
Developing Apama Applications

Version 9.10

August 2016

This document applies to Apama Version 9.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: PAM-DEV-910-20160810

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Developing Apama Applications Version 9.10 3

Table of Contents

About this Guide..25
Documentation roadmap.. 25
Online Information.. 27
Contacting customer support..28

Developing Apama Applications in EPL... 29
Getting Started with Apama EPL... 31

Introduction to Apama Event Processing Language...32
How EPL applications compare to applications in other languages..................................33
About dynamic compilation in the correlator...33
About the Apama development environment in Software AG Designer............................34
Terminology..35
Defining event types..40

Allowable event field types...41
Format for defining event types... 42
Example event type definition.. 44

Working with events.. 44
Making event type definitions available to monitors and queries...............................44
Channels and input events.. 46

Defining Monitors..49
About monitor contents... 50

Loading monitors into the correlator.. 52
Terminating monitors.. 52
Unloading monitors from the correlator..52

Example of a simple monitor.. 53
Spawning monitor instances... 55

How spawning works... 55
Sample code for spawning...57
Terminating monitor instances... 58
About executing ondie() actions...59
Specifying parameters when spawning..60

Communication among monitor instances.. 60
Organizing behavior into monitors... 61
Event processing order for monitors..61
Allocating events in monitors... 63
Sending events to other monitors.. 64
Defining your application's message exchange protocol... 65
Using events to control processing..67

About service monitors..67
Adding predefined annotations..68
Subscribing to channels.. 70

M
Table of Contents

Developing Apama Applications Version 9.10 4

About the default channel.. 71
About wildcard channels.. 72

Adding service monitor bundles to your project..72
Utilities for operating on monitors... 73

Defining Queries... 75
Introduction to queries...76

Example of a query..76
Use cases for queries.. 77
Delayed and out of order events... 78
Architectural comparison of queries and monitors...79
Query terminology.. 80
Overview of query processing..82
Overview of query application components... 83

Format of query definitions... 86
Defining metadata in a query..88
Partitioning queries..89

Defining query keys..89
Query partition example with one input... 91
Query partition example with multiple inputs... 92
About keys that have more than one field...93

Defining query input.. 94
Format of input definitions..97
Behavior when there is more than one input...100
Specifying event duration in windows..101
Specifying maximum number of events in windows.. 103
Specifying event duration and maximum number of events.................................... 105
Using source timestamps of events...107
Using heartbeat events with source timestamps... 112
Out of order events.. 114
Matching only the latest event for a given field... 119

Finding and acting on event patterns..120
Defining event patterns.. 121

Query followed-by operator...124
Query and operator...128
Query wait operator.. 129
Query conditions... 130
Query condition ranges...136
Special behavior of the and operator..138
Aggregating event field values..139

Event matching policy.. 143
Acting on pattern matches... 145
Defining actions in queries...145

Implementing parameterized queries.. 146
Format for defining query parameters..146
Parameterized queries as templates..147

M
Table of Contents

Developing Apama Applications Version 9.10 5

Using the Scenario Service to manage parameterized queries............................... 148
Referring to parameters in queries.. 149
Scaling and performance of parameterized queries.. 151

Restrictions in queries... 151
Best practices for defining queries..152
Testing query execution...155
Communication between monitors and queries.. 157

Defining Event Listeners...159
About event expressions and event templates... 160
Specifying the on statement..163
Using a stream source template to find events of interest..164
Defining event expressions with one event template..165

Listening for one event.. 165
Listening for all events of a particular type.. 165
Listening for events with particular content..165
Using positional syntax to listen for events with particular content.......................... 166
Using name/value syntax to listen for events with particular content.......................166
Listening for events of different types..167

Terminating and changing event listeners...168
Specifying multiple event listeners.. 170
Listening for events that do not match..171
Specifying completion event listeners... 172

Example using unmatched and completed.. 173
Improving performance by ignoring some fields in matching events...............................174
Defining event listeners for patterns of events..175
Specifying and/or/not logic in event listeners..177

Specifying the 'or' operator in event expressions.. 177
Specifying the 'and' operator in event expressions..177
Example event expressions using 'and/or' logic in event listeners...........................178
Specifying the 'not' operator in event expressions...178
Specifying 'and not' logic to terminate event listeners... 179

Pausing event listeners...180
Choosing which action to execute.. 180
Specifying 'and not' logic to detect when events are missing........................... 181

How the correlator executes event listeners... 182
How the correlator evaluates event expressions... 182
Avoiding event listeners that trigger upon instantiation..183
When the correlator terminates event listeners... 184
How the correlator evaluates event listeners for a series of events.........................184
Evaluating event listeners for all A-events followed by B-events............................. 184
Evaluating event listeners for an A-event followed by all B-events..........................186
Evaluating event listeners for all A-events followed by all B-events........................ 187

Defining event listeners with temporal constraints..189
Listening for event patterns within a set time.. 190
Waiting within an event listener... 191

M
Table of Contents

Developing Apama Applications Version 9.10 6

Triggering event listeners at specific times.. 192
Using variables to specify times.. 194

Understanding time in the correlator...194
Correlator timestamps and real time..194
Event arrival time... 195
About timers and their trigger times...195
Disabling the correlator's internal clock... 197

Externally generating events that keep time (&TIME events)........................... 197
About repeating timers and &TIME events...199
Setting the time in the correlator (&SETTIME event)..199

Out of band connection notifications...200
Out of band notification events.. 201
Enabling out of band notifications..202

Working with Streams and Stream Queries...205
Introduction to streams and stream networks... 206
Defining streams..207

Creating streams from event templates... 208
Terminating streams... 208

Using output from streams..208
Listener variables and streams.. 211
Coassigning to sequences in stream listeners...211

Defining stream queries.. 211
Linking stream queries together...212
Simple example of a stream network.. 213
Stream query definition syntax...214
Stream query processing flow..215
Specifying input streams in from clauses.. 216
Adding window definitions to from and join clauses.. 218

Window definition syntax.. 218
Defining time-based windows... 220
Defining size-based windows..222
Combining time-based and size-based windows..223
Defining batched windows.. 224
Partitioning streams...226
Partitions and aggregate functions... 227
Using multiple partition by expressions.. 228
Partitioning time-based windows...228
Defining content-dependent windows... 229

Joining two streams... 231
Defining cross-joins with two from clauses...231
Defining equi-joins with the join clause...233

Filtering items before projection...235
Generating query results..236

Aggregating items in projections...238
Filtering items in projections... 239

M
Table of Contents

Developing Apama Applications Version 9.10 7

IEEE special values in stream query expressions... 241
Defining custom aggregate functions..241

Example of defining a custom aggregate function...243
Defining actions in custom aggregate functions.. 243
Overloading in custom aggregate functions...244
Distinguishing duplicate values in custom aggregate functions............................... 244

Working with lots that contain multiple items.. 245
Stream queries that generate lots..246
Behavior of stream queries with lots..246

Size-based windows and lots... 247
Join operations and lots..248
Grouped projections and lots..249

Stream network lifetime...250
Disconnection vs termination... 251
Rules for termination of stream networks.. 252

Using dynamic expressions in stream queries..252
Behavior of static and dynamic expressions in stream queries............................... 253
When to avoid dynamic expressions in stream queries...253
Ordering and side effects in stream queries..254
Understanding when the correlator evaluates particular expressions...................... 255

Using dynamic expressions in windows... 255
Using dynamic expressions in equi-joins..256
Using dynamic expressions in where predicates..257
Using dynamic expressions in projections..257

Examples of using dynamic expressions in stream queries.................................... 257
Example of altering query window size or period... 257
Example of altering a threshold.. 258
Example of looking up values in a dictionary... 259
Example of actions and methods in dynamic expressions............................... 259

Troubleshooting and stream query coding guidelines...260
Prefer on statements to from statements...260
Know when to spawn and when to partition.. 260
Filter early to minimize resource usage...260
Avoid duplication of stream source template expressions....................................... 261
Avoid using large windows where possible..262
In some cases prefer retain all to a timed window.. 262
Prefer equi-joins to cross-joins...262
Be aware that time-based windows can empty... 262
Be aware that fixed-size windows can overflow.. 263
Beware of accidental stream leaks.. 263

Defining What Happens When Matching Events Are Found... 265
Using variables.. 266

Using global variables.. 266
Using local variables.. 268
Using variables in listener actions... 269

M
Table of Contents

Developing Apama Applications Version 9.10 8

Specifying named constant values.. 270
Defining actions... 271

Format for defining actions.. 271
Invoking an action from another action..272
Specifying actions in event definitions... 274
Using action type variables.. 276

Getting the current time.. 283
Generating events... 284

Generating events with the route command.. 284
Generating events with the send command.. 285
Sending events to com.apama.Channel objects..286
Generating events with the enqueue command.. 287
Enqueuing to contexts..288
Generating events to emit to outside receivers... 289

Assigning values..290
Defining conditional logic...290
Defining loops..291
Catching exceptions.. 293
Logging and printing..295

Specifying log statements.. 295
Log levels determine results of log statements..296
Where do log entries go?.. 298
Examples of using log statements... 298
Strings in print and log statements.. 299

Sample financial application..299
Implementing Parallel Processing.. 303

Introduction to contexts... 304
What is inside/outside a context?.. 304
About context properties.. 305
Context lifecycle... 306
Comparison of a correlator and a context... 306

Creating contexts...306
How many contexts can you create?..307
Using channels to communicate between contexts.. 307
Obtaining context references.. 308
Spawning to contexts.. 309
Channels and contexts..310
Sending an event to a channel... 311
Sending an event to a particular context.. 312
Sending an event to a sequence of contexts..314
Common use cases for contexts...316
Samples for implementing contexts.. 316

Simple sample implementation of contexts..316
Running samples of common concurrency problems.. 316
About the samples of concurrency problems...317

M
Table of Contents

Developing Apama Applications Version 9.10 9

About the race sample...318
About the deadlock sample..319
About the compareswap sample..321

Contexts and correlator determinism.. 323
How contexts affect other parts of your Apama application..323

About input logs and parallel processing...324
Deadlock avoidance when parallel processing.. 324
Clock ticks when parallel processing... 324
Using correlator plug-ins in parallel processing applications................................... 325

Using Correlator Persistence..327
Description of state that can be persistent... 328
When persistence is useful... 329
When non-persistent monitors are useful... 329
How the correlator persists state.. 329
Enabling correlator persistence...330
How the correlator recovers state... 333

Recovery order...334
Defining recovery actions...335
Simplest recovery use case... 336

Designing applications for persistence-enabled correlators..336
Upgrading monitors in a persistence-enabled correlator...337
Sample code for persistence applications...338

Sample code for discarding stale state during recovery.. 338
Sample code for recovery behavior based on downtime duration........................... 338
Sample code that recovers subscription to non-persistent monitor..........................339

Requesting snapshots... 340
Developing persistence applications... 340
Using correlator plug-ins when persistence is enabled...341
Using the MemoryStore when persistence is enabled..341
Comparison of correlator persistence with other persistence mechanisms.....................342
Restrictions on correlator persistence...344

Common EPL Patterns in Monitors..345
Contrasting using a dictionary with spawning... 346

Translation using a dictionary.. 346
Translation using spawning..346

Factory pattern.. 347
Canonical factory pattern... 347
Alternate factory pattern...348

Using quit() to terminate event listeners... 348
Combining the dictionary and factory patterns..349
Testing uniqueness..349
Reference counting... 350
Inline request-response pattern...352

Routing events for request-response behavior.. 352
Canonical form for synchronous requests... 353

M
Table of Contents

Developing Apama Applications Version 9.10 10

Writing echo monitors for debugging.. 353
Using Correlator Plug-ins in EPL... 355

Overhead of using plug-ins... 356
When to use plug-ins.. 356
When not to use plug-ins..356
Using the TimeFormat Event Library.. 357

TimeFormat format functions... 358
TimeFormat parse functions...358
Format specification for the TimeFormat functions..359

Using the MemoryStore...365
Introduction to using the MemoryStore..366
Overview of MemoryStore events..366
Adding the MemoryStore bundle to your project... 367
Steps for using the MemoryStore.. 368

Preparing and opening stores...368
Description of row structures.. 371
Preparing and opening tables...373
Using transactions to manipulate rows... 374
Determining which commit action to call.. 375
Creating and removing rows...376
Iterating over the rows in a table..376
Requesting persistence...377

Exposing in-memory or persistent data to dashboards..378
Restrictions affecting MemoryStore disk files.. 379

Using the distributed MemoryStore...379
Overview of the distributed MemoryStore..379

Distributed store transactional and data safety guarantees..............................381
Using a distributed store... 383

Configuring a distributed store... 384
Adding distributed MemoryStore support to a project.......................................384
Adding a distributed store... 385
Configuring a distributed store..385
Launching a project that uses a distributed store... 386

Interacting with a distributed store... 386
Configuration files for distributed stores...387

BigMemory Max driver specific details... 391
Changing bean property values when deploying projects..397
Creating a distributed MemoryStore driver.. 397

Using the Management interface.. 399
Using MATLAB® products in an application... 403

MatlabManager actions.. 404
MATLAB examples... 407

Interfacing with user-defined correlator plug-ins... 410
About the chunk type.. 411

Making Application Data Available to Clients...413

M
Table of Contents

Developing Apama Applications Version 9.10 11

Adding the DataView Service bundle to your project..414
Creating DataView definitions... 415
Deleting DataView definitions..416
Creating DataView items...416
Deleting DataView items... 417
Updating DataView items.. 418
Looking up field positions..419
Using multiple correlators..419

Testing and Tuning EPL monitors.. 421
Optimizing EPL programs... 422
Best practices for writing EPL...422

Wildcard fields that are not relevant.. 423
Avoiding unnecessary allocations.. 423
Implementing states... 423

Structure of a basic test framework.. 424
Using event files..424
Handling runtime errors...425

What happens.. 425
Using ondie() to diagnose runtime errors.. 426
Using logging to diagnose errors... 426
Standard diagnostic log output.. 426

Capturing test output...427
Avoiding listeners and monitor instances that never terminate.......................................427
Handling slow or blocked receivers.. 428
Diagnosing infinite loops in the correlator...428
Tuning contexts... 429

Parallel processing for instances of an event type.. 429
Parallel processing for long-running calculations...430

Generating Documentation for Your EPL Code... 433
Code constructs that are documented.. 434
Steps for using ApamaDoc... 434
Inserting ApamaDoc comments.. 435
Inserting ApamaDoc tags.. 436
Inserting ApamaDoc references..439
Inserting EPL source code examples... 441
Generating ApamaDoc in headless mode.. 441

Developing Apama Applications in Event Modeler..443
Overview of Using Event Modeler..445

Event Modeler layout...446
About event flow states...448
How rules define scenario behavior..450

Description of rule conditions...451
Description of rule actions..453
Description of functions in rules...454

M
Table of Contents

Developing Apama Applications Version 9.10 12

About rule evaluation... 454
Basic view of rule processing... 455

Expanded view of rule processing... 456
Scenario monitoring stage... 459
Summary of adding rules when a variable value changes...................................... 459

About scenario variables... 460
Variable types... 460
Auto-typing of variables..460
Variable properties..461
Variable constraints.. 461
User input and output.. 462

About blocks.. 463
Linking variables, block parameters, and block output fields..464

Using Event Modeler.. 467
Adding scenarios to projects...468

Creating the GlobalRuleExample project... 468
Adding GlobalRuleExample.sdf to the GlobalRuleExample project......................... 468
Adding a new scenario to the GlobalRuleExample project...................................... 469

Opening and viewing multiple scenarios...469
Selecting from the Scenario menu..470
The Event Modeler toolbar..470
Interacting with the tabs and panels... 471
Working in the Event Flow panel.. 472

Interacting with states.. 473
Selecting a state... 473
Resizing a state.. 474
Moving a state...474
Multiple selection...474
Adding a state...475
The finished status..475
Deleting a state... 475
Labeling a state...475
Using cut/copy/paste with states...475

Interacting with transitions..476
Adding a transition.. 476
Selecting a transition...477
Changing end-points... 477
Changing the shape of a transition...477
Labeling a transition..478
Deleting a transition.. 479
Using cut/copy/paste with transitions..479
Displaying global rule transitions.. 479

Working in the Rules panel...480
Adding a rule..480
About global rules.. 480

M
Table of Contents

Developing Apama Applications Version 9.10 13

Selecting rules and rule elements..481
Re-ordering rules..481
Deleting a rule..481
Labeling a rule..482
Changing a rule's description...482
Minimizing and maximizing a rule..482
Cutting, copying, and pasting rules..482
Activating and deactivating rules... 483
Specifying conditions..483

Interactive editing.. 483
Language elements...483

Selecting and replacing elements.. 485
Cascading alternative menus...487
Using functions in rules..488
Adding a condition to a rule...489
Specifying variable changes in conditions... 490

Local rules and variable changes... 491
Global rules and variable changes... 491

Specifying actions...492
Adding action statements..493
Deleting action statements..493
Interactive editing.. 493

Using the keyboard to edit rules..494
Using the Variables tab... 496

Adding a variable... 497
Renaming a variable.. 498
Selecting a variable..498
Determining which states use a particular variable..498
Moving a variable...498
Deleting a variable... 499
Changing a variable's properties..499
Setting a variable's value... 500
Variable input and output... 500
Linking a variable to a block output field... 501
Conversion rules for variable types... 503

Using the Catalogs tab..504
Adding a block template catalog..505
Selecting and inspecting a block template...505
Adding a block instance to the scenario..506

Using the Functions tab.. 506
Adding a function catalog...506
Selecting and inspecting a function... 507

Using the Blocks tab... 507
Interacting with a block instance..509
Selecting a parameter.. 509

M
Table of Contents

Developing Apama Applications Version 9.10 14

Viewing a parameter's properties...510
Setting a parameter's initial value..510
Linking a parameter with a variable or output field..510

Switching blocks.. 511
Using the Block Wiring tab..512

Wiring block input feeds...512
Selecting, resizing, and moving block instances..513
Wiring two blocks together...513
Connecting feeds and specifying feed mapping.. 514
Wiring a scenario variable to a block...515
Mapping type conversions... 515
Editing block wiring.. 516
Deleting a wiring...516
Deleting a block instance...516
Using older versions of blocks...516

Troubleshooting invalid scenarios... 516
Exporting scenarios as EPL..517
Exporting scenarios as block templates..517
Event Modeler command line options...518

Using Standard Blocks... 521
A block's lifecycle.. 523
General analytic blocks... 524

Change Notifier v2.0.. 524
Correlation Calculator v2.0...526
Data Distribution Calculator v2.0... 527
Median and Mode Calculator v1.0... 529
Moving Average v1.0... 531
Spread Calculator v3.0...532
Statistics Calculator v1.0..533
Velocity Calculator v2.0..535

The Timer blocks...536
Schedule v3.0...536
Wait v3.0...539

The Utility blocks... 541
Dictionary v2.0..541
File Reader v2.0...542
File Writer v2.0... 544
History Logger v2.0.. 546
Input Merger v2.0...547
List v2.0.. 549
Scenario Terminator v2.0... 550
Status v2.0... 551
Variable Mapper v2.0... 556

Database functionality—storage and retrieval...557
ADBC Storage v1.0..557

M
Table of Contents

Developing Apama Applications Version 9.10 15

ADBC Retrieval v1.0.. 560
Blocks for working with scenario blocks... 566

Change Observer v2.0... 566
Filtered Summary v2.0... 568

Using Functions in Event Modeler... 573
Reference information for provided functions... 574

Date and time functions... 574
Extended math functions on float types...576
IO functions.. 579
System value functions.. 579
Miscellaneous functions... 581

About defining your own functions.. 586
Sample ABS function definition file..587
Sample function definition file with imports element.. 588
About function names.. 589

Creating Blocks...591
About blocks.. 592

Introduction to block definition files..592
Description of block interface elements... 592
How scenarios communicate with their blocks.. 593

Defining new blocks in Software AG Designer... 593
Specifying the block metadata... 593
Specifying the block interface.. 594
Creating parallel-aware blocks...595
Adding EPL code to the block definition..596
Considerations for adding EPL code to the block definition.....................................597
Details about EPL code that you can add... 598
Timeliness of acknowledgements.. 604

An example block..605
Description of the Correlation Calculator block interface... 605
Description of the Correlation Calculator block EPL.. 608

Working with Blocks Created from Scenarios.. 615
Terminology for using scenario blocks.. 616
Benefits of scenario blocks... 617
Steps for using scenario blocks.. 617
Background for using scenario blocks.. 618
Saving scenarios as block templates..619
Incrementing scenario block version numbers..619
Adding a scenario block to a main scenario...620
Examining a scenario block's source scenario... 620
Descriptions of scenario block parameters... 620
Descriptions of scenario block operations...621
Descriptions of scenario block feeds.. 622
Setting parameters before creating sub-scenarios..625
Creating sub-scenarios..627

M
Table of Contents

Developing Apama Applications Version 9.10 16

Deleting sub-scenarios.. 628
Unconditionally deleting a sub-scenario...629
Deleting all sub-scenarios.. 629

Modifying sub-scenario input variable values... 629
Iterating through sub-scenarios...629
Obtaining variable values from sub-scenarios.. 631
Linking sub-scenarios with other blocks... 631
Inheriting sub-scenarios...631

Description of inheritExternalInstances values...632
Notes for setting the inheritExternalInstances parameter.. 632
Example of inheriting sub-scenarios.. 633

Observing changes in sub-scenarios.. 634
Performing simple calculations across sub-scenarios...636

File Definition Formats..639
Function definition file format.. 640

Defining metadata in function definition files... 640
Defining the version element.. 641
Defining the description element...641
Defining the imports element.. 642
Defining the parameters element..642

Defining EPL code in function definition files...643
Block definition file format... 643

Block definition file DTD...643
Block definition file encodings..644
XML elements that define a block... 644

Developing Apama Applications in Java.. 651
Overview of Apama JMon Applications..653

Introducing JMon API concepts.. 654
About event types..655

Simple example of an event type.. 656
Extended example of a JMon event type.. 658
Comparing JMon and EPL event type parameters..658
About event parameters that are complex types... 659
Non-null values for non-primitive event field types.. 661

About monitors.. 661
About event listeners and match listeners.. 662

Example of a MatchListener.. 662
Defining multiple listeners.. 663
Removing listeners...664

Description of the flow of execution in JMon applications.. 665
Parallel processing in JMon applications.. 665

Overview of contexts in JMon applications..665
Using contexts in JMon applications..666
Using the Context class default constructor.. 666

M
Table of Contents

Developing Apama Applications Version 9.10 17

Descriptions of methods on the Context class...667
Identifying external events...668
Optimizing event types.. 669

Wildcarding parameters in event types..669
Logging in JMon applications..670
Using EPL keywords as identifiers in JMon applications.. 671

Defining Event Expressions..673
About event templates...674

Specifying positional syntax... 674
Specifying completed event templates...676

Specifying parameter constraints in event templates..676
Obtaining matching events..678
Emitting, routing, and enqueuing events...680
Specifying temporal sequencing... 681

Chaining listeners...681
Using temporal operators...682

Defining advanced event expressions.. 683
Specifying other temporal operators.. 684
Specifying a perpetual listener for repeated matching...686
Deactivating a listener..686
Temporal contexts.. 686
Specifying the timer operators... 691

Looking for event sequences within a set time...692
Waiting within a listener.. 693
Working with absolute time...693

Optimizing event expressions... 695
Validation of event expressions...696

Concept of Time in the Correlator..697
Correlator timestamps and real time...698
Event arrival time...698
Getting the current time.. 699
About timers and their trigger times..700

Developing and Deploying JMon Applications... 703
Steps for developing JMon applications in Software AG Designer................................. 704
Java prerequisites for using Apama's JMon API.. 705
Steps for developing JMon applications manually.. 706
Deploying JMon applications...706
Removing JMon applications from the correlator..707
Creating deployment descriptor files...707

Format for deployment descriptor files...708
Specifying classpath in deployment descriptor files...709
Defining event types in deployment descriptor files...710
Defining monitor classes in deployment descriptor files.. 711
Inserting annotations for deployment descriptor files...711
Sample source files with annotations.. 712

M
Table of Contents

Developing Apama Applications Version 9.10 18

Generating deployment descriptor files from annotations..713
Package names and namespaces in JMon applications.. 715
Sample JMon applications.. 715

Developing Correlator Plug-ins..717
Introduction to Correlator Plug-ins..719
Providing an EPL event wrapper for a plug-in... 721
Writing a Plug-in in C or C++...723

A simple plug-in in C++...724
Calling the test function from EPL.. 726
A simple C plug-in...727
Parameter-less plug-in functions...728

Advanced Plug-in Functionality in C++ and C... 731
Introducing complex_plugin...732
The chunk type..733
Working with chunk in C++... 734
Working with chunk in C... 736
Working with sequences... 736
The complete example.. 738
Using complex_plugin from the event correlator...738
Asynchronous plug-ins.. 739
Writing correlator plug-ins for parallel processing applications....................................... 740
Working with blocking behavior in C++ plug-ins... 741
Working with channels in C++ plug-ins...742

The EPL Plug-in APIs for C and C++.. 747
Primary class types... 748

Writing Correlator Plug-ins in Java...751
Creating a plug-in using Java... 752

Permitted signatures for methods.. 753
Using Java plug-ins...754
Sample plug-ins in Java..760

A simple plug-in in Java...761
A more complex plug-in in Java.. 761
A plug-in in Java that sends events...762
A plug-in in Java that subscribes to receive events...762

EPL Reference..763
Introduction... 765

Hello World example... 766
Types...767

Primitive and string types..768
boolean... 768
decimal... 769
float... 770
integer...777
string... 780

M
Table of Contents

Developing Apama Applications Version 9.10 19

Reference types.. 785
action.. 786
Channel.. 788
chunk.. 789
context.. 790
dictionary.. 791
event... 796
Exception.. 800
listener.. 803
location... 803
sequence.. 805
StackTraceElement...809
stream...809

monitor pseudo-type..810
Type properties summary..811
Timestamps, dates, and times.. 814
Type methods and instance methods... 814
Type conversion.. 815
Comparable types... 817
Cloneable types...818
Potentially cyclic types.. 819

Which types are potentially cyclic?.. 819
String form of potentially cyclic types.. 820

Support for IEEE 754 special values.. 822
Events and Event Listeners... 827

Event definitions.. 828
Event fields...828
Event actions..828
Event field and action scope..829

Event templates...830
By-position qualifiers.. 830
By-name qualifiers..831
Range expressions...831
Field operators..832

Event listener definitions... 835
Event lifecycle..835
Event listener lifecycle...836
Event processing order for monitors... 837
Event processing order for queries... 839
Event expressions... 839

Event primaries...840
Timers... 841
The not operator...842
The all operator..842
The and, xor, and or logical event operators... 843

M
Table of Contents

Developing Apama Applications Version 9.10 20

The followed-by event operator... 843
Event expression operator precedence... 843

Event channels.. 844
Monitors.. 845

Monitor lifecycle...846
Monitor files... 847
Packages... 847
The using declaration.. 848
Monitor declarations.. 848
The import declaration...848
Monitor actions.. 849

Simple actions.. 849
Actions with parameters...850

Contexts...850
Plug-ins.. 851
Garbage collection...851

Queries..853
Query lifetime.. 854
Query definition... 856
Metadata section... 858
Parameters section..858
Inputs section.. 858
Query input definition.. 858
Find statement...860

Pattern.. 861
Where condition..862
Within condition.. 863
Without condition..863
Between clause.. 864
Select clause.. 865
Having clause...865

Reserved words in queries..866
Aggregate Functions...869

Built-in aggregate functions...870
Custom aggregates... 876

Statements.. 879
Simple statements... 880

The assignment statement...880
The emit statement.. 880
The enqueue statement... 881
The enqueue . . . to statement... 881
The expression statement..882
The log statement.. 883
The print statement.. 883
The route statement... 883

M
Table of Contents

Developing Apama Applications Version 9.10 21

The send . . . to statement... 884
The spawn statement...885
The spawn action to context statement... 885
Variable declaration statements... 885

Compound statements...885
The for statement...885
The from statement.. 886
The if statement... 886
The on statement... 887
The while statement... 887
The try-catch statement... 888

Transfer of control statements.. 888
The break statement.. 888
The continue statement..889
The die statement.. 889
The return statement..889

Expressions...891
Introduction to expressions... 892
Primary expressions.. 893
Bitwise logical operators..893

Bitwise intersection (and)... 893
Bitwise union (or)... 893
Bitwise exclusive (xor)..894
Unary bitwise inverse... 894

Logical operators... 895
Logical intersection (and)... 895
Logical union (or)... 895
Logical exclusive or (xor)... 895
Unary logical inverse (not)... 896

Shift operators... 896
Left shift operator... 896
Right shift operator...896

Comparison operators... 897
Additive operators..898
Multiplicative operators..899
Unary additive operators... 900
Expression operators...900
Expression operator precedence...901
Postfix expressions..902

Action and method calls...903
The subscript operator []...903
The new object creation operator.. 903

Stream queries.. 903
Stream query window definitions... 905

Stream source templates.. 908

M
Table of Contents

Developing Apama Applications Version 9.10 22

Variables... 909
Variable declarations... 910
Variable scope... 910

Predefined variable scope..911
Monitor scope...911
Action scope...911
Block scope.. 911
Event action scope...911
Custom aggregate function scope... 911

Provided variables... 912
currentTime...912
Event timestamps...913
self.. 913

Specifying named constant values..913
Lexical Elements...915

Program text.. 916
Comments..916
White space...916
Line terminators...918
Symbols... 919
Identifiers... 919
Keywords... 920

List of EPL keywords... 920
List of identifiers reserved for future use... 922
Escaping keywords to use them as identifiers...923

Operators... 924
Separators... 925
Literals... 925

Boolean literals...925
Integer literals...925

Base 10 literals... 926
Base 16 literals... 926

Floating point and decimal literals... 926
String literals...927
Location literals...927
Dictionary literals.. 927
Sequence literals..928
Time literals.. 928

Names..929
Annotations.. 930

Limits...931
Obsolete Language Elements.. 933

Old style listener calls... 934
Old style spawn statements.. 934

M
Table of Contents

Developing Apama Applications Version 9.10 23

EPL Naming Conventions...935

EPL Keyword Quick Reference.. 939

EPL Methods Quick Reference.. 961

EPL Streams: A Quick Tour... 977
About the Apama event stream processing model.. 978
Example events for stream queries..979
Processing events using streams...980

Creating a stream network..981
Using inline stream source template expressions...981
Using compound stream queries.. 982
Using dynamic values in stream queries.. 982
Using stream variables..984
Using the short-form from statement.. 984
Stream lifetime...985
Using windows in stream queries... 986
Using joins in stream queries..987
Using partitions and groups in stream queries... 988
Using rstream.. 989

Common stream query patterns...989
Aggregation in stream queries.. 990
Throttling in stream queries...990
Dynamic filters in stream queries..990
Joining the most recent event on each of two streams.. 991
Retaining the most recent item in each partition of a partitioned stream........................ 992
Joining an event with a previous event...992

M
Even Header

Developing Apama Applications Version 9.10 24

M
Odd Header

About this Guide

Developing Apama Applications Version 9.10 25

About this Guide

Apama provides different technologies for developing applications: EPL, Event
Modeler, and Java. You can use one or several of these technologies to develop an
Apama application. In addition, there are C++, C, and Java APIs for developing
components that plug-in to a correlator. You can use these components from EPL.

Documentation roadmap
Apama provides documentation in the following formats:

HTML (viewable in a web browser)

PDF (available from the documentation website)

Eclipse help (accessible from the Software AG Designer)

You can access the HTML documentation on your machine after Apama has been
installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be
changed during the installation.

UNIX. Display the index.html file, which is in the doc directory of your Apama
installation directory.

The following table describes the different guides that are available.

Title Description

Release Notes Describes new features and changes since the
previous release.

Installing Apama Instructions for installing Apama.

Introduction to Apama Introduction to developing Apama applications,
discussions of Apama architecture and concepts,
and pointers to sources of information outside the
documentation set.

Using Apama with Software
AG Designer

Instructions for using Apama to create and test
Apama projects, develop EPL programs, define
Apama queries, develop JMon programs, and store,
retrieve and play back data.

M
Even Header

About this Guide

Developing Apama Applications Version 9.10 26

Title Description

Developing Apama
Applications

Describes the different technologies for developing
applications: EPL monitors, Apama queries, Event
Modeler, and Java. You can use one or several of
these technologies to implement a single Apama
application. In addition, there are C++, C, and Java
APIs for developing components that plug in to a
correlator. You can use these components from EPL.

Connecting Apama
Applications to External
Components

Describes how to connect Apama applications
to any event data source, database, messaging
infrastructure, or application. The general
alternatives for doing this are as follows:

Implement standard Apama Integration Adapter
Framework (IAF) adapters.

Create applications that use correlator-integrated
messaging for JMS or Software AG's Universal
Messaging.

Use connectivity plug-ins wrien in Java or C++.

Develop adapters with Apama APIs for Java and C
++.

Develop client applications with Apama APIs for
Java, .NET, and C++.

Building and Using
Dashboards

Describes how to build and use an Apama
dashboard, which provides the ability to view and
interact with scenarios and DataViews. An Apama
project typically uses one or more dashboards,
which are created in the Dashboard Builder.
The Dashboard Viewer provides the ability to
use dashboards created in Dashboard Builder.
Dashboards can also be deployed as simple Web
pages, applets, or WebStart applications. Deployed
dashboards connect to one or more correlators
by means of a Dashboard Data Server or Display
Server.

Deploying and Managing
Apama Applications

Describes how to deploy components with
Command Central or with Apama's Enterprise
Management and Monitoring (EMM) console. Also
provides information for:

M
Odd Header

About this Guide

Developing Apama Applications Version 9.10 27

Title Description

Improving Apama application performance by
using multiple correlators and saving and reusing
a snapshot of a correlator's state.

Managing and monitoring over REST
(Representational State Transfer).

Using correlator utilities.

In addition to the above guides, Apama also provides the following API reference
information:

API Reference for EPL in ApamaDoc format

API Reference for Java in Javadoc format

API Reference for C++ in Doxygen format

API Reference for .NET in HTML format

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Even Header

About this Guide

Developing Apama Applications Version 9.10 28

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

Contacting customer support
If you have an account, you may open Apama Support Incidents online via the eService
section of Empower at hps://empower.softwareag.com/. If you do not yet have an
account, send an email to empower@softwareag.com with your name, company, and
company email address and request an account.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at hps://empower.softwareag.com/
public_directory.asp and give us a call.

https://empower.softwareag.com/
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp

M
Odd Header

Developing Apama Applications in EPL

Developing Apama Applications Version 9.10 29

I Developing Apama Applications in EPL

■ Getting Started with Apama EPL ... 31

■ Defining Monitors ... 49

■ Defining Queries .. 75

■ Defining Event Listeners .. 159

■ Working with Streams and Stream Queries .. 205

■ Defining What Happens When Matching Events Are Found ... 265

■ Implementing Parallel Processing .. 303

■ Using Correlator Persistence ... 327

■ Common EPL Patterns in Monitors ... 345

■ Using Correlator Plug-ins in EPL ... 355

■ Making Application Data Available to Clients .. 413

■ Testing and Tuning EPL monitors .. 421

■ Generating Documentation for Your EPL Code ... 433

M
Even Header

Developing Apama Applications in EPL

Developing Apama Applications Version 9.10 30

The event correlator is Apama's core event processing and correlation engine. The
interface to the correlator lets you inject events that the correlator analyzes. You can
configure the correlator to watch for particular events or paerns of interest. In addition,
you specify the actions to undertake when the correlator identifies such paerns.
Identification of events of interest plus what to do when such events are found constitute
an Apama application's logic.

To deploy an application on the correlator, you can use either the correlator's native
Apama Event Processing Language (EPL) or the Apama in-process API for Java (JMon).
Alternatively, you can define application logic in the Event Modeler, which provides a
graphic user interface. The information presented here focuses exclusively on EPL.

Developing Apama Applications in EPL teaches you how to write EPL programs. While
some programming experience is assumed, no prior knowledge of EPL is assumed.

Software AG Designer provides tutorials that can help you get started with EPL. On the
Welcome page of Software AG Designer, click Tutorials under the Apama heading.

Note: MonitorScript is the old name for EPL. You might still see the old name in the
product documentation.

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 31

1 Getting Started with Apama EPL

■ Introduction to Apama Event Processing Language ... 32

■ How EPL applications compare to applications in other languages .. 33

■ About dynamic compilation in the correlator .. 33

■ About the Apama development environment in Software AG Designer 34

■ Terminology .. 35

■ Defining event types .. 40

■ Working with events ... 44

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 32

Apama Event Processing Language (EPL) is an event-driven programming language. It
lets you write applications that:

Monitor streams of events to find particular events or paerns of events of interest

Analyze events (or paerns of events) of interest to determine whether some action
is appropriate

Perform actions based on particular events or paerns of events

This section discusses the main concepts you must understand to write applications in
EPL.

Introduction to Apama Event Processing Language
EPL is a flexible and powerful ”curly-brace”, domain-specific language designed for
writing programs that process events. In EPL, an event is a data object that contains a
notification of something that has happened, such as a customer order was shipped,
a shipment was delivered, a sensor state change occurred, a stock trade took place, or
myriad other things. Each kind of event has a type name and one or more data elements
(called fields) associated with it. External events are received by one or more adapters,
which receive events from the event source and translate them from a source-specific
format into Apama's internal canonical format. Derived events can be created as needed
by EPL programs.

Though it contains many of the familiar constructs and features found in general-
purpose programming languages like Python or Java, EPL also has special features
to make it easy to aggregate, filter, correlate, transform, act on, and create events in a
concise manner. Here is the canonical "hello world" example wrien in EPL:
monitor HelloWorld
{
 action onload()
 {
 print "Hello world!";
 }
}

The Apama event processor, called the correlator, receives events of various types from
external sources. The EPL programs that process these events are monitors or queries.

Monitors have registered event handlers, called listeners, for events of particular types
with specific combinations of data values or ranges of values. When a listener detects an
event of interest, it triggers a particular action. If there are no listeners for an event, the
correlator either discards it or passes it to a listener specifically for events that have no
handler. A monitor instance processes events on one correlator and can send events to
communicate with other monitors on the same correlator or remote correlators.

Queries are scalable across multiple correlators. An Apama query operates on only
the input event types you specify and you can filter which instances of those events
should be processed. Apama partitions these incoming events according to a key field
that you specify, for example, there might be a partition for each credit card number.
The query processes the events in each partition independently of the events in every

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 33

other partition. As events are added to partitions, the query checks for a set of events
that matches the event paern you specified, which can optionally specify complex
conditions for there to be a match. When a match is found the query executes procedural
code that you have defined, which can include sending events.

Event handlers in EPL are conceptually similar to methods or functions used for
handling user-interface events in other languages, such as Java Swing or SWT
applications. In EPL, the correlator executes code only in response to events.

The correlator is capable of looking for hundreds of thousands of different events or
different event paerns concurrently. When you write an EPL application, you write
a set of monitors and/or one or more queries and then you inject or load them into a
running correlator. As streams of events pass into a correlator, the monitors and their
listeners and/or the queries watch for the events or paerns of events that you have
specified as being of interest. There are a variety of actions that you can specify that
you want the correlator to perform when a listener or query detects an event or event
paern of interest. For example, the most common action for a monitor is to generate
and dispatch a message to an external receiver.

EPL is case-sensitive.

How EPL applications compare to applications in other languages
EPL is an event-oriented programming language, as opposed to an object-oriented
language. Because EPL is part of an event-processing framework, it requires a different
approach to decomposing the problem you want to solve.

EPL syntax is similar to other scripting languages. EPL has variables, data structures,
conditions, and procedures (called actions in EPL). But EPL supports a paradigm that is
different from that supported by other scripting languages:

A monitor or a query is the basic module in EPL programs.

All communication is by means of message passing.

All processing is triggered in response to events.

Monitors spawn instances of themselves to generate multiple units of execution and/
or to initiate parallel processing. A query uses a key to partition incoming events and
can share the same data across multiple correlators.

EPL requires a different way of developing applications.

About dynamic compilation in the correlator
EPL is dynamically compiled. You inject (load) EPL source files into a running
correlator. The correlator compiles the files into optimized byte-code representations.

The EPL compiler is strict. There is no implicit type conversion. You cannot discard
return values. To minimize the chance of runtime errors, your code must be explicit
and not make assumptions. The correlator terminates execution of a program at the first
runtime error.

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 34

The dynamic compilation approach removes the need for a byte code interpreter that
supports older versions of byte code. Also, the correlator can apply new optimization
techniques during byte code generation.

About the Apama development environment in Software AG
Designer
Software AG Designer provides an integrated environment for developing Apama
applications. The process of developing an Apama application is centered around an
Apama project. In Software AG Designer, you create a project and then you use Software
AG Designer to:

Add and manage the component files that make up the application.

Write the EPL for your application.

Specify the adapters, dashboards, and scenarios that are necessary for the
application.

Specify the configuration properties necessary for launching the application.

Run and monitor the application.

Export the initialization information necessary for deploying the application.

Export your EPL and scenario files to a Correlator Deployment Package (CDP).

As you add components to your application, Software AG Designer automatically
generates the boilerplate EPL code for the application's standard features and launches
the appropriate editor where you add the code to implement the component's behavior.

A central Apama feature in the Software AG Designer is the EPL editor. The EPL editor
provides the following support for writing EPL:

Automatic EPL validation

Content assistance

Auto-completion

Hovering over an event declaration displays the event's type definition

Automatic indenting and bracketing

A separate panel shows the hierarchy of the EPL that appears in the editor

Ability to define templates for frequently-used fragments of EPL

In Software AG Designer, you can examine the EPL files that are part of the Apama
demo applications. On the Welcome page of Software AG Designer, click Demos under
the Apama heading, select the Process Monitor demo, and then double-click a .mon file
to view it in the EPL editor. If necessary, click the Show All Folders icon to display the
monitors.

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 35

Terminology
This topic provides a definition of each important EPL term. The definitions are
organized into several groups.

Basic modules

EPL Term Definition

Application An Apama application consists of one or more
collaborating monitors and/or one or more queries.

Package A mechanism for qualifying monitor, query and event
names. Monitors, queries and global events in the same
package must each have a unique name within the
package.

Context Contexts allow EPL applications to organize work into
threads that the correlator can concurrently execute.

Monitor A monitor is a basic unit of program execution. Monitors
have both data and logic. Monitors communicate by
sending and receiving events. A monitor is defined in a
.mon file.

In a monitor, you can create multiple contexts and divide
processing among multiple contexts.

A monitor cannot contain an Apama query.

Query An Apama query is a basic unit of program execution. It
partitions incoming events according to a key and then
independently processes the events in each partition.
Processing involves watching for an event paern and then
executing a block of procedural code when that paern is
found. A query is defined in a .qry file.

In a query, you do not create contexts. Apama
automatically uses multiple contexts as needed to process
your query.

An Apama query cannot contain a monitor.

Channel A string name that monitor instances and receivers can
subscribe to in order to receive particular events. Adapter
and client configurations can specify the channel to deliver

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 36

EPL Term Definition
events to. In EPL, you can send an event to a specified
channel.

Queries do not subscribe to channels.

Event (type) An event is a data object. All events have an event type and
an ordered set of event fields. An event type might also
have zero or more defined event actions that operate on the
event fields.

Field A data element of an event.

Method A method is a pre-defined action. A given EPL type has a
given set of methods that it supports.

Data types

EPL Term Definition

Data type Usually referred to as simply type. EPL supports the
following value types: boolean, decimal, float, integer,
and the following reference types: action, Channel,
chunk, context, dictionary, event, Exception,
listener, location, sequence, StackTraceElement,
stream, string. Also, monitor is a very limited pseudo-
type.

sequence An EPL type used to hold an ordered set of objects
(referenced by position).

dictionary An EPL type used to hold a keyed set of objects (referenced
by key).

location An EPL type that represents a rectangular area in a two-
dimensional unitless Cartesian coordinate plane.

chunk An EPL type that references an opaque data set, the data
items of which are manipulated only in a correlator plug-
in.

listener You can assign an event listener or a stream listener to a
variable of this type and then subsequently call quit() on
the listener to remove the listener from the correlator.

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 37

EPL Term Definition

action An EPL type that references an action. Actions in EPL are
the equivalent of methods in object-oriented languages.
Actions are user-defined methods that you can define in
monitor and query definitions, event type definitions, and
custom aggregate function definitions.

context An EPL type that provides a reference to a context. A
context lets the correlator concurrently process events.

stream An EPL type that refers to a stream object. Each stream is
a conduit through which items flow. A stream transports
items of only one type, which can be any Apama type.
Streams are internal to a monitor.

Channel An EPL type that contains a string or a context. A
contained string is the name of a channel. A contained
context lets you send an event to that context. Defined in
the com.apama namespace.

Exception Values of Exception type are objects that contain
information about runtime errors. Defined in the
com.apama namespace.

StackTrace
Element

A StackTraceElement type value is an object that contains
information about one entry in the stack trace.

Monitors

EPL Term Definition

Monitor name Each monitor has a name that can be used to delete the
monitor from the correlator.

Monitor definition The set of source statements that define a monitor.

Monitor instance A monitor instance is created whenever a monitor is
loaded into the correlator. Subsequent monitor instances
are created whenever a monitor instance spawns. As one
time, a monitor instance was referred to as a sub-monitor.

Sub-monitor A monitor instance was previously referred to as a sub-
monitor.

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 38

Queries

See also "Query terminology" on page 80.

EPL Term Definition

Query name Each Apama query has a name that can be used to delete
the query from the correlator.

Query definition The set of source statements that define an Apama query.

Query instance A query instance is created whenever a non-parameterized
query is loaded into the correlator. When a parameterized
query is loaded, no instances are created until parameter
values are provided. After specification of parameter
values, Apama creates an instance of the query, which
is referred to as a parameterization. A query definition
supports multiple parameterizations.

Query key A query key identifies one or more fields in the event types
that the query specifies as input event types. Each query
input event type must specify the same key.

Query partition A partition contains a set of events that all have the same
key value. One or more windows contain the events added
to each partition.

Events

EPL Term Definition

Event name Every event must identify its event type. Event types
are identified by a unique event name. The event name
can also be used to remove the event definition from the
correlator.

Event definition The set of source statements that define an event type.

Event type All events of a given event type have the same structure.
An event type defines the event name, the ordered set of
event fields and the set of event actions that can be called
on the event fields.

Event field A data element of an event.

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 39

EPL Term Definition

Event action An action defined within an event definition. The action
can operate only on the fields of the event and any
arguments passed into the action call.

Listeners

EPL Term Definition

Event listener A construct that monitors the events passed to, or routed
within, a correlator context. When the event paern
matches the event paern specified in an event listener, the
correlator invokes the event listener's code block.

In monitors, it is up to you to define event listeners. In
queries, Apama defines event listeners for you.

on statement EPL statement that defines an event listener. An on
statement specifies an event expression and a listener
action.

Stream listener A construct that continuously watches for items from a
stream and invokes the listener code block each time new
items are available.

from statement EPL statement that defines a stream listener. A from
statement specifies a source stream, a variable, and a code
block. The from statement coassigns each stream output
item to the specified variable and executes the statement or
block once for each output item.

Listener action The action, statement or block part of a listener.

Listener handle It is possible to assign the handle (reference) to a listener to
a listener variable. This variable can then be used to quit
the listener.

Event template Specifies an event type and the set of (or set of ranges of)
event field values to match.

Event operator Relational, logical, or temporal operator that applies to an
event template and that you specify in an event expression.

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 40

EPL Term Definition

Event expression An expression, constructed using event operators and
event templates, that identifies an event or paern of
events to match.

Streams

See also the above definitions for stream, stream listener, and from statement.

EPL Term Definition

Stream query A stream query is defined in a monitor. A stream query
is a query that the correlator applies continuously to
one or two streams. The output of a stream query is one
continuous stream of derived items.

A stream query is a completely different construct than an
Apama query.

Stream source
template

An event template preceded by the all keyword. It uses no
other event operators. A stream source template creates a
stream that contains events that match the event template.

Stream network Network of stream source templates, streams, stream
queries, and stream listeners. Upstream elements feed into
downstream elements to generate derived, added-value
items.

Activation When the passage of time or the arrival of an item causes
a stream network or an element in a stream network to
process items.

Defining event types
Conceptually, an event is an occurrence of a particular item of interest at a specific time.
Examples of events include:

A price of $100 for a share of IBM stock at noon on November 7, 2014

Purchase of 1000 shares of IBM stock at $80 per share at 12:01 PM on December 12,
2014

RFID tag 123-456-789 was scanned at 10:05 AM at loading dock 3

Purchase order 55555 for 10,000 widgets sent to Acme Motor Supply

TCP/IP address 123.4.56.789 just accessed server 5

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 41

Container X was overfilled greater than 0.2 grams more than standard amount

An event usually corresponds to a message of some form. The correlator is designed to
take in huge numbers of messages per second, and sift them for the events or paerns
of events of interest. When the correlator detects interesting events or paerns it can
undertake a variety of actions.

A correlator can receive events in several ways:

You use Software AG Designer to send events from a file.

From an adapter that receives an event from an external source. Apama adapters
translate events from non-Apama format to Apama format.

You run the Apama engine_send utility to manually send events into the correlator.

A monitor or query generates an event within the correlator.

You can write an application in C, C++, Java, or .NET that uses the Apama client API
to send events into the correlator.

The correlator propagates information by sending events.

In EPL, each event is of a specific type. An event type has a name and a particular set
of fields. Each field has a name and is one of a selection of types. Every event instance
of a given event type has the same set and order of fields. For the correlator to process
an event of a specific event type, it needs to have the event type definition for that type.
Having the definition for an event type, lets the correlator

Operate on the messages of that event type

Create optimal indexing structures for finding events of that type that are of interest

An event type definition specifies the event type's name and the name and type of each
of its fields.

See also "Specifying named constant values" on page 270.

Allowable event field types
A field in an event can be any Apama type. For more information on these types, see
"Types" on page 767.

Certain field types are valid only within a certain scope and you cannot pass events with
such field types outside that scope. The details are as follows:

context — When an event contains a context type field, you can send the event to
other monitors within the same correlator but you cannot send the event outside the
correlator. In other words, you can send or route the event. See "Generating events"
on page 284.

chunk , listener and stream — An event that contains one or more of these types
of fields is valid only within the monitor that creates it. You cannot send, route, or
enqueue an event that contains a field of type chunk, listener or stream.

If an event contains a chunk, listener, or stream field you cannot listen for that event.

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 42

Format for defining event types
In EPL, the format for an event type definition is as follows:
event event_type {
 [
 [wildcard] field_type field_name ; |
 constant field_type field_name := literal ; |
 action_definition
] ...
}

Syntax description

Syntax Element Description

event This EPL keyword is required. It indicates an
event type definition.

event_type Replace event_type with a name that you
choose for this event type. An EPL best
practices convention is to specify an initial
capital in event type names, and to capitalize
subsequent words in the name. For example:
StockTick.

{ } Enclose the field definitions in curly braces.

wildcard Specify the wildcard keyword in front of a
field definition when you are certain that you
will never specify that field in the match criteria
for this event type. In other words, when the
correlator watches for certain events of this
type, the value of a wildcard field is always
irrelevant.

For more details, see "Improving performance
by ignoring some fields in matching events" on
page 174.

field_type Replace field_type with the name of a type.
If you specify action, sequence, stream
or dictionary, you must also specify the
type of the action's argument(s) and return
value if there are any, the type of the values
in the sequence or stream, or the type of
the dictionary's key as well as the type of
the values in the dictionary. For example:
dictionary<integer,string>. For more

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 43

Syntax Element Description
details, see "dictionary" on page 791 and
"sequence" on page 805.

field_name Replace field_name with a name that you
choose for this field.

An event can have zero or more fields. You
might define an event with no fields in a
situation where only detection of the event is
needed to start some process.

While there is no limit to the number of fields
in an event, the correlator can index up to 32
fields per event. This means that the correlator
can match on up to 32 fields per event. If
an event type has more than 32 fields, you
must specify the wildcard keyword for the
additional fields. Note that if the type of an
event field is location, that field counts as 2.
For example, if you have 28 non-location type
fields and 2 location fields, then you have
reached the limit of 32 indexed fields. If you
try to inject an event definition that specifies
more than 32 fields and you do not specify the
wildcard keyword for additional fields, the
correlator rejects the file. You must add the
wildcard keywords to be able to inject the file.

constant Specify the constant keyword in front of
a field definition whose type is boolean,
decimal, float, integer, or string and
whose value never changes.

literal If you specify the constant keyword, you
must assign a literal to that field. The type of
the literal must be the same as the field_type
you specified for this field.

action_definition When you specify an action in an event type
definition you can call that action on an
instance of the event. See "Specifying actions in
event definitions" on page 274.

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 44

Example event type definition
For example, the EPL definition of an event type for simple financial stock price ticks
might include the stock's name and its price:
event StockTick {
 string name;
 float price;
}

To represent a specific instance of an event, use the following form:
event_type (field1_value , field2_value ...)

For example, a StockTick event describing Acme's new price of 55.20 looks like this:
StockTick("ACME", 55.20)

The reading order of fields in an event type definition and in instances of that event type
must always match and is always left-to-right and then top-to-boom. That is, "ACME" is
the value of the name field and 55.20 is the value of the price field.

Working with events
After you define an event type, there are built-in methods you can call on it, and there
are various ways that you can make that event available to monitors and queries.

You can call a number of methods on any event type. For an overview of these methods,
see "event" on page 796.

Making event type definitions available to monitors and queries
A monitor or query must have information about the type definitions of the events that
it processes. You can provide this information as follows:

Define the event type in a separate file that contains only event definitions. An event
type definition file has a .mon extension. It is still an EPL file even though it contains
only event type declarations.

You can define any number of event types in a single file. A common practice
is to define the event interface to a service in a file that is separate from the
implementation of that service. You might have a single event interface file and
multiple implementations of services that process those event types.

An event type definition file is the only way to make event type definitions available
to queries.

Define the event type in the monitor. Only instances of that monitor can process
events of that type. Also, events of that type cannot be sent into the correlator from
outside. When you define an event type inside a monitor it has a fully qualified
name. For example:
monitor Test
{
 event Example{}
}

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 45

The fully qualified name for the Example event type is Test.Example and the
toString() output for the event name is "Test.Example()".

After the optional package specification, define the event type at the beginning of
an EPL file that also defines monitors. All event type declarations must be before
the monitor declarations. After you inject this file into the correlator, the following
monitors can process events of that type:

All monitors that you define in the same file

All monitors that you inject after you inject the file that contains the event
definition.

You might have a need for different event type definitions to have the same event type
name. In this situation, define each event type in a different package. Remember that
event types to be used by queries must be defined in event type definition files. Then,
in your monitor or query, use one of the following ways to make the appropriate event
type definition available. In the monitor or query:

Specify the fully qualified name of the event type, for example:

com.apamax.test.Status

After any package declaration and before any other declarations, specify a using
declaration. For example:

using com.apamax.test.Status;

In your code, you can then simply refer to the Status event type.

Do not create EPL structures in the com.apama namespace. This namespace is
reserved for future Apama features. If you inadvertently create an EPL structure in the
com.apama namespace, the correlator might not flag it as an error in this release, but it
might flag it as an error in a future release.

See also "Name Precedence" on page 929.

An event type definition must be injected into the correlator before a monitor that
processes events of that type. After you inject an event type definition into the correlator,
any monitor that you inject after that can process events of that type.

During development, when you use Software AG Designer to launch a project, it
ensures that files are injected in the right order. When more than one project requires the
same event definition file, do one of the following:

In each project, declare an external dependency on the common event definition file:

1. In Software AG Designer, in the Apama Developer perspective, in the Developer
Project View, select the project name.

2. Press Alt-Enter.

3. Select MonitorScript Build Path.

4. Click the External Dependencies tab.

M
Even Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 46

5. Click Add External.

6. Navigate to the event type definition file, and select it.

7. Click Open.

Create a project that contains the common event definition file. In each project that
requires these event definitions, declare a dependency on the project that contains
the common event definition file.

1. Create the project that contains the common event type definition file and keep
that project open in Software AG Designer.

2. In the Developer Project View, select the name of a project that needs to use the
common event definition file.

3. Press Alt-Enter.

4. Select MonitorScript Build Path.

5. Select the Projects tab.

6. Click Add.

7. Select the project that contains the event definition file, and click OK.

Channels and input events
Adapters, Apama client applications, and tools such as the engine_send correlator
utility send events into the correlator. Each incoming event is associated with a channel
either explicitly or implicitly. An event that has a channel explicitly set is delivered on
the specified channel. An event that does not have a channel explicitly set is delivered on
the default channel. The default channel's name is the empty string.

An incoming event that is sent on the default channel goes to each public context. In
addition, contexts can subscribe to channels of interest (see "Subscribing to channels"
on page 70). An incoming event for which a channel is explicitly set goes to each
context that is subscribed to its associated channel. If there are no contexts subscribed to
the specified channel the event is discarded.

Any running Apama queries receive events that come in on the default channel. In
addition, Apama queries run in contexts that are subscribed to receive events sent on the
com.apama.queries channel. So queries also receive events sent on that channel.

Events sent into the correlator from, for example, clients and adapters, are
not normally delivered to external receivers. However, external receivers can
specify the com.apama.input channel in their configuration. This is a wildcard
for all events coming into the correlator. Also, an external receiver can specify
com.apama.input.channel_name to receive correlator input events that are associated
with that particular channel.

When two events are sent to different channels there is no ordering guarantee. The
only guarantee is that events going from the same source to the same destination on the
same channel will be delivered in order. Also, if there is an external connection with, for

M
Odd Header

Getting Started with Apama EPL

Developing Apama Applications Version 9.10 47

example, an adapter or client, then the events must use the same connection for them to
be delivered in the same order.

All routable event types can be sent to channels, including event types defined in
monitors.

An Apama application can use Software AG's Universal Messaging (UM) message bus
to deliver events on specified channels. If a correlator is configured to connect to UM
then a channel might have a corresponding UM channel.

See Choosing when to use UM channels and when to use Apama channels in Connecting Apama
Applications to External Components.

M
Even Header

Developing Apama Applications Version 9.10 48

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 49

2 Defining Monitors

■ About monitor contents .. 50

■ Example of a simple monitor ... 53

■ Spawning monitor instances .. 55

■ Communication among monitor instances ... 60

■ About service monitors .. 67

■ Adding predefined annotations .. 68

■ Subscribing to channels ... 70

■ Adding service monitor bundles to your project .. 72

■ Utilities for operating on monitors .. 73

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 50

A monitor is one of the basic units of EPL program execution.

Note: The other basic unit is a query. A monitor cannot contain a query. A query
cannot contain a monitor. For information about writing queries, see
"Defining Queries" on page 75. For a comparison of queries and monitors,
see "Architectural comparison of queries and monitors" on page 79.

Monitors have both data and logic. Monitors communicate by sending and receiving
events. You define a monitor in a .mon source file. When you load the .mon file into the
correlator, the correlator creates an instance of the defined monitor.

A monitor instance can operate like a factory and spawn additional monitor instances.
A spawned monitor instance is a duplicate of the monitor instance that spawned it
except that the correlator does not clone any active listeners or stream queries. Spawning
lets a single monitor instance generate multiple instances of itself. While generally, the
spawned monitor instances all listen for the same event type, each one can listen for
events that have different values in particular fields.

It is good practice to define monitors and events in separate files. An advantage of doing
this is that queries, as well as monitors, can use the same event definitions. When you
inject files into the correlator, be sure to load event type definitions before you load the
monitors and/or queries that process events of those types.

The topics below provide information and instructions for defining monitors. For
reference information, see "Monitors" on page 845. Apama provides several sample
monitor applications, which you can find in the samples\monitorscript directory of
your Apama installation directory.

See also: "Overview of Developing Apama Applications" in Using Apama with Software
AG Designer and "Overview of Deploying Apama Applications" in Deploying and
Managing Apama Applications.

About monitor contents
A file that defines a monitor has the following form:

1. An optional package declaration

2. Followed by

a. Zero or more using declarations

b. Zero or more custom aggregate function definitions

c. Zero or more event type definitions

3. One or more monitor definitions

When you define monitors that are closely related, it is your choice whether to define
them in the same file or different files.

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 51

A monitor must have information about any event types it processes. Hence, the
correlator must receive and parse all of the event types used by the monitor before it is
able to correctly parse the monitor itself.

A monitor can contain one or more global variables. A global variable declaration appears
inside a monitor but outside any actions. The variable is global within the scope of the
monitor.

A monitor can also contain a number of actions. Actions are similar to procedures.
Finding an event, or paern of events, of interest can trigger an action. You can also
trigger an action by invoking it from inside another action.

Any construct that you declare inside a monitor is available only from within that
monitor. In other words, its use is restricted to the scope of the monitor.

Below is a minimal monitor:
monitor EmptyMonitor {
 action onload() {
 }
}

The monitor above does not do anything; it does not register interest in any event or
event paern, it does not have variables, and it does not do anything in its single action
statement. However, it does show the minimum structure of a monitor:

It specifies the monitor keyword followed by the name of the monitor. In the
example, the name of the monitor is EmptyMonitor. The name of the monitor and
the name of the file that contains the monitor do not need to be the same. A single
file can contain multiple monitors.

It declares the onload() action. When you inject a monitor into the correlator, the
correlator executes the monitor's onload() action. Every monitor must contain an
onload() action. The onload() action is similar to the main() function in C/C++.

If you define two or more monitors in the same file, the correlator executes the
onload() actions of the monitors in the order in which you define the monitors.
If there is an onload() action whose execution is dependent on the results of the
execution of the onload() action of another monitor, but sure you define that other
monitor earlier in the same file. If you define that other monitor in a separate file, be
sure you inject that file first. Tip: it is beer to avoid these dependencies as much as
possible by using initialization events. See "Using events to control processing" on
page 67.

EPL provides a number of actions, such as onload(), onunload(), and ondie(). You
can define additional actions, and assign a name of your choice that is not an EPL
keyword. See "List of EPL keywords" on page 920.

Do not create EPL structures in the com.apama namespace. This namespace is reserved
for future Apama features. If you do inadvertently create an EPL structure in the
com.apama namespace, the correlator might not flag it as an error in this release, but it
might flag it as an error in a future release.

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 52

Loading monitors into the correlator
During development, you use Software AG Designer to load your project, including
monitors, into the correlator. Software AG Designer ensures that files are loaded in the
required order.

At any time, you can use the correlator utility, engine_inject, to load EPL files into
the correlator. See "Injecting EPL code" in the "Correlator Utilities Reference" section of
Deploying and Managing Apama Applications.

In a deployment environment, you can load monitors into the correlator in any of the
following ways:

Use the engine_inject utility.

Write a program in C, C++, Java, or .NET and use the corresponding Apama client
API.

Use the Apama Management & Monitoring tool.

If you try to inject a monitor whose name is the same as a monitor that was already
injected, the correlator rejects the monitor. You can inject two monitors with the same
name into the correlator only if they exist in different packages. To specify the package
for a monitor or event type, add a package statement as the first line in the EPL file that
contains the monitor/event definition. For example:
package com.mycompany.mypackage;
monitor Foo {
 …
}

Terminating monitors
A monitor instance terminates when one of the following events occurs:

The monitor instance executes a die statement in one of its actions.

A runtime error condition is raised.

The monitor is terminated externally (for example, with the engine_delete utility).
When the correlator deletes a monitor it terminates all instances of that monitor.

The monitor instance has executed all its code and there are no active event or
stream listeners. This will occur rapidly if the monitor's onload() action does not
create any listeners. See also "Beware of accidental stream leaks" on page 263.

When a monitor instance terminates, the correlator invokes the monitor's ondie()
action, if it is defined. You cannot spawn in an ondie() action.

Unloading monitors from the correlator
The correlator unloads a monitor in the following situations:

All of the monitor's instances have terminated.

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 53

An external request kills the monitor. This kills any instances of the monitor.

If the monitor defines an onunload() statement, the correlator executes it just before it
unloads the monitor. You cannot spawn in an onunload() action.

Example of a simple monitor
The empty monitor discussed in "About monitor contents" on page 50 does not do
anything. To write a useful monitor, add the following:

An event type definition

A global variable declaration

An event expression that indicates the paern to monitor for

An action that operates on an event that matches the specified paern

For example, the EPL below

Defines the StockTick event type, which is the event type that the monitor is
interested in.

Defines the newTick global variable, which is accessible by all actions within this
monitor. The newTick variable can hold a StockTick event.

Registers an interest in all StockTick events.

Invokes the processTick() action when it finds a StockTick event. The
processTick() action uses the log command to output the name and price of all
StockTick events received by the correlator.

Lines starting with // are comments. EPL also supports the standard C/Java /* ... */
multi-line comment syntax.
// Definition of the event type that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {
 string name;
 float price;
}

// A simple monitor follows.
monitor SimpleShareSearch {
 // The following is a global variable for storing the latest
 // StockTick event.
 StockTick newTick;
 // The correlator executes the onload() action when you inject the
 // monitor.
 action onload() {
 on all StockTick(*,*):newTick processTick();
 }
 // The processTick() action logs the received StockTick event.
 action processTick() {
 log "StockTick event received" +
 " name = " + newTick.name +
 " Price = " + newTick.price.toString() at INFO;
 }
}

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 54

About the variable in the example

The single global variable is of the event type StockTick. A variable can be of any
primitive type — boolean, decimal, float, integer, string, or any reference type —
action, context, dictionary, event, listener, location, sequence or stream.

About the onload() action

In this example, the onload() action contains only one line of code:
on all StockTick(*,*):newTick processTick();

This line specifies the following:

on all StockTick(*,*) indicates the event to look for.

The on statement begins the definition of an event listener. It means, "when the
following event (or a paern of events) is received …" This event listener is looking
for all StockTick events. The asterisks indicate that the values of the StockTick
event fields do not maer.

:newTick processTick(); indicates what to do when a StockTick event is found.

If the event listener finds a StockTick event, the coassignment (:) operator
indicates that you want to copy the found event into the newTick global variable.
The onload() action then invokes the processTick() action.

About event listeners

The on statement must be followed by an event expression. An event expression
specifies the paern you want to match. It can specify multiple events, but this simple
example specifies a single event in its event expression. For details, see "About event
expressions and event templates" on page 160.

The all keyword extends the on command to listen for all events that match the
specified paern. Without the all keyword, the event listener would listen for only the
first matching event. In this example, without the all keyword, the event listener would
terminate after it finds one StockTick event.

In the sample code, the event expression is StockTick(*,*). Each event expression
specifies one or more event templates. Each event template specifies one event that you
want to listen for. The StockTick(*,*) event expression contains one event template.

The first part of an event template defines the type of event the event listener is looking
for (in this case StockTick). The section in parentheses specifies filtering criteria for
contents of events of the desired type. In this example, the event template sets both
fields to wildcards (*). This declares an event listener that is interested in all StockTick
events, regardless of content.

When an event listener finds a matching event, the listener can use the assignment
operator (:) to place that event in a global or local variable. For example:
on all StockTick(*,*):newTick processTick();

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 55

This copies a StockTick event into the newTick global variable. This is known as a
variable coassignment.

Finally, the on statement invokes the processTick() action. For all received StockTick
events, regardless of content, the sample monitor copies the matching event into the
newTick global variable, and then invokes the processTick() action. For details, see
"Using global variables" on page 266.

About the processTick() action

The processTick() action executes the log command to output some data on the
registered logging device, which by default is standard output. This log statement is
used to report some of the fields from the received event.For details, see "Logging and
printing" on page 295.

Accessing fields in events

EPL uses the ‘.' operator to access the fields of an event. You can see that the
processTick() action uses the ‘.' operator to retrieve both the name (newTick.name)
and price (newTick.price) fields of each event.

The log command requires strings as fields, so the processTick() action specifies the
built-in .toString() operation on the nonstring value:
newTick.price.toString()

Spawning monitor instances
It is frequently necessary to enable a single monitor to concurrently listen for multiple
kinds of the same event type. For example, you might want one monitor to listen for
and process stock ticks that each have a different stock name. You accomplish this is by
spawning monitor instances as described in the topics below.

See also "Spawning to contexts" on page 309.

How spawning works
In a monitor, you spawn a monitor instance by specifying the spawn keyword followed
by an action. When the correlator spawns a monitor instance, it does the following:

1. Creates a new instance of the monitor that is spawning.

2. Copies the following, if there are any, to the new monitor instance:

Current values of the spawining monitor instance's global variables

Any arguments declared in the action that is specified in the spawn statement

Anything referred to indirectly by means of the copied variables and arguments

3. Executes the named action with the specified arguments in the new monitor
instance.

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 56

The new monitor instance does not contain any active event listeners, stream listeners,
streams or stream queries that were in the spawning monitor instance. For example,
data held in local variables that are bound to a listener are not copied from the spawning
monitor instance to the new monitor instance. The figure below illustrates this process:

Spawning process

The figure shows a monitor that spawns when it receives a NewStock event. Initially, the
monitor has one active event listener. When the event listener finds the first NewStock
event, the monitor

1. Copies the name IBM to the chosenStock variable.

2. Spawns a monitor instance.

The spawned monitor instance duplicates the initial monitor instance's state. In this
example, this means that the value of the chosenStock variable in the spawned monitor
instance is IBM. When the initial monitor instance receives another NewStock event
(the value of the name field is ATT), it again copies the stock's name to the chosenStock
variable and spawns. The same occurs for the XRX event, resulting in three spawned
monitor instances.

Each new monitor instance starts with no active event listeners. It then creates a new
event listener for StockTick events of the chosen stock (see the sample code in the next
topic). The initial monitor instance's event listener for NewTick events remains active
after spawning. However, because the action to create a new StockTick event listener is
executed only in the spawned monitor instances, the initial monitor instance continues
to listen for only NewTick events.

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 57

Sample code for spawning
EPL that implements the example described in "How spawning works" on page 55 is
as follows:
// The following event type defines a stock that a user is interested
// in. The event type includes the name of the stock (name) and the
// user's personal name (owner).
//
event NewStock {
 string name;
 string owner;
}

event StockTick {
 string name;
 float price;
}

monitor SimpleShareSearch {
 NewStock chosenStock;
 integer numberTicks;
 StockTick newTick;

 // Listen for all NewStock events. When a NewStock event is found
 // assign it to the chosenStock variable and spawn with a call to
 // the matchTicks() action. This clones the state of the monitor
 // and launches a monitor instance that executes matchTicks().
 action onload() {
 numberTicks := 0;
 on all NewStock (*, *):chosenStock spawn matchTicks();
 }

 // In the spawned monitor instance, listen for only those StockTick
 // events whose name matches the name in the chosenStock variable.
 action matchTicks() {
 on all StockTick(chosenStock.name,*):newTick processTick();
 }

 action processTick() {
 numberTicks := numberTicks + 1;
 log "A StockTick regarding the stock "
 + newTick.name + "has been received "
 + numberTicks + " times. This is relevant for "
 + " Trader name: " + chosenStock.owner
 + " and the price is " + newTick.price.toString() at INFO;
 + ".";
 }
}

This example defines a new event type named NewStock. Traders dispatch this event
when they want to look for a specific kind of stock event. The code example spawns
a monitor instance when the monitor finds a NewStock event. For example, if three
newStock events are received by the initial monitor instance, there will be three
spawned monitor instances. Other than spawning, the difference between this code
sample and the sample in "Example of a simple monitor" on page 53is that this
one specifies an owner in each NewStock event and the monitor's state now includes a
counter.

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 58

In this example, after spawning, all processing is within a spawned monitor instance.
Processing begins with execution of the matchTicks action. This action starts by
defining an event listener for StockTick events whose name field matches the name
field in the spawned monitor instance's chosenStock variable. When there are multiple,
spawned monitor instances, each spawned monitor instance listens for only the
StockTick events that match their chosenStock name.

The numberTicks counter variable and the chosenStock event variable, which contains
the stock name and the owner's name, are available in the cloned state of the spawned
monitor instance. This lets the processTick() action in each spawned monitor instance

Customize output to include the originating trader's name

Maintain a counter of how many StockTicks for a particular stock have been
detected for a trader

The really important aspect that distinguishes spawning is that the entire variable space
is cloned at the moment of spawning. In the example, every spawned monitor instance
has a copy of the chosenStock variable that contains the NewStock event that triggered
spawning. Also, every spawned monitor instance has a copy of the numberTicks
variable, which is always set to 0 when the initial monitor instance spawns. This ensures
that each spawned monitor instance can maintain an accurate count of how many
matching StockTick events have been found.

The initial monitor instance listens for NewStock events. Remember that spawning
does not clone active listeners, so the spawned monitor instances do not have listeners
that watch for NewStock events. Each spawned monitor instance listens for only those
StockTick events that contain name fields that match that spawned monitor instance's
value for the chosenStock variable.

Typically, spawning is not an expensive operation. However, its overhead does increase
as the size of the monitor being spawned increases. When writing an EPL application
avoid repeated spawning of monitors that contain a large number of variables.

Spawned monitor instances contain copies of all global state from the spawning monitor
instance. It does not maer whether the spawned monitor instance is going to use that
state or not. To avoid wasting memory, a typical practice is to hold state in events that
are referred to by local variables, which are not copied during spawning. This ensures
that you do not have a lot of state information in global variables when the monitor
instance spawns. Alternatively, you can insert code so that the new monitor instance
clears unneeded state immediately after it starts running.

For information about spawning to actions that are members of events, see "Spawning"
on page 275.

Terminating monitor instances
The example discussed in "Sample code for spawning" on page 57 spawns a monitor
instance for each newStock event that the initial monitor instance receives. This is not
always desirable. For example, if two identical newStock events are received, two
identical monitor instances are spawned. To prevent this, you can use the die statement

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 59

to delete a monitor instance if a more recent one (with the same spawning properties)
has been created. For example:
action onload() {
 on all NewStock(*, *):chosenStock spawn matchTicks();
}
action matchTicks() {
 on NewStock (chosenStock.name, chosenStock.owner) die();
 // ...
}

In this fragment, the monitor spawns when it receives a NewStock event. In the spawned
monitor instance, the initial on statement activates an event listener for a NewStock
event that is identical to the one that caused the spawning. In other words, the spawned
monitor instance is listening for a NewStock event where the fields are the same as
that held by the chosenStock variable. If such an event arrives, the monitor instance
terminates. This structure ensures that only one monitor instance for each stock name
and owner exists at any one time. The same NewStock event kills the existing monitor
instance and causes spawning of a new monitor instance. That is, the same event triggers
the concurrent event listeners of the initial monitor and the spawned monitor instance.

In this solution, when a NewStock event kills an existing monitor instance and spawns a
new monitor instance, the value of the numberTicks variable in the new instace is zero.
Often, this kind of behavior is required. You want to ignore the state of the old monitor
instance and start afresh.

Note that the event that triggers the initial monitor instance's event listener and causes
the spawning of a monitor instance does not get processed by the spawned monitor
instance's new event listener. An event is available to only those event listeners that are
active when the correlator receives the event.

You can also use the die statement to kill a monitor instance at will. For example,
consider the following fragments:
event StopStock {
 string name;
 string owner;
}

action onload() {
 on all newStock(*, *):chosenStock spawn matchTicks();
}

action matchTicks() {
 on StopStock (chosenStock.name, chosenStock.owner) die();
 // . . .
}

Traders would send StopStock events when they are no longer interested in a particular
stock. Receiving a matching StopStock event kills the monitor instance that is listening
for that stock. You can use this technique to explicitly kill any monitor instance.

About executing ondie() actions
A monitor instance can terminate for any of the following reasons:

It executes all its code and has no active listeners or streaming elements.

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 60

The die() operation is called on it.

The engine_delete utility or an Apama client API removes the monitor from the
correlator.

A run-time error is detected in the monitor's code, which causes that instance of the
monitor to die.

In all of these situations, if the monitor defines an ondie() action, the correlator invokes
it. Like the onload() and onunload() actions, ondie() is a special action because the
correlator invokes it automatically in certain situations.

Suppose that a monitor that defines the ondie() action spawns ten times, and each
monitor instance dies. The correlator invokes ondie() eleven times: once for each
spawned monitor instance, and once for the initial monitor instance. Then, just
before the monitor's EPL is unloaded from the correlator, the correlator invokes the
onunload()action only once, and it does so in the context of the last remaining monitor
instance.

The correlator executes each ondie() operation in the context of its monitor instance.
Therefore, the ondie() operation can access the variables in the monitor instance being
terminated.

You cannot spawn in an ondie() or an onunload() action.

Specifying parameters when spawning
When spawning a monitor instance, you can pass parameters to an action. For example:
monitor m {
 action onload() {
 spawn forward("a", "channelA");
 spawn forward("b", "channelB");
 }

 action forward(string arg, string channel) {
 Event e;
 on all Event(arg):e {
 send e to channel;
 }
 on StopForwarding(arg) {
 die();
 }
 }
}

The following are equivalent:
spawn actionName(); // This is the correct syntax.
spawn actionName; // This is deprecated. Do not use it.

Communication among monitor instances
In EPL applications, everything in a monitor instance is private. There is no direct way
for a monitor instance to invoke an action or access the state of another monitor instance.

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 61

Instead, messages, in the form of events, are the mechanism for communication among
monitor instances. All events are visible to all interested monitor instances.

Consequently, how you divide your application operations into monitors and what
events the monitor instances use to communicate are crucial design decisions. An
understanding of the order in which the correlator processes events for monitors helps
you determine where and when to allocate events.

The topics below provide information for making these decisions.

To use the MemoryStore correlator plug-in to share state between monitors, see "Using
the MemoryStore" on page 365. If you are mixing monitors and queries in your
application, see "Communication between monitors and queries" on page 157.

Organizing behavior into monitors
Typically, an Apama application consists of several monitors each doing a specific
task. For example, a simple algorithmic trading system might consist of the following
monitors:

A monitor that manages order processing by spawning a monitor instance for each
order.

One or more market data monitors. Each monitor listens for a different type of
market data (such as tick data, market depth) required to process orders. Each of
these monitors typically spawns a monitor instance for each stock you want to
observe.

A more complex application might organize its orders into portfolios or split sets of
orders into smaller orders for wave trading or some other purpose.

In an Apama application, each monitor can usually be categorized as a core processing
monitor or a service monitor. A core processing monitor performs the tasks you want to
accomplish. A service monitor provides data needed by the core processing monitors.
Typically, the core processing monitors spawn multiple monitor instances. These
monitor instances will consume data from the same service monitors. For example, all
monitor instances that manage the individual orders for a given stock would obtain tick
data from the same instance of a service monitor. The ordinality of the solution elements
— for example, N order processors that require data from 1 tick data provider — often
dictates how the solution code should be organized into separate monitors. See also
"About service monitors" on page 67.

The ordinality of the solution elements often dictates how the solution code should be
organized into separate monitors. For example, there is an N:1 relationship between the
'N' order processor monitor instances that require market data for a given stock and the
'1' market data service monitor instance that supplies it.

Event processing order for monitors
As mentioned earlier, contexts allow EPL applications to organize work into threads
that the correlator can execute concurrently. When you start a correlator it has a main

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 62

context. In a monitor, you can create additional contexts to enable the correlator to
concurrently process events.

Note: In a query, you do not create contexts. Instead, Apama automatically creates
contexts as needed to process the incoming events.

Each context, including the main context, has its own input queue, which receives

Events sent specifically to that context from other contexts.

Events sent to a channel that a monitor in the context is subscribed to. See .

Concurrently, in each context, the correlator

Processes events in the order in which they arrive on the context's input queue

Completely processes one event before it moves on to process the next event

When the correlator processes an event within a given context, it is possible for that
processing to route an event. A routed event goes to the front of that context's input
queue. The correlator processes the routed event before it processes the other events in
that input queue.

If the processing of a routed event routes one or more additional events, those additional
routed events go to the front of that context's input queue. The correlator processes them
before it processes any events that are already on that context's input queue.

For example, suppose the correlator is processing the E1 event and events E2, E3, and E4
are on the input queue in that order.

While processing E1, suppose that events En1 and En2 are created in that order and
enqueued. These events go to the special queue for enqueued events. Assuming that
there is room on the input queue of each public context, the enqueued events go to the
end of the input queue of each public context:

While still processing E1, suppose that events R1 and R2 are created in that order and
routed. These events go to the front of the queue:

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 63

When the correlator finishes processing E1, it processes R1. While processing R1,
suppose that two event listeners trigger and each event listener action routes an event.
This puts event R3 and event R4 at the front of the context's input queue. The input
queue now looks like this:

It is important to note that R3 and R4 are on the input queue in front of R2. The correlator
processes all routed events, and any events routed from those events, and so on, before it
processes the next routed or non-routed event already on that queue.

Now suppose that the correlator is done processing R1 and it begins processing R3. This
processing causes R5 to be routed to the front of that context's input queue. The context's
queue now looks like the following:

See also "Understanding time in the correlator" on page 194.

Allocating events in monitors

Note: The principles described here apply to variables of any type, not just to any
event type or any reference type.

When writing monitors consider when and where to declare and populate event
variables. You can declare event variables at the monitor level or inside an action. Event
variables that you declare at the monitor level are similar to global variables.

Events are reference types. This means that, for example, a variable of event type Foo is
not an instance of Foo. The variable is a reference to an instance of Foo.

You cannot initialize the fields of a monitor-level variable. You can, however, initialize a
monitor-level instance of the event that the variable refers to. For example:
Foo a := Foo(1, 2.3);

This instantiates a Foo event and specifies that a refers to that event. Now suppose you
declare the following:
Foo b := a;

This does not instantiate a new Foo event. It only initializes b as an alias for a.

When you declare an event at the monitor level, the correlator can automatically use
default values for the event's fields. You can, but you do not have to, initialize field
values. This is because the correlator implicitly transforms a statement such as this:
Foo a;

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 64

into this:
Foo a := new Foo;

Before you use a locally declared event variable in an action, you must either assign it to
an existing event of the same type, or you must specify the new operator to create a new
event to assign to the variable. Note that each event field of an event created using new
initially has the default value for that event field type.

The following code illustrates these points:
event Foo
{
 integer i,
 float x;
}

monitor Bar
 Foo a; // Global (monitor-level) declaration.
 // The correlator creates a Foo event with default
 // values for fields.

 action onload() {
 a.i := 10; // Assign non-default value.
 a.x := 20.0; // Assign non-default value.
 Foo b; // Local (in an action) declaration.
 // The correlator does not create an event yet.
 b := new Foo; // Create a default Foo event and assign
 // it to local event.
 b.i := 10; // Assign a non-default value.
 b.x := 20.0; // Assign a non-default value.
 Foo c := a; // You can assign a locally declared event to
 // reference an existing event.
 // Variables a and c alias the same event.
 c.i := 123 // The value of a.i is now also 123.
 Foo d := Foo(15,30.0);
 // Create an event and also initialize it.
 }

Sending events to other monitors
After you inject a monitor into the correlator, it can communicate with other injected
monitors under the following conditions:

If the source monitor instance and the target monitor instance are in the same
context, the source monitor instance can route an event that the target monitor
instance is listening for. A routed event goes to the front of the context's input queue.
The correlator processes all routed events before it processes the next non-routed
event on the context's input queue. If the processing of a routed event routes another
event, that event goes to the front of the input queue and the correlator processes
it before it processes any other routed events on the queue. See "Event processing
order for monitors" on page 61.

If the source monitor instance and the target monitor instance are in different
contexts, the source monitor instance must have a reference to the context that
contains the target monitor instance. The source monitor instance can then send an
event to the context that contains the target monitor instance. The target monitor
instance must be listening for the sent event or the context that contains the target

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 65

monitor instance must be subscribed to the channel that the event is sent on. See
"Sending an event to a particular context" on page 312 and "Subscribing to
channels" on page 70.

Within a context, an application can use routed events and completion event listeners to
initiate and complete a service request inline, that is, prior to processing any subsequent
events on the input queue. See "Specifying completion event listeners" on page 172.

In the following example, the event listeners trigger in the order in which they are
numbered.
monitor Client {
...
 listener_1:= on EventA() { route RequestB(…) }
 listener_5:= on ResponseForB () { doWork(); }
 listener_6:= on completed EventA() { doMoreWork(); }
...
}

monitor Service1{
...
 listener_2:= on RequestB(…)
 route RequestC();
 listener_4:= on ResponseForC{
 route ResponseForB ();
 }
...
}

monitor Service1a{
...
 listener_3:= on RequestC (…)
 route ResponseForC();
}

Best practices for working with routed events include:

Keep them small — preferably zero, one, or two fields.

Specify wildcards wherever appropriate in definitions of events that will be routed.

See also "Generating events with the route command" on page 284.

Defining your application's message exchange protocol
Monitors use events to communicate with each other. Consequently, an EPL application
will have a well-defined message exchange protocol. A message exchange protocol
defines the following:

Types and structure of events that function as messages between monitor instances

Relationships among these events

Sequence and flow of events — which events are sent in response to receiving
particular events

Which monitors need to be able to handle which events, and conversely, which
monitors should not receive which events

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 66

Which channels these events are sent to, or whether they are sent directly between
contexts.

When you define your application's message exchange protocol, keep in mind that
any event that the correlator processes is potentially available to all loaded monitors.
Consequently, you want to follow conventions that prevent the inadvertent matching of
events with event listeners. These conventions are:

Use packages to restrict the scope of event names (for example, MyPackage,
YourPackage).

Use duplicate event definitions with different event names (for example,
MyStartEvent, YourStartEvent).

Use discriminating/addressing information in the event (for example,
Request{integer senderId;...}, Response { integer toSender;...}).

While event definitions provide partial support for a robust message exchange protocol,
they lack the ability to specify event paerns, request-response associations, and so on.
You should insert structured comments in your event definition files to define this part
of the message exchange protocol. The comments that describe the relationships among
the events define the contract that the participating monitors must adhere to. It is up
to you to document the expected flows and paerns and to ensure that your monitors
comply with the contract.

Some common message exchange paerns are:

Request/response

Publish/subscribe/unsubscribe

Start/stop

To identify the event types that a core monitor needs to support, consider the following:

What actions do you want to perform on the object that the monitor represents? You
might want to define an event that is dedicated to each action. For example, for an
order processing monitor, you might define an event type for each of the following
actions:

Place an order

Change an order

Cancel an order

Suspend trading

Resume trading

What initialization and termination events are needed? Keep in mind that a core
monitor is typically a factory that creates monitor instances that each represent a
single entity. You probably want to define at least one event type for initialization
and one event type for termination.

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 67

Do you need other control events? For example, in the order processing example,
do you need a control event that suspends all trading and applies to all orders? See
"Using events to control processing" on page 67.

Do you need to add any events to observe what is happening in the monitor? For
example, each order processing monitor could support a request/response protocol
to inquire of its state or it could simply send an OrderProcessingState event each
time there is a significant state change.

Using events to control processing
In addition to using events to share data, you can use events to control processing.
Control events are like switches. You use them to move a monitor from one state to
another. Control events typically contain lile or no data; that is, they have one or no
fields.

A common use for control events is to initialize or terminate a process. For example,
rather than use an onload() statement to set things up, it is good practice to use a
monitor's onload() statement to create an event listener for a start event. This practice
defers initialization until the start event is received. Similarly, you can use a stop event
to signal to a monitor that it should perform shutdown actions such as deallocating
resources before you terminate the correlator.

For example, consider the following action:
action initialize() {
 on EndAuction() and not BeginAuction() startNormalProcessing;
 on BeginAuction() and not EndAuction() startAuctionProcessing;
 route RequestAuctionState(); //A service monitor will respond with
 //an EndAuction or BeginAuction event
}

In this code, EndAuction and BeginAuction can be viewed as control events. Receipt of
one of these events determines whether the monitor executes the logic associated with
being in an auction or out of an auction.

About service monitors
Of course, all monitors can be considered to be providing some kind of service.
However, as mentioned earlier, it can be helpful to view the monitors that make up
your application as either core processing monitors or service monitors. It is common
for a single instance of a service monitor to provide data to a set of monitor instances
spawned from a core processing monitor instance.

Apama provides a number of service monitors that fit this paern. These service
monitors provide support for the following:

Dataview service — exposes read-only data to dashboards. This data comes from
EPL and Java applications.

Password service — supports retrieval of passwords from implementation-specific
providers.

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 68

Scenario service — provides support for all scenario-based applications.

In addition, there are a number of service monitors for use by adapters:

ADBC adapter — provides event capture and playback in conjunction with Apama's
Data Player in Software AG Designer. Also monitors Java database connectivity
(JDBC) and open database connectivity (ODBC).

IAF status manager — monitors connectivity with an adapter.

Adding predefined annotations
Some EPL language elements can take predefined annotations. They provide the
runtime and Software AG Designer with extra information about these language
elements. Annotations can appear immediately before the following:

Monitor declarations

Event declarations

Fields of events

Actions in monitors or event definitions

Annotations have packaged names like events. Thus, either their full name, or
(preferably) a using declaration should be added to the file to allow the name to be
used without having to specify its full name. Annotations are wrien as an at symbol
(@) followed by the name of the annotation, followed by parameters in parentheses.
The values used in annotation parameters must be literals. If both annotations and
ApamaDoc are specified, the order should be: ApamaDoc, followed by annotations,
followed by the language element that they apply to.

The following annotations are available:

Annotation Parameters Description

SideEffectFree None This annotation is part of the
com.apama.epl package. It tells the
EPL compiler that this action has no
side effects. When called from a log
statement, the compiler is free to not
call an action if it has no side effects
and the log level is such that the log
statement would not print anything to
the log file. See "Logging and printing"
on page 295.

OutOfOrder None This annotation is part of the
com.apama.queries package. It tells
the query runtime that these events

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 69

Annotation Parameters Description
may occur out of order. See "Out of
order events" on page 114.

TimeFrom string This annotation is part of the
com.apama.queries package. It tells
the query runtime the default action
name on the event definition to obtain
source time from. See "Using source
timestamps of events" on page 107.

Heartbeat string This annotation is part of the
com.apama.queries package. It
tells the query runtime the default
heartbeat event type to use. See
"Using heartbeat events with source
timestamps" on page 112.

DefaultWait string This annotation is part of the
com.apama.queries package. It
tells the query editor in Software AG
Designer the default time to wait to
use. See "Using source timestamps of
events" on page 107.

ExtraFieldsDict string This annotation is part of the
com.softwareag.connectivity
package. It names a field of type
dictionary<string,string> where
the apama.eventMap connectivity host
plug-in will place unmapped entries.
See "Translating EPL events using
the apama.eventMap host plug-in"
in Connecting Apama Applications to
External Components.

Example:
using com.apama.epl.SideEffectFree;
monitor SomeMonitor {
 action onload() {
 Event e;
 on all Event():e {
 log prettyPrint(e) at DEBUG;
 }
 }
 @SideEffectFree()
 action prettyPrint(Event e) returns string {
 return e.field1 +" : "+e.field2.toString();
 }

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 70

}

Subscribing to channels
Adapters and clients can specify the channel to deliver events to. In EPL, you can send
an event to a specified channel. To obtain the events delivered to particular channels,
monitor instances and external receivers can subscribe to those channels.

In a monitor instance, to receive events sent to a particular channel, call the
subscribe() method on the monitor pseudo-type by using the following format:
monitor.subscribe(channel_name);

Replace channel_name with a string expression that indicates the name of the channel
you want to subscribe to. You cannot specify a com.apama.Channel object that contains
a string.

Call the subscribe() method from inside an action. Any monitor instance in any
context can call monitor.subscribe().

The subscribe() method subscribes the calling context to the specified channel. When
a context is subscribed to a channel events delivered to that channel are processed by
the context, and can match against any listeners in that context. This includes listeners
from monitor instances other than the instance that called subscribe(). However, the
subscription is owned by the monitor instance that called monitor.subscribe(). If that
monitor instance terminates, then any subscriptions it owned also terminate.

A subscription ends when the monitor instance that subscribed to the channel
terminates or executes monitor.unsubscribe.

Whether an event is coming into the correlator or is generated inside the correlator, it
is delivered to everything that is subscribed to the channel. If the target channel has no
subscriptions from monitor instances nor external receivers then the event is discarded.

For example:
monitor pairtrade
{
 action onload()
 {
 on all PairTrade(): pt {
 spawn start_trade(pt.left, pt.right) to context(pt.toString());
 }
 }

 action start_trade(string sym1, string sym2)
 {
 monitor.subscribe(“ticks-“+sym1);
 monitor.subscribe(“ticks-“+sym2);
 // Next, set up listeners for sym1 and sym2.
 . . .
 }
}

This code spawns a monitor for each trade pair. The spawned monitor subscribes to
just the ticks for the symbols passed to it. If a symbol in one pair is slow to process,

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 71

any unrelated pairs of symbols are unaffected. See Event association with a channel in
Deploying and Managing Apama Applications.

In a context, any number of monitor instances can subscribe to the same channel. When
multiple monitors in a context require data from a channel the recommendation is
for each monitor to subscribe to that channel. This ensures that the termination of
one monitor does not affect the events received by other monitors. Subscriptions are
reference counted. The result of multiple subscriptions to the same channel from the
same context is that each event is delivered once as long as any of the subscriptions are
active. An event is not delivered once for each subscription.

Suppose that in one monitor instance you unsubscribe from a channel but another
monitor instance in the same context is subscribed to that channel. In the monitor
instance that unsubscribed, be sure to terminate any listeners for the events from the
unsubscribed channel. Events from the unsubscribed channel continue to come in
because of the subscription from the other monitor instance.

To explicitly terminate a subscription, call monitor.unsubscribe(channel_name).
In a given context, if you terminate the last subscription to a particular channel then
the context no longer receives events from that channel. If events from the previously
subscribed channel were delivered but not yet processed (they are waiting on the input
queue) those events will be processed. This could include the processing of any listener
matches. It is an error to unsubscribe from a channel that the calling monitor instance
does not have a subscription to, and this will throw an exception.

If a monitor is going to terminate anyway there is neither requirement nor advantage to
calling unsubscribe(). Calling unsubscribe() can be useful when a monitor listens
to configuration data during startup but does not need to listen to it during normal
processing.

Note: The subscribe() and unsubscribe() methods are static methods on the
monitor type. However, it is not possible to use instances of the monitor
type. For example, there cannot be variables or event members of type
monitor.

See also "Channels and contexts" on page 310.

Apama queries cannot subscribe to channels. However, events sent on the default
channel as well as events sent on the com.apama.queries channel are received by all
running Apama queries. See "Defining Queries" on page 75.

If a correlator is configured to connect to UM then a channel might have a corresponding
UM channel. If there is a corresponding UM channel the monitor is subscribed to the
UM channel. See Choosing when to use UM channels and when to use Apama channels in
Connecting Apama Applications to External Components.

About the default channel
The name of the default channel is the empty string.

M
Even Header

Defining Monitors

Developing Apama Applications Version 9.10 72

Public contexts, including the main context, are always subscribed to the default
channel. Contexts that Apama queries run in are also always subscribed to the default
channel.

When an adapter or client that is sending events to the correlator does not specify a
target channel the event goes to the default channel. There is no need for a public context
to subscribe to the default channel.

Events generated by the enqueue or route statements are not delivered to the default
channel.

An adapter that is using Universal Messaging (UM) to send events cannot use the
default channel. See Configuring adapters to use UM in Connecting Apama Applications to
External Components.

About wildcard channels
An external receiver can be configured to listen on the com.apama.input channel, which
is a wildcard channel for all events that come into the correlator. This can be useful
for diagnostics, testing, or auditing, but it is not recommended for production. In a
production environment, the recommendation is to explicitly specify the channels that
the receiver should listen on.

A monitor instance cannot subscribe to com.apama.input.

To configure an external receiver to process all events generated in the correlator,
specify that the receiver listens on the default channel (""). With this specification, a
receiver would get all events generated by the send...to channel and emit statements
regardless of the channel the event was directed to. Events generated by the enqueue or
route statements are not delivered to the default channel.

Adding service monitor bundles to your project
Depending on what your Apama application does, it might require one or more
provided service monitors. Apama organizes service monitors into bundles. To use the
service, you add the bundle to your Apama project in Software AG Designer.

To add a bundle to your project

1. In the Apama Developer perspective, open the project that you want to add the
bundle to.

2. In the Developer Project View, right-click the project name and select Properties from the
menu that appears.

3. In the Properties dialog, select MonitorScript Build Path.

4. Select the Bundles tab.

5. Click Add to display a list of Apama bundles.

6. Select the bundle you want to add.

M
Odd Header

Defining Monitors

Developing Apama Applications Version 9.10 73

7. Click OK twice.

The bundle now appears in the Developer Project View panel. Expand the bundle directory
to see the contents. To understand exactly what each service monitor provides, open the
service's EPL file in Software AG Designer. The comments in the EPL file explain the
purpose of each service monitor and how to use it.

You can also write your own service monitors. Best practices for doing this include:

Follow good engineering practices for defining message exchange protocols

Copy the conventions used in the Apama-provided service monitors as these
monitors implement common paerns.

Utilities for operating on monitors
Apama provides the following command-line utilities for operating on monitors. For
details about using these utilities, see Deploying and Managing Apama Applications,
"Correlator Utilities Reference".

engine_inject — injects files into the correlator.

engine_delete — removes items from the correlator.

engine_send — sends Apama-format events to the correlator.

engine_receive — lets you connect to a running correlator and receive events from
that correlator.

engine_watch — lets you monitor the runtime operational status of a running
correlator.

engine_inspect — lets you inspect the state of a running correlator.

engine_management — lets you shut down a running correlator or obtain
information about a running correlator. You can also use this utility to manage other
types of components, such as adapters, sentinel agent processes, and continuous
availability processes.

M
Even Header

Developing Apama Applications Version 9.10 74

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 75

3 Defining Queries

■ Introduction to queries ... 76

■ Format of query definitions .. 86

■ Defining metadata in a query .. 88

■ Partitioning queries ... 89

■ Defining query input ... 94

■ Finding and acting on event patterns .. 120

■ Implementing parameterized queries ... 146

■ Restrictions in queries .. 151

■ Best practices for defining queries .. 152

■ Testing query execution ... 155

■ Communication between monitors and queries ... 157

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 76

A query is one of the basic units of EPL program execution.

Note: The other basic unit is a monitor. A monitor cannot contain a query. A query
cannot contain a monitor. For information about writing monitors, see
"Defining Monitors" on page 49. For a comparison of queries and monitors,
see "Architectural comparison of queries and monitors" on page 79.

Apama queries are suitable for applications where the incoming events provide
information updates about a very large set of real-world entities. Apama provides
several sample query applications, which you can find in the samples\queries
directory of your Apama installation directory.

The topics below provide information and instructions for defining queries.

For reference information, see "Queries" on page 853.

See also: "Using Query Designer" in Using Apama with Software AG Designer and
"Deploying and Managing Queries" in Deploying and Managing Apama Applications.

Introduction to queries
An Apama query is a self-contained processing element that communicates with
other queries, and with its environment, by sending and receiving events. Queries are
designed to be multithreaded and to scale across machines.

You use Apama queries to find paerns within, or perform aggregations over, defined
sets of events. For each paern that is found, an associated block of procedural code is
executed. Typically this results in one or more events being transmied to other parts of
the system.

Note: If a license file cannot be found while the correlator is running, several
restrictions are enforced on queries. See "Running Apama without a license
file" in Introduction to Apama.

Example of a query
The following code provides an example of a query. This query monitors credit card
transactions for a large set of credit card holders. The goal is to identify any fraudulent
transactions. While this example illustrates query operation, it is not intended to be a
realistic application.
query ImprobableWithdrawalLocations {
 parameters {
 float period;
 }
 inputs {
 Withdrawal(value>500) key cardNumber within period;
 }
 find Withdrawal:w1 -> Withdrawal:w2
 where w2.country != w1.country {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }
}

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 77

Each query definition is in a separate file that has a .qry file name extension. The
example shows several query features:

Parameters section

Queries can be parameterized. When a query has no parameters, a single instance
of the query is automatically created when the query is loaded into a correlator. If
one or more parameters are defined for a query, when the query is loaded into a
correlator, no instances are created until you define an instance and specify a set of
parameter values for that instance.

Inputs section

The inputs section identifies the events that the query will operate on, that is,
the event inputs. This section contains one or more definitions. Each definition
identifies the type of input event (Withdrawal in the example) together with details
identifying which Withdrawal events are input, how those events are distributed,
and what state, or event history, is to be held.

The query key is a fundamental concept. If a key is defined, then the incoming events
are partitioned into different sets based on the value of the key. Query processing
operates independently for each set/partition. In the example query, events for each
cardNumber will be independently processed.

For each event input, the definition identifies the set of events that are current.
When looking for paern matches or evaluating aggregates, only current events are
used. For each event input, the set of events that is current is referred to as the event
window.

Find statement

The find statement identifies an event paern to be matched and defines what event
processing actions are taken when a match is found. A find statement consists of an
event paern followed by a find block.

The event paern can specify conditions that determine whether there is a match.
A where condition specifies a Boolean expression that must evaluate to true for
there to be a match. A within condition specifies that certain elements within the
paern must occur within a given time period. A without condition specifies an
event whose presence can prevent a match.

Statements in a find block can send events to communicate with other queries,
with monitor instances, and with external system elements in a deployment, such as
adapters, correlators, or other deployed processes. Some EPL statements, such as on,
spawn, from, and die are not allowed in queries.

Use cases for queries
Apama queries are useful when you want to monitor incoming events that provide
information updates about a very large set of real-world entities such as credit cards,
bank accounts, cell phones. Typically, you want to independently examine the set of
events associated with each entity, that is, all events related to a particular credit card

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 78

account, bank account, or cell phone. A query application operates on a huge number of
independent sets with a relatively small number of events in each set.

One use case for Apama queries is to detect subsequent withdrawals from the same
bank account but from locations that make it improbable that the withdrawals
are legitimate. Very large numbers of withdrawal events would stream into your
application. A query can segregate the transactions for each bank account from the
transactions of any other bank account. Your query application can then check the
transaction events for a particular account to determine if there have been withdrawals
within, for example, a two-hour period from locations that are more than two hours
apart. You can write a query application so that if it finds this situation the response is to
contact the credit card holder.

Another use case is to detect repeated maximum withdrawals from the same automatic
teller machine (ATM) within a short period of time. This might be due to a criminal with
a stack of copied cards and identification numbers. In this case, a query can segregate
events by ATMs. That is, the transactions conducted at a particular ATM would be in
their own partition, separate from transactions conducted at any other ATM. Your query
application can check the events in each partition to determine if, for example, there are
repeated withdrawals of $500 within one hour. If such a situation is found your query
can be wrien to send an alert message to the local police.

Another use case for Apama queries is to offer a beer data plan to new smartphone
users. Large numbers of events related to cell phone customers would come into the
system. Your query application can create sets of events where each set, or partition,
contains the events related to one cell phone customer. When your query detects an
upgrade from a flip phone to a smart phone, your application can automatically send a
message to that customer that outlines a beer data plan.

In summary, the characteristics of an Apama query application include:

You want to monitor a very large number of real-world entities.

You want to process events on a per-entity basis, for example, all events related to
one credit card account.

The data you need to retain in order to run Apama queries is either too large to fit on
to a single machine or there is a requirement to place it in shared, fast-access storage
(a cache) to support resilience/availability requirements.

More information about the use cases for queries can be found in "Understanding
queries" in Introduction to Apama.

Delayed and out of order events
In many of the typical applications envisaged for Apama queries, the input events may
be either delayed or out of order. For example, cars and other mobile sources of events
such as smart phones and tablet computers might normally send regular streams of
events, but when such devices are out of network coverage, these events will have to
be batched and sent when back in range. Many older generation factory robots store
events and only send periodic batches by design. And in other cases, events may be sent
out of order. Television set top boxes, for example, often employ distinct channels for

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 79

tuning information and diagnostics. This means that a "channel changed" event may be
received before a "set top box crashed" event, and so may be thought to have caused it,
even though the event in fact happened after it, and was causally unconnected.

Delayed or out of order events can create problems for the query runtime because it
assumes that events should be treated as being in the order in which they are processed,
and the time of each event is the correlator's time at the point the event is processed.
However, provided that the input events contain a timestamp recording the time that
the event was created at the source, these problems can be overcome by using the
Apama queries source timestamp functionality. This allows the queries runtime to
wait for specified periods before processing events, and then to process those events
on the basis of their source timestamps rather than the time they were received by
the correlator. (For out of order events, the Apama event definitions must have the
appropriate annotation; for more information, see "Out of order events" on page 114).

Events can also be supplemented by heartbeat events with timestamps from data
sources to inform the query runtime when communication with the data source is
working correctly, which avoids long delays waiting for events to occur in case they are
delayed.

See "Using source timestamps of events" on page 107 for details on how to configure
Apama queries to use source timestamps.

Architectural comparison of queries and monitors
In some ways, an Apama query is similar to an Apama monitor. Each operates as a self-
contained event processing agent that communicates with other monitors and queries by
sending and receiving events.

Note: While Apama queries and Apama stream queries use similar terminology,
they are different constructs. Apama queries can communicate with monitors
but Apama queries are not contained in monitors. Whereas Apama stream
queries are defined and operate inside monitors.

One difference between a monitor and a query is the programming model for scaling.
With monitors, the approach is procedural. A spawn statement is used to create new
monitor instances. Typically, for each real-world entity, a separate monitor instance
is used to handle the events relating to that entity. The developer has full control over
what data is held where as well as the design of the solution architecture. With queries,
the approach is declarative. A key is defined which is used to identify how the events
are partitioned such that events from each real-world entity are handled separately.
Also, queries can use a distributed Apama MemoryStore to share historical data between
correlators. This allows query deployments to scale across several hosts, make the same
data available to multiple correlators and provide availability should a correlator fail or
be taken down for maintenance.

Another difference between monitors and queries is the way in which they handle the
state, or event history. With monitors, each monitor instance holds the state, or event
history, needed for its continuing processing. This state is held in memory, which allows
high-performance processing over complex state. With queries, the only state is the

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 80

event history, which is held separately from the query. The query is effectively stateless,
which allows queries to easily scale across correlators.

Typically, a monitor instance operates on events that relate to a particular real world
entity. To operate on events related to another entity in the same set, the monitor
typically spawns another instance. In contrast, the definition of a query specifies how
to partition incoming events so that each set of events that relates to a particular real-
world entity is in its own partition. The query operates on the events in each partition
independently of every other partition.

The following table compares monitor variables with query parameters:

Monitor variables Query parameters

Can store any complex state that the
monitor requires

Must be one of the following types:
boolean, float, integer, string.

Can be updated by the monitor. Can only be read by the query.

Are private to that monitor instance. Are controlled by Scenario Service
clients.

A monitor can subscribe to a channel to receive all events sent on that channel. A query
cannot subscribe to a channel. However, running Apama queries automatically receive
all events sent on the com.apama.queries channel as well as all events sent on the
default channel. For example, monitors, adapters, and the engine_send utility can send
events to the com.apama.queries channel.

Both monitors and queries can send events to a channel. In both monitors and queries,
the send command sends events to only those components that are connected to
that correlator. For both monitors and queries, sending events to other correlators in
the cluster requires connections created by the engine_connect utility or the use of
Universal Messaging to connect the correlators to the same set of UM channels.

In general, monitors follow a more imperative paern while queries have more
declarative clauses. For example, a monitor can use conditional if...then...else
statements to determine whether there is a match that triggers some processing. A query
specifies where, within, and/or without clauses to define filters, time constraints, and
exclusions, respectively, right in the event paern. In general, this allows queries to be
simpler than monitors.

Query terminology
The following table defines important query terms.

Term Description

query A self-contained processing unit. It partitions incoming
events according to a key and then independently

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 81

Term Description
processes the events in each partition. Processing involves
watching for an event paern and then executing a block of
procedural code when that paern is found.

input An event type that a query operates on. An input definition
specifies an event type plus details that indicate how to
partition incoming events and what state, or event history,
is to be held.

key A query key identifies one or more fields in the events
being operated on. Each input definition must specify the
same key.

partition A partition contains a set of events that all have the same
key value. One or more windows contain the events added
to each partition.

window For each input, a window contains the events that are
current. The query operates on only current events.

latest event The latest event is the event that was most recently added
to a partition.

set of current
events

The events that are in the window(s) of a partition.

paern Specification of the event or sequence of events or
aggregation that you are interested in. A paern can
include conditions and operators.

match set A match set is the set of events that matches the specified
paern. A match set always includes the latest event.

parameterization A query definition that specifies parameters is a
parameterized query. An instance of a parameterized query
is referred to as a parameterization.

source timestamp The time an event occurred at its source. This may be
before it is processed if there is some delay or disruption in
delivering the event from the source to the query runtime.
This will be data in one or more fields of an input event.
Queries can use the source timestamp if an action is
provided to obtain the source timestamp in the correct

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 82

Term Description
form. See "Using source timestamps of events" on page
107.

heartbeat event An event that a query uses to determine when
communication with a data source is working correctly,
and it has not missed any events that are delayed. With
heartbeat events, received input events can be processed
as they are considered definitive. Without these, the query
runtime needs to wait for the input's wait time specified
in the query definition to ensure it avoids missing delayed
events.

definitive time The point in time for which the query runtime has been
told that it can assume it has received all the events it is
going to receive. All events at or before this point in time
are considered definitive and can be used to evaluate the
query. This applies when using the source timestamp
functionality.

Overview of query processing
When Apama executes queries, it does so in parallel, making use of multiple CPU cores
as available. This is good for performance, but uses more resources on the hosts running
the correlator and can, in edge cases, cause events to be processed in an order that is
different from the order in which they were delivered to the correlator. To simplify
testing, a serial mode is supported where events are processed in order, no maer how
quickly they are sent.

Apama processes queries as follows:

1. Based on the inputs section of a query, the query subsystem creates listeners for the
required events.

2. Running Apama queries receive events sent on the default channel and on the
com.apama.queries channel.

3. Events matching those listeners are forwarded to the query subsystem that processes
the events.

4. The events are processed in parallel. That is, multiple threads of execution are
employed, thereby achieving vertical scaling on machines that have multiple cores.

5. The query subsystem must locate the relevant events for the query partition. That
is, the previously encountered events that are still current according to the defined
event windows for that query. The information in the incoming event, that is, the
key, is all that is required to locate these events.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 83

6. The window contents are updated, adding the new event and discarding any events
that are no longer current.

7. The system then checks the updated window contents to determine if there are any
new paern matches.

8. For each new paern match the associated find block statements are executed.

In a single correlator solution, events in a particular partition are held in one or more
Apama MemoryStore records. The key from the incoming event is used to locate these
records. In a multi-correlator solution, the records are held in a distributed cache,
accessed by means of the MemoryStore API. All of this is internal, however, you
should consider timing constraints when deciding whether a query-based solution is
appropriate for a given problem. See "Understanding queries" in Introduction to Apama.

After injecting a query into a correlator, events may be immediately sent to that query.
If necessary, Apama stores these events until the query is prepared. That is, the query
might be opening local/remote stores. Events are delivered when the query is ready to
process them. There is no guarantee that the order in which the events arrived in the
correlator is the same order in which the query processes them. See "Event ordering" in
"Testing query execution" on page 155.

When testing, either send events at a realistic event rate, with pauses in between each set
of events, or use single context mode. To send events with pauses, you can place BATCH
entries in the .evt file. See "Event timing" in Deploying and Managing Apama Applications.

By default, the query subsystem determines the size of the machine it is running on (the
number of cores) and scales accordingly. If other services are affected by the load on the
host machine, or for testing, then send one of the following events to the correlator (for
example, by creating an .evt file in Software AG Designer and sending it as part of the
Run Configuration) to configure how the correlator executes queries:

com.apama.queries.SetSingleContext()

com.apama.queries.SetMultiContext()

Overview of query application components
While queries can make up the central logic of an Apama deployment, deploying an
Apama query application also requires event definitions, and connections to event sinks
and event sources. Optionally, an Apama query application can make use of correlator
plug-ins, EPL actions, and interactions with EPL monitors.

In addition to queries, the following components are required to implement a query
application.

Event definitions. This includes event types used by adapters or mapped from
message busses (see below) or used internally within application components.
Typically, event types specific to an adapter or to existing messages on a message
bus would be wrien by those creating or configuring the adapter.

Connections between event sources and queries and also between queries and event
sinks. This is typically handled by adapters or by mapping to messages on a message

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 84

bus by means of JMS. For testing, it is possible to use Software AG Designer or
command line tools to send and receive messages.

A correlator process. Several queries can share the same correlator process. Queries
can be started by Ant scripts, which can be exported from an Apama project. For
testing, Software AG Designer can start the queries.

Optionally, queries can use a library of functions that you provide. These would be
wrien in EPL and can call correlator plug-ins wrien in C++ or Java. Functions in
such a library can be invoked from different points in a query.

Optionally, a query can interact with monitors. See "Communication between
monitors and queries" on page 157.

Additional information about query application architecture is in "Query application
architecture" in Deploying and Managing Apama Applications.

Writing event definitions

Event definitions are defined in Apama .mon files. When writing event type definitions
be sure to consider the following:

An inputs block in a query can specify filters on event fields of type boolean,
decimal, float, integer, string or location.

An event field to be specified as a query key must be of type boolean, decimal,
float, integer, string or location.

An event field to be specified in an inputs block, whether as a filter or a key, cannot
be marked with the wildcard modifier in the event type definition.

A where condition in a query can make use of all actions and fields of events,
including members of reference types such as sequence, dictionary and other
events.

Specifying an event filter in an inputs block is very efficient because it prevents any
part of the query from executing if the filter condition does not match. However, a
filter in an inputs block can operate on only contiguous ranges and can compare
only a single field to a constant or parameter value.

Specifying an event filter in a where condition is more expensive than specifying
an event filter in an inputs block. However, a filter in a where clause can be more
powerful because it can specify any EPL expression.

A query cannot use an event that contains an action variable or fields of type chunk
or listener.

If you want to take advantage of the source timestamp functionality, be sure to add
an event field that records the time of the creation of the data encapsulated in the
event, and an action that returns this time in the form of a float representing the
number of seconds since the epoch (midnight , 1 Jan 1970 UTC). If the time data is
not in this format, you can use the TimeFormat Event library to perform the relevant
conversions (for further information, see "Using the TimeFormat Event Library" on
page 357).

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 85

For example, consider the following event definitions:
event Slice {
 integer quantity;
 float price;
}
event UsableEvent {
 integer quantity;
 string username;
 wildcard string auxData;
 sequence<Slice> slices;
 action averagePrice() returns float {
 float t:=0;
 Slice s;
 for s in slices {
 t:=t+s.price;
 }
 return t/(slices.length().toFloat());
 }
}
event InternalEvent {
 action<> returns float averager;
}

UsableEvent.quantity and UsableEvent.username can be used in a query inputs
block or in a query where condition.

UsableEvent.auxData, UsableEvent.slices and UsableEvent.averagePrice() can
be used in where conditions but not in inputs blocks.

InternalEvent cannot be an input to a query because it has an action variable.
However, an instance of InternalEvent could be used in a where condition or in
triggered EPL code in a find block.

For example, the find statement in a query can be wrien as follows:
find UsableEvent:e1 and UsableEvent:e2
 where e1.averagePrice() > e2.averagePrice()
 and
 e1.slices[0].price < e2.slices[0].price

Action definitions can supply helper actions such as the averagePrice() action above.
This can be useful in both event types used by adapters and in internal event types. For
example, some event types may have no members but simply be a named container for
useful library actions.

To make use of correlator plug-ins, wrien in C, C++ or Java, it is recommended to write
an EPL event type or set of event types that wrap the plug-in. This provides a more
consistent interface and can add type safety to the use of chunks, which are opaquely-
typed C, C++ or Java objects. These EPL actions can then be called from queries, as can
any EPL action.

Event sinks and sources

A typical deployment includes adapters that connect the Apama system to external
sources of data or provide the means to send events out of Apama. This can include:

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 86

Adapters hosted in the Apama IAF. See "Using the IAF" in Connecting Apama
Applications to External Components.

Connections to a JMS message bus with mapping of JMS messages to Apama
event types. See "Correlator-Integrated Messaging for JMS" in Connecting Apama
Applications to External Components.

Connections to a database by means of ADBC. See "Using the Apama Database
Connector" in Connecting Apama Applications to External Components.

Connections to other components using the Apama engine_client library.
See "Developing Custom Clients" in Connecting Apama Applications to External
Components.

For testing purposes, Software AG Designer can send / receive events from / to files, and
command line tools are provided as well.

Correlator process

When developing queries in Software AG Designer, launching a configuration starts a
correlator and injects queries into it by default. It is also possible to export the Apama
launch configuration to an Ant script, which can be copied onto another machine such as
a server to run your project on that machine.

It is possible to run multiple correlators that are configured to use the same
distributed cache store. These correlators share query state. In such deployments, the
recommendation is to use a JMS Message Queue. Typically, these deployments would
use correlators on separate physical machines so a failure of one does not affect others.
For testing, it is possible to run several correlators on a single machine provided a
separate port number is allocated to each correlator. Take care to use the correct port
number when interacting with the correlators.

Format of query definitions
A query searches for an event paern that you specify. You define a query in a file
with the extension .qry. Each .qry file contains the definition of only one query.
The following sample shows the definition of a simple query that will search for a
Withdrawal event paern:
query ImprobableWithdrawalLocations {
 metadata {
 "author":"Apama",
 "version":"1"
 }
 parameters {
 float period;
 }
 inputs {
 Withdrawal() key cardNumber within (period);
 }
 find
 Withdrawal:w1 -> Withdrawal:w2
 where w2.country != w1.country {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 87

}

The format for a query definition is as follows:
query name {
 [metadata { metadata_block }]
 [parameters { parameters_block }]
 inputs { inputs_block }
 find pattern block
 [action_definition ...]
}

Syntax Element Description

query name Specify the query keyword followed by a name for your
query. Like monitors and event types, the identifier you
specify as the name of a query must be unique within
your application.

metadata The metadata section is optional. If you specify a
metadata section, it must be the first section in the
query. Metadata are specified as a list of key-value pairs.
Both key and value must be string literals. For more
information, see "Defining metadata in a query" on page
88.

parameters The parameters section is optional. If you specify
a parameters section, it must follow the metadata
section, if there is one, and precede the inputs section.
Parameters must be integer, float, string or boolean
types. Specify one or more data_type parameter_name
pairs. Any parameters you specify are available in the
inputs section and in the find statement. For more
information about parameters and how parameters get
their values, see "Implementing parameterized queries"
on page 146.

inputs The inputs section is required and it must follow the
parameters section, if there is one, and precede the find
statement. In the inputs section, you must define at least
one input. If you specify more than one input each input
must be a different event type.

The inputs section specifies the events that the query
operates on. An input definition can include the keyword,
key, followed by one or more fields in the specified event.
This is the query key. The correlator uses the key to
partition incoming events into separate windows. For
example, the cardNumber key indicates that there is a
separate window for the Withdrawal events for each

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 88

Syntax Element Description
card number. In other words, each window can contain
Withdrawal events associated with only one account.

For details, see "Defining query input" on page 94.

find statement After the inputs section, you must specify a find
statement. A find statement specifies the event paern of
interest and a block that contains procedural code. This
code can define EPL actions you want to perform when
there is a match. For more information, see "Finding and
acting on event paerns" on page 120.

action_definition After the find statement, you can optionally specify one
or more actions in the same form as in EPL monitors. An
expression in a find statement can reference an action
defined in that query. See "Defining actions in queries" on
page 145.

Defining metadata in a query
You can record information about a query in the metadata section. This can be, for
example, the recording author, the version number, or the last modified date of a query.
Once defined, metadata information about a query can be viewed in the Scenario
Browser. See also "Using the Scenario Browser view" in Using Apama with Software AG
Designer.

Format for defining query metadata

You define query metadata in the metadata section of a query definition. The metadata
section is optional. If you specify a metadata section, it must be the first section in the
query. The format for specifying the metadata section is as follows:
metadata {
key :value
 [, key :value]...
}

key and value must be string literals. Both are case-sensitive.

value can be a multi-line string.

key must be a valid EPL identifier (see "Identifiers" on page 919). Therefore, key must
not include spaces, hyphens, dots or any other characters that are not allowed in EPL
identifiers.

All key definitions that are contained in a single metadata section of a query must be
unique.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 89

It is recommended to use lowerCamelCase style for the key. The prefix "apama" should
not be used for the key as it is reserved for future use.

Partitioning queries
Based on the values of selected fields in incoming events, the correlator segregates
events into many separate partitions. Partitions typically relate to real-world entities that
you are monitoring such as bank accounts, cell phones, or subscriptions. For example,
you can specify a query that partitions Withdrawal events based on their account
number. Each partition could contain the Withdrawal events for one account. Typically,
a query application operates on a huge number of partitions with a relatively small
number of events in each partition.

Each partition is identified by a unique key value. You specify a key definition in each
input definition in the query's inputs block. The key definition specifies one or more
fields in the event type you want to monitor. The number, order and type of the key
fields must be the same in each input definition in a query.

A query operates on the events in the windows in each partition independently of the
other partitions.

Note: Several restrictions are enforced on queries if a license file cannot be found
while the correlator is running. See "Running Apama without a license file" in
Introduction to Apama.

Defining query keys
At runtime, each partition is identified by a unique key value, which is the value of one
or more fields in the events that the query operates on.

Note: Using a key is optional. If you do not specify a key, all events the query
operates on are in one partition. Since this is an unusual use case for queries,
the documentation assumes that you always choose to specify a key.

An event member that is declared as a constant cannot be used as a query key.

In a query, each input definition in the inputs section specifies the query key in the key
definition. The key definition specifies one or more fields in the event that the window
will contain. For example:
query ImprobableWithdrawalLocations {
 inputs {
 Withdrawal() key cardNumber within (600.0);
 }
 find (Withdrawal:w1 -> Withdrawal:w2)
 where (w1.country != w2.country) {
 getAccountInfo();
 sendEmail();
 }
}

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 90

In this example, the definition for Withdrawal events specifies that the cardNumber field
is the key. When the correlator processes a Withdrawal event, it adds the event to the
partition identified by the Withdrawal event's cardNumber value.

Suppose the input definition in this example specifies two key fields:
inputs {
 Withdrawal() key cardNumber, cardType within (600.0);
}

Each partition is now identified by a combination of the cardNumber value and the
cardType value. When you specify two or more key fields, insert a comma after each
field except the last one. It is allowable to specify key fields in an order that is different
than the order of the fields in the event.

When you specify more than one input in a query, each input definition must specify the
same number and data type order of key fields. For example:
inputs {
 Withdrawal() key cardNumber within (600.0);
 AddressChange() key cardNumber retain 1;
}

For each input in this example, the key is the cardNumber field. The data type of the
cardNumber field in the Withdrawal event must be the same as the data type of the
cardNumber field in the AddressChange event.

Sometimes, a field in one event contains the same information as a field in another event
but the two fields have different names. For example, information about the type of a
card could be in the cardType field in Withdrawal events and the typeOfCard field
in AddressChange events. In this situation, you must specify an alias for one of the
event field names. You do this in the input definition's key definition. In the following
example, as cardType in the second input definition specifies the alias:
inputs {
 Withdrawal() key cardNumber, cardType within (600.0);
 AddressChange() key cardNumber, typeOfCard as cardType retain 1;
}

When you specify more than one input, the key definition in each input definition must
specify the same number of fields in the same order. Also, the data type of a field in one
key definition must be the same as the data type of its corresponding field in every other
key definition in the same inputs block. If the names of corresponding key fields are not
the same, you must use the as keyword to specify an alias.

While specification of an alias for a key field name is sometimes required, it is always an
option you can choose to use. For example:
inputs {
 Withdrawal() key number as cardNumber, cardType within (600.0);
 AddressChange() key number as cardNumber, typeOfCard as cardType retain 1;
}

An alias maps a field in an event to a key field. You cannot use an alias as a field of the
event. For example, consider the following query:
query Q {
 inputs {
 A() key surname as lastName, dob as dateOfBirth retain 5;

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 91

 B() key lastName, dateOfBirth retain 4;
 }
 find A:a -> B:b ...
}

In the find block of this query, you can use the following

a.surname, a.dob - Names of event fields

b.lastName, b.dateOfBirth - Names of event fields

lastName, dateOfBirth - Names of key fields

Query partition example with one input
A key can be one event field. For example:
query ImprobableWithdrawalLocations {
 inputs {
 Withdrawal() key cardNumber within (600.0);
 }
 find (Withdrawal:w1 -> Withdrawal:w2)
 where (w1.country != w2.country) {
 getAccountInfo();
 sendEmail();
 }
}

In the previous code fragment, the key is the cardNumber field in the incoming
Withdrawal event type. When a Withdrawal event arrives the correlator adds it to the
window in the partition identified by the value of the Withdrawal event's cardNumber
field. For each partition, each unique card number in this example, the correlator
maintains the window and evaluates the paern separately from every other partition.

Suppose that cardNumber is the first field in Withdrawal events. The following table
shows what happens at runtime.

Incoming Event Goes Into Window in
Partition Identified by This
Key Value

Window Contents

Withdrawal (12345,
50.0, ...)

12345 Withdrawal (12345,
50.0, ...)

Withdrawal (24601,
60.0, ...)

24601 Withdrawal (24601,
60.0, ...)

Withdrawal (12345,
10.0, ...)

12345 Withdrawal (12345,
50.0, ...),

Withdrawal (12345,
10.0, ...)

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 92

In the execution of this query, there is no interaction between the Withdrawal events for
account number 12345 and the Withdrawal event for account number 24601.

Query partition example with multiple inputs
The following query provides an example of partitioning with two inputs. This query
operates on APNR (Automatic Plate Number Recognition) events and Accident events:
query DetectSpeedingAccidents {
 inputs {
 APNR() key road within(150.0);
 Accident() key road within(10.0);
 }
 find APNR:checkpointA -> APNR:checkpointB -> Accident:accident
 where checkpointA.plateNumber = checkpointB.plateNumber
 and checkpointB.time - checkPointA.time < 100
 // Which indicates the car was speeding
 {
 emit NotifyPolice(accident.road, checkpointA.plateNumber);
 }
}

The road field in an APNR event must be the same type as the road field in an Accident
event. Assuming that road is a string, each partition is identified by a unique value for
that string.

Suppose the correlator processes the following events in top to boom order and that
road is the first field in each event:

Accident("M11")

APNR("A14", "FAB 1", ...)

APNR("A14", "BSG 75", ...)

APNR("M11", "ZC 158", ...)

APNR("A14", "BSG 75", ...)

APNR("M11", "ZC 158", ...)

APNR("A14", "FAB 1", ...)

Accident("A14")

The following table shows which events are in which partitions. Note that in each
partition, the APNR events are in one window and the Accident events are in another
window. Although the events are in separate windows, the correlator time-orders the
events across all windows in a partition.

Events in Partition Identified by "M11" Events in Partition Identified by "A14"

Accident("M11")

APNR("M11", "ZC 158", ...)

APNR("M11", "ZC 158", ...)

APNR("A14", "FAB 1", ...)

APNR("A14", "BSG 75", ...)

APNR("A14", "BSG 75", ...)

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 93

Events in Partition Identified by "M11" Events in Partition Identified by "A14"

APNR("A14", "FAB 1", ...)

Accident("A14")

In each partition, the query evaluates the event paern against the events in the
windows in that partition. The query does this for each partition separately from every
other partition. In this example, when the correlator adds the Accident("A14") event
to the partition identified by "A14" the event paern is triggered if the where clause in
the find statement evaluates to true. The event paern is not triggered in the partition
identified by "M11".

About keys that have more than one field
A key can be made up of several event fields. For example, a Transaction event might
contain a field that indicates the transaction source account and another field that
indicates the transaction destination account. You can specify that you want to partition
Transaction events according to each unique source/destination combination:
query TransactionMonitor {
 inputs {
 Transaction() key source, dest within PERIOD;
 }
...
}

In this example, there is a partition identified by the value of each source/dest
combination. Each of the following events is added to a window in a different partition:

This Event Is Added to the Window in the Partition
Identified By

Transaction(1, 100, ...) 1, 100

Transaction(1, 102, ...) 1, 102

Transaction(2, 100, ...) 2, 100

Transaction(2, 102, ...) 2, 102

Regardless of the event paern in the query, this query monitors the transfer of money
from one specific account to another specific account. This query handles each transfer
between the same two accounts separately from all other transactions.

Now suppose that there is an Acknowledgement event that acknowledges that a
transaction has succeeded. It also has account source and account destination fields,
but they are inverted when compared to the transaction event fields. That is, the
source account for an acknowledgment is the destination account of the transaction. To

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 94

ensure that the acknowledgments are added to the same partition as the corresponding
transactions, the key definition specifies the as keyword:
inputs {
 Transaction() key source as txSource, dest as txDest within PERIOD;
 Acknowledgement() key dest as txSource, source as txDest within PERIOD
}

The query partitions events according to the combined values of the fields identified by
txSource and txDest. The following table shows the partition that each event is added
to.

This Event Is Added to a Window in the Partition
Identified By

Transaction(1, 100, ...) 1, 100

Acknowledgement(100, 1, ...) 1, 100

Transaction(1, 102, ...) 1, 102

Transaction(2, 100, ...) 2, 100

Acknowledgement(100, 2, ...) 2, 100

As you can see, a Transaction event and its Acknowledgement event are each added to
a window in the same partition.

Defining query input
In a query definition, you must specify an inputs block that defines at least one input.
The input definitions identify the events that you want the query to operate on. An input
definition can specify particular content and it can also specify a number of events or a
time period. For example:
query FraudulentWithdrawalDetection {
 inputs {
 Withdrawal(amount > 10.0)
 key cardNumber, cardType
 within 600.0;
 AddressChange()
 key cardNumber, typeOfCard as cardType
 retain 1;
 }
 find (Withdrawal:w1 -> Withdrawal:w2)
 where (w1.country != w2.country or w1.city != w2.city)
 without AddressChange:ac {
 getAccountInfo();
 if preferredContactType = "Email" then {
 sendEmail();
 }
 if preferredContactType = "SMS" then {
 sendSMS();

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 95

 }
 }
}

The previous code defines two inputs. For each input, there is an associated window
of events. The first input window contains Withdrawal events and the second contains
AddressChange events.

The input definition for the Withdrawal events specifies that each Withdrawal event
in the window must have a value greater than 10.0 in the amount field. The input
definition for the AddressChange events does not specify an event filter. Therefore, each
AddressChange event that arrives is eligible to be in the window.

The next element in an input definition is the key definition. The key definition indicates
how you want to partition the incoming events. If you define more than one input,
the number, type and order of the key fields must be the same for each input. In the
previous sample code, assume that the key fields for Withdrawal events, cardNumber
and cardType are integer and string, respectively, and that the key fields for
AddressChange events, cardNumber and typeOfCard are also integer and string,
respectively. The two input keys match in number, type and order of key fields.

After the key definition, you can specify a within clause, a retain clause, or both. If
you specify both, the within clause must be before the retain clause. A within clause
specifies a period of time. Only events that arrive within that period of time are in the
window. In the window that contains Withdrawal events, only Withdrawal events
that have arrived in the last 10 minutes (600.0 seconds) are in the window. A retain
clause specifies how many events can be in the window. In the window that contains
AddressChange events, only the last AddressChange event that arrived can be in the
window. When an AddressChange event arrives, if an AddressChange event is already
in the window it is ejected.

After the duration, you can optionally specify a with unique clause to prevent repeated
values appearing in the window. If specified, the with unique clause lists one or more
fields or actions on the event type (action names should be followed by open and close
parentheses). If there is more than one event in the window after the within and retain
specifications, then all but the latest are discarded. See "Matching only the latest event
for a given field" on page 119.

The final, optional, element of an input definition is the specification of the event source
timestamp and the associated wait period. If you expect that input events from a source
will be subject to delays or may be received out of order, then you can specify a time
from clause with the name of an action that returns a float specifying the number of
seconds from the epoch (midnight, 1 Jan 1970 UTC) that the event was created. If you
do this, you must also add a wait clause which requires a float or time literal specifying
the maximum delay expected for these events. This tells the query runtime how long it
must wait if it has not received any events before it can continue processing the events it
has received. Both of these clauses require that the event definition must have a source
timestamp recording the time of creation of the event, and a corresponding action that
returns that timestamp in the form of a float representing the number of seconds since
the epoch. In the example below, the query is gathering data from cars, which may be
delayed if a vehicle goes out of network coverage. Accordingly, the input definitions
specify that the source timestamps of the events are to be obtained from the events'

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 96

getEcuTime actions which simply return the value of the events' ts float field. Further,
the input definitions specify that in each case, the runtime should wait for up to 1 hour
before continuing to process any events already received to allow for possible delays.
For further details, see "Using source timestamps of events" on page 107.
event CarRPM {
 string carId;
 float ts;
 float rpm;
 action getEcuTime() returns float {
 return ts;
 }
}
event CarEngineTemp {
 string carId;
 float ts;
 float temp;
 action getEcuTime() returns float {
 return ts;
 }
}
event CarEngineMisfire {
 string carId;
 float ts;
 action getEcuTime() returns float {
 return ts;
 }
}
query DetectEnginePerformanceProblems {
 inputs {
 CarEngineTemp() key carId within 1 hour time from getEcuTime wait 1 hour;
 CarRPM() key carId within 1 hour time from getEcuTime wait 1 hour;
 CarEngineMisfire() key carId within 1 hour time from getEcuTime wait 1 hour;
 }
 find CarEngineTemp:t and CarRPM:r -> wait 1 minute
 where t.temp > T_THRESHOLD
 where r.rpm > R_THRESHOLD
 without CarEngineMisfire:misfire {
 log "Possible engine performance problem" + t.toString() + r.toString();
 }
}

Typically, you define one to four inputs. If you define more than one input, each must be
a different event type. In other words, two inputs to the same query cannot be the same
event type.

Queries can share windows

All query instances that have the same input definitions share the same windows. Two
queries have the same input definitions when they specify:

the same input event types (the order can be different)

the same keys

the same (if any) input filters

the same use of source timestamps - that is, the same action named in time from
clauses (wait times may be different)

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 97

the same use of heartbeat events

Any wait, within, retain or with unique specifications can be different.

When two query instances have the same input definitions and no parameters are used
in any input filters, then all instances of those query definitions can share window data.
If parameters are used in input filters, then parameterizations with different parameter
values each store data separately. This increases total storage requirements and cost of
processing the queries.

If a query is already running and you inject a query that defines the same inputs or
create a parameterization that defines the same inputs then the new query instance or
new parameterization uses the same windows as the query that was already running.
This means that events that were received before the new query was injected or before
the parameterization was created can be in a match set for the new query instance or
new parameterization. This can happen when an event arrives after the new query is
injected or after the parameterization is created and that event completes the paern that
the new instance or parameterization is looking for.

To reduce the amount of memory storage required to run queries, you might want
to adjust the input definition for a query so that it is the same as another query. For
example, suppose query Q is consuming inputs A, B, and X, while query P is consuming
inputs A, B, and Y. If both queries define both X and Y as inputs (as well as A and B) then
they can share the same windows. This can be an advantage when there are many A
and B events but comparatively few X and Y events. If many queries can be wrien with
similar input sections then they can share windows, which can lead to very efficient use
of memory.

If the reason for adding an input using source timestamps is simply in order to share
window contents, then the wait time for this input can be zero to avoid unnecessary
delays.

Format of input definitions
In a query definition, you define one or more inputs in the inputs block. The format of
the inputs block is as follows.
inputs {
event_type (event_filter)
 key query_key [within_clause] [retain_clause]
 [with_unique_clause]
 [time_from_clause wait_clause [or_clause]] ;

 [event_type (event_filter)
 key query_key [within_clause] [retain_clause]
 [with_unique_clause]
 [time_from_clause wait_clause [or_clause]] ;]...
}

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 98

Syntax Element Description

event_type Name of the event type that you want to operate
on. The event type must be parseable. See "Type
properties summary" on page 811.

Event type names can come from the root
namespace, a using declaration, or a local package
as specified in a package declaration.

event_filter Optionally filter which events of this type you want
to be in the window. For example, you might define
the window to contain only the events whose amount
field is greater than 10. The rules for what you can
specify for the event filter are the same as for what
you can specify in an event template in EPL. See
"Event templates" on page 830.

query_key Specify one or more event fields. You can specify
event fields of type boolean, decimal, float,
integer, string or location.

The correlator uses the key to partition the events.
Each partition is identified by a unique key value.
One or two fields in a key is typical. Three fields in
a key is unusual and rarely needed. More than three
fields is discouraged.

When you define more than one input in a query

The number, type, and order of the key fields in
each input definition must be the same.

If the names of the key fields are not the same in
each input definition, you must specify aliases so
that the names match. For details, see "Partitioning
queries" on page 89.

retain_clause Optionally specify retain followed by an EPL
integer expression that indicates how many events
to hold in the window. For example, if you specify
retain 1, only the last event that arrived that is
of the specified type and that has the key value(s)
associated with that partition is in the window. You
must specify a retain clause or a within clause or
both.

While it is possible to retain any number of events,
you must ensure that you define an input that allows

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 99

Syntax Element Description
a match with the event paern specified in the
corresponding find statement. For example, the
following query never finds a match:
query Q {
 inputs {
 A() key k retain 3;
 }
 find A:a1 -> A:a2 -> A:a3 -> A:a4 {
 print a1.toString()+ " - "+a4.toString();
 }
}

within_clause Optionally specify within followed by a float
expression or time literal that specifies the length of
time that an event remains in the window. You must
specify a retain clause or a within clause or both.
See "Specifying event duration in windows" on page
101.

with_unique_clause Optionally specify a set of secondary keys which
constrains the window to only include the latest
event for each value for the set of keys. See
"Matching only the latest event for a given field" on
page 119.

time_from_clause Optionally specify time from followed by the name
of an action that specifies how the source timestamp
of the event can be obtained. The named action must
be an action defined on that input event type. It must
take no parameters and must return a float. This is
taken to be when the event occurred, specified as
seconds since the epoch.

Note: You are not permied to use the event's built-
in getTime() method. This method returns the
time when the correlator either processed or
created the event, which defeats the purpose of
the source timestamp functionality.

wait_clause If a time_from_clause is provided, a wait_clause
is required, which specifies wait followed by a
float expression or time literal which specifies the
maximum delay expected for events. This is how
long a query will wait for events if it has not received
any events. See also "Using heartbeat events with
source timestamps" on page 112 and "Out of order
events" on page 114.

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 100

Syntax Element Description

or_clause Optionally specify a heartbeat event type which
informs the query runtime when communication
with the data source is not delayed. See "Using
heartbeat events with source timestamps" on
page 112. This can only be specified if the
time_from_clause and wait_clause are specified.

Behavior when there is more than one input
The correlator orders the events in a window according to the time it processes each
event, that is, the time it adds the event to its window. When a query defines more than
one input then, for each partition, the correlator maintains a single time-order for all
events in all windows.

Suppose the correlator adds an event to a window and within 0.1 seconds the correlator
adds a different event to the same window or to another window in the same partition.
Outside a query, these two events might have the same timestamp because default
correlator behavior is to increment the timestamp only every tenth of a second. In a
query, however, if an event is added to a window within 0.1 seconds after another
event was added to a window, the correlator assigns the second event a timestamp with
enough significant digits to ensure that time order is preserved. The following code
fragment shows the result of calling the getTime() method on two events that arrive
within 0.1 seconds of each other:
find E:e -> F:f {
 print e.getTime().toString(); // Yields "1365761429.1"
 print f.getTime().toString(); // Yields "1365761429.100001"
}

The order of the events is important when the event paern in a find statement specifies
the followed-by operator. Consider this example:
query Q {
 inputs {
 A() key k retain 20;
 B() key k retain 10;
 }
 find A:a -> B:b { ... }
}

This paern does not trigger when the correlator adds an A event to the A window. But
if there is already an A event in the A window then this paern triggers when a B event is
added to the B window.

In a partition, at any one time, it is possible for the set of windows to contain multiple
sets of events that, each taken in isolation, would match the defined event paern. In
this case, the event matching policy determines which of the candidate sets triggers an
action. See "Event matching policy" on page 143 for a description of how the query
chooses the event set that triggers an action. To illustrate event matching policy, that
topic provides an example of query behavior when there is more than one window.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 101

Specifying event duration in windows
In an input definition, you can specify an optional within clause that indicates the
length of time that an event remains in the window. For example:
query FraudulentWithdrawalDetection {
 inputs {
 Withdrawal() key userId within 1 hour;
 }
 find Withdrawal:w1 -> Withdrawal:w2
 where w1.city != w2.city {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }
 ...
}

In this example, a Withdrawal event remains in the window for 1 hour. After 1 hour in
the window, an event is ejected. Each time an event is added to one of the windows in a
partition, the correlator evaluates the find paern for that partition. Ejection of an event
from a window does not trigger paern evaluation. There are two formats for specifying
a within clause:

within time_literal

within float_expression

Parentheses in within clauses are allowed. The rules for specifying a time literal are:

Specify one or more integer or float literal(s) and follow each one with a keyword
that indicates a time unit.

Time unit keywords are:

day, days

hour, hours

min, minute, minutes

sec, second, seconds

msec, millisecond, milliseconds

Outside a query, you can use these keywords as identifiers. Inside a query, you
cannot use these keywords as identifiers unless you prefix them with a hash symbol
(#). See "Escaping keywords to use them as identifiers" on page 923.

A space is required between an integer or float literal and its time unit. A space is
required after a time unit if it is followed by an integer or float literal. Additional
whitespace is allowed.

If you specify more than one time unit keyword they must be in the order of
decreasing size. For example, days must be before minutes.

You need not specify all time units.

Each time unit keyword must represent a different time unit, that is, you cannot, for
example, specify both day and days.

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 102

Examples of valid time literals:

10 hours

1 days 12 hours

1 day 2 hours 30 minutes 4 sec

2 days 5 minutes

2.5 sec

10 seconds - This is equivalent to specifying the float expression 10.0.

Note: While it is possible to define time literals using float values, for example, 3.5
days 12.5 hours 33.3 min, it is recommended that you use only integer
values when the specification includes more than one time unit. For example,
rather than specifying 2 days 65.75 minutes, you should specify 2 days 1
hour 6 min 15 sec.

If you open and edit a query in Apama's Query Designer in Software AG
Designer, it modifies the time literal (if necessary) such that it contains only
integers. Also, the allowable range of integers is 0 to 23 for hours, 0 to 59 for
minutes, 0 to 59 for seconds, and 0 to 999 for milliseconds. Where necessary,
the Query Designer rounds up to a whole number of milliseconds. For
example, suppose you specify the following time literal in EPL code:
3.5 days 4 hours 27.5 minutes 1002.75 milliseconds

The Query Designer converts this to 3 days 16 hours 27 minutes 31 seconds 3
milliseconds. The actual query designer display is: 3d 16h 27m 31s 3ms.

When you specify a float expression it indicates a number of seconds.

Consider the example at the beginning of this topic as the following events are added to
their appropriate windows:

Time Event Added to Window

10:00 Withdrawal("Dan", "London")

10:30 Withdrawal("Dan", "Dublin")

10:45 Withdrawal("Dan", "Paris")

11:15 Withdrawal("Ray", "Honolulu")

11:30 Withdrawal("Dan", "Rome")

For the partition identified by a userId Dan, the query evaluates the paern at the
following times:

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 103

Time Window Contents Matching Events

10:00 Withdrawal("Dan",
"London")

10:30 Withdrawal("Dan",
"Dublin")

Withdrawal("Dan",
"London")

w1=Withdrawal("Dan",
"London")

w2=Withdrawal("Dan",
"Dublin")

10:45 Withdrawal("Dan",
"Paris")

Withdrawal("Dan",
"Dublin")

Withdrawal("Dan",
"London")

w1=Withdrawal("Dan",
"Dublin")

w2=Withdrawal("Dan",
"Paris")

11:30 Withdrawal("Dan", "Rome")

Withdrawal("Dan",
"Paris")

w1=Withdrawal("Dan",
"Paris")

w2=Withdrawal("Dan",
"Rome")

An event remains in its window for exactly the specified duration. For example, at
11:00, Withdrawal("Dan", "London") is no longer in the window and at 11:30,
Withdrawal("Dan", "Dublin") is no longer in the window. Although the contents of
the window have changed, ejection of an event does not cause evaluation of the event
paern.

At 11:15, there is no evaluation of the event paern for the partition identified by a user
Id of "Dan" because an event is added to a window in the partition identified by a user
Id of "Ray".

Specifying maximum number of events in windows
In an input definition, you can specify a retain clause that indicates how many events
can be in the window. For example:
query FraudulentWithdrawalDetection2 {
 inputs {
 Withdrawal() key userId retain 3;
 }
 find Withdrawal:w1 -> Withdrawal:w2 where w1.city != w2.city {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }
}

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 104

In this query, only the most recent three Withdrawal events can be in the window. In
other words, the window cannot contain more than three events. If only zero, one or two
Withdrawal events with a particular key have arrived since the application was started
then there would be only zero, one or two events, respectively, in the window.

The correlator evaluates the event paern each time an event is added to the window.
Suppose that at the indicated times the following events are added to the window in the
partition identified by userIdDan:

Time Event Added to Window

10:00 Withdrawal("Dan", "Dublin")

10:10 Withdrawal("Dan", "London")

10:20 Withdrawal("Dan", "London")

10:30 Withdrawal("Dan", "London")

11:30 Withdrawal("Dan", "Paris")

For the partition identified by the userId Dan, the query evaluates the paern at the
following times:

Time Window Contents Matching Events

10:00 Withdrawal("Dan",
"Dublin")

10:10 Withdrawal("Dan",
"Dublin")

Withdrawal("Dan",
"London")

w1=Withdrawal("Dan","Dublin")

w2=Withdrawal("Dan","London")

10:20 Withdrawal("Dan",
"Dublin")

Withdrawal("Dan",
"London")

Withdrawal("Dan",
"London")

w1=Withdrawal("Dan","Dublin")

w2=Withdrawal("Dan","London")

10:30 Withdrawal("Dan",
"London")

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 105

Time Window Contents Matching Events

Withdrawal("Dan",
"London")

Withdrawal("Dan",
"London")

11:30 Withdrawal("Dan",
"London")

Withdrawal("Dan",
"London")

Withdrawal("Dan",
"Paris")

w1=Withdrawal("Dan","London")

w2=Withdrawal("Dan","Paris")

It is important to note that at 10:30, the Withdrawal("Dan", "Dublin") event that
arrived at 10:00 is no longer in the window because the window retains three events at
most and there are three Withdrawal events that have been added to the window more
recently.

Specifying event duration and maximum number of events
In an input definition, you can specify a within clause that indicates how long an event
can remain in the window and a retain clause that indicates how many events can be
in the window. When you specify both a within clause and a retain clause the within
clause must be before the retain clause. For example:
query FraudulentWithdrawalDetection3 {
 inputs {
 Withdrawal() key userId within 1 hour retain 3;
 }
 find Withdrawal:w1 -> Withdrawal:w2 where w1.city != w2.city {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }
}

In this query, a Withdrawal event can be in the window for up to one hour and only
the three most recent Withdrawal events, if each one arrived during the previous
hour, can be in the window. In other words, the window cannot contain an event that
arrived more than an hour ago and it cannot contain more than three events. If only two
Withdrawal events arrived in the previous hour then there would be only two events in
the window.

Suppose that at the indicated times the following events are added to the window in the
partition identified by a userIdDan:

Time Event Added to Window

10:00 Withdrawal("Dan", "Dublin")

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 106

Time Event Added to Window

10:10 Withdrawal("Dan", "London")

10:20 Withdrawal("Dan", "London")

10:30 Withdrawal("Dan", "London")

11:30 Withdrawal("Dan", "Paris")

For the partition identified by userId Dan, the query evaluates the paern at the
following times:

Time Window Contents Matching Events

10:00 Withdrawal("Dan",
"Dublin")

w1=Withdrawal("Dan","Dublin")

w2=Withdrawal("Dan","London")

10:10 Withdrawal("Dan",
"Dublin")

Withdrawal("Dan",
"London")

w1=Withdrawal("Dan","Dublin")

w2=Withdrawal("Dan","London")

10:20 Withdrawal("Dan",
"Dublin")

Withdrawal("Dan",
"London")

Withdrawal("Dan",
"London")

10:30 Withdrawal("Dan",
"London")

Withdrawal("Dan",
"London")

Withdrawal("Dan",
"London")

11:30 Withdrawal("Dan",
"Paris")

It is important to note that at 10:30 the Withdrawal("Dan", "Dublin") event that
arrived at 10:00 is no longer in the window because the window retains three events

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 107

at most and there are three Withdrawal events that have been added to the window
more recently. Also, at 11:30 there are no Withdrawal("Dan","London") events in the
window as they have been ejected because more than one hour has elapsed since each
one was added to the window.

Using source timestamps of events
By default, the query runtime assumes that events should be treated to be in the order
in which they are processed, and the time of each event is the correlator's time at the
point the event is processed. This is suitable if events are delivered reliably to the Apama
correlator in a short amount of time and in order. However, if the events are delayed,
accumulated into batches before being sent or delivered over unreliable networks, then
it may be necessary to use the time at which an event happened at the event source,
which would have to be available in the event in order for queries to use the source
timestamp. For example, a car may measure the engine's temperature, RPM and other
important statistics along with a timestamp, and record these in a small computer in the
car. Periodically, when the car is connected to a wireless network, the car will send this
data as a batch of events. For the correct behavior of queries that make use of the time or
ordering of events, the query will need to be configured to use the source timestamp.

Note: Source timestamps are not intended to be a replacement for Xclock. They can,
however, be used in conjunction with Xclock for testing purposes. Xclock
is controlling the correlator's time (see "Disabling the correlator's internal
clock" on page 197). Source timestamps indicate the time at which an event
occurred.

In order to use the source timestamp:

Every event which may be delayed should contain the source timestamp in some
form.

An action must be defined on the event definition, which takes no parameters and
returns a float. This should calculate the source time of the event - typically the time
the event occurred - based on the fields of the event. The return value of the action
should specify the time in seconds since the epoch (midnight, 1 Jan 1970 UTC). If the
event contains the time in seconds since the epoch (in this example, stored in a field
named sourceTime), this can be as simple as the following:
action getSourceTime() returns float { return sourceTime; }

Otherwise, the TimeFormat event library can be used to help convert from time of
day and date, and perform timezone conversions as necessary. For example, if the
source timestamps in your events are not already in the UTC timezone, then one
way to do this is to include a timezone field and then use the TimeFormat event's
parseWithTimeZone action to obtain the source time in the correct form as shown in
the following event definition:
using com.apama.correlator.timeformat.TimeFormat;
using com.apama.queries.TimeFrom;
@TimeFrom("getSourceTime")
event E {
 integer k;
 string sourceTime;

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 108

 string timeZone;
 action getSourceTime() returns float {
 TimeFormat timeFormat := TimeFormat();
 return timeFormat.parseWithTimeZone("HH:MM:SS", sourceTime, timeZone);
 }
}

See also "Using the TimeFormat Event Library" on page 357.

The event definition should have a @TimeFrom annotation (as in the above example)
or queries that use the event as an input must specify a time from clause that names
the action that provides the source time. In either case, queries must always specify
a maximum time to wait for the events (see below). If both are specified, the time
from clause in the query takes precedence.

See also "Adding predefined annotations" on page 68.

Note: You are not permied to use the event's built-in getTime() method. This
method returns the time when the correlator either processed or created the
event, which defeats the purpose of the source timestamp functionality.

Waiting for delayed events

If using source timestamps, we assume events may be delayed between the source time
at which they occur and being processed by the Apama correlator. If no events are
received by the correlator, it needs to distinguish between no events having occurred
and events being delayed. If events are delayed, the query runtime will wait before
evaluating the query, as it does not have a definitive view of all of the events. A query
that uses source timestamps must specify the maximum wait time that a query will wait
before it will process events. This is the maximum delay that the query will tolerate and
the maximum delay between an event having occurred and the query processing that
event. The wait time is inclusive - that is, an event delayed by exactly the value specified
in the wait clause will be considered valid.

The maximum wait time must be specified and must be set to a reasonable value, as it
can increase the number of events stored by the query runtime, and processing of the
query may be delayed by up to that duration. The maximum wait time for an input may
be less than or more than the within duration, but should not represent a large number
of events for typical event rate for that input.

The wait time must be specified in a query using the wait clause in an input declaration.
The wait clause can specify a time as a time literal (using days, hours, minutes and
seconds) or as a float expression. Both the time from and wait clauses must be
specified (or neither).

It is possible to mix inputs that have source times and events that do not have source
times in a single query. Event inputs without a source time are equivalent to using
currentTime (that is, the correlator's current time, see "currentTime" on page 912) as
the source time, and a wait time of 0.

Event definitions may have an annotation defined @DefaultMaxDelay which specifies
the default value to use for the wait time. This is only informational and used by the
Design tab in Software AG Designer when editing query files as a means of seing the

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 109

default wait time. The query must always specify the wait time, even if it is using the
default value. Note that the editor will copy the value from the annotation, so changing
the annotation will not affect existing query definitions.

Definitive time of a query event source

Given that input events may be delayed or out of order, how does the query runtime
know when it is safe to process events? To answer this question, we introduce the
concept of definitive time. The point in time for which the query runtime is entitled
to think that it has received all the events it is going to receive is called the "definitive
time". All events at or before this point in time are considered definitive and can be used
to evaluate the query. Events after the definitive time will not be processed until they
become definitive (that is, the definitive time has changed so that the events are now
at or before the definitive time). The query runtime will assume that no further events
will be received with a time before the definitive time, and will only evaluate events that
have occurred before the definitive time.

In the case of an individual query input, the definitive time of that input is the latest of:

The timestamp of the latest event received (unless the event definition is marked as
occurring out of order, see "Out of order events" on page 114).

The timestamp of the latest heartbeat event, if specified (see "Using heartbeat events
with source timestamps" on page 112).

The correlator's current time less the maximum wait time of a query.

The query's overall definitive time is then determined as the minimum or earliest of the
definitive times for each input.

If no events (either input or heartbeat events) are received, then a query may need
to wait in order to evaluate the events it has received (particularly if using the wait
operator in the paern, or more than one input, where some inputs have no events
received).

The concept of definitive time is best explained using worked examples. Consider, first,
a query with a single input event type.
using com.apama.queries.TimeFrom;
@TimeFrom("getSourceTime")
event E {
 integer k;
 float sourceTime;
 action getSourceTime() returns float {
 return sourceTime;
 }
}
query SingleInput {
 inputs {
 E() key k within 1 hour wait 2 hours;
 }
 find E:e1 -> E:e2 where e2.getSourceTime() - e1.getSourceTime() > 600.0 {
 log "Time gap " + (e2.getSourceTime() - e1.getSourceTime()).toString();
 }
}

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 110

In this case, where there is only a single input type, the definitive time will be the latest
or most recent of either: the source timestamp of the last event, or the current time
minus the wait time (2 hours in this example). The following table shows how the query
runtime keeps track of the definitive time as it receives input events.

Wall Time E event source
timestamp

Query
definitive time

Result Explanation

10:00 07:00 08:00

10:05 07:30 08:05 Nothing -
events are
too old.

10:10 08:30 08:30

10:24 08:32 08:32 Nothing
- event
timestamps
were only
2 minutes
apart.

10:26 08:50 08:50 Time gap
18 minutes

10:30 10:30 10:30 Nothing
- only 1
event in
the "within
1 hour"
window.

Now consider a more complex case where the query has two input event types. Events
of type E are defined as above, but we add another definition for events of type X.
@TimeFrom("getSourceTime")
event X {
 integer k;
 float sourceTime;
 action getSourceTime() returns float {
 return sourceTime;
 }
}
query MultipleInputs {
 inputs {
 E() key k within 1 hour wait 1 hour;
 X() key k within 1 hour wait 1 hour;
 }
 find E:e1 -> E:e2 without X:x {

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 111

 log "Got (" + e1.sourceTime.toString() + ", "
 + e2.sourceTime.toString() + ")";
 }
}

Once again the table below shows how the definitive time of the query is determined. In
this case, the runtime must take the definitive time as being the earliest of the definitive
times of the input types because, as the paern depends on all input types, it is only up
until that point that it has a definitive view of all the query inputs.

For example, at wall time 09:22, even though the runtime has got E events with source
timestamps 08:32 and 08:40, it is not entitled to conclude that we have a match for the
query paern because the most recent X event has a timestamp of only 08:25, so we
do not yet know if there was an X event between 08:32 and 08:40 that would prevent a
match. The wait time of 1 hour has not yet elapsed, so the definitive time of the query
remains at 08:25, which is the source time of the most recent X event.

It is not until wall time 09:23 that we receive another X event with a source timestamp of
08:50. At this point, given that in this example we know that events are being delivered
in order, it is safe for the runtime to assume that there were no other X events between
08:25 and 08:50 and so it can proceed to execute the query and match for the two pairs
of E events ("08:30, 08:32" and "08:32, 08:40"). Further, at this time (wall time 09:23)
the receipt of the X event with source timestamp 08:50 allows the runtime to update
the definitive time of the overall query to 08:40, which has become the earliest of the
definitive times of the query inputs.

Wall Time E event
source
timestamp

X event
source
timestamp

Query
definitive
time

Result Explanation

09:20 08:30 08:25 08:25

09:21 08:32 08:25 Nothing
yet. Still
waiting
for an X.

09:22 08:40 08:25

09:23 08:50 08:40 Got
(08:30,
08:32)

Got
(08:32,
08:40)

09:24 08:55 08:50 No 08:40
- 08:55
match,

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 112

Wall Time E event
source
timestamp

X event
source
timestamp

Query
definitive
time

Result Explanation

there is
an X at
08:50.

09:25 09:00 08:50 Nothing
yet - still
waiting
for X
after
08:50.

09:26 08:57 08:57 No 08:55
- 09:00
match,
there is
an X.

09:27 09:10 08:57 Nothing
yet - still
waiting
for X
after
08:57.

10:10 09:10 Got
(09:00,
09:10)

We
waited
for 1
hour for
an X.

Using heartbeat events with source timestamps
When using source timestamps, if a query's input has no events for a period of time,
then the query will wait for the specified wait time for that query before evaluating
events. This can cause unacceptable delays in processing events from other inputs.
Some data sources may provide heartbeat events with timestamps which signal that
communication from the data source to the queries system is working correctly. If these
events occur but no input events have been received, then the query can infer that no
input events, or only the input events received, have occurred, and thus the query's
input is definitive upon receiving a heartbeat, without having to wait any further. If
communication is disrupted or delayed, then the heartbeat events will similarly be
delayed, and the query will wait, as it has to in order to process delayed events.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 113

Heartbeat events are specified on the input event type's definition or per input of the
query. They are only used if a query input is using source timestamps, that is, it has a
wait clause specified. The heartbeat can be specified as a @Heartbeat annotation on the
event definition, which should name the fully qualified event type to use as heartbeat
events.

If a query input contains a time from clause, then the heartbeat must be explicitly
named with an or heartbeat-type clause after the wait clause. For example, these two
are equivalent:
@TimeFrom("getEcuTime")
@Heartbeat("CarHeartbeat")
event CarEngineTemp { .. }
...
query ... {
 inputs {
 CarEngineTemp() key carId within 1 hour wait 6 hours;
 }
 ...

or:
query ... {
 inputs {
 CarEngineTemp() key carId within 1 hour time from getEcuTime
 wait 6 hours or CarHeartbeat;
 }
 ...

The following rules apply for the heartbeat event:

The heartbeat event cannot be filtered.

The heartbeat event must share the same key fields and the same types as the input
event type. In the above example, both CarEngineTemp and CarHeartbeat must
have a field named carId which is of the same type in each event type.

The heartbeat event must have a matching action for obtaining the source time. In
the above example, both CarEngineTemp and CarHeartbeat must have an action
of the signature action getEcuTime() returns float. Typically, these would
have the same implementation, as the heartbeat would have source timestamps in
the same form as the input events; but the implementation of these methods may be
different for heartbeat events (see "Out of order events" on page 114.)

The heartbeat event cannot be used as an input in the paern, unless it is also listed
as an input event in its own right.

The same heartbeat event type may be used for different inputs of the same query
(this is typical, as a query may use a number of different types of events from the
same data source, such as a car in the above example).

When a heartbeat event is received and processed, it will step forward the definitive
time for all inputs that specify that heartbeat event. Thus, if all inputs use the same
heartbeat event, then that heartbeat can step forward the definitive time, allowing the
query to evaluate events received on some inputs without having to wait for the input
wait time on other inputs where no input events were received.

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 114

Typically, heartbeat events will be delivered regularly. The rate at which heartbeat
events are sent is dependent on the data source, but the queries system must be able
to handle all of the heartbeat events from all data sources as well as the input events.
Some devices may only send the heartbeats under certain conditions, for example, a car
may only send heartbeats if the engine is running or the car is occupied. If no heartbeat
events are received, then queries will use the wait time specified in the input before
evaluating any events received, as needed.

Note that queries assume that the heartbeat events are delivered in the same order as
input events. If an input event arrives with a timestamp before a previous heartbeat
event, it will be discarded.

Typically, heartbeat events will be events that come from the same data source as the
input events they are used with. Thus, any communications disruption affecting the
input events will affect the heartbeat events in the same way. This is not a requirement;
if some other system has knowledge of when a data source is connected or disconnected,
the heartbeat events could be sent from that system - but if the system incorrectly sends
heartbeat events and input events are delayed, then input events may be discarded.

Out of order events
When using source timestamps (see also "Using source timestamps of events" on page
107), the query runtime by default expects events to arrive in order. If an event
arrives with an earlier source timestamp than a previous event for that same partition, it
will be discarded. However, there are two cases where this behavior does not occur (see
below), and queries will store events which arrive out of order and re-order them so that
when they are processed, they are processed in order according to the source time.

Note: In both cases described below (with the @OutOfOrder() annotation and
delayed events), heartbeat events (if specified) are always considered
definitive, even if they are delayed. You cannot use an event definition with
an @OutOfOrder() annotation as a heartbeat event. Note that as soon as a
heartbeat event is processed, the query will ignore any events with earlier
timestamps.

Case 1: Using the @OutOfOrder() annotation on the event definition

If the event definition (in an EPL file) has the @OutOfOrder() annotation which is
available in the package com.apama.queries (see also "Adding predefined annotations"
on page 68), then the queries runtime will treat it as not occurring in order.

This means that definitive time is not affected by the timestamp on the events. Thus,
events will not be processed until the specified wait time has elapsed since their source
time, or a heartbeat event (if specified) with a later timestamp has been processed (and
all inputs have had their definitive time moved forward).

It is recommended to use heartbeats when using @OutOfOrder() events. They are not
required, but if not used, the query execution will be delayed by the longest input wait
specified in the query.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 115

The following example compares the behavior if @OutOfOrder() is or is not specified on
the input:
query FindAdjacentAEvents {
 inputs {
 A() within 30.0 wait 20 seconds;
 }
 find A:a1 -> A:a2 {
 print "a1 = "+a1.toString()+"; a2 = "+a2.toString();
 }
}

In the following tables, the events are listed in the order in which they are processed, but
they occur in the order A(1), A(2), A(3), A(4). Note that A(2) is delayed by more than the
wait time of the query (the actual events would have a source timestamp, but we show
that as a separate column for clarity).

The following table applies if the event definition does have @OutOfOrder():

Input event Input event
timestamp

Correlator
time

Notes Query
definitive
time

Query
output

A(1) 10:00:10 10:00:20 10:00:00

A(4) 10:00:20 10:00:30 10:00:10

A(3) 10:00:15 10:00:32 10:00:12

 10:00:35 20
seconds
after
A(3)'s
source
time
(10:00:15)

10:00:15 a1=A(1);
a2=A(3)

A(2) 10:00:12 10:00:37 discarded
- more
than 20
seconds
old

10:00:17

 10:00:40 20
seconds
after
A(4)'s
source

10:00:20 a1=A(3);
a2=A(4)

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 116

Input event Input event
timestamp

Correlator
time

Notes Query
definitive
time

Query
output

time
(10:00:20)

The following table applies if the event definition does not have @OutOfOrder():

Input event Input event
timestamp

Correlator
time

Notes Query
definitive
time

Query
output

A(1) 10:00:10 10:00:20 10:00:10

A(4) 10:00:20 10:00:30 10:00:20 a1=A(1);
a2=A(4)

A(3) 10:00:15 10:00:32 10:00:20 (nothing
- event is
discarded
as it is
out of
order)

A(2) 10:00:12 10:00:37 discarded
- more
than 20
seconds
old

10:00:20

Case 2: Events are delayed

Even in the case where events are normally delivered in order from the data source,
if there is a delay which is then resolved, a number of delayed events may all be
processed in a very short space of time. Even if they are delivered to Apama correlators
in the correct order, the query runtime runs in parallel within the correlator, so events
processed close together in time may be processed out of order, even if they do not have
an @OutOfOrder() annotation on the event definition. If an event is delayed, then the
query runtime will wait before considering the event's time as definitive for that input.

By default, the query runtime considers an event as delayed if its source time is more
than 10 seconds before the correlator's time at the point it is processed, and it will wait
for 10 seconds before considering the event's time as definitive for that input. These
seings can be modified by sending in a SetDelayedEventsLeeway(delayLeeway,
reorderBuffer) event:
com.apama.queries.SetDelayedEventsLeeway(5, 20.0)

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 117

The above example would set the query runtime to consider events older than 5 seconds
as delayed, and would not consider them definitive until 20 seconds after they were
received.

To consider all events in order regardless of delay, send an event with the first value set
to infinity (as all actual delays must be less than infinity):
com.apama.queries.SetDelayedEventsLeeway(infinity, 0.0)

These events should be sent to all correlators in a cluster, typically as part of the
initialization of the correlator along with injecting the query definitions.

The following example compares the behavior with different configurations and some
delayed events:
query FindAdjacentAEvents {
 inputs {
 A() within 30 minutes wait 10 minutes;
 }
 find A:a1 -> A:a2 {
 print "a1 = "+a1.toString()+"; a2 = "+a2.toString();
 }
}

The following table lists the events where the A event does not have @OutOfOrder().
The last three columns give the behavior with different configurations:

Default config. A. Matches with the default values: 10 seconds delay threshold and 10
seconds reorder buffer.

Config. B. Matches if SetDelayedEventsLeeway(300, 10) is sent: 5 minutes (300
seconds) delay threshold and 10 seconds reorder buffer.

Config. C. Matches if SetDelayedEventsLeeway(10, 60) is sent: 10 seconds delay
threshold and 1 minute reorder buffer.

Input
event

Input
event
timestamp

Correlator
time

Definitive
time
of the
query for
default
leeway
values

Default
config. A

Config. B Config. C

A(1) 10:06:10 10:10:30 10:00:30
(10
minutes
ago)

A(4) 10:06:20 10:10:31 10:00:31
(10
minutes
ago)

 a1=A(1);
a2=A(4)

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 118

Input
event

Input
event
timestamp

Correlator
time

Definitive
time
of the
query for
default
leeway
values

Default
config. A

Config. B Config. C

A(3) 10:06:15 10:10:32 10:00:32
(10
minutes
ago)

 (A(3)
out of
order
and
discarded)

A(2) 10:06:13 10:10:33 10:00:33
(10
minutes
ago)

 (A(2)
out of
order
and
discarded)

 10:10:43 10:06:20
(latest
A
event
received)

a1=A(1);
a2=A(2)

a1=A(2);
a2=A(3)

a1=A(3);
a2=A(4)

 10:11:33 a1=A(1);
a2=A(2)

a1=A(2);
a2=A(3)

a1=A(3);
a2=A(4)

A(6) 10:12:05 10:12:10 10:12:05
(latest
A
event
received)

a1=A(4);
a2=A(6)

a1=A(4);
a2=A(6)

a1=A(4);
a2=A(6)

A(5) 10:12:04 10:12:11 10:12:05
(latest
A

(none
- event
A(5) is
discarded)

(none
- event
A(5) is
discarded)

(none
- event
A(5) is
discarded)

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 119

Input
event

Input
event
timestamp

Correlator
time

Definitive
time
of the
query for
default
leeway
values

Default
config. A

Config. B Config. C

event
received)

Note that A(6) is treated as occurring in order, as it is delayed by less than the
delayLeeway value. Thus A(5) is discarded, as it has occurred out of order.

Matching only the latest event for a given field
A query input can optionally limit the window to only contain the most recent item for
each value of a given field or action of the event. This is performed by the with unique
operator, which is followed by one or more fields or actions of the input event type.

For example, consider a query looking at sensor data from a number of sensors on the
same production line, with events that specify the productionLine and sensorId. The
query compares sensor values between different machines and sensors on the same
production line, so the query can be keyed on the productionLine field of events, but
not on the sensorId field. However, only the latest event for each sensor is required. By
specifying a with unique sensorId clause, only the latest value of each sensor is used.

If you add a with unique clause, if there is more than one item in the window that has
the same value for all the fields or actions listed in the with unique clause, then only
the most recent event is considered to be in the window and can match the paern. The
suppression of duplicates occurs after the within and/or retain clauses apply. For
example:
inputs {
 Sensor() key productionLine retain 3 with unique sensorId;
}

Given the following events, the window contains only those marked in the third column
of the following table (assuming all are for the same productionLine):

Event sensorId Window contains Notes

1 A 1(A)

2 B 1(A), 2(B)

3 C 1(A), 2(B), 3(C)

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 120

Event sensorId Window contains Notes

4 B 3(C), 4(B) Event 1 is discarded due to retain
3. Event 2 is discarded as event 4 has
the same sensorId.

5 D 3(C), 4(B), 5(D)

6 C 4(B), 5(D), 6(C) Event 3 is discarded due to retain
3.

7 D 6(C), 7(D) Event 4 is discarded due to retain
3. Event 5 is discarded as event 7 has
the same sensorId.

Note that the with unique is applied after the retain expression. Any with unique
expression does not affect window sharing (see also "Queries can share windows" on
page 96) nor how much data is stored.

The with unique clause comes after the sizing of the window (within, retain) and
before, if present, the time from, wait or or clauses used for specifying source time.

with unique can list a number of comma-separated members or calls to actions, where
the action name is followed by parentheses. Actions used in a with unique clause must
take no parameters and return a value. The ordering is unimportant.

For example, using with unique upperName() for an event definition such as the
following would only keep one event for each value of the name field, ignoring case:
event E {
 string name;
 action upperName() returns string { returns name.toUpper(); }
}

Finding and acting on event patterns
In a query, the find statement specifies the event paern you are interested in. At
runtime, for each event that the correlator adds to a window, the query checks for a
match. Depending on the definition of the event paern, the set of events that matches
the paern contains one or more events. This is the match set. A match set

Always contains the latest event, which is the event that was most recently added to
a window.

Satisfies the event paern.

Is always the most recent set that matches the event paern. This is important when
there is more than one set that is a candidate for the match set.

The format of a find statement is as follows:
find pattern block

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 121

Syntax Element Description

pattern The event paern that you want to find. See
"Defining event paerns" on page 121.

block The procedural code to execute when a match is
found. See "Acting on paern matches" on page
145.

Defining event patterns
In a query definition, you specify a find statement when you want to detect a particular
event paern. The find statement specifies the event paern of interest followed by a
procedural block that specifies what you want to happen when a match is found. For
example:
query ImprobableWithdrawalLocations
{
 inputs {
 Withdrawal() key cardNumber within 24 hours;
 }
 find
 Withdrawal:w1 -> Withdrawal:w2 where w2.country != w1.country {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }
}

In this example, the window that the query operates on contains any Withdrawal events
that have arrived in the last 24 hours. The key is the card number so each partition
contains only Withdrawal events that have the same value in their cardNumber field. In
other words, each partition contains the Withdrawal events for one particular account.
For more information about input definitions, see "Defining query input" on page
94.

The find statement specifies that the event paern of interest is a Withdrawal event
followed by another Withdrawal event.

In each partition, the where clause filters the Withdrawal events so that there is a match
only when the values of their country fields are different. The two event templates in
the find statement coassign matching Withdrawal events to w1 and w2, respectively.

In this example, the two matching Withdrawal events might or might not have arrived
in the partition consecutively. For details, see "Query followed-by operator" on page
124.

When there is a match the query executes the action in the find block.

The format for defining a find statement is as follows:
find
 [every] [wait duration :identifier]
event_type :identifier [find_operator event_type :identifier]...
 [wait duration :identifier]
 [where_clause] [within_clause] [without_clause]

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 122

 [select_clause] [having_clause] {
block
 }

Syntax Element Description

event_type Name of the event type you are interested in.
You must have specified this event type in the
inputs section.

every Specify the optional every modifier in
conjunction with the select and having
clauses. This lets you specify a paern that
aggregates event field values in order to
find data based on many sets of events. See
"Aggregating event field values" on page 139.

wait Specify the optional wait modifier followed
by a time literal or a float expression. A wait
modifier indicates a period of elapsed time at the
beginning of the event paern and/or at the end
of the event paern. A float expression always
indicates a number of seconds, See "Query wait
operator" on page 129.

identifier Coassign the matching event to this identifier.
A coassignment variable specified in an event
paern is within the scope of the find block
and it is a private copy in that block. The
exception to this is in an aggregating find
statement, only the projection expression can
use the coassignments from the paern. The
procedural block of code can use projection
coassignments and any parameters, but it cannot
use coassignments from the paern. Changes
to the content that the variable points to do not
affect any values outside the query.

Unlike EPL event expressions, you need not
declare this identifier before you coassign a
value to it.

In an event paern in a find statement, each
coassignment variable identifier must be unique.
You must ensure that an identifier in an event
paern does not conflict with an identifier in the
parameters section, or inputs section.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 123

Syntax Element Description

find_operator Optionally specify and or -> and then specify
an event_type and coassignment variable.
Parentheses are allowed in the paern
specification and you can specify multiple
operators, each followed by an event_type
and coassignment variable. For example, the
following is a valid find statement:
find (A:a1 -> ((A:a2)) -> (A:a3) ->
 (A:a4 -> A:a5 -> A:a6) ->
 (((A:a7) -> A:a8) -> A:a9) -> A:a10) {
 print "query with 10: "+a1.toString()+ "
 - "+a10.toString();
}

where_clause To filter which events match, specify where
followed by a Boolean expression that refers to
the events you are interested in. The Boolean
expression must evaluate to true for the
events to match. The where clause is optional.
Coassignment variables specified in the find
or select statements are in scope in the where
clause. Also available in a where clause are
any parameter values and key values. This
where clause applies to the event paern and is
referred to as a find where clause to distinguish
it from a where clause that is part of a without
cause, which is referred to as a without where
clause. See "Query conditions" on page 130.

within_clause A within clause sets the time period during
which events in the match set must have been
added to their windows. A paern can specify
zero, one, or more within clauses. See "Query
conditions" on page 130.

without_clause A without clause specifies event types
whose presence prevents a match. See "Query
conditions" on page 130.

select_clause A select clause indicates that aggregate values
are to be computed. See "Aggregating event field
values" on page 139.

having_clause A having clause restricts when the procedural
code is invoked for a paern that aggregates

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 124

Syntax Element Description
values. See "Aggregating event field values" on
page 139.

block Specify one or more statements that operate on
the matching event(s). For details about code
that is permissible in the find block, see "Acting
on paern matches" on page 145.

Items available in a find block can include:

Any parameters defined in the parameters
section

Coassignment variables specified in the event
paern (or projection coassignments in the case
of aggregating find statements).

Key values

Query followed-by operator

You can specify the -> (followed-by) operator in the find statement. The -> operator
matches events that come after each other. The event on the left of the operator always
arrives in the correlator before the event on the right. In other words, the -> operator is
always between two distinct events. For example, A:a1 -> A:a2 requires the arrival of
two instances of an A event for the query to find a match. Also, any where clauses in the
find statement must evaluate to true for an event paern to match. Finally, the match
set always includes the latest event.

Thus, the rules for when there is a match for an event paern that specifies one or more
followed-by operators are as follows. All of these requirements must be met for there to
be a match.

There are events in the partition that match the subpaerns on both sides of the
followed-by operator(s).

There is a match for the subpaern on the left of a followed-by operator before
there is a match for the subpaern on the right of a followed-by operator. One event
cannot match more than one subpaern in an event paern.

If a subpaern contains a where clause then the where clause must evaluate to true
for the subpaern to match.

The match set contains the latest event.

If there is more than one candidate event set for the match set then it is the most
recent candidate event set that is the match set. See "Event matching policy" on page
143.

The following sections provide examples that illustrate these rules.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 125

Two coassignments

Consider the following code in which the Withdrawal event contains only one field of
interest, which is the country. Assume that the query partitions arriving Withdrawal
events into windows according to the account number field.
find Withdrawal:w1 -> Withdrawal:w2
 where w1.country = "UK" and w2.country = "Narnia" {
 // Recent card fraud in Narnia against UK customers
 emit SuspiciousWithdrawal(w2);
}

To make it easier to understand the behavior of the -> operator in more populated
windows, the following example events omit the account number field but include a
unique identifier field. Suppose the window for this query contains the following events,
in arrival order top to boom:
Withdrawal("Belgium", 1)
Withdrawal("UK", 2)

Although there is a Withdrawal event followed by another Withdrawal event, the where
clause does not evaluate to true so there is no match. Now suppose the window contains
these events:
Withdrawal("UK", 3)
Withdrawal("Narnia", 4)

Now the query finds a match. There is a Withdrawal event followed by another
Withdrawal event, and the where clause evaluates to true. Withdrawal("UK, 3")
is coassigned to w1 and Withdrawal("Narnia", 4) is coassigned to w2. The query
executes the statements in its find block, which in this example is to emit the event that
triggered the match.

In this example, the Withdrawal events in the match set arrived consecutively. However,
this is not a requirement. Consider a window that contains the following events:
Withdrawal("UK", 5)
Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)

When Withdrawal("Narnia", 8) is added to its window, the query finds a match
because the Withdrawal("UK", 5) event is followed by the Withdrawal("Narnia",
8) event and the where clause evaluates to true for those two events. The effective
behavior is that all combinations of events in the window are inspected to find a
combination that matches. The Withdrawal("UK, 5") event is coassigned to w1 and
Withdrawal("Narnia, 8") is coassigned to w2. The query executes the statements in its
find block.

A match must include the event that arrived most recently in the window (the latest
event). This ensures that a query does not detect more than one match for the same
combination of events. In the previous example, the query found a match when the
Withdrawal("Narnia", 8) event arrived.

Imagine that another Withdrawal event arrives and the window now contains the
following events:
Withdrawal("UK", 5)

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 126

Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)
Withdrawal("Belgium", 9)

While the window still contains the Withdrawal("UK", 5) event followed by the
Withdrawal("Narnia", 8) event, the arrival of the Withdrawal("Belgium", 9)
event does not trigger a new match because it is not part of that combination. However,
suppose the Withdrawal("Narnia", 10) event arrives. The window now contains the
following events:
Withdrawal("UK", 5)
Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)
Withdrawal("Belgium", 9)
Withdrawal("Narnia", 10)

Now the query finds a new match. The Withdrawal("UK", 5) event is followed
by the just arrived Withdrawal("Narnia", 10) event and the where clause
evaluates to true for these two events. This match set contains Withdrawal("UK",
5) and Withdrawal("Narnia", 10). While this match set contains the same
Withdrawal("UK", 5) event that was in the previous match set, it is a new
match set because it contains the event that arrived most recently, which is the
Withrawal("Narnia", 10) event.

Suppose that the Withdrawal("Narnia", 14) event has just arrived in the following
window:
Withdrawal("Belgium", 11)
Withdrawal("UK", 12)
Withdrawal("UK", 13)
Withdrawal("Narnia", 14)

In this situation, there is a match set that contains the two most recently arrived
events, that is, Withdrawal("UK", 13) and Withdrawal("Narnia", 14). The
Withdrawal("UK", 12) event is not part of the match set because it is not the most
recently arrived Withdrawal event whose country field is "UK".

Three coassignments

The code example below shows three coassignments in the find statement. This query
partitions the arriving events into windows according to their Automated Transaction
Machine identifier numbers (atmId).
query RepeatedMaxWithdrawals {
 inputs {
 Withdrawal() key atmId within 4 minutes;
 }
 find Withdrawal:w1 -> Withdrawal:w2 -> Withdrawal:w3
 where w1.amount = 500 and w2.amount = 500 and w3.amount = 500 {
 log "Suspicious withdrawal: " + w3.toString() at INFO;
 }
}

Each window contains the Withdrawal events that occurred in the last four minutes
at a particular ATM. For simplicity, the following examples show only the amount and

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 127

transactionId event fields. Suppose the following events are in the window and that
they arrived in order from top to boom:
Withdrawal(500, 101) w1
Withdrawal(500, 102) w2
Withdrawal(500, 103) w3

After the third event arrives, the event paern is matched, the where clause evaluates to
true, and the events are coassigned to w1, w2, and w3 as shown above.

Another event arrives in the window:
Withdrawal(500, 101)
Withdrawal(500, 102) w1
Withdrawal(500, 103) w2
Withdrawal(500, 104) w3

When the fourth event arrives there is a new match and the events are coassigned as
shown above. The Withdrawal(500, 101) event is not part of the new match set. A
match set always includes the most recent events that satisfy the event paern and that
allow the where clause to evaluate to true.

Another event arrives and the window now contains these events:
Withdrawal(500, 101)
Withdrawal(500, 102)
Withdrawal(500, 103)
Withdrawal(500, 104)
Withdrawal(100, 105)

The latest event, Withdrawal(100, 105), does not have 500 in its amount field.
Consequently, its arrival in the window does not trigger a new match because a match
set must always include the latest event. While the window still contains three events
that satisfy the event paern, the actions in the find block are not executed as a result of
the arrival of Withdrawal(100, 105) because it did not trigger a new match.

Another event arrives and the window now contains these events:
Withdrawal(500, 101)
Withdrawal(500, 102)
Withdrawal(500, 103) w1
Withdrawal(500, 104) w2
Withdrawal(100, 105)
Withdrawal(500, 106) w3

With the arrival of the Withdrawal(500, 106) event, there is a new match and the
events are coassigned as shown above. The coassigned events are the three most recently
arrived events that satisfy the event paern. It does not maer that Withdrawal(100,
105) arrived after some events that are in the match set. That event does not satisfy the
event paern and so it is not included in the match set.

Finally, suppose all of the following events have arrived in the window within the
specified four minutes:
Withdrawal(500, 101)
Withdrawal(500, 102)
Withdrawal(500, 103)
Withdrawal(500, 104)
Withdrawal(100, 105)
Withdrawal(500, 106) w1
Withdrawal(500, 107) w2

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 128

Withdrawal(100, 108)
Withdrawal(100, 109)
Withdrawal(500, 110) w3

As you can see, the latest event causes a new match. This match set does not include the
two events that arrived just before the latest event. Those two events do not satisfy the
event paern.

Query and operator

In a find statement, you can specify the and operator in the event paern. The
conditions on both sides of the and operator must evaluate to true for the query to find a
match. The condition on each side of an and operator can be a single event template or a
more complex expression.

In the next example, assuming that an X event and a Y event have already been added to
their respective windows, adding an A event to its window causes a match.
(X:x -> A:a1) and (Y:y -> A:a2)

In the second example, suppose events were added to their windows in this order: X(1),
A(1), Y(1), A(2). The A(1)event is not included in the match set. Only A(2) is in the
match set because it is the most recent A event to follow X(1) as well as the most recent A
event to follow Y(1).

When a single event is used in more than one coassignment you must coassign the
event, A in these examples, to distinct identifiers, a1 and a2 in these examples.

Specification of an and operator implies that there are no requirements regarding the
order in which the events specified in the event paern are added to the window. For
example, events specified in the right-side condition can be added to their windows
before events specified in the left-side condition. When conditions specify multiple
events the events that cause one side of the and operator to evaluate to true

Can all be added to their windows before the events that cause the other side to
evaluate to true

Can all be added to their windows after the events that cause the other side to
evaluate to true

Can arrive in their windows at times interleaved with the arrival of the events that
cause the other side to evaluate to true

Can contain the events that cause the other side to evaluate to true

Can be contained by the events that cause the other side to evaluate to true

When there is an order requirement or when you require multiple instances of the same
event type specify the followed-by (->) operator.

The and operator has a higher precedence that the followed-by operator. For clarity, use
brackets in expressions that specify both types of operators.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 129

Query wait operator

You can specify the wait operator in an event paern. The wait operator indicates that
there must be a time interval either at the beginning of the matching paern or at the
end of the matching paern. The format for specifying the wait operator is as follows:
wait (durationExpression) : coassignmentId

Syntax Element Description

durationExpression A time literal (such as 2 min 3 seconds) or
a float expression. A float expression can
use constants and parameters. It indicates a
number of seconds.

coassignmentId An identifier. You can specify this identifier
only in a between clause. See "Query condition
ranges" on page 136.

Typically, you specify the wait operator in conjunction with an event paern condition.
For example:
find A:a -> B:b -> wait(10):t
 without X:x between (b t)

There is a match for this paern when these things happen in this order:

1. An A event is added to a window in a partition.

2. A B event is added to a window in the same partition.

3. Ten seconds go by without an X event being added to a window in that partition.

The wait operator can be unambiguously at the beginning of a paern that uses the
followed-by operator or unambiguously at the end of a paern that uses the followed-by
operator. For example:
X:x -> wait(1.0) -> Y:y // Not allowed
X:x and wait(1.0) and Y:y // Not allowed
X:x and Y:y and wait(1.0) // Not allowed
wait(1.0) -> (X:x and Y:y) // Allowed
wait(1.0) -> X:x -> Y:y -> wait(1.0) // Allowed

The following code fragment detects the opening of a door without security
authorization:
find wait(5 seconds):p -> DoorOpened:e
 without SecurityAuthorization:s where s.doorId = e.doorId {
 emit UnautorizedAccess(e.doorId);
 }

Suppose the following events were received:

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 130

Time Event

00 SecurityAuthorization("door1")

02 DoorOpened("door1")

07 DoorOpened("door1")

15 DoorOpened("door2")

The first DoorOpened event for door1 does not generate an alert because a
SecurityAuthorization event was received within the 5 seconds that preceded the
first DoorOpened event and the doorId field is the same for both events. That is, because
the Boolean expression in the where clause of the without clause evaluates to true, a
match is prevented and so an alert is not sent.

The second DoorOpened event for door1 causes an UnautorizedAccess alert because
the SecurityAuthorization event was received more than 5 seconds before the second
DoorOpened event for door1.

The DoorOpened event for door2 causes an UnauthorizedAccess alert because a
SecurityAuthorization event was not received within the 5 seconds that preceded
that DoorOpened event. Since there was no SecurityAuthorization event, the Boolean
expression in the where clause that is in the without clause evaluates to false, which
allows a match.

Query conditions

A find statement can specify conditions that determine whether there is a match for the
specified event paern. The following table provides an overview of the conditions you
can specify.

Condition: where within without

Specifies: Boolean
expression

Time period Event type
coassigned to an
identifier

Latest event
can cause a
match when:

The Boolean
expression
evaluates to true.

Events in the
paern (or,
if specified,
the between
range) must have
been received
within the time
specified. That is,
the elapsed time

An event of a
specified type
was not added
to a window
after the addition
of the oldest
event in the
potential match
set nor before the

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 131

Condition: where within without

from when the
first event was
received to when
the last event
was received
must be less than
the within time
period.

addition of the
latest event.

Number
allowed:

Zero or more Zero or more Zero or more

Order when
all conditions
are specified:

1st 2nd 3rd

Format: where
boolean_expression

within
time_literal

without
typeId :
coassignmentID

Notes: where x where
y

is equivalent to

where x and y

A where clause
that precedes
any within or
without clauses
is referred to
as a find where
clause.

Alternatively,
you can
specify within
expression.
The expression
must evaluate to
a float.

Optionally, after
each within
clause, you
can specify a
between clause.
See "Query
condition ranges"
on page 136.

Optionally, after
each without
clause you can
specify one
where clause,
which is referred
to as a without
where clause
to distinguish
it from a find
where clause.

Optionally, after
each without
clause, you
can specify a
between clause.
See "Query
condition ranges"
on page 136.

Query where clause

A where clause filters which events match. A where clause consists of the where
keyword followed by a Boolean expression that refers to the events you are interested in.

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 132

In a find where clause, the Boolean expression must evaluate to true for the events to
match.

The where clause is optional. You can specify zero, one or more where clauses.

Note: You can specify a find where clause that applies to the event paern and you
can also specify a without where clause that is part of a without clause. Any
where clauses that you want to apply to the event paern must precede any
within or without clauses.

Coassignment variables specified in the find or select statements are in scope in a find
where clause. Also available in a find where clause are any parameter values and key
values.

Query within clause

A within clause sets the time period during which events in the match set must have
been added to their windows. A paern can specify zero, one, or more within clauses.
These must appear after any find where clauses and before any without clauses. The
format of a within clause is as follows. The between clause is optional.
within durationExpression [between (identifer1 identifier2 ...)]

The durationExpression must be a time literal (such as 2 min 3 seconds) or it must
evaluate to a float value. A float expression can use constants and parameters. It
indicates a number of seconds.

For example, consider the following find statement:
find LoggedIn:lc -> OneTimePass:otp
 where lc.user = otp.user
 within 30.0 {
 emit AccessGranted(lc.user);
 }

If specified, the between clause lists two or more items. Each item can be a coassigned
event in the paern. A wait coassignment can also be specified. These items define a
range. See "Query condition ranges" on page 136. For example:
find wait(1.): w -> A:a {
...
 within (5.0) between w a

Now assume that the following events arrive:

Time Event Access Granted?

10 LoggedIn("Andy")

15 OneTimePass("Andy") Yes. Both events received within 30
seconds.

20 LoggedIn("Mike")

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 133

Time Event Access Granted?

60 OneTimePass("Mike") No. OneTimePass event received
more than 30 seconds after
corresponding LoggedIn event.

60 LoggedIn("Sam")

90 OneTimePass("Sam") No. OneTimePass event
received exactly 30 seconds
after corresponding LoggedIn
event. For there to be a match,
the OneTimePass event must be
received less than 30 seconds after
its corresponding LoggedIn event.

As mentioned earlier, a find statement can specify multiple within clauses. This is
useful when the paern of interest refers to multiple events and you specify a between
range as part of each within clause. When you specify multiple within clauses they
must all be satisfied for there to be a match.

Query without clause

A without clause specifies event types, which must be specified in the inputs block
of the query, whose presence prevents a match. For example, if a potential match set
contains 3 events, it can be a match only if a type specified in a without clause was not
added to a window neither after the first event nor before the third event. Any event
type that can be used in the find paern can be used in the without clause.

Optionally, after each without clause, you can specify one where clause, which is
referred to as a without where clause to distinguish it from a find where clause. The
following table compares find where clauses and without where clauses.

Find where clause Without where clause

True allows a match. Think of this as
a positive where clause.

False allows a match. Think of this as
a negative where clause.

Can only be before any within or
without clauses

Can only be part of a without clause

Applies to the event paern Applies to the event specified in its
without clause

Cannot refer to event specified in
without clause

Can refer to event specified in
without clause

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 134

The absence of an event of a type specified in a without clause has the same effect as the
presence of an event for which the without where clause evaluates to false.

In addition to being able to refer to parameters and coassignment identifiers in the event
paern, a without where clause can refer to the one event mentioned in its without
clause. When a without where clause evaluates to true the presence of the without event
prevents a match. If a without where clause is false, then that without event instance is
ignored; that is, a match is possible.

A without clause cannot use the -> or and paern operators. However, you can specify
multiple without clauses. If there are multiple without clauses each one can refer to
only its own coassignment and not coassignments in other without clauses. However,
all without clauses can make use of the paern's standard coassignments, such as
od.user in the example at the end of this topic.

If there are multiple without clauses a matching event for any one of them prevents
a paern match. Multiple without clauses can use the same type and the same
coassignment, which is useful only when their where conditions are different.

Typically, a without where clause references the event in its without clause, but this is
not a requirement.

Optionally, after each without clause, you can specify a between clause, which lists two
or more coassigned events. It can also list a wait coassignment. For an event to cause a
match, the type specified in the without clause cannot be added to the window between
the points specified in the between clause. See "Query condition ranges" on page 136.

Any without clauses must be after any find where clauses and within clauses. If you
specify both optional clauses, the without where clause must be before the between
clause.

When a without clause includes both optional clauses, where and between, the format
looks like this:
without typeId : coassignmentId
 where boolean_expression
 between (identifier1 identifier2 ...)

As mentioned previously, a find where clause applies to the event paern while a
without where clause applies to the event specified in its without clause. The following
table shows the resulting behavior according to the type of the where clause and the
value of its Boolean expression:

Type of where clause Boolean expression
evaluates to true

Boolean expression
evaluates to false

Find where clause
applies to event paern

Allows match Prevents match

Without where clause
applies to its without
event

Prevents match Allows match

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 135

Example

Consider the following find statement:
find OuterDoorOpened:od -> InnerDoorOpened:id
 where od.user = id.user
 without SecurityCodeEntered:sce where od.user = sce.user {
 emit Alert("Intruder "+id.user);
}

Now suppose the following events arrive:

Event Received Result

OuterDoorOpened("Andrew")

SecurityCodeEntered("Andrew") Causes the without where clause to
evaluate to true, which prevents a
match.

InnerDoorOpened("Andrew") No alert is set.

OuterDoorOpened("Brian")

InnerDoorOpened("Brian") Because there is no intermediate
SecurityCodeEntered event, there
is a match and the query sends an
alert. This is an example of how the
absence of an event of a type specified
in a without clause has the same effect
as the presence of an event for which
the without where clause evaluates to
false.

OuterDoorOpened("Chris")

SecurityCodeEntered("Charlie") Causes the without where clause to
evaluate to false, which allows a match.

InnerDoorOpened("Chris") Causes a match and the query sends an
alert.

OuterDoorOpened("Dan")

SecurityCodeEntered("David") Causes the without where clause to
evaluate to false, which allows a match.

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 136

Event Received Result

SecurityCodeEntered("Dan") Causes the without where clause to
evaluate to true, which prevents a
match.

SecurityCodeEntered("Densel") Causes the without where clause to
evaluate to false, which allows a match.

InnerDoorOpened("Dan") There is no match because one of the
SecurityCodeEntered events caused
the without where clause to evaluate to
true, which prevents a match.

Query condition ranges

The within and without clauses (See "Query conditions" on page 130) can each
have an optional between clause that restricts which part of the paern the within or
without clause applies to. The format for specifying a range is as follows:
between (identifer1 identifier2 ...)

At least two identifiers that are specified in the event paern are required. The identifiers
specify a period of time that starts when one of the specified events is received and ends
when one of the other specified events is received. A between clause is the only place in
which you can specify a coassignment identifier that was assigned in a wait clause. You
cannot specify identifiers used in a without clause. Also, the same event cannot match
both the coassignment identifier in the without clause and an identifier in a between
clause.

The condition that the between clause is part of must occur in the range of identifiers
specified in the between clause. For example, consider the following find paern:
find A:a and B:b and C:c without X:x between (a b)

For there to be a match set for this paern, no X event can be added to its window
between the arrivals of the a and b events. If events are received in the order B A X C,
then there is a match set because the X event is not between the a and b events. If the
events are received in the order B C X A, then there is no match set because an X event
occurred between the a and b events.

Here is another example:
find A:a -> B:b -> (C:c and D:d)
 within 10.0 between (a b)
 within 10.0 between (c d)

Range Description

(a b) This duration starts when an A event is received because the
paern is looking for an A event followed by a B event. For there to

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 137

Range Description
be a match, the B event must arrive less than 10 seconds after the A
event.

(c d) After an A event followed by a B event has been received, this
duration starts when either a C event or a D event is received. Since
the paern is looking for a C and a D, it does not maer which
event is received first. For there to be a match, the event that is not
received first must be received less than 10 seconds after the first
event.

The following table provides examples of match sets.

Time Event
Received

Match Set

10 A(1)

15 B(1)

20 D(1)

25 C(1) A(1), B(1), D(1), C(1)

37 D(2) No match. More than 10 seconds elapsed between C(1)
and D(2).

40 C(2) A(1), B(1), D(2), C(2)

The range is exclusive. That is, the range applies only after the first event is received and
before the last event is received. For example, consider this paern:
find A:a1 -> A:a2 without A:repeated between (a1 a2)

A match set for this paern is two consecutive A events. If three consecutive A events are
added to the window, the first and third do not constitute a match set event though the
first A was followed by the third A. This is because the second A was added between the
first and the third A events. In other words, the events that match a1 and a2 are excluded
from the range in which the repeated event can match. The following table provides
examples of match sets for this paern. It assumes that A(1) is still in the window when
A(4) is added.

Event Added to Window Match Set Not a Match Set

A(1)

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 138

Event Added to Window Match Set Not a Match Set

A(2) A(1), A(2)

A(3) A(2), A(3) A(1), A(3)

A(4) A(3), A(4) A(1), A(4) and A(2),
A(4)

The query below is a real world example of the paern just discussed. It emits the
average price change in the last minute.
query FindAveragePriceMove {
 inputs {
 Trade() key symbol within 1 minute;
 }
 find every Trade:t1 -> Trade:t2
 without Trade:mid between (t1 t2)
 select avg(t2.price - t1.price):avgPriceChange {
 emit AveragePriceChange(symbol, avgPriceChange);
 }
}

It is illegal to have two within clauses with identical between ranges. This would be
redundant, as only the shortest within duration would have any effect. It is, however,
legal to have more than one without clause with the same between range. Typically,
these would refer to different event types or where conditions.

Special behavior of the and operator

To optimize performance when evaluating a query where clause, the correlator evaluates
each side of an and operator as early as possible even if evaluation is not in left to right
order. This behavior is different from the behavior outside a query. That is, outside a
query, the left side of an and operator is guaranteed to be evaluated first. See "Logical
intersection (and)" on page 895.

For example, suppose you specify the following event paern:
A:a -> B:b where a.x = 1 and b.y = 2

Consider what happens when the following events are added to their windows:
A(1), A(2), A(3), B(5), B(4), B(3)

The correlator can identify that

Only the a coassignment target is needed to evaluate the a.x = 1 condition.

Only the b coassignment target is needed to evaluate the b.y = 2 condition.

Because none of the B events cause the b.y = 2 condition to evaluate to true, the
correlator does not evaluate the a.x = 1 condition.

In a where clause, because the right side of an and operator might be evaluated first,
you should not specify conditions that have side effects. Side effects include, but are not
limited to:

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 139

print or log statements

route, emit, enqueue...to statements

Modifying events, sequences, dictionaries, etc

Causing a runtime error

Calling an action that has a side effect statement in it

Calling plug-ins that have side effects

If a where clause calls an action that has a side effect, you should not rely on when or
whether the action is executed.

Whether the correlator can optimize evaluation of the where clause depends on how
you specify the where clause conditions. For example, consider the following event
definition:
event Util {
 action myWhereClause(A a, B b) returns boolean {
 return a.x = 1 and b.y = 2;
 }
}

Suppose you specify the following event paern:
A:a -> B:b where (new Util).myWhereClause(a, b)

If the same A and B events listed above are added to their windows, the result is the
same as the result of evaluating
A:a -> B:b where a.x = 1 and b.y = 2

However, evaluation might take longer because the correlator cannot separate
evaluation of b.y = 2 from evaluation of a.x = 1. The myWhereClause() action
returns a.x = 1 and b.y = 2 as a single expression. Consequently, the correlator
evaluates (new Util).myWhereClause(a, b) for each combination of a and b. Given
the A and B events listed above, this is a total of 9 times.

While the correlator might evaluate some where clause conditions in a right-to-left
order, the correlator always evaluates each where clause condition as soon as it is ready
to be evaluated. When multiple conditions become ready to be evaluated at the same
time then the correlator evaluates those conditions in the order they are wrien. For
example, the typical paern of checking whether a dictionary contains a key before
operating on the value with that key continues to work reliably:
E:e -> F:f where e.dict.hasKey("k") and e.dict["k"] = f.x and f.y = 1

In this example, f.y = 1 might be evaluated before the other two conditions, but
e.dict.hasKey("k") is always evaluated before e.dict["k"] = f.x, and the laer is
not evaluated if the hasKey() method returns false.

Aggregating event field values

A find statement can specify a paern that aggregates event field values in order to find
data based on many sets of events. A paern that aggregates values specifies the every
modifier in conjunction with select and having clauses.

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 140

Based on a series of values, an aggregate function computes a single value, such as the
average of a series of numbers. For an overview of all built-in aggregate functions, see
"Built-in aggregate functions" on page 870.

Note: If a built-in aggregate function does not meet your needs, you can use EPL
to write a custom aggregate function. A custom aggregate function that you
want to use in a query must either be a bounded function or it must support
both bounded and unbounded operation. See "Defining custom aggregate
functions" on page 241.

For example, the following query watches for a withdrawal amount that is greater than
some threshold multiplied by the average withdrawal amount of the ATMWithdrawal
events in the window, which might be as many as 20 events. This query uses the
last() aggregate function to identify the event added to the window most recently
and uses the avg() aggregate function to find the average withdrawal amount of
the events in the window. The having clause must evaluate to true for the query to
send the SuspiciousTransaction event, passing the transaction Id of the suspicious
withdrawal.
using com.apama.aggregates.avg;
using com.apama.aggregates.last;
query FindSuspiciouslyLargeATMWithdrawals {
 parameters {
 float THRESHOLD;
 }
 inputs {
 ATMWithdrawal() key accountId retain 20;
 }
 find every ATMWithdrawal:w
 select last(w.transactionId):tid
 having last(w.amount) > THRESHOLD * avg(w.amount){
 send SuspiciousTransaction(tid) to SuspiciousTxHandler;
 }
}

To use an aggregate function in a find statement, specify the every modifier and
specify one or more select or having clauses. A select clause indicates that aggregate
values are to be computed. Each select clause specifies a projection expression and
a projection coassignment. The projection expression can use coassignments from the
paern if the coassignments are within a single aggregate function call. For example,
the following paern computes the average value of the x member of event type A in the
query's input and coassigns that average value to aax.
find every A:a select avg(a.x):aax

A select clause can use parameter values. For example the following two select
clauses are both valid if there is a parameter param:
find every A:a
 select avg(param * a.x):apax
 select param * avg(a.x):paax

You can specify multiple select clauses to produce multiple aggregate values.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 141

In an aggregating find statement, only the projection expression can use the
coassignments from the paern. The procedural block of code can use projection
coassignments and any parameters, but it cannot use coassignments from the paern.

The first() and last() built-in aggregate functions are useful if you want to refer to
the coassignment value of the oldest or newest event, respectively, in the window.

The following example determines the average price of trades other than your own:
find every Trade:t
 where t.buyer != myId and t.seller != myId
 select wavg(t.price, t.amount):avgprice

Match sets used in aggregations

In find statements without the every modifier, only the most recent set of events
that match the paern are used to invoke the procedural code block. With the every
modifier, every set of events that matches the paern is available for use by the
aggregate function, provided that the latest event is present in one of the sets of events.
Any events or combinations of events that do not match the paern or do not match the
where clause, or are invalidated due to a within or without clause, are ignored; their
values are not used in the aggregate calculation.

For example, consider the following find statement:
find every A:a -> B:b
 where b.x >= 2
 select avg(a.x + b.x):aabx {
 print aabx.toString();
}

The following table shows what happens as events are added to the window.

Event
Added to
Window

Match Sets Average Of Value of aabx

A(1) None

A(2) None

B(2) A(1), B(2)

A(2), B(2)

3 and 4 3.5

B(1) None because B(1)
causes the where clause
to be false.

B(3) A(1), B(2)

A(2), B(2)

3, 4, 4, and 5 4

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 142

Event
Added to
Window

Match Sets Average Of Value of aabx

A(1), B(3)

A(2), B(3)

Using aggregates in namespaces

As with event types, an aggregate function is typically defined in a namespace. To use
an aggregate function, specify its fully-qualified name or a using statement. The built-in
aggregate functions are in the com.apama.aggregates namespace. For example, to use
the avg() aggregate function you would specify the following in the query:
using com.apama.aggregates.avg;

Filtering unwanted invocation of procedural code

Each select clause defines an aggregate value to be produced. You can also specify one
or more having clauses to restrict when the procedural code is invoked. For example,
consider the following find statement:
find every A:a
 select avg(a.x):aax
 having avg(a.x) > 10.0 {
 print aax.toString();
}

This example calculates the average value of a.x for the set of A events in the window.
However, it executes the procedural block only when the average value of a.x is greater
than 10.0.

Multiple having clauses

You can specify multiple having clauses and you can use parameter values in having
clauses. For example,
find every A:a
 select avg(a.x):aax
 select sum(a.y):aay
 having avg(a.x) > 10.0
 having sum(a.y) > param1
 having max(a.z) < param2
 {
 print aax.toString(), + " : " + aay.toString();
}

When you specify more than one having clause it is equivalent to specifying the and
operator, for example:
 ...
 having avg(a.x) > 10.0 or sum(a.y) > param1
 having max(a.z) < param2
 ...

is equivalent to

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 143

 ...
 having (avg(a.x) > 10.0 or sum(a.y) > param1) and (max(a.z) < param2)
 ...

Using a select coassignment in a having clause

Rather than specifying an aggregate expression twice, once in a select clause and then
subsequently in a having clause, it is possible to refer to the aggregate value by using
the select coassignment name. For example:
find every A:a
 select avg(a.x):aax
 having avg(a.x) > 10.0 {
 print aax.toString();
}

You can rewrite that as follows:
find every A:a
 select avg(a.x):aax
 having aax > 10.0 {
 print aax.toString();
}

Using a having clause without a select clause

When you want to test for an aggregate condition but you do not want to use the
aggregate value, you can specify a having clause without specifying a select clause.
For example,
find every A:a
 having avg(a.x) > 10.0 {
 print "Average value is greater than ten!";
}

Event matching policy
It is possible for the windows for a given key to contain multiple sets of events that, each
taken in isolation, would match the defined event paern. In this case, the matching
policy determines which of the candidate event sets is the match set that triggers the
query. There are two event matching policies:

Recent — This is the only policy followed for queries that to not specify the every
keyword, that is, they do not specify aggregate functions.

Every — This is the only policy followed for queries that specify the every keyword.
That is, they specify aggregate functions.

For both policies, the match set must include the latest event. The latest event is the
event that was most recently added to the set of windows identified by a particular key.

For the recent matching policy, to identify which candidate match set triggers the query,
the correlator compares the times of the second-most-recent events in the candidate
event sets. If one of these events is more recent than its corresponding event(s) then the
candidate event set it is in is the match set. However, if two or more candidate event
sets share the second-most-recent event, then the correlator compares the times of the
third-most-recent events in those candidate event sets. The correlator continues this until
it finds an event that is more recent than its corresponding event(s) in other candidate

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 144

event set(s). The candidate event set that becomes the match set is referred to as the most
recent set that matches the event paern.

Once the correlator determines which candidate event set is the match set, it ignores the
order of any earlier events in any event sets. This means that it is possible for the most
recent set of events to contain an event that was added earlier than an event in a set that
is not the most recent set. The following event definitions and sample query illustrate
this.
event APNR {
 // Automatic Plate Number Recognition
 string road;
 string plateNumber;
 integer time; // Represents time order for illustration purposes
}
event Accident {
 string road;
}
event NotifyPolice {
 string road;
 string plateNumber;
}

The following query uses these events:
query DetectSpeedingAccidents {
 inputs {
 APNR() key road within(150.0);
 Accident() key road within(10.0);
 }
 find APNR:checkpointA -> APNR:checkpointB -> Accident:accident
 where checkpointA.plateNumber = checkpointB.plateNumber
 and checkpointB.time - checkPointA.time < 100
 // Which indicates the car was speeding
 {
 emit NotifyPolice(accident.road, checkpointA.plateNumber);
 }
}

Suppose the following events are in the query windows:
APNR("MyRoad", "2N2R4", 1000)
APNR("MyRoad","FAB 1", 1010)
APNR("MyRoad","FAB 1", 1080)
APNR("MyRoad","2N2R4", 1090)
Accident("MyRoad")

There are two candidate event sets:

Coassignment
identifier

A candidate event set Another candidate event set

checkpointA

checkpointB

accident

APNR("MyRoad",
"2N2R4", 1000)

APNR("MyRoad",
"2N2R4", 1090)

APNR("MyRoad","FAB 1",
1010)

APNR("MyRoad","FAB 1",
1080)

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 145

Coassignment
identifier

A candidate event set Another candidate event set

Accident("MyRoad") Accident("MyRoad")

Both sets match against the single Accident event. The next most recent events
are APNR("MyRoad","2N2R4", 1090) and APNR("MyRoad","FAB 1", 1080). The
APNR("MyRoad", "2N2R4", 1090) event is more recent. Consequently, after the
Accident event is added to its window, there is a match and the match set includes the
Accident event and the 2N2R4 APNR events. This is the most recent set of events.

In this example, in the most recent set of events, the earliest event, APNR("MyRoad",
"2N2R4", 1000) is earlier than the earliest event, APNR("MyRoad", "FAB 1", 1010),
in the other set of events.

Acting on pattern matches
When a query finds a set of events that matches the specified paern it executes the
statements in its find block. The find block specifies one or more statements that
operate on the matching event(s). The items available in a find block include:

Any parameters defined in the parameters section.

Coassignment variables specified in the event paern.

In the case of an aggregating find statement, only the projection expression
can use the coassignments from the paern. The find block can use projection
coassignments, but it cannot use coassignments from the paern.

Key values.

Actions that are defined in the same query after the find block. Any expression in
the find statement paern or block can reference an action defined after the find
block.

EPL constructs and statements that are allowed in queries. See "Restrictions in
queries" on page 151.

Defining actions in queries
In a query, after a find statement, you can define one or more actions in the same form
as in EPL monitors. See "Defining actions" on page 271.

In a given query, an action that you define can be referenced from any expression in that
query's find statement, including any statements in its find block. For example:
query CallingQueryActions {
 parameters {
 float distanceThreshold;
 float period;
 }
 inputs {
 Withdrawal() key account within period;
 }

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 146

 find Withdrawal: w1 -> Withdrawal: w2
 where distance(w1.coords, w2.coords) > distanceThreshold
 {
 logIncident(w1, w2);
 sendSmsAlertToCustomer(
 getTelephoneNumber(w1), getAlertText(w1,w2));
 }
 action distance(Coords a, Coords b) returns float {
 integer x := a.x - b.x;
 integer y := a.y – b.y;
 return (x*x + y*y).sqrt();
 }
 action logIncident (Withdrawal w, Withrawal w2) { ... }
 action getTelephoneNumber(Withdrawal w) returns string { ... }
 action getAlertText (Withdrawal w1, Withrawal w2) returns string { ... }
 action sendSmsAlertToCustomer(string telephoneNumber, string text) { ... }
}

Note: In a query, do not define an action whose name is onload, ondie, onunload,
onBeginRecovery, or onConcludeRecovery. In EPL monitors, actions with
these names have special meaning. For more information, see "Monitor
actions" on page 849.

Implementing parameterized queries
An Apama query can define parameters and then refer to those parameters throughout
the query definition. This enables a query definition to function as a template for
multiple query instances.

A query that defines parameters is referred to as a parameterized query. An instance of a
parameterized query is referred to as a parameterization.

A parameterized query offers the following benefits:

Paerns of interest (find paerns) may be customized from a single generic query.
This can significantly reduce the amount of code that needs to be wrien and
maintained.

Parameterizations exist only at runtime. There is no need to maintain a file for each
instance.

Parameters can be used throughout the query in which they are defined. For
example, you can use them in the definition of inputs, in find actions, and in user-
defined actions. Values do not need to be hardcoded.

See also: "Query lifetime" on page 854.

Format for defining query parameters
You define query parameters in the parameters section of a query definition. The
parameters section is optional. If you specify a parameters section, it must follow the
metadata section, if defined, and it must precede the inputs section.

The format for specifying the parameters section is as follows:
parameters {

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 147

data_type parameter_name ;
 [data_type parameter_name ;]...
}

Parameters must be integer, float, string or boolean types. Specify one or more
data_type parameter_name pairs. The parameter name can use any of the characters
allowed for EPL "Identifiers" on page 919. Any parameters you specify are available
throughout the rest of the query.

In the following example, the parameters section is in bold as are the references to the
parameters.
query FaultyProduct {
parameters {
 string product;
 float thresholdCost;
 float warrantyPeriod;
 }
 inputs {
 Sale() key customerId within warrantyPeriod;
 Repair() key customerId retain 1;
 }
 find Sale():s1 -> Repair():r1
 where s1.product = product
 and r1.product = product
 and r1.cost >= thresholdCost
 {
 log "Cost of warranty covered repair for product \"" + product +
 "! above threshold $" + thresholdCost.toString() + " by $
 " + (r1.cost - thresholdCost).toString() at INFO;
 }
 }

Parameterized queries as templates
When a parameterized query is injected into a correlator no instances of the query are
created until a request to create a parameterization is sent using the Scenario Service
(that is, the com.apama.services.scenario client API). This request must include
valid values for the query's parameters. For example, if the query in the previous topic
is injected, the request to create a parameterization must include valid values for the
product, thresholdCost, and warrantyPeriod parameters. Only then does the query
become active.

A parameterized query lets you define a generic query find paern that operates on
a particular group of input types and that can be customized for particular criteria.
The query in the previous topic could be created for any product with the threshold
cost and warranty period specified as required. To achieve the same result with a non-
parameterized query, you would have to define a query such as the following:
query FaultyProduct {
 inputs {
 Sale() key customerId within 1 week; //warrantyPeriod
 Repair() key customerId retain 1;
 }
 find Sale():s1 w-> Repair():r1
 where s1.productId = "Mobile device A" // productId
 and r1.productId = "Mobile device A" // productId
 and r1.cost >= 50.00 // thresholdCost
 {

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 148

 log "Cost of warranty covered repair for product \"Mobile device A\
 " above threshold $50.00 by $" + (r1.cost - 50.00).toString() at INFO;
 }
}

While this query is valid it has the drawback that whenever you want to perform a
similar query for a product that differs by type, warranty coverage period or threshold
repair cost then a new query will need to be wrien (or most likely copied and pasted)
with the new set of values and then injected into the correlator. The benefit of a
parameterized query is that only one query definition needs to be injected into the
correlator and you can then manually or programatically create as many different
instances for the different product-value combinations as required.

Using the Scenario Service to manage parameterized queries
There are several ways to manage (create/edit/remove) parameterizations:

Use the ScenarioService API in Java or .NET client libraries. See "Developing
Custom Clients" in Connecting Apama Applications to External Components".

Use Apama's Scenario Browser view in Software AG Designer. See "Scenario
Browser view" in Using Apama with Software AG Designer.

Write dashboards that control the instances of a parameterized query. See "Building
Dashboard Clients" in Building and Using Dashboards.

The Scenario Service is also used to read and manage instances of scenarios, DataViews
and MemoryStore.

To these tools, a query will appear with the fully qualified name declared in the
.qry file prefixed with QRY_ to highlight that the entity being viewed is a query. For
parameterized queries, instances can be created, edited or deleted. For unparameterized
queries, a single instance will appear as soon as the query is injected. This instance
cannot be edited nor deleted, nor new instances created.

When there is a request to create a parameterization the Scenario Service tries to validate
the supplied parameter values. If the values are valid the result is as if a query with
those values had just been injected.

The parameter seing capabilities provided for queries are similar to that for scenarios.
For example, end users have the ability to define conditions on parameter values when
seing them in dashboards. Parameter values can be modified only by the Scenario
Service. Updates by the Scenario Service do not occur atomically across all contexts if the
query is running in multiple contexts. Consequently, it is possible to observe the effects
of the old parameter values interleaved with the effects of the new parameter values. For
example, consider a query that has a paern such as the following:
find A:a -> wait(paramValue):t

The wait period will be based on the value the parameter had when the wait period
started. If the parameter value is edited after the A event enters the partition the wait
still fires according to the old value. Such transitions are typically short. The actual time
required depends on various factors such as machine load and memory.

Some important differences between parameterized queries and scenarios include:

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 149

Parameterized queries have input variables but not output variables. Scenarios,
DataViews and MemoryStore have both input variables and output variables. All
queries have an empty list of output variables.

Requests to create or update a parameterization with values that are invalid will be
denied. Invalid values are values that would cause wait, within or retain clauses
to evaluate to less than or equal to zero, or would cause them to fail to evaluate, for
example, by causing a runtime exception to be thrown.

For example, consider the following query:
query ParameterizationExample {
 parameters {
 integer intParam;
 integer floatParam;
 }

 inputs {
 A() key id retain (10/intParam);
 B() key id within (5.0 - floatParam);
 }

 find A:a -> B:b -> wait(-1.0 * floatParam)
 where (a.intField/intParam > 0) {
 log "Found match" at INFO;
 }

Suppose that there is a request to create a parameterization of this query. The
request indicates that intParam is equal to 0 and floatParam is equal to 10.0. If the
parameterization were created then every expression that contains a parameter value
would immediately throw an exception or be invalid. In the inputs block, evaluation
of the retain expression would result in a divide-by-zero exception. The within
expression would evaluate to -5.0, which is not valid. Similarly, upon evaluating the
elements in the find block the wait expression would be a negative value and the
where clause would also result in a divide-by-zero exception. Since a parameterization
such as this would lead to either invalid expressions or exceptions being thrown, these
values are not allowed. If you try to pass disallowed values to the Scenario Service
createInstance() method then the Scenario Service returns null. Similarly, if you try
to pass invalid values to the Scenario Service editInstance() method then the Scenario
Service returns false, which indicates an error.

Referring to parameters in queries
You can refer to parameters throughout a query definition.

You cannot change parameter values in the query code itself. Parameter values can be
modified only by the Scenario Service.

Caution: Apama recommends that you do not change parameter values used in input
filters because it is possible to miss events that would cause a match. In a
given parameterization, when an input filter refers to a parameter and you
change the value of that parameter, it causes the parameterization to stop and
restart. Events sent during the changeover are ignored. Also, there might have
been earlier events that match the new parameter value but that did not make

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 150

it into the window because they did not match the previous parameter value.
An alternative is to use a parameter in a where clause in the find statement
instead. This can be more efficient when the parameter value needs to be
changed frequently. Using parameter values in input filters can also increase
memory usage, see "Queries can share windows" on page 96.

Examples of using parameters in queries:

In retain and within expressions that are in the inputs block:
parameters {
 integer maxRetention;
 float maxDuration;
}
inputs {
 A() key id retain maxRetention;
 B() key id with maxDuration;
}

In the filter of the event template in the inputs block:
parameters {
 float threshold;
}
inputs {
 Withdrawal(amount > threshold) key k;
}

In where and within clauses that are in the find paern:
parameters {
 float maxDuration;
 float maxDifference;
}
inputs {
 A() key id retain 2;
}
find A:a1 -> A:a2 where (a2.cost - a1.cost) >
 maxDifference within maxDuration {
 ...
}

In wait expression(s) that are in the find paern:
parameters {
 float interval;
}
inputs {
 A() key id retain 2;
}
find A:a1 -> wait(interval):w1 -> A:a2 {
 ...
}

In an aggregate expression that is in the find paern:
parameters {
 float avg;
}
inputs {
 A() key id within 1 day;
}
find every A:a
 select avg(a.cost - avg):avgDeviation {

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 151

 ...
}

In an action that is in the find block:
parameters {
 float avg;
}
inputs {
 A() key id retain 1;
}
find A:a {
 log "Deviation from mean = " + (a.value - avg).toString();
}

In a user-defined action block:
parameters {
 float avg;
}
inputs {
 A() key id retain 1;
}
find A:a {
 log "Deviation from mean = " + getDeviation(a).toString();
}
action getDeviation(A a) returns float {
 return (a.value - avg);
}

While parameter values can be used anywhere within the query it is illegal to mutate the
parameter values. They can be modified only by the Scenario Service.

Scaling and performance of parameterized queries
Depending on the machine architecture a user can expect to be able to create several
hundred parameterizations, which all concurrently process events.

As a result of the time required to process a parameterization edit request, the
recommendation is to avoid multiple simultaneous edit requests for the same
parameterization. There is no guarantee that all of the threads executing the
parameterization will hold the same parameter values during the update period. During
the update period, there might be a mix of results based on old parameter values and
results based on new parameter values. Any requests to the same parameterization
should be spaced approximately 1 second apart to allow time for requests to be executed
throughout the parameterization. This applies to create, edit and delete requests.

In a cluster of correlators, the correlators share the same set of parameter values across
the cluster. While a Scenario Service client can connect to any correlator in the cluster, it
is not recommended to edit the same parameterization from multiple Scenario Service
clients concurrently, as the results will be undefined.

Restrictions in queries
There are some EPL elements that are appropriate for monitors but not queries, for
example spawn and die. This is because queries scale automatically, with multiple
threads of execution processing the events for different partitions as and when they

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 152

arrive. Hence, within query code, the spawn and die operations are meaningless.
Queries operate on the events in their windows and do not need to set up event
listeners, stream queries, or stream listeners. Also, queries cannot subscribe to receive
events sent to particular channels.

The following EPL features cannot be used in queries:

Event listeners, that is, on statements

Stream queries and stream listeners

spawn and spawn...to statements

die statements

monitor.subscribe() and monitor.unsubscribe()

route statements

An identifier cannot start with two consecutive underscore characters. For example,
__MyEvent is an invalid event type name in a query (it is valid in a monitor). A
single underscore at the beginning of an identifier is valid.

Predefined self variable

Of course, you cannot call an action on an event when that action uses a restricted
feature listed here.

The recommended means to send events from queries to monitors is by sending to a
channel. See "Generating events with the send command" on page 285.

The debugger does not support debugging query execution - it is not possible to set
breakpoints in a query file. Use of the debugger can also affect how quickly queries are
ready to respond to events, and should not be used in a production system (where it
would cause significant pauses of the correlator).

Note: Several restrictions are enforced on queries if a license file cannot be found
while the correlator is running. See "Running Apama without a license file" in
Introduction to Apama.

Best practices for defining queries
Use values for the length of the window that will not store too much data in the window.

Given the expected incoming event rate, set the within and/ or retain window lengths
so that typically less than a hundred events per partition will be within the window.
With more than that the cost of executing queries can become excessive and the system
will not perform efficiently. There is no limit on the number of events within any
partition - if a very small proportion of exceptional partitions has many more, then that
is not a problem. The important factor is that if the average number is large, this can
affect the performance of executing queries.

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 153

Use parameters instead of creating many similar queries.

(See also "Parameterized queries as templates " on page 147). Rather than write many
separate queries which are very similar in structure and differ only in values, it may
be easier to write a template query and create multiple parameterizations of it. Note
that it is not possible to select which fields are keys using parameters - queries that use
different keys must be wrien as separate query files.

Use within in input durations if the partition values change over time

In some queries, the key used by the query may correspond to a transient object -
that is, any given value for the partition is not permanent. For example, if tracking
parcels being delivered, then each consignment ID will be short lived - once a parcel is
delivered, there would in most cases be no more events for that consignment ID (and
future deliveries may never re-use the same consignment ID). In these cases, over long
periods, the number of different key values processed will only increase, as new IDs are
generated. Such queries should include a 'within' specification in the inputs for all event
types. Otherwise, if inputs only have a retain specification, then the events will be held
forever, and more and more storage will be required by the Queries system. This is not
typically necessary if the key corresponds to more permanent objects - such as ATMs or
distribution depots.

Use input within that is larger than the value of all waits, withins in the pattern

If your inputs specify a within and there are wait or withins in the paern, then the
input within should be larger than the longest wait and within in the paern. If not,
the paern will not have the intended effect, as events will be expired from the input
window while a wait or within in the paern is still active.

Use same set of inputs to allow sharing of data

If you have many queries of different types and they are using a lot of memory or
are running slowly, then check if they are using the same inputs definitions (see also
"Queries can share windows" on page 96). Memory usage can be reduced and
performance increased by making multiple queries use the same set of input definitions,
even if some queries have some event types in their inputs that they are not using.

Understand the difference between filters and where clauses

Filters in the input section filter events before they are stored in the distributed cache.
By contrast, the where clause filters events (or combinations of events) after they have
been stored in the distributed cache. The where clause is more powerful, but also more
expensive, especially if most events do not match the where clause.

A filter applies before the event window. Thus:

Events not matching the filter are ignored and do not need to be stored
anywhere. This makes filtering a very cheap way of reducing the number of
events that need to be processed. The retain count only applies to the events that
match the filter. For example, this query input:
query Q1 {

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 154

 inputs {
 Event(value = 5) key k retain 2;
 }
 find Event:e1 -> Event:e2 {
 }
}

Will match events where there have been two events with value = 5; it will match
if another event for the same k has occured between them with value not equal to
5. Compare with:
query Q2 {
 inputs {
 Event() key k retain 2;
 }
 find Event:e1 -> Event:e2 where e1.value = 5 and e2.value = 5 {
 }
}

This only matches if the last two events for a given value of k both have the value
5 - as we only retain 2 events and after retaining 2 events, check that they have
value = 5.

A filter applies to all events - note that in query Q2 above we had to repeat the value
= 5 check.

A where clause does not affect the definition of the inputs; query Q2 could share
window contents with other queries that are concerned with different values of
'value', or don't filter at all.

A filter is restricted to range or equality matches per field of the incoming events.
Where clauses can be more complex (e.g. where e1.field1 + e2.field2 = 10 is
valid, as is e1.isTypeA or e1.isTypeB - but neither could be expressed in a filter)

Avoid changing parameter values used in filters

If using parameters in filters, avoid changing the values of those parameters. As this
changes which events should be being stored in the window, this is similar in effect
to stopping a query instance and creating a new query instance - it involves creating
new tables in the distributed cache and events that are delivered to correlators while a
new table is opened will be dropped. It may be more desirable to use a where clause to
restrict which events match a paern.

Use custom aggregates to get data from multiple match sets

As well as the built-in aggregates, it is possible to define new aggregates in EPL to
collate information about all events that matched a paern. For example, it may be
desirable to have a list of all events that matched a paern. This can be achieved by
writing a new custom aggregate. For example:
// file MyAggregates.mon:
aggregate CollateEvents(Event e) returns sequence<Event> {
 sequence<Event> allEvts;
 action add(Event e) {
 allEvts.append(e);
 }
 action value() returns sequence<Event> {
 return allEvts;

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 155

 }
}
// file PrintAllEvents.qry:
query PrintAllEvents {
 inputs {
 Event() within 2 hours;
 }
 find every Event:e1 select CollateEvents(e1):c1 {
 Event e;
 for e in c1 {
 print e.toString();
 }
 }
}

Testing query execution
When writing queries, as with any programming, it is important to test that the query
is behaving as expected. Testing can be as simple as a small Apama project with the
event definitions, the queries, and an evt file of events to send to the query. You can
use this project to check whether the query sends out the correct events. In Software AG
Designer, use the Engine Receive view to observe the output of the query. Whether or not
a query is wrien to send output events, you can add log statements to the query file to
verify whether it has or has not triggered.

Be sure to test queries in an environment that is separate from your production
environment. Of course, preventing problems is the best way to avoid the need to
troubleshoot so ensure that queries are sufficiently tested before deploying them.

The following background information and troubleshooting tips provide some
guidance. See also: "Overview of query processing" on page 82.

Exceptions in queries

In a query, exceptions can occur in the following places:

Procedural code in a find statement block

having clause

retain clause

select clause

wait clause

All where clauses

All within clauses

An exception in the inputs block (retain or within clause) or the find block's wait
or within clause causes the query to terminate. If there is an exception elsewhere, the
query continues to process incoming events. An exception that occurs in a where or
having clause causes the Boolean expression to evaluate to false.

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 156

Event ordering in queries

Unlike EPL monitors, the order in which queries process events is not necessarily the
order in which they were sent into the correlator. In particular, if two events that will
be processed by the same query with the same key value are sent very close together in
time (both events received less than about .1 seconds of each other) then they may be
processed as if they had been sent in a different order. For example, consider a query
that is looking for an A event followed by an A event. If two A events with the same key
arrive 1 millisecond apart then the events might not be processed in the order in which
they were sent.

Queries use multiple threads to process events and to scale across multiple correlators
on multiple machines. To do this efficiently, there is no enforcement that the events
are processed in order. However, when events that have the same key arrive roughly
about .5 seconds apart or more then out-of-order processing is typically avoided
provided the system can keep up with the load. Therefore, you want to specify a query
so that it operates on partitions in which the arrival of consecutive events is spaced far
enough apart. For example, consider a query that operates on credit card transaction
events, which could mean thousands of events per second. You want to partition this
query on the credit card number so that there is one event or less per partition per
second. By following this recommendation, it becomes possible to process events that
are generated at rates of up to 10,000 events per second.

When creating an evt file for testing purposes the recommendation is to begin the file
with a &FLUSHING(1) line to cause more predictable and reliable event-processing
behaviour. See "Event timing" in the "Correlator Utilities Reference" section of Deploying
and Managing Apama Applications. For example, consider the following evt file:

Query diagnostics

To help you monitor queries that are running on a given correlator, Apama provides
data about active queries in DataViews. See "Monitoring running queries" in Deploying
and Managing Apama Applications.

When deploying Apama queries it is possible to enable generation of diagnostic
information. These are log statements that explain some of the internal workings of the
query evaluation. In particular, events coming into the query and the contents of the
windows before the paern is evaluated are both logged. This can aid understanding
of how the query evaluation occurs. If a query is misbehaving then providing this
diagnostics logging to Apama support can help in understanding the issue.

Note: Diagnostic logs contain the event data. You may want to consider using fake
data rather than real data if the real data is sensitive.

Logging in where statements

It can be useful to modify a query so that rather than including the expression that needs
to be evaluated in a where clause, the query calls an action on the query to execute the
expression used by the where clause. This allows logging of inputs and the result of the
expression. For example, instead of a query that contains the following:

M
Odd Header

Defining Queries

Developing Apama Applications Version 9.10 157

find A:a -> B:b where a.x >= b.x { ...

Write the query this way:
action compareAB(A a, B b) returns boolean {
 log "compareAB; inputs: A:a = "+a.toString()+ ", B:b = "+b.toString();
 boolean r:= (a.x >= b.x);
 log "compareAB; result is "+r.toString();
 return r;
}

find A:a -> B:b where compareAB(a, b) { ...

You can then use these log statements to check if the query is behaving as expected.

Divide and conquer

One of the advantages of testing a query with a known set of input events is that it is
possible to see how changing the query affects the results. For example, if a query is not
matching any events and has many within and without clauses, try removing all of
them. One way to do this is to place them onto separate lines and use // as a comment
at the beginning of the lines in the source view. If the query still does not fire, use query
diagnostics to check that events are being evaluated. If the query is firing, then add
within and without clauses one at a time until the query stops firing. The problem is at
the condition that stops it from firing when it should.

Query performance

A critical factor that affects the performance of queries is the size of the windows
specified in the inputs block of the query. Aim for windows that contain no more
than 100 events. Depending on the distributed cache used to store data, it may also
be necessary to change the number of parallel contexts per correlator. Experiment
with different values for the number of worker contexts. See also: "Overview of query
processing" on page 82.

Using external clocking when testing

When testing queries, as well as switching into single context execution, it is often
useful to use external clocking. This allows &TIME events to be sent into the correlator
to simulate the passage of time, which allows queries involving long durations (for
example, multiple days) to be tested easily. To ensure the correct ordering of processing
between events and &TIME events, you should also include &FLUSHING(1) at the
beginning of the event file, before any events. See "Externally generating events that
keep time (&TIME events)" on page 197 in this document and "Event timing" in the
"Event file format" section of the correlator utilities reference in Deploying and Managing
Apama Applications.

Communication between monitors and queries
Queries can be used with or without monitors wrien in EPL. If you use monitors in
your query application, there are several ways to send data from a monitor to a query:

M
Even Header

Defining Queries

Developing Apama Applications Version 9.10 158

To send an event to all Apama queries running on that correlator, send it to the
com.apama.queries channel.

Queries receive events sent to the default channel, which is useful for testing.

Note: The order in which events are processed is not guaranteed for queries. See
"Event ordering" in "Testing query execution" on page 155.

Queries can send events to EPL monitors by using the send...to statement and
specifying a channel on which the monitor is listening. The monitor author should make
it clear which channel they are expecting events on. The channel name can be a single
name for a given monitor or a name constructed from data in the event, so that different
values are processed in parallel.

If you are using multiple correlators, be aware that communication between queries
and monitors normally takes place within a single correlator. However, it is possible
to use engine_connect or Universal Messaging to connect correlators. This allows an
event sent on a channel on one correlator to be processed by a monitor subscribed to that
channel on another correlator.

Unlike a query's history window, any state stored in EPL monitors, including in the
listeners, is independent in each correlator, and is not automatically moved or shared
between correlators.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 159

4 Defining Event Listeners

■ About event expressions and event templates .. 160

■ Specifying the on statement .. 163

■ Using a stream source template to find events of interest .. 164

■ Defining event expressions with one event template .. 165

■ Terminating and changing event listeners ... 168

■ Specifying multiple event listeners ... 170

■ Listening for events that do not match .. 171

■ Specifying completion event listeners .. 172

■ Improving performance by ignoring some fields in matching events ... 174

■ Defining event listeners for patterns of events .. 175

■ Specifying and/or/not logic in event listeners .. 177

■ How the correlator executes event listeners .. 182

■ Defining event listeners with temporal constraints .. 189

■ Understanding time in the correlator ... 194

■ Out of band connection notifications ... 200

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 160

In an EPL monitor, an on statement specifies an event expression and a listener action.

Note: Queries do not need to set up event listeners so you cannot specify an on
statement in a query. The information about defining event listeners applies
only to monitors.

When the correlator executes an on statement it creates an event listener. An event
listener observes each event processed by the context until an event or a paern of
events matches the paern specified in the event listener's event expression. When this
happens the event listener triggers, causing the correlator to execute the listener action.
At this point, depending on the form of the event expression, the event listener either
terminates or continues listening for additional matching event paerns.

An event listener analyzes the event stream until one of the following happens:

The event listener finds the paern defined in its event expression.

The quit() method is called on the event listener to kill it.

The monitor that defines the event listener dies.

The correlator determines that the event listener can never trigger.

The correlator can support large numbers of concurrent event listeners each watching
for an individual paern.

About event expressions and event templates
To create an event listener, you must specify an event expression. An event expression

Identifies an event or event paern that you want to match

Contains zero or more event templates

Contains zero or more event operators

An event template specifies an event type and encloses in parentheses the set of, or set
of ranges of, event field values to match. An event template can specify wildcards for
event fields or can specify that certain event fields must have particular values or ranges
of values.

An event expression can specify a temporal operator and zero event templates.

Following are event expressions that are each made up of one event template:

Event Expression Description

StockTick(*,*) The event listener that uses this event
expression is interested in all StockTick
events regardless of the event's field values.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 161

Event Expression Description

NewsItem("ACME",*) The event listener that uses this event
expression is interested in NewsItem events
that have a value of ACME in their first field.
Any value can be in the second field.

ChainedResponse(reqId="req1") The event listener that uses this
event expression is interested in
ChainedResponse events whose
reqId field has a value of req1. If a
ChainedResponse event has any other
fields, their values are irrelevant.

You can specify more than one event template in an event expression by adding event
operators. The following table describes the operators that you can use in an event
expression.

Category Operator Operation

Followed by -> The event listener detects a match when it
finds an event that matches the event template
specified before the followed-by operator and
later finds an event that matches the event
template that comes after the followed-by
operator.

Repeat matching all The event listener detects a match for each
event that matches the specified event
template. The event listener does not terminate
after the first match.

and Logical intersection. The event listener detects
a match after it finds events that match the
event templates on both sides of the and
operator. The order in which the listener
detects the matching events does not maer.

not Logical negation. The event listener detects a
match only if an event that matches the event
template that follows the not operator has not
occurred.

Logical operators

or Logical union. The event listener detects a
match as soon as it finds an event that matches

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 162

Category Operator Operation
one of the event templates on either side of the
or operator.

xor Logical exclusive or. The event listener detects
a match if it finds an event that matches
exactly one of the event templates on either
side of the xor operator. For example, consider
this event: A(1,1). This event does not trigger
the following listener because it matches
the event templates on both sides of the xor
operator: on A(1,*) xor A(*,1).

at The event listener triggers at specific times or
repeatedly at a specified interval.

wait Limits the amount of time that an event
listener can detect a match.

Temporal
operators

within The event listener can find a match only within
the specified timeframe.

Consider the following example:
event Test
{
 float f;
}

monitor RangeExample
{
 action onload()
 {
 on Test (f >= 9.0) and Test (f <= 10.0) processTest();
 }

 action processTest();
 {
 do something }
}

The event expression is:
Test (f >= 9.0) and Test (f <= 10.0)

This event expression specifies the and operator so the event listener must detect an
event that matches both of the event expression's event templates or two events, where
one matched the first template and another matched the second. It does not have to be
a single event that matches both event templates. The order in which the templates are
matched does not maer.

Consider this event expression:
A(a = "foo") xor A(b > 9)

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 163

An event listener that defines this event expression triggers for A("foo", 9) but not
A("foo", 10). On A("foo", 10), the A templates would trigger simultaneously, so the
xor would remain false.

The correlator can match on up to 32 fields per event. If you specify an event template
for an event that has more than 32 fields, you must ensure that the correlator maintains
indexes for the particular fields for which you specify values that you want to match.

In other words, when the event definition was loaded into the correlator, the fields that
did not have the wildcard keyword formed the set of fields that you can match on. An
event template can try to match on only those fields. If an event template specifies any of
the wildcard fields, it must be with an asterisk.

If you try to load a monitor that defines an event template that specifies more than 32
fields without an asterisk or a wildcard field without an asterisk, the correlator rejects
the monitor. You must correct the template in order to load the monitor.

Specifying the on statement
You specify an on statement to define an event listener. The format of an on statement is
as follows:
[listener identifier :=] on event_expr [coassignment] listener_action ;

Syntax description

Syntax Element Description

identifier Optionally, you can specify a variable of type
listener and assign the new event listener
to that variable. This gives you a handle to
the event listener — if you want to terminate
it you can call the quit() method on the
listener.

event_expr The event expression identifies the event or
paern of events that you want to match.
An event expression is made up of one or
more event templates and zero or more event
operators.

coassignment Optionally, you can coassign the matching
event to a variable of the same event type.
Coassignments are part of event templates.
Each event template can have a coassignment,
so there can be multiple coassignments in a
listener.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 164

Syntax Element Description

listener_action The statement or block that you want the
correlator to perform when the event listener
triggers.

Examples

For example:
on StockTick(*,*) processTick();

In this example, the event expression contains one event template: StockTick(*,*).
The asterisks indicate that the values of the StockTick event's two fields are not relevant
when matching. When this event listener detects a StockTick event, the listener triggers
and causes the correlator to execute the processTick() listener action.

Following is an example that coassigns the matching event to the newTick variable.
The newTick variable must be a StockTick event type variable. Coassignment simply
assigns the event to the variable.
on StockTick(*,*):newTick processTick();

The next example begins with the declaration of a listener variable. The statement
assigns the event listener to the l variable.
listener l := on StockTick(*,*):newTick processTick();

Suppose that after finding a matching event, the listener action includes specification of
an on statement. For example:
listener l := on StockTick(*,*):newTick {
 on StockTick(newTick.symbol, > newTick.value):risingTick {
 processRisingTick();
 }
}

The correlator creates an entirely new event listener to handle the nested on statement.
This new event listener is completely independent of the enclosing event listener. For
example, the enclosing event listener does not wait for the nested event listener to find a
matching event.

Using a stream source template to find events of interest
In addition to event listeners, EPL provides stream source templates for finding
events of interest. A stream source template is an event template prefixed with the all
keyword. The result of a stream source template is a stream.

Use streams on a continuous flow of incoming items when you want to aggregate, join to
other streams, and/or narrow the scope of the matching items based on content, arrival
time, or the most recent particular number of items.

Use an event listener for discrete events or discrete paerns of events for which you
want to independently trigger the listener action.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 165

For information about using stream source templates, see "Working with Streams and
Stream Queries" on page 205.

Defining event expressions with one event template
This section provides examples of specifying event expressions that contain just one
event template. It is important to understand the various ways that you can specify
a single event template. When you are familiar with this, it is easier to start applying
operators and combining multiple event templates in an event expression.

Listening for one event
Consider the following on statement:
on StockTick() processTick();

This event listener is watching for one StockTick event. The values of the StockTick
event's fields are irrelevent, as indicated by the empty parentheses. When this event
listener finds a StockTick event, it triggers and terminates. When the event listener
triggers, it causes the correlator to execute the processTick() action.

Listening for all events of a particular type
Consider the straightforward case where an event expression consists of a single event
template. When the event listener finds an event that matches its event template, the
event listener triggers, and the correlator executes the listener action. Since the event
listener has found the event it was looking for, it terminates.

In some situations, you might want the event listener to continue watching for the same
event so that you can act on each one. You do not want the event listener to terminate
after it finds one event. In this situation, specify the all keyword before the event
template, as in the following example:
on all StockTick() processTick();

When the all operator appears before an event template, when that event template
finds a match, it continues to watch for subsequent events that also match the template.

Listening for events with particular content
The sample monitor is very simple. It just logs all StockTick events. The content of the
StockTick event is not relevant when matching. See "Example of a simple monitor" on
page 53. However, you can filter events according to their content. To alter the example
so that the monitor logs only StockTick events for a given stock, you must specify a
filter on the first field in the event template. For example, suppose you want to log only
ACME stock ticks. You need to change the following line:
on all StockTick(*,*):newTick processTick();

to this:
on all StockTick("ACME",*):newTick processTick();

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 166

Now the event listener triggers on only StockTick events whose name field matches
ACME.

To filter StockTick events based on their price, you might specify the event template
shown below. This event template specifies that you are interested in all StockTick
events whose price is 50.5 or greater.
on all StockTick(*, >=50.5):newTick processTick();

Using positional syntax to listen for events with particular content
You can specify that you want to listen for StockTick events that have a particular
name and a particular price. In the on statement below, the event listener is looking for
StockTick events in which the name is ACME and the price is 50.5 or less.
on all StockTick("ACME", <=50.5):newTick processTick();

When you specify this syntax, called positional syntax, the event template must define
a value (or a wildcard) to match against for every field of that event's type. You must
specify these values in the same order as the fields in the event type definition. Consider
the following event type:
event MobileUser {
 integer userID;
 location position;
 string hairColour;
 string starsign;
 integer gender;
 integer incomeBracket;
 string preferredHairColour;
 string preferredStarsign;
 integer preferredGender;
}

Following is an event listener definition for this event type:
on MobileUser(*,*, "red", "Capricorn", *, *, *, *, 1) some_action ();

Using name/value syntax to listen for events with particular content
Specification of every field in an event can get unwieldy when you are working with
event types with a large number of fields and you are specifying values for only a few
of them. In this case, you can use the name/value syntax in which you specify only the
fields of interest. In the name/value syntax, it is as if you had specified a wildcard (*) for
each field for which you do not specify a value. For example:
on MobileUser(hairColour="red", starsign="Capricorn",
 preferredGender=1) some_action ();

The table below shows equivalent event expressions that demonstrate how to specify
each syntax. The table uses these event types:
event A {
 integer a;
 string b;
}

event B {
 integer a;

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 167

}

event C {
 integer a;
 integer b;
 integer c;
}

Comparison Criterion Positional Syntax Equivalent Name/Value Syntax

Equality on A(3,"string")

on A(=3,="string")

on A(a=3,b="string")

on A(b="string",a=3)

Relational comparisons on B(>3) on B(a>3)

Ranges on B([2:3]) on B(a in [2:3])

Wildcards on C(*,4,*)

on C(*,*,*)

on C(b=4)

on C(a=*,b=4,c=*)

on C()

For details about the operators and expressions that you can specify in event templates,
see "Expressions" on page 891.

It is possible to mix the two syntax styles as long as you specify all positional fields
before named fields. For example:

Correct event template: on D(3,>4,i in [2:4])

Incorrect event template: on D(k=9,"error")

Listening for events of different types
A monitor is not limited to listening for events of only one type. A single monitor can
listen for any number of event types. The following sample monitor uses the StockTick
event type and the StockChoice event type, which specifies a stock name. When the
event listener finds a StockChoice event, a second event listener then looks for only
stocks that match the name in the StockChoice event.
// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {
 string name;
 float price;
}

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice {
 string name;
}
// The following simple monitor listens for two different event types.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 168

monitor SimpleShareSearch {

 // A global variable to store the matching StockTick event:
 StockTick newTick;

 // A global variable to store the StockChoice event:
 StockChoice currentStock;

 // Wait for a StockChoice event and use its name field to
 // filter for StockTick events.
 action onload() {
 on StockChoice(*):currentStock {
 on all StockTick(currentStock.name, *):newTick processTick();
 }
 }

 action processTick() {
 log "StockTick event received" +
 " name = " + newTick.name +
 " Price = " + newTick.price.toString() at INFO;
 }
}

The differences between the sample in "Example of a simple monitor" on page 53 and
this monitor are the following:

Definition of an additional event type (StockChoice)

Definition of a new global variable (currentStock)

A more complex onload() action

While the first two changes are straightforward, the new onload() action introduces
new behavior. The first line in the onload() action is similar to that in the earlier
example. In the new example, the monitor creates an event listener for a StockChoice
event. The content of the StockChoice event is not relevant when matching. When the
event listener finds an event of this type, it stores the value of the StockChoicename
field in the currentStock variable and triggers the creation of a second event listener.

In this example, the first event listener defines the action of creating the second event
listener in-line. The first event listener looks for a StockChoice event. The second event
listener looks for all StockTick events whose name field corresponds to the value of
currentStock.name.

Terminating and changing event listeners
After the correlator creates an event listener, you cannot change it. Instead of changing
an event listener, you terminate it and create a new one.

The example in "Listening for events of different types" on page 167 looks for only
one StockChoice event. The monitor would be more useful if it continued looking for
subsequent StockChoice events, and on every new StockChoice event it changed the
second event listener to look for stock ticks for the new company.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 169

When the correlator creates an event listener, it copies from the action the value of any
local variables. However, if the variable is of a reference type, changes to the object
referred to by the value are seen by other listeners.

The steps and example below shows how to terminate an event listener with the quit()
operation. See also, "Specifying and not logic to terminate event listeners" on page
179.

When you want to change an event listener, do the following:

1. Obtain a handle to the event listener you want to change.

2. Terminate that event listener with the quit() operation.

3. Create a new event listener to take its place.

The following sample monitor does just this.
// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {
 string name;
 float price;
}

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice {
 string name;
}

// The following simple monitor listens for two different event types.

monitor SimpleShareSearch {
 // A global variable to store the matching StockTick event:
 StockTick newTick;

 // A global variable to store the StockChoice event:
 StockChoice currentStock;

 // A handle to the second listener:
 listener l;

 // Record the latest StockChoice event and use its name field
 // to filter the StockTick events.
 action onload() {
 on all StockChoice(*):currentStock {
 l.quit();
 l := on all StockTick(currentStock.name, *):newTick processTick();
 }
 }

 action processTick() {
 log "StockTick event received" +
 " name = " + newTick.name +
 " Price = " + newTick.price.toString() at INFO;
 }
}

The differences between the example in "Listening for events of different types" on page
167 and this example are as follows:

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 170

The monitor in this example declares an additional global variable, l, whose type is
listener.

The initial on statement now specifies the all operator. After this event listener finds
a StockChoice event, it watches for the next StockChoice event.

The onload() action specifies a new listener action. Each time the first event listener
finds a StockChoice event, the listener action:

Terminates the second event listener by calling the l.quit() method. Of course,
upon finding the first StockChoice event there is no second event listener to
terminate. This is not a problem as in this case the l.quit() method does not do
anything.

Creates a new event listener to seek StockTick events for the company named in
the StockChoice event just detected.

Stores a handle to the new event listener in the l global variable. The first event
listener uses this handle when it needs to terminate the second event listener.

Specifying multiple event listeners
When the correlator encounters an on statement, it creates an event listener to watch for
events that match the event expression specified in the on statement. When the event
listener finds a matching event, the event listener triggers and the correlator executes
the listener action. Ordinarily the event listener then dies. That is, the event listener
processes only a single matching event.

When you require multiple matching events specify the all operator before the
template for the event for which you want multiple matches. This prevents termination
of the event listener upon an event match.

Another way to match multiple events is to define two (or more) event listeners for the
same event type. If you specify two on commands that require the same event, they both
trigger when they find that event. The order in which they trigger is not defined. For
example:
on all StockTick(*,*):newTick1 { print newTick1.name; }
on all StockTick(*,*):newTick2 { print newTick2.name; }

When the correlator receives a single StockTick event, the correlator populates both the
newTick1 variable and the newTick2 variable with the event value. The correlator then
prints the value of the name field in each variable. This means that an event of the format
StockTick("ACME", 50.10) causes this output:
ACME
ACME

Adding further on statements to those above would increase the number of times the
string ACME is printed. This is true regardless of where (that is, in which action) the
on statements are defined. For example:
action action1() {
 on all StockChoice("ACME"):currentStock processTick();
}

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 171

action action2() {
 on all StockChoice("ACME"):currentStock processTick();
}

If both the action1() and action2() actions have been invoked, both will invoke the
processTick() action when an "ACME" StockChoice event is received.

Now consider the following example:
on all StockTick("ACME", *) action1();
on all StockTick(*,50.0) action1();

The event StockTick("ACME", 50.0) will trigger both event listeners. It is not possible
to determine which one will execute the action first but the actions will be executed
atomically. That is, the correlator will start executing action1(), finish it, and only then
will the correlator execute action1() again. The correlator processes only one listener
action at a time.

See "Spawning monitor instances" on page 55 for another way to have multiple event
listeners.

Listening for events that do not match
Sometimes it is useful to catch events that do not match other event templates. To
do this, specify the unmatched keyword in an event template. An unmatched event
template matches against events for which both of the following are true:

Except for completed and unmatched event templates, the event does not cause
any other event expression in the same context as the unmatched event template to
match. For information about completed event templates, see the next topic.

The event matches the unmatched event template.

The correlator processes an event as follows:

1. The correlator tests the event against all normal event templates. Normal event
templates do not specify the completed or unmatched keyword.

2. If the correlator does not find a match, the correlator tests the event against all event
templates that specify the unmatched keyword. If the correlator finds one or more
matches, the matching event templates now evaluate to true. That is, if there are
multiple unmatched event templates that match the event, they all evaluate to true.

The scope of an unmatched event template is the context that contains it. Suppose an
event goes to two contexts. In one context, there is a matching event listener and in
the other context there is a match against an unmatched event template. Both matches
trigger the listener actions.

Specify the unmatched keyword with care. Be sure to communicate with other
developers. If your code relies on an unmatched event template, and someone else
injects a monitor that happens to match some events that you expected to match your
unmatched event template, you will not get the results you expect.

A typical use of the unmatched keyword is to spawn a monitor instance to process a
particular subset of events. For example:

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 172

event Tick{ string stock; ... }
monitor TiickProcessor {
 Tick tick;
 ...
 action onload() {
 on all unmatched Tick():tick spawn processTick();
 }
 action processTick() {
 on all Tick(stock=tick.stock) ...;
 }
 ...
}

See also:

"Example using unmatched and completed" on page 173.

"Writing echo monitors for debugging" on page 353

Specifying completion event listeners
In some situations, you want to ensure that the correlator completes all work related
to a particular event before your application performs some other work. In your event
template, specify the completed keyword to accomplish this. For example:
on all completed A(f < 10.0) {}

Suppose an A event whose f field value is less than 10 arrives in the correlator. What
happens is as follows:

1. If there are normal or unmatched event listeners whose event expression matches
this A event, those event listeners trigger.

2. The correlator executes listener actions and then processes any routed events that
result from those actions, and any routed events that result from processing the
routed events, and so on until all routed events have been processed.

3. The completed event listener triggers.

A common situation in which the completed keyword is useful is when a piece of
data comes into the system and that piece of data causes a cascade of event listeners
to trigger. Each listener action updates some data. When all listener actions have been
executed, you want to take a survey of the new state of things and do something in
response.

For example, consider a pricing engine made up of many individual pricing engines.
When a new piece of market data arrives all pricing engines update their prices and then
the controller uses some metric to pick the best price, which it publishes. The controller
should publish the new price only after all individual engines have updated their
output. The controller achieves this by listening for all the updates but only publishing
when the market data event causes the completed event listener to trigger. The EPL for
this scenario follows.
// Request/return best price from *all* markets
event RequestSmartBestPrice{ string stock; integer id; }
event BestSmartPriceReply{ integer id; float price; }

//Request/return best price from individual market(s)

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 173

event RequestBestPrice{ string stock; integer id; }
event BestPriceReply{ integer id; float price; }

// Simple example: Assume 'best' is 'lowest' and no account
// is taken of 'side'.
monitor SmartPriceGetter {
 RequestSmartBestPrice request;
 BestPriceReply reply;
 sequence< float > prices;

 action onload() {
 on all RequestSmartBestPrice(*,*):request spawn getPrices();
 }

 action getPrices() {
 on all BestPriceReply(request.id, *):reply
 prices.append(reply.price);
 on completed RequestSmartBestPrice(request.stock, request.id) {
 prices.sort();
 route BestSmartPriceReply(request.id, prices[0]);
 die();
 }
 route RequestBestPrice(request.stock, request.id);
 }
}

Example using unmatched and completed
The followiing example shows the use of both the unmatched and completed keywords.
After the example, there is a discussion of the processing order.
on all A("foo", < 10) : a {
 print "Match: " + a.toString();
 a.count := a.count+1; // count is second field of A
 route A;
}

on all completed A("foo", < 10) : a {
 print "Completed: " + a.toString();
}

on all unmatched A(*,*): a {
 print "Unmatched: " + a.toString();
}

The incoming events are as follows:
A("foo", 8);
A("bar", 7);

The output is as follows.
Match: A("foo", 8)
Match: A("foo", 9)
Unmatched: A("foo", 10)
Completed: A("foo", 9)
Completed: A("foo", 8)
Unmatched: A("bar", 7)

A(“foo”, 8) is the first item on the queue. The correlator processes all matches for
this event except for any matching on completed expressions. The correlator processes
those after it has processed all routed events originating from A(“foo”, 8), which

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 174

includes the processing of all routed events produced from all routed events produced
from A(“foo”, 8), and so on.

Correlator processing goes like this:

1. Processing of A("foo", 8) routes A("foo", 9) to the front of the queue.

2. Processing of A("foo", 9) routes A("foo", 10) to the front of the queue.

3. Processing of A("foo", 10) finds a match with the unmatched event expression.

4. All routed events that resulted from A("foo", 9) have now been processed. The
completed A("foo", 9) event template now matches so the correlator executes its
listener action.

5. All routed events that resulted from A("foo", 8) have now been processed. The
completed A("foo", 8) event template now matches so the correlator executes its
listener action.

6. Processing of A("bar", 7) matches the unmatched A(*,*)event template and the
correlator executes its listener action.

For another example of the use of unmatched and completed, see "Writing echo
monitors for debugging" on page 353.

Improving performance by ignoring some fields in matching events
In applications where a particular field of an event type will never participate in the
match criteria for that event type, the performance of Apama can be improved (at times
drastically) by marking that field as a wildcard field in the event type definition.

For example, consider a version of the StockTick event type that has four fields: name,
volume, price, and source. If in our application volume and source are never going to
be used for matching on within event templates, that is, they will always be marked as *
(wildcard), they could be tagged so explicitly in the event type:
event StockTick {
 string name;
 wildcard float volume;
 float price;
 wildcard string source;
}

The wildcard keyword tells Apama not to include this field in its internal indexing,
as it will never be required in a match operation. This not only saves memory, but
can significantly improve performance, particularly when there are many such fields
which never occur in match conditions. Note that removing fields from an event type
altogether is even more efficient than using wildcard, but this is not always possible.
For example, the field might not be relevant in match conditions but it might be input to
calculations within an action block, or it might need to be included in an event specified
in a send...to statement.

When a field has been declared as a wildcard then any subsequent aempt to define a
match condition using that field will result in a parser error, and the offending monitor
will not be injected.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 175

Therefore, given the above event type definition, the following will result in a parser
error:
action someAction() {
 on StockTick("ACME", >125.0,*,"NASDAQ") doSomething();
}

while the following is correct:
action someAction() {
 on StockTick("ACME", *, 50.0, *) doSomething();
}

Defining event listeners for patterns of events
One way to search for an event paern in EPL is to define an event listener to search for
the first event, and then, in that listener action, define a second event listener to search
for the second event in the paern, and so on.

However, the on statement takes an event expression, and this can be more than just a
single event template.

Consider the following very simple example: locate a news event about ACME followed
by a stock price update for ACME.

With the EPL explored so far, one would write this as
event StockTick {
 string name;
 float price;
}

event NewsItem {
 string subject;
 string newsHeading;
}

monitor NewsSharePriceSequence_ACME {
 // Look for a news item about ACME, if successful execute the
 // findStockChange() action
 //
 action onload() {
 on NewsItem("ACME",*) findStockChange();
 }

 // Look for a StockTick about ACME, if successful execute the
 // notifyUser() action
 //
 action findStockChange() {
 on StockTick("ACME",*) notifyUser();
 }

 // Print a message, event sequence detected
 //
 action notifyUser() {
 log "Event sequence detected.";
 }
}

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 176

If, as in this example, you do not intend to express any custom actions after finding an
event other than searching for another event, the whole paern of events to look for can
be encoded in a single event expression within a single on statement.

An event expression can define a paern of events to match against. Each event of
interest is represented by its own event template. You can apply several constraints on
the temporal order that the events have to occur in to match the event expression.

In the more declarative syntax of an event expression, the above monitor would be
wrien as follows:
event StockTick {
 string name;
 float price;
}

event NewsItem {
 string subject;
 string newsHeading;
}

monitor NewsSharePriceSequence_ACME {
 // Look for a NewsItem followed by a StockTick
 action onload() {
 on NewsItem("ACME",*) -> StockTick("ACME",*)
 notifyUser();
}

 // Print a message, event sequence detected
 //
 action notifyUser() {
 log "Event sequence detected.";
 }
}

Here, instead of just one event template, the on keyword is now followed by an event
expression that contains two event templates.

The primary operator in event expressions is ->. This is known as the followed-by
operator. It allows you to express a paern of events to match against in a single on
statement, with a single action to be executed at the end once the whole paern is
encountered.

In EPL, an event paern does not imply that the events have to occur right after each
other, or that no other events are allowed to occur in the meantime.

Let A, B, C and D represent event templates, and A', B', C' and D' be individual events
that match those templates, respectively. If a monitor is wrien to seek (A > B), the
event feed {A',C',B',D'} would result in a match once the B' is received by Apama.

Followed-by operators can be chained to express longer paerns. Therefore one could
write,
on A -> B -> C -> D executeAction();

Notes:

An event template is in fact the simplest form of an event expression. All event
expression operators, including ->, actually take event expressions as operands. So

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 177

in the above representation, A, B, C, D could in fact be entire nested event expressions
rather than simple event templates.

It is useful to think of event expressions as being Boolean expressions. Each clause
in an event expression can be true or false, and the whole event expression must
evaluate to true before the event listener triggers and the action is executed.

Consider the above event expression: A -> B -> C -> D

The expression starts off as false. When an event that satisfies the A event template
occurs, the A clause becomes true. Once B is satisfied, A -> B becomes true in turn,
and evaluation progresses in a similar manner until eventually all of A -> B -> C
> D evaluates to true. Only then does the event listener trigger and cause execution
of the listener action. Of course, this event expression might never become true
in its entirety (as the events required might never occur) since no time constraint
(see "Defining event listeners with temporal constraints" on page 189) has been
applied to any part of the event expression.

Specifying and/or/not logic in event listeners
When the correlator creates an event listener each event template in the event expression
is initially false. For an event listener to trigger on an event paern, the event expression
defining what to match against must evaluate to true. Consequently, in an event
expression, you can specify logical operators.

Specifying the 'or' operator in event expressions
The or operator lets you specify event expressions where a variety of event paerns
could lead to a successful match. It effectively evaluates two event templates (or entire
nested event expressions) simultaneously and returns true when either of them becomes
true.

For example,
on A() or B() executeAction();

means that either A or B need to be detected to match. That is, the occurrence of one of
the operand expressions (an A or a B) is enough for the event listener to trigger.

Specifying the 'and' operator in event expressions
The and operator specifies an event paern that might occur in any temporal order. It
evaluates two event templates (or nested event expressions) simultaneously but only
returns true when they are both true.
on A() and B() executeAction();

This will seek ‘an A followed by a B' or ‘a B followed by an A'. Both are valid matching
paerns, and the event listener will seek both concurrently. However, the first to occur
will terminate all monitoring and cause the event listener to trigger.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 178

Example event expressions using 'and/or' logic in event listeners
The following example event expressions indicate a few paerns that can be expressed
by using and/or logic in event listeners.

Event Expression Description

A -> (B or C) Match on an A followed by either a B or a C.

(A -> B) or C Match on either the paern A followed by a B,
or just a C on its own.

A -> ((B -> C) or (C ->
D))

Find an A first, and then seek for either the
paern B followed by a C or C followed by
a D. The laer paerns will be looked for
concurrently, but the monitor will match
upon the first complete paern that occurs.
This is because the or operator treats its
operands atomically, that is, in this case it is
looking for the paerns themselves rather
than their constituent events.

(A -> B) and (C -> D) Find the paern A followed by a B (that is, A
-> B) followed by the paern C -> D, or else
the paern C -> D followed by the paern
A -> B. The and operator treats its operands
atomically. That is, in this case it is looking
for the paerns themselves and the order of
their occurrence, rather than their constituent
events. It does not maer when a paern
starts but it occurs when the last event in
it is matched. Therefore {A',C',B',D'}
would match the specification, because it
contains an A -> B followed by a C -> D. In
fact, the specification would match against
either of the following paerns of event
instances; {A',C',B',D'}, {C',A',B',D'},
{A',B',C',D'}, {C',A',D',B'},
{A',C',D',B'} and {C',D',A',B'}

Specifying the 'not' operator in event expressions
The not operator is unary and acts to invert the truth value of the event expression it is
applied to.
on ((A() -> B()) and not C()) executeAction();

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 179

therefore means that the event listener will trigger executeAction only if it encounters
an A followed by a B without a C occurring at any time before the B is encountered.

The not operator can cause an event expression to reach a state where it can never
evaluate to true. That is, it becomes permanently false.

Consider the above event listener event paern: on (A() -> B()) and not C()

The event listener starts by seeking both A -> B and not C concurrently. If an event
matching C is received before one matching B, the C clause evaluates to true, and hence
not C becomes false. This means that (A -> B) and not C can never evaluate to true,
and hence this event listener will never trigger. The correlator terminates these zombie
event listeners periodically.

It is possible to specify the not operator in an event expression in such a way that
the expression always evaluates to true immediately. Since this triggers the specified
action without any events occurring, you want to avoid doing this. See "Avoiding event
listeners that trigger upon instantiation" on page 183.

Specifying 'and not' logic to terminate event listeners
A typical situation is that you want to listen for a paern only until a particular
condition occurs. When the condition occurs you want to terminate the event listener. In
pseudocode, you want to specify something like this:
on all event_expression until stop_condition

To define an event listener that behaves this way, you specify and not:
on all event_expression and not stop_condition

The following example listens for a price increase for a particular stock while the market
is open.
event Price {
 string stock;
 float price;
}
Price p;
on all Price("IBM",>targetPrice):p and not MarketClosed() {
...do something }

When you inject a monitor that contains this code, the correlator sets up an
event template to listen for Price events and another event template to listen for
MarketClosed events. As long as the correlator does not receive a MarketClosed event,
not MarketClosed() evaluates to true. While not MarketClosed() evaluates to true,
each time the correlator receives a Price event for IBM stock at a price that is greater
than targetPrice, this event expression evaluates to true and triggers its listener action.
When the correlator receives a MarketClosed event, MarketClosed() evaluates to true
and so not MarketClosed() evaluates to false. At that point, the event expression can
no longer evaluate to true. When the correlator recognizes an event listener that can
never trigger, it terminates it. In other words, after the market is closed the event listener
terminates.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 180

Typically, the stop condition is a condition that applies to multiple entities. In the
previous example, the condition applies to only IBM stock, but it could easily be
rewrien to apply to all stocks.

Pausing event listeners

You can also specify and not when you want to listen for a paern, pause when a
particular condition occurs, and resume listening for that paern when some other
condition occurs. Consider the example that terminates the event listener after the
market closes. Suppose instead that you want to listen for increases in stock prices only
when there is no auction. When the correlator receives an InAuction event, you want to
pause the event listener and when the correlator receives an AuctionClosed event you
want the event listener to become active again. To do this, you can write something like
the following:
action initialize() {
 on EndAuction() and not BeginAuction() notInAuctionLogic();
 on BeginAuction() and not EndAuction() inAuctionLogic();
 route RequestAuctionPhase();
}

action inAuctionLogic() {
 on EndAuction() notInAuctionLogic();
}

action notInAuctionLogic() {
 on all Price("IBM",>targetPrice):p and not BeginAuction()
 sellStock();
 on BeginAuction() inAuctionLogic();
}

The initialize() action sets up two event listeners that determine whether to start
with the inAuctionLogic() action or the notInAuctionLogic() action. The response
to the routed RequestAuctionPhase event is an EndAuction event or a BeginAuction
event. As soon as one of these events arrive, both event listeners terminate. For
example, if an EndAuction event arrives, the first event listener terminates because its
EndAuction() event template evaluates to true and its not BeginAuction() event
template also evaluates to true. The second event listener terminates because its not
EndAuction() event template evaluates to false and so the event expression can never
evaluate to true.

Choosing which action to execute

Another situation in which and not logic can help terminate event listeners is when
you want to specify a choice of one or more actions and terminate the event listeners
after one is chosen. An example of this appears below. This is the CEP equivalent of a
case statement.
on Pattern_1() and not PatternMatched() processCase1();
on Pattern_2() and not PatternMatched() processCase2();
on Pattern_3() and not PatternMatched() processCase3();
on Pattern_1() or Pattern_2() or Pattern_3()
{
 route PatternMatched();
}

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 181

When you inject a monitor that contains this type of code the correlator immediately sets
up multiple event listeners. For the example in "Pausing event listeners" on page 180,
the event listeners would be watching for these events:

Pattern_1

PatternMatched

Pattern_2

Pattern_3

Initially, all and not event templates evaluate to true. Suppose Pattern_2 arrives. This
causes these two event listeners to trigger:
on Pattern_2() and not PatternMatched() processCase2();
on Pattern_1() or Pattern_2() or Pattern_3()

It is unknown which event listener action the correlator executes first, but the order does
not maer. The correlator does all of the following:

The correlator executes the processCase2() action.

The correlator terminates the event listener that specifies processCase2() because it
has found its match and it does not specify all.

The correlator routes a PatternMatched event to the front of the context's input
queue.

When the correlator processes the PatternMatched() event, the two event templates
that are still watching for and not PatternMatched become false. Consequently, those
event listeners will never trigger and the correlator terminates them.

Following is another example of specifying and not to make a choice:
on Ack() and not Nack()
{
 processAck();
}
on Nack() and not Ack()
{
 processNack();
}

Specifying 'and not' logic to detect when events are missing

Using and not logic with a time-based listener is useful for detecting the absence of an
event that is expected.

For example, consider an application that monitors the processing of customer orders.
The application listens for OrderCreate events, which indicate that a customer has
placed an order. After an OrderCreate event is found, the application listens for an
OrderStepComplete event that has an instanceid value that matches the instanceid
value in the OrderCreate event and that has a step field value of Order Shipped. If the
application does not find a matching OrderStepComplete event within an hour (3600
seconds), the listener triggers and the application generates an alert to indicate that the
order was not shipped.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 182

Following is code that shows the listener definition.
on all OrderCreate(): oc {
 on wait(3600.00) and not OrderStepComplete(
 instanceid=oc.instanceid,step="Order Shipped"): os {
 // Raise an alert.
 }
}

This listener triggers when the event templates on both sides of the and operator
evaluate to true. The event template before and evaluates to true after an hour has
elapsed. The event template after and evaluates to true in the absence of a matching
OrderStepComplete event. If the application finds a matching OrderStepComplete
event within an hour then the second event template evaluates to false and the correlator
terminates the listener because it can never trigger.

In the following example, when a FileReceived event is found, the application starts
to listen for a FileProcessed event. If a FileProcessed event is not found within 30
seconds of receiving the FileReceived event, the application generates an alert.
monitor SimpleFileSearch {
 action onload() {
 FileReceived f;
 on all FileReceived():f {
 on wait(30.0) and not FileProcessed(id=f.id) {
 // Send alert that file was not processed.
 }
 on FileProcessed(id=f.id) within(30.0) {
 // Send confirmation that the file was processed.
 }
 }
 }
}

How the correlator executes event listeners
An understanding of how the correlator executes event listeners can help you correctly
define event listeners. The topics below provide the needed background.

How the correlator evaluates event expressions
When the correlator processes an injection request, it executes the monitor's onload()
statement, which typically defines an event listener. To understand how the correlator
evaluates the event expression in the event listener, consider the following on statement:
on A()->B() and C()->D() processOrder();

The event expression consists of four templates and three operators. The operators are:
->
and
->

The correlator does not evaluate the right operand of a followed by operator until after
its left operand has evaluated to true. Hence, B and D are not evaluated initially but will
only be evaluated after A and C, respectively, have become true. Initially, the correlator
evaluates the A and C event templates.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 183

Suppose a C event arrives first. The C part of the event expression is now true and the
correlator now evaluates the A and D event templates. Now suppose an A event arrives
next. The correlator evaluates the B and D event templates. When a B event arrives the
first term, A()->B(), of the event expression becomes true. Finally a D event arrives and
the second term, B()->D() becomes true and so the expression as a whole evaluates to
true. The event listener triggers.

As mentioned before, when the correlator instantiates an event listener each event
template in the event listener is initially false. An event template changes to true when
the correlator finds a matching event. In a given context, the correlator cannot find a
matching event while it is seing up an event listener because the correlator processes
only one thing at a time in each context. Everything happens in order and no two things
happen simultaneously in a given context.

Of course, events are always coming into the correlator. These events go on the input
queue of each public context to wait their turn for processing. So while a matching
event might arrive while the correlator is seing up an event listener, as far as correlator
processing is concerned, the event arrives later. See "Understanding time in the
correlator" on page 194.

Avoiding event listeners that trigger upon instantiation
Because all event templates are initially false, it is important to think carefully before
specifying not in an event expression. It is easy to inadvertently specify the not operator
in such a way that the expression evaluates to true immediately upon instantiation. Since
this triggers the specified action without any events occurring, it is unlikely to be what
you intended and you want to avoid doing this. Consider the following example:
on (A() -> B()) or not C() myAction();

Assuming that A, B and C represent event templates, the value of each starts as being
false. This means that not C is immediately true, and hence the whole expression is
immediately true, which triggers the specified action. If any of A, B or C is a nested event
expression the same logic applies for its evaluation. Typically, the not operator is used
in conjunction with the and operator. See "Choosing which action to execute" on page
180.

When an event listener triggers the correlator sends a request to the front of the context's
input queue to execute the event listener action. For example:
route D();
on not E() {
 print "not E";
}
route F();

The route keyword sends the specified event to the front of the context's input queue.
The correlator processes this code in the following order:

1. The correlator processes event D.

2. The correlator prints "not E".

3. The correlator processes event F.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 184

When the correlator terminates event listeners
The correlator terminates event listeners in the following situations:

The event listener's event expression evaluates to true, and does not specify the all
keyword. The correlator executes the specified action. Since the single defined match
was found, the correlator terminates the event listener.

The correlator recognizes that an event listener's event expression can never evaluate
to true. For example:

on (A() -> B()) and not C()

The event listener starts by seeking both A() -> B() and not C() concurrently. If
an event matching C is received before one matching B, the C clause evaluates to true,
and hence not C becomes false. This means that (A() -> B()) and not C() can
never evaluate to true, and hence this event listener will never trigger its action. The
correlator terminates these zombie event listeners periodically.

You obtain a handle to an event listener and call the quit() method on that event
listener. See "Terminating and changing event listeners " on page 168.

How the correlator evaluates event listeners for a series of events
Suppose there are seven event templates defined, which are represented as A, B, C, D, E, F
and G. Now, consider a series of incoming events, where Xn indicates an event instance
that matches the event template X. Likewise, Xn+1 indicates another event instance that
matches against X, but which need not necessarily be identical to Xn.

Consider the following paern of incoming events:
C1 A1 F1 A2 C2 B1 D1 E1 B2 A3 G1 B3

Given the above event paern, what should the event expression A() -> B() match
upon?

In theory the combinations of events that correspond to “an A followed by a B” are {A1,
B1}, {A1, B2}, {A1, B3}, {A2, B1}, {A2, B2}, {A2, B3} and {A3, B3}. In practice it is unlikely that
you want your event listener to match seven times on the above example paern, and it
is uncommon for all the combinations to be useful.

In fact, within EPL, on A() -> B() will only match on the first instance that matched
the template. Given the above event paern the event listener will trigger only on {A1,
B1}, execute the associated action and then terminate.

Evaluating event listeners for all A-events followed by B-events
You might want to alter the behavior described in the previous topic, and have the event
listener match on more of the combinations. To do this, specify the all operator in the
event expression.

If the event listener's specification was rewrien to read:
on all A() -> B() success();

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 185

the event listener would match on every A and the first B that follows it.

The way this works is that upon encountering an A, the correlator creates a second event
listener to seek the next A. Both event listeners would be active concurrently; one looking
for a B to successfully match the paern specified, the other initially looking for an A. If
more As are encountered the procedure is repeated; this behavior continues until either
the monitor or the event listener are explicitly killed.

Therefore on all A() -> B() would return {A1, B1}, {A2, B1} and {A3, B3}.

Note that all is a unary operator and has higher precedence than ->, or and and.
Therefore
on all A() -> B()

is the same as both of the following:
on (all A()) -> B()
on ((all A()) -> B())

The following table illustrates how the execution of on all A() -> B() proceeds over
time as the paern of input events is processed by the correlator. The timeline is from
left to right, and each stage is labeled with a time tn, where tn+1 occurs after tn. To the
left are listed the event listeners, and next to each one (after the ?) is shown what event
template that event listener is looking for at that point in time. In the example, assuming
L was the initial event listener, L', L'' and L''' are other sub-event-listeners that are
created as a result of the all operator.

Guide to the symbols used:

 indicates a specific point in time when a particular event is received

 indicates that at that time no match was found

 indicates that the listener has successfully located an event that matches its
current active template

 is used to indicate that a listener has successfully triggered

 indicates that a new listener is going to be created.

The master event listener denoted by on all A() -> B() will never terminate as there
will always be a sub-event-listener active that is looking for an A.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 186

Evaluating event listeners for an A-event followed by all B-events
Consider an event listener defined as follows:
on A() -> all B() success();

The monitor would now match on all the paerns consisting of the first A and each
possible following B.

For clarity this is the same as:
on (A() -> (all B())) success();

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 187

The way this works is that the correlator creates a second event listener after finding a
matching B. The second event listener watches for the next B, and so on repeatedly until
the monitor is explicitly killed.

Therefore on A() -> all B() would match {A1, B1}, {A1, B2} and {A1, B3}.

Graphically this would now look as follows:

The table shows the early states of L' and L'' in light color because those event listeners
actually never really went through those states themselves. However, since they were
created as a clone of another event listener, it is as though they were.

The master event listener denoted by on (A() -> all B()) will never terminate as
there will always be a sub-event-listener looking for a B.

Evaluating event listeners for all A-events followed by all B-events
Consider the following event listener definition:
on all A() -> all B() success();

or
on ((all A()) -> (all B())) success();

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 188

Now the monitor would match on an A and create another event listener to look for
further As. Each of these event listeners will go on to search for a B after it encounters an
A. However, in this instance all event listeners are duplicated once more after matching
against a B.

The effect of this would be that on all A -> all B would match {A1, B1}, {A1, B2}, {A1,
B3}, {A2, B1}, {A2, B2}, {A2, B3} and {A3, B3}. That is, all the possible permutations. This
could cause a very large number of sub-event-listeners to be created.

Note: The all operator must be used with caution as it can create a very large
number of sub-event-listeners, all looking for concurrent paerns. This is
particularly applicable if multiple all operators are nested within each other.
This can have an adverse impact on performance.

Now consider the example,
on all (A() -> all B()) success();

This will match the first A followed by all subsequent Bs. However, as on every match
of an A followed by B, (A() -> all B()) becomes true, then a new search for the
"next" A followed by all subsequent Bs will start. This will repeat itself recursively, and
eventually there could be several concurrent sub-event-listeners that might match on the
same paerns, thus causing duplicate triggering.

Give the same event paern as described in "Evaluating event listeners for all A-events
followed by B-events" on page 184, this would be evaluated as follows:

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 189

Thus matching against {A1, B1}, {A1, B2}, {A1, B3}, and twice against {A3, B3}. Notice how
the number of active event listeners is progressively increasing, until after t12 there
would actually be six active event listeners, three looking for a B and three looking for an
A.

Defining event listeners with temporal constraints
So far this section has shown how to use event expressions to define interesting paerns
of events to look for, where the events of interest depend not only on their type and

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 190

content, but also on their temporal relationship to (whether they occur before or after)
other events.

Being able to define temporal relationships can be useful, but typically it also needs to be
constrained over some temporal interval.

Listening for event patterns within a set time
Consider this earlier example:
event StockTick {
 string name;
 float price;
}

event NewsItem {
 string subject;
 string newsHeading;
}

monitor NewsSharePriceSequence_ACME {
 // Look for a NewsItem followed by a StockTick
 //
 action onload() {
 on NewsItem("ACME",*) -> StockTick("ACME",*)
 notifyUser();
 }

 // Print a message, event sequence detected
 //
 action notifyUser() {
 log "Event sequence detected.";
 }
}

This will look for the event paern of a news item about a company followed by a stock
price tick about that company. Once improved this could be used to detect the beginning
of a rise (or fall) in the value of shares of a company following the release of a relevant
news headline.

However, unless a temporal constraint is put in place, the monitor is not going to be that
pertinent, as it might trigger on an event paern where the price change occurs weeks
after the news item. That would clearly not be so useful to a trader, as the two events
were most likely unrelated and hence not indicative of a possible trend.

If the event listener above is rewrien as follows,
on NewsItem("ACME",*) -> StockTick("ACME",*) within(30.0)
 notifyUser();

the StockTick event would now need to occur within 30 seconds of NewsItem for the
event listener to trigger.

The within(float) operator is a postfix unary operator that can be applied to an
event template (the StockTick event template in the above example). Think of it like
a stopwatch. The clock starts ticking as soon as the event listener starts looking for the
event template that the within operator is aached to. If the stopwatch reaches the

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 191

specified figure before the event template evaluates to true then the event template
becomes permanently false.

In the above code, the timer is only activated once a suitable NewsItem is encountered.
Unless an adequate StockTick then occurs within 30 seconds and makes the expression
evaluate to true, the timer will fire and fail the whole event listener.

You can apply the within operator to any event template. For example:
on A() within(10.0) listenerAction();

After the correlator sets up this event listener, the event listener must detect an A event
within 10 seconds. If no A event is detected within 10 seconds, the event expression
becomes permanently false and the correlator subsequently terminates the event
listener.

Waiting within an event listener
The second timer operator available for use within event expressions is wait(float).

The wait operator lets you insert a ‘temporal pause' within an event expression. Once
activated, a wait expression becomes true automatically once the specified amount of
time passes. For example:
on A() -> wait(10.0) -> C() success();

Execution of this event listener proceeds as follows:

1. Set up an event template to watch for an A event.

2. After detecting an A event, wait 10 seconds.Set up an event template to watch for a C
event.

In addition to being part of an event expression, wait can also be used on its own.
on wait(20.0) success();

When the correlator instaniates this event listener the event listener just waits for the
number of seconds specified (here being 20), then it evaluates to true, triggers, and
causes the correlator to execute the success() action.

Therefore a wait clause starts off being false, and then turns to true once its time period
expires. This behavior can be inverted through use of not. The expression not wait
(20.0) would start off being true, and stay true for 20 seconds before becoming false.

Consider the following example:
on B() and not wait(20.0) success();

This event listener triggers only if a B event is detected within 20 seconds after the
correlator sets up the event template that watches for B events. After 20 seconds, the
not wait(20.0) clause would become false and prevent the event listener from ever
triggering. This would therefore be the same as
on B within(20.0) success();

By using all with wait, you can easily implement a periodic repeating timer,
on all wait(5.0) success();

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 192

This event listener triggers every 5 seconds and causes the correlator to execute the
success() action each time.

See also "Specifying 'and not' logic to detect when events are missing" on page 181.

Triggering event listeners at specific times
The at temporal operator lets you express temporal activity with regards to absolute
time. The at operator allows triggering of a timer:

at a specific time, for example, 12:30pm on the 5th April

repeatedly with regards to the calendar when used in conjunction with the all
operator, across seconds, minutes, hours, days of the week, days of the month, and
months, for example, on every hour, or on the first day of the month, or every 10
minutes past the hour and every 40 minutes past the hour

The syntax of the at operator is as follows:
at(minutes , hours , days_of_month , months , days_of_week [,seconds])

where the last operand, seconds, is optional.

Valid values for each operand are as follows:

Operand Values

minutes 0 to 59, indicating minutes past the hour.

hours 0 to 23, indicating the hours of the day.

days_of_month 1 to 31, indicating days of the month. For some months
only 1 to 28, 1 to 29 or 1 to 30 are valid ranges.

months 1 to 12, indicating months of the year, with 1
corresponding to January

days_of_week 0 to 6, indicating days of the week, where 0 corresponds
to Sunday.

seconds 0 to 59, indicating seconds past the minute.

The at operator can be embedded within an event expression in a manner similar to
the wait operator. If used outside the scope of an all operator it will trigger only once,
at the next valid time as expressed within its elements. In conjunction with an all
operator, it will trigger at every valid time.

The wildcard symbol (*) can be specified to indicate that all values are valid, for
example:
on at(5, *, *, *, *) success();

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 193

would trigger at the next “five minutes past the hour”, while
on all at(5, *, *, *, *) success();

would trigger at five minutes past each hour (that is, every day, every month).

Whereas,
on all at(5, 9, *, *, *) success();

would trigger at 9:05am every day. However,
on all at(5, 9, *, *, 1) success();

would trigger at 9:05am only on Mondays, and never on any other week day.
This is because the effect of the wildcard operator is different when applied to the
days_of_week and the days_of_month operands. This is due to the fact that both
specify the same entity. The rule is therefore as follows:

As long as both elements are set to wildcard, then each day is valid.

If either of the days_of_week or the days_of_month operand is not a wildcard,
then only the days that match that element will be valid. The wildcard in the other
element is effectively ignored.

If both the days_of_week and the days_of_month operands are not wildcards, then
the days valid will be the days which match either. That is, the two criteria are ‘or'
'ed, not ‘and' 'ed.

A range operator (:) can be used with each element to define a range of valid values. For
example:
on all at(5:15, *, *, *, *) success();

would trigger every minute from 5 minutes past the hour till 15 minutes past the hour.

A divisor operator (/integer, x) can be used to specify that every x'th value is valid.
Therefore
on all at(*/10, *, *, *, *) success();

would trigger every ten minutes, that is, at 0, 10, 20, 30, 40 and 50 minutes past every
hour.

If you wish to specify a combination of the above operators you must enclose the
element in square braces ([]), and separate the value definitions with a comma (,). For
example
on all at([*/10,30:35,22], *, *, *, *) success();

indicates the following values for minutes to trigger on; 0,10, 20, 30, 40 and 50, from 30 to
35, and specifically the value 22.

A further example,
on all at(*/30,9:17,[*/2,1],*,*) success();

would trigger every 30 minutes from 9am to 5pm on even numbered days of the month
as well as specifically the first day of the month.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 194

Using variables to specify times
If you wish to programmatically parameterize usage of the at operator, you have to use
variables in conjunction with it. You can replace any of the parameters to the at operator
with a string variable or with a sequence of integer variables.

The first alternative, using a string variable, allows you to define the matching criteria
within a string variable and then specify the variable within the at call.

For example,
string minutes = "*/30";
on all at(minutes,9:17,[*/2,1],*,*) success();

shows how this can be done. Each of the parameters can be replaced with a string
variable in this way.

The other alternative is to use a sequence of integer variable. This is only useful
when you want to specify a selection of valid values for the parameter.
sequence<integer> days = new sequence<integer>;
days.append(1); // Monday is ok
days.append(3); // and so is Wednesday
on all at(*,*,*,*,days) success;

Sequences are described in "sequence" on page 805.

Understanding time in the correlator
An understanding of how the correlator handles time is essential to writing Apama
applications. The topics below discuss time in the correlator.

Correlator timestamps and real time
When the correlator receives an event, it gives the event a timestamp that indicates the
time that the correlator received the event. The correlator then places the event on the
input queue of each public context. The correlator processes events in the order in which
they appear on input queues.

An input queue can grow considerably. In extreme cases, this might mean that a few
seconds pass between the time an event arrives and the time the correlator processes it.
As you can imagine, this has implications for whether the correlator triggers listeners.
However, the correlator uses event timestamps, and not real time, to determine when to
trigger listeners.

As an extreme example, suppose a monitor is looking for A -> B within(2.0). The
correlator receives event A. However, the queue has grown to a huge size and the
correlator processes event A three seconds after event A arrives. The correlator receives
event B one second after it receives event A. Some events in the queue before event B
cause a lot of computation in the correlator. The result is that the correlator processes
event B five seconds after event B arrives. In short, event B arrives one second after event
A, but the correlator processes event B three seconds after it processes event A.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 195

If the correlator used real time, A -> B within(2.0) would not be triggered by this
paern. This is because the correlator processes event B more than two seconds after
processing event A. However, the correlator uses the timestamp to determine whether to
trigger actions. Consequently, A -> B within(2.0) does trigger, because the correlator
received event B one second after event A, and so their timestamps are within 2 seconds
of each other.

As you can see, the number of events on an input queue never affects temporal
comparisons.

Event arrival time
As mentioned before, when an event arrives, the correlator assigns a timestamp to the
event. The timestamp indicates the time that the event arrived at the correlator. If you
coassign an event to a variable, the correlator sets the timestamp of the event to the
current time in the context in which the coassignment occurs. For JMon applications, this
is always the current time in the main context.

The correlator uses clock ticks to specify the value of each timestamp. The correlator
generates a clock tick every tenth of a second. The value of an event's timestamp is the
value of the last clock tick before the event arrived.

When you start the correlator, you can specify the --frequency hz option if you want
the correlator to generate clock ticks at an interval other than every tenth of a second.
Instead, the correlator generates clock ticks at a frequency of hz per second. Be aware
that there is no value in increasing hz above the rate at which your operating system can
generate its own clock ticks internally. On UNIX and some Windows machines, this is
100 Hz and on other Windows machines it is 64 Hz.

When you start the correlator, you can specify the -Xclock option to disable the
correlator's internal clock and replace it with externally generated time events. See
"Externally generating events that keep time (&TIME events)" on page 197.

About timers and their trigger times
In an event expression, when you specify the within, wait, or at operator you are
specifying a timer. Every timer has a trigger time. The trigger time is when you want the
timer to fire.

When you use the within operator, the trigger time is when the specified length of
time elapses. If a within timer fires, the event listener fails. In the following event
listener, the trigger time is 30 seconds after A becomes true.
on A -> B within(30.0) notifyUser();

If B becomes true within 30 seconds after the event listener detects an A, the trigger
time is not reached, the timer does not fire, and the monitor calls the notifyUser()
action. If B does not become true within 30 seconds after the event listener detects
an A, the trigger time is reached, the timer fires, and the event listener fails. The
monitor does not call notifyUser(). The correlator subsequently terminates the
event listener since it can never trigger.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 196

When you use the wait operator, the trigger time is when the specified pause during
processing of the event expression has elapsed. When a wait timer fires, processing
continues. In the following expression, the trigger time is 20 seconds after A becomes
true. When the trigger time is reached, the timer fires. The event listener then starts
watching for B. When B is true, the monitor calls the success action.
on A -> wait(20.0) -> B success();

When you use the at operator, the trigger time is one or more specific times. An at
timer fires at the specified times. In the following expression, the trigger time is five
minutes past each hour every day. This timer fires 24 times each day. When the timer
fires, the monitor calls the success action.
on all at(5, *, *, *, *) success();

At each clock tick, the correlator evaluates each timer to determine whether that timer's
trigger time has been reached. If a timer's trigger time has been reached, the correlator
fires that timer. When a timer's trigger time is exactly at the same time as a clock tick,
the timer fires at its exact trigger time. When a timer's trigger time is not exacty at the
same time as a clock tick, the timer fires at the next clock tick. This means that if a timer's
trigger time is .01 seconds after a clock tick, that timer does not fire until .09 seconds
later.

When a timer fires, the current time is always the trigger time of the timer. This is
regardless of whether the timer fired at its trigger time or at the first clock tick after its
trigger time. In other words, the current time is equal to the value of the currentTime
variable when the timer was started plus the elapsed wait time. For example:
float listenerSetupTime := currentTime;
on wait(1.23) {
 //When the timer fires, currentTime = (listenerSetupTime + 1.23)
 }

A single clock tick can make a repeating timer fire multiple times. For example, if you
specify on all wait(0.01), this timer fires 10 times every tenth of a second.

Because of rounding constraints,

A timer such as on all wait(0.1) drifts away from firing every tenth of a second.
The drift is of the order of milliseconds per century, but you can notice the drift if
you convert the value of the currentTime variable to a string.

Two timers that you might expect to fire at the same instant might fire at different,
though very close, times.

The rounding constraint is that you cannot accurately express 0.1 seconds as a float
because you cannot represent it in binary notation. For example, the on wait(0.1)
event listener waits for 0.10000000000000000555 seconds.

To specify a timer that fires exactly 10 times per second, calculate the length of time
to wait by using a method that does not accumulate rounding errors. For example,
calculate a whole part and a fractional part:
monitor TenTimesPerSecondMonitor {
 // Use integers to keep track of the next timer fire time.
 // This ensures that the value of the currentTime variable increases
 // by exactly 1.0 after every 10 tenths of a second.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 197

 integer nextFireTimeInteger;
 integer nextFireTimeFraction;
 action onload() {
 nextFireTimeInteger := currentTime.ceil();
 nextFireTimeFraction := (10.0 *
 (currentTime-nextFireTimeInteger.toFloat())).ceil();
 setupTimeListener();
 }

 action setupTimeListener() {
 nextFireTimeFraction := nextFireTimeFraction + 1;
 if(nextFireTimeFraction = 10) then {
 nextFireTimeFraction := 0;
 nextFireTimeInteger := nextFireTimeInteger+1;
 }
 on wait((nextFireTimeInteger.toFloat() +
 (nextFireTimeFraction.toFloat()/10.0)) - currentTime)
 {
 setupTimeListener();
 doWork();
 }
 }

 action doWork()
 {
 // This is called 10 times every second.
 log currentTime.toString();
 // ...
 }
}

When a timer fires, the correlator processes items in the following order. The correlator:

1. Triggers all event listeners that trigger at the same time.

2. Routes any events, and routes any events that those events route, and so on.

3. Fires any timers at the next trigger time.

Disabling the correlator's internal clock
By default, the correlator keeps time by generating clock ticks every tenth of a second.
If you specify the –Xclock option when you start a correlator, the correlator disables
its internal clock. This means the correlator does not generate clock ticks and does not
assign timestamps based on clock ticks to incoming events.

Instead, it is up to you to send &TIME events into the correlator to externally keep time.
This gives you the ability to artificially control how the correlator keeps time.

Time flows in all contexts, including private contexts. Also, different contexts can
have different internal times. This happens when one context is still processing events
that arrived at an earlier time while another is processing more recent events. The
"currentTime" is always the time of the events being processed. (As opposed to wall-
clock time, which can be obtained from the Time Manager correlator plug-in.)

Externally generating events that keep time (&TIME events)

A &TIME event can have one of the following formats:

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 198

It can contain a number of seconds:
&TIME(float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st
January 1970. The maximum value for seconds that the correlator can accept is 1012,
which equates to roughly 33658 AD, and should be enough for anyone. However,
most time formaing libraries cannot produce a date for numbers anywhere near
that large.

Or it can contain a time string:
&TIME(string time)

The time is a string in extended ISO8601 form, with fractional seconds. For example:

&TIME("2015-04-20T23:32:41.032+01:00")

&TIME("2015-04-20T22:32:41.032+00:00")

&TIME("2015-04-20T22:32:41.032Z")

&TIME("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a
different timezone with an offset of 1 hour.

When the correlator processes an &TIME event by taking it off an input queue, the
correlator sets its internal time (the current time) in that context to the value encoded in
the event. Every event that the correlator processes after an &TIME event and before the
next &TIME event has the same timestamp. That is, they have the timestamp indicated by
the value of the previous &TIME event. For example:
&TIME(1)
A()
B()
&TIME(2)
C()

Events A and B each have a timestamp of 1. Event C has a timestamp of 2.

If you specify the -Xclock option, and you do not send &TIME events to the correlator,
it is as if time has stopped in the correlator. Every event receives the exact same
timestamp. While not sending time events is not strictly incorrect, it does mean that time
stands still.

You must use great care when implementing this facility. There are EPL operations
that rely on correct time-keeping. For example, all timer operations rely on time
progressing forwards. Timers will fail to fire if time remains at a standstill, or worse,
moves backwards. There is a warning message in the correlator log if you send a time
event that moves time backwards.

When sending &TIME events into a multi-context application, the time ticks are delivered
directly to all contexts. This can be different than the way in which events in the .evt
file are sent in to the correlator and then sent between contexts in an application. This
difference can result in processing events at an incorrect simulated time. In these cases,

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 199

sending &FLUSHING(1), for example, before sending time ticks and events can result in
more predictable and reliable behavior.

For more information, see "Event timing" in the correlator utilities section of Deploying
and Managing Apama Applications.

About repeating timers and &TIME events

You are not required to send &TIME events every tenth of a second. You can send them
at larger intervals and timers will behave as they would when the correlator generates
clock ticks. For a repeating timer, a single &TIME event can make it fire multiple times.
Consequently, sending an &TIME event can have a lot of overhead if it is a large time
jump and there are repeating timers. For example, consider the following paern:

1. You start the correlator and specify the -Xclock option, which sets the time to 0.

2. You inject a timer into the correlator, for example, on all wait(0.1).

3. You send an &TIME event to the correlator and this event has a relatively large value,
for example, 1185898806.

The result of this paern is that the timer fires many times because the &TIME event
causes each intermediate, repeating timer to fire. (Intermediate timers are timers that are
set to fire between the last-received time and the next-received time.) For the example
given, the timer fires 1010 times, which can take a while to process. You can avoid this
problem by doing any one of the following:

Send the correlator an &TIME event and specify a sensible time before you set up any
timers. This is likely to be your best alternative.

Send the correlator an &TIME event and specify a sensible time before you inject any
monitors.

Send the correlator an &SETTIME event before you send the &TIME event. See "Seing
the time in the correlator (&SETTIME event)" on page 199.

Setting the time in the correlator (&SETTIME event)

A &SETTIME event can have one of the following formats:

It can contain a number of seconds:
&SETTIME(float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st
January 1970. For example:

&SETTIME(0) sets the time to "Thu Jan 1 00:00:00.0 BST 1970".

&SETTIME(1185874846.3) sets the time to "Tue Jul 31 09:40:46.3 BST 2007".

Or it can contain a time string:
&SETTIME(string time)

The time is a string in extended ISO8601 form, with fractional seconds. For example:

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 200

&SETTIME("2015-04-20T23:32:41.032+01:00")

&SETTIME("2015-04-20T22:32:41.032+00:00")

&SETTIME("2015-04-20T22:32:41.032Z")

&SETTIME("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a
different timezone with an offset of 1 hour.

Normally, you do not need to send &SETTIME events. You would just send &TIME
events. An &SETTIME event is useful only to avoid the problem paern described
above. The only difference between an &SETTIME event and an &TIME event is that the
&SETTIME event causes an intermediate, repeating timer to fire only once while the
&TIME event causes intermediate, repeating timers to fire repeatedly. For example, on
all wait(0.1) fires ten times for every second in the difference between consecutive
&TIME events. However, it fires only once when the correlator receives an &SETTIME
event.

If you decide to send an &SETTIME event before an &TIME event, you typically want
to send the &SETTIME event only before the first &TIME event. You should not send an
&SETTIME event before subsequent &TIME events. Doing so causes a jumpy quality in the
behavior of time. There is a warning message in the correlator log if you set a time that
moves time backwards.

For information about when you might want to use external time events, see Deploying
and Managing Apama, "Correlator Utilities Reference", "Starting the correlator",
"Determining whether to disconnect slow receivers".

Out of band connection notifications
Apama applications running in the correlator can make use of Apama out of band
notifications. Out of band notifications are events that are automatically sent to all public
contexts in a correlator whenever any component (an IAF adapter, dashboard, another
correlator, or a client built using the Apama SDKs) connects or disconnects from the
correlator.

For example, consider an environment where correlator A and correlator B both have
out of band notifications enabled and are connected so that events from correlator A are
sent to correlator B. In this case, correlator A will receive a ReceiverConnected event
and correlator B will receive a SenderConnected event. The Apama application running
in correlator A and B can listen for those events and execute some application logic. Note
that clients such as dashboards and IAF adapters typically connect as both receiver and a
sender together and, therefore, two events would be sent in quick succession.

Out of band events are defined in the com.apama.oob package and consist of:

ReceiverConnected

SenderConnected

ReceiverDisconnected

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 201

SenderDisconnected

The ReceiverConnected and SenderConnected events contain the name of the
component that is connecting. When correlators and IAF adapters send a notification
event, the format of the string that contains the component name is as follows:

"name (on port port_number)"

The name is the name that was specified when the component was started. For
correlators and IAF adapters, you can specify a name with the --name option when you
start the component. The name defaults to correlator or iaf according to the type
of component. The port_number is the port that the connecting receiver or sender is
running on.

Out of band events make it possible for developers of Apama components to add
appropriate actions for the component to take when it receives notice that another
component of interest has connected or disconnected. For example, an adapter can
cancel outstanding orders or send a notification to an external system.

Out of band notification events
The out of band events are defined as follows:
package com.apama.oob;
// Note that while the logicalId and physicalId are integers, they are
// unsigned 64-bit values. Using EPL integer types would result in some
// IDs being negative, and thus not matching the values given in log files.
/** Notification that a sender has connected */
event SenderConnected {
 /**
 * Component name, as supplied with the -N command line argument
 * to iaf/correlator or engineInit method
 */
 string componentName;
 /**
 * Representation of the address component is connecting from
 */
 string address;
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.
 */
 string logicalId;
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.
 */
 string physicalId;
 }
/** Notification that a sender has disconnected */
event SenderDisconnected {
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.
 */
 string logicalId;
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.

M
Even Header

Defining Event Listeners

Developing Apama Applications Version 9.10 202

 */
 string physicalId;
 }
/** Notification that a receiver has connected */
event ReceiverConnected {
 /**
 * Component name, as supplied with the -N command line argument
 * to iaf/correlator or engineInit method
 */
 string componentName;
 /**
 * Representation of the address component is connecting from
 */
 string address;
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.
 */
 string logicalId;
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.
 */
 string physicalId;
 }
/** Notification that a receiver has disconnected */
event ReceiverDisconnected {
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.
 */
 string logicalId;
 /**
 * Opaque representation of IDs; these are unique per
 * instance of a process.
 */
 string physicalId;
 }

Enabling out of band notifications
To enable out of band notifications in your Apama applications, you add the Out of band
event notifications bundle to your project in Software AG Designer.

Note: You can also enable out of band notifications for a correlator with the
engine_management utility using the engine_management -r setOOB
on command. Be sure to inject the event definitions before running that
command. For more information about using the engine_management utility,
see "Shuing down and managing components" in Deploying and Managing
Apama Applications.

To enable out of band notifications

1. In the Project Explorer, right-click on the project and select Apama > Add Bundle.

2. From the Add Bundle dialog, select the Out of band event notifications bundle and click
OK to add the bundle to your Apama project.

M
Odd Header

Defining Event Listeners

Developing Apama Applications Version 9.10 203

The Out of band event notifications bundle contains the event definitions and the monitor
that enables the notifications.

3. In your Apama application, create a listener for out of band events specific to the
components you are interested in.

M
Even Header

Developing Apama Applications Version 9.10 204

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 205

5 Working with Streams and Stream Queries

■ Introduction to streams and stream networks .. 206

■ Defining streams .. 207

■ Using output from streams ... 208

■ Defining stream queries ... 211

■ Defining custom aggregate functions .. 241

■ Working with lots that contain multiple items ... 245

■ Stream network lifetime ... 250

■ Using dynamic expressions in stream queries .. 252

■ Troubleshooting and stream query coding guidelines ... 260

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 206

EPL lets you create two kinds of queries:

Self-contained queries are processing elements that communicate with other
self-contained queries, and with their environment, by receiving and sending
events. Self-contained queries are designed to be multithreaded and to scale across
machines. A self-contained query is sometimes referred to as an Apama query. This
kind of query is defined in a .qry file, which cannot contain a monitor. See "Defining
Queries" on page 75.

Stream queries operate on streams of items to generate more valuable streams that
contain derived items. Stream queries are defined in monitors. The following topics
provide information about stream queries.

In stream queries, derived items can be events, location types or simple types
(boolean, decimal, float, integer, string). You can use standard relational
operations, such as filters, joins, aggregation, and projection, to generate items. For
example, you can define a query that converts a stream of raw tick data into a stream of
volume-weighted average price (VWAP) items.

Stream-based language elements allow operations that refine events to be expressed
more clearly and concisely than when using procedural language constructs such as
event listeners. In particular, applications that need to calculate one value based on
multiple items from an input stream are simpler and more efficient when wrien with
stream queries.

Apama provides sample code that uses streams and stream queries in the samples
\monitorscript directory of your Apama installation directory. See also: "EPL Streams:
A Quick Tour" on page 977.

Introduction to streams and stream networks
A stream query is part of a stream network. A stream network starts with one or more
stream source templates (see "Creating streams from event templates" on page 208).
A stream source template collects matching events received by the monitor instance
and places them as items in a stream. Stream queries (see "Defining stream queries" on
page 211) take existing streams (a stream created by a stream source template or by
another stream query) and generate added-value streams that contain derived items.
Finally, stream listeners (see "Using output from streams" on page 208) bring items out
of the stream network and into procedural code. In a given stream network, upstream
elements feed into downstream elements to generate derived items.

When a monitor instance receives an event that matches a stream source template the
correlator activates the stream network. The passage of time can also cause the correlator
to activate a stream network. If, for example, a stream query operates on the items
received within the last 5.0 seconds, then 5.0 seconds after an item arrives the correlator
will again activate the stream network (see "Adding window definitions to from and join
clauses" on page 218).

In a given stream network activation, not all stream queries and not all stream listeners
necessarily receive items. Which queries and stream listeners receive items depends on
the definitions of the stream queries and stream listeners. However, in a given stream

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 207

network activation, the correlator passes items through all queries and stream listeners
in the network that receive items. A query or stream listener that receives an item is
considered to be activated. Only when processing of all activated queries and stream
listeners is complete does the correlator process the next event on the context's input
queue.

In a given stream network activation, various queries can produce multiple items
on their output streams. The items in a particular stream during a particular stream
network activation are called a lot. If a stream query or stream listener receives a lot
that contains multiple items, it processes all items as part of a single stream network
activation (see "Working with lots that contain multiple items" on page 245, and
"Coassigning to sequences in stream listeners" on page 211).

The items in a lot are always ordered, and the lots themselves are always ordered.

Defining streams
You can use a stream variable to reference a stream. A stream variable declaration has
the following form:
stream<type > name

Replace type with the type of the items in the stream. This can be any Apama type.

Replace name with an identifier for the stream. For example:
stream<Tick> ticks;

A stream variable can be a field in an event. However, you cannot route, enqueue, or
send an event that contains a stream variable field.

There are two ways to create a stream:

From an event template. See "Creating streams from event templates" on page
208.

From the result of a stream query on some other stream. See "Defining stream
queries" on page 211.

To obtain a reference to an existing stream, you must assign from or clone another
stream value.

An inert stream never generates any output. There are a number of ways to create an
inert stream including, but not limited to, the following:

Calling new on a stream type or a type that contains a stream

Declaring a global variable of stream type, or a type that contains a stream

Spawning a monitor instance that contains a stream value

Note: It is permissible to define a stream variable that references a stream of
stream type items. In such a definition, be sure to insert a space between the
consecutive right-angle brackets. For example: stream<stream<float> >.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 208

You must insert this extra space in all stream definitions that contain a type
that encloses another type. For example: stream<sequence<integer> >.

Creating streams from event templates
A stream can be created from an event template using the all keyword. This is referred
to as a stream source template. For example:
stream<Tick> ticks := all Tick(symbol=”APMA”);

This creates a stream that contains all subsequent Tick events that have the symbol
APMA. You can use any single event template this way, however, you must specify the
all keyword and you cannot use any operators such as and or followed-by to combine
several event templates. See also "Stream network lifetime" on page 250.

Terminating streams
If a stream goes out of scope it continues to exist until the monitor instance terminates
or the stream is explicitly terminated in some fashion. Streams are not garbage-collected.
This means it is possible to leak streams, thereby consuming memory and potentially
performing unnecessary computation, if you do not explicitly terminate steams.

To terminate a stream, call the quit() method on a stream variable that refers to the
stream you want to terminate. For example:
stream<integer> foo := all A();
...
foo.quit();

This might also terminate connected streams. See "Stream network lifetime" on page
250. It is also possible to terminate connected streams by quiing a stream listener.

Using output from streams
A stream listener passes output items from a stream to procedural code. You use a from
statement to create a stream listener. The from statement has two forms.

The first form of the from statement creates a stream listener that takes items from an
existing stream. For example:
from sA: a {
 /* Code here executes whenever an item is available from sA. */
}

The second form of the from statement contains a stream query definition, which creates
a new stream query. The stream listener takes items from the output stream of the
query. For example:
from a in sA select a : a {
 /* Code here executes whenever the query produces output. */
}

The syntax for the first form is as follows:
[listener :=] from streamExpr : variable statement

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 209

Syntax Element Description

listener Optional. You can specify a listener variable
to refer to the stream listener that the from
statement creates. You can declare a new
listener variable or a use an existing
listener variable.

streamExpr Specifies any expression of type stream except
a stream query. This can be, for example, a
stream variable or a stream source template.
If you want to specify a stream query, use the
other form of the from statement.

variable Specifies a variable that you want to use to
hold the stream output. You must have already
declared the variable and the type of the
variable must be the same type as the stream
output. The from statement coassigns the
stream output to this variable.

For details about the characters you can specify,
see "Identifiers" on page 919.

The output from a stream is referred to as a
lot. Like an auction lot, a stream output lot can
contain one or more items. If the stream output
is a lot that contains more than one item, the
from statement coassigns each item, in turn, to
the variable. See "Working with lots that contain
multiple items" on page 245.

A from statement cannot specify multiple
coassignments.

statement Specifies an EPL statement. Specify a single
statement or enclose multiple statements in
braces. The from statement coassigns each
stream output item to the specified variable and
executes the statement or block once for each
output item.

If the steam output is a lot that contains more
than one item, and you want to execute the
statement or block just once for the lot rather
than once for each item in the lot, coassign
the result to a sequence. See "Coassigning to
sequences in stream listeners" on page 211.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 210

The syntax for the second form of the from statement is as follows:
[listener :=] StreamQueryDefinition : variable statement

Syntax Element Description

listener Optional. You can specify a listener
variable to refer to the stream listener that
the from statement creates. You can declare
a new listener variable or a use an existing
listener variable.

StreamQueryDefinition Specifies a stream query. See "Defining
stream queries" on page 211.

variable Specifies a variable that you want to use
to hold the query results. You must have
already declared the variable and the type
of the variable must be the same type as the
query results. The from statement coassigns
the query result to this variable.

For details about the characters you can
specify, see "Identifiers" on page 919.

If the query outputs lots that contain more
than one item, the from statement coassigns
each item in the lot, in turn, to the variable.
See "Working with lots that contain multiple
items" on page 245.

A from statement cannot specify multiple
coassignments.

statement Specifies an EPL statement. You can specify a
single statement or you can enclose multiple
statements in braces. The from statement
coassigns each stream output item to the
specified variable and executes the statement
or block once for each output item.

If you want the statement to be executed
once per lot rather than once per item
coassign the results to a sequence. See
"Coassigning to sequences in stream
listeners" on page 211.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 211

Listener variables and streams
Like event listeners, you can assign a stream listener to a listener variable. A stream
listener exists until one of the following happens:

The monitor instance that contains the stream listener is terminated

The stream or streams the listener refers to are terminated

If you do not want to wait for one of the above to occur, you can stop a stream listener
by calling the quit() method on a listener variable that refers to it. Note that in many
cases this will also terminate the stream that is feeding the stream listener. See "Stream
network lifetime" on page 250.

Coassigning to sequences in stream listeners
Unlike event listeners, a stream query might generate multiple items for each external or
routed event. This is usually due to a batched window (a window that is updated after
every p seconds or after every m items arrive) or to a join operation on two streams. In
this case, the correlator executes a stream listener action multiple times, once for each
generated item.

In a stream query definition, a window defines the set of items from the input stream
that the query operates on. See "Adding window definitions to from and join clauses" on
page 218.

To execute the stream listener action only once, and coassign all generated items at
once, specify a stream listener that coassigns to a sequence variable. The sequence must
contain items of the same type as the stream. For example:
sequence<A> seqA;
from batchedEvents: seqA {
 /* seqA contains all events that arrive in this batch */
}

Defining stream queries
A stream query operates on one or two streams to transform their contents into a single
output stream. A stream query definition declares an identifier for the items in the
stream so that the item can be referred to by the operators in the stream query. Here is a
simple stream query definition:
stream<integer> ints := from a in sA select a.i;

When the correlator executes a statement that contains a stream query definition the
correlator creates a new stream query. Each stream query has an output stream (the type
of which might differ from that of the input stream).

A stream query definition is an expression that evaluates to a stream value. The value is
a reference to the output stream of the generated query.

Following is an example of a simple stream query in a stream listener:
from a in sA select a.b : b {

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 212

 doSomethingWith(b);
}

The following table describes the user-defined parts of this stream listener. It is
important to understand the distinctive role each one serves.

Syntax Element Description

a This is an identifier that represents the current item in the
stream being queried. See "Specifying input streams in from
clauses" on page 216.

sA This variable represents the stream being queried.

a.b This expression describes what each query result looks like.
In this example, the query produces outputs from the b field
of the events in the stream.

b This is the variable that you coassign the query results to
so that the correlator can use the query result in the stream
listener's code block.

Linking stream queries together
A stream query definition is an expression and its result is a stream. Consequently, with
one exception described below, you can use a stream query definition anywhere that
you can use a stream value. For example, you can assign the resulting value to a stream
variable:
stream <float> values := from a in sA select a.value;

Alternatively, you can use a stream query definition as the return value from an action,
for example:
action createPriceStream (stream<Tick> ticks) returns stream<float> {
 return from t in ticks select t.price;
}

Another option is to embed a stream query within another stream query, for example:
float vwap;
from p in (from t in ticks where t.price > threshold select t.price)
within period
select wavg(t.price,t.volume): vwap {
 processVwap(vwap);
}

You can use stream variables to link stream queries together, as detailed in the next
section.

The exception is that you cannot use a stream query immediately after the from
keyword in the first form of the from statement. For example, the following is not a valid
statement:
from from t in ticks select t.price : tickPrice {

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 213

 print tickPrice.toString();
}

Instead, use the second form of the from statement and specify a stream variable or a
stream source template. The following example specifies a stream variable:
from t in ticks select t.price : tickPrice{
 print tick.price.toString();
}

Simple example of a stream network
Sometimes a single from statement is all that is required to achieve your goal. For
example, to obtain a VWAP (Volume-Weighted Average Price) for a stock you can add
the following from statement to a monitor:
float vwap;
from t in all Tick(symbol="APMA")
 within period
 select wavg(t.price,t.volume) : vwap {
 processNewVwap(vwap); }

Often, however, you want to use the output from one query as the input to another
query. For example, here is an extract from the statistical arbitrage sample application,
which you can find in the samples\monitorscript\statarb directory of your Apama
installation directory:
action newStatArbOrder(StatArbOrder o) {
 integer BUY:=1, HOLD:=0, SELL:=-1, instruction;

 stream<float> spreads:=
 from a in all Price(symbol=o.primary.symbol) retain 1
 from b in all Price(symbol=o.secondary.symbol) retain 1
 select (a.price - b.price);

 stream<MeanSd> meanSds := from s in spreads within 20.0
 select MeansSd(mean(s), stddev(s));

 stream<integer> comparison := from s in spreads from m in meanSd
 select compareSpreadAndBands(s, m.mean, m.sd, o.factor);

 stream<integer> prevComparison := from c in comparison
 retain 1
 select rstream c;

 from c in comparison from p in prevComparison
 where c!=HOLD and c!=p select c: instruction {
 if instruction = BUY {
 buyPrimarySellSecondary();
 } else {
 sellPrimaryBuySecondary();
 }
 }
}

When queries are connected like this, the set of connected queries is referred to as a
stream network.

A stream network is strictly within a monitor instance. Routing an event takes that
event entirely out of the stream network since the event would not be received in the
same network activation even if it is received by the same monitor. Spawning a monitor

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 214

makes any stream variables point to inert streams so it is not possible to refer to a stream
network from a different monitor instance.

Stream query definition syntax
A stream query definition contains several elements, some of which are optional and
some of which are required. These elements, and their constituent parts, are described in
the following sections. The elements appear in a stream query in this order:
FromClause [FromClause | JoinClause] [WhereClause] ProjectionDefinition

Element Required or
Optional

Description

FromClause Required Specifies the input stream for
the query. See "Specifying input
streams in from clauses" on page
216.

A from clause can also specify
which items from the input stream
the query should operate on. See
"Adding window definitions to
from and join clauses" on page
218.

If a second from clause appears
the correlator performs a cross-
join to combine items from the two
streams. See "Defining cross-joins
with two from clauses" on page
231.

JoinClause Optional Specifies a second stream for the
query to operate on. The correlator
performs an equi-join to combine
items from the two streams. See
"Defining equi-joins with the join
clause" on page 233.

A join clause can also specify
which items from the input stream
the query should operate on. See
"Adding window definitions to
from and join clauses" on page
218.

WhereClause Optional Applies a filtering criterion to the
items in the window or the items
produced by the join operation. See

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 215

Element Required or
Optional

Description

"Filtering items before projection"
on page 235.

ProjectionDefinition Required Defines how the query generates
output items. See "Generating
query results" on page 236.

Identifier scope in stream queries

Consider the following code fragment:
integer a;
stream<float> prices := from a in ticks select a.price;

In this example, the a in the query refers to the current Tick item in the stream and not
to the a integer variable. In a stream query, you can use an identifier that you have not
previously declared. If there is a variable in a containing scope that has the same name
as an identifier in the query, then for expressions in the query the identifier in the query
hides the variable in the containing scope.

Following is another example of how scope works with steam queries:
integer a := 42;
float p;
from a in ticks select a.price:p {
 print a.toString(); // Prints "42" rather than one of the ticks. }

The previous code fragment illustrates that identifiers in the listener action can have
the same name as identifiers in the stream query. While this is not good practice,
it is important to recognize that the listener action is not part of the stream query.
Consequently, an identifier in a stream query is out-of-scope in the stream query's
listener action.

Stream query processing flow
Each element of the stream query operates on the output of the previous part. To
correctly define stream queries, it can be helpful to understand that items flow through
the query and the correlator processes the parts of the query in the order shown in the
following figure. In the figure, the dashed outlines indicate optional elements.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 216

As items arrive on the input stream(s) and time elapses, the window definition for
each stream identifies which items from that stream the query should be processing at
any given moment. This includes partitioning, if it is specified. See "Adding window
definitions to from and join clauses" on page 218

In queries with two input streams, the correlator combines items from the two streams
by means of a cross-join operation (a second from clause) or an equi-join operation (a
join clause). See "Joining two streams" on page 231

The where clause, if there is one, filters items. See "Filtering items before projection" on
page 235.

The projection definition defines how the query generates output items. This includes
the select clause, which has appeared in examples such as "Simple example of a stream
network" on page 213. See "Generating query results" on page 236.

Specifying input streams in from clauses
In a stream query, each from clause specifies a stream that the query is operating on. The
syntax of the from clause is as follows:
from itemIdentifier in streamExpr [WindowDefinition]

Syntax description

Syntax Element Description

itemIdentifier Specify an identifier that you want to use
to represent the current item in the stream
you are querying. You use this identifier in
subsequent clauses in the query. For details
about the characters you can specify, see
"Identifiers" on page 919.

The type of the identifier is the same as the
type of the items that are in the stream you are
querying.

There is no link between an item identifier in
a query and a variable that you might define

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 217

Syntax Element Description
elsewhere in your code. In other words, it
is okay for an in-scope variable to have the
same name as an item identifier in a query.
Inside the query, the item identifier hides that
variable. See the second example below.

streamExpr Specify an expression that returns a stream
type. This is the stream that you want to query.

WindowDefinition Define which portion of the stream to query.
See "Adding window definitions to from and
join clauses" on page 218.

Examples

The query below generates a stream of float items. The item identifier is a. The stream
variable, ticks, refers to a stream of Tick events. The select clause specifies that each
query result item contains only the price value from the Tick event. Details about the
select clause are in "Generating query results" on page 236.
stream<float> prices := from a in ticks select a.price;

The all keyword followed by an event template is an expression of type stream
referred to as a stream source template. Consequently, you can use this in a from clause.
For example, you can modify the previous example to use the stream source template
directly within the stream query:
stream<float> prices :=
 from a in all Tick(symbol="APMA") select a.price;

Notes

A stream query is an expression of type stream and so anywhere that you can specify
a stream expression you can use a stream query in its place. (There is one exception to
this. See "Linking stream queries together" on page 212.) This means you can nest
stream queries to create a compound stream query. For example, consider the following
non-nested stream queries:
stream<A> sA := all A();

stream<integer> derived :=
 from a in sA retain 2 select mean(a.x);

stream sB :=
 from a in derived within 10.0 select B(stddev(a));

An equivalent way to write this is as follows:
stream sB :=
 from b in
 from a in all A() retain 2 select mean(a.x)
 within 10.0
 select B(stddev(b));

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 218

The compiler generates the same stream network in both cases so the performance
is exactly the same. However, nesting stream queries beyond one level can make the
compound stream query hard to understand.

To define a query that operates on two streams, specify two consecutive from clauses
or specify a from clause followed by a join clause. See "Joining two streams" on page
231.

Adding window definitions to from and join clauses
The items flowing through a stream are ordered. In any given activation, there are zero
or more items that are current. By default, the stream query operates on those current
items.

Alternatively, a window may be defined. Window definitions specify which items the
query should operate on in each activation, based on (but not limited to) the following:

The items within a given time period

A maximum number of items

The content of the items

As the window contents change, the items in the query projection will also change: new
items will be inserted and old ones removed. The output from a query is a stream of
items.

If the projection is an aggregate projection then the query output is the result of
evaluation of the select clause when the window contents change. See "Aggregating
items in projections" on page 238.

If the projection is a simple, non-aggregate projection, the default output is the insertion
stream or istream for short, of new projected items. Alternatively, if the restream
keyword is specified in the select clause, the output is the remove stream (or rstream)
of items that have become obsolete.

Window definition syntax

There are a number of different formats and keywords that you can use to define a
window on a stream. Following are the alternatives you can choose from. See the
subsequent topics for details.
[partition by partitionByExpr [, partitionByExpr]...]

(
within windowDurationExpr [every batchPeriodExpr]
 [retain windowSizeExpr] [with unique keyExpr]

| retain windowSizeExpr [every batchSizeExpr] [with unique keyExpr]
)

| retain all

Every window definition specifies retain, within or both.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 219

Syntax description

Syntax Element Description

partitionByExpr Optionally specifies an EPL expression
that should involve the input item in some
way and that returns a comparable type. A
partition by clause effectively creates a
separate window for each encountered distinct
value of partitionByExpr.

windowDurationExpr Specifies a float expression that indicates a
duration of a number of seconds. The window
contains the items received within the last
windowDurationExpr seconds. See "Defining
time-based windows" on page 220.

batchPeriodExpr Specifies a float expression that indicates
an interval period of a number of seconds.
The window updates its contents every
batchPeriodExpr seconds. See "Defining
batched windows" on page 224.

windowSizeExpr Specifies an integer expression that indicates
the number of items you want to retain in the
window. The window contains the most recent
windowSizeExpr items. See "Defining size-
based windows" on page 222.

keyExpr Specifies an EPL expression that must contain
at least one reference to the input item
and must return a comparable type. See
"Comparable types" on page 817.

If you add a with unique clause, if there
is more than one item in the window that
has the same value for the key identified by
keyExpr, only the most recently received
item is considered to be in the window. See
"Defining content-dependent windows" on
page 229.

batchSizeExpr Specifies an integer expression that indicates
a number of items. The window updates its
contents after every batchSizeExpr items

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 220

Syntax Element Description
that match the query are found. See "Defining
batched windows" on page 224.

Omitting the window definition

The window definition is optional in a stream query. If you do not specify any window
then, for any given activation of the stream query, the stream query operates on only the
items that are current for that activation. Typically this is a single event. However, if the
source for this query is, for example, a stream query with a batched window then the
items in each batch will be processed together as in the following example:
stream<A> sA := from a in all A() retain 4 every 4 select a;
from a in sA select count(): c { ... }

The second query receives batches of four A events and will generate a single aggregate
value for each batch. For more details see "Stream queries that generate lots" on page
246.

Retaining all items

The simplest window is one that contains all items that have ever been in the stream.
The corresponding window definition is retain all. Conceptually, once an item enters
a retain all window, it remains in the window indefinitely (or until the stream query
is terminated). The following query evaluates the running mean of all items that have
ever been in the values stream:
stream <decimal> means := from v in values retain all select mean(v);

The retain all clause specifies an unbounded window. Unbounded windows have
restrictions on their use:

You cannot have a partitioned or batched unbounded window.

You cannot perform a join operation on an unbounded window.

You cannot specify an unbounded window when you use rstream in the select
clause of a query.

When you use a custom (user-defined) aggregate function in a query that contains an
unbounded window, you cannot also use a bounded aggregate function. You should
also be aware that, if you use a badly implemented custom aggregate function in a
query that contains an unbounded window, then this can result in uncontrolled memory
usage. See "Defining custom aggregate functions" on page 241.

Defining time-based windows

In a time-based window, the items are held in the window for a specific duration. The
syntax for defining a time-based window is:
within windowDurationExpr

Replace windowDurationExpr with an expression that returns the number of seconds
that items should remain in the window as a float value. For example, the following

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 221

query calculates the sum of all items that arrived in a stream of float values during the
last 1.5 seconds:
stream<float> sums := from v in values within 1.5 select sum(v);

The following diagram illustrates how this works in practice.

Each column represents a time when the query window contents change whereas each
row represents the arrival and lifetime of each event. As an event arrives in the window
it appears in bold purple. At each given time, the current window contents is indicated
by the items enclosed by boxes — bold purple items are new and lighter purple items
are old items still in the window. The numbers at the boom give the contents of the
stream of insertions to and removals from the window in the case where each value
is being selected independently, or when the aggregate sum of the values in the set of
items in the window is being calculated. The query before the diagram corresponds to
the aggregate projection line. The queries shown here are:

Simple
istream
Projection

from v in values within 1.5 select v

Simple
rstream
Projection

from v in values within 1.5 select rstream v

Aggregate
Projection

from v in values within 1.5 select sum(v)

In a simple, non-aggregate projection, when an event arrives in the window it appears
in the istream of the projection. It remains for 1.5 seconds, at which point it appears on
the rstream of the projection. The aggregate projection behaves differently. Whenever an
item arrives in or is removed from the window, a new sum appears on the istream of the
aggregate projection.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 222

Defining size-based windows

As well as time, you can specify windows that contain only a certain number of items.
In a size-based window, as each new item arrives, it is added to the window. After the
number of items in the window reaches the window size limit specified in the query, the
arrival of a new item causes the removal of the oldest item from the window.

The syntax for defining a size-based window is as follows:
retain windowSizeExpr

Replace windowSizeExpr with an expression that returns how many items you want to
retain in the window as an integer value. For example, the following query calculates
the sum of the last 2 items in a stream of floats:
stream <float> sums := from v in values retain 2 select sum(v.number);

The following diagram, which uses the same notation as the previous section, illustrates
how this works in practice.

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple
istream
Projection

from v in values retain 2 select v.number

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 223

Simple
rstream
Projection

from v in values retain 2 select rstream v.number

Aggregate
Projection

from v in values retain 2 select sum(v.number)

When an event arrives in the window it appears in the istream of a simple, non-
aggregate projection. The first item remains in the window when a second item arrives.
When a third item arrives, the first item is no longer in the window and it appears on the
rstream of the simple, non-aggregate projection. Likewise, when the fourth item arrives
in the window it appears in the istream and the second item appears on the rstream
of the simple projection, and so on. The behavior of the aggregate projection is that
whenever an item arrives in or is removed from the window, a new sum appears on the
istream of the aggregate projection.

Combining time-based and size-based windows

Sometimes you might want to focus on the last n items received in the last d seconds.
To define a window that retains items based on both time and size, use the following
format in the from clause:
within windowDurationExpr retain windowSizeExpr

The within keyword and expression must be first and the retain keyword and
expression must be second. As with separate size-based and time-based windows,
replace windowDurationExpr with an expression that returns a number of seconds, d,
as a float value. Replace windowSizeExpr with an expression that indicates how many
items you want to retain in the window, n, as an integer value. The window contains the
last n items received in the last d seconds. If no items were received in the last d seconds,
the window is empty. For example:
from v in values within 2.5 retain 2 select sum(v);

The following diagram, which uses the same notation as the previous section, illustrates
how this works in practice.

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 224

Simple
istream
Projection

from v in values within 2.5 retain 2 select v

Simple
rstream
Projection

from v in values within 2.5 retain 2 select
rstream v

Aggregate
Projection

from v in values within 2.5 retain 2 select
sum(v);

The important point to note in this example is that some items drop out of the window
before the 2.5 second period is passed. When e2 arrives, e0 and e1 are already in the
window. Even though e0 has been there for only 2 seconds, it is removed because e1
and e2 are now the two most recent items received in the last 2.5 seconds.

Defining batched windows

The default behavior is that the contents of a window change upon the arrival of each
item. The every keyword can be used to control when the contents of the window
change: it causes the items to be added to the window in batches. Time-based windows
can be controlled to update only every p seconds and size-based windows can be
controlled to update only after every m events.

The syntax for a batched window is one of the following:
within windowDurationExpr every batchPeriodExpr
| retain windowSizeExpr every batchSizeExpr
| within windowDurationExpr every batchPeriodExpr retain windowSizeExpr

Here, windowDurationExpr and windowSizeExpr retain their meaning from the
previous sections. The batchPeriodExpr is an expression that returns the time, p,
between updates as a float value. The batchSizeExpr is an expression that returns the
number of events between updates, m, as an integer value.

When you specify within followed by every followed by retain, the every keyword
always indicates a number of seconds. That is, the window updates its content every p
seconds.

If no items have arrived or expired since the previous window update, the window
content is unchanged and consequently the query does not execute. The correlator
executes the query only when the window content changes.

Here is an example of a stream query that defines a batched, time-based window. The
correlator creates the query at t=0.0.
from v in values within 1.5 every 1.0 select sum(v)

The following diagram illustrates how this works in practice.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 225

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple istream
Projection

from v in values within 1.5 every 1.0 select v

Simple rstream
Projection

from v in values within 1.5 every 1.0 select
rstream v

Aggregate
Projection

from v in values within 1.5 every 1.0 select
sum(v)

The important things to note about the behavior of these queries is that the window
content changes only every second. Nothing appears on any insert or remove stream
between those points. This means that the items 10.0, 20.0 and 40.0 are not in the
window at the moment they arrive, but are kept until the next multiple of 1.0 second.
Item lifetimes are calculated from the item arrival time, not the point at which the
batching allows the item into the window. Consequently, the lifetime of the items in the
window is also affected by the batching. In these examples, you can see that the items
that were delayed entering the window are only in the window for one second because
they were already 0.5 seconds old at the point they entered the window. For contrast,
the item with the value 30.0 remains in the window for 2.0 seconds because after 1.5
seconds the batching has not occurred, and so the window cannot change until the next
multiple of 1.0 second.

In the examples given here the batch period is smaller than the duration of the window.
If the batch period is larger than the duration of the window then some items can never
enter the window, if they would have already expired by the time the next batch arrives
in the window.

Batched size-based windows behave similarly to batched time-based windows, except
that the batch criteria is waiting for a number of items to arrive. In that case, items
always arrive in the window as a multiple of the batch size.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 226

Batched windows produce multiple items at one time. A single group of items flowing
between queries together is called a lot. A lot can contain one item or several items. A
batched window is one way of producing a lot that contains several items.

Partitioning streams

The partition by clause splits a stream into partitions, based on one or more key
values. The subsequent window operators are applied to the partitioned stream; the
behavior is as if the window operators had been applied separately to each partition.
The result of using partition by followed by a window operator is referred to as a
partitioned window. You use a query with a partitioned window to retain particular
items for each partition specified by the partition by clause.

Partitioning is introduced with the following syntax:
partition by partitionByExpr [, partitionByExpr]...

The partition by clause precedes other window operators, so a complete query would
be:
from a in sA partition by a.x retain 2 select sum(a.y);

Each partitionByExpr is an expression that should contain at least one reference to the
input item and must return a comparable type. See "Comparable types" on page 817.
Some examples are in the following table. Assume that each partition by clause in the
table starts with the following:
from a in all A() ...

Definition Description

partition by a.x Partition on a single primitive type field of the input
event. This is likely to be the most common case.

partition by a Partition on an event's field values. The events that
have identical values for all fields are in the same
partition. For example:
from a in all A()
 partition by a retain 2 select a;

Given the following input events:
A(1,1)
A(1,2)
A(1,1)

The first and third events are in the same partition, the
second is not. In this case, the event type A must itself
be a comparable type.

partition by 1 This is a valid partition expression, but it is not
recommended. A partition expression should reference
the input item in some way.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 227

Definition Description

partition by f(a) This is a valid partition expression if f() is a function
that returns an appropriate type.

partition by
a.x*globaldict[a.y]

Another valid partition expression.

Example
from t in all Tick()
 partition by t.symbol retain 1
 select rstream t;

This query creates a separate partition for each new stock symbol it finds. Each partition
contains the most recent Tick event for that symbol. The query output, for each
encountered symbol, is the previous Tick event for that symbol. Note that it is possible
for this query to consume a large quantity of memory.

Partitions and aggregate functions

The partition by clause creates several partitions within the window. However, a
stream query has other parts in addition to the window. The other parts include the
projection and optional join or where elements. These other parts of the query operate
on a single window that contains all items from all partitions.

Likewise, when you partition a stream any specified aggregate functions aggregate over
all partitions. If you want to generate separate aggregate values for different groups of
events then you must specify a group by clause. See "Grouping output items" on page
238 . A common use case is to specify matching partition by and group by clauses.

Consider the following stream query:
from a in all A() partition by a.x retain 2 select sum(a.y);

The window definition is retain 2, and this is partitioned by a.x, where x is the first
field in A. There is one retain 2 partition for each value of x. Suppose this stream query
receives the following input events:
A(1,1)
A(1,2)
A(2,1)
A(2,2)
A(1,3)
A(2,3)

After these events have all arrived, one partition contains A(1,2) and A(1,3) while a
second partition contains A(2,2) and A(2,3). However, the parts of the query following
the window definition operate on the collection of all items in all partitions. In this
example, the sum() aggregate function generates 10. It does not generate a lot that
contains two values of 5. Now consider the following query:
from t in all Tick()
 partition by t.symbol retain 10
 group by t.symbol
 select mean(t.price)

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 228

This query returns one mean value per symbol, which is the mean of the last 10 ticks for
that symbol. If you do not want all means for all symbols in one lot, you might prefer to
spawn monitors so that you have an instance of the following query for each symbol:
from t in all Tick(symbol=X)
 retain 10
 select mean(t.price)

If you do want the averages for all the symbols in the same stream, then you can specify
the group key in the select clause in order to later differentiate between the output
events, as in the following example:
from t in all Tick()
 partition by t.symbol retain 10
 group by t.symbol
 select Output(t.symbol, mean(t.price))

As you can see, the partition by clause is often used in conjunction with the group by
clause.

Tip: In EPL, it is common to use spawn in a monitor to create separate monitor
instances. For example, each monitor instance might process a separate stock
symbol. Spawning separate monitor instances might be preferable to using
a single monitor instance that specifies partition by in a stream query so
that it, for example, processes all stock symbols. Spawning separate monitor
instances can be more efficient because your application processes only the
subset of symbols that are of interest. Also, the subset of symbols of interest
can change through the day. Appropriate monitor instances and queries can
be created as required.

See also "IEEE special values in stream query expressions" on page 241.

Using multiple partition by expressions

To partition a window according to multiple criteria, you can insert multiple, comma-
separated expressions. For example, you can refine a previous query to produce values
for different volume bands, as follows:
from t in all Tick()
 partition by t.symbol, t.volume.floor()/100 retain 1
 select rstream t;

In this example, the correlator applies retain 1 to each set of ticks that share both the
same symbol and the same volume (to within 100). As a result, an item is output only
when a replacement tick arrives for an existing symbol in an existing volume band.

Partitioning time-based windows

If a window is purely time-based then there is no benefit to partitioning the window. For
example, consider the following two queries:
from t in all Tick() within 1.0 ...
from t in all Tick() partition by t.symbol within 1.0 ...

The first query outputs every Tick received in the last second. The second query
organizes the stream of Tick events by their symbols, then gives you each one that

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 229

arrived in the last second. This is still every Tick received in the last second. The
correlator ignores a partition by statement if it is used only with a within window.

If your window includes a retain clause as well as a within clause then it can be
helpful to use partition by, likewise if there is a with clause. See "Defining content-
dependent windows" on page 229. For example:
from t in all Tick() partition by t.symbol within 10.0 retain 5 ...

This window will contain at most 5 Tick events for each different symbol received
within the last 10 seconds.

Defining content-dependent windows

The contents of the window can also depend on the content of individual items in the
stream. Currently the only content-dependent window operator is the with unique
clause, which limits the window to containing only the most recent item for each key
value. The with unique clause can be added to a within or a retain window by
following it with:
with unique keyExpr

The keyExpr follows the same rules as a partition key expression. That is, it is an
expression that should contain at least one reference to the input item and must return
a comparable type. See "Comparable types" on page 817. Some examples are in the
following table.

If you add a with unique clause, if there is more than one item in the window that has
the same value for the key identified by keyExpr, only the most recently received item
is considered to be in the window. It is important to note that the with unique clause
processing happens after the rest of the window processing. Consider the following
query:
from p in pairs retain 3 with unique p.letter select sum(p.number)

If the most recent two events have the same leer, there will be only two events over
which the sum is calculated. This is illustrated in the following diagram:

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 230

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple istream
Projection

from p in pairs retain 3 with unique p.letter
select p

Simple rstream
Projection

from p in pairs retain 3 with unique p.letter
select rstream p

Aggregate
Projection

from p in pairs retain 3 with unique p.letter
select sum(p.number)

As you can see, when the last three items received all have a unique leer, the query
behaves like a retain 3 window. When the last three items received do not all have
a unique leer, the duplicate that arrived first is removed from the window. In this
example, the arrival of c,5 causes the removal of c,3 even though it was one of the last 3
items received. In other words, the with unique clause can cause an item to be removed
from the window and the sum earlier than it would otherwise be removed.

The difference between a partitioned window and a window that is using a with
unique clause can be described as “using partition by gives you the last 3 values for
each key” and “using with unique gives you one value of each key, from the last 3”.
You can combine both partition by and with unique if you are using different key
expressions in each clause.

Note that you cannot specify within followed by retain followed by with unique.

See also "IEEE special values in stream query expressions" on page 241.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 231

Joining two streams
When a stream query operates over two input streams it is referred to as a join
operation. There are two forms of join operation available in EPL. Each form takes two
input streams and produces a single output stream of combined items. A cross-join joins
every event from one stream's window with every event in the other stream's window.
An equi-join joins events only when they have matching keys.

Join operations, particularly cross-joins, can create many more output events than input
events, not just the same or fewer.

Defining cross-joins with two from clauses

A cross-join is defined with two from clauses, one for each stream, optionally including
window definitions. A simple example of this is:
from p1 in leftPairs retain 2
 from p2 in rightPairs retain 2
 select sum(p1.num * p2.num);

This is illustrated in the following diagram, whose notation differs from the previous
diagrams. Here, for each time point there are two columns, one for each side of the join.
The first column, with purple events, represents the items from the first from clause and
the second column, with cyan events represents the items from the second from clause.
Events in bold arrived during this activation of the stream query and the boxes enclose
the windows for each side. As in the previous diagrams, the output is given for each of
the three kinds of projections.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 232

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple istream
Projection

from p1 in leftPairs retain 2
 from p2 in rightPairs retain 2
 select p1.num * p2.num

Simple rstream
Projection

from p1 in leftPairs retain 2
 from p2 in rightPairs retain 2
 select rstream p1.num * p2.num

Aggregate
Projection

from p1 in leftPairs retain 2
 from p2 in rightPairs retain 2
 select sum(p1.num * p2.num);

As shown in the diagram, in a cross-join whenever an item arrives in a window, it is
joined to every item in the other window to produce a separate output item for each
combination.

Because the number of output items is the product of the size of the two windows, cross-
joins are normally used for joins between at least one of:

A window of size 1

A stream where you have omied the window definition

If both sides of the join omit the window definition then for output to occur an item
must arrive on each stream during the same activation of the query.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 233

A more concrete example can be seen in the statistical arbitrage sample application (see
the samples/monitorscript/statarb directory of your Apama installation directory),
which includes the following statement:
stream <decimal> spreads :=
 from a in all Price(symbol=symbolA) retain 1
 from b in all Price(symbol=symbolB) retain 1
 select (a.price - b.price);

This query generates the spread between the latest prices for the two identified stocks.
In each from clause, the window contains one item. Whenever a new item arrives in one
window the query executes the calculation defined in the select clause and outputs the
result.

To generate a running mean and a standard deviation for this spread value you can
define the following query:
stream<MeanSD> averages := from s in spreads within 20.0
 select MeansSD(mean(s),stddev(s));

Then, to obtain all three current values for the spread, the mean and the standard
deviation you can perform a join between the spreads stream and the averages stream:
stream<SpreadMeanSD> all := from s in spreads
 from a in averages
 select SpreadMeansSD(s, a.mean, a.stddev);

This query outputs a result only when there is an item currently in both spreads and
averages.

In a cross-join, you cannot specify more than two from clauses.

Caution: Be aware that cross-joins have the potential to generate a great quantity of
output. It is preferable to use cross-joins only where the window size/duration
of any window involved in the cross-join is small. For example, puing 8000
events through a 100x100 cross-join produces 1.6 million output events. You
cannot specify a cross-join in a query that contains an unbounded window.

Defining equi-joins with the join clause

An equi-join has a key expression for each of the two streams that are being joined. Two
items are joined into an output item only if the values of their key expressions are equal.
The full syntax for an equi-join, consisting of a from clause followed by a join clause, is:
from itemIdentifier1 in streamExpr1 [windowDefinition1]
 join itemIdentifier2 in streamExpr2 [windowDefinition2]
 on joinKeyExpr1 equals joinKeyExpr2

As with the partition and unique key expressions, each join key expression must return
a "comparable type" on page 817. Also, joinKeyExpr1 must include a reference to
itemIdentifier1 and joinKeyExpr2 must include a reference to itemIdentifier2.
Each join key may not refer to the item from the other stream. An example of an equi-
join is:
from p1 in leftPairs retain 2
 join p2 in rightPairs retain 2
 on p1.letter equals p2.letter
 select sum(p1.num * p2.num);

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 234

This is illustrated in the following diagram:

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple
istream
Projection

from p1 in leftPairs retain 2
 join p2 in rightPairs retain 2
 on p1.letter equals p2.letter
 select p1.num * p2.num

Simple
rstream
Projection

from p1 in leftPairs retain 2
 join p2 in rightPairs retain 2
 on p1.letter equals p2.letter
 select rstream p1.num * p2.num

Aggregate
Projection

from p1 in leftPairs retain 2
 join p2 in rightPairs retain 2
 on p1.letter equals p2.letter
 select sum(p1.num * p2.num);

This diagram shows the input that was used in the cross-join example, but with the join
changed to be an equi-join. As you can see, only the items with matching leers appear
in the output. The first event on the right side of the join has the same leer as the event
on the left, so an output is produced as before. When the second event arrives on the left,
however, no output is produced, because the leer does not match the other side. When
a b event arrives on the right side of the join, that is joined with the b event on the left.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 235

Finally, at the end of the table you can see that the join is empty because none of the
events on the left match any of the events on the right.

Here is a more concrete example of an equi-join:
from r in priceRequest
 join p in prices partition by p.symbol retain 1
 on r.symbol equals p.symbol
 select p.price

For each new stock price request, this query generates the latest price for that stock/
symbol. In an equi-join, whenever an item enters a window on one side, the correlator
evaluates the join condition to determine if the item matches any of the items in the
window on the other side. The correlator joins and outputs each matching pair when it
finds one.

Typically, you want to create a derived event that is a function of the events on both
sides of the join operation. Here is another example:
from latest in latestSensorReadings
 join average in averageSensorReadings
 on latest.sensorId equals average.sensorId
 select SensorAlert(latest.sensorId, latest.value, average.mean): alert{
 send alert to "output";
}

This query joins a stream of the most recent readings from all the sensors with a stream
of averages of the same readings over some period. When a new reading appears it
causes an event on the stream of averages at the same time. This causes them to be
joined to create an alert that contains both the latest value and the latest average, which
is then sent.

See also "IEEE special values in stream query expressions" on page 241.

Filtering items before projection
In a stream query, after the window definition and any join clause, you can optionally
specify a where clause to filter the items produced by the window or join. The where
clause specifies an arbitrary EPL expression and can filter items based on any criteria
available to EPL.

Format
where booleanExpr

Replace booleanExpr with a Boolean expression. This expression is referred to as the
where predicate. Only those items for which the where predicate evaluates to true are
passed by the filter. For example:
from t in ticks retain 100
 where t.price*t.volume>threshold
 select mean(t.price)

To calculate the mean price, this query operates on only the items whose value (t.price
* t.volume) is greater than the specified threshold.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 236

Performance

The filtering performed by the where clause happens after any window, with or join
operations. In some cases, it is possible to rephrase the query to improve operational
efficiency. For example:
from t in ticks within 60.0
 where t.price*t.volume>threshold
 select mean(t.price)

This query maintains a window of Tick items. Now consider this revision:
from p in
 (from t in ticks where t.price*t.volume>threshold select t.price)
 within 60.0
 select mean(p)

In the first example, the within window contains all Tick events received in the last
minute. In the second example, the where clause is before the window definition so the
filtering happens before items enter the window. Consequently, the window contains
only float items for which the where predicate is true. These types of optimization are
of particular benefit in queries that include both a where clause and a join operation
(equi-join or cross-join). However, care must be taken when refactoring queries,
particularly when size-based windows are involved. For example, consider the two
queries below:
from t in ticks retain 100 where t.price*t.volume>threshold
 select mean(t.price)

from p in
 (from t in ticks where t.price*t.volume>threshold select t.price)
 retain 100 select mean(p)

These queries are not equivalent. The first query generates the mean of a subset of the
last 100 items. The where predicate evaluated to true for only the items in the subset.
The second query generates the mean of the last 100 items for which the where predicate
evaluated to true.

Generating query results
The last component of a stream is the required projection definition, which specifies how
to generate items for the query's output stream. A projection definition has the following
syntax:
[group by groupByExpr [, groupByExpr]...] [having havingExpr]
 select [rstream] selectExpr

Each groupByExpr is an expression that returns a value of a comparable type. These
expressions form the group key, which determines which group each output item is a
part of. Any aggregate functions in the having or select expression operate over each
group separately. See "Grouping output items" on page 238.

The havingExpr expression filters output items. See "Filtering items in projections" on
page 239.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 237

The value you specify for selectExpr defines the items that are the result of the query.
The correlator evaluates selectExpr to generate each item that appears in the query's
output stream. The type of selectExpr identifies the type of the query's output stream.

A projection can be one of the following kinds:

A simple projection does not specify any aggregate functions, nor does it specify a
group by or having clause. A simple projection can be a simple istream projection
or a simple rstream projection.

An aggregate projection specifies at least one aggregate function across the having
and select expressions.

You can specify a group by clause as part of an aggregate projection. If there is a
group by clause, the group key must be one or more expressions that take the input
event and return a value of a comparable type.

You cannot specify rstream in an aggregate projection.

The following table describes the kinds of expressions that can appear in the select
expression for each type of projection. In more complex expressions, the rules apply
similarly to each sub-expression within that expression.

Kind of
Expression

Valid in
Projections

Description Example

Non-
item
expression

Simple
and
aggregate

An external
variable,
constant, or
method call, It
does not refer
to any of the
input items.

select currentTime;

Item
expression

Simple A reference
to the input
item or a non-
aggregate
expression that
contains at least
one reference to
the input item.

select a.i;

select sqrt(a.x)*5.0/a.y

Group
key
expression

Aggregate An expression
that returns one
of the group
keys can also
occur in the
projection.

group by a.i/10 select
(a.i/10)*mean(a.x);

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 238

Kind of
Expression

Valid in
Projections

Description Example

Aggregate
function
expression

Aggregate An expression
that contains
at least one
aggregate
function.
Arguments to
the aggregate
function can
include item
expressions.

select mean(a.i);

Note: An expression might not be syntactically equivalent to a group by expression
even though it might appear to be equivalent. For example, if the group by
expression is a.i*10, you cannot specify 10*a.i as an equivalent expression.
An equivalent group by expression must contain the exact sub-expression
specified in the group by clause.

Aggregating items in projections

An aggregate function calculates a single value over a window. If a select expression
contains any aggregate functions, then references to the input item can appear only
in the arguments to those aggregate functions. Any EPL expression can appear in the
arguments to the function, but other aggregate functions may not. EPL provides several
built-in aggregate functions and you can define additional ones. See "Defining custom
aggregate functions" on page 241 and "Built-in aggregate functions" on page 870.

Grouping output items

In a select clause, when you do not specify a group by clause any aggregate functions
in the projection operate on all values in the window. This is true even if you partitioned
the window. To group the items in the window into one or more separate groups and
to calculate an aggregate value for each group of items, use the group by clause. The
syntax of the group by clause is as follows:
group by groupByExpr [, groupByExpr]...

Each groupByExpr is an expression that returns a value of a comparable type. See
"Comparable types" on page 817.

These expressions form the group key, which determines which group each output item
is a part of. Any aggregate functions in the select expression operate over each group
separately.

In an aggregate projection, you can refer to any group key expressions anywhere in the
select expression. However, you can refer to a query input item only in an aggregate
function argument. For example:
from t in all Tick() within 30.0
 group by t.symbol select TickAverage(t.symbol, mean(t.price));

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 239

Whenever a lot arrives, this query updates one or more groups. Every group that is
updated outputs a TickAverage event, and all TickAverage events are in the same lot.
Each TickAverage event contains the symbol and the average price for that symbol
over the last thirty seconds. If a group is not updated, it does not output a TickAverage
event.

You typically use a group by clause in a stream query in conjunction with a partition
by clause. In the following example, the window contains up to 10 events for each stock
symbol. The aggregate projection calculates the average price separately for each symbol
and each average is based on up to 10 events:
from t in ticks partition by t.symbol retain 10
 group by t.symbol select mean(t.price);

Obtaining the query's remove stream

For each query, there are items that have been added to the window in a given query
activation and items that have been removed (they were previously in the window, but
are no longer in the window). By default, a simple, non-aggregate projection returns the
items that have been added to the window. This is the istream. To obtain the items that
have been removed from the window, add the rstream keyword to the select clause.

For aggregate projections, obtaining the rstream is not meaningful and therefore the
rstream keyword is not allowed in aggregate projections.

For examples of specifying rstream, see "Defining time-based windows" on page 220,
"Defining size-based windows" on page 222, "Defining cross-joins with two from
clauses" on page 231 and "Defining equi-joins with the join clause" on page 233.

When you specify retain all, you cannot specify rstream.

Filtering items in projections

In a stream query, as part of an aggregate projection definition, you can optionally
specify a having clause to filter the items produced by the projection. The having clause
specifies an arbitrary EPL expression and can filter items based on any criteria available
to EPL.

Format
having booleanExpr

Replace booleanExpr with a Boolean expression. This expression is referred to as the
having predicate. The having predicate is evaluated for each lot that arrives. When the
having predicate evaluates to false the projection does not generate output.

Unlike the where clause, the having clause

Is part of the projection

Filters the output of the projection rather than what comes into the projection

Cannot refer to individual items

Can refer only to the group key or aggregates

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 240

A having clause can only be in an aggregate projection; it cannot be in a simple
projection. Each aggregate projection must contain at least one aggregate in a having
clause or in the select clause.Values for aggregates, whether in having expressions
or select expressions, are always calculated over the same window(s). See "Grouping
output items" on page 238.

For example:
from t in all Temperature() within 60.0
 having count() > 10
 select mean(t.value)

This query calculates a rolling average of temperatures over the last minute. In this
stream query, the having clause permits the average to be ouput only when it is a
reliable measure.. The count() aggregate function ensures that there are sufficient
measurements (at least 10) in the previous 60 seconds to compensate for any noise or
one-off errors in the readings.

Because the filtering occurs after the select exrpression has been processed, the average
is still being calculated invisibly in the background, and can be output the very moment
the measurement passes the reliability criterion. In the previous example, this means
that after ten items have arrived, the average of all values in the last minute is output.

Filtering grouped aggregate projections

If you specify the group by clause, the having clause operates separately on each group,
just as the select clause operates separately on each group. For example, the following
code changes the previous code so that it outputs a reliable rolling average for each
zone:
from t in all Temperature() within 60.0
 group by t.zone
 having count() > 10
 select ZoneAverage(t.zone, mean(t.value))

Just as a distinct mean is output for each group (each zone), the criterion for the having
expression are applied separately to each group. A rolling average for a zone is output
only when count() > 10 is true for that zone.

Performance

It is possible for the stream network to avoid some calculations in a select clause when
the having clause evaluates to false. Since maintaining aggregates can be expensive, this
can be a useful optimization. When you know that a having clause can often evaluate
to false, you can obtain beer performance by specifying a having clause in the stream
query as opposed to specifying a query like this:
from t in all Ticks(symbol="APMA") within 60.0 * 10.0
 select MeanStddev(mean(t.value), stddev(t.value)) : avg_sd {
 if(shouldOutput()) then {
 send avg_sd to "output";
 }
 }

This query computes a rolling average and standard deviation over the last ten minutes
of a stock, and sends them to a dashboard or similar. Optionally, the output feed that

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 241

sends out the rolling average and standard deviation can be turned off, and this is
indicated by the return value of the shouldOutput() action. However, even when the
output is turned off, Tick events still come in and the stream network still calculates the
rolling average and standard deviation.

You can rewrite the code such that turning off the output terminates the query and
turning on the output restarts the query. This option loses the state of the window and
introduces a 10-minute lag before accurate output is available. A beer option is to add
a having clause so that turning off the output removes the performance penalty without
losing state. For example:
from t in all Ticks(symbols="APMA") within 60.0 * 10.0
 having shouldOutput()
 select AvgStddev(mean(t.value), stddev(t.value)) : avg_sd {
 send avg_sd to "output";
 }

The mean() and stddev() aggregates continue to accumulate state when
shouldOutput() returns false, but they do not fully calculate the rolling average and
standard deviation for each incoming item.

IEEE special values in stream query expressions
The following information about IEEE special values applies to the following
expressions:

The key expression in a with unique clause

A partition by expression

The expressions that define the conditions in a join clause

A group by expression

If one of these expressions is a decimal or float value, or a container that involves a
decimal or float value, and the decimal or float value is an IEEE special value then
the following applies:

NaN — This value is illegal as all or part of an expression and terminates the
monitor instance.

Positive/negative infinity — These values are legal and all positive infinities are
treated as equal as are all negative infinities.

Defining custom aggregate functions
EPL provides a number of commonly used aggregate functions that you can specify in
the select clause of a query. See "Aggregating items in projections" on page 238.
If none of these functions perform the operation you need, you can define a custom
aggregate function. The format for defining a custom aggregate function is as follows:
aggregate [bounded|unbounded] aggregateName ([arglist])
 returns retType { aggregateBody }

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 242

Element Description

bounded | unbounded Specify bounded when you are defining a
custom aggregate function that will work with
only a bounded window. That is, the query
cannot specify retain all.

Specify unbounded when you are defining a
custom aggregate function that will work with
only an unbounded window. That is, the query
must specify retain all.

Do not specify either bounded or unbounded
when you are defining a custom aggregate
function that will work with either a bounded or
an unbounded window.

If you do not specify bounded, you must define
the custom aggregate function so that it can
handle a window that never removes items. The
function should not consume memory per item
in the window.

aggregateName Specify a name for your aggregate function. This
is the name you will specify when you call the
function in a select clause.

For details about the characters you can specify,
see "Identifiers" on page 919.

arglist Optionally, specify one or more comma-
separated type/name pairs. Each pair indicates
the type and the name of an argument that you
are passing to the function. For example, (float
price, integer quantity).

retType Specify any EPL type. This is the type of the
value that your function returns.

aggregateBody The body of a custom aggregate function is
similar to an event body. It can contain fields
that are specific to one instance of the custom
aggregate function and actions to operate on
the state. The init(), add(), remove() and
value() actions are special. They define how
stream queries interact with custom aggregate
functions.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 243

You define custom aggregate functions outside of an event or a monitor and the
function's scope is the package in which you declare it. To use custom aggregate
functions in other packages, specify the function's fully-qualified name, for example:
from a in all A() select com.myCorporation.custom.myCustomAggregate(a)

Alternatively, you can specify a using statement. For example, suppose you define the
myCustomAggregate() function in the com.myCorporation.custom package. To use
that function inside another package, insert a statement such as the following in the file
that contains the monitor in which you want to use the function:
using com.myCorporation.custom.myCustomAggregate;

Insert the using statement after the optional package declaration but before any other
declarations. You can then simply specify the function name. For example:
from a in all A() select myCustomAggregate(a)

Be sure to inject the file that contains the function definition before you inject the files
that contain monitors that use the function.

See also "Names" on page 929.

Example of defining a custom aggregate function
The following example shows the definition of a custom aggregate function that returns
the weighted standard deviation of the input values.
aggregate bounded wstddev(float x, float w) returns float {
 // 1st argument is the value, 2nd is the weight.
 float s0;
 float s1;
 float s2;
 action add(float x, float w) {
 if (w != 0.0) then {
 s0 := s0 + w;
 s1 := s1 + w*x;
 s2 := s2 + w*x*x;
 }
 }
 action remove(float x, float w) {
 if (w != 0.0) then {
 s0 := s0 - w;
 s1 := s1 - w*x;
 s2 := s2 - w*x*x;
 }
 }
 action value() returns float {
 if (s0 != 0.0) then { return ((s2 - s1*s1/s0)/s0).sqrt(); }
 else { return float.NAN; }
 }
}

Defining actions in custom aggregate functions
Certain actions in a custom aggregate function have special meanings and you must
define them as follows:

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 244

init() — The init() action is optional. If a custom aggregate function defines an
init() action it must take no arguments and must not return a value. The correlator
executes the init() action once for each new aggregate function instance it creates
in a stream query.

add() — A custom aggregate function must define an add() action. The add()
action must take the same ordered set of arguments that are specified in the custom
aggregate function signature. That is, the names, types, and order of the arguments
must all be the same. The correlator executes the add() action once for each item
added to the set of items that the aggregate function is operating on.

remove() — A bounded aggregate function must define a remove() action. An
unbounded aggregate function must not define a remove() action. If you do not
specify either bounded or unbounded, the remove() action is optional. The remove()
action must take the same ordered set of arguments as the add() action and must
not return a value. The correlator executes the remove() action once for each item
that leaves the set of items that the aggregate function is operating on.The value that
remove() is called with is the same value that add() was called with.

value() — All custom aggregate functions must define a value() action. The
value() action must take no arguments and its return type must match the return
type in the aggregate function signature. The correlator executes the value() action
once per lot per aggregate function instance and returns the current aggregate value
to the query.

Custom aggregate functions can declare other actions, including actions that are
executed by the above named actions. A custom aggregate function cannot contain a
field whose name is onBeginRecovery, onConcludeRecovery, init, add, value, or
remove, even if, for example, the custom aggregate function does not define a remove()
action.

Overloading in custom aggregate functions
As with event types, the names of custom aggregate functions must be unique. Unlike
the built-in aggregate functions, there is no overloading, so it is not possible to declare
two aggregate functions with the same name and different parameters or two aggregate
functions with different bounded and unbounded specifiers and the same name. For
example:
aggregate unbounded max(float value) returns float {...}
aggregate bounded max(float value) returns float {...}
 // Error! You cannot use the same function name.

aggregate unbounded maxu(float value) returns float {...}
aggregate bounded maxb(float value) returns float {...}
 // Both of these queries are correct. They have different names.

In contrast, the built-in bounded and unbounded aggregate functions are overloaded.

Distinguishing duplicate values in custom aggregate functions
Each item in a stream is considered to be unique. However, when duplicate values
appear in the set of items that a custom aggregate function operates on, it is not possible

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 245

for the function to identify the particular instance of the value. If your implementation
requires being able to distinguish between instances of duplicate values, you can
accomplish this by extending the signatures of the function's add() and remove()
actions.

For example, you might see the following set of float values in a stream:
1.0 2.0 3.0 4.0 3.0 2.0 1.0

Each occurrence of a particular value in the stream represents an individual value,
separate from any other occurrences of that value. But when a query presents these
values to a custom aggregate function (by means of the add() and remove() actions) the
value alone is not enough to identify the particular occurrence that this value represents.

To distinguish one occurrence from another, extend the action signatures as follows:

The add() action can return a value, which can be of any type.

If the add() action does return a value, then the remove() action must accept, as its
last argument in addition to its standard arguments, an argument of the same type
as that returned by the add() action.

When an item is added to the aggregate the value returned by the add() action is stored
with the item. When that item is removed from the aggregate the same value will be
passed to the remove() action. Thus, it is possible to distinguish between items with
duplicate values by comparing the additional data that is passed to the remove() action.

The following example shows an aggregate function that returns the entire window
contents, in order, as a sequence:
aggregate windowOf(float f) returns sequence<float> {
 dictionary<integer,float> d;
 integer i;
 action init() { d.clear(); i := 0; }
 action add(float f) returns integer {
 i := i+1;
 d[i] := f;
 return i;
 }
 action remove(float f, integer k) { d.remove(k); }
 action value() returns sequence<float> { return d.values(); }
}

Working with lots that contain multiple items
Each time a stream query or stream listener is activated it might be processing more than
one item at a time. Each simultaneously processed group of items is referred to as a lot.
Like an auction lot, a lot can contain just one item or it can contain a number of items.
Stream listeners can be activated once per item or once per lot. Stream queries try to
process each item in a lot as if it arrived separately. See "Behavior of stream queries with
lots" on page 246 for a discussion of cases where this is not possible.

When a lot contains multiple items all items in the lot appear in the output stream at
the same time. However, the correlator preserves the order in which the stream query
generated the items in the lot. When that output stream is the input stream for another

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 246

stream query, the subsequent query uses the preserved order, if necessary, to determine
how to process the items.

Stream queries that generate lots
To generate a lot that contains multiple items, a stream query must specify a simple
projection or an aggregate projection that contains a group by clause. The stream query
must also either receive lots that contain multiple items or must contain one of the
following:

A batched window

A timed window with the rstream keyword (this must be a simple projection, and
not an aggregate projection)

A join of either type.

A query with a non-grouped aggregate projection never generates multiple items. It
generates a single item or nothing.

A timed window with the rstream keyword can generate lots because multiple
items can have the same timestamp. In a timed window, when items with the same
timestamp expire they all leave the window at the same time. However, the correlator
still maintains the order in which the items were generated or received.

Behavior of stream queries with lots
This topic provides advanced information about how queries process lots that they
receive on their input streams. The information here requires a thorough understanding
of streams, queries, and the information about lots presented so far.

To understand how stream queries behave when receiving lots that contain more than
one item, consider the window content of the query before the lot is input and the
window content of the query after the lot is input. The difference between these two
states determines the output of the query. For example, consider the following queries:
// event A { float x; }
stream<A> sA := from a in all A() retain 3 every 3 select a;
stream<float> sB := from a in sA select a.x;
stream<float> sC := from a in sA select sum(a.x);

The following table shows the lot output by each stream on each activation of the query.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 247

As can be seen, in the queries that contain aggregate functions, the aggregate
expressions (and projections) are evaluated, at most, once per query activation. All
queries, with the exception of those containing a group by clause, behave in this way.

Size-based windows and lots

When a size-based window is processing a lot that contains more than one item, all
of the items are processed in the window before any of the rest of the stream query is
processed. None of the intermediate states are visible to the query. This means that in
the following query:
from a in sA retain 3 select sum(a.i);

if the window contains the events A(1), A(2) and A(3) and a lot containing both A(4) and
A(5) arrives, those will displace A(1) and A(2) immediately. The state of the window
A(2), A(3), A(4) will never have existed. This is more relevant when the lot contains
more items than will fit in the window. In this case, if five more events arrived in a single
lot, the three events will fall out of the window, the last three events will go into the
window and the two interim events will disappear – never having been in the window
at any point.

This behavior means that care must be taken with fixed-size windows when events
might be processed in lots.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 248

Join operations and lots

The principle of updating the state of a query in a single operation without the
intermediate state being visible is most relevant for join operations. The two diagrams
that follow illustrate how a cross-join behaves when several events arrive in a single lot.

In the diagrams, the items on the left side of the join are represented by the numbered
items that come in from the left side and the items on the right side of the join are
represented by the leered items that come in from the top. Each square in the grid
can be a joined event. In both diagrams, the results of the join before the lot arrives are
mostly highlighted in blue. The items joined after the lot arrives are mostly highlighted
in teal. The relevant stream query in both examples is:
from a in sA retain 3
 from b in sB retain 3
 select C(a, b);

The complete set of values in the table represents all of the combinations of items from
sA and items from sB that could possibly be generated by the join when considering
alternative ways of ordering the sA and sB items arriving in the lot. In general, there is
no particular ordering of the sA and sB items that is superior (more meaningful) than
all other orderings. Thus, when considering the transitions, there is no preferred path
from the initial window content to the final window content. Hence, it is considered that
the correct output for the join is achieved by taking the difference between the initial
window content and the final window content, ignoring any intermediate states.

In the first diagram, there are nine joined events before the lot arrives. These are
represented by the seven blue squares and the two orange squares. Two items, 4 and 5,
arrive on sA and displace items 1 and 2. Also, one item, d, arrives on sB. and displaces
item a. The result is nine joined events after the lot arrives, of which two were there
before (represented by the two orange squares, and seven are new, represented by
the teal squares. A non-aggregating query that outputs the istream (as given above)
would return the seven new items (shown in teal). If, instead, the query was selecting

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 249

the rstream then it would return the seven items that are no longer a result of the join
(shown in blue).

In the second example, there are again nine joined events before the lot arrives. These
are represented by the nine blue squares. Four items, 4, 5, 6, and 7 arrive on sA and
displace items 1, 2, and 3. Because this is a retain 3 window, item 4, as the oldest item
in the lot, never makes it into the window. Also, items d, e, f, and g arrive on sB, which
displaces items a. b, and c, and again, because it is a retain 3 window, item d never
appears in the window. After the lot arrives, the result is nine new joined events, which
are represented by the teal squares.

Since there are no joined events that are present both before the lot arrives and after the
lot arrives all nine events that were previously the result of the join would be returned
by a query selecting the remove stream of this join. The nine new events are output by
the query that selects the input stream. No events containing either '4' or 'd' are ever
visible as a result of the query even though both values were present on one of the
inputs.

Grouped projections and lots

Suppose that a query that contains a group by clause processes a lot that contains
several items. The query generates new projected items for the groups where the state of
the group after the lot is input differs from the state of the group before the lot is input.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 250

Stream network lifetime
After you create a stream or stream listener, it exists until one of the following happens:

You explicitly terminate it.

The monitor that contains the stream or stream listener terminates.

You terminate another stream or stream listener in the same stream network and that
causes the stream or stream listener to terminate.

A stream or stream listener is explicitly terminated by calling the quit() method on
a variable that refers to it. Hence, to explicitly terminate a stream or stream listener,
you must retain a reference it. You can also terminate a stream or stream listener by
terminating a related stream or stream listener in the same stream network (as detailed
below).

You can create a stream or stream listener that is not referenced by any variable and
cannot be terminated by quiing any other streams or stream listeners in the stream
network. If this is unintentional then we refer to it as a stream or stream listener leak.
This situation is similar to an event listener leak (see "Avoiding listeners and monitor
instances that never terminate" on page 427. Here is an example:
action createStreamListener() returns listener {
 stream <A> sA := all A();
 return from a in all A() select a.x: x { print x.toString(); }
 // error: meant to use sA in the query above
}

Although executing the code returns a listener variable that refers to the created stream
listener, it inadvertently creates an unreferenced stream (the local variable sA did refer to
this stream but is no longer in scope).

Calling quit() on a stream or stream listener in a stream network typically has side
effects. A side effect can be one of the following:

Termination of additional streams, stream queries, stream listeners, or stream event
expressions.

Disconnection between the terminated element and another element.

When determining which queries to terminate the correlator uses the following rule:
when, due to another stream or query terminating, a query can no longer generate
any output, it is also terminated. An example of how this works is probably beneficial.
The following diagram shows a stream network with two stream source templates
generating input events for five queries, eventually connected to two stream listeners.
There are four stream variables pointing to the streams in the network.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 251

Suppose you call quit() on either r6 or r7 (the stream variables on the right). The
correlator terminates the whole of the branch from Query D down. This is because,
whichever stream you quit, nothing can be generated by anything connected to
those streams. Stream 4, however, is also feeding Query C, which can still generate
output. Therefore, the rest of the network, including Query B and both stream event
expressions, remains active.

If you subsequently call quit() on r5 this will terminate the stream listener and Query
C, which will then terminate stream 3 and stream 4, since they are not connected to any
other queries, and also stream 1, stream 2 and both stream source templates.

The stream variables after their streams are terminated will be dummy references.
Subsequent aempts to create a query using those streams are ignored (the result is an
inert stream).

Disconnection vs termination
In the example above, quiing r6 disconnects Query D from stream 4. Because stream
4 has other stream queries using it this disconnection does not terminate stream 4
immediately. Streams terminate when all the queries using them have disconnected.

If you were instead to call quit() on r4, this would terminate everything on the right
side of the diagram, no maer how many queries are using stream 4. However, the
stream would just be disconnected from Query C. Whether this terminates Query C
depends on the state of the join in Query C. If it is joining a size-based window from
stream 4 the items in the window would remain to be joined against new items in

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 252

stream 3. If it was a time-based window then Query C would remain until everything
in the window had been discarded. At that point, since nothing can ever be added to that
side of a join, Query C terminates, causing the rest of the network to also be terminated.

Rules for termination of stream networks
The complete set of rules for when a part of a stream network is terminated are:

Stream listeners:

quit() is called on a listener variable pointing at that stream listener.

The stream the listener is connected to is terminated.

Streams:

quit() is called on a stream variable pointing at that stream.

The stream query generating the stream is terminated.

All the stream queries using the stream are terminated.

Stream queries:

The stream the query generates is terminated.

All of the streams the query uses are terminated and either the query does not
define a window or it defines a within or within...every window and there
are no live items in the window.

A live item is an item whose expiration (the item falls out of the window) can
cause query output. For example, if the only items in a timed window fail to
satisfy a where clause in the window definition then those items cannot change
query output when they expire.

If none of the items in the window are live the query terminates when all items
have fallen out of the window. However, the query might terminate earlier if the
correlator can determine that none of the items are live and that all streams that
the query uses have terminated. Regardless of when such a query quits, there are
no observable effects except in two situations:

The query is the only thing keeping the monitor active. That is, when the
query terminates then the monitor's ondie() action is called.

Calculation of the size of the window has one or more side effects.

Stream source templates:

The stream the stream source template generates is terminated.

Using dynamic expressions in stream queries
The expressions in stream queries can contain variables and action calls from EPL.
Unlike parameters to event templates, the correlator evaluates these expressions each

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 253

time the query is used and not just when it is created. This allows the behavior of the
query to be altered during program execution.

Behavior of static and dynamic expressions in stream queries
A static expression is an expression that refers to only static elements. Static elements
are:

Constants (defined with the constant keyword)

Literal values, for example:
from a in all A() within 20.0 select sum(a.i);

Primitive types that are local variables, for example:
integer width := 10;
from a in all A() retain width select sum(a.i);

The correlator can fully evaluate static expressions when it creates the stream query.

A dynamic expression is an expression that refers to one or more dynamic elements.
In a query, the value of a dynamic expression can change throughout the lifetime of
that query. Consequently, the correlator must re-evaluate each dynamic expression at
appropriate points in the execution of the query.

Dynamic elements are:

Any reference type

Any monitor global variable

Where the stream query is created by an action on an event, the members of that
event

Any action, method or plug-in call

The correlator fully evaluates an event template in a stream source template when the
correlator creates the query. For example, consider the following two queries:
from a in all A(id=currentMatch) select a;
from a in all A() where id = currentMatch select a;

During execution, if currentMatch is a global variable, a change to the value of
currentMatch affects the behavior of the second query but it does not affect the
behavior of the first query.

When to avoid dynamic expressions in stream queries
Where possible, use static expressions in preference to dynamic expressions. This allows
the compiler to optimize the query to improve performance. For example, consider the
following query:
stream<float> vwaps := from t in all ticks
 within vwapPeriod
 select wavg(t.price,t.volume);

When vwapPeriod is a monitor global variable whose value does not change, then it is
preferable to copy the value to a local variable first. For example:

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 254

float period := vwapPeriod;
stream<float> vwaps := from t in all ticks
 within period
 select wavg(t.price,t.volume);

Similarly, if it is known that a given action call always returns the same value, then it is
preferable to copy the result to a local variable and use this in place of the action call. For
example:
float period := getVwapPeriod(symbol);
stream<float> vwaps := from t in all ticks
 within period
 select wavg(t.price,t.volume);

Ordering and side effects in stream queries
To determine when it is safe to use dynamic expressions in stream queries, it is
important to understand that:

In a query, the order in which the correlator executes the action calls is not defined.
Although the order is not defined, the correlator always executes the action calls in
the same order for a particular Apama release.

When processing each item passed to the query, if an action call with a given set of
arguments appears multiple times within a stream query, then the number of times
the correlator executes the action is not specified. It might be equal to or less than the
number of times that the action call appears within the query. However, this number
is always the same for a particular release.

In a stream network, the order in which the correlator executes the queries is not
defined except for when the output of a query forms the input to a second query. In
this case, the correlator always executes the first query before the second. Again, in a
particular release, the execution order is always the same.

Because of these points, it is best to avoid actions with side effects in expressions
executed in stream queries. Such actions can make a program more difficult to
understand and debug. Instead, execute any such actions in stream listeners.

A method or expression that produces a value has a side effect if it modifies something
or interacts with something outside the program. This includes, but is not limited to:

Modifying a global variable

Changing the value of an argument

Calling plug-in methods

Routing, enqueuing, emiing or sending an event

Calling another action that has side effects

Seing up event listeners or new streams

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 255

Understanding when the correlator evaluates particular expressions
All expressions in a stream query can contain dynamic elements. To understand the
behavior of a query that specifies dynamic elements, it is necessary to know under what
circumstances the correlator re-evaluates an expression and uses the result in the query.

Using dynamic expressions in windows

A window definition can contain some or all of the following:

A partition key expression

The window duration, size or both duration and size

An every batch period or size

The key for a with unique clause

The following table shows when the correlator evaluates each of these:

Window Definition Description

retain n The correlator evaluates n every time an item arrives
on the stream. The correlator uses the new value of n
to calculate what should be in the window.

retain n every m The correlator stores incoming items until the
current value of m is satisfied. When m is satisfied,
the correlator evaluates both n and m. The correlator
uses the new value of n to calculate what should be in
the window, including the stored items. Because m is
evaluated only after it has been satisfied, meeting that
condition is always based on the old value of m.

within d The correlator evaluates d every time an item arrives
on the stream and every time an item is due to be
removed from the window. The correlator uses the
new value of d to calculate what should be in the
window.

within d every p The correlator stores incoming items until p seconds
have elapsed. When p seconds have elapsed, the
correlator evaluates p and d only if there are any items
in the window or stored. The correlator uses the new
value of d to calculate what should be in the window,
including stored events. The correlator uses the new
value of p to determine the next time the window can
change.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 256

Window Definition Description

If there are no items in the window or waiting to enter
the window then, for efficiency, the correlator does
not evaluate p. When the correlator evaluates p, it is
always based on the old value of p.

...retain n If a within or within every window definition also
specifies retain, the correlator evaluates n whenever
the window content can change. The correlator uses
the new value of n to calculate what should be in the
window.

If the window definition specifies every, the window
content can change only when p is satisfied.

Otherwise, the window content can change when an
item arrives on the stream and when an item is due to
be removed from the window.

partition by k1[,
k2]...

If the window definition specifies a timed every
p clause, the correlator evaluates each partition
expression when p seconds have elapsed. Otherwise,
the correlator evaluates each key expression when an
item arrives on the stream. The correlator uses the new
value of each key expression to calculate what should
be in each partition.

with unique w The correlator evaluates w once for each item
whenever that item is about to enter the window. If
there is an every clause, an item can enter the window
only when m or p is satisfied. Otherwise, an item can
enter the window when it arrives on the stream.

Using dynamic expressions in equi-joins

The format of a query that contains an equi-join is as follows:
from x in s1 join y in s2 on j1 equals j2 ...

Suppose that j1 and j2 are dynamic expressions that return the left and right join keys
for each input item. The correlator evaluates these expressions once for each input item
when it enters the window. This is regardless of how many items are joined from the
other side.

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 257

Using dynamic expressions in where predicates

The correlator evaluates the predicate in a where clause once for each item. This happens
as soon as a join operation produces an item, or if there is no join operation, as soon as
an item enters a window.

Using dynamic expressions in projections

In a simple projection, the correlator evaluates the select expression once for each item.
The correlator evaluates the select expression as soon as a join operation produces an
item, or if there is no join operation, as soon as an item enters a window.

In a simple projection, regardless of whether the select clause specifies the rstream
keyword, the correlator evaluates expressions in the projection when the items would
be present on the insert stream and the results are stored until needed for the remove
stream.

In an aggregate projection, the correlator evaluates expressions in the projection when
the items would be present on the insert stream.

If an aggregate projection contains a group by clause the correlator evaluates the group
key once for each item. This happens as soon as a join operation produces an item, or if
there is no join operation, as soon as an item enters a window.

The correlator evaluates aggregate and grouped expressions in two stages. The
correlator evaluates arguments to aggregate functions once for each item as soon as
it is produced by a join or if there is no join, as soon as it arrives in the window. The
correlator evaluates the rest of the aggregate expression once for each lot.

Examples of using dynamic expressions in stream queries
Following are some examples of using dynamic elements in stream queries. These
examples are simplified, for brevity.

Example of altering query window size or period

The following code fragment shows part of a monitor that accepts requests from external
entities to monitor/generate the VWAP for a given symbol. After you create a monitor
like this, an external entity can, at any time, change the parameters that control the
period over which the monitor calculates the VWAP and/or the output frequency of the
VWAP events.
monitor VwapMonitor {
 VwapRequestParams params;
 action onload() {
 VwapRequest v;
 on all VwapRequest():v spawn monitorVwap(v);
 // Simplified. Assumes no duplicate requests.
 }
 action monitorVwap(VwapRequest v) {
 params := v.params;
 Vwap vwap;
 from t in all Ticks(symbol=v.symbol)
 within params.duration
 every params.period

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 258

 select Vwap(t.symbol,wavg(t.price,t.volume)):vwap {
 route vwap;
 }
 VwapRequestUpdate u;
 on all VwapRequestUpdate(symbol=v.symbol) : u {
 params := u.params;
 }
 }
}

When accumulating the raw tick data to generate the VWAP price, no prescience is
involved. There is no anticipation that the window size is to be increased. Changing
the within duration to a larger value causes the window duration to increase but does
not recover historic events. Hence the effective sample duration over which the monitor
calculates the VWAP will, over time (as new tick items arrive), extend from the smaller
seing to the larger seing. When switching from a larger within duration to a smaller
one, the change takes effect immediately. The correlator discards the items that are no
longer in the within duration.

Example of altering a threshold

The following code fragment shows part of a monitor that accepts requests from external
entities to monitor the value of the trades for a given symbol. After you create a monitor
like this, an external entity can, at any time, change the thresholds at which the monitor
recognizes the trade as a high value trade.
monitor CountHighValueTicks {
 float threshold;
 action onload() {
 CountHighValueTicksRequest r;
 on all CountHighValueTicksRequest():r spawn
 monitorHighValueTicks (r);
 // Simplified. Assumes no duplicate requests.
 }
 action monitorHighValueTicks(CountHighValueTicksRequest r) {
 threshold := r.threshold;
 stream<Tick> filtered := from t in all Ticks(symbol=v.symbol)
 where t.price*t.volume > threshold
 select t;
 integer c;
 from t in filtered within 60.0 every 60.0 select count(): c {
 print "Count of high value trades in previous minute: " +
 c.toString();
 }
 on all CountHighValueTicksRequestUpdate(symbol=r.symbol) : u {
 threshold := u.threshold ; }
 }
}

This example uses two queries. The first query filters out any ticks with values below the
threshold. The second query accumulates the high-value ticks received in the last minute
and outputs the count of high-value ticks in that period. This could have been wrien as
a single query with the filtering performed after the window operation. For example:
from t in all Ticks(symbol=v.symbol) within 60.0 every 60.0
 where t.price*t.volume > threshold select count();

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 259

However this query's window contains all of the low value ticks received in the last 60
seconds, as well as the high value ticks. This is not an optimal use of memory resources.
Hence the two query approach is preferred.

Alternatively, you can specify an embedded query to amalgamate the two queries into a
single statement:
from t in
 (from t2 in ticks where t2.price*t2.volume > threshold select t2)
 within 60.0 every 60.0
 select count(): c { ... }

The parentheses around the embedded query are optional.

Example of looking up values in a dictionary

The following statement shows a query that calculates the current value of a basket of
stocks based on the most recent prices for those stocks. When using dictionaries in this
way, be careful to ensure that all values used as keys are in the dictionary. A missing key
value causes a runtime error and the correlator terminates the monitor instance. In the
example, it is assumed that the prices stream was filtered to contain prices for only the
stocks in the basket.
stream<Tick> basketPrices :=
 from p in prices
 partition by p.symbol
 retain 1
 select sum(p.price * basketVolume[t.symbol]);

Example of actions and methods in dynamic expressions

Actions and methods can be considered to be dynamic elements. There are various
reasons why you might want to use actions and methods in queries:

If you are using a particular common complex expression in several places in queries
within a monitor, it might be preferable to implement this as an action.

If you are using a method that is implemented in a plug-in.

To add protection to expressions that, if unprotected, might cause run-time errors.
For example:
stream<Tick> basketPrices :=
 from p in prices
 partition by p.symbol
 retain 1
 select sum(p.price * getBasketVolume(t.symbol));
 ...
action getBasketVolume(string symbol) returns float {
 if (basketVolume.hasKey(t.symbol)) then {
 return basketVolume[t.symbol];
 } else {
 return 0.0;
 }
}

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 260

Troubleshooting and stream query coding guidelines
This section provides high-level guidelines for writing stream query applications that
implement best practices.

For examples of common stream query coding paerns, see "EPL Streams: A Quick
Tour" on page 977.

Prefer on statements to from statements
Do not use streams unnecessarily. If an event expression in an on statement meets
your needs, use it. Take advantage of mixing code elements for listeners and event
expressions, stream processing, and responsive program actions, all in the same
monitor.

Know when to spawn and when to partition
As a rule, you should listen for only those events or streams that you are interested
in now. Apama applications typically define monitors that spawn to handle a new
situation, for example, to automatically manage the trading of a new large order. Each
monitor instance is usually interested in only one particular substream of a larger
stream, for example, Tick events for a particular stock rather than all Tick events.

Consequently, the common paern is to create a new monitor instance and for that
instance to set up stream queries that process the events of interest, for example, to
calculate the average price. This is more efficient than defining a monitor that processes
all events (for example, all Tick events for all stocks), generates added-value items and
then forwards these items to client monitors. However, there are situations when the
laer approach is required. You should decide which solution approach is best in which
circumstances.

Filter early to minimize resource usage
To minimize processing and memory overhead it is preferable to filter streams as early
as possible in the processing chain or network. Filtering early can reduce the number of
items processed or retained in memory and can also reduce the size of the items held.
If possible, filter items right at the beginning of the query chain, that is, in the event
template.

For example, it is preferable to rewrite this query:
from l in all LargeEvent()
 within largeWindowPeriod
 where l.key = key
 select mean(l.value);

If the key is static, rewrite it this way:
from l in all LargeEvent(key=key)
 within largeWindowPeriod
 select mean(l.value);

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 261

If the key is dynamic, rewrite it this way:
from v in
 from l in all LargeEvent()
 where l.key = key select l.value
 within largeWindowPeriod select mean(v);

In the static case, the correlator filters the large event before the event gets to the
window. In the dynamic case, the embedded query filters the event before the event
gets to the window in the enclosing query. Because the select statement specifies only
l.value, the correlator discards the rest of the event. There is no need to bring the
whole event into the window.

Avoid duplication of stream source template expressions
When you are maintaining code, you might add a stream query whose streamExpr is an
event template that is already used in a query elsewhere in the same monitor. However,
duplicated stream source template expressions do not always produce the behavior you
want. Consider the following two code fragments:
float d;
stream<float> means := from t in all Temperature()
 within 10.0
 select mean(t.temperature);
from t in all Temperature()
 from m in means select t-m : d {
 print "Difference from mean is " + d.toString();
 }

The first fragment behaves differently than this fragment:
float d;
stream<float> temperatures := all Temperature();
stream<float> means := from t in temperatures
 within 10.0
 select mean(t.temperature);
from t in temperatures
 from m in means
 select t-m : d {
 print "Difference from mean is " + d.toString();
 }

Of the two code fragments above, the second one has the desired behavior. The first
example creates two event listeners — one for each all Temperature() clause.
Each listener matches each incoming Temperature event, but the listeners trigger
independently, one after the other. This means that there is no time when the second
query has an item in each of its source streams. Consequently, the cross-join never
produces any output.

In the second example, there is a single Temperature event listener that places matching
events in the temperatures stream. The temperatures stream is the source stream for
two queries. Now both source streams of the last query contain items at the same time
and the query generates output.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 262

Avoid using large windows where possible
In Apama, all data being processed is held in memory, including data within stream
windows. If you specify query windows that contain a large number of items or
hold items for a long period of time the memory that the application uses necessarily
increases

A memory requirement that is more than the memory available to the application causes
paging to occur, which can decrease application throughput. Where possible, consider
reducing the size of any stream query windows by doing one or more of the following:

Filter items to reduce the number or size of the items in the window.

Use a complex event expression to achieve the same result.

Use retain all instead of specifying a within clause. See the next topic for details.

In some cases prefer retain all to a timed window
When you specify retain all in a stream query the correlator does not retain the items
indefinitely. The correlator processes each new item when it arrives (for example, it
might execute an aggregate function) and then discards it. Consequently, queries that
specify retain all use less memory than queries that define time-based or size-based
windows.

A situation that typically tempts you to define a time-based window is when you want
to calculate some aggregate values for a session. For example, a session could be from
the start of a day to the end of a day, or an incoming event could initiate a session that
requires aggregated values such as placing an order in an automated trading system.

After the session begins, interest in the aggregated values usually continues until the
session ends, for example at the end or day or when the full volume of the placed order
has been traded. In situations such as these, use a retain all window instead of a
within session window.

Prefer equi-joins to cross-joins
In a query using an equi-join, the items from the two input sets are joined based on
equality of key values. The identification of matching items is very efficient.

Cross-joins have no expressions so it is more efficient to calculate them than equi-joins.
However, cross-joins are less preferable to equi-joins if they produce unwanted items
that must subsequently be filtered out.

Be aware that time-based windows can empty
Consider the query below:
from s in Shipment(destination="SPQ")
 within 604800.0
 select sum(s.qty)/count()

M
Odd Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 263

After creation of the query, suppose that several shipments are sent in the first week and
no shipments are sent in the second week. The value of the count() aggregate function
drops to zero, which results in an aempt to divide by zero. This terminates the monitor
instance.

Be aware that fixed-size windows can overflow
Consider the following example:
stream<temperature> batchedTemperatures :=
 from t in all Temperature(sensorId="S001")
 within 60.0 every 60.0 select t;
from t in batchedTemperatures
 retain 5
 select count():c { print c.toString(); }

During execution of the first query, suppose that more than 5 matching events are found
within one minute. The query outputs all of the matching events as a single lot. A lot
that contains more than 5 items overflows the retain window in the second query. All
but the most recent five items are lost. Calculations operate on only the most recent 5
items.

Note that you are unlikely to need the query combination shown in the code example
above.

Beware of accidental stream leaks
Just as it is possible to leak event listeners, it is also possible to leak streams. Suppose
that you create a stream but you do not specify the stream as input to any query. This
stream still remains in existence, keeps a monitor instance alive, and consumes resources
so it is considered to be a stream leak. A stream leak causes memory to be used and not
freed. It can also cause unnecessary computation to occur.

A stream leak can happen if you create a stream that you want to use later on in your
code. To be able to use this stream you must assign it to a stream variable that is in
scope in the location where you want to use the stream. If the stream variable goes out
of scope or you assign another stream to that variable, the original stream still exists
within the monitor instance's internal stream network but it is no longer accessible. For
example:

The stream variable that references the stream goes out of scope:
action streamLeakExample1(string s) {
 stream<float> prices :=
 from t in all Tick(symbol=s) select t.price;
 ... // If the elided code does not use the stream
} // a leak occurs when the prices variable goes out of scope.

You overwrite the stream variable that refers to an unused stream:
action streamLeakExample2(pattern<string> symbols) {
 string s;
 stream<float> prices;
 for s in symbols {
 prices := from t in all Tick(symbol=s) select t.price;
 ... // If the elided code does not use the prices stream
 // a leak occurs when you overwrite prices.

M
Even Header

Working with Streams and Stream Queries

Developing Apama Applications Version 9.10 264

 }
}

Any code that creates a stream leak is erroneous. Code that repeatedly creates unused,
inaccessible streams quickly uses up machine resources.To avoid leaking streams:

Avoid creating streams you do not intend to use immediately.

Quit a stream before the variable referring to it goes out of scope.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 265

6 Defining What Happens When Matching Events Are
Found

■ Using variables ... 266

■ Defining actions .. 271

■ Getting the current time ... 283

■ Generating events .. 284

■ Assigning values .. 290

■ Defining conditional logic ... 290

■ Defining loops .. 291

■ Catching exceptions ... 293

■ Logging and printing .. 295

■ Sample financial application .. 299

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 266

In a monitor, when the correlator detects a matching event, it triggers the action defined
by the listener for that event. This section discusses what you can specify in the triggered
actions.

In a query, when a match set is found, it triggers execution of the procedural code block
in the find statement. A subset of the EPL constructs that are available in a monitor are
available in a query. See "Restrictions in queries" on page 151 to understand what is not
allowed in a query.

Using variables
EPL supports the use of variables in monitors. Depending on where in the monitor you
declare a variable, that variable is global or local:

Global. Variables declared in monitors and not inside actions or events are global
variables. Global variables are in monitor scope.

Local. Variables declared inside actions are local variables. Local variables are in
action scope.

A variable can be of any of the following types: boolean, decimal, float, integer,
string, action, context, dictionary, event, listener, location, sequence or
stream. For details about these types, see "Types" on page 767.

Information about variables is presented in the topics below.

See also "Using action type variables" on page 276.

Using global variables
Variables in monitor scope are global variables; you can access a global variable
throughout the monitor. You can define global variables anywhere inside a monitor
except in actions and event definitions. For example:
monitor SimpleShareSearch {
 // A monitor scope variable to store the stock received:
 //
 StockTick newTick;

This declares a global variable, newTick, that can be used anywhere within the
SimpleShareSearch monitor including within any of its actions.

The order does not maer. In the following example, f is a global variable:
monitor Test {
 action onload() {
 print getZ().toString();
 }
 action getZ() returns integer {
 return f.z;
 }
 Foo f;
 event Foo{
 integer z;
 }
}

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 267

If you do not explicitly initialize the value of a global variable, the correlator
automatically assigns a value to that global variable. (Note that the correlator does not
automatically initialize local variables.) The following table shows the values that the
correlator assigns to uninitialized global variables.

Global Variable Type Value Correlator Assigns to Uninitialized Global Variable

action A null value that causes the monitor instance to die if you
try to execute the action. In the correlator log file, the error
message is Called uninitialized action value.

boolean false

chunk Contains no state. Each plug-in must define what to do
upon receiving a default-initialized chunk as an argument.

context A null context that cannot be used in any meaningful way.
To use this variable, you must explicitly assign a context
that was created with a name.

decimal 0.0d

dictionary Empty dictionary

event Instance of the event where each of its fields has the
standard default values as per this table.

float 0.0

integer 0

listener A null listener that cannot be used in any meaningful way.
To use this variable, you must assign a listener to it from
within an on statement, from another listener variable, or
from a stream listener in a from statement.

location (0.0, 0.0, 0.0, 0.0)

sequence Empty sequence

stream A null stream that cannot be used in any meaningful way.
To use the variable you must assign a non-null stream to it.

string "" (empty string)

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 268

Using local variables
A variable that you declare inside an action is a local variable. You must declare a local
variable (specifying its type) and initialize that variable before you can use it.

Although the correlator automatically initializes global variables that were not explicitly
assigned a value, the correlator does not do this for local variables. For local variables,
you must explicitly assign a value before you can use the variable.

If you try to inject an EPL file that declares a local variable and you have not initialized
the value of that local variable before you try to use it, the correlator terminates injection
of that file and generates a message such as the following: Local variable ‘var2'
might not have been initialized. EPL requires explicit assignment of values to
local variables as a way of achieving the best performance.

When you declare a variable in an action, you can use that variable only in that action.
You can declare a variable anywhere in an action, but you can use it only after you
declare it and initialize it.

For example,
action anAction(integer a) returns integer {
 integer i;
 integer j;
 i := 10;
 j := a;
 return j + i;
}

You can use the local action variables, i and j in the action, anAction(), after you
initialize them. The following generates an error:
action anAction2(integer a) returns integer {
 i := 10; // error, reference to undeclared variable i
 j := a; // error, reference to undeclared variable j
 integer i;
 integer j;
 i := 2;
 j := 5;
 return j + i;
}

Suppose that an action scope variable has the same name as a monitor scope variable.
Within that action, after declaration of the action scope variable, any references to the
variable resolve to the action scope variable. In other words, a local action variable
always hides a global variable of the same name.

Consider again the definition for anAction2() in the previous code fragment, but
with i and j variables declared in the monitor scope. The first use of i and j resolves
successfully to the values of the i and j monitor scope variables. The second use occurs
after the local declaration and initialization of i and j. That use resolves to the local
(within the action) occurrence. This results in the following values:

Global variable i is set to 10.

Local variable i is set to 2.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 269

Global variable j is set to the value of a.

Local variable j is set to 5.

Since you must explicitly initialize local variables before you can use them, the following
example is invalid because j and i are not initialized to any value before they are used.
action anAction3(integer a) returns integer {
 integer i;
 integer j;
 return j + i; // error, i and j were not initialised
}

It is possible to initialize a variable on the same line as its declaration, as follows:
action anAction4(integer a) returns integer {
 integer i := 10;
 integer j := a;
 return j + i;
}

It is also possible to initialize a local variable by coassigning to it in an event listener. For
example, the following is correct:
action onload() {
 Event e;
 on all Event():e {
 log e.toString();
 }
}

You can also initialize a local variable by coassigning to it from a stream. For example:
action onload() {
 float f;
 from x in all X() select x.f : f {
 log f.toString();
 }
}

Using variables in listener actions
Suppose you use a local variable in a listener action, as in the following example:
monitor MyMonitor {

 integer x;

 action onload() {
 integer y := 10;
 on all StockTick(*,*) {
 log x.toString();
 log y.toString();
 }
 y := 5;
 }
}

In this example, x is a global variable, and y is a local variable. There are references to
both variables in the listener action.

A reference to a global variable in a listener action is the same as a reference to a global
variable anywhere else in the monitor. However, a reference to a local variable in a

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 270

listener action causes the correlator to retain a copy of the local variable for use when the
event listener triggers. The value held by this copy is the value that the local variable has
when the correlator instantiates the event listener.

When the event listener triggers the correlator executes the listener action. This will be at
some point in the future, and after the rest of the body of the enclosing action has been
executed. Since the action has already been executed, any of the original local variables
no longer exist. This is why the correlator retains a copy of the local variable to make
available to the listener action when it is executed.

In the example above, when the event listener triggers and the correlator executes the
listener action

x has a value of 0, which is the value that the correlator automatically assigns

y has a value of 10, which is the value it was set to when the event listener was
instantiated

The value of y that the correlator retained when it instantiated the event listener is not
affected by the subsequent statement (after the on statement) that sets the value of y to 5.

Note: For "reference types" on page 785, retaining as a copy of the variable really
means only retaining as a copy of its reference. Hence, if any code changes the
contents of the referenced object(s) between event listener creation and event
listener triggering, then this does affect the values used by the triggered event
listener.

Specifying named constant values
In a monitor or in an event type definition, you can specify a named boolean, decimal,
float, integer, or string value as constant. The format for doing this is as follows:
constant type name := literal ;

Element Description

type Specify boolean, decimal, float, integer, or string. This is
the type of the constant value.

name Specify an identifier for the constant. This name must be unique
within its scope — monitor, event, or action.

literal Specify the value of the constant. The type of the value must be
the type that you specify for the constant.

Benefits of using constants include:

Using a named constant can often be beer than using a literal because it lets you
define that constant in a single place. There is no chance of one instance becoming
incorrect when the value is changed elsewhere. An alternative to using a constant
would be to define a variable to contain the value. The disadvantage with this

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 271

approach is that someone could accidentally assign a new value to the "constant",
which would cause errors.

A named constant can make code easier to read because the name can be meaningful
in a way that a magic number, such as 42, is not.

Constants appear in memory once. For example, spawning multiple copies of a
monitor that contains a constant does not consume memory to store extra copies of
the constant. A non-constant variable takes up space in memory for every copy of
the event or monitor in the correlator.

You can refer to a declared constant in any code in the event or monitor being
defined. When you define a constant in an event you can refer to it from outside
the event by qualifying the name of the constant with the event name, for example,
MyEvent.myConstant.

Following is an example of specifying and using a constant:
event Paper {
 constant float GOLDEN := 1.61803398874;
 float width;
 action getLength() {
 return GOLDEN * width;
 }
 action getWidth() {
 return width;
 }
}

You cannot declare a constant in an action.

Defining actions
Actions are similar to procedures.

A monitor can define any number of actions. Finding an event, or paern of events, of
interest can trigger an action.

A query can define any number of actions. If defined, actions must be after the find
statement. Expressions in the find paern or find block can invoke the actions defined
in that query.

You can also trigger an action by invoking it from inside another action. You can also
declare an action as part of an event type definition, and then call that action on an
instance of that event.

The topics below provide information about defining actions.

Format for defining actions
The format for defining an action that takes no parameters and returns no value is as
follows:
action actionName () {
 // do something
}

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 272

Optionally, an action can do either one or both of the following:

Accept parameters

Return a value

The format for defining an action that accepts parameters and returns a value is as
follows:
action actionName (type1 param1 , type2 param2 , ...) returns >type3 {
 // do something
 return type3_instance ;
}

For example:
action complexAction(integer i, float f) returns string {
 // do something
 return "Hello";
}

An action that accepts input parameters specifies a list of parameter types and
corresponding names in parentheses after the action name. Parentheses always follow
the action name, in declarations and calls, whether or not there are any parameters.
Parameters can be of any valid EPL type. The correlator passes primitive types by value
and passes complex types by reference. EPL types and their properties are described in
"Types" on page 767.

When an action returns a value, it must specify the returns keyword followed by the
type of value to be returned. In the body of the action, there must be a return statement
that specifies a value of the type to be returned. This can be a literal or any variable of
the same type as declared in the action definition.

An action can have any name that is not a reserved keyword. Actions with the names
onload(), onunload() and ondie() can only appear once and are treated specially as
already described in "About monitor contents" on page 50. It is an EPL convention to
specify action names with an initial lowercase leer, and a capital for each subsequent
word in the action name.

Before Apama Release 4.1, actions and variables were allowed to have the same names.
For example, you were allowed to coassign an event to a variable that had the same
name as the action that handled the event:
on all Update():update update();

With Apama 4.1, this is no longer allowed since you can now declare action type
variables. See "Using action type variables" on page 276. If you have any code that
uses the same identifier for an action and a variable, you must change it. For example:
on all Update():update handleUpdate();

Invoking an action from another action
To invoke an action from another action, specify the action name followed by
parentheses. If the action takes one or more input parameters, specify values for the
parameters inside the parentheses. For example:
// First action:

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 273

action myAction1() {
 myAction2();
}

// Second action that is called by the first action:
action myAction2() {
 // . . .
}

In the example above, myAction1() calls myAction2() from inside the myAction1()
declaration block. myAction2() takes no parameters and does not return a value.

When an action returns a value, you can invoke that action only from within an
expression. You cannot specify a standalone statement that invokes an action that
returns a value. Discarding the return value is illegal in EPL. For example:
action myAction3() returns string {
 return "Hello";
}

action myAction4() {
 string response;
 response := myAction3(); // Valid
 myAction3(); // Invalid
}

Consider this extended example:
// First action:
//
action myAction1() {
 myAction2();
}

// Second action that is called by the first action:
//
action myAction2() {
 string answer1, answer2;
 myAction5(5, 10.5);
 on anEvent() myAction5(5, 10.5);
 answer1 := myAction6(256, 1423.2);
 answer2 := myAction7();
}

// Action that is called by myAction2:
//
action myAction5 (integer i, float f) {
...
}

// Another action that is called by myAction2:
//
action myAction6 (integer i, float f) returns string {
 return "Hello";
}

// Yet another action that is called by myAction2:
//
action myAction7() returns string {
 return "Hello again";
}

myAction2() takes no parameters and does not return a value.

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 274

myAction5() accepts input parameters. You can invoke it from a standalone statement:
myAction5(5, 10.5);

You can also invoke it as a listener action:
on anEvent() myAction5(5, 10.5);

myAction6() accepts input parameters and returns a value. You can invoke
myAction6() only from within an expression:
answer1 := myAction6(256, 1423.2);

myAction7() returns a value but does not take any parameters. You can invoke it only
from within an expression:
answer2 := myAction7();

Specifying actions in event definitions
You can specify an action in an event type definition. This lets you call that action on an
instance of the event, just as you would call a built-in method on some other type, such
as calling the toString() method on the integer type.

When you define an action in an event, it behaves almost the same way as an action in
a monitor or query. For example, an action in an event can

Set up event or stream listeners (only in a monitor)

Call other actions within that event

Access members of that event

In a monitor, but not in a query, an action in an event has an implicit self argument that
refers to the event instance that the action was called on. The self argument behaves in
the same way as the this argument in C++ or Java.

Example

For example, consider the following event type definition:
event Circle {
 action area() returns float {
 return 3.14159 * radius * radius;
 }
 action circumference() returns float {
 return 2.0 * 3.14159 * self.radius;
 }
 float radius;
}

The specifications here of radius and self.radius are equivalent.

You can then write code that looks like this:
Circle c := Circle(4.0);
print "Circle area = " + c.area().toString();
print "Circle circumference = " + c.circumference().toString();

Of course, the output is as follows:
Circle area = 50.26544

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 275

Circle circumference = 25.13272

Behavior

The correlator never executes actions in events automatically. In an event, if you define
an onload() action, the correlator does not treat it specially as it does when you define
the onload() action in a monitor.

When you call an action in an event, the correlator executes the action in the monitor
or query instance in which the call was made. In a monitor, if the action sets up any
listeners, these listeners are in the context of this monitor instance. If this monitor
instance dies, the listeners also die.

You can use plug-ins from within event actions. In the event definition, specify the
import statement to give the plug-in an alias within the event. Specify the import
statement in the same way that you specify it for a monitor or query. You use the plug-
in alias to call functions on the plug-in in the same way as you use it for a monitor or
query.

When you define an event, there are no ordering restrictions for the definition of fields,
imports, or actions. You can define them in any order.

Spawning

From an action within an event, you can spawn to an action in the same event. The
correlator spawns a monitor instance and executes the specified action on the event
instance in the new monitor instance.

Note: In a query, spawn and spawn...to statements are not needed and so they are
not allowed.

It is not possible to spawn from outside a particular event to an action that is a member
of that particular event. Instead, spawn to an action that calls the action that is the event
member. For example:
event E {
 action spawntotarget() {
 spawn target(); // legal
 }
 action target() {
 log "Spawned "+self.toString();
 }
}

monitor m {
 action onload() {
 E e;
 spawn e.target(); // not legal
 spawn calltarget(e); // legal
 e.spawntotarget();
 }
 action calltarget(E e) {
 e.target();
 }
}

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 276

Be sure to follow the spawn keyword with an action name identifier. Actions spawned
to must have no return value, as before. See also "Utilities for operating on monitors" on
page 73.

Restrictions

To summarize, when you define an action in an event, the following restrictions apply:

If the action contains an on statement, you can coassign a matching event only to
local variables. You cannot coassign a matching event to the event's fields nor to
items outside the event or in the monitor.

In a monitor, if you declare an instance of an event that has an action member, you
cannot specify a call from that action to an action that is defined in the monitor.

You cannot assign values to the implicit self parameter, any more than you can
assign to this in Java.

The following event listener call syntax is not valid within event actions:
on A() foo;

Instead, specify this:
on A() foo();

Using action type variables
In addition to defining an action, you can define a variable whose type is action. This
lets you assign an action to an action variable of the same action type. An action is of
the same type as an action variable if they have the same argument list (the same types
in the same order) and return type (if any).

Defining action variables

The format for defining an action type variable is as follows:
action<[type1 [, type2]...]>[returns type3]name ;

Specify the keyword, action.

Follow the action keyword with zero, one or more parameter types enclosed in angle
brackets and separated by commas. The angle brackets are required even when the
action takes no arguments.

Optionally, follow the parameter list with a returns clause. Specify the returns
keyword followed by the type of the returned value.

Finally, specify the name of the variable. For example:
action<string> a;
action<integer, integer> returns string b;

You can use an action variable anywhere that you can use a sequence or dictionary
variable. For example, you can

Pass an action as a parameter to another action.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 277

Return an action from execution of an action.

Store an action in a local variable, global variable, event field, sequence, or
dictionary.

You cannot route, emit, enqueue or send an event that contains an action variable field.

You must initialize an action variable before you try to invoke it.

When an action variable is a member of an event the behavior of the action depends on
the instance of the event that the action is called on. Consequently, it can be handy to
bind an action variable member with a particular event instance. See "Creating closures"
on page 280.

Built-in methods are treated exactly the same as user-defined actions. This means you
can assign a built-in method to an action variable. For example:
action<float> returns string f := float.toString;

Invoking action variables

The only operation that you can perform on an action variable is to call it. You do this
in the normal way by passing a set of parameters in parentheses after an expression that
evaluates to the action variable. For example:
monitor Test;
 integer i;
 action<string> x; // Uninitialized global action variable.
 action onload() {

 // Invoke the runMe action. The first argument to runMe is an
 // action variable for an action having a single argument of
 // type integer and no return value.
 // Since the printInteger action conforms to the argument
 // expected by runMe, you can pass printInteger to runMe.
 runMe(printInteger, 10);

 // Declare a local action variable, g. This action takes one
 // integer argument and does not return a result.
 // The printInteger action conforms to this so
 // assign printInteger to g.
 action<integer> g := printInteger;

 // Invoke the runMe action again.
 // Pass g instead of explicitly passing printInteger.
 runMe(g, 20);

 // Declare a local dictionary that contains action variables.
 // Each action variable takes a single integer argument and
 // and does not return a result.
 // Add printInteger to the dictionary.
 // Invoke printInteger and pass 30 as the argument.
 dictionary<string, action<integer> > do := {};

 do["printIt"] := printInteger;
 do["printIt"] (30);

 // Invoke x. Since this global variable was never
 // initialized, the monitor instance terminates.
 x("hello!");
 }

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 278

 action runMe(action<integer> f, integer i) {
 f(i);
 }

 action printInteger(integer i) {
 print i.toString();
 }
}

After injection, this monitor prints
10
20
30

and then terminates upon invocation of x because x was never initialized.

Calling an uninitialized, local action variable causes an error that prevents the
correlator from injecting the monitor. While the correlator injects code that contains an
uninitialized, global action variable, trying to call the uninitialized variable causes a
runtime error and the monitor instance terminates.

Declaring action variables in event definitions

When you define an action as a member field in an event, that action has an implicit
self argument as the first argument. (See "Specifying actions in event definitions" on
page 274.) You must include this implicit argument when determining whether an
action definition conforms to an action variable declaration. For example, the following
is illegal:
event A {
 action foo(float) returns string {
 return "Hello";
 }
 action bar() {
 action<float> returns string f := A.foo;
 }
}

In the previous code, you cannot assign the A.foo action to f because f takes a single
float argument whereas A.foo has two arguments — the implicit A argument and then
the float argument. To correct this example, specify A as the first action argument in
the body of the bar action.
event A {
 action foo(float) returns string {
 return "Hello";
 }
 action bar() {
 action<A, float> returns string f := A.foo;
 }
}

Actions in place of routed events

In some situations, you might find it more efficient to use action type variables instead
of routing events. For example, suppose you implement a service that takes an action
variable as one of its parameters. Now suppose that the service needs a response
from an adapter or some other service before it can send a response. When ready, the

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 279

service can respond with a routed event, but that means you have to set up an event
listener for that event. Routing events and seing up event listeners is more expensive
than invoking actions. So instead of routing and listening, the service can respond by
invoking the action on the event that initiated the service request. For example:

The following sample code uses a routed event. Following this code there is a sample
that uses an action on an event.
event ServiceResponse {
 string requestId;
 ...
}

event Service {
 action doRequest(string requestId, ...) {
 ...
 // when asynchronous 'service actions' are complete
 route ServiceResponse(requestId, ...);
 }
 ...
}

monitor Client {
 Service service;
 action onload() {
 ...
 string id := ...;
 ServiceResponse r;
 on Response(requestId=id): r {
 ...
 }
 service.doRequest(id, ...);
 }
}

The following sample code uses an action on a Client monitor:

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 280

event Service {
 action doRequest(action< ... > callback, ...) {
 ...
 // when asynchronous 'service actions' are complete
 callback(...);
 }
 ...
}

monitor Client {
 Service service;
 action onload() {
 ...
 string id := ...;
 service.doRequest(onServiceResponse, ...);
 }
 action onServiceResponse(...) {
 ...
 }
}

Creating closures

When an action is a member of an event the behavior of the action depends on the
instance of the event that the action is called on. Consequently, you might want to bind
an action member with a particular event instance. When you bind an action member to
an event instance you are creating a closure. The advantages of creating a closure are:

Simpler syntax for executing the action

Greater flexibility in making assignments to action variables

Consider the following event definition:
event E {
 integer i;
 action foo() { print "Foo "+i.toString(); }
 action times(integer j) returns integer { return i*j; }
}

With this definition, E(1).foo() would print "Foo 1", while E(42).foo() prints
"Foo 42". The action E.foo always has a specific instance of E to work with. You can
achieve this by specifying the action's implicit self argument when you call the action,
as described earlier in this topic. When you use this technique you identify the event
instance when you call the action variable.

Alternatively, you can create a closure that binds an action member with an event
instance. You store the closure in an action variable. The action variable and the action
member must be of the same action type. That is, they must take the same argument(s),
if any, and return the same type, if any.

When you use this technique you identify the event instance when you assign the
event's action member to the action variable.

The following code shows an example of binding an event instance to an action member
by storing the closure in an action variable.
monitor m {
 action <> a;
 action onload() {

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 281

 E e := E(42);
 a := e.foo;
 a(); // Prints "Foo 42"
 }
}

In this example, e.foo denotes E.foo called on e. That is, when you assign the action
e.foo to the a action variable you are identifying which instance of E to use when you
call the a action. This closure binds a reference to E to the E.foo action and stores it
in the a action variable. After you create a closure, you can call an action on an event
as though it is a simple action. This gives you considerable flexibility in what you can
assign to an action variable.

More about closures

EPL performs its own garbage collection. Consequently, you do not need to consider
how long a bound object must last. This is handled automatically.

A closure binds by reference. Consider the following example, which uses the same
event E as above:
monitor m {
 action <integer> returns integer a;
 action onload() {
 E e := E(3);
 a := e.times;
 print a(2).toString(); // Prints "6"
 e.i := 5;
 print a(2).toString(); // Prints "10"
 }
}

In a portion of code, you can define multiple action variables that contain closures for
the same object. For example:
event Counter {
 integer i;
 action increment() { i := i+1; }
 action output() { print i.toString(); }
}
event Increment {}

event Finish {}

monitor m {
 action <> incrementAction;
 action <> outputAction;
 action onload() {
 Counter counter := new Counter;
 incrementAction := counter.increment;
 outputAction := counter.output;
 on all Increment() and not Finish() { incrementAction(); }
 on all Finish() { outputAction(); }
 }
}

In an event type, when an action member refers to another action member in the same
event type a closure happens implicitly. For example:
event E {
 action <integer> returns integer a;
}

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 282

event Plus {
 integer i;
 action f(integer j) returns integer { return i+j; }
 action setA(E e) { e.a := f; }
}

Here, the f in e.a := f is equivalent to self.f, just as it would be if setA had called f
instead of assigning it to an action variable. This creates a closure. After setA is called on
some instance of Plus, e.a will call f on that same instance.

Other ways to specify closures

You can create a closure using any value and any action on that value. Thus, it is possible
to:

Bind a built-in method to a value.

Bind actions to primitive types and other reference types instead of to events.

Bind actions to a literal or a function's return value instead of a variable's value.

For example:
// Print "E(42)"
E e := E(42);
action <> printE42 := e.toString;

// Print "Foo 12345"
action <> printFoo12345 := E(12345).foo;

// Take a floating-point number and return e to that power:
action <float> returns float eToTheX := 2.718282.pow;

// Return a random integer from 0 to 9 inclusive.
// (The brackets around 10 are needed so that "10." is not treated as a
// floating-point number.)
action <> returns integer randomDigit := (10).rand;

// Return the strings in a sequence, separated by colons.
action <sequence<string> > returns string j := ":".join;

Restrictions

You cannot route, enqueue, emit or send an event that contains an action variable field.
It is okay to route, enqueue, emit or send an event that contains an action definition.

An action variable cannot be a key in a dictionary. An event that contains an action
field cannot be a key in a dictionary.

JMon

In a JMon application, you cannot declare event types that have action type members.
Consequently, events that contain action type fields are invisible to JMon applications.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 283

Getting the current time
In the correlator, the current time is the time indicated by the most recent clock tick.
However, there are some exceptions to this:

If you specify the -Xclock option when you start the correlator, the correlator does
not generate clock ticks. Instead, you must send time events (&TIME) to the correlator.
The current time is the time indicated by the most recent received, externally
generated, time event. See "Externally generating events that keep time (&TIME
events)" on page 197.

If you have multiple contexts, it is possible for the current time to be different in
different contexts. A particular context might be doing so much processing that
it cannot keep up with the time ticks on its queue. In other words, if contexts are
mostly idle, then they would all have the same current time.

When the correlator fires a timer, the current time in the context that contains the
timer is the timer's trigger time. See "About timers and their trigger times" on page
195.

The information in the remainder of this topic assumes that the current time is the time
indicated by the most recent clock tick.

Use the currentTime variable to obtain the current time, which is represented as
seconds since the epoch, January 1st, 1970 in UTC. The currentTime variable is similar
to a global read-only constant of type float. However, the value of the currentTime
variable is always changing to reflect the correlator's current time.

In the correlator, the current time is never the same as the current system time. In most
circumstances it is a few milliseconds behind the system time. This difference increases
when the input queues of public contexts grow.

When a listener executes an action, it executes the entire action before the correlator
starts to process another event. Consequently, while the listener is executing an action,
time and the value of the currentTime variable do not change. Consider the following
code snippet,
float a;
action checkTime() {
 a := currentTime;
}

// ... Lots of additional code
// A listener calls the following action some time later
action logTime() {
 log a.toString(); // The time when checkTime was called
 log currentTime.toString(); // The time now
}

In this code, an event listener sets float variable a to the value of currentTime, which
is the time indicated by the most recent clock tick. Some time later, a different event
listener logs the value of a and the value of currentTime. The values logged might not
be the same. This is because the first use of currentTime might return a value that is
different from the second use of currentTime. If the two event listeners have processed

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 284

the same event, the logged values are the same. If the two event listeners have processed
different events, the logged values are different.

Generating events
As discussed previously, actions can perform calculations and log messages. In addition,
actions can dynamically generate events. Specify the route, send, enqueue, or emit
statement to generate an event.

Note: In a query, route is not allowed.

The topics below discuss this.

Generating events with the route command
The route command generates a new event that goes to the front of the input queue of
the current context.

Note: In a query, route is not allowed.

Any active listeners seeking that event then receive it. There is only one difference
between an externally sourced event (passed in through a live message feed) and an
event that was generated internally through a route command. The difference is that
internally routed events are placed at the front of the context's input queue in the same
order as they are routed within an action, and after any previously internally routed
events where multiple listener actions have been triggered by an event. The correlator
processes the routed events on the input queue before it processes the next non-routed
event on the input queue. See "Event processing order for monitors" on page 61.

For example:
action simulateCrash() {
 route StockTick(currentStock.name, 50.0);
 route StockTick(currentStock.name, 30.0);
 route StockTick(currentStock.name, 20.0);
 route StockTick(currentStock.name, 10.0);
 route StockTick(currentStock.name, 5.0);
 route StockTick(currentStock.name, 1.0);
}

The simulateCrash() action shown above routes six StockTick events for the
monitor's specific stock name, with drastically reducing prices. Other monitors (or the
same monitor) may receive these events and process them accordingly.

You cannot route the following types:

action, chunk, listener, stream

A sequence that contains a type that is unroutable

A dictionary whose key or value is a type that is unroutable

An event that contains a type that is unroutable

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 285

Note that you can route an event whose type is defined in a monitor.

Generating events with the send command
The send command sends an event to a channel, a context, a sequence of contexts, or a
com.apama.Channel object.

When you send an event to a channel the correlator delivers it to all contexts and
external receivers that are subscribed to that channel. To send an event, use the
following format:
send event_expression to expression ;

The result type of event_expression must be an event. It cannot be a string
representation of an event.

To send an event to a channel, the expression must resolve to a string or a
com.apama.Channel object that contains a string. If there are no contexts and no
external receivers that are subscribed to the specified channel then the event is
discarded. See "Subscribing to channels" on page 70.

The only exception to this is the default channel, which is the empty string. Events sent
to the default channel go to all public contexts. All running Apama queries receive
events sent on the default channel as well as events sent on the com.apama.queries
channel. See "Defining Queries" on page 75.

To send an event to a context, the expression must resolve to a context, a sequence
of contexts, or a com.apama.Channel object that contains a context. You must create a
context before you send an event to the context. You cannot send an event to a context
that you have declared but not created. For example, the following code causes the
correlator to terminate the monitor instance:
monitor m {
 context c;
 action onload()
 {
 send A() to c;
 }
}

If you send an event to a sequence of contexts and one of the contexts has not been
created first then the correlator terminates the monitor instance. Sending an event to
a sequence of contexts is non-deterministic. You cannot send an event to a sequence
of com.apama.Channel objects. For details, see "Sending an event to a sequence of
contexts" on page 314.

All routable event types can be sent to contexts, including event types defined in
monitors.

If a correlator is configured to connect to UM then a channel might have a corresponding
UM channel. If there is a corresponding UM channel then UM is used to send the event
to that UM channel.

See Choosing when to use UM channels and when to use Apama channels in Connecting Apama
Applications to External Components.

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 286

Sending events to com.apama.Channel objects
A com.apama.Channel object is particularly useful when writing services that can be
used in both distributed and local systems. For example, by using a Channel object to
represent the source of a request, you could write a service monitor so that the same
code sends a response to a service request. You would not need to have code for sending
responses to channels and separate code for sending responses to contexts.

Consider the following Request event and Service monitor definitions:
event Request {
 ...
 Channel source;
}

monitor Service {
 action onload() {
 monitor.subscribe('Requests');
 Request req;
 on all Request():req {
 Response rep := Response(...);
 send rep to req.source;
 }
 }
}

EPL code in a context in the same correlator as the Service monitor could send a
Request event with the source field set to context.current() and would receive the
Response event that the Service monitor sends. For example:
monitor LocalRequester {
 action onload() {
 Request req := Request(...);
 req.source := Channel(context.current());
 send req to 'Requests';

 Response rep;
 on all Response():rep {
 ...
 }
 }
}

Now consider a monitor that is in a correlator that is connected to the Service
monitor host correlator. For example, the correlators can be connected by means of
engine_connect. The remote monitor could send a Request event with the source field
set to a Channel object that contains the name of a channel that the remote monitor is
subscribed to. For example:
monitor RemoteRequester {
 action onload() {
 monitor.subscribe('Responses');

 Request req := Request(...);
 req.source := Channel('Responses');
 send req to 'Requests';

 Response rep;
 on all Response():rep {
 ...

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 287

 }
 }
}

In this example, if the correlators are connected by means of engine_connect then the
connections would need to be subscribed to the Requests channel and the Responses
channel. As you can see, the service monitor does not require different code according
to whether the request is coming from a local or remote context. The service monitor
simply sends the response back to the source and it does not maer whether the source
is a context or a channel.

You can send a Channel object from one Apama component to another Apama
component only when the Channel object contains a string. You cannot send a Channel
object outside a correlator when it contains a context.

Generating events with the enqueue command
The enqueue command generates an event and places the event on a special queue
just for events generated by the enqueue command. A separate thread moves these
events to the input queue of each public context. This arrangement ensures that if the
input queue of a public context is full, the event generated by enqueue still arrives on its
special queue, and is moved to each public context's input queue as soon as that queue
has room. Active listeners will eventually receive events that are enqueue'd, once those
events make their way to the head of the input queue alongside normal events.

There are two formats available for using enqueue. You can directly enqueue an event,
as the example below does first, or else place the event in a string and enqueue that. If
you use this laer format, you must ensure that you define the string to represent a valid
event.

Use the enqueue statement when you want to ensure that the correlator processes
the generated event after it has processed all routed events. Note that other external
or enqueued events may be processed prior to processing this enqueued event. To
defer processing an event until after processing of all routed events, enqueueing to
context.current() might be preferable. The enqueue statement is also useful when
you want to send events into all public contexts.

For example, consider a further revised version of the earlier example:
event StockTickPriceChange {
 string owner;
 string name;
 float price;
}

// A new processTicks action that dispatches an event to
// the input queue instead of logging
action processTicks() {

// The following enqueue format sends the event itself.
 enqueue StockTickPriceChange(currentStock.owner,
 newTick.name, newTick.price);

// Or, use the following enqueue format, which sends a string that
// contains the event.
 enqueue "StockTickPriceChange(\""+currentStock.owner+

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 288

 "\",\""+newTick.name+"\", "+newTick.price.toString()+")";
}

If the string does not represent an event that fully complies with an event type that
has been defined elsewhere in EPL then it will be thrown away before being placed
on the input queue. This is the same behavior as for any normal event received by the
correlator. Unless the correlator understands its event type (by having had it defined in
EPL) it ignores it.

You cannot enqueue the following events:

An event whose type is defined inside a monitor.

An unroutable event type, that is, an event type that contains a field whose type is
something other than a primitive type, a location type, or a context type.

Enqueuing to contexts
To enqueue an event to a particular context, use the following form of the enqueue
statement:
enqueue event_expression to context_expression ;

Note: The enqueue...to statement is superseded by the send...to statement.
The enqueue...to statement will be deprecated in a future release. Use
the send...to statement instead. See "Generating events with the send
command" on page 285.

The result type of event_expression must be an event. It cannot be a string
representation of an event. The result type of context_expression must be a context
or a variable of type context. It cannot be a com.apama.Channel object that contains a
context.

The enqueue...to statement sends the event to the context's input queue and not to
the special enqueue queue. Even if you have a single context, a call to enqueue x to
context.current() is meaningful and useful.

You must create the context before you enqueue an event to the context. You cannot
enqueue an event to a context that you have declared but not created. For example, the
following code causes the correlator to terminate the monitor instance:
monitor m {
 context c;
 action onload()
 {
 enqueue A() to c;
 }
}

If you enqueue an event to a sequence of contexts and one of the contexts has not been
created first then the correlator terminates the monitor instance. For details, see "Sending
an event to a particular context" on page 312.

"Sending an event to a sequence of contexts" on page 314 is non-deterministic.

All routable event types can be enqueued to contexts, including event types defined in
monitors.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 289

Generating events to emit to outside receivers
The emit command dispatches events to external registered event receivers, which
means that the events leave the correlator. Active listeners do not receive emied events.

Note: The emit command is superseded by the send command. See "Generating
events with the send command" on page 285. The emit command will be
deprecated in a future release. Use send rather than emit.

There are two formats available for using emit. You can directly emit an event, as
the example below does first, or else place the event in a string and emit that. If you
use this laer format, you must ensure that you define the string to represent a valid
event. The correlator does not check whether the string you specify represents an event
that is compliant with any event type that has been injected. In fact, you can use this
mechanism to emit an event of a type that has not been defined in EPL anywhere else.

For example, consider a revised version of an earlier example. The result, instead of
being printed as a message on the screen, is now being sent out as an event message:
event StockTickPriceChange {
 string owner;
 string name;
 float price;
}

// A new processTicks action that dispatches an output event
// to external applications instead of logging
action processTicks() {

// The following emit format sends the event itself.
 emit StockTickPriceChange(currentStock.owner,
 newTick.name, newTick.price) to
 "com.apamax.pricechanges";

// Or, use the following emit format, which sends a string that
// contains the event.
 emit "StockTickPriceChange(\""+currentStock.owner+
 "\",\""+newTick.name+"\", "+newTick.price.toString()+")" to
 "com.apamax.pricechanges";

Events are emied onto named channels. In the above code the StockTickPriceChange
event is being published on the com.apamax.pricechanges channel. For an application
to receive events from Apama it must register itself as an event receiver and subscribe
to one or more channels. Then if events are emied to those channels they will be
forwarded to it.

Channels effectively allow both point-to-point message delivery as well as through
publish-subscribe. As in the above example, channels can be set up to represent topics.
External applications can then subscribe to event messages of the relevant topics.
Otherwise a channel can be set up purely to indicate a destination and have only one
application connected to it.

You cannot emit the following events:

An event whose type is defined inside a monitor

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 290

An unroutable event type

If a correlator is configured to connect to UM then a channel might have a corresponding
UM channel. If there is a corresponding UM channel then UM is used to emit the event
to that UM channel.

See "Choosing when to use UM channels and when to use Apama channels" in
Connecting Apama Applications to External Components.

Assigning values
Valid examples of an assignment statement are:
integerVariable := 5;
floatVariable := 6.0;
stringVariable := "ACME";
stringVariable2 := stringVariable;

Assignments are only valid if the type of the literal or variable on the right hand side
corresponds to the type of the variable on the left hand side.

When doing an assignment from a variable to another variable the behavior of EPL
depends on the type of the variable.

In the case of primitive types the variable on the left hand side is set to the same
value as the variable on the right hand side. The value is therefore copied and the
two variables remain distinct.

In the case of complex reference types the variable on the left hand side is set to
reference the same object as the variable on the right hand side. Only the reference
is copied, while the underlying object remains the same. If the object is subsequently
changed, both variables would reflect the change.

Defining conditional logic
EPL supports conditional if-then and if-then-else statements.

Syntactically an if-then statement consists of an if keyword followed by a boolean
expression followed by a then keyword followed by a block. A block consists of one
or more statements enclosed in curly braces, {}. If the boolean expression is true the
contents of the block are executed. If the expression is false, the if-then statement exits.

The boolean expression must evaluate to the boolean values true or false.

An if-then-else consists of if followed by a boolean expression followed by then
followed by a 'then' block followed by an else keyword followed by an 'else' block. If
the boolean expression is true, the first block is executed, otherwise the second block is
executed.

There is a special variant of the if-then-else allowed where a second nested if-then
or if-then-else statement can replace the second block. This is only of relevance in
that no curly braces are required in this special case.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 291

In standard BNF notation this syntactic definition looks as follows:
ifStatement ::= if booleanExpression then block
| if booleanExpression then block1 else block2
| if booleanExpression then block3 else ifStatement block ::= {statementList }

Note: BNF is an acronym for "Backus Naur Form". John Backus and Peter Naur
introduced for the first time a formal notation to describe the syntax of a given
language in 1960, and since then BNF notation is the standard notation used
to specify the syntax rules of programming languages.

An EPL example follows:
if floatVariable > 5.0 then {
 integerVariable := 1;
} else if floatVariable < -5.0 then {
 integerVariable := -1;
} else {
 integerVariable := 0;
}

Note that if-then-else statements can be nested. In other words, the body of a then
or an else can contain another if-then-else, in addition to the explicit else if
combination.

Defining loops
EPL supports two loop structures, while and for.

The while statement's BNF definition is:
whileStatement ::= while booleanExpression block

An EPL example is:
integerVariable := 20;
while integerVariable > 10 {
 integerVariable := integerVariable – 1;
 on StockTick("ACME", integerVariable) doAction();
}

The for looping structure allows looping over the contents of a sequence. In BNF its
definition is:
forStatement ::= for counter in sequence block

The counter must be an assignable variable of the same type as the type of elements of
the sequence. For example:
sequence<integer> s;
integer i;
s.append(0);
s.append(1);
s.append(2);
s.append(3);
for i in s {
 print i.toString();
}

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 292

The loop will iterate through all the indices in the sequence, checking whether there are
any more indices to cover each time. In the example above, i will be set to s[0], then
s[1], and so on up to s[3]. The counter continues incrementing by one each time, and
is checked to verify whether it is less than s.size() before a further iteration is carried
out. Looping only terminates when the next index would be beyond the last element of
the sequence, or equal to size() (since indices are counted from 0).

When the correlator executes a for loop, it operates on a reference to the sequence.
Consequently, if the code in the for loop assigns some other sequence to the sequence
expression specified in the for statement this has no effect on the iteration. However,
if the code in the for loop changes the contents of the sequence specified in the for
statement, this can affect the iteration. For example:
sequence <string> tmp := ["X", "Y", "Z"];
sequence <string> seq := ["A", "B", "C", "D", "E"];
string s;
for s in seq {
 seq := tmp;
 print s;
}

The for loop steps through whatever seq referred to when the loop began. Therefore,
assigning tmp to seq inside the loop does not affect the behavior of the loop. This code
prints A, B, C, D, and E on separate lines.

In the following example, the code in the for loop changes the contents of the sequence
specified in the for statement and this affects the behavior of the loop.
sequence<string> seq := ["A", "B", "C", "D", "E"];
string s;
for s in seq {
 seq[2] := "c";
 print s;
}

This code prints A, B, c, D, and E on separate lines.

In the following code, the changes to the contents of the specified sequence would
prevent the for loop from terminating.
sequence<string> seq := ["x"];
string s;
for s in seq {
 seq.append(s);
}

EPL provides the following statements for manipulating while and for loops. Usage is
intuitive and as per other programming language conventions:

break exits the innermost loop. You can use a break statement only inside a loop.

continue moves to the next iteration of the innermost loop. You can use a continue
statement only inside a loop.

return terminates both the loop and the action that contains it.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 293

Catching exceptions
EPL supports the try-catch exception handling structure. The try-catch statement's BNF
definition is:
tryCatchStatement ::= try block1 catch(Exception variable) block2

The statements in each block must be enclosed in curly braces. For example:
using com.apama.exceptions.Exception;
...
action getExchangeRate(
 dictionary<string, string> prices, string fxPair) returns float {
 try {
 return float.parse(prices[fxPair]);
 } catch(Exception e) {
 return 1.0;
 }
}

Exceptions are a mechanism for handling runtime errors. Exceptions can be caused by
any of the following, though this is not an exhaustive list:

Invalid operations such as trying to divide an integer by zero, or trying to access a
non-existent entry in a dictionary or sequence

Methods that fail, for example trying to parse an object that cannot be parsed

Plug-ins

Operations that are illegal in certain states, such as spawn-to in an ondie() or
onunload() action, or sending an event to a context and specifying a variable that
has not been assigned a valid context object

An exception that occurs in try block1 causes execution of catch block2. An
exception in try block1 can be caused by:

Code explicitly in try block1

A method or action called by code in try block1

A method or action called by a method or action called by code in try block1 , and
so on.

Note that the die statement always terminates the monitor, regardless of try-catch
statements.

The variable specified in the catch clause must be of the type
com.apama.exceptions.Exception. Typically, you specify using
com.apama.exceptions.Exception to simplify specification of exception variables in
your code. The Exception variable describes the exception that occurred.

The com.apama.exceptions namespace also contains the StackTraceElement built-in
type. The Exception and StackTraceElement types are always available; you do not
need to inject them and you cannot delete them with the engine_delete utility.

An Exception type has methods for accessing:

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 294

A message — Human-readable description of the error, which is typically useful for
logging.

A type — Name of the category of the exception, which is useful for comparing
to known types to distinguish the type of exception thrown. Internally generated
exceptions have types such as ArithmeticException and ParseException. For a
list of exception types, see "Exception" on page 800.

A stack trace — A sequence of StackTraceElement objects that describe where the
exception was thrown. The first StackTraceElement points to the place in the code
that immediately caused the exception, for example, an aempt to divide by zero or
access a dictionary key that does not exist. The second StackTraceElement points
to the place in the code that called the action that contains the immediate cause. The
third StackTraceElement element points to the code that called that action, and so
on. Each StackTraceElement object has methods for accessing:

The name of the file that contains the relevant code

The line number of the relevant code

The name of the enclosing action

The name of the enclosing event, monitor or aggregate function

Information in an Exception object is available by calling these built-in methods:

Exception.getMessage()

Exception.getType()

Exception.getStackTrace()

StackTraceElement.getFilename()

StackTraceElement.getLineNumber()

StackTraceElement.getActionName()

StackTraceElement.getTypeName()

In the catch block, you can specify corrective steps, such as returning a default value or
logging an error. By default, execution continues after the catch block. However, you
can specify the catch block so that it returns, dies or causes an exception.

You can nest try-catch statements in a single action. For example:
action NestedTryCatch() {
 try {
 print "outer";
 try {
 print "inner";
 integer i:=0/0;
 } catch(Exception e) {
 // inner catch
 }
 } catch(Exception e) {
 // outer catch
 }
}

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 295

The block in a try clause can specify multiple actions and each one can contain a try-
catch statement or nested try-catch statements. An exception is caught by the innermost
enclosing try-catch statement, either in the action where the exception occurs, or walking
up the call stack. If an exception occurs and there is no enclosing try-catch statement
then the correlator logs the stack trace of the exception and terminates the monitor
instance.

Logging and printing
The following operations are provided for debugging and textual output:

print string

log string [at identifier]

The print statement outputs its text to standard output, which is normally the active
display or some file where such output has been piped. See also "Strings in print and log
statements" on page 299.

The log statement sends the specified string to a particular log file depending on
the applicable log level. For details, see Deploying and Managing Apama Applications,
"Correlator Utilities Reference", "Shuing down and managing components", "Seing
logging aributes for packages, monitors, and events".

The topics below provide information for using the log statement.

Specifying log statements
The format of a log statement is as follows:
log string [at identifier]

Syntax description

Syntax Element Description

string Specify an expression that evaluates to a string.

identifier Optionally, specify the desired log level. Specify
one of the following values: CRIT, FATAL, ERROR,
WARN, INFO, DEBUG or TRACE. If you do not specify an
identifier, the default is CRIT.

For each encountered log statement, the correlator compares the specified identifier
with the applicable log level to determine whether to send the specified string to a log
file. If the string is to be sent to a log file, the correlator determines the appropriate log
file to send it to.

The correlator uses the tree structure of EPL code to identify the applicable log level
and the appropriate log file. See "Seing logging aributes for packages, monitors, and

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 296

events" in the "Correlator Utilities Reference" section of Deploying and Managing Apama
Applications.

Log levels determine results of log statements
The correlator supports the following log levels:

0 OFF No entries go to log files.

1 CRIT Least amount of entries go to log files.

2 FATAL |

3 ERROR |

4 WARN |

5 INFO |

6 DEBUG |

7 TRACE Greatest amount of entries go to log files.

You use log levels to filter out log strings. If the log level in effect is lower than the log
level in the log statement the correlator does not send the string to the log file. For
example, if the log level in effect is ERROR (3) and the log level in the log statement is
DEBUG (6) the correlator does not send the string to the log file since the log level in effect
is lower than the log level in the log statement.

Suppose that a string expression in a log statement executes an action or has side effects.
In this situation, the correlator executes the log statement so that side effects always take
place. However, if the log level in effect is lower than the log level in the log statement
the correlator still does not send the string to the log file.

Here are some examples where the log level in effect is WARN:
log "foo bar" at CRIT; // Sends "foo bar" to the log file.
log "foo bar" at INFO; // Does not send anything to the log file.

log "foo" + "bar" + 12345.toString() at INFO;
 // Does not send anything to the log file.
 // The expression in the log statement is not evaluated as
 // the log level is too low to send output to the log file,
 // and the expression does not have side effects.

log "foo" + bar() + 12345.toString() at INFO;
 // Does not send anything to the log file.
 // Calls bar() since that action might have side effects,
 // for example, the action could send an event.

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 297

Actions on events or monitors are assumed to have side effects. The
com.apama.epl.SideEffectFree annotation (see "Adding predefined annotations"
on page 68) can be added to an action definition to mark it as side effect free. Note that
with this annotation, actions will only be called from log statements if the log statement
would write to the log file. This is more compact than checking the log level before
executing the log statement. If the action does in fact have side effects, then changing the
log level can change the behavior of your program. It is recommended to only add the
SideEffectFree annotation on an action if a profile shows that a lot of time is spent in
calling that action (premature optimizations add to program complexity for no benefit).
Actions called via an action variable are always assumed to have side effects, as the EPL
runtime does not know which action is invoked.

For more information on the profile, see Profiling EPL Applications in Using Apama with
Software AG Designer.

To determine the log level in effect, the correlator checks whether you set a log level for
the following in the order specified below:

1. The monitor or event that contains the log statement.

2. A parent of the monitor or event that contains the log statement. The correlator
starts with the immediate parent and works its way up the tree as needed.

3. The correlator.

The log level in effect is the first log level that the correlator finds in the tree structure.
See "Seing logging aributes for packages, monitors, and events" in Deploying and
Managing Apama Applications, "Correlator Utilities Reference", "Shuing down and
managing components". If the correlator does not find a log level, the correlator uses the
correlator's log level. If you did not explicitly set the correlator's log level, the default is
INFO.

After the correlator identifies the applicable log level, the log level itself determines
whether the correlator sends the log statement output to the appropriate log file as
follows:

Log
Level in
Effect

For Log Statements With These
Identifiers, the Correlator Sends
the Log Statement Output to the
Appropriate Log File

For Log Statements With These
Identifiers, the Correlator Ignores
Log Statement Output

OFF None CRIT, FATAL, ERROR, WARN,
INFO, DEBUG, TRACE

CRIT CRIT FATAL, ERROR, WARN, INFO,
DEBUG, TRACE

FATAL CRIT, FATAL ERROR, WARN, INFO, DEBUG,
TRACE

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 298

Log
Level in
Effect

For Log Statements With These
Identifiers, the Correlator Sends
the Log Statement Output to the
Appropriate Log File

For Log Statements With These
Identifiers, the Correlator Ignores
Log Statement Output

ERROR CRIT, FATAL, ERROR WARN, INFO, DEBUG, TRACE

WARN CRIT, FATAL, ERROR, WARN INFO, DEBUG, TRACE

INFO CRIT, FATAL, ERROR, WARN,
INFO

DEBUG, TRACE

DEBUG CRIT, FATAL, ERROR, WARN,
INFO, DEBUG

TRACE

TRACE CRIT, FATAL, ERROR, WARN,
INFO, DEBUG, TRACE

None

An advantage of this framework is that there is no performance penalty for having log
statements that do not specify actions in your application. You control the overhead of
executing such log statements by specifying the appropriate log level.

Where do log entries go?
When the correlator needs to send the log statement output to a log file, the correlator
checks whether you set a log file for the following in the order specified below:

1. The monitor or event that contains the log statement.

2. A parent of the monitor or event that contains the log statement. The correlator
starts with the immediate parent and works its way up the tree as needed.

3. The correlator.

The log file that receives the log statement output is the first log file that the correlator
finds. If the correlator does not find a log file, the default is that the correlator sends the
string and identifier to stdout.

Examples of using log statements
Suppose you insert DEBUG log statements without actions in a monitor. You specify
ERROR as the log level for that monitor. The correlator ignores log statement output of
log statements with identifiers of INFO or DEBUG. But then there are some problems. You
use the engine_management correlator utility to change the log level to DEBUG. Now the
correlator sends output from all log statements to the appropriate log file.

Following is another example:
log "Log statement number " + logNo() at DEBUG;
action logNo() {

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 299

 logNumber := logNumber + 1;
 return logNumber.toString();
}

In this example, the correlator always executes the log statement because it calls an
action. However, the log level in effect must be DEBUG for the correlator to send the
string to the log file. If the log level is anything else, the correlator discards the string
because the log level in effect is lower than the log level in the log statement.

Strings in print and log statements
In both print and log statements, the string can be any one of the following:

Literal, for example: print "Hello";

Variable, for example:
string welcomeMessage;
...
log welcomeMessage;

Combination of both, for example:
string welcomeMessage;
...
print "Hello " + welcomeMessage + " Bye";

Internally, the correlator encodes all textual information as UTF-8. When the correlator
outputs a string to a console or stdout because of a print statement, or sends a string to
the log, the correlator translates the string from UTF-8 to the current machine's (where
the correlator is running) local character set. However, if you redirect stdout to a file,
the correlator does not translate to the local character set. This ensures that the correlator
preserves as much information as possible.

Sample financial application
This section describes a complete financial example, using the monitor techniques
discussed earlier in this chapter. See also: "Example of a query" on page 76.

This example enables users to register interest, for notification, when a given stock
changes in price (positive and negative) by a specified percentage.

Users register their interest by generating an event, here termed Limit, of the following
format:
Limit(userID , stockName , percentageChange)

For example:
Limit(1, "ACME", 5.0)

This specifies that a user (with the user ID 1) wants to be notified if ACME's stock price
changes by 5%. Any number of users can register their interests, many users can monitor
the same stock (with different price change range), and a single user can monitor many
stocks.

In EPL, the complete application is defined as:
event StockTick {

M
Even Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 300

 string name;
 float price;
}

event Limit {
 integer userID;
 string name;
 float limit;
}

monitor SharePriceTracking {

 // store the user's specified attributes
 Limit limit;

 // store the initial price (this may be the opening price)
 StockTick initialPrice;

 // store the latest price – to give to the user
 StockTick latestPrice;

 // when a limit event is received spawn; creating a new
 // monitor instance for each user's request
 action onload() {
 on all Limit(*,*,>0.0):limit spawn setupNewLimitMonitor();
 }

 // If an identical request from a user is discovered
 // stop this monitor and die
 // if a StockTick event is received for the stock the
 // user specified, store the price and call setPrice
 action setupNewLimitMonitor() {
 on Limit(limit.userID, limit.name, *) die;
 on StockTick(limit.name, *):initialPrice setPrice();
 }

 // Search for StockTick events of the specified stock name
 // whose price is both greater and less than the value
 // specified – also converting the value to percentile format
 action setPrice() {
 on StockTick(limit.name, > initialPrice.price * (1.0 +
 (limit.limit/100.0))):latestPrice notifyUser();

 on StockTick(limit.name, < initialPrice.price * (1.0 -
 (limit.limit/100.0))):latestPrice notifyUser();
 }

 // display results to user
 action notifyUser() {
 log "Limit alert. User=" +
 limit.userID.toString() +
 " Stock=" + limit.name +
 " Last Price=" + latestPrice.price.toString() +
 " Limit=" + limit.limit.toString();
 die;
 }
}

The important elements of this example lie in the life-cycle of different monitor states.
Firstly a monitor instance is spawned on every incoming Limit event where the limit
is greater than zero. Within setupNewLimitMonitor, the first on command listens for
other Limit events from the same user, upon detection of which the monitor instance is

M
Odd Header

Defining What Happens When Matching Events Are Found

Developing Apama Applications Version 9.10 301

killed. This effectively ensures that there is a unique monitor instance per user per stock.
This scheme also allows a user to send in a Limit event with a zero limit to indicate that
they actually no longer want to monitor a particular stock. While this will not be caught
by the original monitor instance's event listener and will not cause spawning, it will
trigger the event listener in the monitor instance of that user for that stock and cause it to
die.

Then a single on command (without an all) sets up an event listener to look for
all StockTick events for that stock type for that user. Once a relevant StockTick is
detected, new event listeners start seeking a specific price difference for that user. If such
a price change is detected it is logged. Note that the log command exploits data from
variables used before and after the spawn command (that is, limit and latestPrice,
respectively).

This example also demonstrates how mathematical operations may be used within event
expressions. Here, two on commands create event listeners that look for StockTicks
with prices above and below the calculated price. The calculated price in this case is
based on the initial price multiplied by the percentage specified by the user. The first
event listener is looking for an increase in the share price to 105% of its original value,
while the second is looking for a decrease to 95% of its original value.

M
Even Header

Developing Apama Applications Version 9.10 302

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 303

7 Implementing Parallel Processing

■ Introduction to contexts .. 304

■ Creating contexts ... 306

■ How many contexts can you create? .. 307

■ Using channels to communicate between contexts ... 307

■ Obtaining context references ... 308

■ Spawning to contexts ... 309

■ Channels and contexts .. 310

■ Sending an event to a channel .. 311

■ Sending an event to a particular context ... 312

■ Sending an event to a sequence of contexts .. 314

■ Common use cases for contexts ... 316

■ Samples for implementing contexts ... 316

■ Contexts and correlator determinism ... 323

■ How contexts affect other parts of your Apama application .. 323

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 304

By default, the correlator operates in a serial manner. In a monitor, you have the option
of implementing contexts for parallel processing.

Note: Queries automatically take advantage of parallel processing. You do not need
to implement parallel processing in queries. The information in this section of
the documentation is for application developers who are writing monitors.

During serial correlator operation, the correlator processes events in the order in which
they arrive. Each external event matches zero or more listeners. The correlator executes
a matching event's associated listeners in a rigid order. The correlator completes the
processing related to a particular event before it examines the next event.

For some applications, this serial behavior might not be necessary. In this case, you
might be able to improve performance by implementing parallel processing. Parallel
processing lets the correlator concurrently process the EPL in multiple monitor
instances. To implement parallel processing, you create one or more contexts.

Note: If a license file cannot be found, the number of contexts that the correlator
allows to be created is limited. See "Running Apama without a license file" in
Introduction to Apama.

Parallel processing in the correlator is quite different from the parallel processing
provided by Java, C++, and other languages. These languages allow shared state,
and rely on mutexes, conditions, semaphores, monitors, and so on, to enforce correct
behavior. The correlator does not automatically provide shared state. Data sharing
happens by sending events between contexts and by using the MemoryStore. See "Using
the MemoryStore" on page 365. Parallel processing in the correlator is a message-
passing system.

Introduction to contexts
Contexts allow EPL applications to organize work into threads that the correlator can
execute concurrently.

In EPL, context is a reference type. When you create a variable of type context, or an
event field of type context, you are actually creating an object that refers to a context.
The context might or might not already exist. You can then use the context reference to
spawn to the context or send an event to the context. When you spawn to a context, the
correlator creates the context if it does not already exist.

What is inside/outside a context?
When you start a correlator it has a single main context. You can then create additional
contexts. A context consists of the following:

One or more monitor instances. Except, the main context exists even if it does not
contain any monitor instances.

An event input queue.

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 305

Listeners that belong to the contained monitor instances.

The correlator maintains event definitions and monitor definitions outside contexts. This
lets all contexts share the same event and monitor definitions.

Instances of the same monitor can exist in multiple contexts. Each monitor instance
belongs to a single context. For example, suppose you inject monitor A. Monitor A
spawns within its own context (the main context) twice and spawns once to the alpha
context. This creates three additional monitor instances. Two instances are in the main
context and one instance is in the alpha context. These instances do not share any data,
other than by means of passing events.

About context properties
A context has the following properties:

Name — A string that you specify when you create the context. This name does not
need to be unique. The name is a convenient identifier that you can use in your code.

ID — The correlator assigns a unique integer.

receiveInput flag — A Boolean value that indicates whether the context can receive
external input events on the default channel, which is the empty string ("").

A value of true lets the context receive external events on the default channel; this
is a public context. A value of true is equivalent to a subscription to the default
channel; there is no requirement for a monitor instance in this context to subscribe to
the default channel.

A value of false indicates a private context that does not receive external events on
the default channel. This is the default.

Note that the main context is public.

Channel subscriptions — A context is subscribed to the union of the channels each
of the monitor instances in that context is subscribed to. This is a property of the
monitor instances running in a context and is not accessible by means of the context
reference object.

You can spawn to other contexts. When the last monitor instance in a context terminates,
that context stops doing work and stops consuming resources until you spawn another
monitor instance to it.

In a context, when you route an event, the event goes to the front of that context's input
queue. You can route events only within a context.

You can send an event to a particular context. When you do this, the event goes to the
end of the specified context's input queue. The correlator processes it after it processes
any other events that are already on the context's input queue. See "Sending an event to
a particular context" on page 312.

You can use a context as part of the key for a dictionary. You can route an event that
contains a context field. You cannot parse a context. Context objects are immutable
reference objects.

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 306

Context lifecycle
A context has a lifecycle that starts when a spawn...to operation occurs and ends when
the last monitor instance in the context terminates. This is completely independent of
any context objects that refer to the context. It is possible for a context to be running
when no references to it exist, and it is possible for a context object to refer to a context
that is no longer running. In the laer case, spawning to a context that is not running is
permissible. The correlator restarts the context as required.

Note: If a license file cannot be found, the number of contexts that the correlator
allows to be created is limited. See "Running Apama without a license file" in
Introduction to Apama.

Comparison of a correlator and a context
Upon injection, each monitor's initial instance runs in the main context. You must
explicitly create additional contexts. Conceptually, a context is like a correlator but with
the following differences:

All contexts share the same namespace, and thus share all monitor and event
definitions that have been injected.

A monitor instance must have a context reference to pass an event to that context.

There is one enqueued events queue for all contexts. When you specify the enqueue
command (not the enqueue event to context command), the enqueued event
goes to the special queue for enqueued events. The correlator then places the event
on the input queue of each public context. The correlator ensures that an enqueued
event always arrives on the appropriate input queue(s). An enqueue operation never
blocks. However, if the input queue of a context is full and the enqueued events
queue gets very large, the result can be an unbounded memory usage error.

Execution of Java is allowed in only the main context.

The engine_receive utility receives events from all contexts or it can be configured
to receive events from only specified channels.

The engine_send utility sends events to all public contexts or to the contexts that are
subscribed to the channels it is configured to send events on.

Creating contexts
In EPL, you refer to a context by means of an object of type context. The context type
is a reference type.

The recommendation is to use private contexts and have monitor instances subscribe
to the channels they require events from. This gives greater flexibility over using public
contexts. For information on the constructors needed to create a context, see "context" on
page 790.

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 307

The name of a context does not have to be unique, and is only used for diagnostic
purposes (it is recommended that context names be meaningful and distinct). Creating
a new context object with the same name as another context creates a reference to a
different context, not the same context. Context references are independent to the actual
context where monitors run. A context continues running if there are no references to it.
A reference to a context may exist even though no active monitors are running in that
context. You use the context reference to spawn to the context or send an event to the
context. When you spawn to a context, the correlator creates the context if it does not
already exist.

When you start a correlator, it has a single main context. You can then create additional
contexts. Context reference objects are lightweight and creating one only creates a stub
object and allocates an ID. In other words, when you create an EPL context object, you
are actually creating a context reference.

The following example creates a reference, c, to a private context whose name is test:
context c:=context("test");

For information on the methods you can call on a context, see "context" on page 790.

See also "How many contexts can you create?" on page 307.

How many contexts can you create?
You can create any number of contexts. A context is a very lightweight object. Creating a
context just allocates an identifier and creates a small object. Consequently, it is possible
to create a thousand contexts with lile performance penalty.

You can have any number of running contexts. A running context means that the context
contains at least one monitor instance that has work to do. The more CPU cores you
have, the more contexts it is practical to be running at a given time. The performance
of multiple contexts running concurrently should scale approximately according to the
number of CPU cores available on the host.

Because the cost of each context is low, it is possible to divide applications into the finest
level of parallelism possible and let the correlator balance running those contexts across
all CPU cores. This is true even if that means creating very many contexts.

Using channels to communicate between contexts
Contexts can subscribe to channels, using the monitor.subscribe(channelName)
operation. When a monitor executes monitor.subscribe(channelName), it causes
the context it is running in to be subscribed to that channel. The subscription's
lifetime is tied to the lifetime of the monitor instance that executes subscribe().
The subscription is active until that monitor instance terminates or executes
monitor.unsubscribe(channelName).

Subscriptions are reference counted. That is, if one monitor instance subscribes twice to
the same channel then it needs to unsubscribe twice from that channel. If two monitor
instances each subscribe once to the same channel then the subscription is active while

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 308

either monitor instance exists or until both monitor instances unsubscribe from that
channel.

When a context is subscribed to a channel it receives all events sent on that channel. This
includes:

Events sent to the correlator from

An IAF adapter

engine_send

Another correlator connected with engine_connect and using parallel mode

Clients

Universal Messaging

Events sent from EPL using the send...to command

Events sent from correlator plug-ins to a specific channel

It does not include events emied with the emit...to command. Even if the target of an
emit...to statement is a channel that the context is subscribed to, an event sent by the
emit statement goes only to external receivers and not to any contexts.

By using a channel for each stream of data an application may be interested
in, an application can control which streams of data it receives through
execution of the appropriate monitor.subscribe(channelName) and
monitor.unsubscribe(channelName) commands. The correlator can efficiently
distribute events within the correlator to multiple contexts, plug-ins or receivers
subscribed to channels. If further scale-out is required, using channels allows some
application components to be deployed to correlator processes running on other
hosts, which are connected using the engine_connect correlator utility or Universal
Messaging. See "Tuning Correlator Performance" in Deploying and Managing Apama
Applications.

Obtaining context references
To obtain a reference to the context that a piece of code is running in, call the
context.current() method. This is a static method that returns a context object that
is a reference to the current context. The current context is the context that contains the
EPL that calls this method.

For a monitor instance to interact with the EPL by means of a context object in another
context, the monitor instance must have a reference to that context. A monitor instance
can obtain a reference to another context in only the following ways:

By creating the context.

By receiving a context reference, which must be of type context. A monitor instance
can receive this reference by means of a routed or sent event, or a spawn operation.

For example:
Calculate calc;

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 309

on all Calculate():calc {
 integer calcId:=integer.getUnique();
 spawn doCalculation(calc, calcId, context.current())
 to context(“Calculation”);
do something
}
action doCalculation(Calculate req, integer id, context caller) {
 do something
 send CalculationResponse(id, value) to caller;
}

If a monitor instance that creates a context does not send a context reference outside
itself, and does not subscribe to any channels, no other context can send events to that
context, except by means of correlator plug-ins. This affords some degree of privacy for
the context.

A context object (a context reference) does not do anything. It is simply the target of the
following:

spawn ActionIdentifier([ArgumentList]) to ContextExpression;

See "Spawning to contexts" on page 309.

send EventExpression to ContextExpression;

See "Sending an event to a particular context" on page 312.

Spawning to contexts
In a monitor, you can spawn to a context. The format for doing this is as follows:
spawn ActionIdentifier ([ArgumentList]) to ContextExpression ;

Replace ContextExpression with any valid EPL expression that is of the context
type. Typically, this is the name of a context variable. It is possible to spawn to only a
context; it is not possible to spawn to a channel.

This statement asynchronously creates a new monitor instance in the target context. The
correlator can immediately create the new monitor instance and begin processing it.
The correlator does not need to finish processing the monitor instance that spawned to
the context before it starts processing the spawned instance. The correlator might create
the spawned monitor instance before it finishes processing the action that spawned the
new instance. Or, the correlator might create the spawned monitor instance some time
after it completes processing the action that spawned the new instance. The order is
unpredictable. For example:
action analyse(string symbol) {
 context c:=context(symbol);
 spawn submon(symbol) to c;
 ...
}
action submon(string symbol) {
 ...
}

If the target context does not yet exist, the correlator creates it.

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 310

It is possible for an operation that spawns to a context to block if the input queue of the
target context is full. See "Deadlock avoidance when parallel processing" on page 324.

Like the regular spawn operation, the spawn...to operation does the following:

Creates a new monitor instance by taking a deep copy of all of the spawning monitor
instance's global variables

Does not copy any listeners into the new monitor instance

Runs the specified action in the new monitor instance

For general information about spawning, see "Spawning monitor instances" on page 55.

Unlike the regular spawn operation, the correlator runs the new monitor instance in the
specified context. The correlator concurrently processes the new monitor instance and
the instance that spawned it.

A context processes spawn operations and events in the order in which they arrive. For
example, suppose a monitor contains the following statements:
spawn action1() to ctx;
send e1 to ctx;
spawn action2() to ctx;
send e2 to ctx;

The ctx context processes this in the following order: action1(), e1, action2(), e2.

Channels and contexts
Contexts can subscribe to particular channels to receive events delivered to those
channels from adapters and from other contexts. See "Channels and input events" on
page 46 and "Subscribing to channels" on page 70. Contexts that are public, that is, they
were created with a true flag in the context constructor, have a permanent subscription
to the default channel. The name of the default channel is the empty string.

Contexts can send events to channels without knowledge of whether the event is
required by contexts, clients, adapters, or some combination. When an event is sent from
a context to a channel the event is received by all contexts subscribed to that channel and
by all external receivers that are listening on that channel. See "Generating events with
the send command" on page 285.

An Apama query automatically runs in a context that has a permanent subscription to
the default channel and to the com.apama.queries channel.

Channels are useful for:

Identifying service monitors — If many monitors need to send events to a service
monitor you can use a well known name (which can appear in EPL as a string literal
or string constant) as a channel name. The service monitor (and only the service
monitor) should subscribe to the channel and other monitors send events to that
channel. When a request-response event protocol is required the sender can specify a
channel to which it is subscribed, or a context to send the response to.

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 311

Applications that have different contexts that consume different streams of data
can use channels to send the data to the intended contexts, even if many contexts
require the same data stream or one context requires multiple data streams. For
example, statistical arbitrage trading strategies could run in many contexts, each
subscribed to a channel for the pair of stock symbols it is trading against each other.
If the adapter where the events are coming from is able to use a separate connection
per channel, then the application will scale very well as more trading strategies on
different symbols are added.

Different components of an application can be de-coupled by using an event protocol
that sends events to channels for each interaction point between components. This
allows adapters to be replaced with monitors that simulate those adapters for
testing, and makes it easy to scale an application across several hosts by running
different parts on different correlators and then connecting them.

Sending an event to a channel
In a monitor, you can send an event to a channel by using either

A string value that identifies the channel name

A com.apama.Channel type that either names a channel or holds a context reference

The format for sending an event to a particular context is as follows:
send EventExpression to ChannelExpression ;

Replace EventExpression with any valid EPL expression that is of an event type.

Replace ChannelExpression with any valid EPL expression that is of the string or
com.apama.Channel type. Typically, this is a string value.

This statement asynchronously sends an event to everything subscribed to the specified
channel. Subscribers can include

Contexts

Receivers connected to external components by means of Apama's messaging, JMS
or Universal Messaging

Correlator plug-ins that have subscribed an EventHandler object

For each target subscribed to a channel, the event goes to the back of the context's input
queue.

In a target context, the correlator can immediately process the sent event. The correlator
does not need to finish executing the action that sends the event before it processes
the sent event in a target context. The correlator might process the sent event before it
finishes executing the action that sent the event. Or, the correlator might process the sent
event some time after it completes executing the action that sent the event. The order
is unpredictable. The order in which the target contexts receive the sent event is also
unpredictable. For example:
action analyse(string symbol) {
 spawn submon(symbol) to context(symbol);

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 312

 com.apama.marketdata.Tick tick;
 log "Listening for "+symbol;
 on all com.apama.marketdata.Tick(symbol=symbol):tick {
 send tick to symbol;
 }
 on com.apama.marketdata.Finished() {
 send com.apama.marketdata.Finished() to symbol;
 }
}

action submon(string symbol) {
 monitor.subscribe(symbol);...
}

It is possible for a send...to operation to block the sending context from further
processing if the input queue of any target (context, receiver or plug-in) is full. Either
an event that you send to a particular target arrives on the target's input queue or the
sending context waits for room on the target's input queue.

If you send an event to a channel that has no subscribers, the correlator discards the
event because there are no listeners for it. This is not an error.

See also:

"Generating events with the send command" on page 285

"Working with channels in C++ plug-ins " on page 742

"Using Java plug-ins" on page 754

Sending an event to a particular context
In a monitor, you can send an event to a particular context, as described here, or you
can send an event to a sequence of contexts, described in the next topic. The format for
sending an event to a particular context is as follows:
send EventExpression to Expression ;

or:
enqueue EventExpression to ContextExpression ;

Note: The enqueue...to statement will be deprecated in a future release. Use the
send...to statement. Both statements perform the same operation.

Replace EventExpression with any valid EPL expression that is of an event type.
You cannot specify a string representation of an event. For example, you cannot
send &TIME pseudo-ticks.

Replace Expression, in the first format, with any valid EPL expression that is of
the context type or with a com.apama.Channel object that contains a context. See
"Sending events to com.apama.Channel objects" on page 286.

Replace ContextExpression with any valid EPL expression that is of the context
type. This can be the name of a context variable or a method that returns a context.
This cannot be a com.apama.Channel object that contains a context.

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 313

This statement asynchronously sends an event to the specified context. The event goes to
the back of the context's input queue.

In the target context, the correlator can immediately process the sent event. The
correlator does not need to finish executing the action that sent the event before it
processes the sent event in the target context. The correlator might process the sent
event before it finishes executing the action that sent the event. Or, the correlator might
process the sent event some time after it completes executing the action that sent the
event. The order is unpredictable. The order in which the target contexts receive the sent
event is also unpredictable. For example:
action analyse(string symbol) {
 context c:=context(symbol);
 spawn submon(symbol) to c;
 com.apama.marketdata.Tick tick;
 log "Listening for "+symbol;
 on all com.apama.marketdata.Tick(symbol=symbol):tick {
 send tick to c;
 }
 on com.apama.marketdata.Finished() {
 send com.apama.marketdata.Finished() to c;
 }
}
action submon(string symbol) {
 ...
}

The send...to and enqueue...to statements do not place the event on the special
enqueued events queue. Instead, they put the event on the end of the target context's
input queue. Consequently, it is possible for a send...to or enqueue...to operation to
block the sending context from further processing if the input queue of the target context
is full. Either an event that you send to a particular context arrives on the target context's
input queue or the sending context waits for room on the target context's input queue.

If you send an event to a context that does not contain any monitor instances, the
correlator discards the event because there are no listeners for it.

If you do not have a reference to a particular context, then send an event to a channel.
See "Generating events with the send command" on page 285.

In some situations, for example when you change a single-context application to use
parallel processing, you might want to explicitly send an event to only the context that
contains the monitor instance that contains the send statement. To send an event to only
this context specify:
send eventExpression to context.current()

You must set a valid value to a context variable before you send an event to the context.
You cannot send an event to a context that you have declared but has not been set to
a valid value. For example, the following code causes the correlator to terminate the
monitor instance:
monitor m {
 context c;
 action onload()
 {
 send A() to c;
 }

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 314

}

See also "Generating events with the enqueue command" on page 287. and "Generating
events with the send command" on page 285.

Sending an event to a sequence of contexts
In a monitor, you can send an event to a sequence of contexts. The format for doing this
is as follows:
send EventExpression to ContextSequenceExpression ;

or
enqueue EventExpression to ContextSequenceExpression ;

Note: The enqueue...to statement will be deprecated in a future release. Use the
send...to statement. Both statements perform the same operation.

Replace EventExpression with any valid EPL expression that is an event. You
cannot specify a string representation of an event.

Replace ContextSequenceExpression with any valid EPL expression that
resolves to sequence<context>. You cannot specify a sequence that contains
com.apama.Channel objects.

Each statement asynchronously sends a copy of an event to each context in the specified
sequence. The event goes to the back of the input queue of each context.

In each target context, the correlator can immediately process the sent event. The
correlator does not need to finish executing the action that sent the event (in the source
context) before it processes the sent events in the target contexts. The correlator might
process a sent event before it finishes executing the action that sent the event. Or, the
correlator might process a sent event some time after it completes executing the action
that sent the event. The order is unpredictable, depending on the relative execution
speeds of the contexts.

The following example uses the sequence type:
action analyse(string symbol) {
 context c1:=context(symbol + “-1”);
 context c2:=context(symbol + “-2”);
 context c3:=context(symbol + “-3”);

 spawn submon(symbol) to c1;
 spawn submon(symbol) to c2;
 spawn submon(symbol) to c3;
 sequence <context> ctxs := [c1, c2, c3];

 com.apama.marketdata.Tick tick;
 log "Listening for "+symbol;
 on all com.apama.marketdata.Tick(symbol=symbol):tick {
 send tick to ctxs;
 }
 on com.apama.marketdata.Finished() {
 send com.apama.marketdata.Finished() to ctxs;
 }
}

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 315

action submon(string symbol) {
 ...
}

The following example uses the values() method on a dictionary of contexts to obtain a
sequence of contexts:
action analyse(string symbol) {
 context c1:=context(symbol + “-1”);
 context c2:=context(symbol + “-2”);
 context c3:=context(symbol + “-3”);

 spawn submon(symbol) to c1;
 spawn submon(symbol) to c2;
 spawn submon(symbol) to c3;

 dictionary <string, context>
 ctxs := [“c1”: c1, “c2”: c2, “c3”: c3];

 com.apama.marketdata.Tick tick;
 log "Listening for "+symbol;
 on all com.apama.marketdata.Tick(symbol=symbol):tick {
 send tick to ctxs.values();
 }
 on com.apama.marketdata.Finished() {
 send com.apama.marketdata.Finished() to ctxs.values();
 }
}
action submon(string symbol) {
...
}

The send...to and enqueue...to statements do not place the event on the special
enqueued events queue. Instead, they put the event on the end of the input queue of
each target context. Consequently, it is possible for a send...to or enqueue...to
operation to block the sending context from further processing if the input queue of a
target context is full. The sending context does not continue beyond a send...to or
enqueue...to statement until the event has been placed on the input queues of all
target contexts.

If one of the contexts in the sequence does not contain any monitor instances the
correlator ignores the sent event in that context because there are no listeners for it.

If one of the contexts in the sequence does not have a valid value before you send an
event to it then the correlator terminates the monitor instance.

Consider the following two code fragments:
for c in mySequence {
 send myEvent to c;
}

send myEvent to mySequence;

Execution of each of these fragments is typically equivalent. However, you cannot rely
on equivalence. When the correlator executes the first fragment, it always delivers the
event to the contexts according to their order in the sequence. When the correlator
executes the second fragment it can deliver the event to contexts in any order. For
example, if a context's input queue is full this can affect the order in which the correlator
delivers the event to the contexts.

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 316

Common use cases for contexts
See "Tuning contexts" on page 429.

Samples for implementing contexts
Apama provides a number of applications that illustrate the use of contexts. These
examples are in the samples\monitorscript\contexts directory and in the samples
\monitorscript\concurrency-theory directory.

Information for using these examples is given in the topics below.

Simple sample implementation of contexts
In your Apama installation directory, in the samples\monitorscript\contexts
directory, there are two versions of a simple application. One version implements
serial processing and the other implements parallel processing. Open the analyse-
parallel.mon and analyse-serial.mon files in Software AG Designer to compare the
implementations.

To run the applications, execute run-sample.bat on Windows or run_sample.sh on
UNIX. The script runs the serial application and then the parallel version.

On a 2.4GHz Quad core Intel Q6600 machine, the serial implementation completes in
about 63 seconds, while the parallel implementation completes in about 17 seconds.
For an equivalent dual-core processor, you can expect the parallel implementation to
complete in about 30 seconds.

Look at serial-results.evt and parallel-results.evt to compare the results.
While the per-symbol output for each implementation is identical, the ordering of sent
events for different symbols is different. Also, in the parallel implementation, there is
more variation in the time taken to process all events for one symbol. The sample uses
eight worker contexts — each context is doing much the same work, but on different
segments of the data. While it is not required, an application that has eight contexts
typically working most of the time benefits from running on an 8-core host. You can
expect an 8-core processor to run the sample parallel implementation more than seven
times faster than it runs the serial implementation.

Running samples of common concurrency problems
Sample applications in the samples\monitorscript\concurrency-theory directory
illustrate a few common concurrency problems. There are three implementations of a
simple deposit bank:

Race — implements Get and Set events, and corresponding Response events, so
that a teller can find the value of an account, perform some modification and then set
the new account value.

Deadlock — lets tellers lock an account.

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 317

Compareswap — is similar to the Race implementation but it does not rely on
locking and it does not compute values based on out-of-date information.

To run these samples

1. Start an Apama Command Prompt as described in Deploying and Managing Apama
Applications in the topic Seing up the environment using the Apama Command Prompt.

2. Change to the $APAMA_INSTALL_DIR/samples/monitorscript/concurrency-
theory directory.

3. Invoke run_sample.bat (Windows) or run_sample.sh (UNIX) with an argument of
race, deadlock or compareswap, according to which sample you want to run. The
subsequent topics describe each sample.

The script starts a correlator on the default port (15903). Consequently, you should not
have a correlator already running on the default port. If you do, the script causes the
application to be injected into the running correlator and it also shuts the correlator
down when the sample execution is complete. The script creates an event file in the
Output directory (which it creates). The event file has the name of the sample with an
evt file suffix (for example, race.evt, deadlock.evt or compareswap.evt.

About the samples of concurrency problems
The sample of concurrency problems try to implement a simple deposit bank. The
customer-visible part of the bank consists of a number of tellers, who have the ability
to transfer money from one account to another. In an effort to scale well, the bank is
implemented with each teller running in a separate context, which lets all tellers work
concurrently. Of course, the simple work of the tellers does not require or even justify
this, but the purpose of these samples is to show potential bugs, not to be a practical
system. Similarly, no security checks are enforced.

Because data cannot be shared between contexts, the application requires a separate
monitor that acts as the bank's database. The tellers send requests to the bank's database
and receive responses from the database. There is also a simple mechanism to initialize
the state of the bank database (SetupAccount event) and for tellers to discover the
context in which the database is running. The communication between the bank and
the tellers typically needs to get or set an account's value. The tellers perform the
actual arithmetic on a bank account's value. Each implementation (Race, Deadlock, and
Compareswap) differs mainly in the way the tellers and database interact with each
other.

Customer interactions with tellers are the same across all implementations. The
customer sends a TransferMoney event, specifying which teller to use. It is assumed
that customers know the names of tellers, the from and to account, and the amount to
transfer. The customer receives a TransferMoneyComplete event when the transfer is
complete.

The state of the bank's accounts can be inspected by sending a SendBalances event to
the correlator, which causes the correlator to log and send the balances.

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 318

To expose the problems, there are calls to the spinSleep action at key places in the
implementations. If the correlator receives an ExposeRaces event, the spinSleep
action suspends work by the specified teller for the specified time. This simulates tellers
working at different rates, and means that difficult to reproduce conflicts are easier to
identify. While this is useful for exposing bugs, it is not suitable for general-purpose
sleeps because it consumes CPU time while sleeping and does not let other work in that
context get done. This strategy is useful for exposing problems only when you know
exactly where to place the sleeps.

Each implementation has its own transfer-sample_name.evt file, which the script
sends as each bug is exposed with a different set of input data.

About the race sample
The race sample is in Bank-race.mon. It implements Get and Set events, and
corresponding Response events. A teller can find the value of an account, perform some
modification and then set the new account value. To take money from one account, the
protocol is as follows:

1. Send a Get event to obtain the current value of the account.

2. Wait for a GetResponse event that contains the current value.

3. Compute the new account value.

4. Send a Set event to set the new account value.

5. Wait for a SetResponse event.

This works well when a single transfer occurs at a time. However, there is a bug because
between the time that teller 1 obtains an account value and the time that teller 1 sets the
new account value, teller 2 can obtain the account value, compute a new value, and set a
new account value. The following time line demonstrates this:

Time Teller 1 Teller 2 Bank Database

0
(setup)

Transfer 50 from A
to B

 A: 100 B: 100 C: 100

 Get A, Get B

 A=100, B=100

 Sleep 1 second

0.5 Transfer 25 from B
to C

 Get B, Get C

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 319

Time Teller 1 Teller 2 Bank Database

 B=100, C=100

 newB=75, newC=125

 Set B, Set C

 A: 100, B: 75, C: 125

1.0 newA=50, newB =
150

 Set A, Set B

 A: 50, B: 150, C: 125

B's account should have 100 + 50 – 25 = 125. But it ends up with 150 because teller 1
overwrites teller 2's value for B's account (75). Teller 1 based its calculation on values that
were out of date at the point they were sent to the database.

About the deadlock sample
While EPL does not provide any mutual exclusion locking primitives, you can
implement something similar in a monitor. The deadlock sample's bank implements
a locking mechanism. Tellers can send a Lock event for an account, and the database
returns a LockResponse event when the account is locked. If another teller tries to lock
the same account, the correlator queues the request until it processes an Unlock event
to unlock the account. Note that the locking is fair; the correlator allocates locks in the
order in which they are requested.

The deadlock implementation does no checking. For example, it does not check that the
unlock event comes from the teller that locked an account, nor that a teller holds a lock
for an account before performing an operation on that account. (A robust application
would of course perform such checking.)

The deadlock sample fixes the problem shown in the Race sample where a value was
overwrien by a value that resulted from computation on out-of-date values. If you
replicate the Race paern of events, teller 2 would wait to lock B's account until teller
1 had finished with it. (This assumes all tellers follow the correct protocols. A robust
implementation would perform checks to ensure that was the case).

However, even when all tellers follow the locking protocol correctly, there is a different
problem. If teller 1 locks account A and teller 2 locks account B, and teller 1 tries to lock
account B and teller 2 tries to lock account A, then each teller waits for the other teller to
release a lock. The following timeline shows this:

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 320

Time Teller 1 Teller 2 Bank Database

0 Transfer 50 from A
to B

 A: 100 B: 100 C: 100

 Lock A

 A: Locked by t1

 Sleep 1 second

0.5 Transfer 25 from B
to A

 Lock B

 A: locked by t1 B:
locked by t2

 Lock A A: locked by t1, t2
waitingB: locked by
t2

 (waiting for
LockResponse(A))

 Lock B A: locked by t1, t2
waitingB: locked by
t2, t1 waiting

1.0 (waiting for
LockResponse(B))

At this point, neither teller can make any further progress.

One solution to this (not implemented here) is to implement a timeout. If a lock request
is outstanding for more than some threshold, the correlator abandons the lock. When
this happens, the tellers would wait a random amount of time and try again. The
random wait should prevent the retries from overlapping, if not on the first retry, then
on a subsequent retry. However, such a mechanism invariably performs poorly in the
(hopefully rare) case that a lock times out.

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 321

Alternatively, you can prevent deadlock by defining priority orders for locks. For
example, you can specify that A must always be locked before B. Applying this priority
order to all transactions would prevent deadlock.

About the compareswap sample
This compareswap sample is more like the race sample. The protocol between tellers and
the database consists of Get and Set events, except the Set event is a CompareSet event,
which contains an expected old value. If the old value does not match the database
account value, then the teller retries the operation — geing a new value and re-
computing the account value.

This has the advantage that it does not rely on locking (so does not suffer from deadlock)
and does not result in values computed from out of date data being set in the database.

The only disadvantage is that under some circumstances (the same as for the race
sample), the tellers need to re-try a calculation. However, unlike the timeout on locking,
tellers know about this as soon as they receive an event back from the database, and no
timeouts are involved.

This strategy is the recommended way to share state between different contexts. Note
that while it guarantees progress is made by at least one context, an interaction between
the database and a single context can take an unbounded amount of time, as other
contexts can require the context to re-try its transaction. A further refinement would
be to use a generation counter that the correlator increments on every successful Set
event. This detects the difference between the database's value being unchanged and the
database's value being changed back to a previous value. While such a difference might
not maer in many situations, it might when you are computing interest.

Note: Due to the requirement to retry, the compareswap implementation is slightly
different from the race implementation. One account is modified at a time;
the teller transfers money from the fromAccount, and then adds it to the
toAccount.

Time Teller 1 Teller 2 Bank Database

0
(setup)

Transfer 50 from A
to B

 A: 100 B: 100 C: 100

 Get A

 A=100

 newA=50

 A: 50, B: 100, C:100

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 322

Time Teller 1 Teller 2 Bank Database

 Set A success

 Get B

 B = 100

 Sleep 1

0.5 Transfer 25 from B
to C

 Get B

 B=100

 newB=75

 Set B (old=100)

 A: 100, B: 75, C: 100

 Set B success

 Get C

 C=100

 newC=125

 Set C (old=100)

 A: 50, B: 75, C: 125

 Set C success

1.0 newB = 150

 Set B (old=100)

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 323

Time Teller 1 Teller 2 Bank Database

 A: 50, B: 75, C: 125

 Set B FAILED

 Get B

 B = 75

 newB = 125

 Set B (old=75)

 A: 50, B: 125, C: 125

 Set B success

Contexts and correlator determinism
Creating one or more contexts makes the correlator non-deterministic. In other words,
injecting the same monitor can produce different results if the monitor contains
statements that spawn to contexts.

For example, suppose an application creates two contexts, spawns to each of them, and
each context runs code that calls integer.getUnique(). The assignment of unique
integers to contexts is not deterministic; if you re-run the code, each context might
receive an integer that is different from the integer it received during the previous
run. Other behavior that can be non-deterministic in a parallel processing application
includes the following:

The assignment of particular IDs to particular contexts

The order in which contexts send events

The order in which contexts spawn to other contexts

See also "About input logs and parallel processing" on page 324.

How contexts affect other parts of your Apama application
When you implement contexts in an EPL application, an understanding of how contexts
affect other parts of your Apama application is required.

The topics below provide information to help you understand the behavior.

M
Even Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 324

About input logs and parallel processing
Applications that implement parallel processing might have non-deterministic behavior.
While you can inject a parallel application into a correlator that you started with the --
inputLog option, you cannot expect to use that input log to exactly duplicate correlator
execution.

For applications that use multiple contexts or that send events, just re-sending the events
and EPL sent to the correlator is insufficient to reproduce the same output and state.
The timing of which context ran which send, emit, enqueue...to or other operation
is important. Operations that can affect the state of other contexts or the sent events are
non-deterministic when run in parallel.

Deadlock avoidance when parallel processing
Parallel processing in the correlator uses a message passing system. Each context has
a fixed-size input queue for events (messages). A deadlock is possible when all of the
following conditions are true:

Context 1 is enqueuing an event to context 2.

Context 2 is enqueuing an event to context 1.

The input queues for context 1 and context 2 are both full.

In this situation, each context is blocked from further processing until the queue of the
other context is no longer full. Neither context can process the next event on its input
queue. Such a deadlock is not limited to two contexts but can occur with any number of
contexts enqueuing events to each other.

The correlator avoids such a deadlock by detecting the potential for it to occur and then
expanding input queues as needed. Also, the correlator logs a warning that a potential
deadlock was detected. The correlator expands input queues only when not doing so
causes a deadlock. The correlator does not expand input queues when one or more
contexts are blocked from further processing while one or more contexts are processing
as usual. However, it is still possible to create applications that result in out of memory
errors or other kinds of deadlocks. Out of memory errors can result from requiring
excessive expansion of input queues through the deadlock avoidance mechanism, or
other means, such as creating a very large sequence.

Clock ticks when parallel processing
Since all contexts receive clock ticks, timers work in all contexts. However, it is possible
for some contexts to run behind others. That is, a timer in a particular monitor for which
there are monitor instances in multiple contexts might fire at different points in real
time. In each context, the timer can process the series of clock ticks at a speed that is
different from the other contexts.

A context that is running a monitor instance in a very long running loop might not
remove entries from its input queue for a long time. If a context has a full input queue
the clock tick distributer thread does not block. Instead, the correlator quashes clock

M
Odd Header

Implementing Parallel Processing

Developing Apama Applications Version 9.10 325

ticks onto the end of the context's input queue. This means that the correlator unpacks
the clock tick event when the context input queue either drains or accepts a new event.
There is no perceptible difference between normally received clock ticks and quashed
clock ticks.

Using correlator plug-ins in parallel processing applications
The standard MemoryStore and Time Format plug-ins are thread safe, which means that
you can use them in parallel applications. The MemoryStore can be quite helpful in a
parallel application and is very efficient when used simultaneously by multiple contexts.

For information about writing correlator plug-ins for use with parallel applications, see
"The EPL Plug-in APIs for C and C++" on page 747.

Note: The C class AP_Context, and the C++ class Context, which you use for
correlator plug-in development, are completely different and unrelated to
contexts that you define for parallel processing.

M
Even Header

Developing Apama Applications Version 9.10 326

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 327

8 Using Correlator Persistence

■ Description of state that can be persistent .. 328

■ When persistence is useful .. 329

■ When non-persistent monitors are useful .. 329

■ How the correlator persists state ... 329

■ Enabling correlator persistence ... 330

■ How the correlator recovers state .. 333

■ Designing applications for persistence-enabled correlators .. 336

■ Upgrading monitors in a persistence-enabled correlator ... 337

■ Sample code for persistence applications ... 338

■ Requesting snapshots .. 340

■ Developing persistence applications .. 340

■ Using correlator plug-ins when persistence is enabled ... 341

■ Using the MemoryStore when persistence is enabled .. 341

■ Comparison of correlator persistence with other persistence mechanisms 342

■ Restrictions on correlator persistence .. 344

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 328

When the correlator shuts down, the default behavior is that all state is lost. When you
restart the correlator, no state from the previous time the correlator was running is
available. You can change this default behavior by using correlator persistence.

Correlator persistence means that the correlator automatically periodically takes a
snapshot of its current state and saves it on disk. When you shut down and restart that
correlator, the correlator restores the most recent saved state.

To enable persistence, you indicate in your EPL code which monitors you want to be
persistent. Optionally, you can write actions that the correlator executes as part of the
recovery process. When code is injected for a persistence application, the correlator that
the code is injected into must have been started with a persistence option.

Persistent monitors must be wrien in EPL. State in JMon monitors cannot be persistent.
State in chunks, with a few exceptions, also cannot be persistent.

Note: If a license file cannot be found, the number of persistent monitors that the
correlator allows is limited. See "Running Apama without a license file" in
Introduction to Apama.

Description of state that can be persistent
A correlator that is running with persistence enabled automatically stores state on disk
and automatically recovers state when it restarts. Saved state includes the following:

For a persistent EPL monitor, all of that monitor's state is saved. This includes all
events, strings, primitives, sequences, dictionaries, action variables, closures, and
global variables. It also includes all the state of listeners, streams and queries —
local variables captured by them and all active listeners, sublisteners and queries,
including the events currently flowing through them.

All source code that was injected into the correlator, including any non-persistent
EPL monitors and JMon monitors. EPL files that were injected from a Correlator
Deployment Package are not stored in plain text.

Code that is not injected includes the following:

Correlator plug-ins, which are imported at runtime. The actual plug-in file must
be on a specified path that the correlator can load it from.

Any Java class files on the correlator's classpath but not injected.

The correlator runtime itself.

Contents of all context queues.

Some correlator-global state including integer.getUnique() IDs and context IDs.

Note: In general, chunks cannot be persistent. However, chunks used by the Apama
Time Format correlator plug-in and the Apama MemoryStore plug-in can be
persistent.

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 329

When persistence is useful
Enabling correlator persistence is a good fit for applications in which it is unacceptable
to lose any information. For example, an application for processing mortgage requests
does not need to be available continuously. A small amount of downtime, especially
outside business hours, might be acceptable. However, losing any state associated with a
mortgage application would be unacceptable.

In such a mortgage processing application, there is unlikely to ever be a point at which
there are no open applications and thus no state to preserve. But state might change
over the course of weeks, rather than seconds. Enabling correlator persistence lets you
implement complex event expressions such as the following:
on all LoanRequest() -> (PropertyValuation() and ProofOfIncome())
 within (4 * week) ...

With persistence enabled, the event expression can still be running even if weeks elapse
between when it is created and when it finally completes. Without persistence, the
event expression's state is susceptible to being lost if there are system restarts, software
upgrades, and the like.

When non-persistent monitors are useful
A correlator that is running with persistence enabled can have persistent and non-
persistent monitors injected. Non-persistence is a good choice for a monitor that does
one or more of the following:

Uses legacy code that does not use the persistence feature. See "Designing
applications for persistence-enabled correlators" on page 336.

Interacts with user-defined correlator plug-ins or Apama correlator plug-ins other
than the Time Format or MemoryStore plug-ins.

Contains large amounts of fast-changing state that is undesirable to persist for
performance reasons.

Operates as a stateless utility that just responds to incoming events.

Contains minimal state that can be reconstructed by the onBeginRecovery() action
on a persistent monitor.

Also, all JMon monitors are non-persistent monitors.

How the correlator persists state
When persistence is enabled the correlator periodically writes data to disk to reflect the
correlator's runtime state. To do this, the correlator

1. Suspends all execution in the correlator across all contexts.

2. Takes an in-memory snapshot of what needs to be stored.

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 330

3. Resumes processing while the state is wrien to disk.

The correlator waits to suspend execution until all contexts have completed any in-
progress event processing and any in-progress deletions. It can take time for the
correlator to pause all contexts. Consequently, it is best practice that a single event
listener does not take a long time to process. When there is a need to perform a large
amount of work try to split the work across multiple events.

How fine-grained to split work depends on the performance requirements of the
application. Avoid very fine-grained work units as the overhead of scheduling will start
to dominate and lead to the application running slowly.

Commiing the snapshot to disk is an atomic operation. That is, a failure while storing
state reverts the stored data to the previously successfully stored snapshot.

By default, when you enable persistence the correlator does the following:

Takes a snapshot of state changes every 200 milliseconds. This is the snapshot
initerval. The correlator tracks the in-memory objects that have changed since
the last snapshot and writes only that state to disk. If only a small fraction of the
correlator's state changes then only a fraction of the correlator's state must be stored
for each snapshot.

Automatically adjusts the snapshot interval. For example, if a significant percentage
of the correlator's state changes then the correlator increases the snapshot interval, so
that the overall throughput is not adversely affected.

Stores persistent state in the current directory, which is the directory in which the
correlator was started.

Uses persistence.db as the name of the file that contains persistent state. This is
the recovery datastore.

Copies the recovery datastore to the input log if one was specified when the
correlator was started. This happens only upon restarting the correlator.

For applications that do not use the correlator's internal clock (correlators started
with the -Xclock option), the correlator uses the time of day in the last commied
snapshot as the current time in the restarted correlator.

Enabling correlator persistence
Before you enable persistence, you should design and develop your application to
handle persistence and recovery. See "Designing applications for persistence-enabled
correlators" on page 336.

Note: If a license file cannot be found, the number of persistent monitors that the
correlator allows is limited. See "Running Apama without a license file" in
Introduction to Apama.

To enable correlator persistence, you must proceed as follows:

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 331

Insert the word persistent before the monitor declaration for each monitor wrien
in EPL that you want to be persistent. For example:
persistent monitor Order {
 action onload() {
 ...
 }
}

For a monitor declared as persistent, the correlator persists the state of all monitor
instances of that name, and all instances of events that the monitor instances create.

You do not mark event types as persistent. Whether or not an event is persisted
depends on whether it is used from a persistent or non-persistent monitor. If
an event is on a context queue when the correlator takes a snapshot the event is
persisted.

Optionally, define onBeginRecovery() and onConcludeRecovery() actions in your
persistent monitors. The correlator executes any such actions as part of the recovery
process. To determine whether you need to define these actions, see "Designing
applications for persistence-enabled correlators" on page 336, "Defining recovery
actions" on page 335 and "Sample code for persistence applications" on page
338.

Specify one or more persistence options when you start the correlator. You must
always specify the -P option to enable correlator persistence.

Specify only the -P option to implement default behavior for correlator persistence.
To change default behavior, also specify one or more of the options described in
the table below. The correlator uses the default when you do not specify an option
that indicates otherwise. For example, if you specify -P, -PsnapshotInterval
and -PstoreLocation, the correlator uses the values you specify for the snapshot
interval and the recovery datastore location and uses the default seings for all other
persistence behavior. For more information on these options, see "Starting the event
correlator" in Deploying and Managing Apama Applications.

Note: During development of a persistence application, it varies whether you
want to specify a persistence option when you start the correlator. In
the earlier stages of development, you might choose not to specify a
persistence option since you might make many and frequent changes to
early versions of your program, thereby making recovery of a previous
version impossible. For example, you might have changed the structure
and perhaps added new variables. Once your program structure
becomes relatively stable, you must take into account what happens
during recovery and you will want to define onBeginRecovery() and
onConcludeRecovery() actions. These actions never get called in a
correlator that was not started with a persistence option. To deploy a
persistence application, the correlator must be started with a persistence
option.

If you are using both correlator persistence (-P option) and the compiled runtime (--
runtime compiled option), we recommend the use of the --runtime-cache option

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 332

to improve recovery times. For more information on these options, see "Starting the
event correlator" in Deploying and Managing Apama Applications.

The following table describes correlator persistence behavior, the default behavior, and
the options you can specify to change default behavior.

Correlator Persistence
Behavior

Default Option for Changing

The correlator waits
a specified length
of time between
snapshots.

200
milliseconds

-PsnapshotInterval=interval

Specify an integer that indicates the
number of milliseconds to wait.

The correlator
can automatically
adjust the snapshot
interval according to
application behavior.

It can be useful to
set this to false to
diagnose a problem
or test a new feature.

True. The
correlator
automatically
adjusts the
snapshot
interval.

-PadjustSnapshot=boolean

The correlator
puts the recovery
datastore in a
specified directory.

The
directory in
which the
correlator
was started.
That is,
the current
directory.

-PstoreLocation=path

You can specify an absolute or
relative path. The directory must
exist.

The correlator copies
the snapshot into
a specified file.
This is the recovery
datastore.

persistence.db -PstoreName=filename

Specify a filename without a path.

For correlators that
use an external clock,
the correlator uses a
specified time of day
as its starting time
when it restarts.

The time of
day captured
in the last
commied
snapshot.

-XrecoveryTime num

To change the default, specify an
integer that indicates seconds since
the epoch.

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 333

Correlator Persistence
Behavior

Default Option for Changing

This behavior is
useful only for
replaying input logs
that contain recovery
information.

The correlator
can automatically
copy the recovery
datastore to the
input log when a
persistence-enabled
correlator restarts.

The
correlator
copies the
recovery
datastore
to the input
log.

-noDatabaseInReplayLog

You might set this option if you
are using an input log as a record
of what the correlator received.
The recovery datastore is a large
overhead that you probably do
not need. Or, if you maintain an
independent copy of the recovery
datastore, you probably do not
want a copy of it in the input log.

How the correlator recovers state
When you restart a correlator for which persistence has been enabled the correlator

Detects, recompiles, and reinjects all code that was injected and not deleted as of the
last commied snapshot

Restarts and restores the state of all persistent monitors as of the last commied
snapshot

Restarts non-persistent EPL monitors and JMon monitors at their onload() action

Executes any onBeginRecovery() and onConcludeRecovery() actions. See
"Defining recovery actions" on page 335 .

Recovers persistent connections (connections created with engine_connect -p) and
resumes them at the first opportunity

Code is reinjected in the order in which it was originally injected. The correlator tracks
which objects (monitors, events, Java objects) were deleted and does not re-inject them.
Such objects might have been deleted explicity with the engine_delete utility or
implicity as when all instances of a monitor have terminated. If a snapshot shows that an
object was deleted and then re-injected, recovery ignores the first injection and re-injects
the monitor or event at the point of its second injection.

For a persistent monitor, recovery appears to be a pause in processing. This pause has
the potential to be long enough to cause some events to be stale. All non-persistent
monitors appear to have spontaneously reverted to their onload state. Communication
channels to external components have been interrupted and can be assumed to not yet

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 334

be connected. Except, the correlator treats connections created with engine_connect
-p, which are persistent connections, the same as it treats persistent state. Persistent
connections continue until you explicitly remove them. Upon recovery, the correlator
tries to reconnect to the external components that were connected with persistent
connections. However, events sent or received after the last commied snapshot might
have been dropped because there is no reliable delivery on persistent connections.

For a non-persistent monitor, recovery appears the same as starting the correlator. The
correlator's current time is up-to-date. The monitor is in the state it would be if it were
just injected. External components have not yet connected to the correlator. If a monitor
initiates a request of a non-persistent monitor then the non-persistent monitor might
have to queue the request until a connection is made to an external component, for
example, the correlator subscribes to a data stream from an external adapter.

Recovery order
When the correlator recovers state from a recovery datastore it does the following in the
following order:

1. Recompile and reinject all source except for deleted events and monitors, which are
ignored.

2. Restore objects and listeners in persistent monitors. The correlator does not execute
any user code in the first two steps. While it sets up listeners, the listeners cannot yet
change state.

3. Set currentTime to the currentTime of the last commied snapshot, which might
be considerably earlier than the current time of day if the correlator was down for
some time before recovering.

4. Initiate execution of any onBeginRecovery() actions on instances of restored events,
monitors, and custom aggregate functions in all persistent monitor instances in all
contexts. The order of execution of these actions is undefined. See "Defining recovery
actions" on page 335.

5. Quiesce — The correlator waits for all events that have been sent to a context to be
processed, and also waits for any events that are sent to a context as a result of those
events to be processsed, and so on, until no more events are generated and sent to
a context. The correlator also does this for spawn...to statements. This is similar
to processing all events in all queues. Be careful not to generate an infinite loop of
send...to statements.

6. Restore events, clock ticks, pending spawn...to statements, and so on, that were
waiting on context queues when the snapshot was taken.

7. Send a single clock tick of the time at which the correlator is recovered, that is, the
current time of day. If -XrecoveryTime was set when the correlator was started, the
correlator uses that time for the current time of day.

8. Initiate execution of onload() actions in all non-persistent monitors in injection
order.

9. Quiesce.

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 335

10. Initiate execution of any onConcludeRecovery() actions on instances of restored
events, monitors, and custom aggregate functions in all persistent monitor instances
in all contexts. The order of execution of these actions is undefined. See "Defining
recovery actions" on page 335.

11. Quiesce.

12. Start generating clock ticks.

13. Start taking persistence snapshots.

14. Open the server port. External components can now connect with the correlator, for
example, IAF, engine_send, and engine_receive.

Defining recovery actions
In a persistent monitor, you can define one or two actions that the correlator executes as
part of the recovery process:

onBeginRecovery() — The correlator executes this action after it reinjects all
source code and restores state in persistent monitors. The order of execution of
onBeginRecovery() actions is undefined.

onConcludeRecovery() — The correlator executes this action just before
it begins sending clock ticks, taking persistent snapshots, and becoming
available for connections to external components. The order of execution of
onConcludeRecovery() actions is undefined.

Whether you define zero, one or both actions in each persistent monitor is application-
dependent. See "Designing applications for persistence-enabled correlators" on page
336 and "Sample code for persistence applications" on page 338.

You can define an event and specify one or both of these actions as fields in the event.
If an event defines a recovery action and an instance of the event is live in a persistent
monitor, then the correlator calls the action(s) on those objects as well. A live event is
reachable from a global variable or listener-captured local variable and consequently is
not a candidate for garbage collection.

You can define onBeginRecovery() and onConcludeRecovery() actions in custom
aggregate functions in the same way as you define them in events. When an aggregate
function contains an onBeginRecovery() or onConcludeRecovery() action this action
is called on each custom aggregate function instance in a live query in a persistent
monitor along with the onBeginRecovery() and onConcludeRecovery() actions in
persistent monitors and events.

The order in which the correlator executes instances of onBeginRecovery() actions and
instances of onConcludeRecovery() actions for objects in a monitor is not defined. If a
monitor terminates after execution of onBeginRecovery() and before recovered queues
have been flushed, the correlator does not call that monitor's onConcludeRecovery()
action (if it has one). If the correlator terminates all of a monitor's listeners in one
execution of onBeginRecovery(), later calls to onBeginRecovery() for that monitor
instance still occur because they might instantiate new listeners. If no listeners exist in a

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 336

monitor after onBeginRecovery() and onConcludeRecovery() have been executed for
every object in that monitor, the monitor instance terminates as usual.

See "Recovery order" on page 334 for more details about when onBeginRecovery()
and onConcludeRecovery() are executed.

Simplest recovery use case
When you observe the following restrictions the correlator's recovery behavior is
straightforward:

All monitors are persistent. The correlator contains no Java and no chunks.

There are no implementations of onBeginRecovery() or onConcludeRecovery()
actions.

EPL code that adheres to these restrictions appears to behave as if it is running in a
completely reliable and fault tolerant system. The downside is that while the correlator
is down, incoming or outgoing events are dropped. If you implement a "retransmit
until acknowledge" protocol then the correlator can have a large number of events (and
retransmits) to process when it restarts, depending on how long it is down.

Designing applications for persistence-enabled correlators
When you are designing an application that you will deploy on a persistence-enabled
correlator you should consider the following issues.

You do not need to re-inject code after you restart a persistence-enabled correlator.
During recovery, the correlator obtains injected code from the recovery datastore.

To recover from a hardware failure, you must maintain a copy of the recovery
datastore on some form of reliable, shared storage. You want to ensure that the
storage medium for the recovery datastore is not a single point of failure. This
typically means puing it on a fileserver with suitable levels of redundancy (disk,
power supply, network and controller) that is accessible by two correlator host
servers.

The length of time between when a correlator shuts down and when it restarts is
unpredictable. Consequently, you might want to implement onBeginRecovery()
actions that do the following:

Specify behavior according to how long the down time was. For example, you
could write a listener that ignores a subset of old events but matches on a new
event.

Terminate on all wait(...) listeners. Such listeners have the potential to fire
many times because the time jumps from the time of the last commied snapshot
to the time at which the correlator was restarted.

It is possible for persistent monitors to communicate with non-persistent monitors
and to set up state, such as subscriptions to a stream of data, in a non-persistent
monitor. If you need to recover this state, you must write code to do it in the
onConcludeRecovery() action of a persistent monitor or an event within a

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 337

persistent monitor. In a persistent monitor, having an event that manages an activity
in a non-persistent monitor is a recommended practice.

Upgrading monitors in a persistence-enabled correlator
While injection order is fixed and you cannot change it, you might want to upgrade a
monitor and this would appear to require a change in the injection order. That is, upon
recovery, you want the correlator to restore the upgraded monitor and not the older
version of the monitor.

Remember that it is an error if you try to inject a monitor while instances of that monitor
are already running in the correlator. The correlator never injects a duplicate monitor
definition.

In a correlator without persistence enabled, you can terminate all monitor instances and
then inject the updated monitor definition. Since all old versions of the monitor had
terminated, the correlator would correctly inject the updated monitor even though it had
the same name. Also, since persistence is not enabled, there is no recovery process and
so recovery of the older version of the monitor is not an issue.

In a persistence-enabled correlator, terminating all instances of a monitor you want to
upgrade is unlikely to be an option. To upgrade a monitor without first terminating all
old instances of the monitor:

1. Initially deploy a monitor that contains code that enables that monitor to give
its state to a new version of the monitor and to terminate upon request. If a
deployed monitor does not contain such code it is not possible to upgrade it without
terminating all instances.

2. Modify your monitor code to the new behavior you want and be sure to change the
name of the monitor. For example, if the old monitor is RequestLoan, you might
name the new monitor RequestLoan2.

3. Add code to your upgraded monitor so it atomically routes events that do the
following:

a. Retrieves the current state of the old monitor.

b. Checks that the new monitor can upgrade from the old monitor.

c. Requests the old monitor version(s) to terminate.

d. Sets up its own listeners.

4. Inject the new version of your monitor.

When your upgrade procedure terminates all instances of the old monitor the recovery
process does not restore that monitor since all instances were deleted.

You might find that it makes more sense for your upgrade procedure to leave the
instances of the old monitor running while changing the interface for whatever creates
new instances of the monitor to create instances of the upgraded monitor instead of
instances of the old monitor. The correlator would then be running some old versions
of the monitor and some new versions of the monitor. Upon recovery, the correlator

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 338

would recover both versions until all instances of the old monitor had terminated.
This approach might be appropriate when the logic has changed so much that it is
not practical to upgrade monitor instances, or when maintaining behavior for existing
instances is desired.

Sample code for persistence applications
The topics below provide sample code for persistence applications.

Sample code for discarding stale state during recovery
The following code provides an example of discarding stale data during recovery. This
application discards all recovered Data events because their data has become stale.
However, the application always processes and does not discard ControlEvent events.
persistent monitor eg1 {
 listener l;
 listener lt;
 action onload() {
 initializeState();
 initiateListeners();
 ControlEvent c;
 on all ControlEvent():c { handleControl(c); }
 }
 action initiateListeners() {
 Data d;
 l:=on all Data():d { process(d); } // Process is moderately expensive
 lt:=on all wait(0.1) { send Average(state) to "output"; }
 }
 action onBeginRecovery() {
 l.quit(); // Discard all recovered Data events.
 lt.quit(); // Stop sending intermittent updates.
 // Do not flood receivers.
 // Note that the ControlEvent listener is still present.
 // The code throttles only Data events. If the
 // ControlEvent listener is not present, this monitor
 // would have no listeners and would terminate
 // after this action.
 }
 action onConcludeRecovery() {
 initiateListeners(); // Go back to normal.
 }
}

Sample code for recovery behavior based on downtime duration
The following sample is the same as the discard-stale-data sample with some changes
that provide a downtime policy. Downtime is the duration between the last commied
snapshot and the time of day upon recovery.

This code sample ignores downtimes that are less than two hours. However, if recovery
starts just under the two-hour limit the processing of old data might appear to be
beyond the two hour threshold. The downtime policy must take this into account.
persistent monitor eg1 {

 import "TimeFormatPlugin" as timeFormatPlugin;

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 339

 // ... onload() and so on
 boolean longDowntime;
 action onBeginRecovery() {
 // currentTime is the time of the last snapshot, which is
 // approximately when the correlator went down.
 // timeFormatPlugin.getTime() is the actual time of recovery.
 if (timeFormatPlugin.getTime() - currentTime > (60.0 * 60.0 * 2)
 then {
 // If we were down for less than 2 hours, pretend nothing
 // happened. For longer gaps, skip stale data as it will be
 // too expensive to process it.
 longDowntime:=true;
 log "Correlator was down for a long time - will discard stale
 data.";
 l.quit(); // Discard all recovered Data events.
 lt.quit(); // Stop sending intermittent updates.
 // Do not flood receivers.
 }
 }
 action onConcludeRecovery() {
 if longDowntime then {
 longDowntime:=false;
 initiateListener(); // Go back to normal.
 }
 }
}

Sample code that recovers subscription to non-persistent monitor
This sample code defines a persistent monitor that subscribes to a non-persistent service
monitor. Note that the service monitor can handle the case where the subscription is
received before the adapter is connected.
monitor service_monitor {
 action onload() {
 Subscribe s;
 on all Subscribe():s {
 if not connected then {
 pendingSubscribes.append(s);
 } else {
 if(incrRefCount(s.subkey) then {
 send Adapter_Subscribe(s.subkey) to "output";
 }
 }
 }
 on all wait(1.0) {
 send IsAdapterUp() to "output";
 }
 on all AdapterUp() {
 connected:=true;
 for s in pendingSubsscribes {
 route s;
 }
 pendingSubscribes.clear();
 }
 }
}
persistent monitor eg2 {
 listener l;
 Instance i;
 context svcCtx;
 action spawnedInstance(context c) {

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 340

 svcCtx:=c; // Contains anything required to recover subscription.
 send Subscribe(i.subkey) to svcCtx;
 Data d;
 l:=on all Data():d { process(d); }
 }
 action onConcludeRecovery() {
 // Non-persistent service monitor is now reset to its onload state.
 // Re-subscribe.
 send Subscribe(i.subkey) to svcCtx;
 }
}

Requesting snapshots
A persistent or non-persistent monitor can request a snapshot to occur as soon as
possible, and be notified of when that snapshot has been commied to disk. You use
Apama's Management interface to do this. The Management interface lets you create
instances of Persistence events and then call the persist() action on those events.
When the correlator processes a Persistence event it takes and commits a snapshot
and executes the specified callback action after the snapshot is commied.

To use the Management interface, you add the Correlator Management bundle to your
Apama project. For details, see "Using the Management interface" on page 399.

Developing persistence applications
While you are writing the EPL code for your persistence application, use Software
AG Designer as you usually do and do not enable persistence. When your application
is near completion and has been successfully tested, start testing execution of the
onBeginRecovery() and onConcludeRecovery() actions you defined in your
application. Do this as follows:

1. Select Run, Run configurations, Correlator component.

2. Add -P to the command line of the correlator.

3. Start the correlator.

4. In the Run configuration, Correlator component, Initialization tab, disable all checkboxes
so that nothing is reinjected.

5. Stop and restart the correlator. It will have persisted the injected monitors.

6. Test the behavior of onBeginRecovery() and onConcludeRecovery() actions.

7. If everything is working correctly, you can stop here. Otherwise, modify your code
and continue with the following steps.

8. Delete the persistence.db file.

9. In the Run configuration, Correlator component, Initialization tab, re-enable all
checkboxes so that your code is injected.

10. Start again at step 3 and continue until your code is working as desired.

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 341

Ensure that you delete the persistence.db file and re-inject fresh monitors only when
loss of all state is acceptable, for example, during testing.

Using correlator plug-ins when persistence is enabled
A persistent monitor can import a correlator plug-in only when one of the following
conditions is met:

None of the plug-in's functions/actions, including unused functions/actions, refer to
a chunk type.

The plug-in is capable of persisting its chunks. In this release, only the Time Format
plug-in and the MemoryStore plug-in are capable of persisting chunks. User-defined
correlator plug-ins and other Apama-provided plug-ins cannot persist chunks.

Using the MemoryStore when persistence is enabled
When persistence is enabled a persistent monitor can use the MemoryStore only with
a correlator-persistent store. A correlator-persistent store is a store that was created
by execution of the storage.prepareCorrelatorPersistent(store name) action.
A persistent monitor cannot use a store that was created by executing any other
storage.prepare() action . The only exception to this is if the persistent monitor is in
a correlator for which persistence is not enabled. In this situation, the correlator treats
persistent monitors in the same way it treats non-persistent monitors.

In a persistence-enabled correlator, both persistent and non-persistent monitors can use
correlator-persistent stores. If you try to prepare an in-memory, on-disk or distributed
store from a persistent monitor in a persistence enabled correlator, the correlator
terminates the monitor that tries to do this. These are runtime errors. The compiler
cannot catch these errors. The following table shows when you can use each kind of
store.

Store type Persistent
correlator and
persistent
monitor

Persistent
correlator and
non-persistent
monitor

Non-persistent
correlator and
persistent
monitor

Non-persistent
correlator and
non-persistent
monitor

In-memory Yes Yes Yes

On-disk Yes Yes Yes

Correlator-
persistent

Yes Yes* Yes* Yes*

Distributed Yes Yes Yes

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 342

* Correlator-persistent store behaves as an in-memory store.

Snapshots include the contents of all correlator-persistent stores that are open. A
snapshot can occur at any time, and it is not possible to commit only certain states
of correlator-persistent stores or the tables in them. However, when using corelator-
persistent stores from persistent monitors, failure and recovery of a correlator should
appear as though nothing has happened. That is, all monitor state and table state should
be as it was when the most recent snapshot was taken.

Just as you cannot execute Store.persist() for in-memory stores, you cannot execute
the Store.persist() action on correlator-persistent stores. You can, however, use
Apama's Management interface to request a snapshot of the entire correlator state and
wait for that to complete. See "Using the Management interface" on page 399.

In persistent monitors, Store, Table, Row and Iterator events are persistent and their
state can be recovered to the latest snapshot. Persistent monitors should not see any
inconsistency between the contents of the table and any state in the monitor, including
Store, Table, Row, and Iterator events. Correlator-persistent stores behave the same
as an in-memory stores, except that the state of correlator-persistent stores is preserved
across correlator restarts.

When the correlator takes a snapshot, it includes Row events held by persistent monitors.
Such Row events are, of course, versions of rows in a table that is in a correlator-
persistent store. A persistence snapshot does not include Row events held by non-
persistent monitors, even if they represent rows in tables that are in correlator-persistent
stores.

Note: The recovery datastore in which the correlator saves snapshots is different
from the stores used with the MemoryStore. The recovery datastore contains
the state of all persistent monitors, which might include Row events, Iterator
events, and other MemoryStore-related events, and also the state of any
correlator-persistent stores created with the MemoryStore. Thus, the
recovery datastore contains any correlator-persistent stores. If non-persistent
monitors have opened in-memory and/or on-disk stores, those stores operate
independently of the recovery datastore. For example, a non-persistent
monitor can request persistence for an on-disk store and this on-disk store
would not be persisted in the recovery datastore.

In a DataView, you can expose only in-memory and on-disk stores; you cannot expose
correlator-persistent stores.

See also "Using the MemoryStore" on page 365.

Comparison of correlator persistence with other persistence
mechanisms
Correlator persistence is not the only way to persist Apama application data. The table
below compares the various features you can use to persist Apama data. As you can see,
correlator persistence provides the most comprehensive, automatic persistence.

M
Odd Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 343

Persistence
characteristic

Correlator
persistence

MemoryStore Apama Database
Connector Adapter
(ADBC)

Completeness
of what is
persisted

All state in
persistent EPL
monitors

Only state
that you
explicitly store.
Partial listener
evaluations are
impossible to
store.

Only state
that you
explicitly store.
Partial listener
evaluations are
impossible to
store.

Recovery
mechanism

Automatic Manual Manual

EPL monitors
can be notified
about recovery

Yes Yes Yes

Supported
across Apama
versions

Yes * Yes Yes

Incremental
snapshots

Yes Yes Yes

Storage type Embedded Embedded Shared servers
are supported.
You can use any
database server
or driver.

Atomic
snapshots

Yes Yes Yes

Performance
benefit from
pipelining disk
writes with
processing

Yes Yes Yes

Supports
multiple
contexts

Yes Yes Yes

M
Even Header

Using Correlator Persistence

Developing Apama Applications Version 9.10 344

* Please note those upgrading to 5.3 onwards with applications using persistence should
read the information about backwards incompatibility at Release Notes, "What's New In
Apama 5.3", "Backwards Incompatibility with persisted projects recovered to 5.3 from
older versions".

Restrictions on correlator persistence
JMon monitors cannot be persistent.

A persistent monitor can use the Apama Time Format and MemoryStore correlator
plug-ins and the chunk types contained by the events defined by those plug-ins. A
persistent monitor cannot use any other chunk types. This means that a persistent
monitor cannot use an event or plug-in that references a chunk type even if the
application does not use those chunks.

Please note those upgrading to 5.3 onwards with applications using persistence should
read the information about backwards incompatibility at Release Notes, "What's New In
Apama 5.3", "Backwards Incompatibility with persisted projects recovered to 5.3 from
older versions".

M
Odd Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 345

9 Common EPL Patterns in Monitors

■ Contrasting using a dictionary with spawning .. 346

■ Factory pattern ... 347

■ Using quit() to terminate event listeners .. 348

■ Combining the dictionary and factory patterns .. 349

■ Testing uniqueness .. 349

■ Reference counting .. 350

■ Inline request-response pattern ... 352

■ Writing echo monitors for debugging ... 353

M
Even Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 346

When developing EPL monitor applications it can be helpful to be familiar with
common EPL paerns.

Contrasting using a dictionary with spawning
The sample code in this topic contrasts the use of a dictionary with spawning. Usually,
the dictionary approach is preferred. This is because the spawning approach uses an
unmatched event expression, which is vulnerable to maintenance issues if someone else
loads an event listener for a paern that you expect to have no other matches.

Translation using a dictionary
The events to be processed:
event Input { string value; }
event Output { string value; }
event Translation {
 string raw;
 string converted;
}

The monitor:
monitor Translator {
 dictionary < string, string > translations;

 action onload() {
 Translation t;
 on all Translation():t addTranslation(t);
 Input i;
 on all Input():i translate(i);
 }
 action addTranslation(Translation t) {
 translations[t.raw] := t.converted ;
 }
 action translate(Input i) {
 if translations.hasKey(i.value) then {
 send Output(translations[i.value]) to "output";
 }
 else { fail(i); }
 }
 action fail(Input i) {
 print "Cannot translate: " + i.value;
 }
}

Translation using spawning
Same events as translation using dictionary.

The monitor:
monitor Translator {
 action onload() {
 Translation t;
 on all Translation():t addTranslation(t);
 Input i;
 on all unmatched Input():i fail(i);

M
Odd Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 347

 }
 action addTranslation(Translation t) {
 spawn translation(t);
 }
 action translation(Translation t) {
 on all Input(t.raw) translate(t.converted);
 }
 action translate(string converted) {
 send Output(converted) to "output";
 }
 action fail(Input i) {
 print "Cannot translate: " + i.value;
 }
}

Factory pattern
The factory paern creates a new monitor instance to handle each new item/request. Its
essential features include:

The onload() action sets up an event listener for creation events,

Each creation event causes a monitor instance to be spawned.

There are two common forms of the factory paern:

Canonical form

The monitor instance spawns to an action that initializes the state of the new monitor
instance and creates event listeners specific to that monitor instance. The spawned
monitor instances use local variables for coassignment and passes them into the
action.

It is likely that some of the data from the creation event is copied into global
variables.

Alternate form

The initial monitor instance uses coassignment to global variables to set some state
before spawning.

This is a "lazy" form in that it stores the complete creation event inside the monitor.
You should not use this form if you are spawning large number of monitor instances
and you have a large creation event, where only part of the creation event data needs
to be retained.

As an exercise, consider rewriting the example in "Translation using spawning" on page
346, to use the alternate factory form.

Canonical factory pattern
The event:
event NewOrder {...}

The monitor:
monitor OrderProcessor {

M
Even Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 348

 ...
 action onload() {
 NewOrder order;
 on all NewOrder():order spawn processNewOrder(order);
 }
 action processNewOrder(NewOrder order) {
 ...
 }
}

Alternate factory pattern
The event:
event NewOrder {...}

The monitor:
monitor OrderProcessor {
 NewOrder order;
 action onload() {
 on all NewOrder():order spawn processOrder();
 }
 action processOrder() {
 ...
 }
}

Using quit() to terminate event listeners
The example below demonstrates the use of quit() to terminate an event listener. This
example is somewhat contrived in order to demonstrate a situation where it might
be desirable to use quit(). Typically, other methods are often more appropriate, for
example, you can use die to kill a monitor instance and you can specify and not to
terminate an event listener.

The example shows a monitor that trades received orders by breaking them into smaller
orders, which it might place concurrently (perhaps on several exchanges). The monitor
listens for fills on these orders, and sums up the fills. (A real monitor might also send
status on what the filled volume is for each child order together with the total volume
filled for the order. The logic for this is not shown here.) When each order is completely
filled the monitor terminates the Trade event listener for that order.

The events:
event OrderIn {integer id; ... }
event OrderOut {integer id; integer volume; ... }
event Trade {integer orderOutId; integer volume; ... }

The monitor:
monitor TradeOrderAsSeveralSmallerOrders {
 event PlacedOrderRecord {
 listener listener;
 integer volumeToTrade;
 integer volumeTraded;
 }
 dictionary < integer, PlacedOrderRecord > records;
 OrderIn theOrder;
 action onload() {

M
Odd Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 349

 on all OrderIn():theOrder spawn tradeOrder();
 }
 action tradeOrder() {
 // some logic determining when and what volume to trade
 ...
 placeOrder(volume); //called multiple times
 ...
 }
 action placeOrder(integer volume) {
 PlacedOrderRecord r := new PlacedOrderRecord;
 integer id := integer.getUnique();
 Trade t; r.listener := on all Trade(orderOutId=id):t
 processTrade(t);
 records[id] := r;
 r.volumeToTrade := volume;
 route OrderOut(id,volume,...);
 }
 action processTrade(Trade t) {
 PlacedOrderRecord r := records[t.orderOutId];
 r.volumeTraded := r.volumeTraded + t.volume;
 if (r.volumeToTrade - r.volumeTraded) <= 0 then {
 r.listener.quit();
 ...
 }
 ...
 }
}

As stated earlier, for real-world solutions there is generally a beer option that using
quit(). For example, the exchange(s) probably also send OrderComplete events. In this
case you can change the on statement as follows:
on all Trade(orderOutId=id):t and not OrderComplete(orderOutId=id)
 processTrade(t);

Of course, you must be certain that the OrderComplete event can be received only after
all trades for that order have been received.

Combining the dictionary and factory patterns
The dictionary and factory paerns are often combined. This paern achieves separation
of concerns by using two monitors. The first monitor is responsible for managing
global concerns, for example, it ensures that each order has a unique key. The second
monitor is responsible for local concerns, for example, it manages all data associated
with processing that order.

The example does the following:

1. The OrderFilter monitor accepts NewOrder events and checks for uniqueness of the
order key.

2. For all orders with unique keys, the OrderFilter monitor routes a ValidOrder
event.

Testing uniqueness
The events:

M
Even Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 350

event OrderKey{...}
event NewOrder {
 OrderKey key; //You can use anything for key as long as it is unique
 ...
}
event ValidNewOrder {
 NewOrder order;
}

The monitors:
monitor OrderFilter {
 dictionary < OrderKey, NewOrder > orders;
 action onload() {
 NewOrder order;
 on all NewOrder():order validateOrder(order);
 }
 action validateOrder(NewOrder order){
 if orders.hasKey(order.key) then{
 print "Duplicate order!"
 print "Original: " + orders[order.key].ToString();
 print "Incoming: " + order.ToString();
 }
 else {
 orders.add(order.key,order);
 route validNewOrder(order);
 }
 }
}

monitor OrderProcessor {
...
 action onload() {
 ValidNewOrder valid;
 on all ValidNewOrder():valid spawn processOrder(valid.order);
 }
 action processOrder(NewOrder order) {
 ...
 }
}

Reference counting
The following paern is another example that you can use to to keep a count of how
many clients are using a particular service object, which in turn can be used to determine
the lifetime of these service objects. The example subscription management mechanism
is fairly sophisticated, possibly too sophisticated, but it provides the big advantage of
separating the concerns by using two monitors. If you decide to change the subscription
mechanism, you can do so simply by changing the ServiceManager monitor. There is
no impact at all on the ServiceItem monitor.

The events:
package com.apamax.service;
event Subscribe {
 string toWhat;
 string originator;
}
event Unsubscribe {
 string fromWhat;
 string originator;

M
Odd Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 351

}
event CreateServiceItem {
 string what;
}
event DestroyServiceItem {
 string what;
}

The monitors:
monitor ServiceManager {
 dictionary < string, dictionary < string, integer > > items;

 action onload() {
 Subscribe s;
 Unsubscribe u;
 on all Subscribe():s subscribe(s);
 on all Unsubscribe():u unsubscribe(u);
 }

 action subscribe(Subscribe s){
 if items.hasKey(s.toWhat) then {
 dictionary < string, integer > subscriptions :=
 items[s.toWhat];
 if subscriptions.hasKey(s.originator) then {
 subscriptions[s.originator] :=
 subscriptions[s.originator] + 1;
 }
 else {
 subscriptions[s.originator] := 1;
 }
 }
 else {
 items[s.toWhat] := subscriptions;
 route CreateServiceItem(s.toWhat);
 }
 }

 action unsubscribe(Unsubscribe u) {
 if items.hasKey(u.fromWhat) then {
 dictionary < string, integer > subscriptions :=
 items[u.fromWhat];
 if subscriptions.hasKey(u.originator) then {
 if subscriptions[u.originator] <= 1 then {
 subscriptions.remove(u.originator);
 if subscriptions.size() = 0 then {
 items.remove(u.fromWhat);
 route DestroyServiceItem(u.fromWhat);
 }
 }
 else {
 subscriptions[u.originator] :=
 subscriptions[u.originator] - 1;
 }
 }
 else {
 print "Unsubscribe failed: no originator: " +
 u.toString();
 }
 }
 else {
 print "Unsubscribe failed: no item: " + u.toString();
 }
 }

M
Even Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 352

}

monitor ServiceItem {
 //...

 action onload() {
 CreateServiceItem c;
 on all CreateServiceItem():c spawn createServiceItem(c);
 }

 action createServiceItem(CreateServiceItem c) {
 //...
 DestroyServiceItem d;
 on all DestroyServiceItem():d destroyServiceItem(d);
 }

 action destroyServiceItem(DestroyServiceItem d) {
 //...die;
 }
}

Inline request-response pattern
You can use the route command to write EPL that exhibits inline (synchronous) request-
response behavior. The following example shows that when you want to perform
an ordered paern of operations that contain (as one operation) a request to another
monitor, the subsequent operations must wait until the requesting monitor receives the
response.

The ordering of the route and on statements is not relevant. The correlator sets up the
event listener before processing the routed event.

A common mistake is to place code after the on statement code block and expect that
code to execute after the code in the on statement code block.

Routing events for request-response behavior
The events:
event Request { integer requestId; ... }
event Response { integer requestId; ... }

The monitors:
monitor Client {
 action doWork() {
 //do some processing
 ...
 integer id := integer.getUnique();
 route Request(id, ...);
 Response r;
 on Response(requestId=id):r {
 // continue processing
 ...
 // Beware! Any code here will execute immediately
 // (before processing the response)
 }
}

M
Odd Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 353

monitor Server {
 action processRequests() {
 Request r;
 on all Request():r {
 // evaluate response
 route Response(r.id,...);
 }
 }
}

Canonical form for synchronous requests
The next example show the canonical form for when you want to code a paern that
specifies two or more synchronous requests.

The events:
event RequestA { integer requestId; ... }
event ResponseA { integer requestId; ... }
event RequestB { integer requestId; ... }
event ResponseB { integer requestId; ... }

The monitor:
monitor Client {
 action doWork() {
 //do some processing
 integer requestId := integer.getUnique();
 route RequestA(requestId,...);
 ResponseA ra;
 on ResponseA(id=requestId):ra doWork2(ra);
 }
 action doWork2(ResponseA ra) {
 //do some more processing
 integer requestId := integer.getUnique();
 route RequestB(requestId,...);
 Response rb;
 on ResponseB(id=requestId):rb doWork3(rb);
 }
 action doWork3(ResponseB rb) {
 //do yet more processing
 }
}

Writing echo monitors for debugging
A common practice is to write an echo monitor for debugging purposes. Typically, an
echo monitor listens for the same events as your production monitor and tracks various
behavior.

Writing an echo monitor is typically straightforward, but keep the following caveat in
mind. If your production monitor uses the unmatched keyword for a certain event, and
your echo monitor listens for the same event, and both monitors are in the same context,
your unmatched event listener will never trigger. This is because the event listener in
the echo monitor matches the event and this prevents the unmatched event listener from
ever triggering. The scope of an unmatched event listener is the context that it is in.

M
Even Header

Common EPL Patterns in Monitors

Developing Apama Applications Version 9.10 354

To avoid an unmatched event listener that never triggers, specify the completed
keyword in the event listener in the echo monitor. For example, suppose you have the
following code in your production monitor:
on all unmatched SubscribeDepth():subDepth {
 doSomething();
}

If you want to track SubscribeDepth events in your echo monitor, write the event
expression in the echo monitor as follows:
on all completed SubscribeDepth():subDepth {
 doSomethingElse();
}

The completed event listener in the echo monitor triggers after the correlator finishes
processing the unmatched event listener in the production monitor.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 355

10 Using Correlator Plug-ins in EPL

■ Overhead of using plug-ins .. 356

■ When to use plug-ins ... 356

■ When not to use plug-ins ... 356

■ Using the TimeFormat Event Library ... 357

■ Using the MemoryStore ... 365

■ Using the distributed MemoryStore ... 379

■ Using the Management interface ... 399

■ Using MATLAB® products in an application .. 403

■ Interfacing with user-defined correlator plug-ins .. 410

■ About the chunk type ... 411

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 356

In EPL programs (monitors and queries), you can use standard correlator plug-ins
provided with Apama and you can also use correlator plug-ins that you define yourself.
A correlator plug-in consists of an appropriately formaed library of C or C++ functions
that can be called from within EPL. The event correlator does not need to be modified to
enable or to integrate with a plug-in, as the plug-in loading process is transparent and
occurs dynamically when required.

To write custom correlator plug-ins, see "Developing Correlator Plug-ins" on page
717.

When using a plug-in, you can call the functions it contains directly from EPL,
passing EPL variables and literals as parameters, and geing return values that can be
manipulated.

Overhead of using plug-ins
The overhead when using correlator plug-ins is very small.

However, you do need to ensure that you do not block the correlator for a long period of
time. For example, you do not want to use a plug-in for doing extensive, synchronous,
time-consuming calculations.

If you need to perform a time-consuming operation, use asynchronous processing
and use the Apama client SDK to write a separate process that does the computations.
For example, the correlator might communicate with this external process by sending
ComputeRequest events on a particular channel and the process would respond by
sending ComputeResult events.

When to use plug-ins
A custom plug-in is a suitable solution in the following situations:

You have an in-house or third-party library of (possibly complex) C/C++ functions
that you want to re-use.

The operations you need to perform are more easily/efficiently performed using the
C/C++ language than using EPL. For example, you need to use data structures that
are not easily represented in EPL.

When not to use plug-ins
In general, when you can efficiently write the desired operation in EPL, an all-EPL
solution is preferable to one that involves custom-developed plug-ins. Apama customers
who experience problems with correlator stability when using custom-developed
plug-ins will be asked by Software AG Global Support to remove the plug-in and
reproduce the problem prior to being offered further technical help. Software AG Global
Support lifts this restriction only if the plug-ins have certification from Apama product
management.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 357

Using the TimeFormat Event Library
The TimeFormat event library uses the Time Format plug-in.

The TimeFormat event provides routines to obtain the current time and convert to or
from string representations of time.

Internally, the correlator expresses time as seconds since the Unix Epoc (1 Jan 1970,
midnight UTC) - this is the form of currentTime and is convenient for performing
arithmetic, such as differences between times. For more information on this variable, see
"currentTime" on page 912.

To convert from string form to float form, use a parseTime method. To convert from
float form to string form, use a format method. Both take a format String, which is a
string which describes the string form of the time. For more information, see "Format
specification for the TimeFormat functions" on page 359.

The parseTime method is available on the TimeFormat event directly. Or you can
pre-compile a paern and then perform parsing using the compiled paern. A
CompiledPattern object is obtained from the TimeFormat event using one of the
compilePattern methods (depending on which time zone the paern should use by
default). The CompiledPattern object can be stored in a monitor variable, as an instance
of an event or in a local variable and used by listeners. Re-using a CompiledPattern is
more efficient than calling one of the TimeFormat.parseTime methods as the format
String only needs to be read and compiled once. Calling parse on the TimeFormat event
is equivalent to passing the same format String to generate a CompiledPattern and
calling parse on that event. It is also possible to create multiple CompiledPattern events
if your application needs to use several different formats for time.

For example, the following will behave the same:
TimeFormat timeFmt := new TimeFormat;
timeFmt.parseTime(pattern, time);
timeFmt.compilePattern(pattern).parseTime(time);

There are also functions to obtain the current system time. getSystemTime() provides
an absolute time while getMicroTime() provides a high precision time, which is
suitable for high precision relative times (the absolute value of getMicroTime()
depends on the host operating system).

Paerns with textual elements operate by default in English, but will instead both
produce output and expect input in another language if that has been set in the
environment. For example, under Linux, if the correlator is running with the LC_ALL
environment variable set to "fr_FR", the format "EEEE dd MMMM yyyy G" produces
and expects "jeudi 01 janvier 1970 ap. J.-C." for time 0.0.

When you use the TimeFormat event library you can use the TZ environment variable to
select a particular locale to be used by the event library. Specify the value in either of the
following formats:
Continent /City
Ocean /Archipelago

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 358

For example: TZ=Europe/London. The alternative shortened format will not work
correctly. For example, TZ=GB will not be recognized. If you specify something like this,
Coordinated Universal Time (UTC) is used instead.

Note: For a list of time zones, see "Timezone ID Values" in the "Using Dashboard
Viewer" part of Building and Using Dashboards.

TimeFormat format functions
The format functions convert the time parameter to the local time and return that time
in the format you specify.

For usage information, see the API Reference for EPL (ApamaDoc).

TimeFormat parse functions
The parse functions parse the value contained by the timeDate parameter according to
the format passed in the format parameter or wrapped by the CompiledPattern.

All functions return the result as a float of seconds since the epoch.

For usage information, see the API Reference for EPL (ApamaDoc).

Notes

For all parse functions:

If the timeDate parameter specifies only a time, the date is assumed to be 1 January
1970 in the appropriate timezone. If the timeDate parameter specifies only a date,
the time is assumed to be the midnight that starts that day in the appropriate
timezone. Adding them together as seconds gives the right result.

If timeDate string specifies a time zone, and there is a matching z, Z, v, or V in the
format string, the time zone specified in the timeDate string takes precedence
over any other ways of specifying the time zone. For example, when you call
the parseUTC() or parseWithTimeZone() function, and you specify a time
zone or offset in the timeDate string, the time zone or offset specification in
the timeDate string overrides the time zone you specify as a parameter to the
parseWithTimeZone() function and the normal interpretation of times and dates as
UTC by the parseUTC() function.

Parsing behavior is undefined if the format string includes duplicate elements such
as "MM yyyy MMMM", has missing elements such as "MM", or it includes potentially
contradictory elements and is given contradictory input, for example, "Tuesday 3
January 1970" (it was actually a Saturday).

Dates before 1970 are represented by negative numbers.

Example

The following example returns 837007736:
timeFormat.parseTime("yyyy.MM.dd G 'at' HH:mm:ss", "1996.07.10 AD at 15:08:56")

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 359

See also "Midnight and noon" on page 365.

The following examples both parse the timeDate string as having a time zone of UTC
+0900.
timeFormat.parseWithTimeZone("DD.MM.YY Z", "01.01.70 +0900", "UTC");
timeFormat.parseUTC("DD.MM.YY Z", "01.01.70 +0900");

In the first example, the +0900 specification in the timeDate string overrides the
UTC specification for the time zone name parameter. In the second example, the
+0900 specification in the timeDate string overrides the UTC specified by calling the
parseUTC() function.

Format specification for the TimeFormat functions
The format and parse functions make use of the SimpleDateFormat class provided in
the International Components for Unicode libraries. SimpleDateFormat is a class for
formaing and parsing dates in a language-independent manner.

Pattern letters in format strings

The TimeFormat functions use the SimpleDateFormat class to transform between a
string that contains a time and/or date and a normalized representation of that time and/
or date. In this case, the normalized representation is the number of seconds since the
epoch.

For the operation to succeed, it is important to define the format string so that it exactly
represents the format of the time and/or date you provide as a string in the timeDate
parameter to a parse function, or expect to be returned from a format function. You
specify the format as a time paern. In this paern, all ASCII leers are reserved as
paern leers.

The number of paern leers determines the format as follows:

For paern leers that represent text

If you specify four or more leers, the SimpleDataFormat class transforms the
full form. For example, EEEE formats/parses Monday.

If you specify fewer than four leers, the SimpleDataFormat class transforms the
short or abbreviated form if it exists. For example, E, EE, and EEE each formats/
parses Mon.

For paern leers that represent numbers

Specify the minimum number of digits.

If necessary, SimpleDateFormat prepends zeros to shorter numbers to equal the
number of digits you specify. For example, m formats/parses 6, mm formats/parses
06.

Year is handled specially. If the count of y is 2, the year is truncated to 2 digits.
For example, yyyy formats/parses 1997, while yy formats/parses 97.

Unlike other fields, fractional seconds are padded on the right with zeros.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 360

For paern leers that can represent text or numbers

If you specify three or more leers, the SimpleDataFormat class transforms text.
For example, MMM formats/parses Jan, while MMMM formats/parses January.

If you specify one or two leers, the SimpleDataFormat class transforms a
number. For example, M formats/parses 1, and MM formats/parses for 01.

The following table provides the meaning of each leer you can specify in a paern.
After the table, there are a number of combined examples.

Descriptions of paern leers in format strings:

Symbol Meaning Presentation Example Sample Result

G Era designator Text G

G

AD

BC

y
(lowercase)

Year Number yy

yyyy

96

1996

Y
(uppercase)

Year for
indicating
which week
of the year.
Use with the
w symbol. See
"Week in year"
later in this
table.

Number See example
for "Week in
year".

u Extended year Number uuuu 5769

M Month in year Text or
Number

M

MM

MMM

MMMM

9

09

Sep

September

d Day in month Number d

dd

dd

7

07

25

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 361

Symbol Meaning Presentation Example Sample Result

h Hour in AM or
PM (1-12)

Number hh 05

H Hour in day
(0-23)

See also
"Midnight and
noon" on page
365.

Number H

HH

HH

0

05

14

m Minute in hour

See also
"Midnight and
noon" on page
365.

Number m

mm

mm

3

03

55

s Second in
minute

Number s

ss

ss

5

05

59

S Fractional
second

Number S

SS

SSS

2

20

200

E Day of week Text E

EE

EEE

EEEE

Fri

Fri

Fri

Friday

e Day of week
(1-7)

This is locale
dependent.
Typically,
Monday is 1.

Number e 4

D Day in year Number D

DD

7

07

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 362

Symbol Meaning Presentation Example Sample Result

DDD

DDD

007

123

F Day of
particular week
in month (1-7).
Use with W
(uppercase) for
week in month.
See "Week in
month" later in
this table.

Number See example
for "Week in
month".

w
(lowercase)

Week in year.
Use with
uppercase Y.

The week
that contains
January 1st is
week 1.

For example,
if a week starts
on Monday
and ends on
Sunday, and if
January 1st is
a Sunday, then
week 1 contains
December 26 -
31 plus January
1.

Number The first
example below
uses uppercase
Y. The second
example
shows the
difference
when you use
lowercase y.

"'Week' w
YYYY"

"'Week' w
yyyy"

Suppose
you are
transforming
December
31st, 2008,
which is a
Wednesday.

"Week 1
2009"

"Week 1
2008"

W
(uppercase)

Week in month.

The week that
contains the 1st
of the month is
week 1.

For example,
if a week starts
on Monday and
ends on Sunday,
and if July 1 is a

Number "'Day' F 'of
Week' W"

"Day 2 of
Week 3"

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 363

Symbol Meaning Presentation Example Sample Result
Friday (5), then
week 1 of July
contains June 27
- 30 and July 1 -
3.

a AM/PM marker Text a

a

AM

PM

k Hour in day
(1-24)

Number k

kk

kk

1

01

24

K Hour in AM/PM
(0-11)

Number K

KK

KK

0

07

11

z Time zone Text z Pacific
Standard
Time

Z Time zone (RFC
822)

Number Z -0800

v Generic time
zone

Text v Pacific
Time

V Time zone
abbreviation

Text V PT

VVVV Time zone
location

Text VVVV United
States (Los
Angeles)

g Julian day Number g 2451334

A Milliseconds in
day

Number A 69540000

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 364

Symbol Meaning Presentation Example Sample Result

' Escape for text Delimiter "'Week' w
YYYY"

"Week 1
2009"

'' Single quote Literal "KK
'o''clock'"

"11
o'clock"

Any character in the format paern that is not in the range of ['a'..'z'] or ['A'..'Z'] is
treated as quoted text. For example, the following characters can be in a timeDate string
without being enclosed in quotation marks:

:
.
,
#
@

A paern that contains an invalid paern leer results in a -1 return value.

The following table gives examples that assume the US locale:

Format pattern Suitable timeDate string

yyyy.MM.dd G 'at' HH:mm:ss
z

1996.07.10 AD at 15:08:56 PDT

EEE, MMM d, ''yy Wed, July 10, '96

h:mm a 12:08 PM

hh 'o''clock' a, zzzz 12 o'clock PM, Pacific Daylight
Time

K:mm a, z 0:00 PM, PST

yyyyy.MMMMM.dd GGG hh:mm
aaa

1996.July.10 AD 12:08 PM

When parsing a date string using the abbreviated year paern (y or yy),
SimpleDateFormat (and hence all parse functions) must interpret the abbreviated year
relative to some century. It does this by adjusting dates to be within 79 years before and
19 years after the time the SimpleDateFormat instance is created. For example, using
a paern of MM/dd/yy and a SimpleDateFormat instance created on Jan 1, 1997, the
string 01/11/12 would be interpreted as Jan 11, 2012 while the string 05/04/64 would
be interpreted as May 4, 1964. During parsing, only strings consisting of exactly two

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 365

digits, as defined by Unicode::isDigit(), will be parsed into the default century. Any
other numeric string, such as a one digit string, a three or more digit string, or a two
digit string that is not all digits (for example, -1), is interpreted literally. So 01/02/3 or
01/02/003 are parsed, using the same paern, as Jan 2, 3 A.D. Likewise, 01/02/-3 is
parsed as Jan 2, 4 B.C. Behavior is undefined if you specify a two-digit date that might
be either twenty years in the future or eighty years in the past.

If the year paern has more than two y characters, the year is interpreted literally,
regardless of the number of digits. So using the paern MM/dd/yyyy, 01/11/12 parses to
Jan 11, 12 A.D.

When numeric fields abut one another directly, with no intervening delimiter characters,
they constitute a run of abuing numeric fields. Such runs are parsed specially. For
example, the format HHmmss parses the input text 123456 to 12:34:56, parses the input
text 12345 to 1:23:45, and fails to parse 1234. In other words, the leftmost field of the run
is flexible, while the others keep a fixed width. If the parse fails anywhere in the run,
then the leftmost field is shortened by one character, and the entire run is parsed again.
This is repeated until either the parse succeeds or the leftmost field is one character in
length. If the parse still fails at that point, the parse of the run fails.

For time zones that have no names, SimpleDateFormat uses strings GMT
+hours:minutes or GMT-hours:minutes.

The calendar defines what is the first day of the week, the first week of the year, whether
hours are zero based or not (0 vs. 12 or 24), and the time zone. There is one common
number format to handle all the numbers; the digit count is handled programmatically
according to the paern.

Midnight and noon

The format "HH:mm" parses "24:00" as midnight that ends the day. Given the formal
"hh:mm a", both "00:00 am" and "12:00 am" parse as the midnight that begins the
day. Note that "00:00 pm" and "12:00 pm" are both midday.

Using the MemoryStore
The MemoryStore provides an in-memory, table-based, data storage abstraction within
the correlator. All EPL code running in the correlator in any context can access the data
stored by the MemoryStore. In other words, all EPL monitors running in the correlator
have access to the same data.

The Apama MemoryStore can also be used in a distributed fashion to provide access to
data stored in a MemoryStore to applications running in a cluster of multiple correlators.
For more information on the distributed MemoryStore, see "Using the distributed
MemoryStore" on page 379.

The MemoryStore can also store data on disk to make it persistent, and copy persistent
data back into memory. However, the MemoryStore is primarily intended to provide all
monitors in the correlator with in-memory access to the same data.

Use the MemoryStore to share data among monitors in the correlator or to persist
data on disk. If the situations listed below apply to you, the standard Apama ADBC

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 366

(Apama Database Connector) adapter is likely to be a beer option for you than the
MemoryStore.

You want to interoperate directly with data users other than Apama.

You need access to more data than can fit in memory.

You need to key on more than one field.

You want to join tables.

See also "Using the MemoryStore when persistence is enabled" on page 341.

See "Using the Apama Database Connector" in Connecting Apama Applications to External
Components.

For details about the event types that provide the MemoryStore interface, see the API
Reference for EPL (ApamaDoc).

Introduction to using the MemoryStore
Data that the MemoryStore stores must be one of the following types: boolean, float,
integer or string.

To use the MemoryStore, you add the MemoryStore Plugin bundle to your Apama project.
This lets you create instances of MemoryStore events and then call actions on those
events. Available actions include the following:

Creating stores that contain tables

Defining the schema for the rows in a table

Creating tables and associating a schema with each table

Storing, retrieving, updating, and commiing rows of data

Copying tables to disk to make the data persistent

Making stored data available in data views for use by dashboards

You can use the MemoryStore in parallel applications. You can use the MemoryStore in
a persistent monitor in a persistence-enabled correlator. See "Using the MemoryStore
when persistence is enabled" on page 341.

For information on using the MemoryStore in a distributed fashion, see "Using the
distributed MemoryStore" on page 379.

Overview of MemoryStore events
The MemoryStore defines the following events in the com.apama.memorystore package.
Most of these events contain action fields that serve as the MemoryStore interface.

Storage — The event type that provides the interface for creating stores.

Store — A Store event represents a container for a uniquely named collection of
tables.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 367

Table — A Table event represents a table in a store. A table is a collection of rows.
Each table has a unique name within the store. A table resides in memory and you
can store it on disk if you want to.

Schema — A Schema event specifies a set of fields and the type of each field. Each
Schema event represents the schema for one or more tables. Each table is associated
with one schema. All rows in that table match the table's schema.

Row — A Row event represents a row in a table. A row is an ordered and typed set of
named fields that match the schema associated with the table that the row belongs
to. Each row is associated with a string that acts as its key within the table. You can
change the values of the fields in a row.

Iterator — Provides the ability to manipulate each row of a table in turn.

Finished — The MemoryStore enqueues a Finished event when processing of an
asynchronous action is complete.

RowChanged — The RowChanged event is used only in a distributed store. In
a distributed store, the RowChanged event is sent to all applications that have
subscribed to a specific table whenever changes to data in a row in that table have
been successfully commied. This behavior is optional and is supported by some,
but not all, third-party distributed cache providers.

For details about these events, see the ApamaDoc documentation for MemoryStore.

Adding the MemoryStore bundle to your project
To use the MemoryStore, you need only add the MemoryStore bundle to your project as
described below.

Note: To use the distributed MemoryStore, you add the Distributed MemoryStore
adapter instead. The procedure for this is different and is described in
"Adding distributed MemoryStore support to a project" on page 384.

Adding the MemoryStore bundle to your project makes the MemoryStore.mon file
available to the monitors in your project. When you run your project, Software AG
Designer automatically injects MemoryStore.mon. If you want to examine this file, it
is in the monitors/data_storage directory of your Apama installation directory.
MemoryStore.mon is the interface between the monitors in your application and the
MemoryStore plug-in. Your application creates events of the types defined in that file
and calls actions on those events to use the MemoryStore's facilities. There is never any
need to import or call the plug-in directly.

Note: If you use the engine_inject utility to manually inject your EPL, instead of
using Software AG Designer, and you want to expose MemoryStore tables to
dashboards, you need to inject the MemoryStoreScenarioImpl.mon monitor,
which is in the same directory as the MemoryStore.mon file.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 368

To add the MemoryStore bundle

1. In Software AG Designer, open the project in the Apama Developer perspective.

2. In the Project Explorer, right-click the project name and select Apama > Add Bundle from
the context menu. The Add Bundle dialog is displayed.

3. In the Add Bundle dialog, select The MemoryStore bundle and click OK.

Steps for using the MemoryStore
To use the MemoryStore, you must first add the MemoryStore bundle to your
project, unless you are using the distributed MemoryStore. (If you are using the
distributed MemoryStore, instead of adding the MemoryStore bundle, you need to
add the Distributed MemoryStore adapter. For more information on this, see "Adding
distributed MemoryStore support to a project" on page 384.) After you add the
MemoryStore bundle, you write EPL that does the following:

1. Prepare and then open a store that will contain one or more tables.

2. Define the data schema for the rows that will belong to the table.

3. Prepare and then open a table in a store.

4. For applications that will access data in a distributed store, if the underlying third-
party distributed cache provider supports notifications, optionally subscribe to
the table in order to receive notifications when data has changed. For see further
information, "Notifications" on page 387.

5. Get a new or existing row from the table.

6. Modify the row.

7. Commit the modified row to the table.

8. Repeat the three previous steps as often as needed.

9. Optionally, use an iterator to step through all rows in the table.

10. Optionally, store the in-memory table on disk.

Preparing and opening stores

The first step for storing data in memory is to create an instance of a Storage event. You
use the Storage event to prepare and open a store to which you can add tables. Storage
events define actions that do the following:

Request preparation of a store.

Open a store that has been prepared.

Storage events contain no data. All Storage events are alike and exist only to provide
the interface for preparing and opening stores.

If you do not require on-disk persistence, you can prepare a store in memory. If you do
require on-disk persistence, you can specify the file that contains (or that you want to

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 369

contain) the store. Depending on the action you call to open the store, the MemoryStore
does one of the following:

Opens the store for read-write access.

Opens the store for read-only access.

Opens the store for read-write access. Create the store if it does not already exist.

Preparation of stores is asynchronous. Actions that prepare stores return an ID
immediately. When the MemoryStore completes preparation it enqueues a Finished
event that contains this ID. You should define an event listener for this Finished event.
The Finished event indicates whether or not preparation was successful.

You can open a store only after receiving a Finished event that indicates successful
preparation.

For example, the following code fragment declares a Storage type variable and a Store
type variable. It then calls the prepareOrCreate() action on the Storage type variable
and saves the returned ID in the Store type variable. The name of the new store is
storename and the store will be made persistent by saving it in the example.dat file.
Finally, this code fragment declares a Finished event variable and an event listener for a
Finished event whose ID matches the ID returned by the preparation request.
using com.apama.memorystore.Storage;
using com.apama.memorystore.Store;
using com.apama.memorystore.Finished;

monitor Test {
 Storage storage;
 Store store;

 action onload() {
 integer id := storage.prepareOrCreate("storename", "/tmp/example.dat");
 Finished f;
 on Finished(id,*,*):f
 onStorePrepared(f);
 ...
 }
}

After a store has been successfully prepared, you can open it:
action onStorePrepared(Finished f) {
 if not f.success then { log "Whoops"; die; }
 store := storage.open("storename");

All subsequent examples assume that the appropriate using statements have been
added.

Any monitor instance can open a store after that store has been successfully prepared.
However, monitor A has no information about whether or not monitor B has prepared a
particular store.

Therefore, each monitor should prepare any store it needs, and then prepare any tables
it needs within that store. There is no way to pass Store or Table events from one
monitor to another. Multiple monitors can prepare and open the same store or table at
the same time.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 370

There are several different actions available for preparing a store:

Storage.prepareInMemory(string name) returns integer prepares an in-
memory store with the name you specify. All tables are empty when prepared for
the first time. Persistence requests are ignored and immediately return a successful
Finished event.

Storage.prepare(string name, string filename) returns integer does the
same thing as Storage.prepareInMemory and it also associates that store with the
database file you specify. If there is data in the database file the MemoryStore loads
the store with the data from the file when you prepare a table. Persistence requests
write changes back to the file. The specified file must exist.

Storage.prepareOrCreate(string name, string filename) returns integer
does the same thing as Storage.prepare() except that it creates the file if it does
not already exist.

Storage.prepareReadOnly(string name, string filename) returns integer
does the same thing as Storage.prepare and it also opens for read-only access the
database file you specify. The MemoryStore will load the store with data from the
file when you prepare the table. Persistence requests are refused and return a failure
Finished event

Storage.prepareCorrelatorPersistent(string name) returns integer
prepares a store that the correlator automatically persists. Each time the correlator
takes a snapshot, the snapshot includes any correlator-persistent stores along with
the contents of those stores.

Storage.prepareDistributed(string name) returns integer prepares a
distributed store which will be available to applications running in a cluster of
correlators. The name argument is a unique identifier that specifies the name of a
configured distributed store. For information on adding a distributed store to a
project, see "Adding a distributed store" on page 385.

Suppose a monitor instance calls one of the Storage.prepare() actions and
the action is successful. Now suppose another monitor instance calls the same
Storage.prepare() variant with the same table name and, if applicable, the same
filename, as the previously successful call. The second call does nothing and indicates
success immediately. However, if a monitor instance makes a Storage.prepare() call
and specifies the same table name as was specified in a previously successful prepare()
call, that call fails immediately if at least one of the following is different from the
successful call:

The variant of the prepare() action called

The specified file name or store name (if applicable)

For example, suppose a monitor made the following successful call:
Storage.prepare("foo", "/tmp/foo.dat")

After this call, the only prepare call that can successfully prepare the same table is
Storage.prepare("foo", "/tmp/foo.dat")

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 371

The following calls would all fail:
Storage.prepareInMemory("foo")
Storage.prepareOrCreate("foo", "/tmp/foo.dat")
Storage.prepareReadOnly("foo", "/tmp/foo.dat")
Storage.prepare("foo", "/tmp/bar.dat")

If a monitor makes a call to prepare() that matches a prepare action that is in progress,
the result is the same as the result of the prepare that is in progress.

Description of row structures

A schema consists of an ordered list of the names and types of fields that define the
structure of a row. For example, the following schema consists of one field whose name
is times_run and whose type is integer:
Schema schema := new Schema;
schema.fields := ["times_run"];
schema.types := ["integer"];

The Schema event has additional members that indicate how to publish the table. See
"Exposing in-memory or persistent data to dashboards" on page 378.

The schema does not include the row's key. The key is always a string and it does not
have a name. Each row in a table is associated with a key that is unique within the table.
The key provides a handle for obtaining a particular row. The row does not contain the
key.

Two schemas match when they list the same set of field names and types in the same
order and choose the same options for exposing dataviews.

Table events define actions that do the following:

Retrieve a row by key. The returned object is a Row event.

Remove a row by key

Remove all rows

Obtain a sequence of keys for all rows in the table

Obtain an iterator to iterate over the rows in the table

Determine if any row in the table has a particular key

Store on disk the changes to the in-memory table

Subscribe (and unsubscribe) to a table to be notified when a row has changed. (Note,
this is only supported for tables in a distributed store, and only if the underlying
provider supports this feature.)

Modify a row by key

Modify all rows

Obtain the position in a schema of a specified field.

Obtain the name of the table

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 372

Obtain the name of the store that contains the table

For details about these Table event actions, see the MemoryStore ApamaDoc at
APAMA_HOME\doc\ApamaDoc\index.html.

Retrieval of a row from a table by key always succeeds (although retrieving a row from
a table in a distributed store can throw an exception). If the row already exists, the
MemoryStore returns a Row event that provides a local copy of the row. The content of
this Row event does not change if another user modifies the in-memory version of the
row in the table. If the row does not already exist, the MemoryStore populates a Row
event with default values and returns that with field values as follows:

boolean types are false

float types are 0.0

integer types are 0

string types are empty ("")

Row events define actions that do the following:

Get and set boolean, float, integer, and string fields by name. These actions
modify only the local copy (your Row event) and not the in-memory version of the
row. The in-memory version of the row is available to all monitors. If another user
of the table retrieves the same row, that user receives a Row event that contains a
copy of the in-memory version of the row; that user does not receive a copy of your
modified, local version of the row.

Commit a modified Row event. That is, you modify your local Row event, and commit
the changes, which updates the shared row in the table. This makes the update
available to all monitors.

Get the value of a row's key.

Determine whether a row was present in the table when the local copy was
provided.

Obtain the name of the table the row is in.

Obtain the name of the store the row's table is in.

The Row.commit() action modifies only the in-memory copy of the row so it is a
synchronous and non-blocking operation. Note, in a distributed store, Row.commit()
writes the value to the distributed store, which may be a fast, local operation or it may
involve writing data to one or more remote nodes. If any other user of the table modifies
the in-memory row between the time you obtain a Row event that represents that row
and the time you try to commit your changes to your Row event, the Row.commit()
action fails and the monitor instance that called Row.commit() dies. Therefore, if you
are sharing the table with other users or using a distributed store, you should call
Row.tryCommit() instead of Row.commit(). If it fails you must retry the commit
operation by retrieving the row again (that is, obtaining a new Row event that contains
the latest content of the in-memory row), reapplying the changes, and then calling the

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 373

Row.tryCommit() action. This ensures that you always make changes that are consistent
and atomic within the shared version of the row.

However, it is not possible to make atomicity guarantees across rows or tables.

Preparing and opening tables

After you have an open store, you can add one or more tables to that store. You call
actions on Store events to create tables. Store events define actions that do the
following:

Prepare a table. You specify a table name and a schema. This call is asynchronous.
The MemoryStore enqueues a Finished event that indicates success or failure. If the
table does not exist, the MemoryStore creates an empty table.

Open a table that has been prepared

Store on disk the in-memory changes to tables.

If the store that contains the table is persistent and the table exists on disk then the on-
disk schema must match the schema that you specify when you call the action to prepare
the table. The schemas must also match if the table is a distributed table that already
exists in a distributed store. If the schemas do not match, the Finished event that the
MemoryStore enqueues includes an error message.

Note: A persistent table can be an on-disk table or a table in a correlator-persistent
store.

If a monitor instance calls Store.prepare() with the same table name and schema
as those of a previously successful Store.prepare() call, the call does nothing and
indicates success immediately. If a monitor instance calls Store.prepare() and
specifies the same table name but the schema does not exactly match, that call fails
immediately. If a monitor makes a call to Store.prepare() that matches a preparation
that is in progress, the result is the same as the result of the preparation that is in
progress.

If the table you want to prepare is persistent and it has not yet been loaded into memory
then the MemoryStore loads the table's on-disk data into memory in its entirety. The
MemoryStore enqueues the Finished event when loading the table is complete.

To use a table that is in memory, you must retrieve a handle to it from the store that
contains it. Obtaining a handle to a prepared (loaded) table is a synchronous action that
completes immediately and does not block. The calling monitor instance dies if you
try to obtain a handle to a table that is not prepared or that is in the process of being
prepared.

For example:
integer id := store.prepare("tablename", schema);
on Finished(id,*,*):f onTablePrepared(f);

action onTablePrepared(Finished f) {
 if not f.success then { log "Whoops"; die; }
 Table tbl := store.open("tablename");

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 374

Note: The term "table" is a reserved keyword. Consequently, you should not use
"table" as a variable name.

Preparation of a table can fail for a number of reasons including, but not limited to, the
following:

You call prepare() on an existing table and the schema of that table and the schema
specified in the prepare() call do not match.

You call prepare() on an existing in-memory table and the exposePersistentView
seing is true for the schema you specify in the prepare() call.

You call prepare() on a table that does not exist and the store has been opened
read-only.

You call prepare() on a table that does not exist in a persistent store and the aempt
to create a new table in the persistent store fails, perhaps because the disk is full.

The on-disk version of the table is corrupt in some way.

You set exposePersistentView on a table in a correlator-persistent store.

You set exposeMemoryView or exposePersistentView to true for a distributed
store .

The third-party distributed store implementation throws an exception for some
reason such as unrecoverable network failure.

Using transactions to manipulate rows

In a monitor, any changes you make to Row events are local until you commit those
changes. In other words, any changes you make actually modify the Row events that
represent the in-memory rows. After you commit the changes you have made to your
Row events, the updated in-memory rows are available to all monitors in the correlator
and to all other members of the distributed cluster if you are using a distributed store.

Note: When you modify a Row event and you want to update the actual row with
your changes, you must commit your changes. It does not maer whether or
not the table is in a correlator-persistent store.

The Row event defines the following actions for commiing changes:

Row.commit() —Tries to commit changes to Row events to the in-memory table. If
nothing else modified the in-memory row in the table since you obtained the Row
event that represents that row the MemoryStore commits the changes and returns.
The update is available to all monitors. If the in-memory row in the table has been
modified, the monitor instance that called this action dies, leaving the in-memory
table unchanged.

Row.tryCommit() — Behaves like commit() except that it does not kill the monitor
instance upon failure. If the in-memory row in the table has been modified, this
action returns false and leaves the in-memory table unchanged. If this action is
successful, it returns true.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 375

Row.tryCommitOrUpdate() — Behaves like tryCommit() except that when it
returns false it also updates your local Row event to reflect the current state of the in-
memory row. In other words, if the in-memory row has been modified, this action
does the following:

Leaves the in-memory row unchanged.

Updates the local Row event that represents this row to reflect the current state of
the table. Any local, uncommied modifications are lost.

Returns false.

Determining which commit action to call

If you are certain that you are the only user of a table and if it is okay for your monitor
instance to be killed if you are wrong, you can use commit().

If you want to use a simple loop like the one below, or if you intend to give up if your
aempt to commit fails, then use tryCommit().
boolean done := false;
while not done {
 Row row := tbl.get("foo");
 row.setInteger("a",123);
 done := row.tryCommit();
}

However, the loop above calls tbl.get() every time around. If you think there might be
a high collision rate, it is worth optimising to the following, more efficient design:
Row row := tbl.get("foo");
boolean done := false;
while not done {
 row.setInteger("a",123);
 done := row.tryCommit();
 if not done then { row.update(); }
}

The row.tryCommitOrUpdate() action makes the example above a lile simpler and
considerably more efficient:
Row row := tbl.get("foo");
boolean done := false;
while not done {
 row.setInteger("a",123);
 done := row.tryCommitOrUpdate();
}

Alternatively, there is a packaged form of that loop that you might find more
convenient:
action doSomeStuff(Row row) {
 row.setInteger("a",123);
}
tbl.mutate("foo", doSomeStuff);

This example is equivalent to the previous one, both in behavior and performance.
Which to use is a maer of context, style and personal preference.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 376

Creating and removing rows

To create a row in a table, call the get() or add() action on the table to which you want
to add the row. The action declaration for the get() action is as follows:
action get(string key) returns Row

The Table.get() action returns a Row event that represents the row in the table that has
the specified key. If there is no row with the specified key, this action returns a Row event
that represents a row that contains default values. A call to the Row.inTable() action
returns false. For example:
boolean done := false;
integer n := -1;
while not done {
 Row row := tbl.get("example-row");
 n := row.getInteger("times_run");
 row.setInteger("times_run", n+1);
 done := row.tryCommit();
}
send Result(
 "This example has been run " +n.toString() +" time(s) before")
 to "output";

The add() action does the same as the get() action, except that it does not check if
the row that is to be added already exists in the table until commit() is called and it
therefore never throws an exception. If you are sure that the row does not yet exist, you
can use add() as this is faster than get().

To remove a row from a table, call the Table.remove() action on the table that contains
the row. The action declaration is as follows:
action remove(string key)

The Table.remove() action removes the row with the specified key from the table. If
the row does not exist, this action does nothing.

It is also possible to remove a row transactionally, by calling Table.get() and then
Row.remove() and Row.commit(). This strategy lets you check the row's state before
removal. The Row.commit() action fails if the shared, in-memory row has been updated
since the Table.get() action.

In some circumstances, using Row.remove() is essential to guarantee correctness. For
example, when decrementing a usage counter in the row and removing the row when
the count reaches zero. Otherwise, another correlator context might re-increment the
count between it reaching zero and the row being removed.

Iterating over the rows in a table

Iterators have operations to step through the table and determine when the end has been
reached. Provided an iterator is not at the table's end, the key it is at can be obtained.

Iterator events define actions that do the following:

Step through the rows in a table.

Determine when the last row has been reached.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 377

Obtain the key of the row that the iterator is at. The iterator must not be at the end of
the table for this action to be successful.

Obtain a Row event to represent the row that the iterator is at.

The following sample code reads table content:
Iterator i := tbl.begin();
while not i.done() {
 Row row := i.getRow();
 if row.inTable() then {
 // Put code here to read the row in the way you want.
 }
 i.step();
}

The following sample code modifies table content:
Iterator i := tbl.begin();
while not i.done() {
 Row row := i.getRow();
 boolean done := false;
 while row.inTable() and not done {
 // Put code here to modify the row in the way you want.
 done := row.tryCommitOrUpdate();
 }
 i.step();
}

Iterating through a table is always safe, regardless of what other threads are doing.
However, if another context adds or removes a row while you are iterating in your
context, it is undefined whether your iterator will see that row.

Furthermore, it is possible for another context to remove a row while your iterator is
pointing at it. If this happens, a subsequent Iterator.getRow() returns a Row event
that represents a row for which Row.inTable() is false.

If an EPL action loops, the correlator cannot perform garbage collection within that loop.
(See "Optimizing EPL programs" on page 422.) Performing intricate manipulations
on many rows of a large table could therefore create so many transitory objects that the
correlator runs out of memory. If this becomes a problem, you can divide very large
tasks into smaller pieces, each of which is performed in response to a routed event. This
gives the correlator an opportunity to collect garbage between delivering successive
events.

Requesting persistence

After changing a MemoryStore table, you can call the Table.persist() action to
store the changes on disk. Note that you can call persist() only on tables in an on-
disk store; you cannot call persist() on tables in correlator-persistent, in-memory, or
distributed stores. The correlator automatically persists correlator-persistent stores and
their contents at the same time as the rest of the correlator runtime state. Updating a
table on disk is an asynchronous action. The MemoryStore enqueues a Finished event
to indicate success or failure of this action. The persistent form of the database that
contains the tables is transactional. Consequently, if there is a hardware failure either all
of the grouped changes are made or none of them are made.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 378

Following is an example of storing a table on disk:
integer id := tbl.persist();
on Finished(id,*,*):f onPersisted(f);

action onPersisted(Finished f) {
 if not f.success then { log "Whoops"; die; }
 emit "All OK";

When you update a table, the MemoryStore copies only the changes to the on-disk table.

To improve performance, the MemoryStore might group persistence requests from
multiple users of a particular store. This means that calling persist() many times in
rapid succession is efficient, but this does not affect correctness. If the MemoryStore
indicates success, you can be certain that the state at the time of the persist() call (or at
the time of some later persist() call) is on disk.

You can call the Store.backup() action to backup the on-disk form of a store while it is
open for use by the correlator. This is an asynchronous action that immediately returns
an ID. The MemoryStore enqueues a Finished event that contains this ID to indicate
success or failure of this action. Be sure to define an event listener for this event.

Exposing in-memory or persistent data to dashboards
You can expose commied in-memory data or commied persistent data as DataViews
for use by dashboards. Note, however that is not supported for distributed stores. The
Schema event defines the following fields for this purpose:

exposeMemoryView — When this field is true, the MemoryStore makes the rows
in the in-memory table associated with this schema available to Apama's scenario
service. That is, the MemoryStore creates DataViews that contain this data.

exposePersistentView — When this field is true, the MemoryStore makes the
rows in the on-disk table associated with this schema available to Apama's scenario
service. That is, the MemoryStore creates DataViews that contain this data. You
cannot expose a persistent view of a table in a correlator-persistent store.

memoryViewDisplayName — Specifies the display name for the exposed DataView
created from the in-memory table.

memoryViewDescription —Specifies the description for the exposed DataView
created from the in-memory table.

persistentViewDisplayName — Specifies the display name for the exposed
DataView created from the on-disk table.

persistentViewDescription — Specifies the description for the exposed DataView
created from the on-disk table.

The MemoryStore exposes in-memory changes after successfully commiing them to the
table. The MemoryStore exposes on-disk changes after the transaction that contains the
changes is commied.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 379

The exposeMemoryView and exposePersistentView fields have an impact on the time
it takes to prepare a table for the first time. When a table is prepared the rows that are
loaded from disk need to be reflected to the Scenario Service.

If you prepare the same table multiple times the display names and descriptions must
match or the MemoryStore rejects the contradicting request.

When a display name or description field is blank (an empty string), the MemoryStore
chooses the display name or the description for the exposed DataView. You can specify a
non-empty string for one or more fields to override the default. Leave the display name
and description fields blank when you are not exposing the corresponding DataView.

The fields of the exposed views are the same as those of the table, in the same order as
they are defined in the table schema. The key is not part of the exposed views. Each row
in the table forms a single exposed view.

See "Making Application Data Available to Clients" on page 413. See also: Building
and Using Dashboards.

Restrictions affecting MemoryStore disk files
At any one time, only one correlator should be accessing a particular MemoryStore disk
file.

To minimize the risk of data corruption in the event of a system failure, keep
MemoryStore files on your local disk and not on a remote file server.

Do not create hard or symbolic links to MemoryStore files. Linking to the directory that
contains a MemoryStore file is not a problem.

Using the distributed MemoryStore
The topics below describe Apama's distributed MemoryStore. With a distributed
MemoryStore you can access data shared among Apama applications running in
separate correlators. Distributed stores make use of distributed caching software from
a variety of third-party vendors. The topics below describe typical use cases for the
distributed MemoryStore, how to add and configure distributed stores, and how to
write drivers for integrating with third party caching software.

Note: If a license file cannot be found, the correlator refuses to start if a distributed
MemoryStore is enabled. See "Running Apama without a license file" in
Introduction to Apama.

Overview of the distributed MemoryStore
The MemoryStore supports several types of stores as described in "Using the
MemoryStore" on page 365. In addition to those stores that are local to a single
Apama process, Apama also supports a distributed store in which data can be accessed
by applications running in multiple correlators. You prepare a distributed store with a

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 380

prepareDistributed call on a Storage object. When this sends a Finished event with
success set to true, the Store can be opened, and Table objects created.

A distributed store makes use of Terracoa's BigMemory Max or a third party
distributed cache or datagrid technology that stores the data (table contents) in memory
across a number of processes (nodes), typically across a number of machines. The
collection of nodes is termed a cluster.

Advantages

Arranging a number of nodes into a cluster provides the following advantages:

It is possible to store more data than would fit on one node.

As the data is in memory, a distributed store is typically faster than persisting the
store contents to disk.

Every piece of data is typically stored on more than one node, so the failure of any
one node should not cause the loss of any commied data.

If a node fails, other nodes can access any of the data without waiting to 'recover' or
reload the entire datastore. Note, however, that it may take time to detect that the
failed node is down.

The number of correlators can be changed at runtime, allowing the processing
capacity of the system to be increased.

Different providers can be used, allowing a single Apama application to integrate
with different distributed caches. However, each provider must have a driver.
Apama provides a Service Programming Interface (SPI) with which you can write a
custom driver.

Data is accessible to multiple correlators; if they distribute workload appropriately,
more processing capacity can use the same shared store of data. A distributed store
is a building block for such a system, not a complete solution in itself.

Applications can be notified of changes to data in the store; see "Notifications" on
page 387.

Disadvantages

A distributed store has the following disadvantages compared with the other types of
store:

A network request may be required to get or commit any Row; this is slower than the
in-process local-memory get and commit requests made against local stores.

The network request may fail because either more than one node has failed, or there
is a network failure such that the correlator cannot contact other nodes in the cluster.

Multiple access to a single row will cause contention and will not scale (and will be
slower than an in-memory store).

It is not permied to expose dataviews with a distributed store. A distributed store
may contain a very large number of entries, which would not be practical to expose

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 381

as dataviews (as it requires storing a copy of the entire table in the dashboards/
scenario service client).

Use cases

Based on the advantages and disadvantages of distributed stores, the typical use cases
for using them are:

Requires more data to be stored than will fit on any single node.

Elastic (changing) processing capacity required.

Highly available system needs continuous access to data, even if some nodes fail,
and with minimal recovery time.

High throughput across a large number of different rows, with only a small amount
of contention for a single row.

The typical use cases where a distributed store is not suitable:

Very low latency (sub-millisecond) access to data.

Very high throughput (>10,000 requests/second) to a single row - the distributed
store only scales out well if different rows are being accessed.

Supported providers

Apama includes a driver for connecting to Terracoa BigMemory Max, which provides
unlimited in-memory data management across distributed servers. See "BigMemory
Max driver specific details" on page 391 for using the BigMemory Max driver.

Apama also provides an interface to integrate with third-party distributed
caching software that provides compare-and-swap operations for adding,
updating, and removing data. For example, software that provides
methods similar to the putIfAbsent, replace, and remove operations on
java.util.concurrent.ConcurrentMap.

For other distributed cache providers, you need to write a driver using the Apama
Service Provider Interface (SPI) to serve as a bridge between the MemoryStore and
the caching software. For information on creating a driver, see "Creating a distributed
MemoryStore driver" on page 397.

Configuration

In order to use a distributed memory store, a set of configuration files must be created
in your project and provided to the correlator. These configuration files typically come
in pairs, a .properties and -spring.xml. Multiple pairs of files can be created and can
make use of more than one distributed cache provider. See "Configuring a distributed
store" on page 385.

Distributed store transactional and data safety guarantees

The commit() action on a Row object from a distributed store by default behaves
similarly to an in-memory store's Row object, in that the commit succeeds only if there

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 382

have been no commits to the Row object since the most recent get() or update() of the
Row object.

However, providers can be configured differently. For example, if using BigMemory
Max, and the .properties specifies useCompareAndSwap as false then the commit will
always succeed, even if another monitor commied a different value for that entry.

Unlike in-memory stores, for Row objects from a distributed store, a Table.get() or
Row.update() may return an older value, that is, a previously commied value, even if
a more recent commit has completed. This is because a distributed store may perform
caching of data. After some undefined time, the get() should be eventually consistent
- a later get() or update() of the Row object should retrieve the latest value. Typically,
a commit of a Row object where the get() has not retrieved the latest value will flush
any local cache of the value, thus the first commit will fail, but a subsequent update and
commit will succeed.

Again, providers can be configured differently. For the BigMemory Max driver, seing
the terracottaConfiguration.consistency property to STRONG will ensure that
after a commit(), a get() on any node will retrieve the latest version. This STRONG
consistency mode is more expensive than EVENTUAL consistency.

An example: Monitor1 gets and modifies a row and sends an EPL event to Monitor2
which in response to the event gets and updates the row. In the table below, the event
has "overtaken" the change to the row; the effects of changing the row and sending the
event are observed in the reverse order (the event is seen before the change to the row).

Time Monitor1 (on node 1) Monitor2 (on node 2)

1 Table.get("row1") =
"abc"

1.2 Change row to be "abcdef" Table.get("row1") = "abc"
(cached locally)

1.3 Row.commit("row1" as
"abcdef") succeeds

1.301 Send event to Host 2

1.302 Receive event from Host 1

1.303 Table.get("row1") = "abc"
from local cache)

1.4 Update row to be "abcghi"

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 383

Time Monitor1 (on node 1) Monitor2 (on node 2)

1.5 Row.commit("row1 as
"abcghi") fails (not last value)

1.6 Row.update() = "abcdef"

1.7 Update row to be "abcdefghi"

1.8 Row.commit("row1" as
"abcdefghi") succeeds

At 1.303, an in-memory cache (when two contexts are communicating in the same
process) would be guaranteed to retrieve the latest value, "abcdef" - but a distributed
store may cache values locally. The commit is guaranteed to fail when a stale value is
read, as it does not rely on cached values for checking whether the row is up to date or
not.

Using a distributed store

Distributed stores make use of Java Distributed cache technologies (the specific
technologies depend on the driver you select). When you start a correlator with the
--distMemStoreConfig option (enabled automatically if you use the Software AG
Designer to add a Distributed MemoryStoretore configuration to your Apama project),
the correlator automatically starts with an embedded Java virtual machine. This JVM
is shared by any Apama applications using a distributed MemoryStore or correlator-
integrated messaging for JMS and any Apama JMon applications.

A distributed store is defined by a bean in a Spring XML configuration file. The bean
specifies the properties that configure the distributed store and the bean's name, which
is the name of the store. When an Apama application prepares a distributed store,
using the prepareDistributed() action, it supplies the name of the bean. For more
information on properties used in the configuration file, see "Configuring a distributed
store" on page 385 and "Configuration files for distributed stores" on page 387.

Depending on the distributed cache provider you select, the data may be stored in the
Java heap. If so, you may need to set an appropriate size for the Java heap, for example,
by specifying -J-Xmx2048M (to specify a 2GB heap) on the command line that starts the
correlator. If you are using BigMemory Max off-heap data, you may need to supply
a -J-XX:MaxDirectoryMemorySize= command line argument as well. For details,
see BigMemory Max documentation. JVM options must be placed on the correlator
command line and prefixed with -J. In Software AG Designer, this can be configured
by opening the project's launch configuration, editing the properties of the Correlator
component and selecting the Maximum Java off-heap storage in Mb option. See Correlator
arguments in Using Apama with Software AG Designer.

The main steps in configuring a distributed store are:

http://documentation.softwareag.com/terracotta/index.htm

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 384

If using BigMemory Max, configure and start at least one Terracoa Server Array
Node.

In Software AG Designer, add the Distributed MemoryStore adapter to the project.

Add a store to the Distributed MemoryStore seings.

Choose a store name that will be used in the EPL application to refer to the store.
This is used as the bean's name in the configuration files.

Provide a driver class name to use a distributed cache of your choice. (If using
BigMemory Max, Software AG Designer creates a BigMemory Max configuration
with the classpath already set)

Specify a "cluster name". The exact meaning of "cluster name" depends on the driver.
For the BigMemory Max driver, it is a comma-separated list of the host:port pairs
that identify the Terracoa Server Array nodes. Best practice is to list all nodes
configured in the cluster.

Specify the classpath for both the driver and the distributed cache implementation
.jar files. (If using Apama's BigMemory Max support in Software AG Designer, you
only need to specify the installation directory for BigMemory Max)

Specify any other parameters needed by the driver. For further reference, see
"Creating a distributed MemoryStore driver" on page 397.

Specifying a cluster name

A cluster name should be provided when opening a distributed store. Some third-party
drivers and distributed caches use the cluster name as an identifier, that is, they do not
interpret the name in any way. Many distributed caches use broadcast or multicast to
automatically discover other cluster nodes on the same network with the same name
configured. Thus, during development and testing, a name that is different to the name
used by your production system should be used. This is a good practice to follow even
if the systems are on separate networks. Cluster names are specified in properties files,
which should be different between development and production environments.

You should not create more than one store with the same cluster name on any one
correlator.

Configuring a distributed store
Configuring a distributed store consists of adding the Apama Distributed MemoryStore
adapter bundle to an Apama project, adding a distributed store to the project, and
specifying property seings.

Adding distributed MemoryStore support to a project

To add a distributed store to a project using Software AG Designer

1. In the Project Explorer, right-click the project name and select Apama > Add Adapter
from the pop-up menu. The Add Adapter Instance dialog is displayed.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 385

2. In the Choose adapter field, select Distributed MemoryStore (Supports using a distributed
cache from MemoryStore) from the list of available adapters.

3. Click OK.

The adapter bundle is added to the project's Adapters node and the adapter instance
is opened in the Distributed MemoryStore editor. The editor is initially blank and the
Distributed Stores field contains no distributed stores.

Adding a distributed store

To configure a new distributed store for use in this project

1. In the Distributed MemoryStore editor's Distributed Stores panel, click the Add Store
buon (). The Distributed MemoryStore Configuration wizard appears.

2. In the Distributed MemoryStore Configuration wizard, specify the following:

a. In the Store Provider field, select the third-party cache provider from the drop-
down list. If you are using a driver supplied by Apama, such as BigMemory
Max, select it from the drop-down list; otherwise select Other.

b. In the Store Name field, specify the name of the store as it will be known in the
configuration files and EPL code. The name must be unique and cannot contain
spaces.

3. Click Finish.

Software AG Designer adds the name of the store to the Distributed Stores panel in the
editor and adds the resources for the store to the project. The default configuration
seings for the store are displayed in the editor.

Configuring a distributed store

You can configure the frequently used seings for a distributed store in Apama's
Distributed MemoryStore editor in Software AG Designer. These seings are those in
the .properties file. For other seings, you need to edit the .xml file directly.

To configure a distributed store

1. In the Standard Properties section of the editor, specify the properties required by the
third-party distributed cache in use.

2. (Only required if Other was used as the store type.) In the Classpath section, specify
the names of the required provider-specific .jar files.

a. Click the Add Location buon ().

b. In the new entry, specify the name of the .jar file. When you specify the path to
a .jar file, you should use substitution values rather than a full path name. (e.g.
use ${installDir.mystore}/lib/my.jar)

3. In the Custom Property Substitution Variables section, specify the name and values
of additional substitution ${...} variables (if any) used by the distributed cache.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 386

The .properties file contains substitution variables that are used by the .xml
configuration file.

a. Click the Add buon (). A new line will be added to the list of substitution
variables.

b. In the new entry, specify the name and value of the substitution variable you
want to add.

4. (If needed.) In the Configuration Files you can access the Spring .xml and
.properties files. Click on the file name link to open them in the appropriate editor.

For more information on specifying property values, see "Configuration files for
distributed stores" on page 387

Launching a project that uses a distributed store

When you add the Distributed MemoryStore adapter bundle to an Apama project in
Software AG Designer, the launch configuration is automatically updated to set the --
distMemStoreConfig start-up option.

The maximum Java heap size and off-heap storage can be set in the Correlator
Configuration dialog in the Run Configurations dialog.

Interacting with a distributed store
Once prepared, a distributed store behaves much like other MemoryStore Store objects
as described in "Using the MemoryStore" on page 365. However, be aware of the
following differences:

The schema for tables in a distributed store is not allowed to expose dataviews.

A distributed store (as opposed to other, non-distributed stores) supports
notifications. For more information, see "Notifications" on page 387, below.

Exceptions – In an in-memory store, only the Row.commit() action can throw
exceptions. However, in a distributed store, most actions can throw exceptions.
Exceptions represent a runtime error that can be caught with a try-catch statement.
This allows developers to choose what corrective action to take (such as logging,
sending alerts, taking corrective steps, retrying later, or other actions). If no try-catch
block is used with these actions and an exception is thrown, the monitor instance
will be terminated, the ondie() action will be called if one exists, and the monitor
instance will lose all state and listeners. Exceptions can be thrown because of errors
raised by third-party distributed cache providers. To discover what errors could be
thrown because of third-party integration, you should refer to the documentation for
the third-party provider in use. For more information on exceptions, see "Catching
exceptions" on page 293. The following are some of the actions that can throw
exceptions:

Table.get()

Table.begin()

Iterator.next()

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 387

Row.commit()

Row.update()

Performance differences – See "Overview of the distributed MemoryStore" on
page 379 for the advantages and disadvantages of using a distributed store as
compared to an in-memory store.

Notifications

Distributed store Table objects may support the subscribeRowChanged() and
unsubscribe() actions. If subscribed to a table, RowChanged events will be sent to that
context. Subscriptions are reference counted per context, so multiple subscriptions to the
same table in the same context will only result in one RowChanged event being sent for
every change. Monitors should unsubscribe when they terminate (for example, in the
ondie() action) to avoid leaking subscriptions.

The store factory bean property rowChangedOldValueRequired indicates whether
subscribers receive previous values in RowChanged notification events for updated rows.
When this property is set to true and the RowChanged.changeType field is set to UPDATE
the RowChanged.oldFieldValues field is populated.

Notifications can impact performance, so are not recommended for tables in which a
large number of changes are occurring. While BigMemory Max supports notifications,
it does not support population of the old value in RowChanged.changeType = UPDATE
events.

Within a cluster of correlators, if a table has subscriptions to RowChanged notifications,
then all correlators must subscribe RowChanged notifications for that table, even if some
correlators do not consume the events. This ensures all nodes receive all events correctly.

Support for notifications is optional, but if the driver does not support notifications,
calls to Table.subscribeRowChanged() and Table.unsubscribe() will throw
OperationNotSupportedException errors.

Configuration files for distributed stores
The configuration for a distributed store consists of a set of .xml and .properties files.
Each distributed store in a project will have the following files:

storeName-spring.xml

storeName.properties

A distributed store is configured using a bean element in the Spring XML configuration
file. The bean element has the following aributes:

id – The unique name for this distributed store, which must match the name used in
calls to Storage.prepareDistributed() and Storage.open() in EPL.

class – The name of the StoreFactory implementation used by this distributed
store.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 388

When the correlator is started with the --distMemStoreConfig configDir argument,
it will load all XML files matching *-spring.xml in the specified configuration
directory, and also all *-spring.properties files in the same directory. (Note, the
correlator will not start unless the specified directory contains at least one configuration
file.)

When using Software AG Designer, these files are generated automatically. New
storeName-spring.xml and storeName.properties files are created when a Store is
added to a project. The most commonly used seings can be changed at any time using
the Distributed MemoryStore editor (which rewrites the .properties file whenever the
configuration is changed). In addition, the storeName-spring.xml files can be edited
manually in Software AG Designer to customize more advanced configuration aspects.
To edit the XML, open the Distributed MemoryStore editor and in the Configuration Files
section, click the name of the file to open it in the appropriate editor. Once the editor for
an XML file has been opened, you can switch between the Design and Source views using
the tabs at the boom of the editor window.

Some property values usually need to be changed when a development and testing
configuration is deployed to a different environment such as one for production use.
Making use of substitution variables is the best way to maintain different bean property
values in different environments, as you can use the same XML file, with a different
.properties file for each environment. For more details on using substitution variables
to specify configuration properties, see "Substitution variables" on page 389. For more
information on modifying property values when moving from a test environment to a
production environment, see "Changing bean property values when deploying projects"
on page 397.

XML configuration file format

The configuration files for a distributed store use the Spring XML file format, which
provides an open-source framework for flexibly wiring together the different parts of
an application, each of which is represented by a bean. Each bean is configured with an
associated set of properties, and has a unique identifier which can be specified using the
id aribute.

It is not necessary to have a detailed knowledge of Spring to configure a distributed
store, but some customers may wish to explore the Spring 3.0.5 documentation to obtain
a deeper understanding of what is going on and to leverage some of the more advanced
functionality that Spring provides.

The Apama distributed MemoryStore configuration will load any bean that extends the
Apama AbstractStoreFactory class.

Setting bean property values

Most bean properties have primitive values (such as string, number, boolean) which are
set like this:
<property name="propName" value="my value"/>

However, it is also possible to have properties that reference other beans, such as
a configuration bean defined by the third-party distributed cache provider. These

http://static.springsource.org/spring/docs/3.0.5.RELEASE/spring-framework-reference/htmlsingle/spring-framework-reference.html

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 389

property values can be set by specifying the id of a top-level bean as in the following
example (where it is assumed that myConfig is the id of a bean defined somewhere in
the file):
<property name="someConfigProperty" ref="myConfig"/>

Any top-level bean may be referenced in this way, that is, any bean that is a child of the
<beans> element and not nested inside another bean. Referencing a bean that is defined
in a different configuration file is supported.

Instead of referencing a shared bean, it is also possible to configure a bean property by
creating an 'inner' configuration bean nested inside the property value like this:
<property name="terracottaConfiguration">
 <bean class="net.sf.ehcache.config.TerracottaConfiguration">
 <property name="consistency" value="STRONG"/>
 </bean>
</property>

Note, advanced users may want to exploit Spring's property inheritance by using the
parent aribute on an inner bean to inherit most properties from a standard top-level
bean while overriding some specific subset of properties or by type-based 'auto-wiring'.

You can use the Spring syntax for compound property names to set the value of a
property held by another property. For example to set a property stringProp on a bean
held by the property beanProp, use the following:
<property name="beanProp.stringProp" value="myValue"/>

Or, to set the value of the key myKey in a property that holds a Map called mapProp, use
the following:
<property name="mapProp[myKey]" value="myValue"/>

Substitution variables

Substitution variables in the form ${varname} can be used to specify bean property
values. Instead of specifying bean property values directly in an XML configuration file,
you use ${varname} substitution variables in the XML file and specify the values of
those variables in a .properties file inside the configuration directory. This makes it
possible to edit the variable values in Software AG Designer and to use different values
during deployment to a production environment using the Apama Ant macros.

Although .properties and -spring.xml files often have similar names, there is no
explicit link between them, so any properties file can define properties for use by any-
spring.xml file. Although in some cases it may be useful to share a single substitution
variable across multiple XML files, this is not normally the desired behavior, and
therefore the recommendation is that all properties follow the naming convention
${varname.storeName}.

In addition to the standard substitution variables shared by most drivers, you can
add your own substitution variables for important or frequently changed properties
specific to the driver specific to the cache integrated with your application. This is
especially important when changing from a development environment to a production
environment.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 390

It is also possible to provide property values at runtime as Java system properties, such
as specifying -J-Dvarname=value on the correlator command line.

The special variables ${APAMA_HOME} and ${APAMA_WORK} are always available.

Substitution variables are evaluated recursively, so a substitution variable can refer to
another substitution variable, for example, classpath=${installDir}/foo.jar.

Standard configuration properties

The following four standard properties are supported by Apama distributed cache
drivers. These properties should be supported by customer-developed implementations
as well.

clusterName – This is a required property. It is a provider-specific string. For
BigMemory Max, this is a comma-separated list of host:port pairs that identify
the servers in the Terracoa Server Array. Some other caches use this as just a name,
used to group together distributed store nodes that communicate with each other
and share data. Store objects with the same clusterName values should operate as
a single cluster, sharing data between them. Most providers require this property
and will fail to start if it is not set. Care must be taken to ensure that different
clusters, and thus clusterName values, are used for development/testing and
production environments, as serious errors would be introduced if the production
and testing nodes were able to communicate with each other. Apama's BigMemory
Max driver makes it easy to avoid this pitfall since it requires a list of host:port
pairs. However, if you are using another driver, then for this reason, as well as
whatever firewalls may exist between development/testing and production, the
recommendation is to explicitly add a suffix such as _testing or _production to
the clusterName to indicate clearly which environment it belongs to.

logLevel – This is an optional property; the default is provider-specific, but
typically is the same as the correlator log level. The logLevel property is an Apama
log level string (compatible with com.apama.util.Logger) such as ERROR, WARN,
INFO, DEBUG which will be used to set the log level for the provider if possible (some
providers will write to the main correlator log file, through log4j or the Apama
Logger, but others may write to a separate file). If not specified, the default log
level is determined by the author of the driver, based on the criteria of avoiding the
correlator log or stdout being filled with third party distributed store messages while
logging a small number of the most important messages.

backupCopies – This is an optional property; the default is 1. The backupCopies
property specifies the number of additional redundant nodes that should hold a
backup copy of each key/value data element. The minimum value for this property
is 0 (indicating no redundancy, that is, all data is held by a single node). Note, some
providers may allow customizing the backup count on a per-table basis, in which
case this property specifies an overridable default value for tables that do not specify
it explicitly. For BigMemory Max, this seing has no effect. The number of backup
copies is determined by the Terracoa Server Array configuration, which is separate
from the Apama configuration.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 391

initialMinClusterSize – This is an optional property. It specifies the minimum
number of nodes a cluster must have before the Finished event is sent in response
to a call to prepareDistributed. This provides a way to make sure that a cluster is
fully ready for correlator nodes to request and process data. The default is 1, which
specifies that a Finished event is sent without waiting for additional nodes when
preparing the distributed store.

rowChangedOldValueRequired - Indicates whether the old value is required
when there is a notification that a row has changed. If set to false, the value of
oldFieldValues is empty for RowChanged.changeType.UPDATE events. If true, the
previous value is available. This currently cannot be set to true for BigMemory Max.
The default is true.

If all four standard properties were set, the bean configuration would look like:
<bean id="MyStore" class="com.foobar.MyStoreFactory">
 <property name="clusterName" value="host1:port1, host2:port2"/>
 <property name="logLevel" value="WARN"/>
 <property name="backupCopies" value="1"/>
 <property name="initialMinClusterSize" value="2"/>
</bean>

BigMemory Max driver specific details

You can create configuration files for BigMemory Max when using Apama in Software
AG Designer. The BigMemory Max installation directory (where the zip files were
unpacked) needs to be specified as the providerDir property.

See the BigMemory Max documentation for information about the following:

The .properties file for a distributed store contains an option for choosing
consistency. The options are STRONG or EVENTUAL consistency you will want to
understand the trade-offs between these two modes.

You can set BigMemory Max driver properties (described in the table below) in
the -spring.xml configuration file. Alternatively, you can specify many of these
properties in an ehcache.xml configuration file and then specify the path for that
file in the -spring.xmlconfiguration file using the ehcacheConfigFile property.
If this is done, many of the properties in the spring.xml configuration file will be
ignored; the seings derived from the ehcache.xml file will be used instead.

Use the storeName-spring.properties file to set configuration properties for the
BigMemory Max driver.

Using off-heap storage requires seing -XX:MaxDirectMemorySize=. Specify this in
the command line for starting the correlator as -J-XX:MaxDirectMemorySize=. The
documentation provides recommendations for specifying the value of this property.
When you add a correlator to a correlator launch configuration in Software AG
Designer, you can select the Maximum Java off-heap storage in Mb option. See Correlator
arguments in Using Apama with Software AG Designer.

For more information on Ehcache types, see the Ehcache Javadoc and search for the
required type such as CacheConfiguration.

http://documentation.softwareag.com/terracotta/index.htm

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 392

Property Name Type / Description

cacheConfiguration Type: CacheConfiguration

Ehcache CacheConfiguration
bean, shared by all caches
(Tables). Typically used as a
compound bean name, for example,
cacheConfiguration.overflowToOffHeap.

cacheDecoratorFactory Type: String

Name of a class to use as a
cacheDecoratorFactory. The
named class must be on the classpath
and must implement Ehcache's
CacheDecoratorFactory interface.

cacheDecoratorFactoryProperties Type: Properties

Properties to pass to a
cacheDecoratorFactory. Allows use of
the same class for many caches.

clusterName Type: String

Comma-separated list of host:port
identifiers for the servers, or a tc-
config.xml file name. Best practice is
to list all Terracoa Server Array (TSA)
nodes.

configuration Type: Configuration

Ehcache Configuration bean. Typically
used as a compound bean name, for
example, configuration.monitoring.

maxMBLocalOffHeap Type: long

Number of MB of local off-heap data. Total
across all tables, per correlator process.

pinning Type: String

Either an aribute value of "inCache"
(default) or "localMemory" or a
<null/> XML element (i.e.<property
name="pinning"><null/></property>.)

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 393

Property Name Type / Description
Pinning prevents eviction if the cache size
exceeds the configured maximum size.
Recommended if the cache is being used
as a system of record.

terracotta Configuration Type: Terracotta Configuration

Ehcache TerracottaConfiguration
bean. Typically used as a
compound bean name, for example,
terracottaConfiguration.consistency.

ehcacheConfigFile Type: String

Path to an ehcache.xml configuration file.

Note: If this is specified, any other properties
listed in this table will be ignored.

You can set the following BigMemory Max driver properties in the spring.xml
configuration file, but not in the ehcache.xml configuration file as they modify how the
driver accesses the BigMemory Max Cache.

Property Name Type / Description

backupCopies Type: int

Ignored. Not supported. The number
of backups is governed by the TSA
topology defined in the BigMemory Max
documentation and used to configure the
TSA nodes.

initialMinClusterSize Type: int

The minimum cluster size (number of
correlators) that must be connected for
prepare to finish.

logLevel Type: String

The log level.

rowChangedOldValueRequired Type: boolean

Whether to expose old values in
rowChanged events. Must be set to false.

http://documentation.softwareag.com/terracotta/index.htm
http://documentation.softwareag.com/terracotta/index.htm

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 394

Property Name Type / Description

useCompareAndSwap Type: boolean

Whether to use compare and swap (CaS)
operations or just put/remove. Some
versions of BigMemory Max support only
CaS in Strong consistency.

useCompareAndSwapMap Type: Map(String, Boolean)

Per-table (cache) configuration for whether
to use CaS or put/remove.

exposeSearchAttributes Type: boolean

Enable exposing search aributes. If true,
then the MemoryStore schema columns are
exposed as BigMemory search aributes
and are indexed, so that other clients of
BigMemory can perform searches on the
data set. If exposeSearchAttributesSet
is non-empty, then only the named
columns are exposed as BigMemory search
aributes. See notes below about non-
Apama applications accessing the data in a
BigMemory cluster.

exposeSearchAttributesSet Type: Set(String)

Limits the set of columns in each table
that should be exposed as search
aributes. Entries are in the form
tableName .columnName . If empty, all schema
columns are exposed as search aributes.
There is an incremental cost per column
that is exposed, so for performance, only
expose the columns which need to be used
in searches.

For example, to expose only the "Surname"
and "FirstName" columns of "myTable":
<property name="exposeSearchAttributes"
 value="true"/>
<property name="exposeSearchAttributesSet">
 <set>
 <value>myTable.Surname</value>
 <value>myTable.FirstName</value>
 </set>
</property>

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 395

The following compound properties are also exposed in the .properties file, or set by
default in the spring.xmlconfiguration file:

Property Name Type / Description

cacheConfiguration.eternal Type: boolean

Disables expiration (removing old,
unused values) of entries if true. Set
to true in the default spring.xml
configuration file.

cacheConfiguration.
maxEntriesLocalHeap

Type: int

The number of entries for each table.

This is the maxEntriesLocalHeap
entry in the .properties file.

cacheConfiguration.
overflowToOffHeap

Type: boolean

Whether to use off-heap storage. For
scenarios where data is fast changing
and being wrien from multiple
correlators, the cache may perform
beer if this is disabled.

This is the
cacheConfiguration.overflowToOffHeap
entry in the .properties file.

pinning Type: String

Set to inCache by default.

terracottaConfiguration.
localCacheEnabled

Type: boolean

Whether to cache entries in the
correlator process. Set to true in the
default spring.xml configuration file.

terracottaConfiguration.
clustered

Type: boolean

Whether to use a TSA. Set to true in the
default spring.xml configuration file.

terracottaConfiguration.
consistency

Type: String

Either 'STRONG' or 'EVENTUAL'.
STRONG gives MemoryStore-like

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 396

Property Name Type / Description
guarantees, while EVENTUAL is faster
but may have stale values read.

This is the
terracottaConfiguration.consistency
entry in the .properties file.

terracottaConfiguration.
synchronousWrites

Type: boolean

If true, then data is guaranteed
to be out of process by the time a
Row.commit() action completes.
Disabling this can increase speed.

This is the
terracottaConfiguration.synchronousWrites
entry in the .properties file.

Note: When using the BigMemory Max driver, all correlators accessing the
same data in a BigMemory cluster must have the same configuration. If
accessing from non-Apama applications, clients will need the correct cache
configuration (available from the Terracoa Management Console) and have
the appropriate Apama classes available on their classpath (available in the
distmemstore and ap-distmemstore-bigmemory.jar files) in order to
access the cache.

For reference, the following table maps Apama MemoryStore terminology to
BigMemory Max classes; this may be useful when referring to the BigMemory Max
documentation:

MemoryStore Event Object BigMemory Max Class

Store CacheManager

Table Cache

Row Element

By default, a distributed MemoryStore Store uses the BigMemory Max default cache
manager. To specify the use of a different cache manager, specify the name property on
the configuration bean. For example:
<property name="configuration.name" value="myCacheManager"/>

In a cluster, if one correlator calls subscribeRowChanged() for a given MemoryStore
table, then all correlators in that cluster that modify the entries in that table must also
call subscribeRowChanged() on that table even if they do not consume the events.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 397

Iterating over a table may require pulling the entire table into memory. It may fail if the
table is being modified.

Changing bean property values when deploying projects
Some bean property values will usually need to be changed when a development/
testing configuration is deployed to a different environment such as production, which
is typically achieved by ensuring all such bean property values are specified using
${varname} substitution variables specified in .properties files for test vs. production
environments. For example, for distributed memory stores the clusterName should be
changed so that the nodes cannot talk to each other (although Apama also recommends
production nodes to be located on a different network to reduce the chance of accidental
errors). For more details on using substitution variables to specify configuration
properties, see "Substitution variables" on page 389.

Tip: Due to the flexibility and simplicity of .properties files, there are many ways
this requirement can be addressed. For customers using Apama's Ant macros for
deployment, one option is to maintain a separate set of .properties files for each
environment, and customize your project's Ant script to copy the correct version of the
files into the distMemStoreConfig directory just before starting the correlator. Another
option is to use Ant's <propertyfile> task (see the Apache Ant documentation
for more information on how to do this) to modify the .properties files in-place,
overriding or adding to existing property values as required for the new deployment.

Creating a distributed MemoryStore driver
The Apama installation includes a driver for integrating the distributed MemoryStore
with the BigMemory Max distributed caching software. If you use other third-party
distributed caching software, you need to write a driver that provides the bridge
between Apama's MemoryStore and the third-party software in use. Apama provides
a Service Provider Interface (SPI) for you to use when writing drivers. This section of
the Apama documentation presents an introduction to the SPI and a description of its
essential elements.

Complete Javadoc information for the SPI is available in doc/javadoc/index.html in
your Apama installation. See the com.apama.correlator.memstore package.

Overview

A driver for a distributed cache needs to extend the following abstract classes:

AbstractStoreFactory

AbstractStore

AbstractTable

Implementation details:

AbstractStoreFactory – This is the abstract class that holds the configuration
used to instantiate a distributed Store. The starting point for creating an Apama

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 398

distributed cache driver is to create a concrete subclass of AbstractStoreFactory.
The subclass should have the following:

A public no-args constructor

JavaBean-style seer and geer methods for all provider-specific configuration
properties

An implementation of createStore() that makes use of these product-specific
properties, in addition to the generic properties defined on this factory, which are
getClusterName(), getLogLevel(), and getBackupCopies().

afterPropertiesSet() (optional, but useful)

Implementers are encouraged to do as much validation as possible of the
configuration in the afterPropertiesSet() method. This method will be called by
Spring during correlator start-up after seers have been invoked for all properties in
the configuration file. The createStore() action will never be called before this has
happened.

The StoreFactory class that is implemented must then be named in the distributed
store -spring.xml configuration file.

AbstractStore – This is the abstract class that provides access to Tables whose
data is held in a distributed store. Implementers should create a subclass of
AbstractStore.

A driver's implementation of the AbstractStore needs to implement or override the
following methods:

createTable()

init()

close()

getTotalClusterMembers()

AbstractTable – This is the abstract class that holds Row objects whose data is held
in a distributed store.

If the distributed store provides a java.util.concurrent.ConcurrentMap, Apama
recommends that implementers of Apama distributed stores create a subclass of the
ConcurrentMapAdapter abstract class for ease of development and maintenance. If
the distributed store does not provide a ConcurrentMap, implementers should create
a subclass of Apama's AbstractTable class.

If you are implementing from AbstractTable you need to implement or override
the following methods:

get()

clear()

remove()

replace()

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 399

putIfAbsent()

containsKey()

size()

Drivers may also optionally provide support for EPL subscribing to 'row changed'
data notifications. To allow EPL application to subscribe to these notifications,
subclasses of AbstractTable (or ConcurrentMapAdapter) must provide an
instance of RowChangedSubscriptionManager that provides implementations
of addRowChangedListener and removeRowChangedListener, and calls
fireRowChanged when changes are detected. Also, if a subclass implements
notifications, it should override the getRowChangedSubscriptionManager
method and have it return the instance of RowChangedSubscriptionManager for
this table. Calls to subscribeRowChanged and unsubscribe are passed to this
instance. The default implementation of getRowChangedSubscriptionManager
returns null, indicating that row changed notifications are not supported;
in this case calls to subscribeRowChanged and unsubscribe will throw
OperationNotSupportedException.

RowValue – The RowValue class is not inherited from or implemented, but a
driver must be able to store and retrieve objects of the Apama RowValue class.
Typically a cache can store any suitable Java class, but some mapping may be
required as well. For more information about this class, see the Javadoc for
com.apama.correlator.memstore.RowValue.

Sample driver

To help get started writing a driver, the BigMemory Max driver is provided in source
form as a sample; it implements the SPI described above and invokes the EHCache
API in order to use BigMemory Max. The sample is provided under the samples/
distmemstore_driver/bigmemory path in the Apama installation directory. To avoid
confusion with the pre-compiled driver supplied in the product, the sample BigMemory
Max driver uses the package name com.apamax.memstore.provider.bigmemory. A
README.txt file describes how to build the sample.

Using the Management interface
The Management interface defines actions that let you do the following:

Obtain information about the correlator

Control logging

Request a persistence snapshot

Manage user-defined status values

Actions in the Management interface are defined on several event types, which are
documented in the API Reference for EPL (ApamaDoc).

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 400

To use the Management interface, add the Correlator Management bundle to your
Apama project. Alternatively, you can directly use the EPL interfaces provided in
APAMA_HOME\monitors\Management.mon.

Obtaining information about the correlator

The Management interface provides the following actions for obtaining information
about the correlator that the Management interface is being used in:

getHostname() - Returns the host name of the host the correlator is running on. The
host name is dependent on the environment's name resolution configuration, and the
name can be used only if the name resolution is correctly configured. The name is
the same as that logged in the correlator log file, for example, dev3.acme.com.

getComponentPort() - Returns the port the correlator is running on.

getComponentPhysicalId() - Returns the physical ID of the correlator.

getComponentLogicalId() - Returns the logical ID of the correlator.

getComponentName() - Returns the name that is used to identify the correlator. You
can set this name by specifying the -N correlator command line flag (or by means
of the extraArgs aribute in the Ant macros). The default name of the correlator is
correlator.

These actions are defined in the com.apama.correlator.Component event.

There are engine_management utility options that you can specify

To retrieve the same information from outside the correlator

Or to retrieve the same information for IAF or sentinel agent processes

The correlator also logs all of these values to its log file at startup.

Controlling logging

You can configure logging using the Management interface. The
com.apama.correlator.Logging event provides actions such as
setApplicationLogFile, setLogFile and setApplicationLogLevel. These actions
are the equivalent of using the engine_management options to configure logging (see
also "Shuing down and managing components" in Deploying and Managing Apama
Applications).

The rotateLogs() action, which is also defined in the
com.apama.correlator.Logging event, is used for closing the log files in use, opening
new log files, and then sending messages to the new log files. This action applies to:

The correlator status log file

The correlator input log file if you are using one

Any application log files you are using

For details about log file rotation, see "Rotating the correlator log file" and "Rotating all
log files" in Deploying and Managing Apama Applications.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 401

You can write an EPL monitor that triggers log rotation on a schedule. For example, the
code below rotates logs every 24 hours at midnight:
using com.apama.correlator.Logging;

monitor Rotator {
 Logging logging;

 action onload() {
 on all at(0, 0) {
 logging.rotateLogs();
 }
 }
}

Requesting a snapshot

In a persistence-enabled correlator, you can use the Management interface to request
a snapshot to occur as soon as possible, and be notified of when that snapshot has
been commied to disk. The Management interface lets persistent and non-persistent
monitors create instances of Persistence events and then call the persist() action on
those events.

When the correlator processes the persist() call it takes and commits a snapshot and
executes the specified callback action at some point after the snapshot is commied.
There are no guarantees about the elapsed time between the persist() call, the
snapshot and the callback, especially when large amounts of correlator state are
changing. Your code resumes executing immediately after the call to the persist()
action. See "Using Correlator Persistence" on page 327.

The Management interface defines the Persistence event:
package com.apama.correlator;
event Persistence {
 action persist(action<> callback) {
 ...
 }
}

Consider the following sample code:
using com.apama.correlator.Persistence;
event Number {
 integer i;
}

persistent monitor MyApplication {
 integer counter := 0;
 sequence<integer> myNumbers;
 action onload() {
 Number n;
 on all Number(*):n {
 myNumbers.append(n.i);
 counter := counter + 1;
 if(counter % 10 = 0) then {
 doCommit();
 }
 }
 }

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 402

 action doCommit() {
 Persistence p := new Persistence;
 p.persist(logCommit);
 }

 action logCommit() {
 log "Commit succeeded";
 }
}

Because MyApplication is a persistent monitor the correlator copies its state to disk as
that state changes. This monitor listens for Number events and stores their content in the
myNumbers sequence. After every tenth Number event, the code executes the doCommit()
action, which uses the Persistence event in the Management interface to request that
the correlator commits persistent state to disk. When that commit has succeeded, the
Management interface calls the action variable that was passed to the persist() action.
This action writes "Commit succeeded" to the correlator log.

The Management interface guarantees that at the moment the callback action
(logCommit() in this example) is executed, the state of all persistent monitors at a
particular point in time will have been commied. The particular point in time is
guaranteed only to be between the point at which persist() was called and the point
at which the callback action was executed. For example, suppose the following event
stream is being sent into the correlator:
Number(1)
Number(2)
Number(3)
...
Number(10)
Number(11)
Number(12)

At the point that Number(10) is received, the myNumbers sequence contains the ten items
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and so the application initiates a snapshot commit. Suppose
that the correlator suddenly terminates after notification of success appears in the log.
When the correlator recovers, MyApplication has a myNumbers sequence that contains
at least ten items. However, the sequence might contain 11 or even 12 items, if more
Number events were received after the commit was requested but before the snapshot
was actually taken. The correlator also persists state periodically, or as directed by other
monitors that call the Management interface, so the sequence can be persisted at other
points as well.

Managing user-defined status values

The Management interface provides actions for managing the user-defined status values.

Use the following action to set a user-defined status value, note that the name of
the status and the value of the status passed in are stored as strings and must be
converted as required:

setUserStatus()

Use the following actions to return the user-defined status values:

getUserFloat() - Returns float values.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 403

getUserInteger() - Returns integer values.

getUserBoolean() - Returns Boolean values.

getUserString() - Returns string values.

There are also matching actions for the above get actions that allow for default
values if a status does not exist. These actions have an additional "Or" in their names,
for example, getUserFloatOr().

Use the following action to delete any of the user-defined status values:

deleteUserStatus()

Note that the correlator status statements that appear in the log files will not have the
user-defined status values, and will remain unaffected.

Using MATLAB® products in an application
To use MATLAB analysis and modeling capability in an Apama application or in an
application built using the Apama Capital Markets Foundation, you need to add the
MATLAB bundle to your project and ensure that MATLAB executables and libraries
are available to the correlator. The MATLAB bundle provides access to the MATLAB
analysis and modeling toolkit from Apama EPL code and includes a correlator plug-in.

For information about supported versions, see the Supported Platforms document for
the current Apama version. This is available from the following web page: hp://
documentation.softwareag.com/apama/index.htm.

This MATLAB plug-in lets you connect to and use the MATLAB engine. However, there
are some functions/toolkits for which MATLAB does not support integration with C or
Fortran on some operating platforms. Check the MATLAB documentation before using
the MATLAB correlator plug-in.

The recommended way to use the MATLAB plug-in is to use the MatlabManager event,
and call the relevant action and supply a callback. The call goes directly to the MATLAB
plug-in so you do not need to route a request event. *Response events are routed from
the MATLAB plug-in to the calling context. Each request action automatically sets up a
listener for the *Response event that will call the supplied callback. You can supply the
relevant doesNothing*Callback() action from the MatlabManager event if you are not
interested in the results of the callback. If you use the MatlabManager actions you do not
need to call the #initialize() action.

The legacy way to use the MATLAB plug-in is to route *Request events and set up
listeners for the *Response events. If you are using the MATLAB plug-in in only
the main context, injecting MatlabService.mon sets up all required listeners for the
*Request events that call into the MATLAB plug-in. To use the MATLAB plug-in from
another context, instantiate a MatlabManager variable, spawn to the other context, and
call #initialize() on the variable. This sets up the required listeners in the current
(non-main) context, and the *Response events are routed to this context.

http://documentation.softwareag.com/apama/index.htm
http://documentation.softwareag.com/apama/index.htm

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 404

Note: The MATLAB plug-in is asynchronous (except the OpenSession requests)
so the processing of the input queue, or calling the request actions, does not
block.

The MATLAB plug-in is multi-context aware. The *Response events are routed to the
calling context.

To include MATLAB capabilities in your application, follow these steps:

1. Ensure that the directory containing the MATLAB plug-in library is included in
the library search path: %APAMA_HOME%\bin should be in the PATH on Windows
platforms, or for deployment on Linux operating systems, $APAMA_HOME/lib should
be in the LD_LIBRARY_PATH.

2. Import the MATLAB plug-in in the application's EPL code.

3. Set the appropriate values for your PATH environment variable:

64-bit Windows: Add MATLAB_HOME/bin and MATLAB_HOME/bin/win64 to %PATH
%.

64-bit Linux: Add MATLAB_HOME/bin to $PATH. Also, add MATLAB_HOME/sys/os/
glnxa64 and MATLAB_HOME/bin/glnxa64 to $LD_LIBRARY_PATH.

MatlabManager actions
The MatlabManager event provides the following actions. For complete reference
information, see the API Reference for EPL (ApamaDoc).

Action Description
openSession(
 string sessionID,
 string messageID,
 boolean singleUse,
 integer precision,
 action<string, string,
 boolean, string>
 callback)

Starts a MATLAB process for
the purpose of using MATLAB
as a computational engine.
Uses the MATLAB API function
engOpen() if singleUse = false and
engOpenSingleUse() if singleUse =
true. Single use is unavailable on Linux.
The response to this action call is an
OpenSessionResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

closeSession(
 string sessionID,
 string messageID,
 action<string, string,
 boolean, string>
 callback)

Closes a MATLAB session. Uses the
MATLAB API function engClose().
The response to this action call is a
CloseSessionResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 405

Action Description
initialize()

You must call this action when you are
using MATLAB by means of routed
events in a context other than the main
context. Spawn to another context, set up
the relevant listeners in the new context,
and then call initialize(). You do not
need to call initialize() when you are
calling the MatlabManager actions.

putFloat(
 string sessionID,
 striing messageID,
 string name,
 float value,
 action <string, string,
 boolean, string>
 callback)

Puts a float variable into a MATLAB
engine workspace. Uses the MATLAB
API function engPutVariable().
The response to this action call is a
PutFloatResponse event routed from
the plug-in to the calling context and the
supplied callback is invoked.

Note: By default, this event creates a local
variable in the MATLAB session. If
you need the variable to have a global
scope, call evaluate() before you
call the putFloat() action. In the
evaluate() call, declare the variable
as being global (for example, "global
x").

getFloat(
 string sessionID,
 string messageID,
 string name,
 action<string, string,
 float, boolean, string>
 callback)

Gets a float variable from the MATLAB
engine workspace. Uses the MATLAB
API function engGetVariable().
The response to this action call is a
GetFloatResponse event routed from
the plug-in to the calling context and the
supplied callback is invoked.

putFloatSequence(
 string sessionID,
 string messageID,
 string name,
 sequence<float> values,
 action<string, string,
 boolean, string>
 callback)

Puts a float sequence variable
in a MATLAB engine workspace.
Uses the MATLAB API function
engPutVariable(). The
response to this action call is a
PutFloatSequenceResponse event
routed from the plug-in to the calling
context and the supplied callback is
invoked.

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 406

Action Description
getFloatSequence(
 string sessionID,
 string messageID,
 string name,
 action<string, string,
 sequence<float>, boolean,
 string>
 callback)

Gets a float sequence variable
from the MATLAB engine
workspace. Uses the MATLAB
API function engGetVariable().
The response to this action call is a
GetFloatSequenceResponse event
routed from the plug-in to the calling
context and the supplied callback is
invoked.

putFloatMatrix(
 string sessionID,
 string messageID,
 string name,
 sequence<sequence<float>> values,
 action<string, string,
 boolean, string>
 callback)

Puts a two-dimensional matrix variable
into a MATLAB engine workspace. Uses
the MATLAB API function engEval().
The response to this action call is a
PutFloatMatrixResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

getFloatMatrix(
 string sessionID,
 string messageID,
 string name,
 action<string, string,
 sequence<sequence<float>>,
 boolean, string>
 callback)

Gets a two-dimensional matrix
variable from the MATLAB engine
workspace. Uses the MATLAB
API function engGetVariable().
The response to this action call is a
GetFloatMatrixResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

evaluate (
 string sessionID,
 string messageID,
 string expression,
 integer outputSize,
 action<string, string,
 string, sequence<string>
 boolean, string>
 callback)

Evaluates an expression for the MATLAB
engine session and returns textual
output from evaluating the expression,
including possible error messages.
Uses the MATLAB API function
engEvalString(). The response to this
action call is an EvaluateResponse
event routed from the plug-in to the
calling context and the supplied callback
is invoked.

setVisible(
 string sessionID,
 string messageID,
 boolean value,
 action<string, string,
 boolean, string>
 callback)

Makes the window for the MATLAB
engine session either visible or
invisible on the Windows desktop.
Uses the MATLAB API function
engSetVisible(). The response to this
action call is a SetVisibleResponse
event routed from the plug-in to the

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 407

Action Description
calling context and the supplied callback
is invoked.

getVisible(
 string sessionID,
 string messageId,
 action<string, boolean,
 boolean, string>
 callback)

Returns the current visibility seing
for the MATLAB engine session.
Uses the MATLAB API function
engGetVisible(). The response to this
action call is a GetVisibleResponse
event routed from the plug-in to the
calling context and the supplied callback
is invoked.

MATLAB examples
To use MATLAB features in your Apama or Apama Capital Markets Foundation
application, you must create a MATLAB session. The following examples show how
to create a MATLAB session and how to use it to set or get floating point scalar values,
arrays or matrices. Each get or set request has an associated response that indicates
whether the request successfully completed.

Creating a MATLAB session

The following example creates a MATLAB session. A boolean value indicates whether
MATLAB should open a new session or re-use an existing session.
monitor MatlabExample2
{
 // ***** Creating a MATLAB session:
 com.apamax.matlab.MatlabManager matlabManager;

 action onload() {
 // Spawn to a new context:
 spawn run() to context("New Context");
 }

 action run() {
 // Running in a context other than main, open a MATLAB session:
 matlabManager.openSession(
 "Session1", "openSessionRequest", false, 6, sessionOpened);
 }

 action sessionOpened(
 string sessionID, string messageID, boolean success, string error) {
 if (success) then {
 log "Session Opened";
 } else {
 log "Session failed to open - " + sessionID + ", "
 + messageID + ", " + success.toString() + ", " + error;
 }
 }

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 408

Working with scalar values

The following example shows how to set a scalar value:
 action putFloatExample() {
 matlabManager.putFloat(
 "Session1", "putFloatRequest", "x", 10.0, putFloatCallback);
 }

 action putFloatCallback(
 string sessionID, string messageID, boolean success, string error) {
 if (success) then {
 log "Put Float Succeeded";
 } else {
 log "Put Float Failed - " + sessionID + ", " + messageID + ", "
 + success.toString() + ", " + error;
 }
 }

The following example shows how to get a scalar value:
 action getFloatExample() {
 matlabManager.getFloat(
 "Session1", "getFloatRequest", "x", getFloatCallback);
 }

 action getFloatCallback(string sessionID, string messageID, float value,
 boolean success, string error) {
 if (success) then {
 log "Get Float Succeeded - value = " + value.toString();
 } else {
 log "Get Float Failed - " + sessionID + ", " + messageID + ", "
 + success.toString() + ", " + error;
 }
 }

Working with arrays

To set an array:
 action putFloatSequenceExample() {
 sequence<float> y := [0.0, 1.0, 2.71828, 3.14159];
 matlabManager.putFloatSequence("Session1", "putFloatSequenceRequest",
 "y", y, putFloatSequenceCallback);
 }

 action putFloatSequenceCallback(
 string sessionID, string messageID, boolean success, string error) {
 if (success) then {
 log "Put Float Sequence Succeeded";
 } else {
 log "Put Float Sequence Failed - " + sessionID + ", "
 + messageID + ", " + success.toString() + ", " + error;
 }
 }

To get an array:
 action getFloatSequenceExample() {
 matlabManager.getFloatSequence(
 "Session1", "getFloatSequenceRequest", "y", getFloatSequenceCallback);
 }

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 409

 action getFloatSequenceCallback(string sessionID, string messageID,
 sequence<float> value, boolean success, string error) {
 if (success) then {
 log "Get Float Sequence Succeeded - value = " + value.toString();
 } else {
 log "Get Float Sequence Failed - " + sessionID + ", "
 + messageID + ", " + success.toString() + ", " + error;
 }
 }

Working with matrices

To set a matrix:
 action putFloatMatrixExample() {
 sequence< sequence<float> > matrix := [];
 sequence<float> row1 := [-2.1, 3.5];
 sequence<float> row2 := [5.0, 1.0, 7.9, 17.0];
 sequence<float> row3 := [-20.0, -90.0, 25.0];

 matrix.append(row1);
 matrix.append(row2);
 matrix.append(row3);
 matlabManager.putFloatMatrix("Session1", "putFloatMatrixRequest",
 "m", matrix, putFloatMatrixCallback);
 }

 action putFloatMatrixCallback(
 string sessionID, string messageID, boolean success, string error) {
 if (success) then {
 log "Put Float Matrix Succeeded";
 } else {
 log "Put Float Matrix Failed - " + sessionID + ", "
 + messageID + ", " + success.toString() + ", " + error;
 }
 }

To get a matrix:
 action getFloatMatrixExample() {
 matlabManager.getFloatMatrix(
 "Session1", "getFloatMatrixRequest", "m", getFloatMatrixCallback);
 }

 action getFloatMatrixCallback(string sessionID, string messageID,
 sequence< sequence<float> > value, boolean success, string error) {
 if (success) then {
 log "Get Float Matrix Succeeded - value = " + value.toString();
 } else {
 log "Get Float Matrix Failed - " + sessionID + ", "
 + messageID + ", " + success.toString() + ", " + error;
 }
 }

As well as seing MATLAB variables, applications may also send requests to the
MATLAB plug-in to evaluate any appropriate MATLAB expressions using the
evaluate() action.

The following example shows how to use the MATLAB plug-in to add two matrices and
get the result:
 action evaluateRequestExample() {
 // First matrix:

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 410

 sequence<sequence<float> > matrix1 := [];
 sequence<float> m1row1 := [1.0,2.0,3.0];
 sequence<float> m1row2 := [4.0,5.0,6.0];
 sequence<float> m1row3 := [7.0,8.0,9.0];
 matrix1.append(m1row1);
 matrix1.append(m1row2);
 matrix1.append(m1row3);

 // The MATLAB manager also provides 'doesNothing*' callbacks that can
 // process the returns silently if the response is not needed.
 matlabManager.putFloatMatrix("Session1", "putFloatMatrixRequest1",
 "matrix1", matrix1, matlabManager.doesNothingCallback);

 // Second matrix:
 sequence<sequence<float> > matrix2 := [];
 sequence<float> m2row2 := [2.0,5.0,8.0];
 sequence<float> m2row3 := [3.0,6.0,9.0];
 matrix2.append(m2row1);
 matrix2.append(m2row2);
 matrix2.append(m2row3);
 matlabManager.putFloatMatrix("Session1", "putFloatMatrixRequest1",
 "matrix2", matrix2, matlabManager.doesNothingCallback);

 // Use MATLAB to add the two matrices.
 // The expected size of the string to be returned:
 integer STANDARD_OUTPUT_SIZE := 256;

 // Although use of the MATLAB plug-in is asynchronous, requests are
 // queued. This guarantees that the two putFloatMatrix() actions
 // have already been processed.
 matlabManager.evaluate("Session1", "evaluateRequest",
 "matrix3 = matrix1 + matrix2", STANDARD_OUTPUT_SIZE, evaluateCallback);
 }

 action evaluateCallback(
 string sessionID, string messageID, string output,
 sequence<string> outputLines, boolean success, string error) {
 if (success) then {
 matlabManager.getFloatMatrix(
 "Session1", "getMatrixRequest", "matrix3", getMatrix3Callback);
 } else {
 log "Evaluate Failed - " + sessionID + ", "
 + messageID + ", " + success.toString() + ", " + error;
 }
 }

 action getMatrix3Callback(string sessionID, string messageID,
 sequence< sequence<float> > value, boolean success, string error) {
 if (success) then {
 log "Get Float Matrix Succeeded - value = " + value.toString();
 } else {
 log "Get Float Matrix Failed - " + sessionID + ", "
 + messageID + ", " + success.toString() + ", " + error;
 }
 }
}

Interfacing with user-defined correlator plug-ins
Although EPL is very powerful and enables complex applications, it is foreseeable
that some applications might require additional specialized operations. For example,

M
Odd Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 411

an application might need to carry out advanced arithmetic operations that are not
provided in EPL.

A developer can address this situation by writing custom correlator plug-ins using
Apama's C and C++ Plug-In Development Kits. A plug-in consists of an appropriately
formaed library of C or C++ functions which can be called from within EPL while
Apama is executing monitors. Apama and its event correlator components do not need
to be modified to enable or to integrate with a plug-in, as the plug-in loading process is
transparent and occurs dynamically when required.

Once a plug-in is developed, a developer can call the functions it contains directly from
a monitor in EPL, passing EPL variables and constants as parameters, and geing return
values that can be manipulated. For information on developing your custom event
correlator plug-in, see "Developing Correlator Plug-ins" on page 717.

Note: The correlator's plug-in interface is versioned. For a correlator plug-in to be
compatible with an event correlator they both need to support the same plug-
in interface version. See "Developing Correlator Plug-ins" on page 717 for
information about how to ensure that your correlator plug-in is compatible
with the event correlator it will run in.

In order to access a function implemented in an event correlator plug-in, the developer
must first import the plug-in, for example:
import "apama_math" as math;

This will look for Apama Plug-in file libapama_math.so (on Solaris or Linux) or for
apama_math.dll (on Windows). These must be located on the standard library path (in
LD_LIBRARY_PATH in Unix, and in the bin folder on Windows). It will then map it to the
internal alias math.

Note: Insert the import statement in the monitor that uses the plug-in functions.

If the apama_math plug-in defines a method in C or C++ called cos that takes a single
floating point value as an argument and returns a float value, this would be called
from EPL as follows:
float a, b;
// ... some other EPL
a := math.cos(b);

Standard float, integer and boolean types are passed by-value to external functions
while string types and sequences (which map to native arrays in the plug-in) are
passed by-reference. In addition, the chunk type can be used to ‘pass-through' data
returned from one function call to another plug-in function, as shown below.

About the chunk type
The chunk type allows data to be referenced from EPL that has no equivalent EPL type.
It is not possible to perform operations on data of type chunk from EPL directly; the
chunk type exists purely to allow data output by one external library function to pass
through to another function. Apama does not modify the internal structure of chunk

M
Even Header

Using Correlator Plug-ins in EPL

Developing Apama Applications Version 9.10 412

values in any way. As long as a receiving function expects the same type as that output
by the original function, any complex data structure can be passed around using this
mechanism.

To use chunks with plug-ins, you must first declare a variable of type chunk. You can
then assign the chunk to the return value of an external function or use the chunk as the
value of the out parameter in the function call.

The following example illustrates this. The complex.test4() method prints output to
stdout. The source code for complex_plugin is in the samples\correlator_plugin
\cpp directory of your Apama installation directory.
monitor ComplexPluginTest {

 // Load the plugin
 import "complex_plugin" as complex;

 // Opaque chunk value
 chunk myChunk;

 action onload() {
 // Generate a new chunk
 myChunk := complex.test3(20);

 // Do some computation on the chunk
 complex.test4(myChunk);
 }
}

Although the chunk type was designed to support unknown data types, it is also a
useful mechanism to improve performance. Where data returned by external plug-
in functions does not need to be accessed from EPL, using a chunk can cut down on
unnecessary type conversion. For example, suppose the output of a localtime()
method is a 9-element array of type float. While you could declare this output to be
of type sequence<float>, there is no need to do so because the EPL never accesses
the value. Consequently, you can declare the output to be of type chunk and avoid an
unnecessary conversion from native array to EPL sequence and back again.

M
Odd Header

Making Application Data Available to Clients

Developing Apama Applications Version 9.10 413

11 Making Application Data Available to Clients

■ Adding the DataView Service bundle to your project .. 414

■ Creating DataView definitions .. 415

■ Deleting DataView definitions .. 416

■ Creating DataView items ... 416

■ Deleting DataView items .. 417

■ Updating DataView items ... 418

■ Looking up field positions .. 419

■ Using multiple correlators .. 419

M
Even Header

Making Application Data Available to Clients

Developing Apama Applications Version 9.10 414

Apama provides the DataViewService, which enables EPL (or Java) application
writers to expose a view onto some of their data for easy consumption by remote client
applications, such as Dashboard Builder dashboards.

The service uses two central concepts:

DataView definition

DataView item

A DataView definition specifies a unique DataView name, a set of field names and field
types (each type is one of string, float, integer, and boolean), and optionally a set of
key fields.

Each DataView item is associated with a DataView definition, and specifies values for
the defined fields.

Note: The topics below briefly describe the event types that are used for managing
the DataView definitions and items. For detailed information on the fields that
are available for these events, see the com.apama.dataview package in the
API Reference for EPL (ApamaDoc).

Note that a DataView definition is not intended to serve as a central data structure for
your application, but rather is intended merely to expose your application's data to
remote client applications.

The programming interface is defined by DataViewService_Interface.mon in the
monitors directory of your Apama installation directory. It defines the API for working
with DataView definitions and DataView items.

You can create DataViews in only the main context. You cannot create them in any
contexts you create.

Metadata properties can be specified for a DataView by adding keys with the prefix
DataViewDefinition.EXTRA_PARAMS_METADATA_PREFIX to the extraParams
dictionary of DataViewAddDefinition when adding the new DataView definition.

You can also use the MemoryStore to create DataViews and you can do this in any
context. See "Exposing in-memory or persistent data to dashboards" on page 378.

Adding the DataView Service bundle to your project
To use the DataViewService, you have to add the DataView Service bundle to your
Apama project. Adding this bundle ensures that the following EPL files are loaded
before any monitors that use them. These monitors are in the monitors directory of your
Apama installation:

ScenarioService.mon

DataViewService_Interface.mon

DataViewService_Impl_Dict.mon

M
Odd Header

Making Application Data Available to Clients

Developing Apama Applications Version 9.10 415

Note: The DataViewService is designed primarily to interact with other EPL or
JMon applications that reside in the same correlator. However, it can also
be used with multiple correlators. See "Using multiple correlators" on page
419 for further information.

To add the DataView Service bundle to your Apama project

1. In Software AG Designer, go to the Apama Developer perspective.

2. In the Project Explorer, right-click the project name and select Apama > Add Bundle from
the context menu.

3. Select the DataView Service bundle and click OK.

Creating DataView definitions
Use the following event types to create DataView definitions.

DataViewAddDefinition

Create and route an event of this type in order to create a DataView definition. The
response is provided by a DataViewDefinition or DataViewException event.

DataViewDefinition

These events are responses to DataViewAddDefinition events. They indicate the
successful creation of a DataView definition. The contents of the fields are exactly those
of the DataViewAddDefinition event to which this is a response, except possibly for
extraParams.

DataViewException

These events occur under exceptional circumstances in response to
DataViewAddDefinition or DataViewDeleteDefinition events, or any circumstance
under which a DataView cannot be identified.

Here is an example of creating a DataView definition and handling DataViewException
events:
using com.apama.dataview.DataViewAddDefinition;
using com.apama.dataview.DataViewException;
...
DataViewAddDefinition add := new DataViewAddDefinition;
add.dvName := "Weather";
add.dvDisplayName := "Weather";
add.fieldNames := ["location","temperature","humidity","visibility"];
add.fieldTypes := ["string","integer","integer","integer"];
add.keyFields := ["location"];
route add;
DataViewException dvException;
on all DataViewException(): dvException {
log "*** Weather monitor error: " +
 dvException.toString() at ERROR;
}

M
Even Header

Making Application Data Available to Clients

Developing Apama Applications Version 9.10 416

Deleting DataView definitions
Use the following event types to delete DataView definitions.

DataViewDeleteDefinition

Create and route events of this type in order to delete a DataView definition. The
response is provided by a DataViewDefinitionDeleted or DataViewException event.

DataViewDefinitionDeleted

These events are responses to DataViewDeleteDefinition events. They indicate the
successful deletion of a DataView definition.

Creating DataView items
Use the following event types to create DataView items.

DataViewAddItem

Create and route an event of this type to create a DataView item. This item must not
exist already. A response is provided by a DataViewItem or DataViewException event.

Here is an example that creates and routes a DataViewAddItem event, and handles the
DataViewItem response by logging the addition of the item:
using com.apama.dataview.DataViewAddItem;
using com.apama.dataview.DataViewItem;
...
string location ;
integer temp;
integer humidity;
integer visibility;
...
DataViewAddItem item := new DataViewAddItem;
item.dvName := "Weather";
item.fieldValues :=
 [location,temp.toString(),humidity.toString(),
 visibility.toString()];
route item;
DataViewItem added;
on DataViewItem (dvName="Weather"):added {
 log("Weather monitor - DataViewItem: " +
 added.dvItemId.toString());
}

DataViewAddOrUpdateItem

Create and route an event of this type to create a DataView item if it does not already
exist, or update a DataView item if it already exists. A response is provided by a
DataViewItem or DataViewException event.

This will only work when keyFields are used. Any aempts to change the owner of an
existing item will be rejected with a DataViewItemException.

M
Odd Header

Making Application Data Available to Clients

Developing Apama Applications Version 9.10 417

DataViewItem

These events are responses to DataViewAddItem events. They indicate the successful
creation of a DataView item. The contents of the fields are exactly those of the
DataViewAddItem event to which this is a response, except possibly extraParams, and
with the addition of the dvItemId field.

DataViewItemException

These events occur under exceptional circumstances in response to
DataViewDeleteItem, DataViewUpdateItem or DataViewUpdateItemDelta events.

Deleting DataView items
Use the following event types to delete DataView items.

DataViewDeleteItem

Create and route an event of this type to delete a DataView item. A response is provided
by a DataViewItemDeleted, DataViewException or DataViewItemException event.

Here is an example that creates and routes a DataViewDeleteItem event and handles
the DataViewItemDeleted response by logging the deletion of the item:
using com.apama.dataview.DataViewDeleteItem;
using com.apama.dataview.DataViewItemDeleted;
string location;
...
DataViewDeleteItem delete := new DataViewDeleteItem;
delete.dvName := "Weather";
delete.dvItemId := -1; // Set the ID to -1 when using keyFields
delete.keyFields := [location];
route delete;
DataViewItemDeleted deleted;
on DataViewItemDeleted (dvName="Weather"):deleted {
 log("Weather monitor - DataViewItemDeleted:
 "+deleted.dvItemId.toString());
}

DataViewItemDeleted

These events are responses to DataViewDeleteItem events. They indicate the successful
deletion of a DataView item.

DataViewDeleteAllItems

Create and route an event of this type to delete all DataView items associated with a
specified DataView definition. A response is provided by a DataViewAllItemsDeleted,
DataViewException or DataViewItemException event.

DataViewAllItemsDeleted

These events are responses to DataViewDeleteAllItem events. They indicate the
successful deletion of all items associated with a given DataView definition.

M
Even Header

Making Application Data Available to Clients

Developing Apama Applications Version 9.10 418

Updating DataView items
Use the following event types to update DataView definitions.

Note: In addition to the event types listed below, you can also use the
DataViewAddOrUpdateItem event to either create new DataView items or to
update existing ones. See "Creating DataView items" on page 416.

DataViewUpdateItem

Create and route an event of this type to update a data item by specifying a sequence
of new filed values. If the update does not succeed, a response is provided by a
DataViewItemException event.

Here is an example of creating and routing a DataViewUpdateItem event:
using com.apama.dataview.DataViewUpdateItem;
...
string location;
integer temp;
integer humidity;
integer visibility;
...
DataViewUpdateItem update := new DataViewUpdateItem;
update.dvName := "Weather";
update.dvItemId := -1; // Set the ID to -1 when using keyFields
update.fieldValues :=
 [location,temp.toString(),humidity.toString(),visibility.toString()];
route update;

DataViewUpdateItemDelta

Create and route an event of this type to update a data item by specifying a dictionary of
field-position/field-value pairs. If the update does not succeed, a response is provided by
a DataViewItemException event.

Here is an example of creating and routing a DataViewUpdateItemDelta event:
using com.apama.dataview.DataViewUpdateItemDelta;
...
string location;
integer temp;
integer humidity;
integer visibility;
...
DataViewUpdateItemDelta update := new DataViewUpdateItemDelta;
update.dvName := "Weather";
update.dvItemId := -1; // Set the ID to -1 when using keyFields.
update.fieldValues :=
 {0:location,1:temp.toString(),2:humidity.toString(),
 3:visibility.toString()};
route update;

M
Odd Header

Making Application Data Available to Clients

Developing Apama Applications Version 9.10 419

Looking up field positions
Use the following event types to look up the numerical position of a given field-name for
a given DataView definition.

DataViewGetFieldLookup

Create and route an event of this type to request a helper dictionary that supports
lookup of field position for a given field name. The response is provided by a
DataViewFieldLookup or DataViewException event.

DataViewFieldLookup

These events are responses to DataViewGetFieldLookup events. They contain a
dictionary that supports lookup of the field position for a given field name.

Using multiple correlators
The DataViewService is designed to primarily interact with other EPL or JMon
applications that reside in the same correlator. Therefore, the DataViewService
implementation does not emit any events. You can inject the following optional
additional monitors, which are in the monitors directory of your Apama installation, to
emit the events when that is required:

DataViewService_ServiceEmitter.mon

DataViewService_ApplicationEmitter.mon

This enables Dashboard Builder clients to visualize the state of a number of applications,
each of which is running in a separate correlator, and each of which may fail-over
to another correlator. Since configuring all of the dashboards to know about each
of these correlators might be difficult and fragile, you can designate an additional
single correlator as the "view correlator", which holds the DataViewService and
ScenarioService to which any client dashboard can connect.

With this architecture, the individual applications in the separate correlators need to
emit DataViewService request events to a channel that has been connected to the
view correlator. These applications can either emit the events directly, or with the
Application Emier injected they can route the events and the extra monitor will emit
them to the channel. The DataViewService in the view correlator routes its responses
(as normal), but the Service Emier monitor will then emit those events out on the
com.apama.dataview channel so that the originating correlators can receive them.

Note that these two emiers are entirely optional, and are not required for most
deployments. Moreover, you normally do not inject these two monitors into the same
correlator. Also, there is no bundle in Software AG Designer that provides these
monitors.

M
Even Header

Developing Apama Applications Version 9.10 420

M
Odd Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 421

12 Testing and Tuning EPL monitors

■ Optimizing EPL programs .. 422

■ Best practices for writing EPL .. 422

■ Structure of a basic test framework ... 424

■ Using event files ... 424

■ Handling runtime errors ... 425

■ Capturing test output .. 427

■ Avoiding listeners and monitor instances that never terminate ... 427

■ Handling slow or blocked receivers ... 428

■ Diagnosing infinite loops in the correlator ... 428

■ Tuning contexts .. 429

M
Even Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 422

This section provides information about testing and tuning your EPL monitors.

Optimizing EPL programs
Best practices for optimizing EPL programs include:

Minimize cost of spawning— avoid repeated spawning of monitors that contain a
large number of variables.

Allocate events — but not unecessarily. See "Avoiding unnecessary allocations" on
page 423.

Specify wildcard on non-essential event fields. See "Wildcard fields that are not
relevant" on page 423.

Use plug-ins when you cannot write efficient EPL to accomplish your purpose. See
"When to use plug-ins" on page 356.

Minimize the effect of garbage collection

EPL, like languages such as Java or C#, relies on garbage collection. Intermiently, the
correlator analyses the objects that have been allocated, including events, dictionaries
and sequences, and allows memory used by objects that are no longer referenced to be
re-used. Thus, the actual memory usage of the correlator might be temporarily above
the size of all live objects. While running EPL, the correlator might wait until a listener,
onload() action or stream network activation completes before performing garbage
collection. Therefore, any garbage generated within a single action, listener invocation or
stream network activation might not be disposed of before the action/listener/activation
has completed. It is thus advisable to limit individual actions/listeners/activations to
performing small pieces of work. This also aids in reducing system latency.

The cost of garbage collection increases as the number of events a monitor instance
creates and references increases. If latency is a concern, it is recommended to keep
this number low, dividing the working set by spawning new monitor instances if
possible and appropriate. Reducing the number of object creations, including string
operations that result in a new string being created, also helps to reduce the cost of
garbage collection. The exact cost of garbage collection could change in future releases as
product improvements are made.

Best practices for writing EPL
EPL is a programming language with some special features. As such, it shares the
characteristic with every other programming language that it is possible to write poor,
inefficient code. All the techniques that apply to other languages to minimize wasted
cycles can also be applied to EPL.

Basic programming optimization techniques all apply:

Move code out of tight loops

Avoid unnecessary allocation, for example, strings

M
Odd Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 423

Put common tests first in if .. then .. else form

There is no substitute for empirical evaluation of the performance of your application.
You must measure performance and compare measurements when modifications are
made. Also, ensure that you are comparing like-with-like. Understanding performance
implications is invaluable and it helps in avoiding unnecessary performance costs.

You should know how fast your application needs to be.

Wildcard fields that are not relevant
Once a design has stabilized and event interfaces are well defined, it is possible to
wildcard fields that do not need to be matched on in event listeners. Designating an
event field as a wildcard prevents the correlator from creating an index for that field.
Most importantly, a wildcard field means that the correlator does not need to traverse
that index when receiving an event of that type to try to find interested event listeners
(as there will not be any). This can give tangible performance benefits, particularly with
large events.

Premature wildcarding is not advised but is not harmful. You can easily remove the
wildcard annotation from event fields with no impact on existing code. The compiler
gives an error if any code aempts to match on a field that is a wildcard.

The correlator can index up to 32 fields for each event type. If you are using an event
that has more than 32 fields, you must designate the additional fields as wildcards.

See "Improving performance by ignoring some fields in matching events" on page 174.

Avoiding unnecessary allocations
You should eliminate unnecessary allocations, especially when the size of an event is
very large. For example:
event LargeEventWith1000Fields {} // field definitions omitted

integer i := 0;
while (i < 1000) {
 route LargeEvent(0,0,i, ...); // bad
 i := i + 1;
}

LargeEvent le := new LargeEvent(); // good
while (i < 1000) {
 le.foo := i;
 route le;
 i := i + 1;
}

Implementing states
When you want to write a process that passes through one or more states it is good
practice to have one action per state. For example:
action inAuction() {
 on AuctionClosed outOfAuction();
}

M
Even Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 424

action outOfAuction() {
 on all Price (stock,*):p and not InAuction() {
 on Price(stock,>p.price*1.01) and not InAuction() {
 sellStock();
 }
 }
 on InAuction() inAuction();
}

Structure of a basic test framework
Apama lends itself to automated testing because

You can define test cases in event files that you feed into the correlator.

Apama includes a comprehensive set of command line utilities, all of which are
scriptable using standard scripting languages on different platforms.

The correlator is deterministic when there is only the main context. When there is
more than one context, each context is deterministic but the correlator as a whole is
not.

If the advocated event interface paern is employed for encapsulation, then modules can
be tested in isolation (unit testing) as well as in more comprehensive integration-level
tests.

A basic test case includes the following:

EPL files (.mon) to deploy (or references to them)

Input event files (.evt) to send to the correlator

Reference event files (.evt) to compare to actual output

Script to orchestrate execution of the test-case

You should assemble all of these files in an Apama project in Software AG Designer and
then use Software AG Designer to launch the test case.

Each test-case can reside in its own project with all relevant files local to it. The basic
test process is to launch the application, send in some events, capture outputs, then
compare to expected output, printing the results of the test to the console or log file at
the minimum.

Using event files
The following example shows how to use &TIME (Clock) events to explicitly set the
correlator clock. To do this, the correlator must have been started in external clocking
mode (the &TIME events give errors otherwise). Times are in seconds since the midnight,
Jan 1970 epoch.
#seed initial time (seconds since Jan 1970 epoch)
&TIME(1)

Send in configuration of heartbeat interval to

M
Odd Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 425

5 SecondsSetHeartbeatInterval(5.0)
Advance the clock (5.5 seconds)
&TIME(6.5)

Correlator should have sent heartbeat with id 1 –
acknowledge all is well
HeartbeatResponse(1,true)

Notice that the input event file has a lot of knowledge regarding the way in which the
module will (should) respond. For example, the HeartbeatResponse event expects that
the first HeartbeatRequest will have the ID of 1. There is necessarily a close coupling
between the input scripts and the implementation of the module being tested. This is
another reason why as much of this information should be extracted into the module's
message exchange protocol and made explicit, and perhaps enforced by one or more
interface intermediaries.

A single correlator context is guaranteed to generate the same output in the same order,
even when EPL timers (such as on all wait()) are employed. This is a benefit of
correlator determinism, and makes regression testing, even of temporal logic, possible.

Note: The correlator's behavior can be nondeterministic when events are sent
between multiple contexts, or when plug-ins are used.

Handling runtime errors
EPL eliminates many runtime errors because of the following:

Strict, static typing, so there are no class cast exceptions.

No implicit type conversion so there are no number format exceptions.

No concept of null, so there are no null pointer exceptions.

However, EPL cannot entirely eliminate runtime errors. For example, you receive a
runtime error if you try to divide by zero or specify an array index that is out of bounds.
Some runtime errors are obscure. For example:
mySeq.remove(mySeq.indexOf("foo"));

If foo is not in mySeq, indexOf() returns –1, which causes a runtime error.

See also "Catching exceptions" on page 293 .

What happens
When the correlator detects a runtime error, it kills the monitor instance that contains
the code that caused the error. This protects the other monitor instances that are running
in the same correlator. Upon a runtime error, the correlator also terminates any listeners
that were set up by the monitor instance being killed, and the state of the killed monitor
is lost.

M
Even Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 426

Using ondie() to diagnose runtime errors
You cannot catch and handle runtime errors like you can handle exceptions in other
languages. You cannot prevent the correlator from terminating the monitor instance.
However, you can specify some logging in the ondie() action to help diagnose the
problem and to alert other system modules that a problem occurred. For example:
action ondie() {
 log "sub-monitor terminating for " + myId;
 route InternalError("Foo");
}

In some circumstances, you can move into a suspended or safe state, or initiate damage
limitation activities, for example, such as pulling all active orders from the market. For
example, Apama scenarios use the ondie() action to route an InstanceDied() event
to a ScenarioService monitor. This in turn sends the event to connected clients so the
termination of the instance can be handled, perhaps displayed, in a dashboard)

An alternative to using ondie() in this manner is to use a basic ACK, NACK, and
timeout message exchange protocol so that a client is robust against its services being
unavailable.

Using logging to diagnose errors
Logging is an effective means of generating diagnostic information. When writing
log entries, consider the overhead of string allocation, garbage collection, and writing
data to disk. Use conditional tests to reduce this overhead and minimize unnecessary
logging.

The EPL log statement is a simple means of generating logging output. The EPL log
statement writes to the correlator log file by default so any messages your program
sends to the log file are mixed in with all other correlator logging messages. However,
you can configure the correlator to send your EPL logging to a separate file. See
Deploying and Managing Apama Applications, "Correlator Utilities Reference", "Seing
logging aributes for packages, monitors, and events". The logging aributes you can
specify include a particular target log file and a particular log level for any number of
individual packages, monitors and events.

When sending messages to the correlator log file, consider the following:

Log messages can be lost if the correlator is logging to stdout.

Using the correlator log is relatively expensive if there are many log statements in
the critical path.

Anything you send to the log might be lost if the correlator log level is OFF.

See also "Logging and printing" on page 295.

Standard diagnostic log output
By default, the correlator outputs diagnostic information every five seconds, and sends
it to the correlator log file at INFO log level. You can use this information to diagnose

M
Odd Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 427

common problems. See "Descriptions of correlator status log fields" in Deploying and
Managing Apama Applications for further information.

The correlator sends this information to its log file during normal operation. While it
is possible to disable this output (by seing the correlator's log level to WARN), doing so
is not advisable. In the unlikely event that you run into a problem, Apama Technical
Support always ask for a copy of this log file, as the information in it is often useful for
diagnosing the nature of a failure.

Capturing test output
All receivers should be started before any events are sent in to the correlator and set to
write events to file. The file(s) can be easily compared to reference output using standard
operating system tools.

Other tools are also useful in checking the output. The engine_inspect correlator
utility is good for verifying that the right number of monitor instances and listeners
is present after (stages of) a test. Also, you can use this utility to detect listeners and
monitor instances that never terminate, or premature existence of monitor instances.

Use the engine_receive utility to capture event output. You can specify the -f option
to pipe received events to a file. Start multiple receivers on different channels as required

The engine_inspect utility provides useful data for testing including the number of
monitor instances, listeners, receivers, events generated and so on. Split input event files
and run the engine_inspect utility after each file.

Capture the correlator log and compare to reference data. This is useful if your
application logs errors or there are interesting diagnostics.

Avoiding listeners and monitor instances that never terminate
An Out of Memory condition causes the correlator to exit. This condition can be
caused by listeners and monitor instances that never terminate — also referred to as
listener leaks. For example, the following on statement defines event listeners that never
terminate:
on all (Foo(id=1) or all Foo(id=2)) { // second "all" is bogus
...
}

The following example spawns monitor instances that never terminate:
on all Trade():t spawn handle(); // missing "unmatched" action
...
action handle() {
 on all Trade(symbol=t.symbol):t {
 ...
 }
}

The sm (number of monitor instances) and ls (number of listeners) counts in the log
file are often revealing in the case of a memory leak. An increasing trend can be seen

M
Even Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 428

in these counts over a period of time, when there is no valid reason for this given the
intended logic of the application.

Handling slow or blocked receivers
You can use correlator diagnostic output to identify slow or blocked receivers.

The oc (number of events on the output queue) can grow to 10,000 maximum. If you
see a steady trend that it is growing, it probably indicates a slow receiver.

The tx (number of events transmied) should always be increasing. If it is static, or
not increasing as fast as it should, it probably indicates a slow receiver.

Slow receivers include:

Receivers that are not consuming events as quickly as the correlator is generating
them.

Blocked receivers that are not accepting new events.

When the correlator's output queue fills, operations that are sending events from the
processing thread (or threads, if there is more than one context) are blocked. If the
output queue remains filled, and the processing thread(s) remain blocked, the input
queue(s) start(s) to fill. Events are never dropped.

If you specify the -x correlator option when you start the correlator, it causes the
correlator to disconnect any receiver that becomes slow. If you discover that your
application is producing events at too high a rate for a particular receiver you might be
able to publish the events to separate channels so that the receiver needs to handle fewer
events. Alternatively, or in addition, you might be able to modify your application to
throle the rate at which it sends events to this receiver.

If you cannot speed the receiver up, or install faster hardware, you can partition the
correlator's output event flow into channels so that the receiver needs to handle fewer
events. Alternatively, you can use throling in the correlator to output events less
frequently.

See also Deploying and Managing Apama Applications, "Correlator Utilities Reference",
"Starting the event correlator", "Determining whether to disconnect slow receivers".

Diagnosing infinite loops in the correlator
A correlator live lock occurs when events are recursively routed without a termination
mechanism. The following example shows this in its simplest form:
on all Foo() {
 route Foo();
}

More complex forms might recurse after a connected chain of several events being
routed between different monitors.

There are no limits on how many routed events can be queued. Consequently,
depending on the nature of the bug, the correlator might run out of memory. Note that

M
Odd Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 429

an overloaded correlator would show similar symptoms, but can be distinguished by the
fact that work is still being done (events are being sent out from the correlator).

When the correlator is in an infinite loop, it quickly uses an entire CPU and if there are
events being routed as part of the loop then the correlator will run out of memory. Use
the following correlator diagnostics to diagnose an infinite loop:

rq —sum of the number of routed events on the input queues of all contexts.
When the correlator is in an infinite loop, this will always be 1 or it will always be
increasing. It depends on the application.

iq — sum of the number of entries on the input queues of all contexts. When the
correlator is in an infinite loop, this number is continuously increasing.

tx — number of transmied events. This number is static when the correlator is in
an infinite loop.

To identify an infinite loop in a particular context, run engine_inspect -x a few times.
This lists each context along with the number of events on its input queue. See if there
are contexts that have input queues that are geing bigger and bigger.

Tuning contexts
You should implement contexts whenever you want the correlator to perform
concurrent processing. Work to be divided among contexts should have minimum or no
interdependencies and no ordering requirements. Many applications present a natural
way to partition work that is largely independent. For example, you could partition a
financial application by stock symbol, or by user, or by strategy.

The following topics describe common ways to optimize use of contexts.

Parallel processing for instances of an event type
A candidate for implementing parallel processing is when an application performs
calculations for a number of events that are of the same type, but that have different
identifiers. For example, different stock symbols from a stock market data feed. You can
use either of the following strategies to implement parallel processing for this situation:

Create multiple public contexts. Each context listens for one identifier, operates
on the events that have that identifier, and discards events that have any other
identifier.

Have one context distribute data to multiple contexts, which are each dedicated to
processing the events that have a particular identifier.

The performance of these strategies varies according to the work being done. A
distributor can be a boleneck. However, there is a cost in every context discarding
events for which it is not interested. In the following situations, the distributor strategy
is likely to be more efficient:

There is a very large set of identifiers but a relatively low overall rate of arriving
events.

M
Even Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 430

Events must be pre-processed.

Events are not arriving from external sources. Instead, you must explicitly send
events.

The sample code below shows the distributor strategy.
event Tick {
 string symbol;
 integer price;
}

/** In the main context, the following monitor distributes Tick events
 to other contexts. There is one context to process each unique symbol. */
monitor TickDistributor {

 /** The dictionary maps each unique Tick symbol to the (private)
 context that ultimately processes it. */
 dictionary<string, context> symbolMapping;

 action onload() {
 Tick t;
 on all Tick():t {
 // If the context for this symbol does not yet exist, create it.
 if(not symbolMapping.hasKey(t.symbol)) then {
 context c := context("Processing-"+t.symbol);
 symbolMapping[t.symbol] := c;
 spawn processSymbol(t.symbol) to c;
 }

 // Send each Tick event to the context that handles its symbol.
 send t to symbolMapping[t.symbol];
 }
 }

 /** The following action handles Tick events with the given symbol.
 This action executes in a private context that processes all Tick
 events that have one particular symbol. */
 action processSymbol(string symbol) {
 Tick t;
 // Because this context receives a homogeneous stream of Tick events
 // that all have the same particular symbol, there is no need to specify
 // an event listener that discriminates based on symbol.
 on all Tick():t {
 ...
 }
 }
}

Parallel processing for long-running calculations
Suppose a required calculation takes a relatively long time. You can do the calculation
in a context while the main context performs other operations. Or, you might want
multiple contexts to concurrently perform the long calculation on different groups of the
incoming events.

The following code provides an example of performing the calculation in another
context.
monitor parallel {
 action onload() {

M
Odd Header

Testing and Tuning EPL monitors

Developing Apama Applications Version 9.10 431

 on all Tick() {
 numTicks:=numTicks+1;
 send NumberTicks(numTicks) to "output";
 }
 Calculate calc;
 on all Calculate():calc {
 integer atNumTicks:=numTicks;
 integer calcId:=integer.getUnique();
 spawn doCalculation(calc, calcId, context.current())
 to context(“Calculation”);
 CalculationResponse response;
 on CalculationResponse(calcId):resp {
 send CalculationResult(resp, atNumTicks, numTicks) to "output";
 }
 }
 }
 action doCalculation(Calculate req, integer id, context caller) {
 float value:=actual_calculation_function (req);
 send CalculationResponse(id, value) to caller;
 }
}

For each Calculate event found, the event listener specifies a spawn...to statement
that creates a new context. All contexts have the same name — Calculation — and a
different context ID. All contexts can run concurrently.

A Calculation context might send a CalculationResponse event to the main context
before the main context sets up the CalculationResponse event listener. However, the
correlator completes the operations, including seing up the CalculationResponse
event listener, that result from finding a Calculate event before it processes the sent
CalculationResponse event.

While the calculations are running, other Tick events might arrive from external
components and the correlator can process them.

The order in which CalculationResponse events arrive on the main context's input
queue can be different from the order of creation of the contexts that generated the
CalculationResponse events. The order of responses depends on when the calculation
started and how long it took to complete the calculation. The monitor instance in the
main context uses the calcId variable to distinguish responses.

M
Even Header

Developing Apama Applications Version 9.10 432

M
Odd Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 433

13 Generating Documentation for Your EPL Code

■ Code constructs that are documented ... 434

■ Steps for using ApamaDoc .. 434

■ Inserting ApamaDoc comments ... 435

■ Inserting ApamaDoc tags ... 436

■ Inserting ApamaDoc references ... 439

■ Inserting EPL source code examples .. 441

■ Generating ApamaDoc in headless mode ... 441

M
Even Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 434

Just as you can use the Javadoc tool to generate documentation for Java, you can use
the ApamaDoc tool to generate documentation for EPL. ApamaDoc, which is based on
Javadoc, generates reference documentation from EPL source code. To enhance what
ApamaDoc automatically generates, you can insert annotations in block comments.
Annotations are a mixture of text and tags.

ApamaDoc is an export wizard in Software AG Designer. It generates static HTML
pages that document the structure of all EPL code in a project. This includes the .mon
files that you create as well as all .mon files in all bundles that have been added to a
project.

Alternatively, you can generate ApamaDoc in headless mode by invoking the apamadoc
utility from the command line.

Note: ApamaDoc does not operate on .qry files. That is, you cannot use ApamaDoc
to generate reference documentation for Apama queries.

Code constructs that are documented
The ApamaDoc generates documentation for the following code constructs:

Packages

Events (defined outside monitors)

Monitors

Custom aggregate functions

Wildcard modifiers

By default, the ApamaDoc export wizard does not generate documentation for inner
fields of a monitor. If you want to include inner fields of a monitor, generate ApamaDoc
in headless mode using the --includeMonitorMembers option. See "Generating
ApamaDoc in headless mode" on page 441 for more information.

Steps for using ApamaDoc
The general steps for using ApamaDoc are as follows:

1. Create an Apama project in Software AG Designer.

2. Add a .mon file to your project.

3. In the .mon file, enhance the automatically generated documentation by adding
annotations. See "Inserting ApamaDoc comments" on page 435, "Inserting
ApamaDoc tags" on page 436, and "Inserting ApamaDoc references" on page
439.

4. Save and build the project.

5. Right-click the project name and select Export from the context menu.

M
Odd Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 435

6. In the Export dialog, expand Software AG, select ApamaDoc Export, and click Next.

7. Identify the folder that you want to contain the ApamaDoc output, and click Finish.

To view the ApamaDoc output, go to the output folder you identified and double-click
the index.html file. The generated ApamaDoc opens in your browser.

Try this with any project you already have, or with one of the demo projects. Even if you
have not added any ApamaDoc annotations, you can see that ApamaDoc automatically
generates a lot of documentation.

Inserting ApamaDoc comments
To augment the documentation automatically generated by ApamaDoc, insert
comments in your EPL files in the following format:

1. Start the comment with the /** characters, rather than the usual /* notation.

2. Enter the text you want to appear in the generated documentation.

3. After each newline, to continue the ApamaDoc comment, insert a * character at the
beginning of the next line.

4. As needed, insert one or more tags for particular constructs. See "Inserting
ApamaDoc tags" on page 436. Any tags must occur at the beginning of a newline
(ignoring * and whitespace characters). Documentation for a tag ends when you
declare another tag or end the comment.

5. End the comment with the usual */ characters.

For example, your EPL code might look like this:
/**
 * Called by the monitor when it executes the onload() action.
 * This action maintains the configuration for this scenario.
 * @param sId The scenario ID.
 * @param updateCallback The callback after the configuration is updated.
 */
action init(string sId, action<> updateCallback) {
 scenarioId:=sId;
 route GetConfiguration(scenarioId);
 Configuration c;
 listener l:=on Configuration(scenarioId=scenarioId):c {
 config := c.configuration;
 defaultConfig := c.defaults;
 configurationUpdated();
 updateCallback();
 }
 listeners.append(l);
}

When ApamaDoc processes these comments, it removes initial and trailing whitespace
and * characters. For example, the ApamaDoc output would look like this:
init
void init(string sId, action< > updateCallback)
Called by the monitor during execution of the onload() action. This action
maintains the configuration for this scenario.
Parameters:

M
Even Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 436

 sId - The scenario ID.
 updateCallback - The callback after the configuration is updated.
Listens:
com.apama.scenario.Configuration

Inserting ApamaDoc tags
ApamaDoc automatically generates documentation for EPL code constructs. To enhance
the quality of the documentation, you can insert tags that let you provide and link to
additional information. A tag begins with an @ symbol and is immediately followed by a
name and other information. The following table describes the tags you can insert.

Tag Description Use For

@author name There are no restrictions
on the name. It can span
multiple lines. It is ended by
the start of the next tag.

Imports,
events,
monitors,
aggregate
functions

@deprecated [
description]

The optional description can
be anything pertinent to the
deprecated construct. For
example, you might want to
suggest a newer equivalent
or provide a reason for the
deprecation.

Imports,
events,
monitors,
actions, and
members
(variables
and named
constants)

@emits eventRef [
description]

Documents events that are
emied. eventRef specifies
a link to an event definition.
The optional description
can be anything pertinent
to the emiing of the event.
See "Inserting ApamaDoc
references" on page 439.

Actions and
their return
types

@enqueues eventRef [
description]

Documents events that are
enqueued. eventRef specifies
a link to an event definition.
The optional description can
be anything pertinent to the
enqueueing of the event.
See "Inserting ApamaDoc
references" on page 439.

Actions and
their return
types

M
Odd Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 437

Tag Description Use For

@sends eventRef [
description]

Documents events that are
sent to a channel. eventRef
specifies a link to an event
definition. The optional
description can be anything
pertinent to the sending
of the event to a channel.
See "Inserting ApamaDoc
references" on page 439.

Actions and
their return
types

@listens eventRef [
description]

Documents events that are
being listened for. eventRef
specifies a link to an event
definition. The optional
description can be anything
pertinent to the event listener.
See "Inserting ApamaDoc
references" on page 439.

Actions and
their return
types

@param codeRef [
description]

Documents arguments to
actions and custom aggregate
functions. codeRef specifies
the parameter name. The
description should be a
sentence describing the
purpose of the parameter
and any constraints on the
permied values that may be
specified.

Actions
and custom
aggregate
functions

@private Hides constructs from
ApamaDoc. On a line by
itself, immediately precede
the construct that you
do not want to generate
documentation for with the
following:

/** @private /*

All code
constructs
except
packages
and action
contents

@returns description Documents the return value
of an action or aggregate
function. The description
should be a sentence
describing the purpose
of the return value, and

Actions and
aggregate
functions

M
Even Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 438

Tag Description Use For
any pertinent information
about the possible values
that may be returned.
Note that for backwards
compatibility reasons
@return is maintained as an
alias for @returns.

@routes eventRef [
description]

Documents events that are
being routed. eventRef
specifies a link to an event
definition. The optional
description can be anything
pertinent to the routing of
the event. See "Inserting
ApamaDoc references" on
page 439.

Actions and
their return
types

@see There are three forms of this
tag. Each form documents a
relationship between a code
fragment and some other
information.

@see "description"

Lets you insert text that
explains the relationship.

@see codeRef description

Lets you reference an EPL
code construct and describe
the relationship between this
construct and that construct.
codeRef specifies a link
to some other EPL code.
See "Inserting ApamaDoc
references" on page 439.

@see linkText
[description]

Lets you specify an HTML
link to an external resource.
Optionally, you can add more
information.

All code
constructs
except
packages
and action
contents

M
Odd Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 439

Tag Description Use For

@sends eventRef [
description]

Documents events that are
sent. eventRef specifies a
link to an event definition.
The optional description
can be anything pertinent
to sending the event. See
"Inserting ApamaDoc
references" on page 439.

Actions and
their return
types.

@since version Documents when a code
construct was introduced.
Replace version with a
particular version number,
for example, 9.9.

All code
constructs
except
packages
and action
contents

@spawns actionRef [
description]

Lets you document the
lifecycle of a monitor.
actionRef specifies a link
to an action definition.
See "Inserting ApamaDoc
references" on page 439.

Monitors and
actions

@version version Lets you specify a version of
the current incarnation of this
code. Replace version with
a particular version number,
for example, 9.9.

Monitor
definitions,
event type
definitions,
custom
aggregate
function
definitions,
and actions

Inserting ApamaDoc references
Many ApamaDoc tags contain links to other parts of the EPL code. These tags specify
one of the following link types:

Code references

Type references

Event references

Action references

M
Even Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 440

A code reference is a link to a monitor definition, an event type definition, an action
definition, a member (variable or named constant) declaration or an import declaration.
A code reference has two forms.

The first form links to constructs that are in the monitor definition or event type
definition that contains this ApamaDoc comment. The target of the link can be a variable
declaration, named constant declaration, import declaration, or action definition. The
format for this code reference is as follows:
[#] (member | import | (action ()))

The hash symbol is optional. You must specify one of the following:

Name of a member (variable or named constant) that is in the monitor or event type
definition that contains this ApamaDoc comment.

Name of an item that is being imported in the monitor or event type definition that
contains this ApamaDoc comment.

Name of an action that is in the monitor that contains this ApamaDoc comment.
If you specify an action, the name of the action must end with parentheses. For
example:
#updateOrder()

The second form links to constructs that are not in the monitor or event type definition
that contains this ApamaDoc comment. You can link to code constructs that are in the
same package or in other packages. The format for this code reference is as follows:
[package [. monitor].]type [#(member | import | (action ()))]

Replace type with the name of a monitor or event type definition. If the ApamaDoc
comment is in the same package as the link target, the package specification is optional.
If you replaced type with the name of an event that is defined in a monitor, you must
replace monitor with the name of that monitor and you must specify the package name.

The hash symbol followed by a name is required when the link target is a variable
declaration, named constant declaration, import declaration, or action definition. If you
specify an action, the name of the action must end with parentheses.

If the code reference is valid the rendered HTML output contains a hyperlink to the
referenced code construct's documentation followed by the descriptions text, if any.
If the reference is not valid, the output displays only the tag's description text if you
provided it.

A type reference is a subset of a code reference. It always links to a monitor or event type
definition.

An event reference is a subset of a type reference. It always links to an event type
definition.

An action reference is a subset of code reference. It always links to an action. The action
can be in an event type definition, in a monitor, or in an event type definition that is in a
monitor.

M
Odd Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 441

Inserting EPL source code examples
The ApamaDoc supports <code>…</code> HTML tag in ApamaDoc comments. You can
use this tag in ApamaDoc comments text to specify code snippets. The indentation and
line breaks of the code snippet between the <code>…</code> tag will be retained.

Note: If you have to use the special character @ within the <code>…</code> tag, you
must use the HTML ASCII code @ instead of the character.

Generating ApamaDoc in headless mode
Headless mode lets you generate ApamaDoc from a command line as a standalone
operation on Windows platforms. This is useful if you want to control what ApamaDoc
generates without user-interface intervention, for example, when you are running
nightly build integrations. Also, from the command line, you can control which files are
exported and which files are omied.

To generate ApamaDoc in headless mode, run the apamadoc.bat file, which is in the
%APAMA_HOME%\bin folder. The apamadoc.bat file uses the %APAMA_HOME%\utilities
\apamadoc.xml Ant script to generate ApamaDoc.

The format for invoking the apamadoc utility is as follows:
apamadoc [-v] output_folder
 monitor_file_base_folder |monitor_file_path |file_path ...

Note: The apamadoc utility requires Apache Ant. To set the path appropriately, it is
recommended that you run the apamadoc utility from the Apama Command
Prompt (see "Seing up the environment using the Apama Command
Prompt" in Deploying and Managing Apama Applications). If you do not use
the Apama Command Prompt, then you must ensure that the PATH variable
for the headless ApamaDoc command line contains an entry for the Ant
installation folder (such as C:\ant), which makes the Apama ant.bat file
accessible to ApamaDoc generation.

Element Description

-v Optional. Displays verbose output on
stdout about the process that is generating
ApamaDoc.

output_folder Identifies the folder that will contain the
generated ApamaDoc.

monitor_file_base_folder Specifies a folder that contains EPL .mon files
for which you want to generate ApamaDoc.
You can specify zero, one, or more folders.

M
Even Header

Generating Documentation for Your EPL Code

Developing Apama Applications Version 9.10 442

Element Description
Insert a space between names. The apamadoc
utility recursively processes specified folders.

monitor_file_path Specifies an EPL .mon file for which you
want to generate ApamaDoc. You can specify
zero, one, or more .mon files. Insert a space
between names.

file_path File that lists the EPL source files for which
you want to generate ApamaDoc. Specify this
file by prepending an @ sign at the beginning
of the path, for example, @C:\docfiles
\inputEPLFilePaths.txt. In the specified
file, specify one source file on each line. You
cannot specify @location in the specified file;
that is, this facility is not recursive.

-h Optional. Specify -h to display usage
information.

--includeMonitorMembers Generates documentation for inner fields of a
monitor. For example, inner events, variables
and constants, fields in events, and actions.

On the command line, you can mix file paths, monitor file paths, and folder paths
in any combination. The following example generates ApamaDoc for all monitor
files in the C:\mon_files_dir folder as well as for the C:\Apama_monfiles
\MyMonitor.mon file and all the files listed in the inputEPLFilePaths.txt file. The
mon_files_dir folder is processed recursively. The generated ApamaDoc is put into the
C:\generated_apamadocs folder.
apamadoc C:\generated_apamadocs
 C:\mon_files_dir
 C:\Apama_monfiles\MyMonitor.mon
 @C:\docfiles\inputEPLFilePaths.txt

The next example generates ApamaDoc and puts it in the C:\MyApplication\ApamaDoc
folder. Specification of the -v option displays names of the files being processed on the
command line. The files being processed are listed in the EPLsource.txt file.
apamadoc -v C:\MyApplication\ApamaDoc @C:\MyApplication\doc\EPLsource.txt

Headless mode for generating ApamaDoc is available only on Windows platforms.

M
Odd Header

Developing Apama Applications in Event Modeler

Developing Apama Applications Version 9.10 443

II Developing Apama Applications in Event Modeler

■ Overview of Using Event Modeler ... 445

■ Using Event Modeler .. 467

■ Using Standard Blocks ... 521

■ Using Functions in Event Modeler ... 573

■ Creating Blocks .. 591

■ Working with Blocks Created from Scenarios ... 615

■ File Definition Formats ... 639

M
Even Header

Developing Apama Applications in Event Modeler

Developing Apama Applications Version 9.10 444

Developing Apama Application in Event Modeler provides information and instructions
for defining independent, real-time, business strategies, referred to as scenarios. Each
scenario can contain any number of states, and transitions between states happen
according to rules that you define.

You use the Event Modeler to create scenarios. You inject completed scenarios into the
correlator, and then use a dashboard to create and configure one or more instances of
the scenario. Each scenario instance listens for particular events or sequences of events.
When the scenario instance finds events or sequences of interest, it performs specified
actions according to the rules defined in the scenario.

After you develop a scenario in Event Modeler, you use Dashboard Builder to create a
graphical dashboard for the scenario. The dashboard lets end users create and interact
with scenario instances through an intuitive and easy to manipulate graphical user
interface, which is described in Building and Using Dashboards.

It is assumed that you have read Introduction to Apama, which introduces scenario
concepts, discusses the scenario development lifecycle, and covers Apama architecture
and other Apama concepts.

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 445

14 Overview of Using Event Modeler

■ Event Modeler layout ... 446

■ About event flow states ... 448

■ How rules define scenario behavior .. 450

■ Basic view of rule processing .. 455

■ About scenario variables .. 460

■ About blocks ... 463

■ Linking variables, block parameters, and block output fields .. 464

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 446

This chapter introduces the concepts underlying the layout and functionality of the
Apama's Event Modeler in Software AG Designer. It does not aempt to describe how
to use the tool or how to interact with its various tabs and panels. That explanation is
provided in "Using Event Modeler" on page 467, once the underlying concepts are
understood.

Before using Developing Apama Applications in Event Modeler, we recommend that you
take advantage of the Apama tutorials numbered 7, 8, and 9. These tutorials let you
quickly start using Event Modeler by adding to a partially formed scenario. To access
the tutorials, open Software AG Designer, invoke the Welcome page and click Tutorials
under the Apama heading.

It is assumed that you have read Description of Event Modeler and Understanding scenarios
and blocks in Introduction to Apama, which introduces scenario concepts and discusses the
scenario development lifecycle.

Event Modeler layout
To begin learning how to use Event Modeler, it is helpful to examine a demo scenario in
Event Modeler. To do this:

1. Start Software AG Designer.

2. From the Help menu, choose Welcome.

3. Click Demos under the Apama heading.

4. In the list of demos that appears, click Statistical Arbitrage and click Open to open the
demo application's project.

5. In the Workbench Project View, expand Scenarios and double-click
StatisticalArbitrage.sdf. This is the scenario definition file. When you double-click it, it
opens in Apama's Event Modeler editor.

The Event Modeler editor is divided into a number of areas. In the panel on the left (the
Event Flow tab) click on the double-bordered oval shape marked start. Your display will
now look as follows:

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 447

This is the default view. Event Modeler displays the following primary areas:

Event Flow

Global Rules and Local Rules

Tabs for Variables, Blocks, Catalogs, and Functions.

At the boom of Event Modeler, there are tabs for Event Flow and Block Wiring. When you
click the Block Wiring tab, the Event Flow and Rules panels diappear and the Block Wiring
tab appears.

During its lifetime, a scenario instance transits through a number of execution states,
starting from the start state, and eventually ending at the end state (shown in the Event
Flow tab). Event flows are described in "About event flow states" on page 448.

Each state consists of a list of rules that are executed in a particular sequence. Each has a
condition that needs to be met for its embedded actions to be executed, and once those
actions are complete, it can specify whether the following rules are to be processed next
or the scenario should transit directly to another state. These rules appear in the Global
Rules and Local Rules panels. Rules are examined in "How rules define scenario behavior"
on page 450

The Variables tab lists any variables defined in the scenario. Scenario variables are
placeholders for important information that needs to be referred to and modified during
the scenario's execution. They also reflect what data can be collected from the user or
sent back to be displayed to the user as results or progress updates. Variables will be
described in "About scenario variables" on page 460.

The Blocks tab lists any blocks that are being used by this scenario. Blocks are pre-
packaged modules that can be imported and used within scenarios. They can accept
inputs, execute some logic of their own, and generate output. Like a scenario, blocks can

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 448

themselves have configuration parameters as well as input and output feeds. Blocks can
also carry out specialized operations. See "About blocks" on page 463 for details.

The Catalogs tab lists the reusable, ready packaged blocks that are available for use in
this scenario. Event Modeler comes with a selection of standard blocks, and these are
documented in "Using Standard Blocks" on page 521. "Using the Catalogs tab" on
page 504 describes usage of the Catalogs tab.

The Functions tab lists the functions that are available for use in this scenario. Event
Modeler comes with a selection of standard functions, and these are documented in
"Using the Functions tab" on page 506.

Minimize the panels that are not part of Event Modeler and then click the Block Wiring
tab that appears below the Event Flow tab. The main view changes to show the Block
Wiring tab. The Event Modeler display now looks like this:

This tab shows the blocks that are being used within this scenario, and whether those
blocks are wired together; that is, whether the outputs of one block are acting as the
inputs of another. This functionality will be described in "Switching blocks" on page
511. The specific functionality of all the tabs will be covered in depth in "Using Event
Modeler" on page 467.

About event flow states
At any moment in a scenario instance's execution, it is said to be in a particular state in
the event flow. The activities and actions that a scenario instance will be doing at any
moment depend on its state, and are defined by that state's rules.

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 449

The execution of a scenario instance consists of progressing through a sequence of states,
starting from the start state, and ending at the end state. For this reason, all scenarios
must have a start and an end state.

A scenario instance can only ever be in one state, but there might be a choice of states
it can advance to from that state. It is also possible for a scenario instance to move from
a state back to the same state again. A scenario instance will continue executing until it
reaches the end state, then it will terminate.

The Event Flow tab illustrates all the possible states that the scenario instance can be in
while it is running inside the correlator. Note how when the Statistical Arbitrage sample
is loaded the Event Flow tab is showing the following states (the arrows indicate possible
transitions between states):

Using this scenario as an example, when the Statistical Arbitrage scenario is deployed to
the correlator, it will start execution from the start state. From this state it can only transit
to the Wait for Spread state. In Wait for Spread, however, it can go directly to the end state

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 450

and terminate its execution (by means of a global rule - shown as an orange line; more
on this later), or else transit to the Monitor Opportunities state by means of a local rule.

From the Monitor Opportunities state, the scenario can advance to the Wait for Orders state,
or it can terminate execution and go to the end state. If execution does reach the Wait for
Orders state, it can only transit back to the Wait for Spread state. What causes a scenario
instance to change from one state to another state, and what it does while it is in a state,
depends on its rules.

How rules define scenario behavior
States maer because of the distinct behavior that the scenario instance will follow while
in a particular state. And that is defined in each state's set of rules. A state can have one
or more rules defined in it. Each rule has the following structure; "if a condition is true
then do the following …".

The center panel has two parts: Global Rules and Local Rules. A global rule can apply to
more than one state. A local rule can apply to exactly one state. When you select a state
in the Event Flow tab, the rules defined for that state appear in the Rules panel.

Each rule has a condition part, denoted by When, and an action part, indicated by Then.
The part indicated by the symbol is just a descriptive comment that you can set to
whatever you like. You can hide or show the comment by selecting in the Event
Modeler toolbar. The start state illustrated in the previous topic has two local rules,
including this rule:

This is stating:

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 451

when true, which means: always do this,

then do the following:

carry out the start operation on the following block instances

Market Depth 1

Market Depth 2

Spread Calculator

Spread Data Distribution Calculator

Position Calculator 1

Position Calculator 2

P&L Calculator

set the StatusMessage variable to “Waiting for price data”

continue, that is, evaluate the next local rule

Variables: For now it is enough to know that, as in other programming environments,
scenario variables are placeholders for useful information that the scenario needs to keep
track of and perhaps modify during its execution. They also identify the information
that will be required by a running instance of the scenario from the end-user in order to
configure and start it off, as well as representing the information that will be sent back to
be displayed to the user as progress updates or results.

Variables are typed; each can be of type text, number, choice or true/false.

Variables are described in "About scenario variables" on page 460.

Blocks: Likewise, blocks are ready-packaged modules that you can import and use
within your scenarios. They can accept inputs, execute some logic of their own, and
generate output. A block can consist of Input feeds (which contain one or more input
fields), Output feeds (which contain one or more output fields), Parameters, and Operations.
Block parameters and fields are typed; each can be of type text, number, choice or
true/false. Blocks are described in "About blocks" on page 463.

In addition to the standard blocks provided with Event Modeler, you can build custom
blocks in Software AG Designer.

Description of rule conditions
The condition specified in a rule must be true for the action part to be executed.
Conditions can be as straightforward as the example seen so far, such as a condition
that specifies just true (evaluated once). This condition causes the action part to
execute whenever the rule is evaluated. However, more often a condition will specify
a constraint on the value of a variable, field or parameter, for example, “is a particular
variable at present greater than this value”. It can also be a complex composition of various
conditions defined using the operators and and or. For example:

1. Click on the Wait for Spread state.

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 452

2. In the global rules pane, scroll down to the last global rule, the one labeled Volume
limit check.

Consider the condition for this first rule. This condition will be true if:
(Quantity 1 + ABS(Current Position 1)) is greater than or equal to Max
Quantity 1
or
(Quantity 2 + ABS(Current Position 2)) is greater than or equal to Max
Quantity 2

This condition contains two clauses:

Whether the result of the variable Quantity 1 being added to the absolute value of
Current Position 1 is greater than or equal to the variable Max Quantity 1.

Whether the result of the variable Quantity 2 being added to the absolute value of
Current Position 2 is greater than or equal to the variable Max Quantity 2 .

As the two clauses are joined with an or, only one needs to be true for the condition to
be true as a whole. Had the operator used been an and, then both of the clauses would
have needed to be true for the condition as a whole to evaluate to true.

A condition needs to evaluate to the value true or false. Apart from the literal values
true and false themselves, a condition can also consist of any of the following:

The inverse of any other condition. This can be achieved by expressing not before
that condition

A variable (or block parameter or block output field) that is of type True/False (or
condition)

A check on whether a variable's value (or block parameter or block output field) has
changed since the beginning of this state or since it was last checked by this rule

For example, Max Quantity changes

A function call whose result is either true or false

For example, isWeekday("Friday")

Any numeric expression being compared with another numeric expression. A
numeric expression equates to a numeric value, and can be arrived at by any
combination of arithmetic operations, functions and/or number variables. Numeric
expressions can be compared to each other with is less than, is less than or

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 453

equal to, is greater than, is greater than or equal to, is equal to, and
is not equal to.

For example, Price is less than 20

or

((Price * 2) / Quantity) is greater than POW(Upper Limit, 5)

Any text expression being compared with another text expression. A text expression
is a string (that is, a word or phrase) and can be arrived at by any number of
operations, functions and/or text variables. Text expressions can be compared to each
other with is equal to, is not equal to, and contains.

For example, Name is equal to "Tom"

or

"Bookmark" contains "book"

Any choice variable being compared with a valid choice value. The laer can be
another choice variable or a text expression. A choice variable is one whose valid
values are limited to a particular selection of text values. The valid comparisons here
are is equal to, and is not equal to.

Any number of nested conditions joined with and or or

For example, Max Quantity changes and (Price is less than 15 or Price
is greater than or equal to 20)

Details on how to specify conditions in the Rules panel are given in "Working in the
Rules panel" on page 480.

Description of rule actions
If a condition evaluates to true, then the corresponding action part of that rule will be
processed.

Actions consist of a number of action statements, and a state transition statement. The
former are optional; it is possible to have an action that does not have any action
statements. However, there must always be a state transition statement.

The state transition statement is straightforward; it will either be continue, or else move
to state [one of the scenario's states]. It is important to note that the laer format
could indicate a transition back to the same state, and that this is in fact different to
stating continue. The distinction will be explained in "About rule evaluation" on page
454.

An action statement can be:

Assign the value of a numeric expression (that is, a number) to a numeric variable or
block parameter. For example:

Trades Executed = Trades Executed + 2

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 454

Assign the value of a text expression (that is, a word or phrase) to a text variable or
block parameter. For example:

Status Message = "Both orders filled"

Assign the value of a condition (true or false) to a conditional variable or block
parameter. What constitutes a valid condition here is the same as listed in
"Description of rule conditions" on page 451. For example:

Active = ((Price * 2) / Quantity) is greater than POW(Upper Limit, 5)

Assign the value of a text expression or choice variable to a choice variable or block
parameter

Invoke a block operation

See "Working in the Rules panel" on page 480 for details about specifying rules.

Description of functions in rules
As you might have noticed from some of the examples used so far, functions are
available in both conditions and actions.

Functions in Event Modeler take a fixed set of parameters, with each parameter being
of a particular type. A function will return a single value of a particular type. The
types available for both parameters and results are text, number and True/False (or
condition).

Functions are each defined in a function definition file or .fdf file.

The bundled functions include commonly used arithmetic and string functions, like abs
(the absolute value of a number), ceil (the whole number ceiling of a number), floor (the
whole number floor of a number), pow (to the power of) and concat (concatenate). These
functions are documented in "Using Functions in Event Modeler" on page 573.

Note that any .fdf files located in the folder functions are automatically picked up by
the Event Modeler at startup time, and made available when defining rules.

About rule evaluation
When scenario execution enters a state, the rules of that state are examined in the order
they are defined. If there are global rules as well as local rules, Event Modeler evaluates
the first global rule first.

The first rule's condition is checked to verify whether it is true or false.

If the condition is false, then execution moves on to the next rule, and the procedure
is repeated in the same way for that rule. If there are global rules, the next rule is the
next global rule. If there are no more global rules, the next rule is the first local rule. If
Event Modeler processes all rules assigned to a state, the order is top to boom in the
combined Global and Local Rules panel.

If, on the other hand, the rule's condition is true, then its action part is processed. The
action statements are executed, and then the state transition statement is examined. If it

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 455

is continue, then execution moves on to the next rule. If, on the other hand it is move to
state [some state] then the scenario will proceed directly to that state and ignore all
other rules. Their conditions will not be reviewed and their action parts never processed.
In the new state, the same procedure highlighted here is followed.

Note that as stated previously continue, and move to state [this same state] are
different. The former causes execution to proceed to the next rule, while the laer causes
the state's execution to restart from the first rule as if we had entered this state from a
completely different state.

Basic view of rule processing
Consider the set of rules shown in this screen.

This example scenario has four variables, called Variable1 (number), Variable2 (text),
Variable3 (condition) and Message (text). These variables could have any value when
execution enters NewState 1. Their initial values would normally have been set by a
user on creation of the scenario instance, or else they could have been set and modified
by some rule in the start state.

Consider NewState 1, which specifies four rules. When the scenario instance's execution
first enters NewState1, its rules will be processed as follows:

1. New Rule 1 will be examined first.

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 456

2. If the value of Variable1 is less than 10 then its condition will be true, its action part
will be processed, and this will move the scenario's execution to NewState 2 right
away. New Rule 2, New Rule 3 and New Rule 4 will be ignored, and the rest of the
steps outlined here would not apply.

3. If the value of Variable1, however, was greater than or equal to 10, then the
condition of New Rule 1 will be false. In this case, New Rule 2 will be examined.

4. In New Rule 2, if Variable1 was actually greater than 20, then the action part of
New Rule 2 gets processed, and this time the scenario moves to NewState 3. New
Rule 3 and New Rule 4 will be ignored. No further steps apply.

5. On the other hand, in New Rule 2, if the condition was false, we move to New Rule
3.

6. In New Rule 3, if the value of Variable3 was false, then not Variable3 would be
true, and the condition of New Rule 3 would be true. In this case, Message would
get set to the text “Hello”. Since the state transition statement is continue, then New
Rule 4 will be processed.

7. Had the condition of New Rule 3 been false, Message would not get set to the text
“Hello”. However, New Rule4 would have been processed anyway.

8. The condition of New Rule 4 checks whether Variable2 contains the text “World”.
If so, execution proceeds to the end state. If not, then all rules would have been
processed and the scenario would go into a monitoring stage. This will be described
later.

This illustrates the way in which rules are processed, in order, from top to boom.

Expanded view of rule processing
While the previous top-to-boom rule processing occurs in the majority of scenarios, the
full picture of how rules are processed is more elaborate.

In practice, when execution enters a state, the rules of that state are placed on a queue in
the order shown in the Rules panel — first global rules and then local rules. This queue
is known as the rule queue. Rules are taken off the head of this queue and processed.

The sequence can differ if any of the action statements modify a scenario variable (or
block parameter or block field) that is referenced by the condition of any rule within that
state.

In that case, all rules whose condition references that variable, and that are no longer on the
queue, will be added to the end of the queue. If those rules had already been on the queue
waiting to be processed, then they would not be added again. For example, consider the
following rules:

R1: f(b): continue;

R2: f(a): continue;

R3: f(c): a=7; continue;

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 457

R4: f(d): b=0; continue;

R5: f(a,b): continue;

Suppose that a, b, c, and d are variables and f(a) means “some function of 'a'”. Assume
that f(c) and f(d) are both true. Event Modeler places the rules on the queue as follows:

R1 R2 R3 R4 R5 R2 R1

As you can see, when Event Modeler adds a rule to the queue, it always adds it to the
end of the queue.

Consider the set of rules shown in the next screen:

1. When execution enters NewState 3 any rules of the previous state are removed
from the rule queue, and the following rules will be placed on it, in this order: New
Rule 1, New Rule 2, New Rule 3, New Rule 4 and New Rule 5.

2. New Rule 1 will be taken off the queue and its condition examined. If Variable3 is
true, then the scenario will move to NewState1. The rule queue will be emptied of all
New State 3 rules, and no further steps apply.

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 458

3. However, if Variable3 is false, then New Rule 2 is taken off the queue and its
condition checked. Note that at this point the rule queue would contain New Rule
3, New Rule 4 and New Rule 5. New Rule 2's condition states that if Variable1
is not equal to 15 its action part must be processed. Let us assume that Variable1
is indeed not equal to 15 and its single action statement changes Variable2 to the
value “A new value”.

4. What happens next in this case depends on the state transition statement of New
Rule 2. If it had caused a transition to another state, then the scenario would have
emptied the rule queue, moved to that state, and then repopulated the queue with
the rules from the new state. However, in this case the state transition statement is
continue. Note that Variable2 is referred to in the condition part of New Rule 3
and New Rule 5, and that it has now been changed. Therefore, New Rule 3 and New
Rule 5 must be added to the rule queue. However, they are already on the queue, so
nothing happens. If either of these two rules had not been on the queue, they would
have been added to the end of the queue.

Now, consider this slightly changed set of rules, specifically New Rule 2.

New Rule 2 is now also changing Variable3. This time, starting with step 3 from the
previous sequence, the following is what happens:

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 459

1. If Variable3 is false, then New Rule 2 is taken off the queue and its condition
checked. Note that at this point the rule queue would contain New Rule 3, New
Rule 4 and New Rule 5. New Rule 2's condition states that if Variable1 is not
equal to 15 its action part must be processed. Let us assume that Variable1 is
indeed not equal to 15 and action statements change Variable2 to the value “A new
value”, and Variable3 to true.

2. What happens next in this case depends on the state transition statement of New
Rule2. If it had caused a transition to another state, then the scenario would have
emptied the rule queue, moved to that state, and then repopulated the queue with
the rules from the new state. However, in this case the state transition statement is
continue. Note that Variable2 is referred to in the condition part of New Rule 3
and New Rule 5, and that it has now been changed. Therefore, New Rule 3 and
New Rule 5 must be added to the rule queue. Also, Variable3 is referred to in the
condition part of New Rule 1, and it has also now been changed. Therefore, New
Rule 1 must be added to the rule queue. Now, New Rule 3 and New Rule 5 are
already on the queue, so they are not added. New Rule 1 is no longer on the queue,
so it is added. Therefore, at the end of processing New Rule 2's action part, the rule
queue will now be: New Rule 3, New Rule 4, New Rule 5 and New Rule 1.

Scenario monitoring stage
If all rules on the rule queue are processed and the queue becomes empty, the scenario
instance goes into a monitoring stage.

The scenario instance stays in this state until some external source changes a variable,
block parameter or block field that is referred to in any condition of any of its rules. This
can occur because of a user sending in a scenario modification, or a block changing its
properties in response to some external event feed.

If this occurs, then the affected rules are added to the rule queue and processed in the
order as described previously.

This process of placing rules on the rule queue and processing them continues until
a rule condition is true and the corresponding action requests a state transition to
another state. After moving to the new state, Event Modeler places the new rules on the
queue and evaluates them. Rule processing stops only when there are no rules left to be
evaluated.

Summary of adding rules when a variable value changes
When a rule action or an external source changes a variable, block parameter or block
field that is referred to in any condition of any rule in the current state, that rule is added
to the current rule queue, unless it is already on the queue. If the queue was empty when
the rule was added, then the rule is processed immediately. If multiple rules need to be
added to the queue, they are added in the order they are listed, top to boom.

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 460

About scenario variables
Typically, each scenario has a number of variables.

As in other programming environments, variables are placeholders for useful
information that the scenario needs to keep track of and perhaps modify during
its execution. They also indicate the information that will be required by a running
instance of the scenario from the end-user in order to configure and start it off, as well
as representing the information that will be sent back to be displayed to the user as
progress updates or results.

The variables defined in a scenario are shown in the Variables tab. Each variable has a
distinct type. If you click on the green box to the left of each variable you can examine its
type and other properties.

Variable types
Variables can be of four types in Event Modeler:

Text (or string)

Number (integer or float depending on constraint)

Choice (or enumeration)

True/False (or conditional, or boolean)

Text variables contain textual information, like words, phrases or sentences. An
example of valid text is “Hello World”, “Monday”, “ACME” or “Trading Strategy
executed successfully”. Text values are normally shown in double quotes. If you
want to have quotes in your text, you can escape them as follows: “he said \"hello\"
and left”.

Number variables can contain numbers. Valid examples are 1, 25.0, -45.62, or 8902e8.

Choice variables are constrained so that they can only have values from a specific set
of pre-defined values. For example, the choice variable Day could be constrained so that
it can only have one of the values “Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”or“Sunday”.

True/False variables, also known as condition variables, can only take the values true
or false.

You can also specify constraints on variables according to their type. For example, you
can specify maximum and minimum values for a Number variable.

Auto-typing of variables
Variables are “auto-typed” by default. This means that the type is automatically inferred
from the value assigned to the variable in the Variables tab . If such a variable is wired to
another variable or a block field, it inherits the source's type.

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 461

If you subsequently change the wiring so that the auto-typed variable is then wired to
another variable or block field, its previously inferred type will be changed to the type of
the new source.

Note that this means that type mapping (as described in "Linking variables, block
parameters, and block output fields" on page 464) will not be necessary for variables
that are auto-typed.

Variable properties
Variable properties only apply to, and are enforced by, dashboards. That is, they only
apply when a variable is presented to, and is interacted with by, an end user of the
scenario. By design, variable properties do not apply to scenario rules or variable wiring
within the Variables tab.

Each variable has a mutability property, which can take the following values:

Mutable – This property is of relevance to the dashboard. If set it means that the end-
user should be able to set and change the value of this variable at any time, via a
dashboard.

Immutable – This property is of relevance to the dashboard. If set it means that the
end-user should only be allowed to set the value of this variable upon creation of the
scenario instance, and should not be able to modify it afterwards.

Fixed – This means that this variable is a constant; it cannot be modified through a
dashboard. If a variable is set as Fixed but no value is provided for it in the Variables
tab, the Event Modeler will automatically set it to the default value for its type.

Furthermore, each variable can also be set to be Unique. This means that if multiple
instances of a scenario are started concurrently, the value of this variable must be unique
across all instances. The dashboard used to enter values for this variable will ascertain
that this is the case before accepting the value from the user. Note that if a variable is set
to be Unique, it must also be Immutable.

Variable constraints
Depending on its type, each variable can also have value constraints set on it.

Variable constraints only apply to dashboards. That is, they only apply when a variable
is presented to, and is interacted with by, an end user of the scenario. By design, variable
constraints do not apply to scenario rules or variable wiring within the Variables tab.

For Text variables the possible constraints are:

Minimum length: a whole number specifying the minimum acceptable length of the
text string. Seing this constraint is optional.

For example, if set to 5, then “book” would not be valid, but “library” would.

Maximum length: a whole number specifying the maximum acceptable length of the
text string. Seing this constraint is optional.

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 462

For example, if set to 8, “library” would be a valid value, but “librarian” would
not.

One of All Upper Case, All Lower Case or Mixed Case. One of these constraints
must be set, Mixed Case being set by default.

For example, if set to All Upper Case, “test” and “Test” would be invalid, but
“TEST” would be fine. Conversely, only “test” would have been valid if set to
All Lower Case, but all three variants would be fine with the default Mixed Case
seing.

Trim Whitespace: If enabled, all leading and trailing white space characters (space,
tabs, new line and other formaing characters) will be removed from the text string
whenever its value is set. Note that if the minimum length and maximum length
constraints were set, they would apply to the final ‘trimmed' text string. The default
is for this constraint to be disabled.

For example, “ Hello World ” would be automatically changed to “Hello World”
if Trim Whitespace were enabled.

For Number variables the possible constraints are:

Minimum: a number specifying the minimum acceptable value of the variable. Seing
this constraint is optional.

For example, if set to 2 or 2.0, then only numeric values greater than or equal to 2.0
would be valid.

Maximum: a number specifying the maximum acceptable value of the variable. Seing
this constraint is optional.

For example, if set to 5 or 5.0, then only numeric values less than or equal to 5.0
would be valid.

Whole Number: If enabled, all values set for this variable will be changed to whole
numbers by being rounded down. The default is for this seing to be disabled.

For example, 3.1 would be automatically changed to 3, as would 3.9736., while
-3.1 would be changed to -4.

For Choice variables, the constraints specify the set of valid text values that this variable
can take. These are distinct values, and choice variables can only take the values
specified in their constraints.

For example, the choice variable Day should have its constraints set to the set of values
“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday” and “Sunday”.

No constraints are available for True/False (condition) variables.

User input and output
Each scenario variable can be tagged as being an input variable, an output variable, or
both.

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 463

Variables whose values can be collected directly from the user should be marked input.
Those whose value can change during the execution of a scenario, and whose changing
values may be of interest to the user, should be marked as output.

About blocks
Blocks are ready packaged modules that you can use in your scenarios. They can accept
inputs, execute some logic of their own, and generate output.

A block is defined in a Block Definition File, or .bdf. This XML file describes the
functionality of the block and its implementation in Apama Event Processing Language
(EPL). EPL is the native language of the correlator.

A block can consist of:

Input feeds. An input feed can be hooked up to a live stream of event data, like a price
quote stream. Within it, an input feed will define one or more input fields, which
can be mapped to data in the stream. When event data arrives, the fields' values are
updated. These fields are typed in the same way as scenario variables.

Output feeds. An output feed is a stream of output data that can be generated by the
block. Each output feed corresponds to an event that can be generated by the block,
and embeds one or more output fields. The fields are updated as a result of operations
carried out by the block. These fields are typed in the same way as scenario variables.

Parameters. A block can have a number of parameters, which, when set, configure
its behavior. Parameters differ from input fields, in that the laer are like work
packages for the block to process. Typically, you use parameters to initialize the
block or change its core behavior. Parameters are typed in the same way as scenario
variables. Parameters are all provided at initialization time and can then be updated
individually. Input fields are expected to change often and at any time.

Operations. In addition to any standard behavior that is hard-wired into it, a block
can also have a number of explicit operations that can be invoked by the scenario.
For example, typical operations are start and stop, which cause the block to begin
processing events or to cease. If an operation requires any configuration information,
this is usually passed in through a block parameter.

Apama provides a library of useful blocks, which can be viewed and selected from the
Catalogs tab. For information about provided blocks, see "Using Standard Blocks" on
page 521.

There is no restriction on the number of block instances that can be added to a scenario.
The Blocks tab shows the blocks that have been added to a scenario. When you add a
block to a scenario you are effectively specifying that instances of that scenario should
create an instance of that block running within them. Whether the block instance then
starts executing some activity immediately or waits for some operation on it to be called
depends entirely on how the block itself was wrien.

M
Even Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 464

It is possible to add multiple instances of the same block to a scenario. Each instance will
have its operations, parameters and fields clearly tagged by its unique name to ensure
there is no conflict.

If there is no standard block that meets your needs, you can create a custom block. There
are several ways to do this:

Use the Apama block editor in Software AG Designer to create a block by defining
its parameters, operations, input feeds and output feeds.

Use the Apama block editor in Software AG Designer to create a block from an event
definition.

Save a scenario as a block. This lets you create composite scenarios when you use
such blocks in other scenarios. However, you cannot save a scenario as a block if you
mark that scenario as parallel. Nor can you save a non-parallel scenario as a block
and then mark the block as parallel-aware. For details, see "Working with Blocks
Created from Scenarios" on page 615.

For more information on the structure of a block and for instructions on how to create
your own blocks, see "Creating Blocks" on page 591.

Linking variables, block parameters, and block output fields
One of the facilities provided by the Event Modeler is the linking of:

Block output fields to scenario variables

This creates a relationship between an output field of a block and a scenario variable.
Once set up, Event Modeler automatically updates the value of the variable to the
value of the output field. If the output field changes, the variable's value immediately
reflects the new value of the block output field.

If the field and the variable are not of the same type, Event Modeler converts
the field's value to the type of the variable before it updates the variable. If the
conversion is not possible, Event Modeler assigns a default value to the variable. See
"Conversion rules for variable types" on page 503 for more information.

If the variable is of auto-type, it inherits the type of the block output field.

After you link a block output field to a scenario variable, you can still explicitly
modify the value of the scenario variable. If you do, keep in mind that Event
Modeler will continue to update the value of the scenario variable each time the
value of the linked block output field changes. Consequently, after you link a block
output field to a scenario variable, the recommendation is that you do not explicitly
modify the value of that scenario variable.

Scenario variables or block output fields to block parameters

This creates a relationship between a scenario variable or block output field and a
block parameter. Once set up, Event Modeler automatically updates the value of
the block parameter to the value of the scenario variable. If the value of the scenario

M
Odd Header

Overview of Using Event Modeler

Developing Apama Applications Version 9.10 465

variable or block output field changes, the value of the linked block parameter
immediately changes to reflect the new value.

If the variable or field and the parameter are of different types, Event Modeler
converts the variable's value or the output field's value to the type of the parameter
before updating the value of the parameter. If the conversion is not possible, Event
Modeler assigns a default value. See "Conversion rules for variable types" on page
503 for more information.

After you link a scenario variable or block output field to a block parameter, you
can still explicitly modify the value of the block parameter. If you do, keep in
mind that Event Modeler will continue to update the value of the block parameter
each time the value of the linked scenario variable or block output field changes.
Consequently, after you link a scenario variable or block output field to a block
parameter, the recommendation is that you do not explicitly modify the value of that
block parameter.

M
Even Header

Developing Apama Applications Version 9.10 466

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 467

15 Using Event Modeler

■ Adding scenarios to projects .. 468

■ Opening and viewing multiple scenarios ... 469

■ Selecting from the Scenario menu .. 470

■ The Event Modeler toolbar .. 470

■ Interacting with the tabs and panels .. 471

■ Working in the Event Flow panel ... 472

■ Working in the Rules panel ... 480

■ Using the Variables tab .. 496

■ Using the Catalogs tab .. 504

■ Using the Functions tab ... 506

■ Using the Blocks tab .. 507

■ Switching blocks ... 511

■ Using the Block Wiring tab .. 512

■ Troubleshooting invalid scenarios .. 516

■ Exporting scenarios as EPL ... 517

■ Exporting scenarios as block templates .. 517

■ Event Modeler command line options ... 518

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 468

Now that the important concepts underlying the definition of a scenario have been
introduced, this section will illustrate how to use the Event Modeler's interactive
functionality.

This section will describe each of the tabs available in Event Modeler and how to use
them effectively.

Adding scenarios to projects
To open or create a scenario, the scenario must belong to an Apama project. This section
uses an example to show you how to create a project, create a new scenario, and add a
scenario to a project.

Creating the GlobalRuleExample project
The following steps provide an example of how to create an Apama project.

To create the GlobalRuleExample project

1. Ensure that Apama Workbench appears in the title bar of Software AG Designer. If it
does not, choose Window > Perspective > Open Perspective > Apama Workbench.

2. From the File menu, choose New > Apama Project to display the New Apama Project
dialog.

3. In the New Apama Project dialog, specify GlobalRuleExample for the project name,
accept the default project location, and click Next.

4. In the list of standard bundles that appears, select Scenario Service (required by all
Scenario-based applications), and click Finish.

Bundles are packages of Apama objects such as EPL files, event definition files,
and event files or adapter configuration files that are required for specific types of
applications.

Your new project is shown in the Workbench Project View pane on the left of the
perspective.

Adding GlobalRuleExample.sdf to the GlobalRuleExample project

To add GlobalRuleExample.sdf (an existing scenario) to the GlobalRuleExample project

1. From the File menu, choose Import.

2. Expand General, click File System, and then Next.

3. Click Browse and then navigate to and select
your_Apama_install_directory\samples\scenarios, and click OK.

4. In the Import dialog, select GlobalRuleExample.sdf and click Finish.

5. In the Workbench Project View pane, expand scenarios, and double-click
GlobalRuleExample.sdf to open it in Event Modeler.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 469

Adding a new scenario to the GlobalRuleExample project

To add a new scenario to the GlobalRuleExample project

1. From the File menu, choose New > Scenario.

2. Enter a name for the new scenario and click Finish.

Opening and viewing multiple scenarios
In the Apama Developer perspective, Event Modeler can open multiple scenarios
concurrently, but only one can be on active display; that is on view at any one time. You
can tell which scenario is currently on view by examining the contents of the window
title bar, as this lists the scenario's name and the location of its corresponding .sdf file.

At the top of the Event Flow/Rules display, there is a tab for each opened scenario.
The last opened scenario always becomes the scenario on view. So depending on the
sequence in which you open scenarios, one will be on view and the other will still be
loaded. You can switch from one to the other by clicking its tab.

It is also possible to open multiple Apama Event Modeler windows and view different
scenarios (or the same, for that maer) in each. This can be carried out from the Window
menu, and is not the same as actually starting another instance of Software AG Designer.
There should never be any need to do the laer.

To open a window for each scenario

1. From the Window menu, choose New Window.

Another Software AG Designer window appears.

2. In this second Software AG Designer window, you can open the same scenario or a
different scenario.

Notice how the title bars reflect which scenario is on view in each window.

If you have multiple windows open showing the same scenario, any edits done in one
will be immediately reflected in the other if applicable. Selections and view changes are
not reflected in this manner; so if in one window you are viewing the start state while in
another you are editing the rules of another state, you will not see your edits in the first
window until you select the edited state there.

If you close a window, the scenario on view in that window remains loaded in the Event
Modeler and no changes are lost. If you close all the windows in Event Modeler, you
have effectively exited the Event Modeler. You will be prompted with a warning dialog
if you try to exit Event Modeler while there are modified (unsaved) scenarios open.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 470

Selecting from the Scenario menu
When Event Modeler is open, the Software AG Designer menu bar includes Scenario.
The Scenario menu provides the following commands:

Diagnostic Logging — When this is checked, the scenario is injected in debug mode
when you run your project.

Generate Block — When this is checked, your scenario is saved as a block template
when you save and/or build your project. The block template is put into the
Generated scenario blocks catalog in the catalogs directory of your project. You can
use the block template in other scenarios. This option is available only if all of the
scenario's states, and by consequence, all their rules' conditions and actions, are
finished. You cannot mark a scenario as parallel and then export it as a block.

Toggle Block Field Feed Name Display— In the Block Wiring tab, toggles the display of
block field feed names.

Toggle Rule Comment Display — In the Rules panel, toggles the display of the comments
that can be associated with each rule.

Global Rule Arc Visibility — Determines the Event Flow tab display of transitions
controlled by global rules. Choices are:

Emphasize All Global Rule Arcs — All global transitions appear in a bright orange
color.

Emphasize State Global Rule Arcs — The global transitions for only the selected state
appear in bright orange. Other global transitions are in a very light orange.

Deemphasize All Global Rule Arcs — All global transitions appear in a very light
orange color.

When you save a scenario, Event Modeler first tries to save a copy of the previously
saved version of that scenario to create a backup. If Event Modeler is unable to make
the backup, it displays a dialog that lets you know. You can save the scenario anyway or
cancel and try to find out why the backup could not be made.

The Event Modeler toolbar
The Event Modeler toolbar contains a number of icons that correspond to commonly
used operations:

Toolbar icon Operation

Enable/Disable parallel execution — Indicate that the instances
of the scenario will be run in parallel. This selection is a toggle. A
scenario that runs in parallel executes each scenario instance in a
separate context. Contexts let Apama organize work into threads
that the correlator can concurrently execute.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 471

Toolbar icon Operation

For a scenario to run in parallel, each block that it uses must
be parallel-aware. If a scenario uses one of the standard blocks
provided with Apama, the scenario must use the latest version of
the block. If a scenario uses a custom block, you must have created it
in Callback or Callback (DEBUG) mode, or converted it to Callback
or Callback (DEBUG) mode.

You cannot create a block from a scenario that can run in parallel.
Also, you cannot create a block from a non-parallel scenario and
then mark that block as parallel-aware.

Cut the currently selected element to the clipboard (that is, copy it
and then delete it)

Copy the currently selected element to the clipboard.

Paste the current contents of the clipboard to the current selected
location. This will not be available if the clipboard is empty or if its
contents are not suitable for the current location. For example, you
cannot paste a state in the Variables tab.

Undo the last action.

Redo the last action which was undone.

Show feed names for block fields.

Toggle display of rule comments.

Interacting with the tabs and panels
Certain operations require you to highlight or select one of the panels first. You can do
this by clicking somewhere within the desired panel or on its title bar. When a panel is
highlighted, its title bar changes color as shown below. The Local Rules panel's title bar is
highlighted because it is the selected panel.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 472

Working in the Event Flow panel
The Event Flow panel graphically illustrates the states that a scenario instance can be
in during execution, and how it can transit from one state to another. The states are
depicted as circles, and possible transitions are shown as a line between the two states,
with the arrow head indicating the direction of the transition.

Upon creation, a new scenario has two states, marked start and end, with a single
transition going from the start state to the end state. User-defined states have a
single border, while mandatory states, the start and end states, have a double border.
Mandatory states are also shown in a different color (pale blue) instead of rose. The
name of an unfinished state appears in red italics. In a newly created scenario, the
start state is unfinished because you have not yet defined any rules to indicate how the
scenario can transit from the start state to the end state.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 473

Mandatory start and end states

Note that all colors used in the Event Modeler can be changed in the Apama preferences.
For more information, see the description of the Apama preference page Scenarios in
Using Apama with Software AG Designer.

You can zoom the view in and out within the Event Flow panel by changing the zoom
value from the pull down selector available on the panel's toolbar. You can adjust the
zoom level from 25% to 400%, with 100% being the default seing. Alternatively you can
just type the zoom value you would like and press Enter.

Interacting with states
You can interact with states in the Event Flow panel in a variety of ways.

Selecting a state

If you click on a state you will notice that it becomes highlighted. This is indicated by the
border changing color and eight drag handles appearing around the state.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 474

Selected start state

If a state is selected its rules will be displayed in the adjoining Rules panel if this is
viewable. When the title of the state is in red italic the state is unfinished. When the title
of the state is in black the state is finished. See "The finished status" on page 475.

Resizing a state

The drag handles allow you to resize the state in any of eight directions. Press and hold
the left mouse buon while pointing to any of the drag handles to resize while dragging.
Notice how the mouse cursor changes to indicate that a directional resize is available.

If you hold down the Shift key while doing this, you will restore and preserve the aspect
ratio of the circle.

Moving a state

You can move a state around by pressing the left mouse buon while pointing to it, and
then dragging it around while holding down the mouse buon.

If a state is selected its rules will be displayed in the adjoining Rules panel if this is
viewable.

Multiple selection

You can select multiple states concurrently by holding down the Shift key and clicking
on multiple states; all will be selected. You can then drag them together by pressing and
holding down the left mouse buon while pointing to any of them. If more than one
state is selected, only the rules for the first one will be displayed in the Rules panel.

You can also drag and select a rectangle around multiple states and transitions.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 475

Adding a state

To add a state, click on the buon on the Event Flow panel's toolbar. A new state will
appear in the upper left corner of the Event Flow tab from where you can move it to a
suitable location. This new state will be selected by default.

The finished status

To inject a scenario into the correlator, or for the Export EPL functionality to be
available, all its states must be finished.

For a state to be finished, all its rules must be properly defined. This means that they
need to have valid fully specified conditions, and if any action statements have been
added to them, those also need to be fully specified.

You can ascertain visually whether a state is finished or not by how its name is displayed
in the Event Flow panel. If the name is in regular black font, then the state is finished. On
the other hand, a red italic font for the name indicates that the state is unfinished, that is
one or more of its nested rules are not fully defined.

Note also that if the scenario has changed since the last time it was saved to a file, it must
be saved again before you can export it.

Deleting a state

To delete a state, select it and then press the Del key, or click the buon on the Event
Modeler toolbar. If you selected multiple states, each of these actions deletes all selected
states.

When you delete a state, if there are any rules with transitions to the deleted state, Event
Modeler changes the transition section of those rules to transition incomplete. This makes
the state that contains this rule incomplete. Event Modeler cannot generate EPL for this
scenario until you complete the transition for this rule.

Labeling a state

To change the label on a state, double click on the state. Type the new name of the state,
and press Enter when done. While typing, you can press Esc to undo the edit.

You can label a state with any name you want. Note that state names do not have to
be unique although it is recommended that you make them so. Otherwise it could be
confusing to pick the correct one when defining the target for a transition from the list of
available states.

Using cut/copy/paste with states

You can cut, copy, and paste states.

For reference, recall that cut will copy the current selection into the clipboard and delete
it from the scenario, while copy only places a copy of it in the clipboard.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 476

To cut or copy a state, right-click it to display a context menu and select the operation
you want. Alternatively, you can select it, and then do one of the following:

Press the Control X and Control C shortcut keys

Click the or buons on the main toolbar, respectively.

Select Cut or Copy from the Edit menu.

To paste a state, the Event Flow panel must be highlighted. You can do this by clicking
somewhere within the Event Flow panel so that its toolbar is highlighted. If you right-
click, you can select Paste from the popup context menu. Alternatively, press CTRL+ V, or
click the buon on the Event Modeler toolbar. The newly pasted state is renamed to
Copy of previous_name if there is still a state with the same name. For example, if you
copy a state and then paste it back in, the newly pasted state will be renamed.

Note also that all rule transitions in the newly pasted state will be reset to continue. You
can then manually change them to your intended transitions.

You cannot cut the start or end states.

If you want to make a copy of a state that retains all its transitions, you should use the
Shift key to first select the state and then select each of the transitions you want to retain.
Copy the entire selection into the clipboard, and paste it to obtain a copy of the state
with the rule transitions' destinations preserved.

Interacting with transitions
Once you have created your scenario's states, you can define transitions between them.
The state where the transition starts is the source state, and the state where the transition
ends is the destination state.

A transition in the Event Flow panel is the same as the action statement that defines it
in the Rules panel. Any interaction with one affects the other; for example, deleting the
transition link on the graph changes the rule's action statement to transition incomplete.

Adding a transition

You can add a transition in a number of ways:

Having selected the source state, you can add a rule to it and then change the state
transition statement for that rule so that it causes a transition to the destination state.
This will automatically add the transition between the states in the Event Flow panel.

Adding rules will be described in "Working in the Rules panel" on page 480.

Alternatively, click the icon on the Event Flow panel's toolbar to activate Connect
mode. Small pale red squares, or connectors, appear around the border of all the
states except the end state. Point to a connector on the source state and note how
the cursor changes. Press the left mouse buon, and while still holding it, move to
another connector on the destination state. Release the mouse buon to create a
transition between the two connectors, and thus the two states.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 477

If you select the source state you will notice that a rule has been created in it that
embodies the state transition you have just created. You can repeat this to create
more transitions.

Click on the icon again to deactivate Connect mode when done.

Selecting a transition

In order to select a transition, click on it with the left mouse buon. The transition
changes color to a bold red to indicate it is selected. The corresponding rule is also
highlighted in the Rules panel.

You can select multiple transitions by holding down the Shift key while clicking on them

Changing end-points

If a transition is selected and Connect mode is not enabled, you can change the end-
points of the transition.

Point to one of the end-points of the selected transition. The mouse cursor will change.
Press the left mouse buon and drag along the border of the state until another
connector appears. Release to move the end-point of the transition to this connector, or
keep on dragging to locate another connector.

There are eight such connectors around the border of each state.

You can also use this to drag the source or destination to another state. This will move
the state or change the transition statement (for the target).

Changing the shape of a transition

By default a transition will be a straight line between one state and another. You can
change this into a curve if you wish.

Select the transition you wish to modify. Right click somewhere along the transition,
ideally close to the centre of the line. A drag handle will appear on it. As before, press
and hold the left mouse buon while pointing to the drag handle, and drag to turn the
line into a curve. You can do this at multiple points along the line to further shape the
curve, and if you change your mind, you can delete each curve point by right clicking on
its drag handle.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 478

Changing transition shape

Labeling a transition

To add a label to a transition, double click on the transition. A text entry box will appear
in the middle of the transition. Type the text you want to use for its label, and press Enter
when done. If, while typing you press Esc, the edit will be undone. The label will appear
at the center of the transition line.

If you want to move the label, point to it with your mouse. Notice how the mouse cursor
changes. Simply drag the label to the new position.

Moving transition label

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 479

Deleting a transition

To delete a transition, select it and then either press the Del key, or click the buon on
the Event Flow toolbar.

When a transition is deleted, the action statement that defined that transition will be
deleted.

If you selected multiple transitions, or even a selection of states and transitions, a delete
operation deletes all selected entities at the same time.

Using cut/copy/paste with transitions

You can Cut, Copy and Paste transitions, although note that this is identical to doing this
with the associated rules.

To cut or copy a transition, right-click it and select the desired operation from the popup
context menu. Alternatively, you can select it in the Event Flow panel, and then press the
Control X and Control C shortcut keys, or click the or buons on the Event Modeler
toolbar, respectively. This is the same as cuing or copying the transition's associated
rule from the Rules panel.

To paste a transition, the Rules panel must be highlighted. You can do this by clicking
somewhere within the Rules panel so that its toolbar is highlighted.

Then you can press Control V, or click the buon on the Event Modeler toolbar. The
newly pasted rule is renamed to Copy of its_previous_name if there is still a rule
with the same name within that state. For example, if you copy a transition or rule
and then paste it back into the same state, the newly pasted one will be renamed. The
transition's destination state will be preserved provided that the destination state still
exists. If not, it will revert to continue.

Displaying global rule transitions

Global rule transitions are doed orange lines. You can choose to have them appear in a
very light shade so they do not cluer the Event Flow panel. At the top of the Event Flow
panel, click State to display the drop-down menu.

All — Displays all global rule transitions in bright orange.

State — Displays in bright orange the global rule transitions for only the selected
state.

None — De-emphasizes all global rule transitions. They appear as a very light
orange.

The current selection always appears in the Event Flow panel toolbar.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 480

Working in the Rules panel
The contents of the Rules panel change whenever a state is selected in the Event Flow
panel. It then lists those rules that a scenario must process when it enters the selected
state. Global rules apply to two or more states; a local rule applies to only one state.

A new state does not have any rules defined in it.

Adding a rule
To add a global rule, click the buon on the Global Rules panel toolbar. The Event
Modeler adds this new rule to every state except the end state.

Local rules can be added in the following ways:

Select the state to add the rule, and then click on the buon on the Local Rules
panel toolbar.

In the Event Flow panel, in Connect mode, manually add a transition between two
states. This creates a new local rule with that transition defined in it within the
source state.

The new rule is added to the boom of the list of local rules.

A new rule will have the default title, “New Rule n”, no description, an unfinished
condition indicated by the red font of the rule name, and an action containing only a
state transition statement.

You cannot add a rule to the end state. After a scenario enters its end state, nothing more
can execute. If you want to do some cleanup before you terminate a scenario, add a
cleanup state that comes just before the end state.

About global rules
When a state has both global and local rules, Event Modeler starts processing with the
first global rule. If Event Modeler processes all of a state's global and local rules, it starts
at the top, works through the global rules, and then works through the local rules.

To create a global rule, click the Add a New Global Rule buon in the right part of the
title bar of the Global Rules panel. This adds the new global rule to every state except
the end state. If you add a new state after you create a global rule, Event Modeler
automatically adds any global rules to the new state.

If you do not want a global rule to apply to a particular state, select that state, and
then click the Activate/Deactivate buon in the top right corner of the global rule. This
toggles whether the selected rule is processed for the selected state. See "Activating and
deactivating rules" on page 483 for more information.

To determine which states a global rule applies to, click the global rule to select it. All
states that this rule applies to have dashed orange borders. If a global rule is unfinished
the title of the rule appears in red italics and the titles of all states that the global rule

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 481

applies to appear in red italics in the Event Flow pane. The Problems view displays
information about any unfinished global rules.

There is an example of a scenario that uses a global rule in the scenarios\samples
directory of your Apama installation directory.

Selecting rules and rule elements
To select a rule so that you can carry out operations on it, click on any empty space
within it. The rule will become highlighted, with its border turning to a bold red. If
the rule selected defined a state transition (that is, not continue) the corresponding
transition will be highlighted in the Event Flow panel.

You can select multiple rules by holding down the Shift key while clicking on the rules to
select.

To select a rule element, left-click it. To select multiple, contiguous rule elements, move
the cursor over one of the elements, hold down the left mouse buon, and drag the
cursor over the other elements.

To select a rule element and display a popup selection menu for that element's position,
right-click the element. This version of the selection menu also has the Cut/Copy/Paste
options at the boom. To display a more narrow selection menu for an element, hold
down the Shift key and right-click the element. To select multiple, contiguous, rule
elements and display a selection menu, move the cursor over one of the elements, hold
down the right mouse buon, and drag the cursor over the other elements.

Re-ordering rules
A rule's position in the listing of rules in the Rules panel is important because of the rule
evaluation procedure described in "About rule evaluation" on page 454. Rules are always
added to the rule queue in the top-to-boom order shown in the Rules panel.

You can change a rule's position by selecting it, and then using the and icons on
the Rules panel toolbar to move the rule upwards or downwards, respectively. You can
use the Ctrl and Shift keys to select multiple rules at the same time and move them as a
group.

The icons are only available when a rule is selected and their function is available for
that rule. For example, you cannot move the first rule further upwards.

Deleting a rule
To delete a rule, select it and click the icon in the Rules panel toolbar. You can also
press the Del key to achieve the same effect if you are not editing the rule's title or
description.

If the rule has a state transition defined in its action part, the corresponding transition in
the Event Flow panel will be deleted.

If you have multiple rules selected, any of the above variants will delete all of them in
one step.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 482

Labeling a rule
The first visual element of a rule is its title. Its function is just to assist you in visually
identifying rules and is not pertinent to rule processing. The rule title is, however,
included in logging information when debug mode is enabled, and therefore constitutes
a very useful diagnostic tool. It is therefore recommended that you name rules. The title
does not have to be unique, and by default all new rules are titled “New Rule n”.

Double click with your left mouse buon on the title of a rule to be able to edit it. You
must press Enter when you are done to save the new title. If you press Esc your edits will
be cancelled.

Changing a rule's description
The next visual element, indicated by the symbol , is an optional description of the
rule's purpose. You can hide or show rule descriptions by clicking in the Event
Modeler toolbar, or by selecting Scenario > Toggle Rule Comment Display from the menu.

It is advisable to set a description that explains what condition the rule is checking, what
actions it is carrying out, and its effect within the scope of the overall scenario's logic.
This helps when reviewing states and rules at a later stage, more so if another person
other than the scenario's author is doing the reviewing.

Minimizing and maximizing a rule
Note the two icons to the right of the rule's title: and . If you click on once, the rule
will be minimized to just its title, its description if it was showing, and the When section.
If you click on it again, only the title and the rule description will be left showing. If you
click to hide the comments, only the rule title appears.

You can then use to revert it back to either the title and condition, or the entire rule
with title, condition and action. If necessary, click to display the rule's description.

Cutting, copying, and pasting rules
You can Cut, Copy and Paste rules.

To cut or copy a rule, right-click it and select the desired operation from the popup
context menu. Alternatively you can press the Control X and Control C shortcut keys, or
click the and buons on the main toolbar, respectively.

To paste a rule, the Rules panel must be highlighted. You can do this by clicking
somewhere within the Rules panel so that its toolbar is highlighted. You can also right-
click in the Rules panel and select Paste from the popup menu. Alternatively, press
Control V, or click the buon on the Event Modeler toolbar. Note that the newly
pasted rule will be renamed to Copy of previous_name if there is still a rule with the
same name. For example, if you copy a rule and then paste it back into the same state,
the newly pasted one will be renamed. The rule transition's destination state will be
preserved provided that the destination state still exists. If not, it will revert to continue.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 483

You can also use Cut/Copy/Paste with rule elements. For example, you can copy a
text variable element from a "variablechanges" statement and paste it into a text
expression element.

You can also drag and drop rule elements to copy them. To do this, first select the rule
element. Then hold down the mouse buon and drag the element to the location to
which you want to copy it. Not all elements can be copied to every other rule element.
For example, you cannot copy a number expression and paste it into a condition
expression. When you drag an element over its intended target, Event Modeler
highlights the target in green if the copy is allowed and in red if the copy is not allowed.

Activating and deactivating rules
A deactivated rule is excluded from the EPL code generation and deployment. The

 buon in the top right corner of each rule acts as a toggle to activate and deactivate
the selected rule. Deactivated rules have a grey background to distinguish them from
active rules which have normal white backgrounds. Also, if a rule has a transition
associated with it, it will not appear on the state graph when its rule is deactivated.

An invalid rule prevents Event Modeler from exporting EPL for the scenario. If the rest
of your scenario is valid and you want to export it as EPL, you can deactivate an invalid
rule to generate the EPL. The EPL generator ignores deactivated rules.

Specifying conditions
In the Event Modeler Rules panel, the condition part of a rule is denoted by When.
Every rule specifies a condition that must evaluate to true or false. When the condition
evaluates to true, Event Modeler executes the action part of the rule, which is denoted by
Then.

Interactive editing

As described in "How rules define scenario behavior" on page 450, there is a rich syntax
available for defining conditions. Traditionally, you would expect to have to learn the
language for defining conditions, specify a condition in a rule, and then have some
facility that will check your input and inform you whether or not it is valid.

Event Modeler takes a different approach, in that it provides for graphical
programming. With graphical programming, you assemble the condition by selecting
from a number of options, gradually piecing it together. The advantage of this approach
is that you do not necessarily need to know the intricacies of the language in any great
detail and will be unable to make syntactic mistakes. With a lile practice you can
rapidly become as fast as someone who is typing in the condition.

Language elements

The interactive editing function is provided by the Condition Editor. Using the
Condition Editor is very straightforward, but some terminology should be clear in order
to assist with explanation.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 484

Text in the condition part consists of a number of elements, which can be one of two
types:

non-terminals — elements that are not yet fully defined and are acting as placeholders
to be replaced with further elements

terminals — elements that are fully defined, and actually constitute the proper text of
the condition.

An example will make the distinction clear. If it is not already open, open the Limit
Order scenario as a template for exploring the Condition Editor features. See "Adding
scenarios to projects" on page 468.

Ensure you do not save any changes as this might render the sample unusable. It is
recommended that you make a backup copy of the .sdf file. After the scenario is open:

1. Click the start state to select it.

2. Click the symbol in the Local Rules panel toolbar to add a new rule to the start
state.

The new rule is added to the boom.

A new rule starts off with the condition part containing the text ‘condition'. Note that
the word ‘condition' is in quotes and also underlined. Both quotes and underlining
indicate that this is a non-terminal, that is, it still needs to be replaced with more precise
text for the condition to be finished. Because the rule is unfinished its name appears in
red italics.

The Event Modeler window will look as follows:

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 485

Because this condition is unfinished, the rule, the state and indeed the entire scenario
are now unfinished. You can observe that a state is unfinished by the fact that its title is
displayed in red italics text, as with the start state in this case.

Selecting and replacing elements

To select and replace elements

1. Right click on the ‘condition' non-terminal to see what it can be replaced with.

A pop-up menu with several alternatives will appear.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 486

Note that some of the alternatives themselves have elements with quotes to indicate
that they are non-terminals that would need to be replaced in turn. The alternatives
shown are always those with which the current selection can be replaced. There can
be a distinction between what's selected and what's highlighted, as will be shown
shortly.

2. Choose either of the first two alternatives:

[...] 'and/or' 'condition'

'condition' 'and/or' [...]

The condition editor replaces [...] with the selected text.

The text inside the condition part changes from'condition' to 'condition' 'and/
or' 'condition'. All selections will be reset.

3. Right-click on the middle non-terminal, 'and/or', to see what its available
alternatives are.

They are and and or.

4. Choose and.

5. Now right-click on the new and terminal to see its alternatives.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 487

Although it is a finished element, you can change it to or. Also, you can select Revert
to set it back to what it was before the previous operation. Or, you can select Revert to
top, which sets the value back to the value it had as far as possible in the hierarchy of
changes. In this example, Revert and Revert to top have the same result.

Choosing Select More lets you select more of the condition statement. In this case, you
can select the whole statement.

Cascading alternative menus

To fully define the condition

1. Move the cursor over either instance of 'condition', hold the right mouse buon
down and drag to select the whole condition statement. This displays a popup menu
that lists the elements that can replace the selected elements.

2. Choose 'number expression' 'compared with' 'number expression'.

All three highlighted elements will be replaced with 'number expression'
'compared with' 'number expression'.

3. Right-click the first 'number expression' to display its alternatives.

When an alternative consists of a single non-terminal, the Condition Editor looks
ahead to see what it could be replaced with in turn, and provides those choices in a
further cascading menu. This accelerates the process of defining a condition. This is
recursive.

4. Point to 'number scenario variable' to be shown which scenario variables of
number type are available.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 488

5. Choose price.

6. Right-click 'compared with' and select 'is less than or equal to'.

7. Right-click the remaining 'number expression' and choose either of these
alternatives:

[...]'operator' 'number expression'

'number expression' 'operator' [...]

Notice how the editor has added brackets around these latest replacement elements
to improve clarity when a condition starts to get complex:

price is less than or equal to ('number expression' 'operator'
'number expression')

8. Right-click the first 'number expression' and select 'Enter numeric value'.

A dialog will appear in which you can supply a number. The dialog indicates the
expected format for your locale.

9. Enter a number, like 25.36, and click OK to accept it.

10. In a similar fashion replace 'operator' with *.

Using functions in rules

To use a function in a rule

1. Right-click the remaining 'number expression', and from the alternatives in the
context menu, point to Standard functions.

This displays a listing of all the functions available in the Event Modeler that return a
number as a result.

2. Choose ABS ('number' value).

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 489

A function is selected slightly differently to other elements. If you click on the
function name you will select the function itself, and can thus replace it. If you click
on any of its parameters (if it has any), then you can replace just the parameter. Click
the Functions tab to display information about available functions; see "Using the
Functions tab" on page 506.

3. Select the 'number expression' parameter, and replace it with the scenario
variable quantity, by choosing 'number scenario variable', quantity.

The condition is now complete.

There are no unfinished elements, or non-terminals, in it. No elements have quotes or
are underlined.

And if you glance over at the start state in the Event Flow panel, you will notice that the
name of the state is now back to regular black font.

Adding a condition to a rule
Suppose that when you have finished the condition defined in "Using functions in
rules" on page 488 you realize that you only want it to evaluate to true if a condition
scenario variable is also true. So you want to add an and with another condition clause
to the end of the condition you have already specified, without having to revert it all and
start all over again. You can do this as described below.

To add a condition to a rule

1. Select the entire condition by moving the cursor over the condition, holding down
the right mouse buon, and dragging until all elements are highlighted. This
displays a popup menu of alternatives for the selected elements.

Now, remember these two alternatives:

[...]'and/or' 'condition'

'condition' 'and/or' [...]

What this means is that if you select one of those alternatives, because the selection
you are replacing is already a 'condition' in itself, it will not be thrown away but
will be retained within the new replacement in place of the [...].

So, if you choose the [...] 'and/or' 'condition' alternative, the current
selection will be retained and will replace [...].

2. Do that to see this result:

(price is less than or equal to (25.36 * ABS (quantity))) 'and/or'
'condition'

If you had chosen 'condition' 'and/or' [...], then 'condition' 'and/or'
would have been added to the front of your previous elements, not after.

This replacement mechanism is automatically provided wherever an alternative for the
current selection embeds an element of the same type as the selection itself.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 490

Specifying variable changes in conditions
When you define a rule's condition, you can choose 'variable' changes from the condition
popup menu.

To specify variable changes in a condition

1. Add a new rule.

2. In the new rule, right-click 'condition', which displays this popup menu:

3. Select 'variable' changes. This replaces 'condition' with 'variable'
changes.

4. Right-click 'variable', which displays a menu of the variables you can specify. As
you can see, this menu lists the scenario variables, and it then lists the blocks that the
scenario uses. If you select a block, you can then select the variables in that block.
The variable in the 'variable' changes expression can be one of the following:

Scenario variable

Block output feed

Field in a block output feed

Block parameter

When you select 'variable' changes, it can be the entire condition, or it can be an
expression in a condition. Following are a few examples of specifying 'variable' changes in
a condition:

When quantity changes

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 491

When quantity changes or price changes

When quantity is greater than 20 and price changes

A changes expression can become true as follows:

When the variable in the changes expression is a block feed, any update that causes
the block to send that output feed changes the condition to true. It does not maer
whether or not the values of any fields in the output feed actually change.

When the variable in the changes expression is a scenario variable, a block field, or
a block parameter, a change in the value of that variable causes the 'variable' changes
expression to be true. For example, if you assign the value 5 to the quantity scenario
variable and the quantity scenario variable already has the value 5, then there is no
change and the 'variable' changes expression remains false.

Suppose that a 'variable' changes expression in a condition becomes true and the entire
condition becomes true. When this happens, Event Modeler does two things:

Executes the rule's action.

Resets the value of the 'variable' changes expression to false. This ensures that two
rules that specify the same variable in a changes expression can each trigger their
action as a result of the same change.

Beyond this, the behavior of a 'variable' changes expression varies according to whether
the condition appears in a global rule or a local rule.

Local rules and variable changes

When there is a transition to a state, any 'variable' changes expressions in local rules
are initially false. Any changes made in previous states do not affect any changes
expressions in the new state. For a changes expression to become true, the specified
change must occur in the state to which the rule, which specifies the changes expression,
applies.

Global rules and variable changes

When there is a transition to a state, a 'variable' changes expression in a global rule can be
initially true or false.

In a global rule, the 'variable' changes expression is initially true when all of the following
are true:

In a previous active state, the 'variable' changes expression became true but there was
a transition to another state before the associated rule was triggered.

Since the 'variable' changes expression became true, it has not triggered execution of
an action.

The scenario has not passed through a state for which this global rule was
deactivated.

Remember that when a true 'variable' changes expression triggers a rule, the Event
Modeler resets the value of the 'variable' changes expression to false.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 492

In a global rule, the 'variable' changes expression is initially false in each of the following
situations:

The active state is the first state during scenario execution for which the global rule is
activated.

The global rule was not activated in a previous state and since that state was active
the variable of interest has not changed.

The global rule was triggered in a previous state and since that state was active the
variable of interest has not changed.

For example, suppose states 1, 2, and 3 each define global rule X, which specifies
price changes as its condition. There is a transition to state 1. Initially, the price
changes expression is false, but while state 1 is active the price variable changes and
the price changes expression becomes true. However, there is a transition to state 2
before execution triggers global rule X. Global rule X is activated for state 2 but there
is a transition to state 3 before execution triggers global rule X in state 2. In state 3, the
price changes expression is still true. Execution triggers global rule X, performs the
associated action, and resets the price changes expression to false. If global rule X has
not been activated for state 2, or if global rule X has been triggered in state 2, then the
price changes expression would have been false when state 3 become active.

Specifying actions
The second important part of a rule is its action part.

The action part of a rule is denoted by Then and consists of a number of action statements
and a state transition statement.

When a rule is first created it has no action statements set.

The state transition statement

The state transition statement, already introduced elsewhere, specifies whether scenario
execution should transit to another state if the rule's condition is true and once its
actions are fully executed.

It can be continue, the default seing, which specifies that no transition is to occur, or
be move to state [a state].

You can modify the state transition statement by pointing to it and right-clicking. A pop-
up menu will appear listing all the possible seings for the statement.

If you select any of the states, the state transition arrow will be set to move to state
[that_state]. A corresponding transition will also appear in the Event Flow panel.

If a state transition starts and ends within the same state, a transition will still be added
from that state to itself in the Event Flow panel. If you ensure that the rule is highlighted,
the transition will be highlighted as well, and you will then be able to change its
connectors and turn it into a curve. This will make it more visible.

Note that if you click on the state transition statement, i.e. with the left mouse buon,
and it is set to move to state [a_state], you will be taken to that state. That is, the

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 493

target state will be selected in the Event Flow panel, and the Rules panel will change to
show the rules of that state.

Adding action statements

To add an action statement, you left-click the symbol to the left of the state transition
statement.

To add an action statement

1. Click the symbol to add an action statement.

New action statements consist of the text 'action statement' preceded by a
symbol.

In general, when you left-click a symbol, Event Modeler adds an action statement
before the line containing the symbol.

2. Click the symbol preceding the new action statement to add another action
statement before it.

Deleting action statements

To delete an action statement, you right-click the symbol to the left of the statement
you want to delete. Note that you cannot delete the transition statement.

Click the symbol for the first action statement to delete it.

Interactive editing

Once you have added an action statement, you need to specify the desired action using
the Action Editor.

The Action Editor works on the same principles as the Condition Editor. See "Specifying
conditions" on page 483.

Right click the non-terminal 'action statement' to see its replacement alternatives.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 494

As you can see from the alternatives available, the main difference is that action
statements can either be assignments to variables or invocations of block operations.

There is a separate Action Editor for each action statement, and like the condition, all
statements need to be finished for the rule to be finished. Feel free to explore the language
elements and replacements available in action statements.

Using the keyboard to edit rules
Instead of using the mouse, you can use the keyboard to edit rules.

Select one or more rule elements, and then press the Menu key .

This displays the menu of choices for replacing the selected element(s). Use the cursor
keys to select what you want.

The following table lists the other keys you can use to edit rules. Select one or more rule
elements and then press the key.

Task Key Description

Add action + Inserts a new placeholder for an action
statement below the condition or action that
contains the selected element.

Delete action - Deletes the action statement that contains the
selected element(s).

Display menu Insert or
Menu key

Displays the context menu for the selected
element.

Edit literal F2 or Enter Displays a dialog in which you can edit the
selected literal value.

Move to next rule Page Down Selects the first element in the next rule. If
the focus is on the last rule, the focus stays

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 495

Task Key Description
where it is. If the focus is on a global rule,
pressing this key selects the first element in
the next global rule. If the focus is on the last
global rule, pressing this key does not select
the first element in the first local rule. The
focus stays where it is. Note: if you selected
the whole rule, so that the red, rectangular
outline appears around it, pressing Page Down
does nothing.

Move to previous
rule

Page Up Selects the first element in the previous rule.
If the focus is on the first rule, the focus stays
where it is. If the focus is on a local rule,
pressing this key selects the first element
in the previous local rule. If the focus is on
the first local rule, pressing this key does
not move to the last global rule. The focus
stays where it is. Note: if you selected the
whole rule, so that the red, rectangular outline
appears around it, pressing Page Up does
nothing.

Move to next
element

Selects the next element in the statement. If
the last element is already selected, pressing
the left arrow key does nothing.

Move to previous
element

Selects the previous element in the statement.
If the first element is already selected,
pressing the right-arrow does nothing.

Move to next
statement

Selects the first element in the next condition
or action statement. If the selected element
is in the last global or local action statement,
pressing this key does nothing.

Move to previous
statement

Selects the first element in the previous
condition or action statement. If the selected
element is in the first global or local condition,
pressing this key does nothing.

Revert to top Delete Resets the selected element or elements as far
back before any changes as possible.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 496

Task Key Description

Revert selection Backspace Resets the selected element or elements to its
(their) previous value.

Select first
element

Home Selects the first element in the condition or
action statement in which you had selected an
element.

Select last
element

End Selects the last element in the condition or
action statement in which you had selected an
element.

Shift + Adds one or more subsequent elements to
the selection. Event Modeler examines each
subsequent element in order until it enlarges
the selection to a set of elements that can be
replaced as a unit. This might mean that only
the next element is added to the selection, or
that multiple subsequent elements are added.

Select multiple
elements

Shift + Adds one or more previous elements to the
selection. Event Modeler examines each
previous element in order until it enlarges
the selection to a set of elements that can be
replaced as a unit. This might mean that only
the previous element is added to the selection,
or that multiple previous elements are added.

Using the Variables tab
The Variables tab lists and allows modification of all the variables available for use in a
scenario.

In order to explore its features, create a new scenario by selecting File > New > Scenario
from the menu.

Observe the Variables tab. Note the selection of buons on its toolbar, and the fact that it
contains a table, with two rows and four columns.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 497

The first row contains column headings, while the second row appears empty. The
variables table always displays a line for each variable defined, with a final empty line
from which you can add new variables. In this case, no variables are yet defined, so the
table only contains the final empty line.

The columns are name, value, input and output, and in addition each variable row has
a dark green square to the left of it.

By default the background of these rows is green; green being used throughout the
Event Modeler to denote scenario variables.

Adding a variable

To add a variable

1. Left click on the empty row in the cell under the column heading name. The cell will
become highlighted with a border appearing around it. This means you can type in
the cell.

Alternatively you could double click on the cell, and this would display a flashing
text entry cursor in the cell.

2. After selecting the name entry cell, type in a name for your new variable, like var1,
and either click elsewhere or press Enter.

Note how a new empty line is added to the boom of the table. The name of a
scenario variable must be unique within the set of a scenario's variables. A scenario
variable can have the same name as a parameter of a block that the scenario uses.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 498

3. Create a second variable by clicking on the name cell in the final empty row and
naming it var2.

Renaming a variable
If you left click on the name of a variable to select its name cell, you can type in a new
name, effectively renaming the variable.

Alternatively you can double click on the cell, and this will display a flashing text entry
cursor in the cell, allowing you to edit the previous name.

Recall that variable names must be unique – if you type a name already in use it will
revert to its old value on acceptance.

Selecting a variable
If you want to carry out some variable operations, like moving a variable, or viewing its
properties, you first need to select it.

You can do this by clicking on the green square at the beginning of each row. This selects
the entire row. Notice how the icons on the Variables tab change to indicate they are now
available.

You can select multiple variables in one go. Select the first one normally. Then, while
holding down the Ctrl (Control) key, select any additional variables. Alternatively, hold
down the Shift key to select all variables from the first one selected to the current one.

Determining which states use a particular variable
Event Modeler displays a doed green border around each state that uses the selected
variable when you do either of the following:

Highlight a row in the Variables tab by clicking on the green square at the beginning
of the row.

Click on a variable in a rule.

Moving a variable
Once you have selected a variable you can move it up and down in the table by using
the and symbols.

Changing a variable's position in the Variables tab has no effect on scenario execution
other than appearing in that order whenever the scenario is opened from disk.

You can also select multiple variables and move all of them at the same time. Hold
down the Ctrl key when you select each variable. Or use the Shift key select a range of
variables.

You cannot move the last empty line, and cannot move variables below it.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 499

Deleting a variable
You can delete a variable by right-clicking its name and selecting Cut from the context
menu.

Once you have selected a variable you can delete it by clicking on the icon on the
main toolbar or by pressing Del.

If you have selected multiple variables, they will all be deleted.

Caution: If any rules' condition or action parts refer to the variable you have removed,
the references will be reverted back to their non-terminals. This will make
those rules, and therefore the enclosing states and the scenario, unfinished.

Changing a variable's properties
Once you have selected a variable you can change its properties. To display a variable's
properties, either click (again) on the green square at the left of its row, or else click on
the icon in the Variables tab toolbar.

This will display the Properties dialog.

This dialog has two tabbed panes, Type and Constraints.

Use the Type pane to change the variable's type and mutability properties.

Use the Constraints pane to specify what values are valid for that variable.

Remember that mutability properties and value constraints only apply to an end user's
interaction with the scenario through a dashboard. They do not apply when a variable is
wired to another variable or a block field, or to any assignments carried out in any action
part of any rule.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 500

Note that the constraints available change according to the variable's type, so the
contents of the Constraints pane change dynamically as you select different types on the
Type pane.

The options available for both panes have already been described in "About scenario
variables" on page 460.

Caution: When a rule's condition or action parts refer to a variable, in the majority
of cases those references are type specific. For example a 'condition
variable' non-terminal can only be replaced by a scenario variable that is of
type True/False. Therefore, if you change the type of a variable after having
used it in any rule conditions or actions, the references to it will be reverted
back to their non-terminals if they become invalid. This will make those rules,
and therefore the enclosing states and the scenario, unfinished.

Setting a variable's value
Once you have created a variable you can also set its initial value. This is the value
that the variable will have at the start of execution of any scenario instance before it is
modified by the user or by an action in a rule.

You may have noticed that a default value is always displayed in the value cell. By
default a variable is set to be Auto-Typed, and initially set to be of Text type with the
empty string as its value — "".

You can change the initial value by clicking on the value cell for the particular variable,
and then typing in the appropriate value, or else double clicking on the cell to get a
text entry cursor. The former method over-writes any previous value; while the laer
technique lets you edit the existing value.

If the variable is set to be Auto-Typed, you can type in any value. The variable's type
will then be deduced, and may therefore be changed, by what you have typed in.

If you type any whole number (for example, 5, 25, -145) the variable will be set to
Number, with the constraint Whole number. If you supply a number with a fractional
part (4.45, .68456, -23.), the variable will be set to be a Number with no constraints.
If you enter one of true or false (any mixture of case will work, for example, TRUE,
True, tRue), the variable will be assumed to be of True/False (conditional) type.
Everything else is taken to imply a Text variable.

If the variable is not Auto-Typed, you are only allowed to enter values that are valid
according to the type of the variable and any constraints imposed on it. So, for example,
if the variable is of Number type, you cannot enter “Hello” as a valid value. If you
aempt to do so, the variable's value will be reset to the previously set value, or the
default for that type if none had been set, that is 0 or 0.0.

Variable input and output
As described in "Variable constraints" on page 461, a variable can be marked as being
an input variable, or an output variable, or both. These indicators are used by the

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 501

dashboard to restrict which scenario variables it should make available to the end-user.
For output variables it can also auto-generate specific functionality.

By default these indicators are off for each variable. Click on the check boxes in the
input and output columns to set them. The space bar also toggles this on and off.

Linking a variable to a block output field
"Linking variables, block parameters, and block output fields" on page 464 described
how one can set up a link between a scenario variable and another variable, or to the
value of a block output field. Once this link is set up the variable will always have the
same value as the source variable or the output field.

If the value of the source variable or output field changes, the destination variable's
value will get updated automatically to be the same value.

You can set up such a link by right-clicking while pointing to the value cell for the
variable to be linked. If the scenario contains any other variables or block instances with
output feeds and fields, a pop-up menu will appear listing these.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 502

Linking a variable to a block output field

When you select the output field to link with the variable, the field's name, preceded by
the enclosing block instance's name, is displayed in the value cell.

The source variable or field chosen does not have to be of the same type as the
destination variable.

If the destination variable is Auto-Typed, it can be wired to other variables or block
output fields of any type, and will inherit their type once the wiring is carried out.

If it is not Auto-Typed, and it is not of the same type as the source, the source value will
be converted to the destination variable's type before being copied to it. If this is not
possible, a default value is set. See "Conversion rules for variable types" on page 503.
For this reason, it is important to set up these links carefully.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 503

Conversion rules for variable types
This table summarizes the conversion rules:

 Number Number (whole) Text Choice Condition

Number Copy the
value

Copy the
value and
round it to
the nearest
integer value

Copy
the
value as
a string.

Copy
the
value as
a string.

false

Number
(whole)

Copy the
value

Copy the
value

Copy
the
value as
a string.

Copy
the
value as
a string.

false

Text Try to
convert
to a valid
number
up to the
first non-
numeric
character,
set to 0.0
if first
character
is not a
number.

Try to convert
to a valid
number up
to the first
non-numeric
character, set
to 0 if first
character is
not a number.

Copy
the
value.

Copy
the
value.

If the
value
is true
then
set to
true,
else
false.
Case is
ignored.

Choice Try to
convert
to a valid
number
up to the
first non-
numeric
character,
set to 0.0
if first
character
is not a
number.

Try to convert
to a valid
number up
to the first
non-numeric
character, set
to 0 if first
character is
not a number.

Copy
the
value.

Copy
the
value.

If the
value
is true
then
set to
true,
else
false.
Case is
ignored.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 504

 Number Number (whole) Text Choice Condition

Condition 1.0 for true
0 for false

1 for true 0
for false

Copy
the
value as
a string.

Copy
the
value as
a string.

Copy
the
value.

Examples

Text Source Number Target

"information" 0 or 0.0

"-2.45" -2.45

"456test" 456

Using the Catalogs tab
The Catalogs tab displays catalogs of block templates that are available for use in a
scenario. A catalog of block templates is a folder that contains one or more .bdf files,
each defining a block template that the user can instantiate in a scenario. A catalog of
block templates can also contain subfolders that themselves contain .bdf files. This
hierarchical organization of a catalog appears when it is displayed in the Catalogs tab.

This text uses the term block template to refer to a block's definition on disk (within a .bdf
file), whereas block is used to refer to an instance of a block template that has been added
to the scenario.

The format and structure of a .bdf file is discussed in "File Definition Formats" on page
639.

Typically, you might want to use multiple block template catalogs to distinguish
between block templates supplied by Apama, block templates that you have developed
yourself, and block templates that you have obtained from third parties.

In addition, within each block template catalog, as the number of block templates
available to a scenario author could be very large it is useful to organize them into
categories that reflect their functionality. Furthermore, as the block templates available
are enhanced and new versions released, one is likely to need access to multiple versions
of the same block templates.

A block template catalog's folder structure is therefore as follows:

A root folder that represents the block template catalog, and within it,

One or more sub-folders that represent functional categories of block templates, and
within each,

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 505

A folder called block_template_name .bdf, which contains

The different available versions of a block template in distinct .bdf files.

The default block template catalog is simply called blocks. In the Catalogs tab, it appears
as Standard Blocks.

Adding a block template catalog
When Event Modeler is open, it automatically makes the default catalog blocks
available. If you have another block template catalog available on your system and want
to make those block templates available to your scenario, use Software AG Designer to
add the block catalog to your project as described below.

To add a block template catalog

1. In the Apama Developer perspective, right-click the project name and select Properties.

2. In the Properties dialog, expand Apama and click Catalogs.

3. Click the Blocks tab and then Add.

4. In the Source Folder Selection dialog, click on catalogs to highlight it, and click Create
New Folder.

5. In the Folder name field, enter the name of the catalog you are adding.

6. To add the complete contents of the catalog you specified, click Finish, and then click
OK twice. You are done.

7. To choose particular files to add, click Next. Specify inclusion and/or exclusion
paerns and click Finish. Then click OK twice.

Also use the Blocks tab in the Properties dialog when you want to remove a block
template catalog.

Selecting and inspecting a block template
The Catalogs tab is divided horizontally into two areas.

The top area displays the available catalogs. Expand each catalog to view its contents.
When you select one of the following, a description of it appears in the boom area:

A particular version of a block template

A block parameter

A block operation

A block input feed or input field

A block output feed or output field

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 506

Adding a block instance to the scenario
To add a block template to your scenario, first select it from the Catalogs tab. Open the
folder it is in, select the block you want, and if there is more than one version, select
the version you want. The recommendation is to use the most recent version, which is
implemented in a way that delivers beer performance than the older version. Also, the
most recent version is parallel-aware. Older versions will be removed in a future release.

Then click on the icon in the tab's toolbar to add this block to the scenario. You will
see it appearing in the Blocks tab.This instance of the block template in the scenario will
be automatically named. The name assigned will be the block template name followed
by 1, to indicate that this is the first instance of this block.

As implied, it is possible to add multiple instances of the same block to the scenario.
These will be named sequentially to differentiate between them. The unique naming of
each instance is important, as all block instance feeds, fields, parameters, and operations
are referred to from within rules by the enclosing block instance's name.

Using the Functions tab
The Functions tab presents an organized view of the functions available for use in Event
Modeler. The functions are organized in a folder hierarchy.

A function catalog allows you to organize a large number of functions into a manageable
set of categories that indicate their functionality. A function catalog has the following
structure:

A root folder that represents the function catalog, and within it,

One or more sub-folders that represent functional categories of functions, and within
each of the sub-folders,

.fdf files that define a group of related functions.

Such a catalog is installed by the Event Modeler installer. The default function catalog is
simply called functions. To display this catalog, click the Functions tab.

Adding a function catalog
When Event Modeler is open, it automatically makes the default catalog functions
available. If you have another functions catalog available on your system and want to
make those functions available to your scenario, use Software AG Designer to add the
function catalog to your project as described below.

To add a function catalog

1. In the Apama Developer perspective, right-click the project name and select Properties.

2. In the Properties dialog, expand Apama and click Catalogs.

3. Click the Functions tab and then Add.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 507

4. In the Source Folder Selection dialog, click on catalogs to highlight it, and click Create
New Folder.

5. In the Folder name field, enter the name of the catalog you are adding.

6. To add the complete contents of the catalog you specified, click Finish, and then click
OK twice. You are done.

7. To choose particular files to add, click Next. Specify inclusion and/or exclusion
paerns and click Finish. Then click OK twice.

Also use the Functions tab in the Properties dialog when you want to remove a block
template catalog.

You must ensure that the function name aribute is unique within the directory in
which you save the .fdf file. If you save a function definition file in a function directory
that has been added to Event Modeler, and your new .fdf file does not have a unique
function name aribute, you receive an error message about this when you open
Event Modeler. You must resolve this error condition before you try to use either of the
duplicate functions. If you do not, you cannot predict which function Event Modeler will
actually use when you call one of the duplicate functions.

Selecting and inspecting a function
The Functions tab is divided horizontally into two areas. The top area lists the categories
of functions in the catalog, and within each, the available functions. You can expand
each function to view its parameters and return value. When you select a function name
a description of that function appears in the boom area.

Using the Blocks tab
The Blocks tab lists all block instances that have been added to the scenario. From it you
can select and delete a block, view its parameters, and link them to scenario variables or
other block instances' output fields.

The Blocks tab is initially empty, but it then gets populated with block instances as you
add these to the scenario from the Catalogs tab.

As you add block instances, each appears in the Blocks tab as a distinct element. By
default, each is given a blue background, although this can be changed in the Event
Modeler's preferences.

For each block instance, the representing element lists the block instance's name, and
name of the block definition it was added from (this is in parenthesis), followed by a
table with two columns, name and value.

Each row in the table contains a parameter, and similar to the table in the Variables tab,
each is preceded by a solid blue square.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 508

Note that a block does not have to have any parameters, and some of the standard
blocks supplied by Apama are like this.

Interaction with this parameters table is similar to that in the Variables tab, with the
distinction that it is not possible to add new parameters, rename them, re-order them, or
change their properties. This functionality is not possible because the number, name and
nature of block parameters is defined in the block's definition.

Once a block is added to the scenario, its parameters, output feeds and operations are
available for interaction within rule conditions and actions. When a scenario is loaded
the Event Modeler will reload that block's definition from its .bdf file and check that
none of the referenced parameters, output feeds or operations have changed. If they
have then any references will be reverted back to their non-terminals.

If you load a scenario and a block that you previously added to that scenario is missing
Event Modeler reverts values of any variables that depended on that block's feeds to
their default values. You receive a message that the block is missing when you open the

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 509

scenario. Also, an entry for each missing block appears in the Problems view as shown in
the figure below. Double-clicking on a missing block entry in the Problems view displays
the Block Wiring for the scenario without the missing blocks.

Interacting with a block instance
To select a block instance you need to left click somewhere within its display element
other than inside its parameters table. For example, clicking on its name or on the table's
column heading will select the block instance.

Once a block is selected,

You can delete it by pressing Del, or by clicking on the icon in the toolbar.

 If any rules' condion or acon parts refer to any feed, field, parameter
or operaon of the block instance you have removed, the references will
be reverted back to their non-terminals. This will make those rules, and
therefore the enclosing states and the scenario, unfinished.

You can move the instance's relative position in the tab by clicking on the and
icons in the tab's toolbar.

You can browse the instance's block template definition in the Catalogs tab by
clicking on the icon in the tab's toolbar.

You can switch all references in rules and mappings from this block to another block
by clicking on the icon. This operation is described in more detail later.

Event Modeler displays a doed blue border around each state that uses the selected
block.

Another way to see which states use a particular block is to click that block in a rule.
Event Modeler displays a doed blue outline around the states that use the selected
block.

Selecting a parameter
To select a block parameter, click on the solid blue square to the left of the parameter's
name.

The entire row will be highlighted with a dark red background.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 510

Viewing a parameter's properties
Once a parameter is selected, you can view its properties. You can do this by either
clicking again on the solid blue square, or else by clicking on the icon in the Blocks
tab's toolbar.

This will display the Properties dialog. Properties for block parameters are almost
identical to properties for scenario variables, with the distinction that the former cannot
be modified in the Event Modeler. For this reason all seings in the Properties dialog
will be grayed out. You can view them but you cannot change them.

Setting a parameter's initial value
As with scenario variables, block parameters need to have an initial value. This will
be displayed in the value column. You can modify this initial value for each block
instance's parameters by clicking on the value cell and typing in a new initial value.
Alternatively you can double click on the value cell to edit the existing initial value.

Note that as with scenario variables, you are only allowed to supply an initial value that
is compatible with the parameter's type and constraints (if any). If you specify an invalid
value, the initial value will be reset to the default for that type.

Linking a parameter with a variable or output field
"Linking variables, block parameters, and block output fields" on page 464 described
how one can set up a link between a block instance's parameter and the value of a
scenario variable or block output field. Once this link is set up the block parameter will
always have the same value as the source variable or block output field. If the value
of the source variable or output field changes, the destination parameter's value gets
updated automatically to be the same value.

You can set up such a link by right-clicking while pointing to the value cell for the
parameter to be linked. If the scenario contains any variables or block instances, a pop-
up menu will appear listing those variables, the block instances, their output feeds, and
within those, their output fields.

When you select a variable or output field to link with the parameter, the variable's or
field's name is displayed in the value cell.

The variable or field chosen does not have to be of the same type as the parameter. If it
is not of the same type, its value will be changed to the parameter's type before being
copied to the parameter. If this is not possible, a default value is set. See "Conversion
rules for variable types" on page 503.

Since this could set the parameter to unexpected values, it is important to set up these
links carefully.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 511

Switching blocks
Consider the situation where you wish to replace a block in your scenario with another
one. A common occurrence of this is if you wish to upgrade your block, for example, by
replacing version 1 of a block with a newer version 2.

The problem with this is that if you delete the version 1, all references to its parameters,
feeds and operations will be reverted or reset. You would then have to add the new
block of the more recent version and re-establish all the references.

To facilitate this operation, you can switch blocks as described below.

To switch blocks

1. In the Catalogs tab, add the newer block to the scenario.

2. In the Blocks tab, select the block you want to replace.

3. In the Blocks tab's toolbar, click on to be prompted for which block you want to
use to replace the selected block.

4. Select the name of the replacement block from the choice list, and click OK.

Event Modeler tries to replace all references to the old block with the corresponding
interface elements of the new one. Event Modeler also replaces the wiring of the old
block with wiring for the new block.

At the end of the switching operation, a dialog appears that summarizes how many
elements were replaced and which had to be reverted. For example:

Event Modeler can replace only those parameters, feeds and fields, and operations of
the same name. If any elements do not have a corresponding element in the replacement
block they will be reverted or removed, as follows:

References are reverted to their non-terminals.

In a wire mapping for which the source block output field has changed, the
destination block input field is reverted to the default value for its type. For example,
if the destination block input field is an integer, the field is reverted to 0. The
mapping itself is not removed even though it no longer has a source field.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 512

For a wire mapping for which the destination block input field has changed, the wire
mapping is removed.

Using the Block Wiring tab
At the boom of the Event Flow panel, you can click the Block Wiring tab to replace the
Event Flow and Rules panels with the Block Wiring tab. The purpose of the Block Wiring tab
is to allow you to interactively define how your scenario's block instances are to be wired
together.

Up to this point only block parameter wiring has been discussed. Recall that a block
has parameters, input feeds, output feeds and operations. Parameters are intended for
initializing the block, although they can then individually be updated during the block's
lifetime to modify its operation. Input feeds, on the other hand, are normally used when
a block's primary role is to process or transform some regularly changing data.

For example, the Change Notifier block's purpose is to generate a notification when
the value of a numeric input data stream changes by a given amount over a configurable
moving time window. Its parameters define the time window and the amount that the
monitored values must change by to trigger the notification, while the actual values
being monitored would of course be an input feed.

A block might accept input data while not having an input feed. This is normally
because the block's author expects their block to be used alongside, and get all its input
data from, dedicated EPL such as that included with external adapters. Good examples
of this are the Market Data Management and the Order Management blocks such as
Market Depth.

In general, a block is wrien to have exposed input feeds if its inputs can be provided by
other blocks.

If you open a scenario and a block that was previously added to that scenario is missing
you receive a pop-up error message, Event Modeler removes the block from the block
wiring display, and there is an entry indicating the missing block in the Problems view.

Wiring block input feeds
Two block instances are said to be wired together if one block's input feed is aached to
the other's output feed. Output fields from the source block's output feed then need to
be mapped (that is, connected) to the destination block's input feed's input fields.

The Block Wiring tab displays a solid blue labeled rectangle for each of the block instances
that have been added to the scenario. Unless re-organized, these will initially be
displayed in a partially overlapping stack at the top-left of the tab.

If a block instance has one or more input feeds, its rectangle will have a wiring point on
the left hand side. This is a small solid black semi-circle. Similarly, if it has one or more
output feeds, its rectangle will have a wiring point on the right hand side. Blocks with
both input and output feeds exhibit wiring points on both sides. The figure below shows
the Block Wiring tab.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 513

Selecting, resizing, and moving block instances
Interaction with the block instances in the Block Wiring tab is similar to that in the Event
Flow tab.

Click on a block instance rectangle to select it. The rectangle's border will become bold
red and eight drag handles will appear around the rectangle.

To move a rectangle simply press and hold the left mouse buon while pointing to it,
and drag to the desired location. Release the mouse buon to confirm the new location.

You can use the drag rectangles to resize the rectangle in any of the eight coordinates.
As above, point to a drag handle, press the left mouse buon and hold down while
dragging the handle to the desired location. If you hold down the Shift key while
dragging, you will restore and then preserve the rectangle's aspect ratio.

Wiring two blocks together
In order to wire two blocks together, it is best to place them side by side so that the
source block instance is displayed on the left and the destination instance is to the right of
it.

Then point to the output wiring point on the source block. Note how the mouse cursor
changes. Press the left mouse buon, and while holding it down, drag to the input
wiring point on the destination block. If a connection is possible the line being dragged
from one wiring point to another will turn bold to indicate that you can now release the
mouse buon and create the wire.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 514

If you release the mouse buon elsewhere, and when the line being dragged is not bold,
then nothing will happen. You can try again.

If you release the mouse buon correctly at a point where the line can be created, then
the Configure Block Wiring dialog will appear.

Connecting feeds and specifying feed mapping
The Configure Block Wiring dialog has two main areas.

The first area is labeled “Select output and input feeds to wire together:”. The
bordered area underneath it will list all the output feeds of the source block instance on
the left, and the input feeds of the destination block instance on the right.

Use the pull-down selectors for each block instance to define which feed should be
mapped to which. Note that each wire corresponds to a single mapping of one output
feed to one input feed.

Therefore once you have selected the output feed and the input feed, consider the
second area of the dialog. This is labeled “Configure feed mapping information:”.

Within the bordered area underneath this label you will see a listing of all the input
fields contained within the input feed selected previously. To the left of each field you

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 515

need to specify the source output field that is to be connected to it. Use the pull-down
selector to view the output fields available and to create the mappings.

You can map a single output field to several input fields, or create distinct mappings for
each.

At runtime, the field to field mapping will ensure that the input field of the destination
block instance will always be kept the same as the value of the output field of the source
block instance. When the output field changes, which might be very frequently, the
input field will be updated immediately.

Alternatively, you can also just type in a value instead of selecting an output field. In
that case the input field will become a constant, always containing the value you set. If
you select the * option from the selector no mapping will be made, and the input field
will be set to the default value for its type.

Click on OK to finish the wiring operation. A line will be displayed between the two
block instances, labeled to indicate which feeds are involved in the wiring.

Wiring a scenario variable to a block
You might want the value of a scenario variable to be the input for a block. To do this,
use the Variable Mapper block. Wire the output of the Variable Mapper block to the
input of the block that requires the scenario variable.

The Variable Mapper block takes the name of a scenario variable as the value of its
only input parameter. When the value of the mapped variable changes, the Variable
Mapper block sends the new value to its output feed. The output feed includes two
values. The first value is the new value as a number. The second value is the new value
as text. You can choose which representation you need to wire into another block.

Mapping type conversions
It is important to be aware that if the type of the source output field is not the same as
the destination input field, type conversion will automatically take place.

The behavior here is the same as that already described when linking variables,
parameters and output fields. That is, if the conversion cannot be carried out (such as
when aempting to convert a non-numeric string to a number) then the destination field
will be set to the default value for its type. See "Conversion rules for variable types" on
page 503.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 516

Editing block wiring
If you wish to edit the mapping of an existing wire just double click on the line
representing the wiring.

Deleting a wiring
If you wish to delete an existing wire select the line representing the wiring by clicking
on it. It will become a bold red to indicate it is selected.

You can then press Del to delete it, or else click on the icon in the main toolbar.

Deleting a block instance
You can delete rectangles representing block instances. However, this is the same as
deleting block instances from the Blocks tab.

To do this, select the block instance's rectangle, and then press the Del buon. If that
block had any wiring, either as a source or a destination, it will be removed.

Caution: If any rules' condition or action parts refer to any feed, field, parameter or
operation of the block instance you have removed, the references will be
reverted back to their non-terminals. This will make those rules, and therefore
the enclosing states and the scenario, unfinished.

Using older versions of blocks
Apama 4.2 modified the interface for implementing blocks. All standard blocks have
been updated to use this new interface. If you use a version of a block that implements
the old interface, Event Modeler indicates this in the Block Wiring tab by using a different
color around the perimeter of the block. Deprecated blocks (blocks that use the old
interface and any blocks that are deprecated in the future) have an orange border while
current blocks have a black border. However, the selected block, of any type, has a red
border.

You can use both deprecated and current blocks in the same scenario. However, if a
scenario uses at least one deprecated block, the scenario instances cannot be run in
parallel. In the Blocks tab and in the Block Wiring tab, blocks that are parallel-aware have
a double-line border. Blocks that are not parallel-aware have a single-line border.

The recommendation is to update any custom blocks to the new interface. Support for
the old interface will be removed in a future release. Information for converting custom
blocks to the new interface is in the Apama 5.0 migration guide.

Troubleshooting invalid scenarios
Event Modeler does the following to help you troubleshoot scenario validation issues:

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 517

An error in a scenario file causes Software AG Designer to display an error icon in
the Project Explorer panel on the scenario name, the scenarios folder, and the project
folder.

Software AG Designer's Problems tab displays an entry for each error in a scenario.

Double clicking a scenario error in the Problems tab opens the scenario that contains
the error, if it is not already open, and selects the component associated with the
error you clicked.

If a global rule is incomplete (unfinished), the title of the rule appears in bright red, a
red-outlined box appears around the rule definition, and the name of each state that
the rule applies to also appears in bright red.

If a local rule is incomplete the title of the rule appears in bright red, a red-outlined
box appears around the rule definition, and the name of the state the rule applies to
also appears in bright red.

If a block is missing Event Modeler displays an error icon on the Block Wiring tab
name , removes the block from the wiring display, and displays an
error in the Problems tab. This error identifies the missing block. Double clicking this
error displays the Block Wiring panel that contained the missing block. The wiring
display no longer shows the block that is missing and there is no error indicator in
the wiring display for the missing block.

If there is a missing block whose feeds are used to set the values of scenario variables
Event Modeler reverts the value of the scenario variable to its default value. No error
indication appears.

Exporting scenarios as EPL
To export one or more scenarios as EPL

1. From the Software AG Designer menu, select File > Export.

2. Expand Software AG, select Export as MonitorScript, and click Next.

3. Select the project that contains the scenario(s) you want to export.

4. Select the scenario(s) to export and whether to export them in debug mode.

5. Identify the output directory for the generated EPL.

6. Click Finish.

Exporting scenarios as block templates
To export a scenario as a block template

1. From the Software AG Designer menu, select File > Export.

2. Expand Software AG, select Export as Block, and click Next.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 518

3. Select the project that contains the scenario(s) you want to export.

4. Select the scenario(s) to export and whether to export.

5. Identify the output directory for the generated block template. By default, the
generated block template is put in the Generated scenario blocks catalog in the catalogs
directory of the project.

6. Click Finish.

Event Modeler command line options
After you define a scenario, you can use a command line to generate EPL for that
scenario, or to generate a block from that scenario. This might be useful for custom
scripting. The Event Modeler executable is in the bin directory of your Apama
installation directory. In addition to generating EPL or a block, you can use the
command line format to obtain information about Event Modeler. Information about all
event_modeler command line options is in the table at the end of this topic.

Scenario to EPL

The command line format for generating EPL from a scenario is as follows:
event_modeler -Xgenerate sdf_file_path EPL_file_path

Element Description

sdf_file_path Path of the scenario definition file for the scenario that
you want to save.

EPL_file_path Name of the new monitor.

For example:
event_modeler -Xgenerate c:\dev\scenario1.sdf scenario1.mon

This example generates the scenario1.mon file from the scenario1.sdf scenario
definition file.

Scenario to block

The command line format for generating a block from a scenario is as follows:
event_modeler -XgenerateBlock scenario block catalog

Element Description

scenario Path of the scenario definition file for the scenario that
you want to save as a block.

M
Odd Header

Using Event Modeler

Developing Apama Applications Version 9.10 519

Element Description

block Name of the new block.

catalog Path of the blocks catalog in which to save the new
block.

For example:
event_modeler -XgenerateBlock scenario1.sdf scenario1Block.bdf C:/Apama/blocks

This example generates the scenario1Block.bdf file from the scenario1.sdf file and
stores the new block in C:/Apama/blocks.

All options

The format for executing event_modeler is as follows:
event_modeler [options] [scenarioFile1 .sdf scenarioFile2 .sdf ...]

Option Description

-h | --help Displays this information.

-v | --version Displays Event Modeler version
information

-c file | --conf file Path to Event Modeler
configuration file. The default is
event_modeler_config.xml.

-l file | --logfile file Identifies the name of the Event
Modeler log file.

-V level | --loglevel level Specifies the log level.

-f file | --file file Loads the specified scenario
definition file into Event Modeler.
Repeat to load multiple scenario
definition files.

-XgenerateDebug [true|false] Generate debug output or not
(default is true).

-Xgenerate scenario EPL_file Generate EPL from the specified
scenario definition file.

M
Even Header

Using Event Modeler

Developing Apama Applications Version 9.10 520

Option Description

-XgenerateBlock scenario block
catalog

Generate a block from the specified
scenario definition file and save the
new block in the specified catalog.

-XforceBlockPaths path[,path ...] Force Event Modeler to use the
specified comma-separated block
catalog paths.

-XaddBlockPaths path[,path ...] Add the comma-separated block
catalog paths to Event Modeler.

-XforceFunctionPaths path[,path
...]

Force Event Modeler to use
the specified comma-separated
function catalog paths.

-XaddFunctionPaths path[,path ...] Add the comma-separated function
catalog paths to Event Modeler.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 521

16 Using Standard Blocks

■ A block's lifecycle ... 523

■ General analytic blocks .. 524

■ The Timer blocks ... 536

■ The Utility blocks .. 541

■ Database functionality—storage and retrieval ... 557

■ Blocks for working with scenario blocks .. 566

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 522

Blocks are ready packaged modules that you can import and use in your scenarios.
They can accept inputs, execute some logic of their own, and generate output. In Event
Modeler, in the Catalogs tab, you can view and select the blocks provided with Apama.

A block is defined in a Block Definition File, or .bdf. This XML file describes what the
block does and its implementation in Apama EPL. A block can consist of:

Parameters – a block can have a number of parameters, which when set configure
its behavior. Parameters differ from input fields, in that the laer are like work
packages for the block to process and are expected to change all the time, while
the former are typically only set to initialize the block and whenever its core
behavior needs to be modified. Parameters are typed in the same way as scenario
variables. Parameters are all provided at initialization time and can then be updated
individually.

Operations – in addition to any standard behavior that is hard-wired into it, a block
can also have a number of explicit operations that can be invoked by the scenario.
For example, typical operations are to start processing some data and to stop. If an
operation requires any configuration information this is usually passed in through a
block parameter.

Input feeds – an input feed can be hooked up to a live stream of event data, like a
price quote stream. Within it, an input feed will define one or more input fields,
which can be mapped to data in the stream. When event data arrives, the fields'
values get updated. These fields are typed in the same way as scenario variables.

Output feeds – an output feed is a stream of output data that can be generated by
the block. Each output feed corresponds to an event that can be generated by the
block, and embeds one or more output fields. The fields are updated as a result
of operations carried out by the block. These fields are typed in the same way as
scenario variables.

When you add a block to a scenario, you are specifying that each instance of that
scenario should create an instance of that block running within the scenario. Whether
the block instance then starts executing some activity immediately or waits for some
operation on it to be called depends entirely on how the block itself is wrien.

There is no restriction on the number of block instances that you can add to a scenario.
It is possible to add multiple instances of the same block to a scenario. To ensure there is
no conflict, each instance has its own operations, parameters and fields clearly tagged by
its unique name.

You can save a scenario as a block, and then use that scenario block in other scenarios. In
this way, you can create composite scenarios. However, you cannot create a block from
a scenario that can run in parallel. Also, you cannot create a block from a non-parallel
scenario and then mark that block as parallel-aware. See "Working with Blocks Created
from Scenarios" on page 615.

If there is no standard block that meets your needs you can use Apama's block editor in
Software AG Designer to create a custom block. You can use the block editor to define
the block's parameters, operations, input feeds and output feeds, or you can use the

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 523

block editor to create the block from an event definition. See "Creating Blocks" on page
591.

Notes

Only the latest version of each standard block is documented here. Except where noted
otherwise, one earlier version of each standard block is included in Apama. However,
use of the latest version of a standard block is recommended for the following reasons:

It implements the block as an event type, which is faster than the previous interface.

It is parallel-aware. You can use it in a parallel scenario.

Support for the earlier version will be removed in a future release.

Most standard blocks are automatically available to your scenario from the Catalogs tab.
However, some standard blocks are available only if you add a particular bundle to your
project. Where this is the case, the description of the standard block notes this.

A block's lifecycle
This section describes a block's lifecycle

1. You use Software AG Designer to define a block, which is saved as a Block Definition
File (.bdf). This is an XML document, and it contains the interface of the block in
XML elements as well as the EPL that defines the block's functionality.

The EPL template for a block is the <code> section within the block's .bdf file. This
contains the actual implementation of the block, embedding the custom behavior
that identifies the block.

2. A scenario is defined within Event Modeler. This scenario is made to import one or
more instances of the block. The scenario is saved to disk in a Scenario Definition File
(.sdf) which is also an XML document. This document contains a reference to the
location of any imported blocks' .bdf files. It does not embed the blocks themselves.

During this stage, the contents of the <code> section in the .bdf are read in and
all EPL names that are tagged with # characters are replaced with unique names
that distinguish this particular block instance from any other that the scenario
imports. The modified block EPL is then added to the scenario's EPL. Because certain
elements of the EPL in the <code> section are renamed, this section of the code is
often termed an EPL template.

3. The scenario and the referenced blocks are converted to an EPL file (.mon), either
explicitly with File > Export > Software AG > Export as MonitorScript or implicitly when
running the project from Software AG Designer.

4. The EPL containing the combined scenario and block code described in Step 3 is
injected into, and parsed by the correlator. Note that if the EPL supplied in the .bdf
file is invalid, the correlator will reject the scenario at this stage. However, if the
EPL is valid but does not correctly implement the block's interface, it will still inject
successfully. This situation cannot be detected until the scenario does not function as
expected.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 524

5. At this point the EPL for the scenario and its embedded block(s) is now in the
correlator. This means that actual instances of the scenario can be created by end
users. Assume that a dashboard has been created with Dashboard Builder to go with
the scenario, and that end users can therefore interact with the scenario through the
Dashboard Viewer. When a user logs into the scenario's application and creates an
instance (sometimes referred to as a strategy), the correlator will create a specific
working instance of the scenario and of its embedded block(s). Each instance is
unique and distinct. Therefore, if the scenario embedded two blocks (or even two
copies of the same block), and three instances of it are created from a dashboard,
there will then be three instances of the scenario and six block instances.

Therefore, when you add a block to a scenario in Event Modeler, you are effectively
specifying that real instances of that scenario should each create an instance of that block
running within them. Whether the block instance then starts executing some activity
immediately or else waits for some operation on it to be called depends entirely on how
the block itself was wrien.

It is possible to add multiple instances of the same block to a scenario in Event Modeler.
Since their operations, parameters and fields are clearly specified by their enclosing
block instance's name when invoked from the scenario there is no conflict at runtime.
There is no restriction on the number of block instances that can be added to a scenario.

General analytic blocks
This section discusses Event Modeler analytic blocks.

Change Notifier v2.0
The Change Notifier block sends out a notification when its input data stream changes
by a given amount over a configurable, moving time window. When a sufficiently large
positive or negative change has occurred, the output feed will indicate this by seing
the changed field to true. The output feed can be configured to automatically reset to its
unchanged state a certain time after triggering by seing the reset period parameter.

Parameters

Parameter Description

period The maximum age of any sample that is used in the
calculations, in seconds. Any samples older than this will be
discarded before performing the calculation. Must be greater
than zero.

amount The change amount value, zero to ignore. A notification will
be sent if the difference between the oldest value inside the
time window and the most recent sample is greater than this
amount. Absolute values are used in the calculations.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 525

Parameter Description

percentage The change percentage value, zero to ignore. Absolute values
are used as for the amount parameter. 100.0 means to look for
a doubling of the input values.

reset period Following the detection of a big enough change, the output
feed will be reset to its un-triggered state after this interval. It
is specified in seconds, and is ignored if less than or equal to
zero.

At least one of amount and percentage should be different from 0.0, otherwise no
notifications will occur.

Operations

Operation Description

start Starts checking for changes in the input data feed.

stop Stops checking for changes.

clear Discards all stored values.

reset Resets the changed notification flag.

Input feeds

Feed Field Description

data value Feed of input values.

Output feeds

Feed Fields Description

notify percentage
change

The amount of change measured as a
percentage.

 amount change The amount of change.

 changed Set true to indicate a sufficiently large
change has occurred. Is reset to false

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 526

Feed Fields Description
by calling operation reset, or after the
specified reset period.

Correlation Calculator v2.0
The Correlation Calculator block calculates the correlation coefficient between two
streams of data. The calculation may be performed over an unlimited set of data from
each stream, or a set limited by number of samples or age of samples. The calculator
only generates an output if there is at least one suitable sample from each stream.

Correlation coefficient

A correlation coefficient approaching +1.0 shows a strong correlation between the
streams, a coefficient close to 0.0 shows lile or no correlation between the streams and
a coefficient approaching –1.0 shows an inverse correlation between the streams; for
example, if one is increasing, the other is decreasing.

Parameters

Parameter Description

period The maximum age of any sample that is used in the
calculations, in seconds. Any samples older than this will
be discarded before performing the calculation.

size The maximum number of sample pairs that are used in the
calculation. A pair consists of a sample from one stream,
and the most recent sample from the other stream. The
oldest sample is replaced by the newest sample when the
total number of samples has reached this limit.

One or both of the above parameters must be 0, in which case that limit is not imposed.
It is not possible to restrict the number of samples by both age and number of samples,
but it is possible to not impose any limit on the number of samples (thus an infinite set
of samples is kept). Note that imposing a limit after input events have been received will
clear all existing samples.

Operations

Operation Description

start Starts the calculation of coefficients. Must be called before
the calculator will generate any statistics.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 527

Operation Description

stop Stops the calculation of further coefficients. Any
subsequent input feeds are ignored.

clear Discards all current data.

Input feeds

Feed Fields Description

data1 value The first input set.

data2 value The second input set.

Note that at least one feed from both sets needs to have been received (and if set, within
period seconds) before an output will be generated.

Output feeds

Feed Fields Description

correlation The correlation coefficient (between -1.0 and
+1.0).

statistics

samples The number of sample pairs used for this
calculation.

Data Distribution Calculator v2.0
The Data Distribution Calculator block calculates some common statistics from a set
of samples. Like the correlation block, the set of samples may be unlimited in size, or
constrained by a maximum number of samples or a maximum age of samples. Note that
execution of the Median and Mode Calculator block, Moving Average block or Statistics
Calculator block is faster than execution of the Data Distribution Calculator block. This
is because those blocks perform a subset of the processing of the Data Distribution
Calculator block.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 528

Parameters

Parameter Description

period The maximum age of any sample that is used in the
calculations, in seconds. Any samples older than this will be
discarded before performing the calculation.

size The maximum number of samples that are used in the
calculation. The oldest sample is replaced by the newest
sample when the total number of samples has reached this
limit.

One or both of the above parameters must be 0, in which case that limit is not imposed.
It is not possible to restrict the number of samples by both age and number of samples,
but it is possible to not impose any limit on the number of samples (thus an infinite set
of samples is kept).

Operations

Operation Description

start Starts the calculation of statistics. Must be called before the
calculator will generate any statistics.

stop Stops the calculation of further statistics. Any subsequent
input feeds are ignored.

clear Discards all current data.

Input feeds

Feed Fields Description

data value The feed of values. The time of a value is taken
to be the correlator's current time.

Output feeds

Feed Fields Description

statistics value The most recent value received in the input
feed.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 529

Feed Fields Description

mean The arithmetic mean of the distribution.

mode The most commonly occurring value, if there is
one.

no unique
mode

true if there is no single mode.

median The mid point of the ordered set of data values.

standard
deviation

Standard deviation of the data set.

variance Variance of the distribution.

skew Degree of skewed-ness of the distribution.

kurtosis Kurtosis measure of the distribution.

samples The number of samples used for this
calculation.

Median and Mode Calculator v1.0
The Median and Mode Calculator block calculates the median and the mode from the
input data stream over a configurable time window and sample set size. This block
performs a subset of the processing performed by the Data Distribution Calculator
block. Consequently, execution of this block is slightly faster than execution of the
Data Distribution Calculator block. Like the Correlation Calculation block, the set of
samples may be unlimited in size, or constrained by a maximum number of samples or a
maximum age of samples.

Parameters

Parameter Description

period The maximum age of any sample that is used in the
calculations, in seconds. Any samples older than this will
be discarded before performing the calculation.

size The maximum number of samples that are used in the
calculation. The oldest sample is replaced by the newest

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 530

Parameter Description
sample when the total number of samples has reached this
limit.

One or both of the above parameters must be 0, in which case that limit is not imposed.
It is not possible to restrict the number of samples by both age and number of samples,
but it is possible to not impose any limit on the number of samples (thus an infinite set
of samples is kept).

Operations

Operation Description

start Starts the calculation of statistics. Must be called before
the calculator will generate any statistics.

stop Stops the calculation of further statistics. Any subsequent
input feeds are ignored.

clear Discards all current data.

Input feeds

Feed Fields Description

data value The feed of values. The time of a value is taken to
be the correlator's current time.

Output feeds

Feed Fields Description

value The most recent value received on the input
feed

mode The most commonly occurring value, if there is
one.

no unique
mode

true if there is no single mode.

statistics

median The mid point of the ordered set of data
values.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 531

Feed Fields Description

samples The number of samples used for this
calculation.

Moving Average v1.0
The Moving Average block calculates the moving average from the input data stream
over a configurable time window and sample set size. Like the Correlation Calculation
block, the set of samples may be unlimited in size, or constrained by a maximum
number of samples or a maximum age of samples. The Moving Average block performs
a subset of the processing performed by the Data Distribution Calculator block.
Consequently, execution of the Moving Average block is considerably faster than
execution of the Data Distribution Calculator block.

Parameters

Parameter Description

period The maximum age of any sample that is used in the
calculations, in seconds. Any samples older than this will
be discarded before performing the calculation.

size The maximum number of samples that are used in the
calculation. The oldest sample is replaced by the newest
sample when the total number of samples has reached this
limit.

One or both of the above parameters must be 0, in which case that limit is not imposed.
It is not possible to restrict the number of samples by both age and number of samples,
but it is possible to not impose any limit on the number of samples (thus an infinite set
of samples is kept).

Operations

Operation Description

start Starts the calculation of statistics. Must be called before
the calculator will generate any statistics.

stop Stops the calculation of further statistics. Any subsequent
input feeds are ignored.

clear Discards all current data.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 532

Input feeds

Feed Fields Description

data value The feed of values. The time of a value is taken to
be the correlator's current time.

Output feeds

Feed Fields Description

value The most recent value received on the
input feed.

mean The arithmetic mean of the distribution.

statistics

samples The number of samples used for this
calculation.

Spread Calculator v3.0
The Spread Calculator block calculates the difference between the latest data points
of two streams. The output feed also provides the time of the event. This can either
be supplied in the input feed or, if no mapping is provided for the input feed, the
correlator's current time is used. Note that the first result will not be generated until both
input feeds have received an event.

Parameters

There are no parameters for this block.

Operations

Operation Description

start Starts the calculation of differences. Must be called before
any output events are sent.

stop Stops the calculation of further coefficients. Any subsequent
input feeds are ignored.

clear Discards all current data.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 533

Input feeds

Feed Fields Description

value The first feed of values.data1

time The timestamp of the data point. Leave
unmapped (i.e. left as 0) to set the time as the
correlator's current time.

value The second feed of values.data2

time The timestamp of the data point. Leave
unmapped (i.e. left as 0) to set the time as the
correlator's current time.

Output feeds

Feed Fields Description

last1 The most recent value sent to the data1 feed.

time1 The time of the most recent value sent to the
data1 feed.

last2 The most recent value sent to the data2 feed.

time2 The time of the most recent value sent to the
data2 feed.

statistics

spread Difference between last1 and last2. Will be
negative if last2 is greater than last1.

Statistics Calculator v1.0
The Statistics Calculator block calculates running statistics from a set of samples. Like
the correlation block, the set of samples may be unlimited in size, or constrained by a
maximum number of samples or a maximum age of samples. The Statistics Calculator
block performs a subset of the processing performed by the Data Distribution Calculator
block. Consequently, execution of the Statistics Calculator block is considerably faster
than execution of the Data Distribution Calculator block.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 534

Parameters

Parameter Description

period The maximum age of any sample that is used in the
calculations, in seconds. Any samples older than this will be
discarded before performing the calculation.

size The maximum number of samples that are used in the
calculation. The oldest sample is replaced by the newest
sample when the total number of samples has reached this
limit.

One or both of the above parameters must be 0, in which case that limit is not imposed.
It is not possible to restrict the number of samples by both age and number of samples,
but it is possible to not impose any limit on the number of samples (thus an infinite set
of samples is kept).

Operations

Operation Description

start Starts the calculation of statistics. Must be called before the
calculator will generate any statistics.

stop Stops the calculation of further statistics. Any subsequent
input feeds are ignored.

clear Discards all current data.

Input feeds

Feed Fields Description

data value The feed of values. The time of a value is taken to be
the correlator's current time.

Output feeds

Feed Fields Description

statistics value The most recent value received on the
input feed.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 535

Feed Fields Description

mean The arithmetic mean of the data set.

standard deviation Standard deviation of the data set.

variance Variance of the data set.

skew Degree of skewed-ness of the data set.

kurtosis Kurtosis measure of the data set.

samples The number of samples used for this
calculation.

Velocity Calculator v2.0
Velocity calculates the rate of change (that is, change divided by the time between the
changes) of the last two values of a stream. The time of incoming events is taken to be
the correlator's current time. Note that the first result will not be generated until two
events have been received on the input feed.

Parameters

This block has no parameters.

Operations

Operation Description

start Starts the calculation of velocity. Must be called before any
output events are sent.

stop Stops the calculation of velocity. Any subsequent input
feeds are ignored.

clear Discards all current data.

Input feeds

Feed Fields Description

data value The feed of values.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 536

Output feeds

Feed Fields Description

velocity value The difference of the last two values divided
by the time between the last two values.
Values are assumed to arrive at no less than
0.01 seconds apart. Thus, no two events are
considered to have the same timestamp,
which would mean the velocity could not be
computed.

The Timer blocks
Apama provides two timer blocks.

Schedule v3.0
The Schedule block sends an output feed at a given time in the future. The time is
specified by any combination of weekday, month, year, hour, minute and seconds.
Any of the parameters may take a negative value, which means any value is allowed.
Multiple timers may be started in a single block, each one having a different timer id.
This timer id is supplied in the output feed when the timer fires, so may be used to
determine what to do upon the timer firing.

Parameters

Parameter Description

timer id A string that distinguishes this timer from other timers in
this block. An empty string is valid.

month The month of the year (1-12) or negative for any month of the
year.

day The day of the month (1-31) or negative for any day of the
month.

hour The hour of the day (0-23) or negative for any hour of the
day.

minute The minutes past the hour (0-59) or negative for any minute.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 537

Parameter Description

second The seconds past the minute (0-59) or negative for any
second.

Operations

Operation Description

start Starts the specified timer ID.

cancel Cancels the specified timer ID.

retrieve Retrieve the details of the specified timer id by seing the
output feed accordingly.

Input feeds

This block has no input feeds.

Output feeds

Feed Fields Description

timer id A string that distinguishes this timer from other
timers in this block. An empty string is valid.

month The month (1-12).

day The day of month (1-31).

hour The hour (0-23).

minute The minute (0-59).

seconds The seconds (0-59).

timer

time up true if time is up, false otherwise (i.e. on
retrieval).

book num timers The number of currently active timers known to
this block.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 538

Examples

The following tables list the values for parameters that will trigger at the times
described.

Example 1 - triggered once a month, on the first of every month, at 03:00:00:

Parameter Value

month -1

day 1

hour 3

minute 0

seconds 0

Example 2 - triggered every hour, at 15 minutes past the hour:

Parameter Value

month -1

day -1

hour -1

minute 15

seconds 0

Note that the time and date information is simply a copy of the parameters used when
starting the timer. Any field whose corresponding parameter was given a negative value
will have that same value.

Example 3 - triggered every second:

Parameter Value

month -1

day -1

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 539

Parameter Value

hour -1

minute -1

seconds -1

Example 4 - triggered every day at noon:

Parameter Value

month -1

day -1

hour 12

minute 0

seconds 0

Example 5 - triggered once a year, at exactly 16:31:28 on 31st May:

Parameter Value

month 5

day 31

hour 16

minute 31

seconds 28

Wait v3.0
The Wait block sends an output feed at a given time in the future. The time is specified
by a number of seconds to wait from the time the start operation is called. A timer may
be set to repeat. Multiple timers may be started in a single block, each one having a
different timer id. This timer id is supplied in the output feed when the timer fires, so
may be used to determine what to do when that happens.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 540

Parameters

Parameter Description

timer id A string to identify this timer from others in used in this
block (an empty string is valid).

time The number of seconds to wait.

repeat true if the timer should repeat, false if a single-shot.

Operations

Operation Description

start Starts the specified timer ID.

cancel Cancels the specified timer ID.

retrieve Retrieve the details of the specified timer id by seing the
output feed accordingly.

reset Resets the output feed. Useful for repeating timers to set the
output feed's time up field to false.

Input feeds

This block has no input feeds.

Output feeds

Feed Fields Description

timer id The id of the timer, as supplied by the timer id
parameter.

time The time to wait in seconds.

repeat true if the timer repeats.

timer

time up true if time is up, false otherwise (i.e. on
retrieval).

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 541

Feed Fields Description

book num timers The total number of timers known to this block.

The Utility blocks
Apama provides a number of utility blocks.

Dictionary v2.0
As scenarios do not support a dictionary type, the Dictionary block addresses this
potential requirement by providing an associative map of (string) keys and values. It
provides facilities for adding, accessing, removing, as well as iterating across, elements
within this map.

Parameters

Parameter Description

key Holds the key for a add / get operation.

value Holds the value for a add / get operation.

Operations

Operation Description

add Adds the name-value pair stored in key and value to
the dictionary. If the key already exists, the value will be
overwrien with the new value.

get Retrieves the value for the key stored in the key parameter
and causes a result to be sent out on the output stream.

clear Empties the dictionary.

remove Removes the entry with the key stored in the key parameter
from the dictionary - fails silently if key does not exist
(removed key and value will be sent out on the result output
feed).

next For iterating through the dictionary - forces the next result to
be output.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 542

Operation Description

reset Resets the iterator to the first entry in the dictionary.

Input feeds

This block has no input feeds.

Output feeds

Feed Field Description

key The key for the entry.

value The value of the entry.

found true if the key was found in the dictionary,
false otherwise.

result

size Number of entries in the dictionary.

File Reader v2.0
The File Reader lets a scenario read a line at a time from a specified file using the File
adapter with the JMultiFileTransport transport layer and the JNullCodec codec
plug-in.

For details about using the File adapter, see "Using the Apama File Adapter" in the
"Using Standard Adapters" part of Connecting Apama Applications to External Components.

The same File Reader block can read from multiple files.

Parameters

Parameter Description

Transport Name The name of the instance of the JMultiFileTransport to
use. This must match a transport instance name specified in
the IAF configuration file.

File Name The name of the file to read.

Lines In
Header

The number of lines to skip at the beginning of the file.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 543

Parameter Description

File Channel The name of the channel to output file events to. The various
file events are defined in the FileEvents.mon file, and the
definitions are in the com.apama.file package. You can
find FileEvents.mon in the adapters/monitors directory
of your Apama installation directory.

Operations

Operation Description

Open File Opens a file according to the current values of the
Transport Name, File Name, Lines In Header and File
Channel parameters.

Close File Closes a file according to the current values of the
Transport Name, File Name and File Channel
parameters.

Read Line Reads a line from the file. Uses the current values of
the Transport Name, File Name and File Channel
parameters.

Get File
Status

Explicit call to update the Status output feed. Uses the
current values of the Transport Name, File Name and File
Channel parameters.

Input feeds

This block has no input feeds.

Output feeds

Feed Field Description

file name The name of the file associated with the current
line.

file
transport

The name of the transport associated with the
current line.

line

line String that contains the current read line.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 544

Feed Field Description

file name The name of the file that returned the error.

file
transport

The name of the transport that returned the error.

error

message The error message returned.

file name The name of the file associated with the status
update.

file
transport

The name of the transport associated with the
status update.

more
available

A flag that indicates whether there are currently
more lines to read from the file.

status

file
currently
open

A flag that indicates whether or not the file is
currently open.

File Writer v2.0
The File Writer block lets a scenario write a line at a time to a specified file using the File
adapter with the JMultiFileTransport transport plug-in and the JNullCodec codec
plug-in. A single File Writer block can write to multiple files.

Parameters

Parameter Description

Transport Name The name of the instance of the JMultiFileTransport to
use. This must match an instance name specified in the IAF
configuration file.

File Name The name of the file to write.

Append A flag indicating whether to append to the end of a file, or
whether to replace the contents of the existing file.

Line The line to be wrien to the file identified by the File
Name parameter.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 545

Parameter Description

File Channel The name of the channel to output file events to. The
various file events are defined in the FileEvents.mon file
and they are defined in the com.apama.file package.
You can find the FileEvents.mon file in the adapters/
monitors directory of your Apama installation directory.

Operations

Operation Description

Open File Opens a file according to the current values of the
Transport Name, File Name, Append and File Channel
parameters.

Close File Closes a file according to the current values of the
Transport Name, File Name and File Channel
parameters.

Write Line Writes a line to the file identified by the current values of
the Transport Name, File Name, Line and File Channel
parameters.

Get File Status Explicit call to update the Status output feed. Uses the
current values of the Transport Name, File Name and
File Channel parameters.

Input feeds

This block has no input feeds

Output feeds

Feed Field Description

file name The name of the file that returned the error.

file
transport

The name of the transport that returned the error.

error

message The error message returned.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 546

Feed Field Description

file name The name of the file associated with the status
update.

file
transport

The name of the transport associated with the
status update.

status

file
currently
open

A flag that indicates whether the file is currently
open.

History Logger v2.0
The History Logger block maintains an ordered and (optionally) time-stamped history
of text messages. This is normally used in conjunction with multi-line entries in
dashboards, such as history lists, where a fixed size list is used to contain a rolling
window of constantly changing information.

Parameters

Parameter Description

entry An entry to be added to the history.

timestamps Index for an add, clear or retrieve operation.

most recent
first

Set to true to order the history so that the most recent
element is first, false for least recent first.

max size Maximum number of entries to retain - set to 0 to retain
all entries.

delimiter String to separate history entries when output by the
block. If not specified, the default is "\n" (linefeed).

time format String format to display time-stamps, if required. A
default format is used if this is not set.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 547

Operations

Operation Description

add Adds the content of entry to the history - an output
update will automatically be produced.

clear Clears the history.

retrieve Causes the latest history to be output from the block as a
single, delimiter-separated string.

Input feeds

This block has no input feeds.

Output feeds

Feed Field Description

size Number of entries in the history.history

text Text representation of the history, where each
entry is optionally time-stamped and separated
by the delimiter string.

Input Merger v2.0
The Input Merger block collects a number of related field values and outputs them
simultaneously.

Description

The input event is a field name/value pair. If the name in a pair matches one of the
names in the order parameter, the corresponding value is stored for output. When all of
the names in order have been matched at least once, the set of stored values is output.
Note that multiple matches (and stores) can occur for any name. In this case, the latest
store overwrites the value of the previous store, ensuring that each field has the latest
value.

If the incremental update parameter is set, then further outputs are generated on
any input that matches a field in the order parameter. If the incremental update
parameter is not set, then further outputs are only sent once all fields have been received
again (that is, the old input values are discarded). The id field increments with each
output event, in either mode.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 548

Parameters

Parameter Description

order A comma-separated list of up to 8 field names to match
against names on the input stream. The order in which the
names are listed is the order in which they appear on the
output. Note that fields may not contain commas, but they
may be repeated or be an empty string.

incremental
input

If true, a change to a single field listed in the order
parameter results in an output being generated once all
input fields have been received at least once, that is, the
first output is still generated only when all fields have
been received.

Operations

Operation Description

start Activate merger.

stop Deactivate merger.

Input feeds

Feed Field Description

name Field namein

value Field value

Output feeds

The out feed specifies the selected individual values from the input feed, in the order
they are listed by the order parameter.

Feed Field Description

out id Increments each time an output event occurs, even if none
of the other fields has changed from the previous output
event.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 549

Feed Field Description

1 Field 1

2 Field 2

3 Field 3

4 Field 4

5 Field 5

6 Field 6

7 Field 7

8 Field 8

List v2.0
As scenarios do not support a sequence type, the List block addresses this potential
requirement by providing a dynamically-sized sequence of string items. It provides
facilities for adding, inserting, accessing, removing, as well as iterating across, elements
within this sequence.

Parameters

Parameter Description

item Holds an item for an add or nextIndex operation.

index Index for an add, get or remove operation.

Operations

Operation Description

add Adds the value currently held in item to the end of the
list.

insert Adds the value held in item to the list at the position held
in index.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 550

Operation Description

get Retrieves the item stored at the position held in index.

clear Empties the list.

remove Removes the item at the position stored in the index
parameter.

next For iterating through the list - forces the next result to be
output.

reset Resets the iterator to the first entry in the list.

nextIndex For iterating through the list - move the iteration position
to the next instance of item stored in the item parameter
and outputs the results.

Input feeds

This block has no input feeds.

Output feeds

Feed Field Description

item Holds the item for a retrieval operation.

index Holds the index of a retrieved item.

found true if an item was found in the list, false
otherwise.

result

size Number of entries in the list.

Scenario Terminator v2.0
The Scenario Terminator block is unusual in that it does not directly interact with the
scenario through any feeds, parameters or operations. The Scenario Terminator block
simply listens for special events that can be sent to the correlator, and terminates the
scenario if requested to.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 551

Description

The Scenario Terminator block depends on the ScenarioDeleterSupport.mon file,
which is supplied in the monitors folder. This EPL file must be injected before a
scenario containing the Scenario Terminator block can be injected.

Unlike other blocks, there is no value in including the block more than once, though
doing so is not an error.

This block has no parameters, no operations, no input feeds, and no output feeds.

The Scenario Terminator block listens for the following events:
com.apama.scenarios.DeleteAllScenarios()
com.apama.scenarios.DeleteScenariosByUser(string owner)

The first deletes all scenarios with a Scenario Terminator block. The second deletes all
scenarios for the given dashboard username that have a Scenario Terminator block. For
example, to delete all scenarios for the user roguetrader, do the following:
com.apama.scenarios.DeleteScenariosByUser("roguetrader")

Status v2.0
The Status block obtains the status of an object managed by a service monitor. For
example, you can use the Status block to obtain the status of a market, a connection, or
some other component. The objects for which you can obtain status and the meaning of
various parameters depend on the service monitor providing the status.

Usage notes

You use the Status block with the com.apama.statusreport.* events, which are
defined in StatusSupport.mon in the monitors directory of your Apama installation
directory. There are four com.apama.statusreport event types:

SubscribeStatus events — the Status block sends a SubscribeStatus event
to a service monitor to initiate receipt of status events from that service. A
SubscribeStatus event identifies the ID of the service you want to receive status
from, the object you want status for, the sub-service ID, if there is one, to receive
status from, and the connection to use if there is a choice.

In a SubscribeStatus event, when the service ID is an empty string, the Status
block is initiating a status subscription with each service monitor that is listening for
SubscribeStatus events that have an empty string for the service ID. In this case,
you should expect to receive status events from more than one service.

UnsubscribeStatus — the Status block sends an UnsubscribeStatus
event to a service monitor to terminate receiving status from that service. An
UnsubscribeStatus event identifies the same information as a SubscribeStatus
event.

Status — a subscribed service sends a Status event to the Status block to provide
the status information. A service sends a Status event as the result of a new
subscription and whenever there is a change in status. In addition to identifying the

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 552

service that the information is from and the object that the information is for, the
Status event contains a string that contains a status description, a sequence that
contains one or more key words, a Boolean indication of whether the object is in a
state in which it can be used, and a dictionary that contains any other information
that the service can provide.

StatusError — a subscribed service sends a StatusError event to the Status block
when it cannot provide status information. In addition to identifying the service that
the event is from and the object that the event pertains to, the StatusError event
contains a free-form string that describes the problem, and a Boolean indication of
whether the status subscription was terminated.

The Status block uses these events to interface with any service monitor that supports
the com.apama.statusreport interface. In other words, these events form the message
exchange protocol (MEP) between the Status block in your Apama application and
service monitors. For example, a service monitor might be the part of your adapter that
makes the features of the adapter available to your Apama application.

Parameters

Parameter Description

serviceID String that identifies the service monitor that you want to
subscribe to for status information. Leave blank (empty
string) to subscribe to all service monitors that are currently
listening for com.apama.statusreport.SubscribeStatus
messages.

object String that identifies the object that you want status for. The
service monitor defines the values that you can specify here.
For example, a service monitor might provide status for
Connection or Market.

subServiceID For service monitors that provide sub-services, this string
identifies the sub-service that you want to subscribe to for
status information. If the service monitor has no sub-services,
leave this parameter blank.

connection For service monitors that provide status for several instances
of the specified object, this string identifies the instance for
which you want to obtain status information. If the service
monitor provides status for only one instance, leave this
parameter blank. For example, an adapter might connect to
multiple sources of data. You would use this parameter to
specify the data connection you are interested in. The service
monitor must define the allowable values for the connection
parameter.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 553

Parameter Description

extract key 1
extract key 2
extract key 3

These three parameters make it convenient to obtain
particular values from the extracted parametern output
fields in the Status block output feed.

Each parameter is a string that specifies a key whose value
you want to obtain in the status received from the service
monitor. For example, when you set the extract key
1 parameter to the value of a key defined in the service
monitor, the Status output feed contains the specified key's
value in its extracted parameter 1 field.

These fields make it easier to access particular elements in
the extra parameters field of the output feed. You do not
need to parse the payload string in the extra parameters field
yourself.

Operations

Operation Description

start Initiates subscription to the service monitor identified by the
serviceID parameter, for information about the component
identified by the object parameter. If the specified service
monitor has sub-services or provides information about
more than one object instance, the subscription is for the
sub-service and connection identified by the values that the
subServiceID and connection Status block parameters
have when the start operation is called.

If the value of the serviceID parameter is an empty string,
the start operation initiates a subscription to each service
monitor that is listening for SubscribeStatus events that
have an empty string in their serviceID field.

Under the covers, the Status block routes a
SubscribeStatus event to the correlator. This event
takes its values from the current values of the Status block
parameters.

After a service monitor receives a SubscribeStatus event, it
starts sending Status events to the subscribing scenario.

stop Terminates the subscription to the service monitor identified
by the serviceID parameter. If the value of the serviceID
parameter is an empty string, the stop operation terminates
the subscription to each service monitor that is listening for

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 554

Operation Description
UnsubscribeStatus events that have an empty string in
their serviceID field.

Under the covers, the Status block routes an
UnsubscribeStatus event to the correlator. This event
takes its values from the current values of the Status block
parameters.

If a scenario terminates without invoking the stop operation
for a subscription, the block routes the appropriate
UnsubscribeStatus events upon termination of the
scenario.

Input feeds

This block has no input feeds.

Output feeds

Feed Field Description

serviceID String that identifies the service monitor that is
providing the status.

object String that identifies the object that the status is
for.

subServiceID String that identifies the sub-service that is
providing the status. This is blank if the service
has no sub-services.

connection String that identifies the object instance that
status is being provided for.

description String that contains human-readable text that
describes the status.

Status

summaries One word or a series of space-separated words
that describe the status. For example, Connected,
Disconnected, LoginFailed. The service
monitor defines and documents the words
that can appear in the summaries field. While
the description field is for a human reader,
the summaries field contains key words that
a scenario can act on. For example, suppose
summaries contains Disconnected. The scenario

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 555

Feed Field Description
can define a rule that specifies what to do when
this service is disconnected.

available Boolean value that indicates whether the object
is in a state where it can be used. For example,
if you specify Market as the object, a value of
true in the available field might mean that the
market is open and accepting orders.

extra
parameters

Payload-format string that contains any other
information that the service monitor provides for
the object.

extracted
parameter 1

extracted
parameter 2

extracted
parameter 3

Each of these parameters is a string that contains
the value of one of the key/value pairs that is
in the extra parameters output field. The
particular key value that the field contains is
determined by the value that the corresponding
extract key n block parameter had when the
block's start operation was invoked.

For example, suppose that the extract key 1
parameter has a value of time. The block then
invokes the start operation to subscribe to
a particular service monitor. When the block
receives status information from that monitor,
the block inserts the value of time, for example,
"12:34:56" into the extracted parameter 1
field and then sends the information to its Status
output feed.

received
status

Boolean value that indicates whether a Status
event has been received from the specified service
monitor.

Initially, this field is false. When the block
receives a Status event, it sets this field to true.
When the block unsubscribes from the specified
service monitor or when the block receives a
StatusError event, the block sets the received
status field to false.

A value of true means that the information in
the Status output feed is from the latest Status
event and no error has since been signaled by the

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 556

Feed Field Description
service monitor. In other words, you can trust the
information in the Status output feed.

fault Boolean value that indicates whether there was
an error obtaining status information for the
specified object. When the service monitor sends
a StatusError event, the block sets this field to
true. You should consider any information from
this service monitor to be stale.

total Integer that indicates the number of objects for
which all of the following are true:

The block is receiving status information for the
object.

The block has not received a StatusError
event from the service monitor since the block
received the previous Status event.

The object is in a state in which it can be used.
That is, the value of the available output field
is true.

This field makes it convenient to track when
a subscription is no longer providing status
information. For example, if a Status block has
4 subscriptions but total = 3, then the scenario
can take some action such as restoring the
subscription, or not using stale data.

Variable Mapper v2.0
The Variable Mapper block lets you use a scenario variable as a data source for any other
block. The Variable Mapper block takes the name of a scenario variable as the value of
its only input parameter. When the value of the mapped variable changes, the Variable
Mapper block sends the new value to its output feed. The output feed includes two
values. The first value is the new value as a number. The second value is the new value
as text. You can choose which representation you need to wire into another block.

Parameters

Parameter Description

variable Name of the scenario variable whose value you want to
output.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 557

Operations

None.

Input feeds

This block has no input feeds.

Output feeds

Feed Field Description

number New value of the scenario variable as
a number type.

variable updates

text New value of the scenario variable as
a text type.

Database functionality—storage and retrieval
The Database blocks let you store rows in a database and send queries to the database
to retrieve a set of rows. They take parameters that let you specify a database name, a
table name, a user name and password, and a service identifier. Note that any
password given in the scenario or through the dashboard will be visible on screen.

The ADBC Storage block takes a list of fields and a list of values as parameters.
The block places the values into their corresponding entry into the list of fields.
Alternatively, the storage block takes a storage query or statement.

The ADBC Retrieval block takes a query string as a parameter. If you specify a query
template, there is a parameter for specifying the query template parameters.

The format for a complete query string is service specific, typically SQL or an SQL-like
language. When you specify a complete query, the block ignores the parameters that list
fields, values, or a where clause.

The retrieval block return a number of outputs, one for each field/value pair for each row
that matched the query. The scenario needs to call the next operation to retrieve the next
field/value pair. The row number indicates when a field/value pair belongs to a different
row. The row number counts from 1 upwards.

ADBC Storage v1.0
The ADBC (Apama Database Connector) Storage block uses the ADBC adapter to
store data in a database. To make this block available to your scenario, add the ADBC
for JDBC or ADBC for ODBC bundle to your project. Adding one of these bundles to
your project automatically adds the ADBC Common bundle, which contains the ADBC
blocks.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 558

Description

The ADBC adapter is a standard adapter provided with Apama. It provides general
database storage and retrieval (query) and also event capture and playback. The ADBC
adapter supports both standard SQL and specialized databases. In particular, the
adapter supports ODBC and JDBC. This support provides access to most commercial
and open source SQL databases. ADBC provides a superset of the functionality that was
available in the ODBC and JDBC Apama standard adapters.

The Storage block can also be used to perform standard SQL operations such as Delete,
Update, and Rollback. To carry out an SQL operation, the value of the statement
parameter (described below) should be set to the operation you want to carry out.

Parameters

Parameter Description

service
identifier

The name of the service to use.

database The data source name of the database to connect to.

user name The username to use when connecting to the database.

password The password to use when connecting to the database
(will be readable on screen).

table The name of the table to store data in.

fields A comma-separated list of field names.

values A comma-separated list of values that will be placed in
the fields list.

statement If this is not empty, the correlator uses this as the
storage command instead of using the fields and
values parameters. This parameter can be set to an SQL
operation such as UPDATE, DELETE, or ROLLBACK.

autocommit The auto commit mode to use. The default is an empty
string. Specify one of the following:

OFF indicates no auto commit mode.

ADBC indicates the ADBC adapter auto commit mode
based on a time period.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 559

Parameter Description

DATA_SOURCE indicates a data source specific auto
commit mode. This might not be available for all data
sources.

acknowledge store Boolean that indicates whether the data source returns
an acknowledgment to indicate success or failure for
each store performed. True indicates that the data source
always sends an acknowledgment. False indicates that
the data source returns only store errors. The default
is true. The success acknowledgment along with the
current auto commit seing determine whether the
data has been stored. A commit operation might also be
needed.

unique connection Boolean that indicates whether or not to create a new
database connection. True indicates that you want the
block to always create a new connection. False indicates
that the block can use an existing connection. The default
is false.

final store If true indicates this will be the last store operation
performed. Default value is false.If true the output
feed field committed.final store complete will be
set to true after the store operation completes (success or
failure).

Operations

Operation Description

connect Establish a connection to the database.

store Store in the database the data held in the block's
parameters.

commit Commit any data sent to the database.

rollback Rollback uncommied changes to the database.

reset Resets the output feed.

disconnect Close the database connection.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 560

Input feeds

This block has no input feeds.

Output feeds

Feed Fields Description

success true if the last update to the database was
successful.

message A message from the last database update
operation.

result

connected true if connected to the database.

status true if the last commit operation succeeds,
else false.

committed

final store
complete

true when the store operation with the
final store parameter set to true has
completed.

rollback status true if the last rollback operation succeeded;
otherwise false.

ADBC Retrieval v1.0
The ADBC (Apama Database Connector) Retrieval block uses the ADBC adapter to
retrieve data from a database. The ADBC adapter is a standard adapter provided with
Apama. To make this block available to your scenario, add the ADBC for JDBC or
ADBC for ODBC bundle to your project. Adding one of these bundles to your project
automatically adds the ADBC Common bundle, which contains the ADBC blocks.

Description

The ADBC adapter is a standard adapter provided with Apama. It provides general
database storage and retrieval (query) and also event capture and playback. The ADBC
adapter supports both standard SQL and specialized databases. In particular, the
adapter supports ODBC and JDBC. This support provides access to most commercial
and open source SQL databases. ADBC provides a superset of the functionality that was
available in the ODBC and JDBC Apama standard adapters.

The ADBC Retrieval block supports prepared queries, stored procedures, and query
templates.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 561

Parameters

Parameter Description

service identifier The name of the service to use, or blank for any
service.

database The data source name of the database to connect to.

user name The username to use when connecting to the
database.

password The password to use when connecting to the
database (will be readable on screen).

table name The name of the table to retrieve data from.

query string The data source specific query statement to be used.
If you specify a query template name, be sure to set
the query parameters parameter as needed for the
template.

query parameters If you specify a query template in the query string
parameter, specify the parameters for the query
template here. This is a comma separated list of
name:value pairs, for example, TABLE_NAME:Trade,
SORT_ORDER:asc.

input types The input types of the parameters in the query
template that is specified in the query. These are
listed in a comma separated list of types, such as
Double, Double, Float.

output types The output types of the parameters in the query
template that is specified in the query. These are
listed in a comma separated list of types, such as
Double, Double, Float.

prepared query named
id

A String that uniquely identifies this prepared
query.

prepared query
params

The parameters to a prepared query in the form of a
comma separated list of values.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 562

Parameter Description

batch size Number of rows to be buffered in the block. The
default is 50. The maximum is 10,000.

disable buffering Boolean that indicates whether the results are
streamed automatically as they are received. True
indicates that they are. When set, the next rewind
and reset operations have no effect since they are
not needed. For use when wiring the ADBC Retrieval
block's output to another block. The default is false.

unique connection Boolean that indicates whether or not to create a
new database connection. True indicates that you
want the block to always create a new connection.
False indicates that the block can use an existing
connection. The default is false.

Operations

Operation Description

connect Establish a connection to the database.

query Perform the query operation.

reset Reset the output feed.

next Look up the next field/value pair.

rewind Rewind to the first result in the current buffered
batch, without performing the operation again.

stop Stop the query, even if not complete.

disconnect Close the database connection.

create prepared query Create a prepared query for use later, passing in the
correct input types.

run prepared query Run a previously created prepared query, passing in
the relevant input parameters.

delete prepared query Delete an existing prepared query.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 563

Operation Description

retrieve query
templates

Retrieve a full list of named queries available,
including the query template name, parameters and
description.

Input feeds

This block has no input feeds.

Output feeds

Feed Fields Description

names The field names of the
results.

types The Apama types of the
fields.

schema

indexable The names of the fields that
are indexes.

number The row number of the
field/value pair. A number
of -1 indicates the end of
data.

field The name of the field the
value was taken from.

results

value The value of the field.

error message A message that describes
the error if the store
operation was unsuccessful.

no more true if the current query
has been completed and no
more field/value pairs are
available after the current
pair.

status

more available true if there is more data
available to be read within

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 564

Feed Fields Description
the current batch and false
otherwise.

connected true if connected to the
database.

created True if the query is
successfully created; false
otherwise.

prepared query

deleted True if the query is
successfully deleted; false
otherwise.

retrieved false until the last query
template is retrieved, at
which point becomes true.

query name The identifying query name.

query parameters The list of parameters that
the query requires.

query
templates

query description A brief description of the
purpose of the query.

Note that it is possible for no more to be false and more available to be false; this
means that the service is waiting for more results to become available, but they have
not been supplied by the database yet. The scenario should wait until more available
becomes true before calling next. As with the order manager iteration, the scenario will
need to re-enter the state it is in while iterating, in order to re-evaluate all of the rules in
that state.

Prepared queries

To create prepared queries

1. The query string parameter should be set with the prepared query string, such as
SELECT * FROM tablename WHERE intfield < ?.

2. The input types of the input parameters in the prepared query being created. This is
a comma-separated list of types, for example Double, Double, Float, etc.

3. The output types of the parameters in the prepared query being created should
be set to a comma-separated list of types, for example Double, Double, Float if
calling on a stored procedure.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 565

4. In the block's prepared query named id parameter specify a unique identifier
in the form of a user readable name (string) for this prepared query. Multiple
prepared queries can exist in the block at any one time, so the identifier allows you
to specify which query you want to use.

5. Call the create prepared query operation.

In the prepared query output feed, the created field will contain true if the query
was successfully created.

To use prepared queries

1. In the block's prepared query named id specify the identifier of the prepared
query you want to execute.

2. In the prepared query params parameter, list the values which should match, in
types and number, those of the input types.

3. Call the run prepared query operation.

4. From this point on, the no more and more available fields and the next and stop
operations behave in the same manner as they do for normal queries.

To delete prepared queries

1. To delete a prepared query, set the prepared query named id parameter to the
identifier of the prepared query you want to delete.

2. Call the delete prepared query operation.

In the prepared query output feed, the deleted field will contain true if the query
was successfully deleted.

Stored procedures

Stored procedures must be created and deleted externally to the retrieval block, as in the
case when creating a table in the database.

1. Once the stored procedure exists in the database you can create a prepared query, as
described above. The syntax for using a stored procedure in a query string is in the
form {call demo_stored-procedure(?,?)}.

2. Specify the input types and output types parameters. Use NULL in the list of
types for padding purposes. For example, given a Double (input only), Double
(both input and output), and Float (output only), for the input types parameter
specify Double, Double, NULL and for the output types parameter specify NULL,
Double, Float.

3. Set an identifier in the prepared query named id parameter with this prepared
query for future use.

4. Call the create prepared query operation.

In the prepared query output feed, the created field will contain true if the query
was successfully created.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 566

5. Using the prepared query associated with the stored procedure is the same as
described above.

Query templates

You can retrieve the list of query templates that are associated with the project, by
calling the retrieve query templates operation. In the query templates output
feed, the query name, query paramters, and query description fields show each
query template's name, parameters, and description, respectively. The retrieved field
is true when all query templates have been retrieved.

To run query templates

1. Set the block's query string parameter to the name of the query template you want
to run, such as findEarliest.

2. In the block's query parameters parameter specify the query
parameters required by the query template, for example,
TABLE_NAME:tableName,TIME_COLUMN_NAME:timefield.

3. Call the query operation to execute the query template, in the same way as for
normal queries.

Blocks for working with scenario blocks
Apama provides blocks for working with scenario blocks.

Change Observer v2.0
The Change Observer block watches sub-scenarios for changes in the value of one of the
sub-scenario variables. You specify which variable you want to watch. When the value
changes, the Change Observer block sends data to its change output feed. The output
feed indicates the old value and the new value.

Description

To use the Change Observer block, wire output fields from the scenario block to input
fields of the Change Observer block. Typically, you want to map the scenario block
instance id output field to the Change Observer stream input field. Then map one of
the sub-scenario variables from the scenario block output feed to the Change Observer
watchValue input field. When the Change Observer block detects a change in a variable
value, it sends notification of this change to its output feed.

Typically, you use the sub-scenario instance ID as the key. The key's associated value is
the variable whose value you want to watch.

You can specify a filter so that you obtain results from a particular set of sub-scenarios.

You can also remove keys and their associated values from the Change Observer block's
internal data store. This lets you exclude certain data from calculations. One way to do
this is to define a global rule that watches for sub-scenarios to terminate. When a sub-

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 567

scenario terminates, you can specify its instance ID as the key and remove the data for
that key from the Change Observer block's store of data.

For a detailed example of using the Change Observer block, see "Observing changes in
sub-scenarios" on page 634.

Parameters

Parameter Description

filter String that indicates that you want to observe those key/
value pairs for which the input filter field matches this
field. An empty string as the value of either the filter
parameter or the input filter field indicates that there
is no filtering. If the value of the filter is "not equal
to" parameter is true, and you specify a value for the
filter parameter, the Change Observer block observes
key/value pairs for which the input filter field does
NOT match the value of the filter parameter.

keyToDelete String that indicates a key for which you want to delete
data from the Change Observer block's internal store of
data. Invoke the deleteKey operation to delete the data
associated with this key.

filter is "not
equal to"

Boolean that indicates whether you want to match or
not match the value of the filter parameter. When the
filter is "not equal to" parameter is true, the
Change Observer block observes key/value pairs for which
the input filter field does NOT match the value of the
filter parameter.

Operations

Operation Description

reset The Change Observer block stores data about the number
of unique keys it has observed and their most recent
associated values. This operation flushes that data; it is no
longer accessible to the Change Observer block.

deleteKey Deletes the key defined by the keyToDelete parameter.
This operation deletes data from the Change Observer
block's internal store of data. If the value of the
keyToDelete parameter is an empty string, this operation
does nothing.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 568

Input feed

The Change Observer input input feed provides the key, the value, and possibly a filter.

Feed Fields Description

stream String that contains the key for which you
want the Change Observer block to observe
changes. Typically, the key is the instance ID
of a sub-scenario. The Change Observer block
ignores blank keys, that is, a key that is an
empty string.

watchValue String that contains the field you want to
watch. Typically, this is the value of a sub-
scenario variable.

input

filter String that contains a filter for determining the
key/value pairs you are interested in.

Output feed

The Change Observer change output feed indicates the key, its old value, and its new
value.

Feed Fields Description

stream String that contains the key that this change is
for. Typically, this is the instance ID of a sub-
scenario.

oldValue String that contains the value of the variable
being observed just before the value changed.

change

newValue String that contains the new value of the
variable being observed.

Filtered Summary v2.0
The Filtered Summary block performs simple calculations across a set of sub-scenarios.
This is an alternative to iterating over a set of sub-scenarios. The Filtered Summary block
can operate on only floating point values.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 569

Description

In more general terms, the Filtered Summary block performs calculations on a keyed set
of floating point values. Typically, you use the sub-scenario instance ID as the key. The
key's associated value is the value of a sub-scenario floating point variable that you want
to use in an aggregate calculation.

You can specify filters to perform calculations on a sub-group of sub-scenarios. You can
also remove keys and their associated values from the Filtered Summary block's internal
datastore. This lets you exclude data from certain sub-scenarios from the calculations.
One way to do this is to define a global rule that watches for sub-scenarios to terminate.
When a sub-scenario terminates, you can specify its instance ID as the key and remove
the data for that key from the Filtered Summary block's store of data.

To use the Filtered Summary block, wire output fields from the scenario block to input
fields of the Filtered Summary block. Typically, you want to map the scenario block
instance id output field to the Filtered Summary key input field. Then map a floating
point sub-scenario variable from the scenario block output feed to the Filtered Summary
value input field.

Parameters

Parameter Description

filter String that indicates that you want to perform calculations
on only those key/value pairs for which the input filter
field matches this field. An empty string as the value of either
the filter parameter or the input filter field indicates
that there is no filtering. If the value of the filter is "not
equal to" parameter is true, and you specify a value for the
filter parameter, the Filtered Summary block operates on
key/value pairs for which the input filter field does NOT
match the value of the filter parameter.

keyToDelete String that indicates a key for which you want to delete data
from the Filtered Summary block's internal store of data.
Invoke the deleteKey operation to delete the data associated
with this key.

filter is "not
equal to"

Boolean that indicates whether you want to match or
not match the value of the filter parameter. When the
filter is "not equal to" parameter is true, the Filtered
Summary block operates on key/value pairs for which the
input filter field does NOT match the value of the filter
parameter.

M
Even Header

Using Standard Blocks

Developing Apama Applications Version 9.10 570

Operations

Operation Description

reset The Filtered Summary block stores data about the number of
unique keys it has observed and their most recent associated
values. This operation flushes that data; it is no longer
accessible to the Filtered Summary block.

deleteKey Deletes the key defined by the keyToDelete parameter.
This operation deletes data from the Filtered Summary
block's internal store of data. If the value of the keyToDelete
parameter is an empty string, this operation does nothing.

Input feed

The input input feed provides the key, the value, and possibly a filter.

Feed Fields Description

key String that contains the key under which you
want the Filtered Summary block to store data
in its internal datastore. Typically, the key is
the instance ID of a sub-scenario. The Filtered
Summary block ignores blank keys, that is, a
key that is an empty string

value A float value that you want to operate on.
Typically, this is the value of a sub-scenario
variable.

input

filter String that contains a filter for determining the
key/value pairs you are interested in.

Output feed

The data output feed indicates the number of keys for which data is stored, the sum of
the stored values, and the average of the stored values.

Feed Fields Description

data numberOfKeys Integer that specifies the number of unique
keys for which the Filtered Summary block
currently stores data.

M
Odd Header

Using Standard Blocks

Developing Apama Applications Version 9.10 571

Feed Fields Description

totalValue Floating point value that is the sum of the
values that the Filtered Summary block
currently stores.

averageValue Floating point value that is the average of
the values that the Filtered Summary block
currently stores.

M
Even Header

Developing Apama Applications Version 9.10 572

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 573

17 Using Functions in Event Modeler

■ Reference information for provided functions .. 574

■ About defining your own functions ... 586

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 574

In Event Modeler, when you define a rule, you can use a function to specify the value, or
part of the value, of a condition or action. Event Modeler provides a number of functions
that you can use. In addition, you can define your own functions.

To use a function in a rule, select Standard Functions from the context menu when
defining a rule. Event Modeler displays only those functions that are valid for the
portion of the rule you are defining.

Reference information for provided functions
Event Modeler provides a number of functions. Each function is defined in its own
function definition file (.fdf file) in the catalogs/functions directory of the your
Apama installation directory. A function definition file is an XML file that contains
metadata about the function plus the EPL that implements the function.

The topics below describe the functions provided in Event Modeler. Your Apama Service
Provider might have included additional functions that are not documented here.

Date and time functions
The following table describes the date and time functions.

Typical use

A typical use of most of these functions is something like the following:
ADD_YEAR(GET_CURRENT_TIME_AS_NUMBER(), 5)

Function name Return
value

Parameters Description

ADD_DAYS float float
dateTime

float nrDays

Given a date plus a number
of days, returns the result
date in seconds since the
epoch.

ADD_HOURS float float
dateTime

float
nrHours

Given a date plus a number
of hours, returns the result
date in seconds since the
epoch.

ADD_MINUTES float float
dateTime

float nrMins

Given a date plus a number
of minutes, returns the
result date in seconds since
the epoch.

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 575

Function name Return
value

Parameters Description

ADD_MONTHS float float
dateTime

float
nrMonths

Given a date plus a number
of months, returns the
result date in seconds since
the epoch.

ADD_WEEKS float float
dateTime

float
nrWeeks

Given a date plus a number
of weeks, returns the result
date in seconds since the
epoch.

ADD_YEARS float float
dateTime

float
nrYears

Given a date plus a number
of years, returns the result
date in seconds since the
epoch.

FORMAT_TIME string float
TimeInSeconds

string
TimeFormat

Returns the specified time
and date in a formaed
string. For example,
FORMAT_TIME(GET_CURRENT_TIME(),
"dd-MM-yyyy HH:mm:ss").

For format options, see
"Using the TimeFormat
Event Library" on page 357.

GET_CURRENT_DATE string none Returns the current date
in a formaed string. For
example, "11 June 2007".

GET_CURRENT_DATE
_TIME

string none Returns the current date
and time in a formaed
string. For example, "11
June 2007 11:10:23".

GET_CURRENT_TIME string none Returns the current time
in a formaed string. For
example, "11:10:25".

GET_CURRENT_TIME
_AS_NUMBER

float none Returns the current time as
a number of seconds since
the epoch, January 1, 1970.

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 576

Function name Return
value

Parameters Description

GET_CURRENT_TIME
_FORMATTED

string string
TimeFormat

Returns the current time
and date in a formaed
string.

For format options, see
"Using the TimeFormat
Event Library" on page 357.

GET_DAY_IN_WEEK float float
dateTime

Returns the day of the week
for the given date.

GET_DAY_IN_YEAR float float
dateTime

Returns the day in the year
for the given date.

GET_MONTH_IN_YEAR float float
dateTime

Returns the month in the
year for the given date.

GET_WEEK_IN_MONTH float float
dateTime

Returns the week in the
month for the given date.

GET_WEEK_IN_YEAR float float
dateTime

Returns the week in the
year for the given date.

IS_LEAP_YEAR boolean float year Returns true if the given
year is a leap year.

PARSE_TIME float string
TimeDate

string
TimeFormat

Returns the specified time
and date in a numeric
format. For example,
PARSE_TIME (GET_CURRENT_TIME(),
"H:m:s").

For format options, see
"Using the TimeFormat
Event Library" on page 357.

Extended math functions on float types
The following table describes the extended math functions on float types.

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 577

Function name Return
value

Parameters Description

ACOS float float value Returns the inverse cosine
of the value in radians. If
the value's absolute value is
greater than 1 then ACOS()
returns NaN.

ACOSH float float value Returns the inverse
hyperbolic cosine of the
value. If the value's absolute
value is less than 1 then
ACOSH() returns NaN.

ASIN float float value Returns the inverse sine of
the value in radians. If the
value is NaN then ASIN()
returns the value. If the
value's absolute value is
greater than 1 then ASIN()
returns NaN.

ASINH float float value Returns the inverse
hyperbolic sine of the value.

ATAN float float value Returns the inverse tangent
of the value.

ATAN2 float float x

float y

Returns the two-parameter
inverse tangent of the two
values.

ATANH float float value Returns the inverse
hyperbolic tangent of the
value.

CBRT float float value Returns the cube root of the
value.

COS float float value Returns the cosine of the
value. The value should be
in units of radians.

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 578

Function name Return
value

Parameters Description

COSH float float value Returns the hyperbolic
cosine of the value.

ERF float float value Returns the error function
value for the given value.

EXPONENT float float value Returns the exponent where
the given value is equal
to mantissa*2exponent,
assuming 0.5 <= |
mantissa| < 1.0.

FMOD float float
nominator

float
denominator

Returns nominator mod
denominator in exact
arithmetic.

FRACTIONALPART float float value Returns the fractional
component of the value.

GAMMAL float float value Returns the logarithm of the
gamma function.

ILOGB integer float value Returns the binary exponent
of the specified non-zero
value.

INTEGRALPART integer float value Returns the integral part of a
floating point value.

MANTISSA float float value Returns the mantissa where
the given value is equal
to mantissa*2exponent,
assuming 0.5 <= |
mantissa| < 1.0.

NEXTAFTER float float x float y Returns the next machine
floating point number after
x in the direction toward y.

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 579

Function name Return
value

Parameters Description

SCALBN float float x integer n Returns x*2n.

SIN float float value Returns the sine of the
specified value, which
should be in units of
radians.

SINH float float value Returns the hyperbolic sine
of the value.

TAN float float value Returns the tan of the value,
which should be in units of
radians.

TANH float float value Returns the hyperbolic
tangent of the value.

IO functions
The following table describes the IO functions.

Function
name

Return
value

Parameters Description

LOG string string
message

string
logLevel

Logs the specified string to
the correlator log.

PRINT string string
message

Displays the specified string
in the correlator console.

System value functions
The following table describes the system value functions.

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 580

Function name Return
value

Parameters Description

GET_DASHBOARD_
INSTANCEID

string None Returns the instance
ID of the current
Scenario instance for
use in dashboards. The
apama.instanceId field
contains this value.

GET_INSTANCEID string None Returns the complete
instance ID of the
current Scenario
instance. For example:
"default.myScenario.1".

GET_INSTANCE_
OWNER

string None Returns the value of the
owner aribute of the
current Scenario instance.
This might be, but is not
necessarily, the account Id
that created the Scenario.
You can use the Scenario
service API to create
Scenario instances and set
the owner aribute to a
value you choose. When
you use a dashboard to
create Scenario instances,
the owner aribute has the
value of the account you
logged into.

GET_NUMERIC_
INSTANCEID

float None Returns only the number
at the end of the complete
instance Id of the current
Scenario instance.
For example, if the
complete instance Id is
default.myScenario.1,
this function returns 1.

GET_SCENARIO_ID string None Returns the unique scenario
ID of the current scenario
definition. The correlator

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 581

Function name Return
value

Parameters Description

uses this key to create new
instances of the scenario.

GET_SCENARIO_NAME string None Returns the display name of
the current Scenario.

Miscellaneous functions
The following table describes the miscellaneous functions.

Function name Return
value

Parameters Description

ABS number number value Returns the absolute
value of the number
supplied.

ADD_EXTRAPARAM text text payload,

text
fieldname,

text value

This function is
deprecated. Use the
DICT_SET function
instead.

Takes an existing
extraParam value and
adds the specified field
and value to it.

CEIL number
(whole
number)

number value Returns the ceiling
integer value of the
number passed. This
is the smallest possible
integer that is larger
than the value supplied.

CONCAT text text prefix,

text suffix

Concatenates two strings
and returns the result as
a string.

CONCAT text text prefix,

choice suffix

Concatenates an
enumeration value to a
string, and returns the
result as a string.

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 582

Function name Return
value

Parameters Description

CONCAT text text prefix,

number suffix

Concatenates a number
to a string, and returns a
string.

CONDITIONAL text condition
condition

text
true_result

text
false_result

Functions like an
IF statement. The
first parameter is
the expression to be
evaluated, similar to
a condition in an IF
statement. The second
and third parameters
are the values to return
according to the result
of the condition. The
second parameter
represents a true result.
The third parameter
represents a false
result. See "Example
of CONDITIONAL
function" on page
586.

DICT_GET text text
dictAsString

text key

Reads the dictionary
specified by
dictAsString and
returns the value of
the specified key.
Specify the dictionary in
dictionary<string,string>.
toString() format.

Returns an empty
string if the key is not
present or the string
representation of the
dictionary is "".

DICT_GETORDEFAULTtext text
dictAsString

text key

text default

Reads the dictionary
specified by
dictAsString and
returns the value of
the specified key.
Specify the dictionary in

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 583

Function name Return
value

Parameters Description

dictionary<string,string>.
toString() format.

Returns the specified
default text if the key is
not present or the string
representation of the
dictionary is "".

DICT_HASKEY boolean text
dictAsString

text key

Reads the dictionary
specified by
dictAsString and
returns true if the
specified key exists
in that dictionary.
Specify the dictionary in
dictionary<string,string>.
toString() format.

DICT_SET text text
dictAsString

text key

text value

Reads the dictionary
specified by
dictAsString and
adds or replaces the
specified key/value pair.
Specify the dictionary in
dictionary<string,string>.
toString() format.

An empty string for
dictAsString is treated
as an empty dictionary.

Returns a string
representation of the
dictionary.

FLOOR number
(whole
number)

number value Returns the floor integer
value of the number
passed. This is the
largest possible integer
that is smaller than the
value supplied.

GET_EXTRAPARAM text text payload, This function is
deprecated. Use the
DICT_GET function

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 584

Function name Return
value

Parameters Description

text
fieldname

instead. Returns the
value from extraParam
data of the specified
field, else an empty
string.

HAS_EXTRAPARAM boolean text payload,

text
fieldname

This function is
deprecated. Use the
DICT_HASKEY function
instead. Returns true if
the extraParam data has
the specified field value.

ISFINITE boolean float value Returns true if value
is finite, that is, it is not
infinite or NaN.

ISINFINITE boolean float value Returns true if value
is infinite, that is, it is
positive or negative
infinity.

ISNAN boolean float value Returns true if value is
NaN, that is, it is not a
number.

MAX number number
value1,

number value2

Returns the largest of
two numbers.

MIN number number
value1,

number value2

Returns the smallest of
two numbers.

POW number number value,

number
exponent

Returns the value of the
first parameter to the
power of the second
parameter.

REPLACE text text value,

text old,

Replaces all string
occurrences of old in
value with new.

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 585

Function name Return
value

Parameters Description

text new

RND number number lower
bound,

number upper
bound

Returns a random
number between the
specified boundaries.

ROOT number number value,

number
exponent

Returns the value of the
first parameter root of
the second parameter.

ROUND number number value,

number
decimal_places

Rounds a float to a given
number of decimal
places. You can specify
a negative number
for decimal_places to
round in the opposite
direction. See "Example
of ROUND function" on
page 586.

TO_BOOLEAN condition text value Converts a string to
a Boolean value, and
returns the Boolean
value. This function is
case insensitive.

TO_NUMBER number choice value Converts an
enumeration to a
number, and returns the
number.

TO_NUMBER number text value Converts a string to a
number, and returns the
number.

TO_TEXT text condition
value

Converts a Boolean
value to a string, and
returns the string.

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 586

Function name Return
value

Parameters Description

TO_TEXT text number value Converts a number to a
string, and returns the
string.

Example of CONDITIONAL function
side = CONDITIONAL (price is greater than 50, "BUY", "SELL")

If the price is greater than 50, this function returns "BUY". The side Scenario variable is
set to BUY or SELL according to whether the price variable is greater than 50.

Example of ROUND function

You can specify a negative number to round in the opposite direction. For example:

Value Decimal places Result

12345.6543 4 12345.6543

12345.6543 3 12345.654

12345.6543 2 12345.65

12345.6543 1 12345.7

12345.6543 0 12346.0

12345.6543 -1 12350.0

12345.6543 -2 12300.0

12345.6543 -3 12000.0

12345.6543 -4 10000.0

12345.6543 -5 0.0

About defining your own functions
You define a function in Software AG Designer. In the Apama Developer perspective,
select File > New > Scenario Function. You are prompted for some metadata, and then a

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 587

skeleton function definition file (.fdf) is created, which is an XML file. The skeleton file
indicates where you need to add data and what kind of data you need to add.

See "Creating new scenario functions" in Using Apama with Software AG Designer for
details about the scenario function definition file format.

The content of a function definition file must comply with the DTD in the etc/fdf.dtd
file in the Apama installation directory.

The following topics provide additional information about using functions that you
define in Event Modeler.

Related Topic

"Adding a function catalog" on page 506

Sample ABS function definition file
Following is the function definition file for the absolute value (ABS) function. This
function returns the absolute value of the given parameter. For example, if the input is
-123, the ABS function returns 123.

Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE function SYSTEM "http://www.apama.com/dtd/fdf.dtd">
<!--Apama Function Definition File-->
<function name="ABS" display-string="ABS" return-type="float">
 <version>
 <id>1.0</id>
 <date>22 Nov 2004</date>
 <author>Matthew Amos</author>
 <comments>External function</comments>
 </version>
 <description>
 Return the abs value of the number passed
 </description>
 <parameters>
 <fixed-parameter name="value" type="float" />
 </parameters>
 <code><![CDATA[
 action #name#(float f) returns float {
 return f.abs();
 }
]]></code>
</function>

Notes

Notes for this function:

The value of the function name aribute, ABS, is unique within the directory that
contains this .fdf file.

Appears as ABS in the Event Modeler rules menu.

Returns a float.

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 588

Metadata indicates who wrote the function and when the function was wrien.

Description briefly describes what the function does.

There is one parameter called value and it is of type float.

Name of the single action is the placeholder #name#. This is always what you specify
as the name of the function in the code element.

The EPL in the CDATA section is standard EPL. You can use locally defined variables
in addition to the function's parameters. To use a Scenario variable, assign its value
to a function parameter.

Sample function definition file with imports element
Following is a function definition file that specifies the imports element.

Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE function SYSTEM "http://www.apama.com/dtd/fdf.dtd">
<!--Apama Function Definition File-->
<function name="ExtractTimeField" display-string=”ExtractTimeField"
 return-type="float">
 <version>
 <id>1.0</id>
 <date>17 May 2005</date>
 <author>Ben Spiller</author>
 <comments>External function</comments>
 </version>
 <description>
 Return the value of a single field from the specified
 time string (using the TimeFormatPlugin). Date fields
 include 'dd', 'MM' and 'yyyy'. Time fields include 'HH',
 'mm' and 'ss'.
 </description>
 <imports>
 <import library="TimeFormatPlugin" alias="timePlugin"/>
 </imports>
 <parameters>
 <fixed-parameter name="time" type="float" />
 <fixed-parameter name="field identifier" type="string" />
 </parameters>

 <code><![CDATA[
 action #name#(float time, string field_id) returns float
 {
 // If the field string is invalid, make it obvious!
 if field_identifier.length() == 0 then {
 return 0.0;
 }

 // Should return 0 if the field specifier is invalid
 return #timePlugin#.format
 (time,"%"+field_id).toFloat();
 }
]]></code>
</function>

M
Odd Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 589

Notes

Notes for this function:

The value of the function name aribute, ExtractTimeField, is unique within the
directory that contains this .fdf file.

Appears as ExtractTimeField in the Event Modeler rules menu.

Returns a float.

The imports element specifies timePlugin as the alias for the plug-in, and
TimeFormatPlugin as the shared library that contains the plug-in.

The code element specifies timePlugin to refer to required plug-in.

Takes two parameters — a float that specifies a time, and a String that specifies a
field ID.

The EPL ensures that the ID field is valid and then invokes the format function by
specifying the alias for the TimeFormatPlugin library:
return #timePlugin#.format

About function names
Functions have several different names:

The file name. This is the name of the file that contains the function definition, for
example, String_String_Concat.fdf.

The logical name. This is the name specified by the function name aribute in the
.fdf file. Event Modeler uses the logical name to distinguish each function from
every other function in a particular directory. Within each directory, this value must
be unique. For example, SSConcat.

The display name. This is the name that appears in the Event Modeler Functions tab.
For example, "Concat". This name also appears in the Rules panel context menu.

The contents of a function definition file contain something like this near the beginning:
<function name="SSConcat" display-string="Concat"
 return-type="string">

In this example, the logical name is SSConcat. The display name is Concat.

For example, it is possible to have the following three functions in the same directory:

Filename Parameters Display Name Logical Name

String_String_Concat.fdf String, String Concat ConcatSS

String_Integer_
Concat.fdf

String,
Integer

Concat ConcatSI

M
Even Header

Using Functions in Event Modeler

Developing Apama Applications Version 9.10 590

Filename Parameters Display Name Logical Name

String_Integer_String_
Concat.fdf

String,
Integer,
String

Concat ConcatSSS

Note that these functions have the same display name but different logical names. An
exact duplicate of any of these functions can be in a directory other than the directory
that already contains its duplicate.

When you select functions from the rules editor context menu, Event Modeler displays
the arguments that each function takes. Consequently, if two functions have the same
display name, you can distinguish them by their arguments. For example:

TO_NUMBER('choice' value)

TO_NUMBER ('text' value)

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 591

18 Creating Blocks

■ About blocks ... 592

■ Defining new blocks in Software AG Designer .. 593

■ An example block ... 605

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 592

Apama comes with many standard blocks that you can use in your scenarios. In
addition, you can use Software AG Designer to create your own blocks to implement
specialized behavior. This section describes how to create custom blocks for use by
scenarios in your Apama applications.

About blocks
Blocks are modules that you can import and use within your scenarios in Apama's Event
Modeler. Blocks accept inputs, execute logic of their own, and generate output. Their
primary purpose is to provide scenarios with access to complex functionality that can
only be programmed in Apama Event Processing Language (EPL). They also provide an
element of reuse. EPL is the native language of the event correlator.

For more information on writing EPL code, see "Geing Started with Apama EPL" on
page 31.

Apama is distributed with a library of blocks that perform a variety of tasks such as
general and financial analysis, order management, and timing. For more information
on these, see "Using Standard Blocks" on page 521. If an application requires additional
functionality, you can create custom blocks.

The topics below provide more introductory information about blocks.

Introduction to block definition files
A block is defined in a block definition file, which has a .bdf extension. This XML file
describes the functionality of the block and includes its implementation in EPL. With
Software AG Designer, you graphically define the block's interface, and Software AG
Designer automatically generates all the XML elements of the .bdf file. In addition,
Software AG Designer generates skeleton EPL code for the block's behavior. Software
AG Designer provides a dedicated editor where you add your custom code and it
validates the EPL code you add.

The block definition file actually defines an EPL template. The term “template” is used
because the EPL in the .bdf is not complete EPL code. Instead of the actual block name,
the .bdf code uses a specially encoded stand-in for the real block name. The real names
are automatically generated when the combined scenario and block are converted into
full EPL code when they are injected into the correlator.

Description of block interface elements
A block's interface consists of the set of parameters, input feeds, output feeds and
operations it defines. You specify these items when you create a block with Software AG
Designer. Software AG Designer then generates the corresponding actions.

Parameters. Parameters configure the behavior of a block. You typically use
parameters to initialize the block or to modify its core behavior.

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 593

Input feeds. Input feeds connect live data streams to blocks. In each block input feed,
you define input fields and map data in the stream to the appropriate input field. All
the fields of an input feed are updated simultaneously.

Output feeds. Output feeds stream output data generated by the block. Each output
feed is a collection of fields that all get updated simultaneously.

Operations. Operations are specific behaviors that the scenario invokes, such as
starting or stopping the processing of data.

For examples, see "Using Standard Blocks" on page 521.

How scenarios communicate with their blocks
Apama implements a block as an event type. When you create a block, Software AG
Designer generates the event type definition for that block. The block's event type
definition includes a number of actions that are defined for you and that you can edit.

Communication from a scenario to a block instance is accomplished through calls to
these actions. That is, to initialize a block, change a parameter, call an operation, and so
on, a scenario calls an action on the event that contains the block instance.

Communication from the block to its host scenario is also accomplished by calling
actions. In this case, the actions have been passed into the block by the scenario. For
example, when a scenario initiates an operation the scenario passes in an action that the
block must call to indicate that the operation has been completed.

Defining new blocks in Software AG Designer
Software AG Designer provides an integrated graphical environment for creating
custom blocks that you can use to build scenarios in Event Modeler. The Apama block
editor contains two tabs, the Builder tab and the Source tab.

On the Builder tab, you add the metadata for the block and specify its interface. On the
Source tab, you add the EPL code that implements the block's behavior. Software AG
Designer validates the EPL code you add to the block. When you save a block, it is saved
as a block definition file with a.bdf extension. Block definition files are then used when
you add the block to a scenario in the Event Modeler.

You can define a new block from scratch by using the block editor or you can base the
new block on an existing event type definition.

See "File Definition Formats" on page 639 for detailed information on the internals of
block definition files.

Specifying the block metadata
Creating a block in Software AG Designer consists of two main steps. In the first step
you create the block metadata and specify its interface. In the second step you add the
EPL code that implements the block's behavior.

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 594

When you create a new block, you should place it in the project's default blocks
directory. This directory is found in the project's catalogs directory. The block
directory has a name in the form project_name\blocks. So, for example, the default
block directory of a project named My_Project will be catalogs\My_Project blocks.
If you place the block in the default block directory, scenarios created in the project
will automatically find them and make them available in Event Modeler when you are
displaying the scenario.

You add a new block to a project by right-clicking the project and selecting New > Block
from the pop-up context menu. Software AG Designer displays the New Block wizard
where you specify whether you want to create a block from scratch or base it on an
existing event type. You also specify any other information that will make up the block's
metadata.

When you finish adding information in the New Block wizard, the block is added to the
project and the block's metadata appears in the Builder tab of the block editor.

For specific steps on how to add a new block to an Apama project, see:

Creating a block with the block editor in Using Apama with Software AG Designer

Creating a block from an EPL event definition in Using Apama with Software AG Designer

Specifying the block interface
After you create a block, your new block is shown in the Block Editor with the Builder
tab selected:

Initially, the name of the block is selected and general information about the block
is shown. Most of the fields are self-explanatory and you can use them to help you
maintain your blocks. Use the ID field to distinguish versions of your block. Select the

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 595

Parallel-aware checkbox if you want to be able to use this block in a parallel scenario. See
"Creating parallel-aware blocks" on page 595.

The Deprecated checkbox indicates whether this is an older version of the block. All
Apama standard blocks that use the old-style block implementation (Apama releases
prior to 4.2) are deprecated. They will not be supported in a future release.

If you have any custom blocks that use the old-style implementation, you should convert
them to the new implementation and mark the old-style version as deprecated. To
convert a block, open it in the Block Builder editor, select Callback or Callback (DEBUG)
as the code type, and click the Source tab. See the Apama 5.0 migration guide for details
about how you must manually edit the re-generated block file to correctly use the new
implementation that is generated for you. A block is never automatically converted to
use the new implementation.

Event Modeler uses the seing of the Deprecated checkbox to determine how to display
the block in the Block Wiring panel. Deprecated blocks have an orange border while
current blocks have a black border.

Also, suppose you write a custom block that uses the new-style implementation and you
then revise that block. You can select the Deprecated checkbox for the older version to
encourage use of the new version.

At this point, if you are creating a new block based on an existing event definition, the
code for the block's input and output feeds, along with the fields associated with the
feeds, and the block's operations has been generated.

If you are creating a new block from scratch, the block does not contain any of the
parameters, input feeds, output feeds, and operations that provide the interface of the
block. When you add these elements, Software AG Designer generates the EPL code that
defines the action that implements the element.

To add a parameter, input feed, output feed, or operation

1. Right-click the element you want to add and select Add Parameter, Add Input Feed,
Add Output Feed, or Add Operation. The right side of the Builder tab displays the item's
properties.

2. Fill in the values for the properties.

3. For input feeds and output feeds, right-click the element and select Add Field.

4. In the Properties panel for the field you added in the previous step, fill in the values
for the properties and field validation specifications.

When you save a block, Software AG Designer generates the underlying code that
defines the block's interface and saves it as a block definition file with a .bdf extension. To
this file, you then add EPL code to implement the necessary behavior. To add code to the
block, see "Adding EPL code to the block definition" on page 596.

Creating parallel-aware blocks
If you want a parallel scenario to use a block, you must mark that block as parallel-
aware. You do this in the Builder tab of the block builder editor in Software AG

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 596

Designer. Select the block name. Then select the Parallel-aware checkbox near the boom
of the Builder tab fields.

The correlator runs each instance of a parallel scenario in a separate context. For
information about contexts, see "Implementing Parallel Processing" on page 303.

When you mark a block you are creating as parallel-aware it means that you are taking
responsibility for ensuring that the block functions correctly when run in multiple
contexts. Blocks that do not listen for events are trivially parallel-aware since running in
another context has no effect on that block. All of the block's interactions are mediated
by the scenario.

Blocks that listen for events must ensure that the events they are listening for actually
reach the context they are in. You can achieve this by storing a reference to the main
context during the instancePreSpawnInit() action. Use this reference to inform
services running in the main context where they should send events. Look at the Market
Depth standard block for a good example of this.

Adding EPL code to the block definition
In Software AG Designer, when you click the Source tab of the block builder editor, the
block's definition file is shown. Software AG Designer generates and populates all XML
elements including the <code> element. The <code> element contains the EPL code that
specifies the block's behavior.

Software AG Designer generates skeleton EPL with comments that indicate where to
insert your code. The generated code defines the actions listed below. Each of these
actions is a field in the event type that defines the block. The block's scenario will call
these actions to accomplish the work of the block. For each defined action, you can add
custom code that specifies the exact behavior you need.

For each block parameter, there is an action that updates that parameter.

For each block input feed, there is an action that takes as its arguments the fields of
the feed.

For each block operation, there is an action that performs the operation.

For each block output feed, there is an action that takes as its arguments the fields of
the feed.

setup action

instancepreSpawnInit action

instancePostSpawnInit action

cleanup action

start action (for input blocks based on existing event definitions)

stop action (for input blocks based on existing event definitions)

send action (for output blocks based on existing event definitions)

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 597

In addition to defining these actions, Software AG Designer generates sections for
adding user-defined monitors, user-defined variables, and user-defined actions. Also,
the generated EPL code defines a block-level variable named blockInstanceId$. This
variable contains the integer that uniquely identifies the instance of the block among
those owned by the containing scenario and all its instances.

To add EPL code to the block

1. In Software AG Designer, in the Project Explorer view, double-click the block's .bdf
file.

2. In the block builder editor, click the Source tab.

3. On the Source tab, enter code as needed only where there is a white background.

Code appears either with a gray background or a white background. Code with
a gray background is maintained by Apama and is not editable. The sections of
code with a white background are the areas where you add your custom EPL code.
Remember to remove the comment flags from lines on which you specify code.

4. Save the project.

As you add and edit code in your block, you have the full range of Apama features as
described in Editing Apama files. You also have the full range of navigating features as
described in Navigating in Apama files. These topics can be found in Using Apama with
Software AG Designer.

Considerations for adding EPL code to the block definition
As you add custom code to your block, keep the following in mind:

The # character denotes special names that will subsequently be assigned
automatically by the code generator. Therefore, do not use the # character anywhere
else in your EPL files, including within comments.

You must not call die() anywhere in the block event type definition. Consequently
you should not call spawn() in the block event type definition as you would have no
way of terminating the new monitor instance.

In situations where you might want to spawn from within a block, use a utility monitor
that is part of the block's definition instead. Insert the EPL code for a utility monitor
in the USER DEFINED MONITORS section of your block definition file. For example,
suppose your block subscribes to one or more market data feeds and you want to track
data and status messages that result from each subscription. Write a utility monitor
that listens for events related to the subscriptions and caches values that result from
subscription operations. You can call die() in this monitor without affecting the block
or the scenario.

If the EPL code in your block causes a runtime error, for example you aempt a
division by zero or you aempt to access an out of bounds index in a sequence or
dictionary, the scenario monitor will be terminated by the correlator.

See also "Timeliness of acknowledgements" on page 604.

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 598

Details about EPL code that you can add
The following sections describe what Apama generates for you in Software AG Designer
and where to add EPL code.

Actions that update parameters

Apama generates skeleton code for an action for each parameter you specify for the
block. Each action updates the value of the parameter. These actions are named update
$parameter_name, where parameter_name is the metadata name you specified for the
parameter. Each action takes the parameter's specified name as an argument.

Each time the value of a block parameter changes in the scenario, the scenario calls the
corresponding update action on the block. It is up to you to define appropriate EPL
code in the body of this action to handle the block parameter update. It is bad practice
to send updates to output feeds during a parameter update action because it can cause
unexpected results in the running scenario.

If a parameter should not be editable, leave the body of its update action empty.

For example, if a block specifies a string parameter called New Parameter 1, Apama
generates the following skeleton code:
 action update$new_parameter_1(string new_parameter_1) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for modifications to new parameter 1 --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If a block is based on an existing event and is an input block, the skeleton code contains
additional information about the parameter. In the following example a parameter based
on the event field customerName has been specified:
 action update$customerName(string customerName) {
// BLOCKBUILDER - USER DEFINED ACTION
 parameter_customerName := customerName ;
 isSet_parameter_customerName := true;
 setupNewListener();
// BLOCKBUILDER - END OF USER DEFINED ACTION

Actions that update input feeds

Apama generates skeleton code for an action for each input feed you specify for the
block. Each action updates the values of the corresponding input feed's fields. These
actions are named input$input_feed_name, where input_feed_name is the metadata
name you specified for the input feed. Each action takes an argument for each field in
the corresponding input feed.

It is up to you to define appropriate EPL code in the body of this action to handle the
update to the input feed. For example, if a block specifies an input feed named Input
Feed 1, Apama generates the following skeleton code:
 action input$new_input_feed_1(#string string_field, float float_field)
{

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 599

// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for new input events on stream new input feed 1 --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions that perform operations

Apama generates skeleton code for an action for each operation that you specify in
the block. Each action performs the operation. These actions are named operation
$operation_name where operation_name is the metadata name you specified for the
operation. Each action takes only an acknowledge() action variable argument.

It is up to you to define appropriate EPL code in the body of this action to handle the
operation's invocation. You must call the acknowledge() action when the operation is
complete. There are constraints on how long you can hold up a call to acknowledge().
Often, an operation updates output feeds before calling acknowledge(). See "Timeliness
of acknowledgements" on page 604.

For example, if a block specifies an operation called New Operation 1, Apama
generates the following skeleton code:
 action operation$new_operation_1(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for invocations of operation new operation 1 --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions that update output feeds

Apama generates a sendOutput action for each output feed that you specified for
the block. Each action updates the values of the corresponding output feed's fields.
These actions are named sendOutput$output_feed_name where output_feed_name is the
metadata name of the output feed. Each action takes an argument for each field in the
corresponding output feed.

You do not need to add code for these actions. To output results from your block
you should call one of these output feed actions. If your block uses an output feed
new_output_feed_1 with a boolean field new_field_1 and a string field new_field_2,
Apama generates the following code:
action<boolean,string> sendOutput$new_output_feed_1;

setup action

Apama generates skeleton code for the setup() action. The scenario calls the setup()
action once on each block instance in a scenario definition. The scenario makes this call
when you inject the scenario into the correlator. Use the setup() action to specify any
initialization that is not specific to a scenario instance. Apama generates the following
skeleton code:
 action setup() {
// BLOCKBUILDER - USER DEFINED ACTION
//

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 600

// -- insert setup code --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

instancePreSpawnInit action

Apama generates skeleton code for the instancePreSpawnInit() action. The scenario
calls the instancePreSpawnInit() action on each scenario instance. The scenario
makes this call just before it spawns the scenario instance. The scenario passes the
following values into the instancePreSpawnInit() action:

Scenario ID

Dictionary of extra data

Target context the scenario instance will run in. For a scenario that is not parallel
(that is, it is a serial scenario), the target context is always the main context.

Use the instancePreSpawnInit() action to perform initialization in the main context.
For example, the main context might need information about which context the scenario
instance, and therefore the block instance(s) will run in. A block cannot generate output
feed values inside the instancePreSpawnInit() action, but it can generate output feed
values inside the instancePostSpawnInit() action.

When the scenario calls the instancePreSpawnInit() action, it passes
an acknowledgment() action. You are responsible for ensuring that the
instancePreSpawnInit() action calls this acknowledgment() action when it has
completed this phase of initialization. To help you do this, Apama generates a call to
acknowledge() when it generates the skeleton code for the block. See "Timeliness of
acknowledgements" on page 604.

Apama generates the following skeleton code:
 action instancePreSpawnInit (
 integer blockInstanceId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 context target,
 action<> acknowledge) {
 self.blockInstanceId$:= blockInstanceId$;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert pre-spawn initialisation code --
//
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If a block is based on an existing event, the skeleton code contains additional code to
specify the context.
 action instancePreSpawnInit(
 integer blockInstanceId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 context target,
 action<> acknowledge) {
 self.blockInstanceId$:= blockInstanceId$;
// BLOCKBUILDER - USER DEFINED ACTION

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 601

//
// -- insert pre-spawn initialisation code --
//
preSpawnContext := context.current();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

instancePostSpawnInit action

Apama generates skeleton code for the instancePostSpawnInit() action. The scenario
calls the instancePostSpawnInit() action on each newly spawned scenario instance.
The scenario makes this call right after it spawns the scenario instance. Part of this action
is to pass the following to the scenario instance:

Scenario ID

Dictionary of extra values

Initial values of the block's parameters

Additional data for use by the automatically generated code.

When the scenario calls the instancePostSpawnInit() action, it passes
an acknowledgment() action. You are responsible for ensuring that the
instancePostSpawnInit() action calls this acknowledgment() action when it has
completed this phase of initialization. To help you do this, Apama generates a call to
acknowledge() when it generates the skeleton code for the block. See "Timeliness of
acknowledgements" on page 604.

Apama generates the following skeleton code:
 action instancePostSpawnInit (
 integer blockInstanceId$,
 string ownerId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge)
 param_type param1 //one for each parameter
 action<output_field_types > sendOutput$outfeed {
 // one action like the above for each output feed
 // one line like the following for each output feed
 self.sendOutput$outfeed1 := sendOutput$outfeed1;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert post-spawn initialisation code --
//
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If the block is an input block based on an existing event, the generated code looks like
this:
 action instancePostSpawnInit(
 integer blockInstanceId$,
 string ownerId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge,
 string name,

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 602

 action<string,float> sendOutput$TestEvent) {
 self.sendOutput$TestEvent := sendOutput$TestEvent;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert post-spawn initialisation code --
//
 enqueue TestEventForwardRequest (context.current()) to preSpawnContext;
 // Store the initial values
 parameter_name := name;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If the block is an output block based on an existing event, the generated code looks like
this:
 action instancePostSpawnInit(
 integer blockInstanceId$,
 string ownerId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge,
 string name) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert post-spawn initialisation code --
//
 if (preSpawnContext.getId() = context.current().getId()) then {
 serialExecution := true;
 }
 else {
 serialExecution := false;
 }
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

The scenario is not in a fully created state until all blocks have acknowledged their
instancePostSpawnInit() call. Also, updating of output feeds is not supported at any
stage before instancePostSpawnInit() is called. If initial values for output feeds need
to be generated, do this in the instancePostSpawnInit() action.

cleanup action

Apama generates skeleton code for the cleanup() action. When a block's scenario
enters its end state, is deleted, or dies for some other reason, the scenario calls the block's
cleanup() action. Even if there is a runtime error, the scenario calls the cleanup()
action.

After the scenario calls the cleanup() action, the block should no longer try to update
its output feeds. The block should act in every possible way as if it was dead. However,
if there is any finalization work that you want to accomplish, you can add it to the body
of the cleanup() action. Apama generates the following skeleton code:
 action cleanup() {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert finalization code --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 603

start action

For blocks that are based on existing event definitions and are specified as input blocks,
Apama generates code for a start action. Once the start operation is invoked the
block calls a setupNewListener action, which creates the listener code for the event
on which the block is based. If any event fields have been specified when defining the
block, they are used as parameters to create filters in the listener. Apama generates the
following code:
 action operation$start(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 isStarted := true;
 setupNewListener();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

stop action

For blocks that are based on existing event definitions and are specified as input blocks,
Apama generates code for a stop action. When the stop operation is invoked all active
listeners are terminated. Apama generates the following code (where “l” is a listener
defined elsewhere):
 action operation$stop(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 isStarted := false;
 l.quit();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

send action

For blocks that are based on existing event definitions and are specified as output blocks,
Apama generates code for a send$event action. When the send action is called, it sends
the specified event on which the block is based. For example, with a specified event,
testEvent (containing two fields, name and IDnum), Apama generates the following
code:
 action operation$send$_testEvent(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for invocations of operation send_testEvent --
//
 if (serialExecution) then{
 route testEvent(parameter_name,parameter_IDnum);
 }
 else {
 enqueue testEvent(parameter_name,parameter_IDnum) to preSpawnContext;
 }
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 604

User-defined monitors or event types

If you need to add monitors or event types to a block, define them in the specified
section of the block's generated EPL code:
// BLOCKBUILDER - USER DEFINED MONITORS
//
// -- insert any additional monitors you require --
//
// BLOCKBUILDER - END OF USER DEFINED MONITORS

For more information, see "Defining Monitors" on page 49.

User-defined variables

If you need to add variables to a block, define them in the specified section of the block's
generated EPL code, which is the first section in the block's #block# event code:
event #block# {
// BLOCKBUILDER - USER DEFINED VARIABLES
//
// -- insert any additional variables you require --
//
// BLOCKBUILDER - END OF USER DEFINED VARIABLES

User-defined actions

In addition to the actions described above you can add any other actions that you
require to implement the unique functionality of your block. Add additional actions at
the end of the block definition file in the specified section:
// BLOCKBUILDER - USER DEFINED ACTIONS
//
// -- insert any additional actions required --
//
// BLOCKBUILDER - END OF USER DEFINED ACTIONS

Timeliness of acknowledgements
When a scenario calls an action that takes an acknowledgement() action parameter the
scenario expects to receive a timely acknowledgement.

This means that the acknowledgement must be made within the chain of routed events
that are currently being processed, starting with the event that is the immediate cause
of the operation being performed. This constraint exists because the scenario is in a
state of limbo while it is waiting for an acknowledgement. If another event comes
into the scenario, either a control event or one that comes into one of its blocks, while
the scenario is waiting for an acknowledgement then the scenario can get into an
inconsistent state. For example, during a block operation, the scenario expects updates
only from the block that the operation is called on.

This constraint is usually easily met. If an operation routes a request event that it expects
a routed response to then the block can simply wait for that response before returning
the acknowledgement to the scenario. Alternatively, the block can set up a completed
listener for the request event. If the block does not expect a response with interesting
data that it wants to reflect to output feeds then the block can immediately return the

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 605

acknowledgement even if there are still routed events to be processed. It is especially
important to ensure that all operations are acknowledged for all paths through the code
because unacknowledged operations will cause the scenario to hang.

An example block
As an example, consider the Correlation Calculator Block, which is one of the standard
blocks provided with Apama.

The Correlation Calculator Block calculates the correlation coefficient between two
streams of data. The calculation can be performed over an unlimited set of data from
each stream, or a set limited by number of samples or age of samples. The calculator
generates output only if there is at least one suitable sample from each stream.

A correlation coefficient approaching +1.0 shows a strong correlation between the
streams, a coefficient close to 0.0 shows lile or no correlation between the streams and
a coefficient approaching –1.0 shows an inverse correlation between the streams; for
example, if one is increasing, the other is decreasing.

The topics below describe the Correlation Calculator block.

Description of the Correlation Calculator block interface
The Correlation Calculator block has the following parameters:

Parameter Description

period The maximum age of any sample that is used in the calculations,
in seconds. Any samples older than this will be discarded before
performing the calculation.

size The maximum number of samples per stream that are used in the
calculation.

One or both of the above parameters must be 0, in which case that limit is not imposed.
It is not possible to restrict the number of samples by both age and number of samples,
but it is possible to remove the limit on the number of samples (thus an unbounded set
of samples is kept). Note that imposing a limit after input events have been received will
clear all existing samples.

The Correlation Calculator block has the following operations:

Operation Description

start Starts the calculation of coefficients. Must be called before the
calculator will generate any statistics (output feed).

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 606

Operation Description

stop Stops the calculation of further coefficients. Any subsequent
events on the input feeds are ignored.

clear Discards all current data.

The Correlation Calculator block defines the following input feeds, each with one field:

Input feed Fields Description

data1 value The first input set.

data2 value The second input set.

Note that at least one value from each feed must have been received (and if set, within
period seconds) before an output will be generated.

The Correlation Calculator block has the following output feed:

Output feed Fields Description

correlation The correlation coefficient (between -1.0 and
+1.0).

statistics

samples The number of sample pairs used for this
calculation.

The XML elements at the beginning of the Correlation Calculator's block definition
file describe this interface. When you create your own block, Apama generates and
populates these XML elements for you.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE block SYSTEM "http://www.apama.com/dtd/bdf.dtd">
<!--Apama Block Definition File-->
<block name="Correlation Calculator">
 <version>
 <id>2.0</id>
 <date>7 May 2009</date>
 <author>Rune Madsen</author>
 <comments>Copyright(c) 2013 Software AG, Darmstadt, Germany and/or
 its licensors</comments>
 </version>
 <description>Calculates the correlation of two input data streams over a
 configurable time window and sample set size.</description>
 <properties parallel-aware="true" deprecated="false">
 <input-feeds>
 <feed name="data1" id="9578163894100102">
 <description>The first stream of numeric data to use in the correlation
 calculations</description>
 <field name="value" id="9578163894100103">

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 607

 <description>The numeric data value</description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 </feed>
 <feed name="data2" id="9578163894100104">
 <description>The second stream of numeric data to use in the correlation
 calculations</description>
 <field name="value" id="9578163894100105">
 <description>The numeric data value</description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 </feed>
 </input-feeds>
 <output-feeds>
 <feed name="statistics" id="9578163894100106">
 <description>Stream of correlation values generated every time a new
 data item arrives</description>
 <field name="correlation" id="9578163894100107">
 <description>The correlation of the samples in the data sets.
 Between -1 and +1.</description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 <field name="samples" id="9578163894100108">
 <description>The number of sample pairs used in the correlation
 calculation</description>
 <validation type="integer" stringcase="mixed" trim="true"
 unique="false" mutability="mutable" />
 </field>
 </feed>
 </output-feeds>
 <parameters>
 <field name="period" id="9578163894100109">
 <description>The duration of the configurable time window given in
 seconds. Samples older than the period will be discarded from the
 data set. Set to zero to keep samples indefinitely, up to the
 maximum number of samples specified with the size parameter.
 </description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 <field name="size" id="9578163894100110">
 <description>The maximum size of the sample set. The oldest sample will
 be replaced by the new sample when the total number of samples has
 reached this limit. Set to zero to keep all samples, unless period
 is set.</description>
 <validation type="integer" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 </parameters>
 <operations>
 <operation name="start" id="9578163894100111">
 <description>Activate the correlation calculations</description>
 </operation>
 <operation name="stop" id="9578163894100112">
 <description>Pause the correlation calculations</description>
 </operation>
 <operation name="clear" id="9578163894100113">
 <description>Clear the existing sample data</description>
 </operation>
 </operations>

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 608

 </properties>

Description of the Correlation Calculator block EPL
After the XML elements that describe the block interface, there is a <code> element. The
<code> element contains the EPL. The first section in which you can add custom EPL
code is the user-defined monitors section. The Correlation Calculator block defines a few
events here.

User-defined monitors and/or events
<code><![CDATA[// Apama generated code - ONLY EDIT INDICATED SECTIONS
// Generated code type: CALLBACK
// Generated code version: 1
// BLOCKBUILDER - USER DEFINED MONITORS

event CorrelationCalculator_DataPoint {
 float value1;
 float value2;
 float time;
}

event CorrelationCalculator_Incr {
 float x1;
 float y1;
 float x2;
 float y2;
 float xy;
 float N;
}

event CorrelationCalculator_InputData {
 float value;
 float time;
}

// BLOCKBUILDER - END OF USER DEFINED MONITORS

User-defined variables

After the section for user-defined monitors or events, Apama begins the event type
definition that implements the block. The placeholder name of the event type is always
#block#. When you inject a scenario that uses a block, the correlator replaces #block#
with the actual name of the block plus a unique number that distinguishes the instance
of the block from other instances.

The first section after the event declaration is for user-defined variables. Each variable is
a field in the event type. The Correlation Calculator block defines a number of variables.
event #block# {
// BLOCKBUILDER - USER DEFINED VARIABLES
 sequence<CorrelationCalculator_DataPoint> dataset;
 boolean running;
 boolean infinite;
 CorrelationCalculator_Incr incr;

 integer MAX_INT;
 float MAX_FLOAT;
 float NO_CORRELATION;

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 609

 CorrelationCalculator_InputData inputdata1;
 CorrelationCalculator_InputData inputdata2;

 float period;
 integer size;

// BLOCKBUILDER - END OF USER DEFINED VARIABLES

Actions for updating output feeds

Following the user-defined variables are the variables that Apama automatically
generates for every block. This includes an integer variable to contain the block
instance ID and an action variable for each output feed in the block. For the Correlation
Calculator block, these variables are defined as follows:
 integer blockInstanceId$;
 action<float,integer> sendOutput$statistics;

Actions for updating parameters

Next come the actions that update parameters. Apama defines the action and the
block writer fills in the code that actually updates the parameter. For the Correlation
Calculator block, the following actions update the period and size parameters:
 action update$period(float period) {
// BLOCKBUILDER - USER DEFINED ACTION
 self.period := period;
 updateInfinite();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action update$size(integer size) {
// BLOCKBUILDER - USER DEFINED ACTION
 self.size := size;
 updateInfinite();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions for updating input feeds

Next come the actions that update input feeds. Again, Apama defines the action and the
block writer fills in the code that actually does the update. For the Correlation Calculator
block, the following actions update the data1 and data2 input feeds:
 action input$data1(float value) {
// BLOCKBUILDER - USER DEFINED ACTION
 if not running then {
 return;
 }
 self.inputdata1.value := value;
 self.inputdata1.time := currentTime;
 doStats1();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action input$data2(float value) {
// BLOCKBUILDER - USER DEFINED ACTION
 if not running then {
 return;
 }
 self.inputdata2.value := value;

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 610

 self.inputdata2.time := currentTime;
 doStats2();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions for performing operations

The actions that perform operations come next. For the Correlation Calculator block,
these actions are defined as follows:
 action operation$start(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 running := true;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action operation$stop(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 running := false;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action operation$clear(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 inputdata1.value := MAX_FLOAT;
 inputdata2.value := MAX_FLOAT;
 dataset.setSize(0);
 incr := new CorrelationCalculator_Incr;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Standard setup and cleanup actions

After defining the actions that implement the interface to the block, Apama
defines the standard setup and cleanup actions that it defines in every block.
These look like the following for the Correlation Calculator block. Notice that
the instancePreSpawnInit() action has no user-defined code. The scenario
calls this action on each new scenario instance. Since nothing other than what
Apama automatically fills in is necessary, the user-defined section for the
instancePreSpawnInit() action is empty.
 action setup() {
// BLOCKBUILDER - USER DEFINED ACTION
 MAX_INT := 0x7fffffffffffffff;
 MAX_FLOAT := 1.0e300;
 NO_CORRELATION := -2.0;
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action instancePreSpawnInit(integer blockInstanceId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 context target,
 action<> acknowledge) {
 self.blockInstanceId$:= blockInstanceId$;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert pre-spawn initialisation code --

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 611

//
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action instancePostSpawnInit(integer blockInstanceId$,
 string ownerId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge,
 float period,
 integer size,
 action<float,integer> $$sendOutput$statistics) {
 self.$$sendOutput$statistics := $$sendOutput$statistics;
// BLOCKBUILDER - USER DEFINED ACTION
 self.period := period;
 self.size := size;
 inputdata1.value := MAX_FLOAT;
 inputdata2.value := MAX_FLOAT;
 updateInfinite();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action cleanup() {
// BLOCKBUILDER - USER DEFINED ACTION
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

User-defined actions

Finally, any additional user-defined actions come at the end of the block definition file.
For the Correlation Calculator block, these actions contain the unique functional content
of this block.
// BLOCKBUILDER - USER DEFINED ACTIONS
 action doStats1() {
 if inputdata2.value != MAX_FLOAT then {
 doStatsCommon(inputdata2.time);
 }
 }

 action doStats2() {
 if inputdata1.value != MAX_FLOAT then {
 doStatsCommon(inputdata1.time);
 }
 }

 action doStatsCommon(float timestamp) {
 float N;
 float Mx;
 float sum, div;
 float correlation;

 if not infinite then {
 // Remove expired samples
 removeExpiredSamples();

 // Add new pair to dataset
 dataset.append(
 CorrelationCalculator_DataPoint(inputdata1.value,
 inputdata2.value, timestamp));
 }

M
Even Header

Creating Blocks

Developing Apama Applications Version 9.10 612

 incrAdd(inputdata1.value, inputdata2.value);

 // Calculate correlation
 N := incr.N;
 Mx := incr.x1 / N;
 sum := incr.xy - Mx*incr.y1;
 div := (incr.x2 - Mx*incr.x1) * (incr.y2 - incr.y1*incr.y1/N);
 if sum = 0.0 then {
 correlation := 0.0;
 } else
 if div != 0.0 then {
 correlation := sum / div.sqrt();
 } else {
 correlation := NO_CORRELATION;
 }
 sendOutput$statistics(correlation, N.floor());
 }

 action removeExpiredSamples() {
 float timeLimit := -MAX_FLOAT;
 integer sizeLimit := MAX_INT;
 if self.period > 0.0 then {
 timeLimit := currentTime - self.period;
 } else
 if self.size > 0 then {
 sizeLimit := self.size;
 }
 while (dataset.size() > 0 and dataset[0].time <= timeLimit)
 or dataset.size() >= sizeLimit {
 incrRemove(dataset[0].value1, dataset[0].value2);
 dataset.remove(0);
 }
 }

 action updateInfinite() {
 boolean wasInfinite := infinite;
 // Set infinite to true if period/size is infinite
 infinite := self.period <= 0.0 and self.size <= 0;
 if infinite then {
 dataset.setSize(0);
 } else
 if wasInfinite then {
 // Infinite has gone from true to false,
 // must reset incremental data
 incr := new CorrelationCalculator_Incr;
 }
 }

 action incrAdd(float x, float y) {
 incr.x1 := incr.x1 + x;
 incr.y1 := incr.y1 + y;
 incr.x2 := incr.x2 + x*x;
 incr.y2 := incr.y2 + y*y;
 incr.xy := incr.xy + x*y;
 incr.N := incr.N + 1.0;
 }

 action incrRemove(float x, float y) {
 incr.x1 := incr.x1 - x;
 incr.y1 := incr.y1 - y;
 incr.x2 := incr.x2 - x*x;
 incr.y2 := incr.y2 - y*y;
 incr.xy := incr.xy - x*y;

M
Odd Header

Creating Blocks

Developing Apama Applications Version 9.10 613

 incr.N := incr.N - 1.0;
 }
// BLOCKBUILDER - END OF USER DEFINED ACTIONS
}]]></code>
</block>

M
Even Header

Developing Apama Applications Version 9.10 614

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 615

19 Working with Blocks Created from Scenarios

■ Terminology for using scenario blocks ... 616

■ Benefits of scenario blocks .. 617

■ Steps for using scenario blocks ... 617

■ Background for using scenario blocks ... 618

■ Saving scenarios as block templates .. 619

■ Incrementing scenario block version numbers .. 619

■ Adding a scenario block to a main scenario ... 620

■ Examining a scenario block's source scenario .. 620

■ Descriptions of scenario block parameters .. 620

■ Descriptions of scenario block operations ... 621

■ Descriptions of scenario block feeds ... 622

■ Setting parameters before creating sub-scenarios .. 625

■ Creating sub-scenarios .. 627

■ Deleting sub-scenarios ... 628

■ Modifying sub-scenario input variable values .. 629

■ Iterating through sub-scenarios ... 629

■ Obtaining variable values from sub-scenarios ... 631

■ Linking sub-scenarios with other blocks .. 631

■ Inheriting sub-scenarios ... 631

■ Observing changes in sub-scenarios ... 634

■ Performing simple calculations across sub-scenarios ... 636

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 616

In the Event Modeler, you can export a scenario to create a block. You can then use this
block in other scenarios. The topics below provide information and instructions for
using blocks that you create from scenarios.

For a sample scenario that uses a block that was created from a scenario, open the
ScenarioAsBlockExample.sdf file in the Event Modeler. This file is in the samples
\scenarios directory of your Apama installation directory.

You cannot create a block from a parallel-aware scenario. Nor can you create a block
from a non-parallel-aware scenario and then mark that block as parallel-aware.

Terminology for using scenario blocks
To use blocks created from scenarios, you must understand the following terms:

Source scenario. A scenario block that you export to create a block.

Scenario block. A block that you create from a scenario by selecting Scenario > Generate
Block in the Software AG Designer menu and then saving and building the project.
Alternatively, you can select Software AG > Export as Block from the File > Export dialog.

Main scenario. A scenario that uses a scenario block.

Sub-scenario. A source scenario instance that a scenario block dynamically creates.
When you use a scenario block in a main scenario, the scenario block manages sub-
scenarios according to the rules you define in the main scenario. The operations a
scenario block can perform on a sub-scenario include create, retrieve, commit,
delete, delete all, iterate, and next.

Context instance. Also referred to as the context sub-scenario. This is the current sub-
scenario. A scenario block can create any number of sub-scenarios. However, at
any point in time, a main scenario can modify only the context instance. Certain
operations make a particular sub-scenario the context instance. You can also set
the value of the scenario block instance id parameter to the instance ID for a
particular sub-scenario and then call the scenario block retrieve operation to make
that sub-scenario the context instance.

The following figure shows the relationships among these items.

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 617

Benefits of scenario blocks
The benefit of using a scenario block is that you can write a scenario once and then use
it any number of times without having to manually create instances of that scenario.
Instead, in your main scenario, you define rules that create and manage the instances
of the source scenario. When a main scenario uses a scenario block, the scenario block
dynamically creates and manages instances of the source scenario according to the rules
you define in the main scenario. The main scenario functions as a management tool for
the sub-scenarios. This allows self-contained units of work that start and finish within
the main scenario.

A main scenario can use several different scenario blocks. This lets you define multiple
source scenarios, and then pull them together into a single main scenario.

Like all blocks, using scenario blocks makes propagating updates to the source scenario
easier. For example, suppose you have 10 instances of a scenario. If you need to change
that scenario, you must also update the 10 instances. Now suppose you have a main
scenario that uses a scenario block to create 10 sub-scenarios. If you need to modify the
source scenario, you only need to also update the main scenario that uses the scenario
block.

Steps for using scenario blocks
The general steps for using scenario blocks are as follows:

1. Define and save the source scenario.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 618

2. Generate a block from the source scenario to create your scenario block. This makes
your new scenario block available for selection in the Catalogs tab.

3. Define a main scenario.

4. Add your scenario block to your main scenario.

5. In your main scenario, define rules that refer to your scenario block.

6. Deploy the source scenario. You can do this in Software AG Designer, or by injecting
the .sdf file into the correlator with the engine_inject utility. If the source
scenario requires any event types or other EPL to be injected before you can run it,
be sure to inject those items before you try to run the main scenario.

7. Deploy the main scenario.

Background for using scenario blocks
To use scenario blocks in a main scenario, it is helpful to understand the implementation
model. Consider a deck of cards with each card stacked on top of the other cards. Each
card represents a sub-scenario, which is an instance of the source scenario.

When a sub-scenario generates an update event, that sub-scenario pops to the top of
the stack of sub-scenarios, like you might move a card to the top of a deck. When a sub-
scenario is at the top of the stack of sub-scenarios, you can access the values associated
with that sub-scenario. Any time you can access the values associated with a sub-
scenario, that sub-scenario is the context sub-scenario. For example, when a sub-scenario
completes its processing, the scenario block sends an update event to its output feed.
This update event makes the completed sub-scenario the context instance. Consequently,
you can do something like this:
When instance status from MyScenarioBlock(output) = "ENDED"
Then quantity = quantity + subquantity from MyScenarioBlock(output)

If quantity is a variable in the main scenario, this action increases the value of the
quantity variable upon the completion of each sub-scenario. You do not need to first
retrieve a sub-scenario to obtain the value of its subquantity variable.

As you can see, one way to operate on a particular sub-scenario is to wait for that
sub-scenario to be the context sub-scenario. Another way to operate on a particular
sub-scenario is to make that sub-scenario be the context sub-scenario. You do this by
specifying the context ID of the sub-scenario you want to operate on and then calling the
retrieve operation.

A main scenario can use two or more instances of the same scenario block. Each
scenario block manages only the sub-scenarios it creates. However, you can change this
according to the value you specify for the scenario block inheritExternalInstances
parameter. See "Inheriting sub-scenarios" on page 631.

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 619

Saving scenarios as block templates
To use a source scenario as a block, you must save it as a block, which creates a new
block template.

To create a block template from a scenario

1. In Event Modeler, open the scenario from which you want to create a block.

2. Ensure that the scenario is complete and correct.

3. In the Event Modeler menu bar, select Scenario and ensure that there is a check next
to Generate Block.

Whenever you save and/or build the project, Event Modeler generates a block template
from this scenario. You can see the block template in the Generated scenario blocks
catalog in your project's Catalogs tab. The name of the block template is the name of the
scenario with the .bdf extension. If you have already saved a version of this scenario as
a block, Event Modeler sets the version field to the revision level of the latest scenario
block exported from this scenario.

Incrementing scenario block version numbers
To increment the version number, you export one or more scenarios as blocks as
described below.

To export scenario blocks

1. From the Software AG Designer menu, select File > Export.

2. In the Export dialog, expand Software AG, click Export as Block, and click Next.

3. In the Project: field, select the project that contains the scenario(s) you want to export.

4. In the Export column, select one or more scenarios to export as blocks and click Next.

5. Select the folder in which you want to save your new block. By default, Event
Modeler saves scenario blocks in the catalogs\Generated scenario blocks
directory of your project directory.

The name of the new block is always the name of the scenario with the .bdf
extension. If you have already saved a version of this scenario as a block, Event
Modeler sets the version field to the revision level of the latest scenario block
exported from this scenario. To save a newer version, increment the version number.

To create a new folder in which to store your new scenario block, click New..., specify
the name of the new folder, and click OK.

To add a new catalog in which to store your new scenario block, switch to Apama
Developer perspective, right-click the project name, select Properties, and click the
Blocks tab. Then return to the Export As Block dialog.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 620

6. Click Export. Your new scenario block is immediately available for selection from the
Catalogs tab.

You can nest a scenario block in another scenario block. In other words, you can export a
main scenario as a block, and use the new scenario block in some other main scenario.

Adding a scenario block to a main scenario
You add a scenario block to a main scenario as you would add any other block to a
scenario.

To add a scenario block to a main scenario

1. In the Catalogs tab, select the scenario block you want to use in your main scenario.

2. In the Catalogs tool bar, click the Add Selected Block Template buon. The
scenario block you selected now appears in the Blocks tab.

You can now use the scenario block as you would any other block.

Examining a scenario block's source scenario
After you add a scenario block to a main scenario, you might like to look at the scenario
block's source scenario.

To examine the source scenario

1. Select the scenario block in the Blocks tab.

2. Right-click to display the context menu.

3. Select Open Source Scenario....

This displays a separate copy of Event Modeler with the source scenario open.

Descriptions of scenario block parameters
A scenario block has the following parameters:

instance id — This is a string that identifies a sub-scenario. An instance ID must
be unique within a main scenario. In the main scenario, you set the value of the
instance id parameter to indicate the sub-scenario that is the target of the next
scenario block operation.

deleteChildrenOnTerminate — Boolean that indicates whether all sub-scenarios
terminate when the main scenario terminates. The default behavior is that sub-
scenarios remain active if the main scenario terminates. That is, the default is false.

If the main scenario inherits sub-scenarios from other main scenarios,
the inherited sub-scenarios would also terminate when the value of the
deleteChildrenOnTerminate parameter is true.

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 621

inheritExternalInstances — Indicates whether the main scenario inherits sub-
scenarios created by other main scenarios. When the main scenario inherits sub-
scenarios, it means that the main scenario can operate on inherited sub-scenarios as
though it had created those sub-scenarios. For details, see "Inheriting sub-scenarios"
on page 631.

input-variables — There is one parameter for each source scenario variable that is
marked as input. For example, if the source scenario has a quantity input variable,
then a scenario block created from that source scenario has a quantity parameter.
The recommendation is that you mark a source scenario variable as input or output
and not as both.

When you add a scenario block to a main scenario, the initial value of the instance id
parameter is an empty string, "". When you call the create operation on a scenario
block and the value of the instance id parameter is an empty string, the scenario block
generates the ID that it assigns to the new sub-scenario. This ensures that the instance
ID is unique within the main scenario. You can obtain the assigned instance ID from the
scenario block output feed.

Generated instance IDs would look something like the following for a scenario block
named MyScenarioBlock:

MyScenarioBlock1;1
MyScenarioBlock1;2
MyScenarioBlock1;3
and so on

When you want to specify the ID that the scenario block assigns to a new sub-scenario,
set the value of the instance id parameter and then call the create operation. If you
specify an instance ID that already exists, and call the create operation, the create
operation fails.

Descriptions of scenario block operations
You can call the following operations on a scenario block:

create — Creates a sub-scenario.

delete — Deletes the sub-scenario identified by the value of the instance id
parameter.

delete all — Deletes all sub-scenarios that this scenario block manages. The sub-
scenarios that a scenario block manages are the sub-scenarios that the scenario block
created and has not yet deleted. A main scenario can use two or more instances
of the same scenario block. Each scenario block manages only the sub-scenarios
it creates. In a main scenario, the A1 scenario block has no information about sub-
scenarios created by the A2 scenario block.

retrieve — Retrieves the sub-scenario identified by the value of the instance id
parameter. The retrieved sub-scenario becomes the context instance. To modify any
values associated with a sub-scenario, the sub-scenario must be the context instance.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 622

The retrieve operation does not modify the current values of the scenario block's
parameters.

commit — Changes and saves the values of the context sub-scenario's input variables
that correspond to scenario block parameters whose values have changed since the
previous create, iterate, next, retrieve, or commit operation, whichever came
last.

iterate — Starts an iteration through the sub-scenarios that this scenario block
manages. After you call the iterate operation, the first sub-scenario that the block
created is the context sub-scenario. You do not need to call the next operation to
retrieve the first sub-scenario. To restart an iteration, call the iterate operation
again.

next — Moves to the next sub-scenario in the iteration and makes that sub-scenario,
if there is one, the context instance. The next operation visits the sub-scenarios in the
order in which the scenario block created them.

Call this operation after a call to the iterate operation. When you call next, if there
is a valid next instance, the scenario block sends an event to the output feed. You can
obtain the instance ID for the new context instance from this event.

There are no timing issues because the scenario block immediately performs the
next operation and sends an event to the output feed. That is, you do not need to
wait for the next operation to complete before you issue an action that operates on
the sub-scenario that is the context instance as a result of the next operation.

Descriptions of scenario block feeds
Scenario blocks have no input feeds. Scenario blocks have three output feeds:

output — Provides updated information about a sub-scenario. The scenario block
sends output to this feed whenever the value of a sub-scenario variable changes.
The main scenario that created the sub-scenario, and any other main scenarios that
inherit the sub-scenario each get an output feed to indicate the changes.

iteration ended— Indicates whether an iteration is complete.

group info — Provides cumulative information about all sub-scenarios managed
by this scenario block.

The following table describes the fields in each output feed.

Feed Fields Description

instance id String that identifies the sub-scenario that
changed.

output

instance
owner

Identifies the user account under which the
main scenario that is using this scenario block
was created.

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 623

Feed Fields Description

instance
created

Boolean value that is true after the sub-
scenario is created.

instance
ended

Boolean value that is true after the sub-
scenario stops processing. This can happen
because it fails, is deleted, or ends its normal
processing.

instance
status

Enumerated string field that indicates the
status of the sub-scenario. The value is one of
the following:

RUNNING — The sub-scenario has been
created and has not ended, failed, or been
deleted.

ENDED — The sub-scenario has ended
normally; it reached its end state.

FAILED — The scenario block failed to create
the sub-scenario, perhaps because of a
duplicate instance ID. Or, the sub-scenario
failed because something went wrong while
it was running. For example, the sub-scenario
tried to divide by zero.

DELETED — The main scenario called the
delete operation, which removes the sub-
scenario from the correlator. Or, some other
external entity deleted the sub-scenario from
the correlator.

UNKNOWN — The status of the sub-scenario
is unknown. For example, the status is
unknown after you invoke the create
operation and before the scenario block
actually creates the sub-scenario.

variables In the output feed, there is a field for each
source scenario variable. Each of these fields
contains the current value of the variable for
the identified sub-scenario.

iteration
ended

complete Boolean value that is true when iteration
through the sub-scenarios that this scenario
block manages is complete. When you call the
next operation, and there is not another sub-

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 624

Feed Fields Description
scenario in the iteration, then the iteration
ended feed outputs a value of true for the
complete field.

total
created

Integer that indicates how many sub-scenarios
this scenario block has created since it began
processing.

total
deleted

Integer that indicates how many sub-scenarios
this scenario block has deleted since it began
processing.

total loaded Integer that indicates how many sub-scenarios
created by this scenario block are loaded in the
correlator. This includes sub-scenarios that are
running, plus sub-scenarios that failed while
they were running, plus sub-scenarios that
have ended. This number does not include
sub-scenarios that the scenario block tried to
create and failed to create. In other words, the
total loaded is equal to the total created minus
the total deleted.

number
running

Integer indicating how many sub-scenarios
created by this scenario block are running.

number ended Integer indicating how many sub-scenarios
created by this scenario block are still loaded
but have ended.

number
failed

Integer that indicates how many sub-scenarios
created by this scenario block are still loaded
but have failed.

group
info

summary Convenience string that summarizes the
information provided by the other group
info fields. For example: "Total Created:
100, Total Deleted: 40, Total Loaded:
60, Number Running: 10, Number Ended:
48, Number Failed: 2".

Inheritance affects the totals in the group info feed as follows:

total created indicates the number of sub-scenarios that were created and that the
main scenario could operate on. This number only goes up. This number includes

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 625

sub-scenarios created by this main scenario as well as inherited sub-scenarios created
by other main scenarios.

total deleted indicates the number of sub-scenarios that were deleted while
the main scenario could operate on them. This number only goes up. This number
includes sub-scenarios created by this main scenario as well as inherited sub-
scenarios.

total loaded, total running, number ended, and number failed indicate the
number of sub-scenarios that are currently loaded in the correlator and that the main
scenario can operate on. This number goes up and down.

For example, suppose inheritExternalInstances is set to Owner for MainScenarioA.
Now suppose MainScenarioB, which has the same owner as MainScenarioA, creates
a new sub-scenario. The total created field for MainScenarioA gets incremented by
1. Now suppose that MainScenarioC, which has a different owner, creates the same
type of sub-scenario. The total created field for MainScenarioA would not get
incremented.

Following is an example of an output feed. Suppose the source scenario defines the
following variables:

SYMBOL (Input)

SIDE (Input)

PRICE (Output)

QUANTITY SOLD (Output)

The output feed would have the following fields:
instance id
instance owner
instance created
instance ended
instance status
SYMBOL
SIDE
PRICE
QUANTITY SOLD

Setting parameters before creating sub-scenarios
When you add a scenario block to a main scenario, the scenario block's parameters
have default values according to their types. For example, the default value of a string
parameter is an empty string ("").

After you add a scenario block to a main scenario, you can set initial values for the
scenario block's parameters in the Blocks tab. However, it is important to understand
that the values you set are initial values and not default values. During execution of a
main scenario, if you want to change the value of a parameter, you must explicitly do
so. After you modify the value of a parameter, if you require the parameter to have its
initial value, you must explicitly set it to its initial value.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 626

When you call the create operation, the newly created instance's input variables take
their values from the current values of the corresponding scenario block parameters. The
current values of the parameters might or might not be the initial values; if you modified
a parameter value, the parameter has the last value that was assigned to it. If you then
call the create operation, the scenario block assigns that last value to the sub-scenario's
corresponding input variable.

To create a sub-scenario that has the initial parameter values for its input variables, do
one of the following:

If the main scenario has not made any changes to the scenario block's parameter
values, call the create operation.

If the main scenario has made changes to parameter values, explicitly specify the
value of each parameter, and then call the create operation. This is the safest way
to ensure that you create the sub-scenario with the values you want. A common
mistake is to forget that you changed the value of a parameter in the course of
some work. If you then create a new sub-scenario, it has the updated value of the
parameter and not the initial value.

For example, consider the following set-up: MyScenarioBlock has three parameters that
correspond to three input variables: Input1, Input2, and Input3. The initial value of
each parameter is blue. The value of the instance id parameter is the empty string,
which means that the scenario block generates the instance IDs for you. In a rule, you
can set parameter values and create sub-scenarios as follows:

When true
Then Input1 = green
Then create [MyScenarioBlock]

Creates the MyScenarioBlock1;1
instance. The values of the parameters
and the values of the input variables
in this instance are green, blue, and
blue.

Then Input2 = purple
Then create [MyScenarioBlock] Creates the MyScenarioBlock1;2

instance. The values of the parameters
and the values of the input variables
in this instance are green, purple,
and blue.

Then Input3 = white
Then create [MyScenarioBlock] Creates the MyScenarioBlock1;3

instance. The values of the parameters
and the values of the input variables
in this instance are green, purple,
and white.

Then instance id = MyScenarioBlock1;2
Then retrieve [MyScenarioBlock] Makes the second created sub-

scenario the context instance. The
variables in this instance have the
values green, purple, and blue.
Note that this is not the same as the

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 627

current parameter values, which
are green, purple, and white. The
retrieve operation does not modify
the current values of the scenario
block's parameters.

Then Input2 = gold
Then commit [MyScenarioBlock] After the commit operation, the

values of this sub-scenario's input
variables are green, gold, and blue.
The values of the corresponding
scenario block parameters are
green, gold, and white. The commit
operation modifies only the context
instance. It does not modify any other
sub-scenarios. The commit operation
makes only those changes made
since the retrieve operation. For
example, it does not change the value
of Input3 to white.

Then create [MyScenarioBlock]
Creates the MyScenarioBlock1;4
instance. The values of the input
variables in this instance are green,
gold, and white, which are the
current values of the corresponding
parameters.

Creating sub-scenarios
The scenario block create operation creates a new sub-scenario with the current values
of the scenario block's input-variables parameters. A sub-scenario is an instance of the
source scenario. Call this operation for each sub-scenario you want to create.

You can have any number of sub-scenarios running in parallel. You do not need to wait
for one sub-scenario to complete processing before you create another sub-scenario.
When you invoke the create operation, the scenario block immediately sends an
update event to its output feed. The fields in this event have the following values:

instance id — This field provides the instance ID of the sub-scenario being
created. This is either the instance ID you specified as the value of the instance id
parameter before you called the create operation, or it is the instance ID generated
by the scenario block if the value of the instance id parameter was an empty
string. For the format of a generated instance ID, see "Descriptions of scenario block
parameters" on page 620.

instance created — This field is false because the scenario block has not yet
created the new sub-scenario.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 628

instance ended — This field is also false.

instance status — This field has a value of UNKNOWN because, again, the scenario
block has not yet created the new sub-scenario.

In addition, the output feed contains a field for each variable that the source scenario
defines.

As soon as the scenario block actually creates the new sub-scenario, it sends another
event to the output feed. This time, if creation was successful, the instance created
field is true, and the instance status field is RUNNING. For example, you might want to
do something like this:
State: Step 1
When true
Then create [MyScenarioBlock]
Then move to state [Step 2]
State: Step 2
When instance created from MyScenarioBlock (output)
Then status = "Instance created successfully"

When the scenario block sends the first event after you invoke the create operation,
that event indicates that the sub-scenario you are creating is the context sub-scenario.
For example, to issue two orders in sequence you can specify the following:
State 1
When true
Then Symbol from MyScenarioBlock = "APMA"
Then create [MyScenarioBlock]
Then continue
When instance status from MyScenarioBlock(output) = "ENDED"
Then Quantity = Quantity + Quantity from MyScenarioBlock(output)
Then Symbol from MyScenarioBlock = "MSFT"
Then create [MyScenarioBlock]
Then move to state [State 2]
State 2
When instance status from MyScenarioBlock(output) = "ENDED"
 (Note that this now reflects the second sub-scenario created.)
Then Quantity = Quantity + Quantity from MyScenarioBlock(output)

Alternatively, you can do it this way:
When true
Then Symbol from MyScenarioBlock = "APMA"
Then create [MyScenarioBlock]
Then Symbol from MyScenarioBlock = "MSFT"
Then create [MyScenarioBlock]
Then Symbol from MyScenarioBlock = "ORCL"
Then create [MyScenarioBlock]

To operate on a sub-scenario that you just created, you must wait for the value of the
instance status field to be RUNNING.

Deleting sub-scenarios
To delete a sub-scenario when it reaches its end state

1. Check the output feed for a true value for the instance ended field.

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 629

2. Call the delete operation.

The output event that the scenario block sends to its output feed to indicate that the
instance has finished processing also makes the completed instance the context instance.
Consequently, you do not need to set the instance id parameter before you call the
delete operation.

Unconditionally deleting a sub-scenario

To unconditionally delete a sub-scenario

1. Set the instance id parameter to the instance ID of the sub-scenario you want to
delete.

2. Call the retrieve operation.

3. Call the delete operation.

Deleting all sub-scenarios

To delete all sub-scenarios that this scenario block created but has not yet deleted

1. Call the delete all operation.

2. Watch the group info feed's total loaded field for a value of 0.

Modifying sub-scenario input variable values
To modify the value of one of a sub-scenario's input variables

1. Set the instance id parameter to the instance ID of the sub-scenario whose input
variable you want to change.

2. Call the retrieve operation so that the sub-scenario you want to modify is the
context instance.

3. Set the value of the scenario block's parameter that corresponds to the input variable
you want to change. You can do this for each input variable you want to change.

4. Call the commit operation to save your changes. This does the following:

Updates only the sub-scenario identified by the instance id parameter.

Updates each input variable that corresponds to a scenario block parameter that
you modified since the retrieve operation.

Sends output to the output feed to indicate the current variable values.

Iterating through sub-scenarios
To iterate through the sub-scenarios that a particular scenario block manages, you can
do something like the following.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 630

To iterate through sub-scenarios

1. In State 1, call the iterate operation to start an iteration. After you call iterate,
the first sub-scenario that the block created becomes the context instance.

2. Move to State 2.

3. In State 2, determine whether you are done iterating through the sub-scenarios.

a. If the value of the complete field in the iteration ended output feed is true,
then you are done iterating. Move to State 3.

b. If there are no sub-scenarios, the value of the complete field is true immediately
after calling the iterate operation.

c. If the value of the complete field in the iteration ended output feed is false,
then you are not done iterating. Do the following:

Do something. For example, aggregate some quantity.

Call the next operation to make the next sub-scenario the context instance.
The iterate operation visits the sub-scenarios in the order in which they
were created.

Move to State 2.

Following are rules that perform these steps:
State 1
 When true
 Then iterate [MyScenarioBlock]
 Then move to State 2
State 2
 When complete from MyScenarioBlock(iteration ended)
 Then move to State 3
 When true
 Then Quantity = Quantity + Quantity from MyScenarioBlock(output)
 Then next [MyScenarioBlock]
 Then Move to State 2

In your main scenario, you might want to start the iteration and perform the iteration in
a single state. One way to do this is to use a Boolean variable that indicates whether an
iteration is in progress. In the following example, iterating is a Boolean variable:
Iterate State
 When not iterating
 Then iterating = true
 Then iterate [MyScenarioBlock]
 Then continue
 When complete from MyScenarioBlock(iteration ended)
 Then iterating = false
 Then Move to AnotherState
 When true
 Then Quantity = Quantity + Quantity from MyScenarioBlock(output)
 Then next [MyScenarioBlock]
 Then Move to Iterate State

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 631

There is no significant performance advantage of using one of the above iteration
techniques rather than the other. Choose the simplest approach for your Scenario. To
restart an iteration, call the iterate operation.

Note: You might find it convenient to use the Filtered Summary block instead of an
iteration. The Filtered Summary block can calculate totals and averages across
sub-scenarios. For any other calculations, you would need to iterate through
sub-scenarios. See the "Filtered Summary v2.0" on page 568 for details.

Obtaining variable values from sub-scenarios
Because a sub-scenario is an instance of its source scenario, each sub-scenario contains
the variables defined in its source scenario. To obtain the current value of a sub-
scenario's variable, check the scenario block's output feed. The output feed contains
a field for each source scenario variable. The scenario block updates its output feed
whenever there is a change to the value of a sub-scenario variable.

Linking sub-scenarios with other blocks
You can share sub-scenario instance IDs with other blocks. For example, the Wait block
supports multiple concurrent timers. You could assign an ID to each timer and then use
that same ID to create a sub-scenario. You could do this multiple times. When a timer
fires, you can use the ID it reports to retrieve the associated sub-scenario and perform
some operation on it, such as deleting it. For example:
When time up from Wait (timer)
Then instance id from MyScenarioBlock = timer id from Wait (timer)
Then retrieve [MyScenarioBlock]
Then continue
When instance status from MyScenarioBlock (output) is equal to "RUNNING"
Then move to state[next]

Inheriting sub-scenarios
A scenario block has the inheritExternalInstances parameter, which indicates
whether the main scenario inherits sub-scenarios created by other main scenarios.
Inherited sub-scenarios are always

Loaded in the correlator

Created by the same type of scenario block as the scenario block for which you are
seing the parameter.

When the main scenario inherits sub-scenarios, it means that the main scenario can
operate on inherited sub-scenarios as though it had created those sub-scenarios. For
example, if the main scenario iterates over its sub-scenarios, the iteration includes
inherited sub-scenarios.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 632

Description of inheritExternalInstances values
The inheritExternalInstances parameter has one of the following values:

None — The main scenario can operate on only the sub-scenarios it creates. This is
the default.

Owner — The main scenario can operate on sub-scenarios that have the same owner
as the main scenario.

Every main scenario is created under a particular user account. This account is
the owner of the main scenario and consequently it is also the owner of each sub-
scenario that the main scenario creates. Each scenario block has an instanceowner
output field that indicates the owner.

All — The main scenario can operate on all sub-scenarios created by scenario
blocks that are the same type as the scenario block for which you are seing the
inheritExternalInstances parameter. It does not maer which main scenario
created the sub-scenario or which account owns the sub-scenario.

Notes for setting the inheritExternalInstances parameter
You can change the value of the inheritExternalInstances parameter during
Scenario execution. When you do, the new value takes effect immediately. Likewise,
as other main scenarios create sub-scenarios, a main scenario might inherit those
sub-scenarios if it has a value of Owner or All for its inheritExternalInstances
parameter.

When a main scenario changes the value of the inheritExternalInstances parameter,
the scenario block searches within the correlator for sub-scenarios that the main scenario
now inherits. For each sub-scenario that the scenario block finds, it sends data to its
output feed. For example, if the scenario block finds five sub-scenarios that the main
scenario now inherits, the scenario block sends five sets of data to its output feed. The
scenario block also sends data to its group info feed that includes the inherited sub-
scenarios in the counts. Subsequently, if any main scenarios create or terminate sub-
scenarios that another main scenario inherits, or if any inherited sub-scenarios fail, the
scenario block in the inheriting main scenario sends data to its output feed just as if the
inheriting main scenario had created the sub-scenario.

A particular main scenario does not need to create any sub-scenarios before it can inherit
sub-scenarios created by other main scenarios. For example, you might define a scenario
block whose only purpose is to monitor inherited sub-scenarios and perform some sort
of aggregation or analysis. Or, you can define a scenario block with true as the value of
the deleteChildrenOnTerminate parameter. When you want to terminate all instances
of that type of sub-scenario you need to only terminate one main scenario.

Keep in mind that inherited sub-scenarios are shared by more than one main scenario.
That means that more than one main scenario can operate on the same sub-scenario. Be
sure to consider this when you design your application.

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 633

Example of inheriting sub-scenarios
The following figure illustrates how the inheritExternalInstances parameter works.
Each main scenario is owned by the user account under which it was created. When a
main scenario inherits a sub-scenario, the inherited sub-scenario is visible to the main
scenario.

Remember that inherited sub-scenarios are always of the same type as the scenario block
for which you are seing the inheritExternalInstances parameter. In the following
figure, the scenario blocks are each shown as MyScenarioBlk 1. They could of course
have been shown as MyScenarioBlk 2, MyScenarioBlk 3, and MyScenarioBlk 5,
or any other similar combination. The important point is that they are all instances of
MyScenarioBlk. In the figure,

Main scenario X can operate on sub-scenarios A-1, A-2, and A-3.

Main scenario Y can operate on sub-scenarios A-1, A-2, A-3, A-4, and A-5.

Main scenario Z can operate on sub-scenarios A-4 and A-5.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 634

Observing changes in sub-scenarios
The Change Observer block watches a set of sub-scenarios for changes in the value of
one of the sub-scenario variables. You specify which variable you want to watch. When
the value changes, the Change Observer block sends data to its change output feed. The
output feed indicates the old value and the new value. You use one Change Observer
block for each variable that you want to observe. See "Change Observer v2.0" on page
566 for details.

For example, suppose your main scenario uses the Trader scenario block and the Price
Checker scenario block. The Trader scenario block output fields include:

instance id [string]

instance owner [string]

instance created [Boolean]

instance ended [Boolean]

instance status [UNKNOWN, RUNNING, ENDED or FAILED]

trading [Boolean]

The Price Checker scenario block output fields include the following:

instance id [string]

instance owner [string]

instance created [Boolean]

instance ended [Boolean]

instance status [UNKNOWN, RUNNING, ENDED or FAILED]

price [number]

In your main scenario, you create several Trader sub-scenarios — each one trades in a
different market. When a Trader sub-scenario finishes trading, it sends data to its output
feed and this data includes trading=false.

You also create several Price Checker sub-scenarios — one for each type of stock symbol
you are trading. When the price of a stock being checked changes, the Price Checker sub-
scenario sends data to its output feed and this data includes the new price.

In your main scenario, you want to monitor changes in the Trader trading field and in
the Price Checker price field. To do this, use an instance of the Change Observer block
for each field. The block wiring would look like this:

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 635

The Change Observer_PRICE CHECKER block sends an output feed whenever
a Price Checker sub-scenario sends a price change to its output feed. The Change
Observer_TRADER block sends an output feed whenever a Trader sub-scenario stops
trading or starts trading, as indicated by the trading field in its output feed. You would
wire their fields as follows:

Wire Price Checker 1 Output Feed To Change Observer_PRICE CHECKER Input Feed

Output feed: output Input feed: input

instance id [string] output
field

stream [string] input field

price [float] output field watchValue [string] input field

Wire Trader 1 Output Feed To Change Observer_TRADER Input Feed

Output feed: output Input feed: input

instance id [string] output
field

stream [string] input field

trading [boolean] output field watchValue [string] input field

The rules to implement this would look something like the following: (Note that the
name of the Change Observer block output feed is change.

M
Even Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 636

Performing simple calculations across sub-scenarios
The Filtered Summary block performs simple calculations across a set of sub-scenarios.
This is an alternative to iterating over a set of sub-scenarios. The Filtered Summary block
can operate on only floating point values. You can use this block to calculate sums and
averages. See "Filtered Summary v2.0" on page 568 for details.

In more general terms, the Filtered Summary block performs calculations on a keyed set
of floating point values. Typically, you use the sub-scenario instance ID as the key. The
key's associated value is the value of a sub-scenario floating point variable that you want
to use in an aggregate calculation.

To use the Filtered Summary block, wire output fields from the scenario block to input
fields of the Filtered Summary block. Typically, you want to map the scenario block
instance id output field to the Filtered Summary key input field. Then map a floating
point sub-scenario variable from the scenario block output feed to the Filtered Summary
value input field.

You can specify filters to perform calculations on a sub-group of sub-scenarios. For
example, suppose you wanted to calculate the total number of shares purchased by sub-
scenarios owned by John. To accomplish this, you do the following two things:

Map the scenario block instance owner output field to the Filtered Summary block
filter input field.

Set the Filtered Summary filter parameter to "John".

When the Filtered Summary block receives input from your scenario block, it checks
whether the value of the filter input field is equal to the value of the filter
parameter. If the values are equal, (in the example, they are both "John") the Filtered
Summary block sends output to its output feed. If the values are not equal, the Filtered
Summary block sends no output.

M
Odd Header

Working with Blocks Created from Scenarios

Developing Apama Applications Version 9.10 637

Now suppose that you want to exclude shares purchased by John from your calculation.
That is, you want to know the total number of shares purchased by everyone except
John. To make this happen, you perform one step in addition to the steps already
described. Set the Filtered Summary block's filter is "not equal to" parameter to
true. Now the Filtered Summary block sends output only when the filter input field is
not equal to "John".

You can also remove keys and their associated values from the Filtered Summary
block's internal datastore. This lets you exclude data from certain sub-scenarios from the
calculations. You do this with the deleteKey operation and the keyToDelete parameter.
One way to do this is to define a global rule that watches for sub-scenarios to terminate.
When a sub-scenario terminates, you can specify its instance ID as the key and remove
the data for that key from the Filtered Summary block's store of data.

M
Even Header

Developing Apama Applications Version 9.10 638

M
Odd Header

File Definition Formats

Developing Apama Applications Version 9.10 639

20 File Definition Formats

■ Function definition file format ... 640

■ Block definition file format .. 643

M
Even Header

File Definition Formats

Developing Apama Applications Version 9.10 640

This section describes the formats of Apama's function definition and block definition
files. It is important that developers adhere strictly to these formats when developing
functions and blocks to be used in Apama scenarios.

Understanding the XML format is especially important for developers creating
functions, because the function editor in Software AG Designer lets you work directly on
a function definition file's XML code. Function definition files have an .fdf extension.

On the other hand, block developers are shielded from most of a block definition
file's XML code by the Apama block editor, which automatically generates the block's
boilerplate code and allows input only in sections of the file where user input is
appropriate. Block definition files have a .bdf extension.

Function definition file format
A function definition file contains metadata that describes the function plus EPL code
that implements the function. The topics below describe these pieces.

Defining metadata in function definition files
The metadata in a function definition file has the following format:
<function name="string" display-string="string" return-type="string">
 <version>
 <id>version_number</id>
 <date>version_date</date>
 <author>version_author</author>
 <comments>internal_info_about_function</comments>
 </version>
 <description>
 description_of_what_function_does--appears_in_function_catalog
 </description>
 [<imports>
 <import library="string" alias="string"/>...
 </imports>]
 <parameters>
 [<fixed-parameter name="string" type="string"/>] ...
 </parameters>
 (EPL in a code element goes here)</function>

The top level function element must specify the following three aributes:

name — Logical name of the function. To avoid function conflicts in Event Modeler,
the value of this aribute must be unique across all .fdf files in each directory.

When you write the EPL code that implements the function, you specify #name#
in place of the name of the function. When you use the function in a scenario, the
Event Modeler replaces #name# with the value you specify for the function name
aribute. When the Event Modeler does this, it adds an identifier to the name you
specify to ensure that the function name is unique.

display-string — Function name that the rules editor displays. When you want
to use this function in a rule, this is the name that you select from the menu of

M
Odd Header

File Definition Formats

Developing Apama Applications Version 9.10 641

functions. You might want to give your function a short name, but specify a more
descriptive name for the value of the display-string aribute.

return-type — Type of the value returned by the function. The table below shows
the values you can specify for the return-type aribute, and the Event Modeler
types these values map to:

Value of return-type Attribute Maps to This Event Modeler Type

String text

float number

enumeration choice

boolean true/false

Defining the version element

The version element must contain one of each of the following elements in the
following order. Use the version element to maintain updates to your function. In
the Function Catalogs panel, when you click a function, the values you specified in the
version element (except for the contents of comments) appear in the middle pane.

id — Identifier for this version of your function. Typically, a version number.

date — Date the function was wrien.

author — Name of the person who wrote the function.

comments — Any information about the function that you want to provide. This
information appears only in the .fdf file; it does not appear in the Event Modeler.

For example:
<version>
 <id>1.0</id>
 <date>7 November 2006</date>
 <author>Matthew Amos</author>
 <comments>External function</comments>
</version>

Defining the description element

After the version element, there is a description element that describes what the
function does. The text you enter in the description element appears in the middle
pane of the Function Catalogs panel. For example:
<description>
 Convert a string to a number, and return the number.
</description>

M
Even Header

File Definition Formats

Developing Apama Applications Version 9.10 642

Defining the imports element

The optional imports element provides a place to specify any plug-ins required by your
function. Any plug-ins you specify must be wrien in the correlator plug-in API. The
imports element can contain any number of import elements. Each import element
must contain the following aributes:

library — Name of the file that contains the plug-in required by your function.

alias — Name of the plug-in in the code element of the function definition
file. When you write the EPL code that implements the function, you specify
#alias_value# as the name of the plug-in. When you use the function in a scenario, the
Event Modeler replaces #alias_value# with the name of the function in the specified
library.

For example:
<imports>
 <import library="TimeFormatPlugin" alias="timePlugin"</import>
</imports>

In the code element, you would specify something like the following:
return #timePlugin#.formatTime

Defining the parameters element

After the description element, or imports element if there is one, there is a
parameters element. The parameters element defines the function's parameters. A
function can have

No parameters. The .fdf file must still contain the parameters element, but it is
empty. For example:
<parameters/>

A sequence of one or more fixed parameters. Each fixed parameter has a specified
name and a specified type. In the function code, you must specify any fixed
parameters in the same order in which you define them in the parameters element.

To define fixed parameters, specify one or more fixed-parameter elements. Each
fixed-parameter element contains a name aribute and a type aribute. The value
of the name aribute indicates the name of the fixed parameter. The value of the
type aribute indicates the type of the fixed parameter and must be string, float,
enumeration, or boolean. For example:
<parameters>
 <fixed-parameter name="condition" type="boolean" />
 <fixed-parameter name="true_result" type="string" />
 <fixed-parameter name="false_result" type="string" />
</parameters>

When you display functions in the Event Modeler Catalogs panel, you can click on a
function and then expand parameters to view the parameters required by that function.
When you execute the function, each fixed parameter is required.

M
Odd Header

File Definition Formats

Developing Apama Applications Version 9.10 643

Defining EPL code in function definition files
In a function definition file, the last element in the function element is the code
element. The code element contains one CDATA section that contains EPL code that
defines one action. The requirements for the EPL code are as follows:

The parameters and types that the EPL defines must match the parameters and types
specified in the parameters element.

The return type specified in the EPL code must match the type specified for the
functionreturn-type aribute.

Specify the name of the action as #name#.

Specify the name of a plug-in as #alias_value#.

The function must be valid EPL code.

For example:
<code><![CDATA[
 action #name#(float f) returns float {
 return f.abs();
 }]] >
</code>

The function can use local variables. To use a scenario variable, assign its value to a
function parameter.

Block definition file format
This section describes the format of the block definition file (.bdf). This is a readable
XML text document. Block definition files are generated automatically by Software
AG Designer. When these files are generated, Software AG Designer creates all the
XML code for specifying the block's metadata and defining its interface. The task of the
developer is to add the code that implements the block's behavior.

All editing of .bdf files should be done in the Apama block editor.

Block definition file DTD
The document must comply with the XML Document Type Definition bdf.dtd. This file
is included in the Apama installation's etc directory. This description of the file format
is presented for troubleshooting purposes and general background information.

When you create a new block as part of a project in Software AG Designer, the best
practice is to locate it in the project's default blocks directory. This directory is found
in the project's catalogs directory. The block directory has a name in the form
<project_name> blocks. So, for example, the default block directory of a project
named My_Project will be catalogs\My_Project blocks.

M
Even Header

File Definition Formats

Developing Apama Applications Version 9.10 644

If you place your block in the Apama project's default block directory, scenarios created
in the project will automatically find them and make them available in Event Modeler
when you are displaying the scenario.

Software AG Designer assigns the name of the file as follows:
Block Name v version_number .bdf

For example, the block whose <name> aribute is Database Retrieval would be
defined in the file Database Retrieval v1.0.bdf and stored in a folder called
Database Retrieval.bdf. This convention makes it easy to browse multiple versions
of the block within a block catalog when using the Event Modeler. Note that this naming
and folder placement (and creation) is all done automatically.

Block definition file encodings
Software AG Designer and Event Modeler always read and write block definition files in
UTF-8.

XML elements that define a block
Here are the list of XML element needed to define a block, arranged to show the
hierarchical ordering. The elements are described in the table that follows the list:
<block>
 <version>
 <id> </id>
 <date> </date>
 <author> </author>
 <comments> </comments>
 </version>
 <description> </description>
 <properties parallel-aware="false" deprecated="false">
 <input-feeds>
 <feed>
 <description> </description>
 <field>
 <description> </description>
 <validation> </validation>
 </field>
 </feed>
 </input-feeds>
 <output-feeds>
definition identical to fields in input feeds
 </output-feeds>
 <parameters>
 <field>
definition identical to fields in input and output feeds
 </field>
 </parameters>
 <operations>
 <operation>
 <description> </description>
 </operation>
 </operations>
 </properties>
 <code> </code>
</block>

M
Odd Header

File Definition Formats

Developing Apama Applications Version 9.10 645

The following table lists and describes the XML elements used to define a block:

Element Description

<block> The root element in any .bdf file. This element has a
single text (CDATA) aribute, <name>, which must define
the name of the block. This element must contain the
<version>, <description>, <properties>, and <code>
child elements.

<version> The block's version. This element must contain the <id>,
<date>, <author>, and <comments> child elements.

<id> From an XML point of view, this element can contain any
character data (#PCDATA), but it should be set to indicate
the version number of the block, for example, 1.0 or
1.1. The version number is used to distinguish different
versions of the block in the catalog browser within the
Event Modeler. This version number must be the same
as that encoded within the .bdf filename itself. For this
reason, if the block is generated by the Block Builder, the
content of this element is automatically used to name the
.bdf file, in conjunction with the <name> element; see the
description of the <block> element. This element has no
aributes.

<date> The date when the block was authored. This information
is just for the block author's future reference. This element
takes any character data (#PCDATA). It has no aributes.

<author> The block's author. This information is just for future
reference. This element takes any character data
(#PCDATA). It has no aributes.

<comments> Describes any changes that have been made to the block
in this version. This element takes any character data
(#PCDATA). It has no aributes

<description>

(child of <block>)

Can contain any character data (#PCDATA) that
informatively describes the purpose of this block. As this
information appears within the block catalog browser in
the Event Modeler, it is useful to provide a brief summary
of the block's functionality. It has no aributes.

<properties> Describes the interface of the block. This element
must contain the <input-feeds>, <output-feeds>,

M
Even Header

File Definition Formats

Developing Apama Applications Version 9.10 646

Element Description
<parameters>, and <operations> child elements. This
element can also contain the two Boolean aributes
"parallel-aware" and "deprecated". When the
parallel-aware aribute is set to true, the block can
be used in a parallel scenario. When the deprecated
aribute is set to true, the block has been deprecated.

<input-feeds> List all the input feeds of this block. This element can
include zero or more <feed> child elements within it. It
has no aributes and cannot contain any text.

<feed> Represents either an input feed or an output feed,
depending on where it occurs within the XML document.
<feed> has two aributes, id and name. id is optional.
If supplied, it must be a unique string that distinguishes
the feed from all other input or output feeds. The name
aribute must also be unique, but only across input feeds
or output feeds. The block definition in the EPL code
defines an action type definition that corresponds to this
feed and that takes an argument for each field in the feed.

This element must contain the <description> and
<field> child elements.

<description>

(child of <feed>)

Describes the purpose and use of the feed and appears by
the block catalog browser in the Event Modeler.

<field> The <feed> element can include any number of <field>
elements. Each represents a field within the feed in
question. The action in the corresponding EPL code that
updates according to an input feed or sends data to an
output feed must accept an argument for each field in
the feed. The arguments must be in the same order as
the fields defined in the XML document. A <field>
element has two aributes, id and name. It is highly
recommended to include the id aribute, it is optional
only for backwards compatibility. It must be a unique
string that distinguishes the field from all other input or
output fields. name, a string, must also be unique but only
within the feed the field belongs to.

This element must contain the <description> and
<validation> child elements.

M
Odd Header

File Definition Formats

Developing Apama Applications Version 9.10 647

Element Description

<description>

(child of <field>)

Describes the purpose and use of the field and appears by
the block catalog browser in the Event Modeler.

<validation> Although the DTD indicates this element is optional, this
is just for backwards compatibility with older blocks. This
element is required, and will be added automatically with
default values applied when the block is used in the Event
Modeler if a <validation> is unspecified. This element
defines the type of the field.

If the field is of the scenario type string, float, integer
or boolean, then no child elements are required within
the <validation> element, whereas if the field is
of type enumeration, then an <enumeration> child
element should be included. Note that the first four types
correspond to the types of the same name in the EPL
code, whereas enumeration is really a string in the EPL
code.

<validation> includes nine aributes, whose relevance
depends on the value entered for the first aribute, type.
This can only take the values string, float, integer,
enumeration or boolean, and is required.

The other aributes, which are all optional, are
minlength, maxlength, minvalue, maxvalue, unique,
mutability, stringcase, and trim.

Note that these constraints are not enforced in this version
of Event Modeler and are therefore not documented.

<output-feeds> Lists all the output feeds of this block. To do this, you can
include zero or more <feed> child elements within it, in
the same way as for <input-feeds>.This element has no
aributes and cannot contain any text.

<parameters> This element should list all the configuration parameters
of the block. The functionality of a block should be
configured primarily through parameters. Like the fields
in input and output feeds, the whole set of parameters
must correspond to an initialization event whose field
parameters correspond to the block parameters, in the
same order. Furthermore, for each parameter there
must be an event which enables that parameter to be
set independently of the others and after the initial
configuration.

M
Even Header

File Definition Formats

Developing Apama Applications Version 9.10 648

Element Description

This element takes no aributes and contains zero
or more <field> child elements, one for each block
parameter.

<field>

(child of
<parameter>)

Each <field> child element corresponds to an actual
parameter of the block, and the XML definition is
identical as that for fields in input or output feeds. As
described elsewhere, each <field> further embeds a
<validation> element, where the <type> aribute is the
most relevant. The type used here must correspond to the
equivalent type in the EPL code.

<operations> Represents any operations implemented in the block.
Operations are chunks of functionality wrien in EPL
that could be invoked by a scenario. This element has no
aributes, and contains zero or more <operation> child
elements.

<operation> Describes an operation defined in the block. There should
be an instance of this element for each operation in the
block. This element takes two aributes, id and name.
Both aributes are XML CDATA elements. id is optional
only for backwards compatibility reasons, and should
be specified. If not supplied, id will automatically
be added in a way that makes the operation element
unique. name, the string name for the operation, should
also be made unique across the set of operations. In
addition, each <operation> element should contain a
<description> child element. This element can contain
any character data that constitutes a relevant description
of the functionality that is being made available. Its
description appears by the block catalog browser in the
Event Modeler.

Note that the XML definition of an operation consists
solely of a name and a description. If you wish to pass
parameters to an operation, you should use the block
parameter mechanism.

<code> The actual EPL template code that implements the
interface and functionality of the block. For XML
validation purposes, any character data can be supplied
here (#CDATA), although the content must in fact be very
carefully wrien. The contents of this section, which can

M
Odd Header

File Definition Formats

Developing Apama Applications Version 9.10 649

Element Description
only partly be generated by Software AG Designer, are
discussed in detail in "Creating Blocks" on page 591.

M
Even Header

Developing Apama Applications Version 9.10 650

M
Odd Header

Developing Apama Applications in Java

Developing Apama Applications Version 9.10 651

III Developing Apama Applications in Java

■ Overview of Apama JMon Applications ... 653

■ Defining Event Expressions ... 673

■ Concept of Time in the Correlator ... 697

■ Developing and Deploying JMon Applications ... 703

M
Even Header

Developing Apama Applications in Java

Developing Apama Applications Version 9.10 652

Developing Apama Applications in Java provides information and instructions for using
Apama's in-process API for Java, called JMon, to write applications that run on the event
correlator. To develop an Apama application you can use the correlator's native Event
Processing Language (EPL) or JMon, or Apama's Event Modeler. This document focuses
exclusively on how to use JMon to write an application that runs on the correlator.

JMon reference documentation is provided in Javadoc format.

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 653

21 Overview of Apama JMon Applications

■ Introducing JMon API concepts ... 654

■ About event types .. 655

■ About monitors ... 661

■ About event listeners and match listeners ... 662

■ Description of the flow of execution in JMon applications ... 665

■ Parallel processing in JMon applications ... 665

■ Identifying external events ... 668

■ Optimizing event types ... 669

■ Logging in JMon applications .. 670

■ Using EPL keywords as identifiers in JMon applications ... 671

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 654

The event correlator is Apama's core event processing and correlation engine. Interfaces
to the correlator let you inject monitors that

Analyze incoming event streams to find paerns of interest

Specify the actions to undertake when the correlator identifies such paerns

You can use the Apama JMon API to write applications that are to be deployed on the
correlator.

The correlator embeds a Java Virtual Machine in which Apama JMon applications can be
loaded and run.

The JMon API provides a suite of Java classes that allow a developer to build a Java
application, and then inject it into the correlator. Apama JMon applications can define
listeners, which specify paerns and sequences of events to look for and actions to carry
out when the correlator detects those events.

You can develop Apama JMon applications in Software AG Designer. When you
use Software AG Designer to develop an application, it can automatically generate a
framework for your JMon event and JMon monitor files.

For more information on developing JMon applications in Software AG Designer, see,
"Adding a new JMon application", "Adding a JMon monitor", and "Adding a JMon
event" in Using Apama with Software AG Designer.

Note: Apama includes the in-process API for Java (JMon) and the client API for
Java. In most cases, the context makes it clear which API the discussion is
addressing. When this is not clear, the APIs are referred to as the JMon API or
Apama client API for Java.

Introducing JMon API concepts
This section introduces the main concepts behind programming the functionality within
Apama using JMon. It describes how events are modeled in JMon and how they are
used to drive and trigger listeners within JMon monitor classes.

Apama is designed to fit within an event (or message) driven world. In event driven
systems information is propagated through units of information termed events or
messages. Conceptually, an event typically represents an occurrence of a particular
item of interest at a specific time, and is usually encoded as an asynchronous network
message.

Apama is designed to process thousands of these event messages per second, and to sift
through them for sequences of interest based on their contents as well as their temporal
relationships to each other. When writing Apama applications using JMon, the Java
code you write informs the correlator of the sequences of interest and, when matching
event sequences are detected, these are passed to your JMon code for handling. Apama's
correlator component is capable of looking for hundreds of thousands of different event
sequences concurrently.

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 655

In order to program the correlator using JMon, a developer must write their application
as a set of Java classes that implement the JMon APIs. This programming model is
similar to writing Enterprise JavaBeans intended for use in an application server. These
Java classes then need to be loaded (or ‘injected') into the correlator, which instantiates
and executes them immediately.

Almost all of the standard language functionality provided by Java and its libraries can
be used in JMon applications, just as in any other Java applications. However, the power
of the correlator is only truly leveraged by invoking its event matching, correlation
and event generation capabilities. As streams of events are passed into a correlator,
the listeners defined in JMon applications sift through the events looking for specific
sequences of interest matching a variety of temporal constraints. Once a listener triggers,
a method is invoked on a Java object, the Match Listener object. The developer specifies
this object when the listener is created.

Three kinds of Java class objects can be loaded into the correlator; event types, monitors
and match listeners.

Event type classes serve to define the event types that the correlator can accept from
external sources and carry out correlations on.

Monitor classes program the correlator. They define what event paerns the
correlator must look for and allow arbitrary Java code to be executed.

Match listeners provide a method that is called when a specific event sequence is
detected.

These three Java class types will be now be discussed in detail.

About event types
Apama events are strongly typed. Each event must be of a specific known type,
henceforth called the event type. An event type defines the name of the event, and its
particular set of parameters. Every parameter is named and can be one of a selection of
types. Every event instance of a given event type is therefore identical in structure; every
instance has the same set (and order) of parameters.

Before the correlator can understand and process events of a specific event type, it needs
to have been provided with an event type definition. This allows it to understand the event
messages it is passed, create optimal indexing structures, and allows listeners to be set
up to look for event sequences involving events of that type.

An event type definition defines the event type's name and the name, type and order of
each of its parameters. Parameters can be of any of the following types:

Java standard types String, long, double, boolean or Map.

Java arrays.

com.apama.jmon.Location type — This type corresponds to either a spatial point
represented by two coordinates, or a rectangular space expressed in terms of its two
bounding corners.

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 656

Apama's JMon API supports Java generic maps. Apama recommends that you use these
when possible instead of the Event.getMapFieldTypes() method. Doing so lets you
gain the benefits of compile-time type safety as well as a simpler class definition.

However, while it is valid to declare a parameter to be an array of generic maps,
assignment of values to the map elements is not type-safe, and will be rejected
by the Java compiler. If you need a parameter that is an array of maps, use the
Event.getMapFieldTypes() method instead of generic maps.

You can nest a plain Map as a value (not a key) at any depth in a parameterized Map.
You cannot nest a parameterized Map in a plain Map. This is because you would not be
able to specify the parameterized types to be returned from the getMapFieldTypes()
method. Of course, you can nest a parameterized Map as a value (but not a key) in a
parameterized Map. For example:

EPL:
Event BadComplexEventExample {
 Dictionary < string , dictionary < string, SimpleEvent > > complex;
}

Java:
Import java.util.Map;
Import java.util.HashMap;
Import com.apama.jmon.Event;
Public class BadComplexEventExample extends Event {
// By using a non-parameterized map you lose the information that the field
// is a dictionary with values that are also dictionaries.
Public Map complex;

Public BadComplexEventExample() {
 This(new HashMap());
}

Public BadComplexEventExample(Map complex) {
 This.complex = complex;
}
}

See also the definition of ComplexEvent in "About event parameters that are complex
types" on page 659.

An event can embed an event (potentially of a different type) as a parameter.

Simple example of an event type
An event type is defined as a Java class as per the following example,
/*
 * Tick.java
 *
 * Class to abstract an Apama stock tick event. A stock tick event
 * describes the trading of a stock, as described by the symbol
 * of the stock being traded, and the price at which the stock was
 * traded
 */

import com.apama.jmon.Event;

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 657

public class Tick extends Event {
 /** The stock tick symbol */
 public String name;

 /** The traded price of the stock tick */
 public double price;

 /**
 * No argument constructor
 */
 public Tick() {
 this("", 0);
 }

 /**
 * Construct a tick object and set the name and price
 * instance variables
 *
 * @param name The stock symbol of the traded stock
 * @param price The price at which the stock was traded
 */
 public Tick(String name, double price){
 this.name = name;
 this.price = price;
 }
}

By Java programming conventions, the previous definition would need to be provided
on its own in a stand-alone file, for example, Tick.java.

The definition must import the definition of the Event class. This is provided as part of
the com.apama.jmon package provided with your Apama distribution. See "Developing
and Deploying JMon Applications" on page 703 on installation and deployment for
details of where to locate this package.

Event is the abstract superclass of all user classes implementing desired event types.
Then we must define our new event class as a subclass of the Event type.

The user-defined event class must have three primary elements:

A set of public variables that define the event's parameters

A ‘no argument' constructor, whose purpose is to construct an instance of the event
with the parameters set to default values

A constructor whose parameter list corresponds (in type and order) to the event's
parameters. This constructor allows creation of an instance of the event with specific
parameter values.

In the above example the event is called Tick, and it has two parameters, name, of type
String, and price, of type double. The previous definition may be considered a simple
template for how to write all event definitions.

Note: Non-public (like private and protected) variables are not considered to be
part of the event schema.

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 658

Extended example of a JMon event type
Let us now consider an extended example:
package test.jmon.example;

import java.util.Map;
import com.apama.jmon.*;

/*
 * TestEvent.java
 *
 * Class to abstract an Apama event whose primary purpose is to
 * showcase how to define an event class containing parameters of
 * all the allowed types, including arrays and Maps.
 */

public class TestEvent extends Event {

 // example of parameters of the basic types
 public long primitiveInteger;
 public double primitiveFloat;
 public boolean primitiveBoolean;
 public String referenceString;
 // example of parameters consisting of arrays of the basic types
 public long[] sequenceInteger;
 public double[] sequenceFloat;
 public boolean[] sequenceBoolean;
 public String[] sequenceString;

 // a nested event of type EmbeddedTestEvent
 public EmbeddedTestEvent referenceNestedTestEvent;

 // a parameter of type Location
 public Location referenceLocation;

 // a parameter of type Map
 public Map<long, String> dictionaryIntegerString;
. . .

}

Comparing JMon and EPL event type parameters
You might already be familiar with EPL, the Apama complex event processing scripting
language through which the correlator can be programmed as an alternative to JMon.
Event types defined in JMon can be used in EPL, and vice-versa. JMon event type
parameters map to EPL parameter types as follows:

JMon Type Equivalent EPL Type

long integer

double float

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 659

JMon Type Equivalent EPL Type

boolean boolean

String string

Location location

array sequence (of the same type)

Map dictionary (with the same key and
value types)

com.apama.Event or its subclass event (with the same equivalent
subset of fields as defined in this
table)

The correlator's performance can be optimized by wildcarding event type definitions
where appropriate. This procedure is described in "Optimizing event types" on page
669.

About event parameters that are complex types
It is possible in both EPL and JMon to declare a field of an event definition to be a
complex type. For example, the SequenceEvent definition below defines an event that
is constructed from a sequence of DataHolder events, which in turn contain a string and
an integer. This is defined in EPL in two events thus:
event DataHolder {
 string name;
 integer age;
}

event SequenceEvent {
 sequence <DataHolder> complex;
}

An example constructed SequenceEvent event is show below:
SequenceEvent([DataHolder("kap", 1), DataHolder("gbs", 2)])

The equivalent event definitions for the above in Java are defined below:
import com.apama.jmon.Event;

public class DataHolder extends Event {
 /** Event fields */
 public String name;
 public long age;

 /** No argument constructor
 */
 public DataHolder () {
 this("", 0);

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 660

 }
 /** Construct a DataHolder object and set the instance variables
 */
 public DataHolder (String n, long a) {
 name = n;
 age = a;
 }
}

import com.apama.jmon.Event;

public class SequenceEvent extends Event {

 /** Event field */
 public DataHolder[] people;

 /** No argument constructor
 */
 public SequenceEvent() {
 this(new DataHolder[]{});
 }

 /** Construct a SequenceEvent object and set the instance variable
 */
 public SequenceEvent(DataHolder[] p) {
 this.people = p;
 }
}

Sample Java code to create and emit a SequenceEvent event is shown below:
 s = new SequenceEvent(new DataHolder[] {new DataHolder("kap", 1),
 new DataHolder("gbs", 2)});
s.emit();

Events can also include Map types, which are equivalent to EPL dictionary types. When
you use Map types, Apama recommends that you use generic maps whenever you can.
For example, in EPL the following event is a dictionary of dictionaries and each internal
dictionary is a sequence of SimpleEvent types:
event ComplexEvent {
 dictionary <string,
 dictionary <string, sequence<SimpleEvent> > > complex;
}

You can implement this in Java as follows:
import java.util.Map;
import java.util.HashMap;
import com.apama.jmon.Event;
import com.apama.jmon.annotation.EventType;

@EventType(description = "Event that contains a field with a complex structure")
public class ComplexEvent extends Event {

 /** Event field */
 public Map<String, Map<String, SimpleEvent[]>> complex;
 /**
 * No argument constructor
 */
 public ComplexEvent() {
 this(new HashMap<String, Map<String, SimpleEvent[]>>());
 }

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 661

 /**
 * Construct a ComplexEvent object, set the instance variable complex
 *
 * @param complex The dictionary/Map to use as the field value
 */
 public ComplexEvent(
 Map<String, Map<String, SimpleEvent[]>> complex) {
 this.complex = complex;
 }
}

This example is provided in its complete form as a sample. It is distributed in the folder
samples/java_monitor/complex_event/.

Non-null values for non-primitive event field types
When the correlator creates an event to pass to the JMon code, it ensures that all fields
of a non-primitive type have a non-null value. Note that this is different from the Java
default, which is to allow null values for non-primitive types.

The com.apama.jmon.Event default constructor uses reflection to initialize non-
primitive null fields with the following values:

sequence — an empty array of the specified type

dictionary — an empty java.util.HashMap object

string — an empty java.lang.String object

event — a default construction of the event, with recursive initialization for any of
its non-primitive fields that have null values.

In your application, if you explicitly assign a null value to a non-primitive event field,
and your application tries to emit, enqueue, or route that event, the correlator logs an
error and terminates your application.

About monitors
Monitor classes configure the activity of the correlator. This is analogous to how an
Enterprise JavaBean effectively defines the activity of an application server.

All monitor classes must implement the com.apama.jmon.Monitor interface and
define an onLoad method. When a monitor class is loaded into the correlator, it is
instantiated as an object and its onLoad method is executed. In Java parlance, this would
be equivalent to the static void main (args[]) method.

Most Java code (with certain limitations) can be executed within the onLoad method,
although its primary purpose is probably to configure one or more asynchronous
listeners for specific events or event sequences.

A monitor class must define a "no argument" constructor. The Java code within the
correlator uses this when the class definition is loaded.

Below is a minimal monitor:
import com.apama.jmon.*;

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 662

public class Simple implements Monitor {
 /**
 * No argument constructor used by the jmon framework on
 * application loading
 */
 public Simple() {}

 /**
 * Implementation of the Monitor interface onLoad method.
 * Does nothing.
 */
 public void onLoad() {
 }
}

The above monitor class does nothing and is shown here as a template for how to define
a monitor class.

EPL. Although there are similarities, the concept of a monitor in EPL and in JMon is not
the same. The EPL monitor is a very powerful custom programming structure, whereas
in JMon a monitor class is primarily a standard Java class with an entry method that gets
automatically executed upon loading (as described in the topics below).

About event listeners and match listeners
For a monitor class to leverage the intrinsic features of the correlator, it must set up one
or more listeners.

A listener is a conceptual entity whose function is to sift through all incoming event
streams looking for a particular event or sequence of events. The event or sequence of
events of interest is represented as an event expression.

The simplest way of seing up a listener is by creating an instance of an
EventExpression and then specifying a MatchListener object that gets triggered when
the expression becomes true, that is, when a suitable event or event sequence is detected.
A more efficient alternative is to use a prepared event expression, which is described in
"Optimizing event types" on page 669.

A match listener is a Java object that implements the com.apama.jmon.MatchListener
interface and implements the match method. This method is called by the correlator
when the event expression it is registered with is detected.

Example of a MatchListener
The following example illustrates this functionality:
import com.apama.jmon.*;
public class Simple implements Monitor, MatchListener {

 /**
 * No argument constructor used by the jmon framework on
 * application loading
 */
 public Simple() {}
 /**
 * Implementation of the Monitor interface onLoad method. Sets up
 * a single event expression looking for all Tick events

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 663

 * with a trade price of greater than 10.0. This class instance
 * is added as a match listener to the event expression.
 */
 public void onLoad() {
 EventExpression eventExpr = new EventExpression("Tick(*, >10.0)");
 eventExpr.addMatchListener(this);
 }

 /**
 * Implementation of the MatchListener interface match method.
 * Prints out
 * a message when the listener triggers
 */
 public void match(MatchEvent event) {
 System.out.println("Pattern detected");
 }
}

This example illustrates several new concepts.

Consider the onLoad method. Firstly it creates an event expression object variable. This
object, of type com.apama.jmon.EventExpression, represents an event, or sequence
of events, to look for. The constructor of an EventExpression is passed a string that
defines the actual event expression.

As the syntax of an event expression will be illustrated in the next section it is enough to
say that this event expression is specifying “the firstTick event whose price parameter
is greater than the value 10.0”.

Then, a match listener is registered with the newly created event expression object. A
match listener can be any object that implements the com.apama.jmon.MatchListener
interface and defines the match(MatchEvent event) method. For the sake of simplicity,
the Simple monitor class has here been wrien to also implement the MatchListener
interface, and therefore the statement,
eventExpr.addMatchListener(this);

is passing this as the reference to a suitable MatchListener.

Once a match listener has been registered with an event expression the correlator creates
a listener entity to start looking for the specified event expression.

Listeners are asynchronous. Hence the match method may be invoked at any time
subsequent to the activation of the listener, but always after all Java code in the current
method finishes executing. Therefore in this case all Java statements in the onLoad
method would finish being executed before match is called after a match.

Defining multiple listeners
A monitor can define any number of event expressions, and create any number of
listeners. The following code,
public void onLoad() {
 EventExpression eventExpr1 = new EventExpression("Tick(*, >10.0)");
 EventExpression eventExpr2 =
 new EventExpression("NewsItem(\"ACME\", *)");

 eventExpr1.addMatchListener(this);
 eventExpr2.addMatchListener(this);

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 664

}

is creating two event expressions, eventExpr1 and eventExpr2. Then each is assigned
a match listener, thus activating two distinct listeners. The fact that both are being
assigned the same match listener object, i.e. this same object this, is inconsequential. It
just means that the same method, the match method of this object, will be called when
the correlator detects either of the event expressions.

As already described, creating a listener is an asynchronous operation that returns
immediately. In the above code, in practice both listeners are created concurrently. It
is not possible for the eventExpr1 listener to trigger before the eventExpr2 listener
is created. However, once the enclosing method's code has completed execution, the
listeners can trigger at any time, and independently of each other.

Removing listeners
A MatchListener instance that is no longer connected to an event expression, and
to which there are no references, is garbage collected in the usual way. In some
situations, you might want to be notified when the correlator removes its reference
to the MatchListener (when it can no longer fire). For example, you might need this
notification if the MatchListener has unmanaged resources (for example, open files)
that need to be explicitly cleaned up when it is no longer needed, or your application has
other references to the MatchListener that need to be removed when the listener can
no longer fire so that it can be garbage collected. In those situations, you can define your
listener so that it implements the com.apama.jmon.RemoveListener interface. There
is no requirement to implement this interface. It is up to you to determine whether you
need it.

The RemoveListener interface extends the MatchListener interface by providing
one additional method: removed(). If you implement the RemoveListener interface,
the correlator calls your implementation of the removed() method in the following
situations:

The application removes your listener from the event expression it is aached to.

The event expression your listener is aached to is in a state that will never match.
For example, on A() within (10.0) after 10 seconds have elapsed without an A().

In the following example, the removed() method is called because the event expression
dies after 10 seconds.
import java.util.HashMap;
import com.apama.jmon.*;

public class Test implements Monitor {
 public Test() {}
 public void onLoad() {
 EventExpression e = new EventExpression("TestEvent() within(10.0)");

 e.addMatchListener(new RemoveListener() {
 public void match(MatchEvent event) {
 System.out.println(Correlator.getCurrentTime() +
 ": Received match");
 }
 public void removed(EventExpression e) {
 System.out.println(Correlator.getCurrentTime() +

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 665

 ": Received removed");
 }
 });
 }
}

Description of the flow of execution in JMon applications
The flow of execution of JMon applications through the correlator at any given time
is single threaded. All the listeners of JMon applications are fired in a single-threaded
manner. However, during the lifetime of a JMon application, its execution may be
moved among a number of threads by the correlator. This is particularly important since
thread-local variables will not behave in the same way as you would expect them to in a
conventional Java application.

When a number of monitor classes are loaded into the JVM within the correlator their
onLoad methods are executed in turn, in the same order as the injected classes, and any
listeners created are set up and activated.

Control then reverts to the correlator, which takes in one event from its input queue.
This event is examined by each of the active listeners in turn (the order is undefined),
and each one that triggers immediately calls the match() method in its registered
MatchListener object.

Once all the listeners have processed the event (and hence all match methods
terminated), control reverts to the correlator to process the next input event. Note that
since events can also match listeners in EPL monitors, these would also be processed
before control reverts.

However, JMon applications can create other Java threads. In such multi-threaded
JMon applications, the correlator has no control of these additional Java threads.
Consequently, you should never route or emit an event from a Java thread that was not
the thread in which the correlator invoked the JMon application. Doing this results in
unpredictable behavior. To communicate from your JMon application to other parts of
the correlator, use the enqueue() method or preferably, the enqueueTo() method.

Parallel processing in JMon applications
By default, the correlator operates in a serial manner. If you want, you can implement
contexts for parallel processing. You can create contexts only with EPL but you can then
use those contexts from your Apama JMon code. This section provides information
about how to use contexts in Apama JMon applications.

You can find a sample JMon application that implements the use of contexts in the
samples\java-monitor\context directory of your Apama installation directory.

Overview of contexts in JMon applications
The Apama JMon API provides the com.apama.jmon.Context type. This class
corresponds to the EPL context type, but with a more limited set of features:

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 666

A JMon event definiton can contain a Context type field. This lets you transfer a
reference to a context to and from an Apama JMon application. You cannot pass
context references between the correlator and your Apama JMon application on their
own.

You can enqueue events to

Particular contexts:Event.enqueueTo(Context c)

A list or array of contexts:
Event.enqueueTo(java.util.List<Context> ctxList)
Event.enqueueTo(Context[] ctxList)

See "Emiing, routing, and enqueuing events" on page 680.

You can call Context.getCurrent() to obtain a reference to the context that a piece
of code is running in. See "Obtaining context references" on page 308.

The Context class provides accessor methods for context properties such as context
name and context ID.

Using contexts in JMon applications

To use EPL contexts in JMon applications

1. In EPL code, create a context that you want to use in your JMon application.

2. In your JMon application, define an event type that contains a Context field.

3. Use this event type to obtain a reference to the context you created in EPL.

4. Use the context reference to enqueue events to that context.

For an example, see the samples\java-monitor\context directory in your Apama
installation directory.

Using the Context class default constructor
The com.apama.jmon.Context class default constructor, public Context(), creates
a dummy context that provides the same functionality as an uninitialized context
variable in EPL. A JMon dummy context does not correspond to an actual correlator
context. The JMon dummy context corresponds to the implicit context that is created
in EPL for uninitialized context variables. The default constructor is provided for
convenience. Use it when you want to enqueue an event to another context from a JMon
application and the event happens to have a context field that contains an irrelevant
value. As with other JMon types, this value cannot be null. Following is an example,
beginning with the event definition:
import com.apama.jmon.*;

public class ContextEvent extends Event {
 public long id;
 public boolean req;
 public Context c;
 public ContextEvent(long id) {
 this.id = id;

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 667

 this.req = true;
 this.c = new Context();
 }
}

Here is the JMon application:
public class SampleJMonApp implements Monitor {
 ...
 public void onLoad() {
 ...
 ContextEvent req = new ContextEvent(service_id);
 ...
 // send requests here
 req.route();
 ...
 EventExpression cexpr =
 new EventExpression("all ContextEvent(*,false,*):ackEvt");
 cexpr.addMatchListener(new MatchListener() {
 public void match(MatchEvent event){
 ContextEvent ackEvt =
 (ContextEvent)event.getMatchingEvents().get("ackEvt");
 // extract the context here
 Context serviceContext = ackEvt.evt;
 ...
 }
 });
 }
 ...
}

Here is the EPL application:
monitor ContextFactory
{
 ...
 action onload() {
 ...
 ContextEvent req;
 on all ContextEvent(*, true, *):req {
 integer svcid;
 ...
 context serviceContext := context("svc");
 ContextEvent ack :=
 ContextEvent(svcid, false, serviceContext);
 route ack;
 ...
 }
 }
 ...
}

Descriptions of methods on the Context class
You can call the following methods on a Context object. For more information, see
"context" on page 790.

public long getId()

Returns the unique identifier for the context. For a Context instance that would
return the following toString() result: "context(2,"context_name",false)",

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 668

the getId() method returns the value 2. This method returns 0 for a Context
instance created with the default constructor.

public String getName()

Returns the name of the context. For example, suppose you create a context with the
following EPL code:

context c := context("test");

If you transfer a reference to this context into your JMon application, a call to the
getName() method on this context instance returns "test".

This method returns an empty string for a Context instance created with the default
constructor.

public String toString()

Returns a string representation of the context instance. This method produces
a string that is identical to the string that EPL produces. For example:
"context(2,"context_name",false)". The first item in the string, 2 in
this example, is the context's unique identifier. The second item in the string,
"context_name", is the name of the context. The third item in the string is the value
of the receivesInput boolean flag, which indicates whether the context is public or
private.

This method returns "context(0,"",false)" for a Context instance created with
the default constructor.

For details about public and private contexts, see "Implementing Parallel Processing"
on page 303 and "Creating contexts" on page 306.

public static Context getCurrent()

Returns a Context instance that corresponds to the current correlator context. This
is the context that contains the code that you are calling. Apama executes single-
threaded JMon applications in the main correlator context. Consequently, this
method always returns a a Context instance that references the main correlator
context.

During execution, JMon applications can create new Java threads. Do not confuse
new threads with correlator contexts. The Context.getCurrent() method returns
null when you call it inside newly created Java threads.

Identifying external events
In some situations, you might want to determine whether an event originated outside
the correlator. To do this, call the Event.isExternal() method:
public boolean isExternal()

This method returns true if the event was sent to the correlator by some external process
and that event was then passed into your JMon application.

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 669

Optimizing event types
"About event types" on page 655 introduced event type classes.

The correlator creates several indexing data structures for every event type. The
complexity and efficiency of these data structures depends on the number of parameters
an event has, and therefore ‘smaller' (with less parameters) events are processed more
rapidly.

Therefore, if possible, when designing an application it is preferable to control it using
a number of ‘smaller' event types rather than through a single event type with a large
number of parameters.

Wildcarding parameters in event types
Alternatively, if large event types are unavoidable, you can optimize performance by
reviewing the usage of these event types in JMon, specifically within event templates in
event expressions.

If a parameter of an event is never matched against directly within any event
expressions, that is only '*' (or wildcard) ever appears against it in event templates, then
the event type's definition can be amended to indicate this. This tells the correlator to
ignore this parameter in its internal indexing.

Consider the event type definition presented in "About event types" on page 655.
/*
 * Tick.java
 *
 * Class to abstract an Apama stock tick event. A stock tick event
 * describes the trading of a stock, as described by the symbol
 * of the stock being traded, and the price at which the stock was
 * traded
 *
 */
import com.apama.jmon.Event;

public class Tick extends Event {
 /** The stock tick symbol */
 public String name;

 /** The traded price of the stock tick */
 public double price;

 /**
 * No argument constructor
 */
 public Tick() {
 this("", 0);
 }

 /**
 * Construct a tick object and set the name and price
 * instance variables
 *
 * @param name The stock symbol of the traded stock
 * @param price The price at which the stock was traded

M
Even Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 670

 */
 public Tick(String name, double price){
 this.name = name;
 this.price = price;
 }
}

If all references to this event type in event expressions look similar to this,
Tick("ACME", *)

that is, where the second parameter price is always specified as a *, then this parameter
could be wildcarded in the event type definition.

This can be done by annotating the field in the event type class, as shown here
/** The traded price of the stock tick */
@com.apama.jmon.annotation.Wildcard
public double price;

This definition in the Tick class will override the default behavior, and it lets the
correlator know that it can optimize its indexing by ignoring the price parameter.

As many parameters as desired can be wildcarded in this way. For example, if both
price and name were to be wildcarded in Tick, they should be defined as follows,
/** The stock tick symbol */
@com.apama.jmon.annotation.Wildcard
public String name;

/**The traded price of the stock tick */
@com.apama.jmon.annotation.Wildcard
public double price;

Of course, if you were to do this, then
Tick(*, *)

would be the only valid event template that can be expressed in JMon. Any other
expression would cause a Java runtime error.

Logging in JMon applications
The logging facilities in JMon are provided by Log4j, a publicly available logging library
for Java. These logging facilities are included in com.apama.util.Logger, for which
reference information in Javadoc format is provided (doc\javadoc\index.html in
your Apama installation directory).

Note: Full documentation for Log4j and the Apache Logging Service project can be
found at hp://logging.apache.org.

By default, the JMon classes will log at WARN level. The log level can be changed as
described in the Javadoc for the Logger class. The Javadoc also provides instructions on
how to get a reference to the Logger object in your own code so that you can produce
your own logging output.

To ensure that the correlator can serialize logging behavior, specify that instances of
Logger are static.

http://logging.apache.org

M
Odd Header

Overview of Apama JMon Applications

Developing Apama Applications Version 9.10 671

Using EPL keywords as identifiers in JMon applications
If you use EPL keywords as event name or field identifiers, then in the following
situations you must escape such identifiers by preceding them with hash (#) symbols:

You refer to the JMon identifier in EPL code — You must escape the identifier in the
EPL code that contains the reference.

You refer to the JMon identifier in a JMon event expression — You must escape the
identifier in that JMon event expression.

For example, consider the following Java code:
class test extends Event {
 int id;
 float price;
 int integer;
}

Now suppose you want to write the following EPL code:
on all test(id=7): f {
 print f.toString();
 emit f;
}

No escaping is necessary. However, suppose you want to write this EPL code:
print f.integer.toString();

In this case, you must escape integer as follows:
print f.#integer.toString();

Likewise, you must escape integer in the following JMon event expression:
new EventExpression("all test(#integer > 5)");

For a list of EPL keywords, see "Keywords" on page 920.

M
Even Header

Developing Apama Applications Version 9.10 672

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 673

22 Defining Event Expressions

■ About event templates ... 674

■ Specifying parameter constraints in event templates .. 676

■ Obtaining matching events .. 678

■ Emitting, routing, and enqueuing events ... 680

■ Specifying temporal sequencing .. 681

■ Defining advanced event expressions ... 683

■ Optimizing event expressions .. 695

■ Validation of event expressions ... 696

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 674

Consider this code snippet from the previous example:
public void onLoad() {
 EventExpression eventExpr =
 new EventExpression("Tick(*, >10.0)");
 eventExpr.addMatchListener(this);
}

The highlighted code is creating an event expression, and embeds the following event
expression definition string:
Tick(*, >10.0)

This is the simplest form of an event expression; specifically it contains a single event
template.

In this case, the event expression is specifying “the first Tick event whose price
parameter contains a value greater than 10.0”.

If you are already familiar with EPL, the syntax for writing JMon event expressions is
the same as for EPL event expressions.

About event templates
The first part of an event template defines the event type of suitable events (in this case
Tick), while the section in brackets describes filtering criteria that must be applied to the
contents of events of the desired type for them to match.

In the example at the beginning of the chapter, the first parameter within the event
template has been set to a wildcard (*), specifying that all Tick events, regardless of the
value of their name parameter, are suitable. That is, as long as their second parameter,
price, is greater than 10.The filtering criteria supplied are applied to the event's
contents in the same order as within the event definition for that event type. This is
known as positional syntax.

"Specifying parameter constraints in event templates" on page 676 lists all the filtering
operators (like “>” above) that can be applied to the value of a parameter within an
event template.

Specifying positional syntax
In positional syntax, the event template must define a value (or a wildcard) to match
against for every parameter of that event's type, in the same order as the parameter's
definition in the event type definition. Therefore, for the event type,
public class MobileUser extends Event {
 public long userID;
 public Location position;
 public String hairColour;
 public String starsign;
 public long gender;
 public long incomeBracket;
 public String preferredHairColour;
 public String preferredStarsign;
 public long preferredGender;
 // ... Constructors

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 675

}

a suitable event template definition might look like
MobileUser(*,*, "red", "Capricorn", *, *, *, *, 1)

This can get unwieldy when you are working with event types with a large number
of parameters and very few of them are actually being used to filter on. An alternative
syntax can be used that addresses this. The above can instead be expressed as:
MobileUser(hairColour="red", starsign="Capricorn",
 preferredGender=1)

This is known as named parameter syntax and in this style all other non-specified fields are
set to wildcard.

Given the following event types:
public class A extends Event {
 public long a;
 public String b;

 // ... Constructors
}

public class B extends Event {
 public long a;

 // ... Constructors
}

public class C extends Event {
 public long a;
 public long b;
 public long c;

 // ... Constructors
}

Here are some equivalent event expressions that demonstrate how to use the two
syntaxes:

 Positional Syntax Name/Value Syntax

Using
constants
and literals

on A(3,"string")

on A(=3,="string")

on A(a=3,b="string")

on A(b="string",a=3)

Relational
comparisons

on B(>3) on B(a>3)

Ranges on B([2:3]) on B(a in [2:3])

Wildcards on C(*,4,*)

on C(*,*,*)

on C(b=4)

on C(a=*,b=4,c=*)

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 676

 Positional Syntax Name/Value Syntax

on C()

More details about the operators and expressions possible within event templates are
given in the next section.

Note that it is possible to mix the two styles as long as you specify positional parameters
before named ones. There cannot be any positional parameters after named ones.
Therefore the following syntax is legal:
D(3,>4,i in [2:4])

while the following is not:
E(k=9,"error")

Specifying completed event templates
In some situations, you want to ensure that the correlator completes all work related
to a particular event before your application performs some other work. In your event
template, specify the completed keyword to accomplish this. For example:
on all completed A(f < 10.0) {}

When an event that matches the template comes into the correlator, the correlator

1. Runs all of the event's normal and unmatched listeners.

2. Processes all routed events that result from those listeners.

3. Calls the completed listeners.

Specifying parameter constraints in event templates
The first part of an event template defines the event type of the event the listener is to
match against, while the section in brackets describes further filtering criteria that must
be satisfied by the contents of events of that type for a match.

Event template parameter operators specify constraints that define what values, or range
of values, are acceptable for a successful event match.

Operator Meaning

[value1 : value2] Specifies a range of values that can match. The
values themselves are included in the range to match
against. For example:

stockPrice(*, [0 : 10])

This event template will match a stockPrice event
where the price is between 0 and 10 inclusive. This

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 677

Operator Meaning
range operator can only be applied to double and
long types.

[value1 : value2) Specifies a range of values that can match. The first
value itself is included while the second is excluded
from the range to match against. For example:

stockPrice(*, [0 : 10))

This example will match a stockPrice event where
the price is between 0 and 9 inclusive (assuming the
parameter was of long type).

This range operator can only be applied to double
and long types.

(value1 : value2] Specifies a range of values that can match. The first
value itself is excluded from while the second is
included in the range to match against. For example:

stockPrice(*, (0 : 10])

This example will match a stockPrice event where
the price is between 1 and 10 inclusive (assuming the
parameter was of long type).

This operator can only be applied to double and
long types.

(value1 : value2) Specifies a range of values that can match. The
values themselves are excluded in the range to match
against. For example:

stockPrice(*, (0 : 10))

This example will match if a stockPrice event
where the price is between 1 and 9 inclusive
(assuming the parameter was of long type).

This operator can only be applied to double and
long types.

> value All values greater than the value supplied will satisfy
the condition and match.

This operator can only be applied to double and
long types.

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 678

Operator Meaning

< value All values less than the value supplied will satisfy
the condition and match.This operator can only be
applied to double and long types.

>= value All values greater than or equal to the value supplied
will satisfy the condition and match.

This operator can only be applied to double and
long types.

<= value All values less than or equal to the value supplied
will satisfy the condition and match.

This operator can only be applied to double and
long types.

value Only a value equivalent to the value supplied will
satisfy the condition and match.

A String value must be enclosed in double quotes ("
"), and therefore these need to be preceded with an
escape character inside event expression definitions
in an EventExpression constructor (\")

A Location value must consist of a structure with
four doubles representing the coordinates of the
corners of the rectangular space being represented.

* Any value for this parameter will satisfy the
condition and match.

Obtaining matching events
An event template provides a definition against which several event instances could
match. Once a listener triggers, sometimes it is necessary to get hold of the actual event
that matched the template.

This can be achieved through event tagging.

EPL - If you are familiar with EPL, event tagging in JMon is similar in principle to
variable coassignment in EPL. For this reason the term coassigned is sometimes used to
refer to event tagging.

Consider this revised Simple monitor:
import com.apama.jmon.*;

public class Simple implements Monitor, MatchListener {

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 679

 /**
 * No argument constructor used by the jmon framework on
 * application loading
 */
 public Simple() {}

 /**
 * Implementation of the Monitor interface onLoad method. Sets up
 * a single event expression looking for all stock trade events
 * with a trade price of greater than 10.0. This class instantiation
 * is added as a match listener to the event expression.
 */
 public void onLoad() {
 EventExpression eventExpr = new EventExpression("Tick(*, >10.0):t");
 eventExpr.addMatchListener(this);
 }

 /**
 * Implementation of the MatchListener interface match method.
 * Extracts the tick event that caused the event expression to
 * trigger and emits the event onto the default channel
 */
 public void match(MatchEvent event) {
 Tick tick = (Tick)event.getMatchingEvents().get("t");
 System.out.println("Event details: " + tick.name
 + " " + tick.price);
 tick.emit();
 }
}

Note the revised event expression
Tick(*, >10.0):t

This specifies that when a suitable Tick event is detected, it must be recorded with the
t tag. This allows a developer to get hold of the actual event that matched the event
expression within the registered match listener's match method.

Once the eventExpr listener detects a suitable event it will trigger and call match,
passing to it a MatchEvent object. This object embeds within it all the individual event
instances that together caused the event expression to be satisfied and were tagged.

In this example our event expression still consists of a single event template, and since
this is tagged, then the MatchEvent object will contain the single Tick event that
triggered the eventExpr listener. This will be tagged as t.

A MatchEvent object has two methods:

HashMap getMatchingEvents() - Get the set of tagged Events that caused the
match. This method returns a Map of the tagged Event objects that hold the values
that matched the source EventExpression.

Event getMatchingEvent(String key) - Get one of the tagged Events that caused
the match. This method returns the tagged Event object that matched in the source
EventExpression.

Refer to the reference documentation provided in Javadoc format for complete class and
method signatures (doc\javadoc\index.html in your Apama installation directory).

The lines:

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 680

Tick tick = (Tick)event.getMatchingEvents().get("t");

or
Tick tick = event.getMatchingEvent("t");

show how the tagged event can be extracted by using the tag as a key.

Emitting, routing, and enqueuing events
Once the event has been extracted it can also be emied, routed, or enqueued.

This functionality is provided by the following methods of the Event class:

route() — Route this event internally within the correlator.

emit() — Emit this event from the correlator onto the default channel.

emit(String channel) — Emit this event from the correlator onto the named
channel.

enqueue() — Route this event internally within the correlator to a special queue just
for enqueued events.

enqueueTo() — Route this event internally within the correlator to the input queue
of the specified context or contexts.

The route method generates a new event that is dispatched back into the correlator.
Any active listeners seeking that event then receive this. There is no difference between
an externally sourced event (passed in through a live message feed) and an event that
was issued internally through a route method, other than that internally routed events
are placed at the front of the input queue, although in the same order as they are routed
within an action.

The emit method dispatches events to external registered event receivers, i.e. sends
them out from the correlator. Active listeners will not receive events that are emied.

Events are emied onto named channels. For an application to receive events from
the correlator it must register itself as an event receiver and subscribe to one or more
channels. Then if events are emied to those channels they will be forwarded to it.

Channels effectively allow both point-to-point message delivery as well as through
publish-subscribe. Channels can be set up to represent topics. External applications can
then subscribe to event messages of the relevant topics. Otherwise a channel can be set
up purely to indicate a destination and have only one application connected to it.

The enqueue() method generates an event and places the event on a special queue just
for events generated by the enqueue() method. A separate thread moves each enqueued
event to the input queue of each public context. This arrangement ensures that that if a
public context's input queue is full, the event generated by enqueue() still arrives on its
special queue, and is moved to that context's input queue when there is a room. Active
listeners will eventually receive events that are enqueue'd, once those events make their
way to the head of the context's input queue alongside normal events.

Use the enqueue() method when you want to ensure that the correlator processes
the generated event after it processes all routed events. This means that you want the

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 681

correlator to finish processing the current external event. Completion of processing the
current external event means that all routed events that resulted from that external event
have been processed.

In a parallel application, you can enqueue an event to a particular context by calling the
following method on an instance of com.apama.jmon.Event:
public void enqueueTo(Context ctx)

This method provides the same functionality provided by the EPL enqueue ... to
statement. See "Sending an event to a particular context" on page 312.

However, it is important to mention that when you enqueue an event to a particular
context the event goes on that context's input queue and not on the special queue for
enqueued events. Consequently, when you call this method from an application thread
that was created from the main JMon application and the destination context's input
queue is full, this method blocks until the queue is able to accept the event.

Call the following method to enqueue an event to a array of contexts:
public void enqueueTo(Context[] ctxArray)

Call the following method to enqueue an event to a list of contexts:
public void enqueueTo(List < Context> ctxList)

Specifying temporal sequencing
If you want to search for a temporal sequence of two events, for example, “locate the
sequence of a NewsItem event followed by a Tick event”, there are two ways you can
proceed in JMon.

Chaining listeners
You can chain listeners, as follows:
// Code within the monitor class

public void onLoad() {
 EventExpression eventExpr = new EventExpression("NewsItem(*, *)");
 eventExpr.addMatchListener(matchListener1);
}

// Code within the first Match Listener class – matchListener1
public void match(MatchEvent event) {

 // Arbitrary additional code …
 EventExpression eventExpr = new EventExpression("Tick(*, *)");
 eventExpr.addMatchListener(matchListener2);
}

// Code within the second Match Listener class – matchListener2

public void match(MatchEvent event) {
 System.out.println("Detected a NewsItem followed"
 + " by a Tick event, both regarding any company.");
}

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 682

The Java code above shows how to set up a listener to seek the first event, and then once
that is located, start searching for the second. This programming style is particularly
appropriate when further actions need to be taken at each stage of the event detection, in
this case between detecting the NewsItem and seeking the Tick.

It is also the only way in which the event templates can be ‘linked' together. If the
desired effect was to locate ‘any' first NewsItem and then seek a Tick specifically for the
same company mentioned in the NewsItem, you could amend the example as follows,
// Code within the monitor class
public void onLoad() {
 EventExpression eventExpr
 = new EventExpression("NewsItem(*, *):n");
 eventExpr.addMatchListener(matchListener1);
}

// Code within the first Match Listener class – matchListener1
public void match(MatchEvent event) {

 NewsItem newsItem = (NewsItem)event.getMatchingEvents().get("n");
 EventExpression eventExpr
 = new EventExpression("Tick(\"" + newsItem.name + "\", *)");
 eventExpr.addMatchListener(matchListener2);
}

// Code within the second Match Listener class – matchListener2
public void match(MatchEvent event) {
 System.out.println("Detected a NewsItem, followed"
 + " by an Tick event regarding the same company.");
}

Note how the above code seeks out a NewsItem on any company, but then extracts the
actual NewsItem event detected, and uses its name parameter to create the event template
for seeking the Tick event.

Using temporal operators
Let us return to how to express searching for a temporal sequence. If there is no
requirement to execute any arbitrary code in between events and there is no requirement
to link searches as illustrated above, then you can embed a temporal event expression
within a single listener.

The first code excerpt could be re-wrien as follows,
// Code within the monitor class
 public void onLoad() {
 EventExpression eventExpr
 = new EventExpression("NewsItem(*,*) -> Tick(*,*)");
 eventExpr.addMatchListener(matchListener1);
 }

// Code within the first (and only) Match Listener class – matchListener1
 public void match(MatchEvent event) {
 System.out.println("Detected a NewsItem followed"
 + " by a Tick event, both regarding any company.");
 }

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 683

The event expression definition for eventExpr no longer consists of a single event
template. It now has multiple clauses and contains a temporal operator.

In this case, the operator used is ->, or the followed-by operator. This is the primary
temporal operator for use in event expressions. It allows a developer to express a
sequence of events to match against within a single listener, with the listener triggering
once the whole sequence is encountered.

In Java, an event sequence does not imply that the events have to occur right after each
other, or that no other events are allowed to occur in the meantime.

For the sake of brevity, let A, B, C and D represent event templates, and A', B', C' and
D' be individual events that match those templates, respectively. If a listener is created
to seek the event expression (A -> B), the event feed {A',C',B',D'} would result in a
match once the B' is received by the correlator.

Followed-by operators can be chained to express longer sequences. Therefore you could
write,
A -> B -> C -> D

within an event expression definition.

The next section focuses on the use of temporal operators in event expressions.

Defining advanced event expressions
An event template is the simplest form of an event expression. All event expression
operators, including ->, can themselves take entire event expressions as operands.

It is useful to think of event expressions as being Boolean expressions. Each clause in an
event expression can be true or false, and the whole event expression must evaluate to
true before the listener triggers and calls the match listener's match method.

As before, for the sake of brevity, let us use the leers A, B, C and D to represent
event templates, and A', B', C' and D' to represent individual events that match those
templates, respectively.

Once more, consider this representation of an event expression,
A -> B -> C -> D

When the listener is first activated it is helpful to consider the expression as starting off
by being false. When an event that satisfies the A clause occurs, the A clause becomes
true. Once B is satisfied, A -> B becomes true in turn, and evaluation progresses in a
similar manner until eventually all A -> B -> C -> D evaluates to true. Only then does
the listener trigger and call the associated match listener's match method. Of course,
this event expression might never become true in its entirety (as the events required
might never occur) since no time constraint (see "Specifying the timer operators" on
page 691) has been applied to any part of the event expression.

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 684

Specifying other temporal operators
For a listener to trigger on an event sequence, the event expression defining what to
match against must evaluate to true.

The or operator allows you to specify event expressions where a variety of event
sequences could lead to a successful match. It effectively evaluates two event templates
(or entire nested event expressions) simultaneously and returns true when either of
them become true.

For example,
A or B

means that either A or B need to be detected to match. That is, the occurrence of one of
the operand expressions (an A or a B) is enough to satisfy the listener.

The and operator specifies an event sequence that might occur in any temporal order.
It evaluates two event templates (or nested event expressions) simultaneously but only
returns true when they are both true.
A and B

will seek ‘an A followed by a B' or ‘a B followed by an A'. Both are valid matching
sequences, and the listener will seek both concurrently. However, the first to occur will
terminate all monitoring and trigger the listener.

The following example code snippets indicate a few paerns that can be expressed using
the three operators presented so far.

Example Meaning

A -> (B or C) Match on an A followed by either a B or a C.

(A -> B) or C Match on either the sequence A followed by a
B, or just a C on its own.

A -> ((B -> C) or (C ->
D))

Find an A first, and then seek for either the
sequence B followed by a C or C followed
by a D. The laer sequences will be looked
for concurrently, but the monitor will match
upon the first complete sequence that occurs.
This is because the or operator treats its
operands atomically, i.e. in this case it is
looking for the sequences themselves rather
than their constituent events.

(A -> B) and (C -> D) Find the sequence A followed by a B (A -> B)
followed by the sequence C -> D, or else the
sequence C -> D followed by the sequence
A -> B. The and operator treats its operands

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 685

Example Meaning
atomically—that is, in this case it is looking
for the sequences themselves and the order of
their occurrence, rather than their constituent
events. It does not maer when a sequence
starts but it occurs when the last event in it is
matched.

Therefore {A',C',B',D'} would match the
specification, because it contains an A -> B
followed by a C -> D. In fact the specification
would match against either of the following
sequences of event instances; {A',C',B',D'},
{C',A',B',D'}, {A',B',C',D'},
{C',A',D',B'}, {A',C',D',B'}, and
{C',D',A',B'}.

The not operator is unary and acts to invert the truth value of the event expression it is
applied to.
A -> B and not C

therefore means that the correlator will match only if it encounters an A followed by a B
without a C occurring at any time before the B is encountered.

Note: The not operator can cause an event expression to reach a state where it can
never evaluate to true any more, that is, it will become permanently false.

Consider this listener event sequence:
on (A -> B) and not C

The listener will start seeking both A -> B and not C concurrently. If an event matching
C is received at any time before one matching B, the C clause will evaluate to true, and
hence not C will become false. This will mean that (A -> B) and not C will never
be able to evaluate to true, and hence this listener will never trigger. In practice the
correlator cleans out these zombie listeners periodically.

Note: It is possible to write an event expression that always evaluates to true
immediately, without any events occurring.

Consider this listener:
on (A -> B) or not C

Assuming that A, B, and C represent event templates, their value will start off as being
false. However, that means that not C will become true immediately, and hence
the whole expression will become true right away. This listener will therefore trigger
immediately as soon as it is instantiated. If any of A, B or C were nested event expressions
the same logic would apply for their own evaluation.

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 686

Specifying a perpetual listener for repeated matching
So far all the examples given have created listeners that will trigger on the first
occurrence of an event (or sequence of events) that satisfies the supplied event
expression.

For example,
public void onLoad() {
 EventExpression eventExpr = new EventExpression("Tick(*, >10.0)");
 eventExpr.addMatchListener(this);
}

locates the first occurrence of a Tick event that satisfies the Tick(*, >10.0) event
template. This first suitable event triggers the listener and calls the match method of the
registered match listener object.

However, you might want to detect allTick events that satisfy the above event template
(or event expression). To do this you must create a perpetual listener, that is, one that
does not terminate on the first suitable occurrence, but instead stays alive and triggers
repeatedly on every subsequent occurrence.

This effect can be achieved through use of the all event expression operator.

If the above is rewrien as follows,
public void onLoad() {
 EventExpression eventExpr =
 new EventExpression("all Tick(*, >10.0)");
 eventExpr.addMatchListener(this);
}

the listener created will now seek the first Tick event whose price is greater than 10.
Upon detecting such an event it will trigger and call the match method. It will then
return to monitoring the incoming event streams to look for the next suitable occurrence.
This behavior will be repeated indefinitely until the listener is explicitly deactivated.
This means that potentially the match method could be invoked multiple times.

Deactivating a listener
A listener whose event expression embeds an all operator will stay active indefinitely
and trigger repeatedly. It will continue doing this until it is explicitly deactivated. This
can be done using the removeMatchListener method on the EventExpression object.

Refer to the Apama API for Java (JMon) reference information provided in Javadoc
format for complete class and method signatures (doc\javadoc\index.html in your
Apama installation directory).

Temporal contexts
Imagine that we have seven event templates defined, which for the sake of brevity are
represented by the leers A, B, C, D, E, F and G in the following text. Now, consider a
stream of incoming events, where Xn indicates an event instance that matches the event

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 687

template X. Likewise, Xn+1 indicates another event instance that matches against X, but
which need not necessarily be identical to Xn.

Consider the following sequence of incoming events:
C1 A1 F1 A2 C2 B1 D1 E1 B2 A3 G1 B3

Given the above event sequence, what should the event expression
A -> B

match upon?

In theory the combinations of events that correspond to “an A followed by a B” are:
{A1, B1}, {A1, B2}, {A1, B3}, {A2, B1}, {A2, B2}, {A2, B3}, {A3, B3}

In practice it is unlikely that a developer wanted their monitor to match seven times on
the above example sequence, and it is uncommon for all the combinations to be useful.

In fact, consistent with the truth-value based matching behavior already described, the
event expression A -> B will only match on the first event sequence that matches the
expression. Given the above event sequence the listener will trigger only on {A1, B1}, call
the associated match method, and then terminate.

If a developer wishes to alter this behavior, and have the monitor match on more of the
combinations, they can use the all operator within the event expression.

If the listener's specification was rewrien to read:
all A -> B

the listener would match on ‘every A' and the first B that follows it.

The way this works is that upon encountering an A, a second child listener (or sub-
listener) is created to seek for the next A. Both listeners would continue looking for a B to
successfully match the sequence specified. If more A's are encountered the procedure is
repeated; this behavior continues until the master listener is explicitly deactivated.

Therefore all A -> B would match on {A1, B1}, {A2, B1} and {A3, B3}.

Note that all is a unary operator and has higher precedence than ->, or and and.
Therefore all A -> B is the same as (all A) -> B or ((all A) -> B).

The following table illustrates how the execution of on all A -> B proceeds over time
as the above sequence of input events is processed by the correlator. The timeline is from
left to right, and each stage is labeled with a time tn, where tn+1 occurs after tn. To
the left are listed the listeners, and next to each one (after the ?) is shown what event
template that listener is looking for at that point in time. In the example, assuming L was
the initial listener, L', L'' and L''' are other sub-listeners that are created as a result of
the all operator.

Guide to the symbols used:

 indicates a specific point in time when a particular event is received

 indicates that at that time no match was found

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 688

 indicates that the listener has successfully located an event that matches its
current active template

 is used to indicate that a listener has successfully triggered

 indicates that a new listener is going to be created.

The master listener denoted by all A -> B will never terminate as there will always be
a sub-listener active looking for an A.

If, on the other hand, the specification is wrien as,
A -> all B

the listener would now match on all the sequences consisting of the first A and each
possible following B.

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 689

The way this works is by creating a second listener upon matching a B that then goes on
to search for an additional B, and so on repeatedly until the listener is explicitly killed.

Therefore A -> all B would match {A1, B1}, {A1, B2} and {A1, B3}.

Graphically this would now look as follows:

The table shows the early states of L' and L'' in light color because those listeners
actually never really went through those states themselves. However, since they were
created as a clone of another listener, it is as though they were.

The master listener denoted by A -> all B will never terminate, as there will always be
a sub-listener looking for a B.

The final permutation is to write the monitor as,
all A -> all B

Now the listener would match on an A and create another listener to look for further A's.
Each of these listeners will go on to search for a B after it encounters an A. However, in
this instance all listeners are duplicated once more after matching against a B.

The effect of this would be that all A -> all B would match {A1, B1}, {A1, B2}, {A1, B3},
{A2, B1}, {A2, B2}, {A2, B3} and {A3, B3}, i.e. all the possible permutations. This could cause
a very large number of sub-listeners to be created.

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 690

Note: The all operator must be used with caution as it can create a very large
number of sub-listeners, all looking for concurrent paerns. This is
particularly applicable if multiple all operators are nested within each other.
This can have an adverse impact on performance.

As with all other event expression operators, the all operator can be used within nested
event expressions, and be nested within the operating context of another all operator.
This can have a dramatic effect on the number of sub-listeners created.

Consider the example,
all (A -> all B)

This will match the first A followed by all subsequent B's. However, as on every match
of an A followed by B, (A -> all B) becomes true, then a new search for the ‘next'
A followed by all subsequent B's will start. This will repeat itself recursively, and
eventually there could be several concurrent sub-listeners that might match on the same
sequences, thus causing duplicate triggering.

On the same event sequence as previously, graphically, this would be evaluated as
follows:

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 691

Thus matching against {A1, B1}, {A1, B2}, {A1, B3}, and twice against {A3, B3}. Notice how
the number of active listeners is progressively increasing, until after t12 there would
actually be six active listeners, three looking for a B and three looking for an A.

Specifying the timer operators
So far we have shown how to use event expressions to define interesting sequences
of events to look for, where the events of interest depend not only on their type and
content, but also on their temporal relationship to (whether they occur before or after)
other events.

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 692

Being able to define temporal relationships can be useful, but typically it also needs to be
constrained over some temporal interval.

Looking for event sequences within a set time

Consider this earlier example:
// Code within the monitor class
public void onLoad() {
 EventExpression eventExpr = new EventExpression(
 "NewsItem(\"ACME\",*) -> Tick(\"ACME\",*)");
 eventExpr.addMatchListener(matchListener1);
}

// Code within the first (and only) Match Listener
// class – matchListener1

 public void match(MatchEvent event) {
 System.out.println("Detected a NewsItem followed"
 + " by an Tick event, both regarding the ACME company.");
 }

This will look for the event sequence of a news item about a company followed by a
stock price tick about that company. Once improved this could be used to detect the
beginning of a rise (or fall) in the value of shares of a company following the release of a
relevant news headline.

However, unless a temporal constraint is put in place, the monitor is not going to be that
pertinent, as it might trigger on an event sequence where the price change occurs weeks
after the news item. That would clearly not be so useful to a trader, as the two events
were most likely unrelated and hence not indicative of a possible trend.

If the event expression above is rewrien as follows,
EventExpression eventExpr = new EventExpression(
 "NewsItem(\"ACME\",*) -> Tick(\"ACME\",*) within(30.0)");

the Tick event would now need to occur within 30 seconds of NewsItem for the listener
to trigger.

The within(float) operator is a postfix unary operator that can be applied to an event
expression (the Tick event template in the above example). Think of it like a stopwatch.
The clock starts ticking as soon as the event expression it is aached to becomes active,
i.e. when the listener actually starts looking for it. If the stopwatch reaches the specified
figure before the event expression evaluates to true the event expression becomes
permanently false.

In the above code, the timer is only activated once a suitable NewsItem is encountered.
Unless an adequate StockTick then occurs within 30 seconds and makes the expression
evaluate to true, the timer will fire and fail the whole listener.

As already specified, the within operator can be applied to any event expression, hence
A within(x), where A represents just an event template and x is a float value specifying
a number in seconds, is perfectly valid.

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 693

Waiting within a listener

The second timer operator available for use within event expressions is wait(float).

wait allows you to insert a ‘temporal pause' within an event expression. Once activated,
a wait expression becomes true automatically once a set amount of time passes. For
example,
A -> wait(x seconds) -> C

will proceed as follows; activate the listener and look for the A event expression or
template, then once A becomes true pause (i.e. wait) for x seconds, then finally start
looking for the C event expression or template.

In addition to being part of an event expression, wait can also be used on its own,
wait(20.0)

is a valid event expression in its own right. When its listener activates it just waits for
the number of seconds specified (here being 20), then it evaluates to true and calls any
registered match methods.

Therefore a wait clause starts off being false, and then turns to true once its time period
expires. This behavior can be inverted through use of not. The expression
not wait(20.0)

would start off being true, and stay true for 20 seconds before becoming false.

The following,
B and not wait(20.0)

is an interesting example. It effectively means that this listener will trigger only if a B
occurs within 20 seconds of its activation. After that the not wait(20) clause would
become false and prevent the listener from ever triggering.

By using all with wait, you can easily implement a periodic repeating timer,
all wait(5.0)

This listener will trigger every 5 seconds and calls any registered match methods.

Working with absolute time

The final temporal operator is the at operator. This operator allows you to express
temporal activity with regards to absolute time.

The at operator allows triggering of a timer:

At a specific time; for example, at 12:30pm on April, 5th.

Repeatedly with regards to the calendar when used in conjunction with the all
operator, across seconds, minutes, hours, days of the week, days of the month, and
months; for example, on every hour, or on the first day of the month, or every 10
minutes past and 40 minutes past.

The syntax is as follows:
at(minutes , hours , days_of_the_month , month , days_of_the_week

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 694

 [, seconds])

where the last operand, seconds, is optional.

Valid values for each operand are as follows:

Timer operand Values

minutes 0 to 59, indicating minutes past the hour.

hours 0 to 23, indicating the hours of the day.

days_of_the_month 1 to 31, indicating days of the month. For
some months only 1 to 28, 1 to 29 or 1 to 30
are valid ranges.

month 1 to 12, indicating months of the year, with 1
corresponding to January

days_of_the_week 0 to 6, indicating days of the week, where 0
corresponds to Sunday.

seconds 0 to 59, indicating seconds past the minute.

The operator can be embedded within an event expression in a manner similar to the
wait operator. If used outside the scope of an all operator it will trigger only once, at
the next valid time as expressed within its elements. In conjunction with an all operator,
it will trigger at every valid time.

The wildcard symbol (*) can be specified to indicate that all values are valid, i.e.
at(5, *, *, *, *)

would trigger at the next “five minutes past the hour”, while
all at(5, *, *, *, *)

would trigger at five minutes past each hour (i.e. every day, every month).

Whereas,
all at(5, 9, *, *, *)

would trigger at 9:05am every day.

However,
all at(5, 9, *, *, 1)

would trigger at 9:05am only on Mondays, and never on any other weekday. This is
because the effect of the wildcard operator is different when applied to the days of the
week and the days of the month elements. This is due to the fact that both specify the
same entity. The rule is therefore as follows:

As long as both elements are set to wildcard, then each day is valid.

M
Odd Header

Defining Event Expressions

Developing Apama Applications Version 9.10 695

If either of the days of the week or the days of the month elements is not a
wildcard, then only the days that match that element will be valid. The wildcard in
the other element is effectively ignored.

If both the days of the week and the days of the month elements are not a
wildcard, then the days valid will be the days which match either. That is, the two
criteria are or''ed, not and'ed.

A range operator (:) can be used with each element to define a range of valid values. For
example
all at(5:15, *, *, *, *)

would trigger every minute from 5 minutes past the hour till 15 minutes past the hour.

A divisor operator (/x) can be used to specify that every x'th value is valid. Therefore
all at(*/10, *, *, *, *)

would trigger every ten minutes, that is, at 0, 10, 20, 30, 40 and 50 minutes past every
hour.

If you wish to specify a combination of the above operators you must enclose the
element in square brackets ([]), and separate the value definitions with a comma (,). For
example,
all at([*/10,30:35,22], *, *, *, *)

indicates as following values for minutes to trigger on; 0,10, 20, 22, 30, 31, 32, 33, 34, 35,
40 and 50.

A further example,
all at(*/30,9:17,[*/2,1],*,*)

would trigger every 30 minutes from 9am to 5pm on even numbered days of the month
as well as specifically the first day of the month.

Optimizing event expressions
When a developer creates an event expression, a substantial percentage of the
computational overhead goes into parsing the event expression itself.

If you need to create several instances of an event expression where only literal values
in event templates vary, this repeated parsing cost can be removed through the use of a
prepared event expression.

Instead of writing,
EventExpression eventExpr1 = new EventExpression(
 "NewsItem(\"ACME\",*) -> Tick(\"ACME\",*)");
EventExpression eventExpr2 = new EventExpression(
 "NewsItem(\"EMCA\",*) -> Tick(\"EMCA\",*)");
eventExpr1.addMatchListener(matchListener1);
eventExpr2.addMatchListener(matchListener2);

you could write,
PreparedEventExpressionTemplate et

M
Even Header

Defining Event Expressions

Developing Apama Applications Version 9.10 696

 = new PreparedEventExpressionTemplate(
 "NewsItem(?,*) -> Tick(?,*)");

PreparedEventExpression pex1=et.getInstance();
pex1.setString(0, "ACME");
pex1.setString(1, "ACME");

PreparedEventExpression pex2=et.getInstance();
pex2.setString(0, "EMCA");
pex2.setString(1, "EMCA");

pex1.addMatchListener(matchListener1);
pex2.addMatchListener(matchListener2);

The above example shows how instead of creating two very similar event expressions
you can create a single prepared event expression template, and then customize multiple
instances of it. The main advantage of the laer approach is the fact that the event
expression was parsed in Java only once. With an example as simple as the ones above
this would in fact hardly make any difference, but in Java code with hundreds of such
event expressions the difference in performance can be significant.

As shown in the code snippet above, the procedure for creating listeners with prepared
event expressions is slightly different from that of normal event expressions.

You must create a PreparedEventExpressionTemplate and define within that the
event expression. The syntax for event expression definitions is the same as previously
with the exception of the ? operator. This can be used instead of any literal value. The
next step is to get an instance of a PreparedEventExpression, and then to set values
for any literals replaced by ? in the prepared event expression template. Finally, you can
create listeners on the PreparedEventExpression instances just as with normal event
expressions.

Validation of event expressions
When an EventExpression or PreparedEventExpressionTemplate is created or when
addMatchListener() is called on an event expression within a JMon monitor the event
expression is not validated immediately. It is queued for processing later when the JMon
monitor yields control back to the correlator. This means that a badly formed event
expression does not cause an exception to be thrown from the constructor. Instead, the
correlator logs an error message later when it tries to validate the event expression.

M
Odd Header

Concept of Time in the Correlator

Developing Apama Applications Version 9.10 697

23 Concept of Time in the Correlator

■ Correlator timestamps and real time ... 698

■ Event arrival time ... 698

■ Getting the current time ... 699

■ About timers and their trigger times .. 700

M
Even Header

Concept of Time in the Correlator

Developing Apama Applications Version 9.10 698

An understanding of how the correlator handles time is essential to writing Apama
applications. The topics below discuss time in the correlator.

See also "Disabling the correlator's internal clock" on page 197 in Developing Apama
Application in EPL.

Correlator timestamps and real time
When the correlator receives an event, it gives the event a timestamp that indicates the
time that the correlator received the event. The correlator then places the event on the
input queue of each public context. The correlator processes events in the order in which
they appear on input queues.

An input queue can grow considerably. In extreme cases, this might mean that a few
seconds pass between the time an event arrives and the time the correlator processes it.
As you can imagine, this has implications for whether the correlator triggers listeners.
However, the correlator uses event timestamps, and not real time, to determine when to
trigger listeners.

As an extreme example, suppose a monitor is looking for A -> B within(2.0). The
correlator receives event A. However, the queue has grown to a huge size and the
correlator processes event A three seconds after event A arrives. The correlator receives
event B one second after it receives event A. Some events in the queue before event B
cause a lot of computation in the correlator. The result is that the correlator processes
event B five seconds after event B arrives. In short, event B arrives one second after event
A, but the correlator processes event B three seconds after it processes event A.

If the correlator used real time, A -> B within(2.0) would not be triggered by this
paern. This is because the correlator processes event B more than two seconds after
processing event A. However, the correlator uses the timestamp to determine whether to
trigger actions. Consequently, A -> B within(2.0) does trigger, because the correlator
received event B one second after event A, and so their timestamps are within 2 seconds
of each other.

As you can see, the number of events on an input queue never affects temporal
comparisons.

Event arrival time
As mentioned before, when an event arrives, the correlator assigns a timestamp to the
event. The timestamp indicates the time that the event arrived at the correlator. If you
coassign an event to a variable, the correlator sets the timestamp of the event to the
current time in the context in which the coassignment occurs. For JMon applications, this
is always the current time in the main context.

The correlator uses clock ticks to specify the value of each timestamp. The correlator
generates a clock tick every tenth of a second. The value of an event's timestamp is the
value of the last clock tick before the event arrived.

M
Odd Header

Concept of Time in the Correlator

Developing Apama Applications Version 9.10 699

When you start the correlator, you can specify the --frequency hz option if you want
the correlator to generate clock ticks at an interval other than every tenth of a second.
Instead, the correlator generates clock ticks at a frequency of hz per second. Be aware
that there is no value in increasing hz above the rate at which your operating system can
generate its own clock ticks internally. On UNIX and some Windows machines, this is
100 Hz and on other Windows machines it is 64 Hz.

When you start the correlator, you can specify the -Xclock option to disable the
correlator's internal clock and replace it with externally generated time events. See
"Externally generating events that keep time (&TIME events)" on page 197.

Getting the current time
In the correlator, the current time is the time indicated by the most recent clock tick.
There are two exceptions to this:

If you specify the -Xclock option when you start the correlator, the correlator does
not generate clock ticks. Instead, you must send time events (&TIME) to the correlator.
The current time is the time indicated by the most recent externally generated time
event. See "Externally generating events that keep time (&TIME events)" on page
197.

When the correlator is firing a timer, the current time is the timer's trigger time. See
"About timers and their trigger times" on page 700.

The information in the remainder of this topic assumes that the current time is the time
indicated by the most recent clock tick.

Use the static method double com.apama.jmon.Correlator.getCurrentTime() to
obtain the current time. The value returned by the getCurrentTime() method is the
current time represented as seconds since the epoch, January 1st, 1970 in UTC.

In the correlator, the current time is never the same as the current system time. In most
circumstances it is a few milliseconds behind the system time. This difference increases
when public context input queues grow.

When a listener triggers, it causes a call to the listener's match() method. The correlator
executes the entire method before the correlator starts to process another event.
Consequently, while the listener is executing a method, time and the value returned by
the getCurrentTime() method do not change.

Consider the following code snippet,
double a;
void checkTime() {
 a = Correlator.getCurrentTime();
}

// A listener calls the following method some time later
void logTime() {
 System.out.println("a: "+a);
 // The time when checkTime() was called

 System.out.println("current time: "+Correlator.getCurrentTime());
 // The time now

M
Even Header

Concept of Time in the Correlator

Developing Apama Applications Version 9.10 700

}

In this code, a method sets double variable a to the value of getCurrentTime(), which
is the time indicated by the most recent clock tick. Some time later, a different listener
prints the value of a and the value of getCurrentTime(). The values logged might not
be the same. This is because the first use of getCurrentTime() might return a value
that is different from the second. If the two listeners have processed the same event,
the logged values are the same. If the two listeners have processed different events, the
logged values are different.

About timers and their trigger times
In an event expression, when you specify the within, wait, or at operator you are
specifying a timer. Every timer has a trigger time. The trigger time is when you want the
timer to fire.

When you use the within operator, the trigger time is when the specified length of
time elapses. If a within timer fires, the listener fails. In the following listener, the
trigger time is 30 seconds after A becomes true.
A -> B within(30.0)

If B becomes true within 30 seconds, the trigger time for the timer is not reached, the
timer does not fire, the listener triggers, and the monitor calls any aached JMon
listeners. If B does not become true within 30 seconds, the trigger time is reached, the
timer fires, and the listener fails. The monitor does not call the MatchListener.

When you use the wait operator, the trigger time is when the specified pause
during processing of the event expression has elaspsed. When a wait timer fires,
processing continues. In the following expression, the trigger time is 20 seconds after
A becomes true. When the trigger time is reached, the timer fires. The listener then
starts watching for B. When B is true, the monitor calls any aached listeners.
A -> wait(20.0) -> B

When you use the at operator, the trigger time is one or more specific times. An at
timer fires at the specified times. In the following expression, the trigger time is five
minutes past each hour every day. This timer fires 24 times each day. When the timer
fires, the monitor calls any aached JMon listeners.
all at(5, *, *, *, *)

At each clock tick, the correlator evaluates each timer to determine whether that timer's
trigger time has been reached. If a timer's trigger time has been reached, the correlator
fires that timer. When a timer's trigger time is exactly at the same time as a clock tick,
the timer fires at its exact trigger time. When a timer's trigger time is not exactly at the
same time as a clock tick, the timer fires at the next clock tick. This means that if a timer's
trigger time is .01 seconds after a clock tick, that timer does not fire until .09 seconds
later.

When a timer fires, the current time is always the trigger time of the timer. This is
regardless of whether the timer fired at its trigger time or at the first clock tick after its
trigger time.

M
Odd Header

Concept of Time in the Correlator

Developing Apama Applications Version 9.10 701

A single clock tick can make a repeating timer fire multiple times. For example, if you
specify all wait(0.01), this timer fires 10 times every tenth of a second.

Because of rounding constraints,

A timer such as all wait(0.1) drifts away from firing every tenth of a second. The
drift is of the order of milliseconds per century, but you can notice the drift if you
convert the value of the current time to a string.

Two timers that you might expect to fire at the same instant might fire at different,
though very close, times.

The rounding constraint is that you cannot accurately express 0.1 seconds as a float
because you cannot represent it in binary notation. For example, the on wait(0.1)
listener waits for 0.10000000000000000555 seconds.

To specify a timer that fires exactly 10 times per second, calculate the length of time
to wait by using a method that does not accumulate rounding errors. For example,
calculate a whole part and a fractional part:
@Application(author="Tim Berners", company="Apama",
description="Demonstrate tenth of second timers", name="Tenth",
version="1.0")
@MonitorType
public class TenthOfSecond implements Monitor {

 private static final Logger LOGGER =
 Logger.getLogger(TenthOfSecond.class);
 private static final NumberFormat formatter =
 NumberFormat.getInstance();
 static { formatter.setGroupingUsed(false); }

 double startTime;
 double fraction;

 public void onLoad() {
 startTime = Math.ceil(Correlator.getCurrentTime());
 fraction = Math.ceil(
 (Correlator.getCurrentTime() - startTime) * 10.0);
 setupTimeListener();
 }
 void setupTimeListener() {
 fraction++;
 if (10.0 <= fraction) {
 fraction = 0.0;
 startTime++;
 }
 EventExpression ee = new EventExpression("wait("+ ((startTime +
 (fraction / 10.0))-Correlator.getCurrentTime()) +")");
 ee.addMatchListener(new MatchListener() {
 public void match(MatchEvent evt) {
 LOGGER.info(formatter.format(Correlator.getCurrentTime()));
 // System.out.println(Correlator.getCurrentTime());
 // This would go to STDOUT, and isn't as pretty
 new TestEvent(Correlator.getCurrentTime()).emit();
 setupTimeListener();
 }
 });
 }
}

M
Even Header

Concept of Time in the Correlator

Developing Apama Applications Version 9.10 702

// TenthOfSecond

When a timer fires, the correlator processes items in the following order. The correlator

1. Triggers all listeners that trigger at the same time.

2. Routes any events, and routes any events that those events route, and so on.

3. Fires any timers at the next trigger time.

M
Odd Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 703

24 Developing and Deploying JMon Applications

■ Steps for developing JMon applications in Software AG Designer .. 704

■ Java prerequisites for using Apama's JMon API ... 705

■ Steps for developing JMon applications manually ... 706

■ Deploying JMon applications ... 706

■ Removing JMon applications from the correlator .. 707

■ Creating deployment descriptor files ... 707

■ Package names and namespaces in JMon applications ... 715

■ Sample JMon applications ... 715

M
Even Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 704

This section describes the steps required to develop and deploy a JMon application.
You can develop JMon applications with Apama in Software AG Designer or
manually, outside Software AG Designer. When you use Software AG Designer,
some development steps are performed automatically for you. This section describes
all development steps and notes which steps Software AG Designer automatically
performs.

For more information on developing JMon applications, see "Working with projects" in
Using Apama with Software AG Designer.

See also "Writing Correlator Plug-ins in Java" on page 751 which describes how it
is possible to call out to code wrien in Java even when the main application logic is
wrien in EPL rather than JMon.

Steps for developing JMon applications in Software AG Designer
To develop JMon applications in Software AG Designer

1. Add Java support to a project.

See "Adding Java support to an Apama project" in Using Apama with Software AG
Designer.

2. Create your application's source files.

Select File > New > Java Event or select File > New > Java Monitor.

Or, in the Project Explorer, right-click your project and select New > Java Event or select
New > Java Monitor.

A wizard appears that lets you specify the event or monitor's name, the package,
a description, the Java source folder and Java package. Software AG Designer
automatically adds an entry for the event or monitor to the jmon-jar.xml
deployment descriptor file and regenerates the JMon JAR file to include the new
event or monitor.

If you want to build your JAR files manually, right-click your project and select
Apama > Build JAR Files. This is useful if you unselected the Build jar files automatically
option in the apama_java.xml file, which is in the config directory of your project.
One reason you might not want to build the JAR files automatically is that the build
takes too long. When Build jar files automatically is selected, Software AG Designer
builds the JAR files every time you modify a JMon file.

If there are events that you defined in JMon and you refer to those events, or listen
for those events in EPL code, then you must define those events in EPL as well as
JMon. If you do not also define the events in EPL, Software AG Designer flags EPL
references to those events as errors.

See also "Creating new files for JMon applications" in Using Apama with Software AG
Designer.

3. Create your application's launch configuration.

M
Odd Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 705

Software AG Designer adds all JMon JAR files to the correlator initialization list and
all non-JMon JAR files to the correlator class path.

If you want to build your project's files outside Software AG Designer and Eclipse,
right-click your project and select Apama > Generate Ant Buildfiles. Software AG
Designer generates an ant build file (with the name build-project-name.xml),
which you can use only to build your project's JMon JAR files outside of the Eclipse
environment. Note that this is unrelated to the Software AG Designer feature for
exporting an Ant build file that you can use for deployment.

See "Defining custom launch configurations" in Using Apama with Software AG
Designer.

4. Run and test your application.

See "Launching Projects" in Using Apama with Software AG Designer.

5. Debug your application.

See "Debugging JMon Applications" in Using Apama with Software AG Designer.

6. Deploy your application.

See "Deploying JMon applications" on page 706.

Software AG Designer generates your application's JMon JAR file in the
jmon_config_name java application files folder of your project's directory. By
default, jmon_config_name is the project name.

You can manage the content of the JMon JAR file and jmon-jar.xml file by using the
editor in Software AG Designer to update the apama_java.xml file, which is located
in the project's config folder. You can use this editor to do the following:

Set JMon metadata.

Set the injection order of the events and monitors.

Add non-JMon Java classes to the JMon JAR files.

Add JMon classes that were not created by the Apama wizards in Software AG
Designer to the JMon JAR file.

Java prerequisites for using Apama's JMon API
When you install Apama, the installation script installs the JMon API as ap-
correlator-extension-api.jar in the Apama lib directory.

Software AG Designer includes the required Java compiler for running your application.

M
Even Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 706

Steps for developing JMon applications manually
To develop JMon applications outside Software AG Designer

1. Ensure that ap-correlator-extension-api.jar is in your Java CLASSPATH
environment variable.

2. Create a folder in which to develop your application.

3. In this development folder, define one .java file for each event type and one .java
file for each monitor class.

4. Ensure that there is a deployment descriptor file named jmon-jar.xml. See
"Creating deployment descriptor files" on page 707.

5. In your development folder, compile all your Java source code.
javac *.java

If ap-correlator-extension-api.jar is not already in your CLASSPATH
environment variable, you can specify the –classpath command-line option to
point to ap-correlator-extension-api.jar.

6. In your development folder, create a JAR file that contains the deployment descriptor
and all class files. The command line format is as follows:
jar –cf application_name .jar META-INF/jmon-jar.xml *.class

Replace application_name with a name you choose for your application. On
Windows, use backslashes "\" instead of forward slashes "/".

If your application uses an event type definition class that is also used by
another JMon application, you must include the event type definition class
in the JAR file of each application that uses it. If you do not include a shared
event type definition class in your application's JAR file, injection fails with an
ApplicationVerificationException.

You cannot specify the location of a shared event type definition class in your
CLASSPATH environment variable. The correlator uses a separate classloader for each
application, and it cannot use the system classloader for event type definition classes.

7. If any of your application's .class files are in your CLASSPATH environment
variable, remove them. If the JRE can resolve a class path by using either your
application's JAR file or your CLASSPATH environment variable, Apama fails to load
your application.

Deploying JMon applications
To deploy and run your application outside Software AG Designer

1. Start a correlator with Java enabled:
correlator –j other_options

M
Odd Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 707

2. Inject the application JAR file:
engine_inject –j application_name .jar

Apama creates an object instance of each monitor class defined in the deployment
descriptor file and executes its onLoad method. If there are multiple monitor classes,
they are injected in the order in which they are specified in the jmon-jar.xml file.

The classes in the application's JAR file cannot also exist (have the same packaging
and name) anywhere else on the classpath. If they do, it causes the application to fail
to load.

When you start the correlator, you can pass properties and options to the embedded
JVM with the –J option. Specify the -J option with each property or option you
want to specify.

For example, you can use this mechanism to specify a global classpath for the JVM
with: -J-Djava.class.path=path. Apama prepends its own internal classpath
.jar files to the path you specify. If you specify both the CLASSPATH environment
variable and a classpath on the correlator start-up command line the classpath
specified on the command line takes precedence. See also "Specifying classpath in
deployment descriptor files" on page 709 for information about specifying the
classpath for each individual application.

Removing JMon applications from the correlator
To stop and delete a running JMon application, execute the engine_delete operation:
engine_delete [options_to_identify_correlator]application_name

If the application you want to delete is not running on the local host on the default
correlator port, be sure to specify options that indicate the correlator that is running the
application you want to delete.

Replace application_name with the name of the application as specified in the
deployment descriptor. This is not necessarily the same as the name of the application's
JAR file.

Deleting a JMon application does the following:

Terminates the application's active listeners.

Deletes the application's monitor classes.

Leaves the event type definitions loaded in the correlator. To remove the event type
definitions, execute engine_delete and specify the files that contain the event type
definitions.

Creating deployment descriptor files
The JMon application's JAR file must contain a deployment descriptor file. Inside the
correlator, the JVM processes the application's deployment descriptor file and uses it

M
Even Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 708

as a guide to the event types and monitor classes to load. The name of the deployment
descriptor file must be jmon-jar.xml.

When you use the Java support in Software AG Designer to develop your JMon
application, the deployment descriptor file is generated for you. If you develop your
JMon application outside Software AG Designer, there are two ways to create a
deployment descriptor file:

Manually write the deployment descriptor XML file. Use your favorite editor to
create this XML file according to the "Format for deployment descriptor files" on
page 708.

Insert Java annotations in your source files and run a utility to generate the
deployment descriptor file. The annotations you can insert are defined in the
java.apama.jmon.annotation package.

Of course, you can use the utility to generate the deployment descriptor file and then
manually edit the result. If you then run the utility again, you would lose any manual
changes you had made.

The technique you use is largely a maer of personal preference — hand-coded or
machine-generated. If you have a very large application with many event types and
monitors, you might prefer to insert the annotations and generate the deployment
descriptor file. If you have a small application, you might find it easier to write the
deployment descriptor file.

Format for deployment descriptor files
The format of the deployment descriptor file must be compliant with the XML defined
by the following XML Document Type Definition (DTD):
http://www.apama.com/dtd/jmon-jar_1_2.dtd

You should become familiar with this DTD to understand the exact definition of the
deployment descriptor file. However, the normal structure of the file is as follows. In the
following format, all text inside XML element tags, which is in italic typeface , indicates
placeholders for which you would supply an actual value.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jmon-jar PUBLIC "-//Apama, Inc.//DTD Java Monitors 1.2//EN"
 "http://www.apama.com/dtd/jmon-jar_1_2.dtd">

<jmon-jar>

 <name>Application Name in the Correlator </name>
 <version>Version Number </version>
 <author>Author </author>
 <company>Company Name </company>
 <description>Description of this application </description>
 <classpath>${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;
 ${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar </classpath>
 <application-classes>

 <event>
 <event-name>Event Type name in the Correlator </event-name>
 <event-class>Event Type's class location </event-class>
 <description>Description of Event Type </description>
 </event>

M
Odd Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 709

 <monitor>
 <monitor-name>Monitor's name in the Correlator </monitor-name>
 <monitor-class>Monitor's class location </monitor-class>
 <description>Description of Monitor class </description>
 </monitor>
 </application-classes>
</jmon-jar>

The most important part of the deployment descriptor file is the application-classes
element. This element must contain an event element for each event type your JMon
application defines. It must also contain a monitor element for each monitor your JMon
application defines.

The application name that you specify in the name element is important because
it defines the JMon application's name in the correlator. The engine_inspect
management tool displays this name when it lists data for your application. If you want
to delete your application, you specify this name. The application name must be unique
across all currently loaded applications. If the application name is not unique, injection
fails.

Specifying classpath in deployment descriptor files
Each JMon or Java plug-in jar is loaded in its own dedicated Java classloader, which by
default has access only to its own classes, and those available globally in the correlator's
system classloader.

Note: The correlator's system classloader includes some standard Apama libraries
such as the ap-correlator-extension-api.jar and ap-util.jar jar files plus any
additional jars the user chooses to specify on the correlator command line using -J-
Djava.class.path=path.

It is also possible to specify additional jars for use by a specific JMon application or Java
plug-in, to provide access to any third party libraries that the jar requires. This approach
is more self-contained than adding to the correlator's global classloader.

The classpath string for a JMon application or Java plug-in is specified in its deployment
descriptor XML file as follows:

If you are manually writing the deployment descriptor XML, add the optional
classpath element just after the description element, e.g.
...
<description>Description of this application </description>
<classpath>${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;
 ${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar </classpath>
...

Note that the classpath element is only available in the 1.2 (and greater) versions
of the JMon XML DTD (jmon-jar_1_2.dtd), so it may be necessary to update the
DOCTYPE of the deployment descriptor to specify this DTD version if it does not
already.

If you are generating the deployment descriptor automatically using Java
annotations then use the optional classpath aribute in the @Application
annotation:

M
Even Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 710

@Application(
 name = "Simple",
 author = "My Name",
 version = "1.0",
 company = "Apama",
 description = "My simple JMon application or Java plug-in",
 classpath = "${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;
 ${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar"
)

If you are using Software AG Designer to generate the .jar and deployment
descriptor, use the @Application annotation approach to specify the classpath.

In both cases, the classpath string consists of any number of classpath entries, delimited
by semi-colon characters (;). Note that semi-colon must be used even on platforms
that typically use a colon or other character to separate path entries, and also that
forward slashes (/) should be used instead of backslashes (\), in order to ensure that the
application works in the same way regardless of the platform it is deployed on.

Avoid using absolute paths in the classpath, as this makes it difficult to use the
application jar on different machines. Instead, use ${...} placeholders to identify the
first part of each path, for example the installation directory of a third party whose
libraries you wish to use. Currently two types of placeholder are supported:

${sys:MY_SYS_PROP_NAME} is replaced by a Java system property called
MY_SYS_PROP_NAME

${env:MY_ENV_VAR_NAME} is replaced by an environment variable called
MY_ENV_VAR_NAME

The values for system property placeholders can be specified on the correlator command
line using: -J-DMY_SYS_PROP_NAME=path.

The correlator will log a warning for any path that cannot be found, but will fail to
inject the application entirely if the classpath includes any ${...} placeholders that are not
defined.

Defining event types in deployment descriptor files
The deployment descriptor file must define an event element for each event type class
in your JMon application's JAR file. Each event element must contain the following two
elements:

event-name — The name by which this event type is to be defined within the
correlator. The correlator has a single namespace. Consequently, this name must be
unique across all applications. For example, Tick or SimpleApp.Tick. If you specify
a package qualified name, it is the qualified name that must be unique.

event-class — The name of the Java class in which this event type is defined.
This must correspond to the fully qualified name of the class, for example,
Tick if the event type class is defined within the default Java package, or
com.apama.example.types.Tick if the event type class is defined in the
com.apama.example.types package. The file, for example, Tick.java, is expected
to be located within a folder structure that maps to the packaging, as per standard
Java convention.

M
Odd Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 711

The event element can optionally contain a third element. This is the description
element. Specify a description of the event type. For example:
<event>
 <event-name>Tick</event-name>
 <event-class>Tick</event-class>
 <description>Event that signals a stock trade</description>
</event>

JMon and EPL share a single namespace for event types. After an event type is
loaded into the correlator, using either JMon or EPL, it is available for use in either
environment. However, within a JMon application, you cannot instantiate variables of
an event type defined in EPL.

When you try to inject an event type definition that has the same name as a loaded event
type, the correlator checks whether the two definitions are duplicates. If they are, the
correlator ignores the duplicate you are trying to load. If the definitions are different, the
correlator generates an injection error.

Defining monitor classes in deployment descriptor files
The deployment descriptor file must define a monitor element for each monitor class in
your JMon application's JAR file. Each monitor element must contain the following two
elements:

monitor-name — The name by which this monitor is to be defined within the
correlator. The correlator has a single namespace. Consequently, this name must be
unique across all applications. For example, SimpleMon or SimpleApp.SimpleMon.
If you specify a package qualified name, it is the qualified name that must be unique.

monitor-class — The name of the Java class in which this monitor is defined.
This must correspond to the fully qualified name of the class, for example,
SimpleMon if the monitor class is defined within the default Java package, or
com.apama.example.monitors.SimpleMon if the monitor class is defined in the
com.apama.example.monitors package. The file, for example, SimpleMon.java, is
expected to be located within a folder structure that maps to the packaging, as per
standard Java convention.

The monitor element can optionally contain a third element. This is the description
element. Specify a description of the monitor. For example:
<monitor>
 <monitor-name>Simple</monitor-name>
 <monitor-class>Simple</monitor-class>
 <description>A simple JMon monitor, used to show functionality of
 a new installation.</description>
</monitor>

Inserting annotations for deployment descriptor files
In your JMon source files, you can specify the following annotations:

@Application — This annotation indicates the name of the application, as well
as the author, version, company, and description of the application. Insert this
annotation in any one, and only one, of your JMon source files. Each value is

M
Even Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 712

required. This annotation must be after any import statements and before the class
definition statement. For example:
@Application(
 name = "Simple",
 author = "Moray Grieve",
 version = "1.0",
 company = "Apama",
 description = "Deployment descriptor for a simple JMon monitor",
 classpath = "${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;
 ${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar"
)

@MonitorType — This annotation indicates the definition of a monitor. In each
monitor class, insert this annotation immediately before the monitor class definition
statement. You can specify a name and a description for the monitor. The name is
the fully qualified EPL name for the monitor. If you do not specify a name, the name
defaults to the fully qualified JMon class name of the class you are annotating.
@MonitorType(description = "A simple JMon monitor, used to show
 functionality of a new installation.")

@EventType — This annotation indicates the definition of an event type. In each
event type definition class, insert this annotation immediately before the definition
statement for the event type. You can specify a name and a description for the event.
The name is the fully qualified EPL name for the event. If you do not specify a
name, the name defaults to the fully qualified JMon class name of the class you are
annotating. For example:
@EventType(description = "Event that signals a stock trade")

@Wildcard — This annotation indicates a wildcard event field. Insert it immediately
before the field definition statement. You must have specified the @EventType
annotation for the event type that defines this field. For example:
import com.apama.jmon.*
import com.apama.jmon.annotation.*

@EventType
public class EventWithWildcard extends Event {
 public long indexedField;
 @Wildcard
 public long wildcardField;
 public EventWithWildcard() {
 this(0, 0);
}
public EventWithWildcard(long iField, long wField) {
 this.indexedField = iField;
 this.wildcardField = wField;
}

Sample source files with annotations
Following are two sample source files with annotations. These are the source files for the
simple sample application provided with Apama. The lines with the annotations are in
bold typeface for your convenience.

Here is the Simple.java file with comments removed:
import com.apama.jmon.*;

M
Odd Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 713

import com.apama.jmon.annotation.*;

@Application(name = "Simple",
 author = "Moray Grieve",
 version = "1.0",
 company = "Apama",
 description = "Deployment descriptor for the Simple JMon monitor",
 classpath = ""
)

@MonitorType(description = "A simple JMon monitor, used to show
 functionality of a new installation.")
public class Simple implements Monitor, MatchListener {

 public Simple() {}

 public void onLoad() {
 EventExpression eventExpr = new EventExpression(
 "all Tick(*, >10.0):t");
 eventExpr.addMatchListener(this);
 }
 public void match(MatchEvent event) {
 Tick tick = (Tick)event.getMatchingEvents().get("t");
 tick.emit();
 }
}

Here is the Tick.java file with comments removed:
import com.apama.jmon.Event;
import com.apama.jmon.annotation.*;

@EventType(description = "Event which signals a stock trade")
public class Tick extends Event {

 public String name;
 public double price;
 public Tick() {
 this("", 0);
 }

 public Tick(String name, double price){
 this.name = name;
 this.price = price;
 }
}

Generating deployment descriptor files from annotations
There are two utilities that you can use to generate the deployment descriptor file from
annotations in your source files:

com.apama.jmon.annotation.DirectoryProcessor — This utility processes a
directory and generates the deployment descriptor file, which you must add to your
application's JAR file.

com.apama.jmon.annotation.JarProcessor — This utility processes an
application's JAR file and adds the deployment descriptor file to that JAR file.

You can execute these utilities from the command line or from a Java build file.

M
Even Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 714

The DirectoryProcessor utility takes three optional arguments:

-r indicates that you want to recursively process the .class files in each directory
and subdirectory in the specified directory. The default is that the utility processes
only the .class files that are in the specified directory.

-d specifies the directory that contains the .class files you want to process. The
default is that the utility processes any .class files in the current working directory.

-o specifies the file in which to store the output. The default is that output goes to
stdout. In the JMon application JAR file, the name of the deployment descriptor file
must always be jmon-jar.xml.

After you generate the deployment descriptor file, you must place it in the META-
INF directory of your development directory. For example, you can execute the
DirectoryProcessor utility from the command line as follows:
cd src
javac -classpath
$APAMA_CORRELATOR_HOME/lib/ap-correlator-extension-api.jar
*.java
java -DAPAMA_LOG_LEVEL=WARN -classpath
$APAMA_CORRELATOR_HOME/lib/ap-correlator-extension-api.jar
com.apama.jmon.annotation.DirectoryProcessor -r -d ./src -o
./src/META-INF/jmon-jar.xml
jar -cf ../simple-jmon.jar META-INF/jmon-jar.xml *.class

The JarProcessor utility takes one required argument, which is the name of the JAR file
to operate on. To execute the JarProcessor utility from a Java build file, you can define
something like the following:
<!--Target to process the annotations in the JMon application classes
 to produce jmon-jar.xml -- the deployment descriptor file.
-->
<target name="process-jar" depends="jar">
 <echo message=
 "Process annotations in jar file: ${process-jar-file}" />
 <java jvm="java"
 classname="com.apama.jmon.annotation.JarProcessor" dir="."
 fork="yes">
 <classpath>
 <fileset dir="${lib-dir}">
 <patternset refid="libs" />
 </fileset>
 </classpath>
 <jvmarg value="-DAPAMA_LOG_LEVEL=WARN" />
 <arg value="${process-jar-file}" />
 </java>
</target>

<target name="process" depends="jar">
 <antcall target="process-jar">
 <param name="process-jar-file" value="${jar-file}" />
 </antcall>
</target>

M
Odd Header

Developing and Deploying JMon Applications

Developing Apama Applications Version 9.10 715

Package names and namespaces in JMon applications
There is no correlation between the correlator namespace defined for a named JMon
event or monitor, and the Java package structure of the class file in which that event or
monitor is implemented. Event expressions are based on the correlator namespace, not
on the Java package of the implementation.

Consider the following example. An event type defined in a Java class a.b.c.MyEvent
that is given the correlator name x.MyEvent. Also a monitor defined in a Java class
a.b.c.MyListener that is given the correlator name y.MyListener. Now, although
the two classes are in the same Java package and need not use import statements to see
each other, their correlator names are in different namespaces. This means that an event
expression in y.MyMonitor will need to use the fully qualified name x.MyEvent to refer
the event.

Sample JMon applications
The Apama distribution includes a number of complete sample applications. These
applications are in the samples folder under java_monitor, and are called simple,
stockwatch, vwap, dos, context and complex.

See the README.txt file included with each sample for complete instructions for how to
compile and run the sample application.

M
Even Header

Developing Apama Applications Version 9.10 716

M
Odd Header

Developing Correlator Plug-ins

Developing Apama Applications Version 9.10 717

IV Developing Correlator Plug-ins

■ Introduction to Correlator Plug-ins ... 719

■ Providing an EPL event wrapper for a plug-in ... 721

■ Writing a Plug-in in C or C++ .. 723

■ Advanced Plug-in Functionality in C++ and C ... 731

■ The EPL Plug-in APIs for C and C++ ... 747

■ Writing Correlator Plug-ins in Java .. 751

M
Even Header

Developing Correlator Plug-ins

Developing Apama Applications Version 9.10 718

Although the correlator's native programming language, the Apama Event Processing
Language (EPL), has most of the functionality of modern programming languages,
its primary purpose is enabling the detection of, correlation across, and triggering on
complex event paerns.

In most cases existing code could be ported and rewrien in EPL, but in practice this
might not be feasible. For example, an application might need to carry out advanced
arithmetic operations and a significant programming library of such functions might
already be available. Porting such complex code to EPL would be a lengthy, expensive
and error prone task, and is unnecessary.

The following topics describe Apama's EPL Plug-in APIs and illustrate how to use them.

M
Odd Header

Introduction to Correlator Plug-ins

Developing Apama Applications Version 9.10 719

25 Introduction to Correlator Plug-ins

In order to incorporate existing specialized functionality, developers can write what
is termed an event correlator plug-in. A correlator plug-in consists of an appropriately
formaed library of C or C++ functions, which can be called from within EPL code. In
the case of a plug-in wrien in Java, the Java classes that are called from an application's
EPL code are contained in a jar file. The event correlator does not need to be modified
to enable or to integrate with a plug-in, as the plug-in loading process is transparent and
occurs dynamically when required.

Custom correlator plug-ins can be developed using Apama's EPL Plug-in APIs for C, C
++, and Java. Once a plug-in is developed, a developer can call the functions it contains
directly from EPL code, passing EPL variables and literals as parameters, and geing
return values that can be manipulated.

Note: It is very important that strict plug-in development guidelines are followed
when developing a plug-in. The functions provided must be adequately
debugged prior to their integration within a plug-in. This is because when the
event correlator loads a plug-in it is dynamically linked with the correlator's
runtime process. If any code within the plug-in causes a runtime error the
correlator might fail and terminate.

For this reason, Apama customers who experience problems with correlator stability
while using plug-ins will be asked by Apama Technical Support to remove the plug-
in and reproduce the problem prior to being offered further technical help. Apama
Technical Support will only lift this restriction if the plug-ins have had prior certification
by Apama.

"Writing a Plug-in in C or C++" on page 723 illustrates the plug-in development
process through exploration of a simple example. "Advanced Plug-in Functionality
in C++ and C" on page 731 takes this further with a more comprehensive example,
while "The EPL Plug-in APIs for C and C++" on page 747 provides a more complete
overview of the functionality of the EPL Plug-in C API and the EPL Plug-in C++ API.
"Writing Correlator Plug-ins in Java" on page 751 describes the EPL Plug-in for Java.

M
Even Header

Developing Apama Applications Version 9.10 720

M
Odd Header

Providing an EPL event wrapper for a plug-in

Developing Apama Applications Version 9.10 721

26 Providing an EPL event wrapper for a plug-in

When creating a plug-in, it is considered best practice to provide an EPL event wrapper
to access all methods of the plug-in. This provides type safety at runtime with respect
to EPL objects of type chunk, that is, opaque objects whose contents cannot be seen or
directly manipulated in EPL.

An example of this is the TimeFormat event which is provided as a wrapper for the Time
Format plug-in (see also "Using the TimeFormat Event Library" on page 357). Using the
plug-in directly, you can write code such as the following:
monitor UsePlugin {
 import "TimeFormatPlugin" as timeMgr;
 chunk pattern;
 action onload() {
 pattern := timeMgr.compilePattern("EEE MMM dd HH:mm:ss yyyy");
 float stateTimestampSec :=
 timeMgr.parseTimeFromPattern(pattern, "1996.07.10 AD at 15:08:56");
 }
}

Of course there is nothing to prevent someone passing a chunk from another plug-in as
the parameter to the parseTimeFromPattern method. You can forestall this possibility
and enforce type safety by using an event wrapper instead to hide the chunk type as in
the following example:
using com.apama.correlator.timeformat.TimeFormat;
using com.apama.correlator.timeformat.CompiledPattern;
monitor UseEventWrapper {
 CompiledPattern pattern;
 action onload() {
 TimeFormat timeFormat := TimeFormat();
 pattern := timeFormat.compilePattern("EEE MMM dd HH:mm:ss yyyy");
 float stateTimestampSec := pattern.parseTime("1996.07.10 AD at 15:08:56");
 }
}

The event definitions for the TimeFormat and CompiledPattern events can be found
in the TimeFormatEvents.mon file, which is located in the monitors directory of your
Apama installation. Note how the CompiledPattern event wraps a chunk object,
and the parseTime method on the CompiledPattern event uses the chunk in the
CompiledPattern object and the string parameter passed in to the action.

This approach gives a more object-oriented feel to using the plug-in and can be used
to emulate calling methods on Java or C++ objects. The signatures of actions on event
definitions are also available to Apama in Software AG Designer, so they can be viewed
there and benefit from completion proposals and type checking. (Software AG Designer
does not know about the actions exposed by plug-ins, so it cannot provide type checking
for them.)

M
Even Header

Developing Apama Applications Version 9.10 722

M
Odd Header

Writing a Plug-in in C or C++

Developing Apama Applications Version 9.10 723

27 Writing a Plug-in in C or C++

■ A simple plug-in in C++ ... 724

■ Calling the test function from EPL ... 726

■ A simple C plug-in ... 727

■ Parameter-less plug-in functions .. 728

M
Even Header

Writing a Plug-in in C or C++

Developing Apama Applications Version 9.10 724

The Apama EPL Plug-in APIs for C and a C++ make it possible for developers to write
event correlator plug-ins either in C or in C++.

As long as certain conventions are followed, writing a plug-in is very straightforward.
In essence, a plug-in consists of a set of static C or C++ functions (representing the
functionality that the developer wishes to invoke from within EPL code) and some
necessary initialization functions.

C++ compilers vary extensively in their support for the ISO C++ standard and in how
they support linking. For this reason, Apama supports the writing of C++ plug-ins only
with specific compilers. For a list of the supported C++ compilers, see Software AG's
Knowledge Center in Empower at hps://empower.softwareag.com.

On the other-hand, C has been standardized for many years, and for this reason the C
API should work with the majority of modern C/C++ compilers on all platforms.

The EPL Plug-in APIs are versioned. For a correlator plug-in to be compatible with an
event correlator they both need to support the same plug-in interface version. Plug-ins
built with earlier versions of the APIs need to be re-compiled and re-linked. Note that
the API version number is separate from the product version number and only increases
when the plug-in API is changed.

The APIs comprise the relevant header files, correlator_plugin.hpp and
correlator_plugin.h, and are accompanied by a set of sample applications.

To configure the build for a correlator plug-in:

On Linux, copying and customizing an Apama makefile from a sample application is
the easiest method.

On Windows, you might find it easiest to copy an Apama sample project. If you
prefer to use a project you already have, be sure to add $(APAMA_HOME)\include as
an include directory. To do this in Visual Studio, select your project and then select
Project Properties > C/C++ > General > Additional Include Directories.

A simple plug-in in C++
As an example, this topic describes the development of a simple plug-in called,
appropriately, simple_plugin. It has only one function, called test, which takes a
string as its sole parameter, makes some alterations to it, prints it out, and passes back
another string as the result.

Let us first consider a C++ example using the C++ API. The first requirement is to include
the header file correlator_plugin.hpp. This header file contains the definitions for the
C++ API. The file is located in the Apama installation's include directory.

The C++ method that implements this plug-in function must be defined as follows:
class SimplePlugin {
 public:
 static void AP_PLUGIN_CALL test(
 const AP_Context& ctx,
 const AP_TypeList& args,
 AP_Type& rval,

https://empower.softwareag.com

M
Odd Header

Writing a Plug-in in C or C++

Developing Apama Applications Version 9.10 725

 AP_TypeDiscriminator rtype);
}

The definition for all plug-in functions must be as for SimplePlugin::test above. In
essence only the method name and the enclosing class name should vary as far as the
definition is concerned. This is important, since it is the Correlator's Plug-in Support
Mechanism that will be calling this C++ method and filling in its parameters.

The ctx parameter is known as the execution context and is used internally by the
event correlator to make the call to the plug-in function. The developer normally
need not be concerned with it in the function's implementation.

args is an array of parameters; in effect the parameters that the EPL writer will have
to supply when calling test.

rval denotes the return value. Plug-in function implementations must pass out any
return value through this parameter, although as will be shown, in EPL the function
will appear to return a result in the traditional way. The return value can be a float,
boolean, string, integer or chunk, and the expected return type is indicated by
rval.discriminator(). It is not possible to return sequences or other correlator
types.

rtype is the expected return type, identical to the result of calling
rval.discriminator() and is retained for backwards compatability.

The next important step is to define exactly what type of parameters the above plug-
in function should expect and accept, what it should return, and under what name it
should appear within EPL.
/** Parameter types for the 'test' function */
static const char8* testParamTypes[1] = {"string"};
/** Declare functions provided by this plugin */
static AP_Function Functions[1] = {
 {"test", &SimplePlugin::test, 1, &testParamTypes[0], "string"}
};

The static array of AP_Functions structures needs to be defined in every plug-in to
describe which functions that plug-in is exporting to the event correlator. In this case
the C++ method SimplePlugin::test has been mapped to appear as the external
plug-in function “test”, to take a single parameter, with the laer being of the EPL type
string (as defined within testParamTypes), and return a value of EPL type string. If a
particular function returns nothing, the return type should be specified as void.

All that is left is to implement the “C” plug-in initialization method:
AP_PLUGIN_DLL_SYM AP_ErrorCode AP_PLUGIN_CALL
 AP_INIT_FUNCTION_NAME {
 const AP_Context& ctx,
 uint32& version,
 uint32& nFunctions,
 AP_Function*& functions
);

the “C” plug-in shutdown method:
AP_PLUGIN_DLL_SYM AP_ErrorCode AP_PLUGIN_CALL
 AP_SHUTDOWN_FUNCTION_NAME (const AP_Context& ctx);

and the “C” plug-in library version check:

M
Even Header

Writing a Plug-in in C or C++

Developing Apama Applications Version 9.10 726

AP_PLUGIN_DLL_SYM AP_ErrorCode AP_PLUGIN_CALL
 AP_LIBRARY_VERSION_FUNCTION_NAME(const AP_Context& ctx,
 uint32& version);

The names of the functions are macros defined in correlator_plugin.hpp.

Linking limitations require that these three functions be defined as “C” functions. Both
should at least implement the code as indicated in the simple_plugin.cpp example
that can be found in the samples\correlator_plugin\cpp directory of your Apama
installation. For most situations, it is recommended that the developer re-deploy the
initialization and shutdown methods provided unchanged, although more complex
plug-ins may include plug-in-specific startup and shutdown code in these functions.
Note that the initialization and shutdown functions are invoked each time the library is
loaded or unloaded, so these functions must be re-entrant and able to be safely invoked
multiple times.

Going back to the implementation of the test method, through use of the extensive
library of helper functions available on the AP_Type class, the developer can manipulate
the values passed through by the EPL code.

For example, this code displays an integer argument passed to a function:
cout << args[0].integerValue();

while this call increments the second element of a sequence argument:
AP_Type &element = args[0][2];
element.integerValue(element.integerValue()+1);

Note that this is relevant since sequences and chunks are passed by reference. So, if the
EPL code calling it was:
sequence<integer> mySeq := [0,10,20,30];
myPlugin.exampleFunction(mySeq);
print mySeq;

then after the call mySeq is [0,10,21,30].

Note that this is modifying the sequence to which mySeq refers, not altering the value of
mySeq itself. A plug-in function cannot do the equivalent of mySeq := otherSeq;.

Similarly, it is not possible to modify primitives passed to a plug-in as arguments.
Strings, while strictly speaking a reference type, are immutable and so cannot be
modified either.

The complete code base of this simple example can be found in the simple_plugin.cpp
file which is located in the samples\correlator_plugin\cpp\ directory of your
Apama installation. A makefile (for use with GNU Make) and a batch file (for
Microsoft's Visual Studio) are provided in this directory to assist with compiling plug-
ins on UNIX and Windows platforms respectively. A README.txt file in the directory
describes how to build the example.

Calling the test function from EPL
Compiling simple_plugin.cpp produces the plug-in file libsimple_plugin.so (on
UNIX) or simple_plugin.dll (on Windows).

M
Odd Header

Writing a Plug-in in C or C++

Developing Apama Applications Version 9.10 727

Note: The plug-in needs to be placed in a location where it can be picked up by the
event correlator.

This means that on Windows you either need to copy the .dll into the lib
sub-directory of your Apama work directory, or else place it somewhere
which is on your path, that is, a location that is referenced by the PATH
environment variable.

On Linux or Solaris, you either need to copy the .so into the lib sub-
directory of your Apama work directory, or else place it somewhere
which is on your library path, that is, a directory that is referenced by the
LD_LIBRARY_PATH environment variable.

The next step is to write some EPL code that imports the simple_plugin plug-in and
calls the method test.

Some example EPL code to achieve this is as follows:
monitor SimplePluginTest {

 // Load the plugin
 import "simple_plugin" as simple;

 // To hold the return value
 string ret;
 string arg;
 action onload() {

 // Call plugin function
 arg := "Hello, Simple Plugin";
 ret := simple.test(arg);

 // Print out return value
 log "simple.test = " + ret;
 log "arg = " + arg;
 }
}

Firstly, simple_plugin must effectively be located and loaded. This is the first purpose
of the import statement. Secondly, it must be assigned an alias name, in this case
simple.

This then allows the plug-in's test method to be invoked as simple.test(), taking an
EPL string as parameter, and returning an EPL code string as its result.

The above EPL code is provided as simple_plugin.mon in the Apama installation's
samples\correlator_plugin\cpp directory.

A simple C plug-in
The C version of the above example, simple_plugin.c, is very similar. The first
difference is the use of the C version of the API, which is correlator_plugin.h. This
can be located in the include directory of the Apama installation.

M
Even Header

Writing a Plug-in in C or C++

Developing Apama Applications Version 9.10 728

As before, there is only one function, called test, which takes a string as its sole
parameter, makes some alterations to it, prints it out, and passes back another string as
the result.

The C method that implements this plug-in function must be defined as follows:
static void AP_PLUGIN_CALL simplePluginTest(
 const AP_PluginContext* ctx,
 const AP_PluginTypeList* args,
 AP_PluginType* rval,
 AP_TypeDiscriminator rtype)

The rest of the example is very similar to the C++ example. The complete code
base can be found in the file simple_plugin.c which is located in the samples
\correlator_plugin\c directory of your Apama installation. A makefile (for use with
GNU Make) and a batch file (for Microsoft's Visual Studio) are provided in this directory
to assist with compiling plug-ins on UNIX and Windows platforms respectively. A
README.txt file in the directory describes how to build the plug-in.

Parameter-less plug-in functions
Occasionally, it is useful to invoke a function or method within a plug-in which
requires, and returns, no parameters. This is simply achieved by having the function/
method ignore the function/method parameters and defining a function which takes no
parameters and returns void in the function table. Examples are given below.

In C++ the method is defined as:
void AP_PLUGIN_CALL Analytic::SilentInitialisation (
 const AP_Context& ctx,
 const AP_TypeList& args,
 AP_Type& rval,
 AP_TypeDiscriminator rtype) {
 // Custom Code Here
 // Ignoring the args, rval and rtype parameters
}

And, in C as:
static void AP_PLUGIN_CALL SilentInitialisation (
 const AP_PluginContext* ctx,
 const AP_PluginTypeList* args,
 AP_PluginType* rval,
 AP_TypeDiscriminator rtype) {
 // Custom Code Here
 // Ignoring the args, rval and rtype parameters
}

Then the function table would appear thus, in C++:
Static AP_Function Functions[1] = {
 {
 "SilentInit", &Analytics:: SilentInitialisation, 0, NULL,
 "void" },
};

And as below in C:
Static AP_Function Functions[1] = {
 { "SilentInit", &SilentInitialisation, 0, NULL, "void" },

M
Odd Header

Writing a Plug-in in C or C++

Developing Apama Applications Version 9.10 729

};

In EPL, the plug-in function/method is then invoked as:
import "analytics" as a;
action onload() {
 a.SilentInit();
 // Custom Code Here
}

Each call to a plug-in function returns a single value. Occasionally, it is necessary for
an operation to return multiple values; there are various techniques that can be used to
achieve this:

Provide multiple functions which are called in turn, each of which returns one of the
values.

Return a chunk expressing the composite value, and provide functions that
interrogate the chunk to extract each individual value.

Return a string that can be parsed as an event that expresses the composite value.

Enqueue an event that expresses the composite value.

Pass the function a sequence and modify the elements.

See "The chunk type" on page 733 for details of how chunks are used and
"Asynchronous plug-ins" on page 739 for how to enqueue an event from a plug-in.

M
Even Header

Developing Apama Applications Version 9.10 730

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 731

28 Advanced Plug-in Functionality in C++ and C

■ Introducing complex_plugin .. 732

■ The chunk type .. 733

■ Working with chunk in C++ .. 734

■ Working with chunk in C .. 736

■ Working with sequences .. 736

■ The complete example ... 738

■ Using complex_plugin from the event correlator ... 738

■ Asynchronous plug-ins ... 739

■ Writing correlator plug-ins for parallel processing applications .. 740

■ Working with blocking behavior in C++ plug-ins .. 741

■ Working with channels in C++ plug-ins ... 742

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 732

This topic uses the simple_plugin example described in "Writing a Plug-in in C or C++"
on page 723. This section extends the example and illustrates more advanced use of the
APIs.

Introducing complex_plugin
Appropriately, this extended C++ example is called complex_plugin.cpp, and it is also
available in the samples\correlator_plugin\cpp directory of the Apama installation.
A README.txt file in the directory describes how to build the example plug-in.

This time, the C++ example has three plug-in C++ methods defined:
class ComplexPlugin {
 public:

 static void AP_PLUGIN_CALL test1(
 const AP_Context& ctx,
 const AP_TypeList& args,
 AP_Type& rval,
 AP_TypeDiscriminator);

 static void AP_PLUGIN_CALL test3(
 const AP_Context& ctx,
 const AP_TypeList& args,
 AP_Type& rval,
 AP_TypeDiscriminator);

 static void AP_PLUGIN_CALL test4(
 const AP_Context& ctx,
 const AP_TypeList& args,
 AP_Type& rval,
 AP_TypeDiscriminator);
}

ComplexPlugin::test1 dynamically decodes and displays its arguments, and then
modifies the contents of any sequences that are passed to it. ComplexPlugin::test3
allocates and returns an ExampleChunk opaque object (see "The chunk type" on page
733 for more information on opaque objects). ComplexPlugin::test4 uses an
ExampleChunk object as created by ComplexPlugin::test3, modifies and prints its
contents, and then returns it.

You may have noticed that no test2 was defined. This is intentional and the reason will
become evident shortly.

In order to map the above C++ methods to plug-in functions, you must define the
Functions static array. This time this looks as follows:
static const char8* test1ParamTypes[4] =
 {"integer", "float", "boolean", "string"};

static const char8* test2ParamTypes[4] =
 {"sequence<integer>", "sequence<float>", "sequence<boolean>",
 "sequence<string>"};

static const char8* test3ParamTypes[1] = {"integer"};
static const char8* test4ParamTypes[1] = {"chunk"};

static AP_Function Functions[4] = {

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 733

 {"test1",&ComplexPlugin::test1,4,&test1ParamTypes[0],"string"},
 {"test2",&ComplexPlugin::test1,4,&test2ParamTypes[0],"float"},
 {"test3",&ComplexPlugin::test3,1,&test3ParamTypes[0],"chunk"},
 {"test4",&ComplexPlugin::test4,1,&test4ParamTypes[0],"void"}
};

This definition highlights some of the powerful capabilities available to plug-in
developers.

First of all it maps ComplexPlugin::test1 to the plug-in method test1, indicates
that it takes four EPL parameters, sets these to be an integer, a float, a boolean
and a string respectively, and sets the return type to be a string.

It then maps ComplexPlugin::test1 (again!) to the plug-in method test2, this time
indicating that it will take four EPL parameters, and sets these to be a sequence of
integer, a sequence of float, a sequence of boolean and a sequence of string,
respectively. It then sets the return type to be a float. It is important to note that this
multiple mapping of the same C++ method can only be carried out if the method is
wrien with no assumptions regarding the type of its parameters or result. In fact, if
you examine the full source code for this example, as provided below, you will see
that this method examines the parameters' types before manipulating them.

ComplexPlugin::test3 is mapped to test3 and set to take a single integer.
Interestingly though, it is set to return a chunk type. This is a special purpose opaque
type. For an explanation of this type, "The chunk type" on page 733.

ComplexPlugin::test4 is mapped to test4, and accepts a chunk type.
Its implementation is designed to work on the chunk result produced by
ComplexPlugin::test3. It does not return a value.

The chunk type
Apama's Plug-in Support Mechanism assumes that the functions called are stateless,
that is they do not retain state between calls. However, it is recognized that in some
circumstances a developer might need to retain complex state in between function calls
and in order to assist in this, the opaque type chunk is provided. Furthermore, the chunk
type allows data to be referenced from EPL that has no equivalent EPL type.

It is not possible to perform operations on data of type chunk from EPL code directly; it
exists purely to allow "pass-through" of data output by one external plug-in function to
another function. The event correlator does not modify the internal structure of chunk
values in any way, so as long as a receiving function expects the same type as that
output by the original function, any complex data structure can be passed around using
this mechanism.

Note: Chunks cannot be routed, emied or enqueued. Also note that passing a
chunk created by one plug-in to a second plug-in in the same monitor is not
permied. If one plug-in returns a chunk and a second plug-in tries to read
it, a C++ exception will be thrown within the second plug-in and, unless it is
caught, the exception will terminate the correlator instance.

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 734

To use chunks with plug-ins first requires declaring a variable of type chunk. It can then
be assigned the return value from an external function or used as a parameter in the
function call.

The following example illustrates this. Monitor printTime prints out the current time
when it is loaded. To generate timeString the monitor uses an external time plug-in.
In this plug-in, the time() function returns a float representing the time in seconds;
localtime() returns a structure containing year, month, day and time data which the
asctime() function formats into a string of the form: “Friday February 1 15:00:07
GMT 2002”.
import "apama_time" as time;

monitor printTime {
 float millis;
 chunk timeData;
 string timeString;

 action onload() {
 millis := time.time();
 timeData := time.localtime(millis);
 timeString := time.asctime(timeData);
 print "The time is " + timeString;
 }
}

It can be seen that the timeDatachunk is used to store output from localtime() and
pass it to asctime(); the value is not inspected from EPL code directly.

Although the chunk type was designed to support unknown data types, it is also a
useful mechanism to improve performance. Where data returned by external library
functions does not need to be accessed from the EPL code, using a chunk can cut down
on unnecessary type conversion. For example, in the above example the output of
localtime() is actually a 9-element array of float. The fact that the value is never
accessed by the EPL code means that it can be declared as a chunk and an unnecessary
conversion from native array to an EPL sequence and back again is removed.

Working with chunk in C++
A chunk object points to an instance of a class derived from the class AP_Chunk.

In this example ComplexPlugin::test3 and ComplexPlugin::test4 communicate
state through the use of the same chunk, with this being of the type ExampleChunk. The
ExampleChunk class is defined as follows:
/**
 * Simple 'chunk' class demonstrating how opaque, plugin-private data
 * may be passed between plugin functions by MonitorScript. Note that
 * every chunk class must be derived from AP_Chunk.
 */
class ExampleChunk : public AP_Chunk {
public:
 /**
 * Construct an ExampleChunk containing the specified number of
 * floating-point values.
 */
 explicit ExampleChunk(size_t size=2048);

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 735

 /**
 * Note that we can rely on the default copy constructor and
 * destructor
 */

 /**
 * Copy method creates a new ExampleChunk that is an exact duplicate
 * of the current object. This method must be provided by every chunk
 * class, so that the Engine can assign to and from chunk objects.
 */
 AP_Chunk* copy(const AP_Context& ctx) const;

 /**
 * Print out the contents of the chunk
 */
 void print() const;

 /** The contents of this chunk */
 std::vector<float64> data;
};

For every chunk sub-class, you need to define the copy (or cloning) method copy().
When the chunk is no longer needed by the correlator, it is deleted. As for any other C
++ class, it is important to ensure that the destructor releases any resources or memory
owned by the instance, though best practice is for the class's members to manage
their own resources, as with std::vector<float64> data in ExampleChunk. In the
correlator_plugin.hpp header file these are defined as:
/**
 * Pure virtual destructor. It is *essential* that every AP_Chunk
 * derived class implements this method to free any resources
 * allocated by the derived class. The Engine will arrange for the
 * destructor to be called when the associated MonitorScript chunk
 * object is deleted.
 *
 * The correlator interface may not be used from a chunk's destructor.
 *
 * Also, correlator interface calls on another thread may
 * block until the chunk's destructor returns. Chunk
 * destructors that can block should therefore be careful to
 * avoid deadlocking against such a thread.
 */
 virtual ~AP_Chunk() {}

/**
 * Chunk cloning method (typically calls a copy constructor in the
 * derived class). As with the destructor, it is essential for
 * AP_Chunk derived classes to implement this method, to ensure that
 * MonitorScript assignments to/from chunk objects work correctly.
 *
 * @param ctx Execution context for the copy operation.
 *
 * @return Pointer to a copy of this AP_Chunk object.
 */
virtual AP_Chunk* copy(const AP_Context& ctx) const = 0;

The contents of these methods depend on what the chunk is intended to contain. In
this example the chunk is intended to store data, a vector of float values. Because
std::vector, and therefore also ExampleChunk, is copy-constructible, returning new
ExampleChunk(*this); suffices. Only if the type is not copy-constructible will copy()

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 736

need to do anything more elaborate. The destructor needs to adequately de-allocate the
memory assigned to this structure. Both methods are used implicitly by EPL: the event
correlator will invoke the destructor when the chunk object is no longer accessible to the
EPL code, and will call the copy() method as necessary to handle EPL assignments.

It is important to note that if plug-in function code invokes the chunk destructor itself,
it should first call chunkValue(NULL) on the associated AP_Type object, to prevent the
event correlator from aempting to delete the same object again.

The size member is then being used to keep track of the size of the data member. Two
constructors and a utility print() method have also been provided in this case.

Working with chunk in C
In C, working with chunks is similar. Functions that carry out the functionality that
would otherwise be defined within the class methods need to be implemented. There are
two specific rules that must be followed.

First a callback function table must be supplied with every user chunk that is created.
Here's an example:
const struct AP_PluginChunk_Callbacks exampleChunkCallbacks = {
 exampleChunkFreeUserData,
 exampleChunkCopyUserData,
};

This specifies the functions that represent the "destroy" and "copy" functions described
in the above C++ sections.

The other rule is that the user must implement a chunk "constructor" like method. Its
contents or name do not maer, but it must return a specific structure that is obtained
through calling the createChunk function. Here's an example constructor:
AP_PluginChunk* exampleChunkConstructor(
 const AP_PluginContext *ctx, unsigned size)
{
 struct ExampleChunk* data;

 data = (struct ExampleChunk*)malloc(
 sizeof(struct ExampleChunk));
 data->size = size;
 data->data = (double *)malloc(sizeof(double) * size);
 printf(
 "ExampleChunk constructor called with size = %u\n",size);
 return ctx->functions
 ->createChunk(ctx,&exampleChunkCallbacks,data);
}

Working with sequences
Sequences are the most complex type currently supported in the API. The C++ API
defines AP_Type functions and operators to:

Get the number of elements in a sequence.

Get the type of the sequence elements.

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 737

Set the length of an existing sequence.

Invoking setSequenceLength() is not permied while the plug-in has unreleased
sequenceElements arrays. After a call to setSequenceLength(), any references
to members returned from sequenceElement() or operator[] calls will become
invalid.

Extract a single element from the sequence, as an AP_Type.

Create a sequence in an uninitialized (empty) AP_Type object.

The sequence can contain the type you specify, which can be integer, float,
boolean, string, or chunk. For example:
rval->createSequence(AP_INTEGER_TYPE);

Populate the sequence by seing the length and assigning content to members.

See the content of the correlator_plugin.hpp file for details. This file is located in the
Apama installation's include directory.

In the C API, similar functions are provided by the AP_PluginType_Functions class.

The DumpAP_Type() function in the following example demonstrates some sequence
operations and functions.
cout << "sequence type = " << arg.sequenceType() << endl;
cout << "sequence size = " << arg.sequenceLength() << endl;
for (uint32 i = 0; i < arg.sequenceLength(); i++) {
 cout << "sequence element[" << i << "]: ";
 DumpAP_Type(arg[i]);
 ModifyAP_Type(arg[i]);
}

It is also possible to map some or all of the sequence elements onto traditional C/C++
arrays, consisting either of AP_Type objects encapsulating the individual elements of the
sequence, or of the “native” objects stored in each element. For example, the elements of
an EPL sequence<integer> object can be mapped onto a native int64 array like this:
int64 * intArray = arg.integerSequenceElements();
for (uint32 i = 0; i < arg.sequenceLength(); i++) {
 cout << intArray[i] << endl;
}

Alternatively, a “slice” containing a range of elements from the sequence can be
mapped. The example below maps elements 20 through 59 of the sequence onto a
native int64 array of length 40. Note that an exception will be thrown if the specified
slice lies outside the bounds of the sequence.
int64* intSlice = arg.integerSequenceElements(20, 40);
for (uint32 i = 0; i < 40; i++) {
 cout << intSlice[i] << endl;
}

Mapping sequence elements in this way may be relatively inefficient. An EPL sequence
is not necessarily stored as a native object array internally, so it may be necessary to
copy the element data into the native array when performing the mapping. Likewise,
the EPL sequence must be updated to reflect any changes to the elements made by the
plug-in function, before returning to EPL. This laer operation is achieved by the family

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 738

of release<type>SequenceElements() functions. For the integer sequence in the
example above, it is necessary to call
sequence.releaseIntegerSequenceElements();

before returning from the plug-in function. Note that this will immediately invalidate
the arrays returned by all calls to integerSequenceElements() made by the plug-
in function, so it should typically only be used once per function invocation, once the
function is finished with any mapped sequence data.

Any necessary release<type>SequenceElements() calls will in fact be made
automatically when a plug-in function terminates. These functions are provided to plug-
in writers so that mapped data can be released early if it is necessary to make memory
available. It is also possible to access elements of a sequence using the visitor idiom by
calling visitSequenceElements with an appropriate functor. Although less convenient
than other sequence element accessors, it is more efficient as it entails no memory
allocation.

The complete example
The file complex_plugin.cpp in the samples/correlator_plugin/cpp directory
of your Apama installation contains the implementation of the ComplexPlugin::
methods and the ExampleChunk class. The implementation of ComplexPlugin::test1
is particularly interesting as it demonstrates how to use the functionality provided by
the EPL Plug-in C++ API to examine the type of a parameter and act accordingly.

The equivalent C example is supplied in the installation as complex_plugin.c in the
samples/correlator_plugin/c folder of your Apama installation.

The Plug-in initialization and shutdown methods are as used within simple_plugin.

Using complex_plugin from the event correlator
Example EPL code that imports this plug-in and uses its functionality is provided in the
file complex_plugin.mon, which is located in the samples\correlator_plugin\cpp
folder of your Apama installation.

Once more the monitor starts by importing complex_plugin, this time mapping it to the
alias complex.

After defining a number of variables, it calls complex.test1. This function displays the
number of arguments and then displays them. It also returns the string value “Hello,
World”, which is then stored in ret1.

The call to complex.test2 requires seing up the sequences it takes as parameters. As
the implementation of test2 within complex_plugin is effectively the same as test1,
this does the same; it displays the number of arguments and then displays each one,
in this case printing out the contents of every sequence. The float value 2.71828 is
returned instead.

For complex.test3 the monitor is creating a chunk. The test3 method will create a
chunk with a numeric array of the specified size 20, which it initializes with the numbers

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 739

1 to 20. It then prints the contents out and returns the chunk to the event correlator for
retaining in myChunk.

The event correlator cannot examine or manipulate myChunk, but myChunk can be passed
in to other plug-in methods that expect a chunk of the same type. Note that the type of
a chunk, in this case the C++ class ExampleChunk, is not visible in EPL, so it is up to the
developer to ensure the chunks are compatible across plug-in methods. This broadly
applies to all plug-in methods irrespective of parameter and return types. The developer
must ensure that the parameters passed are of the correct types as otherwise failure
might occur.

The complex.test4 method is called with myChunk. This traverses the array of floating
point numbers contained within and takes the square root of each one. It then prints out
the revised numbers. It does not return anything.

Asynchronous plug-ins
It is possible to write a plug-in that can send events asynchronously to the event
correlator. This is not a recommended technique as multiple correlator processes or
external processes connected via the client API are preferred approaches to scaling
Apama deployments. However, an example of how to implement asynchronous plug-
ins is available in the samples\correlator_plugin\cpp directory of the Apama
installation, and is called async_plugin.cpp.

This is a simple example which uses the getCorrelator() method of AP_Context to
get a reference to an AP_CorrelatorInterface.

The single public method of AP_CorrelatorInterface is declared as follows:
/**
* Send an event to the correlator
*
* @param event the event to send. The event is represented as a string
* using the format described in Deploying and Managing Apama Apps.
* See the correlator utilities section, Event File Format.
*/
virtual void sendEvent(const char* event) const = 0;

The event correlator implements this method by using the same event queuing and
asynchronous processing mechanism as is used for the EPL enqueue keyword.

In this sample, the plug-in has one function exposed that is also called sendEvent. This
function demonstrates the feature by simply sending the data it was given back to the
event correlator. A more elaborate use of this mechanism might use its own background
processing thread to occasionally send events to the event correlator.

Examples of using the sendEvent method include:
ctx.getCorrelator()->sendEvent("SimpleCounter(1)");

This will dispatch the event of type SimpleCounter with a single integer field set to 1.

Also, in the sample discussed above it is used thus:
ctx.getCorrelator()->sendEvent(args[0].stringValue());

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 740

Here the event provided by the first argument is the complete event to be dispatched.

There is one area where extra caution is required when building asynchronous plug-ins,
which is the lifetime of variables within the plug-in. When a plug-in function is called
with an AP_Context argument, that context is valid only for the duration of the call
(and only on that thread). However, the AP_CorrelatorInterface remains valid for
the lifetime of the plug-in. References to it may be retained and used at any time on any
thread. This information is important to anyone writing a plug-in that may be holding
references to an AP_CorrelatorInterface, for example, in another thread. The plug-in
author must ensure that when the plug-in is shutdown these references are cleaned up,
since aempts to use these references after the plug-in has been shutdown may cause
instability of the event correlator.

Writing correlator plug-ins for parallel processing applications
For a plug-in created before Apama 9.9 to work with Apama 9.9, you must re-compile it.

Beginning with release 5.0, all plug-ins are required to be thread-safe. Beginning with
release 4.2, the interface is more accurate with respect to the use of const, so minor code
changes may be required.

Plug-ins created before Apama 4.2 run in a single operating system thread at a time. The
correlator assumes that such plug-ins are not thread-safe. For each call to such a plug-in,
the correlator acquires a mutex to ensure that multiple correlator contexts cannot use the
plug-in at the same time.

When multiple contexts need to concurrently use a plug-in, you must ensure
that the plug-in is thread safe. A plug-in can export a function that returns
the capabilities of the plug-in. See the AP_PluginCommon.h header file
in the include directory of your Apama installation for the definition of
AP_PLUGIN_GET_CAPABILITIES_FUNCTION_NAME. The correlator calls this function
before it calls the plug-in's init() function. The return value is a bit-wise OR of
capabilities, as defined in the AP_PluginCommon.h header file. If the return value
indicates that the plug-in is thread-safe, multiple contexts can make concurrent calls to
the plug-in. When multiple contexts need to concurrently use a plug-in, you must ensure
that the plug-in is thread-safe.

A plug-in can use a context's ID to send events to a particular context. Use the
AP_Context.getContextId() method to obtain the context ID. The correlator passes
an AP_Context object to each plug-in. This object has a getCorrelator() method that
returns an interface that defines a sendEventTo() method, which has the following
signature:
sendEventTo(const char *event, AP_uint64 targetContextId,
 const AP_Context &source)

The sendEventTo() method takes three arguments:

event — For the event to send, specify a string in the format described in Event file
format in Deploying and Managing Apama Applications.

targetContextId — Specify the ID of the context you want to send the event to.

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 741

&source — Specify the context that this plug-in call is running in. This is the
AP_Context object that was passed to the plug-in method or event handler method.
If this method is called from a background thread then that thread passes an
AP_Context::NoContext() object to this method. Specify that object as the source
context.

You can obtain the current context ID with a call to AP_Context.getContextId(),
which might be useful for sending or passing events to other threads. However, you
should not use the returned object as the value for the &source argument.

The following overloading of the sendEventTo() method is deprecated and will be
removed in a future release. Use the previously described overloading instead.
sendEventTo(const char *event, AP_uint64 targetContextId,
 AP_uint64 sourceContextId)

Note: The class AP_Context, which you use for correlator plug-in development,
is completely different and unrelated to contexts that you define in EPL for
parallel processing.

Working with blocking behavior in C++ plug-ins
When the behavior of a C++ plug-in is that it never blocks or does not usually block you
can declare the plug-in to be non-blocking. Even if one or more methods defined in a
plug-in might block, you can declare the plug-in to be non-blocking and override the
non-blocking designation for just the methods that might block. The benefit of declaring
a plug-in to be non-blocking is that the correlator refrains from creating unneeded
processing threads.

By default, the correlator assumes that any plug-in method or handler it calls might
block for an arbitrary amount of time. Consequently, the correlator creates additional
threads to continue processing other contexts. If the plug-in method/handler does not
block, these extra threads represent an expense that could be avoided.

Declaring a plug-in as non-blocking

To declare a plug-in as non-blocking, define an
AP_PLUGIN_GET_CAPABILITIES_FUNCTION_NAME function that returns
AP_CAPABILITIES_NON_BLOCKING. See the AP_PluginCommon.h header file in
the include directory of your Apama installation directory for the definition of
AP_PLUGIN_GET_CAPABILITIES_FUNCTION_NAME. The correlator calls this function
before it calls the plug-in's init() function. The return value is an AP_Capabilities
object that contains a bit-wise OR of capabilities, as defined in the AP_PluginCommon.h
header file.

When you declare a plug-in to be non-blocking the correlator lets plug-in methods and
any plug-in event handlers process to completion without spawning new threads.

You must ensure that a plug-in declared to be non-blocking does not block. If a non-
blocking plug-in does block it can cause a correlator deadlock. To avoid this, for each
plug-in method that might block, be sure to override the non-blocking designation. For

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 742

example, consider a method that accesses a local cache. Normally, this method would
not block. However, if the method uses a remote process when the needed object is not
in the local cache then the method might block. You must override the non-blocking
designation for a method such as this one.

Overriding the non-blocking designation for particular methods

A plug-in that you declare as non-blocking can have one or more methods that might
block. In each method that might block, you must call the pluginMethodBlocking()
function on either an AP_Context object or an AP_CorrelatorInterface object. The
signature for the pluginMethodBlocking() function is as follows for each type of
object:
void pluginMethodBlocking();

Calling pluginMethodBlocking() is idempotent. A call to pluginMethodBlocking()
informs the correlator that the containing method might block and that the correlator
should start additional threads to compensate.

Working with channels in C++ plug-ins
In a C++ correlator plug-in, you can send an event to a particular channel, subscribe to
receive events sent to particular channels, receive events sent on subscribed channels,
and unsubscribe from subscribed channels.

There is currently no support for channels in correlator plug-ins wrien in C.

Sending events to particular channels

To send an event to a particular channel, call the
AP_CorrelatorInterface.sendEventTo()method:
virtual void sendEventTo(const char *event, const char *targetChannel,
 const AP_Context &source)

event — For the event to send, specify a string in the format described in Event file
format in Deploying and Managing Apama Applications.

targetChannel — Specify the name of the channel you want to send the event to.

&source — Specify the context that this plug-in call is running in. This is the
AP_Context object that was passed to the plug-in method or event handler method.
If this method is called from a background thread then that thread passes an
AP_Context::NoContext() object to this method. Specify that object as the source
context.

An event that is passed to the sendEventTo() method is delivered to any contexts,
receivers, and plug-in event handlers that are subscribed to the specified channel.

Defining an event handler class for receiving events

To receive events sent to channels, derive an event handler class from
AP_EventHandlerInterface and implement the handleEvent() method:
virtual void handleEvent(const AP_BlockingAwareContext &ctx,

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 743

 const char *event, const char *channel)

ctx — Context in which this execution of the event handler is happening.

event — An event being received. The event must be represented as a string in the
format described in Event file format in Deploying and Managing Apama Applications.

channel — The channel on which the event was received.

Store each reference to an event handler instance in the
AP_EventHandlerInterface::ptr_t smart pointer. When the last reference to a
particular event handler is dropped then that instance is deleted.

Subscribing event handlers to channels

After you create an event handler class, you use event handler objects to subscribe to
receive events sent on one or more channels. Each event handler object can receive
events from multiple channels and you can specify the same event handler in multiple
subscriptions. If you subscribe to receive events from the same channel more than once
the duplicate subscriptions are ignored. When an event handler is subscribed to one or
more channels its handleEvent() method is called once for each event that is sent to
any subscribed channel.

There are several overloadings of the AP_CorrelatorInterface.subscribe() method:

To use an initializer list to subscribe an event handler object to one or more channels:
void subscribe(const AP_EventHandlerInterface::ptr_t &handler,
std::initializer_list<const char *> channels);

This overloading is not supported on SUSE Linux Enterprise Server 11.

This overloading uses smart pointers for reference counting. Use the following
format to call it:
correlator->subscribe(AP_EventHandlerInterface::ptr_t(new MyHandlerType()),
{ "channel one", "channel two" });

handler — Specify the handler to subscribe.

channels — Specify one or more channels that you want to receive events from.

To use an iterator pair or an array of char* values to subscribe an event handler
object to one or more channels:
template<typename ITER>
void subscribe(const AP_EventHandlerInterface::ptr_t &handler,
const ITER &start, const ITER &end);

This overloading uses smart pointers for reference counting. Use the following
format to call it:
correlator->subscribe(AP_EventHandlerInterface::ptr_t(new
MyHandlerType()), channels.begin(), channels.end());

handler — Specify the handler to subscribe.

start — The iterator to start from.

end — The iterator to end at.

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 744

The iterators must resolve to values that can be cast to const char* values.
Alternatively, you can use an array of char* values in place of the iterators.

To subscribe an event handler object to a single channel:
template<typename T>
void unsubscribe(const AP_EventHandlerInterface::ptr_t &handler,
 const T &channel);

This overloading uses smart pointers for reference counting. Use the following
format to call this method:
correlator->subscribe(AP_EventHandlerInterface::ptr_t(new
MyHandlerType()), "channel one");

handler — Specify the handler to subscribe.

channel — Specify the channel to subscribe to. The value you specify must be a
value that can be cast to char*.

Unsubscribing event handlers from channels

Several overloadings of the AP_CorrelatorInterface.unsubscribe() method let
you cancel one, multiple, or all channel subscriptions. If the result of an unsubscribe()
method is that the event handler has no subscriptions, and if there are no references to
that event handler, then the event handler object is deleted.

To use an initializer list to unsubscribe an event handler object from one or more
channels:
void unsubscribe(const AP_EventHandlerInterface::ptr_t &handler,
std::initializer_list<const char *> channels);

This overloading is not supported on SUSE Linux Enterprise Server 11.

This overloading uses smart pointers for reference counting. Use the following
format to call it:
correlator->unsubscribe(my_handler, { "channel one", "channel two" });

handler — Specify the handler to unsubscribe.

channels — Specify a list of channels for which to cancel subscriptions.

To use an iterator pair or an array of char* values to unsubscribe an event handler
object from one or more channels:
template<typename ITER>
void unsubscribe(const AP_EventHandlerInterface::ptr_t &handler,
const ITER &start, const ITER &end);

This overloading uses smart pointers for reference counting. Use the following
format to it:
correlator->unsubscribe(my_handler, channels.begin(), channels.end());

handler — Specify the handler to unsubscribe.

start — The iterator to start from.

end — The iterator to end at.

M
Odd Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 745

The iterators must resolve to values that can be cast to const char* values.
Alternatively, you can use an array of char* values in place of the iterators.

To unsubscribe an event handler object from a single channel:
template<typename T>
void unsubscribe(const AP_EventHandlerInterface::ptr_t &handler,
 const T &channel);

handler — Specify the handler to unsubscribe.

channels — Specify the channel to unsubscribe from. The value you specify must be
a value that can be cast to char*.

To unsubscribe an event handler object from all channels it is subscribed to:
virtual void unsubscribe(const AP_EventHandlerInterface::ptr_t &handler);

handler — Specify the handler to unsubscribe. If there are no other references to this
event handler, it is deleted.

Notes for writing C++ plug-ins that use channels

Ordering

When an event is sent to some contexts and some plug-ins the order the order in
which those contexts and plug-ins process the event is unpredictable.

Events sent on a particular channel maintain their order on the event handler that
receives them. However, there is no ordering with regard to other components that
might be subscribed to the same channel and so receive and operate on the same
events.

There is no ordering of events sent on different channels and received by the same
event handler.

Blocking

As with plug-in method calls, methods on event handlers may be blocking
or nonblocking. If a plug-in is declared as nonblocking then the correlator
will assume that all its event handlers are also nonblocking. You can call the
AP_BlockingAwareContext.pluginMethodBlocking() method to declare that an
event handler is actually blocking, despite the overall plug-in nonblocking seing.
Event handlers must not perform any potentially blocking operations if the plug-in is
nonblocking without calling pluginMethodBlocking(). See "Working with blocking
behavior in C++ plug-ins" on page 741.

Exceptions

If a handler throws an exception it is reported in the correlator log file and then
discarded.

Plug-in lifetime

If all monitors that reference a plug-in have terminated or have been removed by the
engine_delete utility, then the plug-in and any event handlers that belong to the
plug-in are removed from the correlator. If an event handler callback is in progress,

M
Even Header

Advanced Plug-in Functionality in C++ and C

Developing Apama Applications Version 9.10 746

then the delete operation blocks until the event handler has completed. At that point,
references to the handler are dropped so that the plug-in can be unloaded.

C++ plug-in samples that use channels

C++ code samples that use channels in plug-ins are in the subscribe_plugin file in the
samples\correlator_plugin\cpp directory of your Apama installation.

M
Odd Header

The EPL Plug-in APIs for C and C++

Developing Apama Applications Version 9.10 747

29 The EPL Plug-in APIs for C and C++

■ Primary class types .. 748

M
Even Header

The EPL Plug-in APIs for C and C++

Developing Apama Applications Version 9.10 748

The correlator_plugin.hpp header file provides the functionality of the EPL Plug-
in C++ API. The file is located in the include folder of your Apama installation. The
file is extensively documented and is recommended as a reference to the functionality
available within the definitions of the classes listed below.

The equivalent header file for the EPL Plug-in C API is correlator_plugin.h. This will
not explicitly be covered here, as it is broadly identical in functionality to the C++ header
file. The only difference is that the functionality presented as class methods in the C+
+ API is presented as C functions in the C API. This file is also located in the include
folder.

The C++ header defines several types. First it defines two enumerations:

AP_TypeDiscriminator - Identifies the type of the data item encapsulated by an
AP_Type “smart union” object. Its values map to EPL types.

AP_ErrorCode – Specifies the error codes that can be returned by plug-in functions
that do not throw exceptions. In this release of the API these are just the C-linkage
initialization and destructor functions.

Then it defines a number of exceptions. All exception classes inherit from
AP_PluginException, and they are AP_TypeException, AP_UnimplementedException,
AP_BoundsException and AP_SerialisationException.

Primary class types
The primary class types follow:

AP_Chunk – This is the base class for all chunk values. Plug-ins need to inherit from
this class and add suitable data and function members in the derived class to manage
their private data structures in memory allocated by the plug-in itself. AP_Chunk
instances are passed in and out of plug-in functions as the “chunk value” of AP_Type
objects, and referenced in EPL code via variables of type chunk.

AP_Type – This is a type-safe encapsulation of an EPL object for passing arguments
and return values into and out of plug-in functions. The implementation of the
AP_Type member functions is internal to the event correlator. One consequence of
this is that plug-ins cannot create a useful instance of this class themselves; the only
valid AP_Type objects are those passed to a plug-in function by the event correlator.
AP_Type is a “smart union” object; each instance holds a single value of one of the
supported types and only allows access to data of that type. Note that integer,
float, and boolean values are passed by value, while the “complex” types —
sequence and chunk — are passed by reference, so changes made to the contents of
these objects by a plug-in will be seen by the invoking EPL code. Strings are treated
slightly differently: though EPL string objects themselves are immutable, the plug-
in API allows return values and the values in a sequence of strings to be modified.
When this is done, a new EPL string object is created containing the specified text.
As of version 5.0 it is no longer possible to modify a string argument to a plug-in
function.

M
Odd Header

The EPL Plug-in APIs for C and C++

Developing Apama Applications Version 9.10 749

AP_TypeList – A container class for an ordered list of AP_Type objects, typically
used to hold the argument list for a plug-in function call.

AP_Context – The execution context for a plug-in function call. Holds per-call
correlator-internal data and provides various utility functions to plug-ins. Note that
the implementation of the AP_Context member functions is internal to the event
correlator. One consequence of this is that plug-ins cannot create a useful instance
of this class themselves; the only valid AP_Context objects are those passed in to a
plug-in function by the event correlator.

AP_Function – A plug-in function descriptor. The argument and return types in this
structure are strings (not AP_TypeDiscriminator objects) that use the same syntax
as EPL declarations. For example, if one declares a function argument as a sequence
of integers, the corresponding element of the paramTypes array would contain
sequence<integer>.

AP_CorrelatorInterface – An abstraction of the interface for calling back into the
event correlator. There is a single method provided that enables a plug-in to send
events to the event correlator. An instance of this class is acquired by requesting it
via a method on the AP_Context.

The header file also defines pointers to the plug-in initialization and destructor (or
shutdown) functions, as well as version checking. Each plug-in must export these two
functions with these signatures, named using specific macros and with “C” linkage. The
first is called immediately upon loading of the plug-in by the library whereas the other is
called immediately before unloading.

If the plug-in's functions can safely be called simultaneously from multiple EPL contexts,
a get-capabilities function should be defined that announces the plug-in as thread-safe.

Some plug-ins may need to keep thread-specific data in order to work correctly; in
which case a thread-ended function should also be defined. This function will be called
on the thread so that resources can be freed if the thread is ending before the plug-in is
shut down. When the shutdown function is called it is responsible for freeing resources
related to any threads that are still running.

M
Even Header

Developing Apama Applications Version 9.10 750

M
Odd Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 751

30 Writing Correlator Plug-ins in Java

■ Creating a plug-in using Java .. 752

■ Using Java plug-ins .. 754

■ Sample plug-ins in Java .. 760

M
Even Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 752

EPL plug-ins can be wrien in Java. Java plug-in classes are automatically analyzed by
the correlator and any suitable methods exposed as methods that can be called from
EPL.

EPL plug-ins wrien in Java are packaged and deployed in the same way as JMon
applications. See "Developing and Deploying JMon Applications" on page 703 for more
information.

Creating a plug-in using Java
To create a Java class to use as a correlator plug-in

1. In the Java class used as a plug-in, you need to have one or more public static
methods that match the permied signatures, which are described in "Permied
signatures for methods" on page 753.

All calls from an Apama application will be made to these static methods from all
contexts.

As the plug-in author you are responsible for any concurrency concerns.

2. Correlator plug-ins in Java are deployed using a JMon application and are packaged
in a jar file. You need to create a JMon deployment descriptor file in the application's
META-INF/jmon-jar.xml file. For the plug-in you need to add a <plugin> to the
<application-classes> element.

For more information on Apama deployment descriptor files, see "Creating
deployment descriptor files" on page 707.

An example plug-in stanza looks like this:
<plugin>
 <plugin-name>TestPlugin</plugin-name>
 <plugin-class>test.TestPlugin</plugin-class>
 <description>A test plugin</description>
</plugin>

plugin-name defines the name visible to EPL.

plugin-class indicates the class to load from the jar for this plugin.

description is a simple textual description that appears in log messages.

Instead of writing a deployment descriptor file manually, if you are using Software
AG Designer to create the plug-in you can annotate the plug-in class and have
Software AG Designer automatically generate the descriptor file. Here is an example
annotation:
@com.apama.epl.plugin.annotation.EPLPlugin(name="TestPlugin",
 description="A test plugin")
class testplugin
{
 ...
}

M
Odd Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 753

3. Create a jar file for deploying the plug-in and add the Java class file and the
deployment descriptor file META-INF/jmon-jar.xml to it. In Software AG Designer
when you create a JMon application, this is done automatically.

For applications that you plan to inject into a correlator, the recommendation is to create
separate jar files for:

Correlator plug-ins wrien in Java

JMon applications

Although the mechanism for creating these jars and describing their meta-data is
similar, the interactions of these two different uses of injected jars mean that they will
often need to be injected into the correlator separately. The creation of separate jar files
ensures that you can inject your application components in the correct order, which is
typically:

1. Correlator plug-ins wrien in Java

2. EPL monitors and events

3. JMon applications

Permitted signatures for methods
For a method to be exposed to EPL it must be public, must be static and every argument
plus the return type must be one of the following:

Java Entry EPL Type Notes

int integer Truncated when
passed in, for
compatibility.

long integer

String string Copy in / copy out.

boolean boolean

double float

java.math.BigDecimal decimal Passing in either
NaN or infinity
throws an exception
that kills the monitor
instance if not
caught.

M
Even Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 754

Java Entry EPL Type Notes

com.apama.epl.plugin.Context context New type defined
for plug-ins.

com.apama.epl.plugin.Channel com.apama.Channel New type defined
for plug-ins.

Object chunk Any Java object can
be held in EPL via a
chunk.

TYPE[] sequence<TYPE> Any above type
except int can be
passed in as an
arbitrary-depth
nested array-
>sequence. The
sequence is strictly
copy-in, non-
modifiable, but can
be returned as copy-
out.

void N/A Permied as a return
type only.

Any method not matching this signature is ignored and logged at DEBUG.

Overloaded functions

Any function with multiple overloads is ignored (none of them are exposed) and this is
logged once at WARN and once per method at DEBUG.

Using Java plug-ins
After you create a correlator plug-in in Java, it must be injected into a Java-enabled
correlator before it is available for use in Apama applications. Applications that will use
the plug-in also need to import the plug-in by name, as is done with correlator plug-ins
wrien in C or C++.

Injecting

The .jar file containing the correlator plug-in must be injected into a correlator that
has been started with the --java option, which enables support for JMon applications.

M
Odd Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 755

When using the Apama engine_inject utility to inject the .jar file, you also need to
use the --java option.

Importing

Once a Java plug-in has been injected it is available for import using the plugin-name
defined in the deployment descriptor file. The correlator will automatically introspect
the class and make available any suitable, public methods that can be called directly
from EPL. For example, the following code imports a plug-in named TestPlugin and
calls its dosomething method:
monitor m {
 import "TestPlugin" as test;
 action onload()
 {
 test.dosomething();
 }
}

Note, if the plug-in .jar has been incorrectly injected, the correlator will try to load
the plug-in as a C/C++ plug-in and may give an error such as Error opening plug-in
library libfoo.so: libfoo.so: cannot open shared object file: No such
file or directory. If this happens and you were trying to load a plug-in wrien in
Java, then check that the .jar file was created and injected correctly before your EPL file
was injected.

Classpath

Each JMon or Java plugin application is loaded into its own separate classloader. This
means that they have no access to any classes loaded in other .jar files. If your plug-
in requires any other Java libraries they must be listed in the classpath element of
the deployment descriptor, included in the correlator's global classpath, or injected
in the same application .jar as the plug-in. See "Specifying classpath in deployment
descriptor files" on page 709 for more details.

Deleting

A correlator plug-in can be explicitly deleted by calling engine_delete with the
application name defined in the deployment descriptor, as with JMon applications.
Monitors using the plug-in depend on the plug-in type in the normal fashion. The plug-
in will not be deleted until the application and all dependent monitors are deleted.

As each plugin is loaded in its own classloader, once the application has been deleted,
the plug-in can be re-injected and it will be loaded into a new classloader.

Interacting with contexts

Correlator plug-ins can be passed context objects using the
com.apama.epl.plugin.Context type. The Context object is defined as:
package com.apama.epl.plugin;
public class Context
{
 public String toString();
 public Context();
 public String getName();

M
Even Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 756

 public int hashCode();
 public boolean isPublic();
 public boolean equals(Context other);
 public static native Context getCurrent();
}

The getCurrent method returns the context that this method was called from.

Interacting with the correlator

Correlator plug-ins can use the com.apama.epl.plugin.Correlator class to send an
event, subscribe to a channel, or to specify blocking behavior. The Correlator class is
defined as:
package com.apama.epl.plugin;
public class Correlator
{
 public static native void sendTo(String evt, String chan);
 public static native void sendTo(String evt, Context ctx);
 public static native void sendTo(String evt, Context[] ctxs);
 public static native void sendTo(String evt, Channel c);

 public static native void subscribe(EventHandler handler, String[] channels);
 public static native void unsubscribe(EventHandler handler, String[] channels);
 public static native void unsubscribe(EventHandler handler);

 public static native void enqueue(String evt);
 public static native void enqueueTo(String evt, Context c);

 public static native void pluginMethodBlocking();
}

The Correlator methods are:

sendTo(String, String) – Sends the event represented in the first String to the
channel specified in the second String. Any contexts and external receivers that are
subscribed to the specified channel receive the event. If there are no subscribers the
event is discarded.

sendTo(String, Context) – Sends the event represented in String to the context
referred to by the com.apama.epl.plugin.Context argument. An exception is
thrown if the context reference is invalid.

sendTo(String, Context[]) – Sends the event represented in String to the array
of contexts referred to by the com.apama.epl.plugin.Context[] argument. If one
context reference is invalid an exception is thrown and the event is not sent to any
context.

sendTo(String, Channel) — Sends the event represented in String. If the
specified com.apama.epl.plugin.Channel object contains a string then the event is
sent to the channel that has that name. If Channel contains a context then the event is
sent to that context.

subscribe(EventHandler, String[]) – Subscribes the handler object to the
channels listed in the string array. If the handler is already subscribed to some
channels then the channels listed in the array are added to the list of existing
subscriptions. Subscribing to the same channel multiple times results in a single
subscription. However, to completely remove a channel subscription that has been

M
Odd Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 757

added multiple times you must unsubscribe from that channel the same number of
times that it was subscribed to.

unsubscribe(EventHandler, String[]) – For the channels specified in the
string array, this method removes the subscriptions from the specified handler. It
is possible for the result of this method to be that the handler is not subscribed to
any channels. Unsubscription from a channel that the handler is not subscribed is
ignored.

unsubscribe(EventHandler) – Removes all subscriptions from the specified
handler. If this handler is not subscribed to any channels the method is ignored.

enqueue(String) – Adds the event represented in String to the back of the input
queue of all public contexts. This method is expected to be deprecated and then
removed in future releases. Use a sendTo() method instead.

enqueueTo(String, Context) – Adds the event represented in String to the back
of the input queue of the specified context. This method is expected to be deprecated
and then removed in future releases. Use a sendTo() method instead.

pluginMethodBlocking() – Informs the correlator that the plug-in is potentially
blocking for the rest of this call and the correlator is free to spin up additional
threads on which to run other contexts.

For more information on com.apama.epl.plugin.Context and
com.apama.epl.plugin.Correlator, see the Javadoc reference material available at
doc\javadoc\index.html in your Apama installation directory.

Receiving events from named channels

A Java plug-in can register callbacks to receive events that are sent to named channels.
This is similar to the monitor.subscribe() method in EPL. Events are delivered in
string form by means of a method on a known interface.

To register a callback, the plug-in must define a class that implements the
com.apama.epl.plugin.EventHandler interface:
public interface EventHandler
{
 void handleEvent(String event, String channel);
}

The handleEvent() method is called once for each event sent to a channel that this
handler is subscribed to, with the channel on which it was received. To manage
EventHandler object channel subscriptions, use the subscribe() and unsubscribe()
methods on com.apama.epl.plugin.Correlator. When a handler is unsubscribed
from all channels any in-progress callbacks will complete, but no further callbacks will
be made to that handler.

Working with Channel objects

Similar to context objects, you can pass EPL com.apama.Channel objects into a Java
plug-in. The equivalent Java class is com.apama.epl.plugin.Channel and you can

M
Even Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 758

use objects of this class to send events to channels. Like the EPL Channel type, the Java
Channel class has three constructors:
Channel (String name)
Channel (com.apama.epl.plugin.Context c)
Channel ()

A Channel object can contain a string that is the name of a channel or it can contain a
context. The no-argument constructor creates a Channel object that contains an empty
context. If you try to send an event to an empty context the sendTo() method throws an
exception.

You can call the empty() method on a Java Channel object. It returns true only if the
object contains an empty context.

Exceptions

If a method throws an exception, that exception is passed up to the calling EPL and
can be caught by the calling monitor. If an exception is not caught it will terminate
the monitor instance. Details on catching exceptions in EPL can be found in "Catching
exceptions" on page 293.

If a Java plug-in throws a java.lang.RuntimeException, or subclass, which is in the
java. namespace (for example, java.lang.NullPointerException) then it will be
logged at ERROR with a stacktrace before being rethrown. Unchecked exceptions from
other sources (for example client exception types) will not be logged.

Persistence

No Java plug-ins are persistent and they are not permied in a persistent monitor, but
they are permied in non-persistent monitors in a persistent correlator.

Load, unload, and shutdown hooks

If a plug-in needs to run anything when it is loaded, you can do this in a static initializer:
public class Plugin
{
 static {
 ... // initialization code here
 }
}

It is not natively possible for a plug-in to run anything when it is unloaded. If you need
this functionality you can declare a method to be called when the plug-in is unloaded
using annotations:
public class Plugin
{
 @com.apama.epl.plugin.annotation.Callback(
 type=com.apama.epl.plugin.annotation.Callback.CBType.SHUTDOWN)
 public static void shutdown()
 {
 ... // shutdown code here
 }
}

M
Odd Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 759

The method must be a public static function which takes no arguments and returns void.
Currently, Apama does not support callbacks other than SHUTDOWN.

Non-blocking plug-ins and methods

In a correlator some threads have the potential to block and others do not. If a thread
might block, the correlator starts new threads if it has additional runnable contexts. By
default the correlator assumes that a plug-in call may block and will start additional
threads on which to run other contexts. In situations where the plug-in call can never
block, the additional overhead of starting new threads when all CPUs are busy is
unnecessary. If you know that a plug-in or an individual method is non-blocking, you
can improve efficiency by annotating either entire plug-ins or individual methods as
non-blocking.

Note, however, if a method declared as non-blocking does block, the correlator can block
all threads waiting for them to finish, resulting in a deadlocked correlator. For methods
that are normally non-blocking, but may block in predictable situations, see "Sometimes-
blocking functions", below.

Annotations. You can apply the annotation
com.apama.epl.plugin.annotation.NoBlock with no arguments to either a plug-
in class, or to a method on a class:
@com.apama.epl.plugin.annotation.NoBlock()
public class Plugin
{
 ...
}

When applied to a class, the annotation indicates that no method on the plug-in can
ever block.
public class Plugin
{
 @com.apama.epl.plugin.annotation.NoBlock()
 public static String getValue() { ... }
}

When applied to a method, the annotation indicates that this method will never
block, but other methods may block.

Sometimes-blocking functions. If you have a function that usually will not
block, but under some known conditions may block, then the method can be
declared as NoBlock as long as it then uses a callback to indicate when it is
starting the potentially-blocking behavior. The callback is a static method on
com.apama.epl.plugin.Correlator called pluginMethodBlocking. This function
takes no arguments, returns no value and is idempotent. When it is called, the
correlator will then assume that the plug-in is potentially blocking for the rest of this
call and is free to spin up additional threads on which to run other contexts.
public class Plugin
{
 @com.apama.epl.plugin.annotation.NoBlock()
 public static String getValue()
 {
 if (null != localValue) return localValue;
 else {

M
Even Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 760

 com.apama.epl.plugin.Correlator.pluginMethodBlocking();
 localValue = getRemoteValue();
 return localValue;
 }
 }
}

Logging

Correlator plug-ins wrien in Java can log to the correlator's log file. This is done
via the com.apama.util.Logger class. Each plug-in must create a static instance of
the Logger using the static getLogger method. This instance provides debug(...),
info(...), warn(...) and error(...) methods, which log a string at that log level in
the correlator log file. The level is configured either by means of the correlator command
line and management commands or using a log4j configuration file.

For more information on using the Logger class, including how to override the default
log level, see the Javadoc reference material, available starting with doc\javadoc
\index.html in your Apama installation directory.

The following is an example of logging in a correlator plug-in:
package test;
import com.apama.util.Logger;
public class Plugin
{
 private static final Logger logger = Logger.getLogger(Plugin.class);
 public static void foo()
 {
 logger.info("A string that's logged at INFO");
 }
}

This will produce entries in the correlator log file like this:

2013-06-11 15:14:21.974 INFO [1167792448:processing] - <test.Plugin> A
string that's logged at INFO

Sample plug-ins in Java
Apama provides sample correlator plug-ins wrien in Java, located in the samples
\correlator_plugin\java directory of your Apama installation. The samples are:

SimplePlugin – a basic plug-in with one method that takes a string, and returns
another string.

ComplexPlugin – a plug-in that has several methods and handles more complex
types.

SendPlugin – a plug-in that demonstrates passing contexts around and sending
events.

SubscribePlugin – a plug-in that shows how to subscribe to receive events sent on
a particular channel.

The samples\correlator_plugin\java directory contains the Java code for the
samples, the EPL code for the Apama applications that call each of the plug-ins, the

M
Odd Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 761

deployment descriptor files, and an Ant build.xml file for building all of the samples.
The directory also contains a README.txt that describes how to build and run the
samples as well as text files that depict what the output of the samples should be like.

A simple plug-in in Java
The simple plug-in sample in the samples\correlator_plugin\java directory of your
Apama installation is comparable to the similar C and C++ simple plug-in samples.

The Java code for the SimplePlugin class contains the public static test method.
(Methods that will be called from EPL code need to be public and static.)
public class SimplePlugin
{
 public static final String TEST_STRING = "Hello, World";
 public static String test(String arg)
 {
 System.out.println("SimplePlugin function test called");
 System.out.println("arg = "+arg);
 System.out.println("return value = "+TEST_STRING);
 return TEST_STRING;
 }
}

The SimplePlugin.xml file is the deployment descriptor and contains the following
<plugin> stanza that illustrates how to specify the plug-in.
 <application-classes>
 <plugin>
 <plugin-name>SimplePlugin</plugin-name>
 <plugin-class>SimplePlugin</plugin-class>
 <description>A test plugin</description>
 </plugin>
 </application-classes>

The SimplePlugin.mon file contains the EPL code. It imports the plug-in and calls the
test method.
monitor SimplePluginTest {
 // Load the plugin
 import "SimplePlugin" as simple;
// To hold the return value
 string ret;
 string arg;
 action onload() {
 // Call plugin function
 arg := "Hello, Simple Plugin";
 ret := simple.test(arg);
 // Print out return value
 log "simple.test = " + ret at INFO;
 log "arg = " + arg at INFO;
 }
}

A more complex plug-in in Java
The complex plug-in sample in the samples\correlator_plugin\java directory of
your Apama installation is comparable to the corresponding C and C++ complex plug-in
samples.

M
Even Header

Writing Correlator Plug-ins in Java

Developing Apama Applications Version 9.10 762

The Java code for the ComplexPlugin class contains the public static methods: test1,
test2, test3, and test4. It also contains an object, ComplexChunk that represents a
complex type.

The complex_plugin.xml file is the plug-in's deployment descriptor and contains the
<plugin> stanza that specifies the name, class, and description for the plug-in.

The sample's ComplexPlugin.mon file contains the EPL code for the Apama application.
It imports the plug-in and calls the various testx methods.

A plug-in in Java that sends events
The SendPlugin.java file in the samples\correlator_plugin\java directory of your
Apama installation is a sample plug-in that shows how to pass contexts around and how
to send events to specific contexts.

The Java class for the plug-in imports com.apama.epl.plugin.Context and
com.apama.epl.plugin.Correlator and it declares a public method that sends an
event to a channel and another public method that sends an event to a particular context.

The SendPlugin.xml deployment descriptor file contains the name, class, and
description of the plug-in in the <plugin> stanza.

The Apama application SendPlugin.mon first imports the plug-in and then calls the
plug-in's sendEventToChannel() method as well as its sendEventTo() method with a
variety of contexts.

A plug-in in Java that subscribes to receive events
The SubscribePlugin.java file in the samples\correlator_plugin\java directory
of your Apama installation is a sample that shows how a plug-in subscribes to receive
events sent on a particular channel. This sample is comparable to the similar C and C++
subscription plug-in samples.

The Java code for the SubscribePlugin class contains the public static createHandler
method. (Methods that will be called from EPL code need to be public and static.)

The deployment descriptor file SubscribePlugin.xml contains the <plugin> stanza
that illustrates how to specify the plug-in.

The EPL code in the file SubscribePlugin.mon imports the plug-in and calls the
createHandler() method.

M
Odd Header

EPL Reference

Developing Apama Applications Version 9.10 763

V EPL Reference

■ Introduction ... 765

■ Types .. 767

■ Events and Event Listeners ... 827

■ Monitors .. 845

■ Queries ... 853

■ Aggregate Functions .. 869

■ Statements ... 879

■ Expressions .. 891

■ Variables ... 909

■ Lexical Elements .. 915

■ Limits .. 931

■ Obsolete Language Elements .. 933

M
Even Header

EPL Reference

Developing Apama Applications Version 9.10 764

Apama Event Processing Language (EPL) is the native language of the Apama event
correlator. You use EPL to write programs that process events in the correlator. This
EPL Reference is a companion to the Apama EPL tutorials in Software AG Designer and
"Developing Apama Applications in EPL" on page 29, which you can use to learn how to
write programs in EPL. Use this EPL Reference to answer questions and obtain complete
details about a particular construct.

Note: MonitorScript is the old name for EPL. You might still see the old name in the
product documentation.

M
Odd Header
Introduction

Developing Apama Applications Version 9.10 765

31 Introduction

■ Hello World example .. 766

M
Even Header

Introduction

Developing Apama Applications Version 9.10 766

EPL is a flexible and powerful curly-brace, domain-specific, language designed for
writing programs that process events.

In EPL, an event is a data object that contains a notification of something that has
happened, such as a customer order was shipped, a shipment was delivered, a sensor
state change occurred, a stock trade took place, or myriad other things. Each kind
of event has an event type name and one or more data elements (called event fields)
associated with it. External events are received by one or more adapters, which receive
events from an event source and translate them from a source-specific format into
Apama's internal canonical format. Derived events can be created as needed by EPL
programs.

Hello World example
Though it contains many of the familiar constructs and features found in general-
purpose programming languages like Python or Java, EPL also has special features
to make it easy to aggregate, filter, correlate, transform, act on, and create events in a
concise manner. Here is the canonical "hello world" example wrien in EPL:
monitor HelloWorld
{
 action onload()
 {
 print "Hello world!";
 }
}

The Apama event processor, called the correlator, receives events of various types from
external sources and routes them to one or more active EPL programs, called monitors
or queries.

Monitors have registered event handlers, called listeners, for events of particular
types with specific combinations of data values or ranges of values. When the
correlator detects an event of interest, it calls the appropriate event handlers. If there
are no handlers for an event, the correlator discards it or passes it to an event handler
specifically for events that have no handler.

Event handlers in EPL are conceptually similar to methods or functions used for
handling user-interface events in other languages, such as Java Swing or SWT
applications. In EPL, code is executed only in response to events. Except, that is, for
the special EPL onload(), ondie(), and onunload() actions. See "Monitor lifecycle"
on page 846 for information about these actions.

Queries define particular event types as input and then partition incoming events of
those types according to a specified key. For example, a query might partition bank
transactions according to their account numbers. Like a monitor, a query watches for
an event paern of interest, but it does this in each partition independently of every
other partition.

When the correlator finds a match, it executes the procedural code specified in the
query.

M
Odd Header

Types

Developing Apama Applications Version 9.10 767

32 Types

■ Primitive and string types ... 768

■ Reference types ... 785

■ monitor pseudo-type ... 810

■ Type properties summary .. 811

■ Timestamps, dates, and times ... 814

■ Type methods and instance methods .. 814

■ Type conversion ... 815

■ Comparable types .. 817

■ Cloneable types ... 818

■ Potentially cyclic types ... 819

■ Support for IEEE 754 special values ... 822

M
Even Header

Types

Developing Apama Applications Version 9.10 768

EPL has primitive types and reference types. Data in the primitive types are simple
scalar values. Reference types (also called complex types or object types) have values
that are more complicated and some, like the dictionary type, have multiple values
and have definitions that involve more than one type.

When values are passed as parameters in action and method invocations, primitive
types are passed by value, and reference types are passed by reference. When a
parameter is passed by value, the called action or method receives a copy of the value
and has no direct way to change the variable that the value may have been derived
from. When a parameter is passed by reference, the called action or method receives a
reference instead of a copy and if the called action changes the value, the caller also sees
the change.

Note that there is no type equivalent to a memory address or pointer.

Primitive and string types
Apama supports these primitive types: boolean, decimal, float, and integer which
are discussed in this section.

In addition, this section also discusses string which is technically a reference type.
However, strings are immutable. Therefore, string behaves more like a primitive type
than a reference type.

boolean
The boolean type has two possible values: true or false.

Operators

The table below lists the EPL operators that you can use with Boolean values.

Operator Description Result Type

= Equal comparison boolean

!= Not equal comparison boolean

or Boolean (logical) or boolean

and Boolean (logical) and boolean

xor Boolean (logical) exclusive or boolean

not Boolean (logical) inverse boolean

False sorts before true.

M
Odd Header

Types

Developing Apama Applications Version 9.10 769

Methods

The following methods may be called on variables of boolean type:

canParse() — returns true if the string argument can be successfully parsed.

parse() — method that returns the boolean instance represented by the string
argument. You can call this method on the boolean type or on an instance of a
boolean type. The more typical use is to call parse() directly on the boolean type.

The parse() method takes a single string as its argument. This string must be the
string form of a boolean object. The string must adhere to the format described in
Deploying and Managing Apama Applications, "Event file format". For example:
boolean a;
a := boolean.parse("true");

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

toString() – returns a string representation of the boolean. The return value is
"true" if the referenced Boolean's value is true. The return value is "false" if the
referenced Boolean's value is false.

decimal
A signed decimal floating point number. Either a decimal point (.) or an exponent
symbol (e) must be present within the number for it to be a valid decimal, plus a
decimal suffix (d) to distinguish it from a float.

When perfect accuracy of base-10 numbers is a requirement, use the decimal type in
place of the float type. When extremely small floating point variations are acceptable,
you might choose to use the float type to obtain beer performance.

Values

Values of the decimal type are a finite-precision approximation of the mathematical real
numbers, encoded as 64-bit decimal floating-point values consisting of sign, significand,
and exponent, as defined by the IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE
Standard 754 -2008 (IEEE, New York). Values of the decimal type have a precision of
exactly 16 decimal digits.

The largest positive decimal floating point value that can be stored in a variable of type
decimal is 9.999999999999999 * 10384 and the smallest nonzero positive value that
can be stored is 10-398.

In addition to the usual positive and negative numbers, the IEEE standard also defines
positive and negative zeros, positive and negative infinities, and Not-a-Number values.
For information about how the correlator handles these values, see "Support for IEEE
754 special values" on page 822.

M
Even Header

Types

Developing Apama Applications Version 9.10 770

Because decimal values are of finite precision, they cannot accurately represent all
values, for example, recurring decimals or irrational numbers. However, decimals have
the advantage over floats in that provided a decimal literal does not exceed the 16-place
precision, it will be represented exactly within the correlator. The following program
illustrates the difference between decimal and float types in this regard:
monitor foo
{
 action onload()
 {
 float f;
 decimal d;
 f := 0.1;
 d := 0.1d;
 print f.formatFixed(18);
 print d.formatFixed(18);
 }
}

This program produces the output below. Note the small error in the least significant
digit in the float, versus the decimal.
0.100000000000000006
0.100000000000000000

There are a number of decimal constants provided in EPL. See "Support for IEEE 754
special values" on page 822.

Operators

The EPL operators that you can use with decimal types are the same operators that you
can use with float types. For information on these operators, see "float" on page 770.

Methods

The methods that you can call on decimal types are the same methods that you can call
on float types. For information on these methods, see "float" on page 770. There are
a few differences according to whether the method is called on a decimal or float type
and these are noted in the descriptions.

float
A signed floating point number. Either a decimal point (.) or an exponent symbol (e)
must be present within the number for it to be a valid float.

When perfect accuracy is a requirement, use the decimal type in place of the float
type. When extremely small floating point variations are acceptable, you might choose to
use the float type to obtain beer performance.

Values

Values of the float type are a finite-precision approximation of the mathematical real
numbers, encoded as 64-bit binary floating-point values consisting of sign, significand,
and exponent, as defined by the IEEE Standard for Binary Floating-Point Arithmetic, ANSI/

M
Odd Header

Types

Developing Apama Applications Version 9.10 771

IEEE Standard 754 -1985 (IEEE, New York). Values of the float type have a precision of
approximately 16 decimal digits. (The binary significand is 52 bits wide.)

The largest positive floating point value that can be stored in a variable of type float
is 1.7976931348623157 * 10308 and the smallest nonzero positive value that can be
stored is 2.2250738585072014 * 10-308.

In addition to the usual positive and negative numbers, the IEEE standard also defines
positive and negative zeros, positive and negative infinities, and Not-a-Number values.
For information about how the correlator handles these values, see "Support for IEEE
754 special values" on page 822.

Because float values are of finite precision and binary encoded, they cannot accurately
represent all values. In particular, when a floating point literal expressed in decimal
notation is converted to its binary floating-point representation, there can be a slight loss
of accuracy. This occurs because most decimal fractions cannot be represented precisely
in binary. So the fraction 0.1 or 1/10 in base 10 becomes the infinitely repeating
fraction 0.0001100110011001100110011... when it is converted to base 2. Similarly,
conversions from floating point values to integral or string types will sometimes be
inexact. The following program illustrates the effects of finite precision and conversions
between base 10 and base 2:
monitor foo
{
 action onload()
 {
 float f;
 f := 0.1;
 print f.formatFixed(18);
 }
}

This program produces the output 0.100000000000000006. Note the small error in the
least significant digit.

There are a number of float constants provided in EPL. See "Support for IEEE 754
special values" on page 822.

Operators

The following table lists the EPL operators available for use with floating point values,
that is decimal or float types.

Operator Description Result Type

< Less-than comparison boolean

<= Less-than or equal comparison boolean

= Equal comparison boolean

!= Not equal comparison boolean

M
Even Header

Types

Developing Apama Applications Version 9.10 772

Operator Description Result Type

>= Greater-than or equal comparison boolean

> Greater-than comparison boolean

+ Unary floating point identity decimal or float

– Unary floating point additive inverse decimal or float

+ Floating point addition decimal or float

– Floating point subtraction decimal or float

* Floating point multiplication decimal or float

/ Floating point division decimal or float

Overflows and underflows are ignored by the EPL runtime.

The correlator compares floating point values as follows:

Finite float and decimal types compare in the obvious way.

-Inf is equal to -Inf and is less than any finite number or +Inf.

+Inf is equal to +Inf and is greater than any finite number or -Inf.

NaN is not equal to anything, including another NaN.

If you try to use NaN for keying or sorting the correlator terminates the monitor
instance.

Methods

The following inbuilt methods may be called on variables of decimal or float type.
Unless noted otherwise, if you call a method on a decimal type the return value is a
decimal, and if you call the method on a float type, the return value is a float. In all
method descriptions, x represents the value that the method is called on.

abs() — returns |x|, the absolute value of x.

acos() — returns the inverse cosine of x in radians. Special case: x.acos() = NaN, if
|x| > 1.

acosh() — returns the inverse hyperbolic cosine of x. Special case: x.acosh() = NaN,
if x < 1.

asin() — returns the inverse sine of x in radians. Special cases:

(NaN).asin() = NaN

M
Odd Header

Types

Developing Apama Applications Version 9.10 773

x.asin() = NaN, if |x| > 1

asinh() — returns the inverse hyperbolic sine of x.

atan() — returns the inverse tangent of x.

atan2(y) — returns the two-parameter inverse tangent of x and y. Special cases:

(anything).atan2(NaN) = NaN

(NaN).atan2(anything) = NaN

(±0).atan2(anything except NaN) = ±0

(±0).atan2(-anything except NaN) = ±pi

(anything except 0 and NaN).atan2(0) = ±pi/2

(anything except ±Infinity and NaN).atan2(+Infinity) = ±0

(anything except ±Infinity and NaN).atan2(-Infinity) = ±pi

(±Infinity).atan2(+Infinity) = ±pi/4

(±Infinity).atan2(-Infinity) = ±3pi/4

(±Infinity).atan2(anything except 0, NaN and ±Infinity) = ±pi/2

atanh() — returns the inverse hyperbolic tangent of x. Special cases:

x.atanh() = NaN, if |x| > 1

(NaN).atanh() = NaN

(±1).atanh() = ±Infinity

bitEquals(decimal) or bitEquals(float) — returns true if the value it is called
on and the value passed as an argument to the method are the same. The value the
method is called on and the argument to the method must both be decimal types
or must both be float types. The method performs a bitwise comparison. This is
useful because bitEquals() returns true for NaN.bitEquals(NaN) for NaNs that are
bitwise identical whereas NaN = NaN is always false even if the NaNs have identical
representations.

canParse(string) — returns true if the string argument can be successfully
parsed.

cbrt() — returns the cube root of x.

ceil() — returns the smallest possible integer that is greater than or equal to the
value the method is called on. Special cases:

(+Infinity).ceil() = integer.MAX

(-Infinity).ceil() = integer.MIN

(NaN).ceil() causes a runtime error; the correlator terminates the monitor

cos() — returns the cosine of x. See also the note at the end of this list.

M
Even Header

Types

Developing Apama Applications Version 9.10 774

cosh() — returns the hyperbolic cosine of x. Special case: (±Infinity or
NaN).cosh() = |x|

erf() — returns the error function of x. The formula is as follows:

exp() — returns e to the power x or ex, where x is the value of the decimal or
float and where e is approximately 2.71828183. Special cases:

exp(NaN) = NaN

exp(+Infinity) = +Infinity

exp(-Infinity) = 0

exponent() — When called on a float value, this method returns the integer that
is the exponent where x = mantissa*2exponent assuming 0.5 <= |mantissa| <
1.0. When called on a decimal value, this method returns the exponent where x =
mantissa*10exponent assuming 0.1 <= |mantissa| < 1.0. Special cases:

(0.0).exponent() = 0

(±Infinity or NaN).exponent() terminates the monitor instance that
contains the method call.

floor() — returns the largest possible integer that is less than or equal to the value
the method is called on. Special cases:

(+Infinity).floor() = integer.MAX

(-Infinity).floor() = integer.MIN

(NaN).floor() causes a runtime error; the correlator terminates the monitor.

fmod(y) — returns x mod y in exact arithmetic.

formatFixed(integer) — returns a string representation of the value the method
is called on where the value is rounded to the number of decimal places specified in
the argument. This method can operate on the IEEE special values.

formatScientific(integer) — returns a string representation of the value the
method is called on where the value is truncated to the number of significant figures
specified in the argument and formaed in Scientific Notation. This method can
operate on the IEEE special values.

fractionalPart() — returns the fractional component of x.

gammal() — returns the logarithm of the gamma function.

ilogb() — returns an integer that is the binary exponent of non-zero x. Special
case: throws exception for ilogb(NaN).

integralPart() — returns an integer that is the integral part of a floating
point value. Similar to floor(), which rounds down, and ceil(), which rounds

M
Odd Header

Types

Developing Apama Applications Version 9.10 775

up. integralPart() rounds towards zero. Special case: throws exception for
integralPart(NaN).

isFinite() — returns true if and only if the value it is called on is not ±Infinity or
NaN.

isInfinite() — returns true if and only if the value it is called on is ±Infinity.

isNaN() — returns true if and only if the value it is called on is NaN.

ln() — returns the natural log of the value the method is called on. Special cases:

(0).ln() = -Infinity

(-anything).ln() = NaN

log10() — returns the log to base 10 of the value the method is called on. Special
cases:

(0).log10() = -Infinity

(-anything).log10() = NaN

mantissa() — When called on a float value, this method returns a mantissa where
x = mantissa*2exponent assuming that 0.5 <= |mantissa| < 1.0. When called
on a decimal value, this method returns a mantissa where x = mantissa*10exponent

assuming that 0.1 <= |mantissa| < 1.0. Special cases:

(0.0).mantissa() = 0.0

(Infinity or NaN).mantissa() terminates the monitor instance that contains
the method call

max(decimal, decimal) or max(float, float) — returns the value of the larger
operand. You can call this method on the decimal or float type or on an instance of
a decimal or float type.

min(decimal, decimal) or min(float, float)— returns the value of the smaller
operand. You can call this method on the decimal or float type or on an instance of
a decimal or float type.

nextafter(y) — returns the next distinct floating-point number after x that is
representable in the underlying type in the direction toward y.

parse(string) – method that returns the decimal or float instance represented
by the string argument. You can call this method on the decimal or float type or
on an instance of a decimal or float type. The more typical use is to call parse()
directly on a decimal or float type.

The parse() method takes a single string as its argument. This string must be the
string form of an event object. The string must adhere to the format described in
Deploying and Managing Apama Applications, "Event file format". For example:
float a;
a := float.parse("123.456");

M
Even Header

Types

Developing Apama Applications Version 9.10 776

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

A call to decimal.parse() can include or exclude the appended d. In other words,
decimal.parse("1.0") and decimal.parse("1.0d") both work.

The parse() method can operate on the string form of the IEEE special values.

pow(decimal) or pow(float) — returns x to the power y (where y is the argument)
or xy. See also "Special cases of pow()" on page 824.

rand() — returns a random value from 0.0 up to (but not including) the value the
method was invoked on. If the value was negative, then the random value will be
from the value (but not including it) up to 0.0. When you are calling the rand()
method on a variable, the method behaves correctly if the variable value is zero, for
example, (0.0).rand() returns 0.0.

Special case: (±Infinity or NaN).rand() causes a runtime error; the correlator
terminates the monitor.

Caution: This random number generator is not verified to be cryptographically
strong. Therefore, it should not be used for purposes where a strong
random number is required.

round() – rounds to the nearest integer. Uses banker's rounding, which means the
round-to-even method, to break ties. For example, it rounds both 3.5 and 4.5 to 4.
Special cases:

(+Infinity).round() = integer.MAX

(-Infinity).round() = integer.MIN

(NaN).round() causes a runtime error; the correlator terminates the monitor.

scalbn(n) — When called on a float value, this method returns x*2n, where n is of
integer type. When called on a decimal value, this method returns x*10n, where n
is of integer type.

sin() — returns the sine of x. See also the note at the end of this list.

sinh() — returns the hyperbolic sine of x. Special case: (±Infinity or
NaN).sinh() = |x|

sqrt() — returns the positive square root of the value it is called on. Special cases:

(-anything).sqrt() = NaN

(+Infinity).sqrt() = +Infinity

tan() — returns the tangent of x. See also the note at the end of this list.

tanh() — returns the hyperbolic tangent of x. Special case: NaN.tanh() = NaN

toDecimal() — returns a decimal representation of the float. This method can
operate on the IEEE special values.

M
Odd Header

Types

Developing Apama Applications Version 9.10 777

toFloat() — returns a float representation of the decimal. This method can
operate on the IEEE special values.

toString() — returns a string representation of the float or decimal it
is called on. This method can operate on the IEEE special values. A call to
decimal.toString() does not include a d suffix.

Note: Let trig be any of sin, cos, or tan. The argument to these functions is in
units of Radian. Also (±Infinity or NaN).trig() = NaN.

integer
Values of the integer type are negative, zero, and positive integers encoded as 64-bit
signed two's complement binary integers. The lowest negative value that can be stored
in a variable of type integer is -9223372036854775808 (or -263) and the highest positive
value that can be stored is 9223372036854775807 (or 263 - 1).

There are a few integer constants provided in EPL. See "Support for IEEE 754 special
values" on page 822.

Operators

The following table describes the EPL operators available for use with integer values.

Operator Description Result Type

< Less-than comparison boolean

<= Less-than or equal comparison boolean

= Equal comparison boolean

!= Not equal comparison boolean

>= Greater-than or equal comparison boolean

> Greater-than comparison boolean

+ Unary integral identity integer

- Unary integral additive inverse integer

+ Integral addition integer

- Integral subtraction integer

M
Even Header

Types

Developing Apama Applications Version 9.10 778

Operator Description Result Type

* Integral multiplication integer

/ Integral division integer

% Integral remainder integer

or Bitwise or integer

and Bitwise and integer

xor Bitwise exclusive or integer

not Unary bitwise inverse integer

>> Bitwise shift right integer

<< Bitwise shift left integer

An aempt to divide by zero (0) or to compute a remainder of zero raises an error.
Overflows and underflows in arithmetic are ignored by the EPL runtime.

When you use the shift operators, the sign of a result value can differ from that of the
operand value being shifted. When you use not the sign of the result value will be the
opposite of that of its operand.

Methods

The following methods may be called on variables of integer type:

abs() – returns as an integer the absolute value of i or |i|, where i is the value of
the integer.

canParse() — returns true if the string argument can be successfully parsed.

getUnique() – method that generates a unique integer in the scope of the correlator.
This is a type method as well as an instance method. It returns an integer that is
unique for the correlator session's lifetime. When the correlator is shut down and
restarted, then the integers returned might be the same as some or all of the values
produced in the earlier session.

When correlator persistence is enabled the state of this method is preserved across
shutdown and recovery. In other words, as long as you use the same recovery
datastore, it does not maer how many times you restart the correlator. The result of
invoking getUnique() will always be a unique number across all restarts.

M
Odd Header

Types

Developing Apama Applications Version 9.10 779

This method starts by generating 0, 1, 2, 3, and so on. However, you cannot assume
that you will receive the integer you might expect. The returned numbers are 64-bit
signed integers.

For example, the following statement prints a different number every time the
correlator executes it:
print integer.getUnique().toString();

Following are more examples:
monitor M {
 action onload() {
 integer i;
 i := integer.getUnique(); // called on type
 i := i.getUnique(); // called on instance
 }
}

max(integer, integer) – returns as an integer the value of the larger operand.
You can call this method on the integer type or on an instance of an integer type.

min(integer, integer) – returns as an integer the value of the smaller operand.
You can call this method on the integer type or on an instance of an integer type.

parse() – method that returns the integer instance represented by the string
argument. You can call this method on the integer type or on an instance of an
integer type. The more typical use is to call parse() directly on the integer type.

The parse() method takes a single string as its argument. This string must be the
string form of an integer object. The string must adhere to the format described in
Deploying and Managing Apama Applications, "Event file format". For example:
integer a;
a := integer.parse("20080116");

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

pow(integer) – returns as an integer the value of the operand to the power x
(where x is the argument) or x , where i is the value of the operand. Note that
negative values of x are not allowed, as these would generate floating point results.

rand() – returns a random integer value from 0 up to (but not including) the value
of the variable the method was invoked on. The following snippet of code would set
B to a random value from 0 to 19:
integer A;
integer B;
A := 20;
B := A.rand();

while the next snippet would set B to a random value from -14 and 0:
integer A;
integer B;
A := -15;
B := A.rand();

M
Even Header

Types

Developing Apama Applications Version 9.10 780

When you are calling the rand() method on a variable, the method behaves
correctly if the variable value is zero, that is (0).rand() returns 0.

Caution: This random number generator is not verified to be cryptographically
strong. Therefore, it should not be used for purposes where a strong
random number is required.

toDecimal() – returns a decimal representation of the integer.

toFloat() – returns a float representation of the integer.

toString() – returns a string representation of the integer.

string
A text string.

Usage

Enclose string literals in double quotes. Values of the string type are sequences of non-
null Unicode characters encoded in UTF-8 format. Note that UTF-8 is a variable-width
encoding and a character can occupy from 1 to 4 bytes of storage. The characters in the
7-bit ASCII character set are a subset of UTF-8 and occupy a single byte each.

Although string types are discussed as though they are primitive types, they are
actually reference types. However, EPL's string objects are immutable. For example, a
statement such as s:=s+" suffix"; creates a new string object and changes the variable
s to refer to that new string object. Any other references to the old value continue to
point to the old value.

Operations that can return a different string value, such as concatenation, case folding,
or trimming white space, always create new strings rather than modifying the existing
value in place. The previous value's storage is recovered later by the EPL runtime
garbage collector.

The length of a string is limited by the memory available at runtime, which can be
multiple gigabytes. In practice, you are unlikely to exceed the limit in a single string.

Use the \ to enter special characters in string literals:

To enter this... Insert this...

" (double quote) \"

\ (backslash) \\

newline character \n

tab character \t

M
Odd Header

Types

Developing Apama Applications Version 9.10 781

Operators

The table below lists the EPL operators available for use with string values.

Operator Description Result Type

< Less-than string comparison boolean

<= Less-than or equal string comparison boolean

= Equal string comparison boolean

!= Not equal string comparison boolean

>= Greater-than or equal string comparison boolean

> Greater-than string comparison boolean

+ String concatenation string

When you compare two strings for equality, the result is true if the strings are the same
length and each character in one string is identical to the corresponding character at the
same position in the other string.

When you compare two strings for less than or greater than, the characters in the strings
are compared pairwise according to the numerical values of their Unicode code points.
The comparison is case-sensitive so capital leers are not equal to their lower case
equivalents. Characters earlier in the character set sort before characters later in the
character set. To order two unequal strings, the earliest difference is considered. For
example, "abcXdef" sorts earlier than "abcYdef", "abc" sorts earlier than "abcXYZ";
the empty string sorts earliest of all.

Methods

The following methods may be called on values of string type:

canParse() — returns true if the string argument can be successfully parsed.

clone(string) — returns a reference to the specified string. When called on a
string, the clone() method does not make a copy of the string since strings are
immutable.

find(substring) — returns an integer indicating the index position of the
substring passed as parameter to the method. If the string parameter does not exist
as a substring within the string, the method returns -1. Note that in EPL string
indices (the position of a character within the string) count upwards from 0.

findFrom(substring, fromIndex) — behaves like the find() method, but starts
searching for the specified substring with the character indicated by fromIndex. For

M
Even Header

Types

Developing Apama Applications Version 9.10 782

example, if the value of fromIndex is 7, the search begins with the character that has
an index of 7.

intern() — marks the string it is called on as interned. Subsequent incoming events
that contain a string that is identical to an interned string use the same string object.
The intern() method takes no arguments and returns the interned version of the
string it is called on. For example:
print "hello world";
print "hello world".intern();

Both statements print:
hello world

The benefit of using the intern() method is that it reduces the amount of memory
used and the amount of work the garbage collector must do. A disadvantage is that
you cannot free memory used for an interned string.

If there are a limited number of strings that will be used many times then calling
intern() on these strings speeds the handling of events that use them. You might
want to call intern() on the names of products or stock symbols, which are all used
frequently. For example, invoking "APMA".intern() might make sense if you are
expecting a large number of incoming events of the form Tick("APMA", ...). You
would not want to call intern() on order IDs, because there are so many and each
one is likely to be unique.

Calling intern() on a string is a global operation. That is, all contexts can then use
the same string object. Any strings already in use by the correlator are not affected,
even if they match the string intern() is called on.

If you use correlator persistence, details of which strings have been interned are not
stored in the recovery datastore. If the correlator shuts down and restarts, you must
call intern() again on the pertinent strings.

join(sequence<string> s) — concatenates the strings in s using the string it is
called on as a separator. The single parameter must be a sequence type that contains
strings. You cannot specify a variable number of string parameters. For example:
sequence<string> s :=
 ["Something", "Completely", "Different"];
print ", ".join(s);

This prints the following:
Something, Completely, Different

length() — returns an integer indicating the length of the string.

ltrim() — returns a string where all white space characters at the beginning have
been removed. White space characters are space, new line and tab characters.

parse() — method that returns the string value represented by the string
argument without enclosing that value in quotation marks. You can call this method
on the string type or on an instance of a string type. The more typical use is to call
parse() directly on the string type.

M
Odd Header

Types

Developing Apama Applications Version 9.10 783

The parse() method takes a single string as its argument. The string must adhere
to the format described in Deploying and Managing Apama Applications, "Event file
format".

Use the following format to specify the string you want to parse:
"your_string_with_escape_characters "

Use a backslash to escape each quotation mark or backslash in your string, including
quotation marks that enclose your string. For example, to parse "Hello World",
specify it as "\"Hello World\"". In other words, if you are writing literal strings
in EPL, you must precede all backslashes and quotation marks with a backslash. For
example:
string a := "\".\\\\.\"";
string b := string.parse(a);
print a;
print b;

This prints the following:
".\\."
.\.

The string.parse() method is useful when you have a string that contains
backslash escape characters and you want to obtain a string without them.

More examples:
string a := string.parse("\"Hello World\"");
string b := string.parse("\"\\\"\"");
print a;
print b;

This prints the following:
Hello World
"

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates. For example, the following is an error and
causes the correlator to terminate:
a := string.parse("Hello World");

The parse() method cannot parse the result of a toString() method. This is
because the toString() method does not enclose its result in quotation marks, nor
does it escape any special characters. For example, the following is false:
 x = string.parse(x.toString())

If a string contains no special characters (for example, " or \) then the following
equality does hold true:
 x = string.parse("\""+x.toString()+"\"")

replaceAll(string, string) — takes two string arguments, string1 and
string2. For the string the method is called on, the replaceAll() method makes
a copy of that string, replaces instances of string1 with instances of string2 and
returns the revised string. For example:

M
Even Header

Types

Developing Apama Applications Version 9.10 784

string x := "XYZ";
print x.replaceAll("Y","y");
print x;

This prints the following:
XyZ
XYZ

Notice that x itself is unchanged. If string1 is an empty string then the monitor
instance dies. If instances of string1 overlap then the method replaces only the first
instance in the overlapping instances.

rtrim() — returns a string where all whitespace characters at the end have been
removed. Whitespace characters are space, new line and tab characters.

split(string input) — returns a sequence of the strings that result from spliing
the input string on every occurrence of the delimiter string that the method is called
on. The size of the returned sequence is always one more than the total number
of occurrences of the delimiter string. Consecutive delimiters in the input string
result in empty strings in the returned sequence. The split() method is useful
for separating a string that contains newline characters into individual lines or
for dividing comma-separated values in a single string into multiple strings. For
example:

Method Call Returned Sequence

",".split("x,y,z") ["x","y","z"]

",".split("") [""]

",".split(",x,,y") ["","x","","y"]

"\r\n".split("line1\r\nline2\r
\n\r\n")

["line1","line2", "", ""]

This method performs the inverse of join(sequence<string>). See also the
tokenize(string) method which is related but has slightly different behavior.

substring(integer, integer) — returns the substring indicated by the integer
parameters. The parameters indicate the position of the first and last characters of
the substring, the first being inclusive, while the second is exclusive. If a parameter
is a positive value it is taken to be the position of a character going from left to
right counting upwards from 0. If a parameter is a negative value it is taken to be
the position of a character going from right to left counting downwards from -1.
Therefore if
string s;
s := "goodbye";

then
s.substring(0, 0) is ""
s.substring(0, 2) is "go"

M
Odd Header

Types

Developing Apama Applications Version 9.10 785

s.substring(2, 4) is "od"
s.substring(0, 7) is "goodbye"
s.substring(0, -1) is "goodby"
s.substring(-4, -1) is "dby"
s.substring(-7, -1) is "goodby"
s.substring(-7, 7) is "goodbye"

toBoolean() — returns true if the string is "true" and false in all other cases. This
method is case sensitive.

toDecimal() — returns a decimal representation of the string, if the string starts
with one or more numeric characters. The numeric characters can optionally have
amongst them a decimal point or mantissa symbol. Returns 0.0 if there are no such
characters.

toFloat() — returns a float representation of the string, if the string starts
with one or more numeric characters. The numeric characters can optionally have
amongst them a decimal point or mantissa symbol. Returns 0.0 if there are no such
characters.

toInteger() — returns an integer representation of the string, if the string starts
with one or more numeric characters. Returns 0 if there are no such characters.

toLower() — returns an all-lowercase string representation of the string.

toUpper() — returns an all-uppercase string representation of the string.

tokenize(string input) — returns a sequence of all the non-empty strings
(tokens) that result from spliing the input string on occurrences of any character
from the string that the method is called on. The returned sequence never contains
any empty strings, and will have no elements if the input string is empty or contains
only delimiters. The tokenize() method is useful for extracting words from
whitespace. For example:
string s := " This is\na test! See? ")
print " ".tokenize(s).toString();
print " .,:;!?\n\t".tokenize(s).toString();

This prints the following:
["This","is\na","test!","See?"]
["This","is","a","test","See"]

See also the split(string) method which is related but has slightly different
behavior.

toString() — returns the contents of the string value, exactly the same as using the
string directly.

Reference types
In addition to the primitive types, EPL provides for a number of object types. These
types are manipulated by reference as opposed to by value (in the same way as complex
types are handled in Java). These are the reference types which are discussed in this
section.

M
Even Header

Types

Developing Apama Applications Version 9.10 786

When a variable of reference type is assigned to another one of the same type, the laer
will reference the same object as the former, and should one be changed, the other one
would reflect the change as well.

If you require a variable of reference type to contain a copy of another one of the same
type, that is a completely distinct but identical copy, then you should use the clone()
method as described below. This returns a deep copy of the variable, that is, it copies it
and all its contents (and their contents in turn) recursively.

The string type is technically a reference type, but unlike all other reference types, the
string type is immutable; its value cannot change. The clone() method has no effect
on strings, as they cannot be changed. Therefore, string is discussed with the primitive
types.

Note that you cannot use an object type for matching in an event template. For example,
suppose you have the following event types:
InnerEvent
{
 float f;
}

WrapperEvent
{
 string s;
 InnerEvent anInnerEvent;
}

The following statement is correct:
on all WrapperEvent(s = "some_string")

However, the following statement is not allowed:
on all WrapperEvent(anInnerEvent.f = 5.5)

More than one variable can have a reference to the same underlying data value. For
example, consider the following code:
sequence <integer> s1;
sequence <integer> s2;
s1 := [12, 55, 42];
s2 := s1;
print s1[1].toString; // print second element of s1
s2[1] := 99; // change the second element
print s1[1].toString; // print second element of s1 again

Both s1 and s2 refer to the same array, so whichever variable you use, there is only one
copy of the data values. So the program's output is:
55
99

action
In addition to defining an action, you can define a variable whose type is action. This
lets you assign an action to an action variable of the same action type. An action is of
the same type as an action variable if they have the same argument list (the same types
in the same order) and return type (if any).

M
Odd Header

Types

Developing Apama Applications Version 9.10 787

Usage

Defining action type variables is useful for invoking an action and for passing an action
to another action.

You can use an action variable anywhere that you can use a sequence or dictionary
variable. For example, you can

Pass an action as a parameter to another action.

Return an action from execution of an action.

Store an action in a local variable, global variable, event field, sequence, or
dictionary.

You must initialize an action variable before you try to invoke it.

You cannot send, route, emit, or enqueue an event that contains an action type member.

When an action variable is a member of an event the behavior of the action depends on
the instance of the event that the action is called on. Consequently, it can be handy to
bind an action variable member with a particular event instance. This is referred to as
creating a closure. For details, see "Using action type variables" on page 276.

An action variable is a potentially-cyclic type — a type that directly or indirectly refers
to itself. For details about the behavior of such objects, see "Potentially cyclic types" on
page 819.

When the correlator clones a value that contains an action variable, or copies a value
that contains an action variable into a new monitor because of a spawn operation, the
correlator preserves the structure inside the value. This means that if two things are
references to the same object in the original value, they will be references to the same
object in the copy. This includes objects referred to by closures that have been assigned
to action variables.

When you call toString() on an object that contains an action variable, the result is
the name of the method or action in the action variable. If the action variable contains a
closure, the toString() method outputs the bound value followed by the name of the
action or method being called on the value. For example:
"E(42).f"
"12.0.rand"

See "String form of potentially cyclic types" on page 820.

When the toString() method encounters an empty action variable the output is new
followed by the type. Following are two examples:

"new action<>"

"new action<sequence<string>,float> returns boolean"

Methods

The only operation that you can perform on an action variable is to call it. You do this
in the normal way by passing a set of parameters in parentheses after an expression

M
Even Header

Types

Developing Apama Applications Version 9.10 788

that evaluates to the action variable. For an example and additional details, see "Using
action type variables" on page 276.

Channel
Values of the Channel type are objects that hold either a string, which is a channel name,
or a context object depending on how you construct it.

Usage

The Channel type is defined in the com.apama namespace. Typically, to easily refer to
Channel objects, you specify:
using com.apama.Channel

The Channel type lets you send an event to a channel or context. If the Channel object
contains a string then the event is sent to the channel with that name. If the Channel
object contains a context then the event is sent to that context.

A Channel object has three constructors:
Channel(string)
Channel(context)
new Channel

The third constructor creates a Channel object that contains an empty context object.
The contained empty context is the same result you would get from new context. It is
a runtime error to send an event to an empty context. Likewise, it is a runtime error to
send an event to a Channel object that contains an empty context.

For example, the following two lines have the same result:
send e to "MyChannel";
send e to Channel("MyChannel");

Similarly, the following two lines have the same result when c is a variable of the
context type:
send e to c;
send e to Channel(c);

The benefit of using a Channel object rather than a string or context object is that the
Channel object is polymorphic. For example, by using a Channel object to represent
the source of a request, you could write a service monitor so that the same code sends a
response to a service request. You would not need to have code for sending responses to
channels and separate code for sending responses to contexts.

You cannot send an event to a sequence of Channel objects. You cannot route a Channel
object, but a routable object can have a Channel object as a member.

Methods

The following methods may be called on values of Channel type:

canParse() — returns true if the string argument can be successfully parsed to
create a Channel object. You cannot parse a string representation of a Channel object

M
Odd Header

Types

Developing Apama Applications Version 9.10 789

that contains a context. For more information about the parseable type property, see
the table in "Type properties summary" on page 811.

clone() — returns a new Channel that is an exact copy of the Channel the clone()
method is called on. The original Channel's content is copied into the new Channel.

empty() – returns true if the Channel object contains an empty context. This lets
you distinguish between an object that contains a default initialization value and an
object that has been explicitly populated.

parse() – returns the Channel instance represented by the string argument. You
can call this method on the Channel type or on an instance of a Channel type. The
more typical use is to call parse() directly on the Channel type.

The parse() method takes a single string as its argument. This string must be the
string form of a Channel object. The string must adhere to the format described in
Deploying and Managing Apama Applications, "Event file format". For example:
Channel a;
a := Channel.parse(com.apama.Channel("channelName");
Channel b;
b := Channel.parse(com.apama.Channel(context(3, "contextName", true));

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

toString() — returns a string that contains the channel name or the name of the
contained context.

chunk
Values of the chunk type are references to dynamically allocated opaque objects whose
contents cannot be seen or directly manipulated in EPL. They are used by correlator
plug-ins to store state information across multiple plug-in method calls.

In EPL, chunk reference values can be held in variables of the type chunk and passed as
parameters to plug-ins when they are called. The chunk type lets you reference data that
has no equivalent EPL type.

It is not possible to perform operations on data of type chunk from EPL directly; the
chunk type exists purely to allow data output by one external library function to pass
through to another function. Apama does not modify the internal structure of chunk
values in any way. As long as a receiving function expects the same type as that output
by the original function, any complex data structure can be passed around using this
mechanism.

To use chunks with plug-ins, you must first declare a variable of type chunk. You can
then assign the chunk to the return value of an external function or use the chunk as the
value of the out parameter in the function call.

The following example illustrates this. The complex.test4() method prints output to
stdout. Apama provides the source code for complex_plugin. You can find it in the
Apama samples\correlator_plugin\cpp directory.
monitor ComplexPluginTest {

M
Even Header

Types

Developing Apama Applications Version 9.10 790

 // Load the plugin
 import "complex_plugin" as complex;
 // Opaque chunk value
 chunk myChunk;
 action onload() {
 // Generate a new chunk
 myChunk := complex.test3(20);
 // Do some computation on the chunk
 complex.test4(myChunk);
 }
}

Although the chunk type was designed to support unknown data types, it is also a
useful mechanism to improve performance. Where data returned by external plug-
in functions does not need to be accessed from EPL, using a chunk can cut down on
unnecessary type conversion. For example, suppose the output of a localtime()
method is a 9-element array of type float. While you could declare this output to be
of type sequence<float>, there is no need to do so because the EPL never accesses
the value. Consequently, you can declare the output to be of type chunk and avoid an
unnecessary conversion from native array to EPL sequence and back again.

An event can contain a field of type chunk, however you cannot send, emit, route, or
enqueue an event that has a chunk type field.

Methods

The following methods may be called on variables of chunk type.

clone() – requests that the plug-in return a new chunk that is an exact copy of
the chunk that clone() was called on. The clone() method calls the copy() C++
virtual member function on the existing AP_Chunk object.

See "Working with chunk in C++" on page 734.

empty() – returns true if the chunk is empty. This lets you distinguish between a
chunk that contains a default initialization value and a chunk that has been explicitly
populated by a correlator plug-in. You can also get an empty chunk as a result of a
new chunk expression.

getOwner() – returns a string that contains the name of the correlator plug-in
that the chunk belongs to. The name returned is the name you specify as the first
argument in the import statement that loads the correlator plug-in. For example:
import "TimeFormatPlugin" as tfp;

The getOwner() method on a chunk from that plug-in returns "TimeFormatPlugin"
and not "tfp".

The getOwner() method returns an empty string if the chunk is empty.

context
Values of the context type are references to contexts. A context lets EPL applications
organize work into threads that the correlator can concurrently execute.

M
Odd Header

Types

Developing Apama Applications Version 9.10 791

Usage

A context is subscribed to the union of the channels each of the monitor instances in that
context is subscribed to. This is a property of the monitor instances running in a context
and is not accessible by means of the context reference object.

Use one of the following constructors to create a context reference:
context(string name)
context(string name, boolean receivesInput)

The optional receivesInput Boolean flag controls whether the context is public or
private:

true — A public context can receive external events on the default channel, which is
the empty string (""). There is no requirement for a monitor instance in this context
to subscribe to the default channel.

false — A private context does not receive external events on the default channel.
This is the default.

Methods

The following methods may be called on variables of context type:

current() — Returns a context object that is a reference to the current context. The
current context is the context that contains the monitor instance or event instance
that is calling this method.

getId() — Returns an integer that is the ID of the context.

getName() — Returns a string that is the name of the context.

isPublic() — Returns a Boolean that indicates whether the context is public. If the
context was created as a public context then the return value is true.

toString() — Returns a string that contains the properties of the context. For
example, for a public context whose name is test, the content of the returned string
would be something like this:
context(1, "test", true)

See also "Contexts" on page 850.

dictionary
A dictionary is a means of storing and retrieving data based on an entry key. This
enables, for example, a user's name to be retrieved from a unique user ID.

The syntax of a dictionary definition is:
dictionary < key , item > varname

Dictionaries are dynamic and new entries can be added and existing entries deleted as
desired.

The dictionary key must be a comparable type. See "Comparable types" on page 817.

M
Even Header

Types

Developing Apama Applications Version 9.10 792

The item can be any Apama type.

Two dictionaries are equal only if they contain the same keys and the same value
for each key. When dictionaries are not equal they are ordered as though they were
sequences of key-value pairs, sorted in key order.

Example
// A simple stock dictionary, each stock's name is gained and
// stored from a numerical key
//
dictionary< integer, string > stockdict;

// A dictionary that can be used to store the number of times
// that a given event is received
//
dictionary< StockChoice, integer > stockCounterDict;

Note that a dictionary of sequences or dictionaries is supported. Care must be taken
in how these are specified by separating trailing > characters with whitespace, to
distinguish them from the right-shift operator >>. For example:
// A correctly specified dictionary containing sequence elements
 dictionary< integer, sequence<float> > willWork;

// An incorrectly specified dictionary containing sequence elements
// dictionary< integer, sequence<float>> willNotWork;

A global variable of type dictionary is initialized by default to an empty instance of the
type defined. On the other hand, a local variable must be explicitly initialized using the
new operator, as follows:
dictionary<integer, string> stockdict;
stockdict := new dictionary <integer, string>;

It is also possible to both declare and populate a variable of type dictionary as a single
statement, regardless of the scope in which the variable is declared, as follows:
dictionary<integer, string> stockdict := {1:"IBM", 2:"MSFT", 3:"ORCL"};

using {} to delimit the dictionary, a comma (,) to delimit individual entries, and a colon
(:) to separate keys and values.

Dictionary types do not allow duplicate keys. Ensure that you do not specify duplicate
keys when initializing a dictionary or in a string that will be parsed to produce a
dictionary.

A dictionary variable can be a potentially cyclic type — a type that directly or
indirectly refers to itself. For details about the behavior of such objects, see "Potentially
cyclic types" on page 819.

Methods

The methods available on the dictionary data structure are:

add(key, item) – add an entry to the dictionary. The first parameter is an
expression whose type is the same type as the dictionary's key type and which
becomes the entry's key. The second parameter is an expression whose type is the
same type as the dictionary's item type and whose value becomes the entry's item

M
Odd Header

Types

Developing Apama Applications Version 9.10 793

value. The key expression is evaluated first, then the item expression. There is no
return value. For example:
stockdict.add(71, "ACME");

When you are adding an entry and the key you specify already exists in the
dictionary, the correlator replaces the item already in the dictionary with the new
item.

canParse() — this method is available only on dictionaries where the item type is
parseable. Returns true if the string argument can be successfully parsed to create
a dictionary object. For more information about the parseable type property, see the
table in "Type properties summary" on page 811.

clear() – sets the size of the dictionary to 0, deleting all entries. Takes no
parameters. Returns no value.

clone() – returns a new dictionary that is an exact copy of the dictionary.
All the dictionary's contents (both keys and items) are cloned into the new
dictionary, and if the items were complex types themselves, their contents are
cloned as well.

When the dictionary you are cloning is a potentially cyclic type, the correlator
preserves multiple references, if they exist, to the same object. That is, the correlator
does not create a separate copy of the object to correspond to each reference. See also
"Potentially cyclic types" on page 819.

getDefault(key, item) – Before Apama 5.0, the getOr() method was called
getDefault(). You should not use the getDefault() method. It remains only for
backwards compatibility, it is deprecated, and it will be removed in a future release.
Use the getOr() method instead.

getOr(key, alternative) – returns the item that corresponds to the specified
key. If the specified key is not in the dictionary, the getOr() method returns
alternative. The benefit of calling this method is that if you were to call
dictionary[key] instead of dictionary.getOr() and the key you were trying to
look up did not exist, the correlator would terminate the monitor instance.

The getOr() method lets you avoid a call to the hasKey() method before you look
up a key.

For example, suppose you have the following dictionary:
dictionary<integer,string> integerSqrts := {
 1:"one", 4:"two", 9:"three", 16:"four", 25:"five", 36:"six",
 49:"seven", 64:"eight", 81:"nine", 100:"ten" };

Now suppose you call the following method:
integerSqrts.getOr(key, "irrational")

Assume that you specify a key that is in the range of 1 - 100. If the value of the key is
a square of an integer, getOr() returns the wrien form of the key's square root. For
any other key value, getOr() returns "irrational".

M
Even Header

Types

Developing Apama Applications Version 9.10 794

getOrDefault(key) – retrieves an existing item by its key or returns a default
instance of the dictionary's item type if the dictionary does not contain the specified
key.

The getOrDefault() method lets you avoid a call to the hasKey() method before
you look up a key.

getOrAdd(key, alternative) – retrieves an existing item by its key or adds the
specified key to the dictionary with alternative as its value if it is not already
present and also returns the specified alternative.

The getOrAdd() method lets you avoid a call to the hasKey() method before you
look up a key. If the item type is complex, a call to the getOrAdd() method can be
more efficient than a call to the getOr() method, because it will not construct a
default item unless necessary.

getOrAddDefault(key) – retrieves an existing item by its key or, if it is not already
present, adds the specified key with a default instance of the dictionary's item type
and returns that instance.

For example, suppose you want to maintain a record of which client companies each
sales representative handles. You might write:
dictionary<string, sequence<string> > representing := {};
 representing.getOrAddDefault("Sue").append("We-Haul");
 representing.getOrAddDefault("Joe").append("McDonuts");
 representing.getOrAddDefault("Sue").append("ACME");

The first time getOrAddDefault() is called with key "Sue", that key does not exist
yet, so it is added with an empty sequence as the item. That empty sequence is then
returned, so "We-Haul" can be appended to it. The second time getOrAddDefault()
is called with key "Sue", the existing sequence (containing "We-Haul") is returned,
so "ACME" can be appended to it.

This idiom is considerably simpler and more efficient than testing hasKey() and
then either adding or retrieving.

hasKey(key) – returns true if a key exists within the dictionary, false otherwise.
Takes one parameter, which is an expression whose type is the same as the
referenced dictionary's key type and whose value is the key value whose presence in
the dictionary is tested.

For example: stockdict.hasKey(71)

keys() – returns a sequence of the dictionary's keys sorted in ascending order. This
will be a sequence of the same type as the key type of the dictionary. The primary
purpose of this method is to enable one to iterate over a dictionary's contents by
looping through the sequence of its keys, as follows:
integer k;
for k in stockdict.keys() {
 myString := stockdict[k];
}

The keys() method performs a deep copy (like the clone() method) of the
dictionary keys into a sequence; that is by value as opposed to by reference. This

M
Odd Header

Types

Developing Apama Applications Version 9.10 795

behavior ensures that the result of keys() is a consistent view of the dictionary's
keys at the time keys() was called, regardless of whether entries were added to or
removed from the dictionary while examining the result of keys(). This also ensures
that the dictionary keys themselves cannot be modified by changing the sequence.

parse() – this method is available only on dictionaries where the item type is
parseable. Returns the dictionary object represented by the string argument.
For more information about the parseable type property, see the table in "Type
properties summary" on page 811. You can call this method on the dictionary
type or on an instance of a dictionary type. The more typical use is to call parse()
directly on the dictionary type.

The parse() method takes a single string as its argument. This string must be the
string form of a dictionary object. The string must adhere to the format described
in Deploying and Managing Apama Applications, "Event file format". For example:
dictionary<string, integer> d := {};
d := dictionary<string, integer>.parse("{\"foo\":1, \"bar\":2}");

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

When a dictionary is a potentially cyclic type , the behavior of the parse() method is
more advanced. See "Potentially cyclic types" on page 819.

remove(key) – remove an entry by key. Takes one parameter, which is an expression
whose type is the same as the referenced dictionary's key type and whose value
is the value of the key of the entry to be removed. The remove() method does not
return a value. If the key value is not present in the referenced dictionary, a runtime
error is raised.

For example: stockdict.remove(71);

size() – returns as an integer the number of elements in the dictionary. Takes no
parameters.

toString() – converts the entire dictionary in ascending order of key values to
a string. This will create a string that contains all the elements enclosed within
curly braces, { }, separated by commas (,), with each element consisting of the key
followed by an item, the two being separated by a colon (:). That is:
{key 1:item 1, ... ,key n:<item n>}

The string is constructed by concatenating the string representation of each of the
referenced dictionary's key/value pairs.

When a dictionary is a potentially cyclic type, the behavior of the toString()
method is different. See "Potentially cyclic types" on page 819.

values() – returns a sequence of the dictionary's items sorted in ascending order
of keys. The order of the items in the returned sequence is the order returned by
the dictionary's keys() method. The sequence contains items that are the same
type as the item type in the dictionary. The primary purpose of this method is to let

M
Even Header

Types

Developing Apama Applications Version 9.10 796

you iterate over a dictionary's contents by looping through the sequence of its item
values, as follows;
string v;
for v in stockdict.values() {
 myString := v;
}

The values() method performs a shallow copy of the dictionary items, that is, if
the items are of a reference type the returned sequence contains references to the
dictionary's items rather than clones of them. This behavior ensures that a change to
an object in the dictionary is reflected in the returned sequence and a change to an
object in the sequence is reflected in the dictionary.

[key] – retrieve or overwrite an existing item by its key, or create a new item. For
example:
stockdict[71] := "XRX";

If you are using [key] to write and if an item with the key key does not exist, the
correlator creates it. If you are using [key] to retrieve and if an item with the key
key does not exist, it is a runtime error.

event
Values of the event type are data objects that can represent notifications of something
happening, such as a customer order, shipment delivery, sensor state change, stock
trade, or myriad other things. Event objects can also be used as a container or structure
for holding several related data values.

Usage

Each kind of event has a type name and one or more data elements, called event fields,
associated with it. An event can also have blocks of executable code, called actions,
associated with it.

A field in an event can be any Apama type. If an event contains a field of type action,
chunk, listener, or stream, you cannot specify that event in an event template, and
you cannot send, emit, route or enqueue that event.

Two events are equal if corresponding members are equal. If corresponding members
are not equal then the events are ordered according to the first member that differs.

The correlator orders events by considering the event's fields in order.

An event variable can be a potentially cyclic type, a type that directly or indirectly refers
to itself. For details about the behavior of such objects, see "Potentially cyclic types" on
page 819.

See also "Defining event types " on page 40.

Methods

The following methods may be called on variables of event type and on event types:

M
Odd Header

Types

Developing Apama Applications Version 9.10 797

canParse() — this method is available only on events that are parseable. Returns
true if the string argument can be successfully parsed to create an event object.
For more information about the parseable type property, see the table in "Type
properties summary" on page 811.

clone() — returns a new event that is an exact copy of the event. All the event's
contents are cloned into the new event, and if they were complex types themselves,
their contents are cloned as well. Takes no parameters.

When the event you are cloning is a potentially cyclic type, the correlator preserves
multiple references, if they exist, to the same object. That is, the correlator does not
create a copy of the object to correspond to each reference. See also "Potentially cyclic
types" on page 819.

getFieldNames() — returns a sequence of strings that contain the field names of an
event type. This method takes no parameters. The return value is of type sequence
<string>. You can call this method on an event type or on an instance of an event
type. For example:
event Foo {
 string bar;
 integer count;
}

monitor m {
 action onload() {
 print Foo.getFieldNames().toString();
 }
}

The above code prints the following:
["bar","count"]

getFieldTypes() — returns a sequence of strings that contain the type names of
an event type's fields. This method takes no parameters. The return value is of type
sequence <string>. You can call this method on an event type or on an instance of
an event type. For example:
event Foo {
 string bar;
 integer count;
}

monitor m {
 action onload() {
 print Foo.getFieldTypes().toString();
 }
}

The above code prints the following:
["string","integer"]

getFieldValues() — returns a sequence of strings that contains the string version
of the event's field values. This method takes no parameters. The return value is of
type sequence <string>. For string type fields, there is no quoting or escaping.
You can call this method only on an event instance. For example:
event Foo {

M
Even Header

Types

Developing Apama Applications Version 9.10 798

 string bar;
 integer count;
}

monitor m {
 action onload() {
 Foo f:=Foo("Hello",1);
 print f.getFieldValues().toString();
 }
}

The above code prints the following:
["Hello","1"]

getName() — returns a string whose value is an event's type name. This method
takes no parameters. You can call this method on an event type or on an instance of
an event type. For example:
event Foo {
 string bar;
 integer count;
}

monitor m {
 action onload() {
 print Foo.getName();
 }
}

The above code prints the following:
Foo

getTime() — returns a float that indicates a time expressed in seconds since the
epoch, January 1st, 1970. The particular time returned is as follows:

If the correlator created this event, the getTime() method returns the time that
the correlator created the event. This is the creation time in the context in which
the correlator created the event.

Coassignment sets the timestamp of an event. A call to getTime() on
a coassigned event returns the time that the correlator performed the
coassignment. This is the context's time at the point at which the correlator
performed the coassignment or added the event to a query window. Events that
are routed, sent or enqueued will have their time updated to be the receiving
context's current time when the event was processed (and thus coassigned) by
that context.

An event's timestamp might not match the time when an event listener for that
event fires. For example, consider the following:
on A():a and B():b {
...
}

Suppose that currentTime is 1 when the correlator processes A and
currentTime is 2 when the correlator processes B. A call to a.getTime() returns
1, while a call to b.getTime() returns 2. Of course, the event listener fires only
after processing B.

M
Odd Header

Types

Developing Apama Applications Version 9.10 799

Caution: In the Software AG Designer code editor, you might notice the
setTimeDeep() method, which can be invoked on event type
variables. This method is for internal use only. You should not invoke
this method without assistance from Software AG Global Support.
If you will be sending &TIME events to externally control time in the
correlator then use the &SETTIME event to specify the start time. See
"Seing the time in the correlator (&SETTIME event)" on page 199.

isExternal() — returns a boolean that indicates whether the event was generated
by an external source. Typically, such an event came from an external event sender,
triggered an event listener, and was coassigned to a monitor instance variable. A
return value of true indicates an event that was generated by an external source.

When a monitor instance uses enqueue to send an event, then that event is
considered to be generated by an external source. When a monitor uses route,
send..to or enqueue..to, the isExternal() property of the event does not
change. If an external event is received and then sent to another context using
send..to, it will still be external (unless the event is copied with clone; see below).

When the correlator spawns a monitor instance, it preserves the value that the
isExternal() method returns. In other words, if you coassign an external event in a
monitor instance, and then spawn that monitor instance, the isExternal() method
returns true in the spawned monitor instance.

This method takes no parameters.

The isExternal() method returns false when a monitor instance

creates an event inside the correlator

clones an event

This method is useful when you need to determine whether an event came from
outside or was in some way derived inside the correlator. Although this distinction is
often clear from the event type, that is not always the case.

parse() — this method is available only on events that are parseable. Returns the
event object represented by the string argument. For more information about the
parseable type property, see the table in "Type properties summary" on page 811.
You can call this method on an event type or on an instance of an event type. The
more typical use is to call parse() directly on the event type.

The parse() method takes a single string as its argument. This string must be the
string form of an event object. The string must adhere to the format described in
"Event file format" in Deploying and Managing Apama Applications. For example:
A a := new A;
a := A.parse("A(10, \"foo\")");

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

M
Even Header

Types

Developing Apama Applications Version 9.10 800

When an event is a potentially cyclic type, the behavior of the parse() method is
different. See "Potentially cyclic types" on page 819.

toString() — returns a string representation of the event. Takes no parameters.
The return value is constructed by concatenating the string representation of the
referenced event's fields.

When you define an event type inside a monitor it has a fully qualified name. For
example:
monitor Test
{
 event Example{}
}

The fully qualified name for the Example event type is Test.Example and the
toString() output for the event name is "Test.Example()".

When an event is a potentially cyclic type, the behavior of the toString() method is
different. See "Potentially cyclic types" on page 819.

Also, you can define your own actions on events.

Exception
Values of Exception type are objects that contain information about runtime errors.

Usage

The Exception type is defined in the com.apama.exceptions namespace. Typically,
you specify using com.apama.exceptions.Exception so you can easily refer to
Exception objects.

An Exception object has methods for accessing an error message, an error type, and a
sequence of com.apama.exceptions.StackTraceElement objects that show where the
exception occurred and what the calls were that led to the exception.

You cannot route an Exception object, but a routable object can have an Exception
object as a member.

Methods

The following methods may be called on values of Exception type:

getMessage() — returns a string that contains the exception message.

getStackTrace() — returns a sequence of StackTraceElement objects that
represent the stack trace for when the exception was first thrown. The sequence is
empty if the exception has not been thrown.

getType() — returns a string that contains the exception type, which is one of the
following:

M
Odd Header

Types

Developing Apama Applications Version 9.10 801

Exception Type Description Example

ArithmeticException Illegal arithmetic
operations

Aempt to divide by
0, call to the ceil()
method on NaN, call to
the exponent() method
on infinity, specifying
NaN as all or part of an
ordered key, call to the
rand() method on an
illegal float value such
as Infinity

DefaultContextException Spawning,
sending or
enqueuing to
a context and
specifying a
context variable
that has been
declared but the
context has not
yet been created

monitor m {
 context c;
 action onload()
 {
 send A() to c;
 }
}

IndexOutOfBoundsException Invalid index in
a sequence or
string operation

sequence.insert(-1,
x)

IllegalArgumentException Illegal argument
value in an
expression

"".split()

IllegalStateException Calling an action
when it is illegal
to do so

spawn statement
in ondie() or
onunload()

MemoryAllocationException Unable to
fulfill memory
allocation
request

An invalid size
is passed to the
sequencesetCapacity()
method

NullPointerException Aempt to
call an action
variable when
that variable

event E {
 action<string> x;
}
monitor m {
 E e;
 action onload() {
 e.x("This will fail!");

M
Even Header

Types

Developing Apama Applications Version 9.10 802

Exception Type Description Example
has not been
initialized

 }
}

OtherInternalException An internal error
occurred

parse("two") on an
integer

ParseException Error that occurs
while parsing

PluginException An exception
thrown by a
correlator plug-
in. See the note
that follows this
table.

StackOverflowException Aempt to use
more space than
is available on
the stack

In C++ correlator plug-ins, you can customize exception types so that the type
returned has this format:
PluginException:user_defined_type

See AP_UserPluginException in the correlator_plugin.hpp file in the include
folder of your Apama installation.

In Java plug-ins, the exception type returned has this format:
PluginException:class_name

For example:
import "MyJavaPlugin" as myjavaplugin;
...
 action myAction() {
 try {
 myjavaplugin.processfile("config.txt");
 } catch (Exception e) {
 log "Exception of type "
 + e.getType() at WARN;
 }
 }
...

Returns something like:
Exception of type
PluginException:java.io.FileNotFoundException

M
Odd Header

Types

Developing Apama Applications Version 9.10 803

toString() — returns a string that contains the exception message and the
exception type.

toStringWithStackTrace() — returns a string that contains the exception
message, the exception type, and the stack trace elements.

listener
A handle to a listener.

Usage

A listener variable can be instantiated only by assigning to it the outcome of an
on statement, a from statement, or by assigning to it the value of another listener
variable. Values of listener type are references to listener objects created with the
on statement or from statement. The main use of listener variables is, in combination
with the listener type's inbuilt quit method, to terminate an active listener when it is
no longer needed.

An event can contain a field of type listener, however you cannot send, emit, route, or
enqueue an event that has a listener type field. Also, you cannot specify an event with
a listener field in an event template.

Methods

The following method may be called on variables of listener type:

quit() – causes the listener to terminate immediately.

If the listener is invalid or has already been quit, then the quit() method does
nothing and does not raise an error.

The quit() method takes no parameters and does not return a result.

location
Values of the location type describe rectangular areas in a two-dimensional unitless
Cartesian coordinate plane. Locations are defined by the float coordinates of two
points x1, y1 and x2, y2 at diagonally opposite corners of an enclosing boundary
rectangle.

The format of a location type is as follows:
location(x1 , y1 , x2 , y2)

An example of a valid location therefore looks as follows:
location(15.23, 24.234, 19.1232, 28.873)

A point can be represented simply as a rectangle with both corners being the same point.
You can access the data members of a location type in the same way that you access
the fields of an event. For example:
location l := location(1.0, 2.0, 3.0, 4.0);
print l.x1.toString();

M
Even Header

Types

Developing Apama Applications Version 9.10 804

This prints 1.0. You can use a location type to describe a rectangular area but you
can also use it to describe various other quantities, such as line segments connecting
two endpoints, circles, vectors, or points in a four-dimensional space. However, certain
inbuilt methods, such as the inside() method, give correct results only for boundary
rectangles.

A listener that is watching for a particular value for a location field matches when it
finds a location field that intersects with the location value specified by the listener.
In the following example, the listener matches each A event whose loc field specifies
a location that intersects with the square defined by (0.0, 0.0, 1.0, 1.0). When
the limits specified for a location type are out of order, the correlator correctly orders
them before performing a comparison. When locations touch it is considered to be an
intersection.
location l := location(0.0, 0.0, 1.0, 1.0);
on all A(loc = l) ...

Methods

The following methods may be called on variables of location type:

canParse() – returns true if the string argument can be successfully parsed.

clone() – returns a new location that is an exact copy of the location.

expand(float) – returns a new location expanded by the value of the float
parameter in each direction. For example:
location l := location(0.0, 0.0, 0.0, 0.0);
on all A(loc = l.expand(0.5)) ...

This event listener watches for A events whose loc field specifies a location that
intersects with (-0.5, -0.5, 0.5, 0.5).

inside(location) – returns true if the location is entirely enclosed by the space
defined by the location parameter, false otherwise. Note that if the two locations
are exactly equal, the result of calling the inside() method is false.

parse() – method that returns the location instance represented by the string
argument. You can call this method on the location type or on an instance of a
location type. The more typical use is to call parse() directly on the location
type.

The parse() method takes a single string as its argument. This string must be the
string form of a location object. The string must adhere to the format described in
Deploying and Managing Apama Applications, "Event file format". For example:
location a;
a := location.parse("(15.23, 24.234, 19.1232, 28.873)");

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

toString() – returns a string representation of the location.

M
Odd Header

Types

Developing Apama Applications Version 9.10 805

sequence
Values of the sequence type are finite ordered sets or arrays of entries whose values are
all of the same primitive or reference type. The type can be any Apama type.

Usage

Sequences are indexed by nonnegative integers from 0 to one less than the number of
entries given by their size inbuilt method. Sequences are dynamic and new entries can
be added and existing entries deleted as needed.

The individual elements of a sequence can be referenced in several ways.

With subscripts — use the [] operators in combination with an integral expression,
to reference sequence elements as an array. For example, aSequence[3] refers to
the fourth element of a sequence. The first element is aSequence[0]. The last, for a
sequence with n elements is aSequence[n -1]

With the for loop — use the for loop to iterate over the individual elements of the
sequence from first to last. See "The for statement" on page 885.

With instance methods — you can use the indexOf, insert, delete (and others)
methods to operate on individual elements.

Two sequences are equal if they are the same length and corresponding elements are
equal. Otherwise, they sort according to the earliest difference. For example:

"abc" sorts earlier than "abcXYZ"

[1,2,3] sorts earlier than [1,3,0]

[1,2,3] sorts earlier than [1,2,3,77,88,99]

The empty sequence sorts earliest of all.

Syntax

The syntax for sequence is:
sequence< type > varname

For example:
// A sequence to hold the names and volume of all my stocks
// (assuming the StockNameAndPrice event type includes a string
// for stock name and float for the volume)
sequence<StockNameAndPrice> MyPortfolio;

// A sequence to hold a list of prices
sequence<float> myPrices;

Note that sequences of sequences (and so on) are also supported. Care must be taken
in how these are specified by separating trailing > characters with white space, to
distinguish them from the right-shift operator >>. For example:
// A correctly specified sequence containing sequence elements
sequence< sequence<float> > willWork;

M
Even Header

Types

Developing Apama Applications Version 9.10 806

// An incorrectly specified sequence containing sequence elements
sequence<sequence<float>> willnotWork;

A global variable of type sequence is initialized by default to an empty instance of the
type defined. On the other hand, you must explicitly initialize a local variable using the
new operator, as follows
sequence<integer> someNumbers;
someNumbers := new sequence<integer>;

It is also possible to both declare and populate a variable of type sequence as a single
statement, regardless of the scope in which the variable is declared, as follows:
sequence<integer> someNumbers := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

Use [] to delimit the sequence and a comma (,) to delimit individual elements.

A sequence variable can be a potentially cyclic type — a type that directly or indirectly
refers to itself. For details about the behavior of such objects, see "Potentially cyclic
types" on page 819.

Methods

The methods available to the sequence data structure are:

append(item) – appends the item to the end of the sequence.

For example: myPrices.append(55.20);

appendSequence(sequence) – appends the sequence to the end of the sequence
that this method is called on. The appended sequence must be the same type as the
sequence this method is called on.

canParse() — this method is available only on sequences where the item type is
parseable. Returns true if the string argument can be successfully parsed to create
a sequence object. For more information about the parseable type property, see the
table in "Type properties summary" on page 811.

clear() – sets the size of the sequence to 0, deleting all entries.

clone() – returns a new sequence that is an exact copy of the sequence. All the
sequence's contents are cloned into the new sequence, and if they were complex
types themselves, their contents are cloned as well.

When the sequence you are cloning is a potentially cyclic type, the correlator
preserves multiple references, if they exist, to the same object. That is, the correlator
does not create a copy of the object to correspond to each reference. See also
"Potentially cyclic types" on page 819.

indexOf(item) – return as an integer the location of the first matching item within
the sequence. This method is available only if the item type is a comparable type.
For details about whether a type is comparable and, if so, how the comparison is
done, see "Comparable types" on page 817. The value returned by indexOf()
will be from 0 to size() – 1 if the item is found, or -1 if the item is not a member
of the sequence. A call to indexOf() to find the index of a NaN value in a sequence
of decimal or float values returns -1 because NaN values cannot be compared for
equality by using the standard operator.

M
Odd Header

Types

Developing Apama Applications Version 9.10 807

insert(item, integer) – insert the item specified into the location indicated by
the second parameter. The location must be a valid index within the sequence, or
the next index due to be filled. That means that the only valid values are from 0 to
size(), inclusive. An invalid value will cause a runtime error, which will terminate
the enclosing monitor instance.

parse() – this method is available only on sequences where the item type is
parseable. Returns the sequence object represented by the string argument.
For more information about the parseable type property, see the table in "Type
properties summary" on page 811. You can call this method on the sequence type
or on an instance of a sequence type. The more typical use is to call parse() directly
on the sequence type.

The parse() method takes a single string as its argument. This string must be the
string form of a sequence object. The string must adhere to the format described in
Deploying and Managing Apama Applications, "Event file format". For example:
sequence<float> s := [];
s := sequence<float>.parse("[1.0, 4.0, 9.0, 16.0, 25.0]");

You can specify the parse() method after an expression or type name. If the
correlator is unable to parse the string, it is a runtime error and the monitor instance
that the EPL is running in terminates.

When a sequence is a potentially cyclic type , the behavior of the parse() method is
different. See "Potentially cyclic types" on page 819.

remove(integer) – remove the nth element in the sequence, moving all the elements
above it down and reducing the size by 1. Note that in EPL sequence elements are
indexed from 0, i.e. the first element is at location 0.

For example: myPrices.remove(1);

reverse() – modifies the sequence by reversing the order of the items in the
sequence. For example, if the sequence contains 1, 2, 3, 4, then after execution of
reverse() the updated sequence contains 4, 3, 2, 1. There is no return value; the
method modifies the sequence in place and does not create a new sequence nor does
it create any new items.

setCapacity(integer) – sets the amount of memory initially allocated for the
sequence. Note that this does not limit the amount of memory the sequence can use.
By default, as you add more elements to a sequence, the correlator allocates more
memory. Calling sequence.setCapacity() can improve performance because
it removes the need to add more memory repeatedly as you add elements to the
sequence. For example, consider a sequence that you intend to populate with 1000
elements. A call to setCapacity(1000) removes the need to allocate additional
memory unless more than 1000 elements are added. A call to this method does not
change the behavior of your code.

setSize(integer) – sets the number of elements in the sequence to the specified
integer, either deleting entries from the end or adding initialized (using default
values of variables) entries to the end.

M
Even Header

Types

Developing Apama Applications Version 9.10 808

For example: myPrices.setSize(10);

size() – returns as an integer the number of elements in the sequence.

sort() – Sorts the sequence it is called on in ascending order. The type of the
sequence items must be comparable. See "Comparable types" on page 817. There
is no return value; the method modifies the sequence in place and does not create
a new sequence nor does it create any new items. A sequence of decimal or float
values that contains NaN values cannot be sorted and will result in termination of the
monitor instance that contains the method call.

For example:
sequence<integer> s := [4,2,3,1];
s.sort();

After that, s is [1,2,3,4].

toString() – convert the entire sequence to a string. This will create a string
containing all the elements enclosed within square brackets [], separated by
commas (,). That is, [<item1> , ... , <itemn>]

When a sequence is a potentially cyclic type, the behavior of the toString() method
is different. See "Potentially cyclic types" on page 819.

[integer] – retrieve or overwrite an existing entry from the sequence, specifically
the one located at the index specified. Note that in EPL sequence elements are
indexed from 0, that is, the first element is number 0. The index specified must be
valid, that is it must be between 0 and size() - 1, inclusive, as otherwise a runtime
error will occur and the monitor instance will terminate.

For example: totalCost := myPrices[1] + myPrices[2];

Iterating over sequence elements

You can iterate over a sequence both on the elements and on the indices. The indices are
numbered from 0 to size() – 1, inclusive. For example:
sequence<string> seq := ["zero", "one", "two"];

// sequence elements
string s;
for s in seq {
 print s;
}

// sequence indices
integer i := 0;
while i < seq.size() {
 print seq[i];
 i := i + 1;
}

Loops are discussed in "Compound statements" on page 885.

M
Odd Header

Types

Developing Apama Applications Version 9.10 809

StackTraceElement
A StackTraceElement type value is an object that contains information about one entry
in the stack trace.

Usage

A com.apama.exceptions.Exception object contains a sequence of
StackTrackElement objects, which indicate where an exception occurred. The
correlator generates this sequence. You should not need to create StackTraceElement
objects yourself. The first object in the sequence points to the line of code that caused
the exception. The next object points to the action that contains the code that caused the
exception. The next object points to the action that called that action, and so on.

The StackTraceElement type is defined in the com.apama.exceptions namespace.
Typically, you specify using com.apama.exceptions.StackTraceElement so you can
easily refer to StackTraceElement objects.

It is permissible to parse an event that contains a StackTraceElement object or a
sequence of StackTraceElement objects.

Methods

The following methods may be called on values of StackTraceElement type:

getActionName() — returns a string that contains the name of the action in which
the exception occurred.

getFilename() — returns a string that contains the name of the file that contains the
code in which the exception occurred.

getLineNumber() — returns an integer that indicates the line number of the code in
which the exception occurred.

getTypeName() — returns a string that indicates the type (event, aggregate,
monitor) that contains the action in which the exception occurred.

toString() — returns a string whose format is "typeName.actionName()
filename:linenumber".

stream
A value of stream type refers to a stream. Each stream is a conduit or channel through
which items flow. The item types that can flow through streams are event, location,
boolean, decimal, float, integer, or string. A stream transports items of only one
type. Streams are internal to a monitor.

Usage

An event can contain a field of type stream, however you cannot send, emit, route, or
enqueue an event that has a stream type field. Also, you cannot specify an event that
has a stream field in an event template.

M
Even Header

Types

Developing Apama Applications Version 9.10 810

Syntax

The syntax for declaring a stream variable is:
stream< type > varname

Replace type with the type of the items in the stream. This can be an event type, or
location, boolean, decimal, float, integer, or string.

Replace varname with an identifier for the stream. For example:
stream<Tick> ticks;

Methods

The methods available to the stream type are:

clone() – returns the original stream. It does not clone it.

quit() – causes a stream listener to terminate.

If the referenced listener's value is an inert stream, then the quit() method does
nothing and does not raise an error.

The quit() method takes no parameters and does not return a result.

monitor pseudo-type
The use of the monitor keyword as a pseudo-type is limited to invocation of the
subscribe() and unsubscribe() methods.

Usage

Use the following formats:
monitor.subscribe(channel_name);
monitor.unsubscribe(channel_name);

Replace channel_name with a string expression that resolves to the name of the channel
you want to subscribe to or unsubscribe from. In a monitor instance, call these methods
from inside an action.

It is not possible to use instances of the monitor type. For example, there cannot be
variables or event members of type monitor. You cannot specify a com.apama.Channel
object as the argument to subscribe() or unsubscribe() method.

Methods

subscribe() — Subscribes the calling context to the specified channel. All listeners
in the same context as the calling monitor instance can process events sent to the
specified channel. The calling monitor instance owns the subscription. If the calling
monitor instance terminates the subscription ends.

M
Odd Header

Types

Developing Apama Applications Version 9.10 811

Multiple monitor instances in the same context can subscribe to the same channel.
Each event is delivered once as long as any of the subscriptions are active. An event
is not delivered once for each subscription.

unsubscribe() — Unsubscribes the calling context from the specified channel. If
this was the only subscription in the context to the specified channel then the context
no longer processes events sent to the unsubscribed channel.

Type properties summary
Apama type properties include the following:

Indexable — An indexable type can be referred to by a qualifier in an event template.

Parseable — A parseable type can be parsed and has canParse() and parse()
methods. The type can be received by the correlator.

Routable — A routable type can be a field in an event that is

Sent by the route statement

Sent by the send...to or enqueue...to statement

Sent by the enqueue statement

Sent outside the correlator with the emit statement

Comparable — A comparable type can be used as follows:

Dictionary key

Item in a sequence on which you can call sort() or indexOf()

Stream query partition key

Stream query group key

Stream query window with-unique key

Stream query equijoin key

Potentially cyclic — A potentially cyclic type uses the @n notation when it is parsed
or converted to a string. When a potentially cyclic type is cloned, the correlator uses
an algorithm that preserves aliases. See "Potentially cyclic types" on page 819

Acyclic — An acyclic type is a type that is not potentially cyclic.

E-free — E-free types cannot contain references to instances of a particular event type
E. This property is used only to determine whether E is acyclic.

The following table shows the properties of each Apama type.

Type Indexable Parseable Routable Comparable Acyclic E-free

boolean

M
Even Header

Types

Developing Apama Applications Version 9.10 812

Type Indexable Parseable Routable Comparable Acyclic E-free

decimal 1

float 1

integer

string

location

Channel 2

Exception

context 3

listener

chunk

stream

action

sequence

dictionary

event E 4 4

Legend:

M
Odd Header

Types

Developing Apama Applications Version 9.10 813

Symbol Description

Yes. This type has the corresponding property.

1 Aempts to use a NaN in a key terminates the monitor instance.

2 A Channel object is parseable only when it contains a string.

3 Although a context can be enqueued, it is not parseable, so the
correlator will reject it from the input queue with a warning.

No. This type does not have the corresponding property.

This type inherits the corresponding property from its constituent
types, that is, the item type in a sequence, the key and item types
in a dictionary, the types of fields in an event. The type has the
corresponding property only when all its constituent types have that
property.

4 An event defined inside a monitor cannot be received from an external
source nor emied from that correlator. An event defined inside a
monitor can be sent or enqueued only within the same correlator.

The type is comparable only when all its constituent types are both
comparable and acyclic.

An event E is acyclic only when all its constituent types are both acyclic
and E-free.

Examples

The following code provides examples of event type definitions and their properties.
// You can do everything with "Tick", including index both its fields.
 event Tick {
 string symbol;
 float price;
 }
// You can do everything with "Order", except refer to its target or
// properties fields in an event template.
 event Order {
 string customer;
 Tick target;
 string symbol;
 float quantity;
 dictionary<string,string> properties;
 }
// The correlator cannot receive the next event as an external event and
// you cannot usefully enqueue it, but you can send it, route it, or
// enqueue it to a context.
 event SubscriptionRequest {

M
Even Header

Types

Developing Apama Applications Version 9.10 814

 string channel;
 context recipient;
 }
// You can do very little with this event except access its members and
// methods. It cannot be routed, you cannot sort sequence<TimeParse>,
// trying to group a stream query by TimeParse is illegal, and so on.
 event TimeParse {
 import "TimeFormatPlugin" as TF;
 string pattern;
 chunk compiledPattern;
 }
// This has all the same restrictions as TimeParse, but is also
// potentially cyclic, so will use the @n format when parsed or
// converted to a string.
 event Room {
 string roomName;
 float squareFeet;
 sequence<Room> adjacentRooms;
 sequence<Employee> occupants;
 }

Timestamps, dates, and times
Although EPL does not have time, date, or datetime types, timestamp (a date and time)
values can still be represented and manipulated because EPL uses the float type for
storing timestamps. See "currentTime" on page 912.

Timestamp values are encoded as the number of seconds and fractional seconds (to a
resolution of milliseconds) elapsed since midnight, January 1, 1970 UTC and do not
have a time zone associated with them. Although the resolution is to milliseconds, the
accuracy can be plus or minus 10 milliseconds, or some other value depending on the
operating system.

If you have two float variables that both contain timestamp values, subtracting one from
the other gives you the difference in seconds.

You can add or subtract a time interval from a timestamp by adding or subtracting the
appropriate number of seconds (60.0 for 1 minute, 3600.0 for 1 hour, 86,400.0 for 1 day,
and so forth).

See also:

event.getTime() for information about when the correlator assigns timestamps to
events (see the description of the reference type "event" on page 796).

"Using the TimeFormat Event Library" on page 357 for information about formaing
timestamps.

Type methods and instance methods
There are two kinds of inbuilt methods: type methods and instance methods. Type
methods are associated with types. Instance methods are associated with values.

M
Odd Header

Types

Developing Apama Applications Version 9.10 815

Type methods

To call a type method, you specify the name of the type followed by a period, followed
by the method name with its parameters enclosed in parentheses. Some methods do not
have parameters and for them you must supply an empty parameter list.

Examples:
event someEvent;
{
 integer n;
}
integer i;
i:=integer.getUnique();
print someEvent.getName();

Instance methods

Each type (except action), whether primitive or reference, has a number of instance
methods that provide a number of useful functions and operations on instance variables
of that type. These methods are quite similar to actions except that they are predefined
and associated with variables, not monitors or events.

To call an instance method, you specify an expression followed by a period and the
name of the method, followed by a parenthesized list of actual parameters or arguments
to be passed to the method when it is called. Some methods do not have parameters and
for them you must supply an empty parameter list.

Examples:
integer i := 642;
float f;
f := i.toFloat ();
print f.formatFixed (5);

See Also

See the information in the following sections for the methods you can call on types and
instances:

"Primitive and string types" on page 768

"Reference types" on page 785

Type conversion
EPL requires strict type conformance in expressions, assignment and other statements,
parameters in action and method calls, and most other constructs. This means that

The left and right operands of most binary operators must be of the same type.

An actual parameter passed in a method or action invocation must be of the same
type as the type of the corresponding formal parameter in the action or method
definition.

M
Even Header

Types

Developing Apama Applications Version 9.10 816

The expression result type on the right side of an assignment statement must be the
same type as that of the target variable.

The expression result type in a variable initializer must be the same type as that of
the variable.

The expression result type in a subscript expression must be integer.

The expression result type in a return statement must be the same type as that
specified in the action's returns clause.

EPL does not allow implicit or explicit casting to perform type conversions. Instead, the
inbuilt methods associated with each type include a set of methods which perform type
conversion. For example:
string number;
integer value;
number := "10";
value := number.toInteger();

This illustrates how to map a string to an integer. The string must start with some
numeric characters, and only these are considered. So if the string's value was “10h”,
the integer value obtained from it would have been 10. Had the conversion not been
possible because the string did not start with a valid numeric value, then value would
have been set to 0.

These method calls can also be made inside event expressions as long as the type of the
value returned is of the same type as the parameter where it is used. Therefore one can
write:
on all StockTick("ACME", number.toFloat());

Method calls can be chained. For example one can write:
print ((2 + 3).toString().toFloat() + 4.0).toString();

Note that as shown in this example, method calls can also be made on literals.

The following table indicates the source and target type-pairs for which type conversion
methods are provided.

M
Odd Header

Types

Developing Apama Applications Version 9.10 817

In the table above, "assign" means values of the type can be directly assigned to another
variable of the same type, without calling a type conversion method and "clone" means a
value of the type can be copied by calling the clone() method.

Comparable types
The following types are comparable, and the operators <, >, <=, >=, =, or != can be used
to compare two values of one of these types if both are the same type:

boolean

decimal

float

integer

string

context

dictionary if it contains items that are a comparable type

event if it contains only comparable types

M
Even Header

Types

Developing Apama Applications Version 9.10 818

location

sequence if it contains items that are a comparable type

com.apama.exceptions.Exception

com.apama.exceptions.StackTraceElement

The correlator cannot compare the following types of items:

action

chunk

dictionary if it contains items that are an incomparable type

event if it contains at least one incomparable type

listener

sequence if it contains items that are an incomparable type

stream

Potentially cyclic types

For details about how the correlator compares items of a particular type, see the topic
about that type.

In EPL code, you must use a comparable type in the following places:

As the key for a dictionary. The type of the items in the dictionary does not need
to be comparable.

In a sequence if you want to call the indexOf() or sort() method on that
sequence.

As a key in the following stream query clauses:

Equi-join

group by

partition by

with unique

Cloneable types
Since variables of reference types are bound to the runtime location of the value
rather than the value itself, direct assignment of a variable of reference type copies the
reference (that is, the value's location) and not the value. To make a copy of the value,
you must use the clone instance method instead of assignment. The types that have this
property are called cloneable types.

The cloneable types are string, dictionary, event, location, and sequence.

M
Odd Header

Types

Developing Apama Applications Version 9.10 819

For dictionary, event, and sequence types, the behavior of the clone() method
varies according to whether or not the instance is potentially cyclic.

When the instance is potentially cyclic, the correlator preserves multiple references,
if they exist, to the same object. That is, the correlator does not create a copy of the
object to correspond to each reference. See also "Potentially cyclic types" on page
819.

When the instance is not potentially cyclic, and there are multiple references to
the same object, the correlator makes a copy of that object to correspond to each
reference.

While you can call the clone() method on a stream value, or a value that indirectly
contains a stream or listener value, cloning returns another reference to the original
stream or listener and does not clone it.

Potentially cyclic types
A cyclic object is an object that refers directly or indirectly to itself. For example:
event E {
 sequence<E> seq;
}
E e := new E;
e.seq.append(e);

When an object is cyclic or contains a reference to a cyclic object, it can be referred to as
containing cycles. If it is possible to create an object that contains cycles, the type of that
object is referred to as potentially cyclic.

When a type has the potential to contain cycles, and you call parse() on that type,
or toString() or clone() on an object of that type, the result is different from when
those methods are called on a type, or object of a type that is not potentially cyclic.
Consequently, it is sometimes important to understand which types are potentially
cyclic and what the string form of these objects looks like.

Which types are potentially cyclic?
A type is potentially cyclic if it contains one or more of the following:

A dictionary or sequence type that has a parameter that is of the enclosing type.
For example:
event E {
 dictionary<integer,E> dict;
}
event E {
 sequence<E> seq;
}

An action variable member. For example:
event E {
 action<E> a;
}

M
Even Header

Types

Developing Apama Applications Version 9.10 820

A potentially cyclic type. For example:
event E {
 sequence <E> seq;
}

event F {
 E e;
}

F does not have any members that refer back to F, nor does it contain any action
variables. However, it does contain E, which is a potentially-cyclic type. Therefore,
an instance of F might contain cycles.

Likewise, a dictionary or sequence is potentially cyclic if it has a parameter that is
a potentially cyclic type. Consider the following event type:
event E {
 sequence <E> seq;
}

Given this event type, dictionary<string, E> is potentially cyclic because its
parameter is potentially-cyclic. Similarly, sequence<E> is potentially cyclic.

A cyclic object can indirectly contain itself. Consider the following, using the same
definition of E as above.
E e1 := new E;
E e2 := new E;
e1.seq.append(e2);
e2.seq.append(e1);

In this example, both e1 and e2 are cyclic:

e1 is e1.seq[0].seq[0]

e2 is e2.seq[0].seq[0]

Following is another example of an object that indirectly contains a cycle:
E e3 := new E;
E e4 := new E;
e3.seq.append(e4);
e4.seq.append(e4);

In this example, e3 is cyclic, even though it does not refer back to itself. Instead, e3 refers
to e4 and e4 refers back to itself.

You can pass objects that contain cycles between EPL and Java. Remember that JMon
programs do not support action type variables, and so any cyclic types you pass cannot
contain them.

String form of potentially cyclic types
A potentially cyclic object might have more that one reference to the same object. When
you need the string form of a potentially cyclic object, the correlator uses a special syntax
to ensure that you can distinguish multiple references to the same object from references
to separate objects that merely have the same content.

M
Odd Header

Types

Developing Apama Applications Version 9.10 821

When the correlator converts a potentially cyclic object to a string, the correlator labels
that object @0. If the correlator encounters a second object during execution of the same
method, it labels that object as @1, and so on. Whenever the correlator encounters an
object that it has already converted, it outputs that object's @index label rather than
converting it again. For example:
event E { sequence<E> seq; }
E e := new E;
e.seq.append(e);
print e.toString(); // "E([@0])"

Following is a more complicated example:
event Test {
 string str;
 sequence<Test> seq;
 string str2;
}

monitor m {
 action onload() {
 Test t:=new Test;
 t.str:="hello";
 t.str2:=t.str;
 t.seq.append(t);
 Test t2:=new Test;
 t.seq.append(t2);
 t.seq.append(t2);
 t2.seq.append(t);
 print t.toString();
 }
}

This prints the following:
Test("hello",[@0,Test("",[@0],""),@2],"hello")

The objects @0, @1, @2, and @3 correspond to the following:

@0 Test("hello",[@0,Test("",
[@0],""),@2],"hello")

t in the above example

@1 [@0,Test("",[@0],""),@2] t.seq in the above
example

@2 Test("",[@0],"") t2 in the above example

@3 [@0] t2.seq in the above
example

The following example uses the clone() method and contains action references. The
result uses the new string syntax for aliases to the same object.
event E {
 action<> act;
 sequence<string> x;
 sequence<string> y;

M
Even Header

Types

Developing Apama Applications Version 9.10 822

}

monitor m {
 action onload() {
 E a:=new E;
 a.x.append("alpha");
 a.y:=a.x;
 E b:=a.clone();
 b.x[0]:="beta";
 print b.y.toString();
 print a.toString();
 }
}

The output is as follows:
["beta"]
E(new action<>,["alpha"],@1)

Note that dictionary keys can never contain aliases so they do not receive @n labels for
referenced objects in toString() and parse() methods.

Whether you need to do anything to handle this string syntax depends on why you want
a string representation of your object:

If you are using the string for diagnostic messages, you just need to understand the
syntax.

If you plan to feed the string into the parse() method, the parse() method will
handle it correctly.

If you plan to feed the string into some other program, you should either avoid
repeated references in an object or make sure the other program can handle the
@index syntax.

Support for IEEE 754 special values
EPL supports the following IEEE 754 special float and decimal values:

NaN — in EPL, these are quiet NaNs. The string representation is "NaN".

+Infinity — The string representation is "Infinity".

-Infinity — The string representation is "-Infinity".

The correlator returns one of these values as the result of an invalid computation. For
example, dividing zero by zero or calculating the square root of a negative number. The
correlator returns infinities as the result of computations that overflow, for example
taking a very large number and dividing it by a very small number.

The correlator can receive external events that contain these special values. You can
send, route, emit, and enqueue events that contain these values. If the correlator receives
an event that contains a floating point value that is too large to be represented as a 64-bit
floating point number the behavior is as if the value had overflowed and the correlator
represents the value as infinity.

The following operations return NaN:

M
Odd Header

Types

Developing Apama Applications Version 9.10 823

0.0/0.0

x.sqrt() (where x < 0)

x.ln() (where x < 0)

x.log10() (where x < 0)

Infinity - Infinity

0.0 * Infinity

In addition, most operations that accept NaN as a parameter return NaN. For example:

NaN.exp() = NaN

NaN + 3.0 = NaN

The NaN value behaves differently when compared to other floating point numbers.
NaN does not compare equal to any other number, including itself. It is unordered with
respect to all other floating point numbers, so NaN < x and NaN > x are both false.

The following operations return positive infinity (note that IEEE 754 has signed zeroes):

x/0.0 (where x > 0)

x/-0.0 (where x < 0)

Infinity.sqrt()

The following operations return negative infinity:

x/0.0 (where x < 0)

x/-0.0 (where x > 0)

(0.0).ln()

The following table lists the available constants. These are provided to ensure consistent
values, and a few have been provided for convenience.

Constant Value

decimal.E

float.E

Euler's number, e.

decimal.PI

float.PI

The ratio of a circle's circumference to its diameter
(3.14159265).

decimal.MIN

float.MIN

The smallest, positive, normalized floating point
number (~2e-308).

M
Even Header

Types

Developing Apama Applications Version 9.10 824

Constant Value

decimal.MAX

float.MAX

The largest, finite, positive floating point number (~2e
+308).

decimal.EPSILON

float.EPSILON

The smallest x where (1+x) > 1. Note that
decimal.EPSILON and float.EPSILON are not the
same value. The value is dependent on whether the
type is decimal or float.

decimal.NAN

float.NAN

IEEE 754 Not-a-Number.

decimal.INFINITY

float.INFINITY

IEEE 754 positive infinity.

integer.MAX Largest positive value an integer can take (263 - 1).

integer.MIN Largest negative value an integer can take (-263).

Special cases of pow()

In the normal case, x.pow(y) yields exactly what you might expect, so 3.0.pow(3.0)
= 27.0 and 2.0.pow(0.5) = 1.41421. But there are a very large number of special
cases. The documentation for fdlibm, which is the mathematics library used by the
EPL interpreter for float types lists the special cases shown below. Although EPL
uses a different math library for decimal types, the behavior is the same for float and
decimal types.

(anything)0 = 1

(x)1 = x, for any x

(anything)NaN = NaN

NaN(anything except 0) = NaN

x+∞ = +∞, if |x| > 1

x-∞ = +0, if |x| > 1

x+∞ = +0, if |x| < 1

x-∞ = +∞, if |x| < 1

±1±∞ = NaN

+0(+anything except 0 and NaN) = +0

M
Odd Header

Types

Developing Apama Applications Version 9.10 825

-0(+anything except 0, NaN and odd integer) = +0

+0(-anything except 0 and NaN) = +∞

-0(-anything except 0, NaN and odd integer) = +∞

-0(odd integer) = -(+0(odd integer))

+∞(+anything except 0 and NaN) = +∞

+∞(-anything except 0 and NaN) = +0

-∞(anything) = -0(-anything)

(-anything)(integer) = (-1)(integer)*(+anything(integer))

(-anything except 0 and ∞)(non-integer) = NaN

M
Even Header

Developing Apama Applications Version 9.10 826

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 827

33 Events and Event Listeners

■ Event definitions ... 828

■ Event templates ... 830

■ Event listener definitions .. 835

■ Event lifecycle .. 835

■ Event listener lifecycle ... 836

■ Event processing order for monitors .. 837

■ Event processing order for queries .. 839

■ Event expressions .. 839

■ Event channels ... 844

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 828

In EPL, an event is a data object that is a notification of something happening, such
as arrival of a customer order, shipment delivery, sensor state change, stock trade, or
myriad other things. Each kind of event has an event type name, zero or more data
elements or fields, and zero or more event actions associated with it.

Event objects can also be used simply as complex data structures to hold multiple
related data values. They can also be used as a container for actions that can be shared
by multiple monitors.

Event objects are hierarchical structures that can contain simple values, other events, and
arrays.

When the correlator executes an on statement, it creates an event listener. An event
listener watches for an event, or a sequence of events, that matches the event or event
sequence specified in the on statement. Conceptually, event listeners sift the events that
come in to the correlator and watch for matching events.

Event definitions
An event definition specifies the event type, and any event fields and/or event action
fields.

Example:
event MyEvent {
 string s;
 MyOtherEvent e;
 location l;
 wildcard integer i;
}

For detailed information, see "Defining event types " on page 40.

Event fields
An event field definition specifies the type and name of the field.

Event fields and variables are similar, but unlike variables, event fields cannot be
initialized with a value.

Event fields that do not have the wildcard aribute are indexed by the correlator when
you listen for them. There can be at most 32 indexes on an event type. Event fields of the
type location use two indexes for each field.

An event that contains an action, chunk, listener, and/or stream field is valid only
within the monitor that creates it. You cannot send, enqueue or route an event that
contains, directly or indirectly, a field of such types.

Event actions
An event action is a subprogram or function that is associated with the event definition.
It can be invoked or called from any monitor or from another action in the same event.
Like monitor actions, the caller must supply actual parameters of the same type and

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 829

number as the event action's formal parameters and if the action returns a value, then
the return value must be consumed by the caller.

Like monitor actions, event actions can optionally be prefixed with annotations. See
"Annotations" on page 930.

Unlike monitor actions (see "Monitor actions" on page 849), events do not have the
special actions onload(), onunload(), and ondie().

Event action example:
action myEventAction(string s, location l) returns float {
 ...
 return 10.0;
}

Event action formal parameters

The formal parameters are a comma-separated list of parameter definitions, enclosed
in parentheses. A parameter definition consists of a type name and an identifier. The
identifier is the name of a parameter variable which will be bound to a copy of the value
of an expression specified by the caller (that is, the value passed by the caller) when the
action is invoked. The number and type of actual parameter values passed by a caller
must match those listed in the action's formal parameters.

The scope of a parameter variable is the statement or block that forms the action body.
Parameter variables are very similar to an action's local variables.

Event action return value

An event action return value specifies the return value type.

If the event action definition includes a returns clause, then the action returns a value
of the specified type. All control paths within the action body must lead to a return
statement before the end of the action body.

Event action body

The block construct forms the event action body. All variable references within an event
action body must be one of the following:

A field of the event

A formal parameter of the action

A local variable defined in the action body

Event field and action scope
The scope of an event's fields and actions is the same as the scope of the event itself
except that the event fields are always referenceable within the event's actions.

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 830

Event templates
An event template is a construct that allows you to specify qualifying or matching
criteria based on values of one or more of an event's fields. In event templates, you can
qualify only on those event fields whose type is a primitive type. Event templates are
used with on statements. See "The on statement" on page 887.

An event template begins with the name of an event type that is to be matched.

Event templates can be either positional (see "By-position qualifiers" on page 830)
or named (see "By-name qualifiers" on page 831) or a combination of both. Further,
the criteria can be omied entirely, in which case any event of the same event type will
match. When both positional and named qualifiers are present in an event template
qualifier expression list, the positional matches must come first.

Optionally, a colon and an identifier can follow the event expressions. This is called
an event coassignment and specifies a variable whose value will become (that is, will
be assigned) a reference to the matched event structure when the correlator detects a
matching event and listener, and invokes the actions defined in the listener.

See also "Stream source templates" on page 908.

By-position qualifiers
The correlator evaluates a positional event template against the event field that is at the
same position in the event definition as the qualifier's position in the qualifier list.

For example, suppose an event has the fields shown below:
event sample1
{
 string itemName;
 float price;
 integer quantity;
}

An example of a by-position qualifier list for this event is as follows:
sample1 ("eggs", 0.50, 3)

This template matches sample1 events that have an itemName value of "eggs", a price
value of 0.50, and a quantity value of 3.

In a by-position qualifier, an asterisk (*) matches any value of an event field in the
corresponding position.

A range expression matches the event field values in the corresponding position to a low
and high boundary value of the range. A match occurs when the field value is within the
range. See "Range expressions" on page 831.

The comparison operators < (less than), <= (less than or equal to), > (greater than), >=
(greater than or equal to), and = (equal to) specify a comparison of the event field value
with the expression value that follows. A match occurs when the relation result is true.
The expression to the right of the comparison operator cannot contain any references to

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 831

the event's fields and must have a result type that is the same as the event field's type
and must be one of decimal, float, integer or string.

By-name qualifiers
A by-name qualifier names an event field whose value is to be matched, instead of
matching by position.

The identifier must be the name of one of the event's fields. The field's type must be
integer, decimal, float, or string. Each event field is allowed to appear only once
on the left side of a by-name qualifier, and the same field is not allowed in both a by-
position qualifier and a by-name qualifier in the same event template.

An example of a by-name qualifier list is as follows (see the example in "By-position
qualifiers" on page 830 for the event fields that are also used for this example):
sample1 (itemName="eggs", price=0.50, quantity=3)

If the qualifier uses = *, then the qualifier matches all possible values of the specified
event field.

If the qualifier uses one of the relational operators < (less than), <= (less than or equal to),
> (greater than), >= (greater than or equal to), and = (equal to), then the event field value
is compared with the event template's value, and a match occurs when the result of the
comparison is true.

If the qualifier uses in followed by a range expression, then the field is compared against
the boundary values of the range.

The expression or range expression on the right side is not allowed to refer to any of the
event's fields.

The expression or range expression is evaluated once, when the on statement containing
the template is executed and its event expressions evaluated, not each time an event of
the same type is processed by the correlator.

Range expressions
A range expression is a part of a qualifier expression that describes a range of
consecutive decimal, float, integer, or string values between a low boundary and a
high boundary. The correlator tests an event's field value against this range to determine
whether or not it falls within the specified range.

The values for the low boundary and the high boundary are the expression values. Both
expression values must be of the same type and one of decimal, float, integer, or
string. Both expression types must be of the same type as the event field being tested.
Neither expression can contain any references to the event's fields.

If the low boundary value is greater than the high boundary value, the EPL runtime
automatically reverses them.

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 832

Example

In the following EPL, the three on statements specify event listeners that are all listening
for the same range of events:
event test
{
 string s;
 float f;
}
monitor RangeExample
{
 test t;
 action onload()
 {
 on test (f > 9.0) and test (f <= 10.0)
 {
 }
 on test ("", (9.0 : 10.0])
 {
 }
 on test (f in (9.0 : 10.0])
 {
 }
 }
}

Depending on which of the starting operators, [or (, and ending operators,] or), you
use, the boundary values will either be included in the range or excluded from it.

If the starting operator is [, then the low boundary value is included and candidate
values greater than or equal to the low boundary value are in the range.

If the starting operator is (, then the low boundary value is excluded and candidate
values larger than the low boundary value are in the range.

If the ending operator is], then the high boundary value is included and candidate
values less than or equal to the high boundary value are in the range.

If the ending operator is), then the high boundary value is excluded and candidate
values lower than the high boundary value are in the range.

Note that you can have one kind of starting operator at the beginning and the other kind
at the end; they do not need to match.

Field operators
Field operators can appear within event templates to define a field value.

The on keyword creates an event listener that watches the series of events processed
by the correlator for individual events or paerns of particular events. You define the
sequence of interest in an event expression made up of one or more event templates. The
first part of an event template defines the event type of the event the event listener is to
match against, while the section in brackets describes further filtering criteria that must
be satisfied by the contents of events of that type for there to be a match. Event template

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 833

field operators define what values, or range of values, are acceptable for a successful
event match.

The value that a field operator applies to can be the result of an expression. Therefore,
it is possible to have >, <, >=, <= , and/or = present in both their roles, as expression
operators and as field operators, within an event template. This is not a problem, since
the laer are unary while the former are binary and the semantics are quite different.

The following table describes the field operators:

Operator Description

[value1:value2] Specifies a range of values that can match. The values
themselves are included in the range to match against. For
example:
on stockPrice(*, [0 : 10]) doSomething();

This example will invoke the doSomething() action if a
stockPrice event is received where the price is between
0 and 10 inclusive. You can apply this range operator to
decimal, float, integer and string types.

[value1:value2) Specifies a range of values that can match. The first value
itself is included in the range to match against while the
second value is excluded from the range to match against.
For example:
on stockPrice(*, [0 : 10)) doSomething();

This example will invoke the doSomething() action if a
stockPrice event is received where the price is between 0
and 9 inclusive (assuming the field was of integer type).
You can apply this range operator to decimal, float,
integer and string types.

(value1:value2] Specifies a range of values that can match. The first value is
excluded from the range to match against while the second
value is included. For example:
on stockPrice(*, (0 : 10]) doSomething();

This example invokes the doSomething() action if a
stockPrice event is received where the price is between
1 and 10 inclusive (assuming the field was an integer).
This operator can apply to decimal, float, integer and
string types.

(value1:value2) Specifies a range of values that can match. The values
themselves are excluded from the range to match against.
For example:
on stockPrice(*, (0 : 10)) doSomething();

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 834

Operator Description

This example will invoke the doSomething() action if a
stockPrice event is received where the price is between
1 and 9 inclusive (assuming the field was of integer
type).You can apply this range operator to decimal, float,
integer and string types.

> value All values greater than the value supplied will satisfy
the condition for a match. You can apply this operator to
decimal, float, integer, and string types. When used
with a string, the operator assumes lexical ordering.

< value All values less than the value supplied will satisfy the
condition for a match. You can apply this operator to
decimal, float, integer, and string types. When used
with a string, the operator assumes lexical ordering.

>= value All values greater than or equal to the value supplied
will satisfy the condition for a match. You can apply this
operator to decimal, float, integer, and string types.
When used with a string, the operator assumes lexical
ordering.

<= value All values less than or equal to the value supplied will
satisfy the condition for a match. You can apply this
operator to decimal, float, integer, and string types.
When used with a string, the operator assumes lexical
ordering.

= value All values equal to the value supplied will satisfy the
condition for a match. You can apply this operator to
decimal, float, integer, and string types. When used
with a string, the operator assumes lexical ordering.

value With one exception, only a value equivalent to the value
supplied will satisfy the condition for a match. The
exception is a location type field. A location value
consists of a structure with four floats representing the
coordinates of the corners of the rectangular space being
represented. A listener that is watching for a particular
value for a location field matches when it finds a
location field that intersects with the location value
specified in the listener's event expression. In the following
example, the listener matches each A event whose loc field

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 835

Operator Description
specifies a location that intersects with the square defined
by (0.0, 0.0, 1.0, 1.0).
location l := location(0.0, 0.0, 1.0, 1.0);
on all A(loc = l) ...

* Any value for this field satisfies the condition for a match.

Event listener definitions
You define an event listener in an on statement. See "The on statement" on page 887.

Event lifecycle
An event enters the correlator in one of the following ways:

An event is received from another component, such as the engine_send utility, an
adapter, another correlator, or a process that is using the Apama client API. The
correlator places the event on the input queue of each context that is subscribed to
the channel on which the event is sent. If an event is not sent on a named channel
then the correlator places the event on the input queue of each public context and
each context that is processing a query.

Events sent on the com.apama.queries channel are put on the input queue of each
context that is processing a query. These contexts automatically receive events sent
on the com.apama.queries channel.

A correlator pulls an event from a JMS message queue that is set up to distribute
events to a cluster of correlators that is processing queries. The correlator adds the
event to the input queue of each context that is processing queries.

An EPL program creates an event instance and executes a send..to statement. If
the target is a channel then the correlator places the event on the input queue of each
context that is subscribed to that channel. If the target is a context (or a sequence of
contexts) then the correlator places the event on the input queue of that context (or
on the input queue of each context in the sequence).

An EPL program creates an event instance and executes an enqueue...to statement.
The correlator places the event on the input queue of the specified context or on the
input queue of each context in the specified sequence of contexts.

An EPL program creates an event instance and executes an enqueue statement. The
correlator places the event on the input queue of each public context. If the input
queue for a public context is full then the correlator keeps the event on a special
queue for enqueued events until there is room on the input queue that was full.

An EPL program creates an event instance and executes a route statement. The
correlator places the event on the input queue of only the context that contains the
monitor instance that routed the event.

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 836

Monitors

When the event gets to the front of the context's input queue, the correlator evaluates
the event to determine if it is a match for any active event listeners in that context.
That is, the correlator checks whether there are any event listeners in that context that
are watching for that particular event. If there is a match, the match triggers the event
listener. This means that the correlator executes the actions defined in the matching
event listener.

It is possible for the actions defined in the event listener to route one or more events back
to the context's input queue. A routed event goes right to the front of the context input
queue. When the correlator is finished processing the event that triggered the event
listener action, the correlator evaluates any routed events before it moves on to the event
that was on the input queue after the matching event.

Queries

When the event gets to the front of the context's input queue, the correlator extracts
the key of the event according to the definitions of running queries that use that event.
The window of events for that key value is retrieved from the distributed cache. The
correlator adds the event to the retrieved window, which it writes back to the cache. The
event paern of interest is evaluated against the stored window to determine whether
the addition of the event causes a match set.

The event remains in its window until the correlator ejects it to make room for a new
event or until the query instance or parameterization terminates.

Event listener lifecycle
When you inject a monitor into the correlator, the correlator instantiates the monitor
in the main context and executes the monitor's onload() action. The onload()
action typically specifies at least one on statement. An on statement includes an event
expression that identifies the event or sequence of events that you are interested in. This
is what you want to listen for. An onload() statement is not required to specify an on
statement. If there is no on statement, the correlator immediately unloads the monitor.

When the correlator executes an on statement, it sets up an event listener for the
specified event or sequence of events. After the correlator sets up the event listener, the
event listener watches for an event that matches its event expression. When the event
listener detects a matching event, the event listener triggers and the correlator executes
the action specified in the on statement.

For an event listener that is looking for a single instance of an event, this is
straightforward. However, the event expression that defines what you are looking for
can specify all instances of an event, all instances of a sequence of events, and it can
have temporal and logical constraints. This makes the lifecycle of an event listener less
straightforward.

For example, consider the following event listener:
on all A() success;

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 837

When the correlator sets up this event listener, it sets up an event template to look for an
A event. When an A event arrives, the correlator does the following:

Executes the success() event listener action.

Sets up a new event template to look for the next A event.

Now consider this event listener:
on all A() -> all B() success;

Again, suppose that the correlator sets up this event listener and an A event arrives. This
time the correlator does the following:

1. Sets up an event template to listen for the next B event.

2. Sets up an event template to listen for the next A event.

This event listener will be active until it is explicitly killed because there will always be
an event listener that is looking for the next A event.

Additional information about event listener lifecycles is in "How the correlator executes
event listeners" on page 182.

Event processing order for monitors
As mentioned earlier, contexts allow EPL applications to organize work into threads
that the correlator can execute concurrently. When you start a correlator it has a main
context. You can create additional contexts to enable the correlator to concurrently
process events. Each context, including the main context, has its own input queue. The
correlator can process, concurrently, events in each context.

Concurrently, in each context, the correlator

Processes events in the order in which they arrive on the context's input queue

Completely processes one event before it moves on to process the next event

When the correlator processes an event within a given context, it is possible for that
processing to:

Send or enqueue an event to a particular channel. The correlator places the event on the
input queue of each context that is subscribed to the specified channel.

Send or enqueue an event to a particular context or to a sequence of contexts. The correlator
places the event on the input queue of the specified context or on the input queue of
each context in the specified sequence.

Enqueue an event. The correlator places the enqueued event on the special queue just
for events generated by the enqueue keyword. A separate thread moves these events
to the input queue of each public context. This arrangement ensures that if the input
queue of a public context is full, the event generated by enqueue still arrives on its
special queue, and is moved to each appropriate input queue as soon as that queue
has room. Active event listeners will eventually receive events that are enqueued,

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 838

once those events make their way to the head of the input queue alongside normal
events.

Route an event. The correlator places the routed event at the front of that context's
input queue. The correlator processes the routed event before it processes the other
events in that input queue.

If the processing of a routed event routes one or more additional events, those
additional routed events go to the front of that context's input queue. The correlator
processes them before it processes any events that are already on that context's input
queue.

For example, suppose the correlator is processing the E1 event and events E2, E3, and E4
are on the input queue in that order.

While processing E1, suppose that events En1 and En2 are created in that order and
enqueued. These events go to the special queue for enqueued events. Assuming that
there is room on the input queue of each public context, the enqueued events go to the
end of the input queue of each public context:

While still processing E1, suppose that events R1 and R2 are created in that order and
routed. These events go to the front of the queue:

When the correlator finishes processing E1, it processes R1. While processing R1,
suppose that two event listeners trigger and each event listener action routes an event.
This puts event R3 and event R4 at the front of that context's input queue. The input
queue now looks like this:

It is important to note that R3 and R4 are on the input queue in front of R2. The correlator
processes all routed events, and any events routed from those events, and so on, before it
processes the next routed or non-routed event already on the queue.

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 839

Now suppose that the correlator is done processing R1 and it begins processing R3. This
processing causes R5 to be routed to the front of that context's input queue. The context's
queue now looks like the following:

See also "Understanding time in the correlator" on page 194.

Event processing order for queries
Unlike EPL monitors, the order in which queries process events is not necessarily the
order in which they were sent into the correlator. In particular, if two events that will
be processed by the same query with the same key value are sent very close together in
time (both events received less than about .1 seconds of each other) then they may be
processed as if they had been sent in a different order. For example, consider a query
that is looking for an A event followed by an A event. If two A events with the same key
arrive 1 millisecond apart then the events might not be processed in the order in which
they were sent.

Queries use multiple threads to process events and to scale across multiple correlators
on multiple machines. To do this efficiently, there is no enforcement that the events
are processed in order. However, when events that have the same key arrive roughly
about .5 seconds apart or more then out-of-order processing is typically avoided
provided the system can keep up with the load. Therefore, you want to specify a query
so that it operates on partitions in which the arrival of consecutive events is spaced far
enough apart. For example, consider a query that operates on credit card transaction
events, which could mean thousands of events per second. You want to partition this
query on the credit card number so that there is one event or less per partition per
second. By following this recommendation, it becomes possible to process events that
are generated at rates of up to 10,000 events per second.

When creating an evt file for testing purposes, the recommendation is to begin the
file with a &FLUSHING(1) line to cause more predictable and reliable event-processing
behavior. See "Event timing" in the "Correlator Utilities Reference" section of Deploying
and Managing Apama Applications.

Event expressions
An event expression is a special type of expression that is used with the on statement to
define the rules for detecting events of interest and invoking an action when a matching
event is detected. In an event expression, you can specify filtering rules based on an
event's field values, sequencing rules for events followed by other events, times and time
ranges during which an event is of interest, and other rules. See also "The on statement"
on page 887.

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 840

Event expressions should not be confused with ordinary EPL expressions of type event.
Ordinary EPL expressions of all types are described in "Expressions" on page 891.

Event primaries
The event primary is the simplest form of an event expression clause and can be
combined with other event primaries and event operators to form more complex event
expressions.

An event primary can be an event template (see "Event templates" on page 830)
optionally prefixed with completed or unmatched, or it can be a timer (see "Timers" on
page 841).

Event templates are constructs that allow you to specify filtering or matching criteria
based on values of one or more of an event's fields.

The completed operator

A completed event template matches only after all other work is completed. When an
event that matches a completed template comes into the correlator, the correlator:

1. Runs all of the event's normal or unmatched event listeners. Normal event templates
do not specify the completed or unmatched keyword.

2. Processes all routed events that result from those event listeners.

3. Triggers the completed event listeners.

For example:
on all completed A(f < 10.0) {}

The unmatched operator

An unmatched event template matches against events for which both of the following
are true:

Except for completed and unmatched event templates, the event is not a match with
any other event template currently loaded in the context.

The event matches the unmatched event template.

The correlator processes events as follows:

1. The correlator tests the event against all normal event templates in the context.
Normal event templates do not specify the completed or unmatched keyword. If
there are any matches, those event listeners trigger and the correlator executes those
event listener actions. If execution of the event listener actions routes any events, the
correlator then processes those events.

2. If the correlator does not find a match, the correlator tests the event against all event
templates in the context that specify the unmatched keyword. If the correlator finds
one or more matches, it triggers an event listener for each match found. In other
words, if multiple unmatched event templates match a given event, they all trigger.
The correlator executes the event listener actions defined by the event listeners that

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 841

trigger. If any events are routed during execution of those actions, the correlator
processes the routed events.

3. The correlators tests the event against all event templates in the context that specify
the completed keyword. If the correlator finds one or more matches, it triggers an
event listener for each match found.

Example

For example, suppose you have the following code:
on all A("foo", < 10) : a {
 print "Match: " + a.toString();
 a.count := a.count+1; // count is second field of A
 route a;
}
on all unmatched A(*,*): a {
 print "Unmatched: " + a.toString();
}
on all completed A("foo", *) : a {
 print "Completed: " + a.toString();
}

The incoming events are as follows:
A("foo", 8);
A("bar", 7);

The output is as follows.
Match: A("foo", 8)
Match: A("foo", 9)
Unmatched: A("foo", 10)
Completed: A("foo", 10)
Completed: A("foo", 9)
Completed: A("foo", 8)
Unmatched: A("bar", 7)

Specify the unmatched keyword with care. Be sure to communicate with any others who
write event templates. If you are relying on an unmatched event template, and someone
else injects a monitor that happens to match some events that you expected to match
your unmatched event template, you will not get the results you expect.

Parenthesized event expressions

Just as with primary and bitwise expressions, event expressions can be enclosed in
parentheses to control expression evaluation order or to improve readability.

Timers
Specify a timer with the wait, at, or within keyword. For more detailed information,
see "Defining event listeners with temporal constraints" on page 189.

The wait event operator

The wait operator can be used to limit the amount of time that an event listener can
match an event. The wait operator's expression specifies the time in seconds. The result
of evaluating the wait expression must be of type float.

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 842

See also "Waiting within an event listener" on page 191.

The at event operator

The at operator allows triggering of an event listener at a specific time or repeatedly at
multiple times, depending on how the series of expressions that follow the at operator
are constructed.

The time specification of the at operator consists of either five or six expressions,
corresponding to the number of minutes of the hour (0 to 59), hour of the day (0 to
23), day of the month (1 to 31), month of the year (1 to 12), day of the week (0 to 6,
0=Sunday), and seconds respectively.

If the optional number of seconds is omied, 0 is used.

The * operator means that all times (minute, hour, etc.) for the corresponding part of the
time specification will match.

You can specify one or more time values separated by commas.

See also "Triggering event listeners at specific times" on page 192.

The within operator

The within operator takes one operand, which is an expression of type float, whose
value is the number of elapsed seconds from an event primary's activation time that the
event primary can be matched. The within operator's result type is boolean. If the event
is matched before the specified time has elapsed, the within operator's result is true.
When the time has elapsed and the event has not been matched, the within operator's
result is false.

See also "Listening for event paerns within a set time" on page 190.

The not operator
The not operator specifies logical negation.

Example:
on A() and not B() executeAction();

The all operator
When the all operator appears before an event template, when that event template
finds a match, it continues to watch for subsequent events that also match the template.

Consider the following event expression:
all A -> B

This event listener would match on every A and the first B that follows it. The way this
works is that upon encountering an A, the correlator creates a second event listener to
seek the next A. Both event listeners would be active concurrently; one looking for a B
to successfully match the sequence specified, the other initially looking for an A. If more

M
Odd Header

Events and Event Listeners

Developing Apama Applications Version 9.10 843

As are encountered the procedure is repeated; this behavior continues until either the
monitor or the event listener are explicitly killed.

Consider the following sequence of incoming events:
C1 A1 F1 A2 C2 B1 D1 E1 B2 A3 G1 B3

With these input events, on all A() -> B() would return the following:

{A1, B1}, {A2, B1} and {A3, B3}.

Note that all is a unary operator and has higher precedence than ->, or and and.

The and, xor, and or logical event operators
The logical operators and, xor, and or are binary operators, operating on event
expressions that are either side of them. They are similar to the corresponding operators
in primary and bitwise expressions, but do not have quite the same precedence. See also
"Event expression operator precedence" on page 843.

Operator Description

and Logical intersection

xor Logical exclusive or

or Logical or

The followed-by event operator
The followed-by operator -> takes left and right operands, both event expressions. The
followed-by operator waits for the left operand to become true and then waits for the
right operand to become true. When both are true, then the result value is true. If either
becomes false, then the result value is false.

Event expression operator precedence
The following table lists the event expression operators in order by their precedence,
from lowest to highest. See "Expression operator precedence" on page 901 for a
corresponding table of primary and bitwise expression operator precedence.

Operation Operator

Logical negation not

All all

Logical intersection and

M
Even Header

Events and Event Listeners

Developing Apama Applications Version 9.10 844

Operation Operator

Logical exclusive or xor

Logical union or

Followed-by ->

For example, the following expression:
on all A()or B() and not C() -> D()

is equivalent to this expression:
on (
 (all A())
 or
 (B() and (not C()))
) -> D()

Event channels
Adapter and client configurations can specify the channel to deliver events to. A channel
is a string name that contexts and receivers can subscribe to in order to receive particular
events. In EPL, you can send an event to a specified channel. Sending an event to a
channel delivers it to any contexts that are subscribed to that channel, and to any clients
or adapters that are listening on that channel.

You can use the com.apama.Channel type to send an event to a channel or context. The
Channel type holds a string or a context. When it holds a string an event is sent to the
channel that has that name. When it holds a context an event is sent to that context.

The default channel is the empty string. Events sent to the default channel and events
sent without a channel specification are added to the input queue of each public context
as well as each context that is processing queries.

You can use the com.apama.queries channel to send events to all contexts that process
queries.

M
Odd Header

Monitors

Developing Apama Applications Version 9.10 845

34 Monitors

■ Monitor lifecycle ... 846

■ Monitor files .. 847

■ Packages .. 847

■ The using declaration ... 848

■ Monitor declarations ... 848

■ The import declaration ... 848

■ Monitor actions ... 849

■ Contexts ... 850

■ Plug-ins ... 851

■ Garbage collection ... 851

M
Even Header

Monitors

Developing Apama Applications Version 9.10 846

A .mon file is a file that contains the source text for an optional package specification and
one or more event declarations and/or monitor definitions. A file can consist entirely of
event declarations without any monitors.

Note: Monitors and queries are the two main EPL programming units. A monitor
cannot contain a query. A query cannot contain a monitor. Each unit offers
a different approach to event processing. See "Architectural comparison of
queries and monitors" on page 79.

A monitor is a group of related variable declarations and actions. An action is a group of
related variable declarations and statements. An action can either be part of a monitor or
part of an event declaration.

The executable statements (except for global variable initializers) are always inside
an action. An action can be either a subprogram or a function. The difference is that a
function has a return value and a subprogram does not.

Each file is injected whole or not at all; if some parts compile validly but others do not,
nothing is injected and an error is returned. Injecting can also return warnings about the
code injected. For example, use of keywords that may be reserved in the future.

Monitor lifecycle
Monitors are compiled and run (executed) by the Apama correlator. The correlator starts
executing in the monitor's onload() action. To execute a monitor, you load (inject) it
into the correlator. The correlator then does the following:

1. Compiles the monitor's source text

2. If no errors are detected, creates the main monitor instance along with its global
variables

3. Invokes the monitor instance's onload() action

When the onload() action has executed to completion (that is, the control path reaches
the closing curly brace of the onload() action), if the monitor instance has event
listeners or streaming networks, then it remains active but in a suspended state.

The correlator calls the monitor instance's event listeners whenever it detects events that
match the event listeners' event expressions.

A monitor instance terminates when one of the following events occurs:

The monitor instance executes a die statement in one of its actions.

A runtime error condition is raised.

The monitor is terminated externally (for example, with the engine_delete utility.

The monitor instance has executed all its code and there are no remaining listeners
or streaming networks. This will occur rapidly if the onload() action does not create
any.

M
Odd Header

Monitors

Developing Apama Applications Version 9.10 847

When a monitor instance terminates, the correlator does the following:

1. Invokes the monitor instance's ondie() action, if it is defined.

2. If the monitor instance that is terminating is the last active instance of that monitor,
the correlator also does the following:

Invokes the monitor's onunload() action if it is defined.

Removes the monitor's code from the correlator.

Frees all the monitor's resources.

To summarize, consider that when a monitor spawns monitor instances, there is a
set of monitors that includes the original monitor instance and any spawned monitor
instances. As the monitor instances in this set terminate, the correlator calls the ondie()
action, if it is defined, for each monitor instance that terminates. When the last monitor
instance in the set terminates, the correlator also calls the onunload() action. Thus, the
correlator calls ondie() once for each monitor instance in the set, and calls onunload()
only once for the entire set.

Monitor files
An EPL monitor file contains an optional package declaration, optional using
declaration, event declarations and/or monitor declarations and/or custom aggregate
definitions.

Packages
A package declaration provides a scope for events and/or monitors, and/or queries.

Example:
package com.myCorporation.myproject;

See "Names" on page 929 for further information.

M
Even Header

Monitors

Developing Apama Applications Version 9.10 848

The using declaration
The using declaration lets you use a type in a package other than the package the type
was defined in without having to specify the fully qualified name of the type.

Insert a using declaration (after the optional package declaration and before any other
declarations) that specifies the fully qualified name of the type. For example:
using com.myCorporation.custom.myCustomAggregate;

You can specify multiple using declarations in a file.

In a file, you cannot specify two using declarations that bring in types that have the
same base name. See also "Name Precedence" on page 929.

You cannot specify a using declaration for named objects such as monitors, JMon
monitors, and namespaces.

A using declaration can be in a monitor or in a query.

Monitor declarations
Specify persistent when you want a persistence-enabled correlator to save the state
of the monitor in a recovery datastore on disk. In a monitor, import declarations, event
declarations, variable declarations, and action definitions can be freely mixed in any
order. For detailed information, see "Defining Monitors" on page 49.

A monitor can be optionally prefixed (before the persistent keyword) with
annotations. See also "Annotations" on page 930.

The import declaration
The import declaration loads a plug-in library and makes it available to an EPL
program. Plug-in libraries are shared libraries on Linux and UNIX systems and Dynamic
Link Libraries on Windows systems.

On Linux and UNIX systems, the library is loaded from a libPlugInName.so file
located in one of the directories listed in the environment variable LD_LIBRARY_PATH.
On Windows, the library is loaded from a PlugInName.dll file located in the bin folder.

You can name a plug-in. The plug-in name is a library filename, not a full filepath, and
is not allowed to contain any of the characters used as directory or device separators
(forward slash, colon, or backslash).

You can also give the plug-in an identifier (an alias name) for use in the EPL program
when you call the library's actions.

For example, to call a plug-in action foo() in the plug-in library wffftl.so or
wffftl.dll, you would write the following:
monitor m {
 import "wffftl" as fft;
 action onload()

M
Odd Header

Monitors

Developing Apama Applications Version 9.10 849

 {
 sequence <float> data := [];
 fft.foo (data);
 }
}

For detailed information, see "Using Correlator Plug-ins in EPL" on page 355.

Monitor actions
Monitors can have two forms of actions: simple actions and actions with parameters
and/or return values. These types of actions are discussed in the topics below.

Monitor actions can optionally be prefixed with annotations. See "Annotations" on page
930.

Simple actions
A simple action has a name and a body consisting of a block. The body contains the
executable code of the action. There are no parameters.

The action names given in the table below have special meaning in a monitor. These
actions are invoked automatically when certain events in a monitor's life cycle occur.
Apama recommends that you do not use these names in queries.

A block must follow the action name. Note that there are no formal parameters in this
form of action definition and the action cannot return a value.

Action Description

onload() This action is invoked immediately after a
monitor has been loaded. This action must be
present in every monitor.

ondie() If present, this action is invoked by the
correlator when a monitor instance terminates.

onunload() If present, this action is invoked by the
correlator after all instances of a monitor have
terminated, just before the last monitor instance
is unloaded.

onBeginRecovery() If present, this action is invoked by the
correlator during recovery of a persistence-
enabled correlator. The correlator executes
onBeginRecovery() on monitors and any live
events after it reinjects source code and restores
state in persistent monitors.

M
Even Header

Monitors

Developing Apama Applications Version 9.10 850

Action Description

onConcludeRecovery() If present, this action is invoked by the
correlator during recovery of a persistence-
enabled correlator. The correlator executes
onConcludeRecovery() on monitors and any
live events before it begins to send clock ticks.

Actions with parameters
An action can take an optional list of parameters.

Formal parameters

The formal parameters are a comma-separated list of type name and identifier pairs.

The identifier is the name of a parameter variable that will be bound to a copy of the
value of an expression specified by the caller (that is, the value passed by the caller)
when the action is invoked. The number and type of actual parameters passed by a
caller must match those listed in the action's formal parameters.

The scope of a parameter variable is the statement or block that forms the action body.
Parameter variables are very similar to an action's local variables.

Action return value

If you specify a returns clause, then the action must return a value whose type matches
that specified in the returns clause. You specify the return value by using a return
statement and result expression within the action. Every control path (see "Transfer
of control statements" on page 888) within the action body must lead to a return
statement with a result expression of the correct type.

Action body

After the returns clause (or after the formal parameters if there is no returns clause), a
statement forms the action body. The action body can be a single statement or a block.

Within the action body, you use the parameter variable names to obtain the values that
are passed to the action by its caller.

Contexts
Contexts allow EPL applications to organize work into threads that the correlator can
concurrently execute. For detailed information, see "Implementing Parallel Processing"
on page 303. This also provides information on the properties of a context (see "About
context properties" on page 305).

Note: In monitors, you must implement the use of contexts. In queries, the use of
contexts is automatically done for you.

M
Odd Header

Monitors

Developing Apama Applications Version 9.10 851

You can create any number of contexts. Creating a context just allocates an ID and
creates a small object. See also "Creating contexts" on page 306.

For information on how to obtain a reference to a context, see "Obtaining context
references" on page 308.

Plug-ins
EPL can be extended through the use of plug-ins, which are modules wrien either in C
++, C, or Java and loaded dynamically into the EPL runtime with the import statement.
Plug-in modules are invoked in exactly the same way as actions in an EPL event.

See "Using Correlator Plug-ins in EPL" on page 355.

Garbage collection
EPL, like languages such as Java or C#, relies on garbage collection. Intermiently,
the correlator analyses the events that have been allocated, including dictionaries,
sequences, closures and streaming networks, and allows memory used by events
that can no longer be referenced to be re-used. Thus, the actual memory usage of the
correlator might be temporarily above the size of all live objects. While running EPL, the
correlator might wait until a listener or onload() action completes before performing
garbage collection. Therefore, any garbage generated within a single action or listener
invocation might not be disposed of before the action/ listener has completed. It is thus
advisable to limit individual actions/listeners to performing small pieces of work. This
also aids in reducing system latency.

The cost of garbage collection increases as the number of events a monitor instance
creates and references increases. If latency is a concern, it is recommended to keep
this number low, dividing the working set by spawning new monitor instances if
possible and appropriate. Reducing the number of event creations, including string
operations that result in a new string being created, also helps to reduce the cost of
garbage collection. The exact cost of garbage collection could change in future releases as
product improvements are made.

M
Even Header

Developing Apama Applications Version 9.10 852

M
Odd Header

Queries

Developing Apama Applications Version 9.10 853

35 Queries

■ Query lifetime ... 854

■ Query definition .. 856

■ Metadata section .. 858

■ Parameters section .. 858

■ Inputs section ... 858

■ Query input definition ... 858

■ Find statement ... 860

■ Reserved words in queries .. 866

M
Even Header

Queries

Developing Apama Applications Version 9.10 854

An Apama query is a self-contained processing element that communicates with
other queries, and with its environment, by sending and receiving events. Queries are
designed to be multithreaded and to scale across machines.

Note: Queries and monitors are the two main EPL programming units. A query
cannot contain a monitor. A monitor cannot contain a query. Each unit offers
a different approach to event processing. See "Architectural comparison of
queries and monitors" on page 79.

You use Apama queries to find paerns within, or perform aggregations over, defined
sets of events. For each paern that is found, an associated block of procedural code is
executed. Typically this results in one or more events being transmied to other parts of
the system.

A query is defined in a .qry file. A query finds specified event paerns or aggregates
event values.

Apama queries are useful when you want to monitor incoming events that provide
information updates about a very large set of real-world entities such as credit cards,
bank accounts, or cell phones. Typically, you want to independently examine the set of
events associated with each entity, that is, all events related to a particular credit card
account, bank account, or cell phone. A query application operates on a huge number of
independent sets with a relatively small number of events in each set.

The following topics provide reference information for the parts of a query definition.
For user guide type information, see "Defining Queries" on page 75.

Query lifetime
You inject queries into a running correlator with the Apama macros for Ant,
(install_dir\etc\apama-macros.xml) or with Software AG Designer. You can delete
queries from a running correlator by performing a delete operation and specifying a
query name. You can use the same tools that you use to delete monitors: engine_delete
utility, Software AG Designer, Apama macros for Ant (apama-macros.xml), or
deleteName() method on the engine client API.

If you are using a cluster of correlators, it is your responsibility to inject each query into
each correlator in the cluster, and to delete a query from each correlator in a cluster. This
keeps deployed queries in sync across the cluster. In other words, injecting or deleting
a query on one host in a cluster does not automatically inject or delete the query on the
other cluster members.

Unlike monitors, the lifetime of query instances is either automatic (for non-
parameterized queries) or controlled by the Scenario Service (for parameterized queries).
There are no spawn or die equivalents in queries, and you cannot use these EPL
statements in queries.

When a non-parameterized query is injected, a single instance of the query is
automatically created at injection time and it begins processing events. You cannot
use the Scenario Service API to edit or delete this single instance or to create new

M
Odd Header

Queries

Developing Apama Applications Version 9.10 855

instances. For parameterized queries, after injection, only the query definition is created
automatically. The query does not start processing events specified in its inputs section
until at least one parameterization is created by means of the Scenario Service. You can
control this by using a dashboard or scenario browser. The Scenario Service has methods
to create new query instances, edit instances and delete instances.

When using a cluster of correlators, the parameterizations are kept in sync across
all members of the cluster. Creating a query instance while connected to one cluster
member will create it on all members. The instance can be edited or deleted by any client
connected to any member. There may be short delays in replicating parameterization
data on each cluster member because this happens asynchronously. However, the
recommendation is to edit or delete a particular parameterization from Scenario Service
clients that are all connected to the same correlator. This ensures that edit and delete
operations are performed in the same order on every cluster member. If you try to edit
or delete the same parameterization from different cluster members the results are
unpredictable.

If a query executes code in a where clause, aggregate or other expression that results in
an exception due to the current values in the window, the query ignores the exception
and continues running. For example, an aempt to divide an integer by zero causes
an ArithmeticException. If a query experiences an exception that means it cannot
continue (such as repeated exceptions while trying to retrieve or store window data),
then the query instance will enter the failed state, which will be reported by the Scenario
Service. In this case, the query does not process additional events. The correlator log
file should contain information that explains why the query failed. The problem that
caused the failed state needs to be corrected. After correcting the problem, if the query is
a parameterized query, you should delete the failed parameterization and then re-create
it. For a non-parameterized query, you must delete and then re-inject the query.

When a query is deleted with the engine_delete utility or equivalent, all instances of
the query are terminated and the Scenario Service will reflect that the query definition
has been unloaded. The query can be re-injected, if needed. Remember that deletions
and injections must be performed on every member in a cluster.

Lifetime of find statements

As long as a query is active, the find statement in a query is active for each value of the
key that is specified in the query's inputs section. Thus, find A:a in a query is similar
to on all A():a in a monitor. The find statement generates a match set each time the
latest event causes a match. If the find statement specifies any aggregates and the every
modifier, which can only be used with aggregates, then each new match set causes the
find statement to add to the aggregate.

In monitors, listeners can match either the first set of matching events, or specify the
all operator to fire for every set of matching events. For example, on A():a -> B():b
fires on the first A and B events, while on all A():a -> all B():b fires for every
combination of an A event with a later B event. In a query, find A:a -> B:b fires on
every B event after an A event if an A event is still in the window defined in the inputs
section. The match set contains the most recent A event and the most recent B event. The
following table provides examples. The assumption is that all input events remain in the
query's window.

M
Even Header

Queries

Developing Apama Applications Version 9.10 856

Input events Query match
sets for:

find A:a -> B:b

Query match
sets for:

find every A:a
-> B:b

select... -
inputs to
aggregates

Monitor match
sets for:

on A():a ->
B():b

Monitor match
sets for:

on all A():a ->
all B():b

 A(1)

 B(1) A(1),
B(1)

 A(1),
B(1)

 A(1),
B(1)

 A(1),
B(1)

 A(2)

 B(2) A(2),
B(2)

 A(1),
B(1)

A(1),
B(2)

A(2),
B(2)

 A(1),
B(2)

A(2),
B(2)

 B(3) A(2),
B(3)

 A(1),
B(1)

A(1),
B(2)

A(2),
B(2)

A(1),
B(3)

A(2),
B(3)

 A(1),
B(3)

A(2),
B(3)

Query definition
A query searches for an event paern that you specify. You define a query in a file with
the extension .qry. Each .qry file contains the definition of only one query.

M
Odd Header

Queries

Developing Apama Applications Version 9.10 857

If specified, any package or using statements must be before the query declaration. See
"Packages" on page 847 and "The using declaration" on page 848.

You must specify an identifier for the query name. See "Identifiers" on page 919. The
convention for specifying the name of a query is to use UpperCamelCase, as shown in
the example below.

Specification of metadata is optional. See "Metadata section" on page 858. The
convention for specifying the key in the key-value pair of the metadata is to use
lowerCamelCase as shown in the example below.

Specification of query parameters is optional. See "Parameters section" on page 858.

An inputs section is required. It specifies at least one event type. These are the event
types that the query operates on. See "Inputs section" on page 858.

The find statement is required. It specifies the event paern of interest and a block that
contains procedural code. See "Find statement" on page 860.

Action definitions, in the same form as actions in events, are optional. See "Event
actions" on page 828.

Example:
query ImprobableWithdrawalLocations {
 metadata {
 "author":"Apama",
 "version":"1"
 }
 parameters {
 float period;
 }
 inputs {
 Withdrawal() key cardNumber within (period);
 }
 find
 Withdrawal:w1 -> Withdrawal:w2
 where w2.country != w1.country {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }
}

M
Even Header

Queries

Developing Apama Applications Version 9.10 858

Metadata section
In a query, the optional metadata section specifies a list of key-value pairs. If there is a
metadata section, it must be the first section in the query. See "Defining metadata in a
query" on page 88 for further information.

Parameters section
In a query, the optional parameters section specifies any parameters used by the query.
If there is a parameters section, it must follow the metadata section, if defined, and it
must precede the inputs section. Parameter values are available throughout a query.
See "Implementing parameterized queries" on page 146 for further information.

Inputs section
In a query, the required inputs section specifies the events that the query operates on.

At least one input definition is required. Typically, no more than four input definitions
are specified.

If there is a parameters section, then the inputs section follows it. The inputs section
must be before the find statement.

Example:
inputs {
 A() key k retain 20;
 B() key k retain 10;
}

For more information, see "Defining query input" on page 94.

Query input definition
In a query, the required inputs section must contain at least one input definition.

M
Odd Header

Queries

Developing Apama Applications Version 9.10 859

An event type you specify must be parseable. See "Type properties summary" on page
811. Event type names can come from the root namespace, a using declaration, or a local
package as specified in a package declaration.

Event filters are optional. Specifying a filter here determines which events are added to a
query window. The rules for what you can specify for the event filter are the same as for
what you can specify in an event template in EPL. See "Event templates" on page 830.

Specification of a key is optional, but rarely omied. If there is no key specification, all
events are in one partition. The correlator uses the key to partition events. Each partition
is identified by a unique key value. Specify one or more fields that are in the input event
type. One or two fields in a key is typical. Three fields in a key is unusual and rarely
needed. More than three fields is discouraged. If you define more than one input in a
query

M
Even Header

Queries

Developing Apama Applications Version 9.10 860

The number, type, and order of the key fields in each input definition must be the
same.

If the names of the key fields are not the same in each input definition, you must
insert the as keyword to specify aliases so that the names match. For details, see
"About keys that have more than one field" on page 93.

A retain clause or a within clause is required. Alternatively, you can specify both.

A retain clause indicates how many events to hold in the window. Follow the retain
keyword with a positive integer. If you specify a negative integer or zero, it is a
runtime error that terminates the query.

A within clause indicates the length of time that an event stays in the window. Follow
the within keyword with a positive float expression or a time literal. If you specify a
negative float value or zero it is a runtime error that terminates the query.

For information on other clauses, see "Format of input definitions" on page 97.

Examples:
inputs {
 Withdrawal(amount > 500) key userId within 1 hour;
 }
inputs {
 APNR() key road within(150.0);
 Accident() key roadName as road within(10.0);
}

Find statement
A query find statement tries to find a match for the event paern that the find
statement specifies. When the query finds a match it executes the EPL in the find
statement block.

M
Odd Header

Queries

Developing Apama Applications Version 9.10 861

When a find statement specifies a select or having clause, the every modifier is
required. Conversely, you cannot specify the every modifier if you do not specify a
select or having clause.

When a find statement specifies the every identifier, the identifiers in the select clause
are available in the having clause and in the find block, but the coassignments in the
paern are not available.

Paern coassignments are available in a where clause that applies to the paern.

When you do not specify the every modifier, all paern coassignments, except a
without clause coassignment, are available in the find block.

In a where clause that is part of a without clause, paern coassignments as well as the
coassignment in the without clause are available.

Example:
find Withdrawal:w1 -> Withdrawal:w2
 where w1.country = "UK" and w2.country = "Narnia" {
 // Recent card fraud in Narnia against UK customers
 emit SuspiciousWithdrawal(w2);
}

Pattern
In a query definition, the find statement specifies the event paern of interest followed
by a procedural block that specifies what you want to happen when a paern match is
found.

A coassignment variable specified in an event paern is within the scope of the find
block and it is a private copy in that block. Changes to the content that the variable

M
Even Header

Queries

Developing Apama Applications Version 9.10 862

points to do not affect any values outside the query. Unlike EPL event expressions, you
need not declare this identifier before you coassign a value to it.

In an event paern in a find statement, each coassignment variable identifier must be
unique. You must ensure that an identifier in an event paern does not conflict with an
identifier in the parameters section or inputs section.

If a paern specifies a wait operator, then it must be at the beginning of a paern, at
the end of a paern, or both. It cannot be in the middle of a paern. The followed-by
operator must be after or before each instance of the wait operator. For example:
wait(1):w -> (A:a and B:b) // Allowed
{(A:a and B:b) -> wait(1):w } // Allowed
wait(1):w1 -> (A:a and B:b) -> wait(1):w2 // Allowed
wait(1):w and A:a // Not allowed
A:a -> wait(1):w -> B:b // Not allowed

A wait operator must specify a positive float value or a time literal. A float value
always indicates a number of seconds.

Optionally specify and or -> and then specify an event_type and coassignment
variable. Parentheses are allowed in the paern specification and you can specify
multiple operators, each followed by an event_type and coassignment variable. For
example, the following is a valid find statement:
find (A:a1 -> ((A:a2)) -> (A:a3) ->
 (A:a4 -> A:a5 -> A:a6) ->
 (((A:a7) -> A:a8) -> A:a9) -> A:a10 {
 print "query with 10: "+a1.toString()+ " - "+a10.toString();
}

Where condition
A find statement can specify a where clause that filters which events match the specified
event paern.

Note: You can specify a find where clause that applies to the event paern, and you
can also specify a without where clause that is part of a without clause. Any
where clauses that you want to apply to the event paern must precede any
within or without clauses.

Specify the where keyword followed by a Boolean expression that refers to the events
you are interested in. The Boolean expression must evaluate to true for the events to
match.

The where clause is optional. You can specify zero, one or more where clauses.

Coassignment variables specified in the find or select statements are in scope in a find
where clause. Also available in a find where clause are any parameter values and key
values.

Example:
find Withdrawal:w1 -> Withdrawal:w2
 where w2.country != w1.country {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
}

M
Odd Header

Queries

Developing Apama Applications Version 9.10 863

Within condition
In a find statement, a within clause sets the time period during which all events in the
match set or some events in the match set must have been added to their windows.

A paern can specify zero, one, or more within clauses. These must appear after any
find where clauses and before any without clauses.

Specify the within keyword followed by a float expression or a time literal, which
indicates the time period during which the events in the match set must be received.

Optionally, specify a between clause to indicate that the time constraint applies to only
some of the events in the match set. See "Between clause" on page 864.

Example:
find LoggedIn:lc -> OneTimePass:otp
 where lc.user = otp.user
 within 30.0 {
 emit AccessGranted(lc.user);
}

Without condition
In a find statement, a without clause specifies an event type whose presence prevents a
match.

Specify the without keyword followed by an event type coassigned to an identifier.

An event type that you specify in a without clause must be specified in the inputs
block of the query. A paern can specify zero, one, or more without clauses.

Optionally, after each without clause, you can specify one where clause, which is
referred to as a without where clause to distinguish it from a find where clause. When a
where clause is part of a without clause:

The Boolean expression must evaluate to true for the presence of the specified event
to prevent a match. In other words, when the Boolean expression evaluates to false
then there can be a match even when the specified event is in the window.

The where clause applies to the event specified in its without clause.

The Boolean expression can refer to parameters, coassignment identifiers in the event
paern, and the coassignment identifier in the without clause.

A without clause cannot use the -> or and paern operators. However, you can specify
multiple without clauses. If there are multiple without clauses each one can refer to
only its own coassignment and not coassignments in other without clauses. However,
all without clauses can make use of the paern's standard coassignments.

If there are multiple without clauses, a matching event for any one of them prevents
a paern match. Multiple without clauses can use the same type and the same
coassignment, which is useful only when their where conditions are different.

M
Even Header

Queries

Developing Apama Applications Version 9.10 864

Typically, a without where clause references the event in its without clause, but this is
not a requirement.

Optionally, after each without clause, you can specify a between clause, which lists
two or more coassigned events or wait operators. For an event to cause a match, the
type specified in the without clause cannot be added to the window between the points
specified in the between clause. See "Between clause" on page 864.

Any without clauses must be after any find where clauses and within clauses. If you
specify both optional clauses, the without where clause must be before the between
clause.

Example:
find OuterDoorOpened:od -> InnerDoorOpened:id
 where od.user = id.user
 without SecurityCodeEntered:sce where od.user = sce.user {
 emit Alert("Intruder "+id.user);
}

Between clause
In a within clause and in a without clause, an optional between clause restricts which
part of the paern the within or without clause applies to.

Specify the between keyword followed by two or more identifiers that are specified in
the event paern. Enclose the identifiers in parentheses.

The identifiers set a period of time that starts when one of the specified events is
received and ends when one of the other specified events is received. The range is
exclusive. That is, the range applies only after the first event is received and before the
last event is received.

A between clause is the only place in which you can specify a coassignment identifier
that was assigned in a wait clause. You cannot specify identifiers used in a without
clause. Also, the same event cannot match both the coassignment identifier in the
without clause and an identifier in a between clause.

The condition that the between clause is part of must occur in the range of identifiers
specified in the between clause.

It is illegal to have two within clauses with identical between ranges. This would be
redundant, as only the shortest within duration would have any effect. It is, however,
legal to have more than one without clause with the same between range. Typically,
these would refer to different event types or where conditions.

Example:
find A:a -> B:b -> (C:c and D:d)
 within 10.0 between (a b)
 within 10.0 between (c d)

M
Odd Header

Queries

Developing Apama Applications Version 9.10 865

See "Query condition ranges" on page 136 for an explanation of this example.

Select clause
A find statement that specifies the every keyword can specify a select clause to
calculate an aggregate value in order to find data based on many sets of events.

Specify the select keyword followed by a projection expression coassigned to an
identifier. The projection expression contains aggregate function(s) that operate on
one or more input events. See "Built-in aggregate functions" on page 870 as well as
"Custom aggregates" on page 876.

The projection expression can use coassignments from the paern if the coassignments
are within a single aggregate function call. For example, the following paern computes
the average value of the x member of event type A in the query's input and coassigns
that average value to aax.
find every A:a select avg(a.x):aax

A select clause can use parameter and key values.

In an aggregating find statement, only the projection expression can use the
coassignments from the paern. The procedural block of code can use projection
coassignments and any parameters or key values, but it cannot use coassignments from
the paern.

In find statements without the every modifier, only the most recent set of events
that match the paern are used to invoke the procedural code block. With the every
modifier, every set of events that matches the paern is available for use by the
aggregate function, provided that the latest event is present in one of the sets of events.
Any events or combinations of events that do not match the paern or do not match the
where clause, or are invalidated due to a within or without clause, are ignored; their
values are not used in the aggregate calculation.

Examples:
find every ATMWithdrawal:w
 select last(w.transactionId):tid
 having last(w.amount) > THRESHOLD * avg(w.amount) {
 route SuspiciousTransaction(tid);
}
find every A:a -> B:b
 where b.x >= 2
 select avg(a.x + b.x):aabx {
 print aabx.toString();
}

See "Aggregating event field values" on page 139 for explanations of these examples, as
well as additional examples.

Having clause
A find statement that specifies the every keyword can specify a having clause to
restrict when procedural code is invoked.

M
Even Header

Queries

Developing Apama Applications Version 9.10 866

Specify the having keyword followed by a Boolean projection expression. The Boolean
projection expression refers to an aggregate calculation. Procedural code is executed
only when the Boolean projection expression evaluates to true.

You can specify zero, one, or more having clauses. When you specify more than one
having clause, it is equivalent to specifying the and operator. That is, each Boolean
projection expression must evaluate to true for the procedural code to be executed.

A having clause can refer to an aggregate value by using the select coassignment
name.

When you want to test for an aggregate condition but you do not want to use the
aggregate value, you can specify a having clause without specifying a select clause.

Examples:
find every A:a
 select avg(a.x):aax
 having aax > 10.0 {
 print aax.toString();
}
find every A:a
 having avg(a.x) > 10.0 {
 print "Average value is greater than ten!";
}

Reserved words in queries
In a query, the following are reserved words, also referred to as keywords. To use one
of these words as an identifier in a query, you must escape it. For details see "Escaping
keywords to use them as identifiers" on page 923.

as

between

every

find

having

inputs

key

parameters

query

retain

select

where

within

M
Odd Header

Queries

Developing Apama Applications Version 9.10 867

without

M
Even Header

Developing Apama Applications Version 9.10 868

M
Odd Header

Aggregate Functions

Developing Apama Applications Version 9.10 869

36 Aggregate Functions

■ Built-in aggregate functions ... 870

■ Custom aggregates .. 876

M
Even Header

Aggregate Functions

Developing Apama Applications Version 9.10 870

In Apama queries and in EPL stream queries, you can specify aggregate functions in the
select clause. An aggregate function calculates a single value across all items currently
in the window. EPL provides a number of commonly used aggregate functions. If
a supplied aggregate function does not meet your needs, you can define a custom
aggregate function.

See "Select clause" on page 865 for information about the select clause in Apama
queries.

See also "Stream queries" on page 903.

Built-in aggregate functions
EPL provides the built-in aggregate functions listed in the table below. All of these
functions are available for either bounded or unbounded use.

How to make use of the built-in aggregate functions

The built-in aggregate functions reside in the com.apama.aggregates package. To use a
built-in aggregate function in a query, you must do one of the following:

Specify the full name of the aggregate function. For example:
select com.apama.aggregates.sum(x)

For each aggregate function you want to use in your code, add a using statement.
This lets you specify aggregate function names without specifying the package
name. For example:
using com.apama.aggregates.mean;
using com.apama.aggregates.stddev;
...
...select MeanSD(mean(s), stddev(s));

Insert the using statement after the optional package declaration and before any
other declarations in the .mon file.

Overview of the built-in aggregate functions

The argument names (for example, value and weight) in the following table are
placeholders for expressions. Additional information about some of these functions is
provided after the table.

Aggregate Function Argument Type Return
Type

Result Description

avg(value)

or

mean(value)

decimal or
float

Same
as
value

The arithmetic mean
of the values in the
window. The avg()
and mean() functions
do exactly the same

M
Odd Header

Aggregate Functions

Developing Apama Applications Version 9.10 871

Aggregate Function Argument Type Return
Type

Result Description

thing. They are
aliases for each other.

count() no argument integer The number of items
in the window,
including any not-a-
number (NaN) items.

count(predicate) boolean integer The number of
items for which
the argument
is true. You can
specify, for example,
count(value !
=""). The predicate
expression is re-
evaluated each time.

countUnique(value) string integer The number of
unique strings within
the window.

first(value) decimal,
float,
integer,
string,
boolean or
location

Same
as
value

The earliest value in
the window being
aggregated over.

last(value) decimal,
float,
integer,
string,
boolean or
location

Same
as
value

The latest value in
the window being
aggregated over.

max(value) decimal,
float or
integer

Same
as
value

The maximum value.

min(value) decimal,
float or
integer

Same
as
value

The minimum value.

M
Even Header

Aggregate Functions

Developing Apama Applications Version 9.10 872

Aggregate Function Argument Type Return
Type

Result Description

nth(value,index) decimal,
float,
integer,
string,
boolean or
location for
the value

integer for
the index

Same
as
value

The value of the
specified item in
the index position,
starting with the
earliest item in the
window (item 0)
and moving toward
the latest item.
nth(value,0)
returns the same item
as first(value).

A negative index gets
the items from the
end of the window
(-1 means the last
item, -2 means the
second last item, and
so on).

percentile(value,rank)float or
decimal for
value

float for
rank

Same
as
value

The value that r
percent (0<= r <=
100) of the data in the
window is equal-to or
less-than.

stddev(value) decimal or
float

Same
as
value

The standard
deviation of the
values.

stddev2(value) decimal or
float

Same
as
value

The sample standard
deviation of the
values.

sum(value) decimal,
float or
integer

Same
as
value

The sum of the
values.

wavg(value,weight) decimal,decimal
or
float,float

Same
as
value

The weighted
average of the values
where each value
is weighted by

M
Odd Header

Aggregate Functions

Developing Apama Applications Version 9.10 873

Aggregate Function Argument Type Return
Type

Result Description

the corresponding
weight.

Calculations by the built-in aggregate functions might be affected by underflow and
overflow. For example, adding a very large number to the collection that the sum()
function operates on, then adding a very small number, and then removing the very
large number will probably result in 0.0, and not the very small number. Just adding
the very small number would result in behavior that you would expect. As with the rest
of EPL, the overflow and underflow characteristics are as defined for IEEE 64-bit floating
point numbers.

Deprecated built-in aggregate functions

The following functions are deprecated. It is recommended that you use the alternative
functions mentioned in the table below.

Aggregate Function Argument
Type

Return Type Result Description

count(value) decimal
or float

integer The number of items
where the decimal or
float value is not NaN.

Use the alternative
predicate aggregate
function count(not
value.isNaN())
instead.

prior(value,index) decimal,
integer
or float,
integer

Same as
value

The value of the
specified decimal
or float item in the
index position, starting
with the most recent
item in the window
(item 0) and moving
toward the earliest
item. prior(value,0)
returns the same item as
last(value).

Use the alternative
function
nth(value,index)
instead.

M
Even Header

Aggregate Functions

Developing Apama Applications Version 9.10 874

Positional functions

For the first(), last(), nth(), and prior() (deprecated) functions, all values (NaN,
+-, ∞, and so on) are treated the same, and position in the window is the only thing that
maers.

Operating on empty windows

Except for the sum() and count() functions, if the window being aggregated over is
empty or insufficiently large, then the result is not-a-number (NaN). The sum() and
count() functions return zero if the window is empty.

IEEE special values in aggregate functions

Several of the built-in aggregate functions take decimal or float arguments. It is
possible for a decimal or float value to be one of the following:

Positive infinity

Negative infinity

Not-a-number (NaN)

A finite number

The positional aggregates first(), last(), nth() and prior() (deprecated) are
agnostic to the values in them and return the selected item regardless of its value. If the
selected item does not exist (for example, selecting the fifth item from a window of three
items), then the aggregate returns NaN. The index for nth() and prior() (deprecated)
must not be negative. If it is, the correlator terminates the monitor instance.

All the remaining (arithmetic) aggregate functions that take float or decimal
arguments ignore any NaN items that are in the window being aggregated. The result
is the aggregate of the window without the NaN items. If you want to count all items
including NaN items, then use the count() aggregate function that takes no arguments.

The behavior of arithmetic aggregate functions over windows that contain positive and
negative infinities varies depending on the particular function. The result is either an
infinity, NaN or a finite value. The table below shows for a window containing one or
more positive infinities and no negative infinities, one or more negative infinities and
no positive infinities, or at least one positive and at least one negative infinity, which
aggregate function gives which result. In the case of the wavg() function, the result
depends on whether the infinity is the value or the weight.

Input Outputs
Positive
Infinity

Outputs
Negative
Infinity

Outputs NaN Outputs Finite
Value

Positive
Infinity

max()
mean()
sum()

 stddev()
wavg(weight)

min()

M
Odd Header

Aggregate Functions

Developing Apama Applications Version 9.10 875

Input Outputs
Positive
Infinity

Outputs
Negative
Infinity

Outputs NaN Outputs Finite
Value

wavg(value)

Negative
Infinity

 mean()
min()
sum()
wavg(value)

stddev()
wavg(weight)

max()

Both max() min() mean()
stddev()
sum()
wavg(value)

The following table shows the results for the percentile() function. The output
depends on the input for the rank. As with the aggregate functions that are listed in
the previous table, NaN inputs for the percentile() function are ignored and are not
counted.

Input Outputs
Positive
Infinity

Outputs
Negative
Infinity

Outputs NaN Outputs Finite
Value

Positive
Infinity

If ordinal
rank
corresponds
to a
positive
infinity
value

 If ordinal
rank
does not
correspond
to a
positive
infinity
value

Negative
Infinity

 If ordinal
rank
corresponds
to a
negative
infinity
value

 If ordinal
rank
does not
correspond
to a
negative
infinity
value

Both If ordinal
rank
corresponds
to a

If ordinal
rank
corresponds
to a

If ordinal
rank lies
between a
negative

If ordinal
rank
does not
correspond

M
Even Header

Aggregate Functions

Developing Apama Applications Version 9.10 876

Input Outputs
Positive
Infinity

Outputs
Negative
Infinity

Outputs NaN Outputs Finite
Value

positive
infinity
value

negative
infinity
value

infinity
value and
a positive
infinity
value

to a
positive or
negative
infinity
value

See also:

"Select clause" on page 865 for information about the select clause in Apama queries.

"Working with Streams and Stream Queries" on page 205

"Aggregating items in projections" on page 238

Custom aggregates
In an Apama query and in a stream query, you can specify an aggregate function in the
select clause. If one of the supplied aggregate functions does not meet your needs, you
can define a custom aggregate function for use in a select clause.

You define custom aggregate functions in a .mon file and outside of an event or a
monitor. The aggregate function's scope is the package in which you declare it. To use
custom aggregate functions in monitors and in Apama queries in other packages, specify
the aggregate function's fully-qualified name, for example:
from a in all A() select com.myCorporation.custom.myCustomAggregate(a)

Alternatively, you can specify a using statement. See "The using declaration" on page
848.

Specify bounded when you are defining a custom aggregate function that will work with
only a bounded window. That is, a stream query cannot specify retain all. Specify
unbounded when you are defining a custom aggregate function that will work with
only an unbounded window. That is, a stream query must specify retain all. Do
not specify either bounded or unbounded when you are defining a custom aggregate
function that will work with either a bounded or an unbounded window.

A custom aggregate function that you want to use in an Apama query must either be a
bounded function or it must support both bounded and unbounded operation.

The name of a custom aggregate function must be unique within a package; you cannot
overload it or define an event, monitor, or query with the same name as an aggregate
function.

The list of formal parameters consists of zero or more comma-separated type/name
pairs. Each pair indicates the type and the name of an argument that you are passing to
the aggregate function. For example, (float price, integer quantity).

M
Odd Header

Aggregate Functions

Developing Apama Applications Version 9.10 877

The data type name must be an EPL type. This is the type of the value that your
aggregate function returns.

The body of a custom aggregate function can contain fields that are specific to one
instance of the custom aggregate function and actions to operate on the state.

Actions

In a custom aggregate function, the init(), add(), remove() and value() actions
are special. They define how Apama queries and stream queries interact with custom
aggregate functions.

init() — If a custom aggregate function defines an init() action, it must take no
arguments and must not return a value. The correlator executes the init() action
once for each new aggregate function instance it creates in a query (stream query or
Apama query).

add() — A custom aggregate function must define an add() action. The add()
action must take the same ordered set of arguments that are specified in the custom
aggregate function signature. That is, the names, types, and order of the arguments
must all be the same. The correlator executes the add() action once for each item
added to the set of items that the aggregate function is operating on.

remove() — A bounded aggregate function must define a remove() action. An
unbounded aggregate function must not define a remove() action. If you do not
specify either bounded or unbounded, the remove() action is optional. The remove()
action must take the same ordered set of arguments as the add() action, followed
by an argument of the type returned by add(), if any, and must not return a value.
The correlator executes the remove() action once for each item that leaves the set of
items that the aggregate function is operating on. The value that remove() is called
with is the same value that add() was called with.

value() — All custom aggregate functions must define a value() action. The
value() action must take no arguments and its return type must match the return
type in the aggregate function signature. The correlator executes the value() action
as follows:

In an Apama query, once for each match set and returns the current aggregate
value to the query.

In a stream query, once per batch per group and returns the current aggregate
value to the query.

Custom aggregate functions can declare other actions, including actions that are
executed by the above named actions. A custom aggregate function cannot contain a
field whose name is onBeginRecovery, onConcludeRecovery, init, add, value, or
remove, even if, for example, the custom aggregate function does not define a remove()
action.

M
Even Header

Aggregate Functions

Developing Apama Applications Version 9.10 878

Fields

In the body of a custom aggregate function, you can define fields that are specific to the
custom aggregate instance they are in.

M
Odd Header
Statements

Developing Apama Applications Version 9.10 879

37 Statements

■ Simple statements .. 880

■ Compound statements ... 885

■ Transfer of control statements ... 888

M
Even Header

Statements

Developing Apama Applications Version 9.10 880

Sequences of EPL statements define the steps that are performed by a program. They
are executed in the order they are wrien: sequentially from top to boom and left to
right within a statement block. (For expressions, the evaluation order is affected by
parentheses, associativity, and operator precedence.)

The order in which statements are executed is called the flow of control or the control
path. Some statements can contain other statements enclosed within their structure and
can be used to execute statements conditionally, thus altering the normal control path.
You can use the break, continue, and return statements to change the normal control
path.

A block is zero or more statements enclosed in curly braces. A block can be used
wherever a single statement can be used. Variables declared in a block are able to be
referenced only in the block in which they are declared, and only in statements that
come after the variable's declaration.

Simple statements
Simple statements are statements that do not enclose other statements or statement
blocks and that do not cause a transfer of control. They are executed in the order they are
wrien.

The assignment statement
The assignment statement binds a value to a variable. The value is determined by
evaluating the expression on the right side of the assignment operator :=. The result
type of the expression must match the type of the variable. For variables of the reference
types, the same value can be bound to more than one variable. See "Reference types" on
page 785.

The emit statement
The emit statement publishes an event to a named channel of the correlator's output
queue. If a channel name is not specified, then the event goes to the default channel
whose name is the empty string (""). External receivers get events on the default
channel only if they are subscribed to all channels.

Note: The emit statement will be deprecated in a future release. Use the send
statement instead. See "The send . . . to statement" on page 884.

The first expression is an expression whose result type is either an event type or string. If
the type is string, then the value of the string is assumed to be in the same format as that
produced by the event's toString() method.

The expression following the keyword to must be of type string and is the name of the
channel to which the event will be sent.

M
Odd Header
Statements

Developing Apama Applications Version 9.10 881

The emit method dispatches events to external registered event receivers. That is, the
emit statement causes events to go out of the correlator. Active event listeners will not
receive events that are emied.

Events are emied onto named channels. For an application to receive events from
the correlator it must register itself as an event receiver and subscribe to one or more
channels. Then if events are emied to those channels they will be forwarded to it.

Channels effectively allow both point-to-point message delivery as well as through
publish-subscribe. Channels can be set up to represent topics. External applications can
then subscribe to event messages of the relevant topics. Otherwise a channel can be set
up purely to indicate a destination and have only one application connected to it.

You cannot emit an event whose type is defined inside a monitor.

You cannot emit an event that has a field of type action, chunk, listener, or stream.

When you emit an event type that has a dictionary field, the items in the dictionary are
sorted in ascending order of their key values.

The enqueue statement
The enqueue statement sends an event to the back of the input queue of each public
context. The expression is evaluated and the resulting event is sent to all input queues
of public contexts. If an input queue is full, then the enqueued event is saved on a
temporary holding queue until the input queue has room for it. There is one temporary
holding queue for all contexts. When an input queue is full, processing in the context
that enqueued the event blocks until the enqueued event arrives on all public input
queues.

Note that enqueued events are processed in the order they are enqueued.

The expression's result type must be an event type or string. When it is a string, the
correlator parses it as an event.

Enqueued events are put on the back of the input queue, behind any externally sourced
events already queued.

You cannot enqueue an event whose type is defined inside a monitor.

You cannot enqueue an event that has a field of type action, chunk, listener, or
stream.

The enqueue . . . to statement
The enqueue...to statement sends an event to a context you identify.

Note: The enqueue...to statement is superseded by the send...to statement.
The enqueue...to statement will be deprecated in a future release. Use the
send...to statement instead. See "The send . . . to statement" on page 884.

You must enqueue an expression of type event, and the destination must be one of the
following:

M
Even Header

Statements

Developing Apama Applications Version 9.10 882

context — The enqueue...to statement sends an event to the back of the input
queue of the specified context. The expression is evaluated and the resulting event is
sent to the input queue of only the specified context.

sequence<context> — The enqueue...to statement sends a copy of the event to
the back of the input queue of each context in the specified sequence. The expression
is evaluated and the resulting event is sent to the input queue of all the contexts in
the sequence.

For example:
sequence <context> ctxs := [c1, c2, c3];
Ping ping = Ping();
enqueue ping to ctxs;

You cannot enqueue an event to a com.apama.Channel object that contains a context.
You cannot enqueue an event to a dictionary of contexts. However, it is a common
paern to enqueue to a sequence generated by dictionary.values(). For example:
enqueue x to d.values;

If the target context's input queue is full the sending context blocks and waits for space
on the queue unless doing so would cause a deadlock. See "Deadlock avoidance when
parallel processing" on page 324.

Note that enqueued events are processed in the order they are enqueued. Enqueued
events are put on the back of the input queue, behind any externally sourced events
already queued.

You must create the context before you enqueue an event to the context. You cannot
enqueue an event to a context that you have declared but not created. For example, the
following code causes the correlator to terminate the monitor instance:
monitor m {
 context c;
 action onload()
 {
 enqueue A() to c;
 }
}

If you enqueue an event to a sequence of contexts and one of the contexts has not been
created first then the correlator terminates the monitor instance. For details, see "Sending
an event to a particular context" on page 312.

Enqueueing an event to a sequence of contexts is non-deterministic. For details, see
"Sending an event to a sequence of contexts" on page 314.

In an enqueue...to statement, you cannot enqueue an event that has a field of type
action, chunk, listener, or stream.

The expression statement
An expression that does not return a value can be used as a statement.

One would use an expression statement if the expression has desired side effects. For
example, an action or method call can be used in this way.

M
Odd Header
Statements

Developing Apama Applications Version 9.10 883

To be used as a statement, an expression must return nothing.

The log statement
The log statement writes messages and accompanying date and time information to the
correlator's log file, if one was specified when the correlator was started.

If there is no log file, then the message is wrien to the correlator's standard output
stream stdout.

The expression that you log must be of type string. The value is wrien only if the
current logging level in effect is a priority equal to or higher than the log level specified
in the log statement, with the exception of OFF. If you do not specify a level, CRIT, the
highest priority level, is used. At a log level equal to OFF, only logs explicitly set to this
level will be wrien. For details, see "Logging and printing" on page 295.

For example:
log "Your message here" at INFO;

This EPL statement produces a log message that looks like this:
2010-07-11 09:08:49.200 INFO [3716] - MyMonitor[1] Your message here

The print statement
The print statement writes textual messages followed by a newline to the correlator's
standard output stream — stdout. The expression you print must be of type string.

For example:
print "Your message here.";

This EPL statement produces output that looks like this:
Your message here.

The print statement is less useful for reporting diagnostic information than the
log statement, as it does not contain any information about the time or origin of the
message, and cannot be turned off by changing the log level.

For more detailed information, see "Logging and printing" on page 295.

The route statement
The route statement evaluates the expression and then sends the resulting event to the
front of the current context's input queue.

The expression you route must be an event. The event is processed only within the same
context that executes the route statement.

Routed events are put on the input queue, ahead of any externally sourced events,
and ahead of any previously routed events that have not yet been processed. For more
details, see "Event processing order for monitors" on page 837.

The isExternal() property on events is not changed by routing an event.

M
Even Header

Statements

Developing Apama Applications Version 9.10 884

You cannot route an event that has a field of type action, chunk, listener, or stream.

In Apama queries, route statements are not allowed.

The send . . . to statement
The send...to statement sends an event to the channel, context, sequence of contexts,
or com.apama.Channel object that you specify.

You must send an expression of type event, and the destination must be one of the
following:

string — The send...to statement sends the event to the specified channel. All
contexts and external receivers subscribed to that channel receive the event. If there
are no subscribers to the specified channel or if no receivers are listening on the
specified channel then the event is discarded.

context — The send...to statement sends the event to the back of the input queue
of the specified context. The event expression is evaluated and the resulting event is
sent to the input queue of only the specified context.

sequence<context> — The send...to statement sends a copy of the event to
the back of the input queue of each context in the specified sequence. The event
expression is evaluated and the resulting event is sent to the input queue of each
context in the sequence.

For example:
sequence <context> ctxs := [c1, c2, c3];
Ping ping = Ping();
send ping to ctxs;

com.apama.Channel — The send...to statement sends the event to the specified
Channel object. If the Channel object contains a string, the event is sent to the
channel with that name. If the Channel object contains a context, the event is sent to
that context. You cannot send an event to an empty context object.

You cannot send an event to a dictionary of contexts. However, it is a common paern to
send to a sequence generated by dictionary.values(). For example:
send x to d.values;

If the target context's input queue is full the sending context blocks and waits for space
on the queue unless doing so would cause a deadlock. See "Deadlock avoidance when
parallel processing" on page 324.

Sent events are processed in the order they are sent. Sent events are put on the back of
the input queue, behind any events already queued.

You must create the context before you send an event to the context. You cannot send
an event to a context that you have declared but not created. For example, the following
code causes the correlator to terminate the monitor instance:
monitor m {
 context c;
 action onload()
 {

M
Odd Header
Statements

Developing Apama Applications Version 9.10 885

 send A() to c;
 }
}

If you send an event to a sequence of contexts and one of the contexts has not been
created first then the correlator terminates the monitor instance. For details, see "Sending
an event to a particular context" on page 312.

Sending an event to a sequence of contexts is non-deterministic. For details, see "Sending
an event to a sequence of contexts" on page 314.

In a send...to statement, you cannot send an event that has a field of type action,
chunk, listener, or stream.

The spawn statement
The spawn statement creates a copy of the currently executing monitor instance in the
current context.

See also "Spawning monitor instances" on page 55.

The spawn action to context statement
The spawn action() to context statement creates a copy of the currently executing
monitor instance in the specified context. A monitor instance must have a reference for
the specified context in order to spawn to that context.

The expression that you spawn must be of type context. The spawn action()to
context statement spawns a new monitor instance in the specified context.

For more detailed information, see "Spawning to contexts" on page 309.

Variable declaration statements
A variable declaration statement can appear anywhere in a block. Variables declared
in a block are in scope in that block and can be used in statements that follow the
declaration.

See "Variable declarations" on page 910.

Compound statements
Compound statements enclose other statements or blocks and affect how the enclosed
statements are executed.

The for statement
The for statement is used to iterate over the members of a sequence and execute the
enclosing statement or block once for each member.

M
Even Header

Statements

Developing Apama Applications Version 9.10 886

The iteration variable is assigned a value successively obtained from each element of the
sequence, starting with the first, and if the last sequence entry has not been reached, the
statement that forms the loop body is executed.

The iteration variable's type must match the type of the sequence elements.

The loop body is either a single statement or a block.

Within the loop body, the break statement can be used to cause early termination
of the loop by transferring control to the next statement after the loop body. The
continue statement can be used to transfer control to the end of the body, after which
the sequence size is tested to determine if the last entry has been reached. If it has not,
then the loop body is executed. The return statement can be used to terminate both the
loop and the action that contains it.

For more information, see "Defining loops" on page 291.

The from statement
The from statement is used to create a stream listener. A stream listener watches for
items from a stream and passes output items to procedural code.

A from statement is similar to an on statement, which listens for events processed by the
correlator and then executes an event listener action for each matching event or paern.
See "The on statement" on page 887.

You can assign the result of a from statement to a listener variable. This lets you call
quit() on the stream listener.

A stream listener passes output items from a stream to procedural code. The stream,
specified in the expression, can be a reference to an existing stream or a stream source
template. Alternatively, it can be the stream created by an in-line stream query.

A colon and an identifier follow the expression or in-line stream query. This signifies
a coassignment: when new items are available from the stream, the stream listener
coassigns each output item to the specified variable.

The statement following the identifier can be a single EPL statement or a block of EPL
statements. The from statement passes the output item to this statement or block and
executes the statement or block once for each output item. If the output of the query is
a lot that contains more than one item, and you want to execute the statement or block
just once for the lot, coassign the output to a sequence. See "Working with Streams and
Stream Queries" on page 205, and "Working with lots that contain multiple items" on
page 245.

The if statement
The if statement is used to conditionally execute a statement or block.

The condition, whose result type must be boolean, is evaluated and if its result is true
the block following the then keyword is executed. After the body of the then clause has
been executed, control is transferred to the next statement following the if statement.

M
Odd Header
Statements

Developing Apama Applications Version 9.10 887

If the condition result is false, and an else clause is present, the statement or block
following the else is executed. After the body of the else clause has been executed,
control is transferred to the next statement following the if statement.

If the condition result is false, and the else clause is not present, control is transferred
to the next statement following the if statement.

For more information, see "Defining conditional logic" on page 290.

The on statement
The on statement is used to create an event listener that looks for input events that match
the paern specified by an event condition. When a matching event is detected, the
event listener fires (also referred to as triggers) and the specified event listener action is
executed.

A listener assignment clause is used to obtain a reference to the event listener that is
created by the on statement. One can either define a new variable of type listener or
specify a reference to an existing listener variable.

An Apama query cannot specify an on statement.

Example:
listener l := on ...
sequence <listener> aSequence;
aSequence[0] := on ...

The event condition specifies what events are of interest. See "Event expressions" on
page 839.

A listener action defines the processing that will be performed when a matching event is
detected and the event listener fires. The listener action can be one of the following:

A statement

A block

The listener action is invoked automatically by the correlator when the event condition
is satisfied. This may be:

When a matching event is detected.

If unmatched is specified in the condition, the event matches the condition, and there
are no matching event listeners that do not specify the unmatched keyword.

If completed is specified in the condition, and any matching events have been
completely processed by other event listeners.

For more information, see "Specifying the on statement" on page 163.

The while statement
The while statement is used to repeatedly evaluate a boolean condition and execute a
block as many times as the condition result is found to be true.

M
Even Header

Statements

Developing Apama Applications Version 9.10 888

The condition, whose result type must be boolean, is evaluated and if the result is true,
the block is executed. Control then transfers to the top of the loop and the condition is
evaluated again. When the condition result is false, control is transferred to the next
statement following the while statement.

The body of the loop must be a block; it must be inside curly braces.

Within the loop body, the break statement can be used to cause early termination
of the loop by transferring control to the next statement after the loop body. The
continue statement can be used to transfer control to the end of the body, after which
the condition will be evaluated again and the loop body executed if the condition result
is true. The return statement can be used to terminate both the loop and the action that
contains it.

For more information, see "Defining loops" on page 291.

The try-catch statement
The try-catch statement is used to handle runtime exceptions.

The catch clause must specify a variable whose type is
com.apama.exceptions.Exception.

You can nest try-catch statements in an action, and you can specify multiple actions in
a try block and specify a try-catch statement in any number of actions.

See also "Catching exceptions" on page 293.

Example:
using com.apama.exceptions.Exception;
...
action getExchangeRate(
 dictionary<string, string> prices, string fxPair) returns float {
 try {
 return float.parse(prices[fxPair]);
 } catch(Exception e) {
 return 1.0;
 }
}

Transfer of control statements
Transfer of control statements alter the normal control path by stopping the sequential
execution of statements within a block. All of them end execution of the block that
contains them. After a continue statement is executed, the containing block might be
executed again in a new loop iteration. The die and return statements also end the
action in which they are executed.

The break statement
The break statement transfers control to the next statement following the loop (for or
while statement) that encloses the break statement. A break statement can only be used
within a for or while statement. Any statements between the break statement and the

M
Odd Header
Statements

Developing Apama Applications Version 9.10 889

end of the block are not executed. For more information, see "Defining loops" on page
291.

The continue statement
The continue statement can be used in a block enclosed by a for or while statement
to end execution of the current iteration and transfer control to the beginning of the
loop. When a continue statement is executed, control is immediately transferred to
the beginning of the inner most enclosing for or while statement. Any statements
between the continue statement and the end of the block are not executed. For more
information, see "Defining loops" on page 291.

The die statement
The die statement terminates the execution of a monitor. When the correlator executes
a die statement, it terminates only the monitor instance that contains the die statement
being executed. If the monitor instance that spawned the monitor instance being
terminated is still active, that monitor instance is not affected. If that original monitor
instance spawned any other monitor instances, those monitor instances are not affected.
If the monitor instance being terminated defines an ondie() action, the correlator
executes the ondie() action for just the monitor instance being terminated, and then
terminates the monitor instance.

An Apama query cannot specify a die statement.

For more information, see "Terminating monitor instances" on page 58.

The return statement
The return statement ends the execution of an action and control is transferred to the
action's caller, at the point following the action call (which might be in the middle of an
expression). Any statements between the return statement and the end of action are not
executed.

If the action does not have a returns clause, then an expression is not permied in the
return statement.

If the action has a returns clause, then an expression whose value is the action's return
value is required in the return statement. The expression type must match the type
specified in the returns clause.

For more information, see "Format for defining actions" on page 271.

M
Even Header

Developing Apama Applications Version 9.10 890

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 891

38 Expressions

■ Introduction to expressions .. 892

■ Primary expressions ... 893

■ Bitwise logical operators .. 893

■ Logical operators .. 895

■ Shift operators .. 896

■ Comparison operators .. 897

■ Additive operators .. 898

■ Multiplicative operators ... 899

■ Unary additive operators .. 900

■ Expression operators ... 900

■ Expression operator precedence ... 901

■ Postfix expressions .. 902

■ Stream queries ... 903

■ Stream source templates ... 908

M
Even Header
Expressions

Developing Apama Applications Version 9.10 892

In many programs, much work is performed by evaluating expressions, which are
combinations of operators, operands, and punctuation. They are used to detect events
of interest to the program, perform calculations, comparisons, invoke actions, invoke
inbuilt methods, compute parameter values passed to action and method calls, and so
on.

Introduction to expressions
EPL has several kinds of expressions:

Primary expressions, bitwise expressions, logical expressions etc. are used for
computations.

In a monitor, a stream query definition creates a derived stream from an existing
stream.

In a monitor, a stream source template creates a new stream from an event template.

Event expressions are used in on statements for event paern matching and sequence
detection. Event expressions are not ordinary EPL expressions. See "Event expressions"
on page 839.

When an expression is evaluated (that is, it is executed), it will produce a result value
if the expression is a variable, a literal, or a combination of values and operators. If the
expression is an action or inbuilt method call, then evaluating the expression produces
a result value when the action or inbuilt method returns a value, but if the action or
inbuilt method does not return a value, then the expression does not produce a result.
Note that when an expression includes action or method calls, then evaluating the
expression might produce side effects. A side effect is a change in the state of the
execution environment. For example, a called action might change the value of a global
variable or generate a derived event. If evaluating an expression produces a result, then
in addition to a value, the expression result has a type. This is the expression type. An
expression's type is always known at compile time.

The elements of an expression are evaluated roughly from left to right, taking into
account parentheses and operator precedence. Binary operators have a left operand
and a right operand. If an operator is left-associative, its left operand is evaluated first,
followed by the right, and then the operation is performed. If an operator is right-
associative, its right operand is evaluated first, followed by the left, then the operation is
performed. In action calls, the actual parameter list expressions are evaluated from left
to right. Many of the operators used in expressions are polymorphic and can operate on
operands of several types. For example, the addition operator performs floating point
addition when its operands are of type decimal or float and performs integer addition
when its operands are of type integer. Here are some examples of expressions:
i := (a.size() + b[3]) / (n -1);
i := "foo" + s + " " + b.toString() + f.formatFixed(8);

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 893

Primary expressions
The primary expression is the simplest form of expression. It can take the following
forms:

Identifier. In an expression, an identifier is a variable name, an instance method name,
a type method name, or an action name.

Literal. A literal in an expression is a compile-time constant value as described in
"Literals" on page 925.

Postfix expression. See "Postfix expressions" on page 902.

Action/method. See "Action and method calls" on page 903.

Bitwise logical operators
The bitwise logical operators examine one bit at a time in their operands and compute
the corresponding bit value in the result.

The bitwise operators and, or, and xor are binary operators that have a left and right
operand. The bitwise operator not is a unary operator that has only a right operand.

The result type of all four bitwise operators is integer. Note that EPL integers are 64
bits wide.

Bitwise intersection (and)
The bitwise intersection operator and produces a result by comparing all 64 bits of its left
and right operands, which must be expressions of type integer, one bit at a time. For
each bit in the two operands, the corresponding bit in the result value is set to 1 if both
operand bit values are 1 and set to 0 if either operand bit value is 0.

Example

The following illustrates this using 64-bit binary values.

a := 42;

00101010

b := 642;

001010000010

a and b

0010

Bitwise union (or)
The bitwise union or produces a result by comparing all 64 bits of its left and right
operands, which must be expressions of type integer, one bit at a time. For each bit in

M
Even Header
Expressions

Developing Apama Applications Version 9.10 894

the two operands, the corresponding bit in the result value is set to 1 if either or both
operands bit values is 1 and set to 0 if both operand bit values are 0.

Example

The following illustrates this using 64-bit binary values.

a := 42;

00101010

b := 642;

001010000010

a or b

001010101010

Bitwise exclusive (xor)
The bitwise exclusive or operator xor produces a result by comparing all 64 bits of its
left and right operands, which must be expressions of type integer, one bit at a time.
For each bit in the two operands, the corresponding bit in the result value is set to 1 if
either operand's bit value is 1 and the other is 0 and set to 0 if both operand bit values
are 0 or both are 1. In other words, the result bit is 1 if both bit values are different and 0
if they are the same.

Example

The following illustrates this using 64-bit binary values.

a := 42;

00101010

b := 642;

001010000010

a xor b

001010101000

Note that the expression a xor b yields the same result as not (a and b).

Unary bitwise inverse
The unary bitwise not operator produces a result by computing the bitwise complement
or inverse of its right operand, which must be an expression of type integer. For each
bit in the operand's value, the corresponding bit in the result value is set to 1 if the
operand's bit value is 0 and 0 if the operand's bit value is 1.

Example

The following illustrates this using 64-bit binary values.

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 895

b := 42;

00101010

not b

11010101

Logical operators
The logical operators and, or, xor and not perform Boolean arithmetic on their
operands.

The logical operators' left and right operands are expressions whose result type must be
boolean. The result type of all four operators is boolean.

Logical intersection (and)
The and operator produces a result of true if both of its operand values are true and
false otherwise.

When the correlator evaluates a logical and expression it evaluates the left operand
first. If the left operand evaluates to false then the correlator does not evaluate the right
operand since the expression cannot be true. For example:
a and b

If a is false then whether or not b is true the expression will be false so the correlator
does not evaluate b. This lets you write code such as the following:
if (dict.hasKey(k) and dict[k] = "someValue")

If k is not in the dictionary then the left operand evaluates to false and so the entire
logical expression is false. The correlator never evaluates dict[k] = "someValue",
which would cause an error if k is not in the dictionary.

Logical union (or)
The or operator produces a result of true if either of its operand values is true and
false otherwise.

When the correlator evaluates a logical or expression it evaluates the left operand first. If
the left operand evaluates to true then the correlator does not evaluate the right operand
since the expression will always be true. For example:
a or b

If a is true then regardless of what b evaluates to the expression will be true so the
correlator does not evaluate b.

Logical exclusive or (xor)
The xor operator produces a result of true if either of its operand values is true and the
other is false and false if both are true or both are false.

M
Even Header
Expressions

Developing Apama Applications Version 9.10 896

Unary logical inverse (not)
The unary not operator produces the result true if its right operand value is false, and
false if the operand value is true.

Shift operators
The shift operators << and >> perform a shift of an integral value, moving bits in the
result a specified number of positions to the right or left. The result type of both shift
operators is integer.

The left operand is an expression of type integer whose value is to be shifted. The right
operand is the shift count, an expression of type integer whose value is the number of
bits the left operand value is to be shifted.

The shift count must be a nonnegative value less than 64. If the shift value is zero, then
the result value is equal to the left operand value. Values less than zero or greater than
63 will produce unpredictable results and should not be used.

Left shift operator
The left shift operator << produces a result by moving the left operand value's bits to the
left and filling the vacated bits on the right with 0 bits. Bits that are moved beyond the
leftmost bit (the sign bit) position are discarded.

Example

The following illustrates this using 64-bit binary values.

i := 42;

00101010

i << 24

0000000000000000000000000000000000101010000000000000000000000000

Right shift operator
The right shift operator >> produces its result by moving the left operand value's bit to
the right. The vacated bits on the left are filled with 0 bits if the left operand value is zero
or positive and filled with 1 bits if the left operand value is negative. Bits that are moved
to beyond the rightmost bit (the least significant bit) position are discarded.

Example

The following illustrate this using 64-bit binary values.

i := 42;

00101010

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 897

i >> 24

00

i := -42;

11010110

i >> 24

11

Comparison operators
The comparison operators are used to determine the equality, inequality, or relative
values of their left and right operands.

The left and right operands must be expressions of the same type and the type must be
allowed for that operator. You can use each comparison operator on decimal, float,
integer, and string types (see "Primitive and string types" on page 768). On boolean
types, you can use the = and != comparison operators.

The result type of all comparison operators is boolean.

The comparison operators are:

Operator Operation Description

< Less than Produces the result true if the left operand's
value is smaller than the right operand's value
and false otherwise.

<= Less than or
equal

Produces the result true if the left operand's
value is smaller than or equal to the right
operand's value and false otherwise.

= Equality Produces the result true if the left operand's
value is equal to the right operand's value and
false if they are not equal.

!= Inequality Produces the result true if the left operand's
value is not equal to the right operand's value and
false if they are equal.

=> Greater than or
equal to

Produces the result true if the left operand's
value is larger than or equal to the right operand's
value and false otherwise.

M
Even Header
Expressions

Developing Apama Applications Version 9.10 898

Operator Operation Description

> Greater than Produces the result true if the left operand's
value is larger than the right operand's value and
false otherwise.

Additive operators
The additive operators are used to perform arithmetic on two operands of matching
type: both of type decimal, both of type integer, or both of type float. The result type
of the additive operators is the same as the type of the operands.

The additive operators are:

Operator Operation Description

+ Addition Produces a result by computing the numeric
sum of its left and right operands. If the two
operands are both expressions of type integer,
then integral addition is performed and the result
is of type integer. If the two operands are both
of type decimal or both of type float, then
floating-point addition is performed and the
result type is the same as the operand type.

– Subtraction Produces a result by computing the numeric
difference between the left and right operands by
subtracting the value of the right operand from
the left. If the two operands are both expressions
of type integer, then integral subtraction is
performed and the result is of type integer.
If the two operands are both of type decimal
or both of type float, then floating-point
subtraction is performed and the result type is the
same as the operand type.

+ String
concatenation

Produces a result by "adding" two strings
together. The result is a new string whose value
is the value of the right operand, an expression
of type string, appended to the value of the
left operand, an expression of type string. The
result type of the string concatenation operator
is string.

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 899

Multiplicative operators
The multiplicative operators are used to perform arithmetic on two operands of
matching type: both decimal, or both float, or both integer.

The left and right operands must both be expressions of type decimal, or both be of type
float, or both be of type integer.

The result type of the multiplicative operators is the same as the type of the operands.

The multiplicative operators are:

Operator Operation Description

* Multiplication Produces a result by computing the numeric
product of its two operands. If the two operands
are both expressions of type integer, then
integral multiplication is performed and the
result is of type integer. If the two operands are
both of type decimal or both of type float, then
floating-point multiplication is performed and the
result type is the same as the operand type.

/ Division Produces a result by computing the numeric
quotient of its two operands. The left operand
value, the dividend, is divided by the right
operand value, the divisor. If both operands
are of type integer, any fractional part of the
result value is discarded. In other words, the
result is truncated toward zero. For example,
the expression 13/5 yields a result of 2. If both
operands are of type integer, then integral
division is performed and the result is of type
integer. If both operands are of type decimal
or both are of type float, then floating-point
division is performed and the result type is the
same as the operand type.

If the right operand's value is zero, a runtime
error is raised.

% Remainder Produces a result by computing the numeric
remainder from dividing the left operand value
by the right operand value. For example, the
expression 13%5 yields a result of 3. If both
operands are of type integer, then the integral
remainder is computed and the result is of type
integer. If both operands are of type decimal

M
Even Header
Expressions

Developing Apama Applications Version 9.10 900

Operator Operation Description
or both of type float, then the floating-point
remainder is computed and the result type is the
same as the operand type.

If the right operand's value is zero, a runtime
error is raised.

Unary additive operators
The unary additive operators are used to perform arithmetic on one right operand of
type decimal, float or integer. The result type of the unary arithmetic operators is the
same as the type of the operand.

Both of the unary arithmetic operators have one operand, which must be an expression
of type decimal , float or integer. The result type is the same as the type of the
operand.

Unary inverse

The unary additive inverse operator produces a result that is its right operand value
with the sign reversed. If the operand value is negative, the result value is positive. If the
operand value is positive, the result value is negative. If the operand value is zero, the
result value is zero.

Unary identity

The unary additive identity operator + produces a result that is its right operand value.

Expression operators
You can use the following operators wherever you can specify an expression. Note that
they are all binary operators.

Operator Operation Description

+ Addition Returns a decimal, float or an integer
according to the operands, or concatenation in the
case of string operands

- Subtraction Returns a decimal, float or an integer
according to the operands

% Modulus Returns an integer and is a valid operator only for
integers

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 901

Operator Operation Description

/ Division Returns a decimal, float or an integer
according to the operands

* Multiplication Returns a decimal, float or an integer
according to the operands

> Greater than Returns a boolean value indicating whether the
condition expressed is true or false

< Less than Returns a boolean value indicating whether the
condition expressed is true or false

>= Greater than or
equal to

Returns a boolean value indicating whether the
condition expressed is true or false

<= Less than or
equal to

Returns a boolean value indicating whether the
condition expressed is true or false

= Equivalence Returns a boolean value indicating whether the
condition expressed is true or false

!= Not equals Returns a boolean value indicating whether the
condition expressed is true or false

or Logical or,
bitwise or

On boolean types, on integers

and Logical and,
bitwise and

On boolean types, on integers

xor Logical xor,
bitwise xor

On boolean types, on integers

not Logical not On boolean types

Expression operator precedence
The following table lists the primary and bitwise expression operators in order by their
precedence, from lowest to highest. See also "Event expression operator precedence" on
page 843.

M
Even Header
Expressions

Developing Apama Applications Version 9.10 902

Operation Operator Precedence

Logical or bitwise union or 1

Logical or bitwise exclusive or xor 2

Logical or bitwise intersection and 3

Unary logical or bitwise inverse not 4

Relational <, <=, >, >=, !=, = 5

Additive +, – 6

String concatenation + 6

Multiplicative *, /, % 7

Unary additive +, – 8

Name qualifier (Dot) . 9

Object constructor new 9

Subscript [] 9

Action call ActionName() 10

Parenthesized expression () 10

Stream query from 10

Stream source template all 10

Postfix expressions
A primary followed by a "." symbol, and an identifier must represent a variable
reference, an action call, or a method call. Action and method calls are described in
"Action and method calls" on page 903.

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 903

An expression enclosed by the [and] symbols denotes a subscript operation for a
sequence or dictionary. This can be used on the right or left side of an assignment
statement.

The new operator is used to create an instance of a reference type or event type.

Action and method calls
An action call within an expression transfers control to the statements within the
action body during expression evaluation and temporarily suspends the expression
evaluation. If the action has parameters, then their values are copied to the action's
formal parameter variables. When the control flow reaches the action's end or the action
executes a return statement, control is transferred back to the expression and evaluation
continues.

The actual parameters are a comma-separated list of expressions. The entire list is
enclosed in parentheses. It forms the set of parameter values that are passed when
the action is called. Each expression value is copied to the corresponding parameter
variable specified in the action definition's formal parameters, and the expression
result type must match the parameter variable's type. The number and order of actual
parameters passed by a caller must also match those listed in the action definition's
formal parameters.

The action or method being invoked in the expression must return a value. The action's
return type becomes the expression result type.

The subscript operator []
The subscript operator takes one operand. The operand can be an integer index into a
sequence or a key type index of a dictionary. The subscript operator produces a result
of the same type as the sequence's entry type or dictionary's item type.

The new object creation operator
The operator new produces a result whose type is the type of the object parameter. It has
one operand, the name of the type of object to be created.

Stream queries
A stream query defines an operation that the correlator applies continuously to one or
two streams of items. The output of a stream query is a continuous stream of derived
items, stream<X>, where X is the type returned by the expression in the select clause.
See also "Defining stream queries" on page 211.

M
Even Header
Expressions

Developing Apama Applications Version 9.10 904

A from clause specifies a stream that the query is operating on.

An item in a stream can be an event, a simple type (boolean, decimal, float, integer
or string) or a location type. The first Identifier is the identifier that represents
the current item in the stream you are querying. You use this identifier in subsequent
clauses in the stream query.

The first Expression identifies the stream that you want to query.

A stream query window definition is optional. If you do not specify any window
then the stream query operates on only the items that arrive on the stream for a given
activation of that query. See "Stream query window definitions " on page 905.

A subsequent from clause indicates a cross-join operation.

Alternatively, a subsequent join clause indicates an equi-join operation. An equi-join
has a key expression for each of the two streams that are being joined. Two items are
joined into an output item only if the values of their key expressions are equal.

A where clause qualifies the items produced from a window or a join operation.

A group by clause organizes the qualified items, or the items produced from a window
or join operation.

A having clause filters the output items produced from the projection.

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 905

The required select clause specifies how to generate the output items.

Semantic constraints

from Identifier in Expression join Identifier in Expression
The identifier can be any legal identifier and, within the stream query's scope, is
associated with items from the source stream and therefore has their type. In a joined
stream query, the two identifiers must be distinct.
The expression's result must be a value of some stream type. The correlator evaluates the
expression outside the stream query's scope. For example:

stream<A> a := all A();
from a in a ...

This is legal, because the identifier a is not in scope for evaluation of the expression a.

on Expression1 equals Expression2
The correlator evaluates both expressions within the stream query's scope.
Expression1 must contain the first item identifier and cannot contain the second.
Expression2 must contain the second item identifier and cannot contain the first.
The two expressions must return the same type, and that type must be a comparable
type.

where Expression group by Expression, Expression, ...
The item identifier or identifiers are in scope and should be used in these expressions.
The where expression must return a boolean value. The group by expressions can
return any comparable types.

having Expression
The item identifier or identifiers are in scope and can be used in this expression. The
presence of this clause implies that the projection must be an aggregate projection. The
expression must return a boolean value.
You can use one or more aggregate functions in the having expression. In fact, you can
use aggregate functions only in having expressions and select expressions.

select [rstream] Expression
The item identifier or identifiers are in scope and can be used in this expression. The
expression must return a value.
You can use one or more aggregate functions in a select expression. In fact, you can use
aggregate functions only in having expressions and select expressions. If you specify
an aggregate function you cannot specify the rstream keyword.

Stream query window definitions
In a stream query, the optional window definition specifies which items in a stream to
operate on. See also "Adding window definitions to from and join clauses" on page 218.

M
Even Header
Expressions

Developing Apama Applications Version 9.10 906

Typically, stream queries process a window over a stream. A stream is an ordered
sequence of items over time. A window specifies which items to operate on. Windows
can contain a portion of the stream based on number of items, time of item arrival,
content of item, or other criteria.

When the stream query window definition is retain all, the window contains all
items that have ever been in the stream. Conceptually, once an item enters a retain all
window, it remains in the window indefinitely, or until the stream query is terminated.
The retain all clause specifies an unbounded window. Unbounded windows have
restrictions on their use:

You cannot have a partitioned or batched unbounded window.

You cannot perform a join operation on an unbounded window.

You cannot specify an unbounded window when you use rstream in the select
clause of a stream query.

When you use a custom aggregate function in a stream query that contains an
unbounded window, you cannot use a bounded aggregate function. You should also
be aware that, if you use a badly implemented custom aggregate function in a stream

M
Odd Header
Expressions

Developing Apama Applications Version 9.10 907

query that contains an unbounded window, then this can result in uncontrolled memory
usage.

A partition by clause divides the input data into several partitions and then applies
the stream query window definition separately to each partition. The partition by
expressions must be comparable types.

The retain clause specifies the maximum number of items to be retained by the
window. The retain expression must be an integer expression. In a size-based
window, as each new item arrives in the stream, it is added to the window. After the
number of items in the window reaches the window size limit specified in the retain
clause, the arrival of a new item causes removal of the oldest item from the window.

The within clause specifies the number of seconds to keep each new item in the
window. The within expression must be a float expression. In a time-based window,
as each new item arrives in the stream, it is added to the window. As soon as an item has
been in the window for the number of seconds specified by the within expression, the
correlator removes the item from the window.

By default, the contents of a window change upon the arrival of each item. The every
keyword can be used to control when the contents of the window change, which causes
the items to be added to the window in batches of several items at once. Time-based
windows can be controlled to update only every p seconds and size-based windows can
be controlled to update only every m events.

The contents of the window can also depend on the content of individual items in the
stream. Specify with uniqueExpression to limit the window to containing only the
most recent item for each key value identified by the expression.

Semantic constraints

In a stream query window definition for one of a joined stream query's input streams, it
is always an error to refer to the other input stream's item identifier.

partition by Expression, Expression, ...
You should use the item identifier in each expression. Expressions can return any
comparable types.

retain Expression [every Expression]
You cannot use the item identifier in these expressions. These expressions must return
integer values.

within Expression [every Expression]
You cannot use the item identifier in these expressions. These expressions must return
float values.

with unique Expression
You should use the item identifier in this expression. The expression can return any
comparable type.

M
Even Header
Expressions

Developing Apama Applications Version 9.10 908

Stream source templates
A stream can be created from an event template using the all keyword. This is referred
to as a stream source template.

A stream source template is the all keyword followed by a single event template. The
output of a stream source template is a continuous stream of items, stream<X>, where X
is the type specified by the event template.

See also "Creating streams from event templates" on page 208.

M
Odd Header

Variables

Developing Apama Applications Version 9.10 909

39 Variables

■ Variable declarations .. 910

■ Variable scope .. 910

■ Provided variables .. 912

■ Specifying named constant values .. 913

M
Even Header

Variables

Developing Apama Applications Version 9.10 910

Variables are names that are bound to data values (in the case of primitive types) or
the location of data values (in the case of reference types). Variables are declared by
specifying a type, a name, and optionally, an initial value. With the exception of the
string type, once declared, new values can be computed and assigned to variables as
needed. Strings are immutable and variable assignment causes a new string value to be
created and bound to the string variable.

Variable declarations
Before a variable can be referenced in a program, it must be declared. The declaration
gives the variable a unique name, a type and, optionally, an initial value.

Variable declarations in actions and blocks are statements that are executed when the
program's control flow reaches them.

Variable and expression types must match in a declaration.

Example:
location rect := location(1.0, 1.0, 5.0, 5.0);
integer i;
boolean c := true, d := false;
sequence <integer> s := [1, 3, 5, 7, 11, 13, 17];
string s1 := "abcdefghijklmnopqrstuvwxyz";

Variable scope
The parts of a program in which a particular variable can be referenced (that is, its value
used or a new value assigned) is called the scope of the variable. In EPL, variables can
have scopes that include:

All monitors. These are global variables that are part of EPL, also called predefined
variables.

The monitor within which they are declared.

The action within which they are declared.

The block within which they are declared.

The event within which they are declared.

The custom aggregate function in which they are declared.

The stream query within which they are identified.

Regardless of the scope of a variable, it cannot be referenced in statements or expressions
until after it has been declared or specified as an item identifier in a stream query.
Further, variables scoped to actions or blocks cannot be referenced until a value has been
assigned.

Within a scope at a particular level, variables declared at that level must have unique
names. They can, however, have names that are the same as variables defined at an outer

M
Odd Header

Variables

Developing Apama Applications Version 9.10 911

scope and in that case the variables declared at the inner level hide or mask the ones
defined at the outer level(s) until the end of their scope.

Predefined variable scope
Predefined variables are defined by the correlator and are accessible in all monitors. See
"Provided variables" on page 912.

Monitor scope
A variable that is defined in a monitor is visible and can be referenced in all parts of the
monitor. Such variables are also called global variables.

Action scope
A variable that is declared in an action (also called a local variable) can only be
referenced within the action. A variable that is a formal parameter of an action can only
be referenced within the action. If a local variable declared in an action has the same
name as a global variable declared at the monitor level, the local variable hides the
global variable until the end of the action.

Block scope
A variable that is declared within a block can only be referenced within the block. A
block is one or more statements enclosed within curly braces (the characters { and }). If
a local variable declared in a block has the same name as a global variable declared at
the monitor level, or a local variable declared at the action level, the block's local variable
hides the global variable or the action's variable, or both if all three have the same name,
until the end of the block (the closing }).

Event action scope
The fields of an event are part of the event declaration. An event field's scope depends
on where it is declared. When an event also includes action definitions, the statements in
the action can reference the event's fields as simple identifiers. From the point of view of
an event's action, the fields can be said to be scoped to the event.

Custom aggregate function scope
A variable that is declared in a custom aggregate function (also called a local variable)
can only be referenced within the custom aggregate function. If a local variable declared
in a custom aggregate function has the same name as a global variable declared at the
monitor level, the local variable hides the global variable until the end of the custom
aggregate function.

M
Even Header

Variables

Developing Apama Applications Version 9.10 912

Provided variables
The EPL execution environment provides several variables. You can use these variables
in the same way as variables you declare yourself, except that you cannot assign values
to them. Instead, the correlator automatically assigns values to these variables.

currentTime
The currentTime variable is a read-only float global variable that contains a
timestamp value with the current time and date as read from the correlator's clock.
Timestamps are encoded as the number of seconds and fractional seconds elapsed since
midnight, January 1, 1970 UTC and do not have a time zone associated with them.

The current time is the time indicated by the most recent clock tick. Use the
currentTime variable to obtain the current time. The value of the currentTime variable
is always changing to reflect the correlator's current time.

If you have multiple contexts, it is possible for the current time to be different in
different contexts. A particular context might be doing so much processing that it cannot
keep up with the time ticks on its queue. In other words, if contexts are mostly idle, then
they would all have the same current time.

In a context, the current time is never the same as the current system time. In most
circumstances it is a few milliseconds behind the system time. This difference increases
when the context's input queue grows.

When a listener executes an action, it executes the entire action before the correlator
starts to process another event. Consequently, while the listener is executing an action,
time and the value of the currentTime variable do not change. Consider the following
code snippet,
float a;
action checkTime() {
 a := currentTime;
}
// ... Lots of additional code
// A listener calls the following action some time later
action logTime() {
 log a.toString(); // The time when checkTime was called
 log currentTime.toString(); // The time now
}

In this code, an event listener sets float variable a to the value of currentTime, which
is the time indicated by the most recent clock tick. Some time later, a different event
listener logs the value of a and the value of currentTime. The values logged might not
be the same. This is because the first use of currentTime might return a value that is
different from the second use of currentTime. If the two event listeners have processed
the same event, the logged values are the same. If the two event listeners have processed
different events, the logged values are different.

The correlator maintains a clock that advances at a fixed interval (default) of 0.1 seconds.
The clock does not advance while an event is being processed.

M
Odd Header

Variables

Developing Apama Applications Version 9.10 913

Event timestamps
The correlator defines an arrival timestamp for every event it receives. The arrival time
value is set from the main context's clock when an event is received by the correlator,
just before it is placed on the input queue of each public context.

You can access the arrival timestamp by calling the event's inbuilt getTime() method
(see "event" on page 796). After the correlator creates an event or after you coassign an
event, the getTime() method returns the time in the context when the event was created
or coassigned. An event's arrival timestamp has the same scope as the event itself.

self
The predefined variable self is an event reference that can be used to refer to an event
instance within the event's definition.

Within an event action body, you can use the self variable to refer an event instance
of that event type. In other words, the scope of self is each action body in the event
definition. For example:
event Circle
{
 float radius;
 location position;
 action area () returns float
 {
 return (float.PI * radius * radius);
 }
 action circumference () returns float
 {
 return (2.0 * float.PI * self.radius);
 }
}

Note: You cannot use the self variable in an Apama query.

Specifying named constant values
A constant is a named literal and its value cannot be changed during runtime. It
resembles a variable declaration with constant before it.

You can declare an identifier for a constant value in an event type definition or in a
monitor. A constant appears in memory once. Spawning a monitor that contains a
constant does not make copies of the constant.

The type of a constant must be boolean, decimal, float, integer, or string.

The name you assign to a constant must be unique within the event type or monitor that
contains the constant definition.

The literal that you assign to the constant must be the specified type.

M
Even Header

Variables

Developing Apama Applications Version 9.10 914

When you define a constant event field, you can refer to that constant from outside
the event. Qualify the name of the constant with the event name, for example,
MyEvent.myConstant.

You cannot declare a constant in an action, directly in a package, or in a custom
aggregate function.

See also "Specifying named constant values" on page 270.

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 915

40 Lexical Elements

■ Program text ... 916

■ Comments .. 916

■ White space ... 916

■ Line terminators ... 918

■ Symbols .. 919

■ Identifiers .. 919

■ Keywords .. 920

■ Operators .. 924

■ Separators .. 925

■ Literals .. 925

■ Names .. 929

■ Annotations ... 930

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 916

The lexical rules of the EPL grammar describe how sequences of characters are used to
form the basic elements of the language, that is, identifiers, constants (string, numeric,
and so on), operators, separators, white space, comments, and language keywords.
These elements, after discarding any white space and comments, form the symbols used
in the syntactical grammar of the language.

Program text
A program's source text is composed of an optional UTF-8 byte-order marker followed
by characters that form a sequence of symbols, white space, comments, and line
terminators, up to the end of file (denoted by the EOF symbol).

The UTF-8 byte order marker is a sequence of three consecutive bytes with the values
0xEF, 0xBB, and 0xBF respectively, appearing at the beginning of a file containing EPL
source text. The UTF-8 character encoding format does not need a byte-order marker
to indicate the byte order because UTF-8 is by definition a bytewise encoding. A UTF-8
byte-order marker at the start of a file just indicates that the program text is encoded in
the UTF-8 format. It is inserted automatically by some text editors, such as Notepad on
Windows systems.

A program's source text can be encoded as Unicode UTF-8, as 7-bit ASCII (which is a
proper subset of UTF-8), or various other encodings. The comiler will convert the source
text from the locale's encoding to UTF-8 if necessary. In practice, this really only affects
comments, white space, and string literals because all other EPL constructs are limited to
the ASCII subset. "Identifiers" on page 919, for example, are limited to only a few of
the many possible Unicode characters.

Comments
Comments are explanatory notes or text intended for human readers to help them
understand what a program or section of a program does.

There are two kinds of comments: block comments and end-of-line-comments.

Block comments begin with the character sequence slash-asterisk /*, which is followed
by any number of other characters and line breaks, followed by a closing asterisk-slash
*/ sequence. The entire contents of all block comments are ignored.

End-of-line comments begin with two consecutive slash characters // followed by any
number of characters up to and including the end of the current line. The entire contents
of all end-of-line comments are ignored.

White space
White space characters are characters such as spaces and tabs that are used between
symbols to separate them. White space characters are sometimes required between
symbols when they would otherwise be misinterpreted or unrecognizable. For
example, the symbol / is used as the division operator and the symbol * is used as the

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 917

multiplication operator, but the character pair /* with no white space between them
marks the beginning of a block comment.

Though they act as separators between symbols, white space characters are otherwise
ignored and discarded during program compilation.

Judicious use of white space improves a program's readability.

The ASCII white space characters and their encodings are listed below:

Code Point UTF-8 Encoding ASCII Encoding Name

0x0020 0x20 0x20 Space

0x0009 0x09 0x09 Horizontal Tab

0x000c 0x0c 0x0c Form Feed

0x001c 0x1c 0x1c File Separator

0x001d 0x1d 0x1d Group Separator

0x001e 0x1e 0x1e Record Separator

0x001f 0x1f 0x1f Unit Separator

The Unicode white space characters, as defined by the Unicode character dictionary, and
their encodings are listed below:

Code Point UTF-8 Encoding Name

0x0085 0xc2 0x85 unnamed control character

0x00a0 0xc2 0xa0 NO-BREAK SPACE

0x1680 0xe1 0x9a 0x80 OGHAM SPACE MARK

0x180e 0xe1 0xa0 0x8e MONGOLIAN VOWEL SEPARATOR

0x2000 0xe2 0x80 0x80 EN QUAD

0x2001 0xe2 0x80 0x81 EM QUAD

0x2002 0xe2 0x80 0x82 EN SPACE

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 918

Code Point UTF-8 Encoding Name

0x2003 0xe2 0x80 0x83 EM SPACE

0x2004 0xe2 0x80 0x84 THREE-PER-EM SPACE

0x2005 0xe2 0x80 0x85 FOUR-PER-EM SPACE

0x2006 0xe2 0x80 0x86 SIX-PER-EM SPACE

0x2007 0xe2 0x80 0x87 FIGURE SPACE

0x2008 0xe2 0x80 0x88 PUNCTUATION SPACE

0x2009 0xe2 0x80 0x89 THIN SPACE

0x200a 0xe2 0x80 0x8a HAIR SPACE

0x2028 0xe2 0x80 0xa8 LINE SEPARATOR

0x2029 0xe2 0x80 0xa9 PARAGRAPH SEPARATOR

0x202f 0xe2 0x80 0xaf NARROW NO-BREAK SPACE

0x205f 0xe2 0x81 0x9f MEDIUM MATHEMATICAL SPACE

0x3000 0xe3 0x80 0x80 IDEOGRAPHIC SPACE

All white space characters appearing between two symbols are ignored. However, note
that white space appearing within string literals is not ignored. See "Literals" on page
925.

Line terminators
Line terminators are used to mark the end of a line of source text. Different operating
systems use different characters or character sequences to mark the end of a line.

The following terminators are used on various operating systems:

Operating System Line Terminator

Mac OS X ASCII Carriage Return (0x0D)

UNIX ASCII Newline (0x0A)

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 919

Operating System Line Terminator

Linux ASCII Newline (0x0A)

Windows ASCII Carriage Return (0x0D) followed by ASCII Newline
(0x0A)

In general, any number of line terminators can be used between any two symbols in a
program and they are treated the same as other white space. A line terminator appearing
at the end of an end-of-line comment terminates the comment.

Symbols
Symbols (also called tokens, atoms, or lexemes) are the elements and words of the
language, consisting of identifiers, keywords, operators, separators, and literals.
Symbols are composed of one or more characters, excluding white space, comments, and
line terminators.

Sometimes you must use at least one white space character between two symbols in
order to make them distinguishable from each other and from another symbol. For
example, the symbol >> is the right-shift operator and the symbol > is used to indicate
the end of the element type in a sequence declaration. Since you can have a sequence of
sequences, such a declaration could have two adjacent symbols. Since >> in a sequence
declaration looks just like the right-shift operator, you have to write them with a white
space character between them: > >. On the other hand, the expression a-b (subtract the
value of the variable named b from the value of the variable named a) is unambiguous
and no extra white space characters are needed. If you wrote it as a - b it would mean
the same thing.

Identifiers
An identifier is a character sequence composed of a combination of the following
characters:

The 26 leers of the Roman alphabet in upper and lower case

Digits 0 through 9

Underscore (_) character

Dollar sign ($) character

The first character may not be a digit. Identifiers are case sensitive. An identifier cannot
have the same spelling as a keyword. For example, the word action is a keyword and
cannot be used as an identifier. See "Lexical Elements" on page 915 for a list of the EPL
keywords.

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 920

The length of an identifier is limited by available memory. In practice, this means you
can make them as long as you want, but very long identifiers are hard to type and
harder to read.

An identifier can also contain a hash symbol (#) as the first character. See "Escaping
keywords to use them as identifiers" on page 923.

Keywords
In EPL, reserved words are referred to as keywords. You must escape them to use them
as identifiers in your code.

List of EPL keywords
The table below lists the reserved words called keywords. EPL keywords are case
sensitive. You cannot use keywords as identifiers in EPL programs unless you prefix
them with a hash symbol (#). See "Escaping keywords to use them as identifiers" on
page 923.

The superscript numbers on the keywords indicate:

1 You can safely use these keywords outside the scope of an Apama query without
prefixing a hash symbol.

2 You can safely use these keywords outside the scope of a stream query without
prefixing a hash symbol.

For example, suppose you define the E event type and it has a field named parameters.
If you intend to use E as an input event for a query and want to access the parameters
field, then you must specify #parameters as the field name. Apama recommends
that you avoid defining events that are primarily for queries and that contain query
keywords.

action aggregate all and

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 921

as at between 1 boolean

bounded break by 2 call

catch chunk completed constant

context continue currentTime day 1

days 1 decimal dictionary die

else emit enqueue event

every 1 and 2 false find 1 float

for from group 2 having 1 and 2

hour 1 hours 1 if import

in inputs 11 integer join 2

key 1 largest 2 location log

millisecond 1 milliseconds 1 min 1 minute 1

minutes 1 monitor msec 1 new

not on optional or

package parameters 1 partition 2 persistent

print query 1 retain 1 and 2 return

returns route rstream 2 sec 1

second 1 seconds 1 select 1 and 2 send

sequence smallest 2 spawn static

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 922

stream streamsource string then

throw to true try

unbounded unique 2 unmatched using

wait where 1 and 2 while wildcard

with 2 within without 1 xor

Some reserved keywords are actually operators. Nevertheless, the restriction still
applies. Some Apama tools, such as the Event Modeler, generate code based on EPL
and in such code there might be symbols that resemble identifiers but contain hash (#)
characters, which are not allowed in identifiers. These "identifiers" are placeholders that
are later replaced with valid identifiers that do not contain the hash character.

The string join() method is still supported. That is, you can still use the following
and you do not receive a warning: string.join(). Also, note that the join keyword
has a stream query scope and join is also a reserved word for use outside stream
queries in a future release.

Note that ondie, onload, onunloadonBeginRecovery, and onConcludeRecovery are
not reserved keywords. They are the names of special actions. While you can use them
as identifiers, doing so is not recommended.

List of identifiers reserved for future use
EPL might use the identifiers listed in the table below as keywords in a future release. In
this release, if you use one of these reserved words, the correlator logs a warning.

In this table, some identifiers are flagged with an asterisk (*). These identifiers are
reserved as keywords only within stream queries. That is, the correlator logs a warning
only if you use this identifier inside a stream query. To use one of these identifiers
inside a stream query without logging a warning, prefix it with a hash symbol (#). See
"Escaping keywords to use them as identifiers" on page 923.

abstract ALL * AND *

assert bignum BY *

byte case char

class default enum

EQUALS * eval EVERY *

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 923

except extends FALSE *

finally FROM GROUP *

HAVING immutable implements

IN * instanceof interface

JOIN LARGEST * native

NOT * null OR *

otherwise PARTITION * private

protected public RETAIN *

RSTREAM * runtime SELECT *

SMALLEST * sortedsequence switch

sync SYNC * synchronized

table throws transient

TRUE * UNIQUE * void

volatile WHERE * window

WITH * WITHIN *

Escaping keywords to use them as identifiers
You can use a keyword as an identifier if you escape it with a hash symbol (#). For
example:
package com.company.#monitor.client;
using com.company.#monitor.server.Event;

In a stream query, you can use a query-scope keyword as an identifier if you prefix it
with a hash symbol (#). For example:
event Tick
{...
 string partition;
 ...
}
from t in all Tick() partition by t.#partition retain 5 ...

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 924

You can define a JMon event type that has a field name that is the same as an EPL
keyword. To refer to that field in EPL, prefix it with a hash symbol (#). For example:
class MyEvent extends Event {
 int integer;
 ...
}
on all MyEvent(#integer = 5): m { ... }

To avoid warning messages if you use a reserved word as an identifier, escape the
reserved word with a hash symbol (#).

Operators
Operators are symbols used in expressions and statements to perform a computation
on or test a relation between data values or, in event expressions, to detect sequences
and paerns of events. As you will see, the same symbol is sometimes used for different
operations, depending on the context in which the operator is used. For example,
the and operator is used both in logical expressions, and event sequencing and the *
operator is used both for integer and floating point multiplication and to match any
value in event templates.

Ordinary operators

The ordinary operators are used in primary and bitwise expressions. See "Expressions"
on page 891 to perform calculations and comparisons on variables, data values, and
other constructs. "Types" on page 767 provides information about the operators that you
can use with values of each type.

The ordinary operators are grouped into the following subcategories:

Arithmetic operators. See the corresponding topics in "Expressions" on page 891.

Comparison operators. See "Comparison operators" on page 897.

Logical operators. See the corresponding topics in "Expressions" on page 891.

Event operators

Event operators are special operators that are used in the on statement's event
expression. An on statement defines an event listener. See "Event expressions" on page
839 and "Event expression operator precedence" on page 843.

An on statement is not allowed in an Apama query.

Field operators

Field operators are used within event expressions to define conditions on individual
fields in an event template. See "Field operators" on page 832.

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 925

Separators
Separators are symbols that are used in certain statements and expressions. These are:

{

}

[

]

(

)

.

;

,

:

white space

Separators are used to:

Keep the various parts from bumping into each other, for example commas between
parameter values in an action call.

Group related elements together, for example the left and right braces at the
beginning and end of a block of statements.

Literals
A literal is a source text representation of a constant value of a primitive type, or a
location, dictionary, or sequence type.

You might want to declare a constant for a frequently used literal so that you can refer to
it by name. See "Specifying named constant values" on page 913.

Boolean literals
There are two Boolean literal values: true and false.

Example:
a := true;
b := false;

Integer literals
Integer literal values can be wrien either base 10 (decimal) or base 16 (hexadecimal).

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 926

Base 10 literals

Base 10 integral literal values are a sequence of one or more of the digits 0 through 9.

Examples:
i := 0;
i := 11;
i := 1023;
i:= 9223372036854775807;

The value can optionally be preceded by a sign. If the sign is omied, + is assumed.

The number 9223372036854775807 or (263 - 1) is the largest base 10 integer literal
value that can be represented.

Base 16 literals

Base 16 integral literal values begin with the characters 0x, and consist of a combination
of the decimal digits 0 through 9 and the hexadecimal digits a through f and A through
F.

Examples:
j := 0x0;
j := 0x0d;
j := 0x0aFF;
j := 0x7fffffffffffffff;

The number 0x7fffffffffffffff or (263 - 1) is the largest base 16 integer literal value
that can be represented.

You cannot specify a negative hexadecimal literal. The correlator treats hexadecimal
literals as unsigned integers. For example, the following is illegal:
-0x43af

Floating point and decimal literals
Floating-point literal values can take one of the following forms:

Optional sign, integer digits followed by an exponent.

Optional sign, integer digits, a decimal point, and an optional exponent,

Optional sign, integer digits, a decimal point, fraction digits, and an optional
exponent.

Optional sign, a decimal point, fraction digits, and an optional exponent.

If the sign is omied, '+' is assumed. If the exponent is omied, e0 is assumed.

The exponent is the leer 'e' followed by an optional sign, and one or more decimal
digits.

Examples:
f := 0.0;
f := 1.;

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 927

f := 200128.00005
f := 3.14159265358979;
f := 1e4;
f := 1e-4;
f := 10000e0;
f := .1234;
f := .1234e4;
f := 1.E-32;
f := 1.E-032;
f := 6.0221415E23;
f := 1.7976931348623157e308;

The largest positive floating point literal value that can be represented in EPL is
1.7976931348623157 * 10308. The smallest positive nonzero value that can be
represented is 2.2250738585072014 * 10-308. If you write a floating-point literal whose
value would be outside the range of values that can be represented, the compiler raises
an error.

String literals
A string literal is a sequence of characters enclosed in double quotes.

The backslash character is used as an escape character to allow inclusion of special
characters such as newlines and horizontal tabs.

To include a double quote in a string literal, precede it with a \ character which serves as
an escape character, which means "do not treat this quote as the end of the string literal".

To include a newline, use \n.

To include a tab character, use \t.

To include a single \ character, use two: \\. The compiler will remove the extra
backslashes.

Examples:
s := "Hello, World!";
s := "\ta\tstring\twith\ttabs\tbetween\twords";
s := "a string on\n two lines";
s := "a string with \\ a backslash and a \" quote";

The length of a string literal is limited only by available memory at compile time
andruntime. In practice, this means you can make them as long as you need.

Location literals
The four float literals form the location's corner point coordinates, x1, y1 and x2, y2.

Example:
location(0.0, 0.0, 10.0, 10.0)

Dictionary literals
A dictionary literal can contain one or more pairs of key/item values.

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 928

The first expression in a dictionary literal entry is the key value and the second
expression is the item value. In a dictionary literal, all key values must be the same
type and all item values must the same type. Both must be of a type that matches the
types specified in the dictionary variable's definition.

A dictionary literal must contain at least one key/item pair except when the
dictionary literal is in an initializer. For example, the following statement is valid:
myDictionary := {};

The following statement is not valid:
takesADictionaryArgument({});

Example:
{1:"One", 2:"Two", 3:"Three"}

Sequence literals
A sequence literal can contain one or more sequence item values.

Each expression in the comma separated list is one entry in the sequence literal. The
types must all be the same and must match the sequence type.

A sequence literal must contain at least one item except when the sequence literal is in
an initializer. For example, the following statement is valid:
mySequence := [];

The following statement is not valid:
takesASequenceArgument([]);

Example:
[1,2,3,4]

Time literals
In Apama query definitions, time literals can be in within clauses. They are either float
or integer literals followed by a unit. Not all units are required, but they have to be in
order.

You can specify the following time literals, in the following order:

day/days

hour/hours

min/minute/minutes

sec/second/seconds

msec/millisecond/milliseconds

For example:

10 hours

M
Odd Header

Lexical Elements

Developing Apama Applications Version 9.10 929

1.5 days

1 day 2.5 hours 10 min 4 sec

2 day 3.5 minutes

A space is required between a float or integer literal and its associated time unit. A
space is required between a time unit and a float or integer literal that follows it.
Additional whitespace is also allowed.

You cannot specify a negative number.

Outside a query, you can use these keywords as identifiers. Inside a query, you cannot
use these keywords as identifiers unless you prefix them with a hash symbol (#). See
"Escaping keywords to use them as identifiers" on page 923.

Names
Names are used in EPL programs to refer to the various different kinds of entities in
the program. Actions, variables and reference variable members, parameters, monitors,
queries, methods, aggregate functions, events, packages, and plug-ins all have names.

Description

Names are either simple or qualified. Simple names consist of a single identifier.
Qualified names consist of a sequence of identifiers separated by . symbols, with an
optional . prefix.

Every name has a scope, which is the part of a program's text where the name can be
used as a simple identifier. The scope is determined by where in the program the name
is declared. See "Variable scope" on page 910.

Do not create EPL structures in the com.apama namespace. This namespace is
reserved for future Apama features. If you inadvertently create an EPL structure in the
com.apama namespace, the correlator might not flag it as an error in this release, but it
might flag it as an error in a future release.

Name Precedence

When there are duplicate unqualified names for types, the correlator searches for the
associated definition in the following order, and uses the first one it finds:

1. The monitor-internal type definitions, for example, event type definitions and
custom aggregate function definitions

2. Definitions that have been brought in with a using declaration in the current file

3. Definitions in the current package (this could be the root namespace if a package was
omied)

4. The root namespace

M
Even Header

Lexical Elements

Developing Apama Applications Version 9.10 930

The fully qualified name of a type can always be named by using a dot (.) followed by
the fully qualified name. For example, select .com.apama.aggregates.avg(x) uses
the built-in avg type, even if com is a name in the current package.

If you try to create a package-level type that has the same name as a definition brought
in with a using declaration, it causes a compiler error and the code does not inject. For
example:
package foo;
using bar.Bar;
event Bar { // Causes an error when injecting as Bar has already been
 // defined by a "using" declaration.}

You cannot define a type that has the same fully-qualified name as another type.

If two types have the same name but are in different packages, either one can take
precedence over the other depending on their ordering in the precedence list. The
correlator uses the first match it finds even if that results in an error when a lower-
priority match would have worked. For example:
X x;

This causes an error if, for example, there is an aggregate function called X in the current
package even if there is an event type called X in the root namespace. You can use a .
prefix on the name to force it to be looked up from the root namespace, in which case the
fully qualified name must be used.

Annotations
A program can contain predefined annotations before specific language elements. For
detailed information, see "Adding predefined annotations" on page 68.

M
Odd Header

Limits

Developing Apama Applications Version 9.10 931

41 Limits

EPL enforces the limits described in the following table.

EPL Limit Value

Lowest integer –263 (–9223372036854775808)

Highest integer 263 – 1 (9223372036854775807)

Integer precision 64 bits (about 18 decimal digits)

Maximum integer left shift 63 bits

Maximum integer right shift 63 bits

Lowest negative floating point
value

–1.7976931348623157 x10308

Highest negative nonzero floating
point value

–2.2250738585072014 x 10–308

Lowest positive nonzero floating
point value

2.2250738585072014 x 10–308

Highest positive floating point
value

1.7976931348623157 x 10308

Floating point precision About 15 decimal digits

Lowest negative decimal floating
point value

–9.999999999999999 * 10384

Highest negative nonzero decimal
floating point value

–10-398

Lowest positive nonzero decimal
floating point value

10-398

M
Even Header

Limits

Developing Apama Applications Version 9.10 932

EPL Limit Value

Highest positive decimal floating
point value

9.999999999999999 * 10384

Decimal precision Exactly 16 decimal digits

Maximum identifier length Limited by available memory

Maximum number of entries in a
sequence

Limited by available memory

Maximum number of entries in a
dictionary

Limited by available memory

Maximum number of characters in
a string

Limited by available memory

Maximum number of active
listeners

Limited by available memory, typically
many tens of thousands

Maximum number of active
monitors

Limited by available memory

Maximum number of fields in an
event

216 (65536)

Maximum number of actions in an
event

216 (65536)

Maximum indexed fields in an
event

32

Memory address space available to
EPL runtime

The correlator stops if it runs out of
memory

Maximum number of active stream
queries

Limited by available memory

Maximum stream window size Limited by available memory

M
Odd Header

Obsolete Language Elements

Developing Apama Applications Version 9.10 933

42 Obsolete Language Elements

■ Old style listener calls .. 934

■ Old style spawn statements ... 934

M
Even Header

Obsolete Language Elements

Developing Apama Applications Version 9.10 934

As EPL has evolved, some older language constructs have been supplanted by more
useful and flexible ones. The new constructs can accomplish the same effects and more
and their use is preferred. Nevertheless, existing programs may still use the obsolete
constructs, which are described in this section.

Old style listener calls
Do not specify the following:
on A() foo;

Instead, specify the following:
on A() foo();

Old style spawn statements
Do not specify the following:
spawn actionName;

Instead, specify the following:
spawn actionName();

M
Odd Header

EPL Naming Conventions

Developing Apama Applications Version 9.10 935

A EPL Naming Conventions

It is recommended that you use the following naming conventions in EPL. These
conventions closely follow Java naming conventions. Using these conventions makes it
easier to collaborate and makes it faster for Software AG Global Support personnel to
follow your code.

Item Convention Notes and Examples

Acronyms Do not
always use
all capitals

Names often contain standard abbreviations,
such as IAF for Integration Adapter Framework.
Names such as iafInterface for an aribute or
IafInterface for a monitor are easier to read than
iAFInterface and IAFInterface.

Actions lowerCamelCase Actions should be verbs, in mixed case with the
first leer lowercase, and the first leer of each
internal word capitalized. For example:
handleQuery();
startDaemonProcess();
quit();

Channels package.
UpperCamelCase

Channel names should start with an EPL package
name (lowercase), optionally followed by an
UpperCamelCase noun. Qualifying channel names
with a package is important because channel names
form a global namespace that is shared by all
applications running in a correlator. For example:
com.mycompany.AllTransactions

Constants ALL_CAPITALS Identifiers for constants should be all uppercase
with words separated by underscores. For example:
constant integer MAX_SIZE;
constant string DEFAULT_HOST;

Contexts UpperCamelCase Context names should be nouns, initial capital,
in mixed case with the first leer of each internal
word capitalized. Context names should be simple
and should describe the work being done in the
context. Use whole words. Avoid acronyms and
abbreviations unless the abbreviation is much more
widely used than the long form, such as URL or
IAF. For example:
context("Calculation");

M
Even Header

EPL Naming Conventions

Developing Apama Applications Version 9.10 936

Item Convention Notes and Examples
context("Inventory", true);

Custom
aggregate
functions

lowerCamelCase Custom aggregate functions should be in mixed
case with the first leer lowercase, and the first
leer of each internal word capitalized.
aggregate bounded myCustomAggregate()
 returns integer { aggregateBody }

Events UpperCamelCase Event names should have an initial capital, and
mixed case with the first leer of each internal
word capitalized. Event names should be simple
and descriptive. Use whole words. Avoid acronyms
and abbreviations unless the abbreviation is much
more widely used than the long form, such as URL
or IAF. For example:
event Tick
event SubscriptionConfiguration
event IafEvent

Monitors UpperCamelCase Monitor names should be nouns, initial capital,
in mixed case with the first leer of each internal
word capitalized. Monitor names should be simple
and descriptive. Use whole words. Avoid acronyms
and abbreviations unless the abbreviation is much
more widely used than the long form, such as URL
or IAF. For example:
monitor SubscriptionManager
monitor IafMonitorService

Packages lowercase The prefix of a unique package name is always
wrien in all-lowercase ASCII leers and should
preferably be one of the top-level domain names
(com, edu, gov, mil, net, org) or one of the two-
leer codes identifying countries as specified in ISO
3166-1 alpha-2.

Subsequent components of the package name vary
according to an organization's own internal naming
conventions. Such conventions might specify that
certain directory name components be division,
department, project, machine, or login names. For
example:
com.apamax.accounting

Queries UpperCamelCase Query names should be nouns, initial capital, in
mixed case with the first leer of each internal
word capitalized. Query names should be
descriptive. Use whole words. Avoid acronyms and

M
Odd Header

EPL Naming Conventions

Developing Apama Applications Version 9.10 937

Item Convention Notes and Examples
abbreviations unless the abbreviation is much more
widely used than the long form, such as URL or
IAF. For example:
query FaultyWithdrawalLocations
query CloseInTimeButDistantTransactions

Variables lowerCamelCase Variables and parameters should have initial
lowercase. This is left to your discretion, but
lowercase is preferable. Internal words start with
capital leers.

Variable names should be short yet meaningful.
The choice of a variable name should be mnemonic:
that is, designed to indicate to the casual observer
the intent of its use. One-character variable
names should be avoided except for temporary,
throwaway, variables. Common names for
temporary variables are i, j, k, m, and n for
integers.
integer i;
float myPrice;
MyEvent myEvent;

M
Even Header

Developing Apama Applications Version 9.10 938

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 939

B EPL Keyword Quick Reference

EPL is case-sensitive.

There are a number of identifiers that EPL has reserved for future use. In this release,
if you use a reserved identifier, the correlator logs a warning. For a list of reserved
identifiers, see "List of identifiers reserved for future use" on page 922.

The following table describes EPL keywords and special identifiers. Some keywords
are reserved only in the scope of a stream query in a monitor or in an Apama query.
Where applicable, this is noted in the description. You can use an EPL keyword as an
identifier if you prefix it with a hash symbol (#). See "Escaping keywords to use them as
identifiers" on page 923.

Keyword Description / Syntax and Example

action References or declares an action. Required in each
action declaration.

Also an EPL type.
action action_name ([arglist])returns retType {
do_something >;
}

action notifyUser(){
 log "Event sequence detected.";
}

aggregate Keyword required in the definition of a custom
aggregate function that can be used in a stream query.
aggregate [bounded|unbounded] aggregateName (
 [arglist]) returns retType {
aggregateBody }

aggregate bounded wstddev(decimal x, decimal w)
 returns decimal {
 do something }

Appears just before an event template to indicate that
you want to continue listening for all instances of the
specified event, and not just the first matching event.
all event_template

on all StockTick(*,*):newTick processTick();

all

Appears just before an event template that uses no
other operators and creates a stream rather than an
event listener. This is a stream source template, which
continuously listens for all instances of the specified

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 940

Keyword Description / Syntax and Example
event and inserts all matching events into a newly
created stream.
all event_template_with_no_other_operators

stream<Tick> ticks := all Tick(symbol=”APMA”);

See also: " retain all" on page 953.

Logical operator in an event expression.
on event_template and event_template action;

on A() and B() executeAction();

and

Logical operator in an if statement or other Boolean
expression.
if ordinary_exp and ordinary_exp then block ;

if x and y then {myBlock;}

Specified to import a correlator plug-in, either a Java
class or a C/C++ library.
import "plug-in-library " as identifier ;

import "MyPlugin" as foo;

as

Specified to make event fields with different names
but the same content appear to have the same name
so they can be used as the key in an Apama query.
Replace duration with a retain clause, a within
clause, or both.
event1 () key field1 duration ;
event2 () key field2 as field1 duration ;

CarNum() key road within 1 hour;
Accident() key roadName as road within 1 hour;

Temporal operator in event expressions. Triggers a
timer at a specific time or at repeated intervals.
at(minutes , hours , days_of_month , months ,
days_of_week [,seconds])

on all at(5, 9, *, *, *) success;

at

Identifies the log level in a log statement.
log string [at log_level];

log "Your message here" at INFO;

between In an Apama query, restricts which part of the paern
a within clause or a without clause applies to. Two

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 941

Keyword Description / Syntax and Example
or more identifiers can be specified in a between
clause.
between (identifier1 identifier2 ...)

between (a b)

boolean Boolean type. Value is true or false.
boolean identifier ;

boolean marketOpen;

bounded Optional keyword in a custom aggregate function
definition. Indicates a function that can be used only
with a bounded stream query window.

See the syntax and example for "aggregate" on page
939.

break In a for or while statement, transfers control to the
next statement following the block that encloses the
break statement.
break;

by Part of a partition by or group by clause in a
stream query.

Valid as an identifier outside a stream query.

See the syntax and example for "group by" on page
945 and "partition by" on page 952.

catch Part of a try...catch statement for handling
exceptions.

See the syntax and example for "try" on page 956.

chunk Data type. References a dynamically allocated opaque
object whose contents cannot be seen or directly
manipulated in EPL. Typically used to manage plug-
in data.
chunk identifier ;

chunk complexProductInfo;

completed Event expression that matches only after all other
processing on the matching event is completed.
on all completed event_expression action ;

on all completed A(f < 10.0) {}

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 942

Keyword Description / Syntax and Example

constant Specifies an unchanging literal value.
constant type name := literal ;

constant float GOLDEN := 1.61803398874;

context Type. Enables parallel processing.
context(string name)
context(string name , boolean receivesInput)

context c:=context("test");

continue In a for or while statement, ends execution of
the current iteration and transfers control to the
beginning of the loop.
continue;

currentTime Special EPL variable that returns the current time in
the correlator.
log currentTime.toString();
send TestEvent(currentTime) to "output";

decimal Type. Signed floating point decimal number with d at
the end to distinguish it from a float type.
decimal identifier ;

decimal exactValue;
exactValue := 1.2345d;

day
days

Part of a time literal you can specify in an Apama
query within clause.
within integer day | days

within 3 days

dictionary Type. Stores and retrieves data based on a key.
dictionary <key_type , data_type > identifier;

dictionary <integer, string> myOrders;

die Terminates execution of the monitor instance.
die;

on NewStock (chosenStock.name,
 chosenStock.owner) die;

else Part of an if statement.

See the syntax and example for "if" on page 946.

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 943

Keyword Description / Syntax and Example

emit Publishes an event on the correlator's output queue.
emit event ;

emit newEvent;

emit...to To publish an event to a named channel of the
correlator's output queue, specify to channel. This
statement will be deprecated in a future release. Use
send...to instead.
emit event to channel ;

emit newEvent to "com.apamax.pricechanges";

enqueue Sends an event to the correlator's special queue for
enqueued events. The event is then moved to the back
of the input queue of each public context.
enqueue event ;

enqueue newEvent;

enqueue ...to To send an event to the back of the input queue of
a particular context specify to context_expr. Or,
to send an event to the back of the input queues
for a sequence of contexts, specify to sequence<
context_expr>. This statement will be deprecated in
a future release. Use send...to instead.
enqueue event_expr to context_expr ;
enqueue event_expr to sequence<context_expr >;

enqueue tick to c;

event Declares an event type.

Required in each event type definition.
event event_type {
 [[wildcard] field_type field_name ; |
 constant field_type field_name := literal ; |
 action_definition ...]
}

event StockTick {
 string name;
 float price;
}

every In a stream query, if you specify a within window,
specification of every updates the window every
batchPeriodExpr seconds.

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 944

Keyword Description / Syntax and Example

In a monitor, the every keyword is valid as an
identifier outside a stream query.
every batchPeriodExpr

from v in values
 within 3.0 every 3.0
 select v

If you specify a retain window without also
specifying within, specification of every updates
the window after every batchSizeExpr items are
received.
every batchSizeExpr

from v in values
 retain 3 every 3
 select v

In an Apama query, specify every to aggregate values
over multiple match sets.
find every event :coassignment
 select_or_having_clause

find every A:a
 select avg(a.x):aax { }

false Possible value of a Boolean variable.

find In an Apama query, specifies the paern of interest
and a procedural block to execute when a match set is
found.
find
 [every]
 query_event_pattern
 [where_clause]
 [within_clause]
 [without_clause]
 [select_clause]
 [having_clause] {
 block
 }

find
 Withdrawal:w1 -> Withdrawal:w2
 where w2.country != w1.country {
 log "Suspicious withdrawal: "

 }

float Type. Signed floating point number.
float identifier ;

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 945

Keyword Description / Syntax and Example
float squareRoot;

for Iterates over the members of a sequence and executes
the enclosing statement or block once for each
member.
forStatement ::= for counter
 in sequence block ;

for i in s {
 print i.toString();
}

Introduces a stream query definition. Specifies the
stream, and optionally a window (stream subset), that
the stream query is operating on.
from itemIdentifier in streamExpr
 [windowDefinition]

from t in ticks retain 3

Two consecutive from clauses specify a cross-join,
which combines items from two streams to create one
stream.
from itemIdentifier in streamExpr
 [windowDefinition]
from itemIdentifier in streamExpr
 [windowDefinition]

from x in letters retain 2
 from y in numbers retain 2
 select P(x,y)

from

Specifies a stream listener that obtains items from a
stream and passes them to procedural code.
[listener :=] from streamExpr :
identifier statement

float p;
from t in all Tick(symbol="APMA")
 select t.price : p {
 print "'APMA' price is: " +
 p.toString();
}

group by Controls how a stream query groups data when
generating aggregate output items.

It is valid to use group as an identifier outside a
stream query.
group by groupByExpr [, groupByExpr]...

from t in ticks
 within 60.0 group by t.symbol

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 946

Keyword Description / Syntax and Example
 select mean(t.price)

Filter the items coming out of a stream query's
aggregate projection. In a monitor, valid as an
identifier outside of a stream query.
from t in all Temperature()
 within 60.0
 having count() > 10
 select mean(t.value)

having

In an Apama query find statement, restricts when
procedural code block is executed.
having boolean_projection_expr

find every ATMWithdrawal:w
 having last(w.amount) > THRESHOLD
 * avg(w.amount)
 select last(w.transactionId):tid {
 send SuspiciousTransaction(tid) to
 SuspiciousTxHandler;
 }

hour
hours

Part of a time literal you can specify in an Apama
query within clause.
within integer hour | hours

within 5 hour

if Conditionally executes a statement or block.
ifStatement ::=
 if booleanExpression then block
 | if booleanExpression
 then block else block
 | if booleanExpression
 then block else ifStatement block
 ::= {
statementList
 }

if floatVariable > 5.0 then {
 integerVariable := 1;
} else if floatVariable < -5.0 then {
 integerVariable := -1;
} else {
 integerVariable := 0;
}

import Loads a plug-in into the correlator and makes it
available to your monitor, event, or aggregate
function.
import "plug-in_name " as identifier ;

import "complex_plugin" as complex;

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 947

Keyword Description / Syntax and Example

Identifies range membership in an event expression.
on event_name (event_field in [range])

on all A(m in [0:10])

Part of for statement.

See the syntax and example for "for" on page 945.

in

Part of from statement.

See the syntax and example for "from" on page 945.

inputs In an Apama query, there must be an input definition
for each event type that the query operates on. The
input definitions must be in the inputs section. The
inputs section follows the parameters section,
if there is one, and precedes the required find
statement. See also "Format of input definitions" on
page 97.
inputs {
event_type (event_filter)
 key query_key
 [within_clause]
 [retain_clause]
 [with_unique_clause]
 [time_from_clause wait_clause
 [or_clause]] ;

 [event_type (event_filter)
 key query_key
 [within_clause]
 [retain_clause]
 [with_unique_clause]
 [time_from_clause wait_clause
 [or_clause]] ;]...
}
inputs {
 Transaction() key
 source as txSource,
 dest as txDest
 within PERIOD;
 Acknowledgement() key
 dest as txSource,
 source as txDest
 within PERIOD
}

integer Type. Negative, zero, and positive integers.
integer identifier ;

integer count;

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 948

Keyword Description / Syntax and Example

Combines matching items from two streams to create
one stream. This is an equi-join.

Valid as an identifier outside a stream query.
join itemIdentifier in streamExpr
 [windowDefinition]
 on joinKeyExpr1 equals joinKeyExpr2

from r in priceRequest
 join p in prices
 partition by p.symbol retain 1
 on r.symbol equals p.symbol
 select p.price

join

Built-in method on strings that concatenates a
sequence of strings.
join(sequence<string> s)

sequence<string> s :=
 ["Something", "Completely", "Different"];
 print ", ".join(s);

This prints the following:

"Something, Completely, Different"

key In an Apama query input definition, the key clause
identifies one or more fields in the input event types.
The correlator uses these fields as the query key and
partitions incoming events so that all events with the
same key value are in their own partition.
key field_name [as field_name2] duration
inputs {
 Withdrawal() key cardNumber within (period);
}

largest Reserved for future use.

location Type. An EPL type used to describe rectangular areas
in a two-dimensional, unitless, Cartesian, coordinate
plane. Locations are defined by the float coordinates
of two points x1, y1 and x2, y2 at diagonally opposite
corners of an enclosing boundary rectangle.
location(15.23, 24.234, 19.1232, 28.873)

log Writes messages and accompanying date and time
information to the correlator's log file
log string [at log_level];

log "Your message here" at INFO;

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 949

Keyword Description / Syntax and Example

millisecond
milliseconds
msec

Part of a time literal you can specify in an Apama
query within clause.
within integer millisecond | milliseconds | msec

within 100 msec

minute
minutes
min

Part of a time literal you can specify in an Apama
query within clause.
within integer minute | minutes | min

within 3 min

Declares a monitor. Required in each monitor
definition. Braces enclose event type definitions,
global variable declarations, and actions.
monitor monitor_name {
...
}

monitor SimpleShareSearch {
...
}

monitor

Specifies subscription to a named channel or
unsubscription from a previously subscribed channel.
Subscription/unsubscription statements are located in
action blocks.
monitor.subscribe("channel_name ");
monitor.unsubscribe("channel_name ");

action start_trade()
 {
 // Subscribe to two channels:
 monitor.subscribe(“SOW_Ticks");
 monitor.subscribe(“IBM_Ticks");
 }

new Allocates a new object.
new typeName ;

b := new Foo();

Logical operator in an event expression.
not event_template

on A() and not B() executeAction();

not

Logical operator in an if statement or other Boolean
expression.
if not ordinary_exp then block ;

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 950

Keyword Description / Syntax and Example
if not x then myBlock;

Declares an event listener.
on [all] event_expression action ;

on NewsItem("ACME",*) findStockChange();

on

Part of an equi-join clause.

See the syntax and example for join.

onBeginRecovery If defined, action that the correlator executes when the
correlator restarts.

Note that onBeginRecovery is not a keyword. It is a
special identifier. It is good practice to refrain from
using this identifier for any other purpose.
action onBeginRecovery() { }

action onBeginRecovery() {
 if (timeFormatPlugin.getTime() -
 currentTime > (60.0 * 60.0 * 2)
 then
 { longDowntime:=true;
 ... // do something if
 // downTime was long
 }
}

onConcludeRecovery If defined, action that the correlator executes when the
correlator finishes recovery.

Note that onConcludeRecovery is not a keyword. It is
a special identifier. It is good practice to refrain from
using this identifier for any other purpose.
action onConcludeRecovery() { }

action onConcludeRecovery() {
 initiateListener(); // go back
 //to normal
}

ondie If defined, action that the correlator executes when a
monitor instance terminates.

Note that ondie is not a keyword. It is a special
identifier. It is good practice to refrain from using this
identifier for any other purpose.
action ondie() { }

action ondie() {
 log "sub-monitor terminating for "
 + myId;

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 951

Keyword Description / Syntax and Example
 route InternalError("Foo");
}

onload Name of the action that the correlator executes when
you inject a monitor. Every monitor must declare an
onload action.

Note that onload is not a keyword. It is a special
identifier. It is good practice to refrain from using this
identifier for any other purpose.
action onload(){ ... }

action onload() {
 on all StockTick(*,*):newTick {
 processTick();
 }
}

onunload If defined, action that the correlator executes when the
last instance of a particular monitor terminates.

Note that onunload is not a keyword. It is a special
identifier. It is good practice to refrain from using this
identifier for any other purpose.
action onunload() { };

action onunload() {
 route LastMonitorTerminating();
}

optional Reserved for future use.

Logical operator in an event expression.
on event_template or event_template action ;

on A() or B() executeAction();

or

Logical operator in an if statement or other Boolean
expression.
if ordinary_exp or ordinary_exp then block ;

if x or y then myBlock;

package Mechanism for adding context to monitor and event
names. Monitors and global events in the same
package must each have a unique name within the
package.
package identifier ;

package com.apamax.orders;

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 952

Keyword Description / Syntax and Example

parameters If an Apama query specifies the optional parameters
section, it must be the first section in the query.
Parameters must be integer, float, string or
boolean types. Specify one or more data_type
parameter_name pairs.
parameters {
 data_type parameter_name ;
 [data_type parameter_name ;]...
}

parameters {
 integer threshold;
 float period;
}

partition by Effectively creates a separate window for each
encountered distinct value of the partition by
expression.

partition is valid as an identifier outside a stream
query.
partition by partitionByExpr
 [, partitionByExpr]...

from t in all Tick()
 partition by t.symbol
 retain 10 with unique t.price
 select t.price

persistent At the beginning of a monitor declaration, indicates
that you want that monitor to be persistent.
persistent monitor string

persistent monitor ManageOrders

print Writes textual messages followed by a newline to the
correlator's standard output stream — stdout.
print string ;

print "Your message here.";

query Declares a query. Required in each query definition.
Braces enclose the optional parameters section,
required inputs section, required find statement,
and optional action definitions.
query name {
 [parameters { parameters_block }]
 inputs { inputs_block }
 find pattern block
 [action_definition ...]
}

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 953

Keyword Description / Syntax and Example
query FraudulentWithdrawalDetection2 {
 inputs {
 Withdrawal() key userId retain 3;
 }
 find Withdrawal:w1 -> Withdrawal:w2
 where w1.city != w2.city {
 log "Suspicious withdrawal: "
 + w2.toString() at INFO;
 }
}

retain In an Apama query input definition or in a stream
query, specifies that the window contains only the last
n events of this type that have been received.
retain windowSizeExpr

inputs {
 Withdrawal() key userId retain 3;
 }

from v in values
 retain 10
 select mean(v)

retain all Specifies a stream query window that aggregates
values calculated over the lifetime of the query. This is
an unbounded window.
retain all

from v in values
 retain all
 select mean(v)

return In an action body, specifies the value to return from
that action. Required if an action returns a value.
returns typeToReturn
return retValue

action complexAction(
 integer i, float f) returns string {
 // do something
 return "Hello";
}

returns In an action declaration, specifies the type of value
returned by an action. Required if an action returns a
value.

Also used in custom aggregate function declarations
and when naming action types.

See previous example.

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 954

Keyword Description / Syntax and Example

route Sends an event to the front of the current context's
input queue.
route event ();

route StockTick();

rstream In a query with a window definition and a simple
projection, indicates that you want the query to
output its remove stream, that is, the items it removes
from the window.

Specification of rstream in an aggregate projection is
not useful so it is not allowed.

Valid as an identifier outside a stream query.
select [rstream] selectExpr

from i in inputs
 retain 2
 select rstream i;

second
seconds
sec

Part of a time literal you can specify in an Apama
query within clause.
within integer second | seconds | sec

within 3 sec

Identifies the item(s) you want the query to output.

In a monitor, this keyword is valid as an identifier
outside a stream query.
select [rstream] selectExpr

from v in values
 retain 10
 select mean(v);

select

In an Apama query, a select clause aggregates event
field values in order to find data based on many sets
of events. A paern that aggregates values specifies
the every modifier in conjunction with select and/or
having clauses.
select projection_expr :identifier

find every ATMWithdrawal:w
 having last(w.amount) > THRESHOLD * avg(w.amount)
 select last(w.transactionId):tid {
 send SuspiciousTransaction(tid) to
 SuspiciousTxHandler;
}

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 955

Keyword Description / Syntax and Example

send...to Sends an event to the specified channel, context, or
sequence of contexts. Contexts and external receivers
subscribed to that channel receive the event.
send event_expr to channel ;
send event_expr to context ;
send event_expr to sequence<channel >;

send tick to "ticks-SOW";

sequence Type. Ordered set or array of entries whose values are
all of the same primitive or reference type.
sequence<data_type > identifier ;

sequence<float> myPrices;

smallest Reserved for future use.

spawn Creates a copy of the currently executing monitor
instance.
spawn action ([parameter_list]);

action onload() {
 spawn forward("a", "channelA");
 spawn forward("b", "channelB");
}

spawn...to To create a copy of the currently executing monitor
instance in the specified context specify spawn with
tocontext_expr.
spawn action ([arg_list]) to context_expr ;

spawn doCalc(cal) to context(“Calculation”);

static Reserved for future use.

stream Type. Refers to a stream of items. An item can be
a boolean, decimal, float, integer, string,
location, or event type.
stream<type > name ;

stream<decimal> prices;

streamsource Reserved for future use.

string Type. Text string.
string identifier ;

string message;

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 956

Keyword Description / Syntax and Example

then Part of conditional if statement.

See the syntax and example for "if" on page 946.

throw Reserved for future use.

to Indicates target of an emit, enqueue, send or spawn
operation.

See examples for "emit...to" on page 943,
"enqueue...to" on page 943, send...to, and
"spawn...to" on page 955.

true Possible value of a Boolean variable.

try Part of a try...catch statement for handling
exceptions.
try block1
 catch(Exception variable) block2
try {
 return float.parse(prices[fxPair]);
 } catch(Exception e) {
 return 1.0;
 }

unbounded Optional keyword in a custom aggregate function
definition. Indicates a function that can be used with
only an unbounded (retain all) stream query
window.

See the syntax and example for "aggregate" on page
939.

unique Part of the optional with unique clause in a stream
query.

See the syntax and example for "with unique" on page
958.

unmatched Except for completed and unmatched event
expressions, the event is not a match with any event
expression currently within the context.
on all unmatched event_expression [:coassignment]
action ;

on all unmatched Tick():tick processTick();

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 957

Keyword Description / Syntax and Example

using In a monitor, an Apama query, or a stream query,
allows use of an event type or a custom aggregate
function that is defined in another package.
using packageName .{aggregateName |eventName };

using com.apamax.custom.myAggregateFunction;

Temporal operator in an event expression. Inserts
a pause in an event expression. Once activated, a
wait expression becomes true automatically once the
specified amount of time passes.
wait(float)

on A() -> wait(10.0) -> C() success;

wait

In an Apama query, requires an amount of time
to pass before or after the event paern. The value
must be a float or time literal. Typically used in
conjunction with a without clause to detect the
absence of an event before or after another event.
wait(value):identifier
find wait(1 minute):previous
 -> DoorOpened:d without Unlock:u

Filter the items in the stream query's window or the
items that result from a join operation.

In a monitor, valid as an identifier outside a stream
query.
where booleanExpr

from t in ticks
 retain 100 where t.price*t.volume>threshold
 select mean(t.price)

where

In an Apama query, a where clause filters which
events cause a match set. You can specify a find where
clause that applies to the event paern and you can
also specify a without where clause that is part of a
without clause. Any where clauses that you want to
apply to the event paern must precede any within
or without clauses.
where booleanExpr

find LoggedIn:lc -> OneTimePass:otp
 where lc.user = otp.user
 within 30.0 {
 emit AccessGranted(lc.user);
 }

M
Even Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 958

Keyword Description / Syntax and Example

while Repeatedly evaluates a boolean expression and
executes an enclosed statement or block as many
times as the expression result is found to be true.
whileStatement ::= while booleanExpression
 block

while integerVariable > 10 {
 integerVariable := integerVariable – 1;
 on StockTick(
 "ACME", integerVariable) doAction(); }

wildcard In an event type definition, indicates a parameter that
you will never specify as a match criteria in an event
template.
wildcard param_type param_name ;

event StockTick {
 string name;
 float price;
 wildcard string exchange;
}

with unique In a query or stream query, if there is more than one
item in the window that has the same value for the
key identified by keyExpr, only the most recently
received item is part of the result set.

with and unique are valid as identifiers outside a
query or stream query.
with unique keyExpr

from p in pairs
 retain 3 with unique p.letter
 select sum(p.number)

Temporal operator in an event expression. Specifies a
time limit for the event listener to be active.
within(float)

on A() -> B() within(30.0) notifyUser();

within

In a stream query, specifies a window that
contains only those items received in the last
windowDurationExpr seconds.
within windowDurationExpr

from v in values
 within 20.0
 select mean(v);

M
Odd Header

EPL Keyword Quick Reference

Developing Apama Applications Version 9.10 959

Keyword Description / Syntax and Example

In an Apama query, a within clause sets the time
period during which events in the match set must
have been added to their windows. The value of
durationExpression must be a float literal or a
time literal. A float literal always indicates a number
of seconds.
within durationExpression
 [between (identifer1 identifier2 ...)]

find Withdrawal:w1 -> Withdrawal:w2
 where w2.country != w1.country
 within 1 hour {
 log "Suspicious withdrawal: "
 + w2.toString() at INFO;
 }

without In an Apama query find paern, a without clause
specifies that the presence of a particular event type
prevents a match. Optionally, you can specify a where
clause that filters which instances of the specified
event type prevent a match and/or a between clause
to restrict when the exclusion applies.
without typeId : coassignmentId
 [where boolean_expression]
 [between (identifier1 identifier2 ...)]

find OuterDoorOpened:od -> InnerDoorOpened:id
 where od.user = id.user
 without SecurityCodeEntered:sce
 where od.user = sce.user {
 emit Alert("Intruder "+id.user);
}

Logical exclusive or operator that can apply to an
event template.
xor event_template

on A() xor B() notifyUser();

xor

Logical operator in an if statement or other Boolean
expression.
if ordinary_exp xor ordinary_exp then block ;

if x xor y then myBlock;

Escapes names of variables that clash with EPL
keywords.
#identifier

print f.#integer.toString();

M
Even Header

Developing Apama Applications Version 9.10 960

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 961

C EPL Methods Quick Reference

This reference lists all EPL methods. It is meant as a concise reminder of the method
signatures for convenient printing and viewing. For more detailed information on these
methods, see "Types" on page 767, which is part of the EPL Reference.

action methods

The only operation that you can perform on an action variable is to call it. You do this
in the normal way by passing a set of parameters in parentheses after an expression
that evaluates to the action variable. For an example and additional details, see "Using
action type variables" on page 276.

For more information on the action type, see "action" on page 786.

boolean methods

Method Result

canParse(string) Returns true if the string argument can be successfully
parsed.

parse(string) Returns the boolean instance represented by the string
argument.

toString() Returns a string representation of the boolean.

For more information on the boolean type, see "boolean" on page 768.

Channel methods

Method Result

canParse() Returns true if the string argument can be successfully
parsed to create a Channel object.

clone() Returns a new Channel that is an exact copy of the
Channel the clone() method is called on. The original
content of the Channel is copied into the new Channel.

empty() Returns true if the Channel object contains an empty
context.

M
Even Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 962

Method Result

parse() Returns the Channel instance represented by the string
argument.

toString() Returns a string representation of the Channel object.

For more information on the Channel type, see "Channel" on page 788.

chunk methods

Method Result

clone() Returns a new chunk that is an exact copy of the chunk
that clone() was called on.

empty() Returns true if the chunk is empty.

getOwner() Returns a string that contains the name of the
correlator plug-in that the chunk belongs to.

For more information on the chunk type, see "chunk" on page 789.

context methods

Method Result

current() Returns a context object that is a reference to the
current context.

getId() Returns an integer that is the ID of the context.

getName() Returns a string that is the name of the context.

isPublic() Returns a boolean true if the context is public.

toString() Returns a string that contains the properties of the
context.

In addition, the current() static method returns a reference to the current context.

For more information on the context type, see "context" on page 790.

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 963

decimal and float methods

Unless noted otherwise, if you call a method on a decimal type, the return value is a
decimal, and if you call the method on a float type, the return value is a float.

Method Result

abs() Returns the absolute value.

acos() Returns the inverse cosine.

acosh() Returns the inverse hyperbolic cosine.

asin() Returns the inverse sine in radians.

asinh() Returns the inverse hyperbolic sine.

atan() Returns the inverse tangent.

atan2(y) Returns the two-parameter inverse tangent.

atanh() Returns the inverse hyperbolic tangent.

bitEquals(decimal)
bitEquals(float)

Returns true if the value it is called on and the
value passed as an argument to the method are the
same. The value the method is called on and the
argument to the method must both be decimal
types or must both be float types.

canParse(string) Returns true if the argument can be successfully
parsed.

cbrt() Returns the cube root.

ceil() Returns the smallest possible integer that is
greater than or equal to the operand.

cos() Returns the cosine.

cosh() Returns the hyperbolic cosine.

erf() Returns the error function.

M
Even Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 964

Method Result

exp() Returns e to the power x or ex, where x is the
value of the decimal or float and where e is
approximately 2.71828183.

exponent() When called on a float value: returns the
exponent where x = mantissa*2exponent

assuming 0.5 <= |mantissa| < 1.0.

When called on a decimal value: returns the
exponent where x = mantissa*10exponent

assuming 0.1 <= |mantissa| < 1.0.

floor() Returns the largest possible integer that is less
than or equal to the value the method is called on.

fmod(y) Returns mod y in exact arithmetic.

formatFixed(integer) Returns a string representation of the value the
method is called on where the value is rounded
to the number of decimal places specified in the
argument.

formatScientific(integer)Returns a string representation of the value the
method is called on where the value is truncated
to the number of significant figures specified in the
argument and formaed in Scientific Notation.

fractionalPart() Returns the fractional component.

gammal() Returns the logarithm of the gamma function.

ilogb() Returns an integer that is the binary exponent of
non-zero operand.

integralPart() Returns an integer that is the integral part of a
floating point value. Similar to floor() which
rounds down, and ceil() which rounds up.
integralPart() rounds towards zero.

isFinite() Returns true if and only if the value it is called on
is not +Infinity, -Infinity, or NaN.

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 965

Method Result

isInfinite() Returns true if and only if the value it is called on
is +Infinity or -Infinity.

isNaN() Returns true if and only if the value it is called on
is NaN.

ln() Returns the natural log.

log10() Returns the log to base 10.

mantissa() When called on a float value: returns a mantissa
where x = mantissa*2exponent assuming that 0.5
<= |mantissa| < 1.0.

When called on a decimal value: returns a
mantissa where x = mantissa*10exponent

assuming that 0.1 <= |mantissa| < 1.0.

max(decimal, decimal)
max(float, float)

Returns the value of the larger operand. You can
call this method on the decimal or float type, or
on an instance of a decimal or float type.

min(decimal, decimal)
min(float, float)

Returns the value of the smaller operand. You can
call this method on the decimal or float type, or
on an instance of a decimal or float type.

nextafter(y) Returns the next distinct floating-point number
after the operand that is representable in the
underlying type in the direction toward y.

parse(string) Returns the decimal or float instance
represented by the string argument.

pow(decimal)

pow(float)

Returns x to the power y (where y is the argument)
or xy.

rand() Returns a random value from 0.0 up to (but not
including) the value the method was invoked on.

round() Rounds to the nearest integer using banker's
rounding.

M
Even Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 966

Method Result

scalbn(integer) When called on a float value: returns x*2n, where
n is of integer type.

When called on a decimal value: returns x*10n,
where n is of integer type.

sin() Returns the sine.

sinh() Returns the hyperbolic sine.

sqrt() Returns the positive square root.

tan() Returns the tangent.

tanh() Returns the hyperbolic tangent.

toDecimal() Returns a decimal representation of the float.

toFloat() Returns a float representation of the decimal.

toString() Returns a string representation.

For more information on the decimal type, see "decimal" on page 769.

For more information on the float type, see "float" on page 770.

dictionary methods

Method Result

add(key, item) Adds an entry to the dictionary.

canParse(string) When the item type is parseable: returns true if the
string argument can be successfully parsed to create
a dictionary object.

clear() Sets the size of the dictionary to 0, deleting all
entries.

clone() Returns a new dictionary that is an exact copy.

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 967

Method Result

getOr(key,
alternative)

Returns the item that corresponds to the specified
key. If the specified key is not in the dictionary, the
getOr() method returns alternative.

getOrDefault(key) Retrieves an existing item by its key, or returns a
default instance of the dictionary's item type if the
dictionary does not contain the specified key.

getOrAdd(key,
alternative)

Retrieves an existing item by its key, or adds the
specified key to the dictionary with alternative as
its value if it is not already present and also returns
the specified alternative.

getOrAddDefault(key) Retrieves an existing item by its key or, if it is not
already present, adds the specified key with a default
instance of the dictionary's item type and returns that
instance.

hasKey(key) Returns true if a key exists within the dictionary.

keys() Returns a sequence of the dictionary's keys sorted in
ascending order.

parse(string) When the item type is parseable: returns the
dictionary object represented by the string
argument.

remove(key) Removes an entry by key.

size() Returns as an integer the number of elements in the
dictionary.

toString() Converts the entire dictionary in ascending order of
key values to a string.

values() Returns a sequence of the dictionary's items sorted in
ascending order of keys.

[key] Retrieves or overwrites an existing item by its key, or
creates a new item.

For more information on the dictionary type, see "dictionary" on page 791.

M
Even Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 968

event methods

Method Result

canParse(string) On events that are parseable: returns true if the string
argument can be successfully parsed.

clone() Returns a new event that is an exact copy.

getFieldNames() Returns a sequence of strings that contain the field
names of an event type.

getFieldTypes() Returns a sequence of strings that contain the type
names of an event type's fields.

getFieldValues() Returns a sequence of strings that contain the field
values of an event.

getName() Returns a string whose value is an event's type name.

getTime() Returns a float that indicates a time expressed in
seconds since the epoch, January 1st, 1970.

isExternal() Returns true if the event was generated by an external
source.

parse(string) On events that are parseable: returns the event object
represented by the string argument.

toString() Returns a string representation of the event.

For more information on the event type, see "event" on page 796.

Exception methods

The Exception type is defined in the com.apama.exceptions namespace.

Method Result

getMessage() Returns a string that contains the exception
message.

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 969

Method Result

getStackTrace() Returns a sequence of StackTraceElement
objects that represent the stack trace for when the
exception was first thrown.

getType() Returns a string that contains the exception type.

toString() Returns a string that contains the exception
message and the exception type.

toStringWithStackTrace() Returns a string that contains the exception
message, the exception type, and the stack trace
elements.

For more information on the Exception type, see "Exception" on page 800.

integer methods

Method Result

abs() Returns as an integer the absolute value.

canParse(string) Returns true if the argument can be successfully
parsed.

getUnique() Generates a unique integer in the scope of the
correlator. This is a type method as well as an
instance method.

max(integer, integer) Returns as an integer the value of the larger
operand. You can call this method on the integer
type or on an instance of an integer type.

min(integer, integer) Returns as an integer the value of the smaller
operand. You can call this method on the integer
type or on an instance of an integer type.

parse(string) Returns the integer instance represented by the
argument. You can call this method on the integer
type or on an instance of an integer type.

pow(integer) Returns as an integer the value of the operand to
the power of the argument.

M
Even Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 970

Method Result

rand() Returns a random integer value from 0 up to (but
not including) the value of the operand.

toDecimal() Returns a decimal representation.

toFloat() Returns a float representation.

toString() Returns a string representation.

For more information on the integer type, see "integer" on page 777.

listener methods

Method Result

quit() Immediately terminates the listener.

For more information on the listener type, see "listener" on page 803.

location methods

Method Result

canParse(string) Returns true if the argument can be successfully
parsed.

clone() Returns a new location that is an exact copy.

expand(float) Returns a new location expanded by the value of the
parameter in each direction.

inside(location) Returns true if the location is entirely enclosed by the
space defined by the parameter.

parse(string) Returns the location instance represented by the
argument.

toString() Returns a string representation.

For more information on the location type, see "location" on page 803.

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 971

monitor methods

Method Result

onload() Invoked immediately after a monitor has been loaded.

ondie() Invoked when a monitor instance terminates.

onunload() Invoked after all instances of a monitor have terminated.

onBeginRecovery() Invoked at the start of recovery of a persistence-enabled
correlator.

onConcludeRecovery() Invoked at the end of recovery of a persistence-enabled
correlator.

For more information on monitors, see "Monitors" on page 845 and "Simple actions" on
page 849.

sequence methods

Method Result

append(item) Appends the item to the end of the operand.

appendSequence(sequence) Appends the sequence to the end of the operand.

canParse(string) Returns true if the string argument can be
successfully parsed to create a sequence object.

clear() Sets the size of the sequence to 0, deleting all
entries.

clone() Returns a new sequence that is an exact copy.

indexOf(item) Returns as an integer the location of the first
matching item.

insert(item, integer) Inserts the item specified in the location
indicated by the second argument.

parse(string) Returns the sequence object represented by the
string argument.

M
Even Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 972

Method Result

remove(integer) Removes the n th element in the sequence, moves
all the elements above it down, which reduces
the size by 1. The first element in a sequence is at
location 0.

reverse() Reverses the order of the items in the sequence.

setCapacity(integer) Sets the amount of memory initially allocated for
the sequence.

setSize(integer) Sets the number of elements in the sequence.

size() Returns as an integer the number of elements in
the sequence.

sort() Sorts the sequence in ascending order.

toString() Converts the sequence to a string.

[integer] Retrieves or overwrites the sequence entry
located at the index specified. EPL sequence
elements are indexed from 0.

For more information on the sequence type, see "sequence" on page 805.

StackTraceElement methods

The StackTraceElement type is defined in the com.apama.exceptions namespace.

Method Result

getActionName() Returns a string that contains the name of the action in
which the exception occurred.

getFilename() Returns a string that contains the name of the file that
contains the code in which the exception occurred.

getLineNumber() Returns an integer that indicates the line number of the
code in which the exception occurred.

getTypeName() Returns a string that indicates the type (event,
aggregate, monitor) that contains the action in which the
exception occurred.

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 973

Method Result

toString() Returns a string whose format is
"typeName.actionName() filename:linenumber".

For more information on the StackTraceElement type, see "StackTraceElement" on
page 809.

stream methods

Method Result

clone() Returns the original stream. It does not clone it.

quit() Causes a stream listener to terminate.

For more information on the stream type, see "stream" on page 809.

string methods

Method Result

canParse(string) Returns true if the string argument can be
successfully parsed.

clone(string) Returns a reference to the specified string.

find(substring) Returns an integer indicating the index position
of the argument. EPL string indices start at 0.

findFrom(substring,
fromIndex)

Behaves like find(), but starts searching at
fromIndex.

intern() Marks the string as interned. Subsequent
incoming events that contain a string that is
identical to an interned string use the same
string object.

join(sequence<string>
s)

Concatenates the strings in s using the operand
as a separator.

length() Returns an integer indicating the length of the
string.

M
Even Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 974

Method Result

ltrim() Returns a string where all whitespace
characters at the beginning have been removed.

parse(string) Returns the string value represented by the
string argument without enclosing that value in
quotation marks. You can call this method on the
string type or on an instance of a string type.

replaceAll(string1,
string2)

Makes a copy of the string, replaces instances of
string1 with instances of string2 and returns
the revised string.

rtrim() Returns a string where all whitespace
characters at the end have been removed.

split(string) Returns a sequence of strings that represent the
argument split at occurrences of the operand
string.

substring(integer,
integer)

Returns the substring indicated by the integer
arguments.

toBoolean() Returns true if the string is "true".

toDecimal() Returns a decimal representation of the string.

toFloat() Returns a float representation of the string.

toInteger() Returns an integer representation of the string.

toLower() Returns an all-lowercase string representation.

toUpper() Returns an all-uppercase string representation.

tokenize(string) Categorizes each character in the argument as
either part of a delimiter (the character appears in
the operand string) or part of a token (any other
character), divides the argument into tokens
separated by delimiters, and returns the tokens as
a sequence of strings.

M
Odd Header

EPL Methods Quick Reference

Developing Apama Applications Version 9.10 975

Method Result

toString() Returns the contents of the string value, exactly
the same as using the string directly.

For more information on the string type, see "string" on page 780.

M
Even Header

Developing Apama Applications Version 9.10 976

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 977

D EPL Streams: A Quick Tour

■ About the Apama event stream processing model .. 978

■ Example events for stream queries ... 979

■ Processing events using streams .. 980

■ Common stream query patterns .. 989

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 978

Apama EPL allows code authors to express event-driven programs using natural event-
processing constructs.

Note: This quick tour assumes that you are using monitors, and not Apama queries,
in your Apama application.

An EPL program consists of a set of interacting monitors that receive, process and
emit events. Monitor instances are self-contained, communicating with other monitor
instances via events. An Apama application can thus be viewed as a dynamic network
of interacting monitor instances communicating via events. Why dynamic? Because the
application creates and destroys monitor instances in response to the external events
received; similarly, the monitor instances dynamically subscribe and unsubscribe to
particular event paerns or complex event expressions as needed. Thus, at any given
instant, the application has only the monitor instances it needs and is only listening for
the events of interest at that time. This approach makes Apama a highly efficient and
responsive tool for complex event processing.

Complex event processing systems come in different flavors, one of which is event
stream processing. The event stream processing approach is similar to the Apama
approach, but tends to involve networks that are much less dynamic. These networks
are constructed from streams and processing nodes, where a processing node is typically
a query, defined using declarative, relational language elements.

Event stream processing is useful in cases where one or more flows of raw events are to
be converted into a set of "refined" flows of added-value events. For these operations,
the use of event stream processing language elements allows these operations to be
expressed more clearly and concisely than when using procedural language constructs.
For this reason, Apama EPL includes event stream processing elements.

The event stream processing constructs in EPL maintain the Apama ethos of operational
responsiveness. Thus you will find that Apama stream queries are not static and that
they are closely integrated with the rest of the EPL language. Application developers
can write code to add and remove stream queries as required, and the streams
language elements allow the values controlling the stream query behavior to be varied
dynamically.

For complete information about using Apama stream queries, see "Working with
Streams and Stream Queries" on page 205.

About the Apama event stream processing model
The Apama event stream processing model consists of a network of streams and
processing nodes; a processing node whose logic is expressed in terms of a relational
query expression is a stream query.

The diagram below shows an example of a stream processing network.

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 979

The network consists of five streams1 and three stream queries. Each stream query has
one or more input streams, from which it receives events, and one output stream, to
which it transmits events.

In Apama, each event stream has a single generator but can have multiple consumers.
Each stream or stream query is created within and owned by an Apama monitor
instance. The streams and stream queries within a monitor instance are used to convert
the events received by the monitor instance into added-value events. These added-value
events are then available for use by standard EPL actions.

1In Apama, the term "stream" is used to refer both to the channel through which the
events flow and also to the events flowing through the channel. Some members of the
CEP fraternity use the term event channel to refer to the former and event stream to refer
to the laer. In Apama, the term channel is already in use and so stream is used to refer
to the "event channels" connecting stream queries.

Example events for stream queries
The following events are used by the stream query examples:
event Temperature {
 string sensorId;
 float temperature;
}

event Pressure {
 string sensorId;
 float pressure;
}

event TemperatureAndPressure {
 string sensorId;
 float temperature;
 float pressure;
}

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 980

Processing events using streams
To receive events directly into a listener action, an on statement is used, for example:
01. Temperature t;
02. on all Temperature(sensorId="S001"):t { print t.toString(); }

If, instead, the events are to be received into a stream, a stream assignment statement is
used:
01. stream<Temperature> temperatures := all Temperature(sensorId="S001");

This statement declares the stream variable temperatures, which is used to refer
to a stream of Temperature events. On the right side of the assignment, the all
Temperature(sensorId="S001") expression is a stream source template. A stream
source template is an event template preceded by the all keyword; it uses no other
event operators. It creates a stream that contains events that are received by the monitor
instance and that match the event template.

The following code shows how the events in the stream are processed.
01. Temperature temperature;
02. stream<Temperature> temperatures := all Temperature(sensorId="S001");
03. from t in temperatures retain 3
04. select Temperature("S001", mean(t.temperature)) : temperature {
05. print temperature.toString();
06. }

A from statement is similar to an on statement in form. It consists of three parts:

A stream query
from t in temperatures retain 3
select Temperature("S001", mean(t.temperature))

Followed by a co-assignment
: temperature

Followed by a listener action
{ print temperature.toString(); }

In this example, the stream query processes events from the temperatures stream
and computes the average temperature value of the three most recent events. A new
output event is created for each new input event, having the literal value "S001" for the
sensorId field and the evaluated average temperature value for the temperature field.
Each output event, in turn, is co-assigned to the variable temperature and this is used
in the print statement, within the listener action.

The average temperature value is calculated using the built-in2 mean() aggregate
function.

The following topics provide examples of using the streams language elements.

2 Apama provides a number of commonly used aggregates as predefined built-in
aggregates. It is also possible to create user-defined custom aggregates.

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 981

Creating a stream network
The code example below implements the simple stream network illustrated in "About
the Apama event stream processing model " on page 978. The code illustrates that
stream queries can be used in from statements and also on the right side of a stream
assignment. Executing a stream assignment statement does two things:

Creates the defined query within the stream network.

Updates the stream variable (on the left side of the assignment) to refer to the stream
query's output stream.

Up to now, streams have been referred to as event streams. In Apama, the type of a
stream need not be an event; it is possible to create streams of simple types such as
decimal, float, integer, boolean, and string.3

01. TemperatureAndPressure tp;
02. stream<Temperature> temperatures := all Temperature(sensorId="T001");
03. stream<Pressure> pressures := all Pressure(sensorId="P001");
04. stream<float> meanTs := from t in temperatures
05. retain 3 select mean(t.temperature);
06. stream<float> meanPs := from p in pressures
07. retain 3 select mean(p.pressure);
08. from t in meanTs retain 1 from p in meanPs retain 1
09. select TemperatureAndPressure("S001",t,p) : tp {
10. print tp.toString();
11. }

Line 8 of the code example shows one method for joining two streams. The stream
query contains two from clauses, where each from clause specifies that the most recent
item in the stream is retained. A query with two from clauses identifies that a cross-join
operation should be performed between the two source item sets. In the code example,
when a new item is available on the meanPs stream, it is joined with the most recent
item on the meanTs stream, and when a new item is available on the meanTs stream, it is
joined with the most recent item on the meanPs stream.

3 It is for this reason that, in Developing Apama Applications in EPL, and in other
documentation, the contents of streams are referred to as items, not as events.

Using inline stream source template expressions
The previous code example can be re-wrien in a more concise format by writing the
stream source template expressions inline, as illustrated below.
01. TemperatureAndPressure tp;
02. stream<float> meanTs := from t in all Temperature(sensorId="T001")
03. retain 3 select mean(t.temperature);
04. stream<float> meanPs := from p in all Pressure(sensorId="P001")
05. retain 3 select mean(p.pressure);
06. from t in meanTs retain 1 from p in meanPs retain 1
07. select TemperatureAndPressure("S001",t,p) : tp {
08. print tp.toString();
09. }

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 982

Using compound stream queries
The complete stream network for the example presented in the previous topics can be
expressed as a single compound query:
01. TemperatureAndPressure tp;
02. from t in
03. from t in all Temperature(sensorId="T001")
04. retain 3 select mean(t.temperature)
05. retain 1
06. from p in
07. from p in all Pressure(sensorId="P001")
08. retain 3 select mean(p.pressure)
09. retain 1
10. select TemperatureAndPressure("S001",t,p) : tp {
11. print tp.toString();
12. }

Note that the item identifiers, t and p, in the from clauses for the inner queries use the
same names as those in the outer queries. This does not cause any ambiguity because
the scope of the item identifier in the inner query is restricted to the inner query,
and within the inner query hides the name used in the outer query. Hence, the item
identifier, t, in the inner query refers to Temperature events from the stream all
Temperature(sensorId="T001"), whereas the item identifier, t, in the outer query
refers to the float items produced by the inner query. Using the same identifier is a
maer of style; different identifiers could be used if preferred (for example, avgT and t).

Using dynamic values in stream queries
One of the great features of Apama stream queries is that the values used in the stream
query expression can be dynamically changed throughout the lifetime of the query. This
is useful (for example) for seing dynamic thresholds or for changing the aggregation
period of a query. The code examples below illustrate these cases.
01. TemperatureAlert alert;
02. from t in all Temperature(sensorId="T001") where t.temperature > threshold
03. select TemperatureAlert(t.sensorId,t.temperature): alert { emit alert; }

01. TemperatureRange range;
02. from t in all Temperature(sensorId="T001") within period every period
03. select TemperatureRange(t.sensorId,min(t.temperature),max(t.temperature)):
04. range {
05. print range.toString();
06. }

In the code examples above, if the variables threshold and period are local variables4,
then the value used by the queries are the values of the local variables when the from
statement is executed.5 Even if the local variable is assigned a new value at some
later point in the program execution, the values used by the queries will be constant
throughout the lifetime of the query.

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 983

However, if global variables6 or event member variables7 are used and, at a later time,
the values of these variables are changed, then these value changes will affect the
behavior of the stream queries. The full code examples for the dynamic use-cases are
given below.
01. event Temperature { string sensorId; float temperature; }
02. event TemperatureAlert { string sensorId; float temperature; }
03. event ChangeThreshold { float temperature; }

01. monitor TemperatureAlertMonitor {
02. float threshold := 60.0; // a global variable is used
03. action onload() {
04. TemperatureAlert alert;
05. from t in all Temperature(sensorId="T001")
06. where t.temperature > threshold
07. select TemperatureAlert(t.sensorId,t.temperature): alert { emit alert; }
08. ChangeThreshold ct;
09. on all ChangeThreshold():ct { threshold := ct.temperature; }
10. }
11. }

01. event Temperature { string sensorId; float temperature; }
02. event TemperatureRange { string sensorId; float minTemperature;
03. float maxTemperature; }
04. event ChangePeriod { float period; }

01. using com.apama.aggregates.max; using com.apama.aggregates.min;
02. event TemperatureRangeService {
03. float period; // an event member variable is used
04. action init(string id, float _period) {
05. period := _period;
06. TemperatureRange range;
07. from t in all Temperature(sensorId=id) within period every period
08. select TemperatureRange(id,min(t.temperature),max(t.temperature)):
09. range {
10. print range.toString();
11. }
12. }
13. action setPeriod(float _period) { period := _period; }
14. }
15. monitor UsesTemperatureRangeService {
16. action onload() {
17. TemperatureRangeService trs := new TemperatureRangeService;
18. trs.init("S001",60.0);
19. ChangePeriod cp;
20. on all ChangePeriod ():cp { trs.setPeriod(cp.period); }
21. }
22. }

4 A local variable is defined within the body of an action.

5 This is exactly the same mechanism as is used when creating event listeners (that is,
when using on statements).

6 When the stream query is defined within a monitor action.

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 984

7 When the stream query is defined within an event action.

Using stream variables
Because streams are values in EPL, you can pass stream references between the code
elements within a monitor. This is useful when writing services. A common service (that
is, a service used by two or more monitors) is normally implemented using a service
event. This event contains the logic to implement the service or to access an external
service. A stream can be used as part of the interface to the service: the stream and
stream query specification is encapsulated within the service event code and a reference
to the stream created by this code is returned, from the service action to the client
monitor code, as the return value of an action call. This is illustrated in the following
code example.
01. event Temperature { string sensorId; float temperature; }
02. event TemperatureRange { string sensorId; float minTemperature;
03. float maxTemperature; }

01. using com.apama.aggregates.max; using com.apama.aggregates.min;
02. event TemperatureRangeService {
03. float period;
04. action init(string id, float _period) returns stream<TemperatureRange> {
05. period := _period;
06. return
07. from t in all Temperature(sensorId=id) within period every period
08. select TemperatureRange(id,min(t.temperature),max(t.temperature));
09. }
10. }
11. monitor UsesTemperatureRangeService {
12. action onload() {
13. TemperatureRangeService service := new TemperatureRangeService;
14. stream<TemperatureRange> ranges := service.init("S001",60.0);
15. TemperatureRange range;
16. from r in ranges select r : range { print range.toString(); }
17. }

Using the short-form from statement
In the previous example, on line 16 of the code, the query used is very simple:
from r in ranges select r : range { print range.toString(); }

It merely selects the current item in the stream and co-assigns it to the variable range.
This is a common use-case and the EPL provides an alternate, short-form version that
can be used instead, as illustrated below.
from ranges: range { print range.toString(); }

To further simplify the code in the previous example, note that instead of declaring
a ranges stream variable, you can place the expression for the stream (that is,
service.init("S001",60.0)) directly inline, in the from statement:
from service.init("S001",60.0): range { print range.toString(); }

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 985

Hence, the monitor code in the example in the previous topic can be rewrien as
follows:
12. monitor UsesTemperatureRangeService {
13. action onload() {
14. TemperatureRangeService service := new TemperatureRangeService;
15. TemperatureRange range;
16. from service.init("S001",60.0): range { print range.toString(); }
17. }
18. }

Stream lifetime
When considering the lifecycle of a stream, first reflect on how the stream is created. A
from statement is similar to an on statement, in that both create stream listeners. When
creating the stream listener, a listener variable can be assigned to refer to the stream
listener. The listener variable can then be used (at a later time) to quit the stream
listener.8

When creating a stream query and assigning it to a stream variable, the stream variable
can be used (at a later time) to quit the stream query.

Once created, a stream (and the stream query supplying it) remains in existence until
any of the following occur:

It is quit.

All of its downstream connections are removed.

Removal of an upstream stream means that the stream (stream query) can generate
no more output.

The above statements sound rather complicated but are quite straightforward. Consider
the following code example:
01. event Temperature { string sensorId; float temperature; }
02. event Quit { string what; }

01. using com.apama.aggregates.mean;
02. monitor StreamLifetimes {
03. action onload() {
04. float temperature;
05. stream<Temperature> temperatures := all Temperature(sensorId="S001");
06. stream<float> meanTs := from t in temperatures within 60.0
07. select mean(t.temperature);
08. listener freezing := from t in meanTs where t < 0.0
09. select t: temperature {
10. print "It's freezing! The temperature is " + temperature.toString();
11. }
12. listener boiling := from t in meanTs where t > 100.0
13. select t: temperature {
14. print "It's boiling! The temperature is " + temperature.toString();
15. }
16. on Quit("temperatures") { temperatures.quit(); }
17. on Quit("meanTs") { meanTs.quit(); }
18. on Quit("freezing") { freezing.quit(); }
19. on Quit("boiling") { boiling.quit(); }

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 986

20. }
21. }

In this example, the stream network consists of two streams (declared on lines 5 and
6-7) and two stream listeners (declared on lines 8-11 and 12-15). The stream variables
temperatures and meanTs refer to the two streams, and the listener variables
freezing and boiling refer to the two stream listeners. Let's take a look at what
happens when quit() is called on each of the listener and stream variables:

If freezing.quit() is called, then only the stream listener referred to by freezing
becomes inactive. Similarly, if boiling.quit() is called, then only the stream
listener referred to by boiling becomes inactive.

If meanTs.quit() is called, then all of the streams, stream queries and stream
listeners will become inactive. This is because the meanTs query is the only
downstream connection for the temperatures stream, and once meanTs is quit, the
two stream listeners for freezing and boiling can no longer produce any output.

Finally, if temperatures.quit() is called, then there would be no further
input to the stream query for meanTs. However, items in the window of the
stream query may remain within the window for up to 60.0 seconds after the
temperatures stream is quit. Hence the meanTs stream query, and any queries/
listeners downstream of it, will remain active until all items in the meanTs stream
query window have expired (been ejected from the window).

8 This is identical to an EPL on statement, where a listener variable can be used to quit
a standard event listener.

Using windows in stream queries
Various examples in earlier sections have used window operators. Within a stream
query, when a window operator is applied to a stream, it causes some of the past
items in the stream to be retained. These are the items upon which the relational query
operations are performed. For example, consider the following query:
from t in all Temperature(sensorId="T001") retain 10 select mean(t.temperature)

For sensor "T001", this query calculates the mean temperature value from the set of
the most recent 10 temperature readings from that sensor. Now consider the following
query:
from t in all Temperature(sensorId="T001") within 60.0 select mean(t.temperature)

For sensor "T001", this query calculates the mean temperature value from the set of all
temperature readings for that sensor within the last 60.0 seconds.

The table below gives a guide to the window operators and their combinations:

Syntax Description

retain all Retains all of the items input to the
stream since its creation. 9

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 987

Syntax Description

retain number Retains (up to) the number of most
recent items input to the stream.

within duration Retains all items input to the stream
within the last duration seconds.

within duration retain number Retains (up to) the number of most
recent items input to the stream within
the last duration seconds.

retain number with unique key Retains (up to) the number of most
recent items input to the stream. A
new item with a given key value will
displace an existing item with the same
key value.

within duration with unique key Retains items input to the stream
within the last duration seconds. A
new item with a given key value will
displace an existing item with the same
key value.

If no window operator is applied to a stream then the set of items on which the
relational query operations are performed is the set of items that is current for the
stream. Using a stream without applying any window operations to it can be useful
when used within a join query.

9 The implementation achieves this behavior without actually retaining all of the items.

Using joins in stream queries
There are two types of joins that can be used within a stream query: cross-joins and equi-
joins.

A cross-join of two sets combines every item from one set with each item from the other
set. A cross-join is performed by using two, top-level from clauses in a query. We have
already seen an example of this:
01. TemperatureAndPressure tp;
02. stream<Temperature> temperatures := all Temperature(sensorId="T001");
03. stream<Pressure> pressures := all Pressure(sensorId="P001");
04. stream<float> meanTs := from t in temperature
05. retain 3 select mean(t.temperature);
06. stream<float> meanPs := from p in pressure
07. retain 3 select mean(p.pressure);
08. from t in meanTs retain 1
09. from p in meanPs retain 1
10. select TemperatureAndPressure("S001",t,p) : tp {

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 988

11. print tp.toString();
12. }

An equi-join is performed by following the initial from clause with a join clause. An
equi-join of two sets combines items in the two sets where a specified key value of the
item in the first set matches a specified key value of the item in the second set. Separate
key value expressions for each source item identify the key values to be compared. For
example:
01. TemperatureAndPressure tp;
02. from t in all Temperature() partition by t.sensorId retain 1
03. join p in all Pressure() partition by p.sensorId retain 1
04 on sensorNumber(t.sensorId) equals sensorNumber(p.sensorId)
05. select TemperatureAndPressure(combinedId(t.sensorId), t.temperature,
06. p.pressure) : tp {
07. print tp.toString();
08. }

When considering performance, cross-joins will in general be less efficient than equi-
joins. It is advised that cross-joins only be used where the number of items in the stream
windows is small, as in the example at the beginning of this topic.

Note that joins can be performed between a stream10 and a window. For example:
01. TemperatureAndPressure tp;
02. stream<Temperature> temperatures := all Temperature(sensorId="T001"); 1
03. stream<Pressure> pressures := all Pressure(sensorId="P001");
04. from t in temperatures from p in pressures retain 1
05. select TemperatureAndPressure ("S001",t.temperature,p.pressure) : tp {
06. print tp.toString();
07. }

This join will produce an output item whenever there is a new Temperature event for
the sensor but not when there is a new Pressure event. The temperature and pressure
events arrive at different times; when the temperature event arrives, because of the
retain 1 in the right side from clause, there is a pressure event available for joining
with; but, because there is no window operation in the left side from clause, when a
pressure event arrives, there is no temperature event to join with.

10 That is, where no window operators are applied to the stream, in the query.

Using partitions and groups in stream queries
The second code example in "Using joins in stream queries" on page 987 uses the
partition by clause. The partition by clause splits a stream into partitions, based on
a key value. When a window operator is applied to a partitioned stream, the behavior
is as if a separate window operator had been applied to each partition. We often refer
to the result of using partition by followed by a window operator as a partitioned
window; queries with partitioned windows are used to retain a set of items for each
partition, as illustrated in the second code example in topic about using joins. Following
is another example of using the partition by clause:
01. Temperature temperature;
02. from t in all Temperature() partition by t.sensorId retain 3
03. group by t.sensorId select Temperature(t.sensorId, mean(t.temperature)):
04. temperature {
05. print temperature.toString();

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 989

06. }

The combined partition by and retain clauses cause the last three values for each
sensor to be retained. In contrast, the group by clause's effect is to alter the behavior
of the projection (the item generated by the select clause) such that aggregate values
are generated for each group in the collection and not for the collection as a whole.
For example, when a new Temperature event occurs for sensor "S001", the event will
be directed to the partition for that sensor. It will cause the window contents for that
partition to change, which, in turn, will affect the collection of events over which the
aggregate projection is being performed. Because a group by clause is present, a new
projected value will be produced only for the group(s) affected by the update. In this
case, the group for sensorId"S001". The result is that an incoming temperature event,
for sensor "S001", causes a new outgoing mean temperature event for sensor "S001"
to be produced. The group by clause can also be used without partition by, as in the
following code sample.11

01. Temperature temperature;
02. from t in all Temperature() within 60.0
03. group by t.sensorId select Temperature(t.sensorId, mean(t.temperature)):
04. temperature {
05. print temperature.toString();
06. }

11 As implied by the example, there is usually lile point in partitioning a time-based (a
within) window. One exception to this is when it is combined with the with unique
clause.

Using rstream
Normally, in stream queries, you select items that are currently in the stream or window.
Adding the keyword rstream to a select clause causes it to select the items that are
currently leaving the stream or window. The main use of this is to delay events, either
by a time period or by a number of events. The delayed event is typically compared to
the set of events that arrived after it, up until the current time, as illustrated by the code
example below.
01. stream<float> tNow := from t in all Temperature(sensorId="T001")
02. select t.temperature;
03. stream<float> tDelayed := from t in tNow retain 10 select rstream t;
04. float t; 05. from t1 in tDelayed from t2 in tNow retain 10 where t2 > t1 * 1.
05 select t2 : t
06. print "Rapid temperature rise: " + t.toString();
07. }

Common stream query patterns
The following topics describe a few common paerns. You have seen many of them in
the earlier code examples.

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 990

Aggregation in stream queries
Examples in earlier topics show the calculation of running averages of the temperature
and pressure readings. A common use-case, illustrated below, is the calculation of the
volume-weighted average price of a stock. This example uses the weighted-average
aggregate function, wavg().
01. using com.apama.aggregates.wavg;
02. event Tick { string symbol; decimal price; decimal volume; }
03. monitor CalculateVwap {
04. action onload() {
05. decimal vwap;
06. from t in all Tick(symbol="SOW") within 300.0
07. select wavg(t.price,t.volume): vwap {
07. print vwap.toString();
08. }
09. }
10. }

Aggregation can also be used in combination with group by to generate the aggregate
results for different groups of items, as illustrated in the code examples in "Using
partitions and groups in stream queries" on page 988. Note that code authors are not
restricted to the set of built-in aggregates as it is possible to define custom aggregates.

Throttling in stream queries
Sometimes it is the case that results are only required at a given rate. We can extend the
example in "Aggregation in stream queries" on page 990 by adding an every clause,
so that the query generates values only every 10 seconds.
01. using com.apama.aggregates.wavg;
02. event Tick { string symbol; float price; float volume; }
03. monitor CalculateVwap {
04. action onload() {
05. float vwap;
06. from t in all Tick(symbol="SOW") within 300.0 every 10.0
07. select wavg(t.price,t.volume): vwap {
08. print vwap.toString();
09. }
10. }
11. }

Dynamic filters in stream queries
Event listeners, created using on statements, are very efficient at matching events. But
they have the drawback that the values of any variables or expressions used within an
event template are evaluated only when the on statement is executed. That is, they are
evaluated only when the event listener is created and they remain fixed thereafter.

For example, suppose you are using event listeners only and you need to change one of
the match values each time a match is found. You would need to quit the current listener
and recreate it with the new match value. An alternative approach is to use streams. For
example, if you want to receive Temperature events for a given sensor, but to select only

M
Odd Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 991

those where the temperature value is greater than a given, static threshold, you could do
the following:
01. event Temperature { string sensorId; float temperature; }
02. monitor StaticFilter {
03. action onload() {
04. Temperature temperature;
05. on all Temperature (sensorId="T001", temperature>38.0): temperature {
06. print temperature.toString();
07. }
08. }
09. }

If, instead, you need to change the temperature threshold dynamically, then the
following code could be used:
01. event Temperature { string sensorId; float temperature; }
02. event Threshold { string sensorId; float temperature; }
03. monitor StaticFilter {
04. Threshold threshold := Threshold("T001",38.0);
05. action onload() {
06. Temperature temperature;
07. from t in all Temperature(sensorId="T001")
08. where t.temperature > threshold.temperature select t : temperature {
09. print temperature.toString();
10. }
11. on all Threshold(sensorId="T001"): threshold {}
12. }
13. }

In the static case (that is, where the threshold value does not change), the code in the
first example above is more efficient than that of the second example. This is because
the events that are not of interest are rejected as early as possible, that is, before being
passed to the monitor instance. In the dynamic case, that is, where a changing threshold
value is required, the second example above is more elegant and typically more efficient
than using a non-streams approach.

In the dynamic threshold use case, choosing which solution to prefer – using only event
listeners or using streams - would depend on how frequently the threshold value is
expected to change. The cost of quiing the current listener and recreating it with the
new threshold value may be acceptable if the threshold value changes only infrequently.

Joining the most recent event on each of two streams
Another common paern that has already been seen is that of comparing the most recent
values from two event streams. The following code example illustrates this paern with
a use case example of calculating the price spread between two stocks.
01. event Price { string symbol; float price; }
02. monitor ComputeSpreads {
03. action onload() {
04. float spread;
05. from a in all Price(symbol="IBM") retain 1
06. from b in all Price(symbol="MSFT") retain 1
07. select a.price - b.price : spread {
08. print spread.toString();
09. }
10. }
11. }

M
Even Header

EPL Streams: A Quick Tour

Developing Apama Applications Version 9.10 992

Retaining the most recent item in each partition of a partitioned
stream
There are some situations where you want to join the most recent events from two
sources, based on a common key. Typically you are processing all events from those
sources and not a subset of those events. This paern is similar to the previous example,
but with a partition by clause added to each leg of the join.
01. event Temperature { string sensorId; float temperature; }
02. event Pressure { string sensorId; float pressure; }
03. event TemperatureAndPressure { string sensorId; float temperature;
04. float pressure; }
05. monitor CombineTheLatestTemperatureAndPressureReadings {
06. action onload() {
07. TemperatureAndPressure tp;
08. from t in all Temperature() partition by t.sensorId retain 1
09. join p in all Pressure() partition by p.sensorId retain 1
10. on t.sensorId equals p.sensorId
11. select TemperatureAndPressure(t.sensorId, t.temperature,
12. p.pressure) : tp {
13. print tp.toString();
14. }
15. }
16. }

Joining an event with a previous event
Another use case that is reasonably common is where an item output from a stream
query needs to be compared to the previous output item. For example, suppose you
need to detect for a given sensor when the average temperature value was below a
threshold value but now is above the threshold value.
01. using com.apama.aggregates.mean;
02. event Temperature { string sensorId; float temperature; }
03. monitor DetectBreach {
04. action onload() {
05. stream<float> temperatures := all Temperature(sensorId="S001");
06. stream<boolean> current := from t in temperatures within 60.0
07. select mean(t.temperatures) > 97.0;
08. stream<boolean> previous := from c in current
09. retain 1 select rstream c;
10. string text;
11. from c in current from p in previous where c and not p
12. select "Temperature breach" : text {
13. print text;
14. }
15. }
16. }

	Table of Contents
	About this Guide
	Documentation roadmap
	Online Information
	Contacting customer support

	Developing Apama Applications in EPL
	Getting Started with Apama EPL
	Introduction to Apama Event Processing Language
	How EPL applications compare to applications in other languages
	About dynamic compilation in the correlator
	About the Apama development environment in Software AG Designer
	Terminology
	Defining event types
	Allowable event field types
	Format for defining event types
	Example event type definition

	Working with events
	Making event type definitions available to monitors and queries
	Channels and input events

	Defining Monitors
	About monitor contents
	Loading monitors into the correlator
	Terminating monitors
	Unloading monitors from the correlator

	Example of a simple monitor
	Spawning monitor instances
	How spawning works
	Sample code for spawning
	Terminating monitor instances
	About executing ondie() actions
	Specifying parameters when spawning

	Communication among monitor instances
	Organizing behavior into monitors
	Event processing order for monitors
	Allocating events in monitors
	Sending events to other monitors
	Defining your application's message exchange protocol
	Using events to control processing

	About service monitors
	Adding predefined annotations
	Subscribing to channels
	About the default channel
	About wildcard channels

	Adding service monitor bundles to your project
	Utilities for operating on monitors

	Defining Queries
	Introduction to queries
	Example of a query
	Use cases for queries
	Delayed and out of order events
	Architectural comparison of queries and monitors
	Query terminology
	Overview of query processing
	Overview of query application components

	Format of query definitions
	Defining metadata in a query
	Partitioning queries
	Defining query keys
	Query partition example with one input
	Query partition example with multiple inputs
	About keys that have more than one field

	Defining query input
	Format of input definitions
	Behavior when there is more than one input
	Specifying event duration in windows
	Specifying maximum number of events in windows
	Specifying event duration and maximum number of events
	Using source timestamps of events
	Using heartbeat events with source timestamps
	Out of order events
	Matching only the latest event for a given field

	Finding and acting on event patterns
	Defining event patterns
	Query followed-by operator
	Query and operator
	Query wait operator
	Query conditions
	Query condition ranges
	Special behavior of the and operator
	Aggregating event field values

	Event matching policy
	Acting on pattern matches
	Defining actions in queries

	Implementing parameterized queries
	Format for defining query parameters
	Parameterized queries as templates
	Using the Scenario Service to manage parameterized queries
	Referring to parameters in queries
	Scaling and performance of parameterized queries

	Restrictions in queries
	Best practices for defining queries
	Testing query execution
	Communication between monitors and queries

	Defining Event Listeners
	About event expressions and event templates
	Specifying the on statement
	Using a stream source template to find events of interest
	Defining event expressions with one event template
	Listening for one event
	Listening for all events of a particular type
	Listening for events with particular content
	Using positional syntax to listen for events with particular content
	Using name/value syntax to listen for events with particular content
	Listening for events of different types

	Terminating and changing event listeners
	Specifying multiple event listeners
	Listening for events that do not match
	Specifying completion event listeners
	Example using unmatched and completed

	Improving performance by ignoring some fields in matching events
	Defining event listeners for patterns of events
	Specifying and/or/not logic in event listeners
	Specifying the 'or' operator in event expressions
	Specifying the 'and' operator in event expressions
	Example event expressions using 'and/or' logic in event listeners
	Specifying the 'not' operator in event expressions
	Specifying 'and not' logic to terminate event listeners
	Pausing event listeners
	Choosing which action to execute
	Specifying 'and not' logic to detect when events are missing

	How the correlator executes event listeners
	How the correlator evaluates event expressions
	Avoiding event listeners that trigger upon instantiation
	When the correlator terminates event listeners
	How the correlator evaluates event listeners for a series of events
	Evaluating event listeners for all A-events followed by B-events
	Evaluating event listeners for an A-event followed by all B-events
	Evaluating event listeners for all A-events followed by all B-events

	Defining event listeners with temporal constraints
	Listening for event patterns within a set time
	Waiting within an event listener
	Triggering event listeners at specific times
	Using variables to specify times

	Understanding time in the correlator
	Correlator timestamps and real time
	Event arrival time
	About timers and their trigger times
	Disabling the correlator's internal clock
	Externally generating events that keep time (&TIME events)
	About repeating timers and &TIME events
	Setting the time in the correlator (&SETTIME event)

	Out of band connection notifications
	Out of band notification events
	Enabling out of band notifications

	Working with Streams and Stream Queries
	Introduction to streams and stream networks
	Defining streams
	Creating streams from event templates
	Terminating streams

	Using output from streams
	Listener variables and streams
	Coassigning to sequences in stream listeners

	Defining stream queries
	Linking stream queries together
	Simple example of a stream network
	Stream query definition syntax
	Stream query processing flow
	Specifying input streams in from clauses
	Adding window definitions to from and join clauses
	Window definition syntax
	Defining time-based windows
	Defining size-based windows
	Combining time-based and size-based windows
	Defining batched windows
	Partitioning streams
	Partitions and aggregate functions
	Using multiple partition by expressions
	Partitioning time-based windows
	Defining content-dependent windows

	Joining two streams
	Defining cross-joins with two from clauses
	Defining equi-joins with the join clause

	Filtering items before projection
	Generating query results
	Aggregating items in projections
	Filtering items in projections

	IEEE special values in stream query expressions

	Defining custom aggregate functions
	Example of defining a custom aggregate function
	Defining actions in custom aggregate functions
	Overloading in custom aggregate functions
	Distinguishing duplicate values in custom aggregate functions

	Working with lots that contain multiple items
	Stream queries that generate lots
	Behavior of stream queries with lots
	Size-based windows and lots
	Join operations and lots
	Grouped projections and lots

	Stream network lifetime
	Disconnection vs termination
	Rules for termination of stream networks

	Using dynamic expressions in stream queries
	Behavior of static and dynamic expressions in stream queries
	When to avoid dynamic expressions in stream queries
	Ordering and side effects in stream queries
	Understanding when the correlator evaluates particular expressions
	Using dynamic expressions in windows
	Using dynamic expressions in equi-joins
	Using dynamic expressions in where predicates
	Using dynamic expressions in projections

	Examples of using dynamic expressions in stream queries
	Example of altering query window size or period
	Example of altering a threshold
	Example of looking up values in a dictionary
	Example of actions and methods in dynamic expressions

	Troubleshooting and stream query coding guidelines
	Prefer on statements to from statements
	Know when to spawn and when to partition
	Filter early to minimize resource usage
	Avoid duplication of stream source template expressions
	Avoid using large windows where possible
	In some cases prefer retain all to a timed window
	Prefer equi-joins to cross-joins
	Be aware that time-based windows can empty
	Be aware that fixed-size windows can overflow
	Beware of accidental stream leaks

	Defining What Happens When Matching Events Are Found
	Using variables
	Using global variables
	Using local variables
	Using variables in listener actions
	Specifying named constant values

	Defining actions
	Format for defining actions
	Invoking an action from another action
	Specifying actions in event definitions
	Using action type variables

	Getting the current time
	Generating events
	Generating events with the route command
	Generating events with the send command
	Sending events to com.apama.Channel objects
	Generating events with the enqueue command
	Enqueuing to contexts
	Generating events to emit to outside receivers

	Assigning values
	Defining conditional logic
	Defining loops
	Catching exceptions
	Logging and printing
	Specifying log statements
	Log levels determine results of log statements
	Where do log entries go?
	Examples of using log statements
	Strings in print and log statements

	Sample financial application

	Implementing Parallel Processing
	Introduction to contexts
	What is inside/outside a context?
	About context properties
	Context lifecycle
	Comparison of a correlator and a context

	Creating contexts
	How many contexts can you create?
	Using channels to communicate between contexts
	Obtaining context references
	Spawning to contexts
	Channels and contexts
	Sending an event to a channel
	Sending an event to a particular context
	Sending an event to a sequence of contexts
	Common use cases for contexts
	Samples for implementing contexts
	Simple sample implementation of contexts
	Running samples of common concurrency problems
	About the samples of concurrency problems
	About the race sample
	About the deadlock sample
	About the compareswap sample

	Contexts and correlator determinism
	How contexts affect other parts of your Apama application
	About input logs and parallel processing
	Deadlock avoidance when parallel processing
	Clock ticks when parallel processing
	Using correlator plug-ins in parallel processing applications

	Using Correlator Persistence
	Description of state that can be persistent
	When persistence is useful
	When non-persistent monitors are useful
	How the correlator persists state
	Enabling correlator persistence
	How the correlator recovers state
	Recovery order
	Defining recovery actions
	Simplest recovery use case

	Designing applications for persistence-enabled correlators
	Upgrading monitors in a persistence-enabled correlator
	Sample code for persistence applications
	Sample code for discarding stale state during recovery
	Sample code for recovery behavior based on downtime duration
	Sample code that recovers subscription to non-persistent monitor

	Requesting snapshots
	Developing persistence applications
	Using correlator plug-ins when persistence is enabled
	Using the MemoryStore when persistence is enabled
	Comparison of correlator persistence with other persistence mechanisms
	Restrictions on correlator persistence

	Common EPL Patterns in Monitors
	Contrasting using a dictionary with spawning
	Translation using a dictionary
	Translation using spawning

	Factory pattern
	Canonical factory pattern
	Alternate factory pattern

	Using quit() to terminate event listeners
	Combining the dictionary and factory patterns
	Testing uniqueness
	Reference counting
	Inline request-response pattern
	Routing events for request-response behavior
	Canonical form for synchronous requests

	Writing echo monitors for debugging

	Using Correlator Plug-ins in EPL
	Overhead of using plug-ins
	When to use plug-ins
	When not to use plug-ins
	Using the TimeFormat Event Library
	TimeFormat format functions
	TimeFormat parse functions
	Format specification for the TimeFormat functions

	Using the MemoryStore
	Introduction to using the MemoryStore
	Overview of MemoryStore events
	Adding the MemoryStore bundle to your project
	Steps for using the MemoryStore
	Preparing and opening stores
	Description of row structures
	Preparing and opening tables
	Using transactions to manipulate rows
	Determining which commit action to call
	Creating and removing rows
	Iterating over the rows in a table
	Requesting persistence

	Exposing in-memory or persistent data to dashboards
	Restrictions affecting MemoryStore disk files

	Using the distributed MemoryStore
	Overview of the distributed MemoryStore
	Distributed store transactional and data safety guarantees
	Using a distributed store

	Configuring a distributed store
	Adding distributed MemoryStore support to a project
	Adding a distributed store
	Configuring a distributed store
	Launching a project that uses a distributed store

	Interacting with a distributed store
	Configuration files for distributed stores
	BigMemory Max driver specific details

	Changing bean property values when deploying projects
	Creating a distributed MemoryStore driver

	Using the Management interface
	Using MATLAB® products in an application
	MatlabManager actions
	MATLAB examples

	Interfacing with user-defined correlator plug-ins
	About the chunk type

	Making Application Data Available to Clients
	Adding the DataView Service bundle to your project
	Creating DataView definitions
	Deleting DataView definitions
	Creating DataView items
	Deleting DataView items
	Updating DataView items
	Looking up field positions
	Using multiple correlators

	Testing and Tuning EPL monitors
	Optimizing EPL programs
	Best practices for writing EPL
	Wildcard fields that are not relevant
	Avoiding unnecessary allocations
	Implementing states

	Structure of a basic test framework
	Using event files
	Handling runtime errors
	What happens
	Using ondie() to diagnose runtime errors
	Using logging to diagnose errors
	Standard diagnostic log output

	Capturing test output
	Avoiding listeners and monitor instances that never terminate
	Handling slow or blocked receivers
	Diagnosing infinite loops in the correlator
	Tuning contexts
	Parallel processing for instances of an event type
	Parallel processing for long-running calculations

	Generating Documentation for Your EPL Code
	Code constructs that are documented
	Steps for using ApamaDoc
	Inserting ApamaDoc comments
	Inserting ApamaDoc tags
	Inserting ApamaDoc references
	Inserting EPL source code examples
	Generating ApamaDoc in headless mode

	Developing Apama Applications in Event Modeler
	Overview of Using Event Modeler
	Event Modeler layout
	About event flow states
	How rules define scenario behavior
	Description of rule conditions
	Description of rule actions
	Description of functions in rules
	About rule evaluation

	Basic view of rule processing
	Expanded view of rule processing
	Scenario monitoring stage
	Summary of adding rules when a variable value changes

	About scenario variables
	Variable types
	Auto-typing of variables
	Variable properties
	Variable constraints
	User input and output

	About blocks
	Linking variables, block parameters, and block output fields

	Using Event Modeler
	Adding scenarios to projects
	Creating the GlobalRuleExample project
	Adding GlobalRuleExample.sdf to the GlobalRuleExample project
	Adding a new scenario to the GlobalRuleExample project

	Opening and viewing multiple scenarios
	Selecting from the Scenario menu
	The Event Modeler toolbar
	Interacting with the tabs and panels
	Working in the Event Flow panel
	Interacting with states
	Selecting a state
	Resizing a state
	Moving a state
	Multiple selection
	Adding a state
	The finished status
	Deleting a state
	Labeling a state
	Using cut/copy/paste with states

	Interacting with transitions
	Adding a transition
	Selecting a transition
	Changing end-points
	Changing the shape of a transition
	Labeling a transition
	Deleting a transition
	Using cut/copy/paste with transitions
	Displaying global rule transitions

	Working in the Rules panel
	Adding a rule
	About global rules
	Selecting rules and rule elements
	Re-ordering rules
	Deleting a rule
	Labeling a rule
	Changing a rule's description
	Minimizing and maximizing a rule
	Cutting, copying, and pasting rules
	Activating and deactivating rules
	Specifying conditions
	Interactive editing
	Language elements

	Selecting and replacing elements
	Cascading alternative menus
	Using functions in rules
	Adding a condition to a rule
	Specifying variable changes in conditions
	Local rules and variable changes
	Global rules and variable changes

	Specifying actions
	Adding action statements
	Deleting action statements
	Interactive editing

	Using the keyboard to edit rules

	Using the Variables tab
	Adding a variable
	Renaming a variable
	Selecting a variable
	Determining which states use a particular variable
	Moving a variable
	Deleting a variable
	Changing a variable's properties
	Setting a variable's value
	Variable input and output
	Linking a variable to a block output field
	Conversion rules for variable types

	Using the Catalogs tab
	Adding a block template catalog
	Selecting and inspecting a block template
	Adding a block instance to the scenario

	Using the Functions tab
	Adding a function catalog
	Selecting and inspecting a function

	Using the Blocks tab
	Interacting with a block instance
	Selecting a parameter
	Viewing a parameter's properties
	Setting a parameter's initial value
	Linking a parameter with a variable or output field

	Switching blocks
	Using the Block Wiring tab
	Wiring block input feeds
	Selecting, resizing, and moving block instances
	Wiring two blocks together
	Connecting feeds and specifying feed mapping
	Wiring a scenario variable to a block
	Mapping type conversions
	Editing block wiring
	Deleting a wiring
	Deleting a block instance
	Using older versions of blocks

	Troubleshooting invalid scenarios
	Exporting scenarios as EPL
	Exporting scenarios as block templates
	Event Modeler command line options

	Using Standard Blocks
	A block's lifecycle
	General analytic blocks
	Change Notifier v2.0
	Correlation Calculator v2.0
	Data Distribution Calculator v2.0
	Median and Mode Calculator v1.0
	Moving Average v1.0
	Spread Calculator v3.0
	Statistics Calculator v1.0
	Velocity Calculator v2.0

	The Timer blocks
	Schedule v3.0
	Wait v3.0

	The Utility blocks
	Dictionary v2.0
	File Reader v2.0
	File Writer v2.0
	History Logger v2.0
	Input Merger v2.0
	List v2.0
	Scenario Terminator v2.0
	Status v2.0
	Variable Mapper v2.0

	Database functionality—storage and retrieval
	ADBC Storage v1.0
	ADBC Retrieval v1.0

	Blocks for working with scenario blocks
	Change Observer v2.0
	Filtered Summary v2.0

	Using Functions in Event Modeler
	Reference information for provided functions
	Date and time functions
	Extended math functions on float types
	IO functions
	System value functions
	Miscellaneous functions

	About defining your own functions
	Sample ABS function definition file
	Sample function definition file with imports element
	About function names

	Creating Blocks
	About blocks
	Introduction to block definition files
	Description of block interface elements
	How scenarios communicate with their blocks

	Defining new blocks in Software AG Designer
	Specifying the block metadata
	Specifying the block interface
	Creating parallel-aware blocks
	Adding EPL code to the block definition
	Considerations for adding EPL code to the block definition
	Details about EPL code that you can add
	Timeliness of acknowledgements

	An example block
	Description of the Correlation Calculator block interface
	Description of the Correlation Calculator block EPL

	Working with Blocks Created from Scenarios
	Terminology for using scenario blocks
	Benefits of scenario blocks
	Steps for using scenario blocks
	Background for using scenario blocks
	Saving scenarios as block templates
	Incrementing scenario block version numbers
	Adding a scenario block to a main scenario
	Examining a scenario block's source scenario
	Descriptions of scenario block parameters
	Descriptions of scenario block operations
	Descriptions of scenario block feeds
	Setting parameters before creating sub-scenarios
	Creating sub-scenarios
	Deleting sub-scenarios
	Unconditionally deleting a sub-scenario
	Deleting all sub-scenarios

	Modifying sub-scenario input variable values
	Iterating through sub-scenarios
	Obtaining variable values from sub-scenarios
	Linking sub-scenarios with other blocks
	Inheriting sub-scenarios
	Description of inheritExternalInstances values
	Notes for setting the inheritExternalInstances parameter
	Example of inheriting sub-scenarios

	Observing changes in sub-scenarios
	Performing simple calculations across sub-scenarios

	File Definition Formats
	Function definition file format
	Defining metadata in function definition files
	Defining the version element
	Defining the description element
	Defining the imports element
	Defining the parameters element

	Defining EPL code in function definition files

	Block definition file format
	Block definition file DTD
	Block definition file encodings
	XML elements that define a block

	Developing Apama Applications in Java
	Overview of Apama JMon Applications
	Introducing JMon API concepts
	About event types
	Simple example of an event type
	Extended example of a JMon event type
	Comparing JMon and EPL event type parameters
	About event parameters that are complex types
	Non-null values for non-primitive event field types

	About monitors
	About event listeners and match listeners
	Example of a MatchListener
	Defining multiple listeners
	Removing listeners

	Description of the flow of execution in JMon applications
	Parallel processing in JMon applications
	Overview of contexts in JMon applications
	Using contexts in JMon applications
	Using the Context class default constructor
	Descriptions of methods on the Context class

	Identifying external events
	Optimizing event types
	Wildcarding parameters in event types

	Logging in JMon applications
	Using EPL keywords as identifiers in JMon applications

	Defining Event Expressions
	About event templates
	Specifying positional syntax
	Specifying completed event templates

	Specifying parameter constraints in event templates
	Obtaining matching events
	Emitting, routing, and enqueuing events
	Specifying temporal sequencing
	Chaining listeners
	Using temporal operators

	Defining advanced event expressions
	Specifying other temporal operators
	Specifying a perpetual listener for repeated matching
	Deactivating a listener
	Temporal contexts
	Specifying the timer operators
	Looking for event sequences within a set time
	Waiting within a listener
	Working with absolute time

	Optimizing event expressions
	Validation of event expressions

	Concept of Time in the Correlator
	Correlator timestamps and real time
	Event arrival time
	Getting the current time
	About timers and their trigger times

	Developing and Deploying JMon Applications
	Steps for developing JMon applications in Software AG Designer
	Java prerequisites for using Apama's JMon API
	Steps for developing JMon applications manually
	Deploying JMon applications
	Removing JMon applications from the correlator
	Creating deployment descriptor files
	Format for deployment descriptor files
	Specifying classpath in deployment descriptor files
	Defining event types in deployment descriptor files
	Defining monitor classes in deployment descriptor files
	Inserting annotations for deployment descriptor files
	Sample source files with annotations
	Generating deployment descriptor files from annotations

	Package names and namespaces in JMon applications
	Sample JMon applications

	Developing Correlator Plug-ins
	Introduction to Correlator Plug-ins
	Providing an EPL event wrapper for a plug-in
	Writing a Plug-in in C or C++
	A simple plug-in in C++
	Calling the test function from EPL
	A simple C plug-in
	Parameter-less plug-in functions

	Advanced Plug-in Functionality in C++ and C
	Introducing complex_plugin
	The chunk type
	Working with chunk in C++
	Working with chunk in C
	Working with sequences
	The complete example
	Using complex_plugin from the event correlator
	Asynchronous plug-ins
	Writing correlator plug-ins for parallel processing applications
	Working with blocking behavior in C++ plug-ins
	Working with channels in C++ plug-ins

	The EPL Plug-in APIs for C and C++
	Primary class types

	Writing Correlator Plug-ins in Java
	Creating a plug-in using Java
	Permitted signatures for methods

	Using Java plug-ins
	Sample plug-ins in Java
	A simple plug-in in Java
	A more complex plug-in in Java
	A plug-in in Java that sends events
	A plug-in in Java that subscribes to receive events

	EPL Reference
	Introduction
	Hello World example

	Types
	Primitive and string types
	boolean
	decimal
	float
	integer
	string

	Reference types
	action
	Channel
	chunk
	context
	dictionary
	event
	Exception
	listener
	location
	sequence
	StackTraceElement
	stream

	monitor pseudo-type
	Type properties summary
	Timestamps, dates, and times
	Type methods and instance methods
	Type conversion
	Comparable types
	Cloneable types
	Potentially cyclic types
	Which types are potentially cyclic?
	String form of potentially cyclic types

	Support for IEEE 754 special values

	Events and Event Listeners
	Event definitions
	Event fields
	Event actions
	Event field and action scope

	Event templates
	By-position qualifiers
	By-name qualifiers
	Range expressions
	Field operators

	Event listener definitions
	Event lifecycle
	Event listener lifecycle
	Event processing order for monitors
	Event processing order for queries
	Event expressions
	Event primaries
	Timers
	The not operator
	The all operator
	The and, xor, and or logical event operators
	The followed-by event operator
	Event expression operator precedence

	Event channels

	Monitors
	Monitor lifecycle
	Monitor files
	Packages
	The using declaration
	Monitor declarations
	The import declaration
	Monitor actions
	Simple actions
	Actions with parameters

	Contexts
	Plug-ins
	Garbage collection

	Queries
	Query lifetime
	Query definition
	Metadata section
	Parameters section
	Inputs section
	Query input definition
	Find statement
	Pattern
	Where condition
	Within condition
	Without condition
	Between clause
	Select clause
	Having clause

	Reserved words in queries

	Aggregate Functions
	Built-in aggregate functions
	Custom aggregates

	Statements
	Simple statements
	The assignment statement
	The emit statement
	The enqueue statement
	The enqueue . . . to statement
	The expression statement
	The log statement
	The print statement
	The route statement
	The send . . . to statement
	The spawn statement
	The spawn action to context statement
	Variable declaration statements

	Compound statements
	The for statement
	The from statement
	The if statement
	The on statement
	The while statement
	The try-catch statement

	Transfer of control statements
	The break statement
	The continue statement
	The die statement
	The return statement

	Expressions
	Introduction to expressions
	Primary expressions
	Bitwise logical operators
	Bitwise intersection (and)
	Bitwise union (or)
	Bitwise exclusive (xor)
	Unary bitwise inverse

	Logical operators
	Logical intersection (and)
	Logical union (or)
	Logical exclusive or (xor)
	Unary logical inverse (not)

	Shift operators
	Left shift operator
	Right shift operator

	Comparison operators
	Additive operators
	Multiplicative operators
	Unary additive operators
	Expression operators
	Expression operator precedence
	Postfix expressions
	Action and method calls
	The subscript operator []
	The new object creation operator

	Stream queries
	Stream query window definitions

	Stream source templates

	Variables
	Variable declarations
	Variable scope
	Predefined variable scope
	Monitor scope
	Action scope
	Block scope
	Event action scope
	Custom aggregate function scope

	Provided variables
	currentTime
	Event timestamps
	self

	Specifying named constant values

	Lexical Elements
	Program text
	Comments
	White space
	Line terminators
	Symbols
	Identifiers
	Keywords
	List of EPL keywords
	List of identifiers reserved for future use
	Escaping keywords to use them as identifiers

	Operators
	Separators
	Literals
	Boolean literals
	Integer literals
	Base 10 literals
	Base 16 literals

	Floating point and decimal literals
	String literals
	Location literals
	Dictionary literals
	Sequence literals
	Time literals

	Names
	Annotations

	Limits
	Obsolete Language Elements
	Old style listener calls
	Old style spawn statements

	EPL Naming Conventions
	EPL Keyword Quick Reference
	EPL Methods Quick Reference
	EPL Streams: A Quick Tour
	About the Apama event stream processing model
	Example events for stream queries
	Processing events using streams
	Creating a stream network
	Using inline stream source template expressions
	Using compound stream queries
	Using dynamic values in stream queries
	Using stream variables
	Using the short-form from statement
	Stream lifetime
	Using windows in stream queries
	Using joins in stream queries
	Using partitions and groups in stream queries
	Using rstream

	Common stream query patterns
	Aggregation in stream queries
	Throttling in stream queries
	Dynamic filters in stream queries
	Joining the most recent event on each of two streams
	Retaining the most recent item in each partition of a partitioned stream
	Joining an event with a previous event

