
ARIS

REPORT SCRIPTING - BEST
PRACTICES

VERSION 10.0 - SERVICE RELEASE 18 AND HIHIGHER

APRIL 2023

This document applies to ARIS Version 10.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Copyright © 2010 - 2023 Software AG, Darmstadt, Germany and/or Software AG USA Inc.,
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or
registered trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries
and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its
subsidiaries is located at https://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms.
These terms are part of the product documentation, located at
https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products". For certain specific third-party license
restrictions, please refer to section E of the Legal Notices available under "License Terms and
Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software
AG Products". These documents are part of the product documentation, located at
https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

REPORT SCRIPTING - BEST PRACTICES

I

Contents
Contents ... I

1 Introduction .. 1

2 Java Script Basics ... 2
2.1 Global variables .. 2

2.1.1 Avoid global variables .. 2
2.1.2 Definition of variables .. 4
2.1.3 Variables in ‘main’ function ... 5

2.2 Clean up ... 7
2.2.1 Release referenced data ... 8
2.2.2 Partial release of referenced data .. 10
2.2.3 Using functions ... 12
2.2.4 Large function stacks ... 14

3 Working on reports ... 15
3.1 Using an appropriate method or evaluation filter ... 15
3.2 Working with the Object Model ... 16

3.2.1 Reading one attribute means reading all attributes 16
3.2.2 Reading one connection means reading all connections 17
3.2.3 Context of the report execution ... 17

3.3 Working with external resources ... 18
3.3.1 Reading from external resources ... 18

3.4 Using more effective methods .. 20
3.4.1 Database.clearCaches() ... 20
3.4.2 ArisData.Unique(Object[] aObjects) ... 22
3.4.3 ArisData.Save() .. 23
3.4.4 Group.ModelList(boolean bRecursive, int[] modelTypeNums) 25

3.4.4.1 Group.ModelList(…, ISearchItem p_searchSpec) 26
3.4.5 Group.ObjDefList(boolean bRecursive, int[] objectTypes) 27

3.4.5.1 Group.ObjDefList(…, ISearchItem p_searchSpec) 27
3.4.6 Model.ObjOccListBySymbol(int[] p_iSymbolNum) 28
3.4.7 Model.ObjDefListByTypes(int[] objTypeNum) .. 29
3.4.8 ConnectableDef.AssignedModels(int[] modelTypes) 30
3.4.9 Using userdefined symbols ... 31
3.4.10 Using userdefined attributes ... 32
3.4.11 Using userdefined models .. 32
3.4.12 Preparing report for use with Report Scheduler 32
3.4.13 ArisData.openDatabase() ... 33
3.4.14 Clean up after an error! ... 33
3.4.15 Always use try / catch for error handling .. 33
3.4.16 Use Context.setProperty(“model-as-emf”, true) 33

4 Legal information ... 34
4.1 Documentation scope .. 34
4.2 Support ... 35

REPORT SCRIPTING - BEST PRACTICES

1

1 Introduction

This document does not represent a comprehensive policy to the development of reports in the ARIS environment,

but it describes a series of "best practices" and "mistakes" in the report development, which base on experience.

Adherence to the guidelines described in this document does not necessarily secure the required and necessary

running time and memory features, because this depends on the application of the reports to be developed.

Completed reports should always be tested on their memory performance and quality.

REPORT SCRIPTING - BEST PRACTICES

2

2 Java Script Basics

The following sections deal with basic guidelines and "mistakes" in the JavaScript environment.

2.1 Global variables

2.1.1 Avoid global variables

Global variables should not be used for referencing the data to be processed, because they are held in memory until

the end of the report. The use of global variables should be restricted to constant data types that serve to control the

parameters and report process.

Example:

var g_data_objDef;
var g_data_models;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();
 g_data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);
 g_data_models = activeDatabase.Find(Constants.SEARCH_MODEL);

 var result_objDef = checkObjDefs(g_data_objDef);
 var result_modelDef = checkModelDefs(g_data_models);
 ...

}

...

REPORT SCRIPTING - BEST PRACTICES

3

var g_searchType = Constants.SEARCH_OBJDEF;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 var result = checkSearchResult(data);
 ...

}

...

REPORT SCRIPTING - BEST PRACTICES

4

2.1.2 Definition of variables

All variables should always be explicitly defined. This means that all variables are defined using "var".

Variables which have been defined without the "var" are always implicitly global, and so they are to avoid as

described above.

Example:

function find() {

 var activeDatabase = ArisData.getActiveDatabase();
 data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);
 data_models = activeDatabase.Find(Constants.SEARCH_MODEL);

 ...

}
...

In the above example the variables "data_objDef" and "data_models" are implicitly defined globally
and therefore live up to the end of the report.

function find() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);
 var data_models = activeDatabase.Find(Constants.SEARCH_MODEL);

 ...

}
...

REPORT SCRIPTING - BEST PRACTICES

5

2.1.3 Variables in ‘main’ function

Reports often contain an entry method that controls the main program flow and is referred to as the "main"

function. In general, the report begins and ends with call and end of this function and the entire call stack is clamped
by this "main" function. Variables defined within the "main" function are living from the beginning until the end of

report execution. Therefore variables should be defined only in the "main" function if they are necessary for the

whole context.

Example:

main();

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 var containsMainSystem = containsMainSystem(data_objDef);

 if(containsMainSystem) {
 // only result will be used

 ...
 }

}
...

If, as in the example above, only the processing result of a larger amount of data is required for further processing, it
should be examined whether it is absolutely necessary to keep the entire data set in the "main" function.

REPORT SCRIPTING - BEST PRACTICES

6

Possible solutions here could be the outsourcing of the search in the "containsMainSystem" function or the

release of the search result. Details are described in the Clean-up and Using functions.

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 var containsMainSystem = containsMainSystem(data_objDef);
 data_objDef = null;

 if(containsMainSystem) {
 // only result will be used

 ...
 }

}
...

main();

function main() {

 var containsMainSystem = containsMainSystem();

 if(containsMainSystem) {
 // only result will be used

 ...
 }

}
...

function containsMainSystem() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data_objDef = activeDatabase.Find(Constants.SEARCH_OBJDEF);

 ...

}

REPORT SCRIPTING - BEST PRACTICES

7

2.2 Clean up

In the development of reports, which operate on larger data sets it is important to release information that is no

longer used. In particular this is relevant for global variables.

The following sections describe the main procedures.

REPORT SCRIPTING - BEST PRACTICES

8

2.2.1 Release referenced data

Referenced data that are no longer used and are not of interest for the further processing should always be released.

Because JavaScript does not allow an explicit release of referenced data and these are only discarded when they are

no longer referenced by any variable, all still valid reference variables of the released data structure are always set to

"null".

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 var result = checkSearchResult(data);

 ...

 for(var i = 0; i < result.length; i++) {

...
 }

}
...

var g_searchType = Constants.SEARCH_OBJDEF;

...

function find() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 var result = checkSearchResult(data);

 data = null;
 ...

 for(var i = 0; i < result.length; i++) {

...
 }

}

...

REPORT SCRIPTING - BEST PRACTICES

9

In the example above the data returned by the search processing are no longer needed after execution of function
“checkSearchResults()” and should therefore be released by setting the reference variable to "null".

REPORT SCRIPTING - BEST PRACTICES

10

2.2.2 Partial release of referenced data

Often the data to be processed consists of a list or a set of data objects that are processed within one iteration.

Especially when the processing of individual elements of the list or set is expensive and takes a longer run time, it

makes sense to release those elements that are already processed.

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

if(data[i].TypeNum() != Constants.OT_ACTION) {
continue;

}
...

 }

}
...

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

if(data[i].TypeNum() != Constants.OT_ACTION) {
data[i] = null;
continue;

}
...

 }

}
...

}

...

REPORT SCRIPTING - BEST PRACTICES

11

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

 process(data[i]);
 data[i] = null;

 }

}
...

REPORT SCRIPTING - BEST PRACTICES

12

2.2.3 Using functions

The use of a single and normally large “main” function, with the result that all variables are defined in this method,

has a global character. If it is forgotten to release the referenced data structures, they remain there from the

beginning to the end of the report.

Separating the report into smaller functional blocks ensures that data objects live only within their own context of use

and that not explicitly released data objects are released with the termination of the function (if they were defined
with "var").

Example:

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();

 // process actions
 var actionsDefs = activeDatabase.Find(

Constants.SEARCH_OBJDEF,
Constants.OT_ACTION);

 ...

 // process systems
 var actionsDefs = activeDatabase.Find(

Constants.SEARCH_OBJDEF,
Constants.OT_APPL_SYS_TYPE);

 ...

 // process process support units
 var actionsDefs = activeDatabase.Find(

Constants.SEARCH_OBJDEF,
Constants.OT_PROCESS_SUPPORT_UNIT);

 ...

}
...

REPORT SCRIPTING - BEST PRACTICES

13

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 processActions(activeDatabase);
 processSystems(activeDatabase);
 processProcSupportUnits(activeDatabase);

}

function processActions(activeDatabase) {

 // process actions
 var actionsDefs = activeDatabase.Find(

Constants.SEARCH_OBJDEF,
Constants.OT_ACTION);

 ...

}

fnction processSystems(activeDatabase) {

 // process systems
 var actionsDefs = activeDatabase.Find(

Constants.SEARCH_OBJDEF,
Constants.OT_APPL_SYS_TYPE);

 ...

}

function processProcSupportUnits(activeDatabase) {
 // process process support units
 var actionsDefs = activeDatabase.Find(

Constants.SEARCH_OBJDEF,
Constants.OT_PROCESS_SUPPORT_UNIT);

 ...

}

...

REPORT SCRIPTING - BEST PRACTICES

14

2.2.4 Large function stacks

Basically deep function nesting and recursions should be avoided and only be used with caution. They have the

consequence that the functions referenced in the parent data structures can be released only after returning to the

function block. Depending on the call depth this can result in accumulation of larger amounts of data. (Furthermore,

all function calls in the report environment are mapped internally by Java Reflection on their respective

implementation. A large number of function calls can therefore lead to performance loss.)

REPORT SCRIPTING - BEST PRACTICES

15

3 Working on reports

The following sections deal with simple and basic tools and guidelines for report development.

3.1 Using an appropriate method or evaluation filter

A decisive factor in the amount of processed data objects and thus hold by the report in memory, is the used method

filter. For the execution of the report therefore always a method filter should be used, which corresponds to the

viewing area of the report. If such a filter not exists in the environment of the executed report, a dedicated filter for

use by the report should be created.

Example:

?

?

?

Report

Filter

Entire Method

?

?

?

Report

Filter

Report Method

REPORT SCRIPTING - BEST PRACTICES

16

3.2 Working with the Object Model

3.2.1 Reading one attribute means reading all attributes

When reading object attributes it has to be noted, that reading a single attribute leads to procuring all defined

attributes of the corresponding object definition and keeping them in memory.

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {
var nameAttr = data[i].Attribute(Constants.AT_NAME,Constants.LCID_GERMAN);

 ...

 }

}
...

In the example above all attributes of the object are read into memory by calling data[i].Attribute(

Constants.AT_NAME, Constants.LCID_GERMAN), and released from memory not until discarding of the

object from memory.

REPORT SCRIPTING - BEST PRACTICES

17

3.2.2 Reading one connection means reading all connections

When reading object connections it has to be noted, that always all the defined object connections are read.

Furthermore, it should be noted that reading of connections using filtering methods, meant here are functions that
filter the selection like CxnListFilter(int nCxnKind, int typeNum) will mean that the connected

objects are also read and stored in memory.

Example:

var g_searchType = Constants.SEARCH_OBJDEF;

...

function main() {

 var activeDatabase = ArisData.getActiveDatabase();
 var data = activeDatabase.Find(g_searchType);

 for(var i = 0; i < data.length; i++) {

// read the connection definition only
var cxnList = data[i]. CxnList();

 ...

// read the connection definition and the assigned object definitions
var filtredCxnList = data[i]. CxnListFilter(

Constants.EDGES_INOUT, Constants.CT_USE_1);
 ...

 }

}
...

3.2.3 Context of the report execution

Report should be developed for an appropriate execution context. It should be noted that data selected for the

execution context is held in memory for the whole runtime.

REPORT SCRIPTING - BEST PRACTICES

18

3.3 Working with external resources

The following sections describe what is to consider in dealing with external resources.

3.3.1 Reading from external resources

When reading external resources the release of the referenced data must be ensured. In particular, pay attention to

the release of resources that have been procured by means of the dialog or context object. It should be noted as a

rule that the memory required for the read resource is twice as large as the needed disk space from the resource

itself.

Example:

...

function main() {

 var xlsTemplate=Context.getFile(
"xxx.XLT",Constants.LOCATION_SCRIPT);

 var oWorkbook = Context.createExcelWorkbook(
Context.getSelectedFile(),xlsTemplate);

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet
 ...
}
...

...

function main() {

 var xlsTemplate=Context.getFile(
"xxx.XLT",Constants.LOCATION_SCRIPT);

 var oWorkbook = Context.createExcelWorkbook(
Context.getSelectedFile(),xlsTemplate);

 // read data is no longer used
 xlsTemplate = null;

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet
 ...
}
...

REPORT SCRIPTING - BEST PRACTICES

19

...

function main() {

var sel = Dialogs.getFilePath (
"",
"*.xls!!Chart Files (*.xlc)|*.xlc|Worksheet Files (*.xls)|
.xls|Data Files (.xlc;*.xls)|*.xlc; *.xls|All Files (*.*)|*.*||",
"",
"Select an excel file",
0);

var oWorkbook = Context.createExcelWorkbook("test.xls", sel[0].getData());

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet
 ...
}
...

...

function main() {

 var sel = Dialogs.getFilePath (
"",
"*.xls!!Chart Files (*.xlc)|*.xlc|Worksheet Files (*.xls)|

 .xls|Data Files (.xlc;*.xls)|*.xlc; *.xls|All Files (*.*)|*.*||",
"",
"Select an excel file",
0);

 var oWorkbook = Context.createExcelWorkbook("test.xls", sel[0].getData());

 // read data is no longer used
 sel = null;

 var sheet = oWorkbook.getSheetAt(0);

 // process sheet
 ...
}
...

REPORT SCRIPTING - BEST PRACTICES

20

3.4 Using more effective methods

The following section describes methods that should be foreseen to bring the greatest improvements here.

In most of the examples below it is shown how it was implemented before and how it was updated afterwards.

3.4.1 Database.clearCaches()

If a variable is no longer in scope, the referenced data in the "Report OM" related to the variable are released.

This, however, does not mean that the referenced data in the "ARIS-OM" are also released.

To release them, too, the database method "clearCaches()" must be called explicitly. But this is only necessary if the

report holds large amounts of data such as a group with all their models, objects,...

Attention:
In combination with the use of the database method "Save()" and the parameter “SAVE_ONDEMAND”

(compare: ArisData.Save()) it have to be ensured that all desired objects have been stored in the database before they

are removed from the cache by using "clearCaches()".

REPORT SCRIPTING - BEST PRACTICES

21

Example:

...

var oGroups = ArisData.getSelectedGroups();
for (var i = 0; i < oGroups.length; i++) {
 ArisData.getActiveDatabase().clearCaches();

 var oModels = oGroups.ModelList();
 ...

}
...

REPORT SCRIPTING - BEST PRACTICES

22

3.4.2 ArisData.Unique(Object[] aObjects)

This method ensures that the array of ARIS objects (only for these and not for Strings, …) does not contain any

duplicate items. So do not implement this functionality by your own.

Example:

...

function getUniqueList(p_objList) {
 p_objList = p_objList.sort();
 if (p_objList.length > 1) {

 var i = p_objList.length-1;
 for (i = p_objList.length-1; i > 0; i--) {

 if (p_objList[i].IsEqual(p_objList[i-1])) {
 p_objList.splice(i,1);

 }
 }

 }
 return p_objList;
}
...

...

function getUniqueList(p_objList) {
 return ArisData.Unique(p_objList);
}
...

In general, it should always be considered whether to call the method is really necessary and whether the list can

contain any duplicate at all.

The call of this method makes sense for example in the following cases:

• If you have a list of models, starting with occurrences

• If you have a list of (object) definitions, starting with (object) occurrences

• If you have a list of (object) definitions, starting with models

But it makes no sense for example in the following cases because these lists can implicitly contain no duplicates:

• If you have a list of (sub)groups, starting with a group

• If you have a list of (object) occurrences, starting with models

REPORT SCRIPTING - BEST PRACTICES

23

3.4.3 ArisData.Save()

This method manages the storage property on changing accesses on ARIS elements.

• SAVE_AUTO: (Default setting) All changes are optimally stored in the database. In contrast to

SAVE_IMMEDIATELY, objects are stored in larger blocks just early enough before the next read operation

occurs. Resets "SAVE_ONDEMAND" to "SAVE_AUTO"

• SAVE_IMMEDIATELY: All changes will be stored immediately into the database. Resets "SAVE_ONDEMAND" to

"SAVE_IMMEDIATELY".

• SAVE_ONDEMAND: All subsequent changes to ARIS elements will be stored to the database when

Save(Constants.SAVE_NOW) is invoked for the next time.

• SAVE_NOW: Stores all changes after Save(Constants.SAVE_ONDEMAND). The storage mode

SAVE_ONDEMAND remains

It is only necessary to use the adapted storage behavior (SAVE_ONDEMAND) if large amounts of data should be

stored. In this case you should also try to separate reading and writing sections in your report as far as possible.

If you decide to use the adapted storage behavior (SAVE_ONDEMAND) in your report we suggest using it for the

whole report and the concrete storing (SAVE_NOW) at all relevant times.

Additionally you should call ‘SAVE_NOW’ at the end of the report (and maybe also at further times when you are not

really sure of report behavior) to ensure correct saving.

If components, such as ARIS Merge are used in a report the data is (internally) automatically stored before executing

to ensure that all data is available for this component.

In general save operations of models are expensive. Therefore models should be stored as one block – if possible it

even makes sense to store multiple models (e.g . up to 50 models) in one block

Ensure that you don’t delete and create the same occurrence or item in one storage block (not a must)

Attention:

• Unsaved items will not be found for example by Database.Find() and similar commands.
• In combination with the use of the database method "clearCaches()" (compare: Database.clearCaches())

and the adapted storage behavior (SAVE_ONDEMAND) it have to be ensured that all desired objects have

been stored in the database before they are removed from the cache.
• If you work on databases which you have opened via "ArisData.openDatabase()" you have to

change the storage behavior of this database. You can do this by calling
“<database>.getArisData().Save()”

• “ArisData.Save()” only manages the behavior of the login database.

REPORT SCRIPTING - BEST PRACTICES

24

Example:

...

ArisData.Save(Constants.SAVE_ONDEMAND);
...
/* Block of changes which should be stored */
...
ArisData.Save(Constants.SAVE_NOW);
...
ArisData.Save(Constants.SAVE_IMMEDIATELY);
...

REPORT SCRIPTING - BEST PRACTICES

25

3.4.4 Group.ModelList(boolean bRecursive, int[] modelTypeNums)

This method returns a list of all models contained in this group and (optionally) all subgroups. Additionally the

requested model types can be defined.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];
var oAllGroups = getAllGroups([oGroup]);
var oModels = getModels(oAllGroups, Constants.MT_EEPC);
...

function getAllGroups(p_oParentGroups) {
 var oAllGroups = new Array();

 for(var i = 0; i < p_oParentGroups.length; i++) {
 oAllGroups = oAllGroups.concat(p_oParentGroups[i]);
 var oChildGroups = p_oParentGroups[i].Childs();
 if(oChildGroups.length > 0) {

 oAllGroups = oAllGroups.concat(getAllGroups(oChildGroups));
 }

 }
 return oAllGroups;
}

function getModels(p_oGroups, p_nModelType) {
 var oModels = new Array();

 for (var i = 0; i < p_oGroups.length; i++) {
 oModels = oModels.concat(p_oGroups[i].ModelListFilter(p_nModelType));

 }
 return oModels;
}
...

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList(true, Constants.MT_EEPC);
...

REPORT SCRIPTING - BEST PRACTICES

26

3.4.4.1 Group.ModelList(…, ISearchItem p_searchSpec)

This method offers a fast way to determine models contained in this group and (optionally) all its child groups where

the models need to match the given criteria.

Example:

...

var currentDB = ArisData.getActiveDatabase();
var currentLocale = Context.getSelectedLanguage();
var searchItem = currentDB.createSearchItem(Constants.AT_NAME, currentLocale,

 "A*", Constants.SEARCH_CMP_EQUAL,
 false, true) //non-case-sensitive +

 //search using wildcards
var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList(true,

 [Constants.MT_EEPC, Constants.MT_ORG_CHRT],
 searchItem);

...

REPORT SCRIPTING - BEST PRACTICES

27

3.4.5 Group.ObjDefList(boolean bRecursive, int[] objectTypes)

This method returns a list of all object definitions contained in this group and (optionally) all subgroups. Additionally

the requested object types can be defined.

Compare: Group.ModelList(boolean bRecursive, int[] modelTypeNums)

3.4.5.1 Group.ObjDefList(…, ISearchItem p_searchSpec)

This method offers a fast way to determine object definitions contained in this group and (optionally) all its child

groups where the object definitions need to match the given criteria.

Compare: Group.ModelList(…, ISearchItem p_searchSpec)

REPORT SCRIPTING - BEST PRACTICES

28

3.4.6 Model.ObjOccListBySymbol(int[] p_iSymbolNum)

This method returns the object occurrences of the model having one of the specified symbol types.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjOccs = oModels[i].ObjOccList();

 for (var j = 0; j < oObjOccs.length; j++) {
 if (oObjOccs[j].SymbolNum() == Constants.ST_PRCS_IF ||

 oObjOccs[j].SymbolNum() == Constants.ST_FUNC) {
 ...

 }
 }
}
...

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjOccs = oModels[i].ObjOccListFilter(-1, Constants. PRCS_IF);
 oObjOccs = oObjOccs.concat(oModels[i].ObjOccListFilter(-1,

 Constants.ST_ FUNC));
 ...
}
...

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjOccs = oModels[i].ObjOccListBySymbol([Constants.ST_PRCS_IF,

 Constants.ST_FUNC]);
 ...
}
...

REPORT SCRIPTING - BEST PRACTICES

29

3.4.7 Model.ObjDefListByTypes(int[] objTypeNum)

This method returns the object definitions of the model having one of the given object types.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjDefs = oModels[i].ObjDefList();

 for (var j = 0; j < oObjDefs.length; j++) {
 if (oObjDefs[j].TypeNum() == Constants.OT_FUNC ||

 oObjDefs[j].TypeNum() == Constants.OT_EVT) {
 ...

 }
 }
}
...

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjDefs = oModels[i].ObjDefListFilter(Constants.OT_FUNC);
 oObjDefs = oObjDefs.concat(oModels[i].ObjDefListFilter(Constants.OT_EVT));
 ...
}
...

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjDefs = oModels[i].ObjDefListByTypes([Constants.OT_FUNC,

 Constants.OT_EVT]);
 ...
}
...

REPORT SCRIPTING - BEST PRACTICES

30

3.4.8 ConnectableDef.AssignedModels(int[] modelTypes)

This method returns the assigned models having one of the given model types.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];
var oObjDefs = oGroup.ObjDefList();
for (var i = 0; i < oObjDefs.length; i++) {
 var oAssignedModels = oObjDefs[i].AssignedModels();

 for (var j = 0; j < oAssignedModels.length; j++) {
 if (oAssignedModels[j].TypeNum() == Constants.MT_EEPC ||

 oAssignedModels[j].TypeNum() == Constants.MT_EEPC_COLUMN ||
 oAssignedModels[j].TypeNum() == Constants.MT_EEPC_ROW) {
 ...

 }
 }
}
...

...

var oGroup = ArisData.getSelectedGroups()[0];
var oObjDefs = oGroup.ObjDefList();
for (var i = 0; i < oObjDefs.length; i++) {
 var oAssignedModels = oObjDefs[i].AssignedModels([Constants.MT_EEPC,

 Constants.MT_EEPC_COLUMN,
 Constants.MT_EEPC_ROW]);

 ...
}
...

REPORT SCRIPTING - BEST PRACTICES

31

3.4.9 Using userdefined symbols

When using user-defined symbols it must be considered that the type number may change each time the server is

restarted and only the “TypeGUID” never changes. For this reason, the type number has always to be determined

from the “TypeGUID” by using the filter method “UserDefinedSymbolTypeNum()”.

Example:

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjOccs = oModels[i].ObjOccListFilter(-1, 65820);
 ...
}
...

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjOccs = oModels[i].ObjOccList();

 for (var j = 0; j < oObjOccs.length; j++) {
 if (oObjOccs[j].SymbolNum() == 65820) {

 ...
 }

 }
}
...

var cSYMBOL = ArisData.ActiveFilter().UserDefinedSymbolTypeNum("90fb6e70-
1660-11db-688f-001485f6fd0c"); //65820

...

var oGroup = ArisData.getSelectedGroups()[0];
var oModels = oGroup.ModelList();
for (var i = 0; i < oModels.length; i++) {
 var oObjOccs = oModels[i].ObjOccListBySymbol([cSYMBOL]);
 ...
}
...

REPORT SCRIPTING - BEST PRACTICES

32

3.4.10 Using userdefined attributes

When using userdefined attributes it must be considered that the type number may change each time the server is

restarted and only the “TypeGUID” never changes. For this reason, the type number has always to be determined

from the “TypeGUID” by using the filter method “UserDefinedAttributeTypeNum()”.

Compare: Using userdefined symbols

3.4.11 Using userdefined models

When using userdefined models it must be considered that the type number may change each time the server is

restarted and only the “TypeGUID” never changes. For this reason, the type number has always to be determined

from the “TypeGUID” by using the filter method “UserDefinedModelTypeNum()”.

Compare: Using userdefined symbols

3.4.12 Preparing report for use with Report Scheduler

Reports, which should be scheduled, may have no dialogs for user interaction.

For this reason, all method calls of the dialog object have to be removed or at least to be commented out.

Additionally, the report flag "Opens dialogs" have to be deactivated, so that the report is available in the selection for
the scheduling:

REPORT SCRIPTING - BEST PRACTICES

33

3.4.13 ArisData.openDatabase()

You can log into the same DB as another user or with another filter or into further databases.
In this case don’t forget to close them afterwards by using “<database>.close()”.

3.4.14 Clean up after an error!

Don’t forget to clean up after an error – especially after “openDatabase” commands.
And also handle output file content in case of an error: “Context.setScriptError(

Constants.ERR_CANCEL)”

3.4.15 Always use try / catch for error handling

You can report detailed error logs to the user by using this code:

try {

<your code which might throw exceptions>}
catch(ex) {
 var line = ex.lineNumber
 var message = ex.message
 var filename = ex.fileName
 var exJava = ex.javaException
 if(exJava!=null) {

 var aStackTrace = exJava.getStackTrace()
 for(var iST=0; iST<aStackTrace.length; iST++) {

 message = message + “\n” + aStackTrace[iST].toString()
 }

 }
 Dialogs.MsgBox(“Exception in file “+filename+”, line “+line+”:\n”+message)
}

3.4.16 Use Context.setProperty(“model-as-emf”, true)

Use “Context.setProperty(“model-as-emf”, true)” once (before writing model graphics to the

report). This makes model graphics in PDF output more brilliant.

The images in the result document can be zoomed without loss or pixel artifacts and you get smaller PDF result files.

REPORT SCRIPTING - BEST PRACTICES

34

4 Legal information

4.1 Documentation scope

The information provided describes the settings and features as they were at the time of
publishing. Since documentation and software are subject to different production cycles, the
description of settings and features may differ from actual settings and features. Information
about discrepancies is provided in the Release Notes that accompany the product. Please read
the Release Notes and take the information into account when installing, setting up, and using
the product.

If you want to install technical and/or business system functions without using the consulting
services provided by Software AG, you require extensive knowledge of the system to be
installed, its intended purpose, the target systems, and their various dependencies. Due to the
number of platforms and interdependent hardware and software configurations, we can
describe only specific installations. It is not possible to document all settings and
dependencies.

When you combine various technologies, please observe the manufacturers' instructions,
particularly announcements concerning releases on their Internet pages. We cannot guarantee
proper functioning and installation of approved third-party systems and do not support them.
Always follow the instructions provided in the installation manuals of the relevant
manufacturers. If you experience difficulties, please contact the relevant manufacturer.

If you need help installing third-party systems, contact your local Software AG sales
organization. Please note that this type of manufacturer-specific or customer-specific
customization is not covered by the standard Software AG software maintenance agreement
and can be performed only on special request and agreement.

REPORT SCRIPTING - BEST PRACTICES

35

4.2 Support

If you have any questions on specific installations that you cannot perform yourself, contact
your local Software AG sales organization
(https://www.softwareag.com/corporate/company/global/offices/default.html). To get detailed
information and support, use our websites.

If you have a valid support contract, you can contact Global Support ARIS at: +800
ARISHELP. If this number is not supported by your telephone provider, please refer to our
Global Support Contact Directory.

ARIS COMMUNITY

Find information, expert articles, issue resolution, videos, and communication with other ARIS
users. If you do not yet have an account, register at ARIS Community.

SOFTWARE AG EMPOWER PORTAL

You can find documentation on the Software AG Documentation website
(https://empower.softwareag.com/). The site requires credentials for Software AG's Product
Support site Empower. If you do not yet have an account for Empower, send an e-mail to
empower@softwareag.com (mailto:empower@softwareag.com) with your name, company, and
company e-mail address and request an account.

If you have no account, you can use many links on the TECHcommunity website. For any
questions, you can find a local or toll-free number for your country in our Global Support
Contact Directory and give us a call.

TECHCOMMUNITY

On the TECHcommunity website, you can find documentation and other technical
information:

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

 Access articles, code samples, demos, and tutorials.
 Find links to external websites that discuss open standards and web technology.
 Access product documentation, if you have TECHcommunity credentials. If you do not,

you will need to register and specify Documentation as an area of interest.

https://www.softwareag.com/corporate/company/global/offices/default.html
https://empower.softwareag.com/
mailto:empower@softwareag.com

REPORT SCRIPTING - BEST PRACTICES

36

EMPOWER (LOGIN REQUIRED)

If you have an account for Empower, use the following sites to find detailed information or
get support:

 You can find product information on the Software AG Empower Product Support website.
 To get information about fixes and to read early warnings, technical papers, and

knowledge base articles, go to the Knowledge Center.
 Once you have an account, you can open Support Incidents online via the eService section

of Empower.
 To submit feature/enhancement requests, get information about product availability, and

download products, go to Products.

SOFTWARE AG MANAGED LEARNINGS

Get more information and trainings to learn from your laptop computer, tablet or smartphone.
Get the knowledge you need to succeed and make each and every project a success with
expert training from Software AG.

If you do not have an account, register as a customer or as a partner.

	ARIS Report Scripting - Best Practices
	Contents
	1 Introduction
	2 Java Script Basics
	2.1 Global variables
	2.1.1 Avoid global variables
	2.1.2 Definition of variables
	2.1.3 Variables in ‘main’ function

	2.2 Clean up
	2.2.1 Release referenced data
	2.2.2 Partial release of referenced data
	2.2.3 Using functions
	2.2.4 Large function stacks

	3 Working on reports
	3.1 Using an appropriate method or evaluation filter
	3.2 Working with the Object Model
	3.2.1 Reading one attribute means reading all attributes
	3.2.2 Reading one connection means reading all connections
	3.2.3 Context of the report execution

	3.3 Working with external resources
	3.3.1 Reading from external resources

	3.4 Using more effective methods
	3.4.1 Database.clearCaches()
	3.4.2 ArisData.Unique(Object[] aObjects)
	3.4.3 ArisData.Save()
	3.4.4 Group.ModelList(boolean bRecursive, int[] modelTypeNums)
	3.4.4.1 Group.ModelList(…, ISearchItem p_searchSpec)

	3.4.5 Group.ObjDefList(boolean bRecursive, int[] objectTypes)
	3.4.5.1 Group.ObjDefList(…, ISearchItem p_searchSpec)

	3.4.6 Model.ObjOccListBySymbol(int[] p_iSymbolNum)
	3.4.7 Model.ObjDefListByTypes(int[] objTypeNum)
	3.4.8 ConnectableDef.AssignedModels(int[] modelTypes)
	3.4.9 Using userdefined symbols
	3.4.10 Using userdefined attributes
	3.4.11 Using userdefined models
	3.4.12 Preparing report for use with Report Scheduler
	3.4.13 ArisData.openDatabase()
	3.4.14 Clean up after an error!
	3.4.15 Always use try / catch for error handling
	3.4.16 Use Context.setProperty(“model-as-emf”, true)

	4 Legal information
	4.1 Documentation scope
	4.2 Support

