

1 ©2017 Software AG. All rights reserved.

ARIS

REPORT SCRIPTING - BEST
PRACTICES

ARIS 10.0 SR2

October 2017
Unchanged content since ARIS 10.0—April 2017

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

2 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

TABLE OF CONTENTS

1 Introduction 4

2 Java Script Basics 4

2.1 Global variables 4

2.1.1 Avoid global variables 4

2.1.2 Definition of variables 5

2.1.3 Variables in ‘main’ function 6

2.2 Clean up 7

2.2.1 Release referenced data 7

2.2.2 Partial release of referenced data 8

2.2.3 Using functions 10

2.2.4 Large function stacks 11

3 Working On reports 12

3.1 Using an appropriate method or evaluation filter 12

3.2 Working with the Object Model 12

3.2.1 Reading one attribute means reading all attributes 12

3.2.2 Reading one connection means reading all connections 13

3.2.3 Context of the report execution 14

3.3 Working with external resources 14

3.3.1 Reading from external resources 14

3.4 Using more effective methods 16

3.4.1 Database.clearCaches() 17

3.4.2 ArisData.Unique(Object[] aObjects) 18

3.4.3 ArisData.Save() 19

3.4.4 Group.ModelList(boolean bRecursive, int[] modelTypeNums) 20

3.4.4.1 Group.ModelList(…, ISearchItem p_searchSpec) 21

3.4.5 Group.ObjDefList(boolean bRecursive, int[] objectTypes) 21

3.4.5.1 Group.ObjDefList(…, ISearchItem p_searchSpec) 21

3.4.6 Model.ObjOccListBySymbol(int[] p_iSymbolNum) 21

3.4.7 Model.ObjDefListByTypes(int[] objTypeNum) 22

3.4.8 ConnectableDef.AssignedModels(int[] modelTypes) 23

3.4.9 Using userdefined symbols 24

3.4.10 Using userdefined attributes 25

3.4.11 Using userdefined models 25

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

3 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

3.4.12 Preparing report for use with Report Scheduler 26

3.4.13 ArisData.openDatabase() 26

3.4.14 Clean up after an error! 26

3.4.15 Always use try / catch for error handling 26

3.4.16 Use Context.setProperty(“model-as-emf”, true) 27

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

4 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

1 Introduction

This document does not represent a comprehensive policy to the development of reports in the ARIS

environment, but it describes a series of "best practices" and "mistakes" in the report development, which

base on experience. Adherence to the guidelines described in this document does not necessarily secure

the required and necessary running time and memory features, because this depends on the application of

the reports to be developed.

Completed reports should always be tested on their memory performance and quality.

2 Java Script Basics

The following sections deal with basic guidelines and "mistakes" in the JavaScript environment.

2.1 Global variables

2.1.1 Avoid global variables

Global variables should not be used for referencing the data to be processed, because they are held in

memory until the end of the report. The use of global variables should be restricted to constant data types

that serve to control the parameters and report process.

Example:

var g_data_objDef;

var g_data_models;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();

 g_data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 g_data_models = activeDatabase.Find(Constants.SEARCH_MODEL);

 var result_objDef = checkObjDefs(g_data_objDef);

 var result_modelDef = checkModelDefs(g_data_models);

 ...

}

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

5 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

var g_searchType = Constants.SEARCH_OBJDEF;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 var result = checkSearchResult(data);

 ...

}

...

2.1.2 Definition of variables

All variables should always be explicitly defined. This means that all variables are defined using "var".

Variables which have been defined without the "var" are always implicitly global, and so they are to avoid as

described above.

Example:

function find() {

 var activeDatabase = ArisData.getActiveDatabase();

 data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 data_models = activeDatabase.Find(Constants.SEARCH_MODEL);

 ...

}

...

In the above example the variables "data_objDef" and "data_models" are implicitly defined globally

and therefore live up to the end of the report.

function find() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 var data_models = activeDatabase.Find(Constants.SEARCH_MODEL);

 ...

}

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

6 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

2.1.3 Variables in ‘main’ function

Reports often contain an entry method that controls the main program flow and is referred to as the

"main" function. In general, the report begins and ends with call and end of this function and the entire

call stack is clamped by this "main" function. Variables defined within the "main" function are living from

the beginning until the end of report execution. Therefore variables should be defined only in the "main"

function if they are necessary for the whole context.

Example:

main();

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 var containsMainSystem = containsMainSystem(data_objDef);

 if(containsMainSystem) {

 // only result will be used

 ...

 }

}

...

If, as in the example above, only the processing result of a larger amount of data is required for further

processing, it should be examined whether it is absolutely necessary to keep the entire data set in the

"main" function.

Possible solutions here could be the outsourcing of the search in the "containsMainSystem" function

or the release of the search result. Details are described in the Clean-up and Using functions.

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 var containsMainSystem = containsMainSystem(data_objDef);

 data_objDef = null;

 if(containsMainSystem) {

 // only result will be used

 ...

 }

}

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

7 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

main();

function main() {

 var containsMainSystem = containsMainSystem();

 if(containsMainSystem) {

 // only result will be used

 ...

 }

}

...

function containsMainSystem() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 ...

}

2.2 Clean up

In the development of reports, which operate on larger data sets it is important to release information that

is no longer used. In particular this is relevant for global variables.

The following sections describe the main procedures.

2.2.1 Release referenced data

Referenced data that are no longer used and are not of interest for the further processing should always be

released. Because JavaScript does not allow an explicit release of referenced data and these are only

discarded when they are no longer referenced by any variable, all still valid reference variables of the

released data structure are always set to "null".

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 var result = checkSearchResult(data);

 ...

 for(var i = 0; i < result.length; i++) {

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

8 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

 ...

 }

}

...

var g_searchType = Constants.SEARCH_OBJDEF;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 var result = checkSearchResult(data);

 data = null;

 ...

 for(var i = 0; i < result.length; i++) {

 ...

 }

}

...

In the example above the data returned by the search processing are no longer needed after execution of

function “checkSearchResults()” and should therefore be released by setting the reference variable to

"null".

2.2.2 Partial release of referenced data

Often the data to be processed consists of a list or a set of data objects that are processed within one

iteration. Especially when the processing of individual elements of the list or set is expensive and takes a

longer run time, it makes sense to release those elements that are already processed.

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

 if(data[i].TypeNum() != Constants.OT_ACTION) {

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

9 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

 continue;

 }

 ...

 }

}

...

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

 if(data[i].TypeNum() != Constants.OT_ACTION) {

 data[i] = null;

 continue;

 }

 ...

 }

}

...

}

...

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

 process(data[i]);

 data[i] = null;

 }

}

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

10 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

2.2.3 Using functions

The use of a single and normally large “main” function, with the result that all variables are defined in this

method, has a global character. If it is forgotten to release the referenced data structures, they remain

there from the beginning to the end of the report.

Separating the report into smaller functional blocks ensures that data objects live only within their own

context of use and that not explicitly released data objects are released with the termination of the function

(if they were defined with "var").

Example:

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 // process actions

 var actionsDefs = activeDatabase.Find(

 Constants.SEARCH_OBJDEF,

 Constants.OT_ACTION);

 ...

 // process systems

 var actionsDefs = activeDatabase.Find(

 Constants.SEARCH_OBJDEF,

 Constants.OT_APPL_SYS_TYPE);

 ...

 // process process support units

 var actionsDefs = activeDatabase.Find(

 Constants.SEARCH_OBJDEF,

 Constants.OT_PROCESS_SUPPORT_UNIT);

 ...

}

...

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 processActions(activeDatabase);

 processSystems(activeDatabase);

 processProcSupportUnits(activeDatabase);

}

function processActions(activeDatabase) {

 // process actions

 var actionsDefs = activeDatabase.Find(

 Constants.SEARCH_OBJDEF,

 Constants.OT_ACTION);

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

11 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

 ...

}

fnction processSystems(activeDatabase) {

 // process systems

 var actionsDefs = activeDatabase.Find(

 Constants.SEARCH_OBJDEF,

 Constants.OT_APPL_SYS_TYPE);

 ...

}

function processProcSupportUnits(activeDatabase) {

 // process process support units

 var actionsDefs = activeDatabase.Find(

 Constants.SEARCH_OBJDEF,

 Constants.OT_PROCESS_SUPPORT_UNIT);

 ...

}

...

2.2.4 Large function stacks

Basically deep function nesting and recursions should be avoided and only be used with caution. They

have the consequence that the functions referenced in the parent data structures can be released only

after returning to the function block. Depending on the call depth this can result in accumulation of larger

amounts of data. (Furthermore, all function calls in the report environment are mapped internally by Java

Reflection on their respective implementation. A large number of function calls can therefore lead to

performance loss.)

12 ©2017 Software AG. All rights reserved.

3 Working On reports

The following sections deal with simple and basic tools and guidelines for report development.

3.1 Using an appropriate method or evaluation filter

A decisive factor in the amount of processed data objects and thus hold by the report in memory, is the

used method filter. For the execution of the report therefore always a method filter should be used, which

corresponds to the viewing area of the report. If such a filter not exists in the environment of the executed

report, a dedicated filter for use by the report should be created.

Example:

3.2 Working with the Object Model

3.2.1 Reading one attribute means reading all attributes

When reading object attributes it have to be noted, that reading a single attribute leads to procuring all

defined attributes of the corresponding object definition and keeping them in memory.

?

?

?

Report

Filter

Entire Method

?

?

?

Report

Filter

Report Method

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

13 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

 var nameAttr =

data[i].Attribute(Constants.AT_NAME,Constants.LCID_GERMAN);

 ...

 }

}

...

In the example above all attributes of the object are read into memory by calling data[i].Attribute(

Constants.AT_NAME, Constants.LCID_GERMAN), and released from memory not until discarding of

the object from memory.

3.2.2 Reading one connection means reading all connections

When reading object connections it have to be noted, that always all the defined object connections are

read. Furthermore, it should be noted that reading of connections using filtering methods, meant here are

functions that filter the selection like CxnListFilter(int nCxnKind, int typeNum) will mean that

the connected objects are also read and stored in memory.

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

 // read the connection definition only

 var cxnList = data[i]. CxnList();
 ...

 // read the connection definition and the assigned object definitions

 var filtredCxnList = data[i]. CxnListFilter(
 Constants.EDGES_INOUT, Constants.CT_USE_1);
 ...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

14 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

 }

}

...

3.2.3 Context of the report execution

Report should be developed for an appropriate execution context. It should be noted that data selected for

the execution context is held in memory for the whole runtime.

3.3 Working with external resources

The following sections describe what is to consider in dealing with external resources.

3.3.1 Reading from external resources

When reading external resources the release of the referenced data must be ensured. In particular, pay

attention to the release of resources that have been procured by means of the dialog or context object. It

should be noted as a rule that the memory required for the read resource is twice as large as the needed

disk space from the resource itself.

Example:

...

function main() {

 var xlsTemplate=Context.getFile(

 "xxx.XLT",Constants.LOCATION_SCRIPT);

 var oWorkbook = Context.createExcelWorkbook(

 Context.getSelectedFile(),xlsTemplate);

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet

 ...

}

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

15 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

...

function main() {

 var xlsTemplate=Context.getFile(

 "xxx.XLT",Constants.LOCATION_SCRIPT);

 var oWorkbook = Context.createExcelWorkbook(

 Context.getSelectedFile(),xlsTemplate);

 // read data is no longer used

 xlsTemplate = null;

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet

 ...

}

...

...

function main() {

 var sel = Dialogs.getFilePath (

 "",

 "*.xls!!Chart Files (*.xlc)|*.xlc|Worksheet Files (*.xls)|

 .xls|Data Files (.xlc;*.xls)|*.xlc; *.xls|All Files (*.*)|*.*||",

 "",

 "Select an excel file",

 0);

 var oWorkbook = Context.createExcelWorkbook("test.xls",

sel[0].getData());

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet

 ...

}

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

16 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

...

function main() {

 var sel = Dialogs.getFilePath (

 "",

 "*.xls!!Chart Files (*.xlc)|*.xlc|Worksheet Files (*.xls)|

 .xls|Data Files (.xlc;*.xls)|*.xlc; *.xls|All Files (*.*)|*.*||",

 "",

 "Select an excel file",

 0);

 var oWorkbook = Context.createExcelWorkbook("test.xls",

sel[0].getData());

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet

 ...

}

...

...

function main() {

 var sel = Dialogs.getFilePath (

 "",

 "*.xls!!Chart Files (*.xlc)|*.xlc|Worksheet Files (*.xls)|

 .xls|Data Files (.xlc;*.xls)|*.xlc; *.xls|All Files

(*.*)|*.*||",

 "",

 "Select an excel file",

 0);

 var oWorkbook = Context.createExcelWorkbook("test.xls", sel[0].getData());

 // read data is no longer used

 sel = null;

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet

 ...

}

...

3.4 Using more effective methods

The following section describes methods that should be foreseen to bring the greatest improvements here.

In most of the examples below it is shown how it was implemented before and how it was updated

afterwards.

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

17 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

3.4.1 Database.clearCaches()

If a variable is no longer in scope the referenced data in the "Report OM" which belongs to are released.

This, however, does not mean that the referenced data in the "ARIS-OM" are also released.

To release them, too, the database method "clearCaches()" must be called explicitly. But this is only

necessary if the report holds large amounts of data such as a group with all their models, objects,...

Attention:

In combination with the use of the database method "Save()" and the parameter “SAVE_ONDEMAND”

(compare: ArisData.Save()) it have to be ensured that all desired objects have been stored in the database

before they are removed from the cache by using "clearCaches()".

Example:

...

var oGroups = ArisData.getSelectedGroups();

for (var i = 0; i < oGroups.length; i++) {

 ArisData.getActiveDatabase().clearCaches();

 var oModels = oGroups.ModelList();

 ...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

18 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

}

...

3.4.2 ArisData.Unique(Object[] aObjects)

This method ensures that the array of ARIS objects (only for these and not for Strings, …) does not contain

any duplicate items. So do not implement this functionality by your own.

Example:

...

function getUniqueList(p_objList) {

 p_objList = p_objList.sort();

 if (p_objList.length > 1) {

 var i = p_objList.length-1;

 for (i = p_objList.length-1; i > 0; i--) {

 if (p_objList[i].IsEqual(p_objList[i-1])) {

 p_objList.splice(i,1);

 }

 }

 }

 return p_objList;

}

...

...

function getUniqueList(p_objList) {

 return ArisData.Unique(p_objList);

}

...

In general, it should always be considered whether to call the method is really necessary and whether the

list can contain any duplicate at all.

The call of this method makes sense for example in the following cases:

 If you have a list of models, starting with occurrences

 If you have a list of (object) definitions, starting with (object) occurrences

 If you have a list of (object) definitions, starting with models

But it makes no sense for example in the following cases because these lists can implicitly contain no

duplicates:

 If you have a list of (sub)groups, starting with a group

 If you have a list of (object) occurrences, starting with models

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

19 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

3.4.3 ArisData.Save()

This method manages the storage property on changing accesses on ARIS elements.

 SAVE_AUTO: (Default setting) All changes are optimally stored in the database. In contrast to

SAVE_IMMEDIATELY, objects are stored in larger blocks just early enough before the next read

operation occurs. Resets "SAVE_ONDEMAND" to "SAVE_AUTO"

 SAVE_IMMEDIATELY: All changes will be stored immediately into the database. Resets

"SAVE_ONDEMAND" to "SAVE_IMMEDIATELY".

 SAVE_ONDEMAND: All subsequent changes to ARIS elements will be stored to the database

when Save(Constants.SAVE_NOW) is invoked for the next time.

 SAVE_NOW: Stores all changes after Save(Constants.SAVE_ONDEMAND). The storage mode

SAVE_ONDEMAND remains

It is only necessary to use the adapted storage behavior (SAVE_ONDEMAND) if large amounts of data

should be stored. In this case you should also try to separate reading and writing sections in your

report as far as possible.

If you decide to use the adapted storage behavior (SAVE_ONDEMAND) in your report we suggest using it

for the whole report and the concrete storing (SAVE_NOW) at all relevant times.

Additionally you should call ‘SAVE_NOW’ at the end of the report (and maybe also at further times when

you are not really sure of report behavior) to ensure correct saving.

If components (like Merge) are used in a report the data is (internally) automatically stored before

executing to ensure that all data is available for this component.

In general save operations of models are expensive. Therefore models should be stored as one block – if

possible it even makes sense to store multiple models (e.g . up to 50 models) in one block

Ensure that you don’t delete and create the same occurrence or item in one storage block (not a must)

Attention:

 Unsaved items will not be found for example by Database.Find() and similar commands.

 In combination with the use of the database method "clearCaches()" (compare:

Database.clearCaches()) and the adapted storage behavior (SAVE_ONDEMAND) it have to be

ensured that all desired objects have been stored in the database before they are removed from

the cache.

 If you work on databases which you have opened via "ArisData.openDatabase()" you have

to change the storage behavior of this database. You can do this by calling

“<database>.getArisData().Save()”

 “ArisData.Save()” only manages the behavior of the login database.

Example:

...

ArisData.Save(Constants.SAVE_ONDEMAND);

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

20 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

/* Block of changes which should be stored */

...

ArisData.Save(Constants.SAVE_NOW);

...

ArisData.Save(Constants.SAVE_IMMEDIATELY);

...

3.4.4 Group.ModelList(boolean bRecursive, int[] modelTypeNums)

This method returns a list of all models contained in this group and (optionally) all subgroups. Additionally

the requested model types can be defined.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];

var oAllGroups = getAllGroups([oGroup]);

var oModels = getModels(oAllGroups, Constants.MT_EEPC);

...

function getAllGroups(p_oParentGroups) {

 var oAllGroups = new Array();

 for(var i = 0; i < p_oParentGroups.length; i++) {

 oAllGroups = oAllGroups.concat(p_oParentGroups[i]);

 var oChildGroups = p_oParentGroups[i].Childs();

 if(oChildGroups.length > 0) {

 oAllGroups = oAllGroups.concat(getAllGroups(oChildGroups));

 }

 }

 return oAllGroups;

}

function getModels(p_oGroups, p_nModelType) {

 var oModels = new Array();

 for (var i = 0; i < p_oGroups.length; i++) {

 oModels = oModels.concat(p_oGroups[i].ModelListFilter(p_nModelType));

 }

 return oModels;

}

...

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList(true, Constants.MT_EEPC);

...

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

21 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

3.4.4.1 Group.ModelList(…, ISearchItem p_searchSpec)

This method offers a fast way to determine models contained in this group and (optionally) all its child

groups where the models need to match the given criteria.

Example:

...

var currentDB = ArisData.getActiveDatabase();

var currentLocale = Context.getSelectedLanguage();

var searchItem = currentDB.createSearchItem(Constants.AT_NAME, currentLocale,

 "A*", Constants.SEARCH_CMP_EQUAL,

 false, true) //non-case-sensitive

+

 //search using

wildcards

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList(true,

 [Constants.MT_EEPC, Constants.MT_ORG_CHRT],

 searchItem);

...

3.4.5 Group.ObjDefList(boolean bRecursive, int[] objectTypes)

This method returns a list of all object definitions contained in this group and (optionally) all subgroups.

Additionally the requested object types can be defined.

Compare: Group.ModelList(boolean bRecursive, int[] modelTypeNums)

3.4.5.1 Group.ObjDefList(…, ISearchItem p_searchSpec)

This method offers a fast way to determine object definitions contained in this group and (optionally) all its

child groups where the object definitions need to match the given criteria.

Compare: Group.ModelList(…, ISearchItem p_searchSpec)

3.4.6 Model.ObjOccListBySymbol(int[] p_iSymbolNum)

This method returns the object occurrences of the model having one of the specified symbol types.

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

22 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjOccs = oModels[i].ObjOccList();

 for (var j = 0; j < oObjOccs.length; j++) {

 if (oObjOccs[j].SymbolNum() == Constants.ST_PRCS_IF ||

 oObjOccs[j].SymbolNum() == Constants.ST_FUNC) {

 ...

 }

 }

}

...

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjOccs = oModels[i].ObjOccListFilter(-1, Constants. PRCS_IF);

 oObjOccs = oObjOccs.concat(oModels[i].ObjOccListFilter(-1,

 Constants.ST_

FUNC));

 ...

}

...

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjOccs = oModels[i].ObjOccListBySymbol([Constants.ST_PRCS_IF,

 Constants.ST_FUNC]);

 ...

}

...

3.4.7 Model.ObjDefListByTypes(int[] objTypeNum)

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

23 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

This method returns the object definitions of the model having one of the given object types.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjDefs = oModels[i].ObjDefList();

 for (var j = 0; j < oObjDefs.length; j++) {

 if (oObjDefs[j].TypeNum() == Constants.OT_FUNC ||

 oObjDefs[j].TypeNum() == Constants.OT_EVT) {

 ...

 }

 }

}

...

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjDefs = oModels[i].ObjDefListFilter(Constants.OT_FUNC);

 oObjDefs = oObjDefs.concat(oModels[i].ObjDefListFilter(Constants.OT_EVT));

 ...

}

...

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjDefs = oModels[i].ObjDefListByTypes([Constants.OT_FUNC,

 Constants.OT_EVT]);

 ...

}

...

3.4.8 ConnectableDef.AssignedModels(int[] modelTypes)

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

24 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

This method returns the assigned models having one of the given model types.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];

var oObjDefs = oGroup.ObjDefList();

for (var i = 0; i < oObjDefs.length; i++) {

 var oAssignedModels = oObjDefs[i].AssignedModels();

 for (var j = 0; j < oAssignedModels.length; j++) {

 if (oAssignedModels[j].TypeNum() == Constants.MT_EEPC ||

 oAssignedModels[j].TypeNum() == Constants.MT_EEPC_COLUMN ||

 oAssignedModels[j].TypeNum() == Constants.MT_EEPC_ROW) {

 ...

 }

 }

}

...

...

var oGroup = ArisData.getSelectedGroups()[0];

var oObjDefs = oGroup.ObjDefList();

for (var i = 0; i < oObjDefs.length; i++) {

 var oAssignedModels = oObjDefs[i].AssignedModels([Constants.MT_EEPC,

 Constants.MT_EEPC_COLUMN,

 Constants.MT_EEPC_ROW]);

 ...

}

...

3.4.9 Using userdefined symbols

When using user-defined symbols it must be considered that the type number may change each time the

server is restarted and only the “TypeGUID” never changes. For this reason, the type number has always

to be determined from the “TypeGUID” by using the filter method “UserDefinedSymbolTypeNum()”.

Example:

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

25 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjOccs = oModels[i].ObjOccListFilter(-1, 65820);

 ...

}

...

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjOccs = oModels[i].ObjOccList();

 for (var j = 0; j < oObjOccs.length; j++) {

 if (oObjOccs[j].SymbolNum() == 65820) {

 ...

 }

 }

}

...

var cSYMBOL = ArisData.ActiveFilter().UserDefinedSymbolTypeNum("90fb6e70-

 1660-11db-688f-001485f6fd0c"); //65820

...

var oGroup = ArisData.getSelectedGroups()[0];

var oModels = oGroup.ModelList();

for (var i = 0; i < oModels.length; i++) {

 var oObjOccs = oModels[i].ObjOccListBySymbol([cSYMBOL]);

 ...

}

...

3.4.10 Using userdefined attributes

When using userdefined attributes it must be considered that the type number may change each time the

server is restarted and only the “TypeGUID” never changes. For this reason, the type number has always

to be determined from the “TypeGUID” by using the filter method “UserDefinedAttributeTypeNum()”.

Compare: Using userdefined symbols

3.4.11 Using userdefined models

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

26 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

When using userdefined models it must be considered that the type number may change each time the

server is restarted and only the “TypeGUID” never changes. For this reason, the type number has always

to be determined from the “TypeGUID” by using the filter method “UserDefinedModelTypeNum()”.

Compare: Using userdefined symbols

3.4.12 Preparing report for use with Report Scheduler

Reports, which should be scheduled, may have no dialogs for user interaction.

For this reason, all method calls of the dialog object have to be removed or at least to be commented out.

Additionally, the report flag "Opens dialogs" have to be deactivated, so that the report is available in the

selection for the scheduling:

3.4.13 ArisData.openDatabase()

You can log into the same DB as another user or with another filter or into further databases.

In this case don’t forget to close them afterwards by using “<database>.close()”.

3.4.14 Clean up after an error!

Don’t forget to clean up after an error – especially after “openDatabase” commands.

And also handle output file content in case of an error: “Context.setScriptError(

Constants.ERR_CANCEL)”

3.4.15 Always use try / catch for error handling

REPORT SCRIPTING – BEST PRACTICES 01.10.2000

27 ©2016 Software AG. All rights reserved. ©2017 Software AG. All rights reserved.

You can report detailed error logs to the user by using this code:

try {

 <your code which might throw exceptions>

}

catch(ex) {

 var line = ex.lineNumber

 var message = ex.message

 var filename = ex.fileName

 var exJava = ex.javaException

 if(exJava!=null) {

 var aStackTrace = exJava.getStackTrace()

 for(var iST=0; iST<aStackTrace.length; iST++) {

 message = message + “\n” + aStackTrace[iST].toString()

 }

 }

 Dialogs.MsgBox(“Exception in file “+filename+”, line “+line+”:\n”+message

)

}

3.4.16 Use Context.setProperty(“model-as-emf”, true)

Use “Context.setProperty(“model-as-emf”, true)” once (before writing model graphics to the

report). This makes model graphics in PDF output more brilliant.

The images in the result document can be zoomed without loss or pixel artifacts and you get smaller PDF

result files.

ABOUT SOFTWARE AG

The digital transformation is changing enterprise IT landscapes from inflexible application silos to modern software platform-driven IT architectures which
deliver the openness, speed and agility needed to enable the digital real-time enterprise. Software AG offers the first end-to-end Digital Business
Platform, based on open standards, with integration, process management, in-memory data, adaptive application development, real-time analytics and
enterprise architecture management as core building blocks. The modular platform allows users to develop the next generation of application systems to
build their digital future, today. With over 45 years of customer-centric innovation, Software AG is ranked as a leader in many innovative and digital
technology categories. Learn more at www.SoftwareAG.com.

© 2017 Software AG. All rights reserved. Software AG and all Software AG products are either trademarks or registered trademarks of Software AG.
Other product and company names mentioned herein may be the trademarks of their respective owners

