a runtime installation, the classes are placed under
the runtime root directory,

<ACE_root>\JacadaFiles\classes\appls\<applname>\ *

images

original

resources

user

server

original

resources

user

Contains all the runtime application’s
images in GIF format

Contains all the application-specific classes
Corresponds to the source directory

JacadaFiles\ \appls\applname\server\originalsrc<ACE_root>\

Contains external files necessary to run the Java
based Server. These files do not contain java classes

Contains the translation table of the
Language Localization feature

Contains user classes

Corresponds to the source directory

JacadaFiles\ \appls\<applname>\usersrc<ACE_root>\

Contains user classes
Corresponds to the source directory

JacadaFiles\ \appls\<applname>\server\usersrc<ACE_root>\

Contains all the application specific classes
Corresponds to the source directory
<ACE_root>\JacadaFiles\ \appls\<applname>\originalsrc
webMethods JIS: Java Client User’s Guide Version 9.0 281

Appendix C. Directory and File Structures

The Users Runtime Directory Tree

In the following illustration:

• The application Sales is installed on the server.
• There are two users: Brad and Janet.

Figure 46. Users runtime directory structure

Note: You must create manually the USERS directory and all the directories
and files it contains.
282 webMethods JIS: Java Client User’s Guide Version 9.0

Appendix D. Glossary of Terms

The following is a Glossary of terms which will assist you in familiarizing
yourself with the webMethods JIS’s Java Client.

Table 50. Glossary of terms (Sheet 1 of 2)

Term Definition

Java Source
File

A file with the extension *.Java, contains Java source code.

Java Class File A file with the extension *.class, contains a compiled Java
code. The Java compiler produces *.class files from the
*.Java sources.

Java Applet A program, written in Java, designed to be run by a Web
Browser. It consists of one or more Java classes. Applets
are Java programs that are downloaded over the WWW
and executed by a Web Browser on the user's computer.
Applets depend on a Java-enabled Browser in order to
run.

HTML File A file written in HTML (Hyper-Text Markup Language),
can be displayed by a Web Browser.

Web Browser A Program that supports browsing HTML files. A Java-
enabled Web Browser is a Web Browser capable of
executing Java applets.

Server
Computer

A computer that runs a Web Server Program and the JIS
Server Program. This is the computer that users contact
from their Web Browser.

Web Server
Program

A Server Program, running on the Server Computer, that
responds to HTTP requests from Web Browsers, sending
files according to their requests.
webMethods JIS: Java Client User’s Guide Version 9.0 283

Appendix D. Glossary of Terms

JIS Server A Server Program running on the Server Computer. It
opens a session on the host (mainframe or iSeries) from
one side, and interacts with the Client on the other side.
The interaction with the Client is done by communicating
with a Java applet running on the user’s computer.

Table 50. Glossary of terms (Sheet 2 of 2)

Term Definition
284 webMethods JIS: Java Client User’s Guide Version 9.0

Index

A
activate (JacadaStarter method) 245
Adding a Background Image 216
Adding Action Buttons to a Subapplication 217
Adding Action Buttons to the Main Window Tool

Bar 219
Adding Animated Buttons to Subapplications 222
Adding Bubble Help to Components 220
Adding Content to a Table Cell 224
AddWindow 239
AllowSaveHostScreenImage 63
AnimatedLogoDelay 62
AnimatedLogoImages 62
AnimatedLogoVisible 62
Applet

running Jacada using a launcher 75
Application_Name

...see Jacada INI file settings
ApplicationIconLarge 64
ApplicationIconSmall 64
Archive files 71

reducing download time 79
AS/400

activating the Jacada Server 43
installing the runtime on 33
mapping the PC to 34

B
Button control

methods for querying the button control 219
ButtonCursorType 63
ButtonRolloverBackground 62
ButtonRolloverForeground 63

C
Changing the background color of the printed

window 63, 202
Changing the Titles of Tab Control Folders in

Runtime 231
Classpath

...see Jacada INI file settings
ClientConnectionMessage 69

ClientTerminationMessage 69
ComboFitHeight 61
ComboFitWidth 61
Command line parameters 55
CommTimeOut 65
Compilation

executing 24
setting options 22

ConnectionFailed 68
ConnectionRetryInterval 67
ConnectionRetryTimeout 67
ConnectPort 66
ConnectPortURL 66
Controlling the scale of the printed window 202
Controlling the scale of the printout 63
Converting images 25
Creating Controls 212
Creating custom validity checks 232
Creating Logic Peers 213

D
Data sharing between client and server 236
Debug filters 122 to 124

defining in the jacadasv.ini file 88
Debug tab 147
Debugging the Jacada Administrator 141
DebugLevel 67
DebugTimeStamp 68
DefaultDateFormat 61
Defining Number and Length of Lines in Multi-line

Edits 223
Delegation Event Model 213
Displaying message boxes 231
Dump Files 124

E
Enable (SessionCountLog)

...see Jacada INI file settings
Enable (SessionLog)

...see Jacada INI file settings
Enable (XMLLog)

...see Jacada INI file settings
webMethods JIS: Java Client User’s Guide Version 9.0 285

 Index

Enable (XMLServer)
...see Jacada INI file settings

Enabling the list menu 225
Event Handling 213
ExitPage 68
Extending the Java Code

adding a background image 216
adding Action Buttons to a Subapplication 217
adding Action Buttons to Main Window toolbar 219
adding animated buttons to subapplications 222
adding bubble help to components 220
Adding Content to a Table Cell 224
addWindow 239
Changing the Titles of Tab Control Folders in

Runtime 231
creating controls 212
creating custom validity checks 232
creating logic peers 213
data sharing between client and server 236
defining number and length of lines in multi-line edits

223
deprecated methods 209
displaying message boxes 231
Enabling the list menu 225
event handling 213
focus and tabbing management 214
Handling table selection events 225
keyboard management 215
manipulating host originated data 226
modifying the default floating menus behavior 229
multi-character search in combo boxes 236
of all subapplications 212
of one subapplication 210
of the Main Window 211
RMB floating menus support 228
server-side extensions 254
updating menu items in runtime 223

ExternalFormat class 253

F
File (SessionCountLog)

...see Jacada INI file settings
File (SessionLog)

...see Jacada INI file settings
File (XMLLog)

...see Jacada INI file settings
FileInterval

...see Jacada INI file settings
Focus and Tabbing Management 214
Font substitution

about 81
debugging 83
resource file 81

Formatting text 252
FullClientFrame 70
FullClientURL 70
Function_parameters 253

G
Generating a runtime

... see Compilation
getCurrentPanel (JacadaStarter method) 244
GetTextFromUserTimeout

...see Jacada INI file settings
GUIPrintingBackground 63
GUIPrintingInMonochrome 63
GUIPrintingScale 63

H
Handling table selection events 225
HideApplicationMenu 61
hideMainWindow (JacadaStarter method) 246
HideMenus 60
HideToolbar 60
HostScreenDisplaySize 62
HTML Settings 60
HttpAddr 66
HTTPPortRange

...see Jacada INI file settings
HttpReuseConnection 67

I
Image conversion 25
INI File Settings

...see JIS INI file settings
IniDir

...see Jacada INI file settings
IniVersion

...see Jacada INI file settings
Installing multiple applications on the same Jacada

Server 54
286 webMethods JIS: Java Client User’s Guide Version 9.0

 Index

J
Jacada Administator

Debug tab 147
Jacada Administrator 138

interface 141
starting 139

Jacada INI File Settings ?? to 100
Jacada launchers

customizing 241
JacadaBasicLauncher 75
JacadaLoginLauncher 75

Jacada Runtime Directories Tree 282
Jacada Server

activating from an AS/400 43
activating from an NT 31
activating from Solaris 53
command line parameters 55
Jacada Administrator 138
optimizing 85
running as a Windows service 158
scaleable system structure 101

JacadaStarter
code examples 247
methods

activate 245
addWindow 239
getCurrentPanel 244
hideMainWindow 246
waitForFirstWindow 244
waitForNextWindow 246

Jacadasv.ini 86
jacadasv.ini 108

for scaleable server system 108
general structure 108
setting logclasses 120

jacservr.exe 31
JAM

... see Jacada Administrator
Java

documentation for generated classes 208
Java .class Files 208
Java Application

running the Java Client 76
Java Class File, definition 283
Java Classes

reducing download time using archives 79
Java Code

class files 205

extending 208
sources within CST hierarchy 205
sources within User hierarchy 205

Java code extension
server 254

Java sources of the server 255
Java Sources, compiling 207
Javadoc 208
JavaMemory

...see Jacada INI file settings
JavaOptions

...see Jacada INI file settings
JavaVM

...see Jacada INI file settings
JBSService.exe 160
JBSToService.exe 158
JIS INI File Settings 86 to ??

K
KeepAlive

...see Jacada INI file settings
KeepAliveTimeout

...see Jacada INI file settings
KeepAliveTimerTick

...see Jacada INI file settings
Keyboard Management 215

L
language localization

activating 166
current limitations 175
debugging your localized application 172
resource files 167
resource maintenance 169
setting the mechanism

through the HTML file 170
through the JacadaStarter API 170

string types handled by 171
work flow 166

LanguageNotSupported 68
Launching Jacada from an Applet 240
Limitations

Jacada Server methods 271
Java Client 265

List_of_functions 253
Load Balancing 103
webMethods JIS: Java Client User’s Guide Version 9.0 287

 Index

Locale_Country 65
Locale_Language 65
Locale_Variant 65
LocaleDebugMode 67
Localization API

implementing the localization feature 250
LogClasses

...see Jacada INI file settings
Logging support

acrchitecture 116
components 116
log classes 118

parameters 118

M
MachineApplications

...see Jacada INI file settings
MachineSessions

...see Jacada INI file settings
Main Window

extending the code of 211
Mainframe

mapping the PC to 47
makejar.bat 80
Manipulating host originated data 226
MaxMachineApplications

...see Jacada INI file settings
MaxMachineSessions

...see Jacada INI file settings
MaxProcessApplications

...see Jacada INI file settings
MaxProcesses

...see Jacada INI file settings
MaxProcessSessions

...see Jacada INI file settings
Modifying the default floating menus behavior 229
MsgboxTimeout

...see Jacada INI file settings
multi-character search in combo boxes 236
MultiMachines

...see Jacada INI file settings
Multiple applications

installing on the same Jacada Server 54
Multiple Server-Computer System 104

O
Optimizing Fonts for Non-Windows Platforms 81

P
PanelTimeout

...see Jacada INI file settings
PortScanRetries

...see Jacada INI file settings
Printer Emulation

adding an HTML parameter to read the client classes
195

adding an HTML parameter to read the printer
emulation archive 181

API architecture 189
creating a printer emulation instance 190
establishing print parameters in the runtime ini file

179, 193
examples of how to use the extended printer

emulation 197
Host-to-Client printing architecture 177
initializing a default printer emulation session 182
initializing an extended printer emulation session 192
making printing operational 178
providing security permissions 196
sending the print stream to the client 196
tracing printer emulation problems 182
troubleshooting 188
User Interface 186
using 183

Printing the Client host screen 203
Printing the client window

activating 199
changing the background color of the printed window

202
controlling the scale of the printout 202
granting permission 201
modifying through code extension 200
Page setup 184

Process_text 253
ProcessApplications

...see Jacada INI file settings
ProcessSessions

...see Jacada INI file settings
Profile 69
Profiles 161
288 webMethods JIS: Java Client User’s Guide Version 9.0

 Index

R
RecvTimeout

...see Jacada INI file settings
RegistryPortRange

...see Jacada INI file settings
RegistrySpawnTimeout

...see Jacada INI file settings
ReportsToMachine

...see Jacada INI file settings
RequestProfile 69
ResourceBase

...see Jacada INI file settings
RMB floating menus support 228
RMISocketTimeout

...see Jacada INI file settings
RtRootDir

...see Jacada INI file settings
RunInsideBrowser 64
Running the Jacada Client inside a Browser

Window 78
Running the Java Client from a Java application 76
Running the Java Client from an Applet using a

launcher 75
Runtime Application

activating on the Client 57
work flow 29

Runtime Installation
creating 26
installing 26

Runtime menus
updating in runtime 223

Runtime termination 124

S
Scalability 101

client-host connection 105
jacadasv.ini 108
load balancing 103
multiple server computer system 104
single server computer system 102

Server 66
Server Configuration Checker 132

Offline Mode 135
Server Mode 134

server Java code extension 254
server Java sources 255
ServerPortRange

...see Jacada INI file settings
ServerPortRange2

...see Jacada INI file settings
Service

running the Jacada Server as a 158
SessionCountLog

...see Jacada INI file settings
SessionLog

...see Jacada INI file settings
Sharing variables 236
Single server computer system 102
SocketImplFactory

...see Jacada INI file settings
SoftLimitMarginPercent

...see Jacada INI file settings
Solaris

activating the Jacada Server 53
installing the runtime on 47
mapping the PC to 34, 47

SpareSessionsPercent
...see Jacada INI file settings

SpawnInterval
...see Jacada INI file settings

StartScanAtRandomPort
...see Jacada INI file settings

StartUpSessionsPercent
...see Jacada INI file settings

StdoutEncoding
...see Jacada INI file settings

Subapplications
extending the code of all subapplication 212
extending the code of one subapplication 210

SystemConnectionTimeout
...see Jacada INI file settings

T
Terms 283
TimerTick (SessionLog)

...see Jacada INI file settings
TimerTick (XMLLog)

...see Jacada INI file settings
TimerTick (XMLServer)

...see Jacada INI file settings
Troubleshooting 275
webMethods JIS: Java Client User’s Guide Version 9.0 289

 Index

U
Unpacking an application

limitation 270
UseHttp 66
UseModalPopups 61
UseMultirowTabFolders 64
UseNewHTML 70
UsePorts 66
User Files

overwriting 207

V
Validity checks 232
Variables sharing 236
VersionMismatchPage 68

W
waitForFirstWindow (JacadaStarter method) 244
waitForNextWindow (JacadaStarter method) 246
WaitForSpawned

...see Jacada INI file settings
windowDataReady 226
WindowHScrollIncrement 64
windowReadyForAction 226
Windows service

running the Jacada Server as 158
WindowScrollRepeatInterval 64
WindowVScrollIncrement 64
WISE 30, 32, 45
Work flow 29
WorkingDirectory

...see Jacada INI file settings

X
XMLLog

...see Jacada INI file settings
XMLServer

..see Jacada INI file settings
290 webMethods JIS: Java Client User’s Guide Version 9.0

	Title Page
	Copyright and Document ID
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	About this Guide
	Documentation Set
	Document Conventions
	Viewing the Documentation Online

	Chapter 1. Making the Java Client Runtime Operational
	Creating a Java Client Runtime
	How The Compilation Process Works
	Two Results of Generating a Runtime in webMethods JIS

	Setting Runtime Generation Options
	How To Generate your Runtime
	The Runtime Generation Process

	Converting Images

	Testing Your Runtime
	Installing the Java Client Runtime
	Creating the Runtime Installation
	Installing Your Runtime
	JIS Server Installation Options
	Activating the Java Client Runtime
	How Does the JIS Runtime Work?
	The Java Client Runtime Deployment Architecture

	The JIS Runtime on Windows
	Creating a Runtime Installation
	Installing Your Runtime on Windows
	Activating the JIS Server on Windows

	The JIS Runtime on iSeries
	Creating a Runtime Installation
	Installation Files to be Copied on an iSeries

	Installing Your Runtime on the iSeries
	Mapping the PC to the iSeries IFS
	Transferring Environment to iSeries via Mapped Network Drive
	Transferring the Runtime Environment to the iSeries Manually
	Transferring the Server Package to the iSeries
	Running the Install Program on the iSeries

	Activating the JIS Server on the iSeries
	Activating the JIS Server Using the RUNJACSRV Command

	The JIS Runtime on Solaris
	Creating a Runtime Installation
	Pre-Installation Checklist for the Solaris Platform
	Installing Your Runtime on Solaris
	Installing the Runtime Environment Using Samba
	Mapping the PC to Solaris:
	Transferring the Runtime Environment to the Solaris Machine
	Installing Runtime Environment on the Solaris Using FTP
	Installing Runtime Environment to a PC Directory
	Compressing and Transferring Runtime Environment to Solaris
	Deploying Runtime Environment into Pre-defined Directory

	Activating the JIS Server from Solaris
	The Jacadasv Script

	Installing Multiple Applications on the Same JIS Server
	The JIS Server Command Line Parameters
	Operating the Runtime on a Client Computer

	Chapter 2. The Java Client Runtime
	HTML File Settings
	HTML Parameters That Can be Changed by the User
	GUI Settings
	Localization
	Communication
	Debugging
	HTML Pages
	Session Initialization
	Configurable User Messages
	Scalability: Server Farm
	Printing

	Archive Files Provided by JIS
	Server Side Archive Files
	Client Side Archives Files
	Java Client Administrator Related Archive
	Signed and Unsigned Archive Files
	The Application HTML Files Generated During Compilation

	Running the Java Client from an Applet Using a Launcher
	JacadaBasicLauncher
	JacadaLoginLauncher

	Running the Java Client from a Java Application
	The Application’s Params File
	Customized Application Settings

	Running the Java Client Inside a Browser Window
	Fitting the Application Window into the Browser
	Changing the Application's Look
	Limitations

	Use Archives to Reduce Download Time of Java Classes
	Referencing Application Specific Archive in Application HTML File
	Referencing a JAR File in the Application HTML File

	Improving Download Time of an Unsigned Application
	Excluding the Downloading of the clhost.jar File

	Optimizing Fonts for Non-Windows Platforms
	The Font Substitution Resource File
	The Resource File Location and Name
	Contents of the Font Substitution Resource File

	Debugging the Font Substitution Mechanism

	Chapter 3. Optimizing the JIS Server
	Other Factors Affecting Performance
	JIS Server *.ini File Settings
	Scalability
	The Scalable System Structure of the JIS Server
	Single Server-Computer System
	Structure
	Function

	Multiple Server-Computer System
	Structure
	Function
	Client Connection to the System

	Identifying Server Modules
	The Integrator Process
	Setting up the Scalable Server System
	Customized jacadasv.ini File

	General Structure of the jacadasv.ini File
	The jacadasv.ini File is Composed of Sections
	Targeting ini Parameters to a Particular Machine or Node Level
	Precedence of Targeted ini File Sections

	HTTP/S Communication

	JIS Server Logging Support
	JIS Server Logging Architecture
	JIS Server Log Information Flow
	The Server System Log Classes
	SessionLog Log Class
	Viewing the SessionLog Output

	Setting the LogClasses and Their jacadasv.ini File Parameters
	LogClasses Section
	SessionLog Section
	XMLLog Section
	XMLServer Section

	How to Create a Server Log File
	Advanced Logging Features
	Controlling the Size of the Log File
	The Start Log
	Debug Filters

	Analyzing Abnormal Runtime Termination
	Information Included in Dump Files
	Dump File Generation
	Dump File Name and Location
	Enabling Dump File Generation
	Dump File Structure
	Client Core Dump File
	Session Core Dump File

	Checking Server Configuration
	Server Configuration Checker
	Reported Errors
	Reported Warnings

	Enabling the Server Configuration Checker
	Server Mode
	Offline Mode

	Range of Valid Properties

	JIS Administrator
	Starting the JIS Administrator Command Line Utility
	Starting JIS Server from the Server Machine

	Connecting Online to the JIS Server
	Debugging the JIS Administrator
	The JIS Administrator Interfaces
	The Server Monitor Interface
	The Properties and Sessions Tabs
	The License Tab
	Operations you Perform Using the Server Monitor
	The Runtime Configuration Interface

	Running the JIS Server as a Windows Service
	Registering the JIS Server in Windows
	Parameters of JBSToService.exe
	More Examples of the Use of JBSToService.exe:
	Caution

	Invoking the JIS Server as a Service
	Logging off from the machine

	Managing User Profiles
	The User’s INI Files Location
	Creating a separate HTML file for each user
	Using the LoginLauncher
	Maintaining the User’s Application INI File
	To remove a user from an application or all applications

	Chapter 4. Language Localization
	How the Localization Feature Works
	Localization Feature Workflow
	Activating the Localization Feature

	The Resource Files
	The Original Resource File
	The Translated Resource File
	The General Resource File
	Resource Maintenance

	Setting the Runtime Localization Mechanism
	Setting Through the Application HTML File
	Setting Through the JacadaStarter API

	String Types Handled by Localization
	Debugging your Localized Application
	How to Work in Debug Mode
	On the Runtime Window
	The Log File
	ISO Language and Country Codes
	Current Limitations

	Chapter 5. Printing Features
	Host-to-Client Printing
	The Host-to-Client Printing Architectures
	Host to Client Printer Emulation Connection via JIS Server

	Making the Printer Emulation Operational
	Configuring the Host to Recognize the Printer LU Name
	Establishing Print Parameters in the <ApplName>.ini File
	Adding HTML Parameter to Read Printer Emulation Archive
	Initializing a Default Printer Emulation Session

	Tracing Printer Emulation Problems
	Using the Printer
	Print Options Dialog Box
	Printing Via the Java Page Setup Dialog Box
	The Printer Emulation User Interface
	Limitations
	Troubleshooting

	Extending the Printer Emulation
	The Printer Emulation API Architecture
	Creating a Printer Emulation Instance
	Determining the Printer Emulation Type
	The Default Settings
	The Extension Class Path
	Initializing an Extended Printer Emulation Session

	The Application Runtime.ini File Settings
	Special Runtime.ini Parameters Used with JIS Examples

	HTML Parameters
	Sending the Print Stream to the Client
	Providing Client and Server Security Permissions
	Client Security Permissions
	Server Security Permissions

	Examples of How to Use the Extended Printer Emulation
	Saving Data on Server Example
	HTML Printing Example
	Printing via the Server and the Client

	Printing the Client Window
	Activating the GUI Printing Feature
	Eliminating the Print Setup Dialog

	Modifying the GUI Printing Feature Through Code Extension
	Granting Permission to Print the Client Window
	Changing the Background Color of the Printed Window
	Controlling the Scale of the Window’s Printout

	Printing the Client Host Screen

	Chapter 6. Extending the Java Code
	The Client Java Code Produced During Compilation
	Java Sources in the Original Sub-directory
	Java Sources in the User Sub-directory
	Compiling the User’s Java Sources
	Automatic Overwriting of User Files During Version Upgrading

	Java .class Files
	JIS’s Javadoc Files

	Working with the Java Code
	About Event Handling
	About Deprecated Methods
	Where Can Code Extension Be Performed
	Extending the Code of a Subapplication
	Extending the Code of the Main Window
	Extending the Code of All Subapplications

	Understanding the Generated Java Code
	Creating Controls
	Creating Logic Peers
	Event Handling
	Focus and Tabbing Management
	Keyboard Management

	Examples of Code Extension
	Adding a Background Image
	Adding Action Buttons to a Subapplication
	Adding Action Buttons to the Main Window Tool Bar
	Querying a Button to Determine Its Characteristics
	Adding Bubble Help to Components
	Adding Animated Buttons to Subapplications
	Updating Menu Items in Runtime
	Defining Number and Length of Lines in Multi-line Edits
	Selecting One Cell in Table Rows Using Right Click
	Adding Content to a Table Cell
	Handling Table Selection Events: Enabling the List Menu
	Manipulating Host Originated Data
	The Java Client RMB Floating Menus Support
	Modifying the Default Floating Menus Behavior
	Changing the Titles of Tab Control Folders During Runtime
	Displaying Message Boxes
	Creating Custom Validity Checks

	Application-Wide GUI Settings
	The Application's Color Scheme
	Multi-Character Search in Combo Boxes

	Data Sharing between Client and Server
	Manipulating the Varpool from the Server Using Methods
	Manipulating the Varpool from the Client Using Code Extensions

	The JacadaStarter's addWindow Method
	Launching the Java Client from an Applet
	The Java Client Launchers
	Customizing a Launcher

	Controlling the Java Client Application
	Methods for Controlling the Java Client Application
	Code Examples

	Implementing Localization Using the Java Localization API
	Loading Specific Strings from Resource Files
	Initialization of Language Localization
	Displaying System Messages in the Launcher Applet

	Formatting Text
	Technical Notes
	ExternalFormat interface Functions
	MyExternalFormat Class Example

	Extending the Server’s Java Code
	When are Server Extensions Used
	Server Java Sources Created During Compilation
	Server Code Extension Types
	Creating a Server Code Extension
	The Server API
	The Server API
	JIS’s javadoc Files
	Example of How to Write a Java Server Extension
	Summary: Client vs. Server Code Extensions

	Appendix A. Java Client Limitations
	JIS Server Method Limitations

	Appendix B. Troubleshooting
	Appendix C. Directory and File Structures
	Development Environment Directory Trees
	The Users Runtime Directory Tree

	Appendix D. Glossary of Terms
	Index

