§ software~

ARIS Risk & Compliance Manager
CUSTOMIZING GUIDE

Version 9.8 — Service Release 5

June 2016

www.softwareag.com

This document applies to ARIS Risk & Compliance Manager Version 9.8 and to all subsequent
releases. Specifications contained herein are subject to change and these changes will be
reported in subsequent release notes or new editions.

Copyright © 2010 - 2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc.,
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered
trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its
affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners. Detailed information on trademarks and patents owned by
Software AG and/or its subsidiaries is located at http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms.
These terms are part of the product documentation, located at http://softwareag.com/licenses
and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices
and Disclaimers of Third Party Products". For certain specific third-party license restrictions,
please refer to section E of the Legal Notices available under "License Terms and Conditions for
Use of Software AG Products / Copyright and Trademark Notices of Software AG Products". These
documents are part of the product documentation, located at http://softwareag.com/licenses
and/or in the root installation directory of the licensed product(s).

http://softwareag.com/
http://softwareag.com/licenses
http://softwareag.com/licenses
http://softwareag.com/licenses

CUSTOMIZING GUIDE

Contents
1 L= o0 17T o 1 o 1
2 What Can be CUSTOMIZEA 2. ... i ettt ettt e aea e eeaanneeeeaaanns 2
3 (L= aT=T =TI o] o Yo =T [o = 3
3.1 Adapt the XML configurationcoooii et e e 3
3.2 o = o 1 A 1 1 3
3.3 o = o A g = 1 1 P 3
3.4] =] 1 7= g o = 4
3.4.1 L@ 1 =T Y T 4
3.4.2 Object and VersionObject object typesccviviiiiiii e 4
3.4.3 TransactionalObject ObJeCt tYPe. ... e 5
3.4.4 MonitorableObject ObjJeCt type oo e 6
3.4.5 Y1 L 1 T [o = o S 7
3.4.6 (O o] T=Tox (0To] o] = 1] o =T 8
3.4.7 Inheritance in the file objectTypes.Xmlccooiiiiiiiiii e 9
3.5 (@] 8 1Y 7= o) £ T] o 1= 11
3.5.1 Conventions in the XML configuration.............ooiiiiiiiiiiiiiii it 11
3.5.2 Conventions for object generationooiiiiiiiiii i 12
3.5.21 Client association in client-specific objectso, 12
3.5.2.2 MonitorableObject 0bjJeCt tyPeuii e 12
3.5.2.3 Identical attribute NAMES ..ot 13
3.5.2.4 Object assignment if names are identical ..., 13
3.6 (O] F= TS 0 g =T 0] o o 1 S 14
3.6.1 o4 1 [0 1 14
3.6.2 Command Class MaPPINGS . ..uuieiiiiii et e e e e e eeaannees 15
3.6.3 StatisStiCS Class MaAPPINGS .. ettt ettt ettt e et eaanee e eaaannes 15
3.6.4 Y ol F= TSR 0 g =T o] o1 o 1< 16
3.6.5 LU) o] F= 1T 0 0 =T o] o 1] Lo 1 16
3.6.6 ViIEW ClasSS MaPPINGS .« .ttt et e e 17
3.6.7 VCREG.XML configuration fileo e 17
3.7 CUSTOMIZE NI e e 19
4 o TSy (ORI] = o= 1S < 20
4.1 CUSTOMIZE ODJECT PrOPEITIES ...ttt aeeeas 20
4.1.1 Overwrite the SChema VErSiON ... 20
4.1.2 Add/adapt a simple attribute....... ... 21
4.1.2.1 Create a simple attributeo e 21
4.1.2.1.1 Adapt an ObJeCt tY P .oeiiie i e 21
4.1.2.1.2 Add/adapt pProperties. e 21
4.1.2.1.3 ASSIgN Validator.......ccooiiiiii e 21
4.1.2.1.4 ASSION CONVEITET ..ottt ettt et e aaees 22
4.1.2.2 Add an attribute to a form ... et 22
4.1.2.2. 1 Adapt a oM .. 22
4.1.2.2.2 Add/adapt properties for a form ... 23
4.1.2.2.3 ASSION @ FENUEIEI ...ttt et et e e 23
4.1.2.2.4 AdaPt FUIES .. e 24
4.1.2.2.5 Add/adapt rePOrtS.o 24
4.1.2.3 Add an attribute to a list ... 24
4.1.2.3. 1 Adapt @ liSt ..o e 24
4.1.2.3.2 Add/adapt properties for a list ..o 25

4.1.2.3.3 Adapt data retrieval for a list........cccoiiiiiiiiiiii e 25

CUSTOMIZING GUIDE

4.1.2.3.4 Add @ reNAEIEY ettt e e 25
4.1.2.3.5 Add/adapt repOrtS.coiiiiii i 26
4.1.2.4 Add an attribute to a filter 26
4.1.2.4.1 Adapt a HSt filter.....ccoiiii e 26
4.1.2.4.2 Add/adapt properties for a filter..........cooiiiiiiiiiiiii i 27
4.1.2.4.3 ASSION @ FENUEIEY ..ttt eaees 27
4.1.3 Add/modify an enumeration attribute................ooii 27
4.1.3.1 Create an enumeration attribute...........ccooiiiiiiiiiiii i 27
4.1.3.1.1 Add/adapt an enumeration.........cccoiiiiiiii i 27
4.1.3.1.2 Add/adapt properties for an enumerationccoviiiiiiiiiiiinnn... 28
4.1.3.1.3 Adapt an ObJeCt tyPe .o e 28
4.1.3.1.4 Add an attribute to a form.........ooiiiiiiiii 28
4.1.3.1.5 Adapt data retrieval for a liSt.......c.oooiiiiiiiii e 28
4.1.3.1.6 Add an attribute to a liSt ..o e 28
4.1.3.1.7 Add an attribute to a filter.........cooiiiiiiii 29
4.1.4 Add/adapt a list attributecccoiiiiiii e 29
4.1.4.1 Create a list attribute. e 29
4.1.4.1.1 Adapt an ObJeCt Ty P .o e 29
4.1.4.1.2 Add/adapt properties. . .cu.eee i 30
4.1.4.1.3 Adapt lISt reStriCtioNS. ... e 30
A4.1.4.1.4 AdAPt FOIES .. e 30
4.1.4.1.5 Add an attribute to a form..... ... 31
4.1.4.2 Add a selection liSt ..o e 32
4.1.4.2.1 Adapt aselection liStccoiiiiiiiii i e 32
4.1.4.2.2 Add/adapt properties. ..ot 32
4.1.4.2.3 Adapt data query for selection listo 32
4.1.4.2.4 ASSION @ FENUEIEI ..uueiiiiii it ettt e e ee e e aaanneeeenn 33
4.1.4.2.5 Add a selection list filter...... ..o 33

4.2 Customize the object life CyCle. ... e 33
4.2.1 WOrkflow configurationcoooiiiiiiiii e 34
4.2.1.1 Add 8 STALE .t 34
4.2.1.1.1 Add a state for an active Object 34
4.2.1.1.2 Add a state for a deleted ObjecCtcoviiiiiiiiii e 35
4.2.1.2 Add @ TranSItiON ... e 35
4.2.1.2.1 Add a prepare transSition ..o e 36
4.2.1.2.2 Add an insert transitionooioiiiiiii e 36
4.2.1.2.3 Add an update transSitioncoieiiiiiiii e 37
4.2.1.2.4 Add a reset transSitioncoiiiiiii i 38
4.2.1.2.5 Add a delete transitionccoiiiiiiiiiiiii e 38
4.2.1.2.6 Add a recover tranSitioN.oo it 39
4.2.2 Configure the command chain catalogc.oooiiiiiiiiiiiiiii it 39
42.2.1 Modify a command Chainooiiiiii e 40
4.2.2.2 Add a command Chain...... ..o 40
4.2.3 Adapt/add user INtEraCtioNSuoii i e 41
4.2.3.1 Confirmation dialogsooii s 41
4.2.3.2 INPUL diBlOgS - . e 42
4.3 Adapt the task configuration ... e 45
4.4 Adapt a master data IMPOIt e e e e eeneeean 48
4.5 Add/adapt hierarChies ... e 49
45.1 Add an enumMeration ITeM e 49
4.5.2 Add a new list element to a master data object ..., 49

4.5.3 Add a new list element to a transactional objectccoooiiiiiiin.... 50

CUSTOMIZING GUIDE

454 Display and input options for forms.o 50
4.5.5 Automatic transfer of hierarchy objectsccoiiiiiiiiiiiiiiiiiie i 51
4.5.6 Make a hierarchy attribute editable. ... 51
4.5.7 Assign roles to a hierarchy attribute...... ... 51
4.5.8 Add a hierarchy evaluationc.oiiiiiiiiiii e 52
4.5.9 Create a new data view for hierarchy statisticsccoiiiiiiiiiiiiis 52
4.6 Add/adapt STAtiSTICS ..ooiiiii ettt 53
4.6.1 AdAPT SEALISTICS .+ttt e 53
4.6.1.1 Adapt column Widths ... e 53
4.6.1.2 Link structural elementso e 53
4.6.1.3 Add/adapt COIUMNSt 54
4.6.1.3.1 statistic.columnGroup.enum-based statisticS...........ccoeiviviiiiinan... 54
4.6.1.3.2 statistic.columnGroup.perCent-based statisticS...........cccevvviinnnnn... 54
4.6.1.3.3 statistic.column.value-based statistiCSccooeiiiiiiiiiiiiiiiein... 55
4.6.1.3.4 Adapt HINKS .. .eiiii i e 56
4.6.1.3.5 Useanew hierarChy........cccoiiiiiiiiiiiiiiii e e 56

4.7 Vo [0 V/£7=To =1 o) i =] ¢ T] o = 57
4.7.1 Add/adapt reports for fOrms ... e 57
4.7.1.1 Replace an existing form report definition ..., 57
4.7.1.2 Add a new form report definition ... 57
4.7.1.3 Incorporate a new form report selectioncooooiiiiiiiiiiiiiiiiann... 58
4.7.2 Add/adapt reports for lIStS . ..o e 58
4.7.2.1 Replace an existing list report definitionccoooiiiiiiiiiin.. 58
4.7.2.2 Add a new list report definitioN....... ..o e 59
4.7.2.3 Incorporate a new report selection...... ... 59

4.8 Modify message template ... e 61
4.8.1 Add a new message templateoooiiii i 61
4.8.2 Add a new message template contento 61
4.8.3 Customize the contents of a message templatecccoevviiiiieiiiiin.. 62
4.8.4 ST=T ale I [T ET= T = PP 63
4.9 Add/adapt segregation Of dULIESc.oiiiiiii e 64
4.10 Add/adapt rUlE ... 65
4.10.1 Overwrite an existing rule file e 65
4.10.2 Incorporate anew rule file........oooii i 65
4.10.3 Reuse existing rules for new attributesccccoviiiiiiiiiiiiiiiie i 66
4.11 Add/adapt a scheduled taskcceiiiiiiii e 68
4.11.1 Adapt the schedule.... ... e e 68
4.11.2 L= 1= = 0] 69
4.11.2.1 Adapt the object searchcooooiiiiiii e 69
4.11.2.2 Generate ODJECTS. ... 69
4.11.3 Adapt the object searcho 70
4.11.4 LU o o - 1Y 71
4.12 Adapt offline ProCeSSING e 72
4.12.1 Modify offline dOCUMENTS ... e 72
4.12.2 Change the offline operator roles definitioncooooiiiiiine, 73
4.12.3 Add a new Offline editor role....... ..o e 73
4.12.4 Adapt Offline ProCESSOIS ... e 74
4.12.5 Adapt offline behavior for each object typecccooviiiiiiiiiii 74
4.13 Add/adapt dashboard lINK ... i et 75
4.13.1 Adapt DashBoard link ... 75
4.13.2 Add dashboard lINK. ... e 75

4.13.2.1 Add a MashZone list for object datacooiiiiiiiiiiiiiiiiiii e 75

CUSTOMIZING GUIDE

4.13.2.2 Add a MashZone list for object liNKSccoiiiiiiiii e 76
4.13.2.3 Assign a name to a MashZone list........ccooviiiiiiiiiiiii e 76

4.14 AdJUST NAVIGALION ... ettt et ae 78
4.14.1 Adapt navigation for an area..........ooii it e 78
4.15 Adapt and extend event enablingcooiiiiiii i 80
4.15.1 Extend existing event type XSDS ...t 80
4.15.2 Create new event type XSDS....o. i e 80

5 D11 o] F=11 1] 82

CUSTOMIZING GUIDE

1 Text conventions

Menu items, file names, etc. are indicated in texts as follows:
= Menu items, keyboard shortcuts, dialogs, file names, entries, etc. are shown in bold.
= Content input that you specify is shown in <bold and within angle brackets>.

= Single-line example texts are separated at the end of a line by the character «, e.g., a long
directory path that comprises multiple lines.

= File extracts are shown in the following font:

This paragraph contains a file extract.

CUSTOMIZING GUIDE

2 What can be customized?

The configuration of ARIS Risk & Compliance Manager is defined in XML files based on commented
XML schema files (.xsd). These XML files describe:

= characteristics of objects and attributes, as well as their representation of the user interface
= object life cycle and form flow

= Hierarchies

= statistics and reports

= roles, privileges, and segregation of duties

» notifications

= scheduled tasks

= offline editing

] Dashboard links

The XML configuration refers to:
= Java classes that implement specific behavior
= property files containing the localized text for the user interface

= DRL and DSL files containing the rules for the forms

You customize the application by adapting the XML configuration so that the existing elements

are recombined, e.g., by adding an existing attribute type to an existing object type using a new
name and integrating new elements, such as new messages or Java classes implementing new
behavior that you cannot configure using XML. This does not require an individual build process.
Changes to the configuration are applied during server runtime as long as the system is running
in test mode. A server restart is required for productive systems. The section Basic use cases
(Page 20) describes all steps for adaptations based on the XML configuration.

You can also customize the behavior by integrating individual Java implementations of special
interfaces through the XML configuration. These Java classes can be individually developed based
on a defined interface and are then included like the default classes without any particular build
process being required for ARIS Risk & Compliance Manager.

If an updated version of this document is available, you will find it here:
http://aris.softwareag.com/ARISDownloadCenter/ADCDocumentationServer
(http://aris.softwareag.com/ARISDownloadCenter/ADCDocumentationServer)

http://aris.softwareag.com/ARISDownloadCenter/ADCDocumentationServer

CUSTOMIZING GUIDE

3 General procedure

The default implementation is based on configuration mechanisms that are also used for
adaptations. The default configuration of the control-based approach (CBA) is already an
adaptation of the default configuration of the risk-based approach (RBA). If the default behavior
or default structure is to be changed selectively, the corresponding passages in the XML
configuration can be overwritten so that a changed behavior or a changed or extended structure
is defined at this position. These selective changes and extensions are performed in the directory
tomcat\webapps\arcm\WEB-INF\config\custom, which is located in the installation
directory.

The chapter on Basic use cases (Page 20) describes the steps necessary to create adapted
configurations based on the use cases supported. The procedure described is implemented in
configuration examples that you can find in the folder customizing examples.

The folder standard configuration contains the default XML configuration files. You can use
these files as a starting point for adaptations and copy the passages to be customized from there
and then change them according to your requirements.

3.1 Adapt the XML configuration

The xml folder contains one or more XML files including the customized XML configuration. The
system validates these files against the XML schema file custom.xsd.. This file is located in the
xsd folder and must not be changed. The root element of these XML files must be the <custom=>
element.

3.2 Adapt rules

The rules folder contains adapted rule files that are integrated by the XML configuration. See
Add/adapt rule (Page 64).

3.3 Adapt names

The properties folder contains one or more property files with customized strings for the user
interface.

Name conventions:

» The file name must end with _xXx.properties. (xx stands for the code of the language the
strings are localized in.)

= The underscore (_) must not occur at any other position of the file name.

Example

For English, you can use myCustomizedStrings_en.properties, but not
my_customized_strings_en.properties.

This allows you to create several language versions in parallel, whose file names only differ in
terms of the language code.

CUSTOMIZING GUIDE

3.4 Inheritance

ARIS Risk & Compliance Manager version 4.0 introduces an inheritance mechanism in object
configuration (objectTypes.xml). This ensures a uniform structure of objects and attributes of
the components, test management, issue management, etc., as well as objects with similar
meaning and function. The inheritance determines the function of an object type within the
component and thus reduces the configuration effort. The configuration effort is reduced due to
the the centralization and reuse of workflow-relevant attributes. The inheritance feature also
simplifies the programming of generic system functions, such as monitoring because it is possible
to access centrally configured attributes.

3.4.1 Overview

Object

(]

VersionObject ObjectContainer

X

Transa ctional 0 bject Recurring Object

Maonitora bleOh ject

3.4.2 Object and VersionObject object types

The Object and VersionObject object types (objecttypes.xml: OBJECT, VERSION) contain
central technical attributes. These should not be changed during customizing. Object types that
are subject to the ARIS Risk & Compliance Manager versioning mechanism need to extend the
VersionObject object type. Non-versioned object types inherit from Object directly. Similar to
the Java programming language, it is not necessary to explicitly specify the extension of the
Object object type, it is extended automatically.

CUSTOMIZING GUIDE

3.4.3 TransactionalObject object type

The TransactionalObject object type (objectTypes.xml: TRANSACTIONAL) combines several
attributes that belong to the typical transactional data objects. Usually, these object types (e.g.,
Test case) pass through different roles (e.g., Tester and Reviewer) during a workflow and
represent the basis of the data recorded in ARIS Risk & Compliance Manager.

ATTRIBUTES

auribute 10 pata type

owner_status Enumeration Status

owner_group Assignment Group responsible for execution
owner Assignment Executing user
owner_substitute Assignment Substitute of executing user
execution_date Date Execution date

reviewer_status Enumeration Status of review
reviewer_group Assignment Group responsible for review
reviewer Assignment Reviewer

reviewer_substitute Assignment Substitute of reviewer
review_date Date Review date

If the two status attributes require different enumerations for different work flows, you can
overwrite them at the actual (inheriting) object type. For group assignment attributes, the
selection must be restricted to one role at the inheriting object type.

INHERITANCE DIAGRAM

TransactionalObject

(f \

Deficiency Incident Loss

CUSTOMIZING GUIDE

344 MonitorableObject object type

The object type MonitorableObject (objectTypes.xml: MONITORABLE) adds several
attributes to the object type TransactionalObject, which are associated with time-based
monitoring. Transactional data types with expiration dates (e.g., Test case) monitored by the
application are supposed to inherit from this object type.

ATTRIBUTES

acribute 1D

plannedstartdate Enumeration Start date of processing period

plannedenddate Assignment End date of processing period
controlstartdate Assignment Start date of control period
controlenddate Assignment End date of control period

INHERITANCE DIAGRAM

M onitorableObject

(| I |)

Testaction Questionnaire Issue

RiskAssessment Sign- Off

CUSTOMIZING GUIDE

3.4.5 RecurringObject

The object type RecurringObject (objectTypes.xml: RECURRING) is part of the master data. It
combines attributes required for the regeneration of transactional data objects.

ATTRIBUTES

Auribute 1D Data e

owner_group Assignment Group responsible for execution

frequency Enumeration Frequency used to generate the transactional data
objects (once, daily, weekly, etc.)

duration Integer Time limit for execution in days

(long)
startdate Date Date from which transactional data is generated regularly
enddate Date Date up to which transactional data is generated regularly
control_period Enumeration Length of the control period (day, week, month, etc.)
offset Integer Offset of the control period in days

(long)
reviewer_group Assignment Group responsible for review

If the frequency and control_period attributes require different enumerations for different
work flows, you can overwrite them at the actual (inheriting) object type. For group assignment
attributes, the selection must be restricted to one role at the inheriting object type. This is why
this attribute must be overwritten and assigned the proper role restriction.

INHERITANCE DIAGRAM

Recurring Object

Risk TestDefinition SurveyTask

CUSTOMIZING GUIDE

3.4.6 ObjectContainer

The ObjectContainer object type (objectTypes.xml: OBJECTCONTAINER) serves as a
container for other objects. It is used in issue management, for example, to connect objects of
any type as issue-relevant objects.

ATTRIBUTES

aribute 1D

object _id Integer (long) ID of the object contained

object_version_numbe Integer (long) Version number of the object contained

.

object_objtype String Object type of the object contained

object_clientSign String Auxiliary attribute for the client filter

object_clientSigns String Auxiliary attribute for the client filter (contains a
comma-separated list of assigned client
identifiers)

object_name String Name of the object contained

object_ovid String Auxiliary attribute for the selection (object

version ID)

role Enumeration Role used for accessing the object contained

INHERITANCE DIAGRAM

ObjectContainer

>
4
Z
$

OfflineProcessingentry IssuehelevantObject

CUSTOMIZING GUIDE

3.4.7 Inheritance in the file objectTypes.xml

Inheritance is expressed using the XML attribute extends at the XML element objectType in the
file objectTypes.xml. The value of the attribute must contain the ID of the superior object.

BASIC OBJECTS WITH A SPECIFIC MEANING

OBJECT, VERSION, TRANSACTIONAL, RECURRING, MONITORABLE, OBJECTCONTAINER

INHERITANCE STRUCTURE

USERPROFILE = OBJECT

ISSUE->MONITORABLE > TRANSACTIONAL > VERSION > OBJECT
INCIDENT = TRANSACTIONAL > VERSION > OBJECT

JOBINFORMATION = OBJECT

OPTION > VERSION > OBJECT

POLICYREVIEWTASK > RECURRING > VERSION > OBJECT

AUDIT = MONITORABLE > TRANSACTIONAL > VERSION > OBJECT
SUBSCRIPTION = OBJECT

DOCUMENTLINKTYPE = OBJECT

TASKITEM > OBJECTCONTAINER > OBJECT

CHANGEREVIEW = MONITORABLE = TRANSACTIONAL = VERSION = OBJECT
VERSION > OBJECT

OFFLINEPROCESSINGENTRY > OBJECTCONTAINER > OBJECT
HIERARCHY > RECURRING = VERSION = OBJECT

OBJECTCONTAINER = OBJECT

INTERNALMESSAGE > OBJECT

AUDITSTEP = MONITORABLE = TRANSACTIONAL = VERSION > OBJECT
JOBQUEUEENTRY = OBJECT

DEFICIENCY > VERSION > OBJECT

SOPROCESS = MONITORABLE = TRANSACTIONAL = VERSION > OBJECT
RISKASSESSMENT = MONITORABLE > TRANSACTIONAL = VERSION > OBJECT
DOCUMENT = OBJECT

OBJECT > OBJECT

QUESTIONNAIRESECTION = OBJECT

BOOKMARK = OBJECT

SURVEY = MONITORABLE = TRANSACTIONAL > VERSION = OBJECT
AUDITSCOPE > OBJECTCONTAINER > OBJECT

USERGROUP = VERSION > OBJECT

LOSS > TRANSACTIONAL > VERSION > OBJECT

CUSTOMIZING GUIDE

MONITORABLE > TRANSACTIONAL > VERSION > OBJECT
POLICYDEFINITION > RECURRING > VERSION = OBJECT
MESSAGETEMPLATES = OBJECT

RECURRING = VERSION > OBJECT

POLICYREVIEW > MONITORABLE = TRANSACTIONAL = VERSION = OBJECT
EXCEPTION = VERSION > OBJECT

SOTASK > RECURRING = VERSION = OBJECT

OPTIONSET = VERSION > OBJECT

CLIENT > VERSION > OBJECT

CONTROL = VERSION > OBJECT

SECTION > VERSION > OBJECT

TESTDEFINITION > RECURRING > VERSION > OBJECT
QUESTIONNAIRE_TEMPLATE = VERSION > OBJECT
ISSUERELEVANTOBJECT = OBJECTCONTAINER > OBJECT

SURVEYTASK > RECURRING > VERSION > OBJECT

ANSWER = TRANSACTIONAL > VERSION = OBJECT

SITE = VERSION = OBJECT

AUDITTEMPLATE = RECURRING > VERSION > OBJECT
POLICYCONFIRMATION > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT
TRANSACTIONAL > VERSION = OBJECT

RISK > RECURRING > VERSION > OBJECT

0OBJ20BJ > OBJECT

QUESTION = VERSION > OBJECT

TESTCASE = MONITORABLE > TRANSACTIONAL > VERSION > OBJECT
USER = VERSION = OBJECT

POLICYAPPROVAL = MONITORABLE = TRANSACTIONAL > VERSION > OBJECT
AUDITSTEPTEMPLATE > RECURRING = VERSION > OBJECT

POLICY = MONITORABLE = TRANSACTIONAL > VERSION = OBJECT
RECOMMENDATION > OBJECT

NEWSMESSAGE > VERSION > OBJECT

QUESTIONNAIRE = MONITORABLE = TRANSACTIONAL > VERSION > OBJECT

CUSTOMIZING GUIDE

3.5 Conventions

3.5.1 Conventions in the XML configuration

ARIS Risk & Compliance Manager version 4.0 introduces numerous conventions that reduce the
configuration effort. Examples of these conventions are property keys consisting of the object and
attribute names, and buttons subject to name conventions. The keys and file names are

determined via the name convention and the corresponding resources are automatically loaded.
The function of these conventions is documented in the relevant schema (XSD) for each XML file.

CUSTOMIZING GUIDE

3.5.2 Conventions for object generation

Conventions are used for object generation to reduce the customizing effort. A significant
example is the automatic transport of attributes from master data to transactional data. For
example, the test activities attribute (testingsteps) is automatically transported during test
case generation from the test definition to the generated test case via a name convention. When
a new attribute to be transported to a transactional data object was introduced in earlier ARIS
Risk & Compliance Manager versions, not only the XML configuration, but also the corresponding
object generator had to be adapted in the Java source code. From version 4.0, you only need to
assign identical names to the attributes at the source object and target object.

3.5.2.1 Client association in client-specific objects

For client-specific objects, the client association of the source object is automatically transferred
to the target object.

3.5.2.2 MonitorableObject object type

During the generation of objects of the monitorableObject object type, attributes are
transferred by the relevant recurringObject and calculated based on the master data attributes,
such as start and end date. This requires an appropriate recurringObject to exist in the context.
The default ARIS Risk & Compliance Manager configuration includes the following relationships
between recurring and monitoring objects:

TESTDEFINITION = TESTCASE
SURVEYTASK = SURVEY
SURVEYTASK > QUESTIONNAIRE
RISK = RISKASSESSMENT

The following table illustrates how the attributes are handled:

Handing

plannedstartdate Is calculated based on the start date (startdate) and the frequency
(frequency) of the source object.

plannedenddate Is calculated based on the start date of the target object
(plannedstartdate) and from the duration of the source object
(duration).

controlenddate Is calculated based on the start date of the target object

(plannedstartdate) and from the offset of the source object (offset).

controlstartdate Is calculated based on the end of the control period (controlenddate)
and the control period (control_period) of the source object.

owner_group Is directly transferred from the source object.

CUSTOMIZING GUIDE

Attribute Handling

reviewer_group Is directly transferred from the source object.

3.5.2.3 Identical attribute names

Target object attributes having attributes with identical names at one of the source objects are
automatically transferred. This does not apply to attributes inherited from one of the basic object
types Object (OBJECT) or VersionObject (VERSION). It may be useful to assign identical
names to the attributes, but to suppress the automatic transport of values. You can transfer a list
of attribute names to be skipped to the help class in which the conventions are applied.

3.5.2.4 Object assignment if names are identical

Target objects that are transactional data are often linked with source objects as attributes in
order to provide additional information to the end user processing the target object for a better
understanding of the task at hand. Source objects are linked automatically from ARIS Risk &
Compliance Manager version 4.0, provided the name of the attribute at the target object matches
the name of the object type of a source object. For example, when a test case is generated, the
risk attribute is assigned the corresponding risk (RISK) that has been transferred as a source
object.

CUSTOMIZING GUIDE

3.6 Class mappings

A class mapping links a specific implementation (class) with a name. These names are used in
other parts of the ARIS Risk & Compliance Manager configuration to refer to the required
implementation. The name is significantly shorter and catchier than the rather long name of the
class. This ensures that the configuration remains plausible. Various class mappings are available
in ARIS Risk & Compliance Manager. Their definition, usage, and scope of application are
described in the following section.

3.6.1 Actions

Action commands are used in the user interface to convert user interaction to business logic
commands. In most cases, the default implementation is sufficient. However, in some special
cases or in customizing, it is necessary to adapt or supplement the behavior. For this, you can use
a class mapping which simplifies customizing. All classes associated to this mapping must contain
the IActionCommand interface.

The definition of Action command mappings consists of several parts. One part is the definition of
ActionCommandlds, which contains a list of all valid commands and their explanation.
<commandlds>

<commandld id="create" description="'create new objects" />

<commandld id="delete" description="delete objects, version objects will
be deactivated (see "reactivate®)"/>

<commandld id="duplicate" description="creates a duplicate out of the
selected object'/>

<commandld §d="edit" description=""open the selected object for
editing'/>

<commandld id="reactivate" description="reactivate deactivated objects" />

<commandld id="'save" description="make changes on objects persistent” />

</command lds>
The other parts are:

» objectTypeCommands
Define commands that have an effect on one or more objects. They are usually used with
forms.

= listCommands
Define commands that control lists, e.g., paging, applying a filter, etc.

= evaluationCommands:
Define commands that control evaluations, e.g., expanding the tree structure, applying a
filter, etc.

CUSTOMIZING GUIDE

= jobCommands
Define commands that take into account the different job properties and execute the jobs
accordingly.

= dialogCommands
Define commands that control dialogs.

Each of these areas consists of a list of <commandSet> elements. Each set requires a name
attribute. This attribute specifies what the following command definitions refer to. For
objectTypeCommands, it refers to the unique identifier of the object type, for listCommands, it is
the unique identifier of the list, etc.

A special commandSet is "common". It includes the default implementation for all object types,
lists, etc., so that only special implementations need to be specified individually. For example, if
multiple lists use the same implementation, you can enter all lists, separated by commas, as
names of the commandSet. A list may occur in several commandSets at the same time.
<listCommands>

<commandSet name="‘common''>
<actionCommand commandld=""applyFilter" clsName="BaseApplyFilterCommand" />

</commandSet>

<commandSet name="riskList,controlList">
<actionCommand commandld=""applyFilter' clsName="SpecialApplyFilterCommand" />
</commandSet>

<commandSet name="'riskList'>
<actionCommand commandld=""resetFilter' clsName="SpecialResetFilterCommand" />
</commandSet>

</listCommands>

3.6.2 Command class mappings

Commands section

Commands are used in the context of work flows to execute the business logic. They are usually
very compact and specialized in one task in order to be reusable. You can assign them parameters
for the respective operation purpose (command chain). There are also several special
implementations that were written for a specific purpose and that cannot or hardly be reused.
Nevertheless, you can use them as templates for your own commands. Please note that
commands must implement the ICommand interface.

3.6.3 Statistics class mappings

This class mapping encompasses all classes with alias hames that are used in the statistics. For
details on using these classes, please refer to chapter Add/adapt statistics (Page 52). For
details on implementing additional classes, please refer to the Java documentation of the
interface to be implemented of the relevant section.

CUSTOMIZING GUIDE

EVALUATIONACCESSCONTROL SECTION

Access control implementations are required to grant access only to certain users to certain
statistics. These classes implement the 1EvaluationAccessControl interface.
STATISTICTREEPROVIDER SECTION

Tree provider implementations are required to generate the hierarchy structures that the
statistics are based on (i.e., the tree in the first column).

STATISTICDATAFILTER SECTION

Data filter implementations are used for filtering data for statistics. These classes implement the
IStatisticDataFilter interface.

STATISTICDATASOURCE SECTION

Data source implementations are used for configuring the data sources of statistics. The default
configuration only offers the data sources view and tree. view allows direct access to the ARIS
Risk & Compliance Manager database, tree enables the use of the tree provider as the data
source. These classes implement the 1StatisticDataSource interface.

STATISTICCALCULATOR SECTION

Calculator implementations are used for processing the data to be displayed. They convert the
technical data provided by data source implementations into data readable by users. These
classes implement the 1StatisticCalculator interface.

STATISTICDATALINKER SECTION

Data linker implementations are used for linking the data to be displayed. A link may be a detail
view of the data as a list or an additional statistics, for example. These classes implement the
IStatisticDatalLinking interface.

3.6.4 Bl class mappings

PredefinedValueProvider section

A value provider allows automatic generation of selection options in a dialog based on the user
context and additional parameters, if applicable. These selection boxes occur often and their
content is similar, but user-defined. Various default implementations cover a lot of cases.

3.6.5 Ul class mappings

This section provides the mappings that design the user interface.

RENDERER SECTION

A renderer generates an HTML fragment to represent an attribute in forms or lists. A renderer
must implement the IRenderer interface. In addition to the class for HTML representation

CUSTOMIZING GUIDE

(attribute reportClsName), you can specify a class to adapt the representation in PDF/Excel
reports (attribute clsName).
FILTERRENDERER SECTION

Filter renderer differ from general renderers only as regards their implementation. Here, some
particular cases are considered with respect to the representation of filters.

COLUMNRENDERER SECTION

Column renderers implement the IColumnRenderer interface and are used by the configurable
statistics to display data cells.

LAYOUTER SECTION

Layouters generate HTML fragments by combining one or more renderers suitable for the
relevant control. Layouters implement the ILayouter interface.

CONTROLS SECTION

Controls, such as a form or a list, combine the HTML fragments of the layouters and add further
elements, such as buttons in order to generate a completely interactive HTML page. A control
may consist of several components. If you want to overwrite parts of a control or its components,
a control can refer to another control (attribute extends). If this is the case, the components to
be changed need to be redefined.

<control name="'statistic" clsName="'Statistic" >
<component name="footer"" clsName="" StatisticFooter" />
<component name="header"" clsName=" StatisticHeader" />
<component name="row" clsName=" StatisticDataRow" />
<component name=""toolbar" clsName=" StatisticToolbar" />

<component name="treeNode'” clsName=" StatisticTreeNode"™ />
</control>
<control name="scoping" extends="statistic" clsName="Statistic" >
<component name=""toolbar" clsName=""ScopingStatisticToolbar" />
</control>

3.6.6 View class mappings

In order to be able to customize the data of a configured view, you can specify an additional
handler class at a <view=> element using the viewHandler attribute. This handler class must
implement the 1ViewHandler interface. Then, it is possible within this class to customize the
data returned using additional details. This form of customizing is necessary if the additionally
required adaptations cannot be configured completely.

3.6.7 VCREG.XML configuration file

The configuration file vcreg.xml registers validator and converter to be used at the attributes of
ARIS Risk & Compliance Manager object definitions (see Assign validator (Page 21)). The name
of the validator or converter is defined, which refers to a fully qualified class name.

CUSTOMIZING GUIDE

Example
<validator name="minlength"

clsName=""com. idsscheer .webapps.arcm.bl _models.objectmodel .attribute.vc.validator
-MinLengthvalidator™
propertyKey="errors.minlength"/>

In this example, validator minlength is defined with its implementation being listed in the
clsName attribute. For validators, a property is listed in the propertyKey attribute, which is
displayed in the user interface if the validation is negative.

CUSTOMIZING GUIDE

3.7 Customize help

The help can be extended by creating new HTML pages or customized by creating links to existing
pages. In addition, the content of existing pages can be adapted.

Location

Procedure

Remark

Property file in the properties/help folder

Copy the HTML page to be used for the help to
webapps\arcm\help\<language code>\embedded. The name of the file
must be the same as the corresponding help ID.

After the page is copied to the Help folder enter the new property key in a new
line in the property file stated above. Assign the new help ID as a value to this
new property key. A common properties file is available for all languages.

According to the convention, a help page is automatically expected when a new
form, list, or statistics is created. If a help page is not needed at this point,
enter the property key defined in the convention without a value assigned in
the properties file. In this case, a help button is not displayed.

If you do not want to create a new help page, you can refer to an existing help
page. You can create this link as described above by assigning the existing help
ID in one of the appropriate property files.

Conventions for naming new property keys:

Form: ARCM_FORM_[FORM ID]_PAGE_[PAGE ID].HLP
List: ARCM_LIST_[LIST ID].HLP

Statistics: ARCM_EVALUATION_[EVALUATION ID].HLP

CUSTOMIZING GUIDE

4 Basic use cases
4.1 Customize object properties

4.1.1 Overwrite the schema version

As soon as you customize object properties, you must overwrite the schema tag from the file
objectTypes.xml in customizing. This is the only way to ensure that data exports and imports
from the customized ARIS Risk & Compliance Manager version can be properly assigned to the
relevant version. The customizing of the version also serves as a fixed starting point for future
migrations. If you do not overwrite the schema tag, but still make changes to the schema, it will
not be possible to start the ARIS Risk & Compliance Manager server.

Procedure

Enter the name of the customer project without blanks in the customizing attribute in the
overwritten schema tag. This attribute has the value standard if the schema has not been
customized.

Example

Entry for a customer project called United Motor Group on the basis of ARIS Risk & Compliance
Manager version 4.0.0.2:

<schema version="arcm_4.0.0.2" customizing="UnitedMotorGroup" />

If different customer versions based on a single ARIS Risk & Compliance Manager version are to
be supplied, you can indicate this by stating a version number in the project name.

Example

Entry for a customer project called United Motor Group version 1 on the basis of ARIS Risk &
Compliance Manager version 4.0.0.2:

<schema version="arcm_4.0.0.2" customizing="UnitedMotorGroup_v1" />

If changes in the ARIS Risk & Compliance Manager schema are due to a change in the data import

from ARIS Architect, you must also adapt the target schema in the relevant mapping file

Aris2arcm-mapping_[APPROACH].xml.

Procedure

1. Find the infoHeader tag with the standard attribute:
schema_version="arcm_4.0.0.2_rba_standard"

2. Replace "standard" with the name of the customer project.

Example

schema_version="arcm_4.0.0.2_rba_UnitedMotorGroup "

CUSTOMIZING GUIDE

4.1.2 Add/adapt a simple attribute
4.1.2.1 Create a simple attribute

4.1.2.1.1 Adapt an object type

To adapt an object type, copy the original to the customizing file. Then you can change the
properties and attributes of the object type.

Location XML file in the xml folder

Procedure Copy the <objectType> element from the default configuration to customizing.
Create new attributes within the <objectType> element. You need to set at
least the id property. The value must be unique within the object type.

Documents objectTypes.xml, objectTypes.xsd

Example ModifyObject AddSimpleAttribute \WEB-INF\config\custom\xml\custom.xml:
Add Simple Attribute

4.1.2.1.2 Add/adapt properties

Properties are used for the multi-language capability of the application. A separate file is available
for each language. These files include the country code as a suffix in their names.

Location Property file in the properties/application folder

Procedure Enter the new property key followed by an equal sign and the corresponding
translation in a new line. A separate file is available for each language.

Documents See Customize names.

Example ModifyObject _AddSimpleAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Add Simple
Attribute

4.1.2.1.3 Assign validator

To ensure that only certain or permitted values will be included in the database you can assign a
validator to an attribute.

Location XML file in the xml folder

Procedure Add a new <validate> element as a subordinate element of the attribute and
specify a registered validator as a name.

Documents vcreg.xml, vereg.xsd

CUSTOMIZING GUIDE

Example ModifyObject_AddSimpleAttribute
\WEB-INF\config\custom\xml\custom.xml: Add Simple Attribute

4.1.2.1.4 Assignh converter

You may need to assign the attribute a converter that modifies the data between application and
database. Especially the startdate and enddate converters are often used if two date fields are
to describe a time period.

Location XML file in the xml folder

Procedure Add a new <convert=> element as asubordinate element of the attribute and
specify a registered converter as a name.

Documents vcreg.xml, vcreg.xsd

Example See Assign validator (Page 21).

4.1.2.2 Add an attribute to a form

4.1.2.2.1 Adapt a form

For attributes to be displayed and for you to be able to edit them in the user interface, they must
be specified in the object type form. As the order of the attributes may be important, it is defined
separately from the object type definition.

Location XML file in the xml folder

Procedure 3. Copy the <form=> element from the default configuration to customizing,
and add a new <row=> element at the position where the new attribute is to
be displayed.

4. Create a subnode <element> with the property attribute.idref. You must
specify the unique name of the attribute.

Documents forms_[module].xml, forms.xsd

Example ModifyObject_AddSimpleAttribute
\WEB-INF\config\custom\xml\custom.xml: Modify Form

CUSTOMIZING GUIDE

4.1.2.2.2 Add/adapt properties for a form

See Add/adapt properties (Page 32).
Procedure At the <row=>=element, define the property PropertyKey.

Remark This is optional in the form and only required if the prorperty key of the first
subnode <element>, which is used according to the convention does not
provide an appropriate description. If, for example, there is a start date and an
end date in one row, you should define a new property key reflecting the name
of the relevant period.

Example ModifyObject AddSimpleAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Modify
Form

4.1.2.2.3 Assign a renderer

A default representation is defined for all attributes. To change the default representation, you
need to specify a different class generating this representation, or you adapt the default
representation by means of a default renderer using parameters.

Location XML file in the xml folder
Procedure Assign a valid and registered renderer to the template property of <element=>.
Documents uiClassMappings.xml, uiClassMappings.xsd

Example ModifyObject _AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Assign Renderer

CUSTOMIZING GUIDE

4.1.2.2.4 Adapt rules

New attributes are optional, visible, and not editable by default. To change this, you need to adapt
the rules. Usually, there are already rules that determine whether the attributes are visible and
editable. If the conditions of the rule are met, the new attribute can simply be added. If other
conditions are required, it is necessary to create a new rule.

Location DRL file in the rules folder.

Procedure Copy the default file to customizing. You can then modify rules or add new ones.

Documents See chapter Add/adapt rule (Page 64).

Example ModifyObject AddSimpleAttribute
\WEB-INF\config\custom\rules\usergroup.drl: Modify Form

4.1.2.2.5 Add/adapt reports

Normally, reports are automatically generated based on the form definitions. However, it is
possible to modify the reports through configuration.

Location XML file in the xml folder
Documents Chapter Add/adapt reports (Page 56)

Example ModifyObject AddSimpleAttribute
\WEB-INF\config\custom\xml\custom.xml: Modify Report

4.1.2.3 Add an attribute to a list

4.1.2.3.1 Adapt a list

The modification of lists is similar to the modification of forms.
Location XML file in the xml folder

Procedure 1. Add a new <column=> element at the relevant position.

2. Specify a name unique in the list for the id property. The attribute.idref
property must refer to a valid data retrieval column.

3. Add a new <listHeader> element. To enable sorting, the column property
must point to the corresponding column name.

4. Complete the property key and the width property. The value for width is
usually specified in relative widths and its sum should not exceed 98%. The
remaining 2% are occupied by the buttons at the beginning and end of each

CUSTOMIZING GUIDE

row.
Documents lists_[module].xml, lists.xsd

Example ModifyObject AddSimpleAttribute
\WEB-INF\config\custom\xm\custom.xml: Modify List

4.1.2.3.2 Add/adapt properties for a list

See Add/adapt properties (Page 21).

Example

ModifyObject_AddSimpleAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Modify List

4.1.2.3.3 Adapt data retrieval for a list

In the list, a view defined is defined as a data source. This view needs to be customized for the
new attribute to be included.

Location XML file in the xml folder

Procedure 1. Insert a new <viewColumn=> element as a subordinate element in the
<viewObject> element. The view object defines the object type of the view
columns.

2. Assign a unique name to the id property. The attributeType property
references an attribute of the associated object type. If you do not only want
to filter, but also output the column, you must set the isSelectColumn
property to true.

Documents view_[module].xml, views.xsd

Example ModifaObject AddSimpleAttribute
\WEB-INF\config\custom\xml\custom.xml: Modify View

4.1.2.3.4 Add arenderer

A default representation is defined for all attributes. To change the default representation, you
need to specify a different class generating this representation, or you adapt the default
representation by means of a default renderer using parameters.

Location XML file in the xml folder

Procedure Assign a valid and registered renderer to the template property of the
<column=.

CUSTOMIZING GUIDE

Documents uiClassMappings.xml, uiClassMappings.xsd

Example ModifyObject AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Assign List Renderer

4.1.2.3.5 Add/adapt reports

See Add/adapt reports (Page 56).

4.1.2.4 Add an attribute to a filter

4.1.2.4.1 Adapt a list filter

All data retrieval columns can be filtered, regardless of whether they exist in the result or not. You
can modify and save the filter values for reuse.

Two filter views exist. One is the view as a simple list in the Save/configure filter dialog, which
is similar to an object form, and another is the view as a drop-down filter directly above the list.
The format for the Save/configure filter dialog is specified during filter definition. The filter
definition is similar to the form definition and works according to the same principle.

You can customize the order and arrangement of the different filterable attributes for the
drop-down filter. All filter attributes that are not explicitly arranged are added at the end of the
extended part of the filter in line with the order of the filter definition.

Location XML file in the xml folder

Procedure 1. Copy the relevant filter to customizing.

2. Insert a new <filterRow=> element at the relevant position of the filter
definition.

3. Below the new element, create a subordinate element <filterElement>
and set the dataReference.idref property to the relevant viewColumn.
The template and filterType properties are determined automatically,
but they can also be set explicitely if a different representation (template)
or data storage (filterType) is desired or required.

Documents filters_[module].xml, uiClassMapping.xml, blClassMapping.xml, filter.xsd,
uiClassMapping.xsd, blClassMapping.xsd

Example ModifyObject AddSimpleAttribute
\WEB-INF\config\custom\xml\custom.xml: Modify filter

CUSTOMIZING GUIDE

4.1.2.4.2 Add/adapt properties for a filter

See Add/adapt properties (Page 21).

Example
ModifyObject_AddSimpleAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Modify filter

4.1.2.4.3 Assign a renderer

See Assign a renderer (form) (Page 23).

4.1.3 Add/modify an enumeration attribute
4.1.3.1 Create an enumeration attribute

4.1.3.1.1 Add/adapt an enumeration

For a new enumeration attribute, you can reuse an existing enumeration or create a new one. We
recommend that you create a new enumeration. If you reuse an existing enumeration, you may
encounter conflicts with other enumeration attributes that refer to this enumeration if the
elements need to be customized.

Location XML file in the xml folder

Procedure 1. Insert a new <enum>= element.

2. Define the required properties id (unique name), isMultiple (single or
multiple selection), and type (number or string)

3. Then, as subordiante elements, add the elements of the enumeration as an
<enumitem=>= element.
4. Assign a unique name (id) and a corresponding value (value) to each

<enumitem> element.

Remark If number is selected as the type, the value property of the <enumitem=>
elements must only contain figures. If the formRelevant property is set to
false, you cannot select the value in the form. The same applies to
filterRelevant with regard to the selectability in the filter.

Documents enumerations.xml

Example ModifyObject_ AddEnumerationAttribute
\WEB-INF\config\custom\xml\custom.xml: Add/Modify enumeration

CUSTOMIZING GUIDE

4.1.3.1.2 Add/adapt properties for an enumeration

See Add/adapt properties (Page 21).

Remark According to the convention, the property key for an enumeration element looks
as follows:

enumeration.[Name of enumeration].[Name of element].DBI

Example ModifyObject AddEnumerationAttribute

\WEB-INF\config\custom\properties\application\custom.properties: Add/Modify
enumeration

4.1.3.1.3 Adapt an object type

See Adapt an object type (Page 21).

Procedure In addition to the simple attributes, you need to specify the enumeration
property. This property specifies the enumeration to be used for the attribute.

Example ModifyObject AddEnumerationAttribute

\WEB-INF\config\custom\xml\custom.xml: Add enumeration attribute

4.1.3.1.4 Add an attribute to a form

See Add an attribute to a form (Page 22).

Example

ModifyObject AddEnumerationAttribute
\WEB-INF\config\custom\xmI\custom.xml: Modify form
ModifyObject_ AddEnumerationAttribute
\WEB-INF\config\custom\rules\usergroup.drl: Modify Form

4.1.3.1.5 Adapt data retrieval for a list

See Adapt data retrieval for a list (Page 25).

Example
ModifyObject_ AddEnumerationAttribute

\WEB-INF\config\custom\xmN\custom.xml: Modify view

4.1.3.1.6 Add an attribute to a list

See Add an attribute to a list (Page 24).

CUSTOMIZING GUIDE

Example
ModifyObject AddEnumerationAttribute
\WEB-INF\config\custom\xml\custom.xml: Modify list

4.1.3.1.7 Add an attribute to a filter

See Add an attribute to a filter (Page 26).

Example
ModifyObject_ AddEnumerationAttribute
\WEB-INF\config\custom\xml\custom.xml: Modify filter

4.1.4 Add/adapt a list attribute
4.1.4.1 Create a list attribute

4.1.4.1.1 Adapt an object type

See Adapt an object type (Page 21).

Remark List attributes require additional properties:

= maxSize indicates the maximum number of objects that can be assigned to
the attribute. -1 means an infinite number of objects.

= The linkType property requires a unique numeric value.

= objectType.idref contains the names of all object types, separated by
commas, that may be assigned. Generally, this should be only one object

type.
= The orderType property indicates how assigned objects are to be sorted.

Documents objectTypes.xsd

Example ModifyObject AddListAttribute
\WEB-INF\config\custom\xml\custom.xml: Add list attribute

CUSTOMIZING GUIDE

4.1.4.1.2 Add/adapt properties

See Add/adapt properties (Page 21).

Example
ModifyObject_AddListAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Add list attribute

4.1.4.1.3 Adapt list restrictions

In addition to the object type restriction, there is another option to further restrict the number of
objects allowed. This restriction applies to objects whose attributes have certain values.

Location XML file in the xml folder

Procedure Add a <listRestriction> element as a new subordinate element. It has no
property, but merely serves to group the <attributeRestriction>
subordinate elements. They have two properties that are both required.
attribute refers to an attribute of an object type allowed in list attributes.
value refers to the allowed value of the attribute. Objects with different values
cannot be assigned.

Remark You should only refer to attributes that no longer change within the life cycle of
the object, such as the type of a hierarchy object. <listRestriction> elements
of a list attribute are OR-connected. <listRestriction> elements of a list
restriction are AND-connected.

Documents objectTypes.xsd

Example ModifyObject AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Add list restrictions

4.1.4.1.4 Adapt roles

A particular privilege assignment applies to list attributes. It specifies which role may process
which list attributes. You can individually set the privileges for adding objects to a list attribute or
removing them from one. By default, no role has the privilege for this, you need to explicitly
assign these privileges to all of these roles.

Location XML file in the xml folder

Procedure 1. Add a new <roles> element.

2. Add one or more <role> subordinate elements that you can copy from the
default configuration

3. Then, customize the privileges. The roles need privileges for adding and

CUSTOMIZING GUIDE

Documents

Example

4.1.4.1.5

removing objects to and from the new list attribute.

4. Add a new <relation> subordinate element to the <object> element
referencing the matching object type. The right.idref property knows the
possible values a (attach), r (remove), and ar (attach/remove).
listAttrType.id references the corresponding list attribute.

roles.xml, roles.xsd

ModifyObject AddListAttribute
\WEB-INF\config\custom\xml\custom.xml: Modify roles

Add an attribute to a form

See Add an attribute to a form (Page 22).

Procedure

Remark

Documents

Example

There are additional properties you need to specify for list attributes. If the list
attribute is to be editable by the user, you need a selection list offering
assignhable objects for selection.

Two options are available. You can have a selection list generated automatically
or define a list yourself (see Add a selection list (Page 32)). The second option
is relevant if the selection list contains special cases that the automatic lists
cannot cover.

You configure the selection list using a <parameter> subordinate element with
the name selectionList and specifying the name of the selection list as value.
For an automatically generated selection list, the value for value must be AUTO.

You can also customize the buttons for managing and manipulating the objects.
Open, Edit, Create assignment and Remove assignment are the default
buttons. They have the subordinate elements <button.add> and
<button.remove=>. The button.idref property defines the button to be added
or removed. location defines whether the button is to be inserted into the
toolbar (toolbar) or displayed individually for each assigned object (row). type
defines whether the button is only available if the list attribute is editable
(writable) by the user or always (always).

An automatic selection list includes the client of the object, the list restriction of
the list attribute, and the objects already assigned. The primary column of the
selection list contains the attribute specified in the nameAttribute property of
the selection object type. The other columns and filters result from the attributes
defined in the descriptionAttributes property.

objectTypes.xsd

ModifyObject_AddListAttribute
\WEB-INF\config\custom\xm\custom.xml: Modify form

CUSTOMIZING GUIDE

4.1.4.2 Add a selection list

4.1.4.2.1 Adapt a selection list

Adding a selection list is similar to creating a normal list. It includes data retrieval, a
representation of the list, and a filter definition. To create a selection list from this normal list, you
need to configure a few properties.

Location XML file in the xml folder

Procedure 1. Create the list and specify the following properties of the <list> element:
a. listType receives the value selection.

b. destDataType.idref receives as a value the object type of the list
attribute.

c. destAttributeType.idref receives the name of the list attribute itself.
Documents lists.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Add selection list

4.1.4.2.2 Add/adapt properties

See Add/adapt properties (Page 21).

Remark Omitting the right part in the property file results in no help button being
displayed for this element.

Example ModifyObject AddListAttribute

\WEB-INF\config\custom\properties\help\custom_helpids.properties: Add
selection list

4.1.4.2.3 Adapt data query for selection list

Location XML file in the xml folder

Procedure 1. Supplement the data query by two <viewCondition