

Version 10.0 - Service Release 4

ARIS Risk & Compliance Manager
CUSTOMIZING GUIDE

April 2018

http://www.softwareag.com

This document applies to ARIS Risk & Compliance Manager Version 10.0 and to all subsequent
releases.
Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.
Copyright © 2010 - 2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc.,
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.
The name Software AG and all Software AG product names are either trademarks or registered
trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its
affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.
Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is
located at http://softwareag.com/licenses.
Use of this software is subject to adherence to Software AG's licensing conditions and terms.
These terms are part of the product documentation, located at http://softwareag.com/licenses
and/or in the root installation directory of the licensed product(s).
This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices
and Disclaimers of Third Party Products". For certain specific third-party license restrictions,
please refer to section E of the Legal Notices available under "License Terms and Conditions for
Use of Software AG Products / Copyright and Trademark Notices of Software AG Products". These
documents are part of the product documentation, located at http://softwareag.com/licenses
and/or in the root installation directory of the licensed product(s).

http://www.softwareag.com

CUSTOMIZING GUIDE

I

Contents
1 Text conventions ... 1

2 What can be customized? ... 2

3 General procedure ... 3
3.1 Adapt the XML configuration ... 3
3.2 Adapt rules ... 3
3.3 Adapt names ... 3
3.4 Inheritance ... 4

3.4.1 Inheritance hierarchy of central objects .. 4
3.4.2 Object and VersionObject object types ... 4
3.4.3 TransactionalObject object type ... 5
3.4.4 MonitorableObject object type ... 6
3.4.5 RecurringObject object type .. 7
3.4.6 ObjectContainer object type .. 8
3.4.7 Inheritance in the file objectTypes.xml ... 9

3.5 Conventions .. 11
3.5.1 Conventions in the XML configuration ... 11
3.5.2 Conventions for object generation .. 11

3.5.2.1 Environment association in environment-specific objects 11
3.5.2.2 MonitorableObject object type ... 11
3.5.2.3 Identical attribute names .. 12
3.5.2.4 Object assignment if names are identical 12

3.6 Class mappings ... 13
3.6.1 Actions ... 13
3.6.2 Command class mappings ... 14
3.6.3 Statistics class mappings .. 15
3.6.4 Bl class mappings .. 16
3.6.5 UI class mappings .. 16
3.6.6 View class mappings .. 17
3.6.7 VCREG.XML configuration file .. 17

3.7 Customize help .. 18

4 Basic use cases ... 19
4.1 Customize object properties .. 19

4.1.1 Overwrite the schema version ... 19
4.1.2 Add/adapt a simple attribute ... 20

4.1.2.1 Create a simple attribute .. 20
4.1.2.1.1 Adapt an object type .. 20
4.1.2.1.2 Add/adapt properties .. 20
4.1.2.1.3 Assign validator ... 21
4.1.2.1.4 Assign converter .. 21

4.1.2.2 Add an attribute to a form ... 22
4.1.2.2.1 Adapt a form ... 22
4.1.2.2.2 Add/adapt properties of a form .. 22
4.1.2.2.3 Assign a renderer ... 23
4.1.2.2.4 Adapt rules .. 23
4.1.2.2.5 Add/adapt reports .. 23

4.1.2.3 Add an attribute to a list ... 24
4.1.2.3.1 Adapt a list .. 24
4.1.2.3.2 Add/adapt properties of a list .. 24
4.1.2.3.3 Adapt data retrieval for a list ... 24

CUSTOMIZING GUIDE

II

4.1.2.3.4 Add a renderer .. 25
4.1.2.3.5 Add/adapt reports .. 25

4.1.2.4 Add an attribute to a filter ... 25
4.1.2.4.1 Adapt a list filter .. 25
4.1.2.4.2 Add/adapt properties of a filter .. 26
4.1.2.4.3 Assign a renderer ... 26

4.1.3 Add/modify an enumeration attribute ... 27
4.1.3.1 Create an enumeration attribute .. 27

4.1.3.1.1 Add/adapt an enumeration .. 27
4.1.3.1.2 Add/adapt properties of an enumeration 27
4.1.3.1.3 Adapt an object type .. 28
4.1.3.1.4 Add an attribute to a form ... 28
4.1.3.1.5 Adapt data retrieval for a list ... 28
4.1.3.1.6 Add an attribute to a list ... 28
4.1.3.1.7 Add an attribute to a filter ... 28

4.1.4 Add/adapt a list attribute .. 29
4.1.4.1 Create a list attribute ... 29

4.1.4.1.1 Adapt an object type .. 29
4.1.4.1.2 Add/adapt properties .. 29
4.1.4.1.3 Adapt list restrictions .. 29
4.1.4.1.4 Adapt roles .. 30
4.1.4.1.5 Add an attribute to a form ... 30

4.1.4.2 Add a selection list ... 31
4.1.4.2.1 Adapt a selection list .. 31
4.1.4.2.2 Add/adapt properties .. 32
4.1.4.2.3 Adapt data query for selection list .. 32
4.1.4.2.4 Assign a renderer ... 32
4.1.4.2.5 Add a selection list filter .. 32

4.2 Customize the object life cycle .. 33
4.2.1 Workflow configuration ... 33

4.2.1.1 Add a state ... 33
4.2.1.1.1 Add a state to an active object ... 34
4.2.1.1.2 Add a state to a deleted object .. 34

4.2.1.2 Add a transition ... 35
4.2.1.2.1 Add a prepare transition ... 35
4.2.1.2.2 Add an insert transition ... 35
4.2.1.2.3 Add an update transition ... 36
4.2.1.2.4 Add a reset transition ... 37
4.2.1.2.5 Add a delete transition .. 37
4.2.1.2.6 Add a recover transition .. 38

4.2.2 Configure the command chain catalog .. 39
4.2.2.1 Modify a command chain .. 39
4.2.2.2 Add a command chain .. 40

4.2.3 Adapt/add user interactions .. 40
4.2.3.1 Confirmation dialogs ... 41
4.2.3.2 Input dialogs ... 41

4.3 Adapt the task configuration ... 44
4.4 Adapt a master data import .. 47
4.5 Add/adapt hierarchies .. 48

4.5.1 Add an enumeration item .. 48
4.5.2 Add a new list element to a master data object 48
4.5.3 Add a new list element to a transactional object 49

CUSTOMIZING GUIDE

III

4.5.4 Display and input options for forms .. 49
4.5.5 Automatic transfer of hierarchy objects .. 50
4.5.6 Make a hierarchy attribute editable. ... 50
4.5.7 Assign roles to a hierarchy attribute ... 50
4.5.8 Add a hierarchy evaluation .. 51
4.5.9 Create a new data view for hierarchy statistics .. 51

4.6 Add/adapt statistics ... 52
4.6.1 Adapt statistics .. 52

4.6.1.1 Adapt column widths .. 52
4.6.1.2 Link structural elements.. 52
4.6.1.3 Add/adapt columns .. 53

4.6.1.3.1 statistic.columnGroup.enum-based statistics 53
4.6.1.3.2 statistic.columnGroup.perCent-based statistics 54
4.6.1.3.3 statistic.column.value-based statistics 55
4.6.1.3.4 Adapt links .. 56
4.6.1.3.5 Use a new hierarchy ... 56

4.7 Add/adapt reports .. 57
4.7.1 Add/adapt reports for forms .. 57

4.7.1.1 Replace an existing form report definition 57
4.7.1.2 Add a new form report definition .. 57
4.7.1.3 Incorporate a new form report selection 58

4.7.2 Add/adapt reports for lists .. 59
4.7.2.1 Replace an existing list report definition .. 59
4.7.2.2 Add a new list report definition .. 59
4.7.2.3 Incorporate a new report selection ... 60

4.8 Modify message template ... 60
4.8.1 Add a new message template .. 60
4.8.2 Add a new message template content .. 61
4.8.3 Customize the contents of a message template 62
4.8.4 Send messages ... 63

4.9 Add/adapt segregation of duties .. 64
4.10 Add/adapt rule .. 65

4.10.1 Overwrite an existing rule file .. 65
4.10.2 Incorporate a new rule file .. 66
4.10.3 Reuse existing rules for new attributes ... 67

4.11 Add/adapt a scheduled task .. 68
4.11.1 Adapt the schedule .. 68
4.11.2 Generator ... 69

4.11.2.1 Adapt the object search .. 69
4.11.2.2 Generate objects ... 70

4.11.3 Adapt the object search .. 71
4.11.4 Updater .. 71

4.12 Adapt offline processing .. 71
4.12.1 Modify offline documents .. 71
4.12.2 Change the offline operator roles definition ... 72
4.12.3 Add a new Offline editor role ... 73
4.12.4 Adapt offline processors .. 73
4.12.5 Adapt offline behavior for each object type ... 74

4.13 Add/adapt dashboard link ... 74
4.13.1 Adapt DashBoard link ... 74
4.13.2 Add dashboard link .. 75

4.13.2.1 Add a MashZone list for object data .. 75

CUSTOMIZING GUIDE

IV

4.13.2.2 Add a MashZone list for object links ... 76
4.13.2.3 Assign a name to a MashZone list .. 76

4.14 Adjust navigation ... 77
4.14.1 Adapt navigation for an area ... 77

4.15 Adapt and extend event enabling ... 79
4.15.1 Extend existing event type XSDs ... 79
4.15.2 Create new event type XSDs ... 80

4.16 Adapt interface appearance ... 80
4.16.1 Exchange images and icons ... 80
4.16.2 Include CSS files .. 81
4.16.3 Include JavaScript files ... 81

5 Support .. 82

6 Disclaimer .. 83

CUSTOMIZING GUIDE

1

1 Text conventions

Menu items, file names, etc. are indicated in texts as follows:

 Menu items, keyboard shortcuts, dialogs, file names, entries, etc. are shown in bold.

 Content input that you specify is shown in <bold and within angle brackets>.

 Single-line example texts are separated at the end of a line by the character , e.g., a long
directory path that comprises multiple lines.

 File extracts are shown in the following font:

This paragraph contains a file extract.

CUSTOMIZING GUIDE

2

2 What can be customized?

The configuration of ARIS Risk & Compliance Manager is defined in XML files based on commented
XML schema files (.xsd). These XML files describe:

 characteristics of objects and attributes as well as their representation in the user interface

 object life cycle and form flow

 Hierarchies

 statistics and reports

 roles, privileges, and segregation of duties

 notifications

 scheduled tasks

 Offline processing

 Dashboard links

 Style sheets

The XML configuration refers to:

 Java classes that implement specific behavior

 property files containing the localized text for the user interface

 DRL and DSL files containing the rules for the forms

You can customize the application by adapting the elements in the XML configuration.

For example, you can add an existing attribute type to an existing object type using a new name.
Or you can include new elements, such as new messages or Java classes implementing new
behavior that you cannot otherwise configure using XML. This does not require an individual build
process. Changes to the configuration are applied during server runtime as long as the system is
running in development mode (ACC parameter arcm.config.isDevelopmentSystem = true).
A server restart is required for productive systems. The section Basic use cases (Page 19)
describes all steps for adaptations based on the XML configuration.

You can also customize the behavior by integrating individual Java implementations of special
interfaces through the XML configuration. These Java classes can be individually developed based
on a defined interface and are then included like the default classes without any particular build
process being required for ARIS Risk & Compliance Manager.

If an updated version of this document is available, you will find it here:
http://aris.softwareag.com/ARISDownloadCenter/ADCDocumentationServer
(http://aris.softwareag.com/ARISDownloadCenter/ADCDocumentationServer)

http://aris.softwareag.com/ARISDownloadCenter/ADCDocumentationServer

CUSTOMIZING GUIDE

3

3 General procedure

The default implementation is based on configuration mechanisms that are also used for
adaptations. The default configuration of the control-based approach (CBA) is already an
adaptation of the default configuration of the risk-based approach (RBA). If the default behavior
or default structure is to be changed selectively, the corresponding passages in the XML
configuration can be overwritten so that a changed behavior or a changed or extended structure
is defined at this position. These selective changes and extensions are performed in the directory
tomcat\webapps\arcm\WEB-INF\config\custom, which is located in the installation
directory.

The chapter on Basic use cases (Page 19) describes the steps necessary to create adapted
configurations based on the use cases supported. The procedure described is implemented in
configuration examples that you can find in the folder customizing examples.

The folder standard configuration contains the default XML configuration files. You can use
these files as a starting point for adaptations and copy the passages to be customized from there
and then change them according to your requirements.

3.1 Adapt the XML configuration

The xml folder contains one or more XML files including the customized XML configuration. The
system validates these files against the XML schema file custom.xsd. This file is located in the
xsd folder and must not be changed. The <custom> element must be the root element of these
XML files.

3.2 Adapt rules

The rules folder contains adapted rule files that are integrated by the XML configuration. See
Add/adapt rule (Page 65).

3.3 Adapt names

The properties folder contains one or more property files with customized strings for the user
interface.

Naming conventions:

 The file name must end with _xx.properties. (xx stands for the code of the language the
strings are localized in.)

 The underscore (_) must not occur at any other position of the file name.

Example

For English, you can use myCustomizedStrings_en.properties, but not
my_customized_strings_en.properties.

This allows you to create several language versions in parallel, whose file names only differ in
terms of the language code.

CUSTOMIZING GUIDE

4

3.4 Inheritance

ARIS Risk & Compliance Manager version 4.0 introduces an inheritance mechanism in object
configuration (objectTypes.xml). This ensures a uniform structure of objects and attributes of
the components, Test Management, Issue Management, etc., as well as objects with similar
meaning and function. The inheritance determines the function of an object type within the
component and thus reduces the configuration effort. The configuration effort is reduced due to
the centralization and reuse of workflow-relevant attributes. The inheritance feature also
simplifies the programming of generic system functions, such as monitoring because it is possible
to access centrally configured attributes.

3.4.1 Inheritance hierarchy of central objects

3.4.2 Object and VersionObject object types

The Object and VersionObject object types (objectTypes.xml: OBJECT, VERSION) contain
central technical attributes. These should not be changed during customizing. Object types that
are subject to the ARIS Risk & Compliance Manager versioning mechanism need to extend the
VersionObject object type. Non-versioned object types inherit from Object directly. Similar to
the Java programming language, it is not necessary to explicitly specify the extension of the
Object object type, it is extended automatically.

CUSTOMIZING GUIDE

5

3.4.3 TransactionalObject object type

The transactionalObject object type (objectTypes.xml: TRANSACTIONAL) combines several
attributes that belong to the typical transactional data objects. Usually, these object types (for
example, Test case) pass through various roles (for example, Tester and Reviewer) during a
workflow and represent the basis of the data recorded in ARIS Risk & Compliance Manager.

ATTRIBUTES

Attribute ID Data type Usage

owner_status Enumeration Status

owner_group Assignment Group responsible for execution

owner Assignment Executing user

owner_substitute Assignment Substitute of executing user

execution_date Date Execution date

reviewer_status Enumeration Status of review

reviewer_group Assignment Group responsible for review

reviewer Assignment Reviewer

reviewer_substitute Assignment Substitute of reviewer

review_date Date Review date

If the two status attributes require different enumerations for different workflows, you can
overwrite the corresponding attributes of the actual (inheriting) object type. For group
assignment attributes, the roles of assignable groups need to be specified at the inheriting object
type.

INHERITANCE DIAGRAM

CUSTOMIZING GUIDE

6

3.4.4 MonitorableObject object type

The monitorableObject object type (objectTypes.xml: MONITORABLE) adds several
attributes to the transactionalObject object type described previously, which are associated
with time-based monitoring. Transactional data types with expiration dates (for example, Test
case) monitored by the application are supposed to inherit from this object type.

ATTRIBUTES

Attribute ID Data type Usage

plannedstartdate Enumeration Start date of processing period

plannedenddate Assignment End date of processing period

controlstartdate Assignment Start date of control period

controlenddate Assignment End date of control period

INHERITANCE DIAGRAM

CUSTOMIZING GUIDE

7

3.4.5 RecurringObject object type

The RecurringObject object type (objectTypes.xml: RECURRING) is part of the master data. It
combines attributes required for the regeneration of transactional data objects.

ATTRIBUTES

Attribute ID Data type Usage

owner_group Assignment Group responsible for execution

frequency Enumeration Frequency used to generate the transactional data
objects (once, daily, weekly, etc.)

duration Integer

(long)

Time limit for execution in days

startdate Date Date from which transactional data is generated regularly

enddate Date Date up to which transactional data is generated regularly

control_period Enumeration Length of the control period (day, week, month, etc.)

offset Integer

(long)

Offset of the control period in days

reviewer_group Assignment Group responsible for review

If the frequency and control_period attributes require different enumerations for different
workflows, you can overwrite the corresponding attributes of the actual (inheriting) object type.
For group assignment attributes, the selection must be restricted to one role at the inheriting
object type. For this, you must overwrite this attribute and assign the appropriate restriction to it.

INHERITANCE DIAGRAM

CUSTOMIZING GUIDE

8

3.4.6 ObjectContainer object type

The objectContainer object type (objectTypes.xml: OBJECTCONTAINER) serves as a
container for other objects. It is used in Issue Management, for example, to connect objects of
any type as issue-relevant objects.

ATTRIBUTES

Attribute ID Data type Usage

object_id Integer (long) ID of the object contained

object_version_numbe
r

Integer (long) Version number of the object contained

object_objtype String Object type of the object contained

object_clientSign String Auxiliary attribute for the environment filter

object_clientSigns String Auxiliary attribute for the environment filter
(contains a comma-separated list of assigned
environment identifiers)

object_name String Name of the object contained

object_ovid String Auxiliary attribute for the selection (object
version ID)

role Enumeration Role used for accessing the object contained

INHERITANCE DIAGRAM

CUSTOMIZING GUIDE

9

3.4.7 Inheritance in the file objectTypes.xml

Inheritance is expressed using the XML attribute extends at the XML element objectType in the
file objectTypes.xml. The value of the attribute must contain the ID of the superior object.

BASIC OBJECTS WITH A SPECIFIC MEANING

OBJECT, VERSION, TRANSACTIONAL, RECURRING, MONITORABLE, OBJECTCONTAINER

INHERITANCE STRUCTURE

USERPROFILE > OBJECT

ISSUE->MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

INCIDENT > TRANSACTIONAL > VERSION > OBJECT

JOBINFORMATION > OBJECT

OPTION > VERSION > OBJECT

POLICYREVIEWTASK > RECURRING > VERSION > OBJECT

AUDIT > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

SUBSCRIPTION > OBJECT

DOCUMENTLINKTYPE > OBJECT

TASKITEM > OBJECTCONTAINER > OBJECT

CHANGEREVIEW > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

VERSION > OBJECT

OFFLINEPROCESSINGENTRY > OBJECTCONTAINER > OBJECT

HIERARCHY > RECURRING > VERSION > OBJECT

OBJECTCONTAINER > OBJECT

INTERNALMESSAGE > OBJECT

AUDITSTEP > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

JOBQUEUEENTRY > OBJECT

DEFICIENCY > VERSION > OBJECT

SOPROCESS > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

RISKASSESSMENT > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

DOCUMENT > OBJECT

OBJECT > OBJECT

QUESTIONNAIRESECTION > OBJECT

BOOKMARK > OBJECT

SURVEY > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

AUDITSCOPE > OBJECTCONTAINER > OBJECT

USERGROUP > VERSION > OBJECT

LOSS > TRANSACTIONAL > VERSION > OBJECT

CUSTOMIZING GUIDE

10

MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

POLICYDEFINITION > RECURRING > VERSION > OBJECT

MESSAGETEMPLATES > OBJECT

RECURRING > VERSION > OBJECT

POLICYREVIEW > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

EXCEPTION > VERSION > OBJECT

SOTASK > RECURRING > VERSION > OBJECT

OPTIONSET > VERSION > OBJECT

ENVIRONMENT > VERSION > OBJECT

CONTROL > VERSION > OBJECT

SECTION > VERSION > OBJECT

TESTDEFINITION > RECURRING > VERSION > OBJECT

QUESTIONNAIRE_TEMPLATE > VERSION > OBJECT

ISSUERELEVANTOBJECT > OBJECTCONTAINER > OBJECT

SURVEYTASK > RECURRING > VERSION > OBJECT

ANSWER > TRANSACTIONAL > VERSION > OBJECT

SITE > VERSION > OBJECT

AUDITTEMPLATE > RECURRING > VERSION > OBJECT

POLICYCONFIRMATION > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

TRANSACTIONAL > VERSION > OBJECT

RISK > RECURRING > VERSION > OBJECT

OBJ2OBJ > OBJECT

QUESTION > VERSION > OBJECT

TESTCASE > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

USER > VERSION > OBJECT

POLICYAPPROVAL > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

AUDITSTEPTEMPLATE > RECURRING > VERSION > OBJECT

POLICY > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

RECOMMENDATION > OBJECT

NEWSMESSAGE > VERSION > OBJECT

QUESTIONNAIRE > MONITORABLE > TRANSACTIONAL > VERSION > OBJECT

CUSTOMIZING GUIDE

11

3.5 Conventions

3.5.1 Conventions in the XML configuration

ARIS Risk & Compliance Manager version 4.0 introduces numerous conventions that reduce the
configuration effort. Examples of these conventions are property keys consisting of the object and
attribute names, and buttons subject to naming conventions. The keys and file names are
determined by the name convention and the corresponding resources are automatically loaded.
The function of these conventions is documented in the relevant schema (XSD) for each XML file.

3.5.2 Conventions for object generation

Conventions are used for object generation to reduce the customizing effort. A significant
example is the automatic transport of attributes from master data to transactional data. For
example, the test activities attribute (testingsteps) is automatically transported during test
case generation from the test definition to the generated test case via a name convention. When
a new attribute to be transported to a transactional data object was introduced in earlier ARIS
Risk & Compliance Manager versions, not only the XML configuration, but also the corresponding
object generator had to be adapted in the Java source code. From version 4.0, you must assign
identical names to the attributes at the source object and target object.

3.5.2.1 Environment association in environment-specific
objects

For environment-specific objects, the environment association of the source object is
automatically transferred to the target object.

3.5.2.2 MonitorableObject object type

During the generation of objects of the monitorableObject object type, attributes are
transferred by the relevant recurringObject and calculated based on the master data attributes,
such as start and end date. This requires an appropriate recurringObject to exist in the context.
The default ARIS Risk & Compliance Manager configuration includes the following relationships
between recurring and monitoring objects:

TESTDEFINITION > TESTCASE

SURVEYTASK > SURVEY

SURVEYTASK > QUESTIONNAIRE

RISK > RISKASSESSMENT

The following table illustrates how the attributes are handled:

Attribute Handling

plannedstartdate Is calculated based on the start date (startdate) and the frequency
(frequency) of the source object.

CUSTOMIZING GUIDE

12

Attribute Handling

plannedenddate Is calculated based on the start date of the target object
(plannedstartdate) and from the duration of the source object
(duration).

controlenddate Is calculated based on the start date of the target object
(plannedstartdate) and from the offset of the source object (offset).

controlstartdate Is calculated based on the end of the control period (controlenddate)
and the control period (control_period) of the source object.

owner_group Is directly transferred from the source object.

reviewer_group Is directly transferred from the source object.

3.5.2.3 Identical attribute names

Target object attributes having attributes with identical names at one of the source objects are
automatically transferred. This does not apply to attributes inherited from one of the basic object
types Object (OBJECT) or VersionObject (VERSION). It may be necessary to assign identical
names to the attributes but to prevent that the values are automatically transferred. To suppress
the automatic transfer of values, you can pass a list of attribute names you want to skip to the
help class in which the conventions are applied.

3.5.2.4 Object assignment if names are identical

Target objects that are transactional data are often linked with source objects as attributes in
order to provide additional information to the end user processing the target object for a better
understanding of the task at hand. Source objects are linked automatically from ARIS Risk &
Compliance Manager version 4.0, provided the name of the attribute at the target object matches
the name of the object type of a source object. For example, when a test case is generated, the
risk attribute is assigned the corresponding risk (RISK) that was transferred as a source object.

CUSTOMIZING GUIDE

13

3.6 Class mappings

A class mapping links a specific implementation (class) with a name. These names are used in
other parts of the ARIS Risk & Compliance Manager configuration to refer to the required
implementation. The name is significantly shorter and catchier than the rather long name of the
class. This ensures that the configuration remains plausible. Various class mappings are available
in ARIS Risk & Compliance Manager. Their definition, usage, and scope of application are
described in the following section.

3.6.1 Actions

Action commands are used in the user interface to convert user interaction to business logic
commands. In most cases, the default implementation is sufficient. However, in some special
cases or in customizing, you must adapt or supplement the behavior. For this, use a class
mapping which simplifies customizing. All classes associated with this mapping must contain the
IActionCommand interface.

The definition of Action command mappings consists of several parts. One part is the definition of
ActionCommandIds, which contains a list of all valid commands and their explanation.

<commandIds>
<commandId id="create" description="create new objects" />

<commandId id="delete" description="delete objects, version objects will
 be deactivated (see 'reactivate')"/>

<commandId id="duplicate" description="creates a duplicate out of the
 selected object"/>

<commandId id="edit" description="open the selected object for
 editing"/>

<commandId id="reactivate" description="reactivate deactivated objects" />

<commandId id="save" description="make changes on objects persistent" />

...

</commandIds>

The other parts are:

 objectTypeCommands
Define commands that control one or more objects. They are usually used with forms.

 listCommands
Define commands that control lists, for example, paging, applying a filter, etc.

 evaluationCommands:
Define commands that control evaluations, for example, expanding the tree structure,
applying a filter, etc.

 jobCommands
Define commands that take into account the various job properties and execute the jobs
accordingly.

CUSTOMIZING GUIDE

14

 dialogCommands
Define commands that control dialogs.

Each of these areas consists of a list of <commandSet> elements. Each set requires a name
attribute. This attribute specifies what the following command definitions refer to. For
objectTypeCommands, it refers to the unique identifier of the object type, for listCommands, it is
the unique identifier of the list, etc.

A special commandSet is "common". It includes the default implementation for all object types,
lists, etc., so that only special implementations must be specified individually. For example, if
multiple lists use the same implementation, you can enter all lists, separated by commas, as
names of the commandSet. A list can occur in several commandSets at the same time.

<listCommands>

 <commandSet name="common">
 <actionCommand commandId="applyFilter" clsName="BaseApplyFilterCommand" />
 ...
 </commandSet>

 <commandSet name="riskList,controlList">
 <actionCommand commandId="applyFilter" clsName="SpecialApplyFilterCommand" />
 </commandSet>

 <commandSet name="riskList">
 <actionCommand commandId="resetFilter" clsName="SpecialResetFilterCommand" />
 </commandSet>

</listCommands>

3.6.2 Command class mappings

Commands section

Commands are used in the context of workflows to execute the business logic. They are usually
very compact and specialized in one task in order to be reusable. You can assign parameters for
the respective operation purpose (command chain) to them. There are also several special
implementations that were written for a specific purpose and that cannot be or hardly reused.
Nevertheless, you can use them as templates for your own commands. Note that commands
must implement the ICommand interface.

CUSTOMIZING GUIDE

15

3.6.3 Statistics class mappings

This class mapping encompasses all classes with alias names that are used in the statistics. For
details on using these classes, see chapter Add/adapt statistics (Page 52). For details on
implementing additional classes, see the relevant section of the Java documentation about the
interface to be implemented.

EVALUATIONACCESSCONTROL SECTION

Access control implementations are required to grant only specific users access to certain
statistics. These classes implement the IEvaluationAccessControl interface.

STATISTICTREEPROVIDER SECTION

Tree provider implementations are required to generate the hierarchy structures that the
statistics are based on (that is, the tree in the first column).

STATISTICDATAFILTER SECTION

Data filter implementations are used for filtering data for statistics. These classes implement the
IStatisticDataFilter interface.

STATISTICDATASOURCE SECTION

Data source implementations are used for configuring the data sources of statistics. The default
configuration only offers the data sources view and tree. view grants direct access to the ARIS
Risk & Compliance Manager database, tree allows the usage of the tree provider as the data
source. These classes implement the IStatisticDataSource interface.

STATISTICCALCULATOR SECTION

Calculator implementations are used for processing the data to be displayed. They convert the
technical data provided by data source implementations into data readable by users. These
classes implement the IStatisticCalculator interface.

STATISTICDATALINKER SECTION

Data linker implementations are used for linking the data to be displayed. For example, you can
link to a detailed view of the data as a list or an additional statistic. These classes implement the
IStatisticDataLinking interface.

CUSTOMIZING GUIDE

16

3.6.4 Bl class mappings

PredefinedValueProvider section

A value provider allows automatic generation of selection options in a dialog based on the user
context and additional parameters, if applicable. These selection boxes occur often and their
content is similar, but user-defined. Various default implementations cover a lot of cases.

3.6.5 UI class mappings

This section provides the mappings that design the user interface.

RENDERER SECTION

A renderer generates an HTML fragment to represent an attribute in forms or lists. A renderer
must implement the IRenderer interface. In addition to the class for HTML representation
(attribute reportClsName), you can specify a class to adapt the representation in PDF/Excel
reports (attribute clsName).

FILTERRENDERER SECTION

Filter renderers differ from general renderers only with regard to their implementation. Here,
some particular cases are considered that concern the representation of filters.

COLUMNRENDERER SECTION

Column renderers implement the IColumnRenderer interface and are used by the configurable
statistics to display data cells.

LAYOUTER SECTION

Layouters generate HTML fragments by combining one or more renderers suitable for the
relevant control. Layouters implement the ILayouter interface.

CONTROLS SECTION

Controls, such as a form or a list, combine the HTML fragments of the layouters and add further
elements, such as buttons in order to generate a completely interactive HTML page. A control can
consist of several components. A control can refer to another control (attribute extends), by
overwriting parts of a control or its components. In this case, the components to be changed must
be redefined.

<control name="statistic" clsName="Statistic" >
 <component name="footer" clsName=" StatisticFooter" />
 <component name="header" clsName=" StatisticHeader" />
 <component name="row" clsName=" StatisticDataRow" />
 <component name="toolbar" clsName=" StatisticToolbar" />
 <component name="treeNode" clsName=" StatisticTreeNode" />
</control>
<control name="scoping" extends="statistic" clsName="Statistic" >
 <component name="toolbar" clsName="ScopingStatisticToolbar" />
</control>

CUSTOMIZING GUIDE

17

3.6.6 View class mappings

In order to be able to customize the data of a configured view, you can specify an additional
handler class at a <view> element using the viewHandler attribute. This handler class must
implement the IViewHandler interface. Then, it is possible within this class to customize the
data returned using additional details. This form of customizing is necessary if the additionally
required adaptations cannot be configured completely.

3.6.7 VCREG.XML configuration file

The configuration file vcreg.xml registers the validator and the converter to be used for the
attributes of ARIS Risk & Compliance Manager object definitions (see Assign validator (Page
21)). In doing so, a name that refers to a fully qualified class name is defined for the validator or
for the converter.

Example
<validator name="minlength"

clsName="com.idsscheer.webapps.arcm.bl.models.objectmodel.attribute.vc.validator
.MinLengthValidator"
propertyKey="errors.minlength"/>

In this example, validator minlength is defined with its implementation being listed in the
clsName attribute. For validators, a property is listed in the propertyKey attribute, which is
displayed in the user interface if the validation is negative.

CUSTOMIZING GUIDE

18

3.7 Customize help

The help can be extended by creating new HTML pages or customized by creating links to existing
pages. In addition, the content of existing pages can be adapted.

Location Property file in the properties/help folder

Procedure 1. Copy the HTML page to be used for the help to
webapps\arcm\help\<language code>\embedded. The name of
the file must be the same as the corresponding help ID.

2. After the page is copied to the Help folder enter the new property key in a
new line in the property file stated above.

3. Assign the new help ID as a value to this new property key.

A common properties file is available for all languages.

Remark According to the convention, a help page is automatically expected when a new
form, list, or statistics is created. If a help page is not needed at this point,
enter the property key defined in the convention without a value assigned in
the properties file. In this case, a help button is not displayed.

If you do not want to create a new help page, you can refer to an existing help
page. You can create this link as described above by assigning the existing help
ID in one of the appropriate property files.

Conventions for naming new property keys:

Form: ARCM_FORM_[FORM ID]_PAGE_[PAGE ID].HLP

List: ARCM_LIST_[LIST ID].HLP

Statistics: ARCM_EVALUATION_[EVALUATION ID].HLP

CUSTOMIZING GUIDE

19

4 Basic use cases

4.1 Customize object properties

4.1.1 Overwrite the schema version

As soon as you customize object properties, you must overwrite the schema tag from the file
objectTypes.xml in customizing. This is the only way to ensure that data exports and imports
from the customized ARIS Risk & Compliance Manager version can be properly assigned to the
relevant version. The customizing of the version also serves as a fixed starting point for future
migrations. If you do not overwrite the schema tag, but still make changes to the schema, it will
not be possible to start the ARIS Risk & Compliance Manager Server.

Procedure

Enter the name of the customer project without blanks in the customizing attribute in the
overwritten schema tag. This attribute has the value standard if the schema has not been
customized.

Example

Entry for a customer project called United Motor Group on the basis of ARIS Risk & Compliance
Manager version 4.0.0.2:

<schema version="arcm_4.0.0.2" customizing="UnitedMotorGroup" />

If different customer versions based on a single ARIS Risk & Compliance Manager version are to
be supplied, you can indicate this by stating a version number in the project name.

Example

Entry for a customer project called United Motor Group version 1 on the basis of ARIS Risk &
Compliance Manager version 4.0.0.2:

<schema version="arcm_4.0.0.2" customizing="UnitedMotorGroup_v1" />

If changes in the ARIS Risk & Compliance Manager schema are due to a change in the data import
from ARIS Architect, you must also adapt the target schema in the relevant mapping file
Aris2arcm-mapping_[APPROACH].xml.

Procedure

1. Find the infoHeader tag with the standard attribute:

schema_version="arcm_4.0.0.2_rba_standard"

2. Replace "standard" with the name of the customer project.

Example

schema_version="arcm_4.0.0.2_rba_UnitedMotorGroup "

CUSTOMIZING GUIDE

20

4.1.2 Add/adapt a simple attribute

4.1.2.1 Create a simple attribute

4.1.2.1.1 Adapt an object type

To adapt an object type, copy the original to the customizing file. Then you can change the
properties and attributes of the object type.

Location XML file in the xml folder

Procedure 1. Copy the <objectType> element from the default configuration to the
customizing file.

2. Create new attributes within the <objectType> element. You must set at
least the id property. The value must be unique within the object type.

Documents objectTypes.xml, objectTypes.xsd

Example ModifyObject_AddSimpleAttribute \WEB-INF\config\custom\xml\custom.xml:
Add Simple Attribute

4.1.2.1.2 Add/adapt properties

Properties are used for the multi-language capability of the application. A separate file is available
for each language. These files include the country code as a suffix in their names.

Location Property file in the properties/application folder

Procedure Enter the new property key followed by an equal sign and the corresponding
translation in a new line. A separate file is available for each language.

Documents See Customize names.

Example ModifyObject_AddSimpleAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Add Simple
Attribute

CUSTOMIZING GUIDE

21

4.1.2.1.3 Assign validator

To ensure that only specific or permitted values are included in the database, you can assign a
validator to an attribute.

Location XML file in the xml folder

Procedure 1. Add a new <validate> element as a child element of the attribute.

2. Specify a registered validator as a name.

Documents vcreg.xml, vcreg.xsd

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Add Simple Attribute

4.1.2.1.4 Assign converter

It may be necessary to assign a converter to the attribute that modifies the data between
application and database. Especially the startdate and enddate converters are often used if two
date fields are to describe a time period.

Location XML file in the xml folder

Procedure Add a new <convert> element as a child element of the attribute and specify
a registered converter as a name.

Documents vcreg.xml, vcreg.xsd

Example See Assign validator (Page 21).

CUSTOMIZING GUIDE

22

4.1.2.2 Add an attribute to a form

4.1.2.2.1 Adapt a form

For attributes to be displayed and for you to be able to edit them in the user interface, they must
be specified in the object type form. As the order of the attributes can be important, it is defined
separately from the object type definition.

Location XML file in the xml folder

Procedure 1. Copy the <form> element from the default configuration to the customizing
file, and add a new <row> element at the position where the new attribute
is to be displayed.

2. Create a subnode <element> with the property attribute.idref. You must
specify a unique name for the attribute.

Documents forms_[module].xml, forms.xsd

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify Form

4.1.2.2.2 Add/adapt properties of a form

See Add/adapt properties (Page 32).

Procedure Define the property PropertyKey of the <row>element.

Remark With forms, this is an optional step and only necessary if the property key of the
first subnode <element> used according to the convention does not provide an
appropriate description. If, for example, there is a start date and an end date in
one row, you should define a new property key reflecting the name of the
relevant period.

Example ModifyObject_AddSimpleAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Modify
Form

CUSTOMIZING GUIDE

23

4.1.2.2.3 Assign a renderer

A default representation is defined for all attributes. To change the default representation, you
must specify a different class generating this representation, or you must adapt the default
representation by means of a default renderer using parameters.

Location XML file in the xml folder

Procedure Assign a valid and registered renderer to the template property of <element>.

Documents uiClassMappings.xml, uiClassMappings.xsd

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Assign Renderer

4.1.2.2.4 Adapt rules

New attributes are optional, visible, and not editable by default. To change this, you must adapt
the rules. Usually, there are already rules that determine whether the attributes are visible and
editable. If the conditions of the rule are met, the new attribute can simply be added. If other
conditions are required, you must create a new rule.

Location DRL file in the rules folder.

Procedure 1. Copy the default file to customizing.

2. Modify rules or add new ones.

Documents See chapter Add/adapt rule (Page 65).

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\rules\usergroup.drl: Modify Form

4.1.2.2.5 Add/adapt reports

Normally, reports are automatically generated based on the form definitions. However, you can
modify and configure the reports.

Location XML file in the xml folder

Documents Chapter Add/adapt reports (Page 57)

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify Report

CUSTOMIZING GUIDE

24

4.1.2.3 Add an attribute to a list

4.1.2.3.1 Adapt a list

The modification of lists is similar to the modification of forms.

Location XML file in the xml folder

Procedure 1. Add a new <column> element at the relevant position.

2. Specify a name unique in the list for the id property. The attribute.idref
property must refer to a valid data retrieval column.

3. Add a new <listHeader> element. To enable sorting, the column property
must point to the corresponding column name.

4. Complete the property key and the width property. The value for width is
usually specified in relative widths and its sum should not exceed 98%. The
remaining 2% are occupied by the buttons at the beginning and end of each
row.

Documents lists_[module].xml, lists.xsd

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify List

4.1.2.3.2 Add/adapt properties of a list

See Add/adapt properties (Page 20).

Example

ModifyObject_AddSimpleAttribute
\WEB-INF\config\custom\properties\application\custom.properties: Modify List

4.1.2.3.3 Adapt data retrieval for a list

In the list, a view defined is defined as a data source. This view must be customized for the new
attribute to be included.

Location XML file in the xml folder

Procedure 1. Insert a new <viewColumn> element as a child element in the
<viewObject> element. The view object defines the object type of the view
columns.

2. Assign a unique name to the id property. The attributeType property
references an attribute of the associated object type. If you do not only want
to filter, but also output the column, you must set the isSelectColumn
property to true.

CUSTOMIZING GUIDE

25

Documents view_[module].xml, views.xsd

Example ModifaObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify View

4.1.2.3.4 Add a renderer

A default representation is defined for all attributes. To change the default representation, you
must specify a different class generating this representation, or you must adapt the default
representation by means of a default renderer using parameters.

Location XML file in the xml folder

Procedure Assign a valid and registered renderer to the template property of <column>.

Documents uiClassMappings.xml, uiClassMappings.xsd

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Assign List Renderer

4.1.2.3.5 Add/adapt reports

See Add/adapt reports (Page 57).

4.1.2.4 Add an attribute to a filter

4.1.2.4.1 Adapt a list filter

All data retrieval columns can be filtered, regardless of whether they exist in the result or not. You
can modify and save the filter values for reuse.

Two filter views exist. One is the view as a simple list in the Save/configure filter dialog, which
is similar to an object form, and another is the view as a drop-down filter directly above the list.
The format for the Save/configure filter dialog is specified during filter definition. The filter
definition is similar to the form definition and works according to the same principle.

You can customize the order and arrangement of the various filterable attributes for the
drop-down filter. All filter attributes that are not explicitly arranged are added at the end of the
extended part of the filter in line with the order of the filter definition.

Location XML file in the xml folder

Procedure 1. Copy the relevant filter to customizing.

2. Insert a new <filterRow> element at the relevant position of the filter
definition.

3. Below the new element, create a child element <filterElement> and set

CUSTOMIZING GUIDE

26

the dataReference.idref property to the relevant viewColumn. The
template and filterType properties are determined automatically, but
they can also be set explicitly if another representation (template) or data
storage (filterType) is desired or required.

Documents filters_[module].xml, uiClassMapping.xml, blClassMapping.xml, filter.xsd,
uiClassMapping.xsd, blClassMapping.xsd

Example ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify filter

4.1.2.4.2 Add/adapt properties of a filter

See Add/adapt properties (Page 20).

Example

ModifyObject_AddSimpleAttribute

\WEB-INF\config\custom\properties\application\custom.properties: Modify filter

4.1.2.4.3 Assign a renderer

See Assign a renderer (form) (Page 23).

CUSTOMIZING GUIDE

27

4.1.3 Add/modify an enumeration attribute

4.1.3.1 Create an enumeration attribute

4.1.3.1.1 Add/adapt an enumeration

For a new enumeration attribute, you can reuse an existing enumeration or create a new one. You
are recommended to create a new enumeration. Reusing an existing enumeration when
customizing elements can lead to conflicts with other enumeration attributes that refer to this
enumeration.

Location XML file in the xml folder

Procedure 1. Insert a new <enum> element.

2. Define the required properties id (unique name), isMultiple (single or
multiple selection), and type (number or string)

3. As child elements, add the elements of the enumeration as an
<enumitem> element.

4. Assign a unique name (id) and a corresponding value (value) to each
<enumitem> element.

Remark If number type is selected, the value property of the <enumitem> elements
must only contain figures. If the formRelevant property is set to false, you
cannot select the value in the form. The same applies to filterRelevant with
regard to the selectability in the filter.

Documents enumerations.xml

Example ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\xml\custom.xml: Add/Modify enumeration

4.1.3.1.2 Add/adapt properties of an enumeration

See Add/adapt properties (Page 20).

Remark According to the convention, the property key of an enumeration element looks
as follows:

enumeration.[Name of enumeration].[Name of element].DBI

Example ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\properties\application\custom.properties: Add/Modify
enumeration

CUSTOMIZING GUIDE

28

4.1.3.1.3 Adapt an object type

See Adapt an object type (Page 20).

Procedure In addition to the simple attributes, you must specify the enumeration
property. This property specifies the enumeration to be used for the attribute.

Example ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\xml\custom.xml: Add enumeration attribute

4.1.3.1.4 Add an attribute to a form

See Add an attribute to a form (Page 22).

Example

ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify form

ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\rules\usergroup.drl: Modify Form

4.1.3.1.5 Adapt data retrieval for a list

See Adapt data retrieval for a list (Page 24).

Example

ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify view

4.1.3.1.6 Add an attribute to a list

See Add an attribute to a list (Page 24).

Example

ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify list

4.1.3.1.7 Add an attribute to a filter

See Add an attribute to a filter (Page 25).

Example

ModifyObject_AddEnumerationAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify filter

CUSTOMIZING GUIDE

29

4.1.4 Add/adapt a list attribute

4.1.4.1 Create a list attribute

4.1.4.1.1 Adapt an object type

See Adapt an object type (Page 20).

Remark List attributes require additional properties:

 maxSize indicates the maximum number of objects that can be assigned to
the attribute. -1 means an infinite number of objects.

 The linkType property requires a unique numeric value.

 objectType.idref contains the comma-separated names of all object types
that can be assigned. Generally, this should be only one object type.

 The orderType property indicates how assigned objects are to be sorted.

Documents objectTypes.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Add list attribute

4.1.4.1.2 Add/adapt properties

See Add/adapt properties (Page 20).

Example

ModifyObject_AddListAttribute

\WEB-INF\config\custom\properties\application\custom.properties: Add list attribute

4.1.4.1.3 Adapt list restrictions

In addition to the object type restriction, there is another option to further restrict the number of
objects allowed. This restriction applies to objects whose attributes have specific values.

Location XML file in the xml folder

Procedure Add a <listRestriction> element as a new child element. It has no property,
but merely serves to group the <attributeRestriction> child elements. They
have the following two mandatory properties:

 attribute refers to an attribute of an object type that is permitted for list
attributes.

 value refers to a value that is permitted for the attribute.

Objects with values other than the permitted ones cannot be assigned.

Remark You should only refer to attributes that no longer change within the life cycle of

CUSTOMIZING GUIDE

30

the object, such as the type of a hierarchy object. <listRestriction> elements
of a list attribute are OR-connected. <listRestriction> elements of a list
restriction are AND-connected.

Documents objectTypes.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Add list restrictions

4.1.4.1.4 Adapt roles

For list attributes, privileges must be assigned explicitly. These privileges specify which roles are
permitted to modify list attributes. You ca set the privilege for adding objects to and removing
objects from a list attribute individually. By default, no role has the privilege to do this. You must
explicitly assign this privilege to all roles.

Location XML file in the xml folder

Procedure 1. Add a new <roles> element.

2. Add one or more <role> child elements that you can copy from the default
configuration.

3. Customize the privileges. The roles need privileges for adding objects to or
removing them from the new list attribute.

4. Add a new <relation> child element to the <object> element references
the matching object type. The right.idref property knows the possible
values a (attach), r (remove), and ar (attach/remove). listAttrType.id
references the corresponding list attribute.

Documents roles.xml, roles.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify roles

4.1.4.1.5 Add an attribute to a form

See Add an attribute to a form (Page 22).

Procedure There are additional properties you must specify for list attributes. If the list
attribute can be edited by the user, a selection list that displays the admissible
objects is required.

Two options are available. The selection list can be generated automatically or
you can manually define a list (see Add a selection list (Page 31)). The second
option is relevant if the selection list contains special cases that the automatic
lists cannot cover.

CUSTOMIZING GUIDE

31

You can configure the selection list using a <parameter> child element with the
name selectionList and specifying the name of the selection list as value. For
an automatically generated selection list, the value for value must be AUTO.

You can also customize the buttons for managing and manipulating the objects.
Open, Edit, Create assignment and Remove assignment are the default
buttons. They have the child elements <button.add> and <button.remove>.
The button.idref property defines the button to be added or removed. location
defines whether the button is to be inserted into the toolbar (toolbar) or
displayed individually for each assigned object (row). type defines whether the
button is only available if the user can edit the list attribute (writable) or if it is
always available (always).

Remark An automatic selection list includes the environment of the object, the list
restriction of the list attribute, and the objects already assigned. The primary
column of the selection list contains the attribute specified in the
nameAttribute property of the selection object type. The other columns and
filters result from the attributes defined in the descriptionAttributes property.

Documents objectTypes.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Modify form

4.1.4.2 Add a selection list

4.1.4.2.1 Adapt a selection list

Adding a selection list is similar to creating a normal list. It includes data retrieval, a
representation of the list, and a filter definition. To create a selection list from this normal list, you
must configure a few properties.

Location XML file in the xml folder

Procedure 1. Create the list and specify the following properties of the <list> element:

a. listType receives the value selection.

b. destDataType.idref receives the object type of the list attribute as
value.

c. destAttributeType.idref receives the name of the list attribute itself.

Documents lists.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Add selection list

CUSTOMIZING GUIDE

32

4.1.4.2.2 Add/adapt properties

See Add/adapt properties (Page 20).

Remark Omitting the right part in the property file results in no help button being
displayed for this element.

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\properties\help\custom_helpids.properties: Add
selection list

4.1.4.2.3 Adapt data query for selection list

Location XML file in the xml folder

Procedure 1. Supplement the data query by two <viewCondition> elements in addition
to the other conditions.

2. Set a condition for the obj_id attribute of the main object type with the
compare type NOTIN. currentObjectType.id and
currentAttributeType.id again refer to the list attribute and its object
types. The second condition filters the client_sign attribute.
currentObjectType.id receives the same value as before,
currentAttributeType.id receives the value client_sign.

Documents views.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Add selection view

4.1.4.2.4 Assign a renderer

See Assign a renderer (Page 23).

4.1.4.2.5 Add a selection list filter

See Add an attribute to a filter (Page 25).

Remark This is the same as adding an attribute a normal filter.

Documents filters.xsd

Example ModifyObject_AddListAttribute

\WEB-INF\config\custom\xml\custom.xml: Add selection filter

CUSTOMIZING GUIDE

33

4.2 Customize the object life cycle

The object life cycle is mainly controlled or configured by the following configuration files:

 Workflow configuration: XML files (workflow_*.xml) in the xml folder

 Command chain catalog configuration: XML files (commandChains_*.xml) in the xml folder

 Rule configuration: DRL files in the rules folder (see chapter Add/adapt rule (Page 65))

 Generator: Scheduled generation of objects by executing the <prepare> and <insert>
transitions

 Monitor: Scheduled check of processing periods and change of attribute values.

Workflow configuration, rules, and command chains are related as follows:

 The rules define the attribute states (for example, can be changed, visible) that apply to an
object in a particular state. Use the state ID in the rules for this. For details, see Add/adapt
rule (Page 65).

 The command chains contain the commands that are carried out when a transition is
executed.

The following chapters explain the configuration of workflows, command chains, and rules.

4.2.1 Workflow configuration

A workflow consists of states and transitions. A state represents the status of an object. This state
is defined by the attribute values of an object. Each state must be accessible via at least one
transition.

A transition represents a transition to another state. A command chain must be defined for each
transition. This command chain is executed when the transition takes place. A command chain
contains any number of commands. Empty chains are also allowed.

When adjusting a workflow, you must specify the new and the changed states. You can omit all of
the unchanged states.

The following chapters describe the adding of states and transitions. For details on the
configuration of command chains, see Configuration of the command chain catalog (Page
39).

4.2.1.1 Add a state

A workflow can consist of up to four different state types. The two following state types can only
exist once in a workflow:

 A state that represents a new, unedited and unsaved object (<state.initial>).

 A state that represents an unsaved object that was edited by a user or by the system
(<state.prepared>).

These types can occur multiple times in a workflow, but they must have unique IDs:

 A state that represents an active object (<state>), or

 a state that represents a deleted object (<state.deleted>).

CUSTOMIZING GUIDE

34

4.2.1.1.1 Add a state to an active object

An object is active if it is persistent and not deleted, that is, a user can edit it in a form, for
example.

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create one or more new <states> within the <workflow> element. The id
attribute must have a value that is unique within the workflow.

Remark The state of an object must be uniquely identifiable by the values of the
<Attribute> elements, that is, an object is in a particular state if values are
defined for it in the <Attribute> elements. The persistent values of an object
are used to determine the state. An added state must be accessible by at least
one transition. See Add a transition (Page 35).

Documents workflow_*.xml, workflow.xsd

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_workflow_custom.xml: New custom
active workflow state

4.2.1.1.2 Add a state to a deleted object

Users can delete or disable an object by clicking Delete. If this object is a versioned object, it is
removed from the database, but only deactivated. A deactivated object can be reactivated. For
details, see Add a transition (Page 35) and Add a recover transition (Page 38).

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create one or more new <state.deleted> within the <workflow>
element below the active states. The id attribute must have a value that is
unique within the workflow for deleted states.

Remark The state of an object must be uniquely identifiable by the values of the
<Attribute> elements, that is, an object is in a particular state if values are
defined for it in the <Attribute> elements. The persistent values of an object
are used to determine the state. An added state.deleted must be accessible by
at least one delete transition. See Add a delete transition (Page 37).

Documents workflow_*.xml, workflow.xsd

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_workflow_custom.xml: New custom
deleted workflow state

CUSTOMIZING GUIDE

35

4.2.1.2 Add a transition

Depending on the state of an object, various transitions can be executed. Possible transitions for
the active state (<state>) include: update, reset and delete. For deactivated states, only a
recover transition can be executed to exit the state or to return to an active state. The states
initial.state and prepare.state with the two transitions prepare and insert are available in
order to execute various transitions during the creation of an object.

4.2.1.2.1 Add a prepare transition

A prepare transition is executed when an object is created by a user or a job. After this transition
was executed, the object is always in the state.prepared state.

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create a new prepare transition within the <state.initial> element. A
prepare element must refer to an existing command chain of the command
catalog that belongs to the workflow (commandChains_*.xml) in the
chain.id attribute.

Remark Prepare transitions can either have a <permission.workflow> or a
<permission.job> child element.

 <permission.job> is used to execute a transition by the specified job
only.

 <permission.workflow> is used to execute a transition by the specified
workflow only.

Documents workflow.xsd, workflow_*.xml, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\user_workflow_custom.xml: New custom
prepare transition

4.2.1.2.2 Add an insert transition

An insert transition with the state.prepared status is executed when an object is saved for the
first time. After the transition was executed, the object must be in a state defined in the workflow.

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create a new insert transition within the <state.prepared> element. An
insert element must always refer to an active state existing in the workflow

CUSTOMIZING GUIDE

36

in the to.state.id attribute, and to an existing command chain of the
command catalog (commandChains_*.xml) associated with the
workflow in the chain.id attribute.

Remark Insert transitions can either have a <permission.workflow> or a
<permission.job> child element.

 <permission.job> is used to execute a transition by the specified job
only.

 <permission.workflow> is used to execute a transition by the specified
workflow only.

Documents workflow.xsd, workflow_*.xml, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\user_workflow_custom.xml: New custom insert
transition

4.2.1.2.3 Add an update transition

An update transition is executed when a user or internal process (for example, job) saves an
object in a form. An object can only be saved if it has a state containing an update transition. The
Save function is not enabled for objects in a state without outgoing update transition.

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create one or more new update transitions within the <transitions>
element. An update element must refer to an active state existing in the
workflow in the to.state.id attribute, and to an existing command chain of
the command catalog (commandChains_*.xml) associated with the
workflow in the chain.id attribute.

Remark An update transition added must refer to an existing state (to.state.id) and a
command chain (chain.id).

Documents workflow.xsd, workflow_*.xml, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_workflow_custom.xml: New custom
update transition

CUSTOMIZING GUIDE

37

4.2.1.2.4 Add a reset transition

A reset transition is executed when a user clicks Reset in a form, or if an internal process resets
the object. An object can only be reset if it has a state containing a reset transition. The Reset
function is not enabled for objects in a state without outgoing update transition.

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create one or more new reset transitions within the <transitions>
element. A reset element must always refer to an active state existing in
the workflow in the to.state.id attribute, and to an existing command
chain of the command catalog (commandChains_*.xml) associated with
the workflow in the chain.id attribute.

Remark A reset transition added must refer to an existing state (to.state.id) and a
command chain (chain.id).

Documents workflow.xsd, workflow_*.xml, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_workflow_custom.xml: New custom
reset transition

4.2.1.2.5 Add a delete transition

A delete transition is executed when a user clicks Delete in a form, or if an internal process
deletes an object. An object can only be deleted if it has a state containing a delete transition. The
Delete function is not available for objects in a state without outgoing delete transition.

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create one or more new delete transitions within the <transitions>
element. A delete element must always refer to an active state existing in
the workflow in the to.state.id attribute, and to an existing command
chain of the command catalog (commandChains_*.xml) associated with
the workflow in the chain.id attribute.

Remark A delete transition added must refer to an existing state (to.state.id) and a
command chain (chain.id).

Documents workflow.xsd, workflow_*.xml, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_workflow_custom.xml: New custom
delete transition

CUSTOMIZING GUIDE

38

4.2.1.2.6 Add a recover transition

A recover transition is executed when a user clicks Reactivate in a form of a deleted or
deactivated object, or if an internal process reactivates the object. An object can only be
reactivated if it has an inactive state containing a recover transition. Other states cannot have
outgoing recover transitions. The Reactivate function is not available for inactive objects without
outgoing recover transition.

Location XML file in the xml folder

Procedure 1. Copy a <workflow> element from the default configuration to the
customizing file.

2. Create one or more delete transitions within the <transitions> element. A
recover element must refer to an inactive state existing in the workflow in
the to.state.id attribute, and to an existing command chain of the
command catalog (commandChains_*.xml) associated with the
workflow in the chain.id attribute.

Remark A recover transition added must refer to an existing active state (to.state.id)
and a command chain (chain.id).

Documents workflow.xsd, workflow_*.xml, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_workflow_custom.xml: New custom
recover transition

CUSTOMIZING GUIDE

39

4.2.2 Configure the command chain catalog

The command chains (hereinafter referred to as "chains") that can be executed by a specific
workflow are grouped in a command chain catalog (hereinafter referred to as "catalog"). The
catalog associated with the workflow has the same ID as the workflow itself. You can add new
chains to a catalog. A chain does not need to be used by a transition. Deleting unused chains is
not necessary. The contents of a chain can be modified, that is, you can add or remove
commands. When adjusting a catalog, you must specify the new and the changed chains. You can
omit all of the unchanged chains.

4.2.2.1 Modify a command chain

If you want to execute additional actions such as sending messages, changing data, etc. when a
transition is run, you must add commands to an existing chain.

Location XML file in the xml folder

Procedure 1. Copy a <catalog> element from the default configuration to the
customizing file.

2. Adapt one or more command chains within the <catalog> element by
extending the chain with a command element or removing a command
element. Each command element has an ID representing a command
implementation. These IDs are located in the file
commandClassMapping.xml. Detailed information on the use and
parameterization of the commands is provided in the Java doc of the
relevant command.

Remark It is possible that the target state of a transition is no longer valid from the
perspective of the workflow configuration after a chain was changed.

Example

If a transition ends in a state that is defined by the value X of the attribute A,
but a command sets the value of attribute A to Y, the target state is invalid or
not achieved. In this case, the transition execution is undone and an error
message is displayed.

Documents commandChains.xsd, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_catalog_custom.xml: Change
command chain

CUSTOMIZING GUIDE

40

4.2.2.2 Add a command chain

If a workflow is extended by a new transition and no chain to be used exists, you must add a new
chain to the catalog.

Location XML file in the xml folder

Procedure 1. Copy a <catalog> element from the default configuration to the
customizing file.

2. Adapt one or more command chains within the <catalog> element.

3. Add any number of command elements to the new chain. A chain can also
be empty, that is, it does not contain a command element. Each command
element has an ID representing a command implementation. These IDs are
located in the file commandClassMapping.xml. Detailed information on
the use and parameterization of the commands is provided in the Java doc
of the relevant command.

Remark After a chain was modified, the target state of a transition may no longer be
valid from the perspective of the workflow configuration.

Example

If a transition ends in a state that is defined by the value X of the attribute A,
but a command sets the value of attribute A to Y, the target state is invalid or
not achieved. In this case, the transition execution is undone and an error
message is displayed.

Documents commandChains.xsd, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_catalog_custom.xml: Add custom
command chain

4.2.3 Adapt/add user interactions

To work off a command chain it is sometimes necessary to collect additional information from the
user. To do so you can configure your own dialogs and have them called up by a command from
the chain. The execution of the chain is interrupted at this point and an input mask is displayed.
If the mask is filled in correctly the command chain starts again. This time however, it is extended
by the input from the user. Generally, there are currently two types of dialog. The simple dialogs
only require a simple confirmation or decision, the more complex dialogs have one or more text
boxes.

CUSTOMIZING GUIDE

41

4.2.3.1 Confirmation dialogs

There are two different confirmation dialogs. The simplest dialog has the okCancel ID which, in
addition to a question or a note, provides the two buttons Ok and Cancel. Cancel stops the
execution of the complete command chain. With Ok the execution of the chain continues. The
dialog with the yesNoCancel ID provides an additional button. In addition to the familiar Cancel
it also provides the possibility to use Yes and No which both allow the execution of the command
chain to be continued, but allow you to go two different ways in the subsequent commands of the
chain, for example, in one case you can send a message and in the other you cannot.

In general, you can use several dialogs in a command chain however, all of the dialogs in a chain
must have unique IDs. Information about how new dialogs are defined, for example, confirmation
dialogs, in the event that you need several of them in a chain, can be found in the following.

Location XML file in the xml folder

Procedure 1. Extend the relevant command chain with an additional <command>
element at the relevant point.

2. Use the requestDialog ID.

3. Add two subordinate <parameter> elements.

4. The first element has the name attribute with the value dialogID and the
value attribute with one of the two values okcancel or yesnocancel.

5. The second element has the name attribute with the value propertyKey
and the value attribute receives the property key that represents the
question asked by the user as a value.

Remark If you defined your own dialog, use its ID.

Documents commandChains.xsd, commandChains_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_catalog_custom.xml: Add custom
dialog

4.2.3.2 Input dialogs

If more than one simple confirmation is required, input dialogs are used. This allows you to
provide the user with one or more text boxes to fill out.

An attribute is defined for each text box. Similar to the object definitions (objectTypes.xml),
there are several attribute types available for the individual requirements of the text boxes. You
can add validators (<validator>) to these attributes, for example, to limit the scope of the
attribute by restricting the number of characters or figures that can be entered in an text box. The
names of the XML elements result from the name of the attribute type, that is,
<booleanAttribute>, <longAttribute>. You should use naming conventions for the IDs of the
attributes, thus facilitating working with the collected data of the dialog. That means, when you
transfer an attribute from a dialog to an object, both attributes should have the same name.

CUSTOMIZING GUIDE

42

For example, when create an object, the attribute of the environment selection in the
client_sign dialog should have the same name as the corresponding attribute of the object to be
created.

EXISTING ATTRIBUTE TYPES

boolean Attribute for Boolean values (Yes/No).

date Attribute for date values.

double Attribute for floating point numbers.

enum Attribute for enumerations (enumerations_*.xml).

long Attribute for integers.

selection Attribute for selecting values from a predefined dynamic list, for example,
when selecting an environment. PredefinedValueProvider is available to
define the possible values of the selection list. The application contains some of
these configurable providers (see below). But you can also implement some
providers manually.

string Attribute for simple text text boxes. Content and length of the text can be
limited.

text Attribute for texts consisting of several rows.

There are several PredefinedValueProviders for the selection attribute. They can be
parameterized and provide different possibilities.

EXISTING PREDEFINEDVALUEPROVIDERS

client Provides a list of all environments that the user has access to. This list can be
limited by a maximum of one of the following parameters:

 componentRight

Only outputs environments for which a specific componentRight exists
(roles.xml).

 objectRight

Only outputs environments for which a specific objectRight (roles.xml)
exists for the current ObjectType (defined by the objectTypeId
parameter).

 licensedComponent

Only outputs environments that have a specific licensed component.

Additional parameters:

 objectTypeId

ID of an object type (objecttypes.xml) that for example, is set by the
createObjectDialog command. This parameter is only required in
connection with the objectRight parameter.

CUSTOMIZING GUIDE

43

static Manages a list of elements defined previously in Java code.

usergroup Outputs a list with available user groups.

Parameter:

 client_sign

Determines which environments the groups should be limited to if
clientDependent=true. This parameter can also be defined dynamically
by another attribute of the dialog (see the loss_create dialog).

 roles

A comma-separated list of role names (roles.xml). Only groups with the
corresponding roles are considered.

 clientDependent

Determines whether environment-specific (true) or cross-environment
(false) groups are searched for (Default false).

view Uses a view (views_*.xml) to create a list with elements. The parameters
value, id and client require the IDs of the corresponding columns in the view
as values.

In the following example a new dialog is created, which is displayed when creating a new control.
Some attributes of the control are queried and then set in the newly created control.

Location XML file in the xml folder

Procedure 1. Define a new <dialog> element with a unique ID.

2. Add an appropriate subordinate attribute element to each attribute in the
dialog. See the text above for possible attribute types.

3. Assign an ID to each attribute type. If the input values should be
transferred directly to the attribute of an object, they should both have the
same ID, for example, client_sign (see also objectTypes.xml). Every
dialog and each of its attributes result in the corresponding property keys
dialog.<dialogID>.DBI,
attribute.<dialogID>.<attributeID>.DBI).

4. Create a new <form> element. The ID of the form is inherited from the
dialog ID DIALOG_<dialogID>. Currently such forms consist of exactly
one <page> element with a single <rowGroup> element.

5. For each attribute, add a <row> element with an <element> element to
the rowGroup. The XML attribute id (row) and attribute.idref
(element) refer to the corresponding ID of the dialog attribute.

6. Adapt the corresponding commandchain of the object (see previous
chapter).

Documents dialogs.xsd, forms.xsd, dialogs.xml, forms_*.xml

Example AddNewInputDialog
\WEB-INF\config\custom\xml\custom.xml: Add custom dialog

CUSTOMIZING GUIDE

44

4.3 Adapt the task configuration

In ARIS Risk & Compliance Manager, transactional objects are accompanied by tasks during their
workflow. A task contains the information about which users or user groups are responsible for
processing the transactional object. After logging into ARIS Risk & Compliance Manager, users
can view their task list under Home > My tasks.

The users for processing a task can be specified as follows:

 One or more directly assigned users

A list attribute is specified for the transactional object, in which users are directly assigned.
By default, tasks for issues are configured in this way.

 A directly assigned user group

A list attribute is specified for the transactional object, in which a user group is assigned. The
members of this user group are responsible for processing the task. By default, this is the
most frequently used configuration. It can be used for configuring the tasks for all
transactional objects apart from issues.

 All environment-specific groups

A role with the role level Environment-specific is specified for the transactional object. The
members of the user groups assigned to the role are responsible for processing the task. The
transactional object and the user groups must be assigned to the same environment.

If no user group is assigned to the role or no users are assigned to the user group, or if the
transactional object is not assigned to any environment, no user is responsible for the task.
By default, tasks for deficiencies are configured in this way.

 All cross-environment groups

A role with the role level Cross-environment is specified for the transactional object. The
members of the user groups assigned to the role are responsible for processing the task. If no
user group is assigned to the role or no users are assigned to the user group, no user is
responsible for the task. By default, this configuration is not used.

Tasks are linked to specific workflow statuses, which determine the subsequent procedure. This
set represents the scope of the task and is divided into three statuses per task:

 Task status Open

If a transactional object reaches one of the referenced workflow statuses, a new task is
started.

 Task status Completed

If a transactional object reaches one of the referenced workflow statuses, all tasks in the
configuration of that transactional object are classed as completed.

 Task status Not completed

If a transactional object reaches one of the referenced workflow statuses, all tasks in the
configuration of that transactional object are classed as not completed.

The scope of different task configurations can overlap without causing problems. Thus, for a
transactional object with a particular workflow status, there can be several tasks with various
responsibilities.

CUSTOMIZING GUIDE

45

A monitor strategy can be specified for each task. If it is not specified, the task has no due date
for the user and retains the status Open in the system until, as a result of interaction by the user,
the associated transactional object reaches the workflow status referenced by the task status
Completed or Not completed. For example, in the default configuration this is the case for
many reviewer tasks.

A monitor strategy specifies the processing and control period for the task. If these periods are
not specified, the processing and control period for the transactional object are used. In the
default configuration, this is almost always the case if a monitor strategy is specified. One
exception is policies, in which the processing period for the task is specified by the
plannedstartdate and plannedenddate attributes, and the control period by the
controlstartdate and controlenddate date attributes.

In the default configuration, this is almost always the case if a monitor strategy is specified. One
exception is policies, where the processing period for the task is specified by the
publishingstartdate and publishingenddate date attributes.

All tasks with a monitor strategy are monitored by the monitoring job. The strategy contains
monitor levels, which specify what actions the monitoring job should trigger in terms of the task.
A monitor level also contains a specified time that determines when the level is classed as
reached. This relates to the processing period of the task. The following settings are possible:

 Percentage

The monitor level is reached if, at the execution time of the monitoring job, the elapsed
processing period has reached or exceeded the specified percentage. The value must be a
number between 0 and 100.

Example: Monitor level with Percentage value 50 and processing period 11/1 to 11/30.
Monitor level is reached on 11/16.

 RemainingTime

The monitor level is reached if, at the execution time of the monitoring job, the remaining
time until the end of the processing period is less than or equal to the specified value. The
value must be specified using a positive number followed by a letter to represent the time
unit. The possible units are d (days) or h (hours).

Example: Monitor level with RemainingTime value 3d and processing period 11/1 to 11/30.
Monitor level is reached on 11/28.

When a task reaches a monitor level, the monitoring job sends the corresponding message. If no
monitor messages are configured, the standard template monitorjob is used to send a message
to the user responsible for the task. In the default configuration, this is the case for almost all
monitor levels. Alternatively, custom messages can be defined for monitor levels. Recipients, CC
recipients, the message template and the link to a list in ARIS Risk & Compliance Manager can be
specified. For a monitor level of Percentage type with the value 100, monitor changes can be
defined additionally to messages. Monitor changes use the monitoring job to change values of the
transactional object for the task. This can change the object to another workflow status and cause
tasks to be created or closed. An example of this in the default configuration is the task
configuration for tester. The task configuration for issue_owner is a further example in which
an attribute value is changed but this does not have an effect on existing tasks.

CUSTOMIZING GUIDE

46

If tasks are enhanced by custom attributes, the sources of the inserted values are specified by the
<copyValue> XML element. The fromAttribute.idref attribute and the toAttribute.idref
attribute of this XML element connect an attribute of the transactional object to an attribute of the
generated task. Once the task is generated, the value from fromAttribute.idref attribute is
copied to toAttribute.idref attribute. Both references must link to attributes of the same type.
Exceptions: List attributes must link to text attributes. Enumeration attributes are not supported.

Location XML file in the xml folder

Procedure Add a new <task> element at the relevant position. The combination of the id
and objectType.idref properties must be unique in the entire configuration.
The role.idref property is optional and is only used to display items in the task
list. If specified, its value must correspond to the ID of a defined role.

Documents taskconfiguration_auditmanagement.xml

taskconfiguration_changemanagement.xml

taskconfiguration_deficiencymanagement.xml

taskconfiguration_issuemanagement.xml

taskconfiguration_lossmanagement.xml

taskconfiguration_policymanagement.xml

taskconfiguration_riskmanagement.xml

taskconfiguration_signoffmanagement.xml

taskconfiguration_surveymanagement.xml

taskconfiguration_testmanagement.xml

Example TaskConfiguration_ModifyLevels\WEB-INF\config\custom\xml\custom.xml:
Task with ID tester

TaskConfiguration_AddNewColumns\WEB-INF\config\custom\xml\custom.xml
:

...

All declared tasks

CUSTOMIZING GUIDE

47

4.4 Adapt a master data import

To assign an attribute from ARIS Architect to an attribute in ARIS Risk & Compliance Manager,
you must adapt the mapping file for the ARIS Architect export report accordingly. An attribute
mapping always consists of the name in ARIS Risk & Compliance Manager, the attribute type from
ARIS Risk & Compliance Manager (see objectTypes.xml), and the attribute type from ARIS
Architect. This attribute type can name a direct attribute type from ARIS Architect or be a special
key word. Customizing offers the following options:

 <ABA constant name>: Constant of a default attribute from the ARIS Architect method, for
example, AT_NAME.

 <ABA attribute GUID>: If the attribute is not a default attribute from ARIS Architect, you
can use this GUID.

 FALSE: Equivalent to CONSTANT#false

 TRUE: Equivalent to CONSTANT#true

 DATE_NOW: Returns the execution time of the report as a value.

 ISMULTIPLE: Used for exporting multiEnum attributes. All attributes listed in the respective
Enum mapping are searched. The values are read and returned as comma-separated values.

 CONSTANT#<Constant value>: Returns the specified constant value.

Simple adaptation of the mapping file is only sufficient for ARIS Risk & Compliance Manager
attributes that are not list attributes, because they contain attribute values from ARIS Architect.
Apart from adapting the mapping file, a mapping of list attributes also requires rewriting the
reports. For a later execution of the export report, you must ensure that the added ARIS Architect
attributes are included in the current ARIS Architect filter, otherwise their values cannot be
extracted.

Location XML file aris2arcm_mapping_RBA.xml or aris2arcm_mapping_CBA.xml
in ARIS Architect

Documents aris2arcm_mapping_RBA.xml, aris2arcm_mapping_CBA.xml

Example ModifyMapping_ABA\WEB-INF\config\custom\xml\custom_mapping_stri
ng.xml: Add string attribute

 ModifyMapping_ABA\WEB-INF\config\custom\xml\custom_mapping_con
stant.xml: Add constant number attribute

 ModifyMapping_ABA\WEB-INF\config\custom\xml\custom_mapping_sing
le_enum.xml: Add single enum attribute

 ModifyMapping_ABA\WEB-INF\config\custom\xml\custom_mapping_mul
ti_enum.xml: Add multi enum attribute

CUSTOMIZING GUIDE

48

4.5 Add/adapt hierarchies

The following section describes how you add a new hierarchy type and add a simple evaluation
using the new hierarchy.

4.5.1 Add an enumeration item

A new hierarchy is added in ARIS Risk & Compliance Manager. A new name is assigned to the
hierarchy in the properties. Since the initial root element of the hierarchy is generated in the
database only when an environment is generated, you must create a new environment in order to
view the change.

Location XML file in the xml folder

Procedure Add a new <enumitem> element at the relevant position. The id property
contains a unique name for the hierarchy, while the value property contains a
unique numerical identifier that is transferred to the database.

Documents enumerations.xml, enumerations.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 1

Location Property file in the properties folder

Procedure Add a new property at the relevant position and assign a hierarchy name to it.

Example AddHierarchy

\WEB-INF\config\custom\properties\application\custom.properties

4.5.2 Add a new list element to a master data object

To enable evaluation of the hierarchy in the application, the hierarchy must be assigned to an
ARIS Risk & Compliance Manager element that has a logical relationship to this new hierarchy.
Chapter Add/adapt a simple attribute (Page 20) describes how to add new elements.

Location XML file in the xml folder

Procedure 1. Add a new <listAttrType> element at the relevant position.

2. In the new listAttrType, insert a <listRestriction> element containing an
internal <attributeRestriction> element.

3. You must restrict the hierarchy type to be added to the new attribute.

Documents objectTypes.xml, objectTypes.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 2

CUSTOMIZING GUIDE

49

Location Property file in the properties folder

Procedure Add a new property at the relevant position and assign the name of the new list
attribute to it.

Example AddHierarchy

\WEB-INF\config\custom\properties\application\custom.properties

4.5.3 Add a new list element to a transactional object

The relationship to the new hierarchy is now to be transferred to the transactional object that
object owners are using and whose status can be evaluated using the hierarchy. Chapter
Add/adapt a simple attribute (Page 20) describes how to add new list elements.

Location XML file in the xml folder

Procedure 1. Add a new <listAttrType> element at the relevant position.

2. In the new listAttrType, insert a <listRestriction> element containing an
internal <attributeRestriction> element.

3. Restrict the hierarchy type to be added to the new attribute.

Documents objectTypes.xml, objectTypes.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 3

Location Property file in the properties folder

Procedure Add a new property at the relevant position and assign the name of the new list
attribute to it.

Example AddHierarchy

\WEB-INF\config\custom\properties\application\custom.properties

4.5.4 Display and input options for forms

You can import the data of the new hierarchy from ARIS Architect because the structure is usually
specified there. However, the example shows how to manually create an input option as the
master data object. Chapter Add an attribute to a form (Page 22) describes how to add new list
elements to forms.

Location XML file in the xml folder

Procedure 1. Add a new <row> element at the relevant position.

CUSTOMIZING GUIDE

50

2. In the new row, insert an <element> element containing the internal
<parameter> element.

3. Set the selection list to AUTO. This enables you to select a new hierarchy
element without having to create an additional selection list.

Documents forms_testmanagement.xml, forms.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 4 and Step 5

You can also display this new attribute in lists. See Add an attribute to a list (Page 24).

4.5.5 Automatic transfer of hierarchy objects

If the attribute names comply with the conventions, meaning they are identical for master data
object and transactional object, the generator automatically transfers the hierarchy object (in the
example: during test case generation). The conventions are described in the section
Conventions for object generation (Page 11).

4.5.6 Make a hierarchy attribute editable.

Section Add/adapt rule (Page 65) describes how to edit rules.

Location DRL file in the rules folder.

Procedure Enable editing the attribute in the master data object in the rule Define all
standard attributes as editable.

Documents risk.drl

Example AddHierarchy

\WEB-INF\config\custom\rules\risk.drl: Enable editing of a hierarchy attribute in
rules

4.5.7 Assign roles to a hierarchy attribute

You can add a hierarchy element to a role or remove it. Section Adapt roles (assign/remove)
(Page 30) describes how to edit roles.

Location XML file in the xml folder

Procedure In the <relation> element>, connect the list attribute to an Assign and/or
Remove privilege.

Documents roles.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 6

CUSTOMIZING GUIDE

51

4.5.8 Add a hierarchy evaluation

Location XML file in the xml folder

Procedure Add a new <nav.evaluation> element and connect it to the existing statistics
definition.

Documents navigation_evaluation.xml, navigations.xsd, evaluations.xml, evaluations.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 9

4.5.9 Create a new data view for hierarchy statistics

Assign a new data view to the statistics. Section Adapt statistics (Page 52) describes how to edit
statistics views.

Location XML file in the xml folder

Procedure In the <view>element, create a new data view that connects the new hierarchy
to the transactional object to be evaluated and to the user group.

Documents views.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 7

You must also create a new view that generates the linked lists of the connected transactional
objects from the statistics.

Location XML file in the xml folder

Procedure In the <view> element, create a new data view that generates the linked lists
of the connected transactional objects from the statistics.

Documents views.xsd

Example AddHierarchy

\WEB-INF\config\custom\xml\custom.xml: Step 8

CUSTOMIZING GUIDE

52

4.6 Add/adapt statistics

Statistics are evaluations that show the distribution of data across a structure. For example, the
test case statistics shows the distribution of test results across a hierarchy.

4.6.1 Adapt statistics

Use the XML configuration to perform the following actions (sorted by complexity) for statistics:

 Adapt the column width
 Link structural elements to associated forms
 Add/adapt column(s)

 statistic.columnGroup.enum-based header
 statistic.columnGroup.perCent-based header
 statistic.column.value-based header

 Adapt links
 Incorporate new hierarchy

4.6.1.1 Adapt column widths

The width attribute is optional for all columns. If the column width is not configured, the width of
the individual columns is calculated automatically. By default, a width of 20% is assigned to the
structure, and a width of 1% is assigned to each chart column. The remaining percentage is
equally distributed to the other columns.

Since Excel and PDF reports do not contain chart columns, the layout is recalculated for a report,
that is, the width of the chart columns is distributed to the columns visible in the report.

4.6.1.2 Link structural elements

The tree view of the statistics usually contains nodes that represent objects, such as hierarchies
or user groups. You can link these objects to the nodes of the tree view. Linked objects are
displayed as a pop-up window.

Location XML file in the xml folder

Procedure 1. Copy the <evaluation> element from the default configuration to the
customizing file.

2. Add a linkedNodeTypes attribute to the <statistic.column.tree>
element. A comma-separated list of the object type IDs must exist as an
attribute value.

Remark A structural element representing an object type of the comma-separated list is
displayed as a link. The link opens the associated object in a pop-up window.

Documents evaluations.xsd, evaluations_*.xml

Example ModifyStatistic

\WEB-INF\config\custom\xml\evaluation_custom.xml: Add custom linked nodes

CUSTOMIZING GUIDE

53

4.6.1.3 Add/adapt columns

4.6.1.3.1 statistic.columnGroup.enum-based statistics

Evaluations showing the percentage distribution of enumeration attribute values of specific
objects are automatically extended by a column if the corresponding enumeration is extended.

Location XML file in the xml folder

Procedure 1. Copy the <enum> element from the default configuration to the
customizing file.

2. Create one or more new <enumitem> elements within the <enum>
element. Within the <enumitem> element, you can define the color of the
column header using the <parameter> element. The same color is used
for the display in pie charts.

Example: <parameter name="Background" value="EBB585"/>

Remark This only applies to statistics whose columns are configured using the
<statistic.columnGroup.enum> XML element. Virtual enumeration items
are used for structuring the column header. This means that real items are
subordinate to virtual items in the header.

You can prevent columns representing enumeration attribute values (real or
virtual) from being displayed by inserting the evaluationRelevant attribute
with the value false.

Documents evaluations.xsd, evaluations_*.xml

Example ModifyObjectLifecycle

\WEB-INF\config\custom\xml\testcase_enum_custom.xml: New item as a
configuration example

CUSTOMIZING GUIDE

54

4.6.1.3.2 statistic.columnGroup.perCent-based statistics

This element is used for showing absolute and percentage values for non-enumeration values.

Location XML file in the xml folder

Procedure 1. Copy the <evaluation> element from the default configuration to the
customizing file.

2. Adapt a <statistic.columnGroup.perCent> element. You can add the
individual columns of the group using <statistic.column.value>
elements. If your calculation is based on <statistic.calculator
id="value"/>, you can use the value of the calculation attribute to
control the calculation of the column values.

Remark The calculation attribute can have the following values:

count: The value of the column is increased by 1 for each value found in the data
source.

sum: All values of the data source are added up. The values of the data source
must be of the Number type.

By default, each column group contains a balance column and a pie chart. The
balance column contains the sum of values of all columns that are configured
using the <statistic.column.value> element. Each sector of a pie chart
represents a configured column.

Documents evaluations.xsd, evaluations_*.xml

Example ModifyStatistic

\WEB-INF\config\custom\xml\evaluation_custom.xml: Add custom value
column perCent

CUSTOMIZING GUIDE

55

4.6.1.3.3 statistic.column.value-based statistics

Individual values that are not part of a group of percentage values can be added or adapted using
the <statistic.column.value> element. These values are then displayed as absolute values.

Location XML file in the xml folder

Procedure 1. Copy the <evaluation> element from the default configuration to the
customizing file.

2. Adapt a <statistic.column.value> element. If your calculation is based on
<statistic.calculator id="value"/>, you can use the value of the
calculation attribute to control the calculation of the column values.

Remark The calculation attribute can have the following values:

count: The value of the column is increased by 1 for each value found in the data
source.

sum: All values of the data source are added up. The values of the data source
must be of the Number type.

Documents evaluations.xsd, evaluations_*.xml

Example ModifyStatistic

\WEB-INF\config\custom\xml\evaluation_custom.xml: Add custom value
column

CUSTOMIZING GUIDE

56

4.6.1.3.4 Adapt links

Each cell, or the values displayed therein can be linked. Usually, the link represents the value of
the cell. Example: If the value in a cell of a column that shows the number of open test cases is
10, the link will open a list with 10 open test cases.

Location XML file in the xml folder

Procedure 1. Copy the <evaluation> element from the default configuration to the
customizing file.

2. Adapt or add the link.typ and link.idref attributes of the
<statistic.column.value>, <statistic.columnGroup.perCent>, and
<statistic.columnGroup.enum> elements.

list and evaluation are permitted as a link.typ attribute value. An ID from
the file lists_*.xml or evaluations_*.xml is expected as a link.idref
attribute value.

Remark The linked list or evaluation is filtered using the values that were used for
filtering the data source of the statistics. This means that the view of linked list
or evaluation is subject to the same conditions.

Documents evaluations.xsd, evaluations_*.xml, lists_*.xml

Example ModifyStatistic

\WEB-INF\config\custom\xml\evaluation_custom.xml: Add custom linked
column

4.6.1.3.5 Use a new hierarchy

For details on using new hierarchies, see the chapter Add/adapt hierarchies (Page 48).

CUSTOMIZING GUIDE

57

4.7 Add/adapt reports

Report definitions can be customized in various ways. Adaptations that were realized only
through changes to the XML configuration are only possible for form and list reports. They are
described in the two following chapters.

4.7.1 Add/adapt reports for forms

Specialized report definitions already exist for some forms, such as the questionnaire. They are
missing, however, for other objects, such as risk and control. In this case, a report definition is
automatically generated from the form and immediately applied before report execution starts.
For forms and lists, these report definitions are written to the file reports_dynamicreports.xml
so that they can be used as customizing examples. The following examples explain how existing
report definitions for forms can be replaced, and how new report definitions can be defined for
forms that have no specialized report definition yet.

4.7.1.1 Replace an existing form report definition

To replace an existing form report, simply specify a report definition with the same ID and format
in any customizing XML file. This report definition is used instead of the default definition. In the
example below, the default form report of the questionnaire is replaced by a shorter version, from
which the output of questions is excluded.

Location XML file in the xml folder

Procedure 1. Copy the report definition of the form.

2. Change it according to your requirements.

Documents Report XML files in the default configuration serving as templates

Example FormReports_ReplaceExisting

\WEB-INF\config\custom\xml\custom.xml: Replace standard questionnaire
form report with a simplified version

4.7.1.2 Add a new form report definition

The procedure of adding a form report to forms without a specialized report definition is the same
as the procedure described in the above example. Ensure that the report ID corresponds to the
name of the form object type and is written in upper-case letters. In the following example, a PDF
form report for risks is defined. Therefore, the report ID is RISK. It references the subordinate
form report CONTROL. As this report is not defined explicitly, ARIS Risk & Compliance Manager
continues to use a definition directly generated from the form.

Location XML file in the xml folder

Procedure Create a new report definition.

CUSTOMIZING GUIDE

58

Documents Report XML files in the default configuration serving as templates

Example FormReports_AddNew

\WEB-INF\config\custom\xml\custom.xml: Add a new risk form report

4.7.1.3 Incorporate a new form report selection

Instead of creating a form report, you can configure a selection dialog that references various
other reports. The ID of such a selection dialog must either correspond exactly to the form object
type in capital letters or have the suffix _SELECT. The following example defines a report
selection for an EXCEL form report of a risk assessment, allowing you to additionally select the
default form report, a special user-defined report, or a combination of both. For the Excel format,
the default form report is created automatically.

Location XML file in the xml folder

Procedure 1. Create a new report definition.

2. Enable Excel report in the form.

Documents Report XML files in the default configuration serving as templates

Example FormReports_AddSelection\WEB-INF\config\custom\xml\custom_report.xml
: Add a new selection

 FormReports_AddSelection\WEB-INF\config\custom\xml\custom_report.xml
: Add a new form report

 FormReports_AddSelection\WEB-INF\config\custom\xml\custom_forms.xml:
Activate excel report button

CUSTOMIZING GUIDE

59

4.7.2 Add/adapt reports for lists

Specialized report definitions already exist for some lists, such as the user list or test case list.
They are missing, however, for other lists, such as risk and control lists. In this case, a report
definition is automatically generated from the relevant list and immediately applied before report
execution starts. For forms and lists, these report definitions are written to the file
reports_dynamicreports.xml so that they can be used as customizing examples. The following
examples explain how existing report definitions for lists can be replaced, and how new report
definitions can be defined for lists that have no specialized report definitions yet.

4.7.2.1 Replace an existing list report definition

To replace an existing list report, simply specify a report definition with the same ID and format
in any customizing XML file. This report definition is used instead of the default definition. In the
example below, the default list report for users is replaced by a shorter version that reduces the
number of columns.

Location XML file in the xml folder

Procedure 1. Copy the report definition of the list.

2. Change it according to your requirements.

Documents Report XML files in the default configuration serving as templates

Example ListReports_ReplaceExisting

\WEB-INF\config\custom\xml\custom.xml: Replace standard user list report
with a simplified version

4.7.2.2 Add a new list report definition

The procedure of adding a list report to lists without a specialized report definition is the same as
the procedure described in the above example. The report ID must be identical to the list ID. In
the following example, a PDF list report is defined for the list of risks in Explorer, which is
displayed for the test manager. Therefore, the report ID is RISK.

Location XML file in the xml folder

Procedure Create a new report definition.

Documents Report XML files in the default configuration serving as templates

Example ListReports_AddNew

\WEB-INF\config\custom\xml\custom.xml: Add a new risk list report

CUSTOMIZING GUIDE

60

4.7.2.3 Incorporate a new report selection

Instead of creating a list report, you can configure a selection dialog that references various other
reports. The ID of such a selection dialog must either correspond exactly to the list ID or must
have the suffix _SELECT. The following example defines a report selection for the Excel list report
of the risk assessment list in Explorer, allowing you to additionally select the default list report, a
special user-defined report, or a combination of both. For the Excel format, the default list report
is created automatically.

Location XML file in the xml folder

Procedure Create a new report definition.

Documents Report XML files in the default configuration serving as templates

Example ListReports_AddSelection\WEB-INF\config\custom\xml\custom.xml: Add a
new selection

 ListReports_AddSelection\WEB-INF\config\custom\xml\custom.xml: Add a
new list report

4.8 Modify message template

4.8.1 Add a new message template

Before you can use a new message template, you must add it.

Location XML file in the xml folder

Procedure 1. Copy the <enum> element with the ID initiators from the default
configuration to customizing.

2. Next, use the <enumitem> element to create new message templates
within the <enum> element. You must at least specify the attributes id and
value. The value must be unique for both attributes within the <enum>
element.

3. Create a new property entry for the new message template (see Add/adapt
properties of an enumeration (Page 27)). This entry enables the display
of the message template in the list of templates.

Documents enumerations.xml, enumerations.xsd

Example ModifyMessageTemplate_AddNewMessageTemplate\WEB-INF\config\custo
m\xml\custom.xml: Add new message template

 ModifyMessageTemplate_AddNewMessageTemplate\WEB-INF\config\custo
m\properties\application\custom.properties: Add new message template to
template list

CUSTOMIZING GUIDE

61

4.8.2 Add a new message template content

After adding a new message template, you must add contents to it.

Procedure Add two new property entries to the custom.properties file (see Add/adapt
properties (Page 20)).

Remark The names of the new entries must comply with the following conventions:

Subject of the message: message.<template_name>.subject.DBI

Contents of the message: message.<template_name>.text.DBI

Example ModifyMessageTemplate_AddNewMessageTemplate

\WEB-INF\config\custom\properties\application\custom.properties: Add
contents to new message template

CUSTOMIZING GUIDE

62

4.8.3 Customize the contents of a message template

You can adapt the contents of a message template in ARIS Risk & Compliance Manager. The texts
contain functions that can be used to insert variable text into the message, for example, the name
of the relevant user with $user.getName(). The functions are preceded by a $ and must not be
changed.

Procedure 1. Click Administration.

2. Under System management, click Environments or System
depending on which message template you want to edit.

3. If you selected Environments, click the relevant environment ID and
then select Notification.

4. If you selected System, select Notification. The list is displayed.

5. Open the message template you want to change.

6. Change the subject or text.

7. Click the relevant Notification type to specify whether notifications are
to be sent by e-mail and/or to the internal ARIS Risk & Compliance
Manager mailbox.

8. Click Save.

Options or text for the automatic notification are changed. As long as you do
not restore the message template to the default using the user interface, the
content from the database is used. Another method of modifying a message
template is similar to the method of adding a new message template (see Add
a new message template (Page 60)). The only difference is that you adapt
the property value.

Remark If a message template requires values that can only be determined
dynamically during runtime, they are incorporated as objects and variables.
The difference between these two both options is that an object provides the
methods for accessing values, while a variable has a given value.

By default, the object responsible for the form flow is always available. You can
access all attributes defined for these object types including Inheritance
(Page 4) using the corresponding method.

The usage of objects in a message template must comply with the following
conventions:

 For an object or a variable to be accessible, the prefix $ must always be
added.

 The object name always corresponds to the defined attribute ID of the
<objectType> element in lower-case letters.

 The method name always consists of the prefix get and the attribute ID of
the <attrType> element. Note that get must always be followed by an
upper-case letter. Furthermore, underscores in the ID are identified via a

CUSTOMIZING GUIDE

63

filter and replaced with the upper-case letter of the subsequent word.

Example

Object type Testdefinition with defined ID TESTDEFINITION and attribute
owner_group

Access to this attribute in the message template:
$testdefinition.getOwnerGroup()

The following additional objects and variables are available by default:

 $user – Object providing recipient information

 $client – Object providing environment information

 $serverConnection – Variable providing a link to the server

If more objects or variables are required, they can only be provided by Java
code implementation. User-defined implementations are indicated by message
templates that already use additional objects and variables.

Documents objectTypes.xml, objectTypes.xsd

Example ModifyMessageTemplate_AddNewMessageTemplate

\WEB-INF\config\custom\properties\application\custom.properties: Add
contents to new message template

4.8.4 Send messages

Once a new message template has been created, it can be incorporated into the form flow and
sent.

Location XML file in the xml folder

Procedure 1. Copy a <catalog> element from the default configuration to the
customizing file.

2. Use the <command> sendMail element to add the new message
template to the <commandchain> element.

3. Define the new message template and the message recipients using
<parameter> elements. In this context, usage of the parameter cc is
optional. The defined id attribute of the associated <listAttrType>
element - which additionally contains the objectType.idref attribute
with the values USER or USERGROUP - is always a permitted value for
the parameters to and cc.

Documents commandchains_[module].xml, commandchains.xsd, objectTypes.xml,
objectTypes.xsd

Example ModifyMessageTemplate_AddNewMessageTemplate

\WEB-INF\config\custom\xml\custom.xml: Add send mail command to send
new message

CUSTOMIZING GUIDE

64

4.9 Add/adapt segregation of duties

Segregation of duties is to ensure that specific objects are subject to dual control. For this, you
must configure a pair of roles users must not have simultaneously if they want to edit these
objects. For example, a test case must not be processed by a user who has the Tester and the
Reviewer role for this test case.

Location XML file in the xml folder

Procedure 1. Copy the <segregationsOfDuties> element from the default
configuration to the customizing file.

2. Create one or more <segregationsOfDuties> elements within the
<segregationsOfDuties> element.

3. In the objectType attribute, specify the object type of the object for which
a segregation of duties is to be configured.

4. Within the <segregationOfDuties> element, specify the two roles users
must not have concurrently if they want to edit an object in two separate
<segregationsOfDuties> elements.

Remark To revoke dual control, remove the <segregationsOfDuties> element.

Documents segregationsOfDuties.xsd, segregationsOfDuties.xml

Example <segregationOfDuties objectType="testcase">

 <segregationsOfDuties.role id="tester"/>

 <segregationsOfDuties.role id="testreviewer"/>

 </segregationOfDuties>

CUSTOMIZING GUIDE

65

4.10 Add/adapt rule

Rules are used to manipulate the behavior of forms. In the default configuration, the rules that
are to be applied to a form are stored in individual DRL files named for the object type of the form
(for example, risk.drl).

4.10.1 Overwrite an existing rule file

To overwrite an existing rule file, save a file with the same name to the path
WEB-INF/config/custom/rules. When the server is started, this file is referred to instead of
the default file. All conditions and results defined in rules are textual descriptions of the
functionality that is to be implemented by the rule. They must be DSL items specified in the DSL
file, which in turn is referenced in the DRL file as well as in its defined rule set. The example shows
how to add a new attribute to the USERGROUP object, how to extend the form accordingly, and
how to replace existing form rules with an extended version. It also illustrates the definition of a
new attribute and adaptation of the form.

Location DRL file in the rules folder.

Procedure Copy the DRL file of the required form to the folder mentioned above. If
necessary, change existing rules or add new rules to the file.

Documents Corresponding DSL file in the default configuration

Java doc of the CollectiveHelper class and its derived classes for an overview
of possible conditions and consequences.

Example ModifyRules_ReplaceDRL\WEB-INF\config\custom\rules\usergroup.drl: Add
custom rule

ModifyRules_ReplaceDRL\WEB-INF\config\custom\xml\custom.xml: Add new
usergroup attribute creator_remark

ModifyRules_ReplaceDRL\WEB-INF\config\custom\xml\custom.xml: Add text
box in usergroup form for new usergroup attribute 'creator_remark'

CUSTOMIZING GUIDE

66

4.10.2 Incorporate a new rule file

To incorporate a new rule file, you must define a new rule set that must reference the same DSL
file that is referenced within the rule file. This rule set must be saved to a custom XML file under
WEB-INF/config/custom/xml. Furthermore, you must overwrite the existing rule context to
which the new rule set is to belong, and also save it to a custom XML file under the path
mentioned above. In the following example, the rules of the USERGROUP form are extended by
two new rules.

Location DRL file in the rules folder

XML file in the xml folder

Procedure 1. Copy the DRL file of the required form.

2. Keep the header up to the import statements and delete the rest.

3. Add new rules according to your requirements.

4. Incorporate the new DRL file into a new rule set and save it to a custom.xml
file.

5. Overwrite the rule context of the corresponding form and incorporate the
new rule set in addition to the default set.

Documents Corresponding DRL file in the default configuration

Corresponding DSL file in the default configuration

rulesetReg.xml in the default

Java doc of the CollectiveHelper class and its derived classes for an overview
of possible conditions and consequences.

Example ModifyRules_AddDRL\WEB-INF\config\custom\rules\usergroup.drl: Add
custom rule set

ModifyRules_AddDRL\WEB-INF\config\custom\xml\custom_ruleContext.xml:
Overwrite the ruleContext and add the custom ruleSet

ModifyRules_AddDRL\WEB-INF\config\custom\xml\custom_ruleContext.xml:
Add custom ruleSet

ModifyRules_AddDRL\WEB-INF\config\custom\xml\custom_usergroupform:
Enable rule execution on change of form element 'name'

CUSTOMIZING GUIDE

67

4.10.3 Reuse existing rules for new attributes

To add a new attribute with identical behavior in terms of visibility and mandatory field conditions
to an existing group of attributes, you can assign the behavesLike characteristic to the object
type. The following example shows this mechanism with the risk owner being provided with a new
mandatory attribute for the case that the risk assessment is to be assessed with the Qualitative
type.

Location XML file in the xml folder

Procedure 1. Copy the definition of the relevant object type and add the new attribute.

2. Under behavesLike at this attribute, enter the name of another defined
attribute the behavior of which the new attribute is to adopt.

3. Add the attribute to the form.

Documents objectTypes.xml in the default

Example ModifyRules_UseFreeriders

\WEB-INF\config\custom\xml\custom.xml: Add custom freerider attribute

ModifyRules_UseFreeriders

\WEB-INF\config\custom\xml\custom.xml: Add new attribute into risk
assessment form

CUSTOMIZING GUIDE

68

4.11 Add/adapt a scheduled task

4.11.1 Adapt the schedule

Generally, ARIS Risk & Compliance Manager provides two options for starting automated jobs in
order to generate or change objects. You can trigger a job manually using the ARIS Risk &
Compliance Manager interface if you have the corresponding manager role. Or the job is executed
according to schedule by ARIS Risk & Compliance Manager. For example, this applies to generator
and monitoring jobs in the default configuration. Scheduled jobs are configured by ACC
commands.

While most of the configuration parameters are simple key value pairs, the configuration of job
scheduling is more complex. Job configuration parameters always start with
arcm.config.schedule.job, followed by the job type (generator, monitor, updater), and then by
the object type for which the job is responsible. The cleaning job does not have this object type
appendix. The value of such a job parameter is built up as a sequence of key value pairs, grouped
by enclosing braces []. Key and value are separated by the pipe character (|).

Example
reconfigure arcm_m arcm.config.schedule.job.generator.testcase=[jobitem |
generatorJob] [startScheduler | true] [executionTime | 0 52 00 ? * SUN-SAT] [
clientexcludinglist |] [clientincludinglist |] [objecttypes | TESTCASE]

The individual parameters have the following meaning:

 Jobitem

The job to be executed. The parameter value must correspond to an EnumItem ID from the
jobs enumeration in the enumerations.xml file.

 startScheduler

Must be true so that the time control for this job is active.

 executionTime

This expression states at which point in time the job should be started. It has the format
CronTrigger that allows the specification of time intervals.

The individual values mean the following from left to right:

 Seconds (0-59)

 Minutes (0-59)

 Hours (0-23)

 Day of month (1-31)

 Month (1-12 or JAN-DEC)

 Day of week (1-7 or SUN-SAT)

 Year (can be empty, 1984, 1970-2099, ...)

In the example above, the monitor job for checking test cases on each day of each month starts
at 01:52. For further information, see the CronTrigger documentation on the Quartz home page
(http://www.quartz-scheduler.org (http://www.quartz-scheduler.org))

http://www.quartz-scheduler.org/

CUSTOMIZING GUIDE

69

 excludedEnvironments

The environments in the ARIS Risk & Compliance Manager database for which the job should
not be executed are listed here. The values can be specified separated by commas. This
applies to environment specific jobs only.

 includedEnvironments

The environments in the ARIS Risk & Compliance Manager database for which the job should
be executed are listed here. If no value is specified, a separate job is started for each
individual environment. The values can be specified separated by commas. This applies to
environment specific jobs only.

 Objecttypes

The object types for which the job should be executed. In the example above, this instance
of the monitoring job should only check the test cases. The values can be specified separated
by commas.

4.11.2 Generator

4.11.2.1 Adapt the object search

The search for initial recurring objects, such as a test definition for test cases or a risk for risk
assessment is controlled in the default configuration with the commandchains_generator.xml
file. It includes a generator_[target type] chain, which is linked to either the
RecurringObjectSearchCommand command or a derivation of it.

This command is responsible for finding all recurring objects that come into consideration for the
generation of transactional objects. These objects or rather their OVIDs are written by Command
in the CommandChainContext and from there extracted and reused by the generator.

Location XML file in the xml folder

Procedure Copy the appropriate <catalog> from the default configuration to customizing.
Then, adapt the command chain.

Documents commandClassMapping.xml, blClassMapping.xsd,
commandchains_generator.xml, commandchains.xsd

CUSTOMIZING GUIDE

70

4.11.2.2 Generate objects

The generator creates an empty transactional object for each OVID of a recurring object that the
generator receives by performing the object search. Whether this object can be filled and saved
correctly is determined by the workflow configuration of the transactional object.

Each transactional object type in the workflow has a connection in <state.initial> for which only
the generator jobs are authorized (permission). When the object is created, the generator
follows this workflow connection.

Example for the TESTCASE object type

Command chain prepareJob in the testcase catalog.

The chain with which the transactional object is checked and filled is defined on this workflow
connection. The first part of the chain consists of derivations of the
GeneratorConditionCheckCommand class, each of which checks for the relevant recurring
object (for example, test definition) whether all conditions for the generation are met. The second
part consists of a derivation of GenerateCommand. Here attribute values are assigned to the
new transactional object, for example test case. Since these are commands, the behavior can be
adapted by omitting, replacing, and supplementing.

After the chain described above has successfully completed, the transactional object is in the
<state.prepared> status. This means that the generator creates the object, but the object is
not yet persistent. In the second step, the generator follows the connection for which it is
authorized (permission) and which leads to the first workflow status that allows manual
processing by the user. In the default configuration, these are the states in which the tasks for the
owner or the creator are defined.

Example for the TESTCASE object type

Command chain insertJob in the testcase catalog.

The command prepareJobMessageCommand within this second connection defines which
notifications should be sent to the owner. During its cycle, the generator collects the messages
from all of the created objects, combines them as far as possible and sends them to the recipients
defined above.

Location XML file in the xml folder

Procedure 1. Copy the appropriate <catalog> from the default configuration to
customizing.

2. Adapt the command chain.

Documents commandClassMapping.xml, blClassMapping.xsd,

 commandchains_[module].xml,

 commandchains.xsd, workflow_[module].xml

CUSTOMIZING GUIDE

71

4.11.3 Adapt the object search

The monitoring job can be adapted so that for transactional objects, for example, test cases, you
can specify in their workflow whether they are to be checked by the monitoring job or not. If an
object with a specific workflow state is to be checked by the monitoring job, a task item must be
entered for the state. In the default configuration, these are the states that represent the
processing carried out by the owner group.

Location XML file in the xml folder

Procedure 1. Copy the appropriate workflow to customizing.

2. Modify the <task.item> elements at the individual states.

Remark Make sure that the time.limitation property in the task definition is not set to
false, otherwise, the monitoring job ignores these tasks.

Documents workflow.xsd, workflow_[module].xml

4.11.4 Updater

Location XML file in the xml folder

Procedure See Generator (Page 69)

Documents Commandchain_update.xml

4.12 Adapt offline processing

Offline processing cannot be customized in general. This applies to downloading in forms and
lists, assignment of offline processors, generation of one or more offline documents, uploading
with manual or automatic confirmation, etc. However, up to a certain point, the predefined steps
can be modified in terms of content. The following chapters describe the various options as XML
configuration or program adaptations.

4.12.1 Modify offline documents

The default implementation of offline processing uses the report engine to generate special Excel
documents during the download or to import them during the upload. This procedure is based on
specific report definitions stored in default report XML files called
reports_offlineprocessing_<component name>.xml. These report definitions must adhere
to additional conventions:

 Their ID must always be specified in upper-case letters. Example: <ID of object
type>_<ID of editor role>.

CUSTOMIZING GUIDE

72

 The default implementation uses Excel reports only, which means that the required format
must be Excel.

 Excel cells that offline editors can edit must be marked with the renderer
offlineProcessingInputReferenceRenderer or, optionally, with the style
offlineinputcell.

 The auto component offlineinfo must be part of the report definition.

When adapting editable cells in the report definition, you must ensure that these cells are marked
as editable by the rule engine for the selected editor role. Otherwise, all attempts to upload
documents are canceled. The following example shows how to incorporate the test case attributes
Walkthrough name and Walkthrough counter into offline processing for the tester.

Location XML file in the xml folder

DRL file in the rules folder.

Procedure 1. Copy the TESTCASE_TESTER report definition of the form to a separate
custom.xml file and use the
offlineProcessingInputReferenceRenderer report renderer for the
cells of the Walkthrough name and Walkthrough counter attributes.

2. Copy the rules of the test case form to a separate testcase.drl file.

3. Adapt the rules so that the tester is allowed to edit the two attributes in the
form.

Documents reports_offlineprocessing_testmanagement.xml as a template

testcase.drl as a template

Example OfflineProcessing_CustomizeDocument\WEB-INF\config\custom\xml\cust
om.xml: Enable offline processing for the two attributes in the offline
document

 OfflineProcessing_CustomizeDocument\WEB-INF\config\custom\rules\te
stcase.drl: Mark the two attributes as editable for testers

4.12.2 Change the offline operator roles definition

The offlineProcessing.xml configuration file specifies the offline editor roles that can occur as
operators of other roles. In the default configuration, these operators are the manager groups for
Test Management, Risk Management, and Survey Management, which can start a
check-out for their owner and reviewer groups. Adding a new role, whether intended for offline
processing or not, always requires comprehensive customizing of ARIS Risk & Compliance
Manager and the workflows. Therefore, the example below only shows how to restrict the
Operator role of the risk manager because this does not require the creation of a new role. In this
example, the risk manager functions as an operator only for the risk owner, and no longer for the
risk reviewer.

CUSTOMIZING GUIDE

73

Location XML file in the xml folder

Procedure Copy the <offline-operators> XML element from the file
offlineProcessing.xml. Keep only the <operator-role> entry and change it.

Documents offlineProcessing.xml as a template

Example OfflineProcessing_ChangeOperator\WEB-INF\config\custom\xml\custom.xml:
Restrict operator role of risk manager

4.12.3 Add a new Offline editor role

The offlineProcessing.xml configuration file specifies the roles existing in ARIS Risk &
Compliance Manager which can act as Offline editor roles for specific objects. In the default
configuration, these roles for Test Management, Risk Management, and Survey
Management can be assumed by the relevant manager, owner, and reviewer groups. Adding a
new role always requires comprehensive customizing of ARIS Risk & Compliance Manager and the
workflows. Therefore, the XML fragment below (extract from a custom.xml) only shows how to
add a new testvalidator role without any further integration into the existing workflows.

<offline-editable>
<object-type name="testcase">
<object-type-role id="testmanager"/>
<object-type-role id="tester"/>
<object-type-role id="testreviewer"/>
<!-- enable new role for offline processing -->
<object-type-role id="testvalidator"/>
</object-type>
 …
</offline-editable>

4.12.4 Adapt offline processors

The example Modify offline documents (Page 71) shows how to adapt Excel documents from
offline processing, which were created by the report engine. It is also possible to generate Excel
files in a completely different way or use other document formats by replacing the default offline
processors by a custom implementation that generates such documents, extracts changes made
by the offline editor, and re-imports the changes into ARIS Risk & Compliance Manager. These
classes must implement the ICheckOutProcessor or ICheckInProcessor interface and can
then be incorporated into a custom.xml with the XML fragment below:

<processors>
 <checkOut>
 <checkOutProcessor
format="PDF"
clsName="com.idsscheer.webapps.arcm.bl.offlineprocessing.processors.MyCustomPDFC
heckOutProcessor"/>
 <checkIn>
 <checkInProcessor format=" PDF "
clsName="com.idsscheer.webapps.arcm.bl.offlineprocessing.processors.
MyCustomPDFCheckInProcessor "/>
 </checkIn>
</processors>

CUSTOMIZING GUIDE

74

4.12.5 Adapt offline behavior for each object type

For each object type, the implementation of the IOfflineProcessingBehaviour interface
assigned to it determines the circumstances under which a specific object is classified as offline
editable depending on its state and current user. In the default configuration, a special feature of
the questionnaire is, for example, that all subordinate sections, questions, etc., are locked for
editing once offline processing starts for the questionnaire. You can customize this behavior by
incorporating custom implementations of the above-mentioned interfaces in a custom.xml file
using the following XML fragment:

<processingBehaviour>
 <controller objectType="testcase"
clsName="com.idsscheer.webapps.arcm.bl.offlineprocessing.behaviour.custom.MyTCOf
flineProcessingBehaviour"/>
</processingBehaviour>

4.13 Add/adapt dashboard link

4.13.1 Adapt DashBoard link

If you adapt an object type for customizing, for example, if you add an attribute, you are
recommended to adapt the existing MashZone list accordingly. For this, copy the relevant
MashZone data query to the customizing area and modify it as required.

Location XML file in the xml folder

Procedure 1. Insert a copy of the <view> element from the default configuration below
the <custom> element.

2. Modify as required, for example, insert additional attributes or remove
attributes.

Documents mashzone_views.xml, views.xsd

Example AddModifyMashzoneURL\WEB-INF\config\custom\xml\custom.xml: Modify
data list

 AddModifyMashzoneURL\WEB-INF\config\custom\properties\application\

custom.properties: Modify data list

 AddModifyMashzoneURL\WEB-INF\config\custom\rules\issue.drl: Modify
data list

CUSTOMIZING GUIDE

75

4.13.2 Add dashboard link

4.13.2.1 Add a MashZone list for object data

To add a new list to ARIS Risk & Compliance Manager in Administration > Integration >
Generate dashboard link, you must create a new MashZone-relevant data query (view) in the
configuration. See the associated XML schema views.xsd for details. If the
relevantForMashzoneIntegration attribute of the relevant <view> element is set to true,
the list and filter view is generated automatically in the link generator. In this case, you can also
run a CSV query using the MashZone interface.

Location XML file in the xml folder

Procedure 1. Create a new <view> element below the <custom> element.

2. MashZone data queries are subject to the same rules as the other data
queries. However, they must be marked with the flag
relevantForMashzoneIntegration="true".

For example, this enables you to quickly convert existing data queries into
MashZone data queries by copying them and setting the true flag for them. All
columns (<viewsColumn>) that are not explicitly excluded by setting the
mashzoneRelevant="false" flag are available in the URL generator later.

Documents mashzone_views.xml, views.xsd

Example AddModifyMashzoneURL \WEB-INF\config\custom\xml\custom.xml: Add
new data list

 AddModifyMashzoneURL
\WEB-INF\config\custom\properties\application\custom.properties: Add
new data list

CUSTOMIZING GUIDE

76

4.13.2.2 Add a MashZone list for object links

The procedure of adding a list for object links is identical to the procedure of adding a data list.
They only differ in content. Data lists focus on the data attributes of the object, while a link list
provides the IDs of the objects to be linked. You are recommended to use an existing list as a
basis.

Location XML file in the xml folder

Procedure 1. Generate a view that provides only the IDs and, if required, the names of
the objects to be linked.

2. Link the objects within the MashZone Feed Editor.

Documents mashzone_views.xml, views.xsd

Example AddModifyMashzoneURL\WEB-INF\config\custom\xml\custom.xml: Add
new object relation list

 AddModifyMashzoneURL\WEB-INF\config\custom\properties\application\c
ustom.properties: Add new object relation list

4.13.2.3 Assign a name to a MashZone list

You can assign a name to a MashZone list using a property key in a property file. The following
naming conventions apply:

 The key must have the format view.<view ID>.DBI.

 The file must not contain underscores (_) as separators because the underscore is used as a
separator for the country code.

If the name is to be available in different languages, you must generate one file for each language
and assign the appropriate country codes. Example: custom_en.properties (English) or
custom_de.properties (German).

Location Property file in the properties\application folder

Procedure 1. Add a line in a new or an existing file according to the above-mentioned
naming convention.

2. Enter a name after the equal sign.

Documents See Adapt names (Page 3).

Example AddModifyMashzoneURL
\WEB-INF\config\custom\properties\application\custom.properties: Add new
data list und Add new object relation list

CUSTOMIZING GUIDE

77

4.14 Adjust navigation

You can adjust parts of the navigation within the HTML interface of ARIS Risk & Compliance
Manager by adapting the navigation XML files. Adjustments can be made for Navigation within the
individual interface areas Home, Explorer, Evaluation and Administration.

4.14.1 Adapt navigation for an area

The contents of Home, Explorer, Evaluation and Administration can be adapted using the
associated XML file (navigation_home.xml, navigation_explorer, navigation_evaluation,
navigation_administration.xml). For Home, the XML file contains information on the menu items
to be displayed in the main window. For Explorer and Evaluation, the XML file contains
information on the structure of the left-hand navigation. For Administration, the XML FILE
contains information on the structure of the top navigation bar and the content of each associated
tab.

The following elements can be defined within the navigation XML files:

 <nav.item>

Used as a structural element for a group of elements. Can alternatively be used as a
reference for an element that is defined in the XML files.

 <nav.data.grid>

Represented as a link, opens a list. Used in all areas.

 <nav.evaluation>

Represented as a link, opens an evaluation. Only used in Evaluation.

 <nav.job>

Represented as a link or button, schedules an administrative background job. Only used in
Administration.

 <nav.action>

Represented as a link or button, immediately performs an action. Only used in
Administration.

 <nav.object>

Represented as a link, opens an ARIS Risk & Compliance Manager object. Only used in
Administration.

You can define the display of these elements with <nav.access>. The element is displayed only if
all requirements defined in <nav.access> are met. The following types of condition exist:

 <nav.access.component>

Users must be assigned in ARIS Risk & Compliance Manager to the role that provides them
with access to the functions relevant for them.

 <nav.access.privilege>

Users must have the specified system privilege for at least one of the roles assigned to them.
The privileges are defined in the roles.xml file.

CUSTOMIZING GUIDE

78

 <nav.access.role>

Users must have the specified role. The privileges are defined in the roles.xml file.

Each type of condition can exist only once in each condition.

A <nav.item> element propagates its access conditions to all child elements. If a <nav.item>
element contains a subordinate <nav.data.grid> element, the conditions directly assigned to
the elements and those of the parent element are combined.

Example

In the navigation, an existing list is inserted at an additional position and another access privilege
is defined for it.

Location XML file in the xml folder

Procedure 1. Copy the <nav.module> element or individual <nav.item> elements
from the default to the customizing file.

2. Embed them within a <navigation> element. Subsequently, use the
navigation.xsd file to change the contents.

Documents navigation_explorer.xml, navigation.xsd

Example Navigation_Module\WEB-INF\config\custom\xml: Modify the module
navigation

CUSTOMIZING GUIDE

79

4.15 Adapt and extend event enabling

The control of processes through events is achieved by processing incoming events that trigger
the generation of certain objects in different states in ARIS Risk & Compliance Manager. You
cannot adapt this type of control. You can adapt the attributes of the objects generated in ARIS
Risk & Compliance Manager, for example, test cases, by adapting the existing configuration files
or by generating an additional configuration file based on existing ones. Theses adaptations and
extensions are carried out by a Complex Event Processing Engine administrator. Two customizing
options in ARIS Risk & Compliance Manager are described below. See the Complex Event
Processing documentation for information on how the files are managed in the Complex Event
Processing Engine, that is, which events are sent and which configuration files they are based on.

4.15.1 Extend existing event type XSDs

The default implementation of the control with events uses configuration files supplied in XSD
format for the Complex Event Processing Engine. These files contain all attributes that the
relevant event can transfer in ARIS Risk & Compliance Manager. Modifications become effective
as soon as the Complex Event Processing Engine administrator saves the changes to the
configuration file. If necessary, the configuration file must be updated locally.

Location XSD file in folder

<event architecture installation
directory>\common\EventTypeStore\WebM\ARCM

Procedure Add a new attribute to the configuration file. If you use an ARIS Risk &
Compliance Manager attribute you must use the same name as in ARIS Risk &
Compliance Manager.

Documents objectTypes.xml, IncidentEvent.xsd, or TestcaseEvent.xsd

CUSTOMIZING GUIDE

80

4.15.2 Create new event type XSDs

The default implementation of the control with events uses configuration files supplied in XSD
format for the Complex Event Processing Engine. These files contain all attributes that the
relevant event can transfer in ARIS Risk & Compliance Manager. You can also generate new
configuration files based on the configuration files supplied. However, it is not possible to modify
the object type to be generated in ARIS Risk & Compliance Manager. The administrator must not
only save the new configuration file, but ensure that events are sent via a corresponding path
based on the new configuration file. The new configuration file can be updated in the local Event
Type Store.

Location XSD file in folder

<event architecture installation
directory>\common\EventTypeStore\WebM\ARCM

Procedure Copy the existing XSD file from the ARCM folder to the relevant Event Type
Store and add attributes. If you use an ARIS Risk & Compliance Manager
attribute you must use the same name as in ARIS Risk & Compliance Manager.

Documents objectTypes.xml, IncidentEvent.xsd or TestcaseEvent.xsd as a template

4.16 Adapt interface appearance

You can adjust the interface appearance of ARIS Risk & Compliance Manager to provide a
customized look and to upgrade custom client-side behavior. The following adjustments can be
made:

 Replacing images and icons

 Including additional CSS files to modify the presentation of the HTML interface

 Including additional JavaScript files to modify the client-side behavior

4.16.1 Exchange images and icons

All default images and icons of ARIS Risk & Compliance Manager are stored in the folder
\design\default\images\ and its subfolders. To replace an image or icon, save the new resource
in the folder \design\custom\images\ or its subfolder. Path and file name must match exactly the
ones of the replaced image or icon, except the default folder, which is replaced with custom.

Example

To replace the icon wait.gif stored in \design\default\images\icons\, save the new resource
with the name wait.gif in \design\custom\images\icons\.

This procedure does not work for images and icons declared in default style sheets.

CUSTOMIZING GUIDE

81

4.16.2 Include CSS files

The design of the HTML interface can be modified by including CSS style sheets. The custom style
sheets are inserted after the default style sheets. For the custom style sheet to take effect, the
included rule sets must have selectors that are as precise as the default ones. These files are
added to all pages.

Location XML file in the xml folder

Procedure 1. Copy the <includesGlobal> element from default configuration to
customizing.

2. Create one or more <globalStyle> elements within the
<includesGlobal> element.

3. Move style sheets to folder \design\custom\css and images to folder
\design\custom\images.

4. Modify attributes of <globalStyle> to match the style sheet’s name.

Documents globalstaticresources.xml, globalstaticresources.xsd

Remark In some cases, images and icons are embedded in the interface with style
sheets. To replace these resources, overwrite the existing CSS rule and include
the new image.

Example AddCustomUIHeader

\WEB-INF\config\custom\xml\logo.xml: Change interface

4.16.3 Include JavaScript files

In some cases, the client-side behavior of ARIS Risk & Compliance Manager is modified as part of
a customization. For that purpose, JavaScript file can be added to the scope. The custom script
files are included after the default ones, meaning that they can override previously defined
objects and methods. These files are added to all pages.

Location XML file in the xml folder

Procedure 1. Copy the <includesGlobal> element from the default configuration to the
customizing file.

2. Create one or more <globalScript> elements within the
<includesGlobal> element.

3. Move JavaScript files to folder \js\custom\.

4. Modify attributes of <globalScript> to match the file’s name.

Documents globalstaticresources.xml, globalstaticresources.xsd

Example AddCustomUIHeader

\WEB-INF\config\custom\xml\logo.xml: Change interface

CUSTOMIZING GUIDE

82

5 Support

ON THE WEB

Open Empower (https://empower.softwareag.com/) to get support.

With a valid support contract you can access the solution database.

For questions about special installations that you cannot carry out yourself, please contact your
local Software AG sales organization.

BY PHONE

With a valid support contract you can reach Global Support ARIS at:

+800 ARISHELP

The "+" stands for the respective prefix for making an international connection in this land.

An example of the number to be dialed within Germany using a land line: 00 800 2747 4357

If this number is not supported by your telephone provider, please refer to Empower
https://empower.softwareag.com/public_directory.asp.

https://empower.softwareag.com/
https://empower.softwareag.com/public_directory.asp

CUSTOMIZING GUIDE

83

6 Disclaimer

ARIS products are intended and developed for use by people. Automatic processes such as
generation of content and import of objects/artefacts using interfaces can lead to a huge data
volume, processing of which may exceed the available processing capacity and physical limits.
Physical limits can be exceeded if the available memory is not sufficient for execution of the
operations or storage of the data.

Effective operation of ARIS Risk & Compliance Manager requires a reliable and fast network
connection. A network with an insufficient response time reduces system performance and can
lead to timeouts.

If ARIS products are used in a virtual environment, sufficient resources must be available to avoid
the risk of overbooking.

The system has been tested in the Internal control system scenario with 400 users logged in
simultaneously. It contains 2,000,000 objects. To guarantee adequate performance, we
recommend operating with not more than 500 users logged in simultaneously. Customer-specific
adaptations, particularly in lists and filters, have a negative impact on performance.

	Contents
	1 Text conventions
	2 What can be customized?
	3 General procedure
	3.1 Adapt the XML configuration
	3.2 Adapt rules
	3.3 Adapt names
	3.4 Inheritance
	3.4.1 Inheritance hierarchy of central objects
	3.4.2 Object and VersionObject object types
	3.4.3 TransactionalObject object type
	3.4.4 MonitorableObject object type
	3.4.5 RecurringObject object type
	3.4.6 ObjectContainer object type
	3.4.7 Inheritance in the file objectTypes.xml

	3.5 Conventions
	3.5.1 Conventions in the XML configuration
	3.5.2 Conventions for object generation
	3.5.2.1 Environment association in environment-specific objects
	3.5.2.2 MonitorableObject object type
	3.5.2.3 Identical attribute names
	3.5.2.4 Object assignment if names are identical

	3.6 Class mappings
	3.6.1 Actions
	3.6.2 Command class mappings
	3.6.3 Statistics class mappings
	3.6.4 Bl class mappings
	3.6.5 UI class mappings
	3.6.6 View class mappings
	3.6.7 VCREG.XML configuration file

	3.7 Customize help

	4 Basic use cases
	4.1 Customize object properties
	4.1.1 Overwrite the schema version
	4.1.2 Add/adapt a simple attribute
	4.1.2.1 Create a simple attribute
	4.1.2.1.1 Adapt an object type
	4.1.2.1.2 Add/adapt properties
	4.1.2.1.3 Assign validator
	4.1.2.1.4 Assign converter

	4.1.2.2 Add an attribute to a form
	4.1.2.2.1 Adapt a form
	4.1.2.2.2 Add/adapt properties of a form
	4.1.2.2.3 Assign a renderer
	4.1.2.2.4 Adapt rules
	4.1.2.2.5 Add/adapt reports

	4.1.2.3 Add an attribute to a list
	4.1.2.3.1 Adapt a list
	4.1.2.3.2 Add/adapt properties of a list
	4.1.2.3.3 Adapt data retrieval for a list
	4.1.2.3.4 Add a renderer
	4.1.2.3.5 Add/adapt reports

	4.1.2.4 Add an attribute to a filter
	4.1.2.4.1 Adapt a list filter
	4.1.2.4.2 Add/adapt properties of a filter
	4.1.2.4.3 Assign a renderer

	4.1.3 Add/modify an enumeration attribute
	4.1.3.1 Create an enumeration attribute
	4.1.3.1.1 Add/adapt an enumeration
	4.1.3.1.2 Add/adapt properties of an enumeration
	4.1.3.1.3 Adapt an object type
	4.1.3.1.4 Add an attribute to a form
	4.1.3.1.5 Adapt data retrieval for a list
	4.1.3.1.6 Add an attribute to a list
	4.1.3.1.7 Add an attribute to a filter

	4.1.4 Add/adapt a list attribute
	4.1.4.1 Create a list attribute
	4.1.4.1.1 Adapt an object type
	4.1.4.1.2 Add/adapt properties
	4.1.4.1.3 Adapt list restrictions
	4.1.4.1.4 Adapt roles
	4.1.4.1.5 Add an attribute to a form

	4.1.4.2 Add a selection list
	4.1.4.2.1 Adapt a selection list
	4.1.4.2.2 Add/adapt properties
	4.1.4.2.3 Adapt data query for selection list
	4.1.4.2.4 Assign a renderer
	4.1.4.2.5 Add a selection list filter

	4.2 Customize the object life cycle
	4.2.1 Workflow configuration
	4.2.1.1 Add a state
	4.2.1.1.1 Add a state to an active object
	4.2.1.1.2 Add a state to a deleted object

	4.2.1.2 Add a transition
	4.2.1.2.1 Add a prepare transition
	4.2.1.2.2 Add an insert transition
	4.2.1.2.3 Add an update transition
	4.2.1.2.4 Add a reset transition
	4.2.1.2.5 Add a delete transition
	4.2.1.2.6 Add a recover transition

	4.2.2 Configure the command chain catalog
	4.2.2.1 Modify a command chain
	4.2.2.2 Add a command chain

	4.2.3 Adapt/add user interactions
	4.2.3.1 Confirmation dialogs
	4.2.3.2 Input dialogs

	4.3 Adapt the task configuration
	4.4 Adapt a master data import
	4.5 Add/adapt hierarchies
	4.5.1 Add an enumeration item
	4.5.2 Add a new list element to a master data object
	4.5.3 Add a new list element to a transactional object
	4.5.4 Display and input options for forms
	4.5.5 Automatic transfer of hierarchy objects
	4.5.6 Make a hierarchy attribute editable.
	4.5.7 Assign roles to a hierarchy attribute
	4.5.8 Add a hierarchy evaluation
	4.5.9 Create a new data view for hierarchy statistics

	4.6 Add/adapt statistics
	4.6.1 Adapt statistics
	4.6.1.1 Adapt column widths
	4.6.1.2 Link structural elements
	4.6.1.3 Add/adapt columns
	4.6.1.3.1 statistic.columnGroup.enum-based statistics
	4.6.1.3.2 statistic.columnGroup.perCent-based statistics
	4.6.1.3.3 statistic.column.value-based statistics
	4.6.1.3.4 Adapt links
	4.6.1.3.5 Use a new hierarchy

	4.7 Add/adapt reports
	4.7.1 Add/adapt reports for forms
	4.7.1.1 Replace an existing form report definition
	4.7.1.2 Add a new form report definition
	4.7.1.3 Incorporate a new form report selection

	4.7.2 Add/adapt reports for lists
	4.7.2.1 Replace an existing list report definition
	4.7.2.2 Add a new list report definition
	4.7.2.3 Incorporate a new report selection

	4.8 Modify message template
	4.8.1 Add a new message template
	4.8.2 Add a new message template content
	4.8.3 Customize the contents of a message template
	4.8.4 Send messages

	4.9 Add/adapt segregation of duties
	4.10 Add/adapt rule
	4.10.1 Overwrite an existing rule file
	4.10.2 Incorporate a new rule file
	4.10.3 Reuse existing rules for new attributes

	4.11 Add/adapt a scheduled task
	4.11.1 Adapt the schedule
	4.11.2 Generator
	4.11.2.1 Adapt the object search
	4.11.2.2 Generate objects

	4.11.3 Adapt the object search
	4.11.4 Updater

	4.12 Adapt offline processing
	4.12.1 Modify offline documents
	4.12.2 Change the offline operator roles definition
	4.12.3 Add a new Offline editor role
	4.12.4 Adapt offline processors
	4.12.5 Adapt offline behavior for each object type

	4.13 Add/adapt dashboard link
	4.13.1 Adapt DashBoard link
	4.13.2 Add dashboard link
	4.13.2.1 Add a MashZone list for object data
	4.13.2.2 Add a MashZone list for object links
	4.13.2.3 Assign a name to a MashZone list

	4.14 Adjust navigation
	4.14.1 Adapt navigation for an area

	4.15 Adapt and extend event enabling
	4.15.1 Extend existing event type XSDs
	4.15.2 Create new event type XSDs

	4.16 Adapt interface appearance
	4.16.1 Exchange images and icons
	4.16.2 Include CSS files
	4.16.3 Include JavaScript files

	5 Support
	6 Disclaimer

