
Deploying and Managing Apama Applications

9.9.0

October 2015

This document applies to Apama 9.9.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or
their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA Inc.
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective
owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product documentation, located at
http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or restrictions, please refer to
"License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party license restrictions, please refer to section E of the
Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software AG Products".
These documents are part of the product documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Document ID: PAM-Deploying_and_Managing_Apama_Applications-9.9.0-20151003@262969

http://softwareag.com/licenses
http://softwareag.com/licenses/
http://softwareag.com/licenses

Table of Contents

Deploying and Managing Apama Applications 9.9.0 3

Table of Contents

Preface.. 7
Documentation roadmap.. 7
Contacting customer support... 9

Chapter 1: Overview of Deploying Apama Applications...10
About deploying components with EMM..10
About Apama command line utilities..10
About deploying dashboards..10
About tuning applications for performance.. 11
Setting up the environment using the Apama Command Prompt..12

Chapter 2: Using the Management and Monitoring Console..13
Installation...13
Concepts... 14

The EMM console window..15
Committed values and outstanding changes..16

State persistence.. 17
Managing licenses.. 18
Managing security...19
Managing hosts.. 19

Sentinel Agents... 20
Sentinel Agent options.. 20
Working directory...22
Working with hosts.. 22
Managing all known hosts...27

Managing components... 29
Component status indicators..29
Working with components.. 30

Add correlator.. 31
Add adapter...31
Remove component.. 31
Move component to host.. 32
Start component.. 32
Stop component.. 33
Restart component.. 33
Clear all component logs.. 34

Configuring components with the details pane.. 34
Specifying paths and filenames in the Details Pane.. 34

Preferences...35
Warnings..35
Display... 38
Timing.. 39

Chapter 3: Deploying and Configuring Correlators...41
Adding correlators...41

Table of Contents

Deploying and Managing Apama Applications 9.9.0 4

The correlator tabs... 42
Management tab..43
Configuration tab... 44
Initialization tab..45
Adding initialization actions... 46
Connections tab...49

Adding new upstream connections..50
Downstream connections... 52

Statistics tab.. 53
Inspect tab...56

Deleting Monitors, Event Types, or JMon applications from a correlator...57
Displaying event type definition for multiple Event Types... 57

Diagnostics tab.. 58

Chapter 4: Deploying and Configuring Adapters.. 60
Adding adapters..60
Configuring adapters.. 61

Specifying paths and filenames in the Details Pane.. 61
The Adapter tabs..62

Management tab..62
Configuration tab... 63
Connections tab...65
Control tab...65
Statistics tab.. 65
Diagnostics tab.. 68

Chapter 5: Deploying and Managing Queries.. 70
Overview of deploying and managing query applications..70
Query application architecture..71
Deploying query applications... 71
Running queries on correlator clusters.. 72

Deploying queries on multiple correlators...72
Deploying BigMemory Terracotta Server Array...73
Configuring BigMemory driver...73
Using JMS to deliver events to queries running on a cluster... 74
Mixing queries with monitors and scenarios...75
Handling node failure and failover.. 76

Managing parameterized query instances... 76
Creating new query instances by setting parameter values... 76
Changing parameter values for queries that are running... 77

Monitoring running queries...77

Chapter 6: Tuning Correlator Performance.. 79
Scaling up Apama.. 79
Partitioning strategies... 80
Engine topologies... 83
Event correlator pipelining..84

Connection configuration file...89
Configuring pipelining through the client API..91

Table of Contents

Deploying and Managing Apama Applications 9.9.0 5

Event partitioning...93

Chapter 7: Managing and Monitoring over REST.. 95
Generic Management... 96
Correlator Management..99
IAF Management.. 100

Chapter 8: Correlator Utilities Reference... 102
Starting the event correlator...102

About the Apama license file.. 110
Specifying log filenames... 110
Examples for specifying log filenames..112
Descriptions of correlator status log fields..113
Text internationalization issues..115
Determining whether to disconnect slow receivers...116

Description of slow receivers... 116
How frequently slow receivers occur... 117
Correlator behavior when there is a slow receiver.. 117
Tradeoffs for disconnecting a slow receiver.. 118
Determining whether to disable the correlator’s internal clock.. 118

Injecting code into a correlator...119
Deleting code from a correlator... 121
Packaging EPL and Java code..124
Sending events to correlators.. 126
Receiving events from correlators..129
Watching correlator runtime status...131
Inspecting correlator state.. 135
Shutting down and managing components..137

Viewing garbage collection information...143
Using the profiler command-line interface.. 143
Setting logging attributes for packages, monitors and events.. 147
Rotating the correlator log file...150
Rotating all log files...150
Rotating specified log files.. 151

Using the command-line debugger.. 151
Obtaining online help for the command-line debugger...156
Enabling and disabling debugging in the correlator..156
Working with breakpoints using the command-line debugger.. 157

Adding breakpoints...157
Listing breakpoints... 157
Removing breakpoints..157

Controlling execution with the command-line debugger... 158
The wait command...158

Command shortcuts for the command-line debugger...159
Examining the stack with the command-line debugger.. 160
Displaying variables with the command-line debugger...160

Replaying an input log to diagnose problems..160
Creating an input log file...161
Rotating an input log file...161

Table of Contents

Deploying and Managing Apama Applications 9.9.0 6

Performance when generating an input log..162
Reproducing correlator behavior from an input log.. 162

Event file format... 164
Event representation... 164
Event timing...165
Event types..166
Event association with a channel..167

Using the data player command-line interface.. 167
Using the Apama component extended configuration file... 169

Binding server components to particular addresses...170
Ensuring that client connections are from particular addresses... 170
Setting environment variables for Apama components.. 171
Setting log files and log levels in an extended configuration file.. 171
Sample extended configuration file...172
Starting a correlator with an extended configuration file...173

Documentation roadmap

Deploying and Managing Apama Applications 9.9.0 7

Preface

n Documentation roadmap ... 7

n Contacting customer support .. 9

Deploying and Managing Apama Applications discusses the following topics:

Issues involved in deploying the components that make up an Apama application

Starting and managing Apama correlators and adapters with the Enterprise Management and
Monitoring console (EMM)

Tuning Apama applications for optimum performance

Managing Apama applications over REST

Using correlator utilities and the extended component configuration file

Documentation roadmap
Apama provides documentation in three formats:

HTML viewable in a Web browser

PDF

Eclipse Help

You can access the documentation on your machine after Apama has been installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama Documentation n.n.

UNIX. Display the index.html file, which is in the doc directory of your Apama installation
directory.

The following table describes the PDF documents that are available.

Title Description

Release Notes Describes new features and changes since the previous
release.

Installing Apama Instructions for installing Apama.

Introduction to Apama Introduction to developing Apama applications, discussions
of Apama architecture and concepts, and pointers to
sources of information outside the documentation set.

Using Apama with Software
AG Designer

Instructions for using Apama to create and test Apama
projects, develop EPL programs, define Apama queries,

Documentation roadmap

Deploying and Managing Apama Applications 9.9.0 8

Title Description
develop JMon programs, and store, retrieve and play back
data.

Developing Apama Applications Describes the different technologies for developing
applications: EPL monitors, Apama queries, Event Modeler,
and Java. You can use one or several of these technologies
to implement a single Apama application. In addition, there
are C++, C, and Java APIs for developing components that
plug in to a correlator. You can use these components from
EPL.

Connecting Apama
Applications to External
Components

Describes how to connect Apama applications to any
event data source, database, messaging infrastructure, or
application. The general alternatives for doing this are as
follows:

Implement standard Apama Integration Adapter
Framework (IAF) adapters.

Create applications that use correlator-integrated
messaging for JMS or Software AG's Universal Messaging.

Develop adapters with Apama APIs for Java and C++.

Develop client applications with Apama APIs for
Java, .NET, and C++.

Building and Using Dashboards Describes how to build and use an Apama dashboard,
which provides the ability to view and interact with
scenarios and DataViews. An Apama project typically
uses one or more dashboards, which are created in the
Dashboard Builder. The Dashboard Viewer provides the
ability to use dashboards created in Dashboard Builder.
Dashboards can also be deployed as simple Web pages,
applets, or WebStart applications. Deployed dashboards
connect to one or more correlators by means of a Dashboard
Data Server or Display Server.

Deploying and Managing
Apama Applications

Describes how to use the Management & Monitoring
console to configure, start, stop, and monitor the correlator
and adapters across multiple hosts. Also provides
information for:

Improving Apama application performance by using
multiple correlators and saving and reusing a snapshot of
a correlator's state.

Managing and monitoring over REST (REpresentational
State Transfer).

Using correlator utilities.

Preface

Contacting customer support

Deploying and Managing Apama Applications 9.9.0 9

Contacting customer support
If you have an account, you may open Apama Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/. If you do not yet have an account, send an email
to empower@softwareag.com with your name, company, and company email address and request an
account.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.asp and give us a
call.

Preface

https://empower.softwareag.com/
https://empower.softwareag.com/public_directory.asp

About deploying components with EMM

Deploying and Managing Apama Applications 9.9.0 10

Chapter 1: Overview of Deploying Apama Applications

n About deploying components with EMM ... 10

n About Apama command line utilities ... 10

n About deploying dashboards ... 10

n About tuning applications for performance .. 11

n Setting up the environment using the Apama Command Prompt .. 12

Deploying and managing Apama applications involves the following activities:

Starting and managing Apama components with the Enterprise Management and Monitoring
console (EMM)

Starting and managing correlators with Apama command line utilities

Tuning Apama applications for optimum performance

About deploying components with EMM
Apama’s Enterprise Management and Monitoring (EMM) console provides a graphical interface for
configuring, deploying, and monitoring various Apama components across multiple hosts.

For a general overview of EMM, see "Using the Management and Monitoring Console" on page
13.

For information on using EMM to start and manage correlators, see "Deploying and Configuring
Correlators" on page 41.

For information on using EMM to start and manage adapters, see "Deploying and Configuring
Adapters" on page 60.

Overview of Deploying Apama Applications

About Apama command line utilities
Apama provides a variety of command line tools for managing and monitoring Apama correlators.
For information and instructions on using these tools to monitor and manage event correlators, see
"Correlator Utilities Reference" on page 102.

Overview of Deploying Apama Applications

About deploying dashboards
Dashboard deployment and administration involves the following activities:

About tuning applications for performance

Deploying and Managing Apama Applications 9.9.0 11

Deployment package installation and configuration — see "Deploying Dashboards" in Building
and Using Dashboards.

Data Server and Display Server management — see "Managing the Dashboard Data Server and
Display Server" in Building and Using Dashboards.

Security administration — see "Administering Dashboard Security" in Building and Using
Dashboards.

Before you perform these tasks, you should familiarize yourself with the deployment and
administration concepts described in "Dashboard Deployment Concepts" in Building and Using
Dashboards.

Deployment options

Dashboards can be deployed as simple, thin-client Web pages, as Java applets, as Java Web Start
applications, or as files that can be loaded into a locally-installed, desktop application, the Dashboard
Viewer. These deployment options are described and compared in "Deployment options" in Building
and Using Dashboards.

Data server and display server

Scalability and security of dashboard deployment are supported by the use of the Data Server and
Display Server, which mediate dashboard access to running scenarios and DataViews. The Data
Server and Display Server are introduced in "Data Server and Display Server" in Building and Using
Dashboards.

Process architecture

Applet and Web Start dashboards communicate with the Data Server via servlets running on an
application server. Simple, thin-client, Web-page dashboards communicate with the Display Server
via servlets running on your application server. Locally-deployed dashboards communicate directly
with the Data Server. The structure of deployed configurations is detailed in "Process architecture" in
Building and Using Dashboards.

Builders and administrators

Dashboard deployment involves the use of a dashboard deployment package that was generated
by Apama’s Dashboard Deployment Configuration Editor in Software AG Designer. In some
cases the user that generated the deployment package is different from the user that installs
and configures the deployment and administers the Data Server. The information that must be
transferred between these two types of users is discussed in "Builders and administrators" in Building
and Using Dashboards.

Overview of Deploying Apama Applications

About tuning applications for performance
The performance of Apama applications can be enhanced by employing multiple correlators. For
information about strategies for deploying multiple correlators and the Apama tools available for
accomplishing this, see "Tuning Correlator Performance" on page 79. The section also contains
information about preserving a correlator’s runtime state.

Overview of Deploying Apama Applications

Setting up the environment using the Apama Command Prompt

Deploying and Managing Apama Applications 9.9.0 12

Setting up the environment using the Apama Command
Prompt
Before you can run any of the Apama tools (such as engine_send or engine_inject) or any of the Apama
servers (such as the correlator or the Integration Adapter Framework which is also known as the
IAF) from a normal command prompt, you have to set up your environment correctly. This includes
setting the paths to the Apama installation directory, the Apama work directory, the location of the
libraries, the Java location, and other environment variables. Apama provides a batch file (Windows)
or shell script (UNIX) for this purpose, which is called the "Apama Command Prompt".

On Windows, you invoke the Apama Command Prompt by choosing the following command
from the Start menu:

Software AG > Tools > Apama n.n > Apama Command Prompt n.n

Keep in mind that "Software AG" is the default group name that you can change during the
installation.

Alternatively, if you are already in a regular Windows command prompt, you can run the file
apama_env.bat which is located in the bin directory of your Apama installation.

On UNIX, you invoke the shell script from a regular command shell. Use the following command
from within your Apama installation directory:
source bin/apama_env

It is important that you use source because invoking apama_env directly will not work.

You can add the above command to your shell initialization script (which is .bashrc in the case of
the Bash shell). If you do so, every shell you use will be an Apama Command Prompt.

Overview of Deploying Apama Applications

Installation

Deploying and Managing Apama Applications 9.9.0 13

Chapter 2: Using the Management and Monitoring Console

n Installation ... 13

n Concepts ... 14

n State persistence .. 17

n Managing licenses ... 18

n Managing security ... 19

n Managing hosts ... 19

n Managing components .. 29

n Component status indicators ... 29

n Working with components ... 30

n Configuring components with the details pane .. 34

n Preferences ... 35

This section describes how to use Apama’s Enterprise Management and Monitoring (EMM) console
to configure, deploy, and monitor Apama components.

EMM allows centralized, graphical management and monitoring of an Apama installation. From
it, you can configure, start, stop and monitor Apama software components (correlators and IAF
integration adapters) across multiple hosts. You can also centrally install and upgrade licenses.

Installation
EMM can be run from any computer that has network access to the hosts where Apama components
are installed. That is, it does not have to be installed on the machine on which the other Apama
components are to be run, although doing so is not detrimental as long as the host is powerful
enough to cope with the performance requirements of the application being run on Apama.

Note: In this release, EMM is supported on only Windows platforms. However, it can manage
components running on all supported hosts. For a complete list of supported platforms, see the
Supported Platforms document for the current Apama version. This is available from the following
web page: http://documentation.softwareag.com/apama/index.htm.

Once installed on the host of choice, you can run EMM by selecting the Software AG > Tools > Apama
n.n > Apama Management and Monitoring n.n menu item from the Windows Start menu.

Alternatively, you can run it from the Apama command prompt as follows (see also "Setting up the
environment using the Apama Command Prompt" on page 12):
emm

When EMM is run for the first time you will be asked to configure an access password, as shown in
the illustration, below.

http://documentation.softwareag.com/apama/index.htm

Concepts

Deploying and Managing Apama Applications 9.9.0 14

If you enter a password here, the password will be required whenever EMM is launched. It can
be changed subsequently through the Options menu.

If you do not enter a password here (i.e., leave the field blank), EMM will not prompt for a
password when it starts up. This can be useful if you want to start EMM from a script.

Note: It is important that you keep a record of the access password, as you will be asked to enter it
on all subsequent uses of the tool. If you forget the password you will have to reinstall the tool from
the original installation distribution.

If you are not running the tool for the first time, you will be asked to enter the access password:

Once you have entered the correct password, you then have access to all the capabilities of the tool.

Using the Management and Monitoring Console

Concepts

Concepts

Deploying and Managing Apama Applications 9.9.0 15

Two basic entities can be configured and manipulated in EMM: hosts and components. Hosts refer
to personal computers, workstations or servers, running Solaris, Linux or Windows, which have
Apama installations. In addition these machines must have had the Sentinel Agent (see "Sentinel
Agents" on page 20) installed on them and it must be running. "Managing hosts" on page 19
describes the facilities provided by EMM for dealing with hosts.

Components refer to Apama event correlators and IAF adapters. Apama components can be run and
manipulated by EMM on any host that is running the Sentinel Agent. "Managing components" on
page 29 describes the facilities provided by EMM for dealing with components.

Using the Management and Monitoring Console

The EMM console window
The following illustration shows the key features of EMM’s main window.

Menubar

The Menubar is the main way of interacting with the tool and carrying out operations on hosts and
components.

Toolbar

The Toolbar contains a set of icons that provide a convenient graphical shortcut to the most common
operations that can be carried out on hosts and components. These operations can also all be carried
out from the Menubar.

Concepts

Deploying and Managing Apama Applications 9.9.0 16

Navigation Pane

The Navigation Pane lists the set of hosts that EMM is aware of and the Apama components that
are running on them. It also provides visual cues as to the current operating status of the hosts and
components. Right clicking on an entity displays a context-sensitive menu that lists the operations
that can be carried out on that entity. These operations can also all be carried out from the Menubar
and from the Toolbar.

Details Pane

The Details Pane displays information that is relevant to the currently selected host or component. Its
contents change accordingly, and can be used to both configure as well as to monitor and inspect the
status of the selected item.

Concepts

Committed values and outstanding changes
EMM can configure and manipulate hosts and Apama components, and to do this it needs to
maintain extensive configuration information.

Throughout EMM there are concepts of the current, committed configuration data and of outstanding
changes, or working copy data.

On each Details Pane for a host or a specific component where you can supply configuration data,
you will see two columns of values, as shown in the following illustration. The rightmost, grayed out
values indicate the actual committed data – the values currently in use. The leftmost column is where
you can provide the new values you would like to use. As long as they are just shown in the leftmost
columns, these outstanding changes are just that – temporary working data. A component or host with
unsaved changes will have a "*" suffix in its entry in the Navigation Pane. For changes to take effect
you need to commit them, using the Commit Changes button () on the Menubar, or the relevant
menu items on the Group, Host and Component menus. Note that some component options cannot
be changed once the component has started, and these will not take effect until the component is
restarted, even after being committed.

State persistence

Deploying and Managing Apama Applications 9.9.0 17

The Commit Changes action scope varies according to what is selected when it is pressed:

if a component is selected in the Navigation Pane, then all outstanding changes in that
component, and only in that component, are committed (the Commit changes item on the
Component menu is enabled in this case),

if a host is selected in the Navigation Pane, then all outstanding changes in that host, and in all its
components, are committed (the Commit changes item on the Host menu is enabled in this case),

if Apama Managed Components is selected in the Navigation Pane, than all outstanding changes
throughout all of EMM’s hosts and components are committed (the Commit changes item on the
Group menu is enabled in this case).

See "Managing hosts" on page 19 and "Working with hosts" on page 22 for information on
the Details Pane for hosts and for the specific components supported by the EMM console.

Concepts

State persistence
All of EMM’s management state, including the list of hosts and components it is managing and the
committed settings for each (including the diagnostic messages), are persisted by EMM to disk.

When EMM is stopped and restarted no settings are lost, although note that in the current version
EMM’s status monitoring and auto-restart capabilities are only active while the console is running.

The state is stored in a file in the Apama Work directory called etc\emm_state.dat and a backup is
created in etc\emm_state.dat.bak. EMM must have the necessary permissions to read/write these files.
If there is a problem locating or reading the state file EMM will offer to load from the backup file
instead. If neither file can be located or read, EMM will revert back to its default installation stage

Managing licenses

Deploying and Managing Apama Applications 9.9.0 18

configuration. Should EMM fail to save its state file correctly for whatever reason then temporary
files of the form serialXXXXX.tmp will be created in the etc directory; these files can be safely deleted.

Using the Management and Monitoring Console

Managing licenses
An Apama event correlator requires a valid Apama license. As well as allowing the correlator to
start, a license specifies restrictions in its functionality and performance. A file containing a valid
license must be available to each correlator all the time.

EMM aids license deployment and maintenance by its facility to push out licenses to any host where
Apama correlators are to be started (or are already running). This facility also allows updating of
existing installed licenses.

To load a license for use with EMM:

1. Select Set License… from the Options menu option on the Menubar.

This displays the Set License dialog box shown in the following illustration.

In theory you can type in the license but as it is quite a long string and must be entered exactly
as it was sent to you by Apama Technical Support, it is greatly preferable to read it in from a text
file.

2. Select Load from file …, locate the license file from where you saved it, and Open it.

3. Click OK to set this as the current active license to be used by EMM.

However, note that this license is only actually sent out to hosts when the Send license option is
applied to the host entity. Alternatively, the licenses on all known hosts can be updated at the same
time by selecting Apama Managed Components in the Navigation Pane and choosing the Send License
option from the Group menu.

Managing security

Deploying and Managing Apama Applications 9.9.0 19

Note: EMM will not attempt to validate your license; therefore it is important that you enter it
correctly. If you attempt to start a correlator and the host has no license file, it will automatically shut
down after 30 minutes. It will be flagged with a warning icon to indicate that it has started in this
state (look at the component’s Diagnostics tab for more information).

Using the Management and Monitoring Console

Managing security
When you run EMM, if you have configured a password as described in "Installation" on page
13, the start up process will always request an access password. If you configured a password
when you first ran EMM, this step cannot be bypassed. Should you forget the access password, you
will need to reinstall the tool from the Apama installation media.

If you left the password field empty as described in "Installation" on page 13, you are not
prompted to enter a password.

To change the password:

1. Select Change Password… from the Options menu option on the Menubar.

This displays the Change Password dialog, shown in the following illustration.

Using the Management and Monitoring Console

Managing hosts
EMM can start and stop components on any supported platform within your network, as long as that
host has had the relevant Apama components installed on it, and as long as it is running a Sentinel
Agent.

Using the Management and Monitoring Console

Managing hosts

Deploying and Managing Apama Applications 9.9.0 20

Sentinel Agents
A Sentinel Agent is a small process that can start and stop Apama correlators and IAF adapters on
the host where it is running. EMM starts and stops components on a particular host in a platform
independent way by interacting with the Sentinel Agent running on that host. Therefore, a Sentinel
Agent must be running on any machine where you intend to manipulate Apama components using
EMM.

On Windows and UNIX, the Sentinel Agent can be started in one of these ways:

By starting the service. To do so, you must have administrator (Windows) or root (UNIX)
privileges.

Before you can start the service, you first have to add it with the following command:
apama_services -add -s sentinel

After the service has been added, you can start it with the following command:
apama_services -start -s sentinel

You can stop the service with the following command:
apama_services -stop -s sentinel

You can uninstall the service with the following command:
apama_services -delete -s sentinel

By starting the executable. If you do not want to use the service, you can also start the Sentinel
Agent executable manually. Running it from the Apama Command Prompt ensures that the
environment variables are set correctly. See "Setting up the environment using the Apama
Command Prompt" on page 12. To start the executable, run sentinel_agent.exe (Windows) or
sentinel_agent (UNIX) and pass command line arguments to it. See "Sentinel Agent options" on
page 20 for further information.

Important: If you install the Sentinel Agent as a service or run it by starting the executable, you are
responsible for stopping and/or uninstalling it before running the Software AG Uninstaller.

Any information written to stdout or stderr by components started with a Sentinel Agent will be
logged in the Agent's log directory in files called <component-type>-<PID>-std{out,err}.log on UNIX
and <component-type>-<num>-std{out,err}.log on Windows, where <PID> is the process ID and <num> is
an integer number. Valid component types are correlator and adapter. The stdout / stderr logs will
be deleted by Sentinel when the relevant component is stopped if they are empty (which should
normally be the case).

Managing hosts

Sentinel Agent options
The Sentinel Agent’s startup and usage information is as follows:
Usage: sentinel_agent [options]
Where options may include any of:
 -V | --version Print program version info
 -h | --help This message

Managing hosts

Deploying and Managing Apama Applications 9.9.0 21

 -p | --port <port> Listen on alternate port (default is 17903)
 -f | --logfile <file> Log to named file (default is stderr)
 -v | --loglevel <level> Set logging verbosity. Available levels
 are TRACE, DEBUG, INFO, WARN, ERROR CRIT FATAL
 (default logging level is WARN)
 -t | --truncate Truncate log file at startup
 -N | --name <name> Set the component name
 -l | --license <file> Apama license filename
 -H | --apamahome <dir> Root of Apama installation
 -W | --apamawork <dir> Root of Apama work directory
 -Xconfig | --configFile <file> Use service configuration file <file>

The license is assumed to be in APAMA_WORK\license\ApamaServerLicense.xml unless overridden on
the command line. The Apama work directory is set from the -W argument or from the APAMA_WORK
environment variable if -W is not specified.

If the license is not found at the above location, the correlator will also search Apama/etc/
ApamaServerLicense.xml in the installation directory.

The following options can be specified to the Sentinel Agent executable whether it is run as a normal
Windows or UNIX executable.

Option Description

-h Display the above usage information. Does not start the Sentinel Agent.

-p Name of the host on which the Sentinel Agent will listen for connections from
EMM (default is 17903).

-l A reference to an Apama license file. If provided, the Sentinel Agent will be
able to pass this license file’s location on to the Apama components that it starts.
Alternatively a license file can be sent to the Sentinel Agent dynamically via
EMM.

-H The root directory where the Apama executable files are installed, as selected
during installation.

-W The root directory where the Apama work files are located, as selected during
installation.

-f The file where to output logging information from the Sentinel Agent. If a log
file is not specified and the Sentinel Agent was run as a normal executable from
a Command Prompt or a Terminal window, it will log to the system configured
stderr. If the Sentinel Agent was run as a Windows service, a log file must be
specified; otherwise the Agent will not start.

-N name Sets the name of the component to name.

-t If set, the log file will be emptied at start up, otherwise it will be appended to.

-v Set the logging level. The log levels possible, in increasing order, are TRACE, DEBUG,
INFO, WARN, ERROR, CRIT, and FATAL, where each level includes all subsequent ones.
For example, WARN includes all WARN level, all ERROR level, all CRIT level, and all FATAL
level log messages. If not specified, the default log level is WARN.

Managing hosts

Deploying and Managing Apama Applications 9.9.0 22

Option Description

-V Print out the Sentinel Agent’s version information. Does not start the Sentinel
Agent.

-Xconfig

file

Use the specified service configuration file. For more information about this
configuration file, see "Using the Apama component extended configuration
file" on page 169.

Managing hosts

Working directory
The Sentinel Agent’s current working directory/folder becomes the current working directory of
all components started by the Agent, unless an Alternative start-up directory was configured for
the component. The working directory is important because most of the files and paths specified
when configuring components in EMM are assumed to be relative to the Sentinel Agent’s working
directory if a full absolute path is not provided.

Determining the working directory

If the Sentinel Agent was started manually then its current working directory is simply the current
directory when it was run.

If it was started automatically – either as a service on Windows or as a daemon on UNIX – then the
current working directory is determined as follows.

On Windows:

1. Normally, the Sentinel Agent tries to use the logs subdirectory of the Apama work directory.

2. Otherwise the Sentinel Agent tries to use the %WinDir%\System32 directory.

3. If the Sentinel Agent cannot write to any of these directories, it will fail to start.

On UNIX:

1. The Sentinel Agent tries to use the /logs subdirectory of the Apama work directory.

2. If the Sentinel Agent cannot write to this directory, it will fail to start.

Managing hosts

Working with hosts
This documentation refers to the items on the EMM menu as the primary means of carrying out
operations on hosts. However, these operations can also be carried out from the context menus in the
Navigation Pane, and the most useful are also available on the toolbar.

The Host menu provides the options described below for interacting with hosts.

Managing hosts

Deploying and Managing Apama Applications 9.9.0 23

Add host

This is equivalent to using the button on the toolbar.

Add host allows you to add a host to the Apama Managed Components group, the root node illustrated
in the Navigation Pane. This adds a placeholder node in the Navigation Pane and provides options
for configuring EMM to work with the host in the Details Pane, as illustrated in the following.

You need to provide the following information:

Display name – A descriptive name for the host. This name is what is displayed in the Navigation
Pane.

Host name – The host’s name or IP address, for example lawrence.apama.com or 127.0.0.1.
Whether you need to provide the full name as in this example, or whether an abbreviation (e.g.
lawrence) will do depends on your network configuration and DNS/WINS settings, but in most
circumstances it is advisable to use the host’s full network name.

You can only use ASCII characters in a host name.

Note that it is not possible to change the Host name once components have been added to the host.

Port number – The port that the Sentinel Agent (on that host) is listening on. By default this is
17903, although it might have been changed by whoever installed and configured the Sentinel
Agent on that host.

In following illustration, we have created a reference to the host localhost and specified port 17903
(the default port) as the port to use for communicating with the Sentinel Agent running on this
machine.

Managing hosts

Deploying and Managing Apama Applications 9.9.0 24

Once the host information has been set, click on the Commit Changes button () on the toolbar. Note
that no components can be added to a host until it is committed.

The Commit Changes button will be disabled if the Host name has not yet been set or if the host has
already been setup and committed, and there are no outstanding changes to commit on the host or
any associated component.

Managing hosts

Deploying and Managing Apama Applications 9.9.0 25

Notice how the icons next to the new node in the Navigation Pane are different in the illustrations
above. When you first define a new host the icon alongside it in the Navigation Pane will be . This
will change to once EMM successfully manages to contact the Sentinel Agent running on that
host.

EMM will continue verifying communication with the Sentinel Agent on that host at regular
intervals, for as long as that host is included in the Apama Managed Components group.

If EMM cannot communicate with a host’s Sentinel Agent, or connects and subsequently loses
connection, the icon against that host will change to and stay that way until the problem is
resolved. This might be the case if the host is no longer available on the network, the network has
failed, the remote Sentinel Agent has been shut down or if a firewall is blocking the port that the
EMM console uses to communicate with the Sentinel Agent.

Remove host

This is equivalent to using the button on the toolbar, and is only available if a host is currently
selected in the Navigation Pane.

Choose it to remove all components on that host from the Apama Managed Components group.

Note that this operation does not shut down the remote Sentinel Agent on the host in question.

By default, EMM displays a confirmation dialog providing the option to cancel the removal of the
host, as shown in the following illustration.

Managing hosts

Deploying and Managing Apama Applications 9.9.0 26

If the host contains one or more components that are known to be running, as well as providing the
option to cancel the removal the dialog asks whether these component(s) should be stopped before
being removed; see the following illustration.

Managing hosts

Deploying and Managing Apama Applications 9.9.0 27

Note: See "Preferences" on page 35 for information about how these confirmation dialogs can be
turned on or off using the EMM Preferences dialog.

Start component(s)

This is equivalent to using the button on the toolbar. This option is available if a host is currently
selected in the Navigation Pane.

Choose it to start all Apama components configured on that host. See Chapter 3 for details on how to
add and configure Apama components.

See "Start component" on page 32 for information on why components might fail to start.

Stop component(s)

This is equivalent to using the button on the toolbar. This option is available if a host is currently
selected in the Navigation Pane.

Choose it to stop all Apama components configured on that host.

Restart component(s)

This is equivalent to using the button on the toolbar. This option is available if a host is currently
selected in the Navigation Pane.

Choose it to re-start (stop and start again) all Apama components configured on that host.

Send license

This is equivalent to using the button on the toolbar. This option is available if a host is currently
selected in the Navigation Pane and a license has been configured within EMM (through the Options /
Set license menu option).

Choose it to push out the currently configured license to the Sentinel Agent running on that host,
which the Sentinel Agent will use to create a local license file on that host. The license file will be
written to the location that was specified in the Sentinel Agent’s command line startup parameters,
replacing any existing license file.

A dialog will be displayed indicating if the license push was successful or whether the license was
rejected as invalid or some other error occurred.

Components do not have to be restarted to become aware of the new license file.

Managing hosts

Managing all known hosts
All hosts defined within EMM are attached to the Apama Managed Components group item in the
Navigation Pane.

The Group menu option allows one to run operations across all hosts in this group; that is all known
hosts, without having to select them individually.

Managing hosts

Deploying and Managing Apama Applications 9.9.0 28

The operations available on the Group menu are also available by selecting the Apama Managed
Components item in the Navigation Pane and then right-clicking to get its context-sensitive popup
menu. While the item is selected you can also use the toolbar buttons to the same effect.

Restart components

Choose this option to restart all components on all hosts. This is equivalent to clicking on the
toolbar.

Start components

Choose this option to start all components on all hosts. This is equivalent to clicking on the
Menubar.

See "Start component" on page 32 for information on why components might fail to start.

Stop components

Choose this option to stop all components on all hosts. This is equivalent to clicking on the
Menubar.

Send license

Update the license on all hosts. This is equivalent to clicking on the Menubar.

See "Send license" on page 27 for more information about license sending.

Managing hosts

Managing components

Deploying and Managing Apama Applications 9.9.0 29

Managing components
EMM can support various Apama components that can be used together to create a distributed
Apama deployment.

The components are:

Event Correlators – the event correlator is the core Apama event matching and analytic engine.
See "Add correlator" on page 31 and "The correlator tabs" on page 42.

IAF Adapters – the Integration Adapter Framework (IAF) allows rapid generation of integration
adapters. These allow Apama to interface with an external source of events like a message bus,
an event feed, or a database. See "Add adapter" on page 31 and "The Adapter tabs" on page
62.

For information on how to use Apama command line utilities to run and configure the event
correlator, see "Correlator Utilities Reference" on page 102.

For information about using the adapters provided with Apama or creating adapters of your own,
see:

"Using Standard Adapters" in Connecting Apama Applications to External Components

"Developing Custom Adapters" in Connecting Apama Applications to External Components

Using the Management and Monitoring Console

Component status indicators
EMM can configure, start and stop components. For all the components it manages, EMM can
monitor execution and automatically restart in case of failure (re-initializing where applicable).

As components are managed, their icons in the Navigation Pane will change to indicate their status.
Although the base icons for a correlator and an IAF adapter are different, being and , they have
the same set of symbols overlaid on them to indicate their state. Using the correlator’s icons as an
example, the indicated states are:

 - UNKNOWN. The state is still unknown, i.e. EMM is trying to communicate with the
component.

 - STOPPED. The component is not running and it is not supposed to be, that is, it has not been
started, or it was explicitly stopped, in EMM.

 - RUNNING. The component is running normally and it is supposed to be, that is, it was started
from EMM.

 - STOPPING, STARTING. A stop or start operation is in progress.

 - WARN. This can mean one of the following:

The component is supposed to be running but is not responding – EMM has lost contact
with it and is trying to reestablish communication. If this does not succeed the component
will progress to the FAIL state.

Working with components

Deploying and Managing Apama Applications 9.9.0 30

The component itself started correctly but one or more initialization actions failed. Use the
component’s Diagnostics tab to investigate where the problem occurred. The warning can be
cleared by pressing the Clear warning button on the Diagnostics tab.

The component has been started but it is not supposed to be running (e.g. it was started
from outside EMM). The warning can be cleared by pressing the Clear warning button on the
Diagnostics tab.

A correlator started on the local machine but there was no license file, so the component will
automatically terminate after 30 minutes. The warning can be cleared by pressing the Clear
warning button on the Diagnostics tab, however Apama recommends supplying a valid license
and restarting the component.

The component itself started correctly but one or more upstream connections to other
components could not be established. Use the component’s Diagnostics tab to investigate
where the problem occurred. The warning can be cleared by pressing the Clear warning button
on the Diagnostics tab.

 - FAIL. The component has failed. The component stopped responding to EMM for the entire
WARN timeout configured for the it plus the FAIL timeout, so EMM now assumes that the
component is no longer running.

In case of a FAIL check the Diagnostics tab to discover which of these situations occurred.

Note: The time to wait after a component stops responding before entering the WARN state, and the
time between entering the WARN state and progressing to FAIL may both be configured on a per-
component basis using the Management tab in the Details Pane.

Using the Management and Monitoring Console

Working with components
This section refers to the items on the EMM menu as the primary means of carrying out operations
on Apama components. However, these operations can also be carried out from the context menus in
the Navigation Pane, and the most useful are also available on the toolbar.

Before operations can be carried out on these components, a Sentinel Agent must be installed and
running on the target host, and the EMM console must have been configured to manage that host, as
detailed in "Managing hosts" on page 19.

The following options are available from the Components menu when a host is selected:

"Add correlator" on page 31

"Add adapter" on page 31

"Remove component" on page 31

"Move component to host" on page 32

"Start component" on page 32

"Stop component" on page 33

"Restart component" on page 33

Working with components

Deploying and Managing Apama Applications 9.9.0 31

"Clear all component logs" on page 34

Using the Management and Monitoring Console

Add correlator
This option is only available if a host (or an existing component on a host) is selected in the
Navigation Pane. It is equivalent to pressing the button on the toolbar.

Choose this option to define and configure a new event correlator component on the selected host.

Working with components

Add adapter
This option is only available if a host (or an existing component on a host) is selected in the
Navigation Pane. It is equivalent to pressing the button on the toolbar.

Choose this option to define and configure a new IAF Adapter component on the selected host. This
will add an Adapter to the host in the Navigation Pane, select it, and display the Management tab in
the Details Pane.

Working with components

Remove component
This option is only available if a component is selected in the Navigation Pane. It is equivalent to
pressing the button on the Menubar.

Choose this to remove the currently selected component from the Navigation Pane and stop it from
being managed by EMM.

You can also remove a component by selecting it and pressing the Delete key.

By default, EMM displays a confirmation dialog providing the option to cancel the removal of the
component, as shown below.

If the component is known to be running, as well as providing the option to cancel the removal the
dialog asks whether the component should be stopped before being removed, as shown below.

Working with components

Deploying and Managing Apama Applications 9.9.0 32

Note: "Warnings" on page 35 describes how these confirmation dialogs can be turned on or off
using the EMM Preferences dialog.

Working with components

Move component to host
This option is only available if a component is selected in the Navigation Pane. When a component
is selected and you select Move component to host from the Component menu, the Select New Host for
Component dialog is displayed. Select the new host and click OK.

Any component type may be moved with this command. The moved component will have exactly
the same configuration as it did on its previous host, including the same logical ID.

Working with components

Start component
This option is only available if a component is selected in the Navigation Pane. It is equivalent to
pressing the button on the toolbar.

Choose this option to start the currently selected component. The component’s icon will change to
indicate that the component is starting, and then to show it is operational. Note that this can take
a few seconds since the icon is only updated once EMM can satisfactorily communicate with the
component.

A component can fail to start for several reasons. The most common are:

A valid license was not available on that host.

The Sentinel Agent is not running on the host (check that its icon in the Navigator Pane is and
not)

The component’s executable was corrupt, or inaccessible due to user permissions issues.

The component’s listening port was not available as it is in use by something else.

There was insufficient disk space on that host for the Sentinel Agent’s or the component’s
logging.

The component could not write to the specified log file due to user or file permissions issues.

Working with components

Deploying and Managing Apama Applications 9.9.0 33

The component could not locate its essential runtime libraries. Either the component or the
libraries it requires were manually moved, or the environment variables are set incorrectly on
that host.

You might have set important management and configuration parameters but forgotten to
commit them.

The component might appear not to have started even though in fact it has, due to a firewall
blocking the port that the EMM console uses to communicate with the component. The firewall
must be disabled or reconfigured to allow traffic on the port the component is configured to
listen on.

The Sentinel Agent on that host could not locate the component’s binary. This means it was not
configured correctly; normally this is due to it not having had valid component paths specified.

Note: All components started by the Sentinel Agent are started under the same user context (and
therefore with the same privileges) as the user the Sentinel Agent itself was started as.

Therefore, if the Sentinel Agent was started as a service as the user Local System, all the components
it starts will also start as the user Local System. Note that Local System is not a Windows Domain user,
and therefore might not be allowed access to Domain resources. This might be particularly relevant
to IAF adapters which link against custom user code and are likely to require access to various
network services and resources.

If this situation is encountered, you need to change the user that the Sentinel Agent is started as,
which can be done through Control Panel, Administrative Tools, Services, right click on Apama Sentinel
Agent, select Properties, then the Log On tab. Choose the This account: radio button and enter the
username and password of the user to use instead. You can specify a domain user by preceding
the username with the domain as follows: domain_name/username. You will of course have to be an
Administrator on the machine to be able to do any of this.

Working with components

Stop component
This option is only available if a component is selected in the Navigation Pane. It is equivalent to
pressing the button on the toolbar.

Choose this option to stop the currently selected component. The component’s icon will change to
indicate that the component is no longer running or available. Note that as the icon is only updated
once EMM can no longer communicate with the component this can take a few seconds.

Working with components

Restart component
This option is only available if a component is selected in the Navigation Pane. It is equivalent to
pressing the button on the toolbar.

Configuring components with the details pane

Deploying and Managing Apama Applications 9.9.0 34

Choose this option to trigger a restart on the currently selected component. The component’s icon
will change to indicate that the component has stopped and then change again to indicate it has
started up and is operational again.

Working with components

Clear all component logs

This option is equivalent to clicking the button. If Apama Managed Components is selected in
the Navigation Pane, this option clears the diagnostic logs for all the managed components. If a host
is selected in the Navigation Pane, it clears the diagnostic logs for all the components on that host.

Working with components

Configuring components with the details pane
The contents of the Details Pane change according to what is currently selected in the Navigation
Pane. When a component is added to a host, it is automatically selected in the Navigation Pane.

Note: As already described, you need to press Commit Changes () before any changes you make
to any panel on the Details Pane take effect. The values that are currently in effect are shown within
the rightmost grayed out labels.

Using the Management and Monitoring Console

Specifying paths and filenames in the Details Pane
On several of the component Details Pane panels you are asked to provide a path or filename, (for
example to specify where logging information should be stored, or where an adapter configuration
file should be loaded from).

It is recommended that absolute paths and filenames be used where possible – an absolute path being
one that specifies the whole path, for example:

c:\Document and Settings\My User\apama-work\logs\ (on Windows)

or

/home/apama-work (on UNIX)

In contrast, relative paths are incomplete, or just consist of a filename on its own, such as:

New_Correlator_1.log

Preferences

Deploying and Managing Apama Applications 9.9.0 35

Important notes

Unless otherwise stated, all paths are located on the file system of the remote host, on which the
Sentinel Agent and managed components are running, rather than the local host where EMM is
running.

Filenames and paths should never be enclosed in quotes, even if they contain spaces.

If a relative path is provided – as is the case by default for component log files – it is assumed to
be relative to the component’s Alternative start-up directory setting if one was configured, or to
the current working directory of the Sentinel Agent on that host if not. See "Working directory" on
page 22 for details of how the Sentinel Agent’s working directory is determined.

Configuring components with the details pane

Preferences
Several of EMM’s default operational characteristics such as the warnings it issues, some of its
display properties, and how it updates component information can be configured by the user.

These options are set using the Preferences dialog. This can be accessed by selecting the Preferences…
option from the Options menu on the EMM menu.

The dialog has three tabs: Warnings, Display, and Timing.

Using the Management and Monitoring Console

Warnings
The illustration below shows the Warning tab.

Preferences

Deploying and Managing Apama Applications 9.9.0 36

The Warning tab allows various confirmation dialogs to be turned off if desired.

Miscellaneous warnings:

Warn before exiting – Ask for confirmation when the user asks to shut down EMM. Although
all settings in EMM are preserved on shutdown and re-read the next time it is restarted, the
background monitoring and automatic restart functionality only works while EMM is running.

Warn about network configuration conflicts as soon as detected – Warn if a component conflict (same
host-port combination) is detected.

Warn about potential network configuration conflicts resulting from a commit – Ask for confirmation if a
component conflict (same host-port combination) would result from a Commit Changes operation.

Preferences

Deploying and Managing Apama Applications 9.9.0 37

Warn before any manual start or restart if there are uncommitted changes – Provide a warning when a
component is started or restarted from EMM and changes have been made to the component’s
temporary working configuration that will be ignored when the component is started, because
they have not yet been committed.

Component operation warnings:

Warn before stopping a component – Ask for confirmation when the user tries to stop a component.

Warn before restarting a component – Ask for confirmation when the user tries to restart a
component.

Warn before removing a running component – Ask for confirmation when the user tries to remove
a component that is running, and provide the option of removing without stopping the
component.

Warn before removing any component – Always ask for confirmation when the user tries to remove
a component, whether it is running or not.

Host operation warnings:

Warn before stopping all components on a host – Ask for confirmation when the user tries to stop all
components on a specific host.

Warn before restarting all components on a host – Ask for confirmation when the user tries to restart
all components on a specific host.

Warn before removing a host with any running components on it – Ask for confirmation when the
user tries asks to remove a host with any components on it that are known to be running; this
provides the option of removing the host without stopping running components.

Warn before removing any host and all components on it – Always ask for confirmation when the user
tries asks to remove a host, whether it contains running components or not.

Group operation warnings:

Warn before stopping all components in a group – Ask for confirmation when the user tries to stop all
components in the Apama Managed Components group.

Warn before restarting all components in a group – Ask for confirmation when the user tries to restart
all components in the Apama Managed Components group.

Clearing log warnings:

Warn before clearing the diagnostics log of a single component – Ask for confirmation before clearing
the diagnostics log when a single component is selected.

Warn before clearing the diagnostics log of multiple components – Ask for confirmation before clearing
the diagnostics logs for all the components associated with a selected host or group.

Deleting correlator contents warnings:

Warn before deleting Correlator contents – Ask for confirmation before deleting all Apama Event
Processing Language (EPL), Correlator Deployment Package (CDP), or JMon files in the
correlator. The warning will be displayed after clicking the Delete button on the correlator’s
Inspect tab.

Warn before deleting Correlator contents as part of reinitialization – Ask for confirmation before re-
initializing the correlator with the Delete everything loaded in the engine before reinitializing check
box is enabled.

Preferences

Deploying and Managing Apama Applications 9.9.0 38

Warn before deleting specified names from the Correlator – Ask for confirmation before deleting
specific EPL, CDP, or JMon files. The warning will be displayed after clicking the Delete button on
the correlator’s Inspect tab.

Preferences

Display
The illustration below shows the Display tab.

Preferences

Deploying and Managing Apama Applications 9.9.0 39

The following settings may be configured from the Display tab of the Preferences dialog:

Display port number for each component in the tree – If enabled, the listening port for each
component will be displayed alongside its name in the Navigation Pane. This makes it easier to
check for conflicts (since the port number must be unique per host).

Display hostname and port number for each host in the tree – If enabled, the actual hostname (as
opposed to its EMM descriptive name) and the port its Sentinel Agent is listening on are
displayed alongside that host’s name in the Navigation Pane. This makes it easier to avoid
conflicts in host management.

Default diagnostic message buffer size for new components – Each component has a Diagnostics tab
in its Display Pane, containing a list of the most recent status messages for the component. The
maximum number of messages (after which the oldest will be discarded) may be configured on a
per-component basis; this Preferences option specifies the default size of the message buffer that
is assigned to new components. By default the buffer size is 100 lines. Minimum size is 1 line.

Automatically clear diagnostics message buffer on component start – If enabled, removes all log
messages for a component when it starts. This is useful during development work, but it should
not be enabled in a production system.

Preferences

Timing
The illustration below shows the Timing tab.

The following settings may be modified from the Timing tab of the Preferences dialog:

Component status display update interval (s) – This parameter specifies how frequently a
component’s statistics should be updated. By default this is every 1 second.

Correlator periodic inspect display update interval (s) – This parameter specifies how frequently a
correlator’s inspect information should be refreshed. By default this is every 10 seconds.

Default WARN state timeout for new component (s) – This parameter specifies the initial value of WARN
state timeout used for new components (see "Add correlator" on page 31). By default this is 5
seconds.

Default FAIL state timeout for new component (s) – This parameter specifies the initial value of FAIL
state timeout used for new components (see "Add correlator" on page 31). By default this is 10
seconds.

Preferences

Deploying and Managing Apama Applications 9.9.0 40

Preferences

Adding correlators

Deploying and Managing Apama Applications 9.9.0 41

Chapter 3: Deploying and Configuring Correlators

n Adding correlators ... 41

n The correlator tabs .. 42

Apama correlators are the core event processing and correlation engines for Apama applications.
This section describes how to start and manage correlators using the EMM console. You can also
start and manage correlators using Apama command line utilities; for more information on this, see
"Correlator Utilities Reference" on page 102.

This topic describes how to use the EMM menu items to carry out operations on Apama correlators.
However, all these operations can also be carried out from the context menus in the Navigation Pane,
and the most useful are also available on the toolbar.

Before operations can be carried out on these components, a Sentinel Agent must be installed and
running on the target host, and the EMM console must have been configured to manage that host, as
detailed in "Managing hosts" on page 19.

Adding correlators
To define and configure a new correlator:

1. Select the host where you want to add the correlator in the EMM Navigation Pane.

2. Select Component > Add correlator from the EMM menu or click the button on the tool bar

This adds a correlator to the host in the Navigation Pane, selects it, and displays the Management
tab within the Details Pane;

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 42

The other tabs available on this Details Pane for a correlator are the Configuration tab, the Initialization
tab, the Connections tab, the Statistics tab, the Inspect tab, and the Diagnostics tab. These are discussed
in detail in "The correlator tabs" on page 42.

EMM initializes the new correlator with a set of default options, which are normally safe. The default
value for the listening port (which has to be unique per host) is automatically selected so as not to
conflict with any other known components.

Before the new correlator can be started for this first time you must ‘commit’ its configuration using
the Commit Changes () button. Note that most of the correlator’s configuration options only apply
when the component is started up, so changes committed after the component is already running
will usually not take effect until it is restarted.

Deploying and Configuring Correlators

The correlator tabs
When a correlator is selected in the Navigation Pane, the Details Pane displays the following tabs:

"Management tab" on page 43

"Configuration tab" on page 44

"Initialization tab" on page 45

"Connections tab" on page 49

"Statistics tab" on page 53

"Inspect tab" on page 56

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 43

"Diagnostics tab" on page 58

Management tab
This tab contains a number of parameters that are relevant to managing a correlator.

The parameters on the Management tab are:

Display name – This is the name to associate with this correlator in the Navigation Pane. The name
can be changed at any time, even if the correlator has already been started.

WARN state timeout (s) – This is the number of seconds to wait before moving the component into
the WARN state if it is not changing state (stopping/starting/ restarting) as required. This setting can
be changed at any time. The default is 5 seconds.

FAIL state timeout (s) – This is the number of seconds to wait after entering the WARN state before
moving into the FAIL state, if the component has still failed to change state as expected. This
setting can be changed at any time. The default is 10 seconds.

Automatic restart enable – Tick to configure EMM to monitor the selected component. If it were
to stop unexpectedly, EMM would automatically restart it – after waiting the amount of time
required for it to enter the FAIL state (and subject to the configured limit on the number of restart
attempts described below). This setting can be changed at any time.

Note: Component monitoring and auto-restart is carried out by EMM and requires EMM to be
running.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 44

Max. automatic restart attempts – This option is only available if Automatic restart is enabled. It
specifies the total number of automatic restarts to perform (or attempt) without user intervention.
The count is made from when you last enabled Automatic restart and committed, or explicitly
stopped/started/ restarted the correlator. This setting can be changed at any time.

Alternative start-up directory – By default all components are started from the current working
directory of the Sentinel Agent running on the host in question (see "Sentinel Agents" on page
20). If you wish, you can provide an alternative startup folder here.

Click on the Commit Changes button when you are finished customizing the new correlator. This
applies these outstanding changes.

The Default button resets all outstanding parameter values to their defaults, while the Revert button
reverts the outstanding parameter values to their current committed values.

Configuration tab
This tab contains a number of parameters that configure how a correlator operates. As all of these
are startup parameters, you should adjust them before you start the component. If the component is
already running they will only take effect the next time it is started.

The following parameters are available for a correlator:

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 45

Listen on port – Port on which the correlator should listen for monitoring and management
requests (default is 15903). The correlator will fail to start if this port is in use by any other
component, or for that matter by any other software that is running on the relevant host.

The highest permitted port number for correlators and other components managed through
EMM is 65534.

Log level – Sets the log level the event correlator should log at. This must be one of OFF, CRIT, FATAL,
ERROR, WARN, INFO, DEBUG, or TRACE (in increasing order of verbosity). The default level is INFO.

Log file name - Sets the filename that the event correlator should write log messages to (on the
file system of the host the correlator is running on). It is recommended that an absolute path
be provided. See "Specifying paths and filenames in the Details Pane" on page 34 for more
information about setting filename options correctly.

Diagnostic Input log file name - Enables and sets the filename for a diagnostic input log. A
diagnostic input log collects all messages sent to the correlator and writes then to a file on the file
system of the host the correlator is running on. The input log can help Apama technical support
diagnose problems with a correlator or an application running on the correlator.

It is recommended that an absolute path be provided. See "Specifying paths and filenames in the
Details Pane" on page 34 for more information about setting filename options correctly. See also:
"Replaying an input log to diagnose problems" on page 160.

Java application support (JMON) – Enables support for JMon applications. If this is not set, any
attempt to inject a JMon application either using engine_inject –j or by adding a .jar file Inject
initialization action will result in an error. The correlator’s performance is improved when Java
application support is disabled.

Extra command line arguments – This option allows additional unspecified command line
arguments to be passed to the correlator. For example these might be special options to pass to
the embedded JVM used for JMon applications, or special settings provided to you by Apama
Customer Support to address specific issues.

Performance tuning – Select Slow receivers to indicate that the correlator should disconnect any
receiver whose output queue becomes full; that is, a receiver that cannot consume events fast
enough. Without this option, the event correlator would eventually stop processing events
altogether, (and block) until some output events are consumed by the receiver, freeing space on
its output queue.

Click Commit Changes when you are finished customizing the new correlator. This applies these
outstanding changes for use when the correlator is actually started.

The Default button resets all outstanding parameter values to their defaults, while the Revert button
reverts the outstanding parameter values to their current committed values.

Initialization tab
This tab allows you to specify the monitors and events that will be automatically executed whenever
the component is started by EMM. The files you specify typically have .mon, .evt, and .jar extensions.
Note that if the component is started outside EMM and then added to EMM for management, any
initialization actions are only executed the next time it is started through EMM.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 46

Note: By default, EMM uses the default encoding of the system on which EMM is running to read
Apama Event Processing Language files (.mon) and event (.evt) files. If you want to inject UTF-8
encoded files, ensure that you use an editor that adds a Byte Order Mark (BOM) at the start of the
file. For example, on Windows, the Notepad editor inserts a BOM when you save a file.

Adding initialization actions
To add initialization actions:

1. On the Initialization tab, click the Add button.

This displays the Select Initialization Files dialog.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 47

2. Enter the name of the monitor or event file to use for initializing the component. You can also click Browse
to navigate to the directory containing the files to use for initializing the component and select the files.
Use CTRL and SHIFT to select more than one file name. You can add a comment that will be displayed
next to the file name on the Initialization tab.

3. Click Variables to select an Apama variable; this alleviates the need to type a full path name. You can also
use your own (non-Apama) environment variables by specifying them in the form: ${env_var:foo}.

4. When you have specified the name of the file(s) you want to add, click OK.

5. You can also specify a file with a .txt extension containing a list of monitors and event files with which
to initialize the component. Click Import and enter the name of the file that contains the initialization
files. Files for this purpose are formatted with the name of each .mon,.evt, or .jar file on a separate line.
Software AG Designer exports initialization files in this format.

6. Instead of entering or selecting file names as in Step 2, you can drag and drop files from a Windows
Explorer window to the left hand list of the Initialization tab.

All filenames specified here will be accessed on the local computer on which the EMM console is
running – not the machine hosting the correlator (unless of course the correlator is also running
on the local machine).

7. After the previous steps, EMM displays the initialization files in the left hand list. The check boxes in the
left hand list allow you to select which initialization actions will take effect; actions with unchecked boxes
will be ignored. Click the Commit button to apply the changes; this will display the initialization files in the
right hand list. The initialization actions will take place the next time the component starts

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 48

When an action is selected, the following buttons are also available:

Remove – Remove the selected initialization action.

Edit – Allows the comment and/or filename associated with an initialization action to be changed.

Move up – Move the selected initialization action up in the list. The order is significant because the
actions will be executed in the order they appear in the list (from top to bottom).

Move down – Move the selected initialization action down the list.

State restore — Restore the entire runtime state of the correlator from a state image file or dump.
Due to the nature of Restore operations, only one Restore initialization action may be specified
for each correlator, and it will always be executed before any other Initialization action.

Import – Allows you to specify a text file containing initialization actions.

Export – Saves the component’s initialization actions to a text file.

Reinitialize Now... — Initializes the Component with the initialization files specified. When you
click Reinitialize Now..., EMM displays the Execute Selected Initialization Actions Now dialog.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 49

This dialog allows you to specify which actions you want to use and also gives you the opportunity
to delete any Apama EPL or JMon files loaded in the correlator before you reinitialize it.

Defaults — Removes any initialization files that have been added to the component.

Revert — Removes initialization files that have been added to the component since the last time
changes were Committed. Initialization files added prior to the last Commit are retained.

Connections tab
This tab displays any other components that are connected to this component in both upstream and
downstream directions. “Upstream” components are those components that this component receive
events from; “downstream” components are those that this component sends events to. Because the
“owner” of the connection is always the downstream component, the list of downstream connections
is for display only.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 50

Adding new upstream connections
The Connections tab allows you to add new upstream component connections.

To specify upstream components you want to connect to this component:

1. Click Add to display the Add Component Connections dialog.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 51

2. From the Select components you want to receive from list, select one or more components.

3. In the List channels to receive from field, enter the name of one or more channels associated with the
component you selected in Step 2 and click Add, or click Add All to receive all channels associated with a
component.

4. Click OK. The Connections tab will display the components you added in the left hand list.

The check boxes in the left hand list of the upstream connections allow you select which
connections will take effect in the next step. Connections with checked boxes will be enabled;
those with unchecked boxes will be disabled.

5. Select the Commit changes menu item or the click the Commit Changes () button to make your
changes take effect.

This adds the connected components to the right hand list of the Connections tab.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 52

Downstream connections
Downstream components connected to this component are displayed in the Send events to these
downstream components field. The following ilulustration shows a correlator with a downstream
connection.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 53

If you select an upstream or downstream component and click the corresponding Go To button,
EMM switches the display to show the Connections tab for the connected component.

Statistics tab
This tab allows you to monitor of the status of an operational correlator.

Status information is refreshed regularly, by default, once a second. You can change this rate by
changing the Component status display update interval (s) value on the Timing tab within the Preferences
dialog. The Preferences dialog can be accessed from the Preferences… option from the Options menu.

No status information will be displayed if EMM cannot communicate with the selected correlator.
If this is the case it is usually because the correlator has not yet been started or has been stopped.
However, it could also be due to network failure. In this situation, statistics will reappear once the
connection is restored.

You may need to scroll the display to view all the information on the Statistics tab. The following
illustration shows the Statistics tab for an active correlator.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 54

The Statistics tab displays the following information:

Product version — The Apama release number.

Process identifier — The identifier assigned to this component by the operating system.

Logical component identifier – A numeric identifier for this component. This is useful for matching
components with information contained in log files.

Uptime(s) – The time in seconds since this correlator was started. This time is maintained and
reported by the component itself, so if the correlator was started independently of EMM and only
managed by EMM later, the value would still be accurate.

Number of monitors – The current number of Apama monitors injected and instantiated inside the
correlator. This figure changes upwards and downwards as monitors are injected, deleted or just
expire.

Number of sub-monitors – The number of Apama sub-monitors. Sub-monitors are created by
‘spawn’ actions within the monitor EPL code. This figure changes upwards and downwards as
sub-monitors are spawned, killed or just expire.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 55

Number of Java applications – The number of JMon applications currently loaded into the
correlator. JMon applications do not expire, so this value only decreases when they are explicitly
unloaded.

Number of listeners – The number of event listeners created by monitors and sub-monitors in EPL
code and by JMon applications.

Number of event types – The total number of event types defined within the correlator. This figure
decreases when event types are deleted from the correlator.

Number of contexts – The number of contexts in the correlator. This includes the main context plus
any created contexts.

Events on input queue – Across all contexts, the total number of events on input queues.

Events received – The total number of events ever received by the correlator. This value is
preserved by a checkpoint, so if the state of the correlator is restored from a checkpoint file it
will reflect the total number of the events seen by the correlator from which the checkpoint was
originally made.

Events on internal queue – Across all contexts, the total number of routed events waiting to be
processed. The internal routing queue is a high priority queue that is used when events are
internally routed by the route instruction in EPL code or in JMon applications. For each context,
the correlator processes events on the internal queue before processing other events on the input
queue.

Events routed internally – Across all contexts, the total number of events that have veen routed
since the correlator was started. This value is preserved by a checkpoint, so if the state of the
correlator is restored from a checkpoint file it will reflect the total number of the events routed by
the correlator from which the checkpoint was originally made.

Event processing rate (ev/s) – The number of events per second currently being processed by the
correlator. This value is computed with every status refresh and is only an approximation.

Number of consumers – The number of event consumers registered with the correlator to receive
events emitted by it.

Events on output queue – The number of events waiting on the output queue to be dispatched to
any registered event consumers.

Output events created – The total number of output events created by the correlator. This value is
preserved by a checkpoint, so if the state of the correlator is restored from a checkpoint file it will
reflect the total number of output events created by the correlator from which the checkpoint was
originally made.

Output events sent – The total number of output events dispatched to event consumers by the
correlator. This figure varies from the preceding statistic as an output event might be sent to
multiple event consumers. This value is preserved by a checkpoint, so if the state of the correlator
is restored from a checkpoint file it will reflect the total number of output events sent out by the
correlator from which the checkpoint was originally made.

A graph showing the values taken by the Event rate statistic over the last 60 seconds is displayed
below the figures.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 56

Inspect tab
This tab displays the EPL monitors, JMon applications, and event types currently active within the
correlator.

The information on the Inspect tab is retrieved in real time from the selected correlator when you
actually select the Inspect tab, and it might take a few seconds to display.

You can configure the Inspect tab to refresh periodically by ticking the Enable periodic inspection
checkbox at the bottom-left corner of the tab. By default the information will be refreshed every 10
seconds. You can change this value by changing the Correlator periodic inspect display update interval(s)
value on the Timing tab within the Preferences dialog. The Preferences dialog can be accessed from
the Preferences… option from the Options menu.

Alternatively you can refresh manually by clicking the Refresh button at the bottom-right corner. The
following illustration depicts the Inspect tab for a correlator showing active definitions.

The information displayed is organized into the following groups: Monitors, Java Applications, Event
Types, and Contexts.

Monitors — Displays a listing of all the EPL monitors active in the correlator and the number of
spawned sub-monitors (if any) for each one.

Java Applications — Displays a listing of JMon applications loaded into the correlator. Against
each one is also displayed the number of active listeners created by that application.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 57

Event Types — Displays a listing of all the event types the correlator knows about. Against each
event type will also be displayed the number of event templates of that type in use at present in
active listeners.

Timers — Displays the current EPL timers active within the system. The four types of timers
which may be displayed here are wait, within, at, and stream. The stream timers are those set up to
support the operation of stream networks.

Contexts — Display the names of the contexts in the correlator and for each correlator, the
number of monitor instances (sub-monitors) and the queue size (number of events on the input
queue) of each context.

The Inspect tab contains two other buttons:

Delete — Delete an item or items from the correlator.

View Event Definition — View the code for the definition of a selected Event Type.

Deleting Monitors, Event Types, or JMon applications from a correlator
To delete a monitor, event type, or JMon application from the correlator:

1. In the Inspect tab, select the item or items you want to delete.

2. Click Delete.

This displays the Delete from Correlator confirmation dialog.

3. Select one of the following choices and click OK.

Delete the selected named item(s), if they are not in use

Forcibly delete the selected item(s), even if they are in use

Kill the selected item(s), even if they are running Monitors

Delete everything loaded in the correlator

4. Select your choice and click OK.

Displaying event type definition for multiple Event Types
To display the event type definition for one or more Event Types:

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 58

1. In the Inspect tab, select the Event Type or Event Types you are interested in.

2. Click View Event Definition.

This displays the View Event Definitions window.

Diagnostics tab
The Diagnostics tab displays diagnostics information about the changes in the state of the correlator.

The correlator tabs

Deploying and Managing Apama Applications 9.9.0 59

It provides two elements of diagnostics information:

Number of automatic restarts – the total number of automatic restarts since the last time you
manually started the component or since you enabled automatic restart. See "Management tab"
on page 43 for details of how automatic restart behavior can be configured. The Reset button
lets you manually reset the counter and make EMM auto-restart the component again if it is
currently in the FAIL state.

Message log – A log of diagnostic information generated by EMM. Each log entry starts with the
date and time of when the event being logged occurred. Note that most entries are tagged as
being generated by EMM (server) or EMM (client). EMM (client) indicates the graphical front-end,
whereas EMM (server) indicates the backend model.

The Message log has three associated buttons:

Clear log – Removes all the messages logged for this component.

Set log size… – Configures the size of the diagnostics log for this component. Note that the default
log size assigned to new components can be configured from the Preferences dialog, and is set
to 100 entries when Apama is installed. If the size is exceeded the oldest entries are removed to
make way for new entries. Minimum size is 1 line.

Clear warning – Changes the state of the component from WARN to RUNNING; see "Component status
indicators" on page 29 for a full explanation of the meaning of the WARN state. This button is only
enabled when the component is started and in the WARN state.

Adding adapters

Deploying and Managing Apama Applications 9.9.0 60

Chapter 4: Deploying and Configuring Adapters

n Adding adapters .. 60

n Configuring adapters ... 61

n The Adapter tabs .. 62

Adapters allow Apama to interface with external sources of events like message buses, event feeds,
or databases. You use the Integration Adapter Framework (IAF) with any of the standard, pre-
packaged Apama adapters installed with the product or with custom adapters that you develop.
To deploy an adapter, you specify the appropriate information in the adapter’s configuration file
and then start the IAF using the configuration file. This section describes how to deploy Apama
adapters from the EMM console. You can also use Apama command line utilities to start and manage
adapters. See also:

"Using Standard Adapters" in Connecting Apama Applications to External Components

"Developing Custom Adapters" in Connecting Apama Applications to External Components

This topic describes how to use the EMM menu items to carry out operations on Apama adapters.
However, all these operations can also be carried out from the context menus in the Navigation Pane,
and the most useful are also available on the toolbar.

Before operations can be carried out on these components, a Sentinel Agent must be installed and
running on the target host, and the EMM console must have been configured to manage that host, as
detailed in "Managing hosts" on page 19.

Adding adapters
To define and configure a new IAF adapter:

1. Select the host where you want to add the adapter in the EMM Navigation Pane.

2. Select Component > Add adapter from the EMM menu or click the button on the tool bar.

This adds an adapter to the host in the Navigation Pane, selects it, and displays the Management
tab in the Details Pane. The other tabs available on this Details Pane for an adapter are the
Configuration tab, the Connections tab, the Statistics tab, the Control tab, and the Diagnostics tab.
These are discussed in detail in "The Adapter tabs" on page 62.

EMM initializes the new IAF adapter with a set of default options, which are normally safe. The
default value for the listening port (which has to be unique per host) is automatically selected so as
not to conflict with any other known components.

Before the new adapter can be started for this first time you must ‘commit’ its configuration using
the Commit Changes () button. Note that most of the adapter’s configuration options only apply
when the component is started up, so changes committed after the component is already running
will usually not take effect until it is restarted.

Configuring adapters

Deploying and Managing Apama Applications 9.9.0 61

Deploying and Configuring Adapters

Configuring adapters
The contents of the Details Pane change according to what is currently selected in the Navigation
Pane. When a component is added to a host, it is automatically selected in the Navigation Pane.

Note: As already described, you need to press Commit Changes () before any changes you make
to any panel on the Details Pane take effect. The values that are currently in effect are shown within
the rightmost grayed out labels.

Deploying and Configuring Adapters

Specifying paths and filenames in the Details Pane
On several of the component Details Pane panels you are asked to provide a path or filename (for
example, to specify where logging information should be stored, or where an adapter configuration
file should be loaded from).

It is recommended that absolute paths and filenames be used where possible – an absolute path being
one that specifies the whole path, for example:

C:\Users\Public\ApamaWork\logs\New_Correlator_1.log (on Windows)

or

/users/myusername/ApamaWork/logs/New_Correlator_1.log (on UNIX)

In contrast, relative paths are incomplete, or just consist of a filename on its own, such as:

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 62

New_Correlator_1.log

Important: Unless otherwise stated, all paths are located on the file system of the remote host, on
which the Sentinel Agent and managed components are running, rather than the local host where
EMM is running.
Filenames and paths should never be enclosed in quotes, even if they contain spaces.
If a relative path is provided – as is the case by default for component log files – it is assumed to be
relative to the component’s Alternative start-up directory setting if one was configured, or to the current
working directory of the Sentinel Agent on that host if not. See "Working directory" on page 22 for
details of how the Sentinel Agent’s working directory is determined.

Configuring adapters

The Adapter tabs
When an IAF adapter is selected in the Navigation Pane, the Details Pane will display the following
tabs:

"Management tab" on page 62

"Configuration tab" on page 63

"Connections tab" on page 65

"Control tab" on page 65

"Statistics tab" on page 65

"Diagnostics tab" on page 68

Management tab
This tab contains a number of parameters that are relevant to managing an IAF adapter, and is
identical to that of a correlator.

The available parameters are:

Display name – This is the name to associate with this adapter in the Navigation Pane. The name
can be changed at any time, even if the adapter has already been started.

WARN state timeout (s) – This is the number of seconds to wait before moving the component into
the WARN state if it is not changing state (stopping/starting/ restarting) as required. This setting can
be changed at any time.

FAIL state timeout (s) – This is the number of seconds to wait after entering the WARN state before
moving into the FAIL state, if the component has still failed to change state as expected. This
setting can be changed at any time.

Automatic restart enable – Tick to configure EMM to monitor the selected component. If it were
to stop unexpectedly, EMM would automatically restart it – after waiting the amount of time
required for it to enter the FAIL state (and subject to the configured limit on the number of restart
attempts described below). This setting can be changed at any time.

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 63

Component monitoring and auto-restart is carried out from EMM and requires EMM to be
running.

Max. automatic restart attempts – This option is only available if Automatic restart is enabled. It
specifies the total number of automatic restarts to perform (or attempt) without user intervention.
The count is made from when you last enabled Automatic restart and committed, or explicitly
stopped/started/ restarted the adapter. This setting can be changed at any time.

Alternative start-up directory – By default all components are started from the current working
directory of the Sentinel Agent running on the host in question (see in "Working directory" on
page 22). If you wish, you can provide an alternative startup folder here. Note that this option is
only functional if the Sentinel Agent running on the host in question is version 1.1.1 or greater.

Click the Commit Changes button when you are finished customizing the new IAF adapter. This
applies the outstanding changes.

The Default button resets all outstanding parameter values to their defaults, while the Revert button
reverts the outstanding parameter values to their current committed values.

Configuration tab
This tab contains a number of parameters that configure how an IAF adapter operates. As these are
all startup parameters, you should adjust them before you start the component. If the component is
already running they will only have effect the next time it is started.

The following parameters are available for an IAF adapter:

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 64

Listen on port - Port on which the IAF adapter should listen for monitoring and management
requests (default is 16903). The adapter will fail to start if this port is in use by any other
component, or for that matter by any other software that is running on the relevant host.

Log level - Sets the log level the IAF adapter should log at – must be one of CRIT, ERROR, WARN, INFO,
DEBUG (in increasing order of verbosity). If this value is not set, then the IAF adapter will log at the
level specified in the adapter configuration file. If a value is indeed specified, that the EMM value
will always override the log level specified in the adapter configuration file.

Log file name - Sets the filename that the adapter should write log messages to (on the file system
of the host the correlator is running on). It is recommended that an absolute path be provided.

Configuration file (required, remote) – Specifies the path of an IAF adapter configuration file. The
IAF adapter cannot be committed or started until a configuration file is specified.

For more information, see The IAF configuration file in Connecting Apama Applications to External
Components.

The file’s path is looked up on the file system of the host the adapter is running on, and it is
recommended that an absolute path be provided. See "Specifying paths and filenames in the
Details Pane" on page 61 for more information about setting filename options correctly.

Extra command line arguments – This option allows additional unspecified command line
arguments to be passed to the IAF adapter. For example these might be special settings provided
to you by Apama Customer Support to address specific issues.

Click on the Commit Changes button when you are finished customizing the new IAF adapter. This
applies these outstanding changes for use when the adapter is actually started.

The Default button resets all outstanding parameter values to their defaults, while the Revert button
reverts the outstanding parameter values to their current committed values.

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 65

Connections tab
This tab allows you to connect an adapter to upstream components. It also displays downstream
components that are connected to the adapter. The tab is similar to the Connections tab for a
correlator. For a complete description of the Connections tab, "Connections tab" on page 49.

Control tab
The Control tab provides for control of an IAF adapter. Three operations are supported:

Suspend event processing – This button will pause a running IAF adapter.

Resume event processing – This button will resume a running IAF adapter.

Reload configuration file – This button will ask the IAF adapter to re-read its configuration file,
allowing an adapter to be reconfigured without shutting it down.

Statistics tab
This tab allows monitoring of the status of an operational IAF adapter.

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 66

Status information is refreshed regularly, by default, once a second. You can change this rate by
changing the Component status display update interval (s) value on the Timing tab within the Preferences
dialog. The Preferences dialog is available by selecting Options > Preferences from the EMM menu.

No status information will be displayed if EMM cannot communicate with the IAF adapter selected.
This is usually because the adapter has not yet been started or has been stopped. However, it could
also be due to network failure. In this case, statistics will reappear once the connection is restored.

The following statistics are available:

Product version – The Apama release number.

Process identifier – The identifier assigned to this component by the operating system.

Uptime – The time in seconds since this adapter was started. This time is maintained and reported
by the component itself, so if the adapter was started independently of EMM and only managed
by EMM later, the value would still be accurate.

Time since last reconfig – The time in milliseconds since this adapter was last ‘reconfigured’, that is,
reset with a new configuration file.

Number of reconfigs – The total number of reconfigurations.

Number of transports – The total number of Transport Plug-ins active in this adapter.

Number of codecs – The total number of Codec Plug-ins active in this adapter.

Number of downstream mappings – The total number of mapping rules set up in the adapter’s
semantic mapper for downstream (from an external message source into Apama events) event
mappings.

Number of upstream mappings – The total number of mapping rules set up in the adapter’s
semantic mapper for upstream (from Apama events into an external message sink) event
mappings.

Number of Apama sinks – The number of Apama correlators that the adapter is sending events to.

Number of Apama sources – The number of Apama correlators that the adapter is receiving events
from.

Number of transport events recd – The total number of messages received by the adapter’s transport
Plug-ins from external message sources (that is, downstream).

Event receive rate from transport – The number of messages per second currently being received by
the adapter’s transport plug-ins. This value is computed with every status refresh and is only an
approximation.

Number of transport events sent – The total number of messages sent out by the adapter’s Transport
Plug-ins to external message sinks (i.e. upstream).

Event send rate to transport – The number of messages per second currently being sent out by the
adapter’s Transport Plug-ins. This value is computed with every status refresh and is only an
approximation.

Number of Apama events recd – The total number of Apama events received by the adapter from
Apama for upstream conversion.

Event receive rate from Apama – The number of Apama events per second currently being received
by the adapter from Apama. This value is computed with every status refresh and is only an
approximation.

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 67

Number of Apama events sent – The total number of Apama events sent to Apama by the adapter
because of a downstream conversion.

Event send rate to Apama – The number of Apama events per second currently being sent
to Apama by the adapter. This value is computed with every status refresh and is only an
approximation.

Mapper Status – Indicates whether the adapter’s semantic mapper has started.

Apama Status – Indicates whether the adapter has contacted the Apama sinks and sources
specified in the Configuration File.

The four event rate statistics are also displayed graphically over the last 60 seconds at the bottom of
the Statistics tab in the two graphs: Transport Event rates and Apama Event rates.

The following two illustrations show the top and bottom portions of the Statistics tab for adapters.

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 68

Diagnostics tab
The Diagnostics tab for an IAF adapter is identical to that of a correlator and displays diagnostics
information about changes in the state of the adapter.

The Adapter tabs

Deploying and Managing Apama Applications 9.9.0 69

For complete information on this tab, see "Diagnostics tab" on page 58.

Overview of deploying and managing query applications

Deploying and Managing Apama Applications 9.9.0 70

Chapter 5: Deploying and Managing Queries

n Overview of deploying and managing query applications .. 70

n Query application architecture ... 71

n Deploying query applications .. 71

n Running queries on correlator clusters ... 72

n Managing parameterized query instances ... 76

n Monitoring running queries .. 77

As mentioned elsewhere, scaling, both vertically (same machine) and horizontally (across multiple
machines), is inherent in Apama query applications. Scaled deployments on multiple machines use
distributed cache technology to maintain and share application state. Consequently, deployment of
Apama query applications includes setting up a distributed cache as well as some kind of messaging.
The topics in this section provide instructions for doing this with the recommended platforms.

Overview of deploying and managing query applications
Typically, query application deployments script the start up and management of all Apama query
application components outside of the Apama's development environment in Software AG Designer.
Apama recommends the use of the Ant export facility of Software AG Designer to aid in this.

Queries can also be run from Software AG Designer. However, Software AG Designer can run only a
single correlator deployment. Use Apama macros for Ant to deploy multiple correlator deployments.

Queries can be deployed on a single node, but typically would be deployed across multiple nodes,
forming a cluster. While involving more components, a cluster provides:

Scale out across multiple hosts

Resiliency against failures

Continued availability if some nodes fail

Using a cluster will involve the following:

Some number of correlators that are executing queries

A BigMemory distributed cache for storing event history

A JMS bus for distributing events to correlators

There are likely to also be adapters or a message bus to deliver events generated by queries, and
possibly adapters connected to each correlator. See "Deploying and Configuring Adapters" on page
60.

Queries use the store name "ApamaQueriesStore". If you want to use BigMemory, you need to
configure the BigMemory driver to use that as the store name, else an in-process only memory store
will be used. See "Configuring BigMemory driver" on page 73.

Query application architecture

Deploying and Managing Apama Applications 9.9.0 71

Deploying and Managing Queries

Query application architecture
In a query deployment, incoming events are delivered to correlators, typically via a JMS message
bus, such that every event is delivered to one correlator. The correlators store the event history for
each query in BigMemory, a distributed cache. On every event, one correlator reads the latest history
for the partition or partitions to which the event belongs, and writes that event to the distributed
cache for access by other correlators. The entire window history is then evaluated against the query
patterns.

Queries can make use of the following technologies to provide a scalable platform:

JMS queues — these are used to distribute events to multiple correlators, which automatically
spreads the load across a number of servers.

BigMemory distributed cache — this allows state (event history) to be accessed quickly
across multiple servers, and replicated to safeguard against hardware failures. This should be
configured to give the desired amount of resiliency and scaled appropriately to the deployment.

It is possible to use Apama queries in a standalone mode on a single correlator. This allows easy
testing by means of event files. However, all state is stored in-memory, and is lost when the
correlator is stopped. Thus, this mode is only recommended for development, not for deployments.

When an event is sent to a cluster of correlators over a JMS queue, this is what happens:

1. Each event goes to one correlator.

2. A received event is handled by one of several processing threads within that correlator.

3. The key of the event is extracted based on the definitions of running queries that use that event.

4. The window of events for that key value is retrieved from the distributed cache.

5. The current event is added to the retrieved window, which is written back to the cache.

6. The event pattern of interest (what you are looking for) is evaluated against the stored window to
determine whether there is a match.

Because events are sent to multiple threads in different correlators, small differences in timing across
hosts can result in events being processed out of order. If there are a large number of events in the
window, the cost of reading and writing the historic window will be excessive. Events for the same
key may be processed by different correlators. Consequently, between events, the only state kept by
the system is the window of historic event data.

Upon matching an event pattern, queries may send events to other monitors or to adapters. These
can be shared adapters across the cluster, or more typically, adapters local to each correlator.

Deploying and Managing Queries

Deploying query applications
Apama recommends that you use the Ant export facility in Software AG Designer to help you
deploy your query application. The general steps for deploying an Apama query application include:

Running queries on correlator clusters

Deploying and Managing Apama Applications 9.9.0 72

1. In Software AG Designer, configure JMS bus access and distributed cache access. See "Correlator
arguments" in Using Apama with Software AG Designer.

2. In Software AG Designer, generate an Ant deployment script. The generated files are placed in
a directory that you specify. See "Exporting to a deployment script" in Using Apama with Software
AG Designer.

3. Copy the resultant directory onto each host that will run a correlator.

4. If necessary, edit the environment.properties file on each correlator host.

5. Ensure that the BigMemory and JMS servers are running.

6. On each correlator host, run the Ant deployment script to start the correlator.

If the project does not contain a distributed cache configuration, a local in-process MemoryStore
will be used to store events. This is not shared or persistent, so only supports a single correlator
deployment. If this correlator stops, it will drop all event history data. Apama recommends a
BigMemory server and configuration for production use. See "Deploying BigMemory Terracotta
Server Array" on page 73 and "Configuring BigMemory driver" on page 73.

Apama does not recommend running multiple correlators on a single machine. The assumption is
that each correlator can use all of the CPU resources available. Also, running multiple correlators on
one host does not provide any extra resilience. However, it is possible to run multiple correlators on
a single machine. To do so:

1. Copy the exported deployment directory to separate directories on the correlator host machine.

2. Edit the environment.properties file to specify a different port number for each correlator and for
each (if any) adapter in your project.

Deploying and Managing Queries

Running queries on correlator clusters
The following topics describe how to run queries on correlator clusters.

Deploying and Managing Queries

Deploying queries on multiple correlators
When using multiple correlators to deploy an Apama query application, it is the administrator's
responsibility to keep the resources of the exported project up to date. If changes are made to a
query, if queries are added or removed from a project, then all correlators should be updated to
reflect the new state. It is possible to inject queries into a live running correlator, or delete queries
from a correlator. Make sure that the injections and deletions are performed on all correlators in the
cluster.

The queries runtime assumes that all members of a cluster:

Share access to the same Distributed MemoryStore state - by using BigMemory Terracotta Server
Array.

Can connect freely between nodes.

Running queries on correlator clusters

Deploying and Managing Apama Applications 9.9.0 73

Run with clocks synchronized to within 1 second of each other. Apama recommends the use of
the Network Time Protocol (NTP) to synchronize clocks.

The queries runtime will nominate a single member of the cluster as master, which will handle book
keeping tasks such as garbage collecting nodes or handling failed cluster nodes.

If a correlator member of a cluster is using external clocking, then some functionality may not be
available. The members will be able to share the same data, but an externally clocked node cannot
be a master of other nodes and timers will not be failed over from an externally clocked node. In
normal operation, external clocking should only be used for testing purposes on a single node
(where failover and scalability is not required).

A production deployment of multiple nodes would not use external clocking for routine processing
of events. Use the source timestamp feature (see Using source timestamps of events in Developing Apama
Applications) if the events may be delayed or delivered out of order.

Running queries on correlator clusters

Deploying BigMemory Terracotta Server Array
To deploy BigMemory, see the BigMemory Max documentation.

For resilient operations, Apama recommends at least one backup on a separate host. You may want
to consider using multiple stripes in order to improve performance. Ensure that the BigMemory
server is accessible from all cluster members.

Running queries on correlator clusters

Configuring BigMemory driver
To configure the BigMemory driver:

1. In Software AG Designer, add the Distributed MemoryStore adapter bundle to your Apama
project.

In the Distributed MemoryStore Configuration Wizard, specify ApamaQueriesStore as the store name.

Note: If you specify a different store name or do not specify a name at all, an in-process only
memory store will be used.

See also "Adding adapters to projects" in Using Apama with Software AG Designer.

2. Check that the cluster name is set correctly for the host/port pairs of all of the BigMemory
Terracotta Server Array.

3. Set the providerDir property to the Terracotta installation directory.

4. Optionally, edit the on-heap and off-heap storage and other parameters as needed (see
"BigMemory Max driver specific details" in Developing Apama Applications. The useCompareAndSwap
property should be left in its default true configuration for correct behavior of Apama queries.

Running queries on correlator clusters

http://documentation.softwareag.com/terracotta/index.htm

Running queries on correlator clusters

Deploying and Managing Apama Applications 9.9.0 74

Using JMS to deliver events to queries running on a cluster
When running queries across multiple correlators in a cluster, as well as configuring all correlators to
access the same BigMemory store, Apama recommends that all events are delivered into the cluster
using a JMS queue. By using a JMS queue, each correlator will pull events from the JMS queue unless
it has a full input queue (that is, it is behind on processing events) or has stopped running (e.g. shut
down for maintenance or suffered a hardware failure). In either case, events will continue to be
processed by other correlators in the cluster. Correlators can also be added to or removed from the
cluster to scale the cluster capacity if desired. It is also possible to use per-correlator adapters for
incoming events, but the adapters must co-ordinate so that every event is sent to only one correlator,
and should one adapter/correlator pair fail, then other adapters process events that the failed
node would have processed. Each event should only be delivered to one correlator, else multiple
correlators will store the event in the shared cache, which can result in erroneous matches. Using
JMS queues, this happens automatically, giving an 'elastic' system that can be scaled and continues
running in the face of failure.

To run queries across multiple correlators in a cluster:

Configure each correlator to access the same BigMemory store. This is a requirement.

Use a JMS queue to deliver events into the cluster. This is a recommendation.

When the cluster uses a JMS queue, each correlator pulls events from the queue. If the input queue
of one correlator in the cluster becomes full and it cannot pull events from the JMS queue the other
correlators continue to do so and continue to process events. A correlator may stop pulling events
because the correlator is behind on processing events or because it has stopped running, perhaps for
maintenance or because of a hardware failure.

Using a JMS queue makes it easy to scale the cluster capacity by adding or removing correlators.

An alternative to using a JMS queue is to use an adapter for each correlator. For example, by having
an IAF-based adapter connected to each correlator, it is possible to send messages to and from a
query application without using JMS. A disadvantage of using per-correlator adapters is that the
adapters must coordinate the following:

Each event goes to only one correlator in the cluster. If an event goes to more than one correlator
then multiple correlators store the same event in the shared cache. This can result in erroneous
matches.

Should one adapter/correlator pair fail then the other adapters process the events that the failed
node would have processed.

Use of a JMS queue automatically ensures that an event goes to only one correlator and that all
received events are processed. The result is an 'elastic' system that can be scaled and that continues to
run even if a node fails.

Similar to using multiple contexts in a correlator, delivering events through JMS can result in events
that occur close together in time being processed in an order that is different than the order in which
they were created or sent to the JMS message bus. Queries do not support reliable message delivery.
Consequently, if a correlator fails, perhaps because of a hardware failure, all events that had been
received by the failed correlator but not yet written to BigMemory may be lost, and output events
from queries can be lost. However, if the system is correctly scaled then the number of messages lost
will be small.

Running queries on correlator clusters

Deploying and Managing Apama Applications 9.9.0 75

Configure your JMS bus to have one or more queues, and configure a static JMS receiver connection.
See "Getting started with simple correlator-integrated messaging for JMS" in Connecting Apama
Applications to External Components. You will also need to provide mapping for all event types that
flow into the queries. See "Mapping Apama events and JMS messages" also in Connecting Apama
Applications to External Components.

The queries runtime ensures that after all queries have been injected into the correlator and started,
they automatically start to receive events from JMS queues. There is no need to explicitly call
jms.onApplicationInitialized() as described in "Using EPL to send and receive JMS messages" in
Connecting Apama Applications to External Components.

For all applications that do not consist entirely of queries, for example, applications that contain
additional EPL monitors or Java monitors, then it may be required to delay starting JMS until the
application and queries are both ready to process events. The auto-starting of JMS behaviour of
queries can be controlled by sending a QueriesShouldNotAutoStartJMS() event to the main context. This
event can be routed by an application's onload() method. If this is done then a monitor in the main
context should listen for a QueriesStarted() event and should wait until both the application and
queries have started. The monitor can then call jms.onApplicationInitialized() directly. For example,
the following monitor delays starting JMS until queries are started and a StartMyApp() event has been
processed:
using com.apama.queries.QueriesShouldNotAutoStartJMS;
using com.apama.queries.QueriesStarted;
event StartMyApp {
}
monitor MyApp {
 import "JMSPlugin" as jms;
 action onload {
 route QueriesShouldNotAutoStartJMS();
 on QueriesStarted() and StartMyApp() {
 jms.onApplicationInitialized();
 }
 }
}

Running queries on correlator clusters

Mixing queries with monitors and scenarios
It is possible to have both monitors and queries in a project.

Events that are to be processed by queries should be sent to the com.apama.queries channel from
monitors. Queries may send events to any channel, which EPL monitors may be subscribed to.

While queries will automatically scale and share state across a cluster, EPL monitors will not. Thus,
be aware that a query may process subsequent events matching a pattern on different nodes. On
different nodes, monitors with potentially different state will be executing. Similarly, the state of EPL
monitors is not automatically stored in the distributed cache.

Both EPL monitors and Apama queries can make use of actions defined on events, subject to some
limitations on the use of spawn, die, and event listeners. See "Restrictions in queries" in Developing
Apama Applications.

Running queries on correlator clusters

Managing parameterized query instances

Deploying and Managing Apama Applications 9.9.0 76

Handling node failure and failover
A node may stop processing events from time to time. This may be because it is stopped for planned
maintenance, or the node failed in some way. In these cases:

Events that have been delivered to the node but not yet processed will be lost. This will typically
be a small window of events.

Patterns that end with a wait operator may be dropped if they are being handled by a node
that has stopped. For example, if a query contains the pattern MyEvent:e -> wait(5.0), and the
node that receives a matching MyEvent stops before 5 seconds are up, then the pattern will not be
matched in this instance.

If using JMS, then events continue to be delivered to and processed by other correlators in the
cluster. The failed correlator will not hold up processing on other nodes. Other nodes continue
processing events, including matching against events that the failed node had previously
received (if they had been processed).

Any clients connected to the failed correlator will need to re-connect to another correlator. The
same set of parameterized query instances is kept in synchronization across the cluster. See
"Managing parameterized query instances" on page 76.

Similarly, nodes running a BigMemory Terracotta Server Array may fail. For this reason, BigMemory
should be configured with sufficient backups to ensure no data is lost in this case. Consult the
Terracotta documentation.

Running queries on correlator clusters

Managing parameterized query instances
When using parameterized queries, Apama recommends that you use one Scenario Service client at
a time to manage parameterizations. Use of more than one client can result in undefined behavior if
they both attempt to edit a parameterized instance concurrently. You can connect to any correlator
in the cluster, and Apama will automatically synchronize the state of parameterized instances across
the cluster. This assumes that the same query definitions have been injected into the correlators on all
cluster nodes. If a node fails, you will need to connect to another correlator in the cluster.

Deploying and Managing Queries

Creating new query instances by setting parameter values
Use Scenario Browser to set parameter values for a parameterized query and thus create new
parameterized query instances, also referred to as parameterizations.

Managing parameterized query instances

http://documentation.softwareag.com/terracotta/index.htm
http://documentation.softwareag.com/terracotta/index.htm

Monitoring running queries

Deploying and Managing Apama Applications 9.9.0 77

Changing parameter values for queries that are running
Use Scenario Browser to change the parameter values for a running parameterized query instance,
also referred to as a parameterization.

Managing parameterized query instances

Monitoring running queries
To help you monitor queries that are running on a given correlator, Apama provides data about
active queries in DataViews. To display the information provided by these DataViews, you can create
a dashboard in which an end user can:

Monitor query runtime performance.

Determine whether a query is behaving as intended. For example, you can see how incoming
events are distributed across partitions. If you are expecting a particular send and match rate you
can see if you are getting the results you expect.

Ensure that the window size (the number of events in the window) is not too large. The
expectation is that your application is designed so that partitioning keeps any given window size
as small as possible.

The Queries_Statistics_Sample that is provided with Apama (located in APAMA_HOME\samples
\queries) contains such a dashboard. It shows you how to build a dashboard that allows you to
monitor the performance of running queries.

For information about exposing DataViews in dashboards, see Building and Using Dashboards.

A running query is either a non-parameterized query instance or a parameterization. For each
running query, there is a DataView for each of its input event types. For example, if a query instance
has two input event types then there are two DataViews that provide statistics for that query, one for
each input event type.

Each DataView:

Contains data about the activity during the last second of one running query and one of its input
event types.

Contains the fields described in the table below. The value contained in each field is an
exponentially weighted moving average (EWMA).

Is updated every second if the information has changed in the last second.

Statistical Field Description

% Threads Active EWMA Apama uses multiple threads to process a given query.
This is the percentage of those threads that were used
within the last second to process the input event type that
this DataView provides information for.

While there is not a linear correlation, as this percentage
goes down, the reliability of the rest of the statistics

Monitoring running queries

Deploying and Managing Apama Applications 9.9.0 78

Statistical Field Description
becomes weaker. This is because a smaller proportion of
threads are contributing information.

Avg. Inbound Event Rate/s EWMA The average rate per second at which events of this type
are being processed.

Avg. % of Successful Matches

EWMA

The average percentage of the number of received events
that cause a match.

No. Unique Keys Processed EWMA The number of unique query partitions that were accessed
for this event type within the past second.

Avg. Window Size/Key EWMA The average window size (number of events that it
contains) of each unique partition that was accessed within
the past second.

The display name of these DataViews is Correlator Query Statistics.

After a non-parameterized query is injected into the correlator, Apama provides a DataView for each
input event type and begins writing data to it. After a non-parameterized query is deleted, Apama
no longer makes the DataViews for that query instance available.

For a parameterized query, after a parameterization is created then Apama adds new DataViews and
begins populating them. When a parameterization is deleted then Apama no longer provides the
DataViews that correspond to that parameterization. If the definition of a parameterized query is
deleted then Apama no longer provides DataViews for any parameterizations of that query.

To help you monitor queries that are running across multiple correlators in a cluster, Apama also
provides the same type of performance statistics provided for a given correlator but where the
underlying data has been aggregated across all the clustered correlators running those queries.

The display name of these DataViews is Cluster-Wide Query Statistics.

This means that for each query running on a correlator two types of monitoring data is provided:

Statistics generated from data from only that correlator.

Statistics generated from data aggregated across all correlators in the cluster running that same
query.

Deploying and Managing Queries

Scaling up Apama

Deploying and Managing Apama Applications 9.9.0 79

Chapter 6: Tuning Correlator Performance

n Scaling up Apama ... 79

n Partitioning strategies .. 80

n Engine topologies .. 83

n Event correlator pipelining ... 84

This section addresses how to scale up Apama to improve upon the performance of a single event
correlator. It describes the Apama features you can use to send events to multiple event correlators to
increase an application’s capacity.

Scaling up Apama
Apama provides services for real-time matching on streams of events against hundreds of different
applications concurrently. This level of capacity is made possible by the advanced matching
algorithms developed for Apama's event correlator component and the scalability features of the
correlator platform.

Should it prove necessary, capacity can further be increased by using multiple event correlators on
multiple hosts. To facilitate such multi-process deployments, Apama provides features to enable
connecting components to pass events between them. It is recommended that each correlator is run
on a separate host, to assist in the configuration of scaled-up topologies. However, it is possible to
run multiple correlators on a single host. There are two methods of configuration:

Using the configuration tools from the command line or Apama macros for Ant.

Programmatically through a client programming API.

This guide describes both approaches, but first discusses different ways in which Apama can be
distributed and what factors affect the choice of the distribution strategy.

Note: This topic focuses on scaling Apama for applications written in EPL. JMon has less scaling
features as it does not support the use of multiple contexts. Java plug-ins can be used if invocation
of Java code is required on multiple threads, either directly from EPL or by registering an event
handler. See "Using Java plug-ins" in the "Developing Correlator Plug-ins" part of Developing Apama
Applications. Knowledge of aspects of EPL is assumed, specifically monitors, spawning, listeners and
channels. Definitions of these terms can be found in "Getting Started with Apama EPL" in Developing
Apama Applications.

The core event processing and matching service offered by Apama is provided by one or more event
correlator processes. In a simple deployment, Apama comprises a single event correlator connected
directly to at least one input event feed and output event receiver. Although this arrangement
is suitable for a wide variety of applications (the actual size depending on the hardware in use,
networking, and other available resources), for some high-end applications it may be necessary to
scale up Apama by deploying multiple event correlator processes on multiple hosts to partition the
workload across several machines.

Partitioning strategies

Deploying and Managing Apama Applications 9.9.0 80

Tuning Correlator Performance

Partitioning strategies
Using the patterns and tools described in this guide it is possible to configure the arrangement of
multiple contexts within a single correlator or multiple event correlators within Apama (the engine
topology). It is important to understand that the appropriate engine topology for an application is
firmly dependent on the partitioning strategy to be employed. In turn, the partitioning strategy is
determined by the nature of the application itself, in terms of the event rate that must be supported,
the number of contexts, spawned monitors expected and the inter-dependencies between monitors
and events. The following examples illustrate this.

The stockwatch sample application (in the samples\monitorscript folder of your Apama installation
directory) monitors for changes in the values of named stocks and emits an event should a stock of
interest fall below a certain value. The stocks to watch for and the prices on which to notify are set
up by initialization events, which cause monitors that contain the relevant details to be spawned.
In this example, the need for partitioning arises from a very high event rate (perhaps hundreds of
thousands of stock ticks per second), which is too high a rate for a single context to serially process.

A suitable partitioning scheme here might be to split the event stream in the adapter, such that
different event streams are sent on different channels. The illustration below shows how this can be
accomplished:

This diagram shows an adapter sending events to different channels based on the symbol of the
stock tick. The adapter transport configuration file would specify a transportChannel attribute for
the stock event that named a field in the NormalisedEvent that specified the stock symbol. Either a
thread per symbol or a single thread (which could become a bottleneck) managed by the transport,
depending on what the system the transport is connecting to allows, is used to send NormalisedEvents
to the semantic mapper to be processed. The IAF thus sends the events on the channel in the stock
symbol value in the NormalisedEvent.

In this example, the stock symbol is either IBM or XRX. The IAF will send events to all sinks (typically
one) that are specified in the IAF's configuration file. In the correlator, all monitors interested in
events for a given symbol would need to set up listeners in a context where a monitor has subscribed
to that symbol. To achieve good scaling, the application is arranged so that each context is subscribed
to only one symbol. For the stockwatch application, a separate context per symbol would be created,
and the stockwatch monitor spawns a new monitor instance to each context. In each context, the
monitor instance would execute monitor.subscribe(stockSymbol); where stockSymbol would have the

Partitioning strategies

Deploying and Managing Apama Applications 9.9.0 81

value "IBM" or "XRX" corresponding to the stock symbol it is interested in. This application will scale
well, as each event stream (for the different stock symbols) can run in parallel on the same host; this
is referred to as scale-up.

Listeners in each context would listen for events matching a pattern, such as on all Tick(symbol="IBM",
price < 90.0) .

If the number of stock symbols is very large and the amount of processing for each stock symbol
is large, then it may be required to run correlators on more than one host to use more hardware
resources than are available in a single machine. This is referred to scale-out. To achieve scale-out,
connections per channel need to be made between the Apama components using the engine_connect
tool (or the equivalent call from Ant macros or the client API). The engine_connect utility can connect
any two Apama components, either correlator to correlator, or IAF to correlator. For best scaling,
multiple connections are required between components, which engine_connect provides in the parallel
mode. The following image shows a scaled out configuration.

This configuration allows many contexts to run on two hosts and requires use of engine_connect to set
up the topology.

Now consider a portfolio monitoring application that monitors portfolios of stocks, emitting an event
whenever the value of a portfolio (calculated as the sum of stock price * volume held) changes by
a percentage. A single spawned monitor manages each portfolio and any stock can be added to/
removed from a portfolio at any time by sending suitable events.

Partitioning strategies

Deploying and Managing Apama Applications 9.9.0 82

This application potentially calls for significant processing with each stock tick, as values of all
portfolios containing that stock must be re-calculated. If the number of portfolios being monitored
grows very large, it may not be possible for a single context to perform the necessary recalculations
for each stock tick, thus requiring the application to be partitioned across multiple contexts.

Unlike the stockwatch application, it is not possible to achieve scaling to larger numbers of
portfolios by splitting the event stream. Each portfolio can contain multiple stocks, and stocks can
be dynamically added and removed, thus one event may be required by multiple contexts. In this
case, a suitable partitioning scheme is to partition the monitor instances across contexts (as with
stockwatch) but to duplicate as well as split the event stream to each event correlator. The following
images shows the partitioning strategy for the portfolio monitoring application.

Again, each monitor instance is spawned to a new context and subscribes to the channels (stock
symbols in this application) that it requires data for. Note that while the previous example would
scale very well, this will not scale as well. In particular, if one monitor instance requires data from
all or the majority of the channels, then it can become a bottleneck. However, there may be multiple
such monitor instances running in parallel if they are running in separate contexts.

Similar to the stockwatch application, the portfolio monitoring application may require scale-out
across multiple hosts, as shown below.

Engine topologies

Deploying and Managing Apama Applications 9.9.0 83

In summary, the partitioning strategy can be thought of as a formula for splitting and duplicating
monitors and/or events between event correlators while preserving the correct behavior of the
application. In some circumstances, it may be necessary to re-write monitors that work correctly on a
single correlator to allow them to be partitioned across correlators, as the following section describes.

Tuning Correlator Performance

Engine topologies
Once the partitioning strategy has been defined, in terms of which events and monitors go to which
correlators, it is necessary to translate this into an engine topology. This is achieved by connecting
source and target event correlators on separate channels, such that events sent by a source correlator
on a specific channel find their way to the correct contexts in the target correlator. A set of two
or more event correlators connected in this way is known as a correlator pipeline, as shown in
the following image. This figure represents an example topology for a high-end application – the
majority of applications use a single correlator only, or have far simpler topologies.

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 84

In this image, an event correlator can perform the function of each of the 7 nodes (generator, worker,
watcher, tallier). Each target correlator performs some processing before passing the results to a
second worker correlator (worker3, worker4) in the form of events, sent on the channels as marked
on the diagram. tallier collates the results from these correlators for forwarding to any registered
receivers. A final correlator, watcher, monitors the events emitted by generator on chan1 and chan2 and
emits events (possibly containing status information or statistical analysis of the incoming event
stream) to any registered receivers.

To deploy an application on a topology like that shown above requires separating the processing
performed into a number of self-contained chunks. In the previous figure, it is assumed that the
core processing can be serialized into three chunks, with the first two chunks split across two
correlators each (worker1/2 and worker3/4 respectively) and the third chunk residing on a single
correlator (tallier). Intermediate results from each stage of processing are passed to the next stage
as sent events, which contexts in the connected correlators receive by subscribing to the appropriate
channels.

To realize this application structure requires coding each chunk of processing as one or more
separate monitors, which send intermediate results as an event of known type on a pre-determined
channel. These monitors can then be loaded onto the appropriate correlator. This may require an
existing application that grows beyond the capacity of a single event correlator, to be re-written as
a number of (smaller) monitors to allow partitioning of the application processing into separate
chunks in the manner described above.

Tuning Correlator Performance

Event correlator pipelining
To implement engine topologies comprising multiple event correlators requires a method of
connecting correlators in pipelined configurations. This can be achieved in the following ways:

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 85

Directly using the engine_connect tool, see "Configuring pipelining with engine_connect" on page
85.

Indirectly using Software AG's Universal Messaging (UM) message bus. For complex
deployments where parts of the application may be moved between Apama correlators, this is
likely to be the best alternative. When using UM each correlator connects to the same UM realm.

See Using Universal Messaging in Apama Applications in Connecting Apama Applications to External
Components.

Programmatically via the C++ client API, see "Configuring pipelining through the client API" on
page 91.

Using the Software AG Designer, click Connections on the Components tab of the Run Configurations
dialog.

See Connecting correlators in Using Apama with Software AG Designer.

Configuring pipelining with engine_connect

The engine_connect tool allows direct connection of running correlator instances.

The tool is located in the bin folder of the Apama installation, as engine_connect.exe (on Windows)
or engine_connect (on UNIX). Running the tool in the Apama Command Prompt (see "Setting up
the environment using the Apama Command Prompt" on page 12) ensures that the environment
variables are set correctly.

Synopsis
Usage: engine_connect [options]
To connect a correlator, as an event receiver, to another correlator.
Where options include:
 -h | --help This message
 -sn | --sourcehost <host> Source engine on <host>
 -sp | --sourceport <port> Source engine is listening on <port>
 -tn | --targethost <host> Target engine on <host>
 -tp | --targetport <port> Target engine is listening on <port>
 -c | --channel <channel> Listen on output channel <channel>
 -m | --mode <mode> Specify legacy or parallel
 -x | --disconnect Destroy rather than create connections
 -s | --qdisconnect Disconnect if slow (only takes effect on
 first connection)
 -f | --filename <file> Read config data from a file
 -u | --utf8 Assume config file is in UTF8
 -v | --verbose Be more verbose
 -V | --version Print program version info
 The target is connected as an event consumer to the source
 Multiple -c options may be given
 To read from stdin use -f -

Description

engine_connect connects a source correlator (the sender) to a target correlator (the receiver). The target
correlator will receive events from the specified channel(s) of the source correlator. Source and target
correlators must already be running.

Alternatively, if you specify the –f option, engine_connect reads connection information from the
specified file and sets up each connection found therein (see "Configuring pipelining through
the client API" on page 91 for details of the file format). The engine_connect utility expects the
specified file to be in the local character set. If the configuration file is in UTF-8, specify the -u option

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 86

in addition to the -f option. If the filename provided to -f is ‘-’ then connection information is read
from the standard input device (stdin) until end-of-file.

The connection between the source and target correlators is persistent. When one of the correlators
stops running then when that correlator restarts it automatically reconnects with the other correlator.

The tool is silent by default unless an error occurs. For verbose progress information use the –v
option.

Options

Option Description

-h Display usage information

-sn host Name of the host on which the source (event sending) correlator is
running. The default is localhost. However, you can use the default
or specify localhost only when the source correlator and the target
correlator are running on the same host. In all other situations, you
must specify the public IP address or the name of the host. This
ensures that the host of the target correlator can resolve the name/
address of the source correlator host. Non-ASCII characters are not
allowed in host names.

-sp port Port on which the source (event sending) correlator is listening
(default is 15903)

-tn host Name of the host on which the target (event receiving) correlator is
running. The default is localhost. However, you can use the default
or specify localhost only when the source correlator and the target
correlator are running on the same host. In all other situations, you
must specify the public IP address or the name of the host. This
ensures that the host of the source correlator can resolve the name/
address of the target correlator host. Non-ASCII characters are not
allowed in host names.

-tp port Port on which the target (event receiving) correlator is listening
(default is 15903)

-c channel Named channel on which to send/receive events. You can specify the
-c option multiple times to send/receive events on multiple channels.
You must specify the -c option at least once for each sender/target
pair. Until you do, no events emitted by the sender correlator are
received by the target correlator. An event is discarded if it is sent on
a channel for which you did not specify the -c option.

-m mode Indicates whether there is one connection (-m legacy) between the
sender and target correlators or one connection for each specified
channel (-m parallel).

The default behavior is that there is one connection between the
sender and target correlators. The utility uses the same connection
for every channel. Events sent on any channel are delivered to the

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 87

Option Description
default channel in the target correlator and all events are delivered in
order. You can specify default behavior by specifying -m legacy or --
mode legacy.

To create a connection for each specified channel, specify -m parallel
or --mode parallel. Events sent on a named channel are delivered
to the same named channel in the target correlator. Events sent on
the same channel are delivered in order. Events sent on different
channels may be re-ordered.

You also specify the -m option when you specify the -x option to
disconnect. If you are using a separate connection for each channel
you should specify -m parallel when you specify the -x option. If you
are using one connection for all channels you should specify -m legacy
when you specify the -x option.

See also "Avoid mixing connection modes" later in this section.

-x When you specify the -x option the behavior depends on whether
you also specify the -c option.

If you specify the -x option and you do not also specify the -c channel
option then the source correlator stops sending events to the target
correlator. Each connection between the source correlator and the
target correlator is terminated.

If you specify the -x option and the -c channel option and the utility
is using one connection for each channel then the source correlator
terminates only the connection(s) it was using for the channel(s)
you specify. Any other connections being used for other channels
continue to be used. You can specify the -x option with one or more
instances of the -c channel option. Remember to also specify -m
parallel.

If you specify the -x option and the -c channel option and the utility
is using one connection for all channels then the source correlator
stops sending events on only the channel(s) you specify. The source
correlator continues to send events on any other channels it was
already sending events on. If there are no other channels, then the
source correlator no longer sends events to the target correlator.
However, the connection between the two correlators remains in
place. Remember to also specify -m legacy.

-s Disconnect if slow (only takes effect on first connection)

-f Read connection information from the named file. If this option is
specified, the options –sn –sp –tn –tp -c are all ignored. This file must
be in the local character set or in UTF-8 format. If it is UTF-8, specify
the -u option in addition to this option.

-u Indicates that the connection information file is in UTF-8.

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 88

Option Description

-v Requests verbose output

-V Displays program name and version number

Operands

None.

Exit status

The following exit values are returned:

Status Description

0 All connections were established successfully.

1 One or more source correlators could not be contacted

2 One or more target correlators could not be contacted

3 A problem occurred establishing the connection; request invalid

4 Target correlator failed to contact the Source

5 Some other error occurred

Comparison of legacy and parallel connection modes

Legacy connection mode Parallel connection mode

0 or 1 connection between two correlators. Any number of connections between
correlators.

Events sent on different channels are
delivered in the order in which they are sent.

Events sent on different channels may be
delivered in a different order from the order
in which they were sent.

Sending an event to a named channel
delivers the event to the default channel.

Sending an event to a named channel
delivers it to only that channel.

Unlike UM for passing events between
correlators.

Similar to UM for passing events between
correlators.

Same behavior as releases earlier than
Apama 5.2.

New behavior starting with Apama 5.2.

UM has no mechanism for enforcing ordering among events sent on different channels. However,
UM is the better alternative when you want to use a large number of channels to send events

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 89

between components. Without UM, the use of two TCP connections with threads on both ends of the
connection might reach the limit of how many channels can have dedicated connections.

Avoid mixing connection modes

Successive command lines that specify the same source/target hosts/ports build on each other. While
this makes it possible to mix the legacy and parallel connection modes, you should avoid doing that.
Mixing connection modes can cause an event to be delivered twice to the same channel. For example:
engine_connect -tp 15902 -sp 15903 -c channelA -c channelB
engine_connect -tp 15902 -sp 15903 -c channelA -c channelC -m legacy

The result of the first command is that there is one (legacy) connection for sending/receiving events
on channelA and channelB. The result of the second command is that there is a dedicated connection
for sending/receiving events on channelA and a dedicated connection for sending/receiving events on
channelC. Events sent on channelA would be delivered twice — once on the legacy connection and once
on the dedicated connection.

Examples

Because you can specify command lines that build on each other, you could set up a connection and
add named channels later. You can also unsubscribe the channels you've added so that no events
are sent or received. The connection remains and you can re-add channels at a later time. However,
until you specify the -c option for a given connection, no events emitted by the source correlator are
received by the target correlator. Consider the following command line:
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904

The correlators on host1 and host2 are connected but no channels have been subscribed and therefore
no events are sent/received. To send and receive events, specify the -c option as in the following
command line:
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -c CHAN1 -c CHAN2

Now the connected correlators can use CHAN1 and CHAN2 to send/receive events. To add another
channel, execute this command:
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -c CHAN3

The correlators are now using CHAN1, CHAN2, and CHAN3 to send/receive events. To stop using CHAN2,
execute the following command. The correlators continue to use CHAN1 and CHAN3.
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -x -c CHAN2

To stop sending and receiving events, execute the following command. Note that the correlators
remain connected until one of them stops. There is no penalty for this connection.
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -x

In this example, the following command is equivalent to the previous command.
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -x -c CHAN1 -c CHAN3

Tuning Correlator Performance

Connection configuration file
engine_connect can take connection information from a file for connecting and disconnecting event
correlators. A sample of such a configuration file is shown below, which defines the topology shown
in "Example of a pipelined engine topology" on page 84.

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 90

comments are allowed prefixed by a '#' – the rest of the line
is ignored
generator:dopey.apama.com:1234
worker1:sleepy.apama.com:1234:generator{chan1,chan2,chan3}
worker2:grumpy.apama.com:1234:generator{chan2}
worker3:sneezy.apama.com:1234:worker1{w1_out}
worker4:bashful.apama.com:1234:worker2{w2_out_1,w2_out_2,w2_out_3}
tallier:happy.apama.com:1234:worker3{result},worker4{result}
watcher:doc.apama.com:1234:generator{chan1,chan2}

Connection configuration file format

Each entry in the configuration file specifies connection information for a single correlator in the
deployment. Entries can be specified in any order. The general format of an entry is:
correlator_name[:host][:port][:connection[,connection...]]

where <connection> is defined as:
correlator_name[{channel_name[,channel_name...]}]

correlator_name is a symbolic identifier for a correlator, used to identify source correlators in target
correlator connection information. It can consist of any combination of characters other than
whitespace, colon, comma or open/close brace characters, which are reserved as separators. host
and port identify the specific correlator this entry applies to. They can be omitted, in which case the
defaults of localhost and 15903 are used respectively.

Following this information are details of all connections to source correlators for the current (target)
entry. This information is omitted if no correlators sit ‘upstream’ of the current entry (as with the
correlator generator, above). If there are multiple upstream source correlators, each name should be
separated by a comma (as with tallier, above, which takes events from worker3 and worker4).

For each connection it is possible to specify the channel(s) on which the target correlator will listen. If
no channels are specified the target correlator will register to receive all events emitted by the source
correlator regardless of channel (as with correlators worker3 and worker4 which register for all events
from worker1 and worker2 respectively). One can specify specific channel names by enclosing them in
braces and separating multiple channels by commas (as with watcher which registers with generator
for all events on channels chan1 and chan2).

In effect, the configuration file is a convenient way of grouping several calls to engine_connect. For
example to set up the connections for the correlator tallier would require two commands using
engine_connect:
>engine_connect -m parallel –sn sneezy.apama.com –sp 1234 –tn happy.apama.com
 -tp 1234 –c result
>engine_connect -m parallel –sn bashful.apama.com –sp 1234 –tn happy.apama.com
 -tp 1234 –c result

Errors in the configuration file

The configuration file can be used to both establish and remove connections in a multi-correlator
engine topology. For example, assuming the above file is saved as topology.dat, the following
commands will first set up then tear down all the connections specified therein:
>engine_connect -m parallel –f topology.dat
>engine_connect -m parallel –x –f topology.dat

In each of these cases, engine_connect will exit with non-zero exit status on the first error it detects in
the configuration file. An error message will be printed to standard error (stderr).

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 91

Re-playing the configuration file

The behavior of engine_connect without the -x option is additive. This means that successive calls
to engine_connect will attempt to add the channels specified to any existing connection between the
source and target correlator(s). For example, with reference to the configuration file above, these
commands:
>engine_connect -m parallel –sn dopey.apama.com –sp 1234 –tn sleepy.apama.com
 –tp 1234 –c foo
>engine_connect -m parallel –f topology.dat

will first add a connection from correlator generator to worker1 on channel foo, then (from the
configuration file) extend that connection so that worker1 also receives all events from generator
emitted on channel chan1.

Once a connection is set up between two correlators on a channel, any further attempt to set up
that connection on the same channel will have no effect. It is therefore possible to re-play the
configuration file by invoking engine_connect without creating duplicate connections. This can be
useful if there is an error in the configuration file signaled when engine_connect is called, as the
error can be fixed and engine_connect re-run without requiring removal of connections that were
successfully set up by the first call to engine_connect.

Event correlator pipelining

Configuring pipelining through the client API
Apama provides a C++ Client Software Development Kit (SDK). This allows software written in C++
to interface with a running event correlator or group of event correlators. Apama management tools
such as engine_connect are written using this Client Software Development Kit.

The functionality of the Client SDK is found in the lib folder of the Apama installation and consists
of the libraries libapclient.so (-lapclient) on UNIX, or apclient.lib on Windows. To code against the
library use the definitions from the engine_client_cpp.hpp header file in the include folder.

Detailed information on how to use the integration library is available in "The C Cient Software
Development Kit" in Connecting Apama Applications to External Components. This section looks at the
specific methods that allow a developer to programmatically configure two event correlators to
communicate in a pipelined arrangement.

The primary class contained in the library is
com::apama::engine::EngineManagement

An object instance of this class represents an event correlator within Apama, and allows a developer
to:

inject EPL files,

delete EPL entities,

send events into a correlator,

get a correlator’s current operational status,

connect a receiver of events,

connect a correlator as a consumer of another correlator.

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 92

The last capability is of direct interest here, and is supported through the following methods on the
EngineManagement class;
/**
 * Connect this Event Correlator as an event receiver to another
 * Event Correlator.
 *
 * @param target The Correlator to connect to
 * @param channels An array of names representing the channels to subscribe
 * to. This is a null-terminated array of pointers to zero-terminated
 * char arrays. If this is null or empty, subscribe to all channels.
 * @param disconnectSlow disconnect if slow. Only the first consumer's
 * disconnectSlow value is used; subsequent consumers added to this.
 * Default is false. EngineManagement object share the connection and
 * thus the disconnect behavior.
 * @param mode the connection mode to use,
 * defaults to legacy (single connection, all
 * events delivered to the default
 * channel). Set to CONNECT_PARALLEL for
 * connection per channel and channel values
 * passed through.
 * @return true if successful
 * @exception EngineException
 */
virtual bool attachAsEventConsumerTo(
 EngineManagement* target, const char* const* channels
 bool disconnectSlow=false, ConnectMode mode = CONNECT_LEGACY) = 0;
/**
 * Unsubscribe as an event receiver from another engine.
 *
 * @param target The Correlator to unsubscribe from.
 * @param channels An array of names representing the channels to
 * unsubscribe from. This is a null-terminated array of pointers to
 * zero-terminated char arrays. If this is null or empty unsubscribe
 * from all channels.
 * @param mode the connection mode to use,
 * defaults to legacy (single connection, all
 * events delivered to the default
 * channel). Set to CONNECT_PARALLEL for
 * connection per channel and channel values
 * passed through.
 * @exception EngineException
 */
virtual void detachAsEventConsumerFrom(
 EngineManagement* target, const char* const* channels,
 ConnectMode mode = CONNECT_LEGACY) = 0;

The following sample code illustrates how to connect two correlators in a pipelined arrangement.
The calls highlighted in bold are the important library calls.
 // Method that connects to 2 ‘Engines’ (Correlators) and links them up
 // in a pipeline
 void connect(const char* host1, unsigned short port1,
 const char* host2, unsigned short port2,
 vector<const char*> channels, bool detach,
 int& rc)
 {
 const char* emsg = "";
 EngineManagement* engine1 = NULL;
 EngineManagement* engine2 = NULL;
 try {
 // a bit verbose
 cerr << "Requesting connection from host:" << host1
 << ", port:" << port1 << " to host:" << host2
 << ", port:" << port2 << endl;
 // Ensure valid arguments
 rc = 3; // this just sets a return value
 if ((host1==host2) && (port1==port2)) {
 cerr << "Connecting an engine to itself is disallowed"

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 93

 << endl;
 return;
 }
 // Make sure the channel list is NULL-terminated
 channels.push_back(NULL);
 // Attempt to connect to source Correlator
 rc = 1;
 emsg = "Failed to connect to source engine";
 if (!(engine1 =
 com::apama::engine::connectToEngine(host1, port1))) {
 throw EngineException(emsg);
 }
 // Attempt to connect to target Correlator
 rc = 2;
 emsg = "Failed to connect to target engine";
 if (!(engine2 =
 com::apama::engine::connectToEngine(host2, port2))) {
 throw EngineException(emsg);
 }
 // Connect target to source
 if (detach) {
 emsg = "Detach failed";
 engine2->detachAsEventConsumerFrom(engine1,&channels[0],CONNECT_LEGACY);
 }
 else {
 emsg = "Attach failed";
 if (
 !engine2->attachAsEventConsumerTo(engine1,&channels[0],CONNECT_LEGACY))
 {
 rc = 4;
 emsg = "Target engine could not connect to source engine";
 throw EngineException(emsg);
 }
 }
 }
 catch (EngineException ex) {
 string errmes;
 errmes += emsg;
 errmes += ": ";
 errmes += ex.what();
 throw EngineException(errmes.c_str());
 }
 // Shutdown cleanly
 rc = 5;
 if (engine1) {
 // Disconnect from Apama
 emsg = "Failed to disconnect from source engine";
 com::apama::engine::disconnectFromEngine(engine1);
 }
 if (engine2) {
 // Disconnect from Apama
 emsg = "Failed to disconnect from target engine";
 com::apama::engine::disconnectFromEngine(engine2);
 }
 }

Event correlator pipelining

Event partitioning
Using engine_connect or the Apama client library, it is possible to create topologies of correlators
across which an application’s monitors can be partitioned. Use the engine_inject tool described in
"Injecting code into a correlator" on page 119, or by means of the relevant functions of the client

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 94

library, to load the relevant monitors directly on to the appropriate correlators, specifying the host
and port for each correlator.

This scheme is suitable for most applications, as monitors can be loaded once when Apama is
brought online. For some applications, however, there is a requirement for a dynamic routing
mechanism that (depending on the requirements of the application) continually splits and/
or duplicates the incoming event stream and sends it to two or more correlators. Use the IAF
transportChannel attribute to specify the channel an event is sent to, and connect that channel to the
appropriate correlators.

Event correlator pipelining

Deploying and Managing Apama Applications 9.9.0 95

Chapter 7: Managing and Monitoring over REST

n Generic Management .. 96

n Correlator Management ... 99

n IAF Management ... 100

Apama provides a REpresentational State Transfer (REST) HTTP API with which you can monitor
Apama components. The monitoring capabilities are available to third-party managing and
monitoring tools or to any application that supports sending and receiving XML documents over the
HTTP protocol.

Apama components expose several URIs which can be used to either monitor or manage different
parts of the system. Some are exposed by most Apama components. These are the generic
management URIs. Some are exposed only by specific types of components. For example a correlator
running on the default port of 15903 will expose a URI at http://localhost:15903/correlator/status. If
an HTTP GET is issued against the URI, the correlator will return an XML document with the current
status of the correlator.

Most URIs are purely for informational purposes and will only respond to HTTP GET requests and
interacting with them will not change the state of the component. However, some URIs allow the
state of the correlator to be modified. They will respond to one or more of the other HTTP methods.
For example the /logLevel URI will accept an HTTP PUT request containing an XML document
describing what the log level of the component should be set to. Note that in this case it will also
accept a GET request which will report the current log level of the component, in keeping with REST
principles.

All requests and responses over these interfaces have the same, simple elements. Those elements
are: prop, map and list. All elements have a name attribute. The prop element simply represents a name-
value pair with the name contained in the name attribute and the value being the content of the
element. The map element is an unordered list of named elements which might be any of the three
sets of elements though it is quite typically simply a map of prop elements. See the /info URI as an
example. The list is very similar to the map element except that here the order is typically regarded as
significant. All responses from these URIs have a top-level element with the name “apama-response”
and similar all requests which are sent to these URIs should have a top-level element with the name
“apama-request”. If there is an error then a response called “apama-exception” will be returned.

The /connections URL in the Generic Management section is a good example of all these elements
being used together. The top level element is a map which has two children, both lists, called senders
and receivers. The lists contain a map for each sender and receiver. Each sender or receiver has a set of
prop elements.

Method URI Description

GET /info Summary information about
the component including its
name, version, etc.

GET /ping Check if the component is
running.

Generic Management

Deploying and Managing Apama Applications 9.9.0 96

Method URI Description

GET /deepPing Check if the component is
running.

GET /logLevel Display the current log level
of the component.

PUT /logLevel Issues a request to change
the log level of the
component

GET /connections Display the connections to
the component.

GET /info/argv Display the arguments that
were specified when the
component was started.

GET /info/envp Display the names and
values of the environment
variables in use.

GET /info/categories Display the categories
available; currently argv and
envp.

GET /correlator/status Display the runtime
operational status of a
running correlator.

GET /correlator/info Display information about
the state of a running event
correlator.

GET /iaf/status Summary information about
the IAF component.

Generic Management
The Apama REST API GET methods return information about correlators, sentinel_agents and IAFs.
The PUT /logLevel method changes the specified log level.

GET /info

This method returns summary information about the component including its name, version, etc.
This is analogous to the data that can be retrieved with the Apama engine_management utility, for
example, the hostname field is exactly what engine_management --gethostname gives you.

Response

Generic Management

Deploying and Managing Apama Applications 9.9.0 97

The XML response to this method looks like this:
<?xml version="1.0"?>
<map name="apama-response">
 <prop name="name">correlator</prop>
 <prop name="type">correlator</prop>
 <prop name="componentVersion">n.n.n.0.0</prop>
 <prop name="productVersion">n.n.n.0.0</prop>
 <prop name="buildNumber">rel/n.n.n@nnnnnn</prop>
 <prop name="buildPlatform">amd64-rhel6</prop>
 <prop name="hostname">myhost.mycompany.com</prop>
 <prop name="username">myuser</prop>
 <prop name="pid">25529</prop>
 <prop name="port">15903</prop>
 <prop name="physicalId">6142374521438017124</prop>
 <prop name="logicalId">6142374521438017124</prop>
 <prop name="currentDirectory">/users/foobar/work</prop>
 <prop name="uptime">178897</prop>
</map>

GET /ping and GET /deepPing

Checks if the component is still running. If the component is running the client receives an empty
response. A failure is a timeout waiting for the response.

Response

The empty response for the Ping and deepPing looks like this:
<?xml version="1.0"?>
<map name="apama-response"> </map>

GET /logLevel

This method displays the log level of a component.

Response
<?xml version="1.0"?>
<map name="apama-response">
 <prop name="logLevel">INFO</prop>
</map>

PUT /logLevel

This methods sets the log level of a component.

Request
<?xml version="1.0"?>
<map name="apama-request">
 <prop name="logLevel">INFO</prop>
</map>

GET /connections

Gets the incoming and outgoing messaging connections to the given component, along with the
channels subscribed to and whether or not the receivers are slow.

Response

The response for this method looks like the following
<?xml version="1.0"?>
<map name="apama-response">
 <list name="senders">
 <map name="correlator (on port 57042)">

Generic Management

Deploying and Managing Apama Applications 9.9.0 98

 <prop name="remoteHost">127.0.0.1</prop>
 <prop name="remotePort">57042</prop>
 <prop name="physicalId">432487434834</prop>
 <prop name="logicalId">432487434834</prop>
 </map>
 <map name="engine_send">
 <prop name="remoteHost">127.0.0.1</prop>
 <prop name="remotePort">57077</prop>
 <prop name="physicalId">643690913</prop>
 <prop name="logicalId">643690913</prop>
 </map>
 </list>
 <list name="receivers">
 <map name="engine_receive">
 <prop name="remoteHost">127.0.0.1</prop>
 <prop name="remotePort">57053</prop>
 <prop name="physicalId">69086982542</prop>
 <prop name="logicalId">69086982542</prop>
 <prop name="slow">false</prop>
 <prop name="disconnectIfSlow">false</prop>
 <list name="channels">
 <prop name="">chan1"</prop>
 <prop name="">chan2"</prop>
 </list>
 </map>
 <map name="engine_receive">
 <prop name="remoteHost">127.0.0.1</prop>
 <prop name="remotePort">58032</prop>
 <prop name="physicalId">4325769021054</prop>
 <prop name="logicalId">4325769021054</prop>
 <prop name="slow">false</prop>
 <prop name="disconnectIfSlow">true</prop>
 <list name="channels">
 <prop name="">*</prop>
 </list>
 </map>
 <map name="correlator (on port 57042)">
 <prop name="remoteHost">127.0.0.1</prop>
 <prop name="remotePort">57071</prop>
 <prop name="physicalId">432487434834</prop>
 <prop name="logicalId">432487434834</prop>
 <prop name="slow">true</prop>
 <prop name="disconnectIfSlow">false</prop>
 <list name="channels">
 <prop name="">chan1"</prop>
 </list>
 </map>
 </list>
</map>

GET /info/argv

This method returns the arguments used when starting the component as a list of name/value pairs.

Response
<?xml version="1.0"?>
<list name="apama-response">
 <prop name="">./correlator</prop>
 <prop name="">-f</prop>
 <prop name="">correlator.log</prop>
 <prop name="">-j</prop>
</list>

GET /info/envp

This method returns a list the environment variables in use as a list of name/value pairs.

Response

Correlator Management

Deploying and Managing Apama Applications 9.9.0 99

<?xml version="1.0"?>
<list name="apama-response">
<prop name="ALLUSERSPROFILE">C:\ProgramData</prop>
<prop name="COMPUTERNAME">NBBEDUSERNAME</prop>
<prop name="COMSPEC">C:\Windows\system32\cmd.exe</prop>
<prop name="WINDIR">C:\Windows</prop>
...
</list>

GET /info/category

This method returns the names categories for which you can get general information.

Response
<?xml version="1.0"?>
<list name="apama-response">
 <prop name="categories">ha</prop>
 <prop name="categories">categories</prop>
 <prop name="categories">argv</prop>
 <prop name="categories">envp</prop>
</list>

Managing and Monitoring over REST

Correlator Management
The Apama REST API provides URIs to use with the GET method in order to return information
about running Apama correlators. This information includes data such as the number of listeners,
monitors, and contexts in the correlator, the number and types of events, and the number of JMon
applications. For details about the type of information returned by these methods, see "Watching
correlator runtime status" on page 131 and "Inspecting correlator state" on page 135.

GET /correlator/status

This is analogous to the information reported by the Apama engine_watch utility.

Response
<?xml version="1.0"?>
<map name="apama-response">
 <prop name="numConsumers">1</prop>
 <prop name="numOutEventsQueued">0</prop>
 <prop name="numOutEventsUnAcked">0</prop>
 <prop name="numOutEventsSent">62</prop>
 <prop name="uptime">1061116</prop>
 <prop name="numMonitors">15</prop>
 <prop name="numProcesses">16</prop>
 <prop name="numJavaApplications">0</prop>
 <prop name="numListeners">63</prop>
 <prop name="numEventTypes">110</prop>
 <prop name="numQueuedFastTrack">0</prop>
 <prop name="numQueuedInput">0</prop>
 <prop name="numReceived">3</prop>
 <prop name="numFastTracked">101</prop>
 <prop name="numEmits">227</prop>
 <prop name="numProcessed">260</prop>
 <prop name="numSubListeners">63</prop>
 <prop name="numContexts">1</prop>
 <prop name="virtualMemorySize">235624</prop>
 <prop name="numSnapshots">0</prop>
 <prop name="numInputQueuedInput">0</prop>
 <prop name="mostBackedUpInputContext"><none></prop>
 <prop name="mostBackedUpICQueueSize">0</prop>
 <prop name="mostBackedUpICLatency">0.0</prop>

IAF Management

Deploying and Managing Apama Applications 9.9.0 100

</map>

GET /correlator/info

This is analogous to the information reported by the Apama engine_inspect utility.

Response
<?xml version="1.0"?>
<map name="apama-response">
 <list name="eventTypes">
 <map name="eventType">
 <prop name="nameSpace">com.apama.samples.vwap</prop>
 <prop name="name">Match</prop>
 <prop name="eventTemplates">0</prop>
 </map>
 <map name="eventType">
 <prop name="nameSpace">com.apama.samples.vwap</prop>
 <prop name="name">Trade</prop>
 <prop name="eventTemplates">1</prop>
 </map>
 <map name="eventType">
 <prop name="nameSpace">com.apama.samples.vwap</prop>
 <prop name="name">VwapWatch</prop>
 <prop name="eventTemplates">2</prop>
 </map>
 </list>
 <list name="timers">
 <map name="timer">
 <prop name="nameSpace"></prop>
 <prop name="name">wait</prop>
 <prop name="timers">1</prop>
 </map>
 </list>
 <list name="containerTypes"/>
 <list name="monitors">
 <map name="monitor">
 <prop name="nameSpace">com.apama.samples.vwap</prop>
 <prop name="name">Vwap</prop>
 <prop name="subMonitors">2</prop>
 </map>
 </list>
 <list name="javaApplications"/>
 <list name="aggregates"/>
 <list name="contexts">
 <map name="context">
 <prop name="name">main</prop>
 <prop name="subMonitors">2</prop>
 <prop name="queueSize">0</prop>
 </map>
 </list>
</map>

Managing and Monitoring over REST

IAF Management
The Apama REST API provides a URI to use with the GET method in order to return information
about adapters running in the Apama Integration Adapter Framework (IAF). This information
includes data such as the number of codecs and transports in use and the number of events sent and
received.

IAF Management

Deploying and Managing Apama Applications 9.9.0 101

GET /iaf/status

This returns the same information as the output of the Apama iaf_watch utility.

Response
<?xml version="1.0"?>
<map name="apama-response">
 <prop name="uptime">1235213</prop>
 <prop name="uptimeSinceLastReconfiguration">43432</prop>
 <prop name="numReconfigurations">3</prop>
 <prop name="numTransports">2</prop>
 <prop name="numCodecs">1</prop>
 <prop name="numDownstreamMappings">5</prop>
 <prop name="numUpstreamMappings">2</prop>
 <prop name="numApamaSinks">1</prop>
 <prop name="numApamaSources">1</prop>
 <prop name="numTransportReceived">441414</prop>
 <prop name="numTransportSent">34134</prop>
 <prop name="numApamaReceived">34134</prop>
 <prop name="numApamaSent">44414</prop>
 <list name="transportStatus">
 <map name="ATITransportStatus">
 <prop name="name">ATITransport</prop>
 <prop name="status">All OK</prop>
 </map>
 <map name="ReutersTransport">
 <prop name="name">ReutersTransport</prop>
 <prop name="status">Stuffed</prop>
 </map>
 </list>
 <list name="codecStatus">
 <map name="NullCodec">
 <prop name="name">NullCodec</prop>
 <prop name="status">Lovely</prop>
 </map>
 </list>
 <map name="mapperStatus">
 <prop name="name">Semantic Mapper</prop>
 <prop name="status">OK</prop>
 </map>
 <map name="apamaStatus">
 <prop name="name">Apama</prop>
 <prop name="status">OK</prop>
 </map>
</map>

Managing and Monitoring over REST

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 102

Chapter 8: Correlator Utilities Reference

n Starting the event correlator .. 102

n Injecting code into a correlator .. 119

n Deleting code from a correlator ... 121

n Packaging EPL and Java code ... 124

n Sending events to correlators ... 126

n Receiving events from correlators ... 129

n Watching correlator runtime status .. 131

n Inspecting correlator state ... 135

n Shutting down and managing components ... 137

n Using the command-line debugger ... 151

n Replaying an input log to diagnose problems ... 160

n Event file format .. 164

n Using the data player command-line interface .. 167

n Using the Apama component extended configuration file ... 169

The Apama event correlator is at the heart of Apama applications. The correlator is Apama’s core
event processing and correlation engine. This section provides information and instructions for using
command-line tools to monitor and manage event correlators.

The command-line tools documented in this book are in the bin directory of the APAMA_HOME
installation directory. To add these tools to your PATH, use the Apama Command Prompt as
described in "Setting up the environment using the Apama Command Prompt" on page 12.

For information about EPL, event definitions, monitors, namespaces and packages, see "Getting
Started with Apama EPL" in Developing Apama Applications.

Starting the event correlator
This topic provides information about starting the event correlator. The executable for this tool is
located in the bin directory of the Apama installation. Running the tool in the Apama Command
Prompt (see "Setting up the environment using the Apama Command Prompt" on page 12) ensures
that the environment variables are set correctly.

Synopsis

To start the event correlator:

On Windows, run correlator.exe.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 103

On UNIX, run correlator.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: correlator [options]
Where options include:
 -V | --version Print version info and exit
 -h | --help This message
 -p | --port <port> Listening on <port>
 -r | --rnames <rname[, rname]*> UM realm names to connect to
 -f | --logfile <file> Correlator status log file name is <file>
 -v | --loglevel <level> Log level is <level>
 -t | --truncate Truncate log file at startup
 -N | --name <name> Component name is <name>
 -l | --license <file> License filename is <file>
 -m | --maxoutstandingack <num> Buffer up to <num> secs of events/receiver
 -M | --maxoutstandingkb <num> Buffer up to <num> kb of events/receiver
 -x | --qdisconnect Disconnect slow event consumers
 --logQueueSizePeriod <p> Send info to log every <p> seconds
 --distMemStoreConfig <dir> Enable Distributed MemoryStore using
 configuration files in <dir>
 --jmsConfig <dir> Enable JMS messaging using configuration
 files in <dir>
 -j | --java Enable Java application support
 -J | --javaopt <option> Option to pass to JVM
 --inputLog <file> Input log file name is <file>
 -XsetRandomSeed <num> Set the seed of correlator random number
 generator to <num>
 -XignoreEnqueue Ignore all enqueue statements (for replay)
 --inputQueueSize <num> Set the capacity of the input queue
 -g | --nooptimize Disable optimizations
 -P Enable persistence
 -PsnapshotInterval=<interval> The persistent correlator snapshot interval
 -PadjustSnapshot=<true/false> Automatically adjust the snapshot interval
 -PstoreLocation=<path> The path where the persistent correlator
 stores its recovery datastore
 -PstoreName=<file> The name of the recovery datastore file
 -Pclear Clear contents of recovery datastore if
 one exists
 -XrecoveryTime <num> The time used after the recovery(seconds
 since the epoch)
 -noDatabaseInReplayLog Disallow database dumps to input log
 --runtime <type> EPL runtime to use, interpreted (default) or compiled
 (UNIX only)
 --scheduler <type> Scheduler tuning: eventProcessing or heavyCompute
 --frequency <num> Set the number of clock ticks generated per second
 -Xclock | --externalClock Use external clocking (&TIME events)
 -Xconfig | --configFile <file> Use service configuration file <file>
 -UMconfig | --umConfigFile Use configuration file to configure UM server

The loglevel argument must be one of:
 OFF, CRIT, FATAL, ERROR, WARN, INFO, DEBUG, TRACE

Description

By default, the correlator.exe (on Windows) or correlator (on UNIX) tool starts an event correlator
process on the current host, and configures it to listen on port 15903 for monitoring and management
requests.

On start-up, the executable displays the current version number and configuration settings.

To terminate an event correlator process, press Ctrl-C in the window in which it was started.
Alternatively, you can issue the engine_management command with the --shutdown option. See "Shutting
down and managing components" on page 137. Regardless of which technique you use to
terminate the correlator, Apama first tries to shut down the correlator cleanly. If this is not possible,

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 104

for example, perhaps because of a monitor in an infinite loop, Apama forces the correlator to shut
down.

Options

When you start the correlator, there are a number of options that you can specify. They are described
in the following table:

Option Description

-V | --version Displays version information for the correlator.

-h | --help Displays usage information.

-p port | --port port Specifies the port on which the event correlator should
listen for monitoring and management requests. The
default is 15903.

-f file | --logfile file Specifies the path of the status log file that the event
correlator writes messages to. The default is stdout.
See "Specifying log filenames" on page 110 and
"Descriptions of correlator status log fields" on page
113.

-v level | --loglevel level Specifies the level of information that the event correlator
sends to the correlator status log file. In increasing
amount of information order, the value must be one of the
following: OFF, CRIT, FATAL, ERROR, WARN, INFO, DEBUG, TRACE. The
default is INFO.

-t | --truncate Specifies that if the correlator status log file already exists,
the correlator should empty it first. The default is to
append to it.

-N name | --name name Assigns a name to the correlator. The default is correlator.
If you are running a lot of correlators you might find it
useful to assign a name to each correlator. A name can
make it easier to use the engine_management tool to manage
correlators and adapters.

-l file | --license file Specifies the path to the file that contains the license
string.

-m num | --maxoutstandingack num Specifies that you want the correlator to buffer messages
for up to num seconds for each receiver that the correlator
sends events to. The default is 10. For additional
information, see "Determining whether to disconnect
slow receivers" on page 116.

-M num | --maxoutstandingkb num Specifies that you want the correlator to buffer the events
for each receiver up to the size in kb represented by num.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 105

Option Description

-x | --qdisconnect Specifies that you want the correlator to disconnect
receivers that are consuming events too slowly. For
details, see "Determining whether to disconnect slow
receivers" on page 116. The default is that the
correlator does not disconnect slow receivers.

--logQueueSizePeriod p Sets the interval at which the correlator sends information
to its log file. The default is 5 seconds. Replace p with a
float value for the period you want. :

Caution: Setting logQueueSizePeriod to 0 turns logging off.
Without correlator logging information, it is impossible to
effectively troubleshoot problems. See also "Descriptions of
correlator status log fields" on page 113.

--distMemStoreConfig dir Specifies that the distributed MemoryStore is enabled,
using the configuration files in the specified directory.
Note that the configuration filenames must end with
*-spring.xml and the correlator will not start unless the
specified directory contains at least one configuration file.

For more information on a distributed MemoryStore's
configuration files, see "Using the Distributed
MemoryStore" in Developing Apama Applications in EPL.

--jmsConfig dir Specifies that correlator-integrated messaging is enabled
using the configuration files in the specified directory.
Note that the configuration filenames must end with
*-spring.xml and the correlator will not start unless the
specified directory contains at least one configuration file.

For more information on the configuration files for
correlator-integrated messaging for JMS, see Configuration
files in Connecting Apama Applications to External
Components.

-j | --java Enables support for Java applications, which is needed to
inject a Java application or plug-in using engine_inject –j.

-J option | --javopt option Specifies an option or property that you want the
correlator to pass to the embedded JVM. You must specify
the -J option for each JVM option. You can specify the
-J option multiple times in the same correlator.exe
command line. For example, -J "-Djava.class.path=path" -
J "-Da=value1" -J "-Db=value2" -J "-Xmx400m"

When you use this option to pass the classpath to the JVM
Apama prepends the correlator internal JAR files to the
path you specify. If you set the CLASSPATH environment
variable and also specify this option when you start the

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 106

Option Description
correlator, the path you specify in the correlator start-up
command takes precedence.

--inputLog file Specifies the path of the input log file. The event
correlator writes only input messages to the input
log file. If there is a problem with your application,
Software AG Global Support can use the input log to try
to diagnose the problem. An input log contains only the
external inputs to the correlator. There is no information
about multi-context ordering. Consequently, if there is
more than one context, there is no guarantee that you
can replay execution in the same order as the original
execution. See "Replaying an input log to diagnose
problems" on page 160.

--XsetRandomSeed int Starts the correlator with the random seed value you
specify. Specify an integer whose value is in the range of
1 to 2 32.The correlator uses the random seed to calculate
the random numbers returned by the integer.rand() and
float.rand() functions. The same random seed returns
the same sequence of random numbers. This option is
useful when your application uses the integer.rand() and
float.rand() functions and you are using an input log to
capture events and messages coming into a correlator.
If you need to reproduce correlator behavior from that
input log, you will want the correlator to generate the
same random numbers as it generated when the original
input was captured.

-XignoreEnqueue For internal use only. Instructs the correlator to ignore
enqueue statements when replaying an input log.

--inputQueueSize int Sets the maximum number of spaces in every context’s
input queue. The default is that each input queue
has 20,000 spaces. If events are arriving on an input
queue faster than the correlator can process them the
input queue can fill up. You can set the inputQueueSize
option to allow all input queues to accept more events.
Typically, the default input queue size is enough so if
you find that you need to increase the size of the input
queue you should try to understand why the correlator
cannot process the events fast enough to leave room
on the default-sized queue. If you notice that adapters
or applications are blocking it might be because a
public context’s input queue is full. To determine if a
public context's input queue is full, use output from
the engine_inspect utility in conjunction with the status
messages in the correlator log file.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 107

Option Description

-g | --nooptimize Disables correlator optimizations that hinder debugging.
Specify this option when you plan to run the engine_debug
utility. You cannot run the engine_debug utility if you did
not specify the -g option when you started the correlator.

Software AG Designer automatically uses the -g
option when it starts a correlator from a debug launch
configuration. However, if you are connecting to an
externally-started correlator, and you want to debug in
that correlator, you must ensure that the -g option was
specified when the externally-started correlator was
started.

-P Enables correlator persistence. You must specify this
option to enable correlator persistence.

If you do not specify any other correlator persistence
options, the correlator uses the default persistence
behavior as described in "Enabling correlator persistence"
in Developing Apama Applications in EPL. If you specify
one or more additional correlator persistence options, the
correlator uses the settings you specify for those options
and uses the defaults for the other persistence options.

-PsnapshotInterval=interval Specifies the period between persistence snapshots. The
default is 200 milliseconds.

-PadjustSnapshot=boolean Indicates whether or not the correlator should
automatically adjust the snapshot interval according to
application behavior. The default is true, which means
that the correlator does automatically adjust the snapshot
interval. You might want to set this to false to diagnose a
problem or test a new feature.

--PstoreLocation=path Specifies the path for the directory in which the correlator
stores persistent state. The default is the current directory,
which is the directory in which the correlator was started.

--PstoreName=filename Specifies the name of the file that contains the persistent
state. This is the recovery datastore. The default is
persistence.db.

-Pclear Specifies that you want to clear the contents of the
recovery datastore. This option applies to the recovery
datastore you specify for the -PstoreName option or to
the default persistence.db file if you do not specify the -
PstoreName option. When the correlator starts it does not
recover from the specified recovery datastore.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 108

Option Description

-XrecoveryTime num For correlators that use an external clock, this is a
time expression that represents the time of day that a
correlator starts at when it recovers persistent state and
restarts processing. The default is the time expression that
represents the time of day captured in the last committed
snapshot. This option is useful only for replaying input
logs that contain recovery information. To change the
default, specify a number that indicates seconds since the
epoch.

-noDatabaseInReplayLog Specifies that the correlator should not copy the recovery
datastore to the input log when it restarts a persistence-
enabled correlator. The default is that the correlator
does copy the recovery datastore to the input log upon
restarting a persistence-enabled correlator. You might set
this option if you are using an input log as a record of
what the correlator received. The recovery datastore is a
large overhead that you probably do not need. Or, if you
maintain an independent copy of the recovery datastore,
you probably do not want a copy of it in the input log.

--runtime mode On Linux 64-bit systems, you can specify whether you
want the correlator to use the compiled runtime or the
interpreted runtime, which is the default. Specify --
runtime compiled or --runtime interpreted.

The interpreted runtime compiles EPL into bytecode
whereas the compiled runtime compiles EPL into
native code that is directly executed by the CPU. For
many applications, the compiled runtime provides
significantly faster performance than the interpreted
runtime. Applications that perform dense numerical
calculations are most likely to have the greatest
performance improvement when the correlator uses
the compiled runtime. Applications that spend most of
their time managing listeners and searching for matches
among listeners typically show a smaller performance
improvement.

Other than performance, the behavior of the two runtimes
is the same except

The interpreted runtime allows for the profiler and
debugger to be switched on during the execution of
EPL. The compiled runtime does not permit this. For
example, you cannot switch on the profiler or debugger
in the middle of a loop.

The amount of stack space available is different for the
two runtimes. This means that recursive functions run

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 109

Option Description
out of stack space at a different level of recursion on the
two runtimes.

--scheduler type When you specify --runtime compiled you can also
specify the correlator scheduler type. The default is
eventProcessing, which works best for most applications
and provides optimal application latency. For higher
throughput, you can specify heavyCompute as the scheduler
type, which provides higher throughput for applications
that spend a lot of time performing calculations in EPL
but which may have worse latency.

--frequency num Instructs the correlator to generate clock ticks at a
frequency of num per second. Defaults to 10, which means
there is a clock tick every 0.1 seconds. Be aware that
there is no value in increasing num above the rate at which
your operating system can generate its own clock ticks
internally. On UNIX and some Windows machines this is
100 and on other Windows machines it is 64.

-Xclock | --externalClock Instructs the correlator to disable its internal clock. By
default, the correlator uses internally generated clock
ticks to assign a timestamp to each incoming event.
When you specify the -Xclock option, you must send
time events (&TIME) to the correlator. These time events
set the correlator’s clock. For additional information, see
"Determining whether to disable the correlator’s internal
clock" on page 118.

-Xconfig file | --configFile

file

Specifies a special configuration file that the correlator
uses to initialize its networking. Specify this option only
as directed by Apama Technical Support to troubleshoot
networking problems. For more information, see "Using
the Apama component extended configuration file" on
page 169.

-r list | --rnames list Specifies one or more Universal Messaging (UM) realm
names that you want this correlator to connect to.
Separate names with commas.

See Starting correlators that use UM in Connecting Apama
Applications to External Components.

If you specify the --rnames option and also the --
umConfigFile option, the specified UM configuration file
takes precedence.

-UMConfig path or --umConfigFile
path

Specifies the name of a properties file that defines the UM
configuration for this correlator.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 110

Option Description

See Defining UM properties for Apama applications in
Connecting Apama Applications to External Components.

If you specify the --rnames option and also the --
umConfigFile option, the specified UM configuration file
takes precedence.

Exit status

The correlator.exe tool returns the following exit values:

Value Description

0 The event correlator terminated successfully.

1 An error occurred which caused the event correlator to terminate abnormally.

Correlator Utilities Reference

About the Apama license file
Apama behavior with regard to the Apama license file is as follows:

When a license file cannot be found, the correlator will automatically shut down after 30 minutes.
Note that it will not be possible to run the correlator in persistent mode if a license is not
provided.

A licensed correlator does not shut down when its license expires. It continues operating for
seven days beyond expiration. The correlator logs periodic warning messages until it reaches the
end of the seven days or until you replace the expired license.

Removing the license file from a running correlator does not cause it to shut down. It continues
operation for seven days after the license file is removed. The correlator logs periodic warning
messages until it reaches the end of the seven days or until you restore the license.

You can start a correlator with an expired license if it is less than seven days beyond expiration.

Refer to the licensing terms specified in your software contract for any additional legal restrictions
that may be imposed on your use of this Apama release.

Starting the event correlator

Specifying log filenames
A correlator can send information to the following log files:

Correlator status log file

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 111

Upon correlator startup, the default behavior is that the correlator logs status information to
stdout. To send correlator status information to a file, specify the -f file or --logfile file option
and replace file with a log filename. The format for specifying a log filename is described below.

Before you specify a log filename, you should consider your log rotation policy, which can
determine what you want to specify for the log filename. See "Rotating the correlator log file" on
page 150.

Correlator input log file

When you start a correlator you can specify the --inputlog file option so that the correlator
maintains a special log file for all inputs. Again, before you specify the log filename, consider the
rotation policy for your input log files. See "Rotating an input log file" on page 161.

Application log files

You can create log files for packages, monitors, and events in your application. The format you
use to specify these log filenames is the same as for status logs and input logs. For details about
how to create application log files, see "Setting logging attributes for packages, monitors and
events" on page 147.

The format for specifying a log filename is as follows:
file[${START_TIME}][${ROTATION_TIME}][${ID}].log

The following table describes each part of a log filename specification. You cannot include
spaces. You can separate the parts of the filename specification with underscores. You can specify
${START_TIME}, ${ROTATION_TIME} and/or ${ID} in any order. For examples, see "Examples for specifying
log filenames" on page 112.

file Replace file with the name of the file that you want to be the
log file. If you specify the name of a file that exists, the correlator
overwrites it on Windows or appends to it on UNIX.

Required.

If you also specify ${START_TIME} and/or ${ROTATION_TIME} and/or
${ID}, the correlator prefixes the name you specify to the time
the correlator was started and/or the time the log file was rotated
(logging to a new file began) and/or an ID, beginning with 001.

Be sure to specify a location that allows fast access.

${START_TIME} Tag that indicates that you want the correlator to insert the date
and time that it started into the log filename.

Optional, however you probably want to always specify either this
option or ${ROTATION_TIME} to avoid overwriting log files.

This tag is also useful for correlators that you start from Apama’s
Management and Monitoring console, because it lets you
distinguish the logs from different correlators.

${ROTATION_TIME} Tag that indicates that you want the correlator to insert the date
and time that it starts sending messages to a new log file into the
log filename.

Optional.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 112

If you specify ${ROTATION_TIME} and this log filename specification
appears in a correlator start-up command then the name of the
initial log file contains the time the correlator started.

This tag is also useful for correlators that you start from Apama’s
Management and Monitoring console, because it lets you
distinguish the status logs from different correlators.

${ID} Tag that indicates that you want the correlator to insert a three-
digit ID into the filename of the log file. The ID that the correlator
inserts first is 001.

Optional. The log ID increment is related only to rotation of log
files. See "Rotating the correlator log file" on page 150 and
"Rotating an input log file" on page 161.

The ID allows you to create a sequence of log files. Each time the
log file is rotated, the correlator increments the ID. A sequence of
log files have the same name except for the ID. If you also specify
${ROTATION_TIME} then a sequence of log files have the same name
except for the rotation time and the ID.

Restarting the correlator always resets the ID portion of the log
filename to 001.

If you plan to rotate log files then be sure to specify ${ROTATION_TIME} or ${ID}. You can also specify
both.

Starting the event correlator

Examples for specifying log filenames
This topic provides examples of specifying log filenames. The format for specifying a log filename is
the same in the following cases:

Starting the correlator and specifying a correlator status log file with the --logfile option.

Starting the correlator and specifying a correlator input log file with the --inputLog option.

Invoking engine_management -r setLogFile to rotate the correlator status log.

Invoking engine_management -r setApplicationLogFile to create a log file for a package, monitor or
event.

The following specifies that the name of the status log is correlator_status.log.
--logfile corelator_status.log

Suppose that the correlator processes events for a while, sends information to correlator_status.log,
and then you find that you need to restart the correlator. If you restart the correlator and specify
the exact same log filename, the correlator overwrites the first correlator_status.log file. To avoid
overwriting a status log, specify ${START_TIME} in the log file name specification when you start the
correlator. For example:
--logfile correlator_status_${START_TIME}.log

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 113

This command opens a status log with a name something like the following:
correlator_status_2015-03-12_15:12:23.log

This ensures that the correlator does not overwrite a log file. Now suppose that you want to be able
to rotate the log, so you specify the ${START_TIME} and ${ID} tags:
correlator_status_${START_TIME}_${ID}.log

The initial name of the log file is something like the one on the first line below. If you then rotate
the log file then the correlator closes that file and opens a new file with a name like the one on the
second line:
correlator_status_2015-03-12_15:12:23_001.log
correlator_status_2015-03-12_15:12:23_002.log

To specify an application log filename for messages generated in com.example.mypackge, you could
specify the log filename as follows:
mypackage_${ID}_${ROTATION_TIME}.log

With that specification, messages generated in com.example.mypackage would go to a file with a name
such as the one on the first line below. The time in the initial application log filename is the time
that the initial log file is created. If you rotate the logs every 24 hours at midnight then the names
of subsequent application log files would be something like the names in the second and third lines
below.
mypackage_001_2015-03-21_18:42:06.log
mypackage_002_2015-03-22_00:00:00.log
mypackage_003_2015-03-23_00:00:00.log

UNIX Note

In most UNIX shells, when you start a correlator you most likely need to escape the tag symbols, like
this:
correlator -l license --inputLog input_\${START_TIME}_\${ID}.log

Starting the event correlator

Descriptions of correlator status log fields
The correlator sends information to its status log file every five seconds or at an interval that you
set with the --logQueueSizePeriod option. When logging at INFO level, this information contains the
following:
Status: sm=2 nctx=2 ls=3 rq=0 eq=0 iq=0 oq=0 icq=12 lcn="input ctx one"
lcq=12 lct=0.8 rx=5 tx=20 rt=7 nc=1 vm=369768 runq=0 si=0.0 so=0.0
srn="apamacluster1_node3" srq=3

Where the fields are as follows:

Field Description of correlator status log field

sm Sub-Monitors — Number of monitor instances, sometimes called sub-monitors. This is
the sum of monitor instances in the main context plus monitor instances in any other
context.

nctx Number of contexts — For applications developed prior to Apama 4.1, this is always 1.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 114

Field Description of correlator status log field

ls Listener sum — This is the number of listeners in the main context plus the number of
listeners in any other context. This includes each on statement and each stream source
template, for example, all Tick(symbol=”APMA”) in the following: stream<Tick> ticks := all
Tick(symbol=”APMA”);

rq Route queue — Sum of the number of routed events on the input queues of all contexts.
A routed event is any event that has been generated by EPL’s route keyword or JMon’s
route() method. A routed event goes to the front of that context's input queue. This
ensures that the correlator processes routed events before processing external events.
This number can go up and down, and it tends to be 0 for an idle correlator.

eq Enqueue queue — Number of events on the enqueued events queue. An enqueued
event is any event that has been generated with the EPL enqueue keyword (not
enqueue...to) or JMon enqueue() method. A separate thread moves events from the
enqueued events queue to the input queue of each public context. The size of the
enqueued events queue is unbounded. Consequently, it is possible for this queue to use
a large amount of memory if one or more input queues are full.

iq Input queue — Sum of the number of entries on the input queues of all contexts. This
number excludes routed events. It includes events from external sources, injections
of EPL files, delete requests, time ticks, pending spawn-to operations, and enqueued
events. This number goes up and down, and tends to be 0 for an idle correlator. It is
possible for the total number of input queue entries (iq) to be greater than the number
of events the correlator has received from external sources (rx).

oq Output queue — Number of events on the correlator’s output queue. This is the
number of events that the correlator has emitted but not yet sent to any receivers. If the
correlator is idle, this number is 0.

icq Sum of enqueued events on the input queues of all public contexts. These events are a
subset of the events included in the iq count.

lcn The name of the public context whose input queue is most backed up in time. This is
not necessarily the public context whose input queue has the largest number of entries.
If no public context has entries on its input queue then this value is "<none>". The name
of the main context is always main.

lcq For the context identified by lcn, this is the number of entries on the most backed up
input queue.

lct For the context identified by lcn, this is the time difference between its current logical
time and the most recent time tick added to its input queue.

rx Number of events the correlator has received from external sources since the correlator
was started. The correlator increments this count as soon as it receives an event. After
incrementing this count, the correlator parses the event to determine if it is an event for
which a definition has already been injected. If the correlator can successfully parse the
event, the event goes to the input queue of each public context. If the correlator cannot
parse the event, the correlator discards the event.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 115

Field Description of correlator status log field

This is not the number of events that the correlator has processed. This count does not
include routed and enqueued events.

This number never goes down; it can only go up.

tx Number of events the correlator has sent to receivers since the correlator was started.
This number includes duplicate events sent to multiple receivers. For example, suppose
you inject EPL code that emits an event, and there are five receivers that are subscribed
to channels that publish that event. In this situation, the tx count goes up by five.
Although there was 1 event, it was sent five times — once to each subscribed receiver.

rt Route total —Total number of events that have been routed across all contexts since the
correlator was started.

nc Number of receivers.

vm Virtual memory — Number of kilobytes of virtual memory being used by the correlator
process.

runq Run queue — Number of contexts (public and private) that have work to do but are not
currently running. These contexts are waiting for processing resources. This indicator is
a measure of the load on the system. When this number is consistently more than 0 and
latency is a problem you might want to consider adding CPUs to your configuration.

si The rate (pages per second) at which pages are being read from swap space.

so The rate (pages per second) at which pages are being written to swap space.

srn Slowest receiver name — The name of the receiver whose queue has the largest number
of entries. If no receivers have queue entries then this value is "<none>".

srq Slowest receiver queue — For the receiver identified by srn, the slowest receiver, this is
the number of entries on its queue.

Logging for correlators with correlator-integrated messaging for JMS enabled

Correlators with correlator-integrated messaging for JMS enabled send additional information to the
status log file.

For details on this information, see Logging correlator-integrated messaging for JMS status in Connecting
Apama Applications to External Components.

Starting the event correlator

Text internationalization issues
Apama translates the contents of the correlator status log from UTF-8 to the local character set before
displaying it in a console or terminal.

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 116

Starting the event correlator

Determining whether to disconnect slow receivers
The correlator sends events to multiple receivers. Sometimes, a receiver cannot consume its events
fast enough for the correlator to continue sending them. When this happens, the default behavior
is that the correlator suspends processing until the receiver disconnects or starts consuming events
fast enough. In other words, a slow receiver can prevent other consumers from receiving events.
However, you might prefer to have the correlator disconnect a slow receiver and continue processing
and sending events to other consumers. Information in this section can help you determine whether
to disconnect slow receivers.

"Description of slow receivers" on page 116

"How frequently slow receivers occur" on page 117

"Correlator behavior when there is a slow receiver" on page 117

"Tradeoffs for disconnecting a slow receiver" on page 118

See also "Handling slow or blocked receivers", in the testing and tuning chapter of Developing Apama
Applications.

Starting the event correlator

Description of slow receivers
Every event that the correlator sends to one of its receivers has a sequence number. After a
receiver processes an event, it sends the event’s sequence number back to the correlator as an
acknowledgment that the receiver processed that event. By default, if the correlator does not receive
an acknowledgment within 10 seconds after the correlator sent the event, the correlator marks that
receiver as being slow to consume events.

You can control the length of time within which the receiver must acknowledge an event before
it is marked as a slow receiver. When you start the correlator, you can specify the -m (or --
maxoutstandingack) option and specify a number.

For example:
correlator -l ApamaServerLicense.xml -m 15

If you start the correlator with this command, the correlator marks a receiver as slow if the correlator
does not receive an acknowledgment within 15 seconds. If you do not specify the -m option, the
default is 10 seconds. You should not specify a value under 1 second because doing so raises the risk
that the correlator might designate a receiver as slow when it is in fact not slow.

The mechanism that flags a receiver as slow is not precise. If a receiver does not acknowledge an
event sequence after 10 seconds (the default setting), the correlator does not immediately designate
the receiver as slow. Typically, the designation happens within the next 5 seconds. If you change the
value of the -m option, the slow designation takes effect between 1 and 1.5 times the value of the -m
option.

Determining whether to disconnect slow receivers

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 117

How frequently slow receivers occur
In practice, sending acknowledgements should not be slow because a dedicated thread sends
acknowledgments. Network interruptions are the most common cause of delayed acknowledgments.
Of course, network interruptions affect events being sent as well.

Most receivers, including the engine_receive tool, normally send acknowledgments 0.1 seconds
after the message was sent. Consequently, there is very little chance of a receiver being mistakenly
designated as slow. In production, slow receivers should be rare as long as you have done the
appropriate load testing before deployment.

If an engine library client blocks in the middle of a sendEvents call, the receiver cannot acknowledge
messages while the client is blocked. As you know, a receiver is made up of an engine library and
a client. Clients receive events by registering a sendEvents callback with the engine library. When
the engine library gets an event from the correlator, it calls sendEvents. Problems that can cause a
client to block are typically related to I/O, networking, or synchronization. The sendEvents call cannot
complete until the problem is resolved. The receiver cannot send the acknowledgement until the
sendEvents call completes. For example, the engine_receive tool is a receiver that is made up of an
engine library and a client whose sendEvents callback writes events received to a disk file. If the client
has to wait for the disk, then it is blocked. The likelihood of a sendEvents callback being blocked
depends on what the client is doing. If the client is writing to a local disk, the process might block
sometimes, but never more than a fraction of a second. However, sending the events over a slow or
unreliable network might block for a while if the network, or the remote system cannot keep up with
the event rate.

During development of event consumers, however, slow receivers are more likely. This can
happen when a newly developed consumer receives an event from the correlator but cannot send
the acknowledgment because of a deadlock. Another development problem might be that the
event consumer cannot keep up with the load. If you have problems with slow receivers during
development, you probably need to evaluate the design of your application.

Determining whether to disconnect slow receivers

Correlator behavior when there is a slow receiver
When the correlator has a slow receiver, it can behave in one of two ways:

The default behavior is that the correlator blocks further processing. This is because a slow
receiver causes the correlator’s event output queue to become full. When the queue is full, the
correlator stops processing because it has no place to put events. The processing thread stops
and does not execute any more EPL code. The transport thread does not send any more events to
any of the correlator’s other receivers. The correlator resumes processing when the slow receiver
disconnects or acknowledges the outstanding sequence number.

The correlator disconnects the slow receiver, and continues processing events and sending
them to its other receivers. To obtain this behavior, you specify the -x (or --qdisconnect) option
when you start the correlator. The correlator sends a message to the receiver to indicate that the
correlator is disconnecting the receiver. It is up to the receiver to reconnect.

To ensure that it has received an acknowledgment for every event sent, the correlator buffers each
event that it sends until it receives the message’s corresponding acknowledgment. When there is a
slow receiver, this can use a lot of memory if the correlator is sending a large number of messages.

Determining whether to disconnect slow receivers

Starting the event correlator

Deploying and Managing Apama Applications 9.9.0 118

Tradeoffs for disconnecting a slow receiver
When you specify the -x option when you start the correlator, it means that the correlator always
disconnects a slow receiver. There are two main disadvantages to this:

The correlator loses the events that it sent to that receiver.

It is possible for the correlator to disconnect a receiver that is temporarily overloaded, and to
therefore lose events unnecessarily.

Clearly, losing events can be a very serious problem. This is why the default is that the correlator
does not disconnect slow receivers.

The advantage of disconnecting a slow receiver is that the correlator continues processing events.

The correlator always sends a warning message to its status log when it detects a slow receiver. This
lets you see where there are potential problems.

If you cannot allow the correlator to lose events, do not specify the -x option when you start the
correlator.

Determining whether to disconnect slow receivers

Determining whether to disable the correlator’s internal clock
When you start the correlator, you can specify the -Xclock option to disable the correlator’s internal
clock. By default, the correlator uses internally generated clock ticks to assign a timestamp to each
incoming event. When you specify the -Xclock option, you must send time events (&TIME) to the
correlator. These time events set the correlator’s clock.

Use &TIME events in place of the correlator’s internal clock when you want to reproduce the historic
behavior of an application. For example, Apama's Data Player in Software AG Designer starts a
correlator with a command that specifies the -Xclock option. The Data Player then sends &TIME events
that let you play back events from the database.

A situation in which you might want to generate &TIME events is when you want to run experiments
at faster than real time but still obtain correct timestamp behavior. In this situation, the correlator
uses the externally generated time events instead of real time to invoke timers and wait events.

Disabling the correlator’s internal clock, and sending external time events, affects all temporal
operations, such as timers and wait statements.

Regardless of whether the correlator generates internal clock ticks, or receives external time events,
the correlator assigns a timestamp to each incoming event. The timestamp indicates the time that
the event arrived on the context’s input queue. The value of the timestamp is the same as the last
internally-generated clock tick or externally-generated time event. For example, suppose you have
the following events and clock ticks:
&TIME(1)
A()
B()
&TIME(2)
C()

A and B receive a timestamp of 1. C receives a timestamp of 2.

For additional information about using external time events, see "Apama Concepts" in Introduction to
Apama.

Injecting code into a correlator

Deploying and Managing Apama Applications 9.9.0 119

Determining whether to disconnect slow receivers

Injecting code into a correlator
To inject EPL files, JMon applications, or Correlator Deployment Packages (CDPs) into the correlator
invoke the engine_inject tool. The executable for this tool is located in the bin directory of the Apama
installation. Running the tool in the Apama Command Prompt (see "Setting up the environment
using the Apama Command Prompt" on page 12) ensures that the environment variables are set
correctly.

Synopsis

To inject applications into the event correlator:

On Windows, run engine_inject.exe.

On UNIX, run engine_inject.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: engine_inject [options] [file1 [file2 ...]]
In order to inject to a correlator.
Where options include:
-h | --help This message
-n | --hostname <host> Connect to an engine on <host>
-p | --port <port> Engine is listening on <port>
-v | --verbose Be more verbose
-u | --utf8 Assume input is in UTF8
-V | --version Print program version info
-j | --java Operate on Java applications rather than EPL or CDP
-c | --cdp Operate on CDP files rather than EPL or Java
-s | --hashes Print out hashes of (UTF8-encoded) files, rather
 than injecting, to obtain hashes for Java or CDP
 files also specify -j or -c
 Use '-' to read from <stdin>

Description

The engine_inject tool reads application definitions from the specified file(s) and injects them into an
event correlator. If you do not specify a filename, or if you specify "—" as the filename, the correlator
reads data from the standard input device (stdin) until you indicate the end of the file: Ctrl-D on
UNIX and Ctrl-Z on Windows.

Application definitions can be monitors scripted in Apama’s Event Processing Language. For more
information on EPL, see "Introduction to Apama Event Processing Language" in Developing Apama
Applications. Alternatively, you can specify the –j or -c options. The -j option specifies that you
will inject an application written in Java. The -c option specifies that you will inject a Correlator
Deployment Package file.

When you specify the -j option, each file you inject must be a Java archive file (JAR) that contains a
single JMon application. For more information, see "Overview of JMon Applications" in Developing
Apama Applications.

When you specify the -c option, the file you inject must be an Apama Correlator Deployment
Package (CDP). For more information on preparing a CDP, see "Packaging EPL and Java code" on
page 124.

Injecting code into a correlator

Deploying and Managing Apama Applications 9.9.0 120

By default, the engine_inject tool is silent unless an error occurs. To view information about
engine_inject execution, specify the --verbose option.

If you try to inject invalid EPL files or invalid JMon applications, the event correlator generates an
error. None of the application data in the invalid file is loaded. The engine_inject tool terminates.
If you specify multiple EPL or Java files for injection the engine_inject tool injects all of them or
terminates when it reaches the first file that contains an error. For example:
engine_inject 1.mon 2.mon 3.mon

If the 2.mon file contains an error then engine_inject successfully injects 1.mon and then terminates
when if finds the error in 2.mon. The tool does not operate on 3.mon.

If you try to inject a CDP the correlator processes each EPL file packaged in the CDP separately. If
one file in a CDP contains an error then the correlator reports an error for that file and does not run it
but it does run the other files in the CDP (if they have no errors). It does not matter which file in the
CDP contains the error. That is, the first file in the CDP that the correlator processes can contain an
error and the correlator still runs the other files in the CDP if they contain no errors.

Options

The following table describes the options you can specify when you inject applications into the
correlator:

Option Description

-h Displays usage information

-n host Name of the host on which the event correlator is running. The default is

localhost.

Note: Non-ASCII characters in host names are not supported.

-p port Port on which the event correlator is listening. The default is 15903.

-v Requests verbose output during engine_inject execution.

-u Indicates that input files are in UTF-8 encoding. The default is that the

engine_inject tool assumes that the EPL files to be injected are in the native
character set of your platform. Set the -u option to override this assumption.
The engine_inject tool then assumes that all input files are in UTF-8.

-V Displays version information for the engine_inject tool.

-j Indicates that each operand is a Java archive file (JAR file) that contains a single

JMon application.

-c Indicates that each operand is a Correlator Deployment Package file.

-s Indicates that instead of injecting the specified files you want to print the

hashes (UTF8-encoded) for the files. If engine_inject is operating on Java or
Correlator Deployment Package (CDP) files then you must also specify -j or -
c.

Deleting code from a correlator

Deploying and Managing Apama Applications 9.9.0 121

Operands

The engine_inject tool takes the following operands:

[file1 file2 ...]] The names of zero or more files that contain application data in

Apama EPL, JMon, or Correlator Deployment Package files. If you
do not specify one or more filenames, the engine_inject tool takes
input from stdin.

Exit status

The engine_inject tool returns the following exit values:

Status Description

0 All definitions were injected into the event correlator successfully.

1 No connection to the event correlator was possible or the connection failed.

2 Other error(s) occurred while injecting the supplied definitions.

Text encoding

By default, the engine_inject tool uses the default system encoding to determine the local character
set. The engine_inject tool then translates all submitted EPL text from the local character set to UTF-8.
Consequently, it is important to correctly set the machine’s locale.

However, some input files might start with a UTF-8 Byte Order Mark. The engine_inject tool treats
such input files as UTF-8 and does not do any translation. Alternatively, you can specify the -u
option when you run the engine_inject tool. This forces the tool to treat each input file as UTF-8.

Correlator Utilities Reference

Deleting code from a correlator
The engine_delete tool removes EPL code and JMon applications from the correlator. The executable
for this tool is located in the bin directory of the Apama installation. Running the tool in the Apama
Command Prompt (see "Setting up the environment using the Apama Command Prompt" on page
12) ensures that the environment variables are set correctly.

Synopsis

To remove applications from the event correlator:

On Windows, run engine_delete.exe.

On UNIX, run engine_delete.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: engine_delete [options] [name1 [name2 ...]]
To delete named objects from a correlator.
Where options include:
 -h | --help This message
 -n | --hostname <host> Connect to an engine on <host>

Deleting code from a correlator

Deploying and Managing Apama Applications 9.9.0 122

 -p | --port <port> Engine is listening on <port>
 -f | --file <filename> Read names from <filename>
 -F | --force Force deletion of names even if they are in use
 -k | --kill Kill a monitor by name even if it is running
 -a | --all Delete everything in the engine - use with care
 -y | --yes Don't ask 'are you sure?' when deleting all
 -v | --verbose Be more verbose
 -u | --utf8 Assume input is in UTF8
 -V | --version Print program version info
 Use '-' to read from <stdin>
 Multiple -f options may be given

Description

The engine_delete tool deletes named applications, monitors and event types from an event correlator.
Names are the full package names as previously assigned to an application monitor or event type
when injected into the event correlator.

To specify the items you want to delete, you can specify any one of the following in the engine_delete
command line:

Names of the items to delete.

The -f option with the name of a file that contains the names of the items you want to delete. In
this file, specify each name on a separate line.

Neither of the above. In this case, the engine_delete tool reads names from stdin until you type an
end-of-file signal, (CTRL-D on UNIX and CTRL-Z on Windows). If you want, you can specify "-" in
the command line to indicate that input will come from stdin.

The tool is silent by default unless an error occurs. To receive progress information, specify the –v
option.

The tool permits two kinds of operations — delete and kill. These cause different side-effects and you
must use them carefully.

When you delete a monitor, the correlator tries to terminate all of that monitor’s instances. If they
are responsive (not in some deadlocked state) each one executes its ondie() action, and when the
last one exits the correlator calls the monitor’s onunload() action. This assumes that the monitor
you are deleting defines ondie() and onunload() actions.

If a monitor instance does not respond to a delete request, the correlator cannot invoke the
monitor’s onunload() action. In this case, you must kill, rather than delete, the monitor instance.

When you kill a monitor, the correlator immediately terminates all of the monitor’s instances,
without invoking ondie() or onunload() actions.

Options

The tool engine_delete tool takes the following command line options:

Option Description

-h Displays usage information. Optional.

-n host Name of the host on which the event correlator is running. Optional. The

default is localhost.

Note: Non-ASCII characters in host names are not supported.

Deleting code from a correlator

Deploying and Managing Apama Applications 9.9.0 123

Option Description

-p port Port on which the event correlator is listening. Optional. The default is

15903.

-f filename Indicates that you want the engine_delete tool to read names of items to

delete from the specified file. In this file, each line contains one name.
Optional. The default is that input comes from stdin.

-F Forces deletion of named event types even if they are still in use — that

is, they are referenced by active monitors or applications. A forced delete
also removes all objects that refer to the event type you are deleting.
For example, if monitor A has listeners for B events and C events and you
forcibly delete C events the operation deletes monitor A, which of course
means that the listener for B events is deleted. Optional. The default is that
event types that are in use are not deleted.

-k Kills all instances of the named monitor regardless of whether an instance

is in use. For example, you can specify this option to remove a monitor that
is stuck in an infinite loop. Any ondie() and onunload() actions defined in
killed monitors are not executed.

-a Forces deletion of all applications, monitors, and event types. The

correlator finishes processing any events on input queues and then does
the deletions. Any events sent after invoking engine_delete -a are not
recognized. Specifying this option does not stop a monitor that is in an
infinite loop. You must explicitly kill such monitors. Specifying the -a
option is equivalent to specifying the -F option and naming every object in
the correlator. If you want to kill every object in the correlator, shut down
and restart the correlator. See "Shutting down and managing components"
on page 137.

-y Removes the "are you sure?" prompt when using the -a option.

-v Requests verbose output.

-u Indicates that input files are in UTF-8 encoding. This specifies that the

engine_delete utility should not convert the input to any other encoding.

-V Displays version information for the engine_delete tool.

Operands

The engine_delete tool takes the following operands:

[name1 [name2 ...]] The name of zero or more EPL or JMon applications,

monitors and/or event types to delete from the event
correlator.

Packaging EPL and Java code

Deploying and Managing Apama Applications 9.9.0 124

If you do not specify at least one item name, and you do
not specify the -f option, the engine_delete tool expects
input from stdin.

Exit status

The following exit values are returned:

Status Description

0 The items were deleted from the event correlator successfully.

1 No connection to the event correlator was possible or the connection failed.

2 Other error(s) occurred while deleting the named items.

Correlator Utilities Reference

Packaging EPL and Java code
The engine_package tool assembles EPL files and .jar files into a Correlator Deployment Package
(CDP). You can inject a CDP file into the correlator just as you inject an EPL file or a JAR file
containing a JMon application. CDP files use a proprietary, non-plaintext format that treats files in
a manner similar to the way a JAR file treats a collection of Java files. In addition, using a CDP file
guarantees that all files, assuming no errors, are injected and are injected in the correct order. See
"Injecting code into a correlator" on page 119 for details about how the correlator handles an error
in a file that is in a CDP.

While the names of events, monitors, aggregates, and .jar files that are contained in a CDP file are
visible to the correlator utilities engine_inspect, engine_manage, and engine_delete, the code that defines
them is not.

The executable for this tool is located in the bin directory of the Apama installation. Running the
tool in the Apama Command Prompt (see "Setting up the environment using the Apama Command
Prompt" on page 12) ensures that the environment variables are set correctly.

Synopsis

To package files into a CDP file:

On Windows, run engine_package.exe.

On UNIX, run engine_package.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: engine_package [options] [file1 [file2 ...]]
In order to create a Correlator Deployment Package (CDP) from multiple files.
 Where options include:
 -h | --help This message
 -V | --version Print program version info
 -o | --output <file> Write the CDP to <file>
 -m | --manifest <file> Create the CDP from the manifest at <file>
 -u | --utf8 Assume input is in UTF-8

Packaging EPL and Java code

Deploying and Managing Apama Applications 9.9.0 125

Description

The engine_package tool creates a Correlator Deployment Package (CDP). A CDP file contains one or
more files. You specify the name of the CDP file to create as an argument to the -o option.

You can specify the files you want to include on the command line or you can use the -m option and
specify a manifest file that contains the names of the files. The manifest file is a text file; each line in
the file specifies a relative or absolute path to a file. Files should be listed in the order in which you
want them to be injected into the correlator.

Options

The following table describes the options you can specify when you package files into a Correlator
Deployment Package:

Option Description

-h Displays usage information

-V Displays version information for the engine_package tool.

-o filename Name of the CDP file to create. Required.

-m filename Name of the manifest file that lists the files you want to package.

-u Indicates that input files are in UTF-8 encoding. The default is that the

engine_package tool assumes that the files to be packaged are in the native
character set of your platform. Set the -u option to override this assumption.
The engine_package tool then assumes that all input files are in UTF-8.

Operands

The engine_package tool takes the following operands:

[file1 [file2 ...]] The names of the EPL or .jar files that contain code. The order

in which these files are specified will become the order in which
they are injected into the correlator when the CDP file is injected.
Instead of listing the files on the command line, you can list them
in a manifest file and use the -m option.

Exit status

The engine_package tool returns the following exit values:

Status Description

0 On success.

1 On any error.

Sending events to correlators

Deploying and Managing Apama Applications 9.9.0 126

Example

The following example describes how to create a Correlator Deployment Package file with multiple
monitor files and inject the CDP file into a running correlator.

1. Create a manifest file containing a list of files to include in the CDP. For this example, the file is
named manifest.txt and each line contains the full path name of an EPL file or .jar file:
c:\dev\sample\monitor1.mon
c:\dev\sample\monitor2.mon
C:\dev\sample\jmon-app.jar

2. To create the CDP file, call the engine_package utility stating the output filename and the manifest
file to include in the CDP. (Note, instead of using a manifest file, you can list the files individually
in the engine_package arguments.)
engine_package.exe -o c:\sample.cdp -m c:\dev\sample\manifest.txt

3. To inject the CDP file, call the engine_inject utility with -c (or --cdp). This injects each file that is
included in the CDP file into the correlator.
engine_inject.exe -c c:\sample.cdp

Sample output from the correlator
2012-07-11 13:51:33.156 INFO [3852] - Injected CDP from file
 c:\sample.cdp (b2f097b02791e5dd4ac73cda38e153e9),
 size 313 bytes, decoding and compile time 0.00 seconds

Correlator Utilities Reference

Sending events to correlators
The engine_send tool sends Apama-format events into an event correlator or IAF adapter. The
executable for this tool is located in the bin directory of the Apama installation. Running the tool
in the Apama Command Prompt (see "Setting up the environment using the Apama Command
Prompt" on page 12) ensures that the environment variables are set correctly.

If the events you want to send are not in Apama format, you must use an adapter that can transform
your event format into Apama event format.

Synopsis

To send Apama-format events to an event correlator or IAF adapter:

On Windows, run engine_send.exe.

On UNIX, run engine_send.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: engine_send [options] [file1 [file2 ...]]
In order to send to a Correlator or IAF.
Where options include:
 -h | --help This message
 -n | --hostname <host> Connect to an engine on <host>
 -p | --port <port> Engine is listening on <port>
 -c | --channel <channel> Send events on <channel> if not specified in event file
 -l | --loop <count> Loop through input <count> times
 -v | --verbose Be more verbose
 -u | --utf8 Assume input is in UTF8
 -V | --version Print program version info
 Use '-' to read from <stdin>

Sending events to correlators

Deploying and Managing Apama Applications 9.9.0 127

 Loop count < 0 means loop forever

Description

The engine_send tool sends Apama-format events to an event correlator. In Apama-format event files,
you can specify whether to send the events in batches of one or more events or at set time intervals.

The correlator reads events from one or more specified files. Alternatively, you can specify "–"or not
specify a filename and the correlator reads events from stdin until it receives an end-of-file signal
(Ctrl-D on UNIX and Ctrl-Z on Windows).

For details about Apama-format events, see "Event file format" on page 164.

By default, the engine_send tool is silent unless an error occurs. To view progress information during
engine_send execution, specify the -v option when you invoke engine_send.

You can also use engine_send to send events directly to the Integration Adapter Framework (IAF). To
do this, specify the port of the IAF, by default this is 16903.

Options

The engine_send tool takes the following command line options:

Option Description

-h Displays usage information. Optional.

-n host Name of the host on which the event correlator to which you want to send

events is running. Optional. The default is localhost.

Note: Non-ASCII characters in host names are not supported.

-p port Port on which the event correlator is listening. Optional. The default is 15903.
-c channel

For events for which a channel is not specified, this option designates the
delivery channel. If a channel is not specified for an event and you do not
specify this option, the event is delivered to the default channel, which is the
empty string. All public contexts receive events sent to the default channel. All
queries receive events sent to the default channel.

To send events to only running Apama queries, specify the com.apama.queries
channel. See "Defining Queries" in Developing Apama Applications.

-v Requests verbose output during execution. Optional.

-V Displays version information for the engine_send tool. Optional.

-l loop Number of times to cycle through and send the input events. Optional.

Replace loop with one of the following values:

0 — Indicates that you want the engine_send tool to iterate through and send
the input data once. This is the default.

Any negative integer— Indicates that you want the engine_send tool to
indefinitely cycle through and send the input events.

Sending events to correlators

Deploying and Managing Apama Applications 9.9.0 128

Option Description

Any positive integer — Indicates the number of times to cycle through and
send the input events.

The engine_send tool ignores this option if you specify it and the input is from
stdin.

-u Indicates that input files are in UTF-8 encoding. This specifies that the

engine_send utility should not convert the input to any other encoding.

Operands

The engine_send tool takes the following operands:

[file1 [file2 ...]] Specify zero, one, or more files that contain event data.

Each file you specify must comply with the event file
format described in "Event file format" on page 164. If
you do not specify any filenames, the engine_send tool takes
input from stdin.

Exit status

The following exit values are returned:

0 The events were sent successfully.

1 No connection to the event correlator was possible or the connection failed.

2 One or more other errors occurred while sending the events.

Operating notes

To end an indefinite cycle of sending events, press Ctrl-C in the window in which you invoked the
engine_send tool.

You might want to indefinitely cycle through and send events in the following situations:

In test environments. For example, you can use engine_send to simulate heartbeats. If you then kill
the engine_send process, you can test your EPL code that detects when heartbeats stop.

In production environments. For example, you can use the engine_send tool to initialize a large
data table in the correlator.

Text encoding

By default, the engine_send tool checks the environment variable or global setting that specifies the
locale because this indicates the local character set. The engine_send tool then translates EPL text from
the local character set to UTF-8. Consequently, it is important to correctly set the machine’s locale.

However, some input files might start with a UTF-8 Byte Order Mark. The engine_send tool treats
such input files as UTF-8 and does not do any translation. Alternatively, you can specify the -u
option when you run the engine_send tool. This forces the tool to treat each input file as UTF-8.

Receiving events from correlators

Deploying and Managing Apama Applications 9.9.0 129

Correlator Utilities Reference

Receiving events from correlators
The engine_receive tool lets you connect to a running event correlator and receive events from it.
Events received and displayed by the engine_receive tool are in Apama event format. This is identical
to the format used to send events to the correlator with the engine_send tool. Consequently, it is
possible to reuse the output of the engine_receive tool as input to the engine_send tool.

The executable for this tool is located in the bin directory of the Apama installation. Running the
tool in the Apama Command Prompt (see "Setting up the environment using the Apama Command
Prompt" on page 12) ensures that the environment variables are set correctly.

Synopsis

To receive Apama-format events from an event correlator:

On Windows, run engine_receive.exe.

On UNIX, run engine_receive.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: engine_receive [options]
To receive and log output events from a remote correlator.
Where options include:
 -h | --help This message
 -n | --hostname <host> Connect to an engine on <host>
 -p | --port <port> Engine is listening on <port>
 -c | --channel <channel> Listen on output channel <channel>
 -f | --filename <file> Write to <file> instead of to standard out
 -s | --suppressBatch Do not include BATCH timestamps in the output
 | --suppressbatch
 -z | --zeroAtFirstBatch Measure BATCH timestamps from when the first
 | --zeroatfirstbatch batch arrived, instead of from when
 engine_receive was started
 -C | --logChannels Include channels in output
 -r | --reconnect Automatically (re)connect to the server when available
 -x | --qdisconnect Disconnect from correlator if we don't keep up
 -v | --verbose Be more verbose
 -u | --utf8 Write output in UTF8
 -V | --version Print program version info
 -Xconfig | --configFile <file> Use service configuration file <file>
 Multiple -c options may be given

Description

The engine_receive tool receives events from an event correlator and writes them to stdout or to a
file that you specify. The correlator output format is the same as that used for event input and is
described in "Event file format" on page 164.

You can specify one or more channels on which to listen for events from the correlator. The default is
to receive all output events. For more information, see "Subscribing to channels" in Developing Apama
Applications.

To view progress information during engine_receive execution, specify the –v option.

You can also use engine_receive to receive events emitted by the Integration Adapter Framework
(IAF) directly. To do this, specify the port of the IAF, by default this is 16903.

Receiving events from correlators

Deploying and Managing Apama Applications 9.9.0 130

Options

The tool engine_receive.exe (on Windows) or engine_receive (on UNIX) takes a number of command
line options. These are:

Option Description

-h Displays usage information. Optional.

-n host Name of the host on which the event correlator is running. Optional. The

default is localhost.

Note: Non-ASCII characters in host names are not supported.

-p port Port on which the event correlator is listening. Optional. The default is

15903.

-c channel Named channel on which to listen for output events from the correlator.

Optional. The default is to listen for all output events. You can specify the -
c option multiple times to listen on multiple channels.

-C
Specifies that you want engine_receive output to include the channel that
an event arrives on. If you then use the engine_receive output as input to
engine_send, events are delivered back to the same-named channels. See
"Event association with a channel" on page 167.

-f file Dumps all received events in the specified file. Optional. The default is to

write the events to stdout.

-s Omits BATCH timestamps from the output events. Optional. The default is to

preserve BATCH timestamps in events.

-z Records the first received batch of events as being received at 0

milliseconds after the engine_receive tool was started. Optional. The default
is that the first received batch of events is received at the number of
milliseconds since engine_receive actually started.

-r Automatically (re)connect to the server when available

-x Disconnect from the correlator if the engine_receive utility cannot keep up

with the events from the correlator.

-v Requests verbose output during engine_receive execution. Optional.

-u Indicates that received event files are in UTF-8 encoding. This specifies

that the engine_receive utility should not convert the input to any other
encoding.

-V Displays version information for the engine_receive tool. Optional.

-Xconfig file Specifies a special configuration file that the correlator uses to initialize

its networking. Specify this option only as directed by Apama Technical

Watching correlator runtime status

Deploying and Managing Apama Applications 9.9.0 131

Option Description
Support to troubleshoot networking problems. For more information, see
"Using the Apama component extended configuration file" on page 169.

Exit status

The engine_receive tool returns the following exit values:

Status Description

0 All events were received successfully.

1 No connection to the event correlator was possible or the connection failed.

2 Other error(s) occurred while receiving events.

Text encoding

The engine_receive tool translates all events it receives from UTF-8 into the current character locale.
It is therefore important that you correctly set the machine’s locale. To force the engine_receive tool to
output events in UTF-8 encoding, specify the -u option.

Correlator Utilities Reference

Watching correlator runtime status
The engine_watch tool lets you monitor the runtime operational status of a running event correlator.
The executable for this tool is located in the bin directory of the Apama installation. Running the
tool in the Apama Command Prompt (see "Setting up the environment using the Apama Command
Prompt" on page 12) ensures that the environment variables are set correctly.

Synopsis

To monitor the operation of an event correlator:

On Windows, run engine_watch.exe.

On UNIX, run engine_watch.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: engine_watch [options]
To periodically poll status from a remote correlator.
Where options include:
 -h | --help This message
 -n | --hostname <host> Connect to an engine on <host>
 -p | --port <port> Engine is listening on <port>
 -i | --interval <ms> Poll every <ms> milliseconds
 -f | --filename <file> Write to <file> instead of to standard out
 -r | --raw Raw (i.e. parser friendly) output
 -t | --title Add header to output (Raw mode only)
 -o | --once Poll once then exit
 -v | --verbose Be more verbose
 -V | --version Print program version info

Watching correlator runtime status

Deploying and Managing Apama Applications 9.9.0 132

Description

This tool periodically polls an event correlator for status information, writing the returned status
data to stdout. For additional progress information use the –v option.

The engine_watch tool returns the following information:

Status message Meaning

Uptime (ms) The time in milliseconds since this correlator was started.

This figure is unaffected if the state of the correlator is
restored from a checkpoint file.

Number of monitors The number of EPL monitor definitions injected into the

correlator. This figure changes upwards and downwards
as monitors are injected, deleted or just expire. A monitor
expires when each of its instances dies, or it has no listeners
or streams left, or it causes a runtime error.

Number of sub-monitors The number of EPL monitor instances across all contexts

in the correlator. In monitors, spawn actions create monitor
instances. This figure changes upwards and downwards as
monitor instances are spawned, killed or just expire.

Number of contexts The number of contexts in the correlator. This includes the

main context plus any user-defined contexts.

Number of Java applications The number of Java applications loaded in the correlator.

Java applications do not expire, so this value only decreases
when you explicitly unload a Java application.

Number of listeners This is the sum of listeners in all contexts. This includes

each on statement and each stream source template, for
example, all Tick(symbol=”APMA”) in the following:
stream<Tick> ticks := all Tick(symbol=”APMA”);

Number of sub-listeners The number of sub-listeners that have been created by

listeners across all contexts. A stream source template
always has exactly one sub-listener. An on statement can
have multiple sub-listeners.

Number of event types The total number of event types defined within the

correlator. This figure decreases when you delete event
types from the correlator.

Events on input queue Total number of events waiting to be processed on all input

queues. The main context has its own input queue and
any user-defined contexts each have an input queue. This
includes private contexts as well as public contexts.

Events received The total number of events ever received by the correlator.

A checkpoint preserves this value. If you restore the state

Watching correlator runtime status

Deploying and Managing Apama Applications 9.9.0 133

Status message Meaning
of the correlator from a checkpoint file, this number reflects
the total number of the events seen by the correlator from
which the checkpoint was originally made.

Note that if an event is on an input queue, it has been
received but not processed.

Events processed The total number of events processed by the correlator

in all contexts. This includes external events and events
routed to contexts by monitors. An event is considered to
have been processed when all listeners and streams that
were waiting for it have been triggered, or when it has been
determined that there are no listeners for the event.

Events on internal queue Total number of routed events waiting to be processed

across all contexts. The internal routing queue in each
context is a high priority queue for events that you
internally routed with the route instruction in EPL. The
correlator always processes events on the internal queue
before any events on the normal input queue.

Events routed internally The total number of events ever routed internally to the

internal queues on this correlator. A checkpoint preserves
this value. If you restore the state of a correlator from a
checkpoint file, this number reflects the total number of the
events routed to the internal queues for the correlator from
which the checkpoint was originally made.

Number of consumers The number of event consumers registered with the

correlator. Event consumers receive events emitted by the
correlator.

Events on output queue The number of events waiting on the correlator’s output

queue to be dispatched to any registered event consumers.

Output events created The total number of output events created by the correlator.

A checkpoint preserves this value. If you restore the state
of a correlator from a checkpoint file, this number reflects
the total number of output events created by the correlator
from which the checkpoint was originally made.

Output events sent The total number of output events that the correlator

has sent to event consumers. For example, suppose the
correlator created 10 output events and sent each event to
two consumers. The number of output events sent is 20. A
checkpoint preserves this value. If you restore the state of
a correlator from a checkpoint file, this number reflects the
total number of output events sent by the correlator from
which the checkpoint was originally made.

Watching correlator runtime status

Deploying and Managing Apama Applications 9.9.0 134

Status message Meaning

Event rate over last interval
(ev/s)

The number of events per second currently being processed
by the correlator across all contexts. This value is computed
with every status refresh and is only an approximation.

Events on context input
queues The total number of events on all context queues in the

correlator.
Most backed up input queue

The input queue that has the most events waiting to be
processed.

Most backed up queue size
The number of events on the input queue that has the most
events waiting to be processed.

Slowest receiver
The receiver with the largest number of incoming events
waiting to be processed.

Slowest receiver queue
 size For the receiver with the largest number of incoming events

waiting to be processed, this is the number of events that
are waiting.

Options

The tool engine_watch.exe (on Windows) or engine_watch (on UNIX) takes a number of command line
options. These are:

Option Description

-h Displays usage information. Optional.

-n host Name of the host on which the event correlator is running. Optional. The

default is localhost.

Note: Non-ASCII characters in host names are not supported.

-p port Port on which the event correlator is listening. Optional. The default is 15903.

-i ms Specifies the poll interval in milliseconds. Optional. The default is 1000.

-f file Writes status output to the named file. Optional. The default is to send status

information to stdout.

-r Indicates that you want raw output format, which is more suitable for

machine parsing. Raw output format consists of a single line for each status
message. Each line is a comma-separated list of status numbers. This format
can be useful in a test environment.

If you do not specify that you want raw output format, the default is a multi-
line, human-readable format for each status message.

Inspecting correlator state

Deploying and Managing Apama Applications 9.9.0 135

Option Description

-t If you also specify the --raw option, you can specify the --title option so that

the output contains headers that make it easy to identify the columns.

-o Outputs one set of status information and then quits. Optional. The default is

to indefinitely return status information at the specified poll interval.

-v Displays process names and versions in addition to status information.

Optional. The default is to display only status information.

-V Displays version information for the engine_watch tool. Optional. The default is

that the tool does not output this information.

Exit status

The engine_watch tool returns the following exit values:

Status Description

0 All status requests were processed successfully.

1 No connection to the event correlator was possible or the connection failed.

2 Other error(s) occurred while requesting/processing status.

Correlator Utilities Reference

Inspecting correlator state
The engine_inspect tool lets you inspect the state of a running event correlator. This means you can
review the applications loaded and running on a correlator. The executable for this tool is located
in the bin directory of the Apama installation. Running the tool in the Apama Command Prompt
(see "Setting up the environment using the Apama Command Prompt" on page 12) ensures that the
environment variables are set correctly.

Synopsis

To inspect applications on a running event correlator:

On Windows, run engine_inspect.exe.

On UNIX, run engine_inspect.

To obtain the following usage message, run the command without any options or with the –h option:
Usage: engine_inspect [options]
To list names of monitors and events in a correlator.
Where options include:
 -m | --monitors List monitor types
 -j | --java List Java applications
 -e | --events List event types
 -t | --timers List timers
 -x | --contexts List contexts
 -a | --aggregates List aggregate functions

Inspecting correlator state

Deploying and Managing Apama Applications 9.9.0 136

 -P | --pluginReceivers List plugin receivers
 -R | --receivers List connected receivers
 -r | --raw Raw (i.e. parser friendly) output
 -h | --help This message
 -n | --hostname <host> Connect to an engine on <host>
 -p | --port <port> Engine is listening on <port>
 -v | --verbose Be more verbose
 -V | --version Print program version info

Description

The engine_inspect tool retrieves state information from a running event correlator and sends it to
stdout. By default, the tool outputs information on the monitors, JMon applications, event types and
container types currently injected in an event correlator.

You can filter this list by specifying command-line options. When you specify one or more of the -m,
-j, -e, -t, -x, -P, or -R options, the engine_inspect tool displays only the information indicated by the
option(s) you specify. See the Options table below for a description of these options.

Options

The engine_inspect tool takes the following options.:

Option Description

-m Displays the names of all EPL monitors in the event correlator and the number

of sub-monitors each monitor has spawned.

-j Displays the names of all JMon applications in the event correlator and the

number of event listeners each JMon application has created.

-e Displays the names of all event types in the correlator and the number of

templates of each type, as defined in listener specifications. This includes
each event template in an on statement and each stream source template, for
example, stream<A> := all A().

For more information about event types and listeners, see "Introduction to
Apama Event Processing Language" in Developing Apama Applications .

-t Displays the current EPL timers active within the system. The four types of

timers which may be displayed here are wait, within, at, and stream. The stream
timers are those set up to support the operation of a stream network.

-x Displays the names of any user-defined contexts, how many monitor instances

are running in each context, what channels each context is subscribed to, and
how many entries are on each context’s input queue.

-a Displays a list of the custom (user-defined) aggregate functions that have

been injected. You use aggregate functions in stream queries. Apama built-in
aggregate functions are not listed.

-P
Displays the names of any plug-in receivers, the channels the plug-in is
subscribed to, and the number of items on the plug-in's input queue. A plug-
in receiver is a correlator plug-in that is subscribed to one or more channels.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 137

Option Description

-R Displays the names of any external receivers, each receiver's address, the

channels each receiver is subscribed to, and the number of entries on each
receiver's output queue.

-r Indicates that you want raw output, which is more suitable for machine

parsing. Raw output provides the name of each entity in the correlator
followed by the number of instances associated with that entity. For a monitor,
you get the number of its monitor instances. For a JMon application, you
get the number of its listeners. For an event type, you get the number of its
templates. For example:
com.apama.samples.stockwatch.StockWatch 1
Tick 1

-h Displays usage information.

-n host Name of the host on which the event correlator is running. The default is

localhost.

Note: Non-ASCII characters in host names are not supported.

-p port Port on which the event correlator is listening. The default is 15903.

-v Displays process names and versions in addition to application information.

Optional. The default is to display only application information.

-V Displays version information for the engine_inspect tool.

Exit status

The engine_inspect tool returns the following values:

Status Description

0 All status requests were processed successfully.

1 No connection to the event correlator was possible or the connection failed.

2 Other error(s) occurred while requesting/processing status.

Correlator Utilities Reference

Shutting down and managing components
All Apama components (the correlator, the IAF, and the Sentinel Agent) implement an interface
with which they can be asked to shut themselves down, provide their process ID, and respond
to communication checks. Running the tool in the Apama Command Prompt (see "Setting up
the environment using the Apama Command Prompt" on page 12) ensures that the environment
variables are set correctly.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 138

For historical reasons, there are three commands that all do the same thing. You can enter any of
these commands to manage any component:
engine_management
component_management
iaf_management

However, the recommendation is to always use engine_management. The only differences in behavior
among these commands is as follows:

engine_management and component_management default to the local correlator port (15903).

iaf_management defaults to the default IAF port (16903).

Synopsis

To use the event correlator’s management tool:

On Windows, run engine_management.exe.

On UNIX, run engine_management.

When you specify the –h command line option, the tool displays the following usage information:
Usage: engine_management [options]
Where options include:
 -V | --version Print program version info
 -h | --help Display this message
 -v | --verbose Be more verbose
 -n | --hostname <host> Connect to a component on <host>
 -p | --port <port> Component is listening on <port>
 -w | --wait Wait forever for component to start
 -W | --waitFor <num> Wait <num> seconds for component to start
 -N | --getname Get the name of the component
 -T | --gettype Get the type of the component
 -Y | --getphysical Get the physical ID of the component
 -L | --getlogical Get the logical ID of the component
 -O | --getloglevel Get the log level of the component
 -C | --getversion Get the version of the component
 -R | --getproduct Get the product version of the component
 -B | --getbuild Get the build number of the component
 -F | --getplatform Get the build platform of the component
 -P | --getpid Get the process ID of the component
 -H | --gethostname Get the hostname of the component
 -U | --getusername Get the username of the component
 -D | --getdirectory Get the working (current) directory of the component
 -E | --getport Get the port of the component
 -c | --getconnections Get all the connections to the component
 -a | --getall Get all of the above values
 -xs| --disconnectsender <id:id> <reason> Disconnect sender with id tuple <id:id>
 -xr| --disconnectreceiver <id:id> <reason> Disconnect receiver with id tuple <id:id>
 -I | --getinfo <category> Get component-specific info for <category>
 Use empty string to get all available categories
 Multiple -I options may be specified
 -d | --deepping Deep-ping the component
 -l | --setloglevel <level> Set logging verbosity to <level>. Available levels
 are TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT and OFF
 -r | --dorequest <type> <arg>* Send component-specific request
 -s | --shutdown <why> Shutdown the component with reason <why>

Description

Use the engine_management tool to connect to a running component. Once connected, the tool can shut
down the component or return information about the component. The engine_management tool can
connect to any of the following types of components. The engine_management tool sends output to
stdout.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 139

Event correlator

Adapter

Sentinel Agent process

Options

When you run the engine_management tool, you can specify any of the options described in the
following table. By default, the engine_management tool connects to a local correlator that is listening on
port 15903 (the correlator default port). To obtain all information for a particular component, specify
the -a option. All options are optional:

Option Description

-V Displays version information for the engine_management tool.

-h Display usage information.

-v Displays information in a more verbose manner. For example, when you specify
the -v option, the engine_management tool displays status messages that indicate
that it is trying to connect to the component, has connected to the component,
is disconnecting, is disconnected, and so on. If you are having trouble obtaining
the information you want, specify the -v option to help determine where the
problem is.

-n host Name of the host on which the component is running (default is localhost). Non-
ASCII characters are not allowed in host names.

-p port Port on which the component you want to connect to is listening. The default is
15903.

-w Instructs the engine_management tool to wait for the component to start and be in
a state that is ready to receive EPL files. This option is similar to the -W option,
except that this option (the -w option) instructs the tool to wait forever. The -W
option lets you specify how many seconds to wait. See the information for the -W
option for an example.

-W num Instructs the engine_management tool to wait num seconds for the component to
start and be in a state that is ready to receive EPL files. If the component is not
ready to receive EPL files before the specified number of seconds has elapsed,
the engine_management tool terminates with an exit code of 1.

This option is most useful in scripts, when the component you want to operate
on has not yet started. For example, suppose a script specifies the following
commands:
correlator.exe options engine_inject some_EPL_files

It can sometimes take a few seconds for a component to start, and this number
of seconds is not always exactly predictable. If the engine_inject tool runs before
the correlator is ready to receive EPL files, the engine_inject tool fails. To avoid
this for a local correlator that is listening on the default port, insert the following
command between these commands:

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 140

Option Description
engine_management -W 10

This lets the engine_management tool wait for up to 10 seconds for the correlator’s
management interface to be available. To set an appropriate wait time for your
application, monitor your application’s performance and adjust as needed.

-N Displays the name of the component. For example, when you start a
correlator, you can give it a name with the -N option. This is the name that the
engine_management tool returns. If you do not assign a name to a correlator when
you start it, the default name is correlator.

-T Displays the type of the component that the engine_management tool connects to.
The returned value is one of the following: correlator, iaf, sentinel_agent. If you
see that a port is in use, you can specify this option to determine the type of
component that is using that port.

-Y Displays the physical ID of the component. This can be useful if you are looking
at status log information that identifies components by their physical IDs.

-L Displays the logical ID of the component. This can be useful if you are looking at
status log information that identifies components by their logical IDs.

-O Displays the log level of the component. The returned value is one of the
following: TRACE, DEBUG, INFO, WARN, ERROR, CRIT, FATAL, or OFF.

-C Displays the version of the component. For example, when the tool connects to a
correlator, it displays the version of the correlator software that is running.

-R Displays the product version of the component. For example, when the tool
connects to a correlator, it displays the version of the UNIX software that is
running.

-B Displays the build number of the component. This information is helpful if
you need technical support. It indicates the exact software contained by the
component you connected to.

-F Displays the build platform of the component. This information is helpful if
you need technical support. It indicates the set of libraries required by the
component you connected to.

-P Displays the process ID of the correlator you are connecting to. This can be
useful if you are looking at log information that identifies components by their
process ID.

-H Displays the host name of the component. When debugging connectivity issues,
this option is helpful for obtaining the host name of a component that is running
behind a proxy or on a multihomed system.

-U Displays the user name of the component. On a multiuser machine, this is useful
for determining who owns a component.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 141

Option Description

-D Displays the working (current) directory of the component. This can be helpful
if a plug-in writes a file in a component’s working directory.

-E Displays the port of the component.

-c This option is for use by technical support. It displays all the connections to the
component.

-a Displays all information for the component.

-xs Disconnects the sender that has the physical ID you specify. If you specify
a reason, the engine_management tool sends the reason to the correlator. The
correlator then logs the message, sends the reason to the sender, and disconnects
the sender. You can specify the component ID as physical_ID/logical_ID.

-xr Disconnects the receiver that has the physical ID you specify. If you specify
a reason, the engine_management tool sends the reason to the correlator.
The correlator then logs the message, sends the reason to the receiver,
and disconnects the receiver. You can specify the component ID as
physical_ID/logical_ID.

-I

category

This option is for use by technical support. It displays component-specific
information for the specified category.

-d Ping the component. This confirms that the component process is running and
acknowledging communications.

-l level Sets the amount of information that the component logs. In order of decreasing
verbosity, you can specify TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT, or OFF.

-r This option sends a component-specific request. For example: engine_management
-r profiling frequency

This returns the profiling frequency in Hertz.

The following request types are available:

applicationEventLogging — Sends detailed application information to the
correlator log file. See "Viewing garbage collection information" on page
143.

flushAllQueues — Sends a request into the correlator that waits until every
event/injection sent or enqueued to a context before the flushAllQueues request
started has been processed, and every event emitted as a result of those events
has been acknowledged. This may block if a slow receiver is connected to
the correlator. Events enqueued to a context after the request has started
may or may not be processed — thus if you want to see the results of one
context enqueueing to a second, which enqueues to a third, you should execute
engine_management -r flushAllQueues three times, to ensure it has been processed
by each context. This does not change the behavior of the correlator (the

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 142

Option Description
correlator will always flush all queues as soon as it is able to), it just waits for
events currently on input queues to complete.

profiling — Lets you profile Apama EPL applications. See "Using the profiler
command-line interface" on page 143.

rotateLogs — For details on this request, see "Rotating all log files" on page
150.

setApplicationLogFile — A set of commands lets you set, get, and unset the log
files for packages and monitors. See "Setting logging attributes for packages,
monitors and events" on page 147.

setApplicationLogLevel — A set of commands lets you set, get, and unset
logging levels for packages and monitors. See "Setting logging attributes for
packages, monitors and events" on page 147.

setLogFile — Instructs the component to close the log file it is using and open
a new log file with the name you specify. See "Rotating specified log files" on
page 151.

verbosegc — Enables logging of garbage collection events. See "Viewing
garbage collection information" on page 143.

Certain other requests for this option are available for use by Apama technical
support.

-s why Instructs the component to shut down and specifies a message that indicates the
reason for termination. The component inserts the string you specify in its status
log file with a CRIT flag, and then shuts down.

Exit status

The following exit values are returned:

Status Description

0 All status requests were processed successfully.

1 Indicates one of the following:

No connection to the specified component was possible.

The connection failed.

You specified the waitFor option and the specified time elapsed without the
component starting.

2 One or more errors occurred while requesting/processing status.

3 Deep ping failed.

Correlator Utilities Reference

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 143

Viewing garbage collection information
A handy way to view garbage collection information is to execute the following command:
engine_management -r verbosegc on

This command enables logging of garbage collection events, and is particularly useful in production
environments. The additional garbage collection information goes to the correlator log. To disable
logging of garbage collection information, execute the following:
engine_management -r verbosegc off

These commands provide an alternative to the following command, which provides a great deal
of detailed output in addition to garbage collection information. Again, this output goes to the
correlator log.
engine_management -r applicationEventLogging on

To turn this off:
engine_management -r applicationEventLogging off

Shutting down and managing components

Using the profiler command-line interface
You can profile applications written with EPL in Software AG Designer. Data collected in the profiler
allows you to identify possible bottlenecks in an EPL application. When testing an application, or
after you deploy an application, you might find it handy to write a script that includes obtaining
profile information. Or, you might want to obtain profile information without the overhead of
Software AG Designer. In these situations, you can use the command-line interface to the profiler,
which is described here.

The command-line interface to the profiler consists of specifying the -r | --dorequest option with the
engine_management utility:
engine_management -r profiling on
engine_management -r profiling off
engine_management -r profiling get
engine_management -r profiling gettotal
engine_management -r profiling reset
engine_management -r profiling frequency

on Starts to capture the state of all contexts in the correlator.

off Stops capturing profile data.

get Returns the samples collected since the correlator was started or since
the profiler was reset. Returned data is in CSV (comma separated
values) format. A sample is the state of the correlator at the moment the
profiler collects data.

gettotal Returns totals for all contexts.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 144

reset Clears profiling samples collected.

frequency Returns the profiling frequency in Hertz.

If a context is executing, it is typically in the EPL interpreter. However, it might also be doing
something such as matching events or collecting garbage. For EPL execution, there is a call stack for
each context. For the purposes of the profiler, there is one entry at the top for the monitor name, then
comes the listener/onload action, and then any actions that is calling, and so on. The only action that
the correlator is actually executing is at the bottom of the stack.

A context can be in one or two of the following states:

CPU — the correlator is executing code in this context.

Runnable — the correlator has work to do in this context but it has been rescheduled because the
correlator is executing code in another context.

Idle —the correlator has no work to do in this context.

Non-Idle — the correlator has work to do in this context. When a context is in this state, it is also
in one other state, either CPU, Plugin, Blocked, or Runnable).

Plugin — the correlator is executing a plug-in in this context.

Blocked — the correlator cannot make progress in this context. It is blocked because of a full
queue. The full queue might be the correlator output queue (the context is trying to emit an
event) or another context’s input queue.

When the profiler takes a sample it examines every context in the correlator. Every entry in each
context’s call stack results in addition or modification of a line in the profiler output. The Cumulative
column is incremented for all samples, and one or more of the other columns is incremented for the
lowest (deepest) call stack element according to what states the context is in.

When the correlator is not executing EPL code, there is only one element in the stack, for example,
when the correlator is processing an event.

The profiler’s resolution is to a EPL action. That is, the profiler does not distinguish between lines
within an action. The line number in the output is the first line of the action that generates code.
For example, variable declarations without initializers, and comments do not generate code, while
statements, and declarations with initializers, do generate code. The profiler treats the body of
a listener (the code the correlator executes when the listener fires) as an action with the name
::listenerAction::.

If you want to profile parts of a single large action, you need to split the action into multiple actions
in order to determine where time is spent. Remember that action calls have some cost, so that could
skew the results.

The profiling get or profiling gettotal request returns samples to stdout as lines of comma separated
values. Output is sorted by context and then by CPU time. For example:
Context Id,Context Name,Location,Filename and line number,Cumulative time,CPU time,
Empty,Non-Idle,Idle,Runnable,Plugin,Blocked,total ticks:573
3,3,processor:processor.::listenerAction::,/users/ukcam/cr/dev/4.3.0.0/apama-test/
system/correlator/corba/testcases/correctness/Corr_Corba_cor_543/Input/
create-state.mon:50,556,293,0,556,0,0,263,0

In the previous output, nearly all of the time of this context (3) is spent in the listener that starts
on line 50 of create-state.mon. The time is spread between executing EPL code (293 samples) and

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 145

executing a plug-in (263 samples). Each context spent similar amounts of time executing EPL and
executing plug-ins but in different listeners (notice the different line numbers).

Here is more sample output:
3,3,Idle,,1,1,0,1,14,0,0,0
3,3,Only just started profiling,,0,0,0,0,2,0,0,0
3,3,Monitor:processor,,556,0,0,0,0,0,0,0
2,2,processor:processor.::listenerAction::,/users/ukcam/cr/dev/4.3.0.0/apama-test/
system/correlator/corba/testcases/correctness/Corr_Corba_cor_543/Input/create-state.mon:
34,556,261,0,556,0,0,295,0
2,2,Idle,,1,1,0,1,14,0,0,0
2,2,Only just started profiling,,0,0,0,0,2,0,0,0
2,2,Monitor:processor,,556,0,0,0,0,0,0,0
4,4,processor:processor.::listenerAction::,/users/ukcam/cr/dev/4.3.0.0/apama-test/
system/correlator/corba/testcases/correctness/Corr_Corba_cor_543/Input/create-state.mon:
65,556,296,0,556,0,0,260,0
4,4,Idle,,1,1,0,1,14,0,0,0
4,4,Only just started profiling,,0,0,0,0,2,0,0,0
4,4,Monitor:processor,,556,0,0,0,0,0,0,0
1,main,processor:processor.::listenerAction::,/users/ukcam/cr/dev/4.3.0.0/apama-test/
system/correlator/corba/testcases/correctness/Corr_Corba_cor_543/Input/create-state.mon:
18,556,283,0,556,0,0,273,0
1,main,Idle,,1,1,0,1,14,0,0,0
1,main,Only just started profiling,,0,0,0,0,2,0,0,0
1,main,Monitor:processor,,556,0,0,0,0,0,0,0

This output is intended to be imported to a spreadsheet, such as Excel. If you do that, then the values
in one sample (one row) provide the following information in the following order:

Column Content Description

Context ID ID of the context. A context ID is not present in data
returned by -r profiler gettotal.

Context Name Name of the context. A context name is not present in data
returned by -r profiler gettotal.

Location What the correlator is doing or where the correlator is
executing code at the moment the sample was collected.
The value is one of the following:

Monitor:monitor_name — The top-level entry for the
monitor.

monitor_name.code_owner.action_name — For example,
if monitor monny calls an action act on event pkg.evie,
this location would be monny.pkg.evie.act. If a listener
has been triggered, the action name is always
::listenerAction::.

monitor_name.;GC — Garbage collection.

Event:event_name — Event matching or chastenment of an
event of that type

Idle — Correlator has no work to do.

There are other possible values that you might rarely see.
They are self explanatory.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 146

Column Content Description

Filename and line number If the correlator is executing EPL code, indicates the
filename and line number of the beginning of the action
that is executing.

Cumulative time Cumulative time indicates time spent in this location or
in something that this location was calling (directly or
indirectly). CPU time shows time spent in this location,
not the actions it called.I

CPU time Number of samples in which the correlator is executing
the location/action and is not in a plug-in (see Plugin later
in this table). CPU time is a subset of Cumulative time. It
does not include time spent in the location(s) called by this
location.

Empty Number of samples in which the context was empty.An
empty context should happen very rarely. A context might
be empty if there is a race between getting the location and
the state.

Non-idle Number of samples in which the context was at this row's
location and not idle. Each sample in this count is also in
the count for CPU time, Runnable, Plugin, or Blocked.

Idle Number of samples in which the context was idle. This
should correspond to a location of Idle or Only just started
profiling, which means it is an unknown state.

As with other cumulative counters, races can result in
misleading results. For example, Idle in an action, but
those are best ignored and should be small.

Runnable Number of samples in which the location was the lowest
point on the call stack and the context was runnable.
Runnable means it could have made progress, but the
scheduler determined that the correlator should run
something else instead.

When all rows contain 0 for this entry it means that the
correlator never (or very rarely) had to re-schedule one
context to run another context. A non-zero value means
this location was running for a long time, and it was
suspended so that other contexts could run

Plugin Number of samples in which the location is executing a
correlator plug-in.

Blocked Number of samples in which the context was unable to
make progress. For example, it was trying to emit an event
but the correlator output queue was full, or it was trying to

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 147

Column Content Description
enqueue an event to a particular context but that context’s
input queue was full.

Shutting down and managing components

Setting logging attributes for packages, monitors and events
You can configure per-package logging in two ways:

Statically, in the extended configuration file when starting the correlator. See "Setting log files and
log levels in an extended configuration file" on page 171.

Dynamically, using the engine_management setApplicationLogFile/Level request, described here.

In EPL code, you can specify log statements as a development or debug tool. By default, log
statements that you specify in EPL send information to the correlator log file. If a log file was not
specified when the correlator was started, and you have not executed the engine_management utility to
associate a log file with the correlator, log statements send output to stdout.

In place of this default behavior, you can specify different log files for individual packages, monitors
and events. This can be helpful during development. For example, you can specify a separate log file
for a package or monitor you are implementing, and direct log output from only your development
code to that file.

Also, you can specify a particular log level for a package, monitor, or event. The settings of log files
and log levels are independent of each other. That is, you can set only a log level for a particular
package, monitor or event, or you can set only a log level for a particular element. The following
topics provide information for managing individual log files and log levels.

"Tree structure of packages, monitors, and events" on page 147

"Managing application log levels" on page 148

"Managing application log files" on page 149

See also "Rotating the correlator log file" on page 150.

Tree structure of packages, monitors, and events

Packages, monitors and events form a tree as illustrated in the figure below. For each node in the
tree, you can specify a log file and/or a log level. Nodes for which you do not specify log settings
inherit log settings from their parent node.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 148

The root of the tree is the default package, which contains code that does not explicitly specify a
package with the package statement. Specified packages are intermediate nodes. Packages can nest
inside each other. Monitors and events in specified packages are leaf nodes. If you specify an event
type in a monitor, that event is a leaf node and its containing monitor is an intermediate node.

For example, suppose you specify packageA.log as the log file for packageA. The packageA.log file
receives output from log statements in MonitorE and MonitorK. If EventF contains any action members
that specify log statements, output would go to the packageA.log file.

Now suppose that you set ERROR as the log level for the default package and you set INFO as the log
level for PackageB. For log statements in MonitorG, PackageH, and MonitorL, the correlator compares the
log statement's log level with INFO. For log statements in the rest of the tree, the correlator compares
the log statement’s log level with ERROR. For details, see the table in "Managing application log levels"
on page 148.

Managing application log levels

To set the log level for a package, monitor or event, invoke the engine_management utility as follows:
engine_management -r setApplicationLogLevel logLevel [node]

logLevel Specify OFF, CRIT, FATAL, ERROR, WARN, INFO, DEBUG, or TRACE.

node Optionally, specify the name of a package, monitor or event. If you do not
specify a node name, the utility sets the log level for the default package.

To obtain the log level for a particular node, invoke the utility as follows:
engine_management -r getApplicationLogLevel [node]

If you do not specify a node, the utility returns the log level for the default package. To remove the
log level for a node, so that it takes on the log level of its parent node, invoke the utility as follows.
Again, if you do not specify a node, you remove the log level for the default package. The default
package then takes on the log level in effect for the correlator. The default correlator log level is INFO.
engine_management -r unsetApplicationLogLevel [node]

To manage the log level for an event that you define in a monitor, see "Managing event logging
attributes" on page 149.

After the correlator identifies the applicable log level, the log level itself determines whether the
correlator sends the log statement output to the appropriate log file. The following table indicates
which log level identifiers cause the correlator to send the log statement to the appropriate log file.

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 149

Log Level in Effect Log Statements With These Identifiers Go
to the Appropriate Log File

Log Statements With These
Identifiers are Ignored

OFF None CRIT, FATAL, ERROR, WARN, INFO,
DEBUG, TRACE

CRIT CRIT FATAL, ERROR, WARN, INFO, DEBUG,
TRACE

FATAL CRIT, FATAL ERROR, WARN, INFO, DEBUG, TRACE

ERROR CRIT, FATAL, ERROR WARN, INFO, DEBUG, TRACE

WARN CRIT, FATAL, ERROR, WARN INFO, DEBUG, TRACE

INFO CRIT, FATAL, ERROR, WARN, INFO DEBUG, TRACE

DEBUG CRIT, FATAL, ERROR, WARN, INFO, DEBUG TRACE

TRACE CRIT, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE

None

See also "Log levels determine results of log-statements" in the section "Defining what happens when
matching events are found" in Developing Apama Applications.

Managing application log files

To specify a log file for a package, monitor or event, invoke the engine_management utility as follows:
engine_management -r setApplicationLogFile logFile [node]

logFile Specify the path of the log file. You specify the name of an application log
file in the same way that you specify the name of a correlator status file or
input file. See "Specifying log filenames" on page 110.

node Optionally, specify the name of a package, monitor or event. If you do
not specify a node name, the utility associates the log file with the default
package.

To obtain the path of the log file for a particular node, invoke the utility as follows:
engine_management -r getApplicationLogFile [node]

If you do not specify a node, the utility returns the log file for the default package. To disassociate
a log file from its node, so that the node uses the log file of its parent node, invoke the utility as
follows. Again, if you do not specify a node, you disassociate the log file from the default package.
The correlator log file is then in effect for the default package. If a log file has not been specified for
the correlator, the default is stdout.
engine_management -r unsetApplicationLogFile [node]

Managing event logging attributes

If you specify an event type in a monitor, that event does not inherit the logging configuration
from the enclosing monitor. It is expected that this will change in a future release. To explicitly
set logging attributes for an event type defined in a monitor, invoke the engine_management

Shutting down and managing components

Deploying and Managing Apama Applications 9.9.0 150

utility and specify an unqualified event type name. Do not specify an enclosing scope, such as
com.apamax.myMonitor.NestedEventType. For example:
engine_management -r setApplicationLogFile foo.log NestedEventType
engine_management -r setApplicationLogLevel DEBUG NestedEventType

Shutting down and managing components

Rotating the correlator log file
Rotating the correlator log file refers to closing the status log file of a running correlator and opening
a new status log file. This lets you archive log files and avoid log files that are too large to easily view.

Each site should decide on and implement its own correlator log rotation policy. You should consider

How often to rotate log files

How large a correlator log file can be

What correlator log file naming conventions to use to organize log files.

There is a lot of useful header information in the log file being used when the correlator starts.
If you need to provide log files to Apama technical support, you should be able to provide the
log file that was in use when the correlator started, as well as any other log files that were in use
before and when a problem occurred.

To rotate the correlator log file and also rotate any other log file the correlator is using (input log file,
application log files), see "Rotating all log files" on page 150.

To rotate only the correlator log file, see "Rotating specified log files" on page 151.

Shutting down and managing components

Rotating all log files
To invoke rotation of all log files that the correlator is using, you can do the following:

Invoke the engine_management utility and specify -r rotateLogs.

This rotates the correlator status log, the sentinel agent status log, the correlator input log if it
is being generated, and any application logs that are being generated. When you invoke this
management request then the correlator closes each log file it was using.

If the log filename specification declared ${START_TIME}, ${ROTATION_TIME} and/or ${ID} then the
correlator starts new log files with updated names according to the log filename specification, for
example, if ${ID}was specified then the ID portion of a log filename would be incremented by 1.

In EPL, create a monitor that uses the Management interface correlator plug-in to trigger log
rotation on a schedule. See Using the Management interface in Deploying and Managing Apama
Applications.

On UNIX only, you can write a cron job that periodically sends a SIGHUP signal to Apama
processes.

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 151

The standard UNIX SIGHUP mechanism causes Apama processes to re-open their log files. If the
log file names were specified with the ${ROTATION_TIME} and/or ${ID} then the re-opened files have
names that contain the rotation time and/or the incremented ID.

If you want a log filename to always be the same and so did not declare ${START_TIME},
${ROTATION_TIME} or ${ID} in the log filename specification then the correlator starts new log files that
have the same names as the log files it closed. On Windows, this would overwrite the closed log files
so you must move the log files before invoking rotation. On UNIX, log files are appended to if the
names are the same.

Shutting down and managing components

Rotating specified log files
Run one of the following utilities to rotate a particular log file. On Windows, set up scheduled tasks
that run the utilities. On UNIX, write a cron job that periodically runs the utilities. The behavior is the
same on both Windows and UNIX, except as noted. The only way to rotate the correlator input log is
to rotate all log files. See "Rotating all log files" on page 150.

The following command instructs the correlator to close its status log file and start using a status
log file that has the name you specify. If the name of the file contains blanks, be sure enclose it in
quotation marks.
engine_management -r setLogFile log-filename

The following command instructs the correlator to use the specified file as the log file for the
specified node, which can be a package, monitor, or event. See also "Setting logging attributes for
packages, monitors and events" on page 147.
engine_management -r setApplicationLogFile log-filename [node]

If you use separate log files for particular packages, monitors, or events you might want to rotate
those logs at the same time that you rotate the correlator status log. This keeps your Apama log
files in sync with each other. See "Rotating all log files" on page 150.

On Windows, when you rotate a log file you must ensure that the new log filename is different
from the name of the log file that was in use. Apama takes care of this for you if you specify
${ROTATION_TIME} and/or ${ID} in the log-filename specification. If the name is not different, the old
file is overwritten. If you want to use the same log filename then you must move the file before you
rotate it.

On UNIX, a log file is never overwritten. If you rotate a log file and specify the same name then
Apama appends messages to the content already there.

Apama does not support automatic log file rotation based on log file size.

The only way to rotate the correlator input log is to rotate all log files. See "Rotating all log files" on
page 150.

Shutting down and managing components

Using the command-line debugger

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 152

The engine_debug tool lets you control execution of EPL code in the correlator and inspect correlator
state. This tool is a correlator client that runs a single command from the command line. It is not an
interactive command-line debugger.

In general, this tool is expected to be most useful when you are ready to deploy your application
or after deployment. During development, the interactive debugger in Software AG Designer will
probably be most useful to you.

Before you run the engine_debug tool, specify the -g option when you start the correlator. Specification
of this option disables some correlator optimizations. If you run the engine_debug utility and you did
not specify the -g option when you started the correlator, the optimizations hinder the debugging
process. For example, the correlator might simultaneously execute multiple statements over multiple
lines even if you are using debugger commands to step through the program line by line.

Information about the command-line debugger is organized as follows:

"Synopsis" on page 152

"Debug commands" on page 153

"Exit status" on page 156

"Obtaining online help for the command-line debugger" on page 156

"Enabling and disabling debugging in the correlator" on page 156

"Working with breakpoints using the command-line debugger" on page 157

"Controlling execution with the command-line debugger" on page 158

"Command shortcuts for the command-line debugger" on page 159

"Examining the stack with the command-line debugger" on page 160

"Displaying variables with the command-line debugger" on page 160

Synopsis

To debug applications on a running event correlator:

On Windows, run engine_debug.exe.

On UNIX, run engine_debug.

To obtain a usage message, run the command with the help option.

Description

Debugging a running correlator has some effect on the other programs that connect to that correlator.
While you pause a correlator, the expected behavior of connected components is as follows:

Sending events to the correlator continues to put events on the input queue of each public
context. However, since the input queues are not being drained, if an input queue fills up, this
will block senders, including the engine_send tool and adapters.

The correlator sends out any events on its output queue. When the output queue is empty,
receivers no longer receive events; no contexts are sending events.

Other inspections of the correlator proceed as normal. For example, engine_watch,
engine_management, and profiling data.

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 153

You can shut down the correlator.

You can inject monitors while the correlator is stopped. They will not run any of the onload() or
similar code until the correlator resumes, but the inject call should succeed.

Java applications continue to run completely independently of whether the correlator is stopped.

All other requests block until the correlator resumes processing. This includes dumping
correlator state, loading, and changing debug or profiling state.

The engine_debug tool is stateless. Consequently, during debugging, you can have multiple concurrent
connections to the same correlator.

Debug commands

The ordering of arguments to engine_debug commands works as follows:

All arguments before the first command apply to all commands in that command line. This is
useful for setting the host and port if you are not using the local defaults.

All arguments following a command apply to only that command and they override any
applicable arguments specified before the first command.

The arguments to a particular command can be in any order

When there are multiple commands in a line, the debugger executes them in the order in which
they are specified. Execution continues until either all complete, or one fails, which prevents
execution of any subsequent commands.

The engine_debug tool takes the following commands as options:

Abbv. Command Description

help [command] Displays a usage message. To obtain help

for a particular engine_debug command,
specify that command.

p status Displays the current debugger state, and
position if stopped.

si stepinto Steps into an action.

sot stepout Steps out of an action.

sov stepover Steps over an instruction.

r run Begins processing instructions.

b stop Stops processing instructions.

w [-to

int]

wait [--timeout timeout] Waits for the correlator to stop processing
instructions. Specify an integer that
indicates the number of seconds to wait.
The debugger waits forever if you do not

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 154

Abbv. Command Description
specify a timeout. See "The wait command"
on page 158 for more information.

s
stack [--context contextid]
| [--frame frameid] Displays current stack information for all

contexts. The output includes the frame ID
associated with each variable. To display
stack information for only a particular
context, specify the --context argument.
To display stack information for only
a particular frame, specify the --frame
argument.

i
inspect
 --instance monitorinstance |
 --instance monitorinstance
 --frame frameid |
 --instance monitorinstance
 --variable variablename |
 --instance monitorinstance
 --frame frameid
 --variable variablename |
 --frame frameid |
 --frame frameid
 --variable variablename

Displays the value of one or more
variables. Specify a monitor instance and/
or a frame ID and/or a variable name to
display a list of variables in that monitor or
in a particular monitor frame, or to display
the value of a particular variable. Obtain
monitor instance IDs from engine_inspect
output or correlator log statements. Obtain
frame IDs from engine_inspect stack
output.

c context [--context contextid] Displays information about all contexts
in the correlator or about only the context
you specify. Information displayed
includes context name, context ID, monitor
instances in the context, and monitor
instance IDs.

e enable Enables debugging. You must run this in
order to do any debugging.

d disable Disables debugging. You must run this to
disable debugging. If you do not disable
debugging, the correlator runs more
slowly and continues to stop when it hits
breakpoints.

boe breakonerror enable Causes the debugger to pause if it
encounters an error.

boeoff breakonerror disable Causes the debugger to continue
processing if it encounters an error.

ba
breakpoint add
 [--breakonce] --file filename
 --line linenumber |
 [--breakonce] --owner ownername
 --action actionname
 --line linenumber

Adds a breakpoint at the beginning of
the specified line. If you do not specify --
breakonce, the correlator always pauses at
this point when debugging is enabled. You
must specify the line number where you

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 155

Abbv. Command Description
want the breakpoint. As usual, this is the
absolute offset from the beginning of the
file. You must specify either the name of
the file that contains the breakpoint or the
owner and action name that contains the
breakpoint. When the owner is a monitor
instance, specify package_name.monitor_name
or just monitor_name if there is no package.

bd
breakpoint delete
 --file filename
 --line linenumber |
 --owner ownername
 --action actionname
 --line linenumber |
 --breakpoint breakpointid

Removes a breakpoint. Specify one of the
following:

File name and line number

Owner name, action name and
line number. When the owner
is a monitor instance, specify
package_name.monitor_name or just
monitor_name if there is no package.

Breakpoint ID. You can obtain a
breakpoint ID by executing the breakpoint
list command.

bls breakpoint list For each breakpoint in the correlator, this
displays the following:

Breakpoint ID

Name of file that contains the breakpoint

Name of the action that contains the
breakpoint

Name of the owner of the breakpoint

Number of the line that the breakpoint is
on.

The breakpoint owner is the name of the
monitor that contains the breakpoint or
the name of the event type definition that
contains the breakpoint. If the breakpoint
is in an event type definition, the definition
must specify an action and processing
must create a closure between an event
instance and an action call.

For information about closures, see "Using
action type variables" in Developing Apama
Applications.

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 156

Exit status

The engine_debug tool returns the following values:

Status Description

0 Success — All requests were processed successfully.

1 Failure — The correlator could not parse the command line, or an exception
occurred, such as losing a connection or trying to use a non-existent ID.

Correlator Utilities Reference

Obtaining online help for the command-line debugger
The command-line debugger provides online help. To obtain general information, enter the
following:
engine_debug help

To get help for a particular command, specify that command after the help keyword. For example:
engine_debug help status
status: Displays the current debugger state, and position if stopped
engine_debug help breakpoint add
breakpoint add [--breakonce] --line linenumber [--file filename |
--owner ownername --action actionname]:
Add a breakpoint at the specified location

Using the command-line debugger

Enabling and disabling debugging in the correlator
To use the debugger, you must enable debugging in the correlator. To enable debugging locally on
the default port, enter the following:
engine_debug enable

When you are done debugging, you should disable debugging in the correlator. If you do not, the
correlator runs more slowly and continues to pause when it hits a breakpoint. To disable debugging
in the local correlator on the default port, enter the following:
engine_debug disable

You can also use the debugger in a remote correlator by specifying the host name and the port
number. For example:
engine_debug enable --host foo.bar.com --port 1234
engine_debug disable --host foo.bar.com --port 1234

Using the command-line debugger

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 157

Working with breakpoints using the command-line debugger
You can use the command-line debugger for:

"Adding breakpoints" on page 157

"Listing breakpoints" on page 157

"Removing breakpoints" on page 157

Adding breakpoints
There are two ways to add a breakpoint. If you know the EPL file name and the line number you can
enter something like the following:
engine_debug breakpoint add --file filename.mon --line 27

When you specify a file name you must specify the exact path you specified when you injected the
monitor. For example, suppose you ran the following:

engine_inject foo.mon

You can then specify foo.mon for the file name. Now suppose you ran this:

engine_inject c:\foo\bar\baz.mon

You must then specify c:\foo\bar\baz.mon for the file name.

If you prefer to use the monitor and action name, along with the line number, enter something like
this:
engine_debug breakpoint add --monitor package.monitor --action actionName --line 27

The debugger output indicates the line number where it added the breakpoint. In some cases, the
debugger does not set the breakpoint on the line you specified. For example, when a statement runs
over multiple lines.

Listing breakpoints
To obtain a list of the breakpoints currently set in the correlator, enter the following:
engine_debug breakpoint list

Removing breakpoints
To remove a breakpoint by specifying the file name and the line number, enter something like the
following:
engine_debug breakpoint delete --file filename.mon --line 27

To use the monitor name to remove a breakpoint, enter something like this:
engine_debug breakpoint delete --monitor package.monitor --action actionName --line 27

To delete a breakpoint by using the breakpoint ID that appears in the breakpoint list returned by the
debugger, enter something like this:
engine_debug breakpoint delete --breakpoint 1

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 158

Controlling execution with the command-line debugger
When the correlator stops at a breakpoint, you can use the debugger to step over the next line:
engine_debug stepover

However, you most likely want to step over the line, confirm that the correlator stopped, and learn
about the current state of the debugger. You can do this by entering multiple commands in one line.
For example:
engine_debug stepover wait --timeout 10 status

This is the equivalent of the following three commands:

engine_debug stepover — Causes the debugger to step over one line of EPL.

engine_debug wait --timeout 10 — Causes the debugger to pause until either a breakpoint is hit, or
ten seconds pass.

engine_debug status — Displays the debugger's current status.

Following are more examples of entering multiple commands in one line.
engine_debug stepinto wait --timeout 10 status
engine_debug stepout wait --timeout 10 status

To instruct the correlator to continue executing EPL code, run the following command:
engine_debug run

You use the engine_debug run command regardless of how the correlator was stopped — a breakpoint
was reached, a step operation, a wait command.

To stop the correlator, enter the following command:
engine_debug stop

Using the command-line debugger

The wait command
The wait command connects to the correlator to determine if the correlator has suspended
processing. If the correlator is in suspend mode, the wait command returns immediately and
debugging continues. If the correlator is not in suspend mode, the wait command remains connected
to the correlator. The wait command returns when something else suspends the correlator or when
the timeout is reached. Operations that can suspend the correlator include reaching a breakpoint,
stepping into or over a line, or some other client explicitly stopping the correlator. If the wait
command reaches the timeout, it suspends the correlator before it returns.

Stepping can take a variable amount of time. For example, suppose the debugger stops at the end of
a listener and you execute a step command. The debugger is now outside the flow of execution until
another event comes in. The time that the debugger has to wait for the step to finish is dependent
upon when the next matching event arrives.

Controlling execution with the command-line debugger

Using the command-line debugger

Deploying and Managing Apama Applications 9.9.0 159

Command shortcuts for the command-line debugger
Putting multiple commands in the same command line can get verbose. For example, suppose you
want to step out of an action on a remote machine. You would need to enter something like this:
engine_debug stepout --host foo.bar.com --port 1234 wait --timeout 10
 --host foo.bar.com --port 1234 status --host foo.bar.com --port 1234

The command-line debugger provides easier ways to invoke this.

Any arguments that you specify before the first debugging command apply to the entire
command line.

All individual commands and their arguments have abbreviations.

For example, the following command does the same thing as the previous verbose command:
engine_debug -h foo.bar.com -p 1234 sot w -to 10 p

The following table lists the abbreviations you can use for command arguments. For abbreviations of
commands, see "Debug commands" on page 153

Command Abbreviation

--action -a

--breakonce -bo

--breakpoint -bp

--context -c

--file -f

--frame -fm

--host -n

--instance -mt

--line -l

--owner -o

--port -p

--raw -R

--timeout -to

--utf8 -u

--variable -v

Replaying an input log to diagnose problems

Deploying and Managing Apama Applications 9.9.0 160

Command Abbreviation

--verbose -V

Using the command-line debugger

Examining the stack with the command-line debugger
When the correlator stops at a breakpoint you can display the stack with the following command:
engine_debug stack

The results of this command show the number of the frame that contains each variable. In the
following example, the frame number is the number before the right parenthesis:
0)
 C:/dev/adbc/apama-test/system/correlator-debug/testcases/
 correctness/Corr_Debug_cor_002/Input/test.mon:35
 foo.baz.test.runtest[master(2)/foo.baz.test(3)]
1)
 C:/dev/adbc/apama-test/system/correlator-debug/testcases/
 correctness/Corr_Debug_cor_002/Input/test.mon:19
 foo.baz.test.::listenerAction::[master(2)/foo.baz.test(3)]

You can use these frame numbers (frame IDs) as arguments to the engine_debug inspect command.

To see just the contents of the top frame, run this command:
engine_debug stack --frame 0

Using the command-line debugger

Displaying variables with the command-line debugger
To list all variables in the current stack frame, enter the following:
engine_debug inspect

To obtain the value for a variable in the current stack frame, enter the following:
engine_debug inspect -variable variableName

To obtain the value for a variable further down the stack, run the stack command to determine the
frame number and then enter the following:
engine_debug inspect -variable variableName -frame frameid

Using the command-line debugger

Replaying an input log to diagnose problems
When you start the correlator, you can specify that you want it to copy all incoming messages to a
special file, called an input log. An input log is useful if there is a problem with either the correlator
process or an application running on the correlator. If there is a problem, you can reproduce

Replaying an input log to diagnose problems

Deploying and Managing Apama Applications 9.9.0 161

correlator behavior by replaying the messages captured in the input log. Incoming messages include
the following:

Events

EPL

Java

Correlator Deployment Packages (CDPs)

Connection, deletion, and disconnection requests

If you are unable to diagnose the problem, you can provide the input log to Software AG Global
Support. A support engineer can then feed your input log into a new correlator to try to diagnose the
problem.

The information in the following topics describes how to generate and use an input log:

"Creating an input log file" on page 161

"Rotating an input log file" on page 161

"Performance when generating an input log" on page 162

"Reproducing correlator behavior from an input log" on page 162

See also: "Examples for specifying log filenames" on page 112.

Creating an input log file
To create an input log, specify the following option when you start a correlator:
--inputLog filename[${START_TIME}][${ROTATION_TIME}][${ID}].log

You specify the name of an input log file in the same way that you specify the name of a correlator
status log file. See "Specifying log filenames" on page 110.

In addition, specify any other options that you would normally specify when you start the correlator.

Rotating an input log file
While the input log can get rather large, most file systems can handle large input logs with no special
action on your part. However, you might encounter one of the following situations:

You want to archive your input logs.

Your operating system enforces a limit on file size.

The input log has become too large.

In these situations, you can rotate the input log. Rotating the input log means that the correlator
closes the current input log and starts sending messages to a new input log.

You should rotate the input log only when you have a specific need to do so. You do not want to
have thousands of input logs in a directory since file systems do not handle this efficiently.

Replaying an input log to diagnose problems

Deploying and Managing Apama Applications 9.9.0 162

If you plan to rotate input logs, specify the ${ID} tag when you specify the --inputLog option when
you start the correlator. For examples, see "Examples for specifying log filenames" on page 112.

To rotate the input log, invoke the engine_management utility and specify the -r rotateLogs option. The
name of the new input log is the same as the name of the closed input log except that the correlator
increments the ID portion of the input log filename by 1. See "Rotating all log files" on page 150.

Performance when generating an input log
When the file system that hosts the input log is fast, generating an input log should not have any
noticeable effect on correlator performance. Consequently, the recommendation is to always run
correlators that send information to input logs. Just make sure you have enough disk space for the
input log. You need to monitor repeated use to determine how much space is required.

With the correlator generating an input log, you can implement your application so that it
sends a minimum amount of information to the correlator status log. You do not need to log
application information because you can always recover application information from the input log.
Implementing an application that sends large amounts of application information to the correlator
status log can negatively impact performance.

Reproducing correlator behavior from an input log
To use an input log to reproduce correlator behavior, you must do the following:

1. Run the extract_replay_log Python utility.

2. Run the replay_execute script that the extract_replay_log utility generates.

Invoking the extract script

The extract_replay_log.py script is in the utilities directory in your Apama installation directory.
You must have at least Python 2.4 to run this utility. You can download Python from http://
www.python.org. If you are using Linux, you probably already have Python installed.

The format for running the extract_replay_log utility is as follows:
extract_replay_log.py [options] inputLogFile

Replace inputLogFile with the path for the input log you want to extract. If you specify the first input
log in a series, the subsequent input logs must be in the same directory as the first input log.

The options you can specify are as follows:

Option Description
-o=dir

or
--output=dir

Specifies the directory that you want to contain the
output from the extract_replay_log utility. The default
is the current directory.

http://www.python.org
http://www.python.org

Replaying an input log to diagnose problems

Deploying and Managing Apama Applications 9.9.0 163

Option Description
-l=lang

or
--lang=lang

Specifies the language of the script that the
extract_replay_log utility generates. Replace lang with
one of the following:

shell generates the replay_execute.sh UNIX shell
script.

batch generates the replay_execute.bat Windows batch
file. This is the default.

-c or --correlator Specifies that the script that extract_replay_log
generates should include the command line for
starting a correlator. When you run the generated
script, the correlator will be started with all of the
command line options needed to replay the input log.

-v or --verbose Indicates that you want verbose utility output.

-h or --help Displays help for the utility.

The extract_replay_log utility generates the following:

A script whose execution duplicates the correlator activity captured by the input log.

Event files — each one is prefixed with replay_.

EPL and possibly JAR and Correlator Deployment Package (CDP) files — each one is prefixed
with replay_.

Invoking the replay script

Before you run the replay script, you can optionally edit the generated event files, EPL files, or JAR
files to slightly modify the behavior you are about to replay. For example, you might add logging for
debugging purposes. However, there are restrictions on what you can change:

You cannot insert any of the following:

calls to integer.getUnique() or rand()

send, emit, spawn...to, enqueue, or enqueue..to statements

context constructors

You cannot change the number of parseable events sent to the correlator. For example, you
cannot attach a dashboard component to the input log because the dashboard components work
by sending events to the correlator.

You cannot change the number of event definitions and monitors injected.

Making any of these changes can potentially alter the behavior of later operations.

If you are using the MemoryStore and the correlator reads or writes to a store on disk then to
accurately play back execution you must have a copy of that store as it was before the correlator
modified it. Also, if you are using the MemoryStore from multiple contexts it is unlikely to replay
correctly because the order of interaction with the MemoryStore is not in the input log.

Event file format

Deploying and Managing Apama Applications 9.9.0 164

After you have optionally edited the generated files, you are ready to invoke the replay_execute
script. The replay_execute script tries to replay the contents of the input log into the correlator
running on the default port.

While the correlator exactly reproduces the activity captured in the input log, it can execute the same
activity faster during replay than when it was executed originally. This is because the correlator
already has all the events it needs to process; it does not have to wait for any events. Replaying a log
is typically significantly faster than original correlator activity. It is possible that you will find that
the time it takes to replay a log is not much less than the time it took for the original activity. In this
case, it is possible you were running too close to capacity during the original run. If that is the case,
you risk not being able to keep up with the event flow during regular correlator execution. If you
anticipate higher event flow then you should investigate optimizing your application or running it
on a faster computer.

Event file format
You can use the engine_send tool to stream a sequence of events through the event correlator. The
engine_send tool accepts input from one or more data files to support tests or simulations, or from
stdin to allow dynamic generation of events. In the latter case, you can generate events from user
input or by piping output from an event generation program to engine_send. In all cases, engine_send
requires event data formatted as described in this section.

The engine_receive tool outputs events in this same file format. This means you can use events
generated by the engine_receive tool as input to a second event correlator that is executing the
engine_send tool.

Correlator Utilities Reference

Event representation
A single event is identified by the event type name and the values of all fields as defined by that
type. Event type names must be ‘fully-qualified’ by prefixing the package name into which the
corresponding event type was injected, unless the event was injected into the default package.

Each event is given on a separate line, separated by a new-line character. Only single-line comments
are allowed. Start each comment line with / / or #. Any blank lines are ignored.

For example, following are three valid events:
// This is an event file that contains some sample events.
// Here are three stock price events:
StockPrice("XRX", 11.1)
StockPrice("IBM",130.6)
StockPrice("MSFT", 70.5)

For those events, the following event type definition must be injected into the default package:
event StockPrice {
 string stockSymbol;
 float stockValue;
}

If the above events were saved in an .evt file, engine_send would send each event in turn, as soon as
the previous event finished transmission. This behavior can optionally be modified in several ways:

Event file format

Deploying and Managing Apama Applications 9.9.0 165

Specifying that batches of events should be sent at specified time intervals.

Specifying that all events on all queues should be processed before sending the next event.

Event file format

Event timing
In .evt files, it is possible to specify

Time intervals for sending batches of events to the correlator.

Waiting for all events on all queues at that point in time to be processed before sending the next
event.

Adding BATCH tags to send events at intervals

You can specify time intervals for sending batches of events to the correlator. This is achieved
by specifying the BATCH tag followed by a time offset in milliseconds. For example, the following
specifies two batches of events to be sent 50 milliseconds apart.
BATCH 50
StockPrice("XRX", 11.1)
StockPrice("IBM", 130.6)
StockPrice("MSFT", 70.5)
BATCH 100
StockPrice("XRX", 11.0)
StockPrice("IBM", 130.8)
StockPrice("MSFT", 70.1)

The addition of a ‘time’ allows simulations of ‘bursts’ of events, or more random distributions of
event traffic. Times are measured as an offset from when the current file was opened. If only one file
of events is being read and transferred, then this would be the same as since the start of a run (that
is, from the time that the engine_send tool starts processing the event data). If multiple files are being
read in, the timing starts all over again upon the (re)opening of each file.

If the time given for a batch is less than the current time, or if no time is given following a BATCH
tag (or if no BATCH tag is provided) then the events are sent as soon as they are read in, immediately
following the preceding batch.

Using &FLUSHING mode for more predictable event processing order

Sending events in flushing mode can help provide a more predictable event processing order.
However, flushing mode is slower than the default behavior.

By default, events are delivered in an optimal way, not waiting for previously sent events to be
processed before the next event is delivered to contexts (or other consumers of channels). When
flushing mode is enabled the behavior is as follows:

1. The correlator sends an event.

2. The correlator processes all events on all queues at that point in time, repeating this as many
times as specified in the flushing specification.

3. The correlator sends the next event.

To enable flushing mode, insert the following line in a .evt file:
&FLUSHING(n)

Event file format

Deploying and Managing Apama Applications 9.9.0 166

Replace n with an integer that specifies how many times to flush queues in between each event. Set
this to the maximum length of a chain of send-to operations between contexts that could occur in
your application. If you specify a number that is bigger than required the correlator simply repeats
the flush operation, which incurs a small overhead. To disable flushing mode, insert the following
line in the .evt file:
&FLUSHING(0)

Enabling or disabling flushing mode affects only the events sent on that connection or from that
event file.

When sending &TIME events in to a multi-context application, the time ticks are delivered directly
to all contexts. This can be different than the way in which events in the .evt file are sent in to the
correlator and then sent between contexts in an application. This difference can result in processing
events at an incorrect simulated time. In these cases, sending &FLUSHING(1), for example, before
sending time ticks and events can result in more predictable and reliable behavior.

Event file format

Event types
The following example illustrates how each type is specified in an event representation. Given the
event type definitions:
event Nested {
 integer i;
}
event EveryType {
 boolean b;
 integer i;
 float f;
 string s;
 location l;
 sequence<integer> si;
 dictionary<integer, string> dis;
 Nested n;
}

the following is a valid event representation for an EveryType event:
EveryType (
 true, # boolean is true/false (lower-case)
 -10, # positive or negative integer
 1.73, # float
 "foo", # strings are (double) quoted
 (1.0,1.0,5.0,5.0), # locations are 4-tuples of float values
 [1,2,3], # sequences are enclosed in brackets []
 {1:"a",2:"b"}, # dictionaries are enclosed in braces {}
 Nested(1) # nested events include event type name
)

Note that this example is split over several lines for clarity; in practice this definition would all be
written on the same line.

Types can of course be nested to create more complex structures. For example, the following is a
valid event field definition:
sequence<dictionary<integer, Nested> >

and the following is a valid representation of a value for this field:
[{1:Nested(1)}, {2:Nested(2)}, {3:Nested(3)}]

Using the data player command-line interface

Deploying and Managing Apama Applications 9.9.0 167

Event file format

Event association with a channel
The engine_send utility can send an event file that associates channels with events. Likewise, the
engine_receive utility can output an event file that includes the channel on which an event was
received. The event format is the same for both utilities:
"channel_name",event_type_name(field_value1[, field_valuen]...)

For example, suppose you want to send Tick events, which contain a string followed by an integer, to
the PreProcessing channel. The contents of the .evt file would look like this:
"PreProcessing",Tick("SOW", 35)
"PreProcessing",Tick("IBM", 135)

A channel name is optional. In a file being sent with the engine_send utility, you can mix event
representations that specify channels with event representations that do not specify channels. Events
for which a channel is specified go to only those contexts subscribed to that channel.

The default behavior is that events are sent on the default channel (the empty string) when a channel
is not explicitly specified. Events sent on the default channel go to all public contexts. All running
Apama queries receive events sent on the default channel. To change the default behavior for events
sent by the engine_send utility, you can specify engine_send -c channel. If a channel is not explicitly
specified for an event then it is sent to the channel identified with the -c option . See "Sending events
to correlators" on page 126.

Event file format

Using the data player command-line interface
Apama’s Data Player in Software AG Designer lets you play back previously saved event data as you
develop your application. During playback, you can analyze the behavior of your application. Or, if
you modify the saved event data, you can analyze how your application performs with the altered
data. Software AG Designer back event data that has been stored in standard data formats.

When you are ready to test your application the command-line interface to the Data Player lets you
write scripts and unit tests to exercise the API layers. Or, if you just want to play back events to
the correlator, using the command-line interface might be easier than using the Data Player GUI in
Software AG Designer.

To use the command-line interface to the Data Player, you must have already used the GUI interface
in Software AG Designer. That is, you must have already defined queries and query configurations
in Software AG Designer. When you use the command-line interface, you specify query names and
query configurations that you created in Software AG Designer.

The Data Player relies on Apama Database Connector (ADBC) adapters that are specific to standard
ODBC and JDBC database formats as well as the comma-delimited Apama Sim format. Apama
release 4.1 and earlier captured streaming data to files in the Sim format. These adapters run in the
Apama Integration Application Framework (IAF), which connects the data sources to the correlator.
The information here assumes that you are already familiar with the information in "Using the Data
Player" in Using Apama with Software AG Designer.

Using the data player command-line interface

Deploying and Managing Apama Applications 9.9.0 168

Synopsis

To use the Data Player from the command line, enter adbc_management.bat (Windows) or
adbc_management (UNIX) from the bin directory in your APAMA_HOME directory.

To obtain the following usage message, run the command with the help option:
Usage:
adbc_management --query <queryName> --configFile <file> [options]
Where options include:
-h | --help This message
-n | --hostname <host> Connect to correlator on <host>.
 Default to localhost.
-p | --port <port> Connect to correlator on <port>.
 Default to 15903.
--query <queryName> Run the query <queryName> specified in
 query configuration file.
--configFile <file> Query configuration file to use.
--username <user> Optional username for database connection.
--password <password> Optional password for database connection.
--returnType <returnType> Optional returnType of playback events.
 Default is native.
--backTest <true|false> Optional switch to generate time event from
 data.
 Use false if correlator is not running
 -Xclock option. Default is true.
--speed <playBackSpeed> Optional speed for playing back query.
 <= 0.0, as fast as possible
 > 0.0 for some multiple of playback speed.
 (Ignored if --backTest false is used.)

Options

Option Description

-h Display usage information

-n Name of the host on which the event correlator is running
(default is localhost). Non-ASCII characters are not allowed in
host names.

-p Port on which the event correlator is listening (default is 15903).

--query queryName Run the specified query, which is defined in the query
configuration file that you identify with the --configFile option.
This is a query you created in Software AG Designer in Apama's
Data Player editor. You did this when you clicked on the +
button on the action bar. You specified a query name and that is
the name you need to specify here

--configFile file Use this query configuration file. Specify the query
configuration file associated with your project. In Software
AG Designer, the query configuration file is always called
dataplayer_queries.xml (in the project/config directory).

--username user The user name to use for the database connection. Optional.

--password password The password to use for the database connection. Optional.

Using the Apama component extended configuration file

Deploying and Managing Apama Applications 9.9.0 169

Option Description

--returnType returnType The type of the playback events returned. The default is Native.
The only other choice is Wrapped. A return type of Native means
that each matching event is sent as-is to the correlator. When you
specify Wrapped, each matching event is inside a container event.
The name of the container event is Historical followed by the
name of the event in the container, for example, HistoricalTick.
The container event will be in the default namespace. Event
wrapping allows events to be sent to the correlator without
triggering application listeners. A separate, user-defined
monitor can listen for wrapped events, modify the contained
event, and reroute it such that application listeners can match on
it.

--backTest <true|false> This option is equivalent to Software AG Designer's Data Player
option to Generate time event from data. When the correlator
is running with the -Xclock option, time in the correlator
is controlled by &TIME() events. This is how the Data Player
controls the playback speed. If the correlator is not running with
the -Xclock option, the correlator keeps its own time. The default
is true, which means that the correlator is running with the -
Xclock option. Set this option to false when the correlator is not
running with the -Xclock option.

--speed playBackSpeed Specifies the speed for playing back the query. Optional. A
float value less than or equal to 0.0 means that you want the
correlator to play it back as fast as possible. A float value greater
than 0.0 indicates a multiple for the playback speed. To play at
normal speed, specify 1.0.For half normal speed, specify 0.5.For
twice normal speed, specify 2.0.For 100 times normal speed,
specify 100.00.

Correlator Utilities Reference

Using the Apama component extended configuration file
The Apama component extended configuration file is an optional file that you can use to do the
following:

Bind Apama server components to a particular set of addresses.

Specify that Apama client connections must be from a particular IP address or range of IP
addresses.

Set environment variables for Apama components.

Set log files and log levels for EPL root, packages, monitors, or events.

You can specify the optional extended configuration file when you start the correlator. If you do, the
settings in the extended configuration file apply to the following Apama components:

Using the Apama component extended configuration file

Deploying and Managing Apama Applications 9.9.0 170

Correlator

IAF

Sentinel Agent

engine_receive correlator utility

In an extended configuration file, if a line includes a special character that you want to be treated
as a literal, you must escape it by inserting a backslash just before it. A character that follows two
consecutive backslashes (\\) is treated as literal. Single quotes inside double quotes are treated
as a literal. Double quotes inside single quotes are treated as a literal. See the example in "Sample
extended configuration file" on page 172.

Correlator Utilities Reference

Binding server components to particular addresses
To bind Apama server components to a particular address or set of addresses, specify a BindAddress
line for each address. Specify this in the [Server] section of the extended configuration file. For
example:
[Server]
BindAddress=127.0.0.1:15903
BindAddress=10.0.0.1

You can specify as many BindAddress lines as you want. Clients can connect to any of the listed
addresses.

An IP address is required. If you do not specify a port, the Apama server components use the port
that is specified when the correlator is started. This makes it possible to share extended configuration
files if you want to restrict connections according to only addresses.

If you do not specify an extended configuration file when you start the correlator, or there are no
BindAddress entries in the extended configuration file, the Apama components bind to the wildcard
address (0.0.0.0).

Using the Apama component extended configuration file

Ensuring that client connections are from particular addresses
To ensure that client connections are from particular addresses, add one or more AllowClient entries
to the extended configuration file in the [Server] section. For example:
[Server]
AllowClient=127.0.0.1
AllowClient=192.168.128.0/17

An AllowClient entry takes an IP address, as in the first example above, or a CIDR (Classless Inter-
Domain Routing) address range, as in the second example above. With these example entries in the
extended configuration file, the Apama components allow connections from either the localhost
(127.0.0.1) or IP addresses where the first 17 bits match the first 17 bits of 192.168.128.0. The Apama
components to not accept connections from any other IP addresses. This creates a “whitelist” of
allowable IP addresses.

Using the Apama component extended configuration file

Deploying and Managing Apama Applications 9.9.0 171

If you specify an extended configuration file when you start the correlator, and if there are any
AllowClient entries in the extended configuration file then the Apama components do not allow
connections from any IP address that does not fall within one of the AllowClient ranges specified.
If you do not specify an extended configuration file when you start the correlator, or there are no
AllowClient entries in an extended configuration file that you do specify, the Apama components
accept connections from any client.

This feature is intended to prevent mistakenly connecting to the wrong server. It is not intended to
prevent malicious intruders since it provides no protection against address spoofing.

Using the Apama component extended configuration file

Setting environment variables for Apama components
You can use the extended configuration file to set environment variables. Put environment variable
declarations in the [Environment] section. For example:
[Environment]
MY_ENV_VAR=myvalue

If you specify an extended configuration file when you start the correlator, and if there are any
environment variable entries in the extended configuration file then the Apama components use
those environment variable settings. If you do not specify an extended configuration file when you
start the correlator, or there are no environment variable entries in an extended configuration file that
you do specify, the Apama components use the environment variable settings specified elsewhere.

Note: You cannot use this feature to set variables such as LD_PRELOAD and LD_LIBRARY_PATH because
Unix dictates that they are set before the affected process starts execution. These environment
variables should therefore be considered read-only.

Using the Apama component extended configuration file

Setting log files and log levels in an extended configuration file
You can configure per-package logging in two ways:

Statically, in the extended configuration file when starting the correlator, as described here.

Dynamically, using the engine_management setApplicationLogFile/Level request. See "Setting logging
attributes for packages, monitors and events" on page 147.

To set log files and/or log levels for EPL root, packages, monitors, or events, specify entries in the
[ApplicationLogging] section of the extended configuration file.

To set the default log file and level for the EPL root package, specify two lines in the following
format:
RootFile=rootLogFilename
RootLevel=ROOTLOGLEVEL

Replace rootLogFilename with the name of the log file for the EPL root package. No spaces are allowed
in the log file name. Replace ROOTLOGLEVEL with TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT or OFF. For
example:

Using the Apama component extended configuration file

Deploying and Managing Apama Applications 9.9.0 172

RootFile=apama\\root.log
RootLevel=ERROR

Note that you must insert a backslash to escape special characters. In the previous example, there is
a filepath that contains a backslash that must be escaped. Hence, the double backslash. You do not
need to specify both a log file and a log level; you can specify one or the other. If you do not specify a
log file or log level for the root package, it defaults to the correlator’s log file/log level.

To set the default log file and level for an EPL package, monitor, or event, specify two lines in the
following format:
PackageFile.node=nodeLogFilename
PackageLevel.node=NODELOGLEVEL

Replace node with the name of the EPL package, monitor, or event you are setting the logging
attribute for. If a monitor or event is in a named package and not the root package, be sure to specify
the fully qualified name.

Replace nodeLogFilename with the name of the default log file for the specified EPL package, monitor
or event. No spaces are allowed in the log file name. Replace NODELOGLEVEL with TRACE, DEBUG, INFO, WARN,
ERROR, FATAL, CRIT or OFF. This is the default log level for the specified node.

For example:
PackageFile.com.myCompany.Client=apama\\Client.log
PackageLevel.com.myCompany.Client=DEBUG

For a particular node, you do not need to specify both a log file and a log level; you can specify one
or the other. If you do not specify a log file or log level for a particular node, it defaults to the settings
for a parent node. See "Tree structure of packages, monitors, and events" on page 147.

There is no limit to the number of log settings that can appear in the configuration file. The last
line that refers to a given node takes priority over earlier lines. When you set log attributes in the
extended configuration file the rules for hierarchical logging apply. See "Setting logging attributes for
packages, monitors and events" on page 147.

If you pass an extended configuration file to a correlator when you start that correlator and the
configuration file contains an [ApplicationLogging] section, the correlator uses the logging settings
in that section. If you do not pass a configuration file when you start a correlator, or there are no
settings in the [ApplicationLogging] section, then correlator initialization does not include any log
settings except for the default correlator log.

Whether or not you specify an extended configuration file when you start a correlator, any log
settings you specify can be overwritten after initialization by invoking the engine_management utility
and specifying the setApplicationLogFile and/or setApplicationLogLevel keywords. See "Managing
application log levels" on page 148 and "Managing application log files" on page 149.

Using the Apama component extended configuration file

Sample extended configuration file
Save the extended configuration file as a text file. Blank lines are ignored. For example, the contents
of ApamaExtendedConfig.txt might be as follows:
[Server]
BindAddress=127.0.0.1:15903
BindAddress=10.0.0.1
AllowClient=127.0.0.1
AllowClient=10.0.0.0/24

Using the Apama component extended configuration file

Deploying and Managing Apama Applications 9.9.0 173

[Environment]
LD_LIBRARY_PATH=/usr/local/mydir
[ApplicationLogging]
PackageFile.com.myCompany=apama\\apama.log
PackageLevel.com.myCompany=WARN
PackageLevel.com.myCompany.Client=DEBUG

Using the Apama component extended configuration file

Starting a correlator with an extended configuration file
To use an Apama component extended configuration file, specify the -Xconfig option with the
extended configuration file path when you start the correlator. For example, if both the license file
and the extended configuration file are in the same directory as the correlator executable, and the
name of the extended configuration file is ApamaExtendedConfig.txt:
run correlator -l ApamaServerLicense.xml -Xconfig ApamaExtendedConfig.txt

Using the Apama component extended configuration file

	Table of Contents
	Preface
	Documentation roadmap
	Contacting customer support

	Overview of Deploying Apama Applications
	About deploying components with EMM
	About Apama command line utilities
	About deploying dashboards
	About tuning applications for performance
	Setting up the environment using the Apama Command Prompt

	Using the Management and Monitoring Console
	Installation
	Concepts
	The EMM console window
	Committed values and outstanding changes

	State persistence
	Managing licenses
	Managing security
	Managing hosts
	Sentinel Agents
	Sentinel Agent options
	Working directory
	Working with hosts
	Managing all known hosts

	Managing components
	Component status indicators
	Working with components
	Add correlator
	Add adapter
	Remove component
	Move component to host
	Start component
	Stop component
	Restart component
	Clear all component logs

	Configuring components with the details pane
	Specifying paths and filenames in the Details Pane

	Preferences
	Warnings
	Display
	Timing

	Deploying and Configuring Correlators
	Adding correlators
	The correlator tabs
	Management tab
	Configuration tab
	Initialization tab
	Adding initialization actions
	Connections tab
	Adding new upstream connections
	Downstream connections

	Statistics tab
	Inspect tab
	Deleting Monitors, Event Types, or JMon applications from a correlator
	Displaying event type definition for multiple Event Types

	Diagnostics tab

	Deploying and Configuring Adapters
	Adding adapters
	Configuring adapters
	Specifying paths and filenames in the Details Pane

	The Adapter tabs
	Management tab
	Configuration tab
	Connections tab
	Control tab
	Statistics tab
	Diagnostics tab

	Deploying and Managing Queries
	Overview of deploying and managing query applications
	Query application architecture
	Deploying query applications
	Running queries on correlator clusters
	Deploying queries on multiple correlators
	Deploying BigMemory Terracotta Server Array
	Configuring BigMemory driver
	Using JMS to deliver events to queries running on a cluster
	Mixing queries with monitors and scenarios
	Handling node failure and failover

	Managing parameterized query instances
	Creating new query instances by setting parameter values
	Changing parameter values for queries that are running

	Monitoring running queries

	Tuning Correlator Performance
	Scaling up Apama
	Partitioning strategies
	Engine topologies
	Event correlator pipelining
	Connection configuration file
	Configuring pipelining through the client API
	Event partitioning

	Managing and Monitoring over REST
	Generic Management
	Correlator Management
	IAF Management

	Correlator Utilities Reference
	Starting the event correlator
	About the Apama license file
	Specifying log filenames
	Examples for specifying log filenames
	Descriptions of correlator status log fields
	Text internationalization issues
	Determining whether to disconnect slow receivers
	Description of slow receivers
	How frequently slow receivers occur
	Correlator behavior when there is a slow receiver
	Tradeoffs for disconnecting a slow receiver
	Determining whether to disable the correlator’s internal clock

	Injecting code into a correlator
	Deleting code from a correlator
	Packaging EPL and Java code
	Sending events to correlators
	Receiving events from correlators
	Watching correlator runtime status
	Inspecting correlator state
	Shutting down and managing components
	Viewing garbage collection information
	Using the profiler command-line interface
	Setting logging attributes for packages, monitors and events
	Rotating the correlator log file
	Rotating all log files
	Rotating specified log files

	Using the command-line debugger
	Obtaining online help for the command-line debugger
	Enabling and disabling debugging in the correlator
	Working with breakpoints using the command-line debugger
	Adding breakpoints
	Listing breakpoints
	Removing breakpoints

	Controlling execution with the command-line debugger
	The wait command

	Command shortcuts for the command-line debugger
	Examining the stack with the command-line debugger
	Displaying variables with the command-line debugger

	Replaying an input log to diagnose problems
	Creating an input log file
	Rotating an input log file
	Performance when generating an input log
	Reproducing correlator behavior from an input log

	Event file format
	Event representation
	Event timing
	Event types
	Event association with a channel

	Using the data player command-line interface
	Using the Apama component extended configuration file
	Binding server components to particular addresses
	Ensuring that client connections are from particular addresses
	Setting environment variables for Apama components
	Setting log files and log levels in an extended configuration file
	Sample extended configuration file
	Starting a correlator with an extended configuration file

