§ software

ARIS UML Designer
INTRODUCTION

Version 10.0 - Service Release 2

October 2017

Document content not changed since release 10.0.1. It applies to version 10.0.2 without changes.

This document applies to ARIS Version 10.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Copyright © 2010 - 2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc.,
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered
trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its
affiliates and/or their licensors. Other company and product nhames mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is
located at http://softwareag.com/licenses (http://softwareag.com/licenses).

Use of this software is subject to adherence to Software AG's licensing conditions and terms.
These terms are part of the product documentation, located at http://softwareag.com/licenses
(http://softwareag.com/licenses) and/or in the root installation directory of the licensed
product(s).

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices
and Disclaimers of Third Party Products”. For certain specific third-party license restrictions,
please refer to section E of the Legal Notices available under "License Terms and Conditions for
Use of Software AG Products / Copyright and Trademark Notices of Software AG Products". These
documents are part of the product documentation, located at http://softwareag.com/licenses
(http://softwareag.com/licenses) and/or in the root installation directory of the licensed
product(s).

Contents

1

2

|] o Ta [ot To] o H PR 1
1.1 (0] I o = =] ot PP 2
1.2 LA 1= Lo =T 1 PP 2
1.3 (0] | e TT=To =Y T 0/ o 1= PP 2
1.3.1 (O 1= 151 J e [=T] =10 0 PP 4
1.3.2 ComponeNnt di@agram .« ... e 6
1.3.3 Composite structure diagram ... oo e 7
1.3.4 (O]} 1=To dle IT=To | =] o 1 [P PP 8
1.3.5 Package diagram.. ..o e 9
1.3.6 Profile diagram (i e 10
1.3.7 Deployment diagram .o i e 12
1.3.8 ACIVILY diagram. . e 13
1.3.9 ULl o= 1Tl I T=To | =] o [PP 15
1.3.10 Communication diagramieieii e 17
1.3.11 ST <Te [UT=T aTol e [T=Ta | =] o o IR PP 19
1.3.12 a1 1o B [T= 1 = 1o o P PP 20
1.3.13 Interaction Overview diagramccoeviiiiiiiiii e 21
1.3.14 State machine diagramc.ciiiiiii 22
1.3.15 Protocol State machine diagram......ccooviiiiiiiii i 24
1.4 Special features in ARIS UML DeSigner...c.civiiiii i i i i i 26
1.4.1 (D T=Te] =1 0 g I ole] 0 1= o | P PP 26
1.4.2 Names of UML elements. . .uviiiiiiiici i re e e ea e 27
1.4.3 Multilingual capability ..c.ocevieii i 27
1.5 The UML metamodel ..o e e e raanaas 28
1.5.1 (0o o[aTeT 8 =3 o 8 L 81 < 29
1.5.1.1 2 Yo PP 29
1.5.1.2 I F= T =T 1= ol 32
1.5.1.3 Types and MUItipliCities. ..o e 34
1.5.2 Values — Literalsooiiiiiiii 35
1.5.3 ClasSifiCatiON .uei i e 37
1.5.3.1 (O F= =] 1= ol PP 37
1.5.3.2 FRAtUNES e e 39
1.5.4 Structured Classifiers. .. o e 41
1.54.1 L0 = == 41
1.5.4.2 ASSOCIALIONS .ttt e 42
1.5.4.3 Simple Classifiers — DataTyPes .ivviiiiiiii it 44
ARIS UML DESIGNEE OVEIVIEW 1utiutiutintititisisassasasssse e et st sas s sassassas s sassasansanes 45
2.1 Specifying the working environmento 45
2.2 D q 0] [0 /=Y ol 48
2.2.1 NaVIgation Daro e 50
2.2.1.1 EXPlOrer M ittt 50
2.2.1.2 DT F=To] =] o o T o == T 53
2.2.2 PrOP IS PAGES oottt i e 54
2.2.2.1 Information (elements, diagrams, groups)ccocvvevieiiiiieiinnnnninnnnnns 54
2.2.2.2 General (elements, diagrams, groups) ...ccvvvviiiiiiiiiiiiii e 56
2.2.2.3 Relationships (elements)......ccviiiiiiiiii i e 61
2.2.2.4 Linked diagrams (elements) ..c.oiviiiiiiiiiiii 62
2.2.2.5 Presentations in diagrams (elements)ccooviiiiiiiiiiiiiiii i 63
2.2.2.6 Presentations (diagrams) ..oiiiiiiiiiii i e 64
2.2.2.7 Connected objects (diagrams) ...cviiiiiiiiii i 65

2.2.3 Properties dialogs. ...oiviiii i e 66
2.2.4 Creating new elements in EXPIOrer ... ccouiieiiiiiiii e 67
2.2.5 Creating new diagrams in EXPlOrercviiiiiiiii i 74
2.3 T T | =T 75
2.3.1 Navigation bar....c.coiiiii 76
2.3.1.1 [=T = 0 Y2 =T Y AT 76
2.3.1.2 Visualized elements. ..o e 77
2.3.2 Properties Dar. ... i e 77
2.3.3 0] 2 = | PP 78
2.3.4 SYMDOIS DAl 1ttt 79
2.3.5 Implicit changes bar ... 85
2.3.6 [ToTa [=1 7 0o 1P PP 87
2.3.6.1 Creating new node presentationscoooiviiiiiiiiiii i 87
2.3.6.2 Creating a new edge presentationccooiiiiiiiiiii i 91
2.3.6.3 Deleting presentations and elements..........cocoiiiiiiiii i, 94
2.3.6.4 T T oo 1= | ol P 95
2.3.6.5 Modeling and hierarchy in EXplorer........ccooiiiiiiiiiiiiiiiiicee e 97
2.3.6.6 GraphiC NESEINGS ... 99
2.3.6.7 L 1= o 1 e 1 103
2.3.6.8 Modeling iN GroOUPINGS .. .ue ettt e e eaeaens 105
2.3.6.9 UML-specific modeling SUPPOrt.....ciiiiiiii i 107
.3.6.9.1 Specifying the navigability of an association endc.cevunees 107
2.3.6.9.2 Creating getter and setter operations........cccooiiiiiiiiiiin i 110

2.4 L]5] oo 1= 112
2.4.1 L= =T = | PP 113
2.4.2 o T £=1 17 0T PPN 114
2.4.3 DesSigner > GENEIAl . .ui i e 116
2.4.4 b rd 0] [0 /= o PPN 118
2.4.5 Designer > For new diagrams > ApPPEarancCecvvevireriniiinernneranenanens 119
2.4.6 Designer > For new diagram elements.........cocviiiiiiiiiiiiii e 120
2.4.7 Designer > Property tabs ...cviiiiiiii 122
2.4.8 Designer > UML2 MOdelingcovvuiiiiiiiiie it aee e 123
2.5 Administration tab ..o e 124
2.5.1 7= oY I 1 =T PP 126
2.5.2 LMK By DS ittt 128
2.5.3 D ==Y T U e = 129
2.5.4 Data transfer from ARIS UML DeSIGNEr 7. X ..icoiiiiiiiiiiiiiiiiiiiinanenanens 129
Mapping UML to the ARIS object model.......cooiiiiiiii 130
3.1 Group and object properties of UML elementscoooiiiiiiiiiiiiiiiciiiciicieaaea 130
3.2 Complexity of edge presentationsccviiiiiiiiii i 132
3.3 The most important mappings from UML to ARIS........ccoociiiiiiiiiiirin e 133
Linking business process and UML modelingccoiiiiiiiiiii i 134
4.1 Assignment of UML diagrams to business process objects...........cccoviiiieininens 134
4.1.1 Creating an assignment in ARIS UML Designer.......cccovvviviiiiinniiinnninnenn 135
4.1.2 Creating an assignment in ARIS Architect/Designer...........ccccevivievnenenn. 137
4.2 Reusing business process objects as UML elements.........cocoivviiiiiiiiiiiienenne. 141
4.2.1 Specifying the mapping of ARIS to UML types.....ccovvviiiiiiiiiiiii e 141
4.2.2 Reusing an ARIS object in @a UML diagramcooeviiiiiiiiniiiiiiieeeeeene 145
4.2.3 Managing the object link definitions......ccoooiiiiiiiiii 149

4.3 Navigation between ARIS Architect/Designer and ARIS UML Designer 150

4.3.1 Navigation from ARIS Architect/Designer to ARIS UML Designer......... 150
4.3.2 Navigation from ARIS UML Designer to ARIS Architect/Designer 152
(]I oY /o] 1 1= 155
5.1 Predefined profiles in ARIS UML DESIgNer ...ccviiiiiiiii i i i i 155
5.2 USING Profiles . e 156
5.2.1 Assignment of profiles to @ packagecoovoiiiiiiiiii i 156
5.2.2 Assignment of stereotypes to a UML element........c.ccvviiiiiiiiiiiiinninnnn, 159
5.2.3 Creating stereotyped elements in the Explorer........ccoooeiiiiiiiiiiiienne, 162
5.2.4 Stereotypes in the Symbols bar of diagrams.........cceeviiiiiiiiiiiiiiiiiinnns 164
5.3 User-defined UML profiles ...cuiiiiii i i i i e e 166
5.3.1 The UML metamodel generatorcvviiiiiiiiiiici i 166
5.3.2 Creating @ Profile ..o 172
5.3.3 Creating @ stereotyPe v e 175
5.3.4 Defining NEW ProPertiES ..viiiti it i e e 178
5.3.5 ARIS-specific features of user-defined propertiesccoceviiiiiinnnnnn. 184
5.3.6 Inheritance relationships between stereotypes........cccoveviiiiiiiiiiinnnne, 188
5.3.7 Creating a filter profile.....ccoiviiiii 190
5.3.8 Creating a diagram stereotype... ..o v 193
Differences from ARIS Architect/Designerciiiiiii i e 197
6.1 Relevance of the model and its diagrams in terms of semantics...................... 197
6.2 The Save and Undo/Redo fUNCEIONS .. viiiiiiiiiiie i riianesiiasesansrsransessannessnnnes 197
6.3 (O]T<1a]] ale s [F=To =10 11T S 198
6.4 Element hierarChiesocviiiiiiii i e e e 198
6.5 Graphical connections and edges in diagrams........cocooiiiiiiiiiiiiiic i 198
6.6 FAN Y] [a1 1=] = P 199
6. Creating ARIS SCHIPES 1uuiuiitiiiiiiii e e e e a e e 199
Differences from ARIS UML DeSIGNEI 7. X ..uueuie ittt et et e ae e e e e e eaeeeas 200
7.1 LI = =] o o 200
7.2 Mapping of UML T0 ARIS ...ttt e e e e e e e e ea e 200
7.3 Reuse of business process objects in UML......coooiiiiiiiiiiii i 201
7.4 Saving and unNdoiNg ChaNGES.......c it e 201
7.5 Integration of UML into the ExXplorer treeo 201
7.6 Separate window for ARIS UML DeSIgNer...cuiiiiiiiii i i i i i it i e naeeas 202
7.7 D) T gL =T =T T PP 202
F AN 0] 011 o o | P 203
8.1 (€ Lo 1Y | oY/ PPN 203
8.2 Additional documents and referenNCeSvvviiiiiiiii i i i 204
8.2.1 [T o (U] 1= | o3 204
8.2.2] =T <] g Lol PSPPSR 204

Table
Figure 1:

Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

of figures

(O] = 3= =T 1 =1 o o P 4
Association between tWo Classeso 4
Association ends as attributes ... 5
Unidirectional @assoCiation........oe i e 5
Generalization between tWo ClasSes ... 5
(@] aa] o] a¥=T o) dle [T=Te | =] o o [P PP 6
Components with ports and iNterfaces......cvvviiiiiiii e 6
Class diagram with order COMpONENtS ..o e 7
Composite structure diagram for the Order class ..o 7
Object diagram with order INStaNCevieiii i 8
Package diagram ... e 9
Profile dIagram i i e 10
Deployment diagram with components and artefacts.........ccoeviiiiiiiiiiiiiiiiiiiiinns 12
Deployment of software components on physical systems........ccovvviiiiiiiiiiinnns 12
Create order activity diagram ..o e 13
Check customer data activity diagram ... 14
(O EY ol o= FY e | =T | = o o O PR 15
Create order communication diagramccciiiiiiiiiii i 17
Create order sequence diagramo.oeiiieiii e e e 19
Order states timing diagram ..o 20
Manage order interaction overview diagramccoviii i 21
Order states state machine diagram ... 22
Order class with Operations ..o iiiiiii 24
Order states protocol state machine diagram.........ccooiiiiiiiiiiiiiiiiic 24
UML notation from different diagram types in a class diagramc.ccevvenne. 26
Root diagram from the UML specification with ARIS-specific extensions 29
Comment with class as annotated element..........ccoooiiiiiii 30
Namespaces diagram from the UML specificationccoviiiiiiiiiiiiii i 32
Example of owningPackage edgesoooo i 33
Types and multiplicities diagram from the UML specification...............covvviinne. 34
Literals diagram from the UML specification..........cccooii i e 35
Class diagram with attributes, association ends, and multiplicities...................... 36
Classifiers diagram from the UML specification.........ccoiiiiiiiiiiiiiiiiiciiiciicca 37
Generalization relationship between two Classesccoiiiiiiiiiiiiiin i 38
Features diagram from the UML specification...........cccooiiiiiiiiii e, 39
Class diagram with attributes and association endscccviiiiiiiiiiiiiiiiicic 40

Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:

Classes diagram from the UML specificationcoviiiiiiiiiiiiiiiiic i 41

Associations diagram from the UML specification..........ccccviiiiiiiiiiiiiiiiicicie i 42
Class diagram with an @ssoCiationovieiiii i e 43
DataTypes diagram from the UML specificationccoiiiiiiiiiiiiiiiiiicccin i 44
Class diagram with two primitive data types.....ccoviiiiiiiiiici 44
Menu item for specifying the perspective ... 45
Topic selection in the Perspective Wizardcoooiiiiiiiiiiiii i i e 46
Working environments in the Perspective Wizardcoooiiiiiiiiiiiiiiiiiiiciiiea, 46
EXplorer tabh. ... e 48
Menu item for displaying the Explorer tab............cooo i 49
Groups, diagrams, and elements in the Explorer tree......cccocoviiiiiiiiiiiiiiiiiiie i 50
Explorer tree filter OptioNS....cvi i 51
Explorer tree filter dialogoviuiiiiiii 52
Explorer tree filter details....ooiiiiii 52
=T = 1 T o = 53
Information properties Page. ..o e 54
Information properties page configurationcooiiiiiiiiiiii i 55
General Properties PAgE ..oii it 56
Alphabetical property display ...ccciiiiiiiii 57
General properties page with display of derived properties.........ccoveviiiiiiiiinnns 57
General properties page without properties for which no value is specified......... 58
LIS =1 16 Y2 58
Editor for formattable text.......c.ooiii i 59
Text editing for a UML element in the general properties.........ccvvvviiiiiiiiiiiininnns 59
Additional functionalities for a UML element in the general properties................. 59
Creating new UML elements in the general properties........cccooviiiiiiiiiiiiiiciiicnnnnn, 60
Relationships properties Page ..ioviiiiiiiiii e 61
Linked diagrams properties Page...coovii it iiii i i i 62
Presentations in diagrams properties page.......ccovvii it 63
Presentations properties Pagecocviiiiiiii i e 64
Connected objects properties page.....cccviiiiiiiiiiiii e 65
Properties dialog for a UML elementcooviiiiiiiiiii i i e 66
Properties page for displaying and editing the element description..................... 66
Pop-up menu for creating a new elementin @ group......ccvviiiiiiiiiiic i i e 67
Pop-up menu for creating a new element in a UML packagecovivviiiiinnne, 68
Dialog showing element types that are not included in the pop-up menu............. 69
Dialog for configuring the New model element submenu..................cooenl. 70

Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:

Figure 110:

Text editing for a UML element in Explorer......ccoviiiiiii i 71

Selection list with matching elements in text editing.......ccooviiiiiiiiiiin i 71
Unknown UML element in text editing......ccooeieiii e 71
Dialog with unknown references in text editingcoviiiiiiiiiiiii i 72
Selecting the type for the new element to be created ... 72
Selection options for creating or usinga UML elementcoooiiiiiiiiiiiiiinnens 73
Y=T=] e o e 1= (o T PP 73
Pop-up menu for creating new UML diagramscoviiiiiiiiiii i i 74
DeSignNer COMPONENT. ..ui ittt i 75
DT F=Te =T o g AV =T Y L= P 76
Visualized elements ..o 77
Format properties page for the element selected in the diagram....................... 78
Symbols bar for a Class diagramiviiiiiii i e e 79
53V2 121 0T0] Ie [=T-Tol o] o) Lo o W PP 79
Symbols bar with symbol names hidden ... 80
Pop-up menu in the Symbols bar........coooiiiiiii i 80
Dialog for configuration of the Symbols bar.............ccoooi 81
All available symbols whose name contains the text Callc.ccviviiiininnn, 82
Add to favorite symbols pop-up menu item ..o 82
Favorite SYMbDOIS. . i 83
Dialog for selecting the symbol ..o 83
Diagram-specifiCc SYmMbOIS. ..o 84
IMPliCIt ChanNgEs Dar . i e e e e e 85
Binary associations whose ends are attributes of the classes involved................. 85
Renaming the association end and deleting the type specification 85

Logged impliCit Change ..o e 86
Selecting the Class node symbol ... 87
Mouse pointer with preview of a class presentation...........cocviiiiiiiiiiiiiiiiin i 87
New class placed with text input box forthe name ... 88
Create dialog after entering the name of existing elementscoveviiiiinns 89
Dialog asking which symbolisto be usedccoiiiiiiiiiiiiiii e 90
Selecting the Association edge symbol.........cooiiiiiiii 91
Displaying the edge anchor point on the source elementc.covvviiiiiiinnnn, 91
Displaying the edge anchor point on the target element and edge preview 91

Dialog for creating an association between two classes between which an
association already EXistS ..vviiiiiiiii 92

General edge SYMDOL ... e 92

Figure 111:
Figure 112:
Figure 113:
Figure 114:

Figure 115:
Figure 116:

Figure 117:
Figure 118:

Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:

Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:

Selection list With @dge Ly PeS. .. iiiiiii i 93
Delete functionalities in the pop-Up MeNU... ..o e 94
MINT E0OIDAN e 95
Node and edge preview with edge type selection after clicking the Comment
symbol in the mMini to0lbarcviiiii i e 95
Pop-up menu in the mini toolbar ... 96
Owning package relationship between a class and the package in which it is
CONEAINEA Lot 97
After creating a second owning package relationshipcocoiiiiiiiiiiiins 98
Graphic indication of a package as a potential nesting container when creating
= I = ol = 1= P 99
Class nested iN @ PACKAGE .iiiuiiiiiii i e 99
(0] o) o] T30 (o] gl g T<1=] o o Vo = PP 100
Unnest NOde dialog... ..o e 100
Option for creating a nested element........ccoiiiiiiiiiii i 100
Extract from the UML metamodel with the Package and Constraint metaclasses
.. 101
Dialog for changing the nesting type for a constraint contained in a package....102
Class with two attributes ... 103
Class with selected attribute ..o 103
Text editing for an attribute in Designero e 103
Creating a new operation using the pop-up MeNU.......ccoiviiiiii i 104
@1 g =T o1 [e = 1 | 01U 011 o o [F S 105
GroUPEd ElEM NS ottt e 105
Selecting an element within @ grouping.........ccoiiiiii i 106
Moving an element within @ grouping.......ccooiiiiiiiii i 106
Unidirectional navigable association..........coooiiiiiiiii e 107
Association ends for the association.........c.coviviiiiiii 107
Functions for changing the navigability and the multiplicity................ocni. 108
Association end navigable but not an attribute of the opposite class 108
Association ends after changing the navigability.........c.cooiiiiiiiii, 109
Functionalities for creating operations for a class........cccooviiiiiiiiiiiiiii e, 110
Generate getter and setter dialog...........oooiii 110
Generated getters and setters .o 111
Menu item for editing the OptioNSciciiiiiiii 112
General OplioNS PAgE.. it e 113
Modeling OplioNS PAge. ..ot 114
Dialog when saving with a cycle in the namespace hierarchyc.cociiiinei. 115

Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:

Figure 150:
Figure 151:
Figure 152:
Figure 153:
Figure 154:
Figure 155:
Figure 156:
Figure 157:
Figure 158:
Figure 159:
Figure 160:
Figure 161:
Figure 162:
Figure 163:
Figure 164:
Figure 165:
Figure 166:
Figure 167:
Figure 168:
Figure 169:
Figure 170:
Figure 171:
Figure 172:
Figure 173:
Figure 174:

Figure 175:
Figure 176:
Figure 177:
Figure 178:
Figure 179:

Confirmation prompt for restoring unsaved changes............cooviiviiiiiic i e, 115

Designer > General Options Page ...cviiiiiiiiiiiii 116
Tooltip for a UML element in @ diagramco.oieiiiiiiiiii e eee 117
EXPlorer OptioNS Page. ittt 118
Layout option on the Designer > For new diagrams > Representation

o] o) T o] g [o 1= T = P 119
Designer > For new diagram elements options page..........ccevvviiiiinninnns 120
Selecting the Enumeration symbol ... 121
Selecting all symbols by selecting the top levelccoiviiiiiiiiiii 121
Designer > Property tabs options pagecooiiiiiiiinn 122
Designer > UML2 Modeling options page.......coooveiiiiiiiiiii e 123
Menu item for starting Administrationc.coiiiiiiiiii i 124
Administration COMPONENT....cciiiiiii i 125
Editing the filter ..o e 126
Selecting the UML 2.5 metamodel in the Filter Wizard..........c.ccooiiiiiiiiiinnne, 127
Managing the lINK LyPes ..o e 128
Managing XMI FESOUINCES ...uuiiusiitiisiististrst s aareaanens 129
Package hierarchy and Package diagramcooiiiiiiiiiiiiiiiiii i 130
Association as graphic edge in diagramcooieiiiiiiii i 132
Assign diagram button ... 135
Diagram selection by searching in the databasecccoiiiiiiiiiiiiiciicieen, 136
Diagram selection in EXPIOrer ..o e 136
Launching the Properties dialog for a function in an ARIS model 137
Assignments properties page in ARIS Architect/ARIS Designer........c.covevvieenns 138
Query for diagram type to be assignedccooiiiiiiiiiiii i 138
Dialog for selecting a UML diagram in ARIS Architect/ARIS Designer................ 139
Assigned UML diagram in the Properties dialog for the ARIS object................ 140
Assignment symbol on the fuNCtion ... 140
Creating a new object link definitiono 141
Dialog for creating a new object link definitionccoiiiiiiiiiiiiiici 142
Definition of a mapping of the ARIS object type Function to the UML 2 element

[0V 2 T ¥ Y =T ot T = P 143
A new object link definition created ... 143
Different object link definitions. . ..cviiiii e 144
Symbol selection for abstract type....cov i 144
Copying the ARIS object to the clipboard..........ccooiiiiiiiii e 145
Pasting the ARIS object in the UML diagramc.cooiiiiiiiiiiiiiiiiiiciiccc e 145

Figure 180:
Figure 181:
Figure 182:
Figure 183:
Figure 184:
Figure 185:
Figure 186:
Figure 187:
Figure 188:
Figure 189:

Figure 190:
Figure 191:
Figure 192:
Figure 193:
Figure 194:

Figure 195:
Figure 196:
Figure 197:
Figure 198:
Figure 199:
Figure 200:
Figure 201:
Figure 202:
Figure 203:

Figure 204:
Figure 205:
Figure 206:

Figure 207:
Figure 208:

Figure 209:
Figure 210:
Figure 211:
Figure 212:

Selecting the object link definition ... 146
Dialog for selecting the symbol to be used.......cciiiiiiiiii i 146
NEW USE CASE CreateA .. uie ittt e e e e e eas 147
Reused objects properties page in ARIS UML Designerccooevviiiiiiiiiiinnnnnn. 147
Reused objects properties page in ARIS Architect/ARIS Designer.................. 148
Pop-up menu items for editing object link definitionsccooiiiiin, 149
Buttons in Start tab bar for managing object link definitionsooeel. 149
Pop-up menu item in ARIS Architect for navigation to ARIS UML Designer........ 150
Pop-up menu item for navigation to the linked UML element............ccvcvvivinnnn. 151
Pop-up menu item in ARIS Architect / ARIS Designer for opening a UML diagram
.. 151
Pop-up menu item for navigation to ARIS Architect/Designer...........cccoevvvevnnen. 152
Tab bar item for navigation to ARIS Architect/Designer........c.cocoivviiiiiiiennnnnn.. 152
Opening an ARIS model in ARIS UML DeSIgNer......coviuiieiiiiiiie i eee s 152
Navigation from UML element to underlying business process object 153
Menu items for navigation and opening an ARIS model assigned to a UML
== 0 =T o 154
Assignment symbol for an ARIS model on a UML element.......ccocovvvviiiiniinnnnnn, 154
Applied profiles properties Pagecviii i e 156
Profile selection dialog . o.oviriiiiiiiii i e e 157
Package with assigned profilecooeiiie i 158
Applied stereotypes properties page......ccoviiiiiiiiiiii i e 159
Dialog for stereotype seleCtion ...cvviiiiiii 160
UML class with assigned stereotypecviviiiiiiiii i e aea s 161
Applied stereotypes properties page for two selected classescovvevnns 161
Configuration dialog for creating new elements in a package to which the
standard profile is @ssigned........ccoiiiiiii i 162
New element pop-up menu with stereotypescccoviiiiiiiiiiiicii 163
Configuration dialog for the Symbols bar with stereotype symbols 164
Symbols bar with stereotype symbols and creation of a stereotyped class using
a corresponding SYMDOL. ..ot i 165
Launching the UML metamodel generator in the pop-up menu for a group........ 166
Launching the UML metamodel generator in the Contents tab bar for a selected
6 0 T o 167
UML metamodel generator ...t et 167
Generated metamodelsoviiiiiiii 168
PrimitiveTypes metamodel.....ccocviiiiiiiiiii e 169
Base metamodel ... e 169

Figure 213:
Figure 214:
Figure 215:
Figure 216:
Figure 217:
Figure 218:
Figure 219:
Figure 220:
Figure 221:
Figure 222:
Figure 223:
Figure 224:
Figure 225:
Figure 226:
Figure 227:
Figure 228:
Figure 229:

Figure 230:
Figure 231:
Figure 232:
Figure 233:
Figure 234:
Figure 235:

Figure 236:

Figure 237:
Figure 238:
Figure 239:
Figure 240:
Figure 241:
Figure 242:
Figure 243:
Figure 244:
Figure 245:

Figure 246:

Small extract from the generated UML metamodelccoooiiiiiiiiiiiiiininne, 170
Two extracts from the generated UML standard profile........ccoooiiiiiiiiiiininns, 170
Creating a new profile in the EXplorer tree........covviiiiiii i 172
Creating a new profile diagramccoiiiiiiii i 172
Presentation of the profile in the profile diagram ..o, 172
Definition of a pure extension profile ... 173
Description of the profile ... e 173
User-defined profile with description in the profile selection dialog................... 174
Definition of @ NEW StEre0tYPE .oviiiiiii i e 175
Linking the stereotype with the corresponding metaclasscccvcieviiiinnnn. 175
Description of the stereotype ...cvviiiiii 176
User-defined stereotype with description in the stereotype selection dialog 176
Flagging an Extension relationship as required in the Content tab bar........... 177
Extension relationship with required propertyccccoviiiiiiiiiiiiiicii 177
Creating a new attribute for a stereotype ...ccoovviviiiiiii i 178
Specifying the attribute type.. .o 179
Selecting the primitive data type String from the PrimitiveTypes metamodel
.. 180
Stereotype with text attribute.....c.ccvviiiii 180
Description of the stereotype attribute ... 181
Property value with free text input ... 181
Definition of the Priority property of the Priority type.......ccocovviiiiiininn, 182
Property value with selection list........cooiiiiiii 183
Assigning the predefined OMF Extension Profile to the user-defined Analysis
51 o o 1 = 184
Assigning the «ExtendedProperty>» stereotype to the stereotype attribute
ReQUINrEMIENES ..o e e 185
ARIS-specific properties of a stereotype attribute.........ccooviiiin 186
Editing a property value with text formatting..........ccooiiiiiiiiiini 187
Inheritance relationships between stereotypes......cccvvviiiiiiiiiiiiiiiiii i 188
Property values with inherited property......c.ccoiiiiiiiiiii 189
Symbols bar in the Use case diagramcooiiiiiiiiiii e 190
Profile that supports only a few metaclasses......c.cooviiiiiiiiiiiiiiiiic 191
Symbols bar in a Use case diagram when using the profile...............coooiinii. 191
Definition of a stereotype for class diagrams........cocoviiiiiiiiiiiiiii e 193
Assigning the predefined «DiagramStereotype» stereotype to the
user-defined stereotype «Analysis class diagram»>»occeeine, 193
Configuration of a diagram stereotypecoviiiiiiiiiiii i 195

Figure 247: Configured diagram stereotype in profile diagramccooiiiiiiiiiiiiiincne e,

Figure 248: Symbols bar for an Analysis class diagram

1 Introduction

This document provides an overview of the key functionalities of ARIS UML Designer 9 and
outlines the underlying concepts. It is aimed at all UML modelers, developers of UML-specific
reports and macros, and ARIS administrators. If you are not yet familiar with ARIS, you should
first read the document ARIS Architect Quick Start Guide, as basic knowledge of ARIS is
essential to understand this introduction.

This introduction is divided into the following sections:

UML basics: Contains a brief introduction to UML and introduces the diagram types supported by
ARIS UML Designer. This section also sets out the basics of the UML metal model, which is an
essential requirement for you to understand the subsequent topics of Mapping UML to the
ARIS object model and UML profiles.

ARIS UML Designer overview: Introduces the most important components of ARIS UML Designer
and their functionality.

Mapping UML to the ARIS object model: Shows how UML content is stored in ARIS so that you can
understand how ARIS standard functions, such as definition copy, merge or access privileges
affect UML content.

Linking business process and UML modeling: Outlines the relevant technical principles.

UML profiles: Provides an overview of the extension and filter mechanisms in UML, which differ
fundamentally from the classic ARIS method configuration.

Differences from ARIS Architect/Designer: Shows the special features of ARIS UML Designer and
the resulting differences from classic ARIS modeling.

Differences from ARIS UML Designer 7.x: Deals with the new features of ARIS UML Designer 9
compared to the previous version 7.x.

As the terms model and object that are familiar from ARIS have a different meaning in UML, the
terms diagram and element are used to refer to them in this document. Thus, in this document
an EPC is not a model but a diagram, and an EPC function is not an object but an element.

ARIS UML Designer 9 supports UML version 2.5. For compatibility reasons, ARIS
Architect/Designer still supports the old UML version 1.4. However, this is not done using
UML-specific notation but in the form of classic ARIS diagrams. Where the term UML is used
without a version number in this document, it always refers to the version 2.5 supported by ARIS
UML Designer.

1.1 UML basics

This section contains a brief introduction to UML and the underlying metamodel, where this is
necessary to understand the remaining sections of this document and to start using ARIS UML
Designer. For detailed information on UML and the individual UML element and diagram types,
refer to the UML specification itself and to relevant secondary literature. In addition, basic
knowledge of object-oriented principles is very useful in understanding UML.

1.2 What is UML?

UML stands for Unified Modeling Language and is a modeling language for object-oriented
(software) systems. The word software is in brackets here as the design and description of
software systems was definitely the focus in the development of UML; in theory UML is actually
suitable for modeling any systems using an object-oriented perspective. One example would be
describing the IT-related aspects of a business domain as part of an object-oriented analysis, in
order to derive requirements for a corresponding software system.

UML was presented in the mid-1990s by Grady Booch, Ivar Jacobson, and James Rumbaugh as a
joint development of their own object-oriented methods (Booch method, OOSE, and OMT). Since
1997, UML has been published as a standard by the OMG and has been continuously developed.
The OMG (Object Management Group) is a non-profit organization that is responsible for a range
of important standards in the IT industry. In addition to UML, these include BPMN.

The current UML version at the time of this document's creation is 2.5. This is also the version
supported by ARIS UML Designer 9. The corresponding UML specification is available from the
OMG at the following address: http://www.omg.org/spec/UML/.

1.3 UML diagram types

UML differentiates two categories of diagrams - structure diagrams and behavior diagrams. In
structure diagrams, the focus is on static structures. One example is the Component diagram,
which is used to model the relationships between individual (software) components. By contrast,
there are behavior diagrams, which focus on the dynamic behavior of a system. An example of a
behavior diagram would be the State machine diagram, which shows how the instance of a class
changes its internal state when particular events occur.

A typical feature of structure diagrams is that they show a selected section of a UML structure.
They represent a view of a freely definable subset of this structure. By contrast, behavior
diagrams (apart from the Use case diagram) describe the dynamic behavior of a particular
element, normally a state machine, an activity, or an interaction.

http://www.omg.org/spec/UML/

UML defines the following diagram types:

Structure diagrams

Behavior diagrams

Class diagram

Activity diagram

Component diagram

Communication diagram

Composite structure diagram

Interaction Overview diagram

Deployment diagram

Protocol state machine diagram

Object diagram

Sequence diagram

Package diagram

State machine diagram

Profile diagram

Timing diagram

Use case diagram

The individual diagram types are briefly introduced below using simple examples relating to the
topic of order processing. These examples are not intended to provide a complete or technically
correct representation. They are merely intended to illustrate how particular situations relating to
the topic can be represented using the different UML diagram types.

1.3.1 Class diagram

Class diagrams primarily show relationships between classes and their properties.

itermn line
order 1.* iterm it
ftem_1 1 {ordered) | Order item | * 1 em
L . :
., i [term number:String
order number:String number:integer Label:String
Key customer order A key customer order is zprimitive s primitives
. discountable. String Integer
discount:Integer

Figure 1: Class diagram

Figure 1 shows a simple Class diagram with four classes Order, Key customer order, Order

item, and Item, two primitive data types String and Integer, and a comment. The classes each
contain one to two attributes (UML type Property). For example, the Order class contains the
Order number attribute, which is of the Integer type. This means that the order number is a
property whose value is a whole number.

UML itself does not stipulate which data types are to be used when modeling and how they should

be denoted®. In the example above, the two types String and Integer could also be called
Character string and Whole number.

iternline
1.7 .
Crder 1 {ordered) COrder item
Order number:integer - ® Numberinteger

Figure 2: Association between two classes

The Order and Order item classes are linked together by an association. This association has an
association end order with the multiplicity 1 and an association end itemline with the
multiplicity 1..*. The multiplicity 1..* at the itemline association end means that at least one
and up to any number of order items are assigned to an order. The property {ordered?} specifies
that the order items are assigned to the order in a particular sequence. The multiplicity 1 at the
order association end means that an order item is always assigned to only one order.

The black diamond on the association indicates that the order items are part of the order and if an
order is deleted its order items will also be deleted automatically.

The two black dots at the end of the association edge mean that the corresponding association
ends are simultaneously attributes of the respective opposing class. Figure 3 therefore shows a
semantically equivalent alternative appearance of Figure 22.

! One exception is the modeling of profiles in ARIS UML Designer, where the corresponding types specified by UML
have to be used for primitive data types.

? The order attribute for the Order item class is displayed within the class without specifying its multiplicity 1 as the
value 1 is the default value for multiplicities and it is not normally displayed within classes.

Order item
Order
number: Integer
Order number: Integer item:ltem
itemline: Order item[1. *{ordered} order Order

Figure 3: Association ends as attributes

An arrow head at an association end means that the association is navigable in the direction of the
arrow. Figure 4 shows an association that is only navigable in one direction.

order item item
Order item * 1

tem

-~

Item number:Iinteger
Label:String

number:integer

Figure 4: Unidirectional association

In this example, the order item knows which item it relates to. Conversely, the item has no
knowledge of the order items by which it is used.

An association end is classed as navigable if it is simultaneously an attribute of the opposite
class3. If both ends of an association are navigable, there is no need for you to display the two
arrows in the diagram (see Figure 2).

Order

Crder number: Integer

Key customer order

Discount:Integer

Figure 5: Generalization between two classes

Figure 5 shows a generalization relationship between the Key customer order and Order
classes. This means that the Key customer order class is a specialization of the Order class and
thus inherits all properties from it.

* There is another method of specifying the navigability of an association end. However, it will not be discussed here.

1.3.2 Component diagram

Component diagrams show relationships between components and their properties.

CH|

ccamponents
order management

& ™
cdependencys - ., cdependencys
& ™,
e s
."_i." \-t"
&1 &
cEamponents ccomponents
dient management item management

Figure 6: Component diagram

Figure 6 shows the simplest form of a Component diagram. It shows three (software)
components and their dependencies. From it, we can determine that the components for client
and item management can work independently of other components, while the order
management component has dependencies on the other two components. This diagram
provides no information about the nature of these dependencies.

The component dependencies can be described in more detail by using ports and interfaces.
Figure 7 shows an example of this.

R

o GO TP &Nt
order managemant

custorer data acces itern data access

/ 4

wdep endencyn ."(\'H. wile pendencym
H] H]
w0 Mo N nts w0 TP a0 e Mits
Rl Ao e it custorner data acces s itern data access Rl e ment

Figure 7: Components with ports and interfaces

The client management component uses a port to provide an interface called customer data
access, which can be used to retrieve customer data from the component. Likewise, the item
management component also provides a corresponding interface called item data access. In
turn, the order management component uses two ports to specify that it requires access to the
customer data access and item data access interfaces. Two dependency relationships
illustrate the access to the interfaces.

1.3.3 Composite structure diagram

Composite structure diagrams show the internal structure of a class and the relationships of the
individual class components to one another.

temline
arder 1.*
Order 1 {orderad} Order item
Qrder number: Integer number:Iinteger
order P _,-:‘f
1 -
-~ ling item
N R o~ -~ q1.*
invoice T o
0.4 - Invoice ling item
o -
-

Invoice -

tem number: Int eger

Figure 8: Class diagram with order components

Figure 8 extends the example from Figure 2 with an additional class involved in an order, the
invoice. Unlike the order item, the invoice is not a compositional component of an order but is
directly assigned to it. The invoice also refers to the individual order items.

Order

—————— "
| | 1 plnveoice line item 1
| invoicel ice[0..1] itemlinezOrder item[1.."fordered}

Figure 9: Composite structure diagram for the Order class

The Composite structure diagram in Figure 9 provides an alternative representation to the Class
diagram in Figure 8. The two attributes invoice and itemline are represented graphically in the
Order class as symbols of the Property or Part type. The dotted border of the invoice property
symbol indicates that the invoice is not a compositional component of the order, while the solid
border of the itemline part symbol means that order items are included in the composition of the
order.

The two symbols are linked by a connector with the name p, which refers to the Invoice line
item association shown in Figure 8.

1.3.4 Object diagram

Object diagrams show the relationships between instances of different classes.

Order42:Order orcer itermline | :0rder tem | orderitermn itermn Screw:tem
Order numbear= 42 = =1 number= 100 Iterm number= 28 .97 08.0040
Label= Machine screw M3 40 mm

order itemiine | :0rder tem | orderitem item Female screw:ltem
= =1 number= 100 Item number= 28 .98.08.0001
Label=fermale screw M3 seff-retaining

Figure 10: Object diagram with order instance

Figure 10 shows a specific order with two order items.

The order, the two order items, and the two items are instances of the corresponding classes from
Figure 1. Their relationships represent instances of the associations between these classes.

Instances of classes are also referred to as objects and instances of associations as links.
However, all instances are technically of the UML type InstanceSpecification®.

Instances can optionally show their own name and/or the name of their class, separated by a
colon. In this example, the order object and the two item objects show both their own names and
the name of their class, while the two order item objects only show their class names.

The attribute values for the objects are of the UML type Slot. A Slot shows the name of an
attribute of the class for the instance (e.g., Order number) and the value that this attribute has
for the instance (e.g., 42). The link ends (e.g., position) are also of the Slot type. However, as
they are directly linked to their value, i.e., the corresponding object, in the diagram, only the
relevant attribute name is displayed in the diagram.

* UML 2 defines only one InstanceSpecification type for instances of all classifier types, whereas UML 1.4 defined a
special instance type for each classifier type (e.g., Class -> Object, Association -> Link, AssociationClass -> LinkObject,
Component -> Componentinstance etc.).

1.3.5 Package diagram

Package diagrams show package hierarchies and dependencies between packages.

— —

B, zRefines o,
Analysismodel | 7 Design model
edependencys
Production Sales Framework e — — —] Modules
Use cases Technical class Sales module Production module

Figure 11: Package diagram

Figure 11 shows a Package diagram with two package hierarchies and dependency relationships.

At the top level it contains the two models Analysis model and Design model. Unlike in ARIS,
in UML the term model does not refer to a diagram, but to a view of a physical system in a defined
context. A model normally contains a whole series of elements, relationships, and diagrams,
which all combine together to describe the model.

In line with this definition, in this example the analysis model represents an object-oriented view
of the business processes to be supported by a new piece of software to be developed. This is
used to derive a design model, which specifies the architecture and the individual modules of the
software in more detail. This derivation is represented by a Refine relationship in the diagram.
This relationship is an element of the UML type Abstraction with the stereotype «Refine».

Within the design model, the dependency relationship between the Modules and Framework
packages indicates that the Framework defines structures that are required by the modules.

1.3.6 Profile diagram

Profiles represent user-defined extensions or restrictions of the UML metamodel. They can be
created using Profile diagrams.

—

o sl &faranc e FaN
pRe - — — — — — — = eMetamodel
Analysis profile n UML i
zStereotypes
Analysis element
Contact person:String
I\
zStereotypes zMetaclasss
Technical class . Class
z5tereotypes
Business use case zMetaclasss

-
«ExtendedProperty= Requirements:String UseCase

Priarit:Priority

Figure 12: Profile diagram
Figure 12 shows a Profile diagram for defining a simple profile for object-oriented analysis.

On the left-hand side, the diagram contains the Analysis profile, which defines the two
stereotypes Technical class and Business use case. Both of these inherit from an abstract
stereotype Analysis element, which defines the Contact attribute. In addition to the
stereotypes, the profile also defines an enumeration called Priority, which is used as a type by
the attribute of the same name for the Business use case stereotype.

The right-hand side of the diagram contains the UML metamodel and two of its metaclasses. The
profile has a relationship of the Metamodel reference’ type to the metamodel. This relationship
is always necessary if all UML content is to be available within packages to which the profile is
assigned.

The two stereotypes Technical class and Business use case have a relationship of the UML
type Extension with the Class metaclass or the UseCase metaclass. This relationship specifies
the UML elements to which the stereotype can be assigned.

> Strictly speaking, it is a relationship of the UML type Packagelmport, which is referred to as a metamodel reference
in this context and is also displayed in the graphical view with the keyword «reference» instead of «import».

The attributes of a stereotype are available as additional properties for the UML elements to which
the stereotype is assigned. In this example, a use case with the «Business use case»
stereotype has the additional properties Contact and Priority in addition to the properties
defined by the UML specification.

Section 5, UML profiles, contains more information about profiles and stereotypes.

1.3.7 Deployment diagram

Deployment diagrams show the assignment of software components to physical IT systems and
the networking of these systems with one another.

E crmanifests b
i A on ents A S —— cartifacts
it em data access item managemernt item_management jar
E crmanifests b
ceomponents N S —— cartifacts
cliert manage ment customer _management . jar
customer data access
™ =]
crmanifests b
customer da a access & Omponents b] cartifacts
) order manage ment order_manage ment jar
™
wy

item data access

Figure 13: Deployment diagram with components and artefacts

Figure 13 shows the physical manifestation of the components from Figure 7 as JAR files®. This is
done using UML elements of the Artefact type, which are linked to the corresponding
components by a relationship of the Manifestation type.

Applicdion server

carifacts
order_management .jar

cdependencys - ., cdependencys
s S
po Sy
P Ly
G G
cartifacts cartifacts

customer_management jar item_management jar

Daabase server

Figure 14: Deployment of software components on physical systems

Figure 14 shows how the artefacts or software components defined in Figure 13 are deployed on
physical systems and the relationships between these systems.

6 . .
Java libraries

1.3.8 Activity diagram

Activity diagrams show dynamic processes in the form of a graph of individual actions. They can
describe both a process with a high level of abstraction or details of an algorithm in a piece of
software.

Create order

._Ci'uec k custorer dat

- Create order

e
b

Purchasze tem

=
;
o

- Che ok av aila bility

[kem not awailable]

Al
1]

-

[Item awailable

. Reserve itemn

- Create orderitemn

(1]
N

r
|
|
I
|
|
|
|
I

Order iterm

& onder . Rejectorder

Ll

Figure 15: Create order activity diagram

Figure 15 shows the process for creating an order in the form of a UML Activity diagram. The
activity starts with an element of the InitialNode type and ends with an element of the
ActivityFinal type.

The first step is to check the customer data. This is done using an action of the
CallBehaviorAction type. This is an action that in turn invokes an activity Check customer
data. This is described in another Activity diagram (see Figure 16).

The other actions are all of the OpaqueAction type. They are characterized by the fact that they
are specified by a simple text and have no further UML semantics.

The individual purchase or order items are processed in an ExpansionRegion. This has the
customer's purchase items as its input elements and the corresponding order items as its output
elements. The ExpansionRegion is run through for each input element.

The relationships in the two Activity diagrams are all of the ControlFlow type. If a text in square
brackets is specified on one of these control flow edges, it describes the condition that has to be
met for the control flow to proceed along this edge.

Check customer data

L}

[Chmk cust omer data}

b

[Custormer data unknown] ..--"'"A"""n.. [Customer data upto-date]
-““"‘-..--“"f

[Custorner data outdated]

b b

[Flennrd customer data} [U pdate custamer data}

i .
T

®

Figure 16: Check customer data activity diagram

1.3.9 Use case diagram

Use case diagrams are used as part of an object-oriented requirements analysis to describe the
use cases to be analyzed and the actors involved.

Check customer
data

3
4 cincludes ™,
I ~,

/

Create order

extension points
Disc ount calculation

condition:
I Customer is key customer}

extension points:
Discount calculation

Create key custo...

Figure 17: Use case diagram

Figure 17 shows a Use case diagram with one actor and three use cases. Actors are people, roles,
or systems that interact with the system to be analyzed. A use case represents a self-contained
functionality that can be invoked from outside the system and leads to a particular result.

The relationships between the actor and the use cases are associations. In Use case diagrams,
these are normally shown without annotations such as names or multiplicities.

A relationship of the Include type runs between the Create order and Check customer data
use cases. This means that the Create order use case includes the Check customer data use
case, i.e., when creating an order the customer data is checked.

The Create order use case defines an extension point called Rebate calculation. An extension

point indicates a particular point in the internal process of the use case at which additional
functionality can be added to the process. In this example, this is the calculation of a rebate.

The Extend relationship between the Create key customer order and Create order use cases
states that the Create key customer use case supplements the Create order use case with this
functionality at its Rebate calculation extension point, in this case by calculating a special key
customer rebate. In addition, the Extend relationship includes a specification of the condition
under which the extension is permitted, namely that the customer must be a key customer.

Typically, the internal process of the use cases would be described using behavior diagrams, for
example the two Activity diagrams in Figure 15 and Figure 16.

1.3.10 Communication diagram

Communication diagrams show how elements exchange messages with one another as part of an
interaction. In contrast to Sequence diagrams, in Communication diagrams the focus is on the
channels via which these messages are sent rather than on the chronological sequence of

exchanging messages.

=d Create orde rJ

=2 Tinem
= Jiitemline Create (28 .07 08.0040"10070
— Siitemline Create (28 .92 .08.000 17,1007

worder managemea rt

Zireserve (2897 .08 0040 1000 =31 new28.97.08.0040",1007
w2 lretum e order 42 :Order itemline1:0rder item

I dresere (2395 0%0001".100)
v o4 lretum e

titern manage e rt =5 1new 22 95 02.0001" 1007

iternlime 2:0rder item

Figure 18: Create order communication diagram

Figure 18 uses a Communication diagram to show how an order is created in the system. The
background object that contains all other elements is the interaction itself. The contained
elements are elements of the Lifeline type. The term Lifeline comes from its use in Sequence
diagrams, where it is represented by a rectangle with a vertical line attached to the bottom.

The lifelines do not show their own names in the diagram, they show the name of the element
represented and/or the type name of the element represented’. Depending on the context, the
element represented can be an attribute (property), a port, or a parameter. In the above example
a property has been created as an attribute for the interaction for the :Order management
lifeline and the Order management component from Figure 6 has been assigned to it as the
type. As the name of the attribute is irrelevant here, the lifeline only shows the type name.

The relationships between the lifelines are the connectors familiar from Composite structure
diagrams. It is important to note that although they connect the lifelines with one another
graphically in the diagram, they are actually relationships between the elements represented.
This means that if no represented element is assigned to a lifeline, you cannot connect it to
another lifeline in the diagram using a connector.

The messages that the lifelines exchange with one another along the connectors are displayed as
text on the connector. An arrow specifies the direction of the message, and the order is given by
the sequence numbers of the messages. If the messages have arguments, they are listed in
brackets after the message.

” The element represented is assigned to the lifeline through its represents property.

This Communication diagram should be read as follows:

1: Order management creates a new order object.

2: Order management reserves 100 items with the item number 28.97.08.0040.

2.1: Item management confirms the reservation.

3: Order management instructs the order object to create a new order item for the item

number 28.97.08.0040 with the quantity 100.
3.1: The order object creates a new order item with the corresponding parameters.

4, -5.1: This process is repeated for another item.

The sequence numbers are automatically calculated in ARIS UML Designer based on the sequence
of the messages on the source and target lifelines. If you want to change them, you have to do
this in the Properties dialog for the relevant lifelines. Alternatively, you can hide the display of the
calculated sequence numbers and assign your own numbers as part of the message name.

1.3.11 Sequence diagram

Sequence diagrams show how elements exchange messages with one another as part of an
interaction. In contrast to Communication diagrams, in Sequence diagrams the focus is on the
chronological sequence of exchanging messages rather than on the channels via which these

messages are sent.

= e ale omed

:orde rmanag eme nt item mana gement

A

|
_________ |_ —_— orderd? :Order

reserve ("28.97.08.00 407 100}
= !
ref m:fue
e «[J |
I - |
new (2859708 00.40".103)
_ = iem line 1:Crder item
reserve ("28.58.08.00 01".100)
- | |
ret merue |
e e |
| |
|
|
|
|

itemlineCreate {'28.98.08.00.01".1 00} |
T -r-
| new {("28 58 .08 000 1", 100)

—= ite mline?:0rde r item

Figure 19: Create order sequence diagram

Figure 19 shows the Create order interaction shown in Figure 18 in the form of a Communication
diagram as a Sequence diagram. Both diagrams contain elements of the Lifeline type. However,
in the Sequence diagram they have an additional dotted vertical line®. The messages are
represented by graphical edges in the Sequence diagram.

While the chronological order of the messages is given by their sequence numbers in the
Communication diagram, in the Sequence diagram this is defined by their vertical arrangement.
The time axis, which is not explicitly visible, runs vertically from top to bottom in the diagram,
i.e., messages closer to the top are transferred before messages located further down.

The rectangles on the lifelines are elements of the ExecutionSpecification type. They indicate
when the object represented by the lifeline is active.

® The name Lifeline can be traced back to this type of graphical representation.

1.3.12 Timing diagram

Timing diagrams show how the state of the elements involved changes when exchanging
messages as part of an interaction. The notation is based on corresponding diagrams from digital
technology. This diagram type is primarily of interest for modeling of software systems closely
related to hardware and has only rudimentary support in ARIS UML Designer 9.

=i Order smp.r.)

}@ {id...2d } j\t
new >< releas=d X in deliveny del iverad

‘ot

Figure 20: Order states timing diagram

In Figure 20 a simple Timing diagram using compact notation® shows the states an order can
have. The Order states element is an interaction, the :Order element is a lifeline, and the
different states are represented using state invariants. The DurationConstraint element also
specifies that the delivery state can only last for one to two days.

° The detailed notation with which the states and their transitions are displayed using timelines is not supported by

ARIS UML Designer.

1.3.13 Interaction Overview diagram

An Interaction Overview diagram is part of a larger scenario and shows the sequence of individual
interactions, which are normally modeled using Communication or Sequence diagrams.

These diagrams are Activity diagrams in which only actions of the CallBehaviorAction type are
used, which invoke interactions.

Manage order

[Orderizcmeatad] EJ [Odercannotbe created]
Create arder Lorohotent b e

..
rifJ

Feleasez oder

Deliver arder Create invoice

L

Figure 21: Manage order interaction overview diagram

Figure 21 shows an Interaction overview diagram, which invokes interactions including the
Create order interaction modeled in Figure 18. The individual actions of the
CallBehaviorAction type each show the name of the interaction invoked.

1.3.14 State machine diagram

State machine diagrams show which states a system can take on, the relationships between
them, and which events trigger the relevant state transitions. A State machine diagram
represents a state machine. The states and their transitions are parts of this state machine.

The state machine can describe the behavior of a class, the behavior of another classifier of the
UML type BehavioredClassifier, or the behavior of an operation. However, it can describe a
behavior very generally without relating to one of these elements.

s ~
Order states]

new
entry [enter order tems
exit! check availabittiy

[itern available | f release [tem not available] f reject

hvd

i
released
entry / reserve item

when items are reserved [/ deliver

\

processing
dao/ packaging and shipping items

when iterm are shipped

) ,f
delivered rejected

@~

*, -+

Figure 22: Order states state machine diagram

Figure 22 shows the states of an order. While the Timing diagram from Figure 20 only shows a
sequence of state transitions, the State machine diagram includes the entire state machine with
all states and their possible transitions as graphical edges, which link the states to one another.
The first state that an order can have is the new state. When this state occurs, the order items
are recorded (entry property of the UML type State). An availability check for the items in the
order items completes the state (exit property of the UML type State).

If a text is displayed in square brackets on a state transition, it refers to the condition (guard
property of the UML type Transition) that has to be met for the state transition to occur. In the

example diagram, these are the two conditions [Items are available] and [Items are not
available].

The text that follows the / character at a state transition refers to a behavior that is triggered by
the state transition (effect property of the UML type Transition). In the example diagram, this
would be release, reject, and deliver.

If a text at a state transition is neither in square brackets nor after a slash, it is the trigger of the
state transition (trigger property of the UML type Transition). In the example diagram, these
are the two texts that start with the word when. The keyword when means that the triggers are
assigned events of the UML type ChangeEvent (event property of the UML type Trigger).

ARIS UML DESIGNER

1.3.15 Protocol State machine diagram

Protocol state machines show the externally observable states and state transitions for a
classifier. They define a protocol that the implementations of the relevant classifier must adhere
to and show when, in what order, and under what conditions the publicly visible operations for

that classifier are invoked.

(:Boolean

s

Figure 23: Order class with operations

Figure 23 shows the Order class with its public operations (UML elements of Operation type with
the property visibility = public, in each case identifiable by the + character at the beginning of

the name).

released

Figure 24: Order states protocol state machine diagram

24

The Protocol state machine diagram in Figure 24 shows how invocations of these operations result
in corresponding state changes. Instead of normal state transitions, protocol state transitions are
used in protocol state machines.

Protocol state transitions have a different notation than normal state transitions. The notation for
a protocol state transition is: [Precondition] Event / [Postcondition]

The precondition is mapped to the preCondition property of the UML type ProtocolTransition,
and the postcondition to the postCondition property. As for normal state transitions, the event
is mapped to the trigger property, and the triggers are assigned events of the UML type
CallEvent, which in turn refer to the corresponding operations for the class, which means that
the corresponding operation is displayed as the event in the diagram.

1.4 Special features in ARIS UML Designer

Protocol state machines show the externally observable states and state transitions for a
classifier. They define a protocol that the implementations of the relevant classifier must adhere
to and show when, in what order, and under what conditions the publicly visible operations for
that classifier are invoked.

1.4.1 Diagram content

The UML specification states that product manufacturers can extend the typical content it
proposes for the different diagram types with content of other UML diagram types.

ARIS UML Designer supports any UML content for structure diagrams. In addition to the elements
provided for the corresponding diagram type, you have the option of modeling all other UML
constructs. This enables overview diagrams to be created, for example containing both class
hierarchies and complete state machines and interactions in Sequence diagram notation. This
also enables UML elements that are actually assigned to different diagram types to be linked to
one another graphically.

o 0mpo ne it
Crder management

; Create order
/\ Create order I

Sdes representative

Create order

Order : :

Create order item

Order number:Integer

1 -

Check availability

itemline ; ,:
1.7 [Item available] [Item not available]

{ordered}

Order item

Number:Integer
Reserve item

order item
1

\

=
 E=m &

kem = @ =
Item number:Integer
Label:String

Figure 25: UML notation from different diagram types in a class diagram

Figure 25 shows elements from Class, Use case, Component and Activity diagrams together in a
single Class diagram.

1.4.2 Names of UML elements

The UML specification describes a small nhumber of element types whose elements cannot have
names. Examples of these types include Comment and Generalization. Because of the mapping of
UML elements to ARIS objects, these types also have a name in ARIS UML Designer.

1.4.3 Multilingual capability

The UML specification does not include a facility for specifying element names, comments, or
other text properties in different languages. The only exception is the UML type
OpaqueExpression, which allows the containing expression to have multiple values; you can
specify a language for each of these values. However the term Language has a broader meaning
than in ARIS and can also refer to a programming language.

ARIS UML Designer supports the familiar ARIS multilingual capability for UML content, but only
for element and diagram names, comments, and descriptions. All other text properties are not
multilingual.

1.5 The UML metamodel

A special feature of the UML specification is that it defines UML using a subset of UML. It uses
Class diagrams to describe which UML element types exist, what properties they have, and how
they are related to one another. The entirety of what is shown in these Class diagrams is referred
to as the UML metamodel'®. In this metamodel, the UML element types are defined in the form of
metaclasses. The various properties of the UML element types are described using attributes and
associations. Abstract metaclasses define properties that are shared by several different UML
element types and whose metaclasses inherit from these abstract metaclasses.

The architecture for description and implementation of metamodels is described in the MOF!!
standard published by the OMG. An ARIS-specific MOF implementation called OMF*? represents a
central component of the architecture of ARIS UML Designer.

Basic knowledge of the UML meta model is useful to understand UML and is essential for modeling
UML profiles (see section 5 UML profiles).

A short extract of the UML metamodel is introduced below, which defines those UML elements
that are used in the Class diagram from Figure 1. The metamodel diagrams shown largely
correspond to the relevant originals from the UML 2.5 specification. However, in some cases they
have been adapted to the needs of this section by omitting individual metaclasses that are not
dealt with further here, or by adding content from other diagrams in the UML specification.

The section headings used below correspond to the headings of the sections from the UML
specification that contain the corresponding diagrams, so that you can easily find them in the UML
specification to extend your knowledge of the subject.

10 Apart from the Class diagrams, the UML specification also includes numerous OCL expressions, which describe
consistency conditions on the one hand and the implementation of complex queries on the other. These are also part
of the UML metamodel but will not be discussed further in this UML introduction.

" MOEF stands for Meta Object Facility

2 OMF stands for Object Modeling Framework

1.5.1 Common structure

1.5.1.1 Root

«Metaclasss
ArisHement

name; String

desecription: String[D..1]

identifier: String[D..1]

fguid: String[D..1]{re ad O nk}
fereator:String[D.. 1){read2nky}
fereationDate: TimeStamp[0.. 11{read Onh}
flastUser:String[d..1]{read Onh}
flastChange:TimeStamp[0..1]{read Onky}
xmild:String[D..1]

i
fsource
1." annotate dElement
{subsets relatedElement,readOn by, union} chetaclasss "
- Hement
ftarget fdescription: String [0..1]{re defines description} owningElement
1." 0.1
{subsets relatedElement,readCnby, union} {subsets owner}
= -
frelated Element fowner
1." 0.1
{readOnky,union} freadOnby,union}
fownedElerment
fread Only,union}
ownedComment
frelationship =
) i {subsets ownedElement, ordered}
fread Only,union} «Metaclass s cMetaclasso L
Relationshio Comment
body:String[d..1] | comment
il LJ
IdirectedRel atiorship
{subsets relationship,read Cnly,union}
Idire cte dRe lationship chlgtaclasss
" DiractedRelationship
{zubsets relationship,readCnly, union}

Figure 26: Root diagram from the UML specification with ARIS-specific extensions

Figure 26 shows the Root diagram from the UML specification, supplemented with ARIS-specific
extensions. The metaclasses from the UML metamodel form an inheritance hierarchy with the
abstract metaclass Element at the top. In this context, "abstract" means that there are no UML
elements of the Element type, only that properties are defined here for other element types that
inherit from Element. Abstract classes in UML diagrams are indicated by the name being written
in italics.

In ARIS UML Designer, the UML metaclass Element inherits from an abstract metaclass
ArisElement. This means that all UML elements are extended with ARIS-specific properties such
as creator, creationDate, name, description, and identifier'>.

The non-abstract Comment metaclass inherits from the Element metaclass. Each UML element
can have any number of these comments through its ownedComment property. In turn, a
comment can refer to any number of UML elements through its annotatedElement property.

Key customer order A key customer order is
______ discountable.

discountInteger

Figure 27: Comment with class as annotated element

Comments are displayed in diagrams as a rectangle with a turned-down corner. The text within
the comment shows the value of the Comment::body property. The
Comment::annotatedElement property is shown as a dotted edge to the annotated elementin
the diagram (see Figure 27).

The Element::/description property also represents an ARIS-specific extension of the UML
metamodel. It redefines the ARIS property ArisElement::description for UML elements by
deriving the description from the first comment that the Element has'®. This means that UML
elements have the ARIS property description in ARIS UML Designer. However, its value is not
lost when exchanging data with other tools via XMI as it is saved as ownedComment for the
element. Conversely, it means that every UML element that is imported into ARIS UML Designer
via XMI and has a comment automatically has a value for its description property.

The Root diagram in Figure 26 also shows that in theory every UML element can have other UML
elements. For this purpose, Element defines two properties /owner and /ownedElement.
Both of these are so-called derived unions. This means that you can ask an element for its
owner or the elements it contains, but other properties of the Element type and its
specializations specify the way in which the element can contain other elements, or the way in
which it can be contained in another element. An initial example of this is included in the same
diagram. For the Element::ownedComment property there is subsets ownedElement and
for the Comment::owningElement property there is subsets owner. This means that
whenever an element is asked for the value of its ownedElement property, the values it returns
include the value of the ownedComment property, i.e., the comments that it has. The same
applies to asking a comment for its owner property. In this case the value of the
owningElement is returned.

B Aslash / in front of an attribute name means that its value is derived from other properties at runtime. This also
applies to ARIS properties such as creator or guid, as they are not mapped internally to ARIS attributes but result
directly from the ARIS object.

" For this purpose, the isOrdered flag is set for the Element::ownedComment in ARIS UML Designer, while the UML
metamodel does not originally provide ordering here.

In addition, the Root diagram contains the two abstract metaclasses Relationship and
DirectedRelationship. All metaclasses that primarily define semantics for relationships
between elements inherit from these classes. These relationship elements are frequently shown
as graphic edges in diagrams. This metamodel concept includes the two metaclasses
Generalization and Association as examples of these relationship types.

1.5.1.2 Namespaces

zMetaclasss
Element
fownedMember Zr
* zENUMErations
{subsets member, ownedElement, readOnly, union} I e visibilityKind
NamedElement public
Imember i
* name:Stringfredefines name} pr:tatet J
{readOnly,union} | faualifidName:String[0..readonl} p;c:: 'Z
visibility Visibility Kind[0. 1] kb
Fa
Imemberhameaspace
*
{readQnly,union} e
PackageableElerment
Inamespace zMetaclasss
01 Namespace visibilty:Visibility Kind[0.. 1]=public{redefines visibility }
{subsets memhertamespace,owner,readdnly, union} =
packagedElemeant
*
{subsets ownedWember}
owningPackage
R a5 {subsets %élnespace}
Package
URIString[0..1]

Figure 28: Namespaces diagram from the UML specification

Figure 28 shows the Namespaces diagram from the UML specification. It defines the three
abstract types NamedElement, Namespace, and PackageableElement, and the
non-abstract type Package. NamedElement defines the name property, which means that only
UML elements whose type inherits from NamedElement can actually have a name. As all objects
can have a name in ARIS and Element inherits from ArisElement in the ARIS implementation of
the UML metamodel, the suffix {redefines name} for NamedElement::name specifies that a
second name property is not defined, but that this definition of name replaces the
ArisElement::name definition in the inheritance hierarchy for NamedElement. Both properties
- ArisElement::name and NamedElement::name - are mapped to the ARIS attribute type
Name in the ARIS object model.

Namespace is an abstract type for UML elements whose contained elements are differentiated
using their name. The non-abstract type Package, which can contain elements of the abstract
type PackageableElement, inherits from this.

The Namespaces diagram in Figure 28 also contains a further example of derived unions: The
Package::packagedElement property contributes to the Namespace::member property,
which in turn contributes to the Element::ownedElement property.

Madules

i

Sales module Production module

Figure 29: Example of owningPackage edges

The Package::packagedElement or PackageableElement::owningPackage property can
be represented graphically as an edge in diagrams (see Figure 29).

1.5.1.3 Types and multiplicities

zMetaclasss: zMetaclasss
NamedElement PackageableElerment
typedElement type
«Metaclasss * 0.1 «Metaclasss
TypedElement y Type

zMetaclasss:

Element
awningLower lowery'alue
0.1 0.1
- {subsets owner} {subsets ownedElement} J
MentiplicityElemeant
isOrdered:Boolean=false =Metaclasss
islnique:Boolean=true) S
flowerInteger[0..1]=1 owning ;Jpper uppglﬂ%’a e ValueSpecification
R S Rt ra [1]=1 {subsets owner} {subsets ownedElemeant}

Figure 30: Types and multiplicities diagram from the UML specification

Figure 30 shows the Types and multiplicities diagram from the UML specification. It defines the
abstract metaclasses Type, TypedElement, and MultiplicityElement.

Metaclasses whose elements can be assigned a type inherit from the abstract metaclass
TypedElement. Typical examples of these elements are attributes (UML metaclass Property)
and parameters (UML metaclass Parameter).

The abstract metaclass MultiplicityElement is the base class for all metaclasses whose
elements can have a multiplicity. Once again, attributes and parameters are typical examples
here. At this point, UML 2 is more complex than UML 1.x in the sense that the upper and lower
limit for a multiplicity is no longer a primitive data type (not a simple number) but is a UML
element whose metaclass inherits from the abstract type ValueSpecification. In addition to the
corresponding MultiplicityElement::lowerValue and MultiplicityElement::upperValue
properties, two further properties MultiplicityElement::/lower and
MultiplicityElement:: /upper are defined with a primitive data type, but these are derived from
the assigned ValueSpecification elements.

1.5.2 Values - Literals

cMetaclasss chetaclass»
Typed Hement FPackageableElement
chMetaclass»

ValueSpeciFication

|ﬁ|

:

chetaclass»
Literal Specification
cMetaclasss cMetaclass o
ey Literal Irteger Literal Unli mit ed Natural
Literal Mull
value:lnteger=0 walue:Unlimited N atural=0
chMetaclasss chMetaclass» cMetaclass
Literd String Literal Boolean Literal Real
wvalue:String[0..1] value:Boolear~false value:Real

Figure 31: Literals diagram from the UML specification

Figure 31 shows the Literals diagram from the UML specification. It defines some specializations
of the ValuesSpecification metaclass®®. Typically, for the MultiplicityElement::lowerValue
property you will use an element of the LiteralInteger type and for the
MultiplicityElement::upperValue property an element of the LiteralUnlimitedNatural type.

© In addition to the specializations of ValueSpecification shown in the Literals diagram, there are others but these will
not be discussed in more detail here.

temiline

order 1.*
Order 1 fordered} Order item
. -
Order number:Integer number:integer

Figure 32: Class diagram with attributes, association ends, and multiplicities

The Class diagram in Figure 32 shows two examples of multiplicities:

The order association end has a multiplicity of 1, which is a shortened form of 1..1, i.e., the
properties /lower and /upper each have the value 1. The specific elements of the
ValueSpecification type on which the two values are based are not shown by the graphic
notation in the diagram.

The itemline association end has a multiplicity of 1..%, i.e., the lower property has the value 1
and the upper property has the value *, where * stands for unlimited.

1.5.3 Classification

1.5.3.1 Classifiers

ohletaclasss chMetaclass s o hetaclass »
Namespace Type DirectedR elationship

h

specific generalization
"

1
{subsets ownersource} {subsets directedRelationship, ownedElement}

cMetaclass» . o Metaclass»
Classifier Generalization
: general gener alization - -
isAbstract:Boolear~fake 1 - isSubstitutable:Boolean[D.. 1J=true

isFinal 5pecialization B oolear-false {subsets target} {subsets directedRelationship}

A dred efinition Contesdt

{readCinby,union}

IredefinableElernent

i fredefinedElement
{read O nly, union} -

{readOnly, union}

chMetaclass o
RedefinableElement

isLeaf:Boole an=false

fred efinable Eleme nt

L]

fread Onby,union}

L\

chletaclass o

NamedElement

Figure 33: Classifiers diagram from the UML specification

Figure 33 shows the Classifiers diagram from the UML specification. It defines the two abstract
metaclasses RedefinableElement and Classifier, and the non-abstract metaclass
Generalization.

RedefinableElement is the basis for all UML element types for which it will be possible for a UML
element to replace another existing UML element in a particular context. The UML specification
itself uses this feature in its own diagrams. Figure 28 shows an example of this. The
PackageableElement::visibility attribute replaces the corresponding attribute from the
NamedElement base class, as unlike NamedElement::visibility it has a default value.

Classifier is the basis for all UML element types for whose elements inheritance relationships can
exist. These inheritance relationships are based on the Generalization metaclass.

Order

Qrder number: Integer

Key customer order

DiscountInteger

Figure 34: Generalization relationship between two classes

Figure 34 shows this kind of generalization relationship between the two classes Key customer
order and Order. This relationship itself is a UML element of the Generalization type. In line
with the compositional property Classifier::general this element is part of the derived class Key
customer order and its Generalization::general property refers to the base class Order.

1.5.3.2 Features

chetaclass»
RedefinableElem ent

chetaclass -
cMetaclass» Eore cMetaclass»
TypedElement MuliplicityElement
is Static:Boolean=false
‘-.‘_'/\ I T

o
e
.,
",
"
",
.,
o
-,

chMetaclasss
StructuralFeature

isReaddnhy:Boolean=fake

propery
property Metac|ass - "
" i F'E - atss.: {subsets redefinableElement}
roperty

aggregation:Aggre gation Kind=none
fdefault: String[D..1]
lsComposite:Boole an=false .
isDerived:Boolean=fake rEdEfInEEPerEI‘l‘y’

UL LT T isDerivedUnion:Boolean=fals e)

" e ke {subsets redefinedElement}

owningP roperty
0.1
{subsets owner}

defaulfvalue
0.1
{subsets ownedElement

cenumerations
Aggregationkind

chMetaclasss naine
ValueSpecification shared ;
composite

Figure 35: Features diagram from the UML specification

Figure 35 shows an extract from the Features diagram, supplemented with content from the
Properties diagram in the UML specification. At the center is the non-abstract metaclass

Property with its base classes. Attributes of classes and association ends are based on the
Property metaclass.

temline
arder 1.*%
Order 1 {ordered} Order item

Qrder number: Integer number:integer

Figure 36: Class diagram with attributes and association ends

The Class diagram in Figure 36 shows four UML elements of the Property type: the Order
number and Number attributes, and the order and itemline!® association ends. The
association edge shows a black diamond at the opposite end of order. This means that the order
items are part of the order and are existentially dependent on it, i.e., deleting the order includes
deleting its order items. This kind of association is known as a composition. At the order
association end, the diamond is displayed if the Property::aggregation property of the
itemline association end has the value AggregationKind::composite.

® These diagrams actually also include the two Attribute association ends for the respective opposite class. This is
dealt with in more detail in the section on the Association metaclass.

1.5.4 Structured Classifiers

1.5.4.1 Classes

felassifier
0.1
oMetaclasss {subsets featuringClassifier,redefinitionContext,readOnhy, union}
Classifier Tattribute
EP {subsets feature, redefinableElementreadCnly, union, ardered}

structure de lassifier

0.1
oMetaclass o oMetaclass o {subsets namespace.classifierredefines stucturedC lassifier}
BehavioredClassifier StructuredClassifier - on ed A b ute
I {zubsets role,owned Member, attribute, ardere d} chMetaclass s
T Property

o Metaclass o
EncapsulatedClassifier

‘f

o Metaclass o class
0.1
{subsets structure d Classifier, classifier,namespace}

Class

iEAbstract:Boolean=fak e{redefines isAbstract}

EActive:Boolean=fake ﬂNl‘lEdﬁ:d'trlerte

{subsets attribute, ownediemberredefines ownedattribute, ordered}

Figure 37: Classes diagram from the UML specification

Figure 37 shows an extract from the Classes diagram supplemented with content from the
Structured Classifiers and Encapsulated Classifiers diagrams in the UML specification. The
central metaclass in this diagram is Class. The three abstract base classes
BehavioredClassifier, StructuredClassifier, and EncapsulatedClassifier are only included
here to illustrate the inheritance relationship between Class and Classifier. They define additional
properties that will not be discussed further in this introduction.

The diagram also shows that attributes (UML type Property) can theoretically be assigned to all
classifiers using the derived property Classifier::/attribute. The type of the specific assignment
is defined by the corresponding specializations. For the Class metaclass it is the compositional
property ownedAttribute. An example of the representation of attributes in classes is shown in
Figure 36.

1.5.4.2 Associations

«Metaclasss cMetaclasss

Relationship Classifier

T .y

awnedEnd —‘7 —‘7

{subsets redefinableElement, me mberEnd feature owne dMember ord ered}
- oMetaclass »
ownin gAssociation Association
0.1
{subsets namespace,featuring Classifier, association, redefinition C o ntext isDerived:Boalean=false
navigableDwne dEnd association
- 0.1
cMetaclasss {subsets ownedEnd} {subsets owningAssociation}
Property
memberEnd association
ar 0.1
{subsets member,ordered} {subsets memberNamespace}

Figure 38: Associations diagram from the UML specification

Figure 38 shows an extract from the Associations diagram from the UML specification. It defines
the Association relationship type as the central metaclass. Associations are used to model
structures made up of one or more classes or other UML types. The association is not directly
linked to the partners in the relationship, but uses an element of the UML type Property, often
referred to as association ends in this context. The Association::memberEnd property is critical
here, and its multiplicity limit of 2 means that an association must have at least two association
ends'’.

These association ends can either be contained in the association itself using the
Association::ownedEnd property, or can be an attribute of the opposite relationship partner (in
the case of a class this would be the Class::ownedAttribute property). If the association end is
an attribute of the opposite relationship partner, the association is navigable towards the
association end. Alternatively, an association end that is not an attribute (i.e., it belongs to its
association as ownedEnd) can also be navigable if it is also assigned to the association as
navigableOwnedEnd.

7" Associations with two ends are also referred to as binary associations. These are normally shown as a graphic edge
in diagrams. If an association has more than two ends, we refer to a multiple association. Multiple associations are
shown in diagrams as diamonds with edges to the relationship partners.

arder tem itern ftem
Order item * 1

N

[tem number:Integer

numkber:integer Label:String

Figure 39: Class diagram with an association

The association in Figure 39 links two classes with one another. The item association end is an
attribute of the Order item class (Class::ownedAttribute property). You can identify this by
the black dot at the end of the edge. As an attribute of the class, the end of a binary association
is automatically navigable and is shown with an arrow head!®. This means that an order item
recognizes the item assigned to it. By contrast, the order item association end is part of the
association (Association::ownedEnd property) and is not navigable.

¥ If both ends of a binary association are navigable, displaying the arrow heads in the diagram is optional.

1.5.4.3 Simple Classifiers — DataTypes
chMetaclass o
Classifier
7
:‘X datatype owun e d Attri bute
0.1 "
cMetaclass {subsets classfier,namespace} {zubsets ownedMember, attribute,ardered} cMetaclass -
DataType . Property
7
chMetaclasss
PrimitiveType

Figure 40: DataTypes diagram from the UML specification

Figure 40 shows an extract from the DataTypes diagram from the UML specification. It defines the
two non-abstract metaclasses DataType and PrimitiveType. These data types differ from
classes in the sense that there is no object identity for their instances. Instances of data types are
only differentiated from one another based on their value. Simple data types (PrimitiveTypes
metaclass) have no internal structure.

primitives
String

Figure 41: Class diagram with two primitive data types

primitive =
Integer

2 ARIS UML Designer overview

This section provides a brief introduction to the individual components of ARIS UML Designer and
their key functionalities.

ARIS UML Designer provides different functional components depending on the selected working
environment in the perspective.

2.1 Specifying the working environment

You can specify the perspective and therefore the working environment by selecting the Select

perspective menu item.

Mew &

B Save Strg+5

Ci Save all Strg+Umschalt=5

»

Add to favorites...
Print... »

Search

Explorer

m P

Administration

Select perspective...
Options...

Help
About...

E){it
Figure 42: Menu item for specifying the perspective

This launches a wizard for specifying the perspective.

P

Perspective Wizard @

1. Select topics

Do you want to enable all topics included in your license?

1. Select topics If not, disable the ones that are not required.

2. Select working environment Tepics included in your license

« UML 2 Modeling
Provides the basic UML modeling functionality.

m Finish Cancel Help

Figure 43: Topic selection in the Perspective Wizard

In contrast to ARIS Architect/ARIS Designer, apart from UML modeling no other
license-dependent topics are available for ARIS UML Designer.

Perspective Wizard @

2. Select working environment

Do you want to perform only simple tasks? Simplify ARIS according to your requirements by moving

1. Select topics the slider to the left.

2. Select working environment I]
I I I I
————
B o
Review Modeling Analysis & Configuration &
Management Administration

Configuration & Administration
Create your projects, improve them, and edit and analyze their content.

For example, you can specify modeling conventions, define access privileges, write your own
reports, define scheduled reports, or create and modify symbaols.

Back Cancel Help

Figure 44: Working environments in the Perspective Wizard

By selecting the working environment, you adjust the range of functions in ARIS UML Designer to
the work you are involved in.

Review allows read-only access to the UML content. It is not possible to make any changes to the
data and diagrams.

Modeling allows you to edit the content.

Analysis & Management enables additional functionalities such as XML export and XML import.
Configuration & Administration includes administrative activities in ARIS such as editing
method filters or configuration of reuse options for business process objects in UML, and creation
and editing of scripts.

2.2 Explorer

When you launch ARIS UML Designer, the Explorer tab is displayed.

[T UML - ARIS UML Designer (=N EoR ™=
Start Contents Evaluate Lad
c Refresh
Mavigation x General 0 : : 1 &
Explorer tree Diagram tree E—: BT u
“ ¥ General
¥ =% ARIS UML Designer Examples = Type fetas
Default symbol @ Use case
~ 8 Main group o5 N
» B Example diagrams ~ extensionPoint
4 Meta model = Discount calculation
» Organization ¥ include
>
4 Processes Indude
27 ¥ BehavioredClassifier
-
2les system ¥ ownedBehavior
V Analysis diagrams [UML2 Model] # Create order
3 Relatienships ¥ Hement
» D Classes [UML2 Package] description Comprises the creation of a customer order in the sales system.
-
VD Use Cases [UML2 Package] ownedCamment
™ Comprises the creation of a customer order in the sales system.
3 Relationships ~ T
Use cases [UML2 Use case diagram] name (%) Create order
b T Sales representative [UML2 Actor] ¥ Type
b €= A_customerdataCheck_salesrepresentative [UML2 Assaciation] package [Use Cases
b = A_keycustomerorderCreate_salesrepresentative [UML2 Asseciation]
b = A_orderCreate_salesrepresentative [UML2 Association]
» @ Check customer data [UML2 UseCase]
b @ Create key customer order [UML2 UseCase]
v @ Create order [UML2 UseCase]
MamedElement
» Relaticnships
¥ < Discount calculation [UML2 ExtensionPoint] -
1 »
Working environment: Configuration & Administration 5 software~

Figure 45: Explorer tab

Figure 45 shows the Explorer tab in ARIS UML Designer. The Navigation bar on the left-hand
side contains two trees - the Explorer tree and the Diagram tree. The properties of the element
or diagram selected in the tree are displayed on the right-hand side. Alternatively, you can
display the properties in a separate dialog by clicking Properties in the pop-up menu for an
element or diagram.

The Navigation bar can be hidden using the u button at the right-hand edge of the window to
create more space for the properties pages.

You can use the = button to show and hide the Implicit changes bar at the right-hand edge
of the window. This area logs when a change to a UML element results in implicit changes to other
UML elements. The Implicit changes bar is outlined in more detail in section 2.3.5.

You can use the > button to hide all areas except for the properties pages. Clicking the button
again reverts to the previous state.

If you have closed the Explorer tab, you can re-open it by selecting Explorer in the ARIS menu.

M save Strg+5

Cm Save all Strg+Umschalt=5

»

Add to favorites...
Print... b

Search

Explorer

“ 10 °

Administration

Select perspective...
Options...

Help
About...

Exit

Figure 46: Menu item for displaying the Explorer tab

2.2.1 Navigation bar
2.2.1.1 Explorer tree

The Explorer tree shows the familiar ARIS group hierarchy with diagrams and elements. The tree
includes both standard ARIS and UML content.

Server connection —* ¥ 5 umML
Database ————» w =2 ARIS UML Designer Examples
+ [Main group
..-—-'-""'-——-—_* ¥ B8 Example diagrams
- ! 8 Meta model
¥ B8 Organization

+ [l Processes

Groups

ARIS diagram - = Sales process [ARIS EPC]

3 Crder can be created [ARIS Event]

3 Crder cannot be created [ARIS Event]

3 Crder data received [ARIS Event]

3 Crder is created [ARIS Event]

» Kl Order is rejected [ARIS Event]

3 Crder is released [ARIS Event]

3 m Check customer data [ARIS Function]

3 m Create order [ARIS Function]
w [0 Sales system

VE| Analysis diagrams [UML 2 Model]
UML elements » BB Relationships

T, b [Classes [UML 2 Package]
VD Use Cases [UML 2 Package]
+ BB Relationships

ARIS elements

P

UML diagram # - Use cases [UML 2 Use case diagram]

3 ‘E’ Sales representative [UML 2 Actor]

k= A customerdataCheck_salesrepresentative [UML 2 Association)

ko A keycustomerorderCreate_salesrepresentative [UML 2 Association)
UNIL elements F = A _orderCreate_salesrepresentative [UML 2 Association]

b @ Check customer data [UML 2 UseCase]
b @ Create key customer order [UML 2 UseCase]

Figure 47: Groups, diagrams, and elements in the Explorer tree

A fundamental difference between ARIS and UML is that, unlike ARIS items, UML elements can
form hierarchies, i.e., a UML element can contain other UML elements, and this is visible in the
Explorer tree. The root of this kind of hierarchy of UML elements is always a UML element of the
Package, Model, or Profile type. Only these three types can be directly contained in a group.

Essentially, only new groups, UML elements, and UML diagrams can be created in ARIS UML
Designer. ARIS items and ARIS diagrams are displayed in the Explorer tree in ARIS UML Designer,
but they cannot be created there.

You can filter the Explorer tree content. If you have activated the Explorer tree, top right a Y
Filter button is available. To focus on specific elements you can restrict the displayed content.

Y

hetamodel filter configuration...

Activate model filter

" Show ARIS models
#| Show ARIS objects

#| Show relationship nodes
Reset all filter settings
Figure 48: Explorer tree filter options

You can even define which UML object types should be visible.

To show the content of the UML types Package, Model, and Profil, these superordinated
elements must be included in the Visible elements area. If you, for example, include
subordinated elements of Profil, but not Profil itself, the subordinated elements are not shown.

Configure visible chject types

Specify the elements to be used in the navigation tree.

Invisible elements: Filter ~

v | UML
""" * Abstraction
I AcceptCallAction
I AcceptEventiction
|:| ActionExecutionSpecification
@ ActionInputPin
L Activity
@ ActivityFinalMode
|:| ActivityParameterNode
[EH ActivityPartition
‘E’ Actor
@D AddStructuralFeatureValueAction
D AddVariableValuehction
&> AnyReceiveEvent
B Artifact
£ Association
= AszociationClass

[] BehaviorExecutionSpecification

-

1

Visible elements:

~ i U]

LiteralBoclean
Literallnteger
LiteralNull
LiteralReal
LiteralString

m LiteralUnlimitedMatural

D Package

Figure 49: Explorer tree filter dialog

If you have defined a metamodel filter you can toggle it using the Acitvate model filter menu

item.

The filter symbol indicates, if a filter is set T or Y not. A tooltip informs you about the filter
details, if you move the mouse pointer briefly over the filter icon.

Al

Shows a popup menu to configure visible element types in the navigation tree,

Activated filter:

- Some element types from the meta model are not visible
- ARIS Models are not visible

Figure 50: Explorer tree filter details

2.2.1.2 Diagram tree

The diagram tree provides a view of the database grouped by diagram types. Particularly with
small or medium-sized databases, it offers fast and uncomplicated access to diagrams.

« B umL
w % ARIS UML Designer Examples
» BB ARIS
v [l UML 2

» B UML 2 Activity diagram

» B UML 2 Class diagram

» B8 UML 2 Communication diagram

» B8 UML 2 Component diagram

» B8 UML 2 Composite structure diagram

» B8 UML 2 Deployment diagram

» B UML 2 Interaction overview diagram

» B8 UML 2 Object diagram

» B UML 2 Package diagram

» B UML 2 Profile diagram

» B UML 2 Protocol state machine diagram

w [UML 2 Sequence diagram
= Create order [UML 2 Sequence diagram)]
~ Deliver order [UML 2 Sequence diagram]
— Release order [UML 2 Sequence diagrarn]

» B UML 2 State machine diagram

» B UML 2 Timing diagram

w [0 UML 2 Use case diagram
= Use case diagram example [UML 2 Use case diagram]

= Use cases [UML 2 Use casze diagrarn]

Figure 51: Diagram tree

Figure 51 shows the Explorer tab with the diagram tree in the Navigation bar. Below the
database node are the two metamodel nodes ARIS and UML. These each contain the
corresponding diagrams grouped by diagram type.

2.2.2 Properties pages

The properties of the element or diagram selected in the Navigation bar are displayed on several
properties pages on the right-hand side of the Explorer tab. The most important properties
pages are outlined below. Special properties pages relating to UML profiles or links between
business process and UML modeling are explained in the corresponding sections of this
document.

Essentially, all properties pages on the Explorer tab are also displayed in the Properties dialog for
the element or diagram.

2.2.2.1 Information (elements, diagrams, groups)

Information Genera Relationships Reused objects L

Create order

UML2 UseCase
S0d4ect0-f4al-11e4-737e-al 38 dfafBdes

Main group/Sales system/Analysis diagrams/Use Cases
ARIS UML Designer Examples

system

07.05.2018 12:04:52

system

17.07.2018 09:28:45

Comprises the creation of a customer order in the sales system.

Use Cases [UML2 Package]
public

Figure 52: Information properties page

The Information properties page is displayed for groups, elements, and diagrams. If you click

on uﬁConfigure information page you can determine the content of the Information
properties page.

Specify the information to be shown on the infoermation page.

Information available Filter ~

‘ Filter list ‘

¥ [l Systermn information
® Original type
‘ Owned as
‘ Stereotypes

¥ | umL
‘ classifierBehavior
L clientDependency
‘ collaborationlse

[/ 8

L elementlmport

‘ extend

‘ extensionPoint

‘ externallink

® generalization

W identifier

‘ include

‘ interfaceRealization
W isAbstract

Information shown Filter =

| Filter list

¥ [l System information
‘ Mame
W Type
B GuD
L 3 Group path
‘ Database
W Created by
‘ Created on
R Changed by
‘ Changed on
R Description
‘ Locked by user
¥ | umML
% package
B visibility

Sort alphabetically

m Cancel

Figure 53: Information properties page configuration

2.2.2.2 General (elements, diagrams, groups)

Information General Relationships Reused objects Lin
|4 (=)=t 2l w O

b General

F Uselase

b ArisElement

F BehavioredClassifier
F Classifier

¥ Element

description Comprises the creation of a custorner o...

¥ ownedComment
™ Comprises the creation of a custom...

¥ NamedElement
k clientDependency
name (*) Create order
nameExpression
¥ Namespace
F elementlmport

F ownedRule
Figure 54: General properties page

The General properties page shows all properties that are specified in the metamodel as
attributes of the metaclass for the selected element and as attributes of the meta diagram for the
selected diagram. The lower section of the page shows a description of the selected property.
Properties that the metamodel stipulates must have a value are indicated by an asterisk (*).

The button Show/Hide description area is used to set whether or not the description area
is displayed.

The properties are grouped by the metaclasses and meta diagrams to which they are assigned as
attributes in the metamodel. Alternatively, you can sort the properties alphabetically without
displaying their metaclasses or meta diagrams (see Figure 55).

s
The Categorized and Alphabetically buttons are used to toggle between the
properties being grouped by metaclasses and displayed alphabetically.

Nation General Felationships reused oDjects Linked diagrams

[bi|=|=t el woO

classifierBehavior

[FH#
i

F clientDependency
F collaborationlse

description Comprises the creation of a customer order in the sales system.
F elementlmport
F extend
¥ extensionPoint

D Discount calculation

F generalization

identifier
* include

""" * Include

description
Description of the element.
This property is derived from the first owned comment of the element.

Figure 55: Alphabetical property display

Apart from a few exceptions'®, properties that are based on derived meta attributes, i.e., whose
values have to be calculated at runtime based on other properties and elements, are not
displayed by default. You have the option of also displaying derived properties.

The button w Show derived properties enables or disables the display of derived properties.

mation General Relationships Reused objects Link
|4 = =t el[w]o
F General
F Uselase

F ArisElement

F BehavioredClassifier
b Classifier

¥ Element

description Comprises the creation of a custormer o...

* ownedComment
™ Comprises the creation of a custom...
* ownedElement
&2 Create order
™ Comprises the creation of a custom..,
@ Discount calculation
""" * Include

oWRnEr B3 Use Cases

Figure 56: General properties page with display of derived properties

¥ These exceptions include Element::/description, MultiplicityElement::/lower, and MultiplicityElement::/upper.

The example in Figure 56 shows that when displaying derived properties for the Element
metaclass, i.e., for all UML elements, the /ownedElement and /owner properties are also
listed (see Figure 26: Root diagram from the UML specification with ARIS-specific extensions).
Their values are written in gray rather than black to indicate that these properties cannot be
changed.

The button o Show specified properties only hides or shows all properties that have no
value.

General

e =} &} w(O]

Default symbol & lse case
Type UseCase

|descripti|:|n |C|:|r'r1prises the creation of a customer order in the sales systern.

¥ axtensionPoint

O Discount calculation
 include
""" tInclude
narme () Create order
¥ ownedBehavior
#2 Create order
¥ ownedComment
™ Comprises the creation of a customner order in the sales system.
package [Use Cases -
description

Description of the elernent.
This property is derived from the first owned comment of the elernent.

Figure 57: General properties page without properties for which no value is specified

Figure 57 shows the same example as Figure 55, with the difference that all properties for which
no value is specified are hidden here.
Clicking the value of a property allows you to edit it. The type of editing permitted depends on the
property type.
Properties of the String type can be edited directly in the text line:

¥ NamedElement

F clientDependency
name (*) |Create order] b

nameExpression

Figure 58: Text entry

If the property supports formatted text, this dialog provides the corresponding formatting tools.
ARIS UML Designer only supports this for descriptions and comments:

Enter property 'description’ @I

111

it

]
H]
r
™
I

Segoe Ul w |12 - B il u & . 57 1‘50

Comprises the creation of a customer order in the sales system.

“ Cancel Reset

Figure 59: Editor for formattable text

If the value of the property is a UML element, direct editing in the text line is also possible:

¥ (lass
ishbstract (%) False
ishctive (*) Falze

b nestedClassifier

PP RER visibility / attribute-name :type [multiplicity] = initial-value {property-string}

7 order number:5tring
[item line:Order item[1..*[{ ordered}

Figure 60: Text editing for a UML element in the general properties

During editing, a corresponding UML syntax help is shown above the text line. This UML-specific
text editing option is available in ARIS UML Designer wherever the element is displayed in this
text form - in the Explorer tree, in the properties pages for the superior element, and in diagrams.
It is described in more detail in the Creating new elements in Explorer section.

The button on the far right is used to open a pop-up menu, which provides additional
functionalities for the element:

¥ ownedAttribute
L7 order number:String -

[itemn line:Order item[1..*fordered} i Delete element

07 invoiceInveice[0..1] l' B
F ownedOperation
F ownedReception m Select in Explorer
F superClass (i | Properties...

AricFlamant

Figure 61: Additional functionalities for a UML element in the general properties

A pop-up menu is also available in the row of the table containing the name of the property. It is
used to create corresponding new UML elements or to add existing elements to the property. The
button for expanding the menu is available as soon as you click in the corresponding field in the
table.

* pwnedittribute -

1 order number:String ~0 ExtensionEnd B create element 3
[item line:Order item[1..*]{ordered}
0 invoicelnveice[0.1]
: 7 property
F ownedOperation L perty

b ownedReception

o Port Use element...

%% Configure menu...
b superClass

Figure 62: Creating new UML elements in the general properties

2.2.2.3 Relationships (elements)

Relationships

=. % = B B

Direction « |Relationship Relationship type |Related element Element type
Incoming typedElement L7 orderltem_1 UML 2 Property
Incoming generalization # Ttem_1 UML 2 Generalization
Incoming f Item_1 Generalization B Key customer order UML 2 Class
Mon-directed = A_item line_order line Association E Order item UML 2 Class
Cutgoing ownedAttribute 7 order numberString UML 2 Property
Clutgoing ownedAttribute [iter line:Order item([1.*ordered} UML 2 Property
Cutgoing ownedAttribute L7 invoiceInvoice[0.1] UML 2 Property
Cutgoing ownedConnector /" plnvoice line item UML 2 Connector
Cutgoing Owning package [Classes UML 2 Package

Figure 63: Relationships properties page

The Relationships properties page displays all of the selected element's relationships with other
elements. Alongside the direct relationships, those that appear as a direct graphic link between
two elements in the diagram but actually represent a chain of elements and relationships are also
displayed.

The binary association is an example of this kind of relationship. It links two classifiers using a
graphic edge in the diagram, for example a user case and an actor. However, this association
edge does not visualize a direct relationship but a chain of elements consisting of two association
ends (UML type Property) and an association.

The Relationships properties page for the use case shows both the direct relationship between
the use case and the association end as an incoming relationship of the typedElement type, and
the indirect relationship with the actor, which is of the Association type.

You can call up the following functionalities for every relationship:

W+

Remove relationship

= | Go to occurrence of linked element in Explorer

a Show element properties for linked element

The other two functionalities are only available in the Designer component and are described in
the corresponding section.

2.2.2.4 Linked diagrams (elements)

Linked diagrams

% B = H
Diagram & Type Kind
Create order UML 2 Activity diagram Mavigation

Figure 64: Linked diagrams properties page

All diagrams that are linked to the selected element are displayed here. If the selected element
has a presentation in a diagram, it is displayed with an assignment symbol. This supports
navigation to the linked diagrams in that diagram.

This kind of link can take three forms:

OWNERSHIP

The diagram belongs to the selected element. It appears as a child node of the element in the
Explorer tree.

NAVIGATION

The diagram has been assigned to the element for the purpose of navigation. This kind of link has
no semantics. It is only used to provide a simple way of navigating from an element to a diagram.
Unlike diagram assignments in the ARIS standard, no restrictions exist here. Every diagram type
can be linked to every element type.

IMPLICIT OWNERSHIP

In this case, the diagram does not directly belong to the selected element. It is a behavior
diagram?® whose owner belongs to the selected element. For example, if you want to model the
internal process of a use case in an Activity diagram, you create an activity as ownedBehavior of
the use case and a corresponding Activity diagram for the activity. This Activity diagram is
automatically linked to the use case through implicit ownership.

You can call up the following functionalities:

% Assign diagram
% Removed assigned diagram (only for assignments of Navigation type)
g

Open diagram
B | Go to occurrence of diagram in Explorer

Show diagram properties

20 Implicit ownership is not supported for structure diagrams. For example, if a child package of a package has Class
diagrams, they are not linked to the package.

2.2.2.5 Presentations in diagrams (elements)

ips Reused objects Linked diagrams Presentations in diagrams

" & B

éDiagram - Diagram type

& Usecoses UML2Usecosediogam

...

Figure 65: Presentations in diagrams properties page

The Presentations in diagrams properties page lists all diagrams that contain the selected
element.

You can call up the following functionalities for each diagram:
5 Open diagram
A Go to occurrence of diagram in Explorer

B show diagram properties

2.2.2.6 Presentations (diagrams)

Information General Presentations Connected objects A
= B

Object Symbol

= A _customerdataCheck_salesrepresentative Aszociation

= A_keycustomerorderCreate_salesrepresentative Association

=+ A _orderCreate_salesrepresentative Aszociation

@ Check customer data Uze caze

@ Create key customer order Use case

@ Create order Uze caze

""" * Bxtend Extend note

""" * BExtend Extend

""" * Bxtend Extend note connector

""" *Include Include

@ Release order Uze caze

T Sales representative Actor

Figure 66: Presentations properties page

The Presentations properties page lists all elements that appear in the selected diagram.

You can call up the following functionalities for each element:
= -
B | Go to occurrence of element in Explorer

B | show element properties

2.2.2.7 Connected objects (diagrams)

Presentations Connected objects Applied sterec

= @
Object & Type Kind
Create order UML 2 Activity Ownership
& Create order UML 2 UseCase Implicit ownership

Figure 67: Connected objects properties page

The Connected objects properties page for a diagram shows the element that owns the diagram
and optionally also the implicit owner in the case of a behavior diagram.

You can call up the following functionalities for each element:
= -
B | Go to occurrence of element in Explorer

B show element properties

2.2.3 Properties dialogs

Properties: Create order @

Selection Help Information
K
) Create order
Description UML2 UseCase
Relationships 80d4ectl-f4a0-11e4-737e-al 38 dfaf8de5

Main group/Sales system/Analysis diagrams/Use Cases
ARIS UML Designer Examples

Reused objects

Linked diagrams

Presentations in diagrams system
. 07.05.2015 12:04:52
Applied stereotypes
system
Tagged values 17.07.2015 09:28:45

Comprises the creation of a customer order in the sales system.

m Cancel Help

Figure 68: Properties dialog for a UML element

When you open the Properties dialog for an element or diagram, it essentially contains the same
properties pages that are displayed on the Explorer tab. In addition, there is a properties page
here for editing the description of the element or the diagram (see Figure 70).

Properties: Create order @

Help Description

Selection

Information Segoe UI | v | 12 | hd | B 1 U
General

Description Description:

Relationships Comprises the creation of a customer order in the sales system.

Reused objects

Linked diagrams
Presentations in diagrams
Applied sterectypes
Tagged values

m Cancel Help

Figure 69: Properties page for displaying and editing the element description

2.2.4

Creating new elements in Explorer

New elements can be created in the Explorer tree by calling up the New element item in the

pop-up menu. This opens a submenu containing the element types that can be created within the
selected element. Figure 71 shows this pop-up menu for a group. The four types Group, Model,
Package, and Profile are available.

w B ARIS UML Designer Examples

b

el

b

Main group

vD 2 UML basics
¢ B Relationsk
3 D 2.2 Diagra
» EJzaumLn
3 D Specific fe

b 7] 4 UML-Mapp

8 Meta model

8 Crganization

88 Processes

10 Sales system

0 UML Profiles

% Exarmnple diagrar-=

<
Ep

ch

*

Mew element
Cut
Copy

Delete

Fename

= Generate UML metamodels...

Delete incomplete relationships...

Go to
Add to favorites...

Import
Export
Lock/Unlock

Evaluate

Properties...

Figure 70: Pop-up menu for creating a new element in a group

B Group

0 Model
1 package

3 erofile

If you call up this pop-up menu for a UML element, the number of possible element types that you
can create within the selected element may exceed the capacity of the submenu. In this case,
only the most important element types are provided directly in the submenu. As the maximum
number of pop-up menu items depends on the screen size and resolution, you can specify the
maximum number of items that this kind of pop-up menu can contain in the global options for
ARIS UML Designer?..

L ARIS > Options > UML > Explorer > Configure menu

¥ [Classes [1IMI 7 Dacbana

S -
b B Relat IR

- Analy Mew diagram 3

b Aitel = Cut
b Aitel By Copy Stigec
'Eftem W Delete

b B Re

» O Ite

» I s . Delete incomplete relationships..

Cp Rename F2

vEikem. Goto b

» B Re W Add to favorites...
» B or -
3 |:| ite import
» Wi BXPOR
: _/ i Lock/Unlock
v Bl Key Evaluate

o O o

» B Re BB rroperties...
[f‘ Item_1 [UML 2 Generalization]

4 r___! discountInteger [UML 2 Property]

P A key customer order is discountable, [UML 2 Comment]
w E Order item [UML 2 Class]

b [0 Relationships

b [item:Item [UML 2 Property]

4 :___' nurnberInteger [UML 2 Property]

a

Figure 71: Pop-up menu for creating a new element in a UML package

[0

e & O

#'1:(-

Activity [packagedElement]
Actor [packagedElement]

| Artifact [packagedElement]

Class [packagedElement]
Collaboration [packagedElement]
Comment [ownedComment]
Component [packagedElement]
Constraint [ownedRule]
DataType [packagedElement]
Enumeration [packagedElement]
Interaction [packagedElement]
Interface [packagedElement]
hodel [packagedElement]

Mode [packagedElement]
Package [packagedElement]
PrimitiveType [packagedElement]
signal [packagedElement]
StateMachine [packagedElement]
UseCase [packagedElement]

hare...

Configure menu...

Figure 72 shows the pop-up menu for creating a new UML element in a UML package. In addition
to the element type, each menu item also contains the property under which the new element is
created in the superior element. In this example, most elements would be created as

packagedElement in the package (see also Figure 28: Namespaces diagram from the UML

specification).

Clicking More... opens the Create element dialog, which lists all UML types that can be created
within a package but are not included in the pop-up menu (see Figure 72).

E

Create element @

Which element type do you want to use?

~-¥ Abstraction [packagedElement]
1 Activity [ownedType]
T Actor [ownedType]
> AnyReceivebvent [packagedElement]
D Artifact [ownedType]
=+ Association [ownedType]
= Association [packagedElement]
I= AssociationClass [ownedType]

I= AssociationClass [packagedElement]

w
N i 1] u [i]

Cancel Help

Figure 72: Dialog showing element types that are not included in the pop-up menu

The content of the New element submenu can be individually adapted for each UML element
type, allowing you to add the most important element types from a user perspective to the menu
and to remove those that are not so important. Clicking the Configure menu item shown in
Figure 72 opens the corresponding menu configuration dialog.

-
Configure menu - New elements

Accessible from dialog:

Eilter =~

Filter list

- il UML2

-

e

~¥ Abstraction [packagedElerment]

2L Activity [ownedType]

+ Actor [ownedType]

@ AnyReceiveEvent [packagedElerment]
D] Artifact [ownedType]

£ Asscciation [ownedType]

—* Association [packagedElerment]

£ AssociationClass [ownedType]

1= AssociationClass [packagedElement]
@ CallEvent [packagedElement]

@ ChangeEwvent [packagedElermnent]
E Class [owned Type]

% Collaboration [ownedType]

— CommunicationPath [ownedType]
“— CommunicationPath [packagedElemen
$:| Component [ownedType]

& ramnonentRealization [nackanedFleme ™

Accessible from pop-up menu:

Specify the element types to be provided by the pop-up menu (metaclass 'Package')

Eilter =

| Filter list

SN

£ Activity [packagedElement]

+ Actor [packagedElernent]

D] Artifact [packagedElernent]

@ Class [packagedElernent]

7 Collaboration [packagedElement]
[™ Comment [ownedComment]

$:| Component [packagedElernent]
Constraint [ownedRule]

El DataType [packagedElernent]

E Enumeration [packagedElerment]
F_'—I Interaction [packagedElerment]
l:l Interface [packagedElerment]

@ Model [packagedElerment]

ﬁ] Node [packagedElerment]

D Package [packagedElermnent]

l:l PrimitiveType [packagedElement]
l:l Signal [packagedElerment]

-

[« Sort alphabetically

Figure 73: Dialog for configuring the New model element submenu

Figure 74 shows the dialog for configuring the New model element pop-up menu. The
right-hand column contains all element types that are directly included in the pop-up menu, the
left-hand column those that are available for selection in a dialog by selecting More.... If Sort
alphabetically is enabled, the elements in the pop-up menu are sorted alphabetically.
Otherwise, you can individually specify the order of the elements in the pop-up menu. Regardless
of this setting, the element types in the dialog are always sorted alphabetically.

If you have a created a new element in Explorer, UML-specific text editing for the element is
automatically activated.

w] tem [UML 2 Class]

visibility / attribute-name ‘type [multiplicity] = initial-value {property-string}
Ld |_ = PR) IILIIIIULIlJ.IILLHLI L=rvie IU’JLILJ']

-
¥ (2| Label:String EN
[E Key customer order [UML 2 Class]

Figure 74: Text editing for a UML element in Explorer

The syntax help highlights the area to which the current cursor position in the text box relates. If
the current text relates to a different UML element, all UML elements already loaded from the
database whose name begins with the text entered and which are of the matching type are shown
in a selection list:

w] em* [UML 2 Class]
F [Relationships

T . - o

visibility / [attribute-name] dype [multiplicity] = initial-value {property-string}
P DT [T T TRy

=
b Hem description:5tr EM

w [em [UML 2 Class] | String
StringExpression =

Figure 75: Selection list with matching elements in text editing

If a UML element is referenced that does not yet exist or has not yet been loaded from the
database, its name is underlined with a green wavy line:

w [tem* [UML 2 Class]
F 8 Relationships

.. - -

visibility / [attribute-name] dype [multiplicity] = initial-value {property-string}
F |__.I_IJI.|_I|JLIIIIH LwI¥iE o1 IUP_ILJJ

-
b 0| Hem description:5tring EM
w [em[UML Z Class]

Figure 76: Unknown UML element in text editing

If you exit text editing in this situation, every unknown element is listed in the Assign reference
dialog and you are offered the option of creating new elements or searching the database for
matching elements.

Assign reference \EI
Description:

Label:Floating point number

Elements:

Property Name Type Status

type Floating point num... Class ® Is re-created =
L OME

ﬁ Cancel Help

Figure 77: Dialog with unknown references in text editing

With no further entries in the dialog shown in Figure 78, clicking OK creates a new class with the
name String as the type for the Item description attribute.

In the Type column you can specify the exact type if a new element is to be created.

Property Mame Type Status
type string | Class L= Is re-created ¥

B class

|:| DataType

B Enumeration
[] mterface

[PrimitiveType
E Stereotype

Figure 78: Selecting the type for the new element to be created

The Status column describes whether a new element is created or whether an existing element
from the database is assigned. Clicking the button on the far right allows you to select from both
options.

Property Mame Type Status

type string Class - | Is re-created | ™ |
' Create 'Classifier’ |

Use 'Class’

Figure 79: Selection options for creating or using a UML element

Selecting Use opens the Select elements dialog for searching for the element in the database.

P o

Select elements @

Search database

Enter the sequence of characters the name of
the elements you are searching for is to begin
with. You can enter ™' to find all elerents. This

Elements found {marked with "*' if unsaved):

) ; Element ... & |Type Path
may take a very long time depending on the
database.
Find what:
string Start search

Requested element types:

¥ UML2 Activity =
% UML2 AssociationClass
w UML2 Class

Cancel Help

Figure 80: Search dialog

2.2.5 Creating new diagrams in Explorer

UML diagrams are always contained in a UML element. It is not possible to create a UML diagram
directly within an ARIS group. UML elements of the Package, Model, Profile, or Class?? type
can contain any structure diagrams. Behavior diagrams, on the other hand, are always contained
in the element represented, i.e., state diagrams in state machines, Interaction diagrams?? in
interactions, and activity diagrams in activities.

New diagrams can be created in the Explorer tree by calling up the New diagram item in the
pop-up menu.

"’El Use Cases [UML2 Pack~~~1

b Relationships b clemeal /
Uze cases [UML2 LI New diagram o Activity diagram
b T Sales representative 3< Cut Ctrl+ Class diagram
b« A_customerdataCh Egy Copy e C Communication diagram
b = A_keycustomerord S Delete o Component diagram
b & A_orderCreate_sale P Rename ’ Composite structure diagram
b @ Check customer di Deployment diagram

b @ Create key custom Hide all elements of this type hd

b @ Creste order [UMLI ¥ Delete incomplete relationships...

Package diagram
b @ Release order [UML Go to »

Profile diagram
""@ Design diagrams [UML2 P

W Add to favorites.. Seqguence diagram
Relationships : .
- BB UML Profiles Import b State machine diagram
v [Analysis profile [uML2 pr ~ EXPOTE b s A
4 Relaticnships Lock/Unlack b More..
Analysis profile [UML2 Evaluate ¥ % Configure menu..

b ¥ UML [UML2 Packagelr [| Properties

Figure 81: Pop-up menu for creating new UML diagrams

Figure 82 shows the pop-up menu for creating a new diagram in a UML package. The pop-up
menu provides the same configuration options as the pop-up menu for creating new elements.

22 g

This also applies to all elements whose metaclass is derived from Class, e.g., Component or AssociationClass.
23

Communication, Sequence, and Timing diagrams are referred to as Interaction diagrams.

2.3 Designer

When you open a UML diagram, it is displayed in the Designer component.

UML - ARIS UML Designer

Informa.. General | Present.. Cenne.

i (==l woO

¥ General
Type

¥ ArisDiagram

Class diagram
name (*) Classes
description

identifier

b externallink

name (* is required)
Diagram name

4

m -+ Classes [UML2 Class diagram] > S

discount: Integer

Start Contents Wiew Insert Format Evaluate
ré #< Cut W Delete ~ y Gotov Co
Em Copy C[1 Rename B up
=" Open
eleme Format painte (i | Properties Select
Mavigation x
tem line
Explorer., Diagra.. Diagra.. Visuali.. order 1.% B MEntio
T tem_1 1 {orclered} e
1 :
. o order numkber: String number:Integer
VD Classes [UML2 Package] L4
» B Relationships
e |Classes [UML2 Class diagran
-
4 »
i Key customer order A key customer order is
Properties X (B — — — — discountahle.

Working environment: Configuration & Administration

110 %

e —§—

Symbols x *_
"l = e
¥ Class diagram ‘ i |
""" ¥ Abstraction

" Annotated element
€ Association

1#1 Association class

>
g Class
D Comment
Constrained element
D Constraint
[:l Datatype
""" » Dependency
""" > Deployment
""" ? Element import el
© Osoftware~

Figure 82: Designer component

The Designer component is divided into four areas - the modeling area, and the Navigation,
Properties, and Symbols bars. The bars can be hidden to create more space for the diagram
representation. In addition, you can rearrange the bars by dragging them with the mouse button

held down.

The following buttons are available on the far right of the window:

* Shows and hides the Navigation bar
= Shows and hides the Symbols bar
a Shows and hides the Properties bar
=

Shows and hides the Implicit changes bar

b Hides all bars

< Shows all bars

For the screenshots shown below, the individual bars have been arranged in such a way that they
provide a useful representation adapted to the page width available in this document.

2.3.1 Navigation bar

In addition to the two trees familiar from the Explorer tab, the Navigation bar contains the
diagram overview and the list of elements that appear in the diagram.

2.3.1.1 Diagram overview

Mavigation x

: ; z e item line
Explorer tree Diagram tree [Diagram overview | Visualized elem.. order | *

ttem_1 1 {ordered} | Ordel
) - arder number:string numbel

Key customer order A key custom
e 1 discountable.
discountinteger

1 b

Figure 83: Diagram overview

The Diagram overview provides a schematic view of the entire diagram and indicates the section
that is visible in the modeling area with a white rectangle. By moving the rectangle, you can move
sections of the diagram that are not visible in the modeling area into the visible area.

2.3.1.2 Visualized elements

Navigation X
Explorer tree Diagram tree Diagram overview | Visualized elements
Element & Symbol ——
=+ A_itemn_order item Association
= A_itemline_order MAscociation ger

temline

™ A key customer order is discountable. Comment

[Integer Primitive type
[item Class
E Key customer order Class
 Order Generalization
- rder
E Order item Class

Figure 84: Visualized elements

1.*
{ordered}

Order item

itern

number:integer

A key customer order is
discountahle.

Iterr
Lak

The Visualized elements page shows a list of all the UML elements that appear in the diagram.
Selecting an element in the list also selects the element in the diagram and moves the section
shown in the modeling area so that this element is visible.

2.3.2 Properties bar

The Properties bar essentially shows the same properties pages as the Explorer tab. However,
as the available space is smaller you can specify which properties pages are to be displayed in the

Designer component in the global options.

In each case, the properties of the element currently selected in the Navigation bar or in the

diagram are displayed.

2.3.3 Format

Properties
General Format
4 (=] =) =l
¥ Symbol

Symbol

¥ Graphical appearance
¥ Fill color
Line color
Line weight
Shaded
3-D effect
Font format
Font
Font size
Font color
Resize symbal
¥ Position and size
Position (mm)
Size (mm)
Scaling (%)
¥ Classifier
Feature View

Hide association member ends

Hide port attributes
¥ General
Show qualified name
Show properties
b Stereotype

Show qualified name

Presentations in diagrams

temline

]
- Order
[Class Crder number: Integer
L]

[Diagonal gradient from top left

B Elack
3

Key customer order

Standard DiscountInteger

<Use stylesheet>
0

B

12,2:19,5
41,7151
166,0; 101,0

Implementation view
r

Specifies whether the name of the element should be shown as qualified name (i.e. including
the names of the element's namespace hierarchy].

4

Figure 85: Format properties page for the element selected in the diagram

Morder 1.*
1 {ordered} Order item

number:Integer

A key customer order is
discountable.

The Format properties page is displayed for elements in diagrams. It shows all representation
options for the selected element. If multiple elements are selected, it shows the combined

representation options for the selected elements. This enables the graphical representation of
multiple elements to be edited simultaneously.

Just as for the general properties, a brief description of the selected representation option is
displayed at the bottom and you can choose between thematic grouping and an alphabetical
display of the representation options.

These representation options include both general graphical properties such as colors, line
weight, or font format, and UML-specific options that specify which details the relevant elements
are to display in the diagram.

2.3.4 Symbols bar

=

Symbols
.1.

™ Class diagram

g Class

D Comment

nui

""" ? Dependency
""" ¥ Abstraction
£ Aszociation

1E Association class

E Enumeration

Figure 86: Symbols bar for a Class diagram

The Symbols bar is used to create elements and relationships in the diagram. In contrast to ARIS
Architect/ARIS Designer, it also contains edge symbols.

If you move the mouse pointer briefly over a symbol, a description of the symbol is displayed.

@ Class
D Comment

..... y [Comment
A Comment is a textual

_____ 3 annotation that can be attached
to a set of Elements.

> Aszociation

Figure 87: Symbol description

You can use the = Show symbols with names and == Show symbols without names
buttons to show and hide the symbol names in the Symbols bar.

Symbols X 5
A =28l
¥ (Class diagram B

g m -) &
t= B > >
LA A

B Owning class
IZ References the Class that owns

Ii_lthe Classifier.
|/ — | - |

¥ Package diagram

2 B

Figure 88: Symbols bar with symbol names hidden

Selecting the Remove symbol item in the pop-up menu enables a symbol to be removed from
the Symbols bar.

q; Owning package

Add symbals

Remove symbol

Symbols

@ Symbols with names
Add to favorite symbaols
Figure 89: Pop-up menu in the Symbols bar

You can click the Add symbols % putton or the Add symbols item in the pop-up menu to open
the dialog for configuration of the Symbols bar.

I B
Customize "Symbals' bar w

Which symbols are to be available for direct access in the 'Symbols' bar?

Available symbols: Filter ~ HAvailable in 'Symbols' bar: Filter ~

Filter list ‘ | Filter list |

¥ — UML2 Profile diagram b — UMLZ Profile diagram

b o UML2 Activity diagram - UMLE Activity diagram

b 5 UML2 Class diagram = UMLZ Class diagram

b = UML2 Communication diagram 2 UMLZ Communication diagram

b = UML2 Component diagram 2 UMLZ Component diagram

b = UML2 Composite structure diagram — UMLZ Composite structure diagram

b o UML2 Deployment diagram = = UMLZ Deployment diagram 1.
b o UML2 Interaction overview diagram 7 UML2 Interaction overview diagram

b UML2 Object diagram - = UML2 Ohbject diagram ‘
b o UML2 Package diagram b o UML2 Package diagram

b o UML2 Protocol state machine diagram = UMLZ Protocel state machine diagram

b UML2 Sequence diagram = UMLZ Sequence diagram

b UML2 State machine diagram = UMLZ State machine diagram

b o UML2 Tirning diagram = UML2 Timing diagrarm

b o UML2 Use case diagram 7 UMLZ Use case diagram

b = OMF Extension Profile b = OMF Extension Profile

[« Sort alphabetically

b

Figure 90: Dialog for configuration of the Symbols bar

The dialog contains a list of the available symbols and a list of the symbols contained in the
Symbols bar, in each case grouped by diagram type. In the case of structure diagrams such as
the Class diagram, you can add any UML diagram types to the Symbols bar.

A text input box above the list enables the list to be filtered by the symbols whose name contains
the text entered. The corresponding diagram nodes are automatically expanded in the list,
allowing fast access to the symbol you are looking for (see Figure 92).

o

Customize 'Symbols' bar

HAvailable symbols:

Which symbols are to be available for direct access in the 'Symbols' bar?

Filter =

call

Available in 'Symbols' bar:

‘ | Filter list

¥ o UML2 Activity diagram
I Accept call action
Call behavior action
@3 Call operation action
¥ o UML2 Sequence diagram
—= Asynchronous call message
—* Synchronous call message
¥ = StandardProfile

“* Call (Usage junction point)

-y]
-
|
|
b~

UML2 Class diagram

UMLZ Activity diagram

UMLZ Communication diagram
UMLZ Component diagram

UMLZ Composite structure diagram
UML2 Deployment diagram

UML2 Interaction overview diagram
UML2 Object diagram

UML2 Package diagram

UML2 Profile diagram

UML2 Protocel state machine diagram
UML2 Sequence diagram

UML2 State machine diagram
UML2 Timing diagrarm

UML2 Use case diagram
StandardProfile

[« Sort alphabetically

Figure 91: All available symbols whose name contains the text Call

¥ Package diagram

? Owning package

Add symbols

Remove symbol

Symbols

Symbols with names

Add to favorite symbols

Figure 92: Add to favorite symbols pop-up menu item

Fl12

;b-:uls

In addition, the Symbols bar in ARIS UML Designer provides the option of grouping frequently
used symbols in the upper section of the Symbols bar for fast access, regardless of their diagram
type.

To do this, select the Add to favorite symbols pop-up menu item for the corresponding symbol

in the Symbols bar.

Symbols

"l = un

™ Favorite symbaols

g Class
[A] Model

P Package diagram

k-

P Diagram-specific symbols

Figure 93: Favorite symbols

The symbol is then also displayed in the top section of the Symbols bar under Favorite

symbols.

Clicking *** Create additional symbol presentation enables you to create an element in a
diagram whose symbol is not to be permanently contained in the Symbols bar for all diagrams of
the same type. The Create presentation dialog opens (see Figure 95).

F.

Create presentation

¥ oo UMLZ Activity diagram
I Accept call action
I Accept event action
Z Accept time event action
@ Action
B Action input pin
|:| Activity (class notation)
|:| Activity parameter node

EEl Activity partition (horizontal)
e .- - n - - n

For which of the following symbols do you want to create a presentation?

Cancel Help

Figure 94: Dialog for selecting the symbol

The dialog lists all available symbols, once again grouped by diagram type, and provides the same
filtering by text input as the dialog for configuration of the Symbols bar.

If a diagram includes presentations of symbols that are not contained in the Symbols bar for the
diagram type, they are displayed in the Symbols bar for the relevant diagram in the
Diagram-specific symbols section of the Symbols bar.

Symbols X
" = 2 || %

™ Package diagram
q; Owning package

""" ¥ Dependency
] Model

¥ Diagram-specific symbaols
D Package

Figure 95: Diagram-specific symbols

2.3.5 Implicit changes bar

Implicit changes X

Figure 96: Implicit changes bar

The Implicit changes bar logs changes to UML elements and diagrams that occur implicitly due
to changes elsewhere.

A typical example of this kind of implicit change is shown below.

Mavigation x

Explorertree | Diagram tree Diagram over. Visualized el..

DCIESSES[UMLE Package] | - n Worder 'rte;’riline |

» B Relationships Order 1 {ordered} 0
Class diagram example [UML 2 Class diagram)] Order number:Integer numk

™A key custorer order is discountable, [UML 2 Comment] "

b A_itern_order itern [UML 2 Aszociation]

p o A_itemline_order [UML 2 Association]

b 1 Hem [UML 2 Class] —

4 E Key customer order [UML 2 Class] g emerorder || ':éfgucrl&lzéﬁ

vg Order [UML 2 Class] Discountinteger

4 Relationships
[D itemnline:Order item[1..*Kordered} [UML 2 Property]
b [inveicelnvaice[0..1] [UML 2 Property]

4 4

— Implicit changes *
F i ! Order numberInteger [UML 2 Property]

Figure 97: Binary associations whose ends are attributes of the classes involved

Figure 98 shows a Class diagram with a binary association between the Order and Order item
classes. The two ends of the association are navigable as attributes of the classes involved. For
this reason, the itemline association end is a child of the Order class in the Explorer tree. It is
displayed as text itemline:order item[1..*]{ordered} with its type, the Order item class.

b I:' iternline:Order item[1..*{ordered} EMN
» " invoicelnvoice[0.1] [UML 2 Property]

Figure 98: Renaming the association end and deleting the type specification

If we now rename this association end and delete the type specification, this means that the
itemline association end is no longer linked to the Order item class. This also removes the
association edge from the diagram, which represents an implicit change that is not always directly
identifiable for the user.

This implicit change is logged in the Implicit changes bar.

Mawvigation X

Explorertree | Diagram tree Diagram over.. Visualized el..
"VD Classes [UML 2 Package]

k Relationships Order Q

Class diagram example [UML 2 Class diagram] Order number:integer nurmk:

b [™ A key customer order is discountable. [UML 2 Com
b A_item_order itern [UML 2 Aszociation]
b — A itemline_order [UML 2 Association]

b E em [UML 2 Class]
Hey customer order A key custc
b E Key customer order [UML 2 Class] — - _‘ il ~
w [Order [UML 2 Class] 1 3
b Relationships Implicit changes x
2 I:‘ iternline[1..*l{ordered} [UML 2 Property] Presentation deleted 14:01:13

- Class di le [UML 2 Class di
» 7 invoicelnvoice[0..1] [UML 2 Property] ass diagram eample | ass diagram]

4 r_] Order numberInteger [UML 2 Property]

-

1 3
Figure 99: Logged implicit change

Logging of implicit changes can be enabled and disabled on the global options page Modeling.

2.3.6 Modeling

Essentially, graphic modeling in ARIS UML Designer is based on the same principles as in ARIS
Architect/ARIS Designer. For this reason, this section focuses on the modeling-specific special
features of ARIS UML Designer, with only a brief discussion of the principles of graphic modeling
in ARIS.

2.3.6.1 Creating new node presentations

New node presentation elements can be created in the diagram by first selecting the
corresponding symbol in the Symbols bar by clicking it.

Symbaols x
i = a2 [%
™ Class diagram

=¥ Abstraction
Annctated element

€ Association

1 Aszociation class

g Class

D Comment

Figure 100: Selecting the Class node symbol

If you then move the mouse pointer to the modeling area, a preview of the new presentation to
be created is displayed at the mouse pointer.

Figure 101: Mouse pointer with preview of a class presentation

Clicking in the modeling area creates the presentation at that point and displays a text input box
for entering the name.

| Class (EM) m

Figure 102: New class placed with text input box for the name

This text input box initially contains the corresponding symbol names, possibly supplemented by
an underscore and a number (_1,_2, etc.) if elements of the same type with this name already
exist.

The content of the text input box is applied when you complete your entry by pressing the Enter
key or by clicking at any point in ARIS UML Designer outside the text input box. Depending on
your setting in the global options, text entry can also be completed by simultaneously pressing
Ctrl and Enter?*. If, on the other hand, you exit the entry by pressing Esc, the original name is
retained.

If you have entered the name of an existing element of the same type in the text input box, the
Select element dialog opens and asks whether you want to create a new presentation for the

existing element in the diagram, or whether you want to create a new element with this name

(see Figure 104).

** See ARIS > Options > UML > Designer - General > Use Enter for line break

An chject with the same name and type already exists in the database,

Elements found (marked with "™ if unsaved):

Element name & Type Path

Order UMLZ Class Main group/Example diagram...
Order UMLZ Class Main group/Example diagram...
Order UMLZ Class Main group/Example diagram...

Properties...
Use existing object ‘ Rename object ‘ ‘ Cancel ‘ ‘ Help ‘

Figure 103: Create dialog after entering the name of existing elements

You can also create a new presentation for an existing element by dragging the element from the
Explorer tree to the modeling area or by copying it from the Explorer tree to the clipboard and
pasting it in the diagram. If several possible symbols exist that can represent the element in the
diagram, you are asked which of these symbols you want to use (see Figure 105). By contrast, if
you copy a presentation of the element from a diagram to the clipboard and then paste it into a
diagram, there is no prompt as in this case all the presentation properties of the original, such as
symbol, color, and size are also copied.

e |
Select symbol &J

There are multiple symbols available for the presentations. Which symbel do you
want to use?

Symbol Assigned stereotype

Use case

Uze case (class notation)

b

Figure 104: Dialog asking which symbol is to be used

2.3.6.2 Creating a new edge presentation

To create a new edge presentation, first select the corresponding edge symbol in the Symbols
bar.

Symbols X
A = 2 | v
¥ (Class diagram

""" ¥ Abstraction
£ Association
1 Assaciation class

g Class

Figure 105: Selecting the Association edge symbol

Moving the mouse pointer to the relevant source element in the diagram graphically displays the
anchor point closest to the mouse pointer.

temline
arder d pit
Order 1 {ordered} Order item
o
Crder number: Integer number:integer

A b

Figure 106: Displaying the edge anchor point on the source element

Clicking at this point specifies the starting point of the edge. Starting from this point, a preview of
the edge up to the current mouse pointer position is then displayed. If you move the mouse
pointer to the relevant target element, the nearest possible anchor point is once again displayed
graphically.

temline
order 1.*
Order 1 {ordered} Order item
ool q
Crder number: Integer number:integer
|

il | Tore

Figure 107: Displaying the edge anchor point on the target element and edge preview

Clicking the target element creates the edge.

If a relationship of the same type already exists between the source and target element and more
than one relationship of this type is allowed between the two elements, a dialog appears to ask
whether you want to create a new edge presentation for the existing relationship or to create a
new relationship (see Figure 109).

o =

Select Abstraction

At least one ‘Abstraction’ edge already exists between the two objects. Please select
an edge, or select '(Mew)' to create a new edge.

Abstraction
Abstraction
(Mew)

ﬁ Cancel Help

Figure 108: Dialog for creating an association between two classes between which an association already exists

As an alternative to selecting a particular edge symbol, you can also use the general edge symbol
from the Symbols bar to create an edge in the diagram.

Symbols x
al = an e

Y

ol %Iass diagram

----- ? Abstraction

Figure 109: General edge symbol

In this case, when creating the edge after clicking the target element a selection list is displayed,
in which you are prompted to select the specific edge type.

temline
arder 1.* arder item item
Order 1 {ordered} Order item " 1.
|
Qrder number: Integer numkber:integer :i':;nepg{:l
| J ; T
B Order 5 Order item
@) Abstraction
Association
Key customer order A key customer order is O Association class
: iop ey discountable.
Discountinteger Binary constraint

Dependency

Element import

Generalization

Information flow

Cwning class

Realization

Substitution

Template binding

Usage
Figure 110: Selection list with edge types
Clicking lu Connectionmade | ;i1 Start tab bar enables and disables edge mode. If edge mode
is enabled, possible edge anchor points are automatically displayed in the diagram as soon as the

mouse pointer is close to them. It is not then necessary to select the general or a specific edge
symbol in the Symbols bar first.

2.3.6.3 Deleting presentations and elements

In ARIS UML Designer, the pop-up menu for a presentation contains two different items for
deleting:

| | |]
tem

® item nt Mew model element b

Label:s
—

&= Print... Strg+P
= Cut
B Copy Strg-C
B Delete Entf

= Delete element

Figure 111: Delete functionalities in the pop-up menu

Delete only deletes the presentation in the diagram. The element or relationship it represents
remain in the model, i.e., available in the database.

¥: Delete element deletes not only the presentation but also the element itself or the
relationship represented in the model.

2.3.6.4 Mini toolbar

Clicking a node presentation displays a small toolbar next to it. This toolbar can contain node and

edge symbols and you can adapt it individually for each symbol.

Key customer order A key customer order is
T T Tl di rtakle.
Discount:Integer I
L] | ||
|
= >
..... } H
te | O
— EP Interface
Interfaces declare coherent
-+ services that are implermnented by

BehavioredClassifiers that
implement the Interfaces via
InterfaceRealizations.

Figure 112: Mini toolbar

If you select a node symbol from the mini toolbar, you can create a corresponding element in the
diagram, which is automatically linked to the selected node presentation by an edge. If several
edge types are allowed between the two elements, a selection list is shown. In this case, first

select the edge type and then click in the modeling are at the position where you want to create

the node presentation.

temline
orcer 1.*
Order {ordered} Order tem '
Order number:integer number:integer
.'.“I'
| ||
Key customer order A key customer order is
- T discourtable.

Discount: Integer

A key custom... nn B Key customer...

@ Annotated element

Binary constraint

order tem

Figure 113: Node and edge preview with edge type selection after clicking the Comment symbol in the mini toolbar

When you select an edge symbol from the mini toolbar, the node presentation for which the mini
toolbar is displayed is used as the source element for the edge and then you only need to click the
target element in the diagram to create the edge.

You can remove a symbol from the mini toolbar by selecting Remove symbol in the pop-up
menu. Selecting Add symbol or clicking * Add symbols opens the dialog for adding a symbol.

.

Key customer order

Discount:Integer

'Iﬁ

Add symbaols

Remove symbol

Figure 114: Pop-up menu in the mini toolbar

2.3.6.5 Modeling and hierarchy in Explorer

A series of edge types in ARIS UML Designer graphically represent the fact that an element is
contained in another element.

Mavigation X
[E] []

Explorer tree | Diagram tree Diagram over.. Visualized el..
Classes Use Cases

4 E Key customer erder [UML 2 Class]
v [5 Order [UML 2 Class] - My
[Order item [UML 2 Class]

» BB Relationships

b] itemiltern [UML 2 Property]

2 r_] numberInteger [UML 2 Property]

2 :__] orderItern_1 [UML 2 Property]

‘VD Use Cases [UML 2 Package]

b B0 Relationships =
ML ’

Crder

Crder number:String

4 3
Figure 115: Owning package relationship between a class and the package in which it is contained

The diagram in Figure 116 shows this kind of relationship of the Owning package type between
the Order class and the Classes package. This shows that the class is contained in the package,
which you can also see from the hierarchy in the Explorer tree?>.

> see also Figure 28 in the Namespaces section.

What happens if you create an additional edge of this type from the Order class to the Use cases
package is shown in Figure 117:

e The original relationship between the Order class and the Classes package is deleted.
e The Order class is moved to the Use cases package in the Explorer tree.

Mavigation X

1 /1

Explorer tree | Diagram tree Diagram ov.. Visualized e..

- Classes Use Cases

k E Key customer order [UML 2 Class]
w [Order item [UML 2 Class] & 7 &

b [Relationships

b 1 item:ltem [UML 2 Property]
Crder

b :__j numberinteger [UML 2 Property]

Cirder number: String

b :__j orderItern_1 [UML 2 Property] u
TD Use Cases™ [UML 2 Package]

b [Relationships

Use cases [UML 2 Use case diagram]
b T Sales representative [UML 2 Actor]
ke A_customerdataCheck_salesrepresentative [
b+ A_keycustomerorderCreate_salesrepresenta
ke A_orderCreate_salesrepresentative [UML 2 A
»] Order* [UML 2 Class]
b @ Check customer data [UML 2 UseCase]

4 3 4 3

Figure 116: After creating a second owning package relationship

2.3.6.6 Graphic nestings

In many cases, in ARIS UML Designer diagrams the ownership of one element by another can also
be indicated by a presentation of the element being graphically nested in the presentation of the
owning element. In some cases, graphic nesting can also represent a relationship that is not
ownership. However, a common feature of all graphic nestings in ARIS UML Designer is that they
always represent a relationship between the elements at definition level.

When creating or moving an element in the diagram, presentations in which the element can be
nested are indicated by a border when the mouse pointer is located within the potential nesting
container.

=3 Azfodialsan

Associaton class
| Class

Commient

Constrained elernent

Figure 117: Graphic indication of a package as a potential nesting container when creating a new class

Once the class has been created as a nested presentation in the package, it is also contained in
the package in the Explorer tree.

Classes™ [UML 2 Class diagrarmn] Classes

b A itern line_order line [UML 2 Association]

b A itern_itern line_1 [UML 2 Association]
¥ 5 Classes® [UML 2 Class]

F 8 Relationships
¥ o Invoice® [UML 2 Class]

Figure 118: Class nested in a package

The appearance of a class in a diagram as an element nested in a package represents an
alternative notation to the link using an Owning package edge shown in Figure 116.

A series of options exist that influence the behavior of ARIS UML Designer when modeling with

nestings.

The first options?® relate to how the relationships underlying the graphic nesting are handled.
Mestings
Remove node presentations from container: | Show nesting relationship -
%" Show dialog when node presentations are reroved from the container

w| Remowve nesting edges when node presentations are added to the container

w Show dialeg when node presentations are added to the container

Figure 119: Options for nestings

If the two Show dialog when... options are enabled, a corresponding query is displayed when
modeling. In this case, if you move the class in Figure 119 out of the package to the diagram
background, the Unnest node dialog opens:

-,

Unnest node @

How do you want to handle the relationships between
the unnested nodes and their former containers?

Keep but do not show nesting relationship -

Delete nesting relationship

Show nesting relaticnship

Keep but do not show nesting relationship

0K Cancel Help

Figure 120: Unnest node dialog

Selecting Delete nesting relationship moves the class into the package in which the diagram
is located. Selecting Show nesting relationship displays an Owning package relationship
between the class and the package. The Keep but do not show nesting relationship option
means that no relationship is displayed in the diagram; the class remains contained in the
package at definition level.

A further option?’ relates to the situation where one element can be nested in another in different
ways.

General

w!| | Automatically specify owner property when creating owned elements

Figure 121: Option for creating a nested element

?® See ARIS > Options > Designer > General, Nestings area
7 See ARIS > Options > Modeling, General area

In rare cases, a UML element can own another element of a particular type in more than one way
without the semantic difference between the different types of ownership being obvious and
really relevant to the user. One example of this is the UML type Constraint.

context ownedRule
0.1 *
cMetaclasss {subsets namespace} {subsets ownedMember} =M etaclass s
Namespace Constraint
awningPackage packagedElement .
0.1 * Y
zMetaclasss {subsets namespace} {subsets ownedMember} zMetaclasss
Package - | PackageableElement

Figure 122: Extract from the UML metamodel with the Package and Constraint metaclasses

Every UML element whose type inherits from the Namespace metaclass can own constraints
through its ownedRule property. Every UML package can own elements whose type inherits
from the PackagedElement metaclass through its packedElement property. As the
Constraint metaclass inherits from PackagedElement, you can either insert a constraint in a
package as an ownedRule or as a packagedElement.

If the Automatically specify owner property when creating owned elements option is
enabled, when creating a constraint in a package there is no query as to whether the constraint
is to be contained in the package as an ownedRule or a packagedElement. In this case, it is
automatically created as an ownedRule in the package.

You can also change the nesting type later by calling up the Change nesting kind item in the
pop-up menu for the nested element. The Select nesting type dialog opens to select the
corresponding nesting type.

T ——

There are multiple nesting types available to nest the selected presentation in the
selected container of type 'Package’. Which type do you want to use for nesting the
presentation?

MNesting type Description
ownedRule Specifies a set of Constraints owned by t...
packagedElement Specifies the packageable elements that ...

m ‘Carmel‘ ‘ﬂelp‘

Figure 123: Dialog for changing the nesting type for a constraint contained in a package

2.3.6.7 Text nestings

Item

Iltem number:Integer
Label:String

Figure 124: Class with two attributes

Figure 125 shows the UML notation for a class with two attributes. The special feature of UML
compared to the ARIS standard is that here a single presentation represents several elements
and their relationships - a class (Item), two attributes (Item number and Description), a data
type (String), two relationships of the Class::ownedAttribute type, and two relationships of the
TypedElement::type type.

The two attributes are nested in the class presentation using text and, as such, can also be
selected individually. The first click on the class selects the class itself (as shown in Figure 125).
Clicking again on an attribute within the class selects the attribute. In this case the Properties
area no longer shows the properties of the class but those of the attribute.

Properties x
General Relationships Presentations in diagrams [
: ; tem number:integer]
= 4 s B I - |
s | 24 v Bl Lahel:String
Iower T e
Item
lowerValue @1 Type: UML 2 Class
upper 1 Symbol: Class
upperValue 1 Owned as: packagedElement

Namespace: Main group/Example diagrams/2 UML basics/2.2

& 4
Hameih oo Diagram types/01 Class diagram

b clientDependency
name (*) Item number -

name (* is required)
The name of the NamedElement.

Figure 125: Class with selected attribute

Many of the functionalities that ARIS UML Designer provides for presentations are also available
for textually nested elements. For example, you can move or copy them to another element, call
up the Properties dialog and, last but not least, edit the text by clicking it a third time or pressing
the F2 key.

visibility / attribute-name type [multiplicity] = initial-value {property-string}

ltem number-Integer (EN)

ETSTTITY

—

Figure 126: Text editing for an attribute in Designer

In Designer, you can also create new textually nested elements for an element using the pop-up
menu:

n n]
ftem
Mew model element ¥ | -0 ownedAttribute [ExtensionEnd] Strg=Alt=E
& Print. Strg+P D ownedAttribute [Port] Strg+Alt+F
17 ownedattribute [Property Strg=Alt=R
= om :__ ribute [Property] .
2 pwnedOperation [Operation Strg=Alt=0
Em Copy Strg=C = £ tap . :
o ownedReception [Reception] Strg+Alt=0C
B Delete Entf

[ownedTemplateSignature [RedefinableTemplateSignature] Strg- k=L
= niclate slamant -

Figure 127: Creating a new operation using the pop-up menu

2.3.6.8 Modeling in groupings

ARIS UML Designer enables you to edit elements within groupings without having to cancel the
grouping to do so.

Key customer order A key customer order is
- discountable.
Discount:Integer
= u Print... Ttrl+P
< Cut Ttrl=
Emy Copy Ctrl+C

W Delete Delete
T Delete element
Show relationships »

Select 3

++ Horizontal space
=]z vertical space

"7 4lign connection

IEI Group
Arrange 3
Align 3
Format b
Export »
Evaluate 3
B rroperties... Alt=Ente

Figure 128: Creating a grouping

Groupings are created by selecting Group in the pop-up menu.

Key customer order Aley customer order is Il\}

_____ diseeuntable.
Discount :Integer iscountable

Figure 129: Grouped elements

You can move this kind of grouping in the diagram in its entirety without first having to select
each element it contains.

However, you can still select individual elements within the grouping to edit their properties. If an
element is in a grouping and the grouping is not yet selected, the grouping is selected the first
time you click the element. Clicking the element again then selects the element itself, as shown

in Figure 131.
Properties X
General Farmat Relationships Presentations in dia.,
4 = = el
¥ General
T}pr Comment Keycustomer arder A key customer order is
o it - T discountable.
Default symbol = Comment B B -
¥ Comment
¥ annotatedElement
E Key custorner order
body A key customer order is discoun...

owningElerment 701 Class diagram
Figure 130: Selecting an element within a grouping

It is also possible to move elements within a grouping.

l

Grofkound enauflsag Ein Groflkundanaudirag GroRkund enacinag
Rabal Wiegar g i Ist rabattahig g
. ™ 1 [
e +EII1 Grodundanaufirag D}
st raba fahg
L] | |

Figure 131: Moving an element within a grouping

2.3.6.9 UML-specific modeling support

A range of ARIS UML Designer functionalities are used to perform typical use cases in UML
modeling, which normally require several manual editing steps, with just a few clicks. They
include everything from simple use cases such as setting the multiplicity of association ends to
default values using the pop-up menu through to more complex use cases such as creating port
interfaces for components. A common feature of all functionalities is that they are available in the
element's pop-up menu and under # Edit element in the Contents tab bar.

Two of these functionalities are introduced below by way of example.

2.3.6.9.1 Specifying the navigability of an association end

As described in section 1.5.4.2 Associations, the navigability of an association end is not a simple
Boolean property, but depends on what the association end belongs to and, in some cases, the
way in which the association end is assigned to its owner.

order tem ftem
Order item . 1 i

number:|integer -
order.Oreler
tem:ltem

tem number:integer
Label: String

Figure 132: Unidirectional navigable association

Figure 133 shows two classes and an association. The item association end is navigable
(indicated by the arrow head), as it is an attribute of the opposite class Order item. You can
recognize this by the graphic representation with the dot at the arrow head, and also by the fact
that it is listed in the class as an attribute?®.
¥ Association
isDerrved (*) Falze
* memberEnd (*)
U7 order itern: Order itern[*]
07 item:tem
F navigableCwnedEnd
* ownedEnd

U7 order itern: Order itern[*]

Figure 133: Association ends for the association

In the properties of the association, you can see that only one of the two association ends belongs
to the association - the order item association end. As it is only listed for the ownedEnd
property but not for the navigableOwnedEnd property, it is not navigable.

You can use the pop-up menu for the association end or the tab bar to easily change its
navigability without having to manually make changes to the ownership relationships.

% Attributes that are simultaneously association ends are not normally also displayed in the attributes area of the
class in the diagram. However, you can change this for the class by disabling the Classifier > Hide association member
ends display option, which has been done here to illustrate the situation.

Contents View Insert Format Evaluate

’ E# Inline edit

Edit
elements

Set 'Mavigable as Owned Association End'
Set to 'not navigable'
Set multiplicity [0.1]
Set multiplicity [0..%]
Set multiplicity [1..%]

| O
; jtel
arder item w ol
i 1
Order item i oy o
number:nteger i .
order;:Qrder ltem r?urr?her.lnteger
item:item Lahel:String

Figure 134: Functions for changing the navigability and the multiplicity

Figure 135 shows the UML-specific functionalities for an association end. The current status of the
element is hidden in the list (Set "Navigable as Owned Association End' and Set multiplicity

[1..1]).

Selecting Set 'Navigable as Owned Association End' in the list displays the following screen:

; order item 'tim
Order item * kem
number:integer Itern number:Iinteger
arder:QOrder Lakel:String

Figure 135: Association end navigable but not an attribute of the opposite class

The item association end is still navigable, but is no longer an attribute of the Order item class.
This can also be seen from the changed properties of the association. The item association end
is now listed for both the ownedEnd property and the navigableOwnedEnd property.

¥ Association

isDerived (*) Falze

* memberknd ()
7 order item: Order item[*]
L0 itern:dtem

* navigableOwne...
L0 itern:dtem

* ownedEnd
7 order item: Order item[*]

07 itern:Item
Figure 136: Association ends after changing the navigability

The functionalities for changing the navigability thus save the user having to manually edit the
ownedAttribute property for the class at the opposite association end and the ownedEnd and
navigableOwnedEnd properties for the association.

2.3.6.9.2 Creating getter and setter operations

The Generate getter and setter functionality provides an easy way to create corresponding
access methods for the attributes of a class.

B | g Start Contents View Insert Format Evaluate
I:_’ ’ E# Inline edit
Export Erd Edit
hd elements
Generate constructor...
Generate getter and setter...
Overnde operations...
Implement interface...
temline
order Tic* u order iterm item
ol 2 - ftem
Order 1 {ordered} Order item 1.
Qrder number: Integer number:integer ~ number:lnteger
- Label:String

Figure 137: Functionalities for creating operations for a class

The functionality opens the Generate getter and setter dialog for selecting the attributes and
setting some additional parameters for generating the access methods.

F

Generate getter and setter

(]

Getter Setter

w| Generate getter % Generate setter

Prefio get Prefio set

Visibility: | PUBLIC - Visibility: | PROTECTED -

Which attributes do you want to use for generating the getter/setter?

itern:Itermn

numberInteger

order: Grder

ﬁ Cancel Help

Figure 138: Generate getter and setter dialog

Figure 139 shows the Generate getter and setter dialog for the Order item class. The prefix
get has been entered for the getters and set for the setters®’. The two attributes item and
number have been selected for generation. Clicking OK starts the generation process.

Figure 140 shows the class with the generated access methods.

n || ||
itemline Order item
order 1..* order itdam
- 9 {orderzc} | UM her:Integer v Item
; +getitem(): tem B Iltem number: Integer
Order numb er:integer #zethemiin tem:(tem) L abel:String

+getNumber(): Integer

#sethumber(in number :Integer)

Figure 139: Generated getters and setters

* The two prefixes get and set appear by default when the dialog is opened.

2.4 Options

Selecting the Options menu item in the ARIS menu, you can open the dialog for editing the
general settings for ARIS UML Designer.

[=1]
Mew 4

Save Cirl+5

Save all Ctrl=Shift+5

*» o’ [0

Add to favorites...
Print... b

Search

Explorer

“ m P

Administration

Select perspective...
Options...

Help
About...

Exit
Figure 140: Menu item for editing the options

The dialog contains a series of options, the most important of which are outlined below. The
options for the Perspective, Print, and Versioning topics are not discussed here, as they are
ARIS standard options.

Changing some options, e.g., language options or working environment, require you to restart
ARIS UML Designer.

2.4.1 General

b

r =
Options ﬁ
Selection Help General
b Designer Languages
e Method language: | English (United States) | - |
General
Header and footer Interface language: ‘ English (United States) | - |
Modeling Changes will take effect only when the program is restarted.
Page layout
P Perspective
Attribute editing
Spell check
Always show attributes in the following languages:
Versioning
[€ Afrikaans (South Africa) -
] @ Albanian (Albania) e
Configuration palette
Palette: |AR15 default palette |v|

Restore installation state

All settings you made after installation will be deleted.

Restore

m Cancel Help

Figure 141: General options page

The Method language specifies the language in which the names of diagram types, element types,
and properties that do not relate to UML are displayed. There is a separate language setting for
UML type names in the UML-specific options.

The Interface language specifies the language in which texts in the user interface are displayed.

In ARIS UML Designer, the palette only affects the display of the symbols for non-UML elements
in the Explorer tree.

2.4.2 Modeling

Options w
Selection Help Modeling
b Designer Languages
Explorer Metamodel language: | English (United States) | - |
General

Changes will take effect only when the program is restarted.

Header and footer

General

Modeling

Page layout Automatically specify owner property when creating owned elements

b Perspective [« Show pop-up when data is implicitly changed
Spell check
o Inline edit

Versioning
Maximum number of elements provided for auto completion: E
Save changed objects

[[] Save automatically before processing
[] Automatically remove cycle from namespace hierarchy when saving changes
[] Refresh data after saving

[+ Enable secure storage

Save interval (seconds): |30 }%{

m Cancel Help

5

Figure 142: Modeling options page

The Metamodel language specifies the language in which the type names of UML elements, UML
properties, and UML diagrams are displayed. For example, this allows object types, diagram
types, and attribute names for non-UML content to be displayed in German, and UML types in
English.

The option for selecting the owner property has already been explained in section 2.3.6.6 Graphic
nestings.

The Show alert if data is implicitly changed option can be used to enable and disable the
logging of implicit changes described in section 2.3.5 Implicit changes bar.

Some changing functionalities of ARIS UML Designer are executed on the server as they
potentially involve large data volumes. They require all changes made in the client to be saved
first. If the Save automatically before processing check box is enabled, saving occurs with no
confirmation when the corresponding functionality is called. Otherwise, a dialog appears asking
whether you want to save or cancel the functionality.

When multiple users are working on the same structures in a database, it is theoretically possible
that two users could simultaneously change the structure in such a way that the two changes
would combine to cause a cycle in the element hierarchy. As soon as one user has saved his
changes, in this situation the second user's save will fail if the cycle is not fixed first. If the
Automatically remove cycle from namespace hierarchy when saving changes check box
is enabled, the fix is carried out when saving without confirmation. Otherwise a corresponding
dialog appears.

[T Hamespace hierachy cycle

‘/”) Unable io save data in dalabase UKL on serer Hosl’
L * Modified objects are creabing a cyela in the namespace higrarchy due to changes in the namespace hlerarchy made by anather usar.
Do you want hese cyelas b be automatically removed?

Always remove cycles aulomatically

Figure 143: Dialog when saving with a cycle in the namespace hierarchy

If the Refresh data after saving check box is enabled, all data is reloaded from the server after
saving, so that changes made by other users are included.

The Enable secure storage check box is used to set ARIS UML Designer to back up all changes
locally at regular intervals. You use the Save interval (seconds) setting to specify how often
this is to be performed. If the connection to the serveris lost due to network problems, at the next
login you will be asked whether you want to restore the changes that are not saved in the
database.

[T Restore changes ,

’M\ The last changes on server ‘Host in database 'ARIS UML Designer example’ were not saved,
Do you want fo restore your last changes?

Figure 144: Confirmation prompt for restoring unsaved changes

2.4.3 Designer > General
r Options Lﬂf

Selection Help General

¥ Designer Edges
General Color of selected edges: El
Print settings

[[] Offer relationships that already exist in the same diagram
b For new diagrams

For new diagram elements Direct editing

UML2 modeling [] Use Enterfor line break (press 'Ctrl + Enter' for changes to take effect)

Property tabs

i Nestings
Explorer
. | Remove node presentations from container: | Keep but do not show nesting relationship | - |
enera
Header and footer [+ Show dialog when node presentations are removed from the container
Modeling
[« Remove nesting edges when node presentations are added to the container
Page layout
¥ Perspective Show dialog when node presentations are added to the container

Spell check
pell chec Tooltips
Versioning

[+ Show tooltips for presentations

Metaproperties dialog

Show dialog for required metaproperties

m Cancel Help

5

Figure 145: Designer > General options page

The Selected edges - Color option specifies the color in which edges selected in diagrams are
displayed.

Changes in text input boxes are normally applied using the Enter key, and line breaks are entered
using Ctrl + Enter. You can reverse this by enabling the Use Enter for line break (press 'Ctrl
+ Enter’ for changes to take effect) check box.

The options for nestings have already been explained in section 2.3.6.6 Graphic nestings.

If the Show tooltips for presentations check box is enabled, a tooltip showing information
about UML elements in diagrams is displayed at the mouse position.

Create Order
Type: UML 2 UseCase

Symbol: Use case

Owned as: packagedElement

Mamespace: Main groups/5ales system/< Untitled > /< Untitled>

Figure 146: Tooltip for a UML element in a diagram

2.4.4 Explorer

-
Options

Selection

b Designer
General
Header and footer
Muodeling
Page layout

b Perspective
Spell check

Versioning

Help Explorer

Configure menu

Maxirnum number of items in pop-up menu:

[« Sort pop-up menu items alphabetically

35

m Cancel Help

b

Figure 147: Explorer options page

Here, you can set how many items the Explorer pop-up menu for creating new elements displays,
and whether the items are to be sorted alphabetically (see section 2.2.4 Creating new elements

in Explorer).

2.4.5 Designer > For new diagrams > Appearance

These option pages relate to general representation options for diagrams, which are also

supported in the ARIS standard. Only the following option here is specific to ARIS UML Designer:
Layout

[+ Resize objects to fit content when diagrams are opened

Figure 148: Layout option on the Designer > For new diagrams > Representation options page

Enabling the check box means that when a diagram is opened the size of the elements is adjusted
to their content.

The settings made on these options pages only affect new diagrams you create. Existing
diagrams are not changed.

2.4.6

Designer > For new diagram elements

-
Options

Selection Help

¥ Designer
General
Print settings
b For new diagrams
For new diagram elements
UMLZ modeling
Property tabs
Explorer
General
Header and footer
Maodeling
Page layout
b Perspective
Spell check

Versioning

For new diagram elements

Diagram/Elements:

¥ [] | symbols

. A A . . A A . . . A .

[] Bm Activity diagram

[7] 8\ Class diagram

[®® communication diagram

["] Bm Component diagram

["] Bm Composite structure diagrar
[] ®» Deployment diagram

[]1 @m Diagram

[B Interaction overview diagram
[Bm Object diagram

[] ®m Package diagram

[®® Profile diagram

[] @ Protocol state machine diagi
["] Bm Sequence diagram

["] ®m state machine diagram

[] 8w structure diagram

[= Timing diagram

["] Bm Use case diagram

b [] B® Graphic elements

Settings:

(Name)
{Description)

4 (=] = =l

Help

Figure 149: Designer > For new diagram elements options page

On this options page you can specify the default settings for all UML symbols and graphic
elements. The symbols are grouped by diagram types. The options can be individually specified

for specific symbols by selecting just one symbol and editing its representation options.

Diagrarn,/Elements: Settings:

w |E ®m Class diagram - | &} E mt
| [. .
I______J Assnc?at?nn class e
[] [] Association class class | — : _
| i Color Lriagonal gradient Trom To [eTT
[] — Association class connector : E =
[O Datatype Style Diagonal gradient from top left
[] - Element import Color B 0,152,152
[«#]] Enumeration Second color ([| 147, 251, 251
[] - Information flow Line color B Elack
[] " Information flow junction point Line weight 3
|::] IE‘ Information item Shaded |::]
[] - Information source o 0
l.'.'_'.l n} Information t_arg et Font <lse stylesheet=
[| # M-ary association class _
) Font size 0
[— Owned collaboration use
[]-= Owned comment Font color |:|
[:::-l o Gwn?d rule)) Fill color
|'.'.'.J ? Gwn?ng behaviored classifier Specifies the fill color and further opticns for the background
[:::! ¥ Owning class color of the object symbaol.
[] ¥ owning classifier =

Figure 150: Selecting the Enumeration symbol

You can also select multiple symbols or entire hierarchy levels. In the example below, the
Shaded and 3-D effect properties have been disabled for all UML symbols.

Diagram,/Elements: Settings:

» [Bm Symbols |40 [=] =3 =y
» [] #m Graphic elements SR -
* Fill color
Style
Colar e
Second color |:|
Line calor e

Line weight

Shaded [|
3-D effect]

Font = Use stylesheet=

Font size 0

Font color |:|

Shaded
Specifies whether the object symbal or edge
is displayed with a shadow.

Figure 151: Selecting all symbols by selecting the top level

The changes made on this options page only affect new presentation elements you create.
Existing elements are not changed.

2.4.7 Designer > Property tabs
r Options M1

Help Property tabs

Selection

Which tabs do you want to display in the properties area?

¥ Designer

General [applied profiles (element)

Print settings O Applied stereotypes (object, diagram)
» For new diagrams [# Connected objects (diagram)

For new diagram elements I Format (presentation)

UML2 modeling o] General(.element, diagram)

| Information

Property tabs [] Linked diagrams (element)
2 Presentations (diagram)
General [# Presentations in diagrams (object]
Header and footer [« Relationships (element)
Modeling [Reused objects (element)
Page layout O Tagged values (chject, diagram)

b Perspective
Spell check

Versioning

m Cancel Help

b

Figure 152: Designer > Property tabs options page
Here, you can select which property tabs are to be displayed in the Properties area of the Designer
component.

These options have no effects on the Explorer tab. It always shows all property tabs as
considerably more space is available there.

2.4.8

Designer > UML2 modeling

b

-
Options

Selection Help

¥ Designer
General
Print settings
b For new diagrams
For new diagram elements
UML2 modeling
Property tabs
Explorer
General
Header and footer
Modeling
Page layout
b Perspective
Spell check

Versioning

UMLZ modeling
Specify UMLZ modeling support to be used
Maodel UML2 Sequence diagram
[« Automatically add execution specification
[+ Set signature for new message edges

When wide execution specifications are created:

|Create new cpaque action or behavior | - |

[#] Show dialog for newly placed message edges and wide execution specifications

m Cancel Help

Figure 153: Designer > UML2 Modeling options page

Here, you can activate UML-specific modeling support functions. You can also quickly access
these options in the Contents tab bar in the open diagram during modeling.

2.5 Administration tab

The Administration tab provides various administrative functionalities. These include
configuration of the method filters, management of access privileges, and writing of reports.
There are also some functionalities specific to UML Designer, such as configuration of the link
between business process and UML modeling, and management of XMI resources.

The Administration tab is available only if you have selected the Configuration &
Administration working environment (see section 2.1 Specifying the working environment). It
is opened by selecting the Administration menu item in the ARIS menu.

[l save all

W Addto favorites...
Print... »

Search

Explorer

» m P

Administration I},

Select perspective...
Options...

Help
About...

Exit

Figure 154: Menu item for starting Administration

-
- UML - ARIS UML Designer
g

/4 Administration x

Start S
Cut Delete [i | Properties 'u' 1.
.
) Copy Renarne
MNew Open Edit Paste : Refresh | Start Restore
= Duplicate macro | database
E Mavigation X | T~ Filter list
i~ B um Name
b % Configuration % Configuration
g b B Link types B9 Link types
b B0 XM resources BB XM resources
3 iil Evaluations ﬁ Evaluations

3 I ARIS UML Designer Examg I ARIS UML Designer Examples

4 4

Working envireonment: Configuration & Adrinistration

—

Figure 155: Administration component

Only those aspects of the Administration tab that are specific to ARIS UML Designer are

discussed below.

2.5.1 Method filter

When you log into a database in ARIS UML Designer, only those method filters that include UML
2 are available for selection. Unlike in the ARIS standard, UML 2 can only be contained in the
method filter in its entirety. A user-defined extension of the UML method is not possible. This is
because of the high complexity of the UML metamodel and the fact that the UML specification for
user-defined extensions and restrictions includes the use of UML profiles. An introduction to the
topic of UML profiles can be found in section 5 UML profiles.

Below, the default filter is used to demonstrate how you can add UML to the method filter.

Select the Default filter in the filter list and select Edit from the pop-up menu or the tab bar.

Mavigation X

¥ o9 UML
v U Configuration
* § Conventions
& Filter
& Font format
§ Languages
§ Templates
b % Method
b 8 Link types
b B8 XM resources

Figure 156: Editing the filter

Mame Description

* ePMN 20 This method filter contains medeling const...
-' Default PARTRE " thod content requ...
- - & Edit.. !

. Entire method ilable.

¥ Process-Driven Nl Duplicate ent modeling for t...
W Simulation W Delete E del types, chject t...
® WM integratior Cp Rename = del, object, conne...

[= Export filter...

Evaluate b

Type

Method filter
Method filter
Method filter
Method filter
Method filter
Method filter

In the Filter Wizard, click the Next button to navigate to the third page Select metamodels and
enable the UML 2.5 option. Then click Finish to extend the filter with UML 2.

Filter Wizard

Steps Help 3. Select metamodels

Specify which metamodels are to be allowed by the filter.
[¥ umL25

1. Create filter

2, Select creation mode

3. Select metamodels

4. Select model types

5. Select object types

6. Select connection types

7. Select symbols

8. Assign connection types

9. Select object assignments
10. Select connection assignments
11. Select medel attributes

12, Select ohject attributes

13. Select connection attributes

14, Select attribute order

15. Select symbol order

Back m Finish Cancel Help

Figure 157: Selecting the UML 2.5 metamodel in the Filter Wizard

2.5.2 Link types

- ———— ™
UML - ARIS UML Designer E=NEER
m /~ Administration x NS ? =

Start o
n Cut Delete Properties c 'n' . E
) $* \
) Copy Rename
Mew Open Edit Paste Refresh | Start Generate from Imnport
& Duplicate macro | database contents object link
Navigation * | Y- Filterlist ‘ 3
i 5 UML Source o... | Source o... | Target o... | Target o... | Source d... | Target d... | Source r... |Target r...
b % Configuration B Func.. OT_FUNC @ UML.. OT_UML.. 3 x v X
w [l Link types B Tech.. OT_TEC.. EJumL. oT.UML. ¥ x v X
0 |Object links

b B XMI resources

b iil Evaluations

» B ARIS UML Designer Examg

1 r
Working environment: Configuration 8 Administration § software~

b

Figure 158: Managing the link types

Here, you can define which business process objects you want to map to UML and specify rules for
the mapping. This functionality is outlined in detail in section 4 Linking business process and UML
modeling.

2.5.3 XMI resources
[(@0 UML- ARIS UML Designer i E=REEETN

m /~ Administration x NS ? =

Start i
n Cut Delete Properties c 'n' E
i -
~) Copy Rename
Mew Open Edit Paste Refresh | Start Import
= Duplicate macro | stylesheet
|| Mavigation x | T~ Filter list ‘ *
- B umL Name
¥ % Configuration [] Import from UMLL4/XMIL1
b B0 Link types

- [l XM resources
¥ [Stylesheets

» B Export

> i fmpor

4 iil Evaluations

b =2 ARIS UML Designer Examg

1 r
Working environment: Configuration 8 Administration § software~

.

Figure 159: Managing XMI resources

XMI (XML Metadata Interchange) is a format for exchanging metamodel-based data between
different tools. Like UML, XMI is a standard defined by the OMG.

ARIS UML Designer exports and imports XMI files in UML 2.5 / XMI 2.1 format. You can use XSLT
files to make corresponding adjustments to XML formats from third-party manufacturers. These
XSLT files are managed in the XMI resources area and can be selected as options during the XMI
export and import.

2.5.4 Data transfer from ARIS UML Designer 7.x

If a database contains UML content from ARIS 7.x, which was created using ARIS UML Designer
7.x, it must first be converted to UML 2 before it can be displayed or edited with ARIS UML
Designer 9.

A detailed description of UML conversion can be found in the document UML Migration
Guidelines.

3 Mapping UML to the ARIS object model

UML is completely mapped to the ARIS object model. However, two crucial aspects of UML
required an extension of the ARIS object model compared to ARIS 7:

= UML elements can contain other UML elements and UML diagrams, they can occur in
diagrams, and they can be linked to one another by relationships.

= A graphic edge in a UML diagram can represent an entire series of UML elements and
relationships.

These aspects are discussed in more detail below.

3.1 Group and object properties of UML elements

MNavigation x

Explorer tree Diagram tree Diagram overview Visualized elements

“ N aRefines) £

VD 05 Package diagram [UML2 Package] = N A=l Design model

3 Relationships EF
—+ Package diagram example [UMLZ2 Package diagram
~-? Abstraction [Refine]

adependencys
» 7 Dependency [UML2 Dependency] Production Sales Framework [~ — — — —| Modules
4 El Analysis model [UML2 Model]

3 E Design model [UML2 Madel]
3 D 06 Profile diagram [UML2 Package]
3 D 07 Deployment diagram [UML2 Package]

3 D 08 Activity diagram [UML2 Package]

Use cases Technical class Sales module Production module

4 D 08 Use case diagram [UML2 Package]
4 D 10 Communication diagram [UML2 Package]

- -

4 r 4

Figure 160: Package hierarchy and Package diagram

Figure 161 shows a hierarchy of packages with a diagram in the Explorer tree on the left, and a

package diagram with packages and their relationships with one another on the right.

Both sides show aspects typical of various ARIS types for packages.

The package hierarchy shows typical features of an ARIS group hierarchy. Just as ARIS groups
can contain other ARIS groups, ARIS objects, and ARIS models, UML packages can also contain
other UML packages and UML diagrams. Therefore, it would be obvious to map UML packages to

ARIS groups.

By contrast, the diagram shows typical features of ARIS objects. Just as ARIS objects can be
contained in ARIS models as object occurrences and can be linked to one another by connections,
UML packages are contained in the diagram as element presentations and are linked to one
another by edges. Looking at this aspect alone, it would be obvious to map UML packages to ARIS
objects.

This contradiction in the mapping of UML to ARIS has been resolved by assigning the ARIS type
Group all properties of the ARIS type Object. This means that groups have an object type, they
can have occurrences in diagrams, and they can be linked to one another by connections.

As every UML element can ultimately contain other UML elements (every UML element can own
elements of the UML type Comment) and many elements can also own diagrams, UML elements
are mapped to groups of the relevant UML type in ARIS.

For example, this means that a use case is saved in ARIS as a group with the object type
OT_UML2_USE_CASE. This mapping applies to all UML elements, regardless of their
appearance in diagrams. A generalization, shown graphically as an edge in diagrams, is also
saved in ARIS as a group with the object type OT_UML2_GENERALIZATION.

The exceptions are certain elements that normally appear right at the bottom of the element
hierarchy and, at the same time, occur frequently. Examples of these elements are Literallnteger
and LiteralUnlimitedNatural. They are normally used as the lower or upper limit for multiplicities
on association ends and attributes.

To ensure that management of user privileges does not become too fine granular, the possibility
of defining user privileges has been restricted to UML elements of the Package, Model, and
Profile types.

The behavior of conventional groups has not changed in ARIS. They have the object type Group
(OT_GROUP). For groups of this type, there is still no facility for them to occur in diagrams or to
be linked by connections.

3.2 Complexity of edge presentations

Figure 161 also shows the second aspect mentioned, namely the fact that graphic edges in
diagrams represent both direct relationships between the packages - the edges between
packages and their contained packages - and also other UML elements that are used to link the
packages to one another, e.g., the Dependency relationship.

temline
order 1 arder item item

Order 1 {Drdered}.) Order item % 1

nurmber:inteaer
A _itemline_order
Type: UML 2 Association
Symbaol: Asscciation
Owned as packagedElement
Mamespace: Main group/Example diagrars/2 UML basics/2.2
Diagram types/01 Class diagrarm
Key customer order ﬂ‘ A key customer orderis =

Crder number:Integer

_____ discountable.
DiscountInteger

Figure 161: Association as graphic edge in diagram

Figure 162 shows an association as a graphic edge in a Class diagram. It represents three UML
elements and their relationships with one another and with the two classes: the association
A_item_order item, the two association ends (UML type Property) order and itemline, the
relationships between the associations and their two association ends (UML property
Association::memberEnd), and the relationships between the association ends and the two
classes (UML property TypedElement::type).

The UML edges outlined thus represent totally different content.

The edges representing the package hierarchy in Figure 161 represent a hierarchy relationship
between two groups. This relationship is not mapped using connection definitions in ARIS, but
represents a direct reference from the subordinate group to the superior group.

The relationship between the comment and the class in Figure 162 represents the UML property
Comment::annotatedElement and is thus a single connection definition.

The generalization in Figure 162 is mapped to a group that is subordinate to the derived class. The
link to the base class is created using a connection definition. Thus the generalization edge
represents a hierarchy relationship, a group, and a connection definition.

The association in Figure 162 represents a total of three groups and five connection definitions.

Classic connection occurrences in ARIS always represent a single connection definition.
Therefore, they are not suitable for representing all edge types in UML diagrams. To cope with
this, the ARIS object model has been extended with a new type of connection occurrence, which
is only used by ARIS UML Designer and is capable of representing any content. The new type of
edge presentations is also used in UML diagrams for edge presentations that actually represent a
single connection definition.

3.3 The most important mappings from UML to ARIS

The table below shows the most important mappings from UML to ARIS.

UML

Represented
in
metamodel
by meta
element of

type

Mapped to ARIS type

Condition

UML elements

Class

Group

The element's metaclass is
not OpaqueExpression and is
not a specialization of
LiteralSpecification.

Attribute

The element's metaclass is
OpaqueExpression or a
specialization of
LiteralSpecification.

UML properties

Property

(Group hierarchy
relationship)

For the meta property:
isDerived=false
isComposite=true

type is a metaclass

Connection definition

For the meta property:
isDerived=false
isComposite=false

type is a metaclass

Attribute

For the meta property:
isDerived=false

type is a data type

(calculated at runtime)

For the meta property:

isDerived=true

UML diagrams

Diagram*

Model

Node presentations

NodeSymbol*

Object occurrence

Edge presentations

EdgeSymbol*

New type of connection
occurrence

Lane presentations

LaneSymbol*

Object occurrence

* In the official UML metamodel, no constructs exist for formal description of the graphical
representation. These meta elements represent an ARIS-specific extension.

4 Linking business process and UML modeling

If you want to develop an IT system that provides optimum support for your company's business
processes, it is useful to start with an analysis of the business processes, in order to derive the
corresponding requirements for the IT system. ARIS provides optimum tools for doing this, as it
provides integrated business process and UML modeling in a single repository and enables you to
link business process and UML content with each other.

You have two fundamental ways of linking business processes and UML:

1. Assignment of UML diagrams to business process objects
2. Reusing business process objects in UML as UML elements

For both linking methods, as the user you have a free choice of which specific business process
and UML types you want to link to one another. There are no rigid specifications for this in ARIS
Method.

You can navigate between the ARIS UML Designer and ARIS Architect/ Designer applications with
no problems. Double-clicking an ARIS model in the Explorer tree in ARIS UML Designher
automatically launches ARIS Architect or ARIS Designer (if not already running) and opens the
ARIS model. Conversely, an assigned UML diagram can be opened in ARIS UML Designer by
double-clicking the corresponding assignment symbol in an ARIS model in ARIS
Architect/Designer.

The two types of link and the various navigation options are described in more detail below.

4.1 Assignment of UML diagrams to business process
objects

Business process objects are linked to UML diagrams using assignments of the Navigation type,
as outlined in section 2.2.2.4 Linked diagrams (elements).

You can create this assignment either in ARIS UML Designer or in ARIS Architect/ARIS Designer.

4.1.1 Creating an assignment in ARIS UML Designer

A diagram is assigned to an ARIS object in ARIS UML Designer in the same way as assigning a
diagram to a UML element.

First select the ARIS object in Explorer and then go to the Linked diagrams properties page. If
you have not opened the Explorer tab, which displays the property pages on the right-hand side,
but you are in the Designer component, first open the Properties dialog for the ARIS object. On
=,

+

the Linked diagrams properties page, click Assign diagram.

IV N = Explorer x [SE

Start Contents Evaluate
Delete Go to c Refresh
i o he ne [l Databa
el en | Paste
Mavigation x Infarmation General Relationships Reused objects Linked diagrams
Explorer tree Diagram tree = &
58
w 55 ARIS UML Designer &
¥ I Main group Diagrz Acsign diagram Kind
b B8 Exarnple diagrams = Create order UML 2 Activity diagram Mavigation

b B8 Meta model
» [0 Organization
» [l Processes
=7 Sales process [ARIS EPC]
[4 QOrder can be created [ARIS Event]
b Order cannot be created [ARIS Event
4 Crder data recerved [ARIS Event]
[4 COrder is created [ARIS Event]
b [Orderis rejected [ARIS Event]
[4 QOrder is released [ARIS Event]
14 m Check customer data [ARIS Functior
4 m Create order [ARIS Function]

Figure 162: Assign diagram button

A dialog for selecting the diagram opens. You can assign the diagram either by searching the
database, or by selecting it directly in the Explorer tree (see Figure 164 and Figure 165).

Select diagram
Search database Browse Explore
Enter the sequence of characters the name of Diagrams found (marked with ' if unsaved):

the diagrams you are searching for is to begin
with. Without input, the search may take a leng Element ... = |Type Path
time depending on the database.

Check custo... UMLZ Activit... Main group/...

Find what:
B UML2 Activit... Main group/...

* Start search Create order UML2 Activit... Main group/...

Requested diagram types:

[] UML 1.4 Use case diagram i
[#] UML2 Activity diagram
0 umiz Class diagram e

4 4

Properties...

m Cancel

Help

Figure 163: Diagram selection by searching in the database

Select diagram

Search database Browse Explorer

Diagram:

" B L T Ry L Ty R L R |

4 D 02 Component diagram [UML2 Package]
4 D 03 Composite structure diagram [UML2 Package]
4 D 04 Object diagram [UMLZ Package]
4 D 05 Package diagram [UML2 Package]
4 D 06 Profile diagram [UML2 Package]
4 D 07 Deployment diagram [UML2 Package]
VD 08 Activity diagram [UML2 Package]

» B0 Relationships

b &% Check customer data [UML2 Activity]

¥ 5% Create order [UML2 Activity]

» B0 Relationships
T |Create order [UMLZ2 Activity diagram]|

m Cancel

Help

Figure 164: Diagram selection in Explorer

4.1.2 Creating an assignment in ARIS Architect/Designer

To assign a UML 2 diagram to an ARIS object in ARIS Architect or ARIS Designer, first select the
object in the ARIS model and then click @ Create assignment in the Start tab bar.

' ™
UML - ARIS Architect Lo B e
M Start Contents View Insert Format Evaluate BPM Lo
E < Cut W Delete ~ ‘ Attributes y Goto v *If Connection mode Align -

: Ep Copy 1 Rename [i | Properties 2 Find == Grid Grouping
aste] . o : i [B I US A
~ ‘ Format painter | -w' Select™ & Assignments E# SmartDesign ~ [}, Arrange™ - -
MNavigation x [:é Symbols X -*_
Explorertree . Objects Model ove., Order data '1. = = +
received |
Filter: Models Objects =
G [l L Event |
v UmML |
= u Function | .
= Check customer |
v;&R.IS UML Designer Example i §
~ I Main group “’ Process interface a
» B8 Exarnple diagrams + AND i |
b [0 Meta model ° |
» B Organization l l nXOR i ?
hd
. R — Order can be Order cannot be n OR rule
~. Gales process [EPC: ereated created
b N Salles system 3 Organizational unit
]
b B0 UML Profiles Position
EC:le:a:te-_o:r;:lélf m Reject arder
Role
- L}
ﬁ * Cluster
I \ Order is created \ Ormderis rejected % =
Database: ARIS UML Designer Examples Find: + 1 W% @ P @ Gsoftware~
L

Figure 165: Launching the Properties dialog for a function in an ARIS model

The Assignments properties page opens. Click New to create a new assignment.

Properties - Object: Create order

Selection Help Assignments

Assignments Model name

Type

Link type

Attributes
¥ Format
Object appearance
Attribute placement (objects)

Information

Occurrences
Relationships
Reused objects

Variants

Figure 166: Assignments properties page in ARIS Architect/ARIS Designer

You are asked whether you want to assign an ARIS model or a UML 2 diagram. Click UML -2

diagram.

”
Create assignmenit

==

o Do you want to assign an ARIS model or a UML 2 diagram?

ARIS model

UML 2 diagram

Cancel

L3

Figure 167: Query for diagram type to be assigned

In the subsequent dialog, you can select a UML diagram to assign.

F N
Aszsign UML 2 diagram @
UML 2 diagram type: | AllUML 2 diagram types - |
Diagram name: | | Start search

Diagrams found:

Mame Type & Path

Create order UML2 Activity diagram /Main group/Example dia...
Create order UML2 Activity diagram /Main group/Sales system...
Create order UML2 Comrmunication dia... /Main group/Example dia...
Create order UML2 Sequence diagram /Main group/Example dia...

m Cancel Help

Figure 168: Dialog for selecting a UML diagram in ARIS Architect/ARIS Designer

e

The diagram selected here is added to the table of assigned diagrams (see Figure 170).

-
Properties - Object: Create order

Selection

Assignments
Attributes
¥ Format
Object appearance
Attribute placement (objects)
Informaticn
Ocecurrences
Relationships
Reused objects

Variants

Assignments

Model name

=z Create order

Type
UML2 Activity diagram

m Cancel

Link type

Mavigation

New...

Help

e

Figure 169: Assigned UML diagram in the Properties dialog for the ARIS object

In the ARIS model, an assignment symbol is displayed (see Figure 171).

Figure 170: Assignment symbol on the function

Crder can he
created

+

Create arder

+

COrder is created

4.2 Reusing business process objects as UML elements

Before you can use business process objects in UML diagrams, you must specify which ARIS
object types are to be mapped to which UML element types. You can then insert these ARIS
objects in UML diagrams as UML elements.

The ARIS object has no direct presentation in the UML diagram. Instead, a new UML element is
created and is linked to the ARIS object using a special reuse relationship.

The individual aspects of this reuse are described in more detail below.

4.2.1 Specifying the mapping of ARIS to UML types

The mapping of ARIS to UML types is defined in the Link types area of the Administration tab,
which has been briefly outlined in section 2.5.2 Link types. Note that this functionality is only
available to you on the Administration tab in ARIS UML Designer, but not in ARIS Architect.

To define a mapping, select Object links under Link types in the Explorer tree on the
Administration tab and then click New > Object link definition in the pop-up menu.

i |
UML - ARIS UML Designer (=] B et
m /~ Administration x [R5]

Start ke
n Cut Delete Properties c * ’ #:l | *:
Cop Rename *-' \
Mew Open Edit Paste o B Refresh | Start Generate from Import Export
e Duplicate macro | database contents objectlink object link
MNavigation x ‘ T- Filter list ‘ *
v 5 umML Source o... |Source o... | Target o... | Target o... |Source d... | Target d... |Sourcer... |Target re...|
[4 *S:(- Configuration
w [Link types
0 Object lint=
MNew F Object link definition

» B0 XMI resourc

¥ sl Evaluations ®, Generate from database contents...

» & ARIS Conne =] Import object link...
> & ARISUMLD: [® Export object link...

-

4 4
Working environment: Configuration & Administration % software~

Figure 171: Creating a new object link definition

The Create object link dialog opens.

he

Create object link

o

Answer option

E Application systemn

E Application system class
E Application systemn type
Architecture elernent
— Argument

— Artifact

E Assessment

<> Mssociation
EAssuciatiun class

<.+ Association instance

<7* Association role il
F| »

Answer option

E Application system

E Application system class
E Application system type
Architecture elernent
— Argument

— Artifact

E Assessment

<> Mssociation
EAssuciatiun class

<.+ Association instance

<7* Association role B
4 »

T
Select source type: Filter Select target type: Filker* Creation rule:
1 Action = — Action s Source renames target
1 Activity graph — Activity graph Target renarmes source
[] Actor [] Actor Source deletes target

Target deletes source

Cancel

Help

Figure 172: Dialog for creating a new object link definition

Select an ARIS object type in the Select source type column, and the relevant UML 2 element
type in the Select target type column. It is theoretically possible to define mappings between
any types, even between classic ARIS object types. However, ARIS Architect only supports
mapping of classic ARIS object types to UML 2 element types, which means that you should
always select a classic ARIS object type as the source type and a UML 2 element type as the target

type.

You also have the option of enabling one or more of the following rules:

= Source renames target

This rule means that when the ARIS object is renamed the UML element is also renamed so
that it has the same name as the ARIS object.

= Target renames source

This rule means that when the UML element is renamed the ARIS object is also renamed so
that it has the same name as the UML element.

= Source deletes target

This rule means that the UML element is deleted as soon as the underlying ARIS object is
deleted.

= Target deletes source

This rule means that the ARIS object is deleted as soon as the corresponding UML element is
deleted.
Entering the initial letters of the type you are looking for in the input fields above the object lists
filters the object list accordingly.

Create cbject link ﬁ
Select source type: Filtera Select target type: Filter« Creation rule:
fu umiZ u % Source renarmes target |
— Target renames source
Function @D UML2Z UnmarshallAction
o Source deletes target
. -
El’l’functmn ¥ UMLZ Usage Target deletes source
E IT function class @@ UML2 UseCase
El’l’function type

() UML2 FunctionBehavior

m Cancel Help

Figure 173: Definition of a mapping of the ARIS object type Function to the UML 2 element type UseCase

LS

Figure 174 shows the definition of the mapping of the ARIS object type Function to the UML type
UseCase with the rule that when the function is renamed the use case is given the same name.
Clicking OK creates the definition and it is then displayed in the table.

4 Source object name |Source object type |Target object name | Target object type Source deletes target | Target deletes source | Source renames target | Target renames source

Function OT_FUMNC @ UML2 UseCase OT_UML2_USE_CASE 3 x v x

Figure 174: A new object link definition created

This mapping enables you to view a function in a business process to be realized by an IT system
as a use case for the purpose of object-oriented analysis and to reuse it as a UML element of the
UseCase type.

You can use this method to map an ARIS object type to various UML element types, and multiple
ARIS object types to a single UML element type.

For example, you could map the Function type not only to UML2 UseCase but also to UML2
Operation, enabling the function to also be reused in UML as an operation for a technical class.

Conversely, it may be useful to map various ARIS types such as Organizational unit, Person,
or Application system - i.e., all types that are linked to execution or monitoring of a function in
some way - to the UML type Actor, so that you can reuse these ARIS objects as actors in UML use

case diagrams.

Source object name Source object type | « Target object na... | Target object type

E Function OT_FUNC UML2 Action OT_UMLZ_ACTION
Organizational unit OT_ORG_UNIT E UML2 Actor OT_UMLZ_ACTOR

E Application system .. OT_APPL_SYS_TYPE E UMLZ Actor OT_UMLZ_ACTOR
Person OT_PERS [umML2 Actor OT_UML2_ACTOR

EJ entity type OT_ENT_TYPE [UML2 Class OT_UML2_CLASS

= Technical term OT_TECH_TRM E UML2 Class OT_UMLZ_CLASS

FE Function OT_FUNC o UML2 Operation OT_UML2_OPERATL..

ERM attribute OT_ERM_ATTR [T uML2 Property OT_UML2_PROPERTY

E Function OT_FUNC @ UML2 UseCase OT_UMLZ_USE_CASE

Figure 175: Different object link definitions

Source deletes target

x

Target deletes source

XX K XXX XXX

x
x
x
x
x
x
x
x

Figure 176 shows the object link definitions described above.

Source renames target | Target renames source

AR I
X[%|%|%|x % X XX

When selecting the target type, you are not restricted to specific UML 2 types, i.e., those for which
you can also create a directly corresponding UML element. The above example contains an object
link definition in which the ARIS type Function is mapped to the abstract UML 2 type Action. In
a case like this, when you insert a function in an Activity diagram, you are asked which specific

action is to be created.

Select symbaol

want to use?

Symbaod

Accept call action

Accept event action

A .'n.-Fi bime event action

Add structural feature value action
£Add vanable value action
Broadcast signal action

Call behavior action

Call n;c-miii:n achion

Clear asseciation action

Clear structural feature action

-1 Cr

There are multiple symbols available for the presentations, Which symbal do you

Assigned sterectype

=]

Figure 176: Symbol selection for abstract type

4.2.2 Reusing an ARIS object in a UML diagram

In the ARIS model, first select the ARIS object you want to reuse as a UML element. Copy it to the
clipboard by clicking Copy in the pop-up menu.

W -
Mew k
LGl &= Print... Strg+F
1 ¥ Cut Strg=X
Emy Copy Strg+C
Crder is released .
IE Paste Strg+V
Paste as L

Figure 177: Copying the ARIS object to the clipboard

Alternatively, you can also select and copy the ARIS object in the Explorer tree in ARIS Architect,
ARIS Designer, or ARIS UML Designer.

In ARIS UML Designer, open the pop-up menu by right-clicking the diagram background and then
click either Paste or Paste as > Place here as reused objects.
cextends

i

—
—_

condition:
{ Customer is key customer }

extersion points:
Rebate calculation

&= Print... Strg+P
I'E Paste Strg=V
Paste as F Place here as reused objects

Figure 178: Pasting the ARIS object in the UML diagram

The Reuse objects dialog opens for selecting the underlying object link definition.

Reuse objects 1

You can reuse the selected objects for new presentations. Which type of re-use do
you want to use?

Type of re-use
Use object type ‘Function’ as object type 'UML2 Action”

u Cancel Help

Figure 179: Selecting the object link definition

If there are several symbols that can be used for presentations of elements of the UML type in the
diagram, you are asked which of the symbols is to be used.

F " B
Select symbol w

There are multiple symbols available for the presentations. Which symbol do you
want to use?

Symbol Assigned stereotype

Use case

Uze case (class notation)

b

Figure 180: Dialog for selecting the symbol to be used

This creates a new use case in the diagram.

Figure 181: New use case created

The use case has the same name as the underlying function and displays it on its Reused
objects properties page.

M hl
Properties: Release order u

Help Reused objects

Selection

Inf ti

nfermation - | = = i |

General

Description Object & Type Renames object |Is renamed by object | Deletes object |Is deleted by object

Relationships [3 Release order ARIS Function [w]

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

m Cancel | Help

Figure 182: Reused objects properties page in ARIS UML Designer

After saving in ARIS UML Designer, this information is also available in ARIS Architect/ARIS

Designer.

Type

| UML2 UseCase

Assignments Object
Attributes |. Release order
¥ Format

Object appearance
Attribute placement (objects)
Information
Occurrences
Relationships
Reused objects

Variants

New...

r Properties - Object: Release order : ﬂ
Selection

Group
/Main group/Sales system/Analysis diagrams/Use...

Delete Go to occurrence in UML Explorer

m Cancel Help

Figure 183: Reused objects properties page in ARIS Architect/ARIS Designer

4.2.3 Managing the object link definitions

The pop-up menu for an object link definition provides you with various options for editing.

Source object name Source object type | & Target object na... | Target object type Source deletes target | Target deletes source | Source renames target | Target renames source

F& Functi o o OT_UML2 USE_ CASE X x v x
Lneen New F Object link definition - = —

Edit...

W Delete

Figure 184: Pop-up menu items for editing object link definitions

You can create a new object link definition, edit the selected definition, or delete the selected
definition. Clicking # Edit opens the Create object link dialog, as when creating a new object
link definition (see Figure 173).

The options for editing the selected object link definition can also be found in the tab bar.

®« A B

Generate from Import Export
database contents object link ohbject link

Figure 185: Buttons in Start tab bar for managing object link definitions

The object link definitions are saved in the system database on the ARIS server. Selecting Object
links in the Link types area in the Explorer tree on the Administration tab, you can export the

object link definitions to a file to transfer them to a different ARIS server by clicking [= Export

object link. To import, click =] Import object link on the other server.
Clicking e, Generate from database contents starts the analysis for all existing reuse
relationships within an ARIS database and creates object link definitions for them in the system

database.

This is helpful if you are importing a database with reuse relationships and you then want to
create these reuse relationships yourself but you have not yet created the corresponding object
link definitions. Merely to view or evaluate the reuse relationships in an ARIS database, it is not
necessary to create the object link definitions in the system database.

4.3 Navigation between ARIS Architect/Designer and ARIS
UML Designer

Although ARIS Architect/Designer and ARIS UML Designer are different programs, they provide
easy options for navigating to elements and diagrams in the respective other program.

4.3.1 Navigation from ARIS Architect/Designer to ARIS UML
Designer

In ARIS Architect/ARIS Designer, you can click the pop-up menu item Go to > Occurrence in
UML Explorer for all groups, ARIS objects, ARIS models, and UML elements contained in the
Explorer tree. Note that ARIS Architect/ARIS Designer only display the UML packages, models,
and profiles that are located directly in an ARIS standard group, but not their content.
¥ @ Main group

» B8 Example diagrams

b B8 Meta model

B8 Organizat Mew 4

* B8 Processes % Cut ST

rin Salesp g Copy Strg+C

[l Sales syst =
B Celete
@Anal}rs
. CP Rename F2

E| Design

» B8 UML Prof Goto 4 Link F7
" @ Find.. Strg=F Cccurrence in UML Explorer

Figure 186: Pop-up menu item in ARIS Architect for navigation to ARIS UML Designer

After clicking the pop-up menu item, a check is made as to whether an ARIS UML Designer
instance with the same server connection is running. If not, it is started. This is followed by a login
to the same database in ARIS UML Designer, and the item selected in ARIS Architect or ARIS
Designer is selected in the Explorer in ARIS UML Designer.

On the Reused objects properties page, it is also possible to click E Occurrence in UML
Explorer to navigate to the corresponding UML element in the Explorer in ARIS UML Designer
(see Figure 184). This navigation option is also available in the pop-up menu.

Reused objects

Object Type Group
@D Release order UML2 UseCase /Main group/Sales system/&nalysis diagrams/Use Cases
MNew »
Go to k Link -~
I Find... Strg=F Occurrence in UML Explorer

Figure 187: Pop-up menu item for navigation to the linked UML element

You can open assigned UML diagrams in ARIS Architect/ARIS Designer by double-clicking the
assignment symbol in the ARIS model. You can also use the Assignments properties page and
click the Open entry in the pop-up menu, or the Open button (see Figure 170), to open UML
diagrams in ARIS UML Designer.

Assignments

Model name Type | Link type

------ Create order UMLZ Activity di=sr=m ek
[Mew L2
'E Open...

Open (ri%d—nnlj,r]

Figure 188: Pop-up menu item in ARIS Architect / ARIS Designer for opening a UML diagram

4.3.2 Navigation from ARIS UML Designer to ARIS
Architect/Designer

In addition to the group hierarchy and the UML content, ARIS UML Designer displays all ARIS
models and ARIS objects with their properties in the Explorer. To display and edit the ARIS
models, it is necessary to switch to ARIS Architect or ARIS Designer.

For this purpose, for all groups, ARIS models, ARIS objects, and UML packages, models, and
profiles that are directly located in a group, ARIS UML Designer provides you with a pop-up menu
item for navigation to ARIS Architect or ARIS Designer.
* [Processes
-2 Sales process [ARIS EPC]
¥ kel Order can be R i
Mew model element L4

b kel Order cannot

b kgl Order data re #< Cut

b kel Orderis creat Em Copy

[4 Orderisrejec W Delete

b kel Order is relea :IJ

b m Check custor

[4 m Create order
b m Reject order [Go to b Occurrence in ARIS Architect/Designer

Rename

¥ Delete incomplete relationships..

Figure 189: Pop-up menu item for navigation to ARIS Architect/Designer

The same functionality is available for a selected element in the Start tab bar.

y Goto™>

Related element in the Explorer navigation

Occurrence in ARIS Architect/Designer
Figure 190: Tab bar item for navigation to ARIS Architect/Designer

After clicking the menu item, a check is made as to whether an ARIS Architect/ARIS Designer
instance with the same server connection is running. If not, it is started. This is followed by a login
to the same database in ARIS Architect or ARIS Designer, and the item selected in ARIS UML
Designer is selected in the Explorer in ARIS Architect/ARIS Designer.

Just as for UML diagrams, the functionality for opening the diagram is provided in ARIS UML
Designer for ARIS models.

[Processes

Sales proces "2

r
E Open..
b kil Order can be

Figure 191: Opening an ARIS model in ARIS UML Designer

If required, an ARIS Architect/ARIS Designer instance is started and the ARIS model is opened in
it.

The navigation is available not only in the Explorer but in all UML Designer components that
display elements that are also visible in the Explorer in ARIS Architect/ARIS Designer.

Properties: Release order

Selection Help Reused objects
Information =
% % a a2
General
Description Object a Type Renames ... |Is rename... | Deletes ob...|Is deleted ...
Relaticnships [Release order ARIS Funct... [+#] [1 [] []
Reused ohjects Emy Copy Ctri+C |
Linked diagrams Goto 4 Related element in the Explorer navigation
Presentations in diagrams Export i Link B
Applied sterectypes Lock/Unlock b Occurrence in ARIS Architect/Designer
Tagged values T
Evaluate L

B Properties.. Alt-Enter

m Cancel Help

Figure 192: Navigation from UML element to underlying business process object

You can also open assigned ARIS models using the Linked diagrams properties page for the
UML element or from a diagram by double-clicking the assignment symbol on the presentation of
the UML element.

Properties: Release order

Help Linked diagrams

Selection

Information .’+ .’= |~B = a
General

Description Diagram Type Kind

Relationships ~— Sales process ; ARISEPC Maviaation

Reused cbjects 'E HpED.

Linked diagrams Em Copy Ctrl=C

Eisentahionsindegans Goto 4 Related element in the Explorer navigation

Applied stereotypes Occurrence in ARIS Architect/Designer

(S

* Add to favorites...
Tagged values '

Export b

Lock/Unlock »

Evaluate 4
B rroperties... Alt+Enter

m Cancel Help

Figure 193: Menu items for navigation and opening an ARIS model assigned to a UML element

£,

Figure 194: Assignment symbol for an ARIS model on a UML element

5 UML profiles

You can use UML profiles in ARIS UML Designer to extend the UML metamodel with user-defined
types and properties and, at the same time, to reduce the number of UML types available in
diagrams. Thus, UML profiles have a similar effect for UML modeling as ARIS method filters for
ARIS standard modeling.

While an ARIS method filter is individually selected by the user when logging in to a database and
applies to the entire database and the period of the login, UML profiles have fixed assignments to
individual UML packages in the database. Therefore, they only apply to the packages (models and
profiles) to which they are assigned, and to their content. This enables you to use different UML
profiles in different areas of the database. In addition, UML profiles apply to all users in the same
way, regardless of the method filter they have selected at login.

5.1 Predefined profiles in ARIS UML Designer

ARIS UML Designer contains several predefined UML profiles:

= StandardProfile
This is the standard profile from the UML specification. It contains all stereotypes defined in
the UML standard.

= OMF Meta Profile

This profile is used by the UML metamodel generator (see section 5.3.1 The UML metamodel
generator) to map the meta elements to UML.

= OMF Extension Profile

This profile extends the profile modeling in ARIS UML Designer with options that are not
available in the UML standard, e.g., with ARIS-specific properties such as multilingual text
attributes and stereotypes for diagrams.

= UML 1.4 Compatibility Profile

UML 1.4 is not completely forward compatible with UML 2. Some constructs and default
stereotypes from UML 1.4 are no longer supported in UML 2. This profile is used in UML
migration to ensure that these constructs are not lost during migration to UML 2.

5.2 Using profiles

5.2.1 Assignment of profiles to a package

Before you can use stereotypes of a profile, you must assign the profile to the package®® within
whose hierarchy the stereotypes are required.

The assignment is made on the Applied profiles properties page by clicking % Apply profiles.

3 . Py E = B
UML - ARIS UML Designer = g
IRl 5 Explorer X Search 4 2 =
Start Contents Evaluate 9
F+ ._q_ #< Cut W Delete y Goto™~ c Refresh
HLE
Ep Copy CI Rename Up Database
New Mew Open Paste
element ~ diagram ~ i | Properties
Mavigation ¥ | Applied profiles Applied stereotypes Tagged values 1 = B
Explorer tree Diagram tree [] =
' i R BB
Y ls !
+ B um ~|||Profill apply profiles
w =2 ARIS UML Designer Examples >
I w [Main group
¥ B Bxample diagrams
| ¥ B0 Meta model
I » [Organization
» [0 Processes
w [M Sales system
l 7@Lﬁmaly5is diagrams [UML2 Model]l
¥ [Relationships
4 D Classes [UML2 Package] g
4 »
Working envirenment: Configuration 8 Administration 5 software~

Figure 195: Applied profiles properties page

*® The term package here also includes the two UML types Model and Profile, which are special types of packages.

The Apply profiles dialog opens and contains the profiles to be assigned to the package.

Apply profiles [é]

Analysis profile
OMF Extensicn Profile
OMF Meta Profile
& StandardProfile
UML 1.4 Compatibility Profile

StandardProfile
The Standard Profile specifies a set of predefined standard sterectypes. -

ﬂ Cancel Help

M

Figure 196: Profile selection dialog

The dialog lists all profiles that can be assigned. Enable the corresponding check box to indicate
that the profile is to be assigned to the package.

If a profile is already assigned to the package, its check box is enabled automatically. In this case,
you can disable the check box to indicate that the assignment of the profile to the package is to
be removed.

When you select the profile in the dialog by clicking the text, a description of the profile is shown
in the lower section of the dialog. The same description is also displayed as a tooltip if you move
the mouse pointer over a profile name for a short time.

Clicking OK assigns the selected profiles to the package.

Mavigation X Applied profiles ApE
Explorer tree Diagram tree
g ? % %= = 0
h (1
& | [Profile - Is strict
v o UML StandardPro...

w = ARIS UML Designer Examples
b Main group™

Example diagrams

Meta model

Organization

Processes

4 v v -

Sales system™
4 E Analysis diagrams™ [UML2 Model]
4 E Design diagrams [UML2 Model]

Figure 197: Package with assigned profile

By enabling the Is strict check box in Figure 198 you can specify that restrictions defined by the
profile cannot be canceled by other assigned profiles>!.

As soon as a profile has been assigned to a package, its stereotypes are available in the package
hierarchy.

* The predefined profiles contain no restrictions.

5.2.2 Assignment of stereotypes to a UML element

Stereotypes are assigned to an element on its Applied stereotypes properties page by clicking

: Apply stereotypes.
F B
UML - ARIS UML Designer =))
IR 5 Explorer X Search 4 ? =
M e Start Contents Evaluate »
Cut Delete Go to c Refresh
Copy Rename Up Database
MNew MNew Open | Paste
element diagram Properties
Mavigation X |diagrams Applied stereotypes Tagged values 1k = &
Explorer t Di t [|
plorer tree iagram tree | = i |
T [L
- B8 Sales systern® + | |Stere Apply stereotypes
V@ Analysis diagrams™ [UML2 Model]
B8 Relationships >
‘VD Classes [UML2 Package]
» B8 Relationships
= Classes [UML2 Class diagran
b = A_itern line_order line [UML:
] b= A_itern_item line_1 [UML2 A
b] rem [UML2 Class]
b o e 1 [UML2 Class]
13 E Key custormer order [UML2 (
b E Orderitem [UML2 Class] .
4 4
Working envirenment: Configuration & Administration 5 software*~
he = T =

R e T

Figure 198: Applied stereotypes properties page

The Apply stereotypes dialog opens and contains the stereotypes to be assigned to the

element.

Apply stereotypes @

Auziliary
Focus
ImplementationClass
Metaclass
Realization
w Specification
Type
Utility

Specification

A classifier that specifies a domain of objects without defining the physical -
implementation of those objects. For example, a Component sterectyped by
«5pecification» will only have provided and required interfaces, and is not intended to ~

ﬂ Cancel Help

b

Figure 199: Dialog for stereotype selection

The dialog lists all stereotypes that can be assigned. Enable the corresponding check box to
indicate that the stereotype is to be assigned to the element.

If a stereotype is already assigned to the element, its check box is enabled automatically. In this
case, you can disable the check box to indicate that the assignment of the stereotype to the
element is to be removed.

When you select the stereotype in the dialog by clicking the text, a description of the stereotype
is shown in the lower section of the dialog. The same description is also displayed as a tooltip if
you move the mouse pointer over a stereotype name for a short time.

Clicking OK assigns the selected stereotypes to the element.

Mavigation X | diagrams Applied stereotypes

Explorer tree Diagram tree
’ ’ % % =B B
T
* [0 Sales system™® « | |Stereotype & Profile
v@ Analysis diagrams* [UML2 Model] Specification StandardPr...

b Relationships
VD Classes* [UML2 Package]
b Relationships
Classes [UML2 Class diagran
ke A_item line_order line [UML
ko A_item_item line_1 [UMLZ A
b] Bem® [UML2 Class]

Figure 200: UML class with assigned stereotype

Stereotypes can also be assigned for multiple elements at the same time. To do this, select the
corresponding elements in the Explorer tree or in the diagram and display their properties.

Mavigation x Applied stereotypes
Explorer tree hagram tree
P 2 * % = B
h
b E Trermn™ [UML2 Class] « || |Stereotype ~ Profile
Specificati StandardProfil
» = [order item* [UML2 Class] pectication ancardrretie

Figure 201: Applied stereotypes properties page for two selected classes

All stereotypes assigned to the selected elements are displayed. If a stereotype is not assigned to
all selected elements, the entry is displayed in gray instead of black text in the table. You can click

= Apply stereotypes to simultaneously add stereotypes to all selected classes.

The stereotypes of the standard profile do not define any new properties. The subsequent section
on user-defined profiles explains how to display and edit the corresponding property values.

5.2.3 Creating stereotyped elements in the Explorer

A corresponding configuration of the New element (see section 2.2.4 Creating new elements in
Explorer) enables you to create stereotyped elements in Explorer.

-
Configure menu - New elements " M
Specify the element types to be provided by the pop-up menu (metaclass "Model)
Accessible from dialog: Filter = Accessible from pop-up menu: Filter =
> Il UML2 » | umLz2
w [StandardProfile w [StandardProfile
E Auxiliary [StandardProfile, Class, ownedType] |:1 Document [StandardProfile, Artifact, packagedElement]
E Auxiliary [StandardProfile, Class, packagedElement] |:1 Executable [StandardProfile, Artifact, packagedElement]
$:| BuildComponent [StandardPrefile, Component, owned

$:| BuildComponent [StandardProfile, Component, packac
g -~ Call [StandardProfile, Usage, packagedElement] * 1.
-~ Create [StandardProfile, Usage, packagedElement]

~~¥ Derive [StandardProfile, Abstraction, packagedElement;
rj Document [StandardProfile, Artifact, ownedType]

E Entity [StandardProfile, Component, ownedType]

E Entity [StandardProfile, Component, packagedElement,
|:1 Executable [StandardProfile, Artifact, ownedType]

|:1 File [StandardProfile, Artifact, ownedType]

|:1 File [StandardProfile, Artifact, packagedElement]

E Focus [StandardProfile, Class, ownedType]

E Focus [StandardProfile, Class, packagedElement]

[Sort alphabetically

b = —

Figure 202: Configuration dialog for creating new elements in a package to which the standard profile is assigned

Figure 203 shows the configuration dialog for a model to which the UML standard profile is
assigned. In addition to the UML category, which contains all element types that can be created
in a model, a second category StandardProfile is displayed. It contains all stereotypes of the
standard profile that extend the element types contained in the UML category. In this example,
the stereotypes «Document» and «Executable» were added to the pop-up menu. The name of
the stereotype is followed by square brackets containing the name of the profile in which the
stereotype is defined, the name of the metaclass being extended by the stereotype, and the
metaproperty used when creating the element.

[0 Sales system
4 @ Analysis diagrams [UML2 Model]
V@ Design diagrams [UML2 Mod'=!

3 imitiveTy,
, Relationships New element [] PrimitiveType [packagedElement]

» UML Profiles MNew diagram » [signal [packagedElement]
3 Ccut StateMachine [packagedElement]
Em Copy @ UseCase [packagedElement]
T I—_| Document [StandardProfile, Artifact, packagedElement]
B Delete
|—_| Executable [StandardProfile, Artifact, packagedElement]
Cp Rename
: ¢ More...
Hide all elements of this type
¥, Delete incomplete relationships... % Configure menu...

Figure 203: New element pop-up menu with stereotypes

Figure 204 shows the New element pop-up menu of the model. It now contains the two
stereotypes. Selecting Document [StandardProfile, Artifact, packagedElement] creates a
new element of the UML type Artifact for the packagedElement property of the model. The
element is assigned the «Document>» stereotype.

5.2.4 Stereotypes in the Symbols bar of diagrams

Assigning a profile to a package affects the Symbols bar in the diagrams contained in the
package. For each symbol for whose metaclass the profile defines a stereotype, an additional
symbol with the name of the stereotype is provided.

r Customize "Symbols' bar - —— . ﬁw
Which symbaols are to be available for direct access in the "Symbols' bar?
Available symbols: Filter Available in 'Symbols' bar: Filter ~
| Filter list ‘ | Filter list |

w -~ StandardProfile i ¥ = StandardProfile -

$:| BuildComponent (Component) Eﬁuxiliar}r((:lassj

" Call (Usage junction point) % Call (Usage)

"*" Create (Usage junction point) % Create (Usage)

"*" Derive (Abstraction junction point) % Derive (Abstraction)

B Document (Artifact) B Focus (Class)

$:| Entity (Component] - D Framework (Package] 1_
D] Executable (Artifact) E ImplermentationClass (Class)

B File (Artifact) ¢ - Instantiate (Usage) 3

E Metaclass (Class)
B Metamodel (Model)

{l Implement (Component)
"#" Instantiate (Usage junction point)
D] Library (Artifact) El Modellibrary (Package)

$:| Process (Component) ~¥ Refine (Abstraction)
~¥ Responsibility (Usage)

=¥ Send (Usage)

"*" Refine (Abstraction junction point)
"*" Responsibility (Usage junction point)
B Script (Atifact [systemModel (Model)
"*" Send {Usage junction point) - Trace (Abstraction)

0 [y —— w X B Tvpe (Class) x*

m Cancel Help

[+ Sort alphabetically

b

Figure 204: Configuration dialog for the Symbols bar with stereotype symbols

Figure 205 shows the configuration dialog for the Symbols bar for a Class diagram, whose
package has been assigned the standard profile. In addition to the categories for the individual
diagram types, another category is displayed for the standard profile. It contains symbols for the
corresponding stereotypes. The name of the underlying default symbol is displayed in brackets
after each stereotype name.

The Symbols bar also shows the stereotype symbols of a profile in a separate category, which is
headed by the name of the profile enclosed in a pair of guillemets (see Figure 206).

For example, if you add the Auxiliary (Class) symbol to the Symbols bar for this kind of Class
diagram and create an element in the diagram for this symbol, a new class is created in the
diagram and this class is automatically assigned the «Auxiliary» stereotype.

Symbols x
"l = an | =
name .
BT s P Class diagram

Class (EM) P Package diagram

¥ «StandardProfiles
@ Auxiliary (Class)

Figure 205: Symbols bar with stereotype symbols and creation of a stereotyped class using a corresponding symbol

5.3 User-defined UML profiles

ARIS UML Designer supports creation of user-defined UML profiles using UML Profile diagrams
The profiles are available immediately after creation in the database in which they are modeled.
If you want to use this kind of user-defined profile in a different database, you can transfer it to
other databases using standard ARIS functionalities such as Merge or XML export and import.

5.3.1 The UML metamodel generator

Profile modeling in ARIS UML Designer is carried out in line with the UML specification, i.e., both
the metamodel and its metaclasses are represented graphically in the Profile diagram and related
to the elements from the profile using edges.

In order to create a profile yourself, you first require the UML metamodel with its metaclasses.
You can create the UML metamodel in the database using the metamodel generator.

Meta mo--'

) Mew element 3
Organizal

Processes o~ Cut Ctrl+
Sales syst Epy Copy Ctrl+C

UML Prof B Delete Delete

v v v v v

Cp Rename F2

1o

Generate UML metamodels...

o
=]
[

Delete incomplete relationships...
Go to »

* Add to favorites...

Irmpaort r
Export b
Lock/Unlock b
Evaluate b
B rroperties... Alt+Ente

Figure 206: Launching the UML metamodel generator in the pop-up menu for a group

You can launch the metamodel generator in the pop-up menu for an ARIS group by clicking
Generate UML metamodels. Alternatively, you can click the button of the same name in the
Content tab bar.

UML - ARIS UML Designer

B " Start Contents Evaluate

6_:"3 W
E D Generate UML metamodels

!.'. Delete incomplete relation sf%s

Import Export Vers
& g Edit elements
Navigation Generate UML metamodels
Explorer tree Generates a UML metarmodel whose
elements you can use when

- B umL
4 ! ARIS Connect Governance Models
v !, ARIS UML Designer Exarmples
[l Main group™
b B0 Example diagrams

» Bt moce]

» [Organization

Working environment: Configuration & Administration

Figure 207: Launching the UML metamodel generator in the Contents tab bar for a selected group

The dialog for generating the UML metamodel enables you to specify the language in which the
metamodel is generated in the database.

Generate UML metamodels M

Specify the language you want to use for naming the metamodel elements to ...

O] |U5e original metamodel names (recummendedj|

() Use current metamodel language

() Use database languages

Generating the metamodel may require some time,
Please note:

Multiple instances of metamodels are not allowed in one database. If the metamodels
have been created in another group of the database, they will be moved to the selected

group.

Te avoid simultaneous generation of metamodels, please make sure that no other user is
currently running metamedel generation in the database containing the selected group.

e

Figure 208: UML metamodel generator

The following options are available:

= Use original metamodel nhames (recommended)

In this case, the original names from the UML metamodel are used. This is recommended
because the UML specification only exists in English. While some metaclasses are relatively
easy to identify if their names are in other languages, with other metaclasses it is much more
difficult.

With this option, the names are created only in the alternative language in the database,
which means that you will always see the original metamodel names regardless of the
database language you select at login.

= Use current metamodel language

This option creates the names in the language you have selected as the metamodel language
in the general options (see section 2.4.3 Designer > General). Once again, the names are
created only in the alternative language in the database. For example, if you have selected
German as the metamodel language and English as the alternative language in the
database, the German metamodel names are saved in the database language English.

= Use database languages

Generation is carried out for each database language in the corresponding language, i.e., if
you are logged in with the database language German, the metamodel names are displayed
in German, and if you are logged in in English, the original names are displayed.

The metamodel generator generates three metamodels and the UML standard profile in the
database.

hd Meta model
3 Basze [Metarmodel]
» PrimitiveTypes [Metamodel]
» [20] UML [Metamodel]
3 D StandardProfile [UML2 Profile]

Figure 209: Generated metamodels

The PrimitiveTypes metamodel defines the primitive data types used by the UML metamodel. It
is also part of the official UML standard from the OMG.

"@ PrirnitiveTypes [Metamodel]
k Relationships
b [Provides a set of common primitive data types used by other meta models. [UML2 Comment]
k |:| Boolean [UML2 PrimitiveType]
k |:| Integer [UML2 PrimitiveType]
k |:| Real [UML2 PrimitiveType]
k |:| String [UML2 PrimitiveType]
k |:| UnlimitedMatural [UML2 PrimitiveType]

Figure 210: PrimitiveTypes metamodel

The Base metamodel is an ARIS-specific extension, which supplements the UML elements and
diagrams with some ARIS-specific properties (see also section 1.5.1.1 Root). Furthermore, it
defines data types that are not provided by the PrimitiveTypes metamodel, but are supported
by ARIS UML Designer.

‘V Basze [Metarnodel]
4 Relationships
b [™ The "Base" metamodel provides elements, properties, and datatypes for all metamodels. [UML2 Comment]
[EArisElement [Metaclass]
4 E ArisDiagram [MetaDiagram)]
4 |:| ArisMetafile [UML2 DataType]
4 E LabelTaggedValuesViewKind [UML2 Enumeration]
4 E SterectypelmageViewkind [UML2 Enumeration]
4 E TaggedValuesViewKind [UML2 Enurneration]
4 |:| TirneStamp [UML2 PrimitiveType]
4 |:| URL [UMLZ PrimitiveType]
k¥ PrienitiveTypes [UML2 Packagelmport]

Figure 211: Base metamodel

The UML metamodel contains all UML metaclasses, associations, and properties and - as an
ARIS-specific extension — the corresponding symbol and diagram types that are also relevant for
modeling of profiles.

w [UML [Metamodel]
4 Relationships
b [UML 2.5 meta model [UML2 Comment]
3 E Abstraction [Metaclass]
4 E AcceptCallAction [Metaclass]
4 E AcceptEventiction [Metaclass]
3 E Action [Metaclass]
4 E ActicnExecutionSpecification [Metaclass]
4 E ActicnInputPin [Metaclass)
¥] Activity [Metaclass]
b] ActivityEdge [Metaclass]
4 E ActivityFinalMode [Metaclass]

Figure 212: Small extract from the generated UML metamodel

The profile StandardProfile includes all stereotypes that are already defined by the UML
specification. It is generated together with the metamodels in order for you to be able to import
the profile or the stereotypes it contains into your own user-defined profiles.

"’D StandardProfile [UMLZ Profile]
3 Relaticnships
ko UML [UMLE Packagelmport]
b [The Standard Profile specifies a set of predefined standard stereotypes. [UML2 Comment]
b —b Abstraction_Derive [UML2 Extension]
b —b Abstraction_Refine [UML2 Extension]

b 1 Auxiliary [UML2 Stereotype]

3 E BuildComponent [UML2 Stereotype]
» 1 Call [UML2 Stereotype]

3 E Create [UML2 Sterectype]

Figure 213: Two extracts from the generated UML standard profile

Note that you can only use metamodels generated in this way for profile modeling. ARIS UML
Designer identifies the relevant meta elements based on their GUID and not using their name,
which can differ considerably depending on the generator settings.

The fact that each meta element is created with a specific GUID and a GUID in an ARIS database
can only be used by one element results in certain consequences for generation.

Each generated meta element can only exist once in a database. Therefore, the metamodel
generator always searches the database for an existing element with the corresponding GUID
first, before it creates a new one. If it finds one, this element is used.

This means that if a generated metamodel already exists in a different group in the database, it
is moved into the group in which the generator has been started.

If you move a meta element from the metamodel to another UML package, rename it, or edititin
some other way - which is explicitly not recommended - this meta element is restored to its
original state the next time the metamodel generator is run.

5.3.2 Creating a profile

First create a new profile in an ARIS group in the Explorer tree and give it the name of your choice.

4 UML Profile

Mew element b Group
3 Cut [Model
By Copy] Package
& Delete D Profile
Cp Rename

Figure 214: Creating a new profile in the Explorer tree

Then create a Profile diagram in the profile.

b LML Profiles

Mew element 3
g D Analysis profile [UML2 Prof Mew diagram 4 Profile diagram
¥ Cut More...
Em Copy

*s Configure menu...
Figure 215: Creating a new profile diagram

It is important that you first create the profile and then the Profile diagram in the profile, and not
vice versa. If you create new elements in a diagram, they are created in the element in which the
diagram is contained. The fact that the profile diagram is contained in the profile ensures that all
stereotypes, Extension relationships, and enumerations that you create in the diagram as part of
profile modeling are actually contained in the profile and not in another package.

Next drag the profile from the Explorer tree into the diagram.

Mavigation

Explorer..| Diagra.. Diagra.. Vi

F

w [0 UML Profile* —

w [Analysis profile® [UD profiles
Analysis profile

k [Relationships

Analysis profile®

Figure 216: Presentation of the profile in the profile diagram

Finally, you have to drag the UML metamodel created by the metamodel generator into the Profile
diagram and create a relationship of the Metamodel reference type from the profile to the

metamodel.

MNavigation X
Explorer. Diagra.. Diagra.. Visuali.
B Example diagrams
I Meta model
v [B Base [Metamodel]
v [PrimitiveTypes [Mel

«f afaranc s

¥ I Organization
B Processes
B Sales system
* I UML Profile”
- E Analysis profile® [UP
» BB Relationships

Anahysis profile”

Figure 217: Definition of a pure extension profile

Fa

«Metamodels
umML

Symbols X

= o0 | sea %
-

Meta class reference
Mets model reference
Chweniing class
Owening classifier
QOwening interface
Owening package

Package

Package import

You have thus indicated that the profile fully supports UML. Section 5.3.7 Creating a filter profile
outlines how to define profiles that support only a subset of UML.

If you enter a description in the properties of the profile, it is displayed later when assigning the

profile to a package in the profile selection dialog.

* EHement

description Profile for object-criented analysis.

F ownedComment
¥ MamedElement
b clientDependency
name (*) Analysis profile

nameExpression

Figure 218: Description of the profile

ARIS UML DESIGNER

OMF Extensicn Profile

OMF Meta Profile
StandardProfile

UML 1.4 Compatibility Profile

Analysis profile
Profiles for object-oriented analysis.

Figure 219: User-defined profile with description in the profile selection dialog

174

5.3.3 Creating a stereotype

Stereotypes are used to express particular semantics that are not provided in the UML standard,
e.g., the «Technical class» and «Design class» stereotypes for illustrating the meaning of
the corresponding classes, or to define new properties. The stereotypes of the UML standard

profile fall into the first category. They do not define any new properties.

If you want to define a new stereotype, you must first create it in the Profile diagram?2.

Symbaols x
i =R TR
- Provided interface .
ofil =lEferenc e= iy
gprofilee | __ __ _=)
Analysis profile “MEE“:‘"'E“E'” A Reslization
n F J— Required interface
zsterectypes :
Business use case E g Stereotype
w
¥ lsage

Figure 220: Definition of a new stereotype

The next step is to place the metaclass to be extended from the generated UML metamodel in the
diagram and to link the stereotype with the metaclass using an Extension relationship.

Symbaols »

"l = BE e | Wy
P sreferenc es e ~ :___JI ExtendedProperty (P...
ﬂﬂﬂtl!irigﬂfr,nfile ________ = xMteamuem .

? Generalization

{ Instance specification

|:| Interface

z5terectypes : zMetaclasss
Business use case UseCase

Figure 221: Linking the stereotype with the corresponding metaclass

In the example diagram, the representation options for the Extension relationship have been
adjusted so that no multiplicities and names are displayed (Extension is a special form of the
association), and for the metaclass the feature view of details has been suppressed so that no
attributes are displayed.

2 of course, you could also create and edit the stereotype in the Explorer tree. However, the link with the
corresponding metaclass in particular will then involve considerably more work than with graphical modeling.

For user-defined stereotypes, their description texts are displayed in the stereotype assignment
dialog.

¥ Hement
description Marks an economically relevant use case,
F ownedComment

¥ NamedEement
F clientDependency

name (*) Business use case

Figure 222: Description of the stereotype

Apply stereotypes @

% Business use case

Business use case
Marks an economically relevant use case.

m Cancel Help

Figure 223: User-defined stereotype with description in the stereotype selection dialog

If you only want to allow use cases with the «Business use case» stereotype in packages to
which you have assigned the Analysis profile, you can indicate this on the Extension relationship
in the Profile diagram by selecting Specify as 'required’ in the pop-up menu or clicking the
corresponding button in the Content tab bar:

4
Edit

elements

Set to 'required’

zMetaclasss
UseC ase

zStereotypes
Business use case

Figure 224: Flagging an Extension relationship as required in the Content tab bar

In the Profile diagram, the keyword {required} is displayed on the Extension relationship>>:

zstereotypes {required} zMetaclasss
; R -t
Business use case UseC ase

Figure 225: Extension relationship with required property

This change means that when you create a use case in a package to which the profile is assigned,
it is automatically given the «Business use case» stereotype. However, setting this property
only makes sense if you have not defined more than one stereotype in your profile for the
corresponding metaclass.

3 Flagging an Extension relationship as required changes the multiplicity of the association end linked to the
stereotype from [0..1] to [1]. As the multiplicities of Extension relationships are not normally displayed in diagrams,
the keyword {required} is displayed on the edge instead.

5.3.4 Defining new properties

You can use stereotypes to define new properties that are not provided in the UML metamodel. In
exactly the same way as the predefined properties, the user-defined properties can represent
simple data values or relationships with other elements.

To define the new property Requirements for a stereotype, first create a new attribute of the
UML type Property and give it the corresponding name.

Properties - Element: 'Business use case' [UML2 Stereotype] @
Selection Help General

Information

4 [=]= el w o

General

F General =
Description ¥ Stereotype
Relationships P icon
=
Reused objects ﬁnsElementl
)] b externallink
Linked diagrams identifier
Presentations in diagrams xmild
Format ¥ BehavioredClassifier

Applied stereotypes classifierBehavior

b interfaceRealization
Tagged values -
¥ ownedBehavior
¥ Class
ishbstract () Falze
ishctive () Falze
b nestedClassifier

¥ ownedAttribute | > |

o, n Create element k| -0 ExtensionEnd
b ownedOperation i NEE [E Port
b ownedReception i
i
b Classifier e

¥ Element % Configure menu...

ownedAttribute
The attributes (i.e. the Properties) owned by the Class.

m Cancel Reset Help

Figure 226: Creating a new attribute for a stereotype

In the next step you have to specify the type of the property. The type can be a primitive data
type, an enumeration type, a metaclass, or another stereotype.

Properties: 'Property’ [UML2 Property]

Selection Help General

Information

(=)=t e v o

General ¥ MultiolicityElement =
Description isOrdered (%) False
Relationships isUnique (%) True
Reused objects — 1
)) lowerValue
Linked diagrams
upper 1
Presentations in diagrams upperValue
Applied stereotypes * NamedElement
Tagged values b clientDependency
name (*) Requirements

nameExpression

visibility
¥ ParameterableElement

owningTemplateParameter
¥ RedefinableElement

isLeaf (*) Falze
¥ StructuralFeature

isReadOnly (*) False
¥ TypedElement

type |< Mot specified> b0 |
type B Create element 4
The type of the TypedElement. Uz CeeTn Alt=U

Ramaua Falatinnchin

Figure 227: Specifying the attribute type

Note that only the primitive data types created by the UML metamodel generator can be used.
You will find these in the PrimitiveTypes (Boolean, Integer, Real, String, and UnlimitedNatural)
and Base (TimeStamp) metamodels. User-defined primitive data types are not supported, even
if they have the same name as those from the generated metamodels.

The values of the Requirements property are entered as text. Therefore, you should select the
primitive data type String from the PrimitiveTypes metamodel as the type of the attribute.

i o

Select elements @

Browse Explorer

Elernent:

* [0 Meta model
[3 E| Base [Metamodel]
‘V@ PrirnitiveTypes [Metamodel]
b Relationships
b [Provides a set of common primitive data types used by other meta models. [L
b I:' Boolean [UML2 PrimitiveType]
b I:' Integer [UML2 PrimitiveType]
b I:' Real [UML2 PrimitiveType]
b I:' String [UML2 PrimitiveType]
b I:' UnlimitedMatural [UML2 PrimitiveType]
b [20] UML [Metamodel]

ﬁ Cancel Help

Figure 228: Selecting the primitive data type String from the PrimitiveTypes metamodel

The stereotype thus looks like this:

zstereotypes

Business use case >
Requirements:String

zMetaclasss:
UseC ase

Figure 229: Stereotype with text attribute

If you enter a description for the property in addition to the name and the type, this is displayed
in the Properties dialog for elements to which this stereotype is assigned.

¥ Element
description Technical requiremnents which have to be observed to realize the use case.

F ownedComment

* Feature
isStatic () False

F MultiplicityElement

¥ NamedElement
Fk clientDependency
name (*) Requirements
nameExpression
visibility

Figure 230: Description of the stereotype attribute

In all use cases to which the «Business use case» stereotype is assigned, the new property
Requirements is now available to you on the Property values properties page.

Properties: Create key custormer order IEI
Selection Help Tagged values
Information e kAt e Bl O
General * Business use case
Description Requirements (*) |This use case may be only executed for customers with status "Key customer”, |
Relationships | This use case may be only executed for customers with status "Key customer”. |

Reused objects

Linked diagrams
Presentations in diagrams
Applied sterectypes
Tagged values

Requirements (* is required)
Technical requiremnents which have to be observed to realize the use case,

m Cancel Reset Help

Figure 231: Property value with free text input

If you want to use an enumeration type as the type for a stereotype attribute, it must either be
contained in the same profile or be imported into the profile for the stereotype from another
profile using an ElementImport relationship>*.

medium
o

zStereotypes
Business use case

Requirements:String —~
Priority: Priarity
Association end:lUseCase

zMetaclasss
UseCase

Figure 232: Definition of the Priority property of the Priority type

Figure 233 shows a UML enumeration type Priority with the three enumeration values high,
normal, and low and a stereotype attribute of the same name, which uses this enumeration type
as its type.

In all use cases to which the «Business use case» stereotype is assigned, the new property
Priority is thus available to you on the Property values properties page.

* To import an enumeration type from another profile into the profile for the stereotype, create a presentation of
the enumeration type in the Profile Diagram for the stereotype and create an edge of the Element import type from
the profile to the enumeration type.

Properties: Create key customer order @

Selection Help Tagged values

Information e %4‘ : '-i—-f: O

General ¥ Business use case

Description Requirements ()

Relationships Priority (%) [high | VJ
high

Reused objects .
medium

Linked diagrams

Presentations in diagrams
Applied stereotypes
Tagged values

Priority (* is required)
The use case should be realized with this priority.

m Cancel Help

Figure 233: Property value with selection list

Properties with metaclasses as the type enable you to use elements from the corresponding
metaclass as values. If you want to use a metaclass as the type for a stereotype attribute, the
same applies as for primitive data types - only metaclasses that have been created by the UML
metamodel generator are supported.

If you are using a stereotype as the type, you can use elements to which this stereotype is
assigned as values. The stereotype must either be defined in the same profile or imported into the
profile.

5.3.5 ARIS-specific features of user-defined properties

If you want to specify the values of a user-defined property in multiple languages, i.e., depending
on the database language selected at login, you must define this in the corresponding stereotype
attribute. Stereotype attributes are of the UML type Property. As the UML specification does not
recognize multilingual elements, there is no property for the UML type Property that you can use
to specify whether or not the UML property defines a multilingual property.

ARIS-specific properties such as multiple languages are provided for definition of profiles by the
OMF Extension Profile. This is a predefined profile in ARIS UML Designer, which you can use
directly in exactly the same way as the standard profile.

In order to be able to define multilingual properties in your profile, you must first apply the OMF
Extension Profile on your profile.

v

Properties: Analysis profile =]
Selection Help Applied profiles
Information e = [|
+ | . =
General
Description Profile & Is strict
Relationships
Apply profiles [F5
Reused objects
[Analysis profile

Linked diagrams
OMF Extension Profile

[] OMF Meta Profile
O
O

Presentations in diagrams

Applied profil
PRECpINE StandardProfile

S\pplisi St=rEotipes UML 1.4 Compatibility Profile

Tagged values
Access privileges (user groups)

Access privileges (users)

m Cancel Help

m Cancel Help

Figure 234: Assigning the predefined OMF Extension Profile to the user-defined Analysis profile

Then open the Properties dialog for the stereotype attribute whose values you want to specify in
multiple languages, and assign it the ExtendedProperty stereotype.

-

Properties: Requirements @

Selection Help Applied sterectypes
Information - = E
o+ L B
Gengral |
Description Stereotype ™ Profile
Relationships
F Apply stereotypes @
Reused objects
Linked diagrams [#] ExtendedProperty

Presentations in diagrams
Applied stereotypes
Tagged values

m Cancel Help

Figure 235: Assigning the «ExtendedProperty» stereotype to the stereotype attribute Requirements

The two ARIS-specific properties isLanguageDependent and isStyledDocument are then
available on the Property values properties page for the stereotype attribute.

P

Properties: Requirements @
Selection Help Tagged values
Information &l 2 8] O
General ¥ ExtendedProperty

Description |isLanguageDependentf"] True
isStyledDocument (%) True

Relationships

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

isLanguageDependent (* is required)
Specifies whether the values of this property are stored separately for each ARIS database
language.

m Cancel Help

Figure 236: ARIS-specific properties of a stereotype attribute

You can use isLanguageDependent to specify whether property values based on this
stereotype attribute are saved according to the relevant database language. You can use
isStyledDocument to specify whether text formatting is available when editing these property
values.

-

Properties: Create key customer order

Selection

Information
General
Description
Relationships

Reused objects

Tagged values

4 ==l el O

¥ Business use case
Contact person ()
Requirements ()

John Doe

[ﬂly be executed for custormers with status "Key customm".lzrl

Linked diad

Presentatio

Applied st | Segoe UL

Tagged val

Priority (%) high
Enter property ‘'Requirements’
AdEE s M~ 4
This use case may only be executed for customers with status "Key customer”.
e [Rﬁﬂ
m Cancel Help

Figure 237: Editing a property value with text formatting

5.3.6 Inheritance relationships between stereotypes

If different stereotypes each define identical properties, we recommend defining a stereotype for
the shared properties and having the others inherit from it.

zstereotypes
Analysis efement

Contact person:String

A\
zsterectypes zMetaclasss
Technical class [—# Class
zstereotypes=
Business use case eMetaclasss
-
eExtendedProperty= Requirements:String UseCase
Priority: Priority

Figure 238: Inheritance relationships between stereotypes

Figure 239 extends the example from Figure 233 with the two stereotypes «Technical class»
and Analysis element. The «Analysis element» stereotype is abstract® and defines the

Contact person property of the String type. The other two stereotypes inherit from «Analysis
element».

This means that all use cases with the «Business use case» stereotype and all classes with the
«Technical class» stereotype show the Contact property on their Property values properties
page.

* The fact that the stereotype is abstract is indicated by the fact that its name is displayed in italics in the diagram.

Properties: Create key customer order

Selection Help

Information

General

Description

Relaticnships

Reused objects

Linked diagrams
Presentations in diagrams
Applied sterectypes
Tagged values

Tagged values

fi[=|=tel O

¥ Business use case ohn D
Contact person (%)
Requirernents ()

Priority (]

Contact person (* is required)

Contact person for technical relevant information.

m Cancel Help

Figure 239: Property values with inherited property

The fact that the «Analysis element>» stereotype is abstract and does not itself extend a
metaclass means that it cannot be assigned to a UML element. It is merely used to define a
property that is to be common to several stereotypes.

Of course, you can also create inheritance relationships between non-abstract stereotypes.

5.3.7 Creating a filter profile

In section 5.3.2 Creating a profile you have seen how to create a profile that completely supports
UML by creating a relationship of the Meta model reference type between the profile and the
UML metamodel. Within a package to which this kind of profile is assigned, all UML symbols are
still available in diagrams in addition to the stereotype-based symbols.

If you delete®® the Meta model reference relationship in the profile in Figure 222, the Symbols
bar for a Use case diagram only displays two symbols for the «Business use case» stereotype.

x

Symbaols
1" ST ™
¥ lUse case diagram

GP Owning classifier

¥ «Analysis profiles

E Business use casze (Use case (class nota...

@ Business use case (Use case)

Figure 240: Symbols bar in the Use case diagram

In addition to the symbols whose metaclasses are permitted by the profile, the Symbols bar also
displays all edge symbols that represent a metaassociation®” and whose two end types are also
permitted by the profile. In Figure 243 this applies to the Owning classifier symbol. It does not
represent a metaclass, but the metaassociation A_ownedUseCase_ classifier, by which a
classifier can own use cases. The metaclass UseCase permitted by the stereotype in the profile
inherits from the Classifier metaclass, which means that relationships of this type are also
possible when using the profile.

The toolbars for other diagram types in which use cases are not allowed are completely empty.

You can selectively add individual metaclass to the profile by placing them in the Profile diagram
and linking them to the profile using the Meta class reference relationship.

% Here, delete means deleting the element and not just its graphic presentation in the diagram.
7 You can use these symbols to create a direct relationship between two UML elements.

fi
zreferences
eprofiles | -] zMetaclasss
Analysis profile | Actor
| zreferences
Metaclasss
- ;_ €
|r Association
| zreferences
— — — —= Property
asterectypes zMetaclasss
; ————
Business use case UseCase

Figure 241: Profile that supports only a few metaclasses

This profile specifies that all elements of the Actor, Association, and Property types can be
used in diagrams, along with elements of the UseCase type, if the «Business use case»
stereotype is assigned to them.

Symbols x
" = un |
¥ lse case diagram

""" ? Abstraction

T Actor

Assaciation

@ Actor (class notation)
—

Owning classifier

¥ «Analysis profiles

g Business use case (Use case (class n..

@ Business use case (Use case)

Figure 242: Symbols bar in a Use case diagram when using the profile

This type of profile definition requires some prior knowledge of the UML metamodel and its
graphical representation in diagrams. In the above example, if the Property metaclass were not
assigned to the profile, the Association symbol would not be available in diagrams, as an edge
presentation for an association can only be created in conjunction with its two association ends,
which are of the Property type.

Note that a profile only has an effect on the new things you can create in a diagram. Existing
diagram content not supported by the profile is retained in the superior package even after
assigning the profile to the diagram.

5.3.8 Creating a diagram stereotype

In ARIS UML Designer, you can define stereotypes for diagrams, so that they can be extended
with user-defined properties, or to specify which content is to be permitted in the diagrams.
Stereotypes for diagrams are created in exactly the same way as stereotypes for elements,
except that the Extension relationship is created from the stereotype to a meta diagram rather
than to a metaclass. Meta diagrams are created by the metamodel generator as UML components
with the «MetaDiagram» stereotype.

5]
= =MetaDiagrams

Class diagram

zDiagramStereotypes
Analysis class diagram

Figure 243: Definition of a stereotype for class diagrams

New properties are defined in exactly the same way as that described in section 5.3.4 Defining
new properties.

In addition, you can specify which symbols can be included in the Symbols bar for a diagram to
which the stereotype is assigned. For this purpose, you must assign the profile the OMF Extension
Profile introduced in section 5.3.5 ARIS-specific features of user-defined properties and assign
the stereotype the «DiagramStereotype» stereotype.

Properties: Analysis class diagram =]

Selection Help Applied stereotypes

Information - | [i1 i |

+ | 3]

General

Description Stereotype ¥ Profile

Relationships

; Apply stereotypes @

Reused ohjects
Linked diagrams | DiagramStereotype
Presentations in diagrams
Applied stereotypes

Tagged values

w Cancel Help
w Cancel Help

Figure 244: Assigning the predefined «DiagramStereotype» stereotype to the user-defined stereotype «Analysis
class diagram»

The «DiagramStereotype>» stereotype defines three new properties for stereotypes, which you
can use to specify which symbols are permitted in the corresponding diagram:

SUPPORTEDMETACLASS

Here, you can add all metaclasses whose symbols are to be supported by the diagram without
having to set any restrictions in terms of the symbol or stereotype to be used.

SUPPORTEDSTEREOTYPE

Here, you can add all stereotypes whose symbols are to be supported by the diagram. This is
useful if the corresponding elements are not to be permitted in the diagram without a stereotype.

SUPPORTEDSYMBOL

Here, you can add all symbols to be permitted in the diagram. This is useful if you want to permit
only certain symbols in the diagram for a metaclass or a stereotype. As long as you do not specify
any symbol in this property (as described in section 5.3.7 Creating a filter profile), all edge
symbols based on metaassociations whose end types are supported by the profile and the other
two properties are also permitted in the diagram. However, as soon as you specify a symbol here,
you must add to this property all edge symbols based on metaassociations that are to be
permitted in the diagram.

If you do not enter a value for any of the three properties, all symbols are permitted in the
diagram.

You can use the following configuration to specify that the Symbols bar for Class diagrams with
the «Analysis class diagram» stereotype contains all symbols for the UML types Comment and
Constraint, all symbols for the UML type Class with the «Technical class» stereotype, and the
Association, Constrained element, and Annotated element symbols.

Properties: Analysis class diagram

Selection Help Tagged values

Information

fi[=|=tel O
General ¥ Diagram5tereotype
Description ¥ supportedMetaClass

Relaticnships
Reused objects

¥ supportedStereotype
Linked diagrams
Presentations in diagrams ¥ supportedSymbol
Applied sterectypes

Tagged values

(Name)
{Description])

El Constraint
El Comment

E Technical class
B Constrained element

B Annotated element
B Association

m Cancel Help
Figure 245: Configuration of a diagram stereotype
In the Profile diagram, the stereotype with this configuration is displayed as follows:
zDiagram&terectype=
Analysis class diagram =0

supportedi etaClass = { Constraint, Comment }
supportedStereatype = { Technical class }

supportedSymbaol = { Constrained element, Annotated element, Association }

Figure 246: Configured diagram stereotype in profile diagram

zMetaDiagrams=
Class diagram

With this configuration, the Symbols bar for a Class diagram with the «Analysis class diagram»
stereotype can contain the following symbols:

Symbols x
"la = 2 | v |
¥ Class diagram

=3 Abstraction
Annotated element

1 I Binary constraint

)

Aszociation
Comment

@ Constraint

[¥

¥ <fnalysis profiles

E Technical class (Class)

Figure 247: Symbols bar for an Analysis class diagram

If you have defined a single stereotype for a meta diagram in your profile and, in packages to
which the profile is assigned, diagrams of this type are only to be created in conjunction with this
stereotype, by flagging the Extension relationship as required you can specify that the
stereotype is automatically assigned when creating the diagram (see also section 5.3.3 Creating
a stereotype).

6 Differences from ARIS Architect/Designer

This section shows you the differences in operation between ARIS UML Designer and ARIS
Architect/Designer and the reasons for them.

6.1 Relevance of the model and its diagrams in terms of
semantics

There is a fundamental difference between the classic ARIS Method and UML that has major
effects on how you use ARIS Architect/ARIS Designer and ARIS UML Designer.

In UML, the semantics of a model (not a diagram) are completely contained in its elements and
their properties and relationships. Diagrams merely represent a graphical view of the model. If
you were to delete all UML 2 diagrams in an ARIS database, the semantics of the UML model
would be fully retained. In addition, many UML elements are not represented graphically in
diagrams and appear there in text form at most within the graphical presentation of a superior
element.

In ARIS Method, diagrams have a much greater significance. For some ARIS objects, the symbol
by which they are represented graphically in a diagram actually determines their semantics®. As
a consequence, the diagrams in ARIS Method make a significant contribution to the semantics of
the model. Conversely, objects and relationships that are not represented graphically in a
diagram are irrelevant in ARIS Method.

During database reorganization® all ARIS objects and ARIS relationships with no occurrence in a
diagram are therefore deleted. By contrast, UML 2 elements are retained after database
reorganization, as merely the fact that a UML element is not represented in any diagram does not
reveal whether or not it is still required.

6.2 The Save and Undo/Redo functions

Unlike in the ARIS standard, in ARIS UML Designer many elements and relationships are not
created and edited graphically in diagrams, but in the Explorer tree and in Properties dialogs.
Therefore, the Explorer tree is far more important as a modeling component than is the case in
the ARIS standard. There, the tree is primarily used for editing the group hierarchy, creating
diagrams, and for navigation.

In ARIS UML Designer, changes made in Explorer are not saved until current changes are saved
in the database. In addition, changes can be undone provided they have not yet been saved. Only
functionalities that are processed on the ARIS server require the changes to be saved
immediately, e.g., copying structures in Explorer.

*® One example is the Rule object. It is the graphical representation in a diagram with a XOR, AND, XOR/AND,
OR/XOR symbol etc. that specifies the exact meaning.
** Administrative functionality in ARIS Architect for deleting objects and connections that is no longer required.

Apart from editing the graphic properties of an element presentation, UML elements can be edited
in various components in ARIS UML Designer. For example, it is totally irrelevant whether you
select a class in the Explorer tree or in one of the diagrams to edit attributes, operations, or other
properties on the General properties page.

All changes made to an element in a component of ARIS UML Designer are immediately displayed
in all other components. In particular, the Explorer tree displays elements created or renamed in
diagrams immediately and not only after saving, as is the case in ARIS Architect/ARIS Designer.

In addition, a change to an element in the Explorer tree or in a diagram can result in changes in
other diagrams if edges or nesting relationships that appear there are rendered invalid by the
change.

Because of the facts outlined, in terms of the Save and Undo/Redo functions ARIS UML
Designer has very different behavior than ARIS Architect/ARIS Designer:

o The Save function always saves all changes you have made. Changes in the Explorer tree are also
not saved until this time.
e The Undo/Redo functions operate globally across Explorer and diagram boundaries.

6.3 Opening diagrams

If you open a diagram in ARIS Architect/ARIS Designer, it is locked for write access by other users
when opened, or a message is displayed stating that it can only be opened in read-only mode if
another user has already opened the diagram.

To prevent a diagram being automatically locked for changes by other users when you only want
to view it, in ARIS UML Designer diagrams are always opened in read-only mode. The
corresponding lock is only requested from the server and the diagram is updated when you
attempt to change the diagram, so that you are editing the diagram in its current state. If it is
already being edited by another user, you will see a corresponding message.

When saving, in ARIS UML Designer all locks are canceled.

6.4 Element hierarchies

While hierarchies of objects can only be represented in ARIS Architect/ARIS Designer graphically
using corresponding connection types in diagrams or by assigning a diagram with subordinate
objects to a superior object, in ARIS UML Designer element hierarchies can be represented
directly in the Explorer tree, where the superior element owns the subordinate elements.

6.5 Graphical connections and edges in diagrams

In ARIS Architect/Designer, a graphical connection in a diagram always displays a single
connection definition. In ARIS UML Designer, a graphical edge can represent a whole series of
elements and relationships. You will find more detailed information about this issue in section 3.2
Complexity of edge presentations.

6.6 Assignments

ARIS Method specifies which and how many diagram types can be assigned for each object type.
ARIS UML Designer uses a different approach for diagram assignments, which is outlined in more
detail in section 2.2.2.4 Linked diagrams (elements).

6.7 Creating ARIS scripts

ARIS UML Designer provides special functionalities for editing of UML content in ARIS reports and
macros. These are outlined using some example scripts in the report and macro categories under
UML example scripts.

7 Differences from ARIS UML Designer 7.x

With ARIS UML Designer 9, both a new approach to mapping from UML to ARIS and a new
approach to integration of UML with classic ARIS modeling has been introduced. This result in
several changes compared to ARIS UML Designer 7.x, which are explained below.

7.1 UML version

The most obvious difference relates to the supported UML version. ARIS UML Designer 7.x
supports UML 1.4, and ARIS UML Designer 9 supports UML version 2.5.

ARIS UML Designer 9 supports all element types and properties included in the UML 2.5
specification. Apart from Timing diagrams, for which there is only rudimentary support, all UML
2.5 diagram types are supported.

Thus, the UML support in ARIS UML Designer 9 is significantly more comprehensive than that in
ARIS UML Designer 7.x.

7.2 Mapping of UML to ARIS

Mapping of UML 1.4 to ARIS Method represented a mixture of UML and business process types. In
some cases, the decision on whether a UML element type was mapped to an ARIS object type or
ARIS connection type was based on how it was to be displayed graphically in diagrams. Thus, the
reusability of business process objects as UML elements was specified in ARIS Method.

Element hierarchies were realized using ARIS connections between the corresponding objects.
For example, the nesting of a class in a package was mapped using a connection of the
CT_IS_NESTED type. This could mean that a class was contained in various packages due to
multiple connections of this type, which is not allowed in UML.

As some UML elements themselves were mapped to connections, e.g., Dependency, ARIS UML
Designer 7.x internally supported edges as the source or target of connections.

Mapping UML 2.5 to ARIS Method involved a new approach, which is outlined in section 3 Mapping
UML to the ARIS object model. For each UML element type, a single corresponding UML 2 object
type exists in ARIS Method. All UML elements are mapped to ARIS groups with the corresponding
object type number.

These changes also mean that databases with UML 1.4 content created using ARIS UML Designer
7.x have to be converted to UML 2 before this content can be displayed and edited by ARIS UML
9. Further information can be found in section 2.5.4 Data transfer from ARIS UML Designer 7.x.

7.3 Reuse of business process objects in UML

The concept of direct reuse of some specifically defined ARIS object types in UML that is familiar
from ARIS UML Designer 7.x has been replaced with a flexible new concept in ARIS UML Designer
9, which means that as a user you can now decide which business process objects you want to
map to which UML elements. Direct reuse has been replaced by a new reuse relationship for this
purpose.

This concept is outlined in detail in section 4 Linking business process and UML modeling.

7.4 Saving and undoing changes

In ARIS UML Designer 7.x, diagrams were individually saved but all changed UML elements were
always saved when saving an individual diagram, i.e., including the elements that were changed
from other diagrams. Changes in the UML package tree were always saved directly, which meant
that they could not be undone.

ARIS UML Designer 9 always saves all changes. The Undo/Redo functionality operates globally
across all components and diagrams.

Section 6.2, The Save and Undo/Redo functions, describes the motivation behind this changed
behavior in ARIS UML Designer 9.

7.5 Integration of UML into the Explorer tree

In addition to the Explorer tree, ARIS UML Designer 7.x contained a second tree - the UML
package tree - for UML-compliant display and management of UML content and hierarchies. For
each UML package, UML model, and UML profile both an ARIS group and an ARIS object were
created to represent the UML package hierarchy in the Explorer tree in the form of an ARIS group
hierarchy and to enable all UML elements contained in the package to be stored in the
corresponding group for the package.

Particularly when working in the Explorer tree, it was possible that the UML structure of the two
trees was no longer synchronized and they were showing different UML hierarchies.

In ARIS UML Designer 9, UML has been fully integrated into the Explorer tree. In addition, UML
elements are mapped to groups with the corresponding object type number, which means that
there are no longer two different ARIS items (group + object) for a UML package.

7.6 Separate window for ARIS UML Designer

The functionalities and components of ARIS UML Designer 7.x were completely integrated into
the ARIS Architect or ARIS Designer window.

Because of the different concepts, particularly in terms of the Explorer tree, the Save and Undo
behavior of ARIS UML Designer 9 and ARIS Architect/ARIS Designer, separation of the two
applications using two different windows is now necessary.

However, the two are closely integrated on a functional level, which means that easy navigation
from one application to the other is possible. You can find more detailed information about this
topic in section 4.3, Navigation between ARIS Architect/Designer and ARIS UML Designer.

7.7 XMI interface

ARIS UML Designer 7.x supports the XMI format UML 1.4/XMI 1.1, while ARIS UML Designer 9
supports UML 2.5/XMI 2.1.

In contrast to ARIS UML Designer 7.x, the XMI import in ARIS UML Designer 9 identifies content
of the XMI file to be imported that already exists in ARIS and does not duplicate it.

In addition, the XMI interface in ARIS UML Designer 9 also supports export and import of diagram
information based on the UML Diagram Interchange Standard.

You can use XSL transformations, which you manage in the Administration component on the
ARIS server, you can make individual adjustments to external formats both for XMI export and for
XMI import. Further information can be found in section 2.5.3 XMI resources.

8 Appendix
8.1 Glossary

BOOCH METHOD

Object-oriented modeling language developed by Grady Booch, a forerunner of UML

BPMN (BUSINESS PROCESS MODEL AND NOTATION)

Modeling language for business processes, standardized by the OMG

MOF (META OBJECT FACILITY)

Architecture for metamodels and their implementation, standardized by the OMG

OMF (OBJECT MODELING FRAMEWORK)
ARIS implementation of MOF, part of the ARIS UML Designer architecture

OMG (OBJECT MANAGEMENT GROUP)

Non-profit organization, publishes standards for the IT industry

OMT (OBJECT MODELING TECHNIQUE)

Object-oriented modeling language developed by Grady Booch, a forerunner of UML

OOSE (OBJECT-ORIENTED SOFTWARE ENGINEERING)

Object-oriented modeling language developed by Ivar Jacobson, a forerunner of UML

UML (UNIFIED MODELING LANGUAGE)

Object-oriented modeling language, standardized by the OMG

W3C (WORLD WIDE WEB CONSORTIUM)

Committee for standardization of technologies in the World Wide Web

XMI (XML METADATA INTERCHANGE)

XML format for metamodels and models based on them, standardized by the OMG

XML (EXTENSIBLE MARKUP LANGUAGE)

Language for mapping of hierarchical structures in text form, standardized by W3C

XSL (EXTENSIBLE STYLESHEET LANGUAGE)

Language family for definition of the layout of XML documents, standardized by W3C

XSLT (XSL TRANSFORMATION)

Transformation language for transferring documents from one XML format to another,
standardized by W3C

8.2 Additional documents and references

8.2.1 Documents

UML Migration Guidelines - Guidelines for migration of an ARIS 7.x database with UML 1.4
content to UML 2.5

8.2.2 References

OMG (Object Management Group): www.omg.org
OMG specifications (BPMN, MOF, UML, XMI etc.): www.omg.org/spec

W3C (World Wide Web Consortium): www.w3.0rg
W3C specifications (XML, XSLT etc): www.w3.org/standards

http://www.omg.org/
http://www.omg.org/spec
http://www.w3.org/
http://www.w3.org/standards

	Title page
	Contents
	Table of figures
	1 Introduction
	1.1 UML basics
	1.2 What is UML?
	1.3 UML diagram types
	1.3.1 Class diagram
	1.3.2 Component diagram
	1.3.3 Composite structure diagram
	1.3.4 Object diagram
	1.3.5 Package diagram
	1.3.6 Profile diagram
	1.3.7 Deployment diagram
	1.3.8 Activity diagram
	1.3.9 Use case diagram
	1.3.10 Communication diagram
	1.3.11 Sequence diagram
	1.3.12 Timing diagram
	1.3.13 Interaction Overview diagram
	1.3.14 State machine diagram
	1.3.15 Protocol State machine diagram

	1.4 Special features in ARIS UML Designer
	1.4.1 Diagram content
	1.4.2 Names of UML elements
	1.4.3 Multilingual capability

	1.5 The UML metamodel
	1.5.1 Common structure
	1.5.1.1 Root
	1.5.1.2 Namespaces
	1.5.1.3 Types and multiplicities

	1.5.2 Values – Literals
	1.5.3 Classification
	1.5.3.1 Classifiers
	1.5.3.2 Features

	1.5.4 Structured Classifiers
	1.5.4.1 Classes
	1.5.4.2 Associations
	1.5.4.3 Simple Classifiers – DataTypes

	2 ARIS UML Designer overview
	2.1 Specifying the working environment
	2.2 Explorer
	2.2.1 Navigation bar
	2.2.1.1 Explorer tree
	2.2.1.2 Diagram tree

	2.2.2 Properties pages
	2.2.2.1 Information (elements, diagrams, groups)
	2.2.2.2 General (elements, diagrams, groups)
	2.2.2.3 Relationships (elements)
	2.2.2.4 Linked diagrams (elements)
	2.2.2.5 Presentations in diagrams (elements)
	2.2.2.6 Presentations (diagrams)
	2.2.2.7 Connected objects (diagrams)

	2.2.3 Properties dialogs
	2.2.4 Creating new elements in Explorer
	2.2.5 Creating new diagrams in Explorer

	2.3 Designer
	2.3.1 Navigation bar
	2.3.1.1 Diagram overview
	2.3.1.2 Visualized elements

	2.3.2 Properties bar
	2.3.3 Format
	2.3.4 Symbols bar
	2.3.5 Implicit changes bar
	2.3.6.1 Creating new node presentations
	2.3.6.2 Creating a new edge presentation
	2.3.6.3 Deleting presentations and elements
	2.3.6.4 Mini toolbar
	2.3.6.5 Modeling and hierarchy in Explorer
	2.3.6.6 Graphic nestings
	2.3.6.7 Text nestings
	2.3.6.8 Modeling in groupings
	2.3.6.9 UML-specific modeling support
	2.3.6.9.1 Specifying the navigability of an association end
	2.3.6.9.2 Creating getter and setter operations

	2.4 Options
	2.4.1 General
	2.4.2 Modeling
	2.4.3 Designer > General
	2.4.4 Explorer
	2.4.5 Designer > For new diagrams > Appearance
	2.4.6 Designer > For new diagram elements
	2.4.7 Designer > Property tabs
	2.4.8 Designer > UML2 modeling

	2.5 Administration tab
	2.5.1 Method filter
	2.5.2 Link types
	2.5.3 XMI resources
	2.5.4 Data transfer from ARIS UML Designer 7.x

	3 Mapping UML to the ARIS object model
	3.1 Group and object properties of UML elements
	3.2 Complexity of edge presentations
	3.3 The most important mappings from UML to ARIS

	4 Linking business process and UML modeling
	4.1 Assignment of UML diagrams to business process objects
	4.1.1 Creating an assignment in ARIS UML Designer
	4.1.2 Creating an assignment in ARIS Architect/Designer

	4.2 Reusing business process objects as UML elements
	4.2.1 Specifying the mapping of ARIS to UML types
	4.2.2 Reusing an ARIS object in a UML diagram
	4.2.3 Managing the object link definitions

	4.3 Navigation between ARIS Architect/Designer and ARIS UML Designer
	4.3.1 Navigation from ARIS Architect/Designer to ARIS UML Designer
	4.3.2 Navigation from ARIS UML Designer to ARIS Architect/Designer

	5 UML profiles
	5.1 Predefined profiles in ARIS UML Designer
	5.2 Using profiles
	5.2.1 Assignment of profiles to a package
	5.2.2 Assignment of stereotypes to a UML element
	5.2.3 Creating stereotyped elements in the Explorer
	5.2.4 Stereotypes in the Symbols bar of diagrams

	5.3 User-defined UML profiles
	5.3.1 The UML metamodel generator
	5.3.2 Creating a profile
	5.3.3 Creating a stereotype
	5.3.4 Defining new properties
	5.3.5 ARIS-specific features of user-defined properties
	5.3.6 Inheritance relationships between stereotypes
	5.3.7 Creating a filter profile
	5.3.8 Creating a diagram stereotype

	6 Differences from ARIS Architect/Designer
	6.1 Relevance of the model and its diagrams in terms of semantics
	6.2 The Save and Undo/Redo functions
	6.3 Opening diagrams
	6.4 Element hierarchies
	6.5 Graphical connections and edges in diagrams
	6.6 Assignments
	6.7 Creating ARIS scripts

	7 Differences from ARIS UML Designer 7.x
	7.1 UML version
	7.2 Mapping of UML to ARIS
	7.3 Reuse of business process objects in UML
	7.4 Saving and undoing changes
	7.5 Integration of UML into the Explorer tree
	7.6 Separate window for ARIS UML Designer
	7.7 XMI interface

	8 Appendix
	8.1 Glossary
	8.2 Additional documents and references
	8.2.1 Documents
	8.2.2 References

