5 software~

Developing Apama Applications

Version 9.10

August 2016

APAMA

This document applies to Apama Version 9.10 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: PAM-DEV-910-20160810

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

ADOUL thiS GUILE.......eerecercerererecssrre e ane e s s e snane s 25
Documentation FOAAMEAD. ... senenenas 25
ONlNE INFOMMALION. ... e 27
Contacting CUSIOMET SUPPOIL........civeiririeeieeierieieeie st 28

Developing Apama Applications in EPL.........cccoonecnnnnnscscsssssesesssssssesesessssssssesesesssssseseses 29
Getting Started with Apama EPL...........cccoooiiiceiicce et 31

Introduction to Apama Event Processing Language............cccoveeeeeeeccrccssensnnnnnens 32
How EPL applications compare to applications in other languages............ccccocvvvrvererunne. 33
About dynamic compilation in the correlator.........ccovviriiinvscc e 33
About the Apama development environment in Software AG Designer............c.ccccoeuc..... 34
TEIMINOIOGY. ... e 35
DEfiNING BVENE EYPES....oieiecrciiicce e 40
Allowable event field TYPES........cccviiieeiiece e 41
Format for defining event types..........cocevirircccc s 42
Example event type definition............cccceiiiicciies e 44
WOrKINg With VENES.......cucuiiciiiiicce s 44
Making event type definitions available to monitors and queries........c.c.cocovvvrrinee 44
Channels and INPUL BVENTS.........ccviiiieeicce e 46
DEFINING MONITOTS......cvviiiceetc ettt bbb bbbt 49
ADOUL MONITOE CONENTS......eveieieiccier s 50
Loading monitors into the correlator...........ccovovvvniieisis s 52
Terminating MONIOIS........ccovvvviiic e 52
Unloading monitors from the COrrelator.............cccvevirnieniccrese e 52
Example of @ SImple MONITOF..........coccuiiicccs s 53
Spawning MONItOr INSTANCES.........c.ccccvviieieeccecce e 55
HOW SPAWNING WOTKS. ...ttt 55
Sample code for SPAWNING........ccccviveveieiicceee s 57
Terminating monitor INSTANCES..........cccceciccee s 58
About executing ondie() aCtIONS...........ccvrrirreeeee 59
Specifying parameters When Spawning...........ccccvveiceiiniicccesseeee s 60
Communication among MONItor INSTANCES.............coceeiiieieree e 60
Organizing behavior iNt0 MONITOFS.........c.ciiiieiereeee s 61
Event processing order for MONItOrS...........occveeviivecesccccee s 61
Allocating events in MONILOTS..........cccceucieeeeeeceeee e 63
Sending events to other MONItOrS. ..o 64
Defining your application's message exchange protocol...........c.coceeevivicrererninnnns 65
Using events t0 CONtrol ProCESSING.......cvovvviviiiiiiririisssss e 67
ADOUL SEIVICE MONILOTS........coiveieiiiieieieieisicreie et 67
Adding predefined annotations............ccceriiceenicee e 68
Subscribing t0 ChANNEIS........c.cocviceccieicccee e 70

Developing Apama Applications Version 9.10 3

Table of Contents

About the default ChannEl...........cccoriieerce s 71
About wildcard ChannElS...........ccviririr e 72
Adding service monitor bundles t0 Your ProjecCt.........cccveeeiniiiieinen s 72
Utilities for operating On MONIOTS...........c.cviiuriiiriieree s 73
DEfINING QUETIES.vuveeeiierceie et 75
INtrOUCHION 10 QUENIES.......vvcveiice ettt 76
EXamPIE Of @ QUEIY....ooieieeeecceeese s 76
USE CaSES fOF QUEIES........ceeivereiciiectcte sttt 77
Delayed and out of Order BVENTS...........cccceeuceriiicececeeeerce et 78
Architectural comparison of queries and MONItOrS..........covvererrrnieeesrseeesrrenns 79
QUETY tEIMINOIOGY.... . rveveirreeieireieieereeeere st 80
OVerview Of QUETY PrOCESSING........ccueveiiieieireieiie ettt ettt 82
Overview of query application COMPONENES.........ccvrvivieerrreeee s 83
Format of query definitions...........cccceriicieesce s 86
Defining metadata in @ QUETY.......c.coccueieiiiccc e 88
Partitioning QUEMIES.........cueuiiiriicirieisee s 89
DefiNiNG QUEIY KEYS......ciuiveiiicctee et 89
Query partition example With ON€ INPUL...........ccrierirrirrese s 91
Query partition example with multiple INPUES........ccoverriecrrrcce s 92
About keys that have more than one field..........ccccvviceiiicce e, 93
DEfiNNG QUETY INPUL......cviviviiiiiccee ettt bbb 94
Format of input definitionS..........coovieriiicc 97
Behavior when there is more than one iNPut...........ccccevviiicceccccce e 100
Specifying event duration in WiNAOWS............ccceeeniiceeesece e 101
Specifying maximum number of events in WINAOWS............cccveniiiniinicniennes 103
Specifying event duration and maximum number of events.........c.cccccveveeeirienee. 105
Using source timestamps 0f BVENTS...........cccceiiiiicceecece e 107
Using heartbeat events with source timestamps..........ccoocvevinniennnncn, 112

OUL OF OFEI BVENES.......eieeeiece e 114
Matching only the latest event for a given field...........cccceevvivcceeccceeecee, 119
Finding and acting on event Patterns.............cccoveiencrese e 120
Defining event patterns..........ccccericeessce s 121
Query followed-by OPErator..........ccvveveiiirieieserie e 124

QUETY AN OPEFALON........euveieiiiieieee e 128

QUETY Wit OPEFALON.........cvieececee et 129

QUETY CONTILIONS.....cvoveveiceiieicieee et 130

Query CONAItION FANGES........cuerirriierireicireiee s 136

Special behavior of the and operator.............ccocceevviicenccece e, 138
Aggregating event field ValUES..........ccccceiuereriiiceeecce e, 139

Event matching PONCY.........cvuiuiuieiricieese s 143
Acting on pattern MatChes........ccvvrcccr s 145
Defining actions iN QUEHIES..........cceuiiiiiiiice e 145
Implementing parameterized QUETIES..........veururriirrieerrireeiesisse st 146
Format for defining query parameters.........ccccovvveeeeeseieceesece e 146
Parameterized queries as templates...........cccceeeecceccicicicici 147

Developing Apama Applications Version 9.10 4

Table of Contents

Using the Scenario Service to manage parameterized qUEries.........ccccvvvrvreerennne. 148
Referring to parameters in QUENES.........covveveveriiiecee e 149
Scaling and performance of parameterized QUENES.........cccccvvvveeeeivicecreerecene 151
RESHICHONS IN QUETIES. ..v.vviicieieieisceeie sttt 151
Best practices for defining QUETIES..........ccccviiiiceis s 152
Testing QUETY EXECULION.c.ciiiiiie st 155
Communication between monitors and QUETIES.........cvveeurriereriennieeeeseseeeses s 157
Defining EVENt LISENEIS........ccveveiiicces ettt 159
About event expressions and event templates...........cccoceeeeiiiiiiniie 160
Specifying the on StatemMent............coiiii 163
Using a stream source template to find events of interest..........cccoevvviiceicccccnn, 164
Defining event expressions with one event template............cococeevvicceeicccceces 165
Listening for 0Ne @VENL...........ccciiriiiircee s 165
Listening for all events of a particular type...........cccovvveeevviccecsccce e, 165
Listening for events with particular content............ccococceriviiccciiccce e, 165
Using positional syntax to listen for events with particular content.............c............ 166
Using name/value syntax to listen for events with particular content....................... 166
Listening for events of different types..........ccocvviieeeiicccece e 167
Terminating and changing event lIStENErS..........ccocrerirnieneese e 168
Specifying multiple event lIStENErS.........ccccviiecce s 170
Listening for events that do not match............cccoceiiiiccice e, 171
Specifying completion event lIStENErS.........c.ocviieiere s 172
Example using unmatched and completed.........covvvrvvvvvvvss e 173
Improving performance by ignoring some fields in matching events............ccccccvvveeneeee. 174
Defining event listeners for patterns of eVents...........ccooevincncscescc 175
Specifying and/or/not logic in event lIStENErs.........ccccvvvecer e 177
Specifying the 'or' operator in event EXpressions..........cocevveceveeivereeeeise e, 177
Specifying the 'and' operator in event eXpressions..........c.cvveeevnrreeesnneeeeennn. 177
Example event expressions using 'and/or' logic in event listeners............ccccevvvneee. 178
Specifying the 'not’ operator in event exXpressions..........cccvveevcveveeveceecveeeeceenee, 178
Specifying 'and not' logic to terminate event listeners...........ccooevevniinicnicnnes 179
Pausing event lIStENErS..........cccocvviiiceiiccce e 180
Choosing which action t0 €XECULE..........cceuviviieiieieecccee s 180
Specifying 'and not' logic to detect when events are missing............ccccevveenes 181

How the correlator executes event lIStENErs...........ccovvvrienescecee s 182
How the correlator evaluates event eXpressions............ccccececceeieenienenennieeens 182
Avoiding event listeners that trigger upon instantiation...............ccooeovrirnienicnns 183
When the correlator terminates event liSteners...........cococeevvnennvnnccnnne 184
How the correlator evaluates event listeners for a series of events..............cccouue..e. 184
Evaluating event listeners for all A-events followed by B-events.............ccccocvueee. 184
Evaluating event listeners for an A-event followed by all B-events..........ccccco........ 186
Evaluating event listeners for all A-events followed by all B-events........................ 187
Defining event listeners with temporal constraints............cooocvvvneninnieiens 189
Listening for event patterns within @ set time..........ccccccovvicieiciccce e, 190
Waiting within an event lISteNer.........cccciiiii e 191

Developing Apama Applications Version 9.10 5

Table of Contents

Triggering event listeners at SPeCific IMES...........ccvveviiniircce e 192
Using variables t0 SPecify iMES..........ccceevviiiciiiccc s 194
Understanding time in the COMmElator.........ocovvviiiiiccs s 194
Correlator timestamps and real time........cccovveerrniecesr e 194
Event armival ime.........coceire e 195
About timers and their trigger times..........ccocvviiiiiiiiiir e 195
Disabling the correlator's internal ClOCK............ccriiriinniircrceees 197
Externally generating events that keep time (&TIME events)...........ccccccvvvvnee 197

About repeating timers and &TIME eVENS........cccccoveeererivecrcreeeececeeen 199

Setting the time in the correlator (&SETTIME event)..........cccovvevivninnns 199

Out of band connection NOLIfICALIONS...........ccvviieiriire e 200
Out of band notification EVENTS..........cccvrrieerec e 201
Enabling out of band NOtfications.............ccvevicrniencce s 202
Working with Streams and Stream QUENES...........ccoeurerirririeirerese e 205
Introduction to streams and stream NEWOIKS...........cccorrirrrrrncer s 206
DEfINING SIEAMS.......c.iviieic e 207
Creating streams from event templates..........ccccovvvieeiicicesccce e 208
Terminating StrEAMS......ccvciiiii s 208
Using output from SErEAMS.........c.oviviiieicrcee s 208
Listener variables and Streams...........cccoverirrerninniesese e 211
Coassigning to sequences in stream lISENErs..........occcvcveevivicececececee e 211
DefiNiNg Stream QUENIES........cviuieieciricieicees s 211
Linking stream queries t0gether..........cocviiceeiicce s 212
Simple example of @ stream NEIWOrK...........ccccceeeiviiccesc e, 213
Stream query definition SYNTaX.........ccoieeiiriei e 214
Stream query processing flOW........ccevieeieiiiceee e 215
Specifying input streams in from ClAUSES...........ccccoeeveiriiiiicreesece e 216
Adding window definitions to from and join Clauses...........ccccovevniiniinncsnicn, 218
Window definition SYNtaX........ccccvvcceeiiceesce e 218
Defining time-based WINAOWS...........ccccoviiiicreeiiiccce e 220

Defining size-hased WINAOWS...........ccceiririeesee e 222
Combining time-based and size-based WINdOWS...........cccceevvirecrcesiieennnnn, 223

Defining batched WINAOWS...........ccccveiiiiicccecece e 224
Partitioning StrE@MS..........coiueiiriere e 226
Partitions and aggregate functions............cccceevvirecceiscccs e 227

Using multiple partition by eXpressions...........ccccvvveeeeeeeeeecceeere e, 228
Partitioning time-based WINAOWS............cooiiiinieniceeese s 228

Defining content-dependent WINAOWS............coceevieceeiiiceee e 229

JOINING tWO SIrEAMS.......cviiiiiiice e 231
Defining cross-joins with two from Clauses.............ccvvniennccnienecne 231

Defining equi-joins with the joiN ClAUSE..........ccceveveiiciccesceece e 233

Filtering items before projeCtion............ccccveccveiciiiccesceece s 235
Generating QUENY FESUIES...........cueviecerieiriceee s 236
Aggregating items in ProjeCtions..........ccccevviveicens e 238
Filtering items in ProjECHONS.cucvcvcvciccccii s 239

Developing Apama Applications Version 9.10 6

Table of Contents

|EEE special values in stream query eXpreSSIioNS..........voveeereereeneernereeseensnenesenes 241
Defining custom aggregate functions...........cccevveeceiniccess e, 241
Example of defining a custom aggregate function..........c.cccccovvcevviiccnccenne, 243
Defining actions in custom aggregate functions...........cc.ocvvenenncincnicsn, 243
Overloading in custom aggregate functions..........ccccevveeceericcesscce s 244
Distinguishing duplicate values in custom aggregate functions..........c.cccccecevvevenee. 244
Working with lots that contain multiple ItemMS..........ccoericreie e 245
Stream queries that generate lotS..........cocveeiiiiciee e 246
Behavior of stream queries With 10tS...........ccccceviiiiicccceeecee e, 246
Size-based wWindows and I0tS.........cccevriirrnrneee s 247

Join 0perations and 10tS........ccccvvcvereiicice s 248
Grouped projections and Iots...........cccccveicrereeiiiceee e, 249

Stream NetWOrk lIfEiME.......c.ovvveeeercee s 250
Disconnection Vs termination............cccverrrninnese s 251
Rules for termination of stream NetWOrkS...........ccoivnienenieesee s 252
Using dynamic expressions in Stream QUENIES...........cueeurieereeirenieeseeiseieessieeseeinenas 252
Behavior of static and dynamic expressions in stream queries............cccocceverrvinnes 253
When to avoid dynamic expressions in stream QUENES.........ccoevvvvrrvvvirisisrevevennns 253
Ordering and side effects in stream qUEriEs............ccvrerircnnccce 254
Understanding when the correlator evaluates particular expressions.............cov..... 255
Using dynamic expressions in WINAOWS..........cccovvvvrrinievssiseee e esereenenenns 255

Using dynamic expressions in €qUI-JOINS..........ceeereeeereeereniseereeeseeeeseseeeenens 256

Using dynamic expressions in where predicates........c.coovvvvvvrvvrrnssvinnne 257

Using dynamic expressions in Projections...........cccccvvvrererenenenenevesesesessssvsnnns 257
Examples of using dynamic expressions in stream qUENES.........coovvreerererereenenn. 257
Example of altering query window size or period.........cccccvvvreceeniiccrcvennnn, 257
Example of altering @ threshold............cccoviiieeiiccceece e 258
Example of looking up values in @ dictionary............cccocoevvennenneinnicnenns 259
Example of actions and methods in dynamic expressions............cccceeevvvennee. 259
Troubleshooting and stream query coding QUIdENINES........ccucieeeeririiiee e 260
Prefer on statements to from statements...........cccoevvviiennnccnieere, 260
Know when to spawn and when to partition.............cccceviecceniicceescce e, 260
Filter early to minimize reSOUrCE USAQE..........cceerereueererereeeeeee s 260
Avoid duplication of stream source template eXpresSions.........covvveeevrreeerennenns 261
Avoid using large windows where poSSIbIe.........ccccovvieeeiiiiccees e, 262

In some cases prefer retain all to a timed WiNdOW.............ccooeceevieccceece e, 262
Prefer equi-joins t0 CroSS-JOINS.......c.cviviviicirieireiesee e 262

Be aware that time-based windows can empty.........ccccocvevvierceinceccce e, 262

Be aware that fixed-size windows can overflow...........coocvvrninnicnnnccn, 263
Beware of accidental stream 18aks.........ccoovvverrnnnccnnrceer e, 263
Defining What Happens When Matching Events Are Found...........cccoovvicccvsiccccscnns 265
USING VANIBDIES........ocviiiiiiisise ettt bbb ersnens 266
Using global variabIES..............cviriiricee e 266
USINgG 10Cal VANADIES........ccviiiiicieiesccce et 268
Using variables in listener actions...........ccccovvvvvivriniisscee s 269

Developing Apama Applications Version 9.10 7

Table of Contents

Specifying named constant ValUES.............ccoerirnirnicnce e 270
DEFINING ACHONS........cviviiiiiicce bbb 271
Format for defining actions...........ccccoiiceiiicce e, 271
Invoking an action from another action............c.cccvenerncnneeseses 272
Specifying actions in event definitions............ccccvvviiceirciccee e, 274
Using action type VariabIES.........ccciviiviiviiriiiss s 276
Getting the CUITENT tIME........cviiiie s 283
GENEIALNG BVENTS.......ivcvcveiiiictce sttt 284
Generating events with the route command...........cccccococeeviiciccisccce e, 284
Generating events with the send command............c..cccovvirninnnni, 285
Sending events to com.apama.Channel objects..........cccccovvvcievicccescce, 286
Generating events with the enqueue command..............ccooeveenviiicceisiceieeceenne, 287
ENQUEUING t0 CONEXES.....c..vuivirieiieir 288
Generating events to emit to outside receivers.........ccoovvvvieeicccce s 289
ASSIGNING VAIUES.......ococviiciciciciiieeee sttt 290
Defining conditional I0GiC..........c.cuiueuriuiiriiiciriis s 290
DEFINING I00PS.. . ittt bbb 291
CatChing EXCEPHONS......cviviiiiececeee bbb bbb 293
L0gging @nd PrINtING........ceeviuieieeiicir s 295
Specifying 10g StateMENLS........c.ccceveiciccee s 295

Log levels determine results of log statements.........ccccceoeeeeviicccescccccea 296
Where do 10g €NHES JO7.......ciiiiriiiricircee e 298
Examples of using log statements.........ccccovvviciiicces e 298
Strings in print and log statemeNts...........ccccccceiiicccc e, 299
Sample financial @ppliCatioN..........ccovvvererriecee s 299
Implementing Parallel ProCESSING........cccoiviiiieiveiiiieciee et 303
INtrodUCtION 10 COMIEXES......cvvieeeiiceee e 304
What is inside/outside @ CONEX?........cvvviriierrcce e 304
AboUt CONtEXE PrOPEILIES.....cvviecececreiccce e 305
CONEXE IfECYCIE.....viiectitereecce b 306
Comparison of a correlator and @ CoNteXt.........covvvverviecnnnceere s 306
Creating COMEXIS.....viireiiiiicce bbb 306
How many contexts Can YOU CrEate?.........ccccvuvicuereeiieieciee e 307
Using channels to communicate between CONtexts...........ccovvrinienennesnee 307
Obtaining context refErENCES.......covvvviccer e 308
SPAWNING 10 CONEXES.viiiiecreieiicece ettt bbb 309
Channels and CONEXES........ciuiriirrrces s 310
Sending an event t0 @ ChanNEl..........cccuvviciieicce e, 311
Sending an event to a particular CONtEXL.........cc.occeeeiricccee e 312
Sending an event to a sequence Of CONEXES.......c.ovvricrieriec e 314
Common USe CaSses fOr CONLEXES. ..o 316
Samples for implementing CONEXES........cciviviiceiccce e 316
Simple sample implementation of CONtEXIS.........cccvvrrriicrerrcee e 316
Running samples of common concurrency problems..........ccccvvveeeeisicceennn, 316
About the samples of concurrency problems........cccccveccceiciccceee e 317

Developing Apama Applications Version 9.10 8

Table of Contents

AbOUL the race SAMPIE......c.coviieeeierce e 318
About the deadlock SAMPIE..........ccccveveiiiiicer e 319
About the compareswap SAMPIE.........cccccvvceeieeee e 321
Contexts and correlator determiniSm............coveerriirerereers s 323
How contexts affect other parts of your Apama application............ccccceeeevvvicsiiinnnns 323
About input logs and parallel ProcesSINg..........cccvvvrviiiiiiceeeee s 324
Deadlock avoidance when parallel processing........coccvvveerernrireeesssneeeeseneens 324
Clock ticks when parallel proCesSing..........covcevevivieecieiieiece e 324
Using correlator plug-ins in parallel processing applications...........cccccceevcereriiennes 325
Using Correlator PErSISTENCE. ..o 327
Description of state that can be persistent.............cccoevevviiceeiccee e 328
When persistence iS USEUL..........cccuiiiiicieiciecce bbb 329
When non-persistent monitors are USEfUl............cocvvvriierrnicceseeece s 329
How the correlator persists State.........ccocoeviiiieeiicccecce e 329
Enabling correlator PersiSteNCe.ccccceeccceccccce e 330
How the correlator reCoVErs State.........covviirrriccee s 333
RECOVEIY OFUETcviviiiicecte sttt bbbt 334
Defining reCOVENY @CHONS........ccviiiiicicteeeeecte et 335
SIMPIESt FECOVETY USE CASE.......vuieirieciriieirieieiei et 336
Designing applications for persistence-enabled correlators...........ccoovvveeeisiccereiennn, 336
Upgrading monitors in a persistence-enabled correlator...........cocovvvrvvvvvvvvsssenn 337
Sample code for persistence appliCations...........coccervriiernnnrceer e, 338
Sample code for discarding stale state during recovery........ccooovviveceercicrcrennnn, 338
Sample code for recovery behavior based on downtime duration.............ccccc......... 338
Sample code that recovers subscription to non-persistent monitor.............c.cccc...... 339
ReqUESHING SNAPSIOLS.........civeiiicecieesce e 340
Developing persistence applications...........cccccceeenccccinceieee e 340
Using correlator plug-ins when persistence is enabled.............ccocvvnienncnnccnienn. 341
Using the MemoryStore when persistence is enabled..........c.cccovvvceeivicccccsceccee, 341
Comparison of correlator persistence with other persistence mechanisms.................... 342
Restrictions on correlator PersistenCe. ... 344
Common EPL Patterns in MONIOrS..........couueurirririiiniinirie st 345
Contrasting using a dictionary with SPaWNINg..........ccceceeveeceiieiicee e, 346
Translation using @ diCtONAIY.........ccovieuriiirir s 346
Translation USING SPAWNING........cccvriieereiiriieee s snes 346
FaCtOry PAttErN.......iiceee s 347
Canonical factory Pattern...........ccoerierireee s 347
Alternate factory Pattern..........oocccceeiicccescce e 348
Using quit() to terminate event lIStENErS.........ccccvvicveeciiicce e, 348
Combining the dictionary and factory patterns............ccoovenenerncenesese 349
TESHNG UNIGUENESS......viiecictiiriece ettt bbbttt 349
REFErENCE COUNTING......cviiecvctetcctc et 350
Inline request-reSPONSE PAtEIN.........cvvvrveirrieee s 352
Routing events for request-response behavior..........c.ccccvevceiriiicccecsccce, 352
Canonical form for Synchronous reqQUESES...........cccceueiicrcrereierece e, 353

Developing Apama Applications Version 9.10 9

Table of Contents

Writing echo monitors for debugging...........ceereririec e 353
Using Correlator PIUg-iNS iN EPL...........ccoiiiiccesseces e 355
Overhead of USING PIUG-INS.......c.cvviiriieieeecce e 356
WHEN 10 USE PIUG-INS.....vuimieiriiiiieirieirceeie st 356
When NOt 10 USE PIUG-INS....cvviececrereieiiectete sttt 356
Using the TimeFormat Event Library...........cccccoeeececsecccccceeeeee s 357
TimeFormat format fuNCHONS........ccvviieierrcce s 358
TimeFormat parse fUNCHONS..........ccccvvviicie e 358
Format specification for the TimeFormat functions............cccccevveceiviiccccceenee, 359
USING the MEMOTYSTOTe.........coiuiiiicirieescicri s 365
Introduction to using the MemoryStore..........cocccvveceesiccce e 366
Overview of MemoryStore BVENIS..........cccceeivcvceice e 366
Adding the MemoryStore bundle t0 your project...........cooevivnienienneenieninns 367
Steps for using the MeMOryStOre........cccovvvceeveviiiccce e 368
Preparing and Opening StOreS........cccoiviiiiiiiiiiiierissssise e 368
Description Of roW STTUCIUIES..........cveeerrriceees s 371
Preparing and opening tableS........ccvvveviiiiniiicrs s 373

Using transactions to manipulate rows.........cccoevvvvvvviisssessse e 374
Determining which commit action to Call............cccoirriininncnce 375
Creating and remMOVING FOWS.........ceuevririrererereiieeie s 376

lterating over the rows in @ table.........cccoviiiiiiii i 376
ReqUESHING PEISISIENCE. ..o 377
Exposing in-memory or persistent data to dashboards.............cccecevevreccnnnnnnns 378
Restrictions affecting MemoryStore disk files..........ccooviiviiiiiieiicecceecece, 379
Using the distributed MemOryStOre...........ocviriicniicnee s 379
Overview of the distributed MemoryStore...........cocoevvviccevicccc e 379
Distributed store transactional and data safety guarantees.............cccccevvveneeee. 381

Using a distributed StOre...........coeviiriinicccc e 383
Configuring a distributed StOre.......ccccoviiciceiccce e 384
Adding distributed MemoryStore support t0 @ project........ccccoceveveerireercvennn, 384

Adding a distributed SIOre..........ovviriiicece s 385
Configuring a distributed StOre........cccovvieeivces e, 385
Launching a project that uses a distributed store............cccoceeereecciciciiininnns 386
Interacting with a distributed StOre............coeviiricic 386
Configuration files for distributed StOres.........cccccvviviieiiiiccesc e 387
BigMemory Max driver specific details.............ccoeeriviiiceiiicceecccceves 391
Changing bean property values when deploying projects.........cccevvvveeenrnerenne. 397
Creating a distributed MemoryStore driver...........cocoevvccennccceee e 397
Using the Management interfaCe..........coccvioiirieeiccccee et 399
Using MATLAB® products in an application.............ccoceerrnieennniieesesseeeeieinens 403
MatlabManager aCtiONS........c.ccvvvvvririrrrse et 404
MATLAB €XAMPIES......cocveiereiciiicicieieiiiseeeee sttt s e seseresenes 407
Interfacing with user-defined correlator plug-inS.............ccverrirnierneeeres 410
AbOUL the ChUNK YPE.......cececeeiicce s 411
Making Application Data Available t0 ClIentS.........cccocceereeiiiccceeecce e, 413

Developing Apama Applications Version 9.10 10

Table of Contents

Adding the DataView Service bundle to your project...........ccooevevnienenninnienenes 414
Creating DataView definitions...........cccevviceeiiccee e, 415
Deleting DataView definitions.............ccoccueueniiiiicesecce e 416
Creating DataVIew IEMS...........coiiiice e 416
Deleting DataView ItemMS........cccviiircreiiccss s 417
Updating DataVIeW IEEMS.........ccciuiieieciccceeeceeie sttt renens 418
Looking up field POSIHIONS......c.cvvvieeieirirricce s 419
Using mMUItiple COMElators.........cciiviiiecieieieee e 419
Testing and Tuning EPL MONIOTS.........ccviiiiiiiceiiie st senene 421
Optimizing EPL Programs..........ccoeiriiieesiseeseisisee s 422
Best practices for Writing EPL............cccovviciiiiccesrece e 422
Wildcard fields that are not relevant.............ccceevieenienenceee e 423
Avoiding unnecessary alloCations.............coeereiriirinieinee e 423
IMPIEMENLING SAIES......cvcviveiicce e 423
Structure of a basic test frAamEWOrK...........cccvrirre e 424
USING EVENE FIIES........eiiiec s 424
HandliNg rUNtIME EITOIS.......c.ciieiceerreeser s 425
What haPPENS.......cociieic bbb 425
Using ondie() to diagnose runtime €rrors............ceeeneerieineieneeseeeseeseeseenns 426
Using 10gging t0 diagn0oSe EITOIS.........ccccuviviiieeierisi e 426
Standard diagnostic 10g OUIPUL..........c.ccvivcveieiicccce e 426
Capturing teSt OUIPUL.........veeeceeee e 427
Avoiding listeners and monitor instances that never terminate............ccccceoveeieivccinnns 427
Handling sIow or bIOCKEA FECEIVETS..........cccvviieecsse e 428
Diagnosing infinite 100ps in the COMrelator.............ocveiiniercee s 428
TUNING CONEXES ...ttt bbb bbb 429
Parallel processing for instances of an event type..........cocceevicccceeieccereean, 429
Parallel processing for long-running calculations..............cooevrnicnennisnienns 430
Generating Documentation for Your EPL COde...........ccccoviviriieiiiciccerseee e 433
Code constructs that are dOCUMENTEd..........ccovvuviieiererece s 434
Steps for using APAMADOC..........cccoiirieirrieeiee et 434
Inserting ApamaDOoC COMMENES.........cvvvvrirrrcsss s 435
Inserting ApamaDOC taJS.........cccvviieeeeec e 436
Inserting ApamaDOC FEfErENCES...........covirriiree s 439
Inserting EPL source code eXamples.........cocceeueieieienerrinrnneesseeenesesesesesesesesesessens 441
Generating ApamaDoc in headleSs MOGE........cccovivcrereiricicee e, 441
Developing Apama Applications in Event Modeler............c.ccoeveveneencncncnescsneresesesesssesesesssenns 443
Overview of Using Event MOGEIET............coiurirniriccecesese s 445
Event MOdeler [aY0UL..........ccvvicveie et 446
About eVent fIOW STAES........coiverieieeec e 448
How rules define scenario BENAVION.............cooveerriiieersccee s 450
Description of rule CONAItIONS........ccovvvievciercce e 451
Description Of rUle @CHONS..........ccceiiiicice et 453
Description of functions in FUIES..........coveererriccerr s 454

Developing Apama Applications Version 9.10 1"

Table of Contents

AbOUL rUle EVAIUATION. ..o 454
Basic VieW Of TUlE PrOCESSING.......c.cviveveiriiercieiese et 455
Expanded view Of rule proCeSSiNg.........cccoveeueveriireercreeseseetce et 456
Scenario MONItOriNG SEAGE..........cv e 459
Summary of adding rules when a variable value changes.............cccocceeevirerevenan. 459
AbOUL SCENAIO VANADIES.........o e 460
Variable TYPES. ... e 460
Auto-typing Of VariabIES........cvvvvivereiiicces s 460
Variable PrOPEIHIES.........cvivcvcccce et 461
Variable CONSIIAINES..........veuerriccces e 461
User input and OULPUL.........ccceuieiccce e 462
ADOUL DIOCKS......c.ee s 463
Linking variables, block parameters, and block output fields...........cccoevrernicnnnninn. 464
USING EVENE MOGEIET........oviieeeee et 467
Adding SCENAros t0 PrOJECES........cceueveiecicccce e 468
Creating the GlobalRuleExample project..........cccooeieninniencreeceseinns 468
Adding GlobalRuleExample.sdf to the GlobalRuleExample project............cccuveen 468
Adding a new scenario to the GlobalRuleExample project..........ccccooeviceniiecnnen. 469
Opening and viewing MUIIpIE SCENATIOS...........coiurrireerireiricre s 469
Selecting from the SCENAMO MENU.......ccvivcveiiices s 470
The Event Modeler t00IDar...........coereere e 470
Interacting with the tabs and Panels.............ccverrniinicc s 471
Working in the Event FIOW Panel..........covveeeeeeeccccseeeeseeese s 472
Interacting With States.........ccoveeeece e 473
Selecting @ State........oiveeic 473
RESIZING @ STAtE...civiiici e 474

MOVING @ SEALE......eiiii s 474

MUHIPIE SEIECHON........iiieie s 474

AddING @ SEALE......cvivicccece e ——————— 475

The finiShed STAtUS.........ccovirrieec e 475
Deleting @ State.........ccviicereicr e 475
Labeling @ Stat......cccovviirrc s 475

Using cut/copy/paste with states.............cocceereiriicceescece e 475
Interacting With tranSitionS...........ccceerierere s 476
Adding @ tranSItioN........ccvcvevereiicee s 476
Selecting @ transitioN..........cocceiiceecee e 477
Changing ENd-POINES.........cciiriririeeer s 477
Changing the shape of @ transition...........cccccevvieeiiiccce e 477
Labeling @ tranSitioN......cccceeeieiiir e 478

Deleting @ tranSitioN. ..o 479

Using cut/copy/paste with transitions............cccoceeeviiecssicccce e, 479
Displaying global rule transitions.............ccocoeveiriiiiininncse s 479

Working in the RUIES PANEL.........c.criiiiiiicece e 480
AdAING 8 TUIE.....ccviicce e 480
ADOUL GIODAI TUIES........oveveverererectccice et 480

Developing Apama Applications Version 9.10 12

Table of Contents

Selecting rules and rule lemMENtS. ..o 481
RE-0MAEING TUIES.......vicictereisece s 481
DEIBLING @ TUIB.....cvieiiee e 481
LabElING @ FUIE.......viiicc 482
Changing a rule's desCriPtioN........cccvcvevervi e 482
Minimizing and Maximizing @ FUIE.........ccvvvvivivirirscs e 482
Cutting, copying, and pasting FUIES............ccreureirnirniere e 482
Activating and deactivating rulES............ccocevieeeescccee s 483
SPECIfYING CONAIIONS.......cooviecrcreiiieece et 483
Interactive @diting..........ccveuriiieiicirier e 483
LanNQUuagE EIEMENLS.........ccevririicecies e 483
Selecting and replacing EIEMENLS...........cccceviicreiiicee e, 485
Cascading alternative MENUS..........cooueriiriiceeeese s 487
USINgG fUNCLIONS IN TUIBS......cuiveviicectce e 488
Adding a condition t0 @ FUIE.........cceveiecccccce s 489
Specifying variable changes in CoNdItioNns.............cccvererninnieee s 490
Local rules and variable Changes..........ccccovvieeiiiieiecee e 491
Global rules and variable Changes............cccoveceeniceiiceeece e, 491
SPECITYING ACHONS.......euieeieirie s 492
Adding action statements...........cccoeerviiieis e, 493
Deleting action StatemMeNts..........cccceiiiiiiiiiiiicc e 493
Interactive @diting..........ccveuriiieiieier e 493
Using the keyboard 10 edit FUIES..........ccceeerrccccccee s 494
Using the Variables tab..........cccovieccccccccccec e 496
Adding @ VaraDIE..........ciiiiiiiieic e 497
Renaming @ variable..........cccoueieeiiiiecese e e 498
Selecting @ Variable............ccciiiiiecce e 498
Determining which states use a particular variable.............ccccoovevnnnnncninn. 498
MOVING @ VANADIE.........coeeiveieiccce e 498
Deleting @ VariabIE.......covoviiiiiiiiiisssss e e 499
Changing a variable's Properties............ccv e 499
Setting a variable's ValUE.............cccveiiiiicecce e 500
Variable input and OULPUL.........c.ccveieecccce e 500
Linking a variable to a block output field.............ccooeeencc 501
Conversion rules for variable types.........cccvviieiiiiicces e 503
Using the Catalogs tab..........ccceiiicieeiccee e e 504
Adding a block template catalog...........cvviereriiniii e 505
Selecting and inspecting a block template...........cooveeiviiccenccee e 505
Adding a block instance to the SCENANI0..........cccevvviircc e 506
Using the FUNCHONS taD..........ccriiiiiiece e 506
Adding a function Catalog.........cccceviviceeiice s 506
Selecting and inspecting a funCHioN...........ccccoviiiieecccccee s 507
USING the BIOCKS taD..........ceviieiiiiicee s 507
Interacting with @ block INStANCE..........cccevvicccicce e 509
Selecting @ PAraMELEr.........coceviiicreecccce s 509

Developing Apama Applications Version 9.10 13

Table of Contents

Viewing a parameter's Properties.........ouveerrrreeenninieeseseseee e sees 510
Setting a parameter's initial Value...........ccccvvveeiirccccsc s 510
Linking a parameter with a variable or output field............cccccevvicieeiiccec 510
SWItCHING DIOCKS. ... 511
Using the BIOck WIriNg tab.........cccoviiieieiiccceeseecee e e 512
Wiring blOCK INPUL FEEAS......cucviiiiiicecce s 512
Selecting, resizing, and moving block iNsStances............cccoovvernincncnce, 513
Wiring two bloCKS t0GELNET.........civeiiicccece e, 513
Connecting feeds and specifying feed mapping.........ccocoeevvcvceeniececeeeeeeee, 514
Wiring a scenario variable t0 @ BlOCK.............cccviirirniincceees 515
Mapping tYPe CONVETSIONS........ccuirirrrrreriiiireeeseseseseseseseses st sssssssssssssssesesesesesnses 515
Editing BlOCK WIFING.....cciiiiiiiiiiicrsrs et 516
Deleting @ WIMING.......c.euieeiieeiieieeie e 516
Deleting a block INStANCE........ccviiveieiiccce s 516
Using older versions 0f BIOCKS.............ccccueueeiiciceescce e 516
Troubleshooting iNvalid SCENAMOS............ciueuriiiriie s 516
Exporting SCenarios as EPL..........cvvvvviscsccr s 517
Exporting scenarios as block templates.........cccviviiiiiiiiicsc e 517
Event Modeler command line OptioNS...........ccverrnieennscese e 518
Using Standard BIOCKS............cccoviriiicicsscce e 521
A DIOCK'S [IfECYCIE......vieiecrereiciceccte et 523
General @nAIYEC DIOCKS..........couiiriiieiiie e 524
Change NOLIfIEr V2.0......c.veeeieiiiccee et 524
Correlation CalCulator V2.0..........ccoueuriiiriiirriencenee e 526
Data Distribution Calculator V2.0.........cccvviierrniieessseeeess e 527
Median and Mode Calculator V1.0..........ccoeviienirrreseese e 529
MOVING AVEIAQE V1.0....ocuiieiciciccccee ettt nenn 531
Spread Calculator V3.0........coviiieeceeneese e 532
Statistics Calculator VA.0.......c.overieerer s 533
Velocity Calculator V2.0.......c.cuoiiiiiceicecce ettt 535
THE TIMET DIOCKS.ceeeeieieieicicie sttt 536
SCREAUIE V3.0 536
WAL V3.0 539
The ULility DIOCKS.......cevuieeiiiciieeisieice st 541
DiICtioNAry V2.0.....c.cuiveieiieiciceesseetete st 541

File REAEr V2.0......cuiicieeeec e 542

File WIHIEE V2.0....eeeess e 544
HIStory LOGGET V2.0.....cucviveiiiccteteseete sttt 546
INPUE MEIGEE V2.0.....eeccceceeee ettt 547

LISE V2.0t e 549
Scenario Terminator V2.0.........ccvrirrieseee s 550
SHAIUS V2.0 551
Variable Mapper V2.0......c.coiiricesssee s 556
Database functionality—storage and retrieval..........ccccovvvieiviiecescece s 557
ADBC StOrage V1.0 ...ttt s 557

Developing Apama Applications Version 9.10 14

Table of Contents

ADBC RetrieVal V1.0....oieeeeeeeieeieereese ettt 560
Blocks for working with scenario blIOCKS..........ccccvvviceiiiccceecee e 566
Change OBSEIVEr V2.0........ccuiiiiiicieisiceecte ettt 566
Filtered SUMMArY V2.0.........cviiiiiiierice e 568
Using Functions in EVent MOGEIEN............ccvvreeeeecrccceeee s 573
Reference information for provided functions...........ccccccevicceiiiceescecce e 574
Date and time fUNCHONS.........ccceviierree e 574
Extended math functions on float types.........cccoveeervricccsscce s 576

O FUNCHIONS. ... 579
System value fUNCHIONS. ..o s 579
MiscCellaneous fUNCHONS..........cceriiieiririieee e 581
About defining your OWNn fUNCHONS............ccoceiiiiiceeeece s 586
Sample ABS function definition file...........ccovrieernicce e 587
Sample function definition file with imports element............ccccoeeiiviccencicicinnen, 588
AbOUt FUNCHON NAMES.......oceiieiicee s 589
Creating BIOCKS.........cuiiiiect s 591
ADOUL DIOCKS. ... e 592
Introduction to block definition files...........ccovviriiee e 592
Description of block interface elements...........cocvverniecninnnceee s 592
How scenarios communicate with their BIOCKS...........cccceivninirnrcerr e, 593
Defining new blocks in Software AG DESIGNET........ccccevviireeeieiiecee e, 593
Specifying the block metadata............ccocerieiiinii 593
Specifying the block INtErface..........coviviiiiccr e 594
Creating parallel-aware DIOCKS...........cccocueveiiiicreeieee e 595
Adding EPL code to the block definition..............cocovencncnnieccene 596
Considerations for adding EPL code to the block definition...........c.cccoocevevviennee. 597
Details about EPL code that you can add..........cccovveiiiiiiininsscssss e 598
Timeliness of aCkNOWIEAGEMENLS..........c.ccvviiiriiiere s 604

AN €XAMPIE DIOCK.......cviviiiiiicteesicce et 605
Description of the Correlation Calculator block interface..........cccocoovceeiicicvcnnnen, 605
Description of the Correlation Calculator block EPL............cccoeviinivniciine, 608
Working with Blocks Created from SCENAII0S...........ccceueviviiicessceece s 615
Terminology for using scenario BIOCKS..........ccccciiceveiiicce e, 616
Benefits of SCeNario DIOCKS..........cerrriiccrrrsice s 617
Steps for using SCENario DIOCKS.........ccceueiviiiereice e 617
Background for using scenario DIOCKS...........ccccviiccreiiiicce e, 618
Saving scenarios as block templates.............oovrii 619
Incrementing scenario block Version NUMDETS..........cccovevceiviiccee e 619
Adding a scenario block t0 @ Main SCENAMO........ccccvvvviriviriiiiiessss e 620
Examining a scenario block's SOUrCE SCENAMO............cvuiererireerieieiieinieise e 620
Descriptions of scenario block parameters..........ccccovvcceniiiiccces s 620
Descriptions of scenario block 0perations............coccvveeceiniiceceseeeee e 621
Descriptions of scenario block feeds..........cvvrriicerricee s 622
Setting parameters before creating SUD-SCENANIOS...........ccvevevrivicrcieei e 625
Creating SUD-SCENAIIOS..........ccceviiiicieteie ettt 627

Developing Apama Applications Version 9.10 15

Table of Contents

Deleting SUD-SCENAMOS.........c.cuiuiirciricieieiscs e 628
Unconditionally deleting @ sub-SCENAI0............cccevviviceiiie e, 629
Deleting all SUD-SCENAMIOS.......c.cucviiiiiriiiii it 629

Modifying sub-scenario input variable ValUES.............ccoeurieiriirnicreeeeeeees 629

Iterating through SUD-SCENAIOS..........ccceveviiiiiccecce s 629

Obtaining variable values from SUD-SCENAMIOS..........cccoovieueveiriieiiceere e 631

Linking sub-scenarios with other DIOCKS.............coueriirniirre e 631

INNErItiNG SUD-SCENAMIOS.......c.cviveviiiircteie ettt 631
Description of inheritExternalinstances values............ccooeceerceccicesceceeena 632
Notes for setting the inheritExternallnstances parameter...........cccooevnivniiniennes 632
Example of inheriting SUb-SCENAIOS..........ccccoviviicicicccce s 633

Observing changes in SUD-SCENAIIOS............cccueveiiiiieiereeece e 634

Performing simple calculations across SUD-SCENAIIOS............cvveeeeireirieeneiieinieireeienes 636

File Definition FOMMALS..........ccoievriirieiesesee s 639

Function definition file format..............coviriine e 640

Defining metadata in function definition files............ccoovninniniccc 640
Defining the version element............cccceviiieiieicccce e 641
Defining the description element.............cccoeeveviiiceieccece e 641
Defining the imports element..........c.ociiiiccc s 642
Defining the parameters element.............cccceviviiieiiiccee e, 642

Defining EPL code in function definition files..........cccoeevviieeiiccceeecceee, 643

Block definition file fOrmat...........ccovreriieice s 643
Block definition file DTD........cvvirireiriricereees s 643
Block definition file €nCOINgGS.........cccoeeviveviiiicceeece e 644
XML elements that define @ blOCK............ccoovviviireniccree s 644

Developing Apama Applications iN Java..........ccueeeceennmnerencsssnsnenesessssssse s ssesesesssssssesenes 651
Overview of Apama JMon ApPlICatIoNS...........cccvuereiirieciee e 653

Introducing JMON API CONCEPLS.......cueverereierricicceeee ettt renenas 654

ADOUL BVENT IYPES. ... 655
Simple example of an EVENE YPE........cccuevviiccciscce s 656
Extended example of @ JMon event type.........cccceveeiviccicscccce e 658
Comparing JMon and EPL event type parameters........ccccoevvernnnneessnnenennns 658
About event parameters that are complex types........cccovvvceeevicceeisseceeeis 659
Non-null values for non-primitive event field types..........ccocoevevivecceeiicccrcen, 661

ADOUL MONITOIS. ...ttt be s 661

About event listeners and match lIStENers..........cccoverirrerncenee s 662
Example 0f @ MatChLISIENE..........cccoicceccecce e 662
Defining multiple ISEENEIS........c.oviiiericcee s 663
REMOVING lISLENETS........oieivceeiiiciciee e 664

Description of the flow of execution in JMon applications.............ccccoeevviiiccisiieenen. 665

Parallel processing in JMon appliCations.........cccoveeerrniniensrnseess s 665
Overview of contexts in JMon applications...........cccccvvceeiiiiccesscce e 665
Using contexts in JMon appliCations........cccuvvvvviiecerssisss e 666
Using the Context class default constructor............ccvvevirnenniscesce 666

Developing Apama Applications Version 9.10 16

Table of Contents

Descriptions of methods on the Context Class.........cccvvvirnrnicicsnrceess 667
Identifying external EVENES...........ccciiiicccs s 668
OptimIzZING BVENE YPES.......cviviriiiccrcte et 669

Wildcarding parameters in eVent types........coovcrerernienencsee e 669
Logging in JMON appliCationS..........cccveveveieiiiiicieiessece et 670
Using EPL keywords as identifiers in JMon applications...........c.cccoeeveevveiecessecennen. 671

Defining EVeNnt EXPreSSIONS..........cviiiiiiiiiieicesieseee s 673
About eVENt EEMPIALES.......cceviiiccce s 674

Specifying positional SYNLAX..........ccccviiveveriiiiicee e 674

Specifying completed event templates...........ccoovvvieernniccee s 676
Specifying parameter constraints in event templates..........ccccovvvvieiivcciccceccceen, 676
Obtaining MatChing BVENLS.........cccuiiicicccrceecte bbb 678
Emitting, routing, and enquUeUiNg BVENTS...........ccvrriincres e 680
Specifying temporal SEQUENCING.........coeueiriicieerieee e 681

ChainiNg IStENEIS.......ccviveviiicctee bbb 681

Using temporal OPEratOrS.......cccuriviierieirrisiees st 682
Defining advanced event eXpressions..........coceccreiniiee s 683

Specifying other temporal OPEerators.............ccccueerivicrereeseeeee e, 684

Specifying a perpetual listener for repeated matching........cccovvvecrvrcccssniene, 686

Deactivating @ lISteNEr..........cccveveiiiccce e 686

TemMPOral CONLEXES......cviviiiiiiiicicic st 686

Specifying the timer OPErators..........cooceiereeee s 691

Looking for event sequences within a set time...........cccocovveeveivvccscccenene, 692

Waiting Within @ lIStENE.........ccoveveccccceecccce e 693

Working With absolute tiMe..........cviiiiiicrcee s 693

Optimizing eVENt EXPIESSIONS.......ccvivieiieteiicerete e 695
Validation of VNt EXPrESSIONS..........cceiveveiiiireiereieieeie et 696
Concept of Time in the Cormelator..........cov s 697
Correlator timestamps and real time.........cccovveieeeieccee e 698
EVENE @rmival tIME.....c.oviceeece e 698
Getting the CUITENT tIME........cviiic s 699
About timers and their trigger IMES.........cccevviiicee s 700
Developing and Deploying JMon Applications............ccccceeeennceieiinieienenen s, 703
Steps for developing JMon applications in Software AG Designer...........cccocovvvrrinnee. 704
Java prerequisites for using Apama's JMon APL...........ccccoiieeeniiceessce e 705
Steps for developing JMon applications manually..............ccccceeviieceesiececeeeeene 706
Deploying JMon appliCatioNns...........cocerriirnnrrieesssseee s 706
Removing JMon applications from the correlator............cccoevvivcceiisiccessceees 707
Creating deployment descriptor files..........ccovviieeiiiiicces e 707

Format for deployment descriptor fileS.......covvirnrriiceerreeess e 708

Specifying classpath in deployment descriptor files.........cccovvieiiiviiiceiccie, 709

Defining event types in deployment descriptor files..........ccccceviviceeciciccecene, 710

Defining monitor classes in deployment descriptor files...........ocoovrnirniinicnns 71

Inserting annotations for deployment descriptor files..........cccoovvceevviicciciene, 711

Sample source files with annotations.............ccccccvvveceicccceeceee e, 712

Developing Apama Applications Version 9.10 17

Table of Contents

Generating deployment descriptor files from annotations...........cccccovvvvrvrniennene. 713
Package names and namespaces in JMon applications............cccovvvvvsesseesnennnns 715
Sample JMon appliCations...........cccccviiiicieiiiece e 715

Developing Correlator PIUG-iNS.......ccccouincnenniinesess s ssssssessssssssssessssssssssssenes 7
Introduction t0 Correlator PIUG-INS..........cciiiiriireesees s 719
Providing an EPL event wrapper for @ plug-in..........ccoocceiriiiceenceceses e 721
Writing @ PlUg-in i € 0F G 723

A simple PIUG-iN IN Gt e 724
Calling the test function from EPL..........cccoviiiicecc s 726
A SIMPIE C PIUGAIN. .ttt bbbt bbb 727
Parameter-less plug-in fUNCHONS...........cvriini s 728
Advanced Plug-in Functionality in C++ and C..........cccoeiviiciiicccceesece e 731
Introducing COMPIEX_PIUGIN......cuiuiirieriiiiiieieie et 732
THE ChUNK IYPE.....eeiiice s 733
Working with Chunk in CH.....coicccc e 734
Working With ChUNK in C.......c.cuiviiiccce e 736
WOrKING With SEQUENCES.........cuvriiiiieiicieicieisieis e 736
The complete EXaMPIE........ccvicveiiiicce e s 738
Using complex_plugin from the event COIrelator.............oceevivieceenicecee e 738
ASYNCAIONOUS PIUG-INS.....vveiiiieiie e 739
Writing correlator plug-ins for parallel processing applications..........ccccceveviceveriinnen. 740
Working with blocking behavior in C++ plug-ins...........cccceviviiceeicccce e 741
Working with channels in C++ PlUG-INS.......c.ciiuiiirirecsee s 742
The EPL Plug-in APIs for C and CH+......ccciiceieiccesrseees s 747
PrimMary Class tYPES.....couuiiiriiiiiiiiiieiisis st 748
Writing Correlator PIUG-iNS iN JAVA..........cciiieeeese e 751
Creating a plug-in USING JaVa.........cccouviiveiiisiice s 752

Permitted signatures for methods.............cccceeiiiicceccccce e, 753
USING JaVA PIUG-INS......ouiiiiiiciicese e 754
Sample PIUG-INS 1N JAVA......c.ciiicieiece s 760

A simple pIUG-IN N JAVA........cciicccccc s 761

A more complex plUg-in IN JAVA.........ccorrriiiirrseee e 761

A plug-in in Java that Sends eVENLS..........c.ccceevviicceescecce e 762

A plug-in in Java that subscribes to receive events............cccoeeeecieiciccieiciiiinninnn, 762

[o I LY (T o T 763
INEFOAUCHION. ...t 765
Hello WOrld €XamPIE.........cvvieiveieiiceieie ettt 766

L] 1= TP 767
Primitive and StriNg tYPeS........ciiiiice s 768

DOOIBAN. ... 768

AECIMAL ..ttt 769

FIOBL.... e 770

0= 1= TSR 77

3 (40T PP 780

Developing Apama Applications Version 9.10 18

Table of Contents

REFEIENCE TYPES. ..o 785
ACHON. .. 786
CRANNELL.....e s 788
CRUNK ettt et se bbb bbbt bbbt b bbb b renenis 789
COMEEXE. .ttt 790
QICHONAIY.....eii et 791
BVBNL. .ttt bbbttt et ettt e e nnererennereras 796
EXCEPHON. ...t 800
[ISEEIET. ... 803
[OCALION. ...ttt bbbt ettt bane 803
SEUUENCE. . ..cvveviieseeete ettt sttt et s sttt s et bbb s st bbb s s bbb n et 805
StaCKTrACEEIBMENL........oeceice e 809
SHTBAML...c.eie bbb 809

MONILOr PSEUAO-YPE.viiiiectce bbb 810

Type Properties SUMMATY........ccccccueererereeieeeeee e se s ss s s s b s s sesesesenes 811

Timestamps, dates, and IMES........cocciiiiiii e 814

Type methods and instance Methods...........coccviccicccccc s 814

TYPE CONVETISION.c.ciiiiiisisicisists sttt s e s s s s st bbb ee 815

COMPArADIE EYPES... e iveeeieiicieieieir sttt 817

ClONEADIE YPES....cvviiecectetsce s 818

Potentially CYCIIC tYPES....uiiriiiiiiiiiiiiiss s e 819
Which types are potentially CYClIC?...........ooiiriiiicceee e 819
String form of potentially Cyclic types........cccvvieeiiriccesr e, 820

Support for |[EEE 754 special ValUES............cccceeviviiiceeieccee e e 822

Events and EVENt LISIENEIS..........c.ccuieiciciccccccceeeeee bbb 827

Event defiitioNS..........cviere s 828
EVENE fIBIAS. ... s 828
EVENE ACHONS.......oiii bbb 828
Event field and action SCOPE........ccoveiiiiceirieee e 829

EVENE teMPIALES......oiiie s 830
BY-pOSItion QUANIfIENS.......cccueuriicirieiescee e 830
BY-Name QUAIIfIErS........cccueueiiiiccesrece s e 831
RANGE EXPIESSIONS.....c.viiiviiiiiiisicie ettt ettt bbb repenenas 831
FIEld OPEIAIOrS. ..ottt 832

Event listener definitions..........c.cvrririncs e 835

EVENE IfECYCIE ...ttt 835

Event listener lIfECYCIE. ..o e 836

Event processing order for MONItOrS............coeeveviiicescc e 837

Event processing Order fOr QUEMES........cocviiivcrereiniccrete et 839

EVENE EXPIESSIONS.viiiieeieisece st 839
EVENE PHIMANIES.....cocvcviice et 840
L1101 TSP 841
THE NOL OPEIALON......eiiececieiescc e 842
THE @ll OPEIALON.......cviicectctesce e 842
The and, xor, and or logical event operators............ccocovvevvvvvvssee e 843

Developing Apama Applications Version 9.10 19

Table of Contents

The followed-by event OPerator...........ccoveierceesee s 843
Event expression operator preCedeNCe.cveeeerrreeeeeeeere s 843
EVENE ChaNNEIS.......oocee e 844
MONILOLS. ...ttt ettt e b bbb bbbttt bbbt b ettt ebene e e e s 845
MONIEOr IFECYCIE.....cvvveviictcte e 846
MONILOT fIES.....eveee e 847
PACKAGES. ... vttt 847
The USING AECIArALION........ccvivicrerete e 848
MONItOr dEClarations...........cuevivriicierre e 848
The import deClaration............cocerriererree e 848
MONItOr @CHONS.......eieiicieieee e 849
SIMPIE ACHONS.....vviicectcteeeece ettt 849
Actions With PAramMEtErS..........ovveieriericeee e 850
COMEEXES ... 850
PlUGAINS ottt b et 851
Garbage CONBCHON.cueiicicietr s 851
QUETIES..... ettt 853
QUETY TIfEHIME......coiececice e 854
QUETY AEFINITION......eceeee e 856
Metadata SECHON.cevieiree e 858
Parameters SECHON.ccueerrecee et 858
INPUES SECHON......ceeeiicicets et s 858
Query INPUL AEfINIION. ... 858
FINA STAEMENT......oee e 860
PN, ..o bbbttt bane 861
WHErE CONGITION.vuieeieciiciere s 862
WIthin CONAIEION.cuoeriececieee e 863
WIthOUt CONAITION........cciiiicc bbb 863
BEWEEN CIAUSE. ... s 864
SEIECE ClAUSE.cviee e 865
HAVING ClAUSE.........cuiiieeiicec s 865
Reserved WOTrAS iN QUETIES.cciueiiiicreiesis ettt 866
AQOregate FUNCHONS.cucucieieicicccetee s 869
Built-in aggregate fuNCHONS...........ooiiiice s 870
CUSIOM AQQrEGALES.......cviviiiciccee bbb 876
SHAIEMENTS. ... 879
SIMPIE StAEMENES......ceeeeecere s 880
The assignment Statement............c.ccceviiccicc e 880
The emit SEAtEMENT..........co s 880
The enqueue StatemMeNt.........ccoriicee e 881
The enqueue . . . 10 StatemMENt.......ccovicce e 881
The expression StatemeNt...........ccciiiii s 882
The 10g StAtEMENT.......c.iiiicic s 883
The print StateMENt.........cciiccce e 883
The route StAtEMENL.........c.oiceee s 883

Developing Apama Applications Version 9.10 20

Table of Contents

The send . . . 10 StatemMENt........coie s 884
The Spawn SEAtEMENT..........ccceecrcee s 885
The spawn action to context statement............ccocviiiiiiic 885
Variable declaration statements............coovereriicninscee e 885
Compound SEAtEMENES..........ccuiiiicce s 885
The fOr StateMENL........c.oieeee s 885
The from stateMeNt........c.cooiiiee e 886
The if StatEMENT........oeee s 886
The On StAtEMENL..........cieieec e 887
The while StatemeNt.........ccoiiiieeeee e 887
The try-catch statement..........cccovviiiciice s 888
Transfer of control StatemMeNts..........covvrriiecr s 888
The break Statement...........c.ovieerree e 888
The continue StatEMENT...........oiiiec s 889
The die StatEMENL..........o.oie s 889
The return statement...........c.ooeeii e 889
EXPIESSIONS. ...t bbb bbb bbb 891
INtroduCtion 10 EXPrESSIONS.........ccviviiicicrs e 892
PriIMary @XPreSSIONS........c.cuiueuirciriseieieieiiseisiei st 893
Bitwise 10giCal OPEIAtOrS.........cociiiiiiciee et e 893
Bitwise intersection (aNd).........coccvieiicreieiecccee e e 893
BItWISE UNION (OF)...c.uvieciicieeccise s 893
BitwiSe EXCIUSIVE (XOF)..uviviiieivcriiiii ettt 894
UNAry DItWISE INVEISE.....c.cucvceciciciciciccccee et nenes 894
LOGICAI OPEIAOFS......cuceeieciiecie et 895
Logical interseCtion (aNd).........cccceviriiiereeiiieccessseee e 895
LOGICAl UMION (OF)..v.vveieiecritereiiiciete ettt 895
LOGICal EXCIUSIVE OF (XOT)....vuvueeeeriieiriseiriseiseeieistsee s 895
Unary logical inVErSE (NOL)........ccccvevriiiicieeisieeree ettt 896
Shift OPBIAIOIS.....vvviecectee ettt s 896
Left Shift OPErator. ..o s 896
Right shift OPErator.........cceviicce s 896
COMPAIISON OPETALOTS.........cuiviveiiiectetete ettt bbb bbb bns 897
AdAIIVE OPEIAIOIS.cveveeeiicieieter ettt 898
MUIPlICAtiVE OPEIALOrS.......cucviiiecectcicisiecte e 899
Unary additive OPEIatOrS........cceuiiiiieiiie sttt 900
EXPreSSION OPEIAtOrS.ccueviiieieieieirisereieie sttt 900
EXpression Operator PréCEABNCE..........vvivcvcriiicete et 901
POSHIX EXPIESSIONS.......eeivcviiiiictcte sttt bbbttt bbbttt 902
Action and Method CallS..........ccverriieeer s 903
The subsCript OPErator [] e 903
The new object creation OPErator..........coiveviviiiiiiiieiees s 903
SHEAM QUETIES. ...ttt nns 903
Stream query Window definitions...........coceevivecceiccss e 905
Stream SOUrCE tEMPIALES.........coiieee e 908

Developing Apama Applications Version 9.10 21

Table of Contents

VaMBDIES. ...t bbbt bbbttt 909
Variable declarations.............coeenre e 910
Vari@ble SCOPE.......cviveiieicicte ettt 910

Predefined variable SCOPE.........covvirericeces s 911
MONIEOT SCOPE.....vieivitetiiiiiecte ettt ettt bbb 911
ACHON SCOPE.....uiiiiieicicicicte et b bbb r e rnrens 911
BIOCK SCOPE.....eviieicicie et 911
EVENE ACHON SCOPE......iicecccece e 911
Custom aggregate function SCOPE.........ccceueviircieieiiieccte e 911
Provided Variables............coviiiiiiiicccce et 912
CUITENETIMIE ...t 912
Event tiMeStamps.........cvovii s 913
Sl et bbbt b et bere b ns 913
Specifying named constant ValUEs.............cccvviiccriiiccesseeee e 913

LeXICal EIBMENES. ..ottt 915
ProOGram XL ... 916
COMMENTS. ...ttt 916
WHITE SPACE......i i 916
LiNe terMINGALOLS.......oiiiieec ettt 918
SYMDBOIS.....c.vietccte et 919
IAENEIEES. ...t 919
KEYWOTTS. ... 920

List Of EPL KEYWOITS.......cocvcveeiiiiiiiecie sttt 920

List of identifiers reserved for future USE..........ccccovvvvievienienercee e 922
Escaping keywords to use them as identifiers.........coocovivnivncnneinccs 923
OPBIALOLS.... .ttt bbb bbb bbb 924
SEPAIALOLS.......ceivcveiiectcte ettt bbb bbb bbbttt 925
LIEBIAIS. .. vttt bbb bbbt bbb aens 925
BOOIEAN [HEFAIS.......oeieeiciicecce s 925
INTEQEIN TILEIAIS.......c.cececvcictctctcccce et rererens 925
Base 10 lIEralS.......cccoiviiiiieicccce e 926

BaSe 16 EralS........ccvuvimierieieirceire e 926

Floating point and decimal literalS...........ccocovvveeeesceeccce s 926
SHING THEFAIS...... e 927
LOCALION HEFAIS. ... 927
DIctionary IEralS........ccvvvviviiiiisicccss e 927
SEAUENCE TILEIAIS........ceeeieieieicicee s 928
TIME EFAIS......eeeeeceetee s 928

N T LT PRSP 929
ANNOLALIONS.......ocviicicicicccee et bbb 930

LIMIES .t 931

Obsolete Language EIBMENTS.........c.ccviieiiiiiccce ettt 933
Old style lIStENEr CallS..........ccriiirieiicrce e 934
Old style spawn StAtEMENLS..........ccccveririicee e 934

Developing Apama Applications Version 9.10 22

Table of Contents

EPL Naming CONVENLIONS.........cccccomiencnsnmnnniness s sssesesssssssssssessssssssssssssssssssssssssssssses 935
EPL Keyword QUICK REfErENCE.........crvvrrnirremsessrnnssessssssssssssssssssssssssssssessssssssssssssssssssssssssssssassans 939
EPL Methods QUICK REfErENCE.........crevrunmrriuressrssrsisissssessesssss s sssssssssseass 961
EPL Streams: A QUICK TOU.......cocruuremmnmsrmssesssens 977
About the Apama event stream processing MOEL.........ccovvveeerriiecerrreee s 978
Example events for Stream QUENIES.........ccceueiciceieiecee e 979
Processing events USING SIrEAMS.......ccccviiiiiiiiiiiiiiiirirs s 980
Creating @ Stream NEWOTK...........cciiiiiiee s 981

Using inline stream source template eXpreSSions.........cocceviievcresiecesessseee s 981

Using compound Stream QUETIES.......cccvviiiiriiirissisisse e 982

Using dynamic values in Stream QUENIES...........eveiurrriieuriseireeiesieeseeisee s 982

Using Stream VariabIES..........ccccueiiiiicccss s s 984

Using the short-form from statement.............cccoeviiiciicccccce e 984

SHEAM [IFEHIME. ... 985

Using windows in SIream QUETIES..........ccccueiviiceiieisiece e 986

Using jOINS iN SIrEAM QUETIES.......c.cvevererereicrcreieiereee e sesenes 987

Using partitions and groups in Stream QUEMES..........ccovvrieernniiersn s 988

USING ISIIEAM........cvitiveccce et 989
Common stream QUETY PALIEIMS........c.cviivivireiieeciere ettt bbb s 989
Aggregation in Stream QUETIES.coueuriiirerieireeireeee s 990
Throttling in StreamM QUETIES........cceviiiiicrceriecce s 990
Dynamic filters in Stream QUETIES..........cceueiiicieescce e 990

Joining the most recent event on each of two streams.............cccoevinnincnicn, 991
Retaining the most recent item in each partition of a partitioned stream........................ 992

Joining an event with @ previous EVENL...........cccccccciiccci e 992

Developing Apama Applications Version 9.10 23

Developing Apama Applications Version 9.10

24

About this Guide

About this Guide

Apama provides different technologies for developing applications: EPL, Event
Modeler, and Java. You can use one or several of these technologies to develop an
Apama application. In addition, there are C++, C, and Java APIs for developing
components that plug-in to a correlator. You can use these components from EPL.

Documentation roadmap

Apama provides documentation in the following formats:

m HTML (viewable in a web browser)

m PDF (available from the documentation website)

®m Eclipse help (accessible from the Software AG Designer)

You can access the HTML documentation on your machine after Apama has been
installed:

m Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be
changed during the installation.

® UNIX. Display the index.html file, which is in the doc directory of your Apama
installation directory.

The following table describes the different guides that are available.

Title Description

Release Notes Describes new features and changes since the
previous release.

Installing Apama Instructions for installing Apama.

Introduction to Apama Introduction to developing Apama applications,
discussions of Apama architecture and concepts,
and pointers to sources of information outside the
documentation set.

Using Apama with Software Instructions for using Apama to create and test

AG Designer Apama projects, develop EPL programs, define
Apama queries, develop JMon programs, and store,
retrieve and play back data.

Developing Apama Applications Version 9.10 25

About this Guide

Title Description
Developing Apama Describes the different technologies for developing
Applications applications: EPL monitors, Apama queries, Event

Connecting Apama
Applications to External
Components

Building and Using
Dashboards

Deploying and Managing
Apama Applications

Modeler, and Java. You can use one or several of
these technologies to implement a single Apama
application. In addition, there are C++, C, and Java
APIs for developing components that plug in to a
correlator. You can use these components from EPL.

Describes how to connect Apama applications
to any event data source, database, messaging
infrastructure, or application. The general
alternatives for doing this are as follows:

® Implement standard Apama Integration Adapter
Framework (IAF) adapters.

m Create applications that use correlator-integrated
messaging for JMS or Software AG's Universal
Messaging.

B Use connectivity plug-ins written in Java or C++.

m Develop adapters with Apama APIs for Java and C
++,

® Develop client applications with Apama APIs for
Java, .NET, and C++.

Describes how to build and use an Apama
dashboard, which provides the ability to view and
interact with scenarios and DataViews. An Apama
project typically uses one or more dashboards,
which are created in the Dashboard Builder.

The Dashboard Viewer provides the ability to

use dashboards created in Dashboard Builder.
Dashboards can also be deployed as simple Web
pages, applets, or WebStart applications. Deployed
dashboards connect to one or more correlators

by means of a Dashboard Data Server or Display
Server.

Describes how to deploy components with
Command Central or with Apama's Enterprise
Management and Monitoring (EMM) console. Also
provides information for:

Developing Apama Applications Version 9.10

26

About this Guide

Title Description

® Improving Apama application performance by
using multiple correlators and saving and reusing
a snapshot of a correlator's state.

® Managing and monitoring over REST
(Representational State Transfer).

®m Using correlator utilities.

In addition to the above guides, Apama also provides the following API reference
information:

m API Reference for EPL in ApamaDoc format
m API Reference for Java in Javadoc format

m API Reference for C++ in Doxygen format
|

API Reference for NET in HTML format

Online Information

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.
Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at http://techcommunity.softwareag.com. You can:

B Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation” as an area of interest.

B Access articles, code samples, demos, and tutorials.

Developing Apama Applications Version 9.10 27

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

About this Guide

®m Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

® Link to external websites that discuss open standards and web technology.

Contacting customer support

If you have an account, you may open Apama Support Incidents online via the eService
section of Empower at https://empower.softwareag.com/. If you do not yet have an
account, send an email to empower@softwareag.com with your name, company, and
company email address and request an account.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at https://empower.softwareag.com/
public_directory.asp and give us a call.

Developing Apama Applications Version 9.10 28

https://empower.softwareag.com/
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp

Developing Apama Applications in EPL

|

Developing Apama Applications in EPL

Getting Started With Apama EPL ..o e 31
DEFINING MONITOTS ..ot es 49
DEfiNING QUETIESevieeeieeceie s 75
Defining EVENt LISIENETS ..o 159
Working with Streams and Stream QUETIEScouiiririririirriere s 205
Defining What Happens When Matching Events Are Found ..., 265
Implementing Parallel PrOCESSINGvovovoviviiiiririrse e 303
Using Correlator PEISISTENCE ... 327
Common EPL Patterns in MONITOFS ..o 345
Using Correlator PIUg-inS iN EPL ..o 355
Making Application Data Available t0 ClIENtScccoveiveiiiiiicceeccecee s 413
Testing and Tuning EPL MONIOTSc.ovruiiriiriiiieiieeisee s 421
Generating Documentation for Your EPL COTEccceiiniiiniccccceec s 433

Developing Apama Applications Version 9.10 29

Developing Apama Applications in EPL

The event correlator is Apama's core event processing and correlation engine. The
interface to the correlator lets you inject events that the correlator analyzes. You can
configure the correlator to watch for particular events or patterns of interest. In addition,
you specify the actions to undertake when the correlator identifies such patterns.
Identification of events of interest plus what to do when such events are found constitute
an Apama application's logic.

To deploy an application on the correlator, you can use either the correlator's native
Apama Event Processing Language (EPL) or the Apama in-process API for Java (JMon).
Alternatively, you can define application logic in the Event Modeler, which provides a
graphic user interface. The information presented here focuses exclusively on EPL.

Developing Apama Applications in EPL teaches you how to write EPL programs. While
some programming experience is assumed, no prior knowledge of EPL is assumed.

Software AG Designer provides tutorials that can help you get started with EPL. On the
Welcome page of Software AG Designer, click Tutorials under the Apama heading.

Note: MonitorScript is the old name for EPL. You might still see the old name in the
product documentation.

Developing Apama Applications Version 9.10 30

Getting Started with Apama EPL

1 Getting Started with Apama EPL

m Introduction to Apama Event Processing Language ..o 32
m How EPL applications compare to applications in other languagesc.ccccoeveececicriieninnnns 33
m About dynamic compilation in the COIEIAtorc.o e 33
m About the Apama development environment in Software AG DeSignerc.cccovvverrriricnne. 34
L T =111 To] (o]0 OSSR 35
B DefiniNg EVENE IYPES ..o 40
B WOrKING WIth VENES ..ot enenas 44

Developing Apama Applications Version 9.10 31

Getting Started with Apama EPL

Apama Event Processing Language (EPL) is an event-driven programming language. It
lets you write applications that:

B Monitor streams of events to find particular events or patterns of events of interest

® Analyze events (or patterns of events) of interest to determine whether some action
is appropriate

® Perform actions based on particular events or patterns of events

This section discusses the main concepts you must understand to write applications in
EPL.

Introduction to Apama Event Processing Language

EPL is a flexible and powerful ”curly-brace”, domain-specific language designed for
writing programs that process events. In EPL, an event is a data object that contains a
notification of something that has happened, such as a customer order was shipped,

a shipment was delivered, a sensor state change occurred, a stock trade took place, or
myriad other things. Each kind of event has a type name and one or more data elements
(called fields) associated with it. External events are received by one or more adapters,
which receive events from the event source and translate them from a source-specific
format into Apama's internal canonical format. Derived events can be created as needed
by EPL programs.

Though it contains many of the familiar constructs and features found in general-
purpose programming languages like Python or Java, EPL also has special features
to make it easy to aggregate, filter, correlate, transform, act on, and create events in a
concise manner. Here is the canonical "hello world" example written in EPL:

monitor HelloWorld
{

action onload()

{
print "Hello world!";

}
}

The Apama event processor, called the correlator, receives events of various types from
external sources. The EPL programs that process these events are monitors or queries.

Monitors have registered event handlers, called listeners, for events of particular types
with specific combinations of data values or ranges of values. When a listener detects an
event of interest, it triggers a particular action. If there are no listeners for an event, the
correlator either discards it or passes it to a listener specifically for events that have no
handler. A monitor instance processes events on one correlator and can send events to
communicate with other monitors on the same correlator or remote correlators.

Queries are scalable across multiple correlators. An Apama query operates on only
the input event types you specify and you can filter which instances of those events
should be processed. Apama partitions these incoming events according to a key field
that you specity, for example, there might be a partition for each credit card number.
The query processes the events in each partition independently of the events in every

Developing Apama Applications Version 9.10 32

Getting Started with Apama EPL

other partition. As events are added to partitions, the query checks for a set of events
that matches the event pattern you specified, which can optionally specify complex
conditions for there to be a match. When a match is found the query executes procedural
code that you have defined, which can include sending events.

Event handlers in EPL are conceptually similar to methods or functions used for
handling user-interface events in other languages, such as Java Swing or SWT
applications. In EPL, the correlator executes code only in response to events.

The correlator is capable of looking for hundreds of thousands of different events or
different event patterns concurrently. When you write an EPL application, you write
a set of monitors and/or one or more queries and then you inject or load them into a
running correlator. As streams of events pass into a correlator, the monitors and their
listeners and/or the queries watch for the events or patterns of events that you have
specified as being of interest. There are a variety of actions that you can specify that
you want the correlator to perform when a listener or query detects an event or event
pattern of interest. For example, the most common action for a monitor is to generate
and dispatch a message to an external receiver.

EPL is case-sensitive.

How EPL applications compare to applications in other languages

EPL is an event-oriented programming language, as opposed to an object-oriented
language. Because EPL is part of an event-processing framework, it requires a different
approach to decomposing the problem you want to solve.

EPL syntax is similar to other scripting languages. EPL has variables, data structures,
conditions, and procedures (called actions in EPL). But EPL supports a paradigm that is
different from that supported by other scripting languages:

® A monitor or a query is the basic module in EPL programs.
® All communication is by means of message passing.

®m All processing is triggered in response to events.
|

Monitors spawn instances of themselves to generate multiple units of execution and/
or to initiate parallel processing. A query uses a key to partition incoming events and
can share the same data across multiple correlators.

EPL requires a different way of developing applications.

About dynamic compilation in the correlator

EPL is dynamically compiled. You inject (load) EPL source files into a running
correlator. The correlator compiles the files into optimized byte-code representations.

The EPL compiler is strict. There is no implicit type conversion. You cannot discard
return values. To minimize the chance of runtime errors, your code must be explicit
and not make assumptions. The correlator terminates execution of a program at the first
runtime error.

Developing Apama Applications Version 9.10 33

Getting Started with Apama EPL

The dynamic compilation approach removes the need for a byte code interpreter that
supports older versions of byte code. Also, the correlator can apply new optimization
techniques during byte code generation.

About the Apama development environment in Software AG
Designer

Software AG Designer provides an integrated environment for developing Apama
applications. The process of developing an Apama application is centered around an
Apama project. In Software AG Designer, you create a project and then you use Software
AG Designer to:

® Add and manage the component files that make up the application.
® Write the EPL for your application.

m Specify the adapters, dashboards, and scenarios that are necessary for the
application.

Specify the configuration properties necessary for launching the application.
Run and monitor the application.

Export the initialization information necessary for deploying the application.

Export your EPL and scenario files to a Correlator Deployment Package (CDP).

As you add components to your application, Software AG Designer automatically
generates the boilerplate EPL code for the application's standard features and launches
the appropriate editor where you add the code to implement the component's behavior.

A central Apama feature in the Software AG Designer is the EPL editor. The EPL editor
provides the following support for writing EPL:

Automatic EPL validation

Content assistance

Auto-completion

Hovering over an event declaration displays the event's type definition

Automatic indenting and bracketing

A separate panel shows the hierarchy of the EPL that appears in the editor
®m Ability to define templates for frequently-used fragments of EPL

In Software AG Designer, you can examine the EPL files that are part of the Apama
demo applications. On the Welcome page of Software AG Designer, click Demos under
the Apama heading, select the Process Monitor demo, and then double-click a .mon file
to view it in the EPL editor. If necessary, click the Show All Folders 29" icon to display the
monitors.

Developing Apama Applications Version 9.10 34

Getting Started with Apama EPL

Terminology

This topic provides a definition of each important EPL term. The definitions are
organized into several groups.

Basic modules

EPL Term Definition

Application An Apama application consists of one or more
collaborating monitors and/or one or more queries.

Package A mechanism for qualifying monitor, query and event
names. Monitors, queries and global events in the same
package must each have a unique name within the
package.

Context Contexts allow EPL applications to organize work into
threads that the correlator can concurrently execute.

Monitor A monitor is a basic unit of program execution. Monitors
have both data and logic. Monitors communicate by
sending and receiving events. A monitor is defined in a
.mon file.

In a monitor, you can create multiple contexts and divide
processing among multiple contexts.

A monitor cannot contain an Apama query.

Query An Apama query is a basic unit of program execution. It
partitions incoming events according to a key and then
independently processes the events in each partition.
Processing involves watching for an event pattern and then
executing a block of procedural code when that pattern is
found. A query is defined in a . qry file.

In a query, you do not create contexts. Apama
automatically uses multiple contexts as needed to process
your query.

An Apama query cannot contain a monitor.
Channel A string name that monitor instances and receivers can

subscribe to in order to receive particular events. Adapter
and client configurations can specify the channel to deliver

Developing Apama Applications Version 9.10 35

Getting Started with Apama EPL

EPL Term

Definition

Event (type)

Field

Method

Data types

EPL Term

events to. In EPL, you can send an event to a specified
channel.

Queries do not subscribe to channels.

An event is a data object. All events have an event type and
an ordered set of event fields. An event type might also
have zero or more defined event actions that operate on the
event fields.

A data element of an event.

A method is a pre-defined action. A given EPL type has a
given set of methods that it supports.

Definition

Data type

sequence

dictionary

location

chunk

listener

Usually referred to as simply type. EPL supports the
following value types: boolean, decimal, float, integer,
and the following reference types: action, Channel,
chunk, context, dictionary, event, Exception,
listener, location, sequence, StackTraceElement,
stream, string. Also, monitor is a very limited pseudo-

type.

An EPL type used to hold an ordered set of objects
(referenced by position).

An EPL type used to hold a keyed set of objects (referenced
by key).

An EPL type that represents a rectangular area in a two-
dimensional unitless Cartesian coordinate plane.

An EPL type that references an opaque data set, the data
items of which are manipulated only in a correlator plug-
in.

You can assign an event listener or a stream listener to a
variable of this type and then subsequently call quit () on
the listener to remove the listener from the correlator.

Developing Apama Applications Version 9.10 36

Getting Started with Apama EPL

EPL Term Definition

action An EPL type that references an action. Actions in EPL are
the equivalent of methods in object-oriented languages.
Actions are user-defined methods that you can define in
monitor and query definitions, event type definitions, and
custom aggregate function definitions.

context An EPL type that provides a reference to a context. A
context lets the correlator concurrently process events.

stream An EPL type that refers to a stream object. Each stream is
a conduit through which items flow. A stream transports
items of only one type, which can be any Apama type.
Streams are internal to a monitor.

Channel An EPL type that contains a string or a context. A
contained string is the name of a channel. A contained
context lets you send an event to that context. Defined in
the com. apama namespace.

Exception Values of Exception type are objects that contain
information about runtime errors. Defined in the
com.apama namespace.

StackTrace A StackTraceElement type value is an object that contains

Element information about one entry in the stack trace.

Monitors

EPL Term Definition

Monitor name

Monitor definition

Monitor instance

Sub-monitor

Each monitor has a name that can be used to delete the
monitor from the correlator.

The set of source statements that define a monitor.

A monitor instance is created whenever a monitor is
loaded into the correlator. Subsequent monitor instances
are created whenever a monitor instance spawns. As one
time, a monitor instance was referred to as a sub-monitor.

A monitor instance was previously referred to as a sub-
monitor.

Developing Apama Applications Version 9.10 37

Getting Started with Apama EPL

Queries

See also "Query terminology" on page 80.

EPL Term Definition

Query name Each Apama query has a name that can be used to delete
the query from the correlator.

Query definition The set of source statements that define an Apama query.

Query instance A query instance is created whenever a non-parameterized
query is loaded into the correlator. When a parameterized
query is loaded, no instances are created until parameter
values are provided. After specification of parameter
values, Apama creates an instance of the query, which
is referred to as a parameterization. A query definition
supports multiple parameterizations.

Query key A query key identifies one or more fields in the event types
that the query specifies as input event types. Each query
input event type must specify the same key.

Query partition A partition contains a set of events that all have the same
key value. One or more windows contain the events added
to each partition.

Events

EPL Term Definition

Event name Every event must identify its event type. Event types
are identified by a unique event name. The event name
can also be used to remove the event definition from the
correlator.

Event definition The set of source statements that define an event type.

Event type All events of a given event type have the same structure.
An event type defines the event name, the ordered set of
event fields and the set of event actions that can be called
on the event fields.

Event field A data element of an event.

Developing Apama Applications Version 9.10 38

Getting Started with Apama EPL

EPL Term Definition

Event action An action defined within an event definition. The action
can operate only on the fields of the event and any
arguments passed into the action call.

Listeners

EPL Term Definition

Event listener A construct that monitors the events passed to, or routed
within, a correlator context. When the event pattern
matches the event pattern specified in an event listener, the
correlator invokes the event listener's code block.

In monitors, it is up to you to define event listeners. In
queries, Apama defines event listeners for you.

on statement EPL statement that defines an event listener. An on
statement specifies an event expression and a listener
action.

Stream listener A construct that continuously watches for items from a
stream and invokes the listener code block each time new
items are available.

from statement EPL statement that defines a stream listener. A from
statement specifies a source stream, a variable, and a code
block. The from statement coassigns each stream output
item to the specified variable and executes the statement or
block once for each output item.

Listener action The action, statement or block part of a listener.

Listener handle It is possible to assign the handle (reference) to a listener to
a listener variable. This variable can then be used to quit
the listener.

Event template Specifies an event type and the set of (or set of ranges of)
event field values to match.

Event operator Relational, logical, or temporal operator that applies to an
event template and that you specify in an event expression.

Developing Apama Applications Version 9.10 39

Getting Started with Apama EPL

EPL Term

Definition

Event expression

Streams

An expression, constructed using event operators and
event templates, that identifies an event or pattern of
events to match.

See also the above definitions for stream, stream listener, and from statement.

EPL Term

Definition

Stream query

Stream source
template

Stream network

Activation

A stream query is defined in a monitor. A stream query
is a query that the correlator applies continuously to
one or two streams. The output of a stream query is one
continuous stream of derived items.

A stream query is a completely different construct than an
Apama query.

An event template preceded by the a1l keyword. It uses no
other event operators. A stream source template creates a
stream that contains events that match the event template.

Network of stream source templates, streams, stream
queries, and stream listeners. Upstream elements feed into
downstream elements to generate derived, added-value
items.

When the passage of time or the arrival of an item causes
a stream network or an element in a stream network to
process items.

Defining event types

Conceptually, an event is an occurrence of a particular item of interest at a specific time.
Examples of events include:

B A price of $100 for a share of IBM stock at noon on November 7, 2014
m Purchase of 1000 shares of IBM stock at $80 per share at 12:01 PM on December 12,

2014

® RFID tag 123-456-789 was scanned at 10:05 AM at loading dock 3

®m Purchase order 55555 for 10,000 widgets sent to Acme Motor Supply
m TCP/IP address 123.4.56.789 just accessed server 5

Developing Apama Applications Version 9.10 40

Getting Started with Apama EPL

m Container X was overfilled greater than 0.2 grams more than standard amount

An event usually corresponds to a message of some form. The correlator is designed to
take in huge numbers of messages per second, and sift them for the events or patterns
of events of interest. When the correlator detects interesting events or patterns it can
undertake a variety of actions.

A correlator can receive events in several ways:
B You use Software AG Designer to send events from a file.

® From an adapter that receives an event from an external source. Apama adapters
translate events from non-Apama format to Apama format.

® You run the Apama engine_send utility to manually send events into the correlator.
® A monitor or query generates an event within the correlator.

B You can write an application in C, C++, Java, or .NET that uses the Apama client API
to send events into the correlator.

The correlator propagates information by sending events.

In EPL, each event is of a specific type. An event type has a name and a particular set
of fields. Each field has a name and is one of a selection of types. Every event instance
of a given event type has the same set and order of fields. For the correlator to process
an event of a specific event type, it needs to have the event type definition for that type.
Having the definition for an event type, lets the correlator

® Operate on the messages of that event type
m Create optimal indexing structures for finding events of that type that are of interest

An event type definition specifies the event type's name and the name and type of each
of its fields.

See also "Specifying named constant values" on page 270.

Allowable event field types

A field in an event can be any Apama type. For more information on these types, see
"Types" on page 767.

Certain field types are valid only within a certain scope and you cannot pass events with
such field types outside that scope. The details are as follows:

B context — When an event contains a context type field, you can send the event to
other monitors within the same correlator but you cannot send the event outside the
correlator. In other words, you can send or route the event. See "Generating events"
on page 284.

B chunk, listener and stream — An event that contains one or more of these types
of fields is valid only within the monitor that creates it. You cannot send, route, or
enqueue an event that contains a field of type chunk, listener or stream.

If an event contains a chunk, listener, or stream field you cannot listen for that event.

Developing Apama Applications Version 9.10 41

Getting Started with Apama EPL

Format for defining event types

In EPL, the format for an event type definition is as follows:

event event type {
[
[wildcard] field type field name; |
constant field type field name := literal; |
action definition
1

}

Syntax description

Syntax Element Description

event This EPL keyword is required. It indicates an
event type definition.

event type Replace event type with a name that you
choose for this event type. An EPL best
practices convention is to specify an initial
capital in event type names, and to capitalize
subsequent words in the name. For example:

StockTick.
{1 Enclose the field definitions in curly braces.
wildcard Specify the wildcard keyword in front of a

field definition when you are certain that you
will never specify that field in the match criteria
for this event type. In other words, when the
correlator watches for certain events of this
type, the value of a wildcard field is always
irrelevant.

For more details, see "Improving performance
by ignoring some fields in matching events" on
page 174.

field type Replace field type with the name of a type.

If you specify action, sequence, stream

or dictionary, you must also specify the
type of the action's argument(s) and return
value if there are any, the type of the values
in the sequence or stream, or the type of

the dictionary's key as well as the type of

the values in the dictionary. For example:
dictionary<integer, string>. For more

Developing Apama Applications Version 9.10

42

Getting Started with Apama EPL

Syntax Element

Description

field name

constant

literal

action definition

details, see "dictionary" on page 791 and
"sequence" on page 805.

Replace field name with a name that you
choose for this field.

An event can have zero or more fields. You
might define an event with no fields in a
situation where only detection of the event is
needed to start some process.

While there is no limit to the number of fields
in an event, the correlator can index up to 32
fields per event. This means that the correlator
can match on up to 32 fields per event. If

an event type has more than 32 fields, you
must specify the wildcard keyword for the
additional fields. Note that if the type of an
event field is 1location, that field counts as 2.
For example, if you have 28 non-location type
fields and 2 1ocation fields, then you have
reached the limit of 32 indexed fields. If you
try to inject an event definition that specifies
more than 32 fields and you do not specify the
wildcard keyword for additional fields, the
correlator rejects the file. You must add the
wildcard keywords to be able to inject the file.

Specity the constant keyword in front of
a field definition whose type is boolean,
decimal, float, integer, or string and
whose value never changes.

If you specify the constant keyword, you
must assign a literal to that field. The type of
the literal must be the same as the field type
you specified for this field.

When you specify an action in an event type
definition you can call that action on an
instance of the event. See "Specifying actions in
event definitions" on page 274.

Developing Apama Applications Version 9.10

43

Getting Started with Apama EPL

Example event type definition

For example, the EPL definition of an event type for simple financial stock price ticks
might include the stock's name and its price:
event StockTick {

string name;

float price;

}

To represent a specific instance of an event, use the following form:

event type (fieldl value, field2 value ...)

For example, a StockTick event describing Acme's new price of 55. 20 looks like this:
StockTick ("ACME", 55.20)

The reading order of fields in an event type definition and in instances of that event type
must always match and is always left-to-right and then top-to-bottom. That is, "ACME" is
the value of the name field and 55. 20 is the value of the price field.

Working with events

After you define an event type, there are built-in methods you can call on it, and there
are various ways that you can make that event available to monitors and queries.

You can call a number of methods on any event type. For an overview of these methods,
see "event" on page 796.

Making event type definitions available to monitors and queries

A monitor or query must have information about the type definitions of the events that
it processes. You can provide this information as follows:

®m Define the event type in a separate file that contains only event definitions. An event
type definition file has a .mon extension. It is still an EPL file even though it contains
only event type declarations.

You can define any number of event types in a single file. A common practice
is to define the event interface to a service in a file that is separate from the
implementation of that service. You might have a single event interface file and
multiple implementations of services that process those event types.

An event type definition file is the only way to make event type definitions available
to queries.

® Define the event type in the monitor. Only instances of that monitor can process
events of that type. Also, events of that type cannot be sent into the correlator from
outside. When you define an event type inside a monitor it has a fully qualified
name. For example:

monitor Test

{

event Example{}

}

Developing Apama Applications Version 9.10 44

Getting Started with Apama EPL

The fully qualified name for the Example event type is Test .Example and the
toString () output for the event name is "Test .Example () ".

m After the optional package specification, define the event type at the beginning of
an EPL file that also defines monitors. All event type declarations must be before
the monitor declarations. After you inject this file into the correlator, the following
monitors can process events of that type:

®m All monitors that you define in the same file

m All monitors that you inject after you inject the file that contains the event
definition.

You might have a need for different event type definitions to have the same event type
name. In this situation, define each event type in a different package. Remember that
event types to be used by queries must be defined in event type definition files. Then,
in your monitor or query, use one of the following ways to make the appropriate event
type definition available. In the monitor or query:

m Specify the fully qualified name of the event type, for example:
com.apamax.test.Status

B After any package declaration and before any other declarations, specify a using
declaration. For example:

using com.apamax.test.Status;
In your code, you can then simply refer to the status event type.

Do not create EPL structures in the com. apama namespace. This namespace is
reserved for future Apama features. If you inadvertently create an EPL structure in the
com.apama namespace, the correlator might not flag it as an error in this release, but it
might flag it as an error in a future release.

See also "Name Precedence” on page 929.

An event type definition must be injected into the correlator before a monitor that
processes events of that type. After you inject an event type definition into the correlator,
any monitor that you inject after that can process events of that type.

During development, when you use Software AG Designer to launch a project, it
ensures that files are injected in the right order. When more than one project requires the
same event definition file, do one of the following:

® In each project, declare an external dependency on the common event definition file:

1. In Software AG Designer, in the Apama Developer perspective, in the Developer
Project View, select the project name.

2. DPress Alt-Enter.
3. Select MonitorScript Build Path.
4. Click the External Dependencies tab.

Developing Apama Applications Version 9.10 45

Getting Started with Apama EPL

5. Click Add External.
6. Navigate to the event type definition file, and select it.
7. Click Open.

®m Create a project that contains the common event definition file. In each project that
requires these event definitions, declare a dependency on the project that contains
the common event definition file.

1. Create the project that contains the common event type definition file and keep
that project open in Software AG Designer.

2. In the Developer Project View, select the name of a project that needs to use the
common event definition file.

Press Alt-Enter.

Select MonitorScript Build Path.
Select the Projects tab.

Click Add.

N o gk W

Select the project that contains the event definition file, and click OK.

Channels and input events

Adapters, Apama client applications, and tools such as the engine send correlator
utility send events into the correlator. Each incoming event is associated with a channel
either explicitly or implicitly. An event that has a channel explicitly set is delivered on
the specified channel. An event that does not have a channel explicitly set is delivered on
the default channel. The default channel's name is the empty string.

An incoming event that is sent on the default channel goes to each public context. In
addition, contexts can subscribe to channels of interest (see "Subscribing to channels"
on page 70). An incoming event for which a channel is explicitly set goes to each
context that is subscribed to its associated channel. If there are no contexts subscribed to
the specified channel the event is discarded.

Any running Apama queries receive events that come in on the default channel. In
addition, Apama queries run in contexts that are subscribed to receive events sent on the
com.apama.queries channel. So queries also receive events sent on that channel.

Events sent into the correlator from, for example, clients and adapters, are

not normally delivered to external receivers. However, external receivers can

specify the com.apama. input channel in their configuration. This is a wildcard

for all events coming into the correlator. Also, an external receiver can specify
com.apama.input.channel name to receive correlator input events that are associated
with that particular channel.

When two events are sent to different channels there is no ordering guarantee. The
only guarantee is that events going from the same source to the same destination on the
same channel will be delivered in order. Also, if there is an external connection with, for

Developing Apama Applications Version 9.10 46

Getting Started with Apama EPL

example, an adapter or client, then the events must use the same connection for them to
be delivered in the same order.

All routable event types can be sent to channels, including event types defined in
monitors.

An Apama application can use Software AG's Universal Messaging (UM) message bus
to deliver events on specified channels. If a correlator is configured to connect to UM
then a channel might have a corresponding UM channel.

See Choosing when to use UM channels and when to use Apama channels in Connecting Apama
Applications to External Components.

Developing Apama Applications Version 9.10 47

Developing Apama Applications Version 9.10

48

Defining Monitors

2 Defining Monitors

B ADOUE MONILOr CONTENESvvieeeiicccic et 50
B Example of @ SImple MONILOLc.ccuiiiiii s 53
B Spawning MONILOr INSTANCEScvvuririiieieieiiieir et 55
m Communication among MONItOr INSLANCESc.cueveiriirirrieirrcee s 60
B ADOUL SEIVICE MONITOScvevieiicieieiee ettt 67
B Adding predefined annotations ..o 68
B SubsCribing 10 ChANNEIScvcviiiccce e 70
m Adding service monitor bundles t0 YOUr PrOJECtoceuiviiriiiririerseeeeees s 72
m Utilities for operating on MONIOTScccviiiuiviriiiicccte e 73

Developing Apama Applications Version 9.10 49

Defining Monitors

A monitor is one of the basic units of EPL program execution.

Note: The other basic unit is a query. A monitor cannot contain a query. A query
cannot contain a monitor. For information about writing queries, see
"Defining Queries" on page 75. For a comparison of queries and monitors,
see "Architectural comparison of queries and monitors" on page 79.

Monitors have both data and logic. Monitors communicate by sending and receiving
events. You define a monitor in a .mon source file. When you load the .mon file into the
correlator, the correlator creates an instance of the defined monitor.

A monitor instance can operate like a factory and spawn additional monitor instances.

A spawned monitor instance is a duplicate of the monitor instance that spawned it
except that the correlator does not clone any active listeners or stream queries. Spawning
lets a single monitor instance generate multiple instances of itself. While generally, the
spawned monitor instances all listen for the same event type, each one can listen for
events that have different values in particular fields.

It is good practice to define monitors and events in separate files. An advantage of doing
this is that queries, as well as monitors, can use the same event definitions. When you
inject files into the correlator, be sure to load event type definitions before you load the
monitors and/or queries that process events of those types.

The topics below provide information and instructions for defining monitors. For
reference information, see "Monitors" on page 845. Apama provides several sample
monitor applications, which you can find in the samples\monitorscript directory of
your Apama installation directory.

See also: "Overview of Developing Apama Applications" in Using Apama with Software
AG Designer and "Overview of Deploying Apama Applications" in Deploying and
Managing Apama Applications.

About monitor contents

A file that defines a monitor has the following form:

1. An optional package declaration

2. Followed by
a. Zero or more using declarations
b. Zero or more custom aggregate function definitions
c. Zero or more event type definitions

3. One or more monitor definitions

When you define monitors that are closely related, it is your choice whether to define
them in the same file or different files.

Developing Apama Applications Version 9.10 50

Defining Monitors

A monitor must have information about any event types it processes. Hence, the
correlator must receive and parse all of the event types used by the monitor before it is
able to correctly parse the monitor itself.

A monitor can contain one or more global variables. A global variable declaration appears
inside a monitor but outside any actions. The variable is global within the scope of the
monitor.

A monitor can also contain a number of actions. Actions are similar to procedures.
Finding an event, or pattern of events, of interest can trigger an action. You can also
trigger an action by invoking it from inside another action.

Any construct that you declare inside a monitor is available only from within that
monitor. In other words, its use is restricted to the scope of the monitor.

Below is a minimal monitor:

monitor EmptyMonitor ({
action onload() {
}

}

The monitor above does not do anything; it does not register interest in any event or
event pattern, it does not have variables, and it does not do anything in its single action
statement. However, it does show the minimum structure of a monitor:

m It specifies the monitor keyword followed by the name of the monitor. In the
example, the name of the monitor is EmptyMonitor. The name of the monitor and
the name of the file that contains the monitor do not need to be the same. A single
file can contain multiple monitors.

®m It declares the onload () action. When you inject a monitor into the correlator, the
correlator executes the monitor's onload () action. Every monitor must contain an
onload () action. The onload () action is similar to the main () function in C/C++.

If you define two or more monitors in the same file, the correlator executes the
onload () actions of the monitors in the order in which you define the monitors.

If there is an onload () action whose execution is dependent on the results of the
execution of the onload () action of another monitor, but sure you define that other
monitor earlier in the same file. If you define that other monitor in a separate file, be
sure you inject that file first. Tip: it is better to avoid these dependencies as much as
possible by using initialization events. See "Using events to control processing” on
page 67.

EPL provides a number of actions, such as onload (), onunload (), and ondie (). You
can define additional actions, and assign a name of your choice that is not an EPL
keyword. See "List of EPL keywords" on page 920.

Do not create EPL structures in the com. apama namespace. This namespace is reserved
for future Apama features. If you do inadvertently create an EPL structure in the
com.apama namespace, the correlator might not flag it as an error in this release, but it
might flag it as an error in a future release.

Developing Apama Applications Version 9.10 51

Defining Monitors

Loading monitors into the correlator

During development, you use Software AG Designer to load your project, including
monitors, into the correlator. Software AG Designer ensures that files are loaded in the
required order.

At any time, you can use the correlator utility, engine inject, to load EPL files into
the correlator. See "Injecting EPL code" in the "Correlator Utilities Reference" section of
Deploying and Managing Apama Applications.

In a deployment environment, you can load monitors into the correlator in any of the
following ways:

® Use the engine inject utility.

® Write a program in C, C++, Java, or .NET and use the corresponding Apama client
APL

® Use the Apama Management & Monitoring tool.

If you try to inject a monitor whose name is the same as a monitor that was already
injected, the correlator rejects the monitor. You can inject two monitors with the same
name into the correlator only if they exist in different packages. To specify the package
for a monitor or event type, add a package statement as the first line in the EPL file that
contains the monitor/event definition. For example:

package com.mycompany.mypackage;
monitor Foo {

}

Terminating monitors

A monitor instance terminates when one of the following events occurs:
B The monitor instance executes a die statement in one of its actions.
B A runtime error condition is raised.

® The monitor is terminated externally (for example, with the engine delete utility).
When the correlator deletes a monitor it terminates all instances of that monitor.

® The monitor instance has executed all its code and there are no active event or
stream listeners. This will occur rapidly if the monitor's onload () action does not
create any listeners. See also "Beware of accidental stream leaks" on page 263.

When a monitor instance terminates, the correlator invokes the monitor's ondie ()
action, if it is defined. You cannot spawn in an ondie () action.

Unloading monitors from the correlator

The correlator unloads a monitor in the following situations:

m All of the monitor's instances have terminated.

Developing Apama Applications Version 9.10 52

Defining Monitors

B An external request kills the monitor. This kills any instances of the monitor.

If the monitor defines an onunload () statement, the correlator executes it just before it
unloads the monitor. You cannot spawn in an onunload () action.

Example of a simple monitor

The empty monitor discussed in "About monitor contents" on page 50 does not do
anything. To write a useful monitor, add the following:

B An event type definition

m A global variable declaration

B An event expression that indicates the pattern to monitor for

B An action that operates on an event that matches the specified pattern
For example, the EPL below

B Defines the stockTick event type, which is the event type that the monitor is
interested in.

m Defines the newTick global variable, which is accessible by all actions within this
monitor. The newTick variable can hold a stockTick event.

B Registers an interest in all StockTick events.

B Invokes the processTick () action when it finds a StockTick event. The
processTick() action uses the 1og command to output the name and price of all
StockTick events received by the correlator.

Lines starting with // are comments. EPL also supports the standard C/Java /* ... */
multi-line comment syntax.

// Definition of the event type that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;

float price;

}

// A simple monitor follows.
monitor SimpleShareSearch ({
// The following is a global variable for storing the latest
// StockTick event.
StockTick newTick;
// The correlator executes the onload() action when you inject the
// monitor.
action onload() {
on all StockTick(*,*) :newTick processTick() ;
}

// The processTick() action logs the received StockTick event.

action processTick () {
log "StockTick event received" +
" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

Developing Apama Applications Version 9.10 53

Defining Monitors

About the variable in the example

The single global variable is of the event type StockTick. A variable can be of any
primitive type — boolean, decimal, float, integer, string, or any reference type —
action, context, dictionary, event, listener, location, sequence Or stream.

About the onload() action

In this example, the onload () action contains only one line of code:

on all StockTick(*,*):newTick processTick() ;
This line specifies the following;:
B on all StockTick(*,*) indicates the event to look for.

The on statement begins the definition of an event listener. It means, "when the
following event (or a pattern of events) is received ..." This event listener is looking
for all stockTick events. The asterisks indicate that the values of the StockTick
event fields do not matter.

B :newTick processTick(); indicates what to do when a StockTick event is found.

If the event listener finds a StockTick event, the coassignment (:) operator
indicates that you want to copy the found event into the newTick global variable.
The onload () action then invokes the processTick () action.

About event listeners

The on statement must be followed by an event expression. An event expression
specifies the pattern you want to match. It can specify multiple events, but this simple
example specifies a single event in its event expression. For details, see "About event
expressions and event templates" on page 160.

The a11 keyword extends the on command to listen for all events that match the
specified pattern. Without the a11 keyword, the event listener would listen for only the
first matching event. In this example, without the a11 keyword, the event listener would
terminate after it finds one stockTick event.

In the sample code, the event expression is StockTick (*, *). Each event expression
specifies one or more event templates. Each event template specifies one event that you
want to listen for. The stockTick (*, *) event expression contains one event template.

The first part of an event template defines the type of event the event listener is looking
for (in this case StockTick). The section in parentheses specifies filtering criteria for
contents of events of the desired type. In this example, the event template sets both
fields to wildcards (*). This declares an event listener that is interested in all StockTick
events, regardless of content.

When an event listener finds a matching event, the listener can use the assignment
operator (:) to place that event in a global or local variable. For example:

on all StockTick(*,*) :newTick processTick() ;

Developing Apama Applications Version 9.10 54

Defining Monitors

This copies a StockTick event into the newTick global variable. This is known as a
variable coassignment.

Finally, the on statement invokes the processTick () action. For all received StockTick
events, regardless of content, the sample monitor copies the matching event into the
newTick global variable, and then invokes the processTick () action. For details, see
"Using global variables" on page 266.

About the processTick() action

The processTick () action executes the 1og command to output some data on the
registered logging device, which by default is standard output. This 1og statement is
used to report some of the fields from the received event.For details, see "Logging and
printing" on page 295.

Accessing fields in events

EPL uses the ‘. ' operator to access the fields of an event. You can see that the
processTick () action uses the ‘. ' operator to retrieve both the name (newTick.name)
and price (newTick.price) fields of each event.

The 1og command requires strings as fields, so the processTick () action specifies the
built-in . toString () operation on the nonstring value:

newTick.price.toString ()

Spawning monitor instances

It is frequently necessary to enable a single monitor to concurrently listen for multiple
kinds of the same event type. For example, you might want one monitor to listen for
and process stock ticks that each have a different stock name. You accomplish this is by
spawning monitor instances as described in the topics below.

See also "Spawning to contexts" on page 309.

How spawning works

In a monitor, you spawn a monitor instance by specifying the spawn keyword followed
by an action. When the correlator spawns a monitor instance, it does the following:

1. Creates a new instance of the monitor that is spawning.
2. Copies the following, if there are any, to the new monitor instance:
m Current values of the spawining monitor instance's global variables
®m Any arguments declared in the action that is specified in the spawn statement
® Anything referred to indirectly by means of the copied variables and arguments

3. [Executes the named action with the specified arguments in the new monitor
instance.

Developing Apama Applications Version 9.10 55

Defining Monitors

The new monitor instance does not contain any active event listeners, stream listeners,
streams or stream queries that were in the spawning monitor instance. For example,
data held in local variables that are bound to a listener are not copied from the spawning
monitor instance to the new monitor instance. The figure below illustrates this process:

Spawning process

Time
= = =)
[3+] [1:] [4:]
= = s
< L <
= (S} (5] .
= 2 o Received
= = = Events
= = >
= - 2
a o
—, Initial
Chosen Stock = “" Monitor

. Instance

| <
Chosen Stock = “IBM”
Spawned
Chosen Stock = “ATT" Monitor
Instances
Chosen Stock = “XRX"
—
-

The figure shows a monitor that spawns when it receives a NewStock event. Initially, the
monitor has one active event listener. When the event listener finds the first NewStock
event, the monitor

1. Copies the name 1BM to the chosenStock variable.
2. Spawns a monitor instance.

The spawned monitor instance duplicates the initial monitor instance's state. In this
example, this means that the value of the chosenstock variable in the spawned monitor
instance is 1BM. When the initial monitor instance receives another NewStock event

(the value of the name field is ATT), it again copies the stock's name to the chosenstock
variable and spawns. The same occurs for the XrRx event, resulting in three spawned
monitor instances.

Each new monitor instance starts with no active event listeners. It then creates a new
event listener for StockTick events of the chosen stock (see the sample code in the next
topic). The initial monitor instance's event listener for NewTick events remains active
after spawning. However, because the action to create a new stockTick event listener is
executed only in the spawned monitor instances, the initial monitor instance continues
to listen for only NewTick events.

Developing Apama Applications Version 9.10 56

Defining Monitors

Sample code for spawning

EPL that implements the example described in "How spawning works" on page 55 is
as follows:

// The following event type defines a stock that a user is interested
// in. The event type includes the name of the stock (name) and the
// user's personal name (owner).
//
event NewStock {

string name;

string owner;

}

event StockTick {
string name;
float price;

}

monitor SimpleShareSearch {
NewStock chosenStock;
integer numberTicks;
StockTick newTick;

// Listen for all NewStock events. When a NewStock event is found
// assign it to the chosenStock variable and spawn with a call to

// the matchTicks () action. This clones the state of the monitor
// and launches a monitor instance that executes matchTicks () .
action onload() {

numberTicks := 0

on all NewStock (*, *):chosenStock spawn matchTicks () ;
}

// In the spawned monitor instance, listen for only those StockTick
// events whose name matches the name in the chosenStock variable.
action matchTicks () {

on all StockTick (chosenStock.name, *) :newTick processTick() ;
}

action processTick() {
numberTicks := numberTicks + 1;
log "A StockTick regarding the stock "

newTick.name + "has been received "
numberTicks + " times. This is relevant for "
" Trader name: " + chosenStock.owner

" and the price is " + newTick.price.toString() at INFO;

T

}

This example defines a new event type named NewStock. Traders dispatch this event
when they want to look for a specific kind of stock event. The code example spawns

a monitor instance when the monitor finds a NewStock event. For example, if three
newStock events are received by the initial monitor instance, there will be three
spawned monitor instances. Other than spawning, the difference between this code
sample and the sample in "Example of a simple monitor" on page 53is that this

one specifies an owner in each NewStock event and the monitor's state now includes a
counter.

Developing Apama Applications Version 9.10 57

Defining Monitors

In this example, after spawning, all processing is within a spawned monitor instance.
Processing begins with execution of the matchTicks action. This action starts by
defining an event listener for StockTick events whose name field matches the name
field in the spawned monitor instance's chosenStock variable. When there are multiple,
spawned monitor instances, each spawned monitor instance listens for only the
StockTick events that match their chosenStock name.

The numberTicks counter variable and the chosenStock event variable, which contains
the stock name and the owner's name, are available in the cloned state of the spawned
monitor instance. This lets the processTick () action in each spawned monitor instance

® Customize output to include the originating trader's name

® Maintain a counter of how many stockTicks for a particular stock have been
detected for a trader

The really important aspect that distinguishes spawning is that the entire variable space
is cloned at the moment of spawning. In the example, every spawned monitor instance
has a copy of the chosenStock variable that contains the NewStock event that triggered
spawning. Also, every spawned monitor instance has a copy of the numberTicks
variable, which is always set to 0 when the initial monitor instance spawns. This ensures
that each spawned monitor instance can maintain an accurate count of how many
matching stockTick events have been found.

The initial monitor instance listens for Newstock events. Remember that spawning
does not clone active listeners, so the spawned monitor instances do not have listeners
that watch for NewStock events. Each spawned monitor instance listens for only those
StockTick events that contain name fields that match that spawned monitor instance's
value for the chosenStock variable.

Typically, spawning is not an expensive operation. However, its overhead does increase
as the size of the monitor being spawned increases. When writing an EPL application
avoid repeated spawning of monitors that contain a large number of variables.

Spawned monitor instances contain copies of all global state from the spawning monitor
instance. It does not matter whether the spawned monitor instance is going to use that
state or not. To avoid wasting memory, a typical practice is to hold state in events that
are referred to by local variables, which are not copied during spawning. This ensures
that you do not have a lot of state information in global variables when the monitor
instance spawns. Alternatively, you can insert code so that the new monitor instance
clears unneeded state immediately after it starts running.

For information about spawning to actions that are members of events, see "Spawning"
on page 275.

Terminating monitor instances

The example discussed in "Sample code for spawning" on page 57 spawns a monitor
instance for each newStock event that the initial monitor instance receives. This is not
always desirable. For example, if two identical newStock events are received, two
identical monitor instances are spawned. To prevent this, you can use the die statement

Developing Apama Applications Version 9.10 58

Defining Monitors

to delete a monitor instance if a more recent one (with the same spawning properties)
has been created. For example:
action onload() {

on all NewStock(*, *):chosenStock spawn matchTicks () ;

}

action matchTicks () {
on NewStock (chosenStock.name, chosenStock.owner) die();
/] ...

}

In this fragment, the monitor spawns when it receives a NewStock event. In the spawned
monitor instance, the initial on statement activates an event listener for a NewStock

event that is identical to the one that caused the spawning. In other words, the spawned
monitor instance is listening for a NewStock event where the fields are the same as

that held by the chosenStock variable. If such an event arrives, the monitor instance
terminates. This structure ensures that only one monitor instance for each stock name
and owner exists at any one time. The same NewStock event kills the existing monitor
instance and causes spawning of a new monitor instance. That is, the same event triggers
the concurrent event listeners of the initial monitor and the spawned monitor instance.

In this solution, when a NewStock event kills an existing monitor instance and spawns a
new monitor instance, the value of the numberTicks variable in the new instace is zero.

Often, this kind of behavior is required. You want to ignore the state of the old monitor

instance and start afresh.

Note that the event that triggers the initial monitor instance's event listener and causes
the spawning of a monitor instance does not get processed by the spawned monitor
instance's new event listener. An event is available to only those event listeners that are
active when the correlator receives the event.

You can also use the die statement to kill a monitor instance at will. For example,
consider the following fragments:

event StopStock {
string name;
string owner;

}

action onload() {
on all newStock(*, *):chosenStock spawn matchTicks () ;

}

action matchTicks () {
on StopStock (chosenStock.name, chosenStock.owner) die();
VA

}

Traders would send stopStock events when they are no longer interested in a particular
stock. Receiving a matching stopstock event kills the monitor instance that is listening
for that stock. You can use this technique to explicitly kill any monitor instance.

About executing ondie() actions

A monitor instance can terminate for any of the following reasons:

®m It executes all its code and has no active listeners or streaming elements.

Developing Apama Applications Version 9.10 59

Defining Monitors

B The die () operation is called on it.

B The engine_delete utility or an Apama client API removes the monitor from the
correlator.

B A run-time error is detected in the monitor's code, which causes that instance of the
monitor to die.

In all of these situations, if the monitor defines an ondie () action, the correlator invokes
it. Like the onload () and onunload () actions, ondie () is a special action because the
correlator invokes it automatically in certain situations.

Suppose that a monitor that defines the ondie () action spawns ten times, and each
monitor instance dies. The correlator invokes ondie () eleven times: once for each
spawned monitor instance, and once for the initial monitor instance. Then, just

before the monitor's EPL is unloaded from the correlator, the correlator invokes the
onunload () action only once, and it does so in the context of the last remaining monitor
instance.

The correlator executes each ondie () operation in the context of its monitor instance.
Therefore, the ondie () operation can access the variables in the monitor instance being
terminated.

You cannot spawn in an ondie () or an onunload () action.

Specifying parameters when spawning

When spawning a monitor instance, you can pass parameters to an action. For example:

monitor m {
action onload() {
spawn forward("a", "channelA");
spawn forward("b", "channelB");

action forward(string arg, string channel) {
Event e;
on all Event (arg) :e {
send e to channel;

}

on StopForwarding (arg) {
die ()
}

}

The following are equivalent:

spawn actionName(); // This is the correct syntax.
spawn actionName; // This is deprecated. Do not use it.

Communication among monitor instances

In EPL applications, everything in a monitor instance is private. There is no direct way
for a monitor instance to invoke an action or access the state of another monitor instance.

Developing Apama Applications Version 9.10 60

Defining Monitors

Instead, messages, in the form of events, are the mechanism for communication among
monitor instances. All events are visible to all interested monitor instances.

Consequently, how you divide your application operations into monitors and what
events the monitor instances use to communicate are crucial design decisions. An
understanding of the order in which the correlator processes events for monitors helps
you determine where and when to allocate events.

The topics below provide information for making these decisions.

To use the MemoryStore correlator plug-in to share state between monitors, see "Using
the MemoryStore" on page 365. If you are mixing monitors and queries in your
application, see "Communication between monitors and queries" on page 157.

Organizing behavior into monitors

Typically, an Apama application consists of several monitors each doing a specific
task. For example, a simple algorithmic trading system might consist of the following
monitors:

® A monitor that manages order processing by spawning a monitor instance for each
order.

® One or more market data monitors. Each monitor listens for a different type of
market data (such as tick data, market depth) required to process orders. Each of
these monitors typically spawns a monitor instance for each stock you want to
observe.

A more complex application might organize its orders into portfolios or split sets of
orders into smaller orders for wave trading or some other purpose.

In an Apama application, each monitor can usually be categorized as a core processing
monitor or a service monitor. A core processing monitor performs the tasks you want to
accomplish. A service monitor provides data needed by the core processing monitors.
Typically, the core processing monitors spawn multiple monitor instances. These
monitor instances will consume data from the same service monitors. For example, all
monitor instances that manage the individual orders for a given stock would obtain tick
data from the same instance of a service monitor. The ordinality of the solution elements
— for example, N order processors that require data from 1 tick data provider — often
dictates how the solution code should be organized into separate monitors. See also
"About service monitors" on page 67.

The ordinality of the solution elements often dictates how the solution code should be
organized into separate monitors. For example, there is an N:1 relationship between the
'N' order processor monitor instances that require market data for a given stock and the
'l market data service monitor instance that supplies it.

Event processing order for monitors

As mentioned earlier, contexts allow EPL applications to organize work into threads
that the correlator can execute concurrently. When you start a correlator it has a main

Developing Apama Applications Version 9.10 61

Defining Monitors

context. In a monitor, you can create additional contexts to enable the correlator to
concurrently process events.

Note: In a query, you do not create contexts. Instead, Apama automatically creates
contexts as needed to process the incoming events.

Each context, including the main context, has its own input queue, which receives
®m Events sent specifically to that context from other contexts.

m Events sent to a channel that a monitor in the context is subscribed to. See .
Concurrently, in each context, the correlator

B Processes events in the order in which they arrive on the context's input queue
m Completely processes one event before it moves on to process the next event

When the correlator processes an event within a given context, it is possible for that
processing to route an event. A routed event goes to the front of that context's input
queue. The correlator processes the routed event before it processes the other events in
that input queue.

If the processing of a routed event routes one or more additional events, those additional
routed events go to the front of that context's input queue. The correlator processes them
before it processes any events that are already on that context's input queue.

For example, suppose the correlator is processing the E1 event and events E2, E3, and E4
are on the input queue in that order.

Context
E4 E3 E2 E1l

—>

While processing E1, suppose that events Enl and En2 are created in that order and
enqueued. These events go to the special queue for enqueued events. Assuming that
there is room on the input queue of each public context, the enqueued events go to the
end of the input queue of each public context:

Context
En2 Enl E4 E3 E2 El

>

While still processing E1, suppose that events R1 and R2 are created in that order and
routed. These events go to the front of the queue:

Context
En2 Enl E4 E3 E2 R2 R1 E1l

>

Developing Apama Applications Version 9.10 62

Defining Monitors

When the correlator finishes processing E1, it processes R1. While processing R1,
suppose that two event listeners trigger and each event listener action routes an event.
This puts event R3 and event R4 at the front of the context's input queue. The input
queue now looks like this:

Context
En2 Enl E4 E3 E2 R2 R4 R3 R1

>

It is important to note that R3 and R4 are on the input queue in front of R2. The correlator
processes all routed events, and any events routed from those events, and so on, before it
processes the next routed or non-routed event already on that queue.

Now suppose that the correlator is done processing R1 and it begins processing R3. This
processing causes R5 to be routed to the front of that context's input queue. The context's
queue now looks like the following;:

Context
En2 Enl E4 E3 E2 R2 R4 R5 R3

>

See also "Understanding time in the correlator" on page 194.

Allocating events in monitors

Note: The principles described here apply to variables of any type, not just to any
event type or any reference type.

When writing monitors consider when and where to declare and populate event
variables. You can declare event variables at the monitor level or inside an action. Event
variables that you declare at the monitor level are similar to global variables.

Events are reference types. This means that, for example, a variable of event type Foo is
not an instance of Foo. The variable is a reference to an instance of Foo.

You cannot initialize the fields of a monitor-level variable. You can, however, initialize a
monitor-level instance of the event that the variable refers to. For example:

Foo a := Foo(l, 2.3):;

This instantiates a Foo event and specifies that a refers to that event. Now suppose you
declare the following:

Foo b := a;
This does not instantiate a new Foo event. It only initializes b as an alias for a.

When you declare an event at the monitor level, the correlator can automatically use
default values for the event's fields. You can, but you do not have to, initialize field
values. This is because the correlator implicitly transforms a statement such as this:

Foo a;

Developing Apama Applications Version 9.10 63

Defining Monitors

into this:

Foo a := new Foo;

Before you use a locally declared event variable in an action, you must either assign it to
an existing event of the same type, or you must specify the new operator to create a new
event to assign to the variable. Note that each event field of an event created using new
initially has the default value for that event field type.

The following code illustrates these points:

event Foo

{
integer 1,
float x;

}

monitor Bar
Foo a; // Global (monitor-level) declaration.
// The correlator creates a Foo event with default
// values for fields.

action onload() {

Zloa 9= i) // Assign non-default value.
a.x := 20.0; // Assign non-default value.
Foo b; // Local (in an action) declaration.
// The correlator does not create an event yet.
b := new Foo; // Create a default Foo event and assign
// it to local event.
b.i := 10; // Assign a non-default value.
b.x := 20.0; // Assign a non-default value.
Foo ¢ := a; // You can assign a locally declared event to

// reference an existing event.

// Variables a and c alias the same event.
c.i := 123 // The value of a.i is now also 123.
Foo d := Foo(15,30.0);

// Create an event and also initialize it.

Sending events to other monitors

After you inject a monitor into the correlator, it can communicate with other injected
monitors under the following conditions:

®m If the source monitor instance and the target monitor instance are in the same
context, the source monitor instance can route an event that the target monitor
instance is listening for. A routed event goes to the front of the context's input queue.
The correlator processes all routed events before it processes the next non-routed
event on the context's input queue. If the processing of a routed event routes another
event, that event goes to the front of the input queue and the correlator processes
it before it processes any other routed events on the queue. See "Event processing
order for monitors" on page 61.

®m If the source monitor instance and the target monitor instance are in different
contexts, the source monitor instance must have a reference to the context that
contains the target monitor instance. The source monitor instance can then send an
event to the context that contains the target monitor instance. The target monitor
instance must be listening for the sent event or the context that contains the target

Developing Apama Applications Version 9.10 64

Defining Monitors

monitor instance must be subscribed to the channel that the event is sent on. See
"Sending an event to a particular context" on page 312 and "Subscribing to
channels" on page 70.

Within a context, an application can use routed events and completion event listeners to
initiate and complete a service request inline, that is, prior to processing any subsequent
events on the input queue. See "Specifying completion event listeners" on page 172.

In the following example, the event listeners trigger in the order in which they are
numbered.

monitor Client {

listener 1:

= on EventA () { route RequestB(..) }
listener 5:= on ResponseForB () { doWork(); }
listener 6:= on completed EventA() { doMoreWork(); }

}

monitor Servicel{
listener 2:= on RequestB(..)
route RequestC() ;
listener 4:= on ResponseForC{
route ResponseForB () ;
}

}

monitor Servicela{
listener 3:= on RequestC (..)

route ResponseForC() ;

}

Best practices for working with routed events include:
m Keep them small — preferably zero, one, or two fields.
B Specify wildcards wherever appropriate in definitions of events that will be routed.

See also "Generating events with the route command" on page 284.

Defining your application's message exchange protocol

Monitors use events to communicate with each other. Consequently, an EPL application
will have a well-defined message exchange protocol. A message exchange protocol
defines the following:

® Types and structure of events that function as messages between monitor instances
® Relationships among these events

B Sequence and flow of events — which events are sent in response to receiving
particular events

® Which monitors need to be able to handle which events, and conversely, which
monitors should not receive which events

Developing Apama Applications Version 9.10 65

Defining Monitors

® Which channels these events are sent to, or whether they are sent directly between
contexts.

When you define your application's message exchange protocol, keep in mind that

any event that the correlator processes is potentially available to all loaded monitors.
Consequently, you want to follow conventions that prevent the inadvertent matching of
events with event listeners. These conventions are:

m Use packages to restrict the scope of event names (for example, MyPackage,
YourPackage).

®m Use duplicate event definitions with different event names (for example,
MyStartEvent, YourStartEvent).

m Use discriminating/addressing information in the event (for example,
Request{integer senderId;...}, Response { integer toSender;...}).

While event definitions provide partial support for a robust message exchange protocol,
they lack the ability to specify event patterns, request-response associations, and so on.
You should insert structured comments in your event definition files to define this part
of the message exchange protocol. The comments that describe the relationships among
the events define the contract that the participating monitors must adhere to. It is up

to you to document the expected flows and patterns and to ensure that your monitors
comply with the contract.

Some common message exchange patterns are:

B Request/response

®m Publish/subscribe/unsubscribe

m Start/stop

To identify the event types that a core monitor needs to support, consider the following:

® What actions do you want to perform on the object that the monitor represents? You
might want to define an event that is dedicated to each action. For example, for an
order processing monitor, you might define an event type for each of the following
actions:

m Place an order

m Change an order
m Cancel an order
®m Suspend trading
®m Resume trading

® What initialization and termination events are needed? Keep in mind that a core
monitor is typically a factory that creates monitor instances that each represent a
single entity. You probably want to define at least one event type for initialization
and one event type for termination.

Developing Apama Applications Version 9.10 66

Defining Monitors

® Do you need other control events? For example, in the order processing example,
do you need a control event that suspends all trading and applies to all orders? See
"Using events to control processing" on page 67.

® Do you need to add any events to observe what is happening in the monitor? For
example, each order processing monitor could support a request/response protocol
to inquire of its state or it could simply send an OrderProcessingState event each
time there is a significant state change.

Using events to control processing

In addition to using events to share data, you can use events to control processing.
Control events are like switches. You use them to move a monitor from one state to
another. Control events typically contain little or no data; that is, they have one or no
fields.

A common use for control events is to initialize or terminate a process. For example,
rather than use an onload () statement to set things up, it is good practice to use a
monitor's onload () statement to create an event listener for a start event. This practice
defers initialization until the start event is received. Similarly, you can use a stop event
to signal to a monitor that it should perform shutdown actions such as deallocating
resources before you terminate the correlator.

For example, consider the following action:

action initialize () {
on EndAuction () and not BeginAuction () startNormalProcessing;
on BeginAuction () and not EndAuction() startAuctionProcessing;
route RequestAuctionState(); //A service monitor will respond with

//an EndAuction or BeginAuction event

}

In this code, EndAuction and BeginAuction can be viewed as control events. Receipt of
one of these events determines whether the monitor executes the logic associated with
being in an auction or out of an auction.

About service monitors

Of course, all monitors can be considered to be providing some kind of service.
However, as mentioned earlier, it can be helpful to view the monitors that make up
your application as either core processing monitors or service monitors. It is common
for a single instance of a service monitor to provide data to a set of monitor instances
spawned from a core processing monitor instance.

Apama provides a number of service monitors that fit this pattern. These service
monitors provide support for the following:

m Dataview service — exposes read-only data to dashboards. This data comes from
EPL and Java applications.

m Password service — supports retrieval of passwords from implementation-specific
providers.

Developing Apama Applications Version 9.10 67

Defining Monitors

B Scenario service — provides support for all scenario-based applications.
In addition, there are a number of service monitors for use by adapters:

® ADBC adapter — provides event capture and playback in conjunction with Apama's
Data Player in Software AG Designer. Also monitors Java database connectivity
(JDBC) and open database connectivity (ODBC).

®m IAF status manager — monitors connectivity with an adapter.

Adding predefined annotations

Some EPL language elements can take predefined annotations. They provide the
runtime and Software AG Designer with extra information about these language
elements. Annotations can appear immediately before the following:

B Monitor declarations

m Event declarations

m Fields of events

B Actions in monitors or event definitions

Annotations have packaged names like events. Thus, either their full name, or
(preferably) a using declaration should be added to the file to allow the name to be
used without having to specify its full name. Annotations are written as an at symbol
(@) followed by the name of the annotation, followed by parameters in parentheses.
The values used in annotation parameters must be literals. If both annotations and
ApamaDoc are specified, the order should be: ApamaDoc, followed by annotations,
followed by the language element that they apply to.

The following annotations are available:

Annotation Parameters Description

SideEffectFree None This annotation is part of the
com.apama.epl package. It tells the
EPL compiler that this action has no
side effects. When called from a log
statement, the compiler is free to not
call an action if it has no side effects
and the log level is such that the log
statement would not print anything to
the log file. See "Logging and printing"
on page 295.

OutOfOrder None This annotation is part of the
com.apama.queries package. It tells
the query runtime that these events

Developing Apama Applications Version 9.10 68

Defining Monitors

Annotation Parameters

Description

TimeFrom string

Heartbeat string

DefaultWait string

ExtraFieldsDict string

Example:

using com.apama.epl.SideEffectFree;
monitor SomeMonitor {
action onload() {
Event e;
on all Event () :e {

may occur out of order. See "Out of
order events" on page 114.

This annotation is part of the
com.apama.queries package. It tells
the query runtime the default action
name on the event definition to obtain
source time from. See "Using source
timestamps of events" on page 107.

This annotation is part of the
com.apama.queriesjpaCkage.H
tells the query runtime the default
heartbeat event type to use. See
"Using heartbeat events with source
timestamps" on page 112.

This annotation is part of the
com.apama.queries:paCkage.H
tells the query editor in Software AG
Designer the default time to wait to
use. See "Using source timestamps of
events" on page 107.

This annotation is part of the
com.softwareag.connectivity
package. It names a field of type
dictionary<string, string> where
the apama . eventMap connectivity host
plug-in will place unmapped entries.
See "Translating EPL events using

the apama.eventMap host plug-in"

in Connecting Apama Applications to
External Components.

log prettyPrint (e) at DEBUG;

}
}
@SideEffectFree ()

action prettyPrint (Event e) returns string {

return e.fieldl +"

}

: "te.field2.toString () ;

Developing Apama Applications Version 9.10

69

Defining Monitors

Subscribing to channels

Adapters and clients can specify the channel to deliver events to. In EPL, you can send
an event to a specified channel. To obtain the events delivered to particular channels,
monitor instances and external receivers can subscribe to those channels.

In a monitor instance, to receive events sent to a particular channel, call the
subscribe () method on the monitor pseudo-type by using the following format:

monitor.subscribe (channel name) ;

Replace channel name with a string expression that indicates the name of the channel
you want to subscribe to. You cannot specify a com. apama.Channel object that contains
a string.

Call the subscribe () method from inside an action. Any monitor instance in any
context can call monitor.subscribe ().

The subscribe () method subscribes the calling context to the specified channel. When
a context is subscribed to a channel events delivered to that channel are processed by
the context, and can match against any listeners in that context. This includes listeners
from monitor instances other than the instance that called subscribe (). However, the
subscription is owned by the monitor instance that called monitor.subscribe (). If that
monitor instance terminates, then any subscriptions it owned also terminate.

A subscription ends when the monitor instance that subscribed to the channel
terminates or executes monitor.unsubscribe.

Whether an event is coming into the correlator or is generated inside the correlator, it
is delivered to everything that is subscribed to the channel. If the target channel has no
subscriptions from monitor instances nor external receivers then the event is discarded.

For example:

monitor pairtrade

{

action onload()
{
on all PairTrade(): pt {
spawn start trade(pt.left, pt.right) to context (pt.toString());
}
}

action start trade(string syml, string sym2)

{
monitor.subscribe (“ticks-“+syml) ;
monitor.subscribe (“ticks-“+sym2) ;
// Next, set up listeners for syml and sym2.

}

This code spawns a monitor for each trade pair. The spawned monitor subscribes to
just the ticks for the symbols passed to it. If a symbol in one pair is slow to process,

Developing Apama Applications Version 9.10 70

Defining Monitors

any unrelated pairs of symbols are unaffected. See Event association with a channel in
Deploying and Managing Apama Applications.

In a context, any number of monitor instances can subscribe to the same channel. When
multiple monitors in a context require data from a channel the recommendation is

for each monitor to subscribe to that channel. This ensures that the termination of

one monitor does not affect the events received by other monitors. Subscriptions are
reference counted. The result of multiple subscriptions to the same channel from the
same context is that each event is delivered once as long as any of the subscriptions are
active. An event is not delivered once for each subscription.

Suppose that in one monitor instance you unsubscribe from a channel but another
monitor instance in the same context is subscribed to that channel. In the monitor
instance that unsubscribed, be sure to terminate any listeners for the events from the
unsubscribed channel. Events from the unsubscribed channel continue to come in
because of the subscription from the other monitor instance.

To explicitly terminate a subscription, call monitor.unsubscribe (channel name).

In a given context, if you terminate the last subscription to a particular channel then
the context no longer receives events from that channel. If events from the previously
subscribed channel were delivered but not yet processed (they are waiting on the input
queue) those events will be processed. This could include the processing of any listener
matches. It is an error to unsubscribe from a channel that the calling monitor instance
does not have a subscription to, and this will throw an exception.

If a monitor is going to terminate anyway there is neither requirement nor advantage to
calling unsubscribe (). Calling unsubscribe () can be useful when a monitor listens
to configuration data during startup but does not need to listen to it during normal
processing.

Note: The subscribe () and unsubscribe () methods are static methods on the
monitor type. However, it is not possible to use instances of the monitor
type. For example, there cannot be variables or event members of type
monitor.

See also "Channels and contexts" on page 310.

Apama queries cannot subscribe to channels. However, events sent on the default
channel as well as events sent on the com.apama.queries channel are received by all
running Apama queries. See "Defining Queries" on page 75.

If a correlator is configured to connect to UM then a channel might have a corresponding
UM channel. If there is a corresponding UM channel the monitor is subscribed to the
UM channel. See Choosing when to use UM channels and when to use Apama channels in
Connecting Apama Applications to External Components.

About the default channel

The name of the default channel is the empty string.

Developing Apama Applications Version 9.10 71

Defining Monitors

Public contexts, including the main context, are always subscribed to the default
channel. Contexts that Apama queries run in are also always subscribed to the default
channel.

When an adapter or client that is sending events to the correlator does not specity a
target channel the event goes to the default channel. There is no need for a public context
to subscribe to the default channel.

Events generated by the enqueue or route statements are not delivered to the default
channel.

An adapter that is using Universal Messaging (UM) to send events cannot use the
default channel. See Configuring adapters to use UM in Connecting Apama Applications to
External Components.

About wildcard channels

An external receiver can be configured to listen on the com.apama. input channel, which
is a wildcard channel for all events that come into the correlator. This can be useful

for diagnostics, testing, or auditing, but it is not recommended for production. In a
production environment, the recommendation is to explicitly specify the channels that
the receiver should listen on.

A monitor instance cannot subscribe to com. apama. input.

To configure an external receiver to process all events generated in the correlator,
specify that the receiver listens on the default channel (""). With this specification, a
receiver would get all events generated by the send...to channel and emit statements
regardless of the channel the event was directed to. Events generated by the enqueue or
route statements are not delivered to the default channel.

Adding service monitor bundles to your project

Depending on what your Apama application does, it might require one or more
provided service monitors. Apama organizes service monitors into bundles. To use the
service, you add the bundle to your Apama project in Software AG Designer.

To add a bundle to your project

1. In the Apama Developer perspective, open the project that you want to add the
bundle to.

2. In the Developer Project View, right-click the project name and select Properties from the
menu that appears.

In the Properties dialog, select MonitorScript Build Path.
Select the Bundles tab.
Click Add to display a list of Apama bundles.

AN LN

Select the bundle you want to add.

Developing Apama Applications Version 9.10 72

Defining Monitors

7.

Click OK twice.

The bundle now appears in the Developer Project View panel. Expand the bundle directory
to see the contents. To understand exactly what each service monitor provides, open the
service's EPL file in Software AG Designer. The comments in the EPL file explain the
purpose of each service monitor and how to use it.

You can also write your own service monitors. Best practices for doing this include:

Follow good engineering practices for defining message exchange protocols

Copy the conventions used in the Apama-provided service monitors as these
monitors implement common patterns.

Utilities for operating on monitors

Apama provides the following command-line utilities for operating on monitors. For
details about using these utilities, see Deploying and Managing Apama Applications,
"Correlator Utilities Reference".

engine inject — injects files into the correlator.
engine delete — removes items from the correlator.
engine send — sends Apama-format events to the correlator.

engine receive — lets you connect to a running correlator and receive events from
that correlator.

engine watch — lets you monitor the runtime operational status of a running
correlator.

engine inspect — lets you inspect the state of a running correlator.

engine management — lets you shut down a running correlator or obtain
information about a running correlator. You can also use this utility to manage other
types of components, such as adapters, sentinel agent processes, and continuous
availability processes.

Developing Apama Applications Version 9.10 73

Developing Apama Applications Version 9.10

74

Defining Queries

3

Defining Queries

INrOAUCHION t0 QUETIES ..t 76
Format of query definitionScccoiiiiiiiiiiic e 86
Defining metadata in @ QUETY ... 88
Partitioning QUETIESvueueeeeeriei ettt 89
DefiNiNG QUETY INPUL ... 94
Finding and acting on event Patterns ... 120
Implementing parameterized QUEMIEScivvvvririeieirees s 146
RESHICHONS IN QUETIESveiveiisie ettt 151
Best practices for definiNg QUEIESccuiviiiiiiiieeiiece e 152
TestiNg QUETY EXECULIONviiiiieieiir et 155
Communication between monitors and QUEHES ... 157

Developing Apama Applications Version 9.10 75

Defining Queries

A query is one of the basic units of EPL program execution.

Note: The other basic unit is a monitor. A monitor cannot contain a query. A query
cannot contain a monitor. For information about writing monitors, see
"Defining Monitors" on page 49. For a comparison of queries and monitors,
see "Architectural comparison of queries and monitors" on page 79.

Apama queries are suitable for applications where the incoming events provide
information updates about a very large set of real-world entities. Apama provides
several sample query applications, which you can find in the samples\queries
directory of your Apama installation directory.

The topics below provide information and instructions for defining queries.
For reference information, see "Queries" on page 853.

See also: "Using Query Designer" in Using Apama with Software AG Designer and
"Deploying and Managing Queries" in Deploying and Managing Apama Applications.

Introduction to queries

An Apama query is a self-contained processing element that communicates with
other queries, and with its environment, by sending and receiving events. Queries are
designed to be multithreaded and to scale across machines.

You use Apama queries to find patterns within, or perform aggregations over, defined
sets of events. For each pattern that is found, an associated block of procedural code is
executed. Typically this results in one or more events being transmitted to other parts of
the system.

Note: If a license file cannot be found while the correlator is running, several
restrictions are enforced on queries. See "Running Apama without a license
file" in Introduction to Apama.

Example of a query

The following code provides an example of a query. This query monitors credit card
transactions for a large set of credit card holders. The goal is to identify any fraudulent
transactions. While this example illustrates query operation, it is not intended to be a
realistic application.

query ImprobableWithdrawallocations {
parameters {
float period;
}
inputs {
Withdrawal (value>500) key cardNumber within period;
}
find Withdrawal:wl -> Withdrawal:w2
where w2.country != wl.country ({
log "Suspicious withdrawal: " + w2.toString() at INFO;

Developing Apama Applications Version 9.10 76

Defining Queries

Each query definition is in a separate file that has a . gry file name extension. The
example shows several query features:

m Parameters section

Queries can be parameterized. When a query has no parameters, a single instance
of the query is automatically created when the query is loaded into a correlator. If
one or more parameters are defined for a query, when the query is loaded into a
correlator, no instances are created until you define an instance and specify a set of
parameter values for that instance.

B Inputs section

The inputs section identifies the events that the query will operate on, that is,

the event inputs. This section contains one or more definitions. Each definition
identifies the type of input event (Withdrawal in the example) together with details
identifying which withdrawal events are input, how those events are distributed,
and what state, or event history, is to be held.

The query key is a fundamental concept. If a key is defined, then the incoming events
are partitioned into different sets based on the value of the key. Query processing
operates independently for each set/partition. In the example query, events for each
cardNumber will be independently processed.

For each event input, the definition identifies the set of events that are current.
When looking for pattern matches or evaluating aggregates, only current events are
used. For each event input, the set of events that is current is referred to as the event
window.

®m Find statement

The £ind statement identifies an event pattern to be matched and defines what event
processing actions are taken when a match is found. A find statement consists of an
event pattern followed by a £ind block.

The event pattern can specify conditions that determine whether there is a match.
A where condition specifies a Boolean expression that must evaluate to true for
there to be a match. A within condition specifies that certain elements within the
pattern must occur within a given time period. A without condition specifies an
event whose presence can prevent a match.

Statements in a £ind block can send events to communicate with other queries,
with monitor instances, and with external system elements in a deployment, such as
adapters, correlators, or other deployed processes. Some EPL statements, such as on,
spawn, from, and die are not allowed in queries.

Use cases for queries

Apama queries are useful when you want to monitor incoming events that provide
information updates about a very large set of real-world entities such as credit cards,
bank accounts, cell phones. Typically, you want to independently examine the set of
events associated with each entity, that is, all events related to a particular credit card

Developing Apama Applications Version 9.10 7

Defining Queries

account, bank account, or cell phone. A query application operates on a huge number of
independent sets with a relatively small number of events in each set.

One use case for Apama queries is to detect subsequent withdrawals from the same
bank account but from locations that make it improbable that the withdrawals

are legitimate. Very large numbers of withdrawal events would stream into your
application. A query can segregate the transactions for each bank account from the
transactions of any other bank account. Your query application can then check the
transaction events for a particular account to determine if there have been withdrawals
within, for example, a two-hour period from locations that are more than two hours
apart. You can write a query application so that if it finds this situation the response is to
contact the credit card holder.

Another use case is to detect repeated maximum withdrawals from the same automatic
teller machine (ATM) within a short period of time. This might be due to a criminal with
a stack of copied cards and identification numbers. In this case, a query can segregate
events by ATMs. That is, the transactions conducted at a particular ATM would be in
their own partition, separate from transactions conducted at any other ATM. Your query
application can check the events in each partition to determine if, for example, there are
repeated withdrawals of $500 within one hour. If such a situation is found your query
can be written to send an alert message to the local police.

Another use case for Apama queries is to offer a better data plan to new smartphone
users. Large numbers of events related to cell phone customers would come into the
system. Your query application can create sets of events where each set, or partition,
contains the events related to one cell phone customer. When your query detects an
upgrade from a flip phone to a smart phone, your application can automatically send a
message to that customer that outlines a better data plan.

In summary, the characteristics of an Apama query application include:
® You want to monitor a very large number of real-world entities.

B You want to process events on a per-entity basis, for example, all events related to
one credit card account.

B The data you need to retain in order to run Apama queries is either too large to fit on
to a single machine or there is a requirement to place it in shared, fast-access storage
(a cache) to support resilience/availability requirements.

More information about the use cases for queries can be found in "Understanding
queries" in Introduction to Apama.

Delayed and out of order events

In many of the typical applications envisaged for Apama queries, the input events may
be either delayed or out of order. For example, cars and other mobile sources of events
such as smart phones and tablet computers might normally send regular streams of
events, but when such devices are out of network coverage, these events will have to

be batched and sent when back in range. Many older generation factory robots store
events and only send periodic batches by design. And in other cases, events may be sent
out of order. Television set top boxes, for example, often employ distinct channels for

Developing Apama Applications Version 9.10 78

Defining Queries

tuning information and diagnostics. This means that a "channel changed" event may be
received before a "set top box crashed" event, and so may be thought to have caused it,
even though the event in fact happened after it, and was causally unconnected.

Delayed or out of order events can create problems for the query runtime because it
assumes that events should be treated as being in the order in which they are processed,
and the time of each event is the correlator's time at the point the event is processed.
However, provided that the input events contain a timestamp recording the time that
the event was created at the source, these problems can be overcome by using the
Apama queries source timestamp functionality. This allows the queries runtime to

wait for specified periods before processing events, and then to process those events

on the basis of their source timestamps rather than the time they were received by

the correlator. (For out of order events, the Apama event definitions must have the
appropriate annotation; for more information, see "Out of order events" on page 114).

Events can also be supplemented by heartbeat events with timestamps from data
sources to inform the query runtime when communication with the data source is
working correctly, which avoids long delays waiting for events to occur in case they are
delayed.

See "Using source timestamps of events" on page 107 for details on how to configure
Apama queries to use source timestamps.

Architectural comparison of queries and monitors

In some ways, an Apama query is similar to an Apama monitor. Each operates as a self-
contained event processing agent that communicates with other monitors and queries by
sending and receiving events.

Note: While Apama queries and Apama stream queries use similar terminology,
they are different constructs. Apama queries can communicate with monitors
but Apama queries are not contained in monitors. Whereas Apama stream
queries are defined and operate inside monitors.

One difference between a monitor and a query is the programming model for scaling.
With monitors, the approach is procedural. A spawn statement is used to create new
monitor instances. Typically, for each real-world entity, a separate monitor instance

is used to handle the events relating to that entity. The developer has full control over
what data is held where as well as the design of the solution architecture. With queries,
the approach is declarative. A key is defined which is used to identify how the events
are partitioned such that events from each real-world entity are handled separately.
Also, queries can use a distributed Apama MemoryStore to share historical data between
correlators. This allows query deployments to scale across several hosts, make the same
data available to multiple correlators and provide availability should a correlator fail or
be taken down for maintenance.

Another difference between monitors and queries is the way in which they handle the
state, or event history. With monitors, each monitor instance holds the state, or event
history, needed for its continuing processing. This state is held in memory, which allows
high-performance processing over complex state. With queries, the only state is the

Developing Apama Applications Version 9.10 79

Defining Queries

event history, which is held separately from the query. The query is effectively stateless,
which allows queries to easily scale across correlators.

Typically, a monitor instance operates on events that relate to a particular real world
entity. To operate on events related to another entity in the same set, the monitor
typically spawns another instance. In contrast, the definition of a query specifies how
to partition incoming events so that each set of events that relates to a particular real-
world entity is in its own partition. The query operates on the events in each partition
independently of every other partition.

The following table compares monitor variables with query parameters:

Monitor variables Query parameters

Can store any complex state that the Must be one of the following types:

monitor requires boolean, float, integer, string.

Can be updated by the monitor. Can only be read by the query.

Are private to that monitor instance. Are controlled by Scenario Service
clients.

A monitor can subscribe to a channel to receive all events sent on that channel. A query
cannot subscribe to a channel. However, running Apama queries automatically receive
all events sent on the com. apama.queries channel as well as all events sent on the
default channel. For example, monitors, adapters, and the engine send utility can send
events to the com. apama.queries channel.

Both monitors and queries can send events to a channel. In both monitors and queries,
the send command sends events to only those components that are connected to

that correlator. For both monitors and queries, sending events to other correlators in
the cluster requires connections created by the engine connect utility or the use of
Universal Messaging to connect the correlators to the same set of UM channels.

In general, monitors follow a more imperative pattern while queries have more
declarative clauses. For example, a monitor can use conditional i f...then...else
statements to determine whether there is a match that triggers some processing. A query
specifies where, within, and/or without clauses to define filters, time constraints, and
exclusions, respectively, right in the event pattern. In general, this allows queries to be
simpler than monitors.

Query terminology

The following table defines important query terms.

Term Description

query A self-contained processing unit. It partitions incoming
events according to a key and then independently

Developing Apama Applications Version 9.10 80

Defining Queries

Term

Description

input

key

partition

window

latest event

set of current

events

pattern

match set

parameterization

source timestamp

processes the events in each partition. Processing involves
watching for an event pattern and then executing a block of
procedural code when that pattern is found.

An event type that a query operates on. An input definition
specifies an event type plus details that indicate how to

partition incoming events and what state, or event history,
is to be held.

A query key identifies one or more fields in the events
being operated on. Each input definition must specify the
same key.

A partition contains a set of events that all have the same
key value. One or more windows contain the events added
to each partition.

For each input, a window contains the events that are
current. The query operates on only current events.

The latest event is the event that was most recently added
to a partition.

The events that are in the window(s) of a partition.

Specification of the event or sequence of events or
aggregation that you are interested in. A pattern can
include conditions and operators.

A match set is the set of events that matches the specified
pattern. A match set always includes the latest event.

A query definition that specifies parameters is a
parameterized query. An instance of a parameterized query
is referred to as a parameterization.

The time an event occurred at its source. This may be
before it is processed if there is some delay or disruption in
delivering the event from the source to the query runtime.
This will be data in one or more fields of an input event.
Queries can use the source timestamp if an action is
provided to obtain the source timestamp in the correct

Developing Apama Applications Version 9.10

81

Defining Queries

Term Description
form. See "Using source timestamps of events" on page
107.

heartbeat event An event that a query uses to determine when

communication with a data source is working correctly,
and it has not missed any events that are delayed. With
heartbeat events, received input events can be processed
as they are considered definitive. Without these, the query
runtime needs to wait for the input's wait time specified
in the query definition to ensure it avoids missing delayed
events.

definitive time The point in time for which the query runtime has been
told that it can assume it has received all the events it is
going to receive. All events at or before this point in time
are considered definitive and can be used to evaluate the
query. This applies when using the source timestamp
functionality.

Overview of query processing

When Apama executes queries, it does so in parallel, making use of multiple CPU cores
as available. This is good for performance, but uses more resources on the hosts running
the correlator and can, in edge cases, cause events to be processed in an order that is
different from the order in which they were delivered to the correlator. To simplify
testing, a serial mode is supported where events are processed in order, no matter how
quickly they are sent.

Apama processes queries as follows:

1. Based on the inputs section of a query, the query subsystem creates listeners for the
required events.

2. Running Apama queries receive events sent on the default channel and on the
com.apama.queries channel.

3. Events matching those listeners are forwarded to the query subsystem that processes
the events.

4. The events are processed in parallel. That is, multiple threads of execution are
employed, thereby achieving vertical scaling on machines that have multiple cores.

5. The query subsystem must locate the relevant events for the query partition. That
is, the previously encountered events that are still current according to the defined
event windows for that query. The information in the incoming event, that is, the
key, is all that is required to locate these events.

Developing Apama Applications Version 9.10 82

Defining Queries

6. The window contents are updated, adding the new event and discarding any events
that are no longer current.

7. The system then checks the updated window contents to determine if there are any
new pattern matches.

8. For each new pattern match the associated f£ind block statements are executed.

In a single correlator solution, events in a particular partition are held in one or more
Apama MemoryStore records. The key from the incoming event is used to locate these
records. In a multi-correlator solution, the records are held in a distributed cache,
accessed by means of the MemoryStore API. All of this is internal, however, you
should consider timing constraints when deciding whether a query-based solution is
appropriate for a given problem. See "Understanding queries" in Introduction to Apama.

After injecting a query into a correlator, events may be immediately sent to that query.
If necessary, Apama stores these events until the query is prepared. That is, the query
might be opening local/remote stores. Events are delivered when the query is ready to
process them. There is no guarantee that the order in which the events arrived in the
correlator is the same order in which the query processes them. See "Event ordering" in
"Testing query execution" on page 155.

When testing, either send events at a realistic event rate, with pauses in between each set
of events, or use single context mode. To send events with pauses, you can place BATCH
entries in the . evt file. See "Event timing" in Deploying and Managing Apama Applications.

By default, the query subsystem determines the size of the machine it is running on (the
number of cores) and scales accordingly. If other services are affected by the load on the
host machine, or for testing, then send one of the following events to the correlator (for
example, by creating an . evt file in Software AG Designer and sending it as part of the
Run Configuration) to configure how the correlator executes queries:

B com.apama.queries.SetSingleContext ()

B com.apama.queries.SetMultiContext ()

Overview of query application components

While queries can make up the central logic of an Apama deployment, deploying an
Apama query application also requires event definitions, and connections to event sinks
and event sources. Optionally, an Apama query application can make use of correlator
plug-ins, EPL actions, and interactions with EPL monitors.

In addition to queries, the following components are required to implement a query
application.

® Event definitions. This includes event types used by adapters or mapped from
message busses (see below) or used internally within application components.
Typically, event types specific to an adapter or to existing messages on a message
bus would be written by those creating or configuring the adapter.

® Connections between event sources and queries and also between queries and event
sinks. This is typically handled by adapters or by mapping to messages on a message

Developing Apama Applications Version 9.10 83

Defining Queries

bus by means of JMS. For testing, it is possible to use Software AG Designer or
command line tools to send and receive messages.

A correlator process. Several queries can share the same correlator process. Queries
can be started by Ant scripts, which can be exported from an Apama project. For
testing, Software AG Designer can start the queries.

Optionally, queries can use a library of functions that you provide. These would be
written in EPL and can call correlator plug-ins written in C++ or Java. Functions in
such a library can be invoked from different points in a query.

Optionally, a query can interact with monitors. See "Communication between
monitors and queries" on page 157.

Additional information about query application architecture is in "Query application
architecture" in Deploying and Managing Apama Applications.

Writing event definitions

Event definitions are defined in Apama .mon files. When writing event type definitions
be sure to consider the following:

An inputs block in a query can specify filters on event fields of type boolean,
decimal, float, integer, string Oor location.

An event field to be specified as a query key must be of type boolean, decimal,
float, integer, string Or location.

An event field to be specified in an inputs block, whether as a filter or a key, cannot
be marked with the wildcard modifier in the event type definition.

A where condition in a query can make use of all actions and fields of events,
including members of reference types such as sequence, dictionary and other
events.

Specitfying an event filter in an inputs block is very efficient because it prevents any
part of the query from executing if the filter condition does not match. However, a
filter in an inputs block can operate on only contiguous ranges and can compare
only a single field to a constant or parameter value.

Specifying an event filter in a where condition is more expensive than specifying
an event filter in an inputs block. However, a filter in a where clause can be more
powerful because it can specify any EPL expression.

A query cannot use an event that contains an action variable or fields of type chunk
or listener.

If you want to take advantage of the source timestamp functionality, be sure to add
an event field that records the time of the creation of the data encapsulated in the
event, and an action that returns this time in the form of a float representing the
number of seconds since the epoch (midnight, 1 Jan 1970 UTC). If the time data is
not in this format, you can use the TimeFormat Event library to perform the relevant
conversions (for further information, see "Using the TimeFormat Event Library" on
page 357).

Developing Apama Applications Version 9.10 84

Defining Queries

For example, consider the following event definitions:

event Slice {
integer quantity;
float price;
}
event UsableEvent {
integer quantity;
string username;
wildcard string auxData;
sequence<Slice> slices;
action averagePrice () returns float {
float t:=0;
Slice s;
for s in slices {
t:=t+s.price;
}
return t/(slices.length().toFloat()):;

}
}
event InternalEvent ({
action<> returns float averager;

}

UsableEvent.quantity and UsableEvent.username can be used in a query inputs
block or in a query where condition.

UsableEvent.auxData, UsableEvent.slices and UsableEvent.averagePrice () can
be used in where conditions but not in inputs blocks.

InternalEvent cannot be an input to a query because it has an action variable.
However, an instance of InternalEvent could be used in a where condition or in
triggered EPL code in a £ind block.

For example, the £ind statement in a query can be written as follows:

find UsableEvent:el and UsableEvent:e2
where el.averagePrice() > e2.averagePrice()
and
el.slices[0] .price < e2.slices[0].price

Action definitions can supply helper actions such as the averageprice () action above.
This can be useful in both event types used by adapters and in internal event types. For
example, some event types may have no members but simply be a named container for
useful library actions.

To make use of correlator plug-ins, written in C, C++ or Java, it is recommended to write
an EPL event type or set of event types that wrap the plug-in. This provides a more
consistent interface and can add type safety to the use of chunks, which are opaquely-
typed C, C++ or Java objects. These EPL actions can then be called from queries, as can
any EPL action.

Event sinks and sources

A typical deployment includes adapters that connect the Apama system to external
sources of data or provide the means to send events out of Apama. This can include:

Developing Apama Applications Version 9.10 85

Defining Queries

® Adapters hosted in the Apama IAF. See "Using the IAF" in Connecting Apama
Applications to External Components.

® Connections to a JMS message bus with mapping of JMS messages to Apama
event types. See "Correlator-Integrated Messaging for JMS" in Connecting Apama
Applications to External Components.

m Connections to a database by means of ADBC. See "Using the Apama Database
Connector" in Connecting Apama Applications to External Components.

® Connections to other components using the Apama engine client library.
See "Developing Custom Clients" in Connecting Apama Applications to External
Components.

For testing purposes, Software AG Designer can send / receive events from / to files, and

command line tools are provided as well.

Correlator process

When developing queries in Software AG Designer, launching a configuration starts a
correlator and injects queries into it by default. It is also possible to export the Apama

launch configuration to an Ant script, which can be copied onto another machine such as

a server to run your project on that machine.

It is possible to run multiple correlators that are configured to use the same
distributed cache store. These correlators share query state. In such deployments, the
recommendation is to use a JMS Message Queue. Typically, these deployments would

use correlators on separate physical machines so a failure of one does not affect others.

For testing, it is possible to run several correlators on a single machine provided a
separate port number is allocated to each correlator. Take care to use the correct port
number when interacting with the correlators.

Format of query definitions

A query searches for an event pattern that you specify. You define a query in a file
with the extension .qry. Each . gry file contains the definition of only one query.
The following sample shows the definition of a simple query that will search for a
Withdrawal event pattern:

query ImprobableWithdrawallocations {
metadata {
"author":"Apama",
"version":"1"
}
parameters {
float period;
}
inputs {
Withdrawal () key cardNumber within (period);
}
find
Withdrawal:wl -> Withdrawal:w2
where w2.country != wl.country ({
log "Suspicious withdrawal: " + w2.toString() at INFO;

Developing Apama Applications Version 9.10

86

Defining Queries

}

The format for a query definition is as follows:

query name {
[metadata { metadata block }]
[parameters { parameters block }]
inputs { inputs block }
find pattern block
[action definition ...]

Syntax Element Description

query name Specity the query keyword followed by a name for your
query. Like monitors and event types, the identifier you
specify as the name of a query must be unique within
your application.

metadata The metadata section is optional. If you specify a
metadata section, it must be the first section in the
query. Metadata are specified as a list of key-value pairs.
Both key and value must be string literals. For more
information, see "Defining metadata in a query" on page
88.

parameters The parameters section is optional. If you specify
a parameters section, it must follow the metadata
section, if there is one, and precede the inputs section.
Parameters must be integer, float, string or boolean
types. Specify one Oor more data type parameter name
pairs. Any parameters you specify are available in the
inputs section and in the find statement. For more
information about parameters and how parameters get
their values, see "Implementing parameterized queries”
on page 146.

inputs The inputs section is required and it must follow the
parameters section, if there is one, and precede the find
statement. In the inputs section, you must define at least
one input. If you specify more than one input each input
must be a different event type.

The inputs section specifies the events that the query
operates on. An input definition can include the keyword,
key, followed by one or more fields in the specified event.
This is the query key. The correlator uses the key to
partition incoming events into separate windows. For
example, the cardNumber key indicates that there is a
separate window for the Withdrawal events for each

Developing Apama Applications Version 9.10

87

Defining Queries

Syntax Element Description

card number. In other words, each window can contain
Withdrawal events associated with only one account.

For details, see "Defining query input” on page 94.

find statement After the inputs section, you must specify a £ind
statement. A find statement specifies the event pattern of
interest and a block that contains procedural code. This
code can define EPL actions you want to perform when
there is a match. For more information, see "Finding and
acting on event patterns" on page 120.

action definition After the find statement, you can optionally specify one
or more actions in the same form as in EPL monitors. An
expression in a find statement can reference an action
defined in that query. See "Defining actions in queries" on
page 145.

Defining metadata in a query

You can record information about a query in the metadata section. This can be, for
example, the recording author, the version number, or the last modified date of a query.
Once defined, metadata information about a query can be viewed in the Scenario
Browser. See also "Using the Scenario Browser view" in Using Apama with Software AG
Designer.

Format for defining query metadata

You define query metadata in the metadata section of a query definition. The metadata
section is optional. If you specify a metadata section, it must be the first section in the
query. The format for specifying the metadata section is as follows:
metadata {
key :value

[, key:value]...

}
key and value must be string literals. Both are case-sensitive.
value can be a multi-line string.

key must be a valid EPL identifier (see "Identifiers" on page 919). Therefore, key must
not include spaces, hyphens, dots or any other characters that are not allowed in EPL
identifiers.

All key definitions that are contained in a single metadata section of a query must be
unique.

Developing Apama Applications Version 9.10 88

Defining Queries

It is recommended to use lowerCamelCase style for the key. The prefix "apama" should
not be used for the key as it is reserved for future use.

Partitioning queries

Based on the values of selected fields in incoming events, the correlator segregates
events into many separate partitions. Partitions typically relate to real-world entities that
you are monitoring such as bank accounts, cell phones, or subscriptions. For example,
you can specify a query that partitions withdrawal events based on their account
number. Each partition could contain the withdrawal events for one account. Typically,
a query application operates on a huge number of partitions with a relatively small
number of events in each partition.

Each partition is identified by a unique key value. You specify a key definition in each
input definition in the query's inputs block. The key definition specifies one or more
fields in the event type you want to monitor. The number, order and type of the key
fields must be the same in each input definition in a query.

A query operates on the events in the windows in each partition independently of the
other partitions.

Note: Several restrictions are enforced on queries if a license file cannot be found
while the correlator is running. See "Running Apama without a license file" in
Introduction to Apama.

Defining query keys

At runtime, each partition is identified by a unique key value, which is the value of one
or more fields in the events that the query operates on.

Note: Using a key is optional. If you do not specity a key, all events the query
operates on are in one partition. Since this is an unusual use case for queries,
the documentation assumes that you always choose to specify a key.

An event member that is declared as a constant cannot be used as a query key.

In a query, each input definition in the inputs section specifies the query key in the key
definition. The key definition specifies one or more fields in the event that the window
will contain. For example:

query ImprobableWithdrawallocations {
inputs {
Withdrawal () key cardNumber within (600.0);
}
find (Withdrawal:wl -> Withdrawal:w2)
where (wl.country != w2.country) {

getAccountInfo () ;
sendEmail () ;

Developing Apama Applications Version 9.10 89

Defining Queries

In this example, the definition for withdrawal events specifies that the cardNumber field
is the key. When the correlator processes a Withdrawal event, it adds the event to the
partition identified by the Wwithdrawal event's cardNumber value.

Suppose the input definition in this example specifies two key fields:

inputs {
Withdrawal () key cardNumber, cardType within (600.0) ;
}

Each partition is now identified by a combination of the cardNumber value and the
cardType value. When you specify two or more key fields, insert a comma after each
field except the last one. It is allowable to specify key fields in an order that is different
than the order of the fields in the event.

When you specify more than one input in a query, each input definition must specify the
same number and data type order of key fields. For example:

inputs {
Withdrawal () key cardNumber within (600.0) ;
AddressChange () key cardNumber retain 1;

}

For each input in this example, the key is the cardNumber field. The data type of the
cardNumber field in the Withdrawal event must be the same as the data type of the
cardNumber field in the AddressChange event.

Sometimes, a field in one event contains the same information as a field in another event
but the two fields have different names. For example, information about the type of a
card could be in the cardType field in Withdrawal events and the typeOfCard field
in AddressChange events. In this situation, you must specify an alias for one of the
event field names. You do this in the input definition's key definition. In the following
example, as cardType in the second input definition specifies the alias:
inputs {

Withdrawal () key cardNumber, cardType within (600.0) ;

AddressChange () key cardNumber, typeOfCard as cardType retain 1;
}

When you specify more than one input, the key definition in each input definition must
specify the same number of fields in the same order. Also, the data type of a field in one
key definition must be the same as the data type of its corresponding field in every other
key definition in the same inputs block. If the names of corresponding key fields are not
the same, you must use the as keyword to specify an alias.

While specification of an alias for a key field name is sometimes required, it is always an
option you can choose to use. For example:
inputs {

Withdrawal () key number as cardNumber, cardType within (600.0) ;

AddressChange () key number as cardNumber, typeOfCard as cardType retain 1;
}

An alias maps a field in an event to a key field. You cannot use an alias as a field of the
event. For example, consider the following query:
query Q {

inputs {
A () key surname as lastName, dob as dateOfBirth retain 5;

Developing Apama Applications Version 9.10 90

Defining Queries

B() key lastName, dateOfBirth retain 4;

}
find A:a -> B:Db
}

In the f£ind block of this query, you can use the following
B a.surname, a.dob-Names of event fields
B b.lastName, b.dateOfBirth - Names of event fields

B lastName, dateOfBirth - Names of key fields

Query partition example with one input

A key can be one event field. For example:

query ImprobableWithdrawallocations {
inputs {
Withdrawal () key cardNumber within (600.0);
}
find (Withdrawal:wl -> Withdrawal:w2)
where (wl.country != w2.country) {

getAccountInfo () ;
sendEmail () ;

}

In the previous code fragment, the key is the cardNumber field in the incoming
Withdrawal event type. When a Wwithdrawal event arrives the correlator adds it to the
window in the partition identified by the value of the Withdrawal event's cardNumber
field. For each partition, each unique card number in this example, the correlator
maintains the window and evaluates the pattern separately from every other partition.

Suppose that cardNumber is the first field in withdrawal events. The following table
shows what happens at runtime.

Incoming Event Goes Into Window in Window Contents
Partition Identified by This
Key Value
Withdrawal (12345, 12345 Withdrawal (12345,
50.0, ...) 50.0, ...)
Withdrawal (24601, 24601 Withdrawal (24601,
60.0, ...) 60.0, ...)
Withdrawal (12345, 12345 Withdrawal (12345,
10.0, ...) 50.0, ...),

Withdrawal (12345,
10.0, ...)

Developing Apama Applications Version 9.10 91

Defining Queries

In the execution of this query, there is no interaction between the withdrawal events for
account number 12345 and the Wwithdrawal event for account number 24601.

Query partition example with multiple inputs
The following query provides an example of partitioning with two inputs. This query
operates on APNR (Automatic Plate Number Recognition) events and Accident events:

query DetectSpeedingAccidents {
inputs {
APNR () key road within(150.0) ;
Accident () key road within(10.0);
}

find APNR:checkpointA -> APNR:checkpointB -> Accident:accident
where checkpointA.plateNumber = checkpointB.plateNumber
and checkpointB.time - checkPointA.time < 100
// Which indicates the car was speeding
emit NotifyPolice (accident.road, checkpointA.plateNumber) ;

}

The road field in an APNR event must be the same type as the road field in an Accident
event. Assuming that road is a string, each partition is identified by a unique value for
that string.

Suppose the correlator processes the following events in top to bottom order and that
road is the first field in each event:

Accident ("M11")

APNR ("A14", "FAB 1", ...)
APNR ("A14"™, "BSG 75", ...)
APNR ("M11"™, "ZC 158", ...)
APNR ("Al14", "BSG 75", ...)
APNR("M11"™, "zC 158", ...)
APNR ("Al4"™, "FAB 1", ...)
Accident ("Al4")

The following table shows which events are in which partitions. Note that in each
partition, the APNR events are in one window and the Accident events are in another
window. Although the events are in separate windows, the correlator time-orders the
events across all windows in a partition.

Events in Partition Identified by "M11" Events in Partition Identified by "A14"
Accident ("M11") APNR ("A14", "FAB 1", ...)

APNR ("M11", "zC 158", ...) APNR ("A14", "BSG 75", ...)
APNR ("M11", "ZC 158", ...) APNR ("A14", "BSG 75", ...)

Developing Apama Applications Version 9.10 92

Defining Queries

Events in Partition Identified by "M11" Events in Partition Identified by "A14"

APNR ("A14", "FAB 1", ...)

Accident ("Al4")

In each partition, the query evaluates the event pattern against the events in the
windows in that partition. The query does this for each partition separately from every
other partition. In this example, when the correlator adds the Accident ("A14") event
to the partition identified by "A14" the event pattern is triggered if the where clause in
the find statement evaluates to true. The event pattern is not triggered in the partition
identified by "mM11".

About keys that have more than one field

A key can be made up of several event fields. For example, a Transaction event might
contain a field that indicates the transaction source account and another field that
indicates the transaction destination account. You can specify that you want to partition
Transaction events according to each unique source/destination combination:
query TransactionMonitor {
inputs {
Transaction () key source, dest within PERIOD;

}
}

In this example, there is a partition identified by the value of each source/dest
combination. Each of the following events is added to a window in a different partition:

This Event Is Added to the Window in the Partition
Identified By

Transaction(1l, 100, ...) 1, 100

Transaction(1l, 102, ...) 1, 102

Transaction (2, 100, ...) 2, 100

Transaction (2, 102, ...) 2, 102

Regardless of the event pattern in the query, this query monitors the transfer of money
from one specific account to another specific account. This query handles each transfer
between the same two accounts separately from all other transactions.

Now suppose that there is an Acknowledgement event that acknowledges that a
transaction has succeeded. It also has account source and account destination fields,
but they are inverted when compared to the transaction event fields. That is, the
source account for an acknowledgment is the destination account of the transaction. To

Developing Apama Applications Version 9.10 93

Defining Queries

ensure that the acknowledgments are added to the same partition as the corresponding
transactions, the key definition specifies the as keyword:

inputs {
Transaction () key source as txSource, dest as txDest within PERIOD;
Acknowledgement () key dest as txSource, source as txDest within PERIOD

}

The query partitions events according to the combined values of the fields identified by
txSource and txDest. The following table shows the partition that each event is added
to.

This Event Is Added to a Window in the Partition
Identified By

Transaction (1, 100, ...) 1, 100

Acknowledgement (100, 1, ...) 1, 100

Transaction(1l, 102, ...) 1, 102

Transaction (2, 100, ...) 2, 100

Acknowledgement (100, 2, ...) 2, 100

As you can see, a Transaction event and its Acknowledgement event are each added to
a window in the same partition.

Defining query input

In a query definition, you must specify an inputs block that defines at least one input.
The input definitions identify the events that you want the query to operate on. An input
definition can specify particular content and it can also specify a number of events or a
time period. For example:

query FraudulentWithdrawalDetection {
inputs {
Withdrawal (amount > 10.0)
key cardNumber, cardType
within 600.0;
AddressChange ()
key cardNumber, typeOfCard as cardType
retain 1;
}
find (Withdrawal:wl -> Withdrawal:w2)

where (wl.country != w2.country or wl.city != w2.city)
without AddressChange:ac {
getAccountInfo () ;
if preferredContactType = "Email" then {
sendEmail () ;

}
if preferredContactType

sendSMsS () ;

"SMS" then {

Developing Apama Applications Version 9.10 94

Defining Queries

}

The previous code defines two inputs. For each input, there is an associated window
of events. The first input window contains wWithdrawal events and the second contains
AddressChange events.

The input definition for the withdrawal events specifies that each Wwithdrawal event

in the window must have a value greater than 10. 0 in the amount field. The input
definition for the AddressChange events does not specify an event filter. Therefore, each
AddressChange event that arrives is eligible to be in the window.

The next element in an input definition is the key definition. The key definition indicates
how you want to partition the incoming events. If you define more than one input,

the number, type and order of the key fields must be the same for each input. In the
previous sample code, assume that the key fields for withdrawal events, cardNumber
and cardType are integer and string, respectively, and that the key fields for
AddressChange events, cardNumber and typeOfCard are also integer and string,
respectively. The two input keys match in number, type and order of key fields.

After the key definition, you can specify a within clause, a retain clause, or both. If
you specify both, the within clause must be before the retain clause. A within clause
specifies a period of time. Only events that arrive within that period of time are in the
window. In the window that contains withdrawal events, only Withdrawal events
that have arrived in the last 10 minutes (600 . 0 seconds) are in the window. A retain
clause specifies how many events can be in the window. In the window that contains
AddressChange events, only the last AddressChange event that arrived can be in the
window. When an AddressChange event arrives, if an AddressChange event is already
in the window it is ejected.

After the duration, you can optionally specify a with unique clause to prevent repeated
values appearing in the window. If specified, the with unique clause lists one or more
fields or actions on the event type (action names should be followed by open and close
parentheses). If there is more than one event in the window after the within and retain
specifications, then all but the latest are discarded. See "Matching only the latest event
for a given field" on page 119.

The final, optional, element of an input definition is the specification of the event source
timestamp and the associated wait period. If you expect that input events from a source
will be subject to delays or may be received out of order, then you can specify a time
from clause with the name of an action that returns a float specifying the number of
seconds from the epoch (midnight, 1 Jan 1970 UTC) that the event was created. If you
do this, you must also add a wait clause which requires a float or time literal specifying
the maximum delay expected for these events. This tells the query runtime how long it
must wait if it has not received any events before it can continue processing the events it
has received. Both of these clauses require that the event definition must have a source
timestamp recording the time of creation of the event, and a corresponding action that
returns that timestamp in the form of a float representing the number of seconds since
the epoch. In the example below, the query is gathering data from cars, which may be
delayed if a vehicle goes out of network coverage. Accordingly, the input definitions
specify that the source timestamps of the events are to be obtained from the events'

Developing Apama Applications Version 9.10 95

Defining Queries

getEcuTime actions which simply return the value of the events' ts float field. Further,
the input definitions specify that in each case, the runtime should wait for up to 1 hour
before continuing to process any events already received to allow for possible delays.
For further details, see "Using source timestamps of events" on page 107.

event CarRPM {
string carId;
float ts;
float rpm;
action getEcuTime () returns float {
return ts;
}
}
event CarEngineTemp ({
string carId;
float ts;
float temp;
action getEcuTime () returns float ({
return ts;
}
}
event CarEngineMisfire ({
string carId;
float ts;
action getEcuTime () returns float {
return ts;
}
}
query DetectEnginePerformanceProblems {
inputs {
CarEngineTemp () key carId within 1 hour time from getEcuTime wait 1 hour;
CarRPM() key carId within 1 hour time from getEcuTime wait 1 hour;
CarEngineMisfire () key carId within 1 hour time from getEcuTime wait 1 hour;
}
find CarEngineTemp:t and CarRPM:r -> wait 1 minute
where t.temp > T THRESHOLD
where r.rpm > R THRESHOLD
without CarEngineMisfire:misfire {
log "Possible engine performance problem" + t.toString() + r.toString();

}

Typically, you define one to four inputs. If you define more than one input, each must be
a different event type. In other words, two inputs to the same query cannot be the same
event type.

Queries can share windows

All query instances that have the same input definitions share the same windows. Two
queries have the same input definitions when they specify:

®m the same input event types (the order can be different)
®m the same keys

®m the same (if any) input filters

L

the same use of source timestamps - that is, the same action named in time from
clauses (wait times may be different)

Developing Apama Applications Version 9.10 96

Defining Queries

® the same use of heartbeat events
Any wait, within, retain or with unique specifications can be different.

When two query instances have the same input definitions and no parameters are used
in any input filters, then all instances of those query definitions can share window data.
If parameters are used in input filters, then parameterizations with different parameter
values each store data separately. This increases total storage requirements and cost of
processing the queries.

If a query is already running and you inject a query that defines the same inputs or
create a parameterization that defines the same inputs then the new query instance or
new parameterization uses the same windows as the query that was already running.
This means that events that were received before the new query was injected or before
the parameterization was created can be in a match set for the new query instance or
new parameterization. This can happen when an event arrives after the new query is
injected or after the parameterization is created and that event completes the pattern that
the new instance or parameterization is looking for.

To reduce the amount of memory storage required to run queries, you might want

to adjust the input definition for a query so that it is the same as another query. For
example, suppose query Q is consuming inputs 2, B, and x, while query P is consuming
inputs 3, B, and v. If both queries define both x and v as inputs (as well as 2 and B) then
they can share the same windows. This can be an advantage when there are many a
and B events but comparatively few x and v events. If many queries can be written with
similar input sections then they can share windows, which can lead to very efficient use
of memory.

If the reason for adding an input using source timestamps is simply in order to share
window contents, then the wait time for this input can be zero to avoid unnecessary
delays.

Format of input definitions

In a query definition, you define one or more inputs in the inputs block. The format of
the inputs block is as follows.

inputs {
event type (event filter)
key query key [within clause] [retain clause]

[with unique clause]
[time from clause wait clause [or clause]] ;

[event type (event filter)

key query key [within clause] [retain clause]

[with unique clause]

[time from clause wait clause [or clause]] ;]...

Developing Apama Applications Version 9.10 97

Defining Queries

Syntax Element

Description

event type

event filter

query key

retain clause

Name of the event type that you want to operate
on. The event type must be parseable. See "Type
properties summary" on page 811.

Event type names can come from the root
namespace, a using declaration, or a local package
as specified in a package declaration.

Optionally filter which events of this type you want
to be in the window. For example, you might define
the window to contain only the events whose amount
field is greater than 10. The rules for what you can
specify for the event filter are the same as for what
you can specify in an event template in EPL. See
"Event templates" on page 830.

Specify one or more event fields. You can specify
event fields of type boolean, decimal, float,
integer, string or location.

The correlator uses the key to partition the events.
Each partition is identified by a unique key value.
One or two fields in a key is typical. Three fields in
a key is unusual and rarely needed. More than three
fields is discouraged.

When you define more than one input in a query

® The number, type, and order of the key fields in
each input definition must be the same.

®m If the names of the key fields are not the same in
each input definition, you must specify aliases so
that the names match. For details, see "Partitioning
queries" on page 89.

Optionally specify retain followed by an EPL
integer expression that indicates how many events
to hold in the window. For example, if you specify
retain 1, only the last event that arrived that is

of the specified type and that has the key value(s)
associated with that partition is in the window. You
must specify a retain clause or a within clause or

both.

While it is possible to retain any number of events,
you must ensure that you define an input that allows

Developing Apama Applications Version 9.10

98

Defining Queries

Syntax Element

Description

within clause

with unique clause

time from clause

wait clause

a match with the event pattern specified in the
corresponding find statement. For example, the
following query never finds a match:
query Q {
inputs {
A() key k retain 3;
}
find A:al -> A:a2 -> A:a3 -> A:ad {
print al.toString()+ " - "+a4.toString();
}
}

Optionally specify within followed by a float
expression or time literal that specifies the length of
time that an event remains in the window. You must
specify a retain clause or a within clause or both.
See "Specifying event duration in windows" on page
101.

Optionally specify a set of secondary keys which
constrains the window to only include the latest
event for each value for the set of keys. See
"Matching only the latest event for a given field" on
page 119.

Optionally specify time from followed by the name
of an action that specifies how the source timestamp
of the event can be obtained. The named action must
be an action defined on that input event type. It must
take no parameters and must return a float. This is
taken to be when the event occurred, specified as
seconds since the epoch.

Note: You are not permitted to use the event's built-
in getTime () method. This method returns the
time when the correlator either processed or
created the event, which defeats the purpose of
the source timestamp functionality.

Ifa time from clauseis provided, a wait clause
is required, which specifies wait followed by a
float expression or time literal which specifies the
maximum delay expected for events. This is how
long a query will wait for events if it has not received
any events. See also "Using heartbeat events with
source timestamps" on page 112 and "Out of order
events" on page 114.

Developing Apama Applications Version 9.10 99

Defining Queries

Syntax Element Description

or clause Optionally specify a heartbeat event type which
informs the query runtime when communication
with the data source is not delayed. See "Using
heartbeat events with source timestamps" on
page 112. This can only be specified if the
time from clause and wait clause are specified.

Behavior when there is more than one input

The correlator orders the events in a window according to the time it processes each
event, that is, the time it adds the event to its window. When a query defines more than
one input then, for each partition, the correlator maintains a single time-order for all
events in all windows.

Suppose the correlator adds an event to a window and within 0.1 seconds the correlator
adds a different event to the same window or to another window in the same partition.
Outside a query, these two events might have the same timestamp because default
correlator behavior is to increment the timestamp only every tenth of a second. In a
query, however, if an event is added to a window within 0.1 seconds after another
event was added to a window, the correlator assigns the second event a timestamp with
enough significant digits to ensure that time order is preserved. The following code
fragment shows the result of calling the getTime () method on two events that arrive
within 0.1 seconds of each other:
find E:e -> F:f {

print e.getTime () .toString(); // Yields "1365761429.1"

print f.getTime () .toString(); // Yields "1365761429.100001"
}

The order of the events is important when the event pattern in a £ind statement specifies
the followed-by operator. Consider this example:
query Q {
inputs {
A() key k retain 20;
B() key k retain 10;

}
find A:a -> B:b { ... }
}

This pattern does not trigger when the correlator adds an a event to the A window. But
if there is already an A event in the A window then this pattern triggers when a B event is
added to the B window.

In a partition, at any one time, it is possible for the set of windows to contain multiple
sets of events that, each taken in isolation, would match the defined event pattern. In
this case, the event matching policy determines which of the candidate sets triggers an
action. See "Event matching policy" on page 143 for a description of how the query
chooses the event set that triggers an action. To illustrate event matching policy, that
topic provides an example of query behavior when there is more than one window.

Developing Apama Applications Version 9.10 100

Defining Queries

Specifying event duration in windows

In an input definition, you can specify an optional within clause that indicates the
length of time that an event remains in the window. For example:

query FraudulentWithdrawalDetection {
inputs {
Withdrawal () key userId within 1 hour;

}
find Withdrawal:wl -> Withdrawal:w2
where wl.city != w2.city {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}

In this example, a Withdrawal event remains in the window for 1 hour. After 1 hour in
the window, an event is ejected. Each time an event is added to one of the windows in a
partition, the correlator evaluates the find pattern for that partition. Ejection of an event
from a window does not trigger pattern evaluation. There are two formats for specifying
awithin clause:

B within time literal
B within float expression
Parentheses in within clauses are allowed. The rules for specifying a time literal are:

B Specify one or more integer or float literal(s) and follow each one with a keyword
that indicates a time unit.

® Time unit keywords are:
B day, days
B hour, hours
B min, minute, minutes
B sec, second, seconds
B msec,millisecond, milliseconds

Outside a query, you can use these keywords as identifiers. Inside a query, you
cannot use these keywords as identifiers unless you prefix them with a hash symbol
(#). See "Escaping keywords to use them as identifiers" on page 923.

B A spaceis required between an integer or float literal and its time unit. A space is
required after a time unit if it is followed by an integer or float literal. Additional
whitespace is allowed.

®m If you specify more than one time unit keyword they must be in the order of
decreasing size. For example, days must be before minutes.

B You need not specify all time units.

® Each time unit keyword must represent a different time unit, that is, you cannot, for
example, specify both day and days.

Developing Apama Applications Version 9.10 101

Defining Queries

Examples of valid time literals:

1

1

2

Note:

10 hours

days 12 hours

day 2 hours 30 minutes 4 sec
days 5 minutes

2.5 sec

10 seconds - This is equivalent to specifying the f1oat expression 10. 0.

While it is possible to define time literals using f1oat values, for example, 3.5
days 12.5 hours 33.3 min, it is recommended that you use only integer
values when the specification includes more than one time unit. For example,
rather than specifying 2 days 65.75 minutes, you should specify 2 days 1
hour 6 min 15 sec.

If you open and edit a query in Apama's Query Designer in Software AG
Designer, it modifies the time literal (if necessary) such that it contains only
integers. Also, the allowable range of integers is 0 to 23 for hours, 0 to 59 for
minutes, 0 to 59 for seconds, and 0 to 999 for milliseconds. Where necessary,
the Query Designer rounds up to a whole number of milliseconds. For
example, suppose you specify the following time literal in EPL code:

3.5 days 4 hours 27.5 minutes 1002.75 milliseconds

The Query Designer converts this to 3 days 16 hours 27 minutes 31 seconds 3
milliseconds. The actual query designer display is: 3d 16h 27m 31s 3ms.

When you specify a float expression it indicates a number of seconds.

Consider the example at the beginning of this topic as the following events are added to
their appropriate windows:

Time Event Added to Window

10:00 Withdrawal ("Dan", "London")
10:30 Withdrawal ("Dan", "Dublin")
10:45 Withdrawal ("Dan", "Paris")
11:15 Withdrawal ("Ray", "Honolulu")
11:30 Withdrawal ("Dan", "Rome")

For the partition identified by a userId Dan, the query evaluates the pattern at the
following times:

Developing Apama Applications Version 9.10 102

Defining Queries

Time Window Contents Matching Events

10:00 Withdrawal ("Dan",
"London")

10:30 Withdrawal ("Dan", wl=Withdrawal ("Dan",
"Dublin™) "London")
Withdrawal ("Dan", w2=Withdrawal ("Dan",
"London") "Dublin")

10:45 Withdrawal ("Dan", wl=Withdrawal ("Dan",
"Paris") "Dublin")
Withdrawal ("Dan", w2=Withdrawal ("Dan",
"Dublin") "Paris")

Withdrawal ("Dan",

"London")
11:30 Withdrawal ("Dan", "Rome") wl=Withdrawal ("Dan",
) "Paris")
Withdrawal ("Dan",
"Paris") w2=Withdrawal ("Dan",
"Rome")

An event remains in its window for exactly the specified duration. For example, at
11:00, withdrawal ("Dan", "London") is no longer in the window and at 11:30,
Withdrawal ("Dan", "Dublin") isno longer in the window. Although the contents of
the window have changed, ejection of an event does not cause evaluation of the event
pattern.

At 11:15, there is no evaluation of the event pattern for the partition identified by a user

Id of "Dan" because an event is added to a window in the partition identified by a user
Id of "Ray".

Specifying maximum number of events in windows

In an input definition, you can specify a retain clause that indicates how many events
can be in the window. For example:

query FraudulentWithdrawalDetection2 ({
inputs {
Withdrawal () key userId retain 3;
}
find Withdrawal:wl -> Withdrawal:w2 where wl.city != w2.city {
log "Suspicious withdrawal: " + w2.toString() at INFO;
}

Developing Apama Applications Version 9.10 103

Defining Queries

In this query, only the most recent three Wwithdrawal events can be in the window. In
other words, the window cannot contain more than three events. If only zero, one or two
Withdrawal events with a particular key have arrived since the application was started
then there would be only zero, one or two events, respectively, in the window.

The correlator evaluates the event pattern each time an event is added to the window.
Suppose that at the indicated times the following events are added to the window in the
partition identified by userIdban:

Time Event Added to Window

10:00 Withdrawal ("Dan", "Dublin")
10:10 Withdrawal ("Dan", "London")
10:20 Withdrawal ("Dan", "London")
10:30 Withdrawal ("Dan", "London")
11:30 Withdrawal ("Dan", "Paris")

For the partition identified by the userId Dan, the query evaluates the pattern at the
following times:

Time Window Contents Matching Events

10:00 Withdrawal ("Dan",
"Dublin")

10:10 Withdrawal ("Dan", wl=Withdrawal ("Dan", "Dublin")
"Dublin")

w2=Withdrawal ("Dan", "London")
Withdrawal ("Dan",
"London")

10:20 Withdrawal ("Dan", wl=Withdrawal ("Dan", "Dublin")

"Dublin"
) w2=Withdrawal ("Dan", "London")

Withdrawal ("Dan",
"London")

Withdrawal ("Dan",
"London")

10:30 Withdrawal ("Dan",
"London")

Developing Apama Applications Version 9.10 104

Defining Queries

Time Window Contents Matching Events

Withdrawal ("Dan",
"London")

Withdrawal ("Dan",
"London")

11:30 Withdrawal ("Dan", wl=Withdrawal ("Dan", "London")

"London")))
w2=Withdrawal ("Dan", "Paris")

Withdrawal ("Dan",
"London")

Withdrawal ("Dan",
"Paris")

It is important to note that at 10: 30, the Withdrawal ("Dan", "Dublin") event that
arrived at 10:00 is no longer in the window because the window retains three events at
most and there are three withdrawal events that have been added to the window more
recently.

Specifying event duration and maximum number of events

In an input definition, you can specify a within clause that indicates how long an event
can remain in the window and a retain clause that indicates how many events can be
in the window. When you specify both a within clause and a retain clause the within
clause must be before the retain clause. For example:
query FraudulentWithdrawalDetection3 ({
inputs {
Withdrawal () key userId within 1 hour retain 3;
}
find Withdrawal:wl -> Withdrawal:w2 where wl.city != w2.city {
log "Suspicious withdrawal: " + w2.toString() at INFO;
}
}

In this query, a Withdrawal event can be in the window for up to one hour and only
the three most recent withdrawal events, if each one arrived during the previous

hour, can be in the window. In other words, the window cannot contain an event that
arrived more than an hour ago and it cannot contain more than three events. If only two
wWithdrawal events arrived in the previous hour then there would be only two events in
the window.

Suppose that at the indicated times the following events are added to the window in the
partition identified by a userIdban:

Time Event Added to Window

10:00 Withdrawal ("Dan", "Dublin")

Developing Apama Applications Version 9.10 105

Defining Queries

Time Event Added to Window

10:10 Withdrawal ("Dan", "London")
10:20 Withdrawal ("Dan", "London")
10:30 Withdrawal ("Dan", "London")
11:30 Withdrawal ("Dan", "Paris")

For the partition identified by userId Dan, the query evaluates the pattern at the
following times:

Time Window Contents Matching Events
10:00 Withdrawal ("Dan", wl=Withdrawal ("Dan", "Dublin™)
"Dublin™)

w2=Withdrawal ("Dan", "London")

10:10 Withdrawal ("Dan", wl=Withdrawal ("Dan", "Dublin")

"Dublin"
) w2=Withdrawal ("Dan", "London")

Withdrawal ("Dan",
"London")

10:20 Withdrawal ("Dan",
"Dublin")

Withdrawal ("Dan",
"London")

Withdrawal ("Dan",
"London")

10:30 Withdrawal ("Dan",
"London")

Withdrawal ("Dan",
"London")

Withdrawal ("Dan",
"London")

11:30 Withdrawal ("Dan",
"Paris")

It is important to note that at 10: 30 the withdrawal ("Dan", "Dublin") event that
arrived at 10:00 is no longer in the window because the window retains three events

Developing Apama Applications Version 9.10 106

Defining Queries

at most and there are three Wwithdrawal events that have been added to the window
more recently. Also, at 11:30 there are no Withdrawal ("Dan", "London") events in the
window as they have been ejected because more than one hour has elapsed since each
one was added to the window.

Using source timestamps of events

By default, the query runtime assumes that events should be treated to be in the order
in which they are processed, and the time of each event is the correlator's time at the
point the event is processed. This is suitable if events are delivered reliably to the Apama
correlator in a short amount of time and in order. However, if the events are delayed,
accumulated into batches before being sent or delivered over unreliable networks, then
it may be necessary to use the time at which an event happened at the event source,
which would have to be available in the event in order for queries to use the source
timestamp. For example, a car may measure the engine's temperature, RPM and other
important statistics along with a timestamp, and record these in a small computer in the
car. Periodically, when the car is connected to a wireless network, the car will send this
data as a batch of events. For the correct behavior of queries that make use of the time or
ordering of events, the query will need to be configured to use the source timestamp.

Note: Source timestamps are not intended to be a replacement for Xclock. They can,
however, be used in conjunction with Xclock for testing purposes. Xclock
is controlling the correlator's time (see "Disabling the correlator's internal
clock" on page 197). Source timestamps indicate the time at which an event
occurred.

In order to use the source timestamp:

® Every event which may be delayed should contain the source timestamp in some
form.

B An action must be defined on the event definition, which takes no parameters and
returns a float. This should calculate the source time of the event - typically the time
the event occurred - based on the fields of the event. The return value of the action
should specify the time in seconds since the epoch (midnight, 1 Jan 1970 UTC). If the
event contains the time in seconds since the epoch (in this example, stored in a field
named sourceTime), this can be as simple as the following;:

action getSourceTime () returns float { return sourceTime; }

Otherwise, the TimeFormat event library can be used to help convert from time of
day and date, and perform timezone conversions as necessary. For example, if the
source timestamps in your events are not already in the UTC timezone, then one
way to do this is to include a timezone field and then use the TimeFormat event's
parseWithTimeZone action to obtain the source time in the correct form as shown in
the following event definition:
using com.apama.correlator.timeformat.TimeFormat;
using com.apama.queries.TimeFrom;
@TimeFrom ("getSourceTime")
event E {

integer k;

string sourceTime;

Developing Apama Applications Version 9.10 107

Defining Queries

string timeZone;
action getSourceTime () returns float {
TimeFormat timeFormat := TimeFormat () ;
return timeFormat.parseWithTimeZone ("HH:MM:SS", sourceTime, timeZone) ;
}
}

See also "Using the TimeFormat Event Library" on page 357.

® The event definition should have a @TimeFrom annotation (as in the above example)
or queries that use the event as an input must specify a time from clause that names
the action that provides the source time. In either case, queries must always specify
a maximum time to wait for the events (see below). If both are specified, the time
from clause in the query takes precedence.

See also "Adding predefined annotations" on page 68.

Note: You are not permitted to use the event's built-in getTime () method. This
method returns the time when the correlator either processed or created the
event, which defeats the purpose of the source timestamp functionality.

Waiting for delayed events

If using source timestamps, we assume events may be delayed between the source time
at which they occur and being processed by the Apama correlator. If no events are
received by the correlator, it needs to distinguish between no events having occurred
and events being delayed. If events are delayed, the query runtime will wait before
evaluating the query, as it does not have a definitive view of all of the events. A query
that uses source timestamps must specify the maximum wait time that a query will wait
before it will process events. This is the maximum delay that the query will tolerate and
the maximum delay between an event having occurred and the query processing that
event. The wait time is inclusive - that is, an event delayed by exactly the value specified
in the wait clause will be considered valid.

The maximum wait time must be specified and must be set to a reasonable value, as it
can increase the number of events stored by the query runtime, and processing of the
query may be delayed by up to that duration. The maximum wait time for an input may
be less than or more than the within duration, but should not represent a large number
of events for typical event rate for that input.

The wait time must be specified in a query using the wait clause in an input declaration.
The wait clause can specify a time as a time literal (using days, hours, minutes and
seconds) or as a float expression. Both the time fromand wait clauses must be
specified (or neither).

It is possible to mix inputs that have source times and events that do not have source
times in a single query. Event inputs without a source time are equivalent to using
currentTime (thatis, the correlator's current time, see "currentTime" on page 912) as
the source time, and a wait time of 0.

Event definitions may have an annotation defined @Dbe faultMaxDelay which specifies
the default value to use for the wait time. This is only informational and used by the
Design tab in Software AG Designer when editing query files as a means of setting the

Developing Apama Applications Version 9.10 108

Defining Queries

default wait time. The query must always specify the wait time, even if it is using the
default value. Note that the editor will copy the value from the annotation, so changing
the annotation will not affect existing query definitions.

Definitive time of a query event source

Given that input events may be delayed or out of order, how does the query runtime
know when it is safe to process events? To answer this question, we introduce the
concept of definitive time. The point in time for which the query runtime is entitled

to think that it has received all the events it is going to receive is called the "definitive
time". All events at or before this point in time are considered definitive and can be used
to evaluate the query. Events after the definitive time will not be processed until they
become definitive (that is, the definitive time has changed so that the events are now

at or before the definitive time). The query runtime will assume that no further events
will be received with a time before the definitive time, and will only evaluate events that
have occurred before the definitive time.

In the case of an individual query input, the definitive time of that input is the latest of:

B The timestamp of the latest event received (unless the event definition is marked as
occurring out of order, see "Out of order events" on page 114).

®m The timestamp of the latest heartbeat event, if specified (see "Using heartbeat events
with source timestamps" on page 112).

® The correlator's current time less the maximum wait time of a query.

The query's overall definitive time is then determined as the minimum or earliest of the
definitive times for each input.

If no events (either input or heartbeat events) are received, then a query may need
to wait in order to evaluate the events it has received (particularly if using the wait
operator in the pattern, or more than one input, where some inputs have no events
received).

The concept of definitive time is best explained using worked examples. Consider, first,
a query with a single input event type.

using com.apama.queries.TimeFrom;
@TimeFrom ("getSourceTime")
event E {
integer k;
float sourceTime;
action getSourceTime () returns float {
return sourceTime;
}
}
query SingleInput {
inputs {
E() key k within 1 hour wait 2 hours;
}
find E:el -> E:e2 where e2.getSourceTime () - el.getSourceTime() > 600.0 {
log "Time gap " + (e2.getSourceTime() - el.getSourceTime ()).toString();

}

Developing Apama Applications Version 9.10 109

Defining Queries

In this case, where there is only a single input type, the definitive time will be the latest
or most recent of either: the source timestamp of the last event, or the current time
minus the wait time (2 hours in this example). The following table shows how the query

runtime keeps track of the definitive time as it receives input events.

Wall Time E event source | Query Result Explanation
timestamp definitive time

10:00 07:00 08:00

10:05 07:30 08:05 Nothing -
events are
too old.

10:10 08:30 08:30

10:24 08:32 08:32 Nothing
- event
timestamps
were only
2 minutes
apart.

10:26 08:50 08:50 Time gap

18 minutes

10:30 10:30 10:30 Nothing
-only 1
event in
the "within
1 hour"
window.

Now consider a more complex case where the query has two input event types. Events
of type E are defined as above, but we add another definition for events of type X.

@TimeFrom ("getSourceTime")
event X {
integer k;
float sourceTime;
action getSourceTime () returns float {
return sourceTime;
}
}
query MultipleInputs {
inputs {
E() key k within 1 hour wait 1 hour;
X () key k within 1 hour wait 1 hour;
}
find E:el -> E:e2 without X:x {

Developing Apama Applications Version 9.10

110

Defining Queries

log "Got (" + el.sourceTime.toString() + ", "
+ e2.sourceTime.toString() + ")";

}

Once again the table below shows how the definitive time of the query is determined. In
this case, the runtime must take the definitive time as being the earliest of the definitive
times of the input types because, as the pattern depends on all input types, it is only up
until that point that it has a definitive view of all the query inputs.

For example, at wall time 09:22, even though the runtime has got E events with source
timestamps 08:32 and 08:40, it is not entitled to conclude that we have a match for the
query pattern because the most recent X event has a timestamp of only 08:25, so we
do not yet know if there was an X event between 08:32 and 08:40 that would prevent a
match. The wait time of 1 hour has not yet elapsed, so the definitive time of the query
remains at 08:25, which is the source time of the most recent X event.

It is not until wall time 09:23 that we receive another X event with a source timestamp of
08:50. At this point, given that in this example we know that events are being delivered
in order, it is safe for the runtime to assume that there were no other X events between
08:25 and 08:50 and so it can proceed to execute the query and match for the two pairs
of E events ("08:30, 08:32" and "08:32, 08:40"). Further, at this time (wall time 09:23)

the receipt of the X event with source timestamp 08:50 allows the runtime to update

the definitive time of the overall query to 08:40, which has become the earliest of the
definitive times of the query inputs.

Wall Time E event X event Query Result Explanation
source source definitive
timestamp timestamp time
09:20 08:30 08:25 08:25
09:21 08:32 08:25 Nothing
yet. Still
waiting
for an X.
09:22 08:40 08:25
09:23 08:50 08:40 Got
(08:30,
08:32)
Got
(08:32,
08:40)
09:24 08:55 08:50 No 08:40
- 08:55
match,

Developing Apama Applications Version 9.10

1M

Defining Queries

Wall Time E event X event Query Result Explanation
source source definitive
timestamp timestamp time

there is
an X at
08:50.

09:25 09:00 08:50 Nothing
yet - still
waiting
for X
after
08:50.

09:26 08:57 08:57 No 08:55
-09:00
match,
there is
an X.

09:27 09:10 08:57 Nothing
yet - still
waiting
for X
after
08:57.

10:10 09:10 Got We
(09:00, waited
09:10) for1l
hour for
an X.

Using heartbeat events with source timestamps

When using source timestamps, if a query's input has no events for a period of time,
then the query will wait for the specified wait time for that query before evaluating
events. This can cause unacceptable delays in processing events from other inputs.
Some data sources may provide heartbeat events with timestamps which signal that
communication from the data source to the queries system is working correctly. If these
events occur but no input events have been received, then the query can infer that no
input events, or only the input events received, have occurred, and thus the query's
input is definitive upon receiving a heartbeat, without having to wait any further. If
communication is disrupted or delayed, then the heartbeat events will similarly be
delayed, and the query will wait, as it has to in order to process delayed events.

Developing Apama Applications Version 9.10 112

Defining Queries

Heartbeat events are specified on the input event type's definition or per input of the
query. They are only used if a query input is using source timestamps, that is, it has a
wait clause specified. The heartbeat can be specified as a @¢Heartbeat annotation on the
event definition, which should name the fully qualified event type to use as heartbeat
events.

If a query input contains a time from clause, then the heartbeat must be explicitly
named with an or heartbeat-type clause after the wait clause. For example, these two
are equivalent:

@TimeFrom ("getEcuTime")
@Heartbeat ("CarHeartbeat")

event CarEngineTemp { .. }
query ... {
inputs {
CarEngineTemp () key carId within 1 hour wait 6 hours;
}
or:
query ... {
inputs {
CarEngineTemp () key carId within 1 hour time from getEcuTime

wailt 6 hours or CarHeartbeat;

The following rules apply for the heartbeat event:
B The heartbeat event cannot be filtered.

B The heartbeat event must share the same key fields and the same types as the input
event type. In the above example, both CarEngineTemp and CarHeartbeat must
have a field named carId which is of the same type in each event type.

B The heartbeat event must have a matching action for obtaining the source time. In
the above example, both CarEngineTemp and CarHeartbeat must have an action
of the signature action getEcuTime () returns float. Typically, these would
have the same implementation, as the heartbeat would have source timestamps in
the same form as the input events; but the implementation of these methods may be
different for heartbeat events (see "Out of order events" on page 114.)

® The heartbeat event cannot be used as an input in the pattern, unless it is also listed
as an input event in its own right.

B The same heartbeat event type may be used for different inputs of the same query
(this is typical, as a query may use a number of different types of events from the
same data source, such as a car in the above example).

When a heartbeat event is received and processed, it will step forward the definitive
time for all inputs that specify that heartbeat event. Thus, if all inputs use the same
heartbeat event, then that heartbeat can step forward the definitive time, allowing the
query to evaluate events received on some inputs without having to wait for the input
wait time on other inputs where no input events were received.

Developing Apama Applications Version 9.10 113

Defining Queries

Typically, heartbeat events will be delivered regularly. The rate at which heartbeat
events are sent is dependent on the data source, but the queries system must be able

to handle all of the heartbeat events from all data sources as well as the input events.
Some devices may only send the heartbeats under certain conditions, for example, a car
may only send heartbeats if the engine is running or the car is occupied. If no heartbeat
events are received, then queries will use the wait time specified in the input before
evaluating any events received, as needed.

Note that queries assume that the heartbeat events are delivered in the same order as
input events. If an input event arrives with a timestamp before a previous heartbeat
event, it will be discarded.

Typically, heartbeat events will be events that come from the same data source as the
input events they are used with. Thus, any communications disruption affecting the
input events will affect the heartbeat events in the same way. This is not a requirement;
if some other system has knowledge of when a data source is connected or disconnected,
the heartbeat events could be sent from that system - but if the system incorrectly sends
heartbeat events and input events are delayed, then input events may be discarded.

Out of order events

When using source timestamps (see also "Using source timestamps of events" on page
107), the query runtime by default expects events to arrive in order. If an event

arrives with an earlier source timestamp than a previous event for that same partition, it
will be discarded. However, there are two cases where this behavior does not occur (see
below), and queries will store events which arrive out of order and re-order them so that
when they are processed, they are processed in order according to the source time.

Note: In both cases described below (with the coutOforder () annotation and
delayed events), heartbeat events (if specified) are always considered
definitive, even if they are delayed. You cannot use an event definition with
an @OutOfOrder () annotation as a heartbeat event. Note that as soon as a
heartbeat event is processed, the query will ignore any events with earlier
timestamps.

Case 1: Using the @outoforder () annotation on the event definition

If the event definition (in an EPL file) has the @outofOrder () annotation which is
available in the package com. apama.queries (see also "Adding predefined annotations"
on page 68), then the queries runtime will treat it as not occurring in order.

This means that definitive time is not affected by the timestamp on the events. Thus,
events will not be processed until the specified wait time has elapsed since their source
time, or a heartbeat event (if specified) with a later timestamp has been processed (and
all inputs have had their definitive time moved forward).

It is recommended to use heartbeats when using coutoforder () events. They are not
required, but if not used, the query execution will be delayed by the longest input wait
specified in the query.

Developing Apama Applications Version 9.10 114

Defining Queries

The following example compares the behavior if @outoforder () is or is not specified on
the input:

query FindAdjacentAEvents {
inputs {
A() within 30.0 wait 20 seconds;
t
find A:al -> A:a2 {
print "al = "+al.toString()+"; a2 = "+a2.toString() ;
t

}

In the following tables, the events are listed in the order in which they are processed, but
they occur in the order A(1), A(2), A(3), A(4). Note that A(2) is delayed by more than the
wait time of the query (the actual events would have a source timestamp, but we show

that as a separate column for clarity).

The following table applies if the event definition does have @outoforder ():

Input event Input event Correlator Notes Query Query
timestamp time definitive output
time
A(1) 10:00:10 10:00:20 10:00:00
A(4) 10:00:20 10:00:30 10:00:10
A(3) 10:00:15 10:00:32 10:00:12
10:00:35 20 10:00:15 al=A(1);
seconds a2=A(3)
after
A(3)'s
source
time
(10:00:15)
A(2) 10:00:12 10:00:37 discarded 10:00:17
- more
than 20
seconds
old
10:00:40 20 10:00:20 al=A(3);
seconds a2=A(4)
after
A4)'s
source

Developing Apama Applications Version 9.10

115

Defining Queries

Input event Input event Correlator Notes Query Query
timestamp time definitive output
time
time
(10:00:20)
The following table applies if the event definition does not have @outoforder ():
Input event Input event Correlator Notes Query Query
timestamp time definitive output
time
A1) 10:00:10 10:00:20 10:00:10
A4) 10:00:20 10:00:30 10:00:20 al=A(1);
a2=A(4)
A(3) 10:00:15 10:00:32 10:00:20 (nothing
- event is
discarded
asitis
out of
order)
A(2) 10:00:12 10:00:37 discarded 10:00:20
- more
than 20
seconds
old

Case 2: Events are delayed

Even in the case where events are normally delivered in order from the data source,

if there is a delay which is then resolved, a number of delayed events may all be
processed in a very short space of time. Even if they are delivered to Apama correlators
in the correct order, the query runtime runs in parallel within the correlator, so events
processed close together in time may be processed out of order, even if they do not have
an @outOfOrder () annotation on the event definition. If an event is delayed, then the
query runtime will wait before considering the event's time as definitive for that input.

By default, the query runtime considers an event as delayed if its source time is more
than 10 seconds before the correlator's time at the point it is processed, and it will wait
for 10 seconds before considering the event's time as definitive for that input. These
settings can be modified by sending in a SetDelayedEventsLeeway (delayLeeway,
reorderBuffer) event:

com.apama.queries.SetDelayedEventsLeeway (5, 20.0)

Developing Apama Applications Version 9.10

116

Defining Queries

The above example would set the query runtime to consider events older than 5 seconds
as delayed, and would not consider them definitive until 20 seconds after they were
received.

To consider all events in order regardless of delay, send an event with the first value set
to infinity (as all actual delays must be less than infinity):

com.apama.queries.SetDelayedEventslLeeway (infinity, 0.0)

These events should be sent to all correlators in a cluster, typically as part of the
initialization of the correlator along with injecting the query definitions.

The following example compares the behavior with different configurations and some
delayed events:
query FindAdjacentAEvents {
inputs {
A() within 30 minutes wait 10 minutes;

1
find A:al -> A:a2 {
print "al = "+al.toString()+"; a2 = "+a2.toString() ;
1
1
The following table lists the events where the A event does not have @outoforder ().

The last three columns give the behavior with different configurations:

m Default config. A. Matches with the default values: 10 seconds delay threshold and 10
seconds reorder buffer.

m Config. B. Matches if setDelayedEventsLeeway (300, 10) issent: 5 minutes (300
seconds) delay threshold and 10 seconds reorder buffer.

m Config. C. Matches if SsetDelayedEventsLeeway (10, 60) is sent: 10 seconds delay
threshold and 1 minute reorder buffer.

Input Input Correlator | Definitive | Default Config.B | Config. C
event event time time config. A
timestamp of the
query for
default
leeway
values

A1) 10:06:10 10:10:30 10:00:30
(10
minutes

ago)

A@4) 10:06:20 10:10:31 10:00:31 al=A(1);
(10 a2=A(4)
minutes

ago)

Developing Apama Applications Version 9.10 117

Defining Queries

Input Input Correlator | Definitive | Default Config. B | Config. C
event event time time config. A
timestamp of the
query for
default
leeway
values
A(3) 10:06:15 10:10:32 10:00:32 (A(3)
(10 out of
minutes order
ago) and
discarded)
A(2) 10:06:13 10:10:33 10:00:33 (A(2)
(10 out of
minutes order
ago) and
discarded)
10:10:43 10:06:20 al=A(1);
(latest a2=A(2)
?vent al=A(2);
received) a2=A(3)
al=A(3);
a2=A(4)

10:11:33 al=A(1);
a2=A(2)
al=A(2);
a2=A(3)
al=A(3);
a2=A(4)

A(6) 10:12:05 10:12:10 10:12:05 al=A(4);, | al=A®4); | al=A@4);
(latest a2=A(6) a2=A(6) a2=A(6)
A
event
received)

A(5) 10:12:04 10:12:11 10:12:05 (none (none (none
(latest - event - event - event
A A(b) is A(b) is A(5) is

discarded)| discarded)| discarded)

Developing Apama Applications Version 9.10

118

Defining Queries

Input
event

Input
event
timestamp

Correlator
time

Definitive
time
of the

Default
config. A

Config. B

Config. C

query for
default
leeway
values

event
received)

Note that A(6) is treated as occurring in order, as it is delayed by less than the
delayLeeway value. Thus A(5) is discarded, as it has occurred out of order.

Matching only the latest event for a given field

A query input can optionally limit the window to only contain the most recent item for
each value of a given field or action of the event. This is performed by the with unique
operator, which is followed by one or more fields or actions of the input event type.

For example, consider a query looking at sensor data from a number of sensors on the
same production line, with events that specify the productionLine and sensorId. The
query compares sensor values between different machines and sensors on the same
production line, so the query can be keyed on the productionLine field of events, but
not on the sensorid field. However, only the latest event for each sensor is required. By
specifying a with unique sensorId clause, only the latest value of each sensor is used.

If you add a with unique clause, if there is more than one item in the window that has
the same value for all the fields or actions listed in the with unique clause, then only
the most recent event is considered to be in the window and can match the pattern. The
suppression of duplicates occurs after the within and/or retain clauses apply. For
example:

inputs {

Sensor () key productionLine retain 3 with unique sensorId;

}

Given the following events, the window contains only those marked in the third column
of the following table (assuming all are for the same productionLine):

Event | sensorid | Window contains Notes
1 A 1(A)
2 B 1(A), 2(B)
3 C 1(A), 2(B), 3(C)

Developing Apama Applications Version 9.10 119

Defining Queries

Event | sensorid | Window contains Notes

4 B 3(C), 4(B) Event 1 is discarded due to retain
3. Event 2 is discarded as event 4 has
the same sensorId.

5 D 3(C), 4(B), 5(D)

6 C 4(B), 5(D), 6(C) Event 3 is discarded due to retain
3.

7 D 6(C), 7(D) Event 4 is discarded due to retain

3. Event 5 is discarded as event 7 has
the same sensorId.

Note that the with unique is applied after the retain expression. Any with unique
expression does not affect window sharing (see also "Queries can share windows" on
page 96) nor how much data is stored.

The with unique clause comes after the sizing of the window (within, retain) and
before, if present, the time from, wait or or clauses used for specifying source time.

with unique can list a number of comma-separated members or calls to actions, where
the action name is followed by parentheses. Actions used in a with unique clause must
take no parameters and return a value. The ordering is unimportant.

For example, using with unique upperName () for an event definition such as the
following would only keep one event for each value of the name field, ignoring case:

event E {
string name;
action upperName () returns string { returns name.toUpper(); }

Finding and acting on event patterns

In a query, the £ind statement specifies the event pattern you are interested in. At
runtime, for each event that the correlator adds to a window, the query checks for a
match. Depending on the definition of the event pattern, the set of events that matches
the pattern contains one or more events. This is the match set. A match set

B Always contains the latest event, which is the event that was most recently added to
a window.

m Satisfies the event pattern.

®m Is always the most recent set that matches the event pattern. This is important when
there is more than one set that is a candidate for the match set.

The format of a find statement is as follows:

find pattern block

Developing Apama Applications Version 9.10 120

Defining Queries

Syntax Element Description

pattern The event pattern that you want to find. See
"Defining event patterns" on page 121.

block The procedural code to execute when a match is
found. See "Acting on pattern matches" on page
145.

Defining event patterns

In a query definition, you specify a find statement when you want to detect a particular
event pattern. The £ind statement specifies the event pattern of interest followed by a
procedural block that specifies what you want to happen when a match is found. For
example:

query ImprobableWithdrawallLocations

{
inputs {
Withdrawal () key cardNumber within 24 hours;
}
find
Withdrawal:wl -> Withdrawal:w2 where w2.country != wl.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;
}
}

In this example, the window that the query operates on contains any withdrawal events
that have arrived in the last 24 hours. The key is the card number so each partition
contains only Withdrawal events that have the same value in their cardNumber field. In
other words, each partition contains the withdrawal events for one particular account.
For more information about input definitions, see "Defining query input" on page

94,

The £ind statement specifies that the event pattern of interest is a Withdrawal event
followed by another withdrawal event.

In each partition, the where clause filters the withdrawal events so that there is a match
only when the values of their country fields are different. The two event templates in
the £ind statement coassign matching withdrawal events to wl and w2, respectively.

In this example, the two matching withdrawal events might or might not have arrived
in the partition consecutively. For details, see "Query followed-by operator" on page
124.

When there is a match the query executes the action in the £ind block.

The format for defining a £ind statement is as follows:

find
[every] [wailt duration :identifier]

event type :identifier [find operator event type :identifier]...
[walit duration :identifier]
[where clause] [within clause] [without clause]

Developing Apama Applications Version 9.10 121

Defining Queries

[select clause]
block
}

Syntax Element

[having clause] {

Description

event type

every

wait

identifier

Name of the event type you are interested in.
You must have specified this event type in the
inputs section.

Specity the optional every modifier in
conjunction with the select and having
clauses. This lets you specify a pattern that
aggregates event field values in order to

find data based on many sets of events. See
"Aggregating event field values" on page 1309.

Specify the optional wait modifier followed

by a time literal or a float expression. A wait
modifier indicates a period of elapsed time at the
beginning of the event pattern and/or at the end
of the event pattern. A float expression always
indicates a number of seconds, See "Query wait
operator” on page 129.

Coassign the matching event to this identifier.
A coassignment variable specified in an event
pattern is within the scope of the find block
and it is a private copy in that block. The
exception to this is in an aggregating find
statement, only the projection expression can
use the coassignments from the pattern. The
procedural block of code can use projection
coassignments and any parameters, but it cannot
use coassignments from the pattern. Changes
to the content that the variable points to do not
affect any values outside the query.

Unlike EPL event expressions, you need not
declare this identifier before you coassign a
value to it.

In an event pattern in a find statement, each
coassignment variable identifier must be unique.
You must ensure that an identifier in an event
pattern does not conflict with an identifier in the
parameters section, or inputs section.

Developing Apama Applications Version 9.10

122

Defining Queries

Syntax Element Description

find operator Optionally specify and or -> and then specify
an event type and coassignment variable.
Parentheses are allowed in the pattern
specification and you can specify multiple
operators, each followed by an event type
and coassignment variable. For example, the
following is a valid find statement:
find (A:al -> ((A:a2)) -> (A:a3) ->
(A:a4 -> A:a5 -> A:a6) —>
(((A:a7) -> A:a8) -> A:a9) -> A:al0) {
print "query with 10: "+al.toString()+ "
- "+al0.toString() ;
}

where clause To filter which events match, specify where
followed by a Boolean expression that refers to
the events you are interested in. The Boolean
expression must evaluate to true for the
events to match. The where clause is optional.
Coassignment variables specified in the find
or select statements are in scope in the where
clause. Also available in a where clause are
any parameter values and key values. This
where clause applies to the event pattern and is
referred to as a find where clause to distinguish
it from a where clause that is part of a without
cause, which is referred to as a without where
clause. See "Query conditions" on page 130.

within clause A within clause sets the time period during
which events in the match set must have been
added to their windows. A pattern can specify
zero, one, or more within clauses. See "Query
conditions" on page 130.

without clause A without clause specifies event types
whose presence prevents a match. See "Query
conditions" on page 130.

select clause A select clause indicates that aggregate values
are to be computed. See "Aggregating event field
values" on page 139.

having clause A having clause restricts when the procedural
code is invoked for a pattern that aggregates

Developing Apama Applications Version 9.10 123

Defining Queries

Syntax Element Description
values. See "Aggregating event field values" on
page 139.

block Specify one or more statements that operate on

the matching event(s). For details about code
that is permissible in the £ind block, see "Acting
on pattern matches" on page 145.

Items available in a £ind block can include:

B Any parameters defined in the parameters
section

m Coassignment variables specified in the event
pattern (or projection coassignments in the case
of aggregating find statements).

® Key values

Query followed-by operator

You can specify the -> (followed-by) operator in the find statement. The -> operator
matches events that come after each other. The event on the left of the operator always
arrives in the correlator before the event on the right. In other words, the -> operator is
always between two distinct events. For example, A:al -> A:a2 requires the arrival of
two instances of an A event for the query to find a match. Also, any where clauses in the
find statement must evaluate to true for an event pattern to match. Finally, the match
set always includes the latest event.

Thus, the rules for when there is a match for an event pattern that specifies one or more
followed-by operators are as follows. All of these requirements must be met for there to
be a match.

B There are events in the partition that match the subpatterns on both sides of the
followed-by operator(s).

®m There is a match for the subpattern on the left of a followed-by operator before
there is a match for the subpattern on the right of a followed-by operator. One event
cannot match more than one subpattern in an event pattern.

®m If a subpattern contains a where clause then the where clause must evaluate to true
for the subpattern to match.

m The match set contains the latest event.

m If there is more than one candidate event set for the match set then it is the most
recent candidate event set that is the match set. See "Event matching policy" on page
143.

The following sections provide examples that illustrate these rules.

Developing Apama Applications Version 9.10 124

Defining Queries

Two coassignments

Consider the following code in which the withdrawal event contains only one field of
interest, which is the country. Assume that the query partitions arriving withdrawal
events into windows according to the account number field.
find Withdrawal:wl -> Withdrawal:w2
where wl.country = "UK" and w2.country = "Narnia" {
// Recent card fraud in Narnia against UK customers
emit SuspiciousWithdrawal (w2) ;

}

To make it easier to understand the behavior of the -> operator in more populated
windows, the following example events omit the account number field but include a
unique identifier field. Suppose the window for this query contains the following events,
in arrival order top to bottom:

Withdrawal ("Belgium", 1)
Withdrawal ("UK", 2)

Although there is a withdrawal event followed by another withdrawal event, the where
clause does not evaluate to true so there is no match. Now suppose the window contains
these events:

Withdrawal ("UK", 3)
Withdrawal ("Narnia", 4)

Now the query finds a match. There is a Withdrawal event followed by another
Withdrawal event, and the where clause evaluates to true. Withdrawal ("UK, 3")

is coassigned to wl and Withdrawal ("Narnia", 4) iscoassigned to w2. The query
executes the statements in its £ind block, which in this example is to emit the event that
triggered the match.

In this example, the withdrawal events in the match set arrived consecutively. However,
this is not a requirement. Consider a window that contains the following events:

Withdrawal ("UK", 5)

Withdrawal ("Belgium", 6)
Withdrawal ("Belgium", 7)
Withdrawal ("Narnia", 8)

When withdrawal ("Narnia", 8) is added to its window, the query finds a match
because the Wwithdrawal ("UK", 5) event is followed by the withdrawal ("Narnia",

8) event and the where clause evaluates to true for those two events. The effective
behavior is that all combinations of events in the window are inspected to find a
combination that matches. The withdrawal ("UK, 5")event is coassigned to w1l and
Withdrawal ("Narnia, 8") is coassigned to w2. The query executes the statements in its
find block.

A match must include the event that arrived most recently in the window (the latest
event). This ensures that a query does not detect more than one match for the same
combination of events. In the previous example, the query found a match when the
Withdrawal ("Narnia", 8) eventarrived.

Imagine that another withdrawal event arrives and the window now contains the
following events:

Withdrawal ("UK", 5)

Developing Apama Applications Version 9.10 125

Defining Queries

Withdrawal ("Belgium", 6)
Withdrawal ("Belgium", 7)
Withdrawal ("Narnia", 8)
Withdrawal ("Belgium", 9)

While the window still contains the withdrawal ("UK", 5) event followed by the
Withdrawal ("Narnia", 8) event, the arrival of the withdrawal ("Belgium", 9)
event does not trigger a new match because it is not part of that combination. However,
suppose the Withdrawal ("Narnia", 10) event arrives. The window now contains the
following events:

Withdrawal ("UK", 5)

Withdrawal ("Belgium", 6)
Withdrawal ("Belgium", 7)
Withdrawal ("Narnia", 8)
Withdrawal ("Belgium", 9)
Withdrawal ("Narnia", 10)

Now the query finds a new match. The withdrawal ("UK", 5) event is followed
by the just arrived withdrawal ("Narnia", 10) eventand the where clause
evaluates to true for these two events. This match set contains Withdrawal ("UK",
5) and Withdrawal ("Narnia", 10). While this match set contains the same
Withdrawal ("UK", 5) event that was in the previous match set, it is a new
match set because it contains the event that arrived most recently, which is the
Withrawal ("Narnia", 10) event.

Suppose that the withdrawal ("Narnia"™, 14)event has just arrived in the following
window:

Withdrawal ("Belgium", 11)

(
Withdrawal ("UK", 12)
Withdrawal ("UK", 13)
Withdrawal ("Narnia", 14)

In this situation, there is a match set that contains the two most recently arrived
events, that is, Wwithdrawal ("UK", 13) and Withdrawal ("Narnia", 14).The
Withdrawal ("UK", 12) event is not part of the match set because it is not the most
recently arrived withdrawal event whose country field is "UK".

Three coassignments

The code example below shows three coassignments in the find statement. This query
partitions the arriving events into windows according to their Automated Transaction
Machine identifier numbers (atmId).

query RepeatedMaxWithdrawals {
inputs {
Withdrawal () key atmId within 4 minutes;
}
find Withdrawal:wl -> Withdrawal:w2 -> Withdrawal:w3
where wl.amount = 500 and w2.amount = 500 and w3.amount = 500 {
log "Suspicious withdrawal: " + w3.toString() at INFO;
}
}

Each window contains the withdrawal events that occurred in the last four minutes
at a particular ATM. For simplicity, the following examples show only the amount and

Developing Apama Applications Version 9.10 126

Defining Queries

transactionId event fields. Suppose the following events are in the window and that
they arrived in order from top to bottom:

Withdrawal (500, 101) wl
Withdrawal (500, 102) w2
Withdrawal (500, 103) w3

After the third event arrives, the event pattern is matched, the where clause evaluates to
true, and the events are coassigned to w1, w2, and w3 as shown above.

Another event arrives in the window:

Withdrawal (500, 101)

Withdrawal (500, 102) wl
Withdrawal (500, 103) w2
Withdrawal (500, 104) w3

When the fourth event arrives there is a new match and the events are coassigned as
shown above. The withdrawal (500, 101) eventis not part of the new match set. A
match set always includes the most recent events that satisfy the event pattern and that
allow the where clause to evaluate to true.

Another event arrives and the window now contains these events:

Withdrawal (500, 101)
Withdrawal (500, 102)
Withdrawal (500, 103)
Withdrawal (500, 104)

()

Withdrawal (100, 105

The latest event, withdrawal (100, 105), does not have 500 in its amount field.
Consequently, its arrival in the window does not trigger a new match because a match
set must always include the latest event. While the window still contains three events
that satisfy the event pattern, the actions in the find block are not executed as a result of
the arrival of withdrawal (100, 105) because it did not trigger a new match.

Another event arrives and the window now contains these events:

Withdrawal (500, 101)
Withdrawal (500, 102)
Withdrawal (500, 103) wl
Withdrawal (500, 104) w2
Withdrawal (100, 105)
Withdrawal (500, 106) w3

With the arrival of the Withdrawal (500, 106) event, there is a new match and the
events are coassigned as shown above. The coassigned events are the three most recently
arrived events that satisfy the event pattern. It does not matter that withdrawal (100,
105) arrived after some events that are in the match set. That event does not satisty the
event pattern and so it is not included in the match set.

Finally, suppose all of the following events have arrived in the window within the
specified four minutes:

Withdrawal (500, 101)
Withdrawal (500, 102)
Withdrawal (500, 103)
Withdrawal (500, 104)
Withdrawal (100, 105)
Withdrawal (500, 106)
Withdrawal (500, 107)

wl
w2

Developing Apama Applications Version 9.10 127

Defining Queries

Withdrawal (100, 108)
Withdrawal (100, 109)
Withdrawal (500, 110) w3

As you can see, the latest event causes a new match. This match set does not include the
two events that arrived just before the latest event. Those two events do not satisfy the
event pattern.

Query and operator

In a £ind statement, you can specify the and operator in the event pattern. The
conditions on both sides of the and operator must evaluate to true for the query to find a
match. The condition on each side of an and operator can be a single event template or a
more complex expression.

In the next example, assuming that an X event and a v event have already been added to
their respective windows, adding an 2 event to its window causes a match.

(X:x => A:al) and (Y:y -> A:a2)

In the second example, suppose events were added to their windows in this order: x (1),
A(1),Y(1),Aa(2). The a(1)event is not included in the match set. Only a (2) is in the
match set because it is the most recent A event to follow x (1) as well as the most recent 2
event to follow v (1).

When a single event is used in more than one coassignment you must coassign the
event, A in these examples, to distinct identifiers, a1 and a2 in these examples.

Specification of an and operator implies that there are no requirements regarding the
order in which the events specified in the event pattern are added to the window. For
example, events specified in the right-side condition can be added to their windows
before events specified in the left-side condition. When conditions specify multiple
events the events that cause one side of the and operator to evaluate to true

m Can all be added to their windows before the events that cause the other side to
evaluate to true

m Can all be added to their windows after the events that cause the other side to
evaluate to true

m Can arrive in their windows at times interleaved with the arrival of the events that
cause the other side to evaluate to true

® Can contain the events that cause the other side to evaluate to true
® Can be contained by the events that cause the other side to evaluate to true

When there is an order requirement or when you require multiple instances of the same
event type specify the followed-by (=) operator.

The and operator has a higher precedence that the followed-by operator. For clarity, use
brackets in expressions that specify both types of operators.

Developing Apama Applications Version 9.10 128

Defining Queries

Query wait operator

You can specify the wait operator in an event pattern. The wait operator indicates that
there must be a time interval either at the beginning of the matching pattern or at the
end of the matching pattern. The format for specifying the wait operator is as follows:

wait (durationExpression) : coassignmentId
Syntax Element Description
durationExpression A time literal (such as 2 min 3 seconds)or

a float expression. A float expression can
use constants and parameters. It indicates a
number of seconds.

coassignmentId An identifier. You can specify this identifier
only in a between clause. See "Query condition
ranges" on page 136.

Typically, you specify the wait operator in conjunction with an event pattern condition.
For example:

find A:a -> B:b -> wait (10):t
without X:x between (b t)

There is a match for this pattern when these things happen in this order:

1. An2aeventis added to a window in a partition.

2. A Beventis added to a window in the same partition.

3. Ten seconds go by without an x event being added to a window in that partition.

The wait operator can be unambiguously at the beginning of a pattern that uses the
followed-by operator or unambiguously at the end of a pattern that uses the followed-by
operator. For example:

X:x —> wait(1.0) -> Y:y // Not allowed
X:x and wait(1.0) and Y:y // Not allowed
X:x and Y:y and wait (1.0) // Not allowed
wait (1.0) -> (X:x and Y:vy) // Allowed

wait (1.0) -> X:x -> Y:y -> wait(1.0) // Allowed

The following code fragment detects the opening of a door without security
authorization:
find wait(5 seconds):p -> DoorOpened:e

without SecurityAuthorization:s where s.doorId = e.doorId {

emit UnautorizedAccess (e.doorId);

}

Suppose the following events were received:

Developing Apama Applications Version 9.10 129

Defining Queries

Time Event

00 SecurityAuthorization ("doorl")
02 DoorOpened ("doorl")

07 DoorOpened ("doorl")

15 DoorOpened ("door2")

The first DoorOpened event for doorl does not generate an alert because a
SecurityAuthorization event was received within the 5 seconds that preceded the
first DoorOpened event and the doorId field is the same for both events. That is, because
the Boolean expression in the where clause of the without clause evaluates to true, a
match is prevented and so an alert is not sent.

The second DoorOpened event for doorl causes an UnautorizedAccess alert because
the SecurityAuthorization event was received more than 5 seconds before the second
DoorOpened event for doorl.

The DoorOpened event for door2 causes an UnauthorizedAccess alert because a
SecurityAuthorization event was not received within the 5 seconds that preceded
that DoorOpened event. Since there was no SecurityAuthorization event, the Boolean
expression in the where clause that is in the without clause evaluates to false, which
allows a match.

Query conditions

A find statement can specify conditions that determine whether there is a match for the
specified event pattern. The following table provides an overview of the conditions you

can specify.

Condition: where within without
Specifies: Boolean Time period Event type
expression coassigned to an
identifier
Latest event The Boolean Events in the An event of a
can cause a expression pattern (or, specified type

match when:

evaluates to true.

if specified,

the between
range) must have
been received
within the time
specified. That is,
the elapsed time

was not added

to a window
after the addition
of the oldest
event in the
potential match
set nor before the

Developing Apama Applications Version 9.10

130

Defining Queries

Condition: where within without
from when the addition of the
first event was latest event.
received to when
the last event
was received
must be less than
the within time
period.
Number Zero or more Zero or more Zero or more
allowed:
Order when 1st 2nd 3rd
all conditions
are specified:
Format: where within without
boolean expressiontime literal typeId :
coassignmentID
Notes: where x where Alternatively, Optionally, after
y you can each without
.) specify within clause you can
is equivalent to pectty w- ey
expression. specify one

where x and y

A where clause
that precedes
any within or
without clauses
is referred to

as a find where
clause.

The expression
must evaluate to
a float.

Optionally, after
each within
clause, you

can specify a
between clause.
See "Query
condition ranges"
on page 136.

where clause,
which is referred
to as a without
where clause

to distinguish

it from a find
where clause.

Optionally, after
each without
clause, you

can specify a
between clause.
See "Query
condition ranges"
on page 136.

Query where clause

A where clause filters which events match. A where clause consists of the where
keyword followed by a Boolean expression that refers to the events you are interested in.

Developing Apama Applications Version 9.10 131

Defining Queries

In a find where clause, the Boolean expression must evaluate to true for the events to
match.

The where clause is optional. You can specify zero, one or more where clauses.

Note: You can specify a find where clause that applies to the event pattern and you
can also specify a without where clause that is part of a without clause. Any
where clauses that you want to apply to the event pattern must precede any
within or without clauses.

Coassignment variables specified in the find or select statements are in scope in a find
where clause. Also available in a find where clause are any parameter values and key
values.

Query within clause

A within clause sets the time period during which events in the match set must have
been added to their windows. A pattern can specify zero, one, or more within clauses.
These must appear after any find where clauses and before any without clauses. The
format of a within clause is as follows. The between clause is optional.

within durationExpression [between (identiferl identifier2 ...)]

The durationExpression must be a time literal (such as 2 min 3 seconds) or it must
evaluate to a float value. A float expression can use constants and parameters. It
indicates a number of seconds.

For example, consider the following £ind statement:

find LoggedIn:lc -> OneTimePass:otp
where lc.user = otp.user
within 30.0 {
emit AccessGranted(lc.user);

}

If specified, the between clause lists two or more items. Each item can be a coassigned
event in the pattern. A wait coassignment can also be specified. These items define a
range. See "Query condition ranges" on page 136. For example:

find wait(l.): w -> A:a {
within (5.0) between w a

Now assume that the following events arrive:

Time Event Access Granted?

10 LoggedIn ("Andy")

15 OneTimePass ("Andy") Yes. Both events received within 30
seconds.

20 LoggedIn ("Mike")

Developing Apama Applications Version 9.10 132

Defining Queries

Time Event Access Granted?

60 OneTimePass ("Mike") No. OneTimePass event received
more than 30 seconds after
corresponding LoggedIn event.

60 LoggedIn ("Sam")

90 OneTimePass ("Sam") No. OneTimePass event

received exactly 30 seconds

after corresponding LoggedIn
event. For there to be a match,

the OneTimePass event must be
received less than 30 seconds after
its corresponding LoggedIn event.

As mentioned earlier, a £ind statement can specify multiple within clauses. This is
useful when the pattern of interest refers to multiple events and you specify a between
range as part of each within clause. When you specify multiple within clauses they
must all be satisfied for there to be a match.

Query without clause

A without clause specifies event types, which must be specified in the inputs block
of the query, whose presence prevents a match. For example, if a potential match set
contains 3 events, it can be a match only if a type specified in a without clause was not
added to a window neither after the first event nor before the third event. Any event
type that can be used in the £ind pattern can be used in the without clause.

Optionally, after each without clause, you can specify one where clause, which is
referred to as a without where clause to distinguish it from a find where clause. The
following table compares find where clauses and without where clauses.

Find where clause Without where clause

True allows a match. Think of this as False allows a match. Think of this as
a positive where clause. a negative where clause.

Can only be before any within or Can only be part of a without clause

without clauses

Applies to the event pattern Applies to the event specified in its
without clause

Cannot refer to event specified in Can refer to event specified in
without clause without clause

Developing Apama Applications Version 9.10 133

Defining Queries

The absence of an event of a type specified in a without clause has the same effect as the
presence of an event for which the without where clause evaluates to false.

In addition to being able to refer to parameters and coassignment identifiers in the event
pattern, a without where clause can refer to the one event mentioned in its without
clause. When a without where clause evaluates to true the presence of the without event
prevents a match. If a without where clause is false, then that without event instance is
ignored; that is, a match is possible.

A without clause cannot use the -> or and pattern operators. However, you can specify
multiple without clauses. If there are multiple without clauses each one can refer to
only its own coassignment and not coassignments in other without clauses. However,
all without clauses can make use of the pattern's standard coassignments, such as
od.user in the example at the end of this topic.

If there are multiple without clauses a matching event for any one of them prevents
a pattern match. Multiple without clauses can use the same type and the same
coassignment, which is useful only when their where conditions are different.

Typically, a without where clause references the event in its without clause, but this is
not a requirement.

Optionally, after each without clause, you can specify a between clause, which lists two
or more coassigned events. It can also list a wait coassignment. For an event to cause a
match, the type specified in the without clause cannot be added to the window between
the points specified in the between clause. See "Query condition ranges" on page 136.

Any without clauses must be after any find where clauses and within clauses. If you
specify both optional clauses, the without where clause must be before the between
clause.

When a without clause includes both optional clauses, where and between, the format
looks like this:

without typelId : coassignmentId
where boolean expression
between (identifierl identifier2...)

As mentioned previously, a find where clause applies to the event pattern while a
without where clause applies to the event specified in its without clause. The following
table shows the resulting behavior according to the type of the where clause and the
value of its Boolean expression:

Type of where clause Boolean expression Boolean expression
evaluates to true evaluates to false
Find where clause Allows match Prevents match

applies to event pattern

Without where clause Prevents match Allows match
applies to its without
event

Developing Apama Applications Version 9.10 134

Defining Queries

Example

Consider the following find statement:

find OuterDoorOpened:od -> InnerDoorOpened:id
where od.user = id.user
without SecurityCodeEntered:sce where od.user = sce.user ({
emit Alert ("Intruder "+id.user);

}

Now suppose the following events arrive:

Event Received

Result

OuterDoorOpened ("Andrew")

SecurityCodeEntered ("Andrew")

Causes the without where clause to
evaluate to true, which prevents a
match.

InnerDoorOpened ("Andrew")

No alert is set.

OuterDoorOpened ("Brian")

InnerDoorOpened ("Brian")

Because there is no intermediate
SecurityCodeEntered event, there

is a match and the query sends an
alert. This is an example of how the
absence of an event of a type specified
in a without clause has the same effect
as the presence of an event for which
the without where clause evaluates to
false.

OuterDoorOpened ("Chris")

SecurityCodeEntered ("Charlie")

Causes the without where clause to
evaluate to false, which allows a match.

InnerDoorOpened ("Chris")

Causes a match and the query sends an
alert.

OuterDoorOpened ("Dan")

SecurityCodeEntered ("David")

Causes the without where clause to
evaluate to false, which allows a match.

Developing Apama Applications Version 9.10

135

Defining Queries

Event Received Result

SecurityCodeEntered ("Dan") Causes the without where clause to
evaluate to true, which prevents a
match.

SecurityCodeEntered ("Densel™) Causes the without where clause to

evaluate to false, which allows a match.

InnerDoorOpened ("Dan") There is no match because one of the
SecurityCodeEntered events caused
the without where clause to evaluate to
true, which prevents a match.

Query condition ranges

The within and without clauses (See "Query conditions" on page 130) can each
have an optional between clause that restricts which part of the pattern the within or
without clause applies to. The format for specifying a range is as follows:

between (identiferl identifier2 ...)

At least two identifiers that are specified in the event pattern are required. The identifiers
specify a period of time that starts when one of the specified events is received and ends
when one of the other specified events is received. A between clause is the only place in
which you can specify a coassignment identifier that was assigned in a wait clause. You
cannot specify identifiers used in a without clause. Also, the same event cannot match
both the coassignment identifier in the without clause and an identifier in a between
clause.

The condition that the between clause is part of must occur in the range of identifiers
specified in the between clause. For example, consider the following find pattern:

find A:a and B:b and C:c without X:x between (a b)

For there to be a match set for this pattern, no x event can be added to its window
between the arrivals of the a and b events. If events are received in the order B A X C,
then there is a match set because the x event is not between the a and b events. If the
events are received in the order B ¢ X 3, then there is no match set because an X event
occurred between the a and b events.

Here is another example:

find A:a -> B:b -> (C:c and D:d)
within 10.0 between (a b)
within 10.0 between (c d)

Range Description

(a b) This duration starts when an 2 event is received because the
pattern is looking for an a event followed by a B event. For there to

Developing Apama Applications Version 9.10 136

Defining Queries

Range Description
be a match, the B event must arrive less than 10 seconds after the 2
event.

(c d) After an a event followed by a B event has been received, this

duration starts when either a C event or a D event is received. Since
the pattern is looking for a ¢ and a D, it does not matter which
event is received first. For there to be a match, the event that is not
received first must be received less than 10 seconds after the first
event.

The following table provides examples of match sets.

Time | Event Match Set
Received

10 A (1)

15 B (1)

20 D(1)

25 C(1) A(1),B(1),D(1),C(1)

37 D(2) No match. More than 10 seconds elapsed between ¢ (1)
and D(2).

40 C(2) A(1),B(1),D(2),C(2)

The range is exclusive. That is, the range applies only after the first event is received and
before the last event is received. For example, consider this pattern:

find A:al -> A:a2 without A:repeated between (al a2)

A match set for this pattern is two consecutive A events. If three consecutive A events are
added to the window, the first and third do not constitute a match set event though the
first A was followed by the third a. This is because the second 2 was added between the
first and the third a events. In other words, the events that match a1 and a2 are excluded
from the range in which the repeated event can match. The following table provides
examples of match sets for this pattern. It assumes that 2 (1) is still in the window when
A (4) is added.

Event Added to Window Match Set Not a Match Set

A (1)

Developing Apama Applications Version 9.10 137

Defining Queries

Event Added to Window Match Set Not a Match Set

A(2) A(l), A(2)

A(3) A(2), A(3) A(l), A(3)

A(4) A(3), A(4) A(1), A(4) anda(2),
A(4)

The query below is a real world example of the pattern just discussed. It emits the
average price change in the last minute.
query FindAveragePriceMove ({

inputs {

Trade () key symbol within 1 minute;
}
find every Trade:tl -> Trade:t2
without Trade:mid between (tl t2)
select avg(t2.price - tl.price):avgPriceChange {
emit AveragePriceChange (symbol, avgPriceChange) ;

}

It is illegal to have two within clauses with identical between ranges. This would be
redundant, as only the shortest within duration would have any effect. It is, however,
legal to have more than one without clause with the same between range. Typically,
these would refer to different event types or where conditions.

Special behavior of the and operator

To optimize performance when evaluating a query where clause, the correlator evaluates
each side of an and operator as early as possible even if evaluation is not in left to right
order. This behavior is different from the behavior outside a query. That is, outside a
query, the left side of an and operator is guaranteed to be evaluated first. See "Logical
intersection (and)" on page 895.

For example, suppose you specity the following event pattern:

A:a -> B:b where a.x = 1 and b.y = 2

Consider what happens when the following events are added to their windows:
A(1), A(2), A(3), B(3), B(4), B(3)

The correlator can identify that

B Only the a coassignment target is needed to evaluate the a.x = 1 condition.

2 condition.

B Only the b coassignment target is needed to evaluate theb.y

Because none of the B events cause the b.y = 2 condition to evaluate to true, the
correlator does not evaluate the a.x = 1 condition.

In a where clause, because the right side of an and operator might be evaluated first,
you should not specify conditions that have side effects. Side effects include, but are not
limited to:

Developing Apama Applications Version 9.10 138

Defining Queries

print or log statements

route, emit, enqueue. . .to statements
Modifying events, sequences, dictionaries, etc
Causing a runtime error

Calling an action that has a side effect statement in it

Calling plug-ins that have side effects

If a where clause calls an action that has a side effect, you should not rely on when or
whether the action is executed.

Whether the correlator can optimize evaluation of the where clause depends on how
you specify the where clause conditions. For example, consider the following event
definition:
event Util {
action myWhereClause (A a, B b) returns boolean ({
return a.x = 1 and b.y = 2;

}
}

Suppose you specify the following event pattern:

A:a -> B:b where (new Util) .myWhereClause (a, b)

If the same 2 and B events listed above are added to their windows, the result is the
same as the result of evaluating

A:a -> B:b where a.x = 1 and b.y = 2

However, evaluation might take longer because the correlator cannot separate
evaluation of b.y = 2 from evaluation of a.x = 1. The myWhereClause () action
returnsa.x = 1 and b.y = 2 as a single expression. Consequently, the correlator
evaluates (new Util) .myWhereClause (a, b) for each combination of a and b. Given
the 2 and B events listed above, this is a total of 9 times.

While the correlator might evaluate some where clause conditions in a right-to-left
order, the correlator always evaluates each where clause condition as soon as it is ready
to be evaluated. When multiple conditions become ready to be evaluated at the same
time then the correlator evaluates those conditions in the order they are written. For
example, the typical pattern of checking whether a dictionary contains a key before
operating on the value with that key continues to work reliably:

E:e -> F:f where e.dict.hasKey("k") and e.dict["k"] = f.x and f.y = 1
In this example, £.y = 1 might be evaluated before the other two conditions, but

e.dict.hasKey ("k") is always evaluated before e.dict ["k"] = f.x, and the latter is
not evaluated if the hasKey () method returns false.

Aggregating event field values

A find statement can specify a pattern that aggregates event field values in order to find
data based on many sets of events. A pattern that aggregates values specifies the every
modifier in conjunction with select and having clauses.

Developing Apama Applications Version 9.10 139

Defining Queries

Based on a series of values, an aggregate function computes a single value, such as the
average of a series of numbers. For an overview of all built-in aggregate functions, see
"Built-in aggregate functions" on page 870.

Note: If a built-in aggregate function does not meet your needs, you can use EPL
to write a custom aggregate function. A custom aggregate function that you
want to use in a query must either be a bounded function or it must support
both bounded and unbounded operation. See "Defining custom aggregate
functions" on page 241.

For example, the following query watches for a withdrawal amount that is greater than
some threshold multiplied by the average withdrawal amount of the ATMWithdrawal
events in the window, which might be as many as 20 events. This query uses the
last () aggregate function to identify the event added to the window most recently
and uses the avg () aggregate function to find the average withdrawal amount of
the events in the window. The having clause must evaluate to true for the query to
send the SuspiciousTransaction event, passing the transaction Id of the suspicious
withdrawal.
using com.apama.aggregates.avg;
using com.apama.aggregates.last;
query FindSuspiciouslyLargeATMWithdrawals {

parameters {

float THRESHOLD;
}

inputs {
ATMWithdrawal () key accountId retain 20;
}
find every ATMWithdrawal:w
select last (w.transactionId) :tid
having last (w.amount) > THRESHOLD * avg(w.amount) {
send SuspiciousTransaction(tid) to SuspiciousTxHandler;

}

To use an aggregate function in a £ind statement, specify the every modifier and
specify one or more select or having clauses. A select clause indicates that aggregate
values are to be computed. Each select clause specifies a projection expression and

a projection coassignment. The projection expression can use coassignments from the
pattern if the coassignments are within a single aggregate function call. For example,
the following pattern computes the average value of the x member of event type 2 in the
query's input and coassigns that average value to aax.

find every A:a select avg(a.x) :aax
A select clause can use parameter values. For example the following two select
clauses are both valid if there is a parameter param:

find every A:a
select avg(param * a.x) :apax
select param * avg(a.x) :paax

You can specify multiple select clauses to produce multiple aggregate values.

Developing Apama Applications Version 9.10 140

Defining Queries

In an aggregating f£ind statement, only the projection expression can use the
coassignments from the pattern. The procedural block of code can use projection
coassignments and any parameters, but it cannot use coassignments from the pattern.

The first () and last () built-in aggregate functions are useful if you want to refer to
the coassignment value of the oldest or newest event, respectively, in the window.

The following example determines the average price of trades other than your own:

find every Trade:t
where t.buyer != myId and t.seller != myId
select wavg(t.price, t.amount) :avgprice

Match sets used in aggregations

In find statements without the every modifier, only the most recent set of events

that match the pattern are used to invoke the procedural code block. With the every
modifier, every set of events that matches the pattern is available for use by the
aggregate function, provided that the latest event is present in one of the sets of events.
Any events or combinations of events that do not match the pattern or do not match the
where clause, or are invalidated due to a within or without clause, are ignored; their
values are not used in the aggregate calculation.

For example, consider the following find statement:

find every A:a -> B:Db
where b.x >= 2
select avg(a.x + b.x):aabx {
print aabx.toString() ;

}

The following table shows what happens as events are added to the window.

Event Match Sets Average Of Value of aabx

Added to

Window

A (1) None

A(2) None

B(2) A(l), B(2) 3and 4 3.5
A(2), B(2)

B(1) None because B (1)
causes the where clause
to be false.

B (3) A(l), B(2) 3,4,4,and 5 4
A(2), B(2)

Developing Apama Applications Version 9.10 141

Defining Queries

Event Match Sets Average Of Value of aabx
Added to
Window

A(l), B(3)

A(2), B(3)

Using aggregates in namespaces

As with event types, an aggregate function is typically defined in a namespace. To use
an aggregate function, specify its fully-qualified name or a using statement. The built-in
aggregate functions are in the com. apama.aggregates namespace. For example, to use
the avg () aggregate function you would specify the following in the query:

using com.apama.aggregates.avg;

Filtering unwanted invocation of procedural code

Each select clause defines an aggregate value to be produced. You can also specify one
or more having clauses to restrict when the procedural code is invoked. For example,
consider the following find statement:
find every A:a

select avg(a.x) :aax

having avg(a.x) > 10.0 {

print aax.toString() ;

}

This example calculates the average value of a. x for the set of A events in the window.
However, it executes the procedural block only when the average value of a.x is greater
than 10.0.

Multiple having clauses

You can specify multiple having clauses and you can use parameter values in having
clauses. For example,

find every A:a
select avg(a.x) raax
select sum(a.y) :aay
having avg(a.x) > 10.0
having sum(a.y) > paraml
having max(a.z) < param?2
{
print aax.toString(), + " : " + aay.toString();
}

When you specify more than one having clause it is equivalent to specifying the and
operator, for example:

having avg(a.x) > 10.0 or sum(a.y) > paraml
having max(a.z) < param2

is equivalent to

Developing Apama Applications Version 9.10 142

Defining Queries

having (avg(a.x) > 10.0 or sum(a.y) > paraml) and (max(a.z) < param2)

Using a select coassignment in a having clause

Rather than specifying an aggregate expression twice, once in a select clause and then
subsequently in a having clause, it is possible to refer to the aggregate value by using
the select coassignment name. For example:
find every A:a

select avg(a.x) :aax

having avg(a.x) > 10.0 {

print aax.toString() ;

}

You can rewrite that as follows:

find every A:a
select avg(a.x) :raax
having aax > 10.0 {
print aax.toString();

}

Using a having clause without a select clause

When you want to test for an aggregate condition but you do not want to use the
aggregate value, you can specify a having clause without specifying a select clause.
For example,

find every A:a

having avg(a.x) > 10.0 {
print "Average value is greater than ten!";

Event matching policy

It is possible for the windows for a given key to contain multiple sets of events that, each
taken in isolation, would match the defined event pattern. In this case, the matching
policy determines which of the candidate event sets is the match set that triggers the
query. There are two event matching policies:

m Recent — This is the only policy followed for queries that to not specify the every
keyword, that is, they do not specify aggregate functions.

® Every — This is the only policy followed for queries that specify the every keyword.
That is, they specify aggregate functions.

For both policies, the match set must include the latest event. The latest event is the
event that was most recently added to the set of windows identified by a particular key.

For the recent matching policy, to identify which candidate match set triggers the query,
the correlator compares the times of the second-most-recent events in the candidate
event sets. If one of these events is more recent than its corresponding event(s) then the
candidate event set it is in is the match set. However, if two or more candidate event

sets share the second-most-recent event, then the correlator compares the times of the
third-most-recent events in those candidate event sets. The correlator continues this until
it finds an event that is more recent than its corresponding event(s) in other candidate

Developing Apama Applications Version 9.10 143

Defining Queries

event set(s). The candidate event set that becomes the match set is referred to as the most
recent set that matches the event pattern.

Once the correlator determines which candidate event set is the match set, it ignores the
order of any earlier events in any event sets. This means that it is possible for the most
recent set of events to contain an event that was added earlier than an event in a set that
is not the most recent set. The following event definitions and sample query illustrate
this.

event APNR ({
// Automatic Plate Number Recognition
string road;
string plateNumber;
integer time; // Represents time order for illustration purposes
}
event Accident {
string road;
}
event NotifyPolice {
string road;
string plateNumber;

}

The following query uses these events:

query DetectSpeedingAccidents {

inputs {
APNR () key road within(150.0) ;
Accident () key road within(10.0);

}

find APNR:checkpointA -> APNR:checkpointB -> Accident:accident
where checkpointA.plateNumber = checkpointB.plateNumber
and checkpointB.time - checkPointA.time < 100
// Which indicates the car was speeding

emit NotifyPolice (accident.road, checkpointA.plateNumber) ;

}
Suppose the following events are in the query windows:

APNR ("MyRoad", "2N2R4", 1000)
APNR ("MyRoad","FAB 1", 1010)
APNR ("MyRoad", "FAB 1", 1080)
APNR ("MyRoad", "2N2R4", 1090)
Accident ("MyRoad")

There are two candidate event sets:

Coassignment A candidate event set Another candidate event set
identifier
checkpointA APNR ("MyRoad", APNR ("MyRoad","FAB 1",
, "2N2R4"™, 1000) 1010)
checkpointB
) APNR ("MyRoad", APNR ("MyRoad", "FAB 1",
accident "2N2R4™, 1090) 1080)

Developing Apama Applications Version 9.10 144

Defining Queries

Coassignment A candidate event set Another candidate event set
identifier

Accident ("MyRoad") Accident ("MyRoad")

Both sets match against the single Accident event. The next most recent events

are APNR ("MyRoad", "2N2R4", 1090) and APNR ("MyRoad", "FAB 1", 1080). The
APNR ("MyRoad", "2N2R4", 1090) event is more recent. Consequently, after the
Accident event is added to its window, there is a match and the match set includes the
Accident event and the 2N2R4 APNR events. This is the most recent set of events.

In this example, in the most recent set of events, the earliest event, APNR ("MyRoad",
"2N2R4", 1000) is earlier than the earliest event, APNR ("MyRoad", "FAB 1", 1010),
in the other set of events.

Acting on pattern matches

When a query finds a set of events that matches the specified pattern it executes the
statements in its £ind block. The find block specifies one or more statements that
operate on the matching event(s). The items available in a £ind block include:

B Any parameters defined in the parameters section.
m Coassignment variables specified in the event pattern.

In the case of an aggregating find statement, only the projection expression
can use the coassignments from the pattern. The f£ind block can use projection
coassignments, but it cannot use coassignments from the pattern.

m Key values.

®m Actions that are defined in the same query after the £ind block. Any expression in

the £ind statement pattern or block can reference an action defined after the find
block.

® EPL constructs and statements that are allowed in queries. See "Restrictions in
queries” on page 151.

Defining actions in queries

In a query, after a £ind statement, you can define one or more actions in the same form
as in EPL monitors. See "Defining actions" on page 271.

In a given query, an action that you define can be referenced from any expression in that
query's find statement, including any statements in its £ind block. For example:

query CallingQueryActions {
parameters {
float distanceThreshold;
float period;
}
inputs {
Withdrawal () key account within period;

}

Developing Apama Applications Version 9.10 145

Defining Queries

find Withdrawal: wl -> Withdrawal: w2
where distance (wl.coords, w2.coords) > distanceThreshold
{
logIncident (wl, w2);
sendSmsAlertToCustomer (
getTelephoneNumber (wl), getAlertText (wl,w2));
}

action distance(Coords a, Coords b) returns float {

integer x := a.x - b.x;
integer y := a.y - b.y;
return (xX*x + y*y).sqgrt();
}
action logIncident (Withdrawal w, Withrawal w2) { ... }
action getTelephoneNumber (Withdrawal w) returns string { ... }
action getAlertText (Withdrawal wl, Withrawal w2) returns string { ... }
action sendSmsAlertToCustomer (string telephoneNumber, string text) { ... }
}
Note: In a query, do not define an action whose name is onload, ondie, onunload,

onBeginRecovery, or onConcludeRecovery. In EPL monitors, actions with
these names have special meaning. For more information, see "Monitor
actions" on page 849.

Implementing parameterized queries

An Apama query can define parameters and then refer to those parameters throughout
the query definition. This enables a query definition to function as a template for
multiple query instances.

A query that defines parameters is referred to as a parameterized query. An instance of a
parameterized query is referred to as a parameterization.

A parameterized query offers the following benefits:

m Patterns of interest (find patterns) may be customized from a single generic query.
This can significantly reduce the amount of code that needs to be written and
maintained.

®m Parameterizations exist only at runtime. There is no need to maintain a file for each
instance.

®m Parameters can be used throughout the query in which they are defined. For
example, you can use them in the definition of inputs, in find actions, and in user-
defined actions. Values do not need to be hardcoded.

See also: "Query lifetime" on page 854.

Format for defining query parameters

You define query parameters in the parameters section of a query definition. The
parameters section is optional. If you specify a parameters section, it must follow the
metadata section, if defined, and it must precede the inputs section.

The format for specifying the parameters section is as follows:

parameters {

Developing Apama Applications Version 9.10 146

Defining Queries

data type parameter name ;
[data type parameter name;]...

}

Parameters must be integer, float, string or boolean types. Specify one or more
data type parameter name pairs. The parameter name can use any of the characters
allowed for EPL "Identifiers” on page 919. Any parameters you specify are available
throughout the rest of the query.

In the following example, the parameters section is in bold as are the references to the
parameters.

query FaultyProduct {
parameters {
string product;
float thresholdCost;
float warrantyPeriod;

}

inputs {
Sale () key customerId within warrantyPeriod;
Repair () key customerId retain 1;

}

find Sale():sl -> Repair():rl
where sl.product = product
and rl.product = product
and rl.cost >= thresholdCost

log "Cost of warranty covered repair for product \"" + product +
"! above threshold $" + thresholdCost.toString() + " by $
" + (rl.cost - thresholdCost).toString() at INFO;

Parameterized queries as templates

When a parameterized query is injected into a correlator no instances of the query are
created until a request to create a parameterization is sent using the Scenario Service
(that is, the com.apama.services.scenario client API). This request must include
valid values for the query's parameters. For example, if the query in the previous topic
is injected, the request to create a parameterization must include valid values for the
product, thresholdCost, and warrantyPeriod parameters. Only then does the query
become active.

A parameterized query lets you define a generic query find pattern that operates on
a particular group of input types and that can be customized for particular criteria.
The query in the previous topic could be created for any product with the threshold
cost and warranty period specified as required. To achieve the same result with a non-
parameterized query, you would have to define a query such as the following:

query FaultyProduct {

inputs {
Sale () key customerId within 1 week; //warrantyPeriod
Repair () key customerId retain 1;

}

find Sale():sl w-> Repair():rl
where sl.productId = "Mobile device A" // productId
and rl.productId = "Mobile device A" // productId
and rl.cost >= 50.00 // thresholdCost

Developing Apama Applications Version 9.10 147

Defining Queries

log "Cost of warranty covered repair for product \"Mobile device A\
" above threshold $50.00 by $" + (rl.cost - 50.00).toString() at INFO;

}

While this query is valid it has the drawback that whenever you want to perform a
similar query for a product that differs by type, warranty coverage period or threshold
repair cost then a new query will need to be written (or most likely copied and pasted)
with the new set of values and then injected into the correlator. The benefit of a
parameterized query is that only one query definition needs to be injected into the
correlator and you can then manually or programatically create as many different
instances for the different product-value combinations as required.

Using the Scenario Service to manage parameterized queries
There are several ways to manage (create/edit/remove) parameterizations:

® Use the scenarioService APlin Java or .NET client libraries. See "Developing
Custom Clients" in Connecting Apama Applications to External Components”.

® Use Apama's Scenario Browser view in Software AG Designer. See "Scenario
Browser view" in Using Apama with Software AG Designer.

® Write dashboards that control the instances of a parameterized query. See "Building
Dashboard Clients" in Building and Using Dashboards.

The Scenario Service is also used to read and manage instances of scenarios, DataViews
and MemoryStore.

To these tools, a query will appear with the fully qualified name declared in the

.qry file prefixed with orY to highlight that the entity being viewed is a query. For
parameterized queries, instances can be created, edited or deleted. For unparameterized
queries, a single instance will appear as soon as the query is injected. This instance
cannot be edited nor deleted, nor new instances created.

When there is a request to create a parameterization the Scenario Service tries to validate
the supplied parameter values. If the values are valid the result is as if a query with
those values had just been injected.

The parameter setting capabilities provided for queries are similar to that for scenarios.
For example, end users have the ability to define conditions on parameter values when
setting them in dashboards. Parameter values can be modified only by the Scenario
Service. Updates by the Scenario Service do not occur atomically across all contexts if the
query is running in multiple contexts. Consequently, it is possible to observe the effects
of the old parameter values interleaved with the effects of the new parameter values. For
example, consider a query that has a pattern such as the following:

find A:a -> wait (paramValue) :t
The wait period will be based on the value the parameter had when the wait period
started. If the parameter value is edited after the 2 event enters the partition the wait

still fires according to the old value. Such transitions are typically short. The actual time
required depends on various factors such as machine load and memory.

Some important differences between parameterized queries and scenarios include:

Developing Apama Applications Version 9.10 148

Defining Queries

®m Parameterized queries have input variables but not output variables. Scenarios,
DataViews and MemoryStore have both input variables and output variables. All
queries have an empty list of output variables.

B Requests to create or update a parameterization with values that are invalid will be
denied. Invalid values are values that would cause wait, within or retain clauses
to evaluate to less than or equal to zero, or would cause them to fail to evaluate, for
example, by causing a runtime exception to be thrown.

For example, consider the following query:

query ParameterizationExample {
parameters {
integer intParam;
integer floatParam;

}

inputs {

A() key id retain (10/intParam) ;

B() key id within (5.0 - floatParam);
}

find A:a -> B:b -> wait(-1.0 * floatParam)
where (a.intField/intParam > 0) {
log "Found match" at INFO;

}

Suppose that there is a request to create a parameterization of this query. The

request indicates that intParamis equal to 0 and floatParamis equal to 10.0. If the
parameterization were created then every expression that contains a parameter value
would immediately throw an exception or be invalid. In the inputs block, evaluation
of the retain expression would result in a divide-by-zero exception. The within
expression would evaluate to -5. 0, which is not valid. Similarly, upon evaluating the
elements in the find block the wait expression would be a negative value and the
where clause would also result in a divide-by-zero exception. Since a parameterization
such as this would lead to either invalid expressions or exceptions being thrown, these
values are not allowed. If you try to pass disallowed values to the Scenario Service
createInstance () method then the Scenario Service returns null. Similarly, if you try
to pass invalid values to the Scenario Service editInstance () method then the Scenario
Service returns false, which indicates an error.

Referring to parameters in queries
You can refer to parameters throughout a query definition.

You cannot change parameter values in the query code itself. Parameter values can be
modified only by the Scenario Service.

Caution: Apama recommends that you do not change parameter values used in input
filters because it is possible to miss events that would cause a match. In a
given parameterization, when an input filter refers to a parameter and you
change the value of that parameter, it causes the parameterization to stop and
restart. Events sent during the changeover are ignored. Also, there might have
been earlier events that match the new parameter value but that did not make

Developing Apama Applications Version 9.10 149

Defining Queries

it into the window because they did not match the previous parameter value.
An alternative is to use a parameter in a where clause in the £ind statement
instead. This can be more efficient when the parameter value needs to be
changed frequently. Using parameter values in input filters can also increase
memory usage, see "Queries can share windows" on page 96.

Examples of using parameters in queries:

B Inretainand within expressions that are in the inputs block:

parameters {
integer maxRetention;
float maxDuration;
}
inputs {
A() key id retain maxRetention;
B() key id with maxDuration;
}

B In the filter of the event template in the inputs block:

parameters {
float threshold;
}
inputs {
Withdrawal (amount > threshold) key k;
}

B Inwhere and within clauses that are in the £ind pattern:

parameters {
float maxDuration;
float maxDifference;
}
inputs {
A() key id retain 2;
}
find A:al -> A:a?2 where (a2.cost - al.cost) >
maxDifference within maxDuration {

}

B Inwait expression(s) that are in the £ind pattern:

parameters {
float interval;
}
inputs {
A() key id retain 2;
}
find A:al -> wait (interval) :wl -> A:a2 {

}

® Inan aggregate expression that is in the find pattern:

parameters {
float avg;
}
inputs {
A() key id within 1 day;
}
find every A:a
select avg(a.cost - avg):avgDeviation {

Developing Apama Applications Version 9.10 150

Defining Queries

}

® In an action that is in the find block:

parameters {
float avg;
}
inputs {
A() key id retain 1;
}
find A:a {
log "Deviation from mean = " + (a.value - avg).toString();
}

®m In a user-defined action block:

parameters {
float avg;
}
inputs {
A() key id retain 1;
}
find A:a {
log "Deviation from mean = " + getDeviation (a).toString();
}
action getDeviation (A a) returns float {
return (a.value - avg);

}

While parameter values can be used anywhere within the query it is illegal to mutate the
parameter values. They can be modified only by the Scenario Service.

Scaling and performance of parameterized queries

Depending on the machine architecture a user can expect to be able to create several
hundred parameterizations, which all concurrently process events.

As a result of the time required to process a parameterization edit request, the
recommendation is to avoid multiple simultaneous edit requests for the same
parameterization. There is no guarantee that all of the threads executing the
parameterization will hold the same parameter values during the update period. During
the update period, there might be a mix of results based on old parameter values and
results based on new parameter values. Any requests to the same parameterization
should be spaced approximately 1 second apart to allow time for requests to be executed
throughout the parameterization. This applies to create, edit and delete requests.

In a cluster of correlators, the correlators share the same set of parameter values across
the cluster. While a Scenario Service client can connect to any correlator in the cluster, it
is not recommended to edit the same parameterization from multiple Scenario Service
clients concurrently, as the results will be undefined.

Restrictions in queries

There are some EPL elements that are appropriate for monitors but not queries, for
example spawn and die. This is because queries scale automatically, with multiple
threads of execution processing the events for different partitions as and when they

Developing Apama Applications Version 9.10 151

Defining Queries

arrive. Hence, within query code, the spawn and die operations are meaningless.
Queries operate on the events in their windows and do not need to set up event
listeners, stream queries, or stream listeners. Also, queries cannot subscribe to receive
events sent to particular channels.

The following EPL features cannot be used in queries:
Event listeners, that is, on statements

Stream queries and stream listeners

spawn and spawn. . . to statements

die statements

monitor.subscribe () and monitor.unsubscribe ()

route statements

An identifier cannot start with two consecutive underscore characters. For example,
__MyEvent is an invalid event type name in a query (it is valid in a monitor). A
single underscore at the beginning of an identifier is valid.

®m Predefined self variable

Of course, you cannot call an action on an event when that action uses a restricted
feature listed here.

The recommended means to send events from queries to monitors is by sending to a
channel. See "Generating events with the send command" on page 285.

The debugger does not support debugging query execution - it is not possible to set
breakpoints in a query file. Use of the debugger can also affect how quickly queries are
ready to respond to events, and should not be used in a production system (where it
would cause significant pauses of the correlator).

Note: Several restrictions are enforced on queries if a license file cannot be found
while the correlator is running. See "Running Apama without a license file" in
Introduction to Apama.

Best practices for defining queries

Use values for the length of the window that will not store too much data in the window.

Given the expected incoming event rate, set the within and/ or retain window lengths
so that typically less than a hundred events per partition will be within the window.
With more than that the cost of executing queries can become excessive and the system
will not perform efficiently. There is no limit on the number of events within any
partition - if a very small proportion of exceptional partitions has many more, then that
is not a problem. The important factor is that if the average number is large, this can
affect the performance of executing queries.

Developing Apama Applications Version 9.10 152

Defining Queries

Use parameters instead of creating many similar queries.

(See also "Parameterized queries as templates " on page 147). Rather than write many
separate queries which are very similar in structure and differ only in values, it may
be easier to write a template query and create multiple parameterizations of it. Note
that it is not possible to select which fields are keys using parameters - queries that use
different keys must be written as separate query files.

Use within in input durations if the partition values change over time

In some queries, the key used by the query may correspond to a transient object -

that is, any given value for the partition is not permanent. For example, if tracking
parcels being delivered, then each consignment ID will be short lived - once a parcel is
delivered, there would in most cases be no more events for that consignment ID (and
future deliveries may never re-use the same consignment ID). In these cases, over long
periods, the number of different key values processed will only increase, as new IDs are
generated. Such queries should include a 'within' specification in the inputs for all event
types. Otherwise, if inputs only have a retain specification, then the events will be held
forever, and more and more storage will be required by the Queries system. This is not
typically necessary if the key corresponds to more permanent objects - such as ATMs or
distribution depots.

Use input within that is larger than the value of all waits, withins in the pattern

If your inputs specify a within and there are wait or withins in the pattern, then the
input within should be larger than the longest wait and within in the pattern. If not,

the pattern will not have the intended effect, as events will be expired from the input

window while a wait or within in the pattern is still active.

Use same set of inputs to allow sharing of data

If you have many queries of different types and they are using a lot of memory or

are running slowly, then check if they are using the same inputs definitions (see also
"Queries can share windows" on page 96). Memory usage can be reduced and
performance increased by making multiple queries use the same set of input definitions,
even if some queries have some event types in their inputs that they are not using.

Understand the difference between filters and where clauses

Filters in the input section filter events before they are stored in the distributed cache.
By contrast, the where clause filters events (or combinations of events) after they have
been stored in the distributed cache. The where clause is more powerful, but also more
expensive, especially if most events do not match the where clause.

®m A filter applies before the event window. Thus:

m Events not matching the filter are ignored and do not need to be stored
anywhere. This makes filtering a very cheap way of reducing the number of
events that need to be processed. The retain count only applies to the events that
match the filter. For example, this query input:

query Q1 {

Developing Apama Applications Version 9.10 153

Defining Queries

inputs {
Event (value = 5) key k retain 2;

t
find Event:el -> Event:e2 {

}
}

Will match events where there have been two events with value = 5; it will match
if another event for the same k has occured between them with value not equal to
5. Compare with:
query Q2 {

inputs {

Event () key k retain 2;

}

find Event:el -> Event:e2 where el.value = 5 and e2.value = 5 {

}
}

This only matches if the last two events for a given value of k both have the value
5 - as we only retain 2 events and after retaining 2 events, check that they have
value =5.

®m A filter applies to all events - note that in query Q2 above we had to repeat the value
=5 check.

® A where clause does not affect the definition of the inputs; query Q2 could share
window contents with other queries that are concerned with different values of
'value', or don't filter at all.

®m A filter is restricted to range or equality matches per field of the incoming events.
Where clauses can be more complex (e.g. where el.fieldl + e2.field2 = 10is
valid, asisel.isTypeA or el.isTypeB - butneither could be expressed in a filter)

Avoid changing parameter values used in filters

If using parameters in filters, avoid changing the values of those parameters. As this
changes which events should be being stored in the window, this is similar in effect

to stopping a query instance and creating a new query instance - it involves creating
new tables in the distributed cache and events that are delivered to correlators while a
new table is opened will be dropped. It may be more desirable to use a where clause to
restrict which events match a pattern.

Use custom aggregates to get data from multiple match sets

As well as the built-in aggregates, it is possible to define new aggregates in EPL to

collate information about all events that matched a pattern. For example, it may be
desirable to have a list of all events that matched a pattern. This can be achieved by
writing a new custom aggregate. For example:

// file MyAggregates.mon:
aggregate CollateEvents (Event e) returns sequence<Event> {
sequence<Event> allEvts;
action add(Event e) {
allEvts.append(e) ;
}
action value () returns sequence<Event> {
return allEvts;

Developing Apama Applications Version 9.10 154

Defining Queries

}
}
// file PrintAllEvents.qry:
query PrintAllEvents {
inputs {
Event () within 2 hours;
}
find every Event:el select CollateEvents(el):cl {
Event e;
for e in cl {
print e.toString() ;
}

Testing query execution

When writing queries, as with any programming, it is important to test that the query

is behaving as expected. Testing can be as simple as a small Apama project with the
event definitions, the queries, and an evt file of events to send to the query. You can

use this project to check whether the query sends out the correct events. In Software AG
Designer, use the Engine Receive view to observe the output of the query. Whether or not
a query is written to send output events, you can add 1og statements to the query file to
verify whether it has or has not triggered.

Be sure to test queries in an environment that is separate from your production
environment. Of course, preventing problems is the best way to avoid the need to
troubleshoot so ensure that queries are sufficiently tested before deploying them.

The following background information and troubleshooting tips provide some
guidance. See also: "Overview of query processing” on page 82.

Exceptions in queries

In a query, exceptions can occur in the following places:

Procedural code in a find statement block

having clause

retain clause

select clause

wait clause

All where clauses

All within clauses

An exception in the inputs block (retain or within clause) or the find block's wait
or within clause causes the query to terminate. If there is an exception elsewhere, the
query continues to process incoming events. An exception that occurs in a where or
having clause causes the Boolean expression to evaluate to false.

Developing Apama Applications Version 9.10 155

Defining Queries

Event ordering in queries

Unlike EPL monitors, the order in which queries process events is not necessarily the
order in which they were sent into the correlator. In particular, if two events that will
be processed by the same query with the same key value are sent very close together in
time (both events received less than about .1 seconds of each other) then they may be
processed as if they had been sent in a different order. For example, consider a query
that is looking for an 2 event followed by an 2 event. If two A events with the same key
arrive 1 millisecond apart then the events might not be processed in the order in which
they were sent.

Queries use multiple threads to process events and to scale across multiple correlators
on multiple machines. To do this efficiently, there is no enforcement that the events
are processed in order. However, when events that have the same key arrive roughly
about .5 seconds apart or more then out-of-order processing is typically avoided
provided the system can keep up with the load. Therefore, you want to specify a query
so that it operates on partitions in which the arrival of consecutive events is spaced far
enough apart. For example, consider a query that operates on credit card transaction
events, which could mean thousands of events per second. You want to partition this
query on the credit card number so that there is one event or less per partition per
second. By following this recommendation, it becomes possible to process events that
are generated at rates of up to 10,000 events per second.

When creating an evt file for testing purposes the recommendation is to begin the file
with a §FLUSHING (1) line to cause more predictable and reliable event-processing
behaviour. See "Event timing" in the "Correlator Utilities Reference" section of Deploying
and Managing Apama Applications. For example, consider the following evt file:

Query diagnostics

To help you monitor queries that are running on a given correlator, Apama provides
data about active queries in DataViews. See "Monitoring running queries" in Deploying
and Managing Apama Applications.

When deploying Apama queries it is possible to enable generation of diagnostic
information. These are 1og statements that explain some of the internal workings of the
query evaluation. In particular, events coming into the query and the contents of the
windows before the pattern is evaluated are both logged. This can aid understanding
of how the query evaluation occurs. If a query is misbehaving then providing this
diagnostics logging to Apama support can help in understanding the issue.

Note: Diagnostic logs contain the event data. You may want to consider using fake
data rather than real data if the real data is sensitive.

Logging in where statements

It can be useful to modify a query so that rather than including the expression that needs
to be evaluated in a where clause, the query calls an action on the query to execute the
expression used by the where clause. This allows logging of inputs and the result of the
expression. For example, instead of a query that contains the following;:

Developing Apama Applications Version 9.10 156

Defining Queries

find A:a -> B:b where a.x >= b.x {

Write the query this way:

action compareAB(A a, B b) returns boolean {
log "compareAB; inputs: A:a = "t+a.toString()+ ", B:b = "+b.toString();
boolean r:= (a.x >= b.x);

log "compareAB; result is "+r.toString() ;
return r;

}
find A:a -> B:b where compareAB(a, b) {

You can then use these 1og statements to check if the query is behaving as expected.

Divide and conquer

One of the advantages of testing a query with a known set of input events is that it is
possible to see how changing the query affects the results. For example, if a query is not
matching any events and has many within and without clauses, try removing all of
them. One way to do this is to place them onto separate lines and use // as a comment
at the beginning of the lines in the source view. If the query still does not fire, use query
diagnostics to check that events are being evaluated. If the query is firing, then add
within and without clauses one at a time until the query stops firing. The problem is at
the condition that stops it from firing when it should.

Query performance

A critical factor that affects the performance of queries is the size of the windows
specified in the inputs block of the query. Aim for windows that contain no more
than 100 events. Depending on the distributed cache used to store data, it may also
be necessary to change the number of parallel contexts per correlator. Experiment
with different values for the number of worker contexts. See also: "Overview of query
processing” on page 82.

Using external clocking when testing

When testing queries, as well as switching into single context execution, it is often
useful to use external clocking. This allows &TIME events to be sent into the correlator
to simulate the passage of time, which allows queries involving long durations (for
example, multiple days) to be tested easily. To ensure the correct ordering of processing
between events and &TIME events, you should also include sFLUSHING (1) at the
beginning of the event file, before any events. See "Externally generating events that
keep time (&TIME events)" on page 197 in this document and "Event timing" in the
"Event file format" section of the correlator utilities reference in Deploying and Managing
Apama Applications.

Communication between monitors and queries

Queries can be used with or without monitors written in EPL. If you use monitors in
your query application, there are several ways to send data from a monitor to a query:

Developing Apama Applications Version 9.10 157

Defining Queries

B To send an event to all Apama queries running on that correlator, send it to the
com.apama.queries channel.

B Queries receive events sent to the default channel, which is useful for testing.

Note: The order in which events are processed is not guaranteed for queries. See
"Event ordering" in "Testing query execution" on page 155.

Queries can send events to EPL monitors by using the send. . . to statement and
specifying a channel on which the monitor is listening. The monitor author should make
it clear which channel they are expecting events on. The channel name can be a single
name for a given monitor or a name constructed from data in the event, so that different
values are processed in parallel.

If you are using multiple correlators, be aware that communication between queries

and monitors normally takes place within a single correlator. However, it is possible

to use engine_connect or Universal Messaging to connect correlators. This allows an
event sent on a channel on one correlator to be processed by a monitor subscribed to that
channel on another correlator.

Unlike a query's history window, any state stored in EPL monitors, including in the
listeners, is independent in each correlator, and is not automatically moved or shared
between correlators.

Developing Apama Applications Version 9.10 158

Defining Event Listeners

4 Defining Event Listeners

m About event expressions and event templatescccovvieerriiicce s 160
m Specifying the on StAtEMENT ..o 163
m Using a stream source template to find events of interest ..., 164
m Defining event expressions with one event template ... 165
m Terminating and changing event lISTENEISccovvvvvrrrcsee e 168
m Specifying multiple eVent lISTENETS ..o 170
m Listening for events that do not MatCh ..o 171
m Specifying completion event lISLENETSccceiiiriee e 172
m Improving performance by ignoring some fields in matching eventsc.cccocevvveieiiceiennen, 174

m Defining event listeners for patterns of EVENtS ..., 175
m Specifying and/or/not logic in event lIStENEIScccccvviiiceeccece e, 177
m How the correlator executes eVent lIStENENS ... 182
m Defining event listeners with temporal CONStraints ..o, 189
m Understanding time in the COMmelator ... 194
m Out of band connection NOLfICALIONSoeiviieiiii e 200

Developing Apama Applications Version 9.10 159

Defining Event Listeners

In an EPL monitor, an on statement specifies an event expression and a listener action.

Note: Queries do not need to set up event listeners so you cannot specify an on
statement in a query. The information about defining event listeners applies
only to monitors.

When the correlator executes an on statement it creates an event listener. An event
listener observes each event processed by the context until an event or a pattern of
events matches the pattern specified in the event listener's event expression. When this
happens the event listener triggers, causing the correlator to execute the listener action.
At this point, depending on the form of the event expression, the event listener either
terminates or continues listening for additional matching event patterns.

An event listener analyzes the event stream until one of the following happens:
m The event listener finds the pattern defined in its event expression.

B The quit () method is called on the event listener to kill it.

® The monitor that defines the event listener dies.

m The correlator determines that the event listener can never trigger.

The correlator can support large numbers of concurrent event listeners each watching
for an individual pattern.

About event expressions and event templates

To create an event listener, you must specify an event expression. An event expression
® Identifies an event or event pattern that you want to match

m Contains zero or more event templates

® Contains zero or more event operators

An event template specifies an event type and encloses in parentheses the set of, or set
of ranges of, event field values to match. An event template can specify wildcards for
event fields or can specify that certain event fields must have particular values or ranges
of values.

An event expression can specify a temporal operator and zero event templates.

Following are event expressions that are each made up of one event template:

Event Expression Description

StockTick (*,*) The event listener that uses this event
expression is interested in all StockTick
events regardless of the event's field values.

Developing Apama Applications Version 9.10 160

Defining Event Listeners

Event Expression Description

NewsItem ("ACME", *) The event listener that uses this event
expression is interested in NewsItem events
that have a value of ACME in their first field.
Any value can be in the second field.

ChainedResponse (reqld="reql") The event listener that uses this
event expression is interested in
ChainedResponse events whose
reqld field has a value of reql.If a
ChainedResponse event has any other
fields, their values are irrelevant.

You can specify more than one event template in an event expression by adding event
operators. The following table describes the operators that you can use in an event
expression.

Category Operator Operation

Followed by -> The event listener detects a match when it
finds an event that matches the event template
specified before the followed-by operator and
later finds an event that matches the event
template that comes after the followed-by
operator.

Repeat matching all The event listener detects a match for each
event that matches the specified event
template. The event listener does not terminate
after the first match.

Logical operators ~ and Logical intersection. The event listener detects
a match after it finds events that match the
event templates on both sides of the and
operator. The order in which the listener
detects the matching events does not matter.

not Logical negation. The event listener detects a
match only if an event that matches the event
template that follows the not operator has not
occurred.

or Logical union. The event listener detects a
match as soon as it finds an event that matches

Developing Apama Applications Version 9.10 161

Defining Event Listeners

Category Operator Operation

one of the event templates on either side of the
or operator.

x0T Logical exclusive or. The event listener detects
a match if it finds an event that matches
exactly one of the event templates on either
side of the xor operator. For example, consider
this event: A (1, 1). This event does not trigger
the following listener because it matches
the event templates on both sides of the xor
operator: on A(1,*) xor A(*,1).

Temporal at The event listener triggers at specific times or
operators repeatedly at a specified interval.
wait Limits the amount of time that an event

listener can detect a match.

within The event listener can find a match only within
the specified timeframe.

Consider the following example:

event Test

{
float f£;

}

monitor RangeExample

{

action onload()

{
on Test (f >= 9.0) and Test (f <= 10.0) processTest () ;

}

action processTest () ;

{

do something }

}

The event expression is:

Test (f >= 9.0) and Test (f <= 10.0)

This event expression specifies the and operator so the event listener must detect an
event that matches both of the event expression's event templates or two events, where
one matched the first template and another matched the second. It does not have to be
a single event that matches both event templates. The order in which the templates are
matched does not matter.

Consider this event expression:

A(a = "foo") xor A(b > 9)

Developing Apama Applications Version 9.10 162

Defining Event Listeners

An event listener that defines this event expression triggers for A ("foo", 9) but not
A("foo", 10).0OnA("foo", 10), the A templates would trigger simultaneously, so the
xor would remain false.

The correlator can match on up to 32 fields per event. If you specify an event template
for an event that has more than 32 fields, you must ensure that the correlator maintains
indexes for the particular fields for which you specify values that you want to match.

In other words, when the event definition was loaded into the correlator, the fields that
did not have the wildcard keyword formed the set of fields that you can match on. An
event template can try to match on only those fields. If an event template specifies any of
the wildcard fields, it must be with an asterisk.

If you try to load a monitor that defines an event template that specifies more than 32
fields without an asterisk or a wildcard field without an asterisk, the correlator rejects
the monitor. You must correct the template in order to load the monitor.

Specifying the on statement

You specify an on statement to define an event listener. The format of an on statement is
as follows:

[listener identifier :=] on event expr [coassignment] listener action;

Syntax description

Syntax Element Description

identifier Optionally, you can specify a variable of type
listener and assign the new event listener
to that variable. This gives you a handle to
the event listener — if you want to terminate
it you can call the quit () method on the
listener.

event expr The event expression identifies the event or
pattern of events that you want to match.
An event expression is made up of one or
more event templates and zero or more event
operators.

coassignment Optionally, you can coassign the matching
event to a variable of the same event type.
Coassignments are part of event templates.
Each event template can have a coassignment,
so there can be multiple coassignments in a
listener.

Developing Apama Applications Version 9.10 163

Defining Event Listeners

Syntax Element Description

listener action The statement or block that you want the
correlator to perform when the event listener
triggers.

Examples

For example:

on StockTick(*,*) processTick();

In this example, the event expression contains one event template: StockTick (*, *).

The asterisks indicate that the values of the stockTick event's two fields are not relevant
when matching. When this event listener detects a StockTick event, the listener triggers
and causes the correlator to execute the processTick () listener action.

Following is an example that coassigns the matching event to the newTick variable.
The newTick variable must be a stockTick event type variable. Coassignment simply
assigns the event to the variable.

on StockTick(*,*) :newTick processTick() ;

The next example begins with the declaration of a 1istener variable. The statement
assigns the event listener to the 1 variable.

listener 1 := on StockTick(*,*):newTick processTick() ;

Suppose that after finding a matching event, the listener action includes specification of
an on statement. For example:
listener 1 := on StockTick(*,*) :newTick {
on StockTick(newTick.symbol, > newTick.value) :risingTick {
processRisingTick () ;

}
}

The correlator creates an entirely new event listener to handle the nested on statement.
This new event listener is completely independent of the enclosing event listener. For
example, the enclosing event listener does not wait for the nested event listener to find a
matching event.

Using a stream source template to find events of interest

In addition to event listeners, EPL provides stream source templates for finding
events of interest. A stream source template is an event template prefixed with the a11
keyword. The result of a stream source template is a stream.

Use streams on a continuous flow of incoming items when you want to aggregate, join to
other streams, and/or narrow the scope of the matching items based on content, arrival
time, or the most recent particular number of items.

Use an event listener for discrete events or discrete patterns of events for which you
want to independently trigger the listener action.

Developing Apama Applications Version 9.10 164

Defining Event Listeners

For information about using stream source templates, see "Working with Streams and
Stream Queries" on page 205.

Defining event expressions with one event template

This section provides examples of specifying event expressions that contain just one
event template. It is important to understand the various ways that you can specity
a single event template. When you are familiar with this, it is easier to start applying
operators and combining multiple event templates in an event expression.

Listening for one event

Consider the following on statement:

on StockTick() processTick();

This event listener is watching for one stockTick event. The values of the StockTick
event's fields are irrelevent, as indicated by the empty parentheses. When this event
listener finds a StockTick event, it triggers and terminates. When the event listener
triggers, it causes the correlator to execute the processTick () action.

Listening for all events of a particular type

Consider the straightforward case where an event expression consists of a single event
template. When the event listener finds an event that matches its event template, the
event listener triggers, and the correlator executes the listener action. Since the event
listener has found the event it was looking for, it terminates.

In some situations, you might want the event listener to continue watching for the same
event so that you can act on each one. You do not want the event listener to terminate
after it finds one event. In this situation, specify the a1l keyword before the event
template, as in the following example:

on all StockTick () processTick();

When the all operator appears before an event template, when that event template
finds a match, it continues to watch for subsequent events that also match the template.

Listening for events with particular content

The sample monitor is very simple. It just logs all StockTick events. The content of the
StockTick event is not relevant when matching. See "Example of a simple monitor" on
page 53. However, you can filter events according to their content. To alter the example
so that the monitor logs only stockTick events for a given stock, you must specify a
filter on the first field in the event template. For example, suppose you want to log only
ACME stock ticks. You need to change the following line:

on all StockTick(*,*):newTick processTick() ;
to this:

on all StockTick ("ACME",*) :newTick processTick() ;

Developing Apama Applications Version 9.10 165

Defining Event Listeners

Now the event listener triggers on only StockTick events whose name field matches
ACME.

To filter StockTick events based on their price, you might specify the event template
shown below. This event template specifies that you are interested in all StockTick
events whose price is 50. 5 or greater.

on all StockTick(*, >=50.5) :newTick processTick() ;

Using positional syntax to listen for events with particular content

You can specify that you want to listen for StockTick events that have a particular
name and a particular price. In the on statement below, the event listener is looking for
StockTick events in which the name is ACME and the price is 50. 5 or less.

on all StockTick ("ACME", <=50.5) :newTick processTick () ;

When you specify this syntax, called positional syntax, the event template must define
a value (or a wildcard) to match against for every field of that event's type. You must
specify these values in the same order as the fields in the event type definition. Consider
the following event type:
event MobileUser {

integer userID;

location position;

string hairColour;

string starsign;

integer gender;

integer incomeBracket;

string preferredHairColour;

string preferredStarsign;

integer preferredGender;

}

Following is an event listener definition for this event type:

on MobileUser(*,*, "red", "Capricorn", *, *, *, *, 1) some action ();

Using name/value syntax to listen for events with particular content

Specification of every field in an event can get unwieldy when you are working with
event types with a large number of fields and you are specifying values for only a few
of them. In this case, you can use the name/value syntax in which you specify only the
fields of interest. In the name/value syntax, it is as if you had specified a wildcard (*) for
each field for which you do not specify a value. For example:

on MobileUser (hairColour="red", starsign="Capricorn",
preferredGender=1) some action ();

The table below shows equivalent event expressions that demonstrate how to specify
each syntax. The table uses these event types:

event A {
integer a;
string b;
}

event B {
integer a;

Developing Apama Applications Version 9.10 166

Defining Event Listeners

}

event C {
integer a;
integer b;
integer c;

Comparison Criterion Positional Syntax Equivalent Name/Value Syntax
Equality on A(3,"string") on A(a=3,b="string")

on A(=3,="string") on A(b="string",a=3)
Relational comparisons on B(>3) on B(a>3)
Ranges on B([2:3]) on B(a in [2:3])
Wildcards on C(*,4,%) on C(b=4)

on C(*,*,*) on C(a=*,b=4,c=%*)

on C()

For details about the operators and expressions that you can specify in event templates,
see "Expressions” on page 891.

It is possible to mix the two syntax styles as long as you specify all positional fields
before named fields. For example:

m Correct event template: on D(3,>4,1 in [2:4])

® Incorrect event template: on D (k=9, "error")

Listening for events of different types

A monitor is not limited to listening for events of only one type. A single monitor can
listen for any number of event types. The following sample monitor uses the StockTick
event type and the StockChoice event type, which specifies a stock name. When the
event listener finds a StockChoice event, a second event listener then looks for only
stocks that match the name in the stockChoice event.

// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;

float price;

}

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice {
string name;
}

// The following simple monitor listens for two different event types.

Developing Apama Applications Version 9.10 167

Defining Event Listeners

monitor SimpleShareSearch {

// A global variable to store the matching StockTick event:
StockTick newTick;

// A global variable to store the StockChoice event:
StockChoice currentStock;

// Wait for a StockChoice event and use its name field to
// filter for StockTick events.
action onload() {
on StockChoice (*) :currentStock {
on all StockTick(currentStock.name, *):newTick processTick() ;
}
}

action processTick() {
log "StockTick event received" +
" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

}

The differences between the sample in "Example of a simple monitor" on page 53 and
this monitor are the following:

m Definition of an additional event type (StockChoice)
®m Definition of a new global variable (currentStock)
® A more complex onload () action

While the first two changes are straightforward, the new onload () action introduces
new behavior. The first line in the onload () action is similar to that in the earlier
example. In the new example, the monitor creates an event listener for a StockChoice
event. The content of the StockChoice event is not relevant when matching. When the
event listener finds an event of this type, it stores the value of the stockChoicename
field in the currentStock variable and triggers the creation of a second event listener.

In this example, the first event listener defines the action of creating the second event
listener in-line. The first event listener looks for a StockChoice event. The second event
listener looks for all StockTick events whose name field corresponds to the value of
currentStock.name.

Terminating and changing event listeners

After the correlator creates an event listener, you cannot change it. Instead of changing
an event listener, you terminate it and create a new one.

The example in "Listening for events of different types" on page 167 looks for only

one StockChoice event. The monitor would be more useful if it continued looking for
subsequent StockChoice events, and on every new StockChoice event it changed the
second event listener to look for stock ticks for the new company.

Developing Apama Applications Version 9.10 168

Defining Event Listeners

When the correlator creates an event listener, it copies from the action the value of any
local variables. However, if the variable is of a reference type, changes to the object
referred to by the value are seen by other listeners.

The steps and example below shows how to terminate an event listener with the quit ()
operation. See also, "Specifying and not logic to terminate event listeners" on page
179.

When you want to change an event listener, do the following:

1. Obtain a handle to the event listener you want to change.
2. Terminate that event listener with the quit () operation.
3. Create a new event listener to take its place.

The following sample monitor does just this.

// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;

float price;

}

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice ({

string name;

}
// The following simple monitor listens for two different event types.

monitor SimpleShareSearch {
// A global variable to store the matching StockTick event:
StockTick newTick;

// A global variable to store the StockChoice event:
StockChoice currentStock;

// A handle to the second listener:
listener 1;

// Record the latest StockChoice event and use its name field
// to filter the StockTick events.
action onload() {

on all StockChoice(*) :currentStock {

l.quit ()
1 := on all StockTick(currentStock.name, *):newTick processTick() ;
}
}
action processTick() {
log "StockTick event received" +
" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

}

The differences between the example in "Listening for events of different types" on page
167 and this example are as follows:

Developing Apama Applications Version 9.10 169

Defining Event Listeners

® The monitor in this example declares an additional global variable, 1, whose type is
listener.

® The initial on statement now specifies the a1l operator. After this event listener finds
a StockChoice event, it watches for the next StockChoice event.

B The onload () action specifies a new listener action. Each time the first event listener
finds a stockChoice event, the listener action:

m Terminates the second event listener by calling the 1.quit () method. Of course,
upon finding the first StockChoice event there is no second event listener to
terminate. This is not a problem as in this case the 1.quit () method does not do
anything.

m Creates a new event listener to seek stockTick events for the company named in
the stockChoice event just detected.

m Stores a handle to the new event listener in the 1 global variable. The first event
listener uses this handle when it needs to terminate the second event listener.

Specifying multiple event listeners

When the correlator encounters an on statement, it creates an event listener to watch for
events that match the event expression specified in the on statement. When the event
listener finds a matching event, the event listener triggers and the correlator executes
the listener action. Ordinarily the event listener then dies. That is, the event listener
processes only a single matching event.

When you require multiple matching events specify the a1l operator before the
template for the event for which you want multiple matches. This prevents termination
of the event listener upon an event match.

Another way to match multiple events is to define two (or more) event listeners for the
same event type. If you specify two on commands that require the same event, they both
trigger when they find that event. The order in which they trigger is not defined. For
example:

on all StockTick(*,*):newTickl { print newTickl.name; }
on all StockTick(*,*):newTick2 { print newTick2.name; }

When the correlator receives a single stockTick event, the correlator populates both the
newTickl variable and the newTick2 variable with the event value. The correlator then
prints the value of the name field in each variable. This means that an event of the format
StockTick ("ACME", 50.10) causes this output:

ACME
ACME

Adding further on statements to those above would increase the number of times the
string ACME is printed. This is true regardless of where (that is, in which action) the
on statements are defined. For example:

action actionl () {

on all StockChoice ("ACME") :currentStock processTick() ;
}

Developing Apama Applications Version 9.10 170

Defining Event Listeners

action action2 () {
on all StockChoice ("ACME") :currentStock processTick() ;
}

If both the actionl () and action2 () actions have been invoked, both will invoke the
processTick () action when an "ACME" stockChoice event is received.

Now consider the following example:

on all StockTick ("ACME", *) actionl();
on all StockTick (*,50.0) actionl ()

The event StockTick ("ACME", 50.0) will trigger both event listeners. It is not possible
to determine which one will execute the action first but the actions will be executed
atomically. That is, the correlator will start executing actionl (), finish it, and only then
will the correlator execute actionl () again. The correlator processes only one listener
action at a time.

See "Spawning monitor instances" on page 55 for another way to have multiple event
listeners.

Listening for events that do not match

Sometimes it is useful to catch events that do not match other event templates. To
do this, specify the unmatched keyword in an event template. An unmatched event
template matches against events for which both of the following are true:

® Except for completed and unmatched event templates, the event does not cause
any other event expression in the same context as the unmatched event template to
match. For information about completed event templates, see the next topic.

® The event matches the unmatched event template.
The correlator processes an event as follows:

1. The correlator tests the event against all normal event templates. Normal event
templates do not specify the completed or unmatched keyword.

2. If the correlator does not find a match, the correlator tests the event against all event
templates that specify the unmatched keyword. If the correlator finds one or more
matches, the matching event templates now evaluate to true. That is, if there are
multiple unmatched event templates that match the event, they all evaluate to true.

The scope of an unmatched event template is the context that contains it. Suppose an
event goes to two contexts. In one context, there is a matching event listener and in
the other context there is a match against an unmatched event template. Both matches
trigger the listener actions.

Specify the unmatched keyword with care. Be sure to communicate with other
developers. If your code relies on an unmatched event template, and someone else
injects a monitor that happens to match some events that you expected to match your
unmatched event template, you will not get the results you expect.

A typical use of the unmatched keyword is to spawn a monitor instance to process a
particular subset of events. For example:

Developing Apama Applications Version 9.10 171

Defining Event Listeners

event Tick{ string stock; ... }
monitor TiickProcessor {
Tick tick;

action onload () {
on all unmatched Tick():tick spawn processTick() ;
}
action processTick () {
on all Tick(stock=tick.stock) ...;
}

}

See also:
B '"Example using unmatched and completed" on page 173.

B "Writing echo monitors for debugging" on page 353

Specifying completion event listeners

In some situations, you want to ensure that the correlator completes all work related
to a particular event before your application performs some other work. In your event
template, specify the completed keyword to accomplish this. For example:

on all completed A(f < 10.0) {}

Suppose an A event whose f field value is less than 10 arrives in the correlator. What
happens is as follows:

1. If there are normal or unmatched event listeners whose event expression matches
this A event, those event listeners trigger.

2. The correlator executes listener actions and then processes any routed events that
result from those actions, and any routed events that result from processing the
routed events, and so on until all routed events have been processed.

3. The completed event listener triggers.

A common situation in which the completed keyword is useful is when a piece of
data comes into the system and that piece of data causes a cascade of event listeners
to trigger. Each listener action updates some data. When all listener actions have been
executed, you want to take a survey of the new state of things and do something in
response.

For example, consider a pricing engine made up of many individual pricing engines.
When a new piece of market data arrives all pricing engines update their prices and then
the controller uses some metric to pick the best price, which it publishes. The controller
should publish the new price only after all individual engines have updated their
output. The controller achieves this by listening for all the updates but only publishing
when the market data event causes the completed event listener to trigger. The EPL for
this scenario follows.

// Request/return best price from *all* markets

event RequestSmartBestPrice{ string stock; integer id; }
event BestSmartPriceReply{ integer id; float price; }

//Request/return best price from individual market (s)

Developing Apama Applications Version 9.10 172

Defining Event Listeners

event RequestBestPrice{ string stock; integer id; }
event BestPriceReply{ integer id; float price; }

// Simple example: Assume 'best' is 'lowest' and no account
// 1s taken of 'side'.
monitor SmartPriceGetter {

RequestSmartBestPrice request;

BestPriceReply reply;

sequence< float > prices;

action onload() {
on all RequestSmartBestPrice (*, *) :request spawn getPrices();

}

action getPrices () {

on all BestPriceReply(request.id, *):reply
prices.append (reply.price) ;

on completed RequestSmartBestPrice(request.stock, request.id) {
prices.sort () ;
route BestSmartPriceReply(request.id, prices[0]);
die();

}

route RequestBestPrice(request.stock, request.id);

Example using unmatched and completed

The followiing example shows the use of both the unmatched and completed keywords.
After the example, there is a discussion of the processing order.

on all A("foo", < 10) : a {
print "Match: " + a.toString();
a.count := a.count+l; // count is second field of A
route A;
}
on all completed A("foo", < 10) : a {
print "Completed: " + a.toString();

on all unmatched A(*,*): a {
print "Unmatched: " + a.toString();
}

The incoming events are as follows:

A("foo", 8);
A("bar", 7);

The output is as follows.

Match: A("foo", 8)
Match: A("foo", 9)
Unmatched: A("foo", 10)

Completed: A("foo", 9)
Completed: A("foo", 8)
Unmatched: A ("bar", 7)

A(“foo”, 8) is the firstitem on the queue. The correlator processes all matches for
this event except for any matching on completed expressions. The correlator processes
those after it has processed all routed events originating from a (“foo”, 8), which

Developing Apama Applications Version 9.10 173

Defining Event Listeners

includes the processing of all routed events produced from all routed events produced
from A (“foo”, 8),and so on.

Correlator processing goes like this:

1. Processing of A ("foo", 8) routesA("foo", 9) tothe front of the queue.

2. Processing of A ("foo", 9) routesA("foo", 10) to the front of the queue.

3. Processing of A ("foo", 10) finds a match with the unmatched event expression.
4

All routed events that resulted from 2 ("foo", 9) have now been processed. The
completed A("foo", 9) eventtemplate now matches so the correlator executes its
listener action.

5. All routed events that resulted from A ("foo", 8) have now been processed. The
completed A("foo", 8) eventtemplate now matches so the correlator executes its
listener action.

6. Processing of A ("bar", 7) matches the unmatched A(**)event template and the
correlator executes its listener action.

For another example of the use of unmatched and completed, see "Writing echo
monitors for debugging" on page 353.

Improving performance by ignoring some fields in matching events

In applications where a particular field of an event type will never participate in the
match criteria for that event type, the performance of Apama can be improved (at times
drastically) by marking that field as a wildcard field in the event type definition.

For example, consider a version of the StockTick event type that has four fields: name,
volume, price, and source. If in our application volume and source are never going to
be used for matching on within event templates, that is, they will always be marked as *
(wildcard), they could be tagged so explicitly in the event type:
event StockTick {

string name;

wildcard float volume;

float price;

wildcard string source;

}

The wildcard keyword tells Apama not to include this field in its internal indexing,

as it will never be required in a match operation. This not only saves memory, but

can significantly improve performance, particularly when there are many such fields
which never occur in match conditions. Note that removing fields from an event type
altogether is even more efficient than using wildcard, but this is not always possible.
For example, the field might not be relevant in match conditions but it might be input to
calculations within an action block, or it might need to be included in an event specified
ina send. . .to statement.

When a field has been declared as a wildcard then any subsequent attempt to define a
match condition using that field will result in a parser error, and the offending monitor
will not be injected.

Developing Apama Applications Version 9.10 174

Defining Event Listeners

Therefore, given the above event type definition, the following will result in a parser
error:

action someAction () {
on StockTick ("ACME", >125.0,*,"NASDAQ") doSomething() ;
}

while the following is correct:

action someAction () {
on StockTick ("ACME", *, 50.0, *) doSomething() ;
}

Defining event listeners for patterns of events

One way to search for an event pattern in EPL is to define an event listener to search for
the first event, and then, in that listener action, define a second event listener to search
for the second event in the pattern, and so on.

However, the on statement takes an event expression, and this can be more than just a
single event template.

Consider the following very simple example: locate a news event about ACME followed
by a stock price update for ACME.

With the EPL explored so far, one would write this as

event StockTick {
string name;
float price;

}

event NewsItem ({
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence ACME ({
// Look for a news item about ACME, if successful execute the
// findStockChange () action
//
action onload () {
on NewsItem ("ACME",*) findStockChange () ;
}

// Look for a StockTick about ACME, if successful execute the
// notifyUser () action
//
action findStockChange () {
on StockTick ("ACME", *) notifyUser();
}

// Print a message, event sequence detected
//
action notifyUser () {

log "Event sequence detected.";

}

Developing Apama Applications Version 9.10 175

Defining Event Listeners

If, as in this example, you do not intend to express any custom actions after finding an
event other than searching for another event, the whole pattern of events to look for can
be encoded in a single event expression within a single on statement.

An event expression can define a pattern of events to match against. Each event of
interest is represented by its own event template. You can apply several constraints on
the temporal order that the events have to occur in to match the event expression.

In the more declarative syntax of an event expression, the above monitor would be
written as follows:

event StockTick {
string name;
float price;

}

event NewsItem ({
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence ACME {
// Look for a NewsItem followed by a StockTick

action onload() {
on NewsItem ("ACME",*) -> StockTick ("ACME", *)
notifyUser () ;

// Print a message, event sequence detected
//
action notifyUser () {
log "Event sequence detected.";
}
}

Here, instead of just one event template, the on keyword is now followed by an event
expression that contains two event templates.

The primary operator in event expressions is ->. This is known as the followed-by
operator. It allows you to express a pattern of events to match against in a single on
statement, with a single action to be executed at the end once the whole pattern is
encountered.

In EPL, an event pattern does not imply that the events have to occur right after each
other, or that no other events are allowed to occur in the meantime.

Leta, B, Cand Drepresentevent templates,and A', B', C' and D' be individual events
that match those templates, respectively. If a monitor is written to seek (A > B), the
event feed {a',C',B', D'} would result in a match once the B' is received by Apama.

Followed-by operators can be chained to express longer patterns. Therefore one could
write,

on A -=> B -> C -> D executelAction();
Notes:

B An event template is in fact the simplest form of an event expression. All event
expression operators, including ->, actually take event expressions as operands. So

Developing Apama Applications Version 9.10 176

Defining Event Listeners

in the above representation, 3, B, C, D could in fact be entire nested event expressions
rather than simple event templates.

®m Itis useful to think of event expressions as being Boolean expressions. Each clause
in an event expression can be true or false, and the whole event expression must
evaluate to true before the event listener triggers and the action is executed.

Consider the above event expression: 2 -> B -> C -> D

The expression starts off as false. When an event that satisfies the A event template
occurs, the A clause becomes true. Once B is satisfied, o -> B becomes true in turn,
and evaluation progresses in a similar manner until eventually allof2 -> B -> ¢

> D evaluates to true. Only then does the event listener trigger and cause execution
of the listener action. Of course, this event expression might never become true

in its entirety (as the events required might never occur) since no time constraint
(see "Defining event listeners with temporal constraints" on page 189) has been
applied to any part of the event expression.

Specifying and/or/not logic in event listeners

When the correlator creates an event listener each event template in the event expression
is initially false. For an event listener to trigger on an event pattern, the event expression
defining what to match against must evaluate to true. Consequently, in an event
expression, you can specify logical operators.

Specifying the 'or' operator in event expressions

The or operator lets you specify event expressions where a variety of event patterns
could lead to a successful match. It effectively evaluates two event templates (or entire
nested event expressions) simultaneously and returns true when either of them becomes
true.

For example,
on A() or B() executeAction();

means that either 2 or B need to be detected to match. That is, the occurrence of one of
the operand expressions (an A or a B) is enough for the event listener to trigger.

Specifying the 'and’ operator in event expressions

The and operator specifies an event pattern that might occur in any temporal order. It
evaluates two event templates (or nested event expressions) simultaneously but only
returns true when they are both true.

on A() and B() executeAction();
This will seek “an a followed by a B' or “a B followed by an A". Both are valid matching

patterns, and the event listener will seek both concurrently. However, the first to occur
will terminate all monitoring and cause the event listener to trigger.

Developing Apama Applications Version 9.10 177

Defining Event Listeners

Example event expressions using 'and/or' logic in event listeners

The following example event expressions indicate a few patterns that can be expressed

by using and/or logic in event listeners.

Event Expression

Description

A -> (B or C)

(A -> B) or C

A -> ((B ->C) or (C ->

(A -> B) and (C -> D)

Match on an a followed by eithera B or a c.

Match on either the pattern a followed by a B,
or just a C on its own.

Find an A first, and then seek for either the
pattern B followed by a ¢ or ¢ followed by

a D. The latter patterns will be looked for
concurrently, but the monitor will match
upon the first complete pattern that occurs.
This is because the or operator treats its
operands atomically, that is, in this case it is
looking for the patterns themselves rather
than their constituent events.

Find the pattern a followed by a B (that is, &
-> B) followed by the pattern ¢ -> D, or else
the pattern ¢ -> D followed by the pattern

A -> B. The and operator treats its operands
atomically. That is, in this case it is looking
for the patterns themselves and the order of
their occurrence, rather than their constituent
events. It does not matter when a pattern
starts but it occurs when the last event in

it is matched. Therefore {',c',B',D"'}
would match the specification, because it
contains an 2 -> B followed byac -> D.In
fact, the specification would match against
either of the following patterns of event
instances; {a',c',B',D'},{C',A",B",D"},
{ar,B',Cc',D'}, {C',2",D",B"},
{ar,c',p',B'}and{c',D',A",B"}

Specifying the 'not' operator in event expressions

The not operator is unary and acts to invert the truth value of the event expression it is

applied to.

on ((A() -> B()) and not C()) executeAction();

Developing Apama Applications Version 9.10

Defining Event Listeners

therefore means that the event listener will trigger executeAction only if it encounters
an A followed by a B without a C occurring at any time before the B is encountered.

The not operator can cause an event expression to reach a state where it can never
evaluate to true. That is, it becomes permanently false.

Consider the above event listener event pattern: on (A() -> B()) and not C()

The event listener starts by seeking both o -> B and not C concurrently. If an event
matching C is received before one matching B, the ¢ clause evaluates to true, and hence
not C becomes false. This means that (A -> B) and not C can never evaluate to true,
and hence this event listener will never trigger. The correlator terminates these zombie
event listeners periodically.

It is possible to specify the not operator in an event expression in such a way that

the expression always evaluates to true immediately. Since this triggers the specified
action without any events occurring, you want to avoid doing this. See "Avoiding event
listeners that trigger upon instantiation" on page 183.

Specifying 'and not' logic to terminate event listeners

A typical situation is that you want to listen for a pattern only until a particular
condition occurs. When the condition occurs you want to terminate the event listener. In
pseudocode, you want to specify something like this:

on all event expression until stop condition

To define an event listener that behaves this way, you specify and not:

on all event expression and not stop condition

The following example listens for a price increase for a particular stock while the market
is open.
event Price {

string stock;

float price;

}

Price p;

on all Price("IBM",>targetPrice) :p and not MarketClosed() {
...do something}

When you inject a monitor that contains this code, the correlator sets up an

event template to listen for Price events and another event template to listen for
MarketClosed events. As long as the correlator does not receive a MarketClosed event,
not MarketClosed () evaluates to true. While not MarketClosed () evaluates to true,
each time the correlator receives a Price event for IBM stock at a price that is greater
than targetPrice, this event expression evaluates to true and triggers its listener action.
When the correlator receives a MarketClosed event, MarketClosed () evaluates to true
and so not MarketClosed () evaluates to false. At that point, the event expression can
no longer evaluate to true. When the correlator recognizes an event listener that can
never trigger, it terminates it. In other words, after the market is closed the event listener
terminates.

Developing Apama Applications Version 9.10 179

Defining Event Listeners

Typically, the stop condition is a condition that applies to multiple entities. In the
previous example, the condition applies to only IBM stock, but it could easily be
rewritten to apply to all stocks.

Pausing event listeners

You can also specify and not when you want to listen for a pattern, pause when a
particular condition occurs, and resume listening for that pattern when some other
condition occurs. Consider the example that terminates the event listener after the
market closes. Suppose instead that you want to listen for increases in stock prices only
when there is no auction. When the correlator receives an InAuction event, you want to
pause the event listener and when the correlator receives an AuctionClosed event you
want the event listener to become active again. To do this, you can write something like
the following;:
action initialize() {

on EndAuction () and not BeginAuction () notInAuctionLogic () ;

on BeginAuction () and not EndAuction () inAuctionLogic() ;

route RequestAuctionPhase() ;

}

action inAuctionLogic () {
on EndAuction () notInAuctionLogic();

}

action notInAuctionLogic() {
on all Price("IBM",>targetPrice) :p and not BeginAuction ()
sellStock () ;
on BeginAuction () inAuctionLogic() ;

}

The initialize () action sets up two event listeners that determine whether to start
with the inAuctionLogic () action or the notInAuctionLogic () action. The response
to the routed RequestAuctionPhase eventis an EndAuction event or a BeginAuction
event. As soon as one of these events arrive, both event listeners terminate. For
example, if an EndAuction event arrives, the first event listener terminates because its
EndAuction () event template evaluates to true and its not BeginAuction () event
template also evaluates to true. The second event listener terminates because its not
EndAuction () event template evaluates to false and so the event expression can never
evaluate to true.

Choosing which action to execute

Another situation in which and not logic can help terminate event listeners is when
you want to specify a choice of one or more actions and terminate the event listeners
after one is chosen. An example of this appears below. This is the CEP equivalent of a
case statement.

and not PatternMatched() processCasel();

and not PatternMatched () processCase2();

and not PatternMatched () processCase3();
or Pattern 2() or Pattern 3()

on Pattern 1
on Pattern 2
on Pattern 3
on Pattern 1

{

O
O
O
O

route PatternMatched() ;
}

Developing Apama Applications Version 9.10 180

Defining Event Listeners

When you inject a monitor that contains this type of code the correlator immediately sets
up multiple event listeners. For the example in "Pausing event listeners" on page 180,
the event listeners would be watching for these events:

B Pattern 1
B PatternMatched
B Pattern 2
B Pattern 3

Initially, all and not event templates evaluate to true. Suppose pattern 2 arrives. This
causes these two event listeners to trigger:

on Pattern 2() and not PatternMatched() processCase2();
on Pattern 1() or Pattern 2() or Pattern 3()

It is unknown which event listener action the correlator executes first, but the order does
not matter. The correlator does all of the following:

m The correlator executes the processCase?2 () action.

® The correlator terminates the event listener that specifies processCase2 () because it
has found its match and it does not specify all.

® The correlator routes a PatternMatched event to the front of the context's input
queue.

When the correlator processes the patternMatched () event, the two event templates
that are still watching for and not PatternMatched become false. Consequently, those
event listeners will never trigger and the correlator terminates them.

Following is another example of specifying and not to make a choice:

on Ack () and not Nack ()
{

processAck() ;

}
on Nack () and not Ack()

{

processNack () ;

}

Specifying ‘and not' logic to detect when events are missing

Using and not logic with a time-based listener is useful for detecting the absence of an
event that is expected.

For example, consider an application that monitors the processing of customer orders.
The application listens for 0OrderCreate events, which indicate that a customer has
placed an order. After an OrderCreate event is found, the application listens for an
OrderStepComplete event that has an instanceid value that matches the instanceid
value in the OrderCreate event and that has a step field value of Order Shipped. If the
application does not find a matching OrdersStepComplete event within an hour (3600
seconds), the listener triggers and the application generates an alert to indicate that the
order was not shipped.

Developing Apama Applications Version 9.10 181

Defining Event Listeners

Following is code that shows the listener definition.

on all OrderCreate(): oc {
on wait (3600.00) and not OrderStepComplete (
instanceid=oc.instanceid, step="0Order Shipped"): os {

// Raise an alert.

}

This listener triggers when the event templates on both sides of the and operator
evaluate to true. The event template before and evaluates to true after an hour has
elapsed. The event template after and evaluates to true in the absence of a matching
OrderStepComplete event. If the application finds a matching OrderstepComplete
event within an hour then the second event template evaluates to false and the correlator
terminates the listener because it can never trigger.

In the following example, when a FileReceived event is found, the application starts
to listen for a FileProcessed event. If a FileProcessed event is not found within 30
seconds of receiving the FileReceived event, the application generates an alert.
monitor SimpleFileSearch {
action onload() {
FileReceived f;
on all FileReceived():f {
on wait (30.0) and not FileProcessed (id=f.id) {

// Send alert that file was not processed.
}
on FileProcessed(id=f.id) within (30.0) {
// Send confirmation that the file was processed.
}

How the correlator executes event listeners

An understanding of how the correlator executes event listeners can help you correctly
define event listeners. The topics below provide the needed background.

How the correlator evaluates event expressions

When the correlator processes an injection request, it executes the monitor's onload ()
statement, which typically defines an event listener. To understand how the correlator
evaluates the event expression in the event listener, consider the following on statement:

on A()->B() and C()->D() processOrder();

The event expression consists of four templates and three operators. The operators are:

->

and

—->

The correlator does not evaluate the right operand of a followed by operator until after

its left operand has evaluated to true. Hence, B and D are not evaluated initially but will
only be evaluated after A and ¢, respectively, have become true. Initially, the correlator

evaluates the A and C event templates.

Developing Apama Applications Version 9.10 182

Defining Event Listeners

Suppose a C event arrives first. The C part of the event expression is now true and the
correlator now evaluates the A and D event templates. Now suppose an & event arrives
next. The correlator evaluates the B and D event templates. When a B event arrives the
first term, A () ->B (), of the event expression becomes true. Finally a D event arrives and
the second term, B () ->D () becomes true and so the expression as a whole evaluates to
true. The event listener triggers.

As mentioned before, when the correlator instantiates an event listener each event
template in the event listener is initially false. An event template changes to true when
the correlator finds a matching event. In a given context, the correlator cannot find a
matching event while it is setting up an event listener because the correlator processes
only one thing at a time in each context. Everything happens in order and no two things
happen simultaneously in a given context.

Of course, events are always coming into the correlator. These events go on the input
queue of each public context to wait their turn for processing. So while a matching
event might arrive while the correlator is setting up an event listener, as far as correlator
processing is concerned, the event arrives later. See "Understanding time in the
correlator” on page 194.

Avoiding event listeners that trigger upon instantiation

Because all event templates are initially false, it is important to think carefully before
specifying not in an event expression. It is easy to inadvertently specify the not operator
in such a way that the expression evaluates to true immediately upon instantiation. Since
this triggers the specified action without any events occurring, it is unlikely to be what
you intended and you want to avoid doing this. Consider the following example:

on (A() -> B()) or not C() myAction();

Assuming that 2, B and C represent event templates, the value of each starts as being
false. This means that not c is immediately true, and hence the whole expression is
immediately true, which triggers the specified action. If any of 2, B or C is a nested event
expression the same logic applies for its evaluation. Typically, the not operator is used
in conjunction with the and operator. See "Choosing which action to execute" on page
180.

When an event listener triggers the correlator sends a request to the front of the context's
input queue to execute the event listener action. For example:

route D();

on not E() {
print "not E";

}

route F();

The route keyword sends the specified event to the front of the context's input queue.
The correlator processes this code in the following order:

1. The correlator processes event D.
2. The correlator prints "not E".

3. The correlator processes event F.

Developing Apama Applications Version 9.10 183

Defining Event Listeners

When the correlator terminates event listeners
The correlator terminates event listeners in the following situations:

B The event listener's event expression evaluates to true, and does not specify the a1l
keyword. The correlator executes the specified action. Since the single defined match
was found, the correlator terminates the event listener.

m The correlator recognizes that an event listener's event expression can never evaluate
to true. For example:

on (A() -> B()) and not C{()

The event listener starts by seeking both A () -> B() and not C() concurrently. If
an event matching C is received before one matching B, the c clause evaluates to true,
and hence not ¢ becomes false. This means that (2() -> B()) and not C() can

never evaluate to true, and hence this event listener will never trigger its action. The
correlator terminates these zombie event listeners periodically.

B You obtain a handle to an event listener and call the quit () method on that event
listener. See "Terminating and changing event listeners " on page 168.

How the correlator evaluates event listeners for a series of events

Suppose there are seven event templates defined, which are represented as 2, B, C, D, E, F
and G. Now, consider a series of incoming events, where xn indicates an event instance
that matches the event template x. Likewise, xn+1 indicates another event instance that
matches against x, but which need not necessarily be identical to xn.

Consider the following pattern of incoming events:
Cl Al F1 A2 C2 Bl D1 El B2 A3 Gl B3

Given the above event pattern, what should the event expression A () -> B() match
upon?

In theory the combinations of events that correspond to “an a followed by a B” are {a1,
B1}, {a1, B2}, {21, B3}, {A2, B1}, {A2, B2}, {A2, B3} and {a3, B3}. In practice it is unlikely that
you want your event listener to match seven times on the above example pattern, and it
is uncommon for all the combinations to be useful.

In fact, within EPL, on A () -> B() will only match on the first instance that matched
the template. Given the above event pattern the event listener will trigger only on {a1,
B1}, execute the associated action and then terminate.

Evaluating event listeners for all A-events followed by B-events

You might want to alter the behavior described in the previous topic, and have the event
listener match on more of the combinations. To do this, specify the a1l operator in the
event expression.

If the event listener's specification was rewritten to read:

on all A() -> B() success():

Developing Apama Applications Version 9.10 184

Defining Event Listeners

the event listener would match on every a and the first B that follows it.

The way this works is that upon encountering an 2, the correlator creates a second event
listener to seek the next A. Both event listeners would be active concurrently; one looking
for a B to successfully match the pattern specified, the other initially looking for an a. If
more As are encountered the procedure is repeated; this behavior continues until either
the monitor or the event listener are explicitly killed.

Therefore on all A() -> B() would return {a1, B1}, {2, B1} and {a3, B3}.

Note that a1l is a unary operator and has higher precedence than ->, or and and.
Therefore

on all A() -> B()

is the same as both of the following:

on (all A()) -> B()
on ((all A()) -> B())
The following table illustrates how the execution of on all A() -> B() proceeds over

time as the pattern of input events is processed by the correlator. The timeline is from
left to right, and each stage is labeled with a time tn, where tn+1 occurs after tn. To the
left are listed the event listeners, and next to each one (after the ?) is shown what event
template that event listener is looking for at that point in time. In the example, assuming
L was the initial event listener, ', L' ' and L' ' ' are other sub-event-listeners that are
created as a result of the a1l operator.

Guide to the symbols used:
+ indicates a specific point in time when a particular event is received
X indicates that at that time no match was found

¥" indicates that the listener has successfully located an event that matches its
current active template

= is used to indicate that a listener has successfully triggered
+ indicates that a new listener is going to be created.

The master event listener denoted by on all A () -> B() will never terminate as there
will always be a sub-event-listener active that is looking for an a.

Developing Apama Applications Version 9.10 185

Defining Event Listeners

onallA=> B
Timeline of incoming events =>»
C, A FL A C B D E B, A G B

Yt

%

Yt
v+

L 2B x v %
L' 2A X

LB x v x X

L' 2A x ¥+
¥t

L 7B X v X X £
L'?B Co v %
L" 2Aa X

Ve
L 7B X v X X X =
L'?B x v x o=
L" 2a x %

Ve,
E x v x x x v
= X v X v
L" 2a X X X X x f+
Vt,

| S X v X X X v’
b x v x Vv
L™ 2B X X X X x v x =
L™ 2a x %

Evaluating event listeners for an A-event followed by all B-events
Consider an event listener defined as follows:
on A() -> all B() success();

The monitor would now match on all the patterns consisting of the first 2 and each
possible following B.

For clarity this is the same as:

on (A() -> (all B())) success():;

Developing Apama Applications Version 9.10 186

Defining Event Listeners

The way this works is that the correlator creates a second event listener after finding a
matching B. The second event listener watches for the next B, and so on repeatedly until
the monitor is explicitly killed.

Therefore on A() -> all B() would match {a1, B1}, {21, B2} and {a1, B3}.

Graphically this would now look as follows:

on A=»all B

Timeline of incoming events =
C, AL F,F, A, C,L B, D
¥t

L?2a ¥

E1 BZ AS G1 BS

L ?A x
L 7B X v %

Vvt
L 2B X v x X X f+=
t x v X X X v

L'?B

L' 7?8 Lz x 4=

* t12

L" 2B e Y +=

The table shows the early states of L' and L' ' in light color because those event listeners
actually never really went through those states themselves. However, since they were
created as a clone of another event listener, it is as though they were.

The master event listener denoted by on (A () -> all B()) will never terminate as
there will always be a sub-event-listener looking for a B.

Evaluating event listeners for all A-events followed by all B-events

Consider the following event listener definition:

on all A() -> all B() success();
or
on ((all A()) -> (all B())) success();

Developing Apama Applications Version 9.10 187

Defining Event Listeners

Now the monitor would match on an 2 and create another event listener to look for
further as. Each of these event listeners will go on to search for a B after it encounters an
A. However, in this instance all event listeners are duplicated once more after matching
against a B.

The effect of this would be that on all A -> all B would match {a1, B1}, {a1, B2}, {a1,
B3}, {a2, B1}, {n2, B2}, {A2, B3} and {a3, B3}. That is, all the possible permutations. This
could cause a very large number of sub-event-listeners to be created.

Note: The a1l operator must be used with caution as it can create a very large
number of sub-event-listeners, all looking for concurrent patterns. This is
particularly applicable if multiple a1l operators are nested within each other.
This can have an adverse impact on performance.

Now consider the example,

on all (A() -> all B()) success();

This will match the first A followed by all subsequent Bs. However, as on every match

of an A followed by B, (A() -> all B()) becomes true, then a new search for the
"next" A followed by all subsequent Bs will start. This will repeat itself recursively, and
eventually there could be several concurrent sub-event-listeners that might match on the
same patterns, thus causing duplicate triggering.

Give the same event pattern as described in "Evaluating event listeners for all A-events
followed by B-events" on page 184, this would be evaluated as follows:

Developing Apama Applications Version 9.10 188

Defining Event Listeners

on all (A = all B)
Timeline of incoming events =>»
C, A F A C, B D E B A G B,

Ve,

L2a ¥

Ve,

LB x Vv x x x f++=

¥t

E X v X x % v
L' 7B X
L" 2a X
vt
E S IR -H R
L' 2B x X f++=
L an X x L4
Ve,
E X VA G X v
= 03 X v
L™ 2a X x x
L™ 7B X
L™ 2a v
Vt,
E x v o x x x ¥
= £ X v
L"” 2B p'e X X v’ b'd /++=
L"™ -8 X X 4=
L"" 2B v x Y ++=

Thus matching against {21, B1}, {a1, B2}, {a1, B3}, and twice against {23, B3}. Notice how
the number of active event listeners is progressively increasing, until after t12 there
would actually be six active event listeners, three looking for a B and three looking for an
A.

Defining event listeners with temporal constraints

So far this section has shown how to use event expressions to define interesting patterns
of events to look for, where the events of interest depend not only on their type and

Developing Apama Applications Version 9.10 189

Defining Event Listeners

content, but also on their temporal relationship to (whether they occur before or after)
other events.

Being able to define temporal relationships can be useful, but typically it also needs to be
constrained over some temporal interval.

Listening for event patterns within a set time

Consider this earlier example:

event StockTick ({
string name;
float price;

}

event NewsItem ({
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence ACME ({
// Look for a NewsItem followed by a StockTick

//
action onload() {
on NewsItem ("ACME",*) -> StockTick ("ACME", *)
notifyUser () ;

}

// Print a message, event sequence detected
//
action notifyUser () {
log "Event sequence detected.";
}
}

This will look for the event pattern of a news item about a company followed by a stock
price tick about that company. Once improved this could be used to detect the beginning
of a rise (or fall) in the value of shares of a company following the release of a relevant
news headline.

However, unless a temporal constraint is put in place, the monitor is not going to be that
pertinent, as it might trigger on an event pattern where the price change occurs weeks
after the news item. That would clearly not be so useful to a trader, as the two events
were most likely unrelated and hence not indicative of a possible trend.

If the event listener above is rewritten as follows,

on NewsItem ("ACME",*) -> StockTick ("ACME",*) within (30.0)
notifyUser () ;

the stockTick event would now need to occur within 30 seconds of NewsItem for the
event listener to trigger.

The within (float) operator is a postfix unary operator that can be applied to an
event template (the StockTick event template in the above example). Think of it like
a stopwatch. The clock starts ticking as soon as the event listener starts looking for the
event template that the within operator is attached to. If the stopwatch reaches the

Developing Apama Applications Version 9.10 190

Defining Event Listeners

specified figure before the event template evaluates to true then the event template
becomes permanently false.

In the above code, the timer is only activated once a suitable NewsItem is encountered.
Unless an adequate StockTick then occurs within 30 seconds and makes the expression
evaluate to true, the timer will fire and fail the whole event listener.

You can apply the within operator to any event template. For example:

on A() within(10.0) listenerAction();

After the correlator sets up this event listener, the event listener must detect an 2 event
within 10 seconds. If no A event is detected within 10 seconds, the event expression

becomes permanently false and the correlator subsequently terminates the event
listener.

Waiting within an event listener
The second timer operator available for use within event expressions is wait (float).

The wait operator lets you insert a ‘temporal pause' within an event expression. Once
activated, a wait expression becomes true automatically once the specified amount of
time passes. For example:

on A() -> wait(10.0) =-> C() success|();
Execution of this event listener proceeds as follows:
1. Set up an event template to watch for an A event.

2. After detecting an A event, wait 10 seconds.Set up an event template to watch for a ¢
event.

In addition to being part of an event expression, wait can also be used on its own.

on wait (20.0) success|();

When the correlator instaniates this event listener the event listener just waits for the

number of seconds specified (here being 20), then it evaluates to true, triggers, and
causes the correlator to execute the success () action.

Therefore a wait clause starts off being false, and then turns to true once its time period
expires. This behavior can be inverted through use of not. The expression not wait
(20.0) would start off being true, and stay true for 20 seconds before becoming false.
Consider the following example:

on B() and not wait (20.0) success();

This event listener triggers only if a B event is detected within 20 seconds after the
correlator sets up the event template that watches for B events. After 20 seconds, the

not wait(20.0) clause would become false and prevent the event listener from ever
triggering. This would therefore be the same as

on B within(20.0) success();
By using a1l with wait, you can easily implement a periodic repeating timer,

on all wait (5.0) success():;

Developing Apama Applications Version 9.10 191

Defining Event Listeners

This event listener triggers every 5 seconds and causes the correlator to execute the
success () action each time.

See also "Specifying 'and not' logic to detect when events are missing" on page 181.

Triggering event listeners at specific times

The at temporal operator lets you express temporal activity with regards to absolute
time. The at operator allows triggering of a timer:

m ataspecific time, for example, 12:30pm on the 5th April

m repeatedly with regards to the calendar when used in conjunction with the al1
operator, across seconds, minutes, hours, days of the week, days of the month, and
months, for example, on every hour, or on the first day of the month, or every 10
minutes past the hour and every 40 minutes past the hour

The syntax of the at operator is as follows:

at (minutes, hours, days of month, months, days of week [,seconds])
where the last operand, seconds, is optional.

Valid values for each operand are as follows:

Operand Values

minutes 0 to 59, indicating minutes past the hour.

hours 0 to 23, indicating the hours of the day.

days of month 1 to 31, indicating days of the month. For some months

only 1 to 28, 1 to 29 or 1 to 30 are valid ranges.

months 1 to 12, indicating months of the year, with 1
corresponding to January

days of week 0 to 6, indicating days of the week, where 0 corresponds
to Sunday.
seconds 0 to 59, indicating seconds past the minute.

The at operator can be embedded within an event expression in a manner similar to
the wait operator. If used outside the scope of an a1l operator it will trigger only once,
at the next valid time as expressed within its elements. In conjunction with an a1l
operator, it will trigger at every valid time.

The wildcard symbol (*) can be specified to indicate that all values are valid, for
example:

on at(5, *, *, *, *) success();

Developing Apama Applications Version 9.10 192

Defining Event Listeners

would trigger at the next “five minutes past the hour”, while

on all at(5, *, *, *, *) success();
would trigger at five minutes past each hour (that is, every day, every month).

Whereas,

on all at(5, 9, *, *, *) success();

would trigger at 9:05am every day. However,

on all at(5, 9, *, *, 1) success|();

would trigger at 9:05am only on Mondays, and never on any other week day.
This is because the effect of the wildcard operator is different when applied to the

days of week and the days of month operands. This is due to the fact that both
specify the same entity. The rule is therefore as follows:

B Aslong as both elements are set to wildcard, then each day is valid.

m If either of the days of week or the days of month operand is not a wildcard,
then only the days that match that element will be valid. The wildcard in the other
element is effectively ignored.

®m If both the days of week and the days of month operands are not wildcards, then
the days valid will be the days which match either. That is, the two criteria are “or’
'ed, not ‘and’ 'ed.

A range operator (:) can be used with each element to define a range of valid values. For
example:

on all at(5:15, *, *, *, *) success|();

would trigger every minute from 5 minutes past the hour till 15 minutes past the hour.
A divisor operator (/integer, x) can be used to specify that every x'th value is valid.
Therefore

on all at(*/10, *, *, *, *) success();

would trigger every ten minutes, that is, at 0, 10, 20, 30, 40 and 50 minutes past every
hour.

If you wish to specify a combination of the above operators you must enclose the
element in square braces ([1), and separate the value definitions with a comma (,). For
example

on all at([*/10,30:35,22], *, *, *, *) success();

indicates the following values for minutes to trigger on; 0,10, 20, 30, 40 and 50, from 30 to
35, and specifically the value 22.

A further example,
on all at(*/30,9:17,([*/2,1],*,*) success();

would trigger every 30 minutes from 9am to 5pm on even numbered days of the month
as well as specifically the first day of the month.

Developing Apama Applications Version 9.10 193

Defining Event Listeners

Using variables to specify times

If you wish to programmatically parameterize usage of the at operator, you have to use
variables in conjunction with it. You can replace any of the parameters to the at operator
with a string variable or with a sequence of integer variables.

The first alternative, using a string variable, allows you to define the matching criteria
within a string variable and then specify the variable within the at call.

For example,

string minutes = "*/30";
on all at (minutes, 9:17,[*/2,1],*,*) success();

shows how this can be done. Each of the parameters can be replaced with a string
variable in this way.

The other alternative is to use a sequence of integer variable. This is only useful
when you want to specify a selection of valid values for the parameter.
sequence<integer> days = new sequence<integer>;

days.append(1l); // Monday is ok

days.append(3); // and so is Wednesday
on all at(*,*,*,*,days) success;

Sequences are described in "sequence” on page 805.

Understanding time in the correlator

An understanding of how the correlator handles time is essential to writing Apama
applications. The topics below discuss time in the correlator.

Correlator timestamps and real time

When the correlator receives an event, it gives the event a timestamp that indicates the
time that the correlator received the event. The correlator then places the event on the
input queue of each public context. The correlator processes events in the order in which
they appear on input queues.

An input queue can grow considerably. In extreme cases, this might mean that a few
seconds pass between the time an event arrives and the time the correlator processes it.
As you can imagine, this has implications for whether the correlator triggers listeners.
However, the correlator uses event timestamps, and not real time, to determine when to
trigger listeners.

As an extreme example, suppose a monitor is looking for A -> B within(2.0). The
correlator receives event A. However, the queue has grown to a huge size and the
correlator processes event A three seconds after event A arrives. The correlator receives
event B one second after it receives event A. Some events in the queue before event B
cause a lot of computation in the correlator. The result is that the correlator processes
event B five seconds after event B arrives. In short, event B arrives one second after event
2, but the correlator processes event B three seconds after it processes event A.

Developing Apama Applications Version 9.10 194

Defining Event Listeners

If the correlator used real time, 2 -> B within (2.0) would not be triggered by this
pattern. This is because the correlator processes event B more than two seconds after
processing event A. However, the correlator uses the timestamp to determine whether to
trigger actions. Consequently, A -> B within (2.0) does trigger, because the correlator
received event B one second after event 2, and so their timestamps are within 2 seconds
of each other.

As you can see, the number of events on an input queue never affects temporal
comparisons.

Event arrival time

As mentioned before, when an event arrives, the correlator assigns a timestamp to the
event. The timestamp indicates the time that the event arrived at the correlator. If you
coassign an event to a variable, the correlator sets the timestamp of the event to the
current time in the context in which the coassignment occurs. For J[Mon applications, this
is always the current time in the main context.

The correlator uses clock ticks to specify the value of each timestamp. The correlator
generates a clock tick every tenth of a second. The value of an event's timestamp is the
value of the last clock tick before the event arrived.

When you start the correlator, you can specify the --frequency hz option if you want
the correlator to generate clock ticks at an interval other than every tenth of a second.
Instead, the correlator generates clock ticks at a frequency of hz per second. Be aware
that there is no value in increasing hz above the rate at which your operating system can
generate its own clock ticks internally. On UNIX and some Windows machines, this is
100 Hz and on other Windows machines it is 64 Hz.

When you start the correlator, you can specify the -xclock option to disable the
correlator's internal clock and replace it with externally generated time events. See
"Externally generating events that keep time (&TIME events)" on page 197.

About timers and their trigger times

In an event expression, when you specify the within, wait, or at operator you are
specifying a timer. Every timer has a trigger time. The trigger time is when you want the
timer to fire.

® When you use the within operator, the trigger time is when the specified length of
time elapses. If a within timer fires, the event listener fails. In the following event
listener, the trigger time is 30 seconds after A becomes true.

on A -> B within(30.0) notifyUser();

If B becomes true within 30 seconds after the event listener detects an 2, the trigger
time is not reached, the timer does not fire, and the monitor calls the notifyUser ()
action. If B does not become true within 30 seconds after the event listener detects
an A, the trigger time is reached, the timer fires, and the event listener fails. The
monitor does not call notifyUser (). The correlator subsequently terminates the
event listener since it can never trigger.

Developing Apama Applications Version 9.10 195

Defining Event Listeners

® When you use the wait operator, the trigger time is when the specified pause during
processing of the event expression has elapsed. When a wait timer fires, processing
continues. In the following expression, the trigger time is 20 seconds after A becomes
true. When the trigger time is reached, the timer fires. The event listener then starts
watching for B. When B is true, the monitor calls the success action.

on A -> wait(20.0) -> B success|();

® When you use the at operator, the trigger time is one or more specific times. An at
timer fires at the specified times. In the following expression, the trigger time is five
minutes past each hour every day. This timer fires 24 times each day. When the timer
fires, the monitor calls the success action.

on all at(5, *, *, *, *) success|();

At each clock tick, the correlator evaluates each timer to determine whether that timer's
trigger time has been reached. If a timer's trigger time has been reached, the correlator
fires that timer. When a timer's trigger time is exactly at the same time as a clock tick,
the timer fires at its exact trigger time. When a timer's trigger time is not exacty at the
same time as a clock tick, the timer fires at the next clock tick. This means that if a timer's
trigger time is .01 seconds after a clock tick, that timer does not fire until .09 seconds
later.

When a timer fires, the current time is always the trigger time of the timer. This is
regardless of whether the timer fired at its trigger time or at the first clock tick after its
trigger time. In other words, the current time is equal to the value of the currentTime
variable when the timer was started plus the elapsed wait time. For example:

float listenerSetupTime := currentTime;
on wait(l1.23) {
//When the timer fires, currentTime = (listenerSetupTime + 1.23)

}

A single clock tick can make a repeating timer fire multiple times. For example, if you
specify on all wait (0.01), this timer fires 10 times every tenth of a second.

Because of rounding constraints,

® Atimersuchason all wait (0.1) drifts away from firing every tenth of a second.
The drift is of the order of milliseconds per century, but you can notice the drift if
you convert the value of the currentTime variable to a string.

® Two timers that you might expect to fire at the same instant might fire at different,
though very close, times.

The rounding constraint is that you cannot accurately express 0.1 seconds as a float
because you cannot represent it in binary notation. For example, the on wait (0.1)
event listener waits for 0.10000000000000000555 seconds.

To specify a timer that fires exactly 10 times per second, calculate the length of time
to wait by using a method that does not accumulate rounding errors. For example,
calculate a whole part and a fractional part:
monitor TenTimesPerSecondMonitor {

// Use integers to keep track of the next timer fire time.

// This ensures that the value of the currentTime variable increases
// by exactly 1.0 after every 10 tenths of a second.

Developing Apama Applications Version 9.10 196

Defining Event Listeners

integer nextFireTimelInteger;
integer nextFireTimeFraction;
action onload() {

nextFireTimeInteger := currentTime.ceil();
nextFireTimeFraction := (10.0 *
(currentTime-nextFireTimeInteger.toFloat ())).ceil();

setupTimelListener () ;

}

action setupTimelListener () {
nextFireTimeFraction := nextFireTimeFraction + 1;
if (nextFireTimeFraction = 10) then ({
nextFireTimeFraction := 0;
nextFireTimeInteger := nextFireTimelInteger+l;

t
on wait((nextFireTimelInteger.toFloat() +
(nextFireTimeFraction.toFloat () /10.0)) - currentTime)

{

setupTimeListener () ;
doWork () ;

}

action doWork ()

{
// This is called 10 times every second.
log currentTime.toString() ;

70 oo
}
When a timer fires, the correlator processes items in the following order. The correlator:
1. Triggers all event listeners that trigger at the same time.
2. Routes any events, and routes any events that those events route, and so on.

3. Fires any timers at the next trigger time.

Disabling the correlator's internal clock

By default, the correlator keeps time by generating clock ticks every tenth of a second.
If you specify the -xclock option when you start a correlator, the correlator disables
its internal clock. This means the correlator does not generate clock ticks and does not
assign timestamps based on clock ticks to incoming events.

Instead, it is up to you to send &«TIME events into the correlator to externally keep time.
This gives you the ability to artificially control how the correlator keeps time.

Time flows in all contexts, including private contexts. Also, different contexts can
have different internal times. This happens when one context is still processing events
that arrived at an earlier time while another is processing more recent events. The
"currentTime" is always the time of the events being processed. (As opposed to wall-
clock time, which can be obtained from the Time Manager correlator plug-in.)

Externally generating events that keep time (&TIME events)

A sTIME event can have one of the following formats:

Developing Apama Applications Version 9.10 197

Defining Event Listeners

B It can contain a number of seconds:

&TIME (float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st

January 1970. The maximum value for seconds that the correlator can accept is 1012,

which equates to roughly 33658 AD, and should be enough for anyone. However,
most time formatting libraries cannot produce a date for numbers anywhere near
that large.

B Or it can contain a time string:

&TIME (string time)
The time is a string in extended ISO8601 form, with fractional seconds. For example:
&TIME ("2015-04-20T23:32:41.032+01:00")
&TIME ("2015-04-20T22:32:41.032+00:00™)
&TIME ("2015-04-20T22:32:41.0322")
&TIME ("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a
different timezone with an offset of 1 hour.

When the correlator processes an &TIME event by taking it off an input queue, the
correlator sets its internal time (the current time) in that context to the value encoded in
the event. Every event that the correlator processes after an «TIME event and before the
next ¢TIME event has the same timestamp. That is, they have the timestamp indicated by
the value of the previous «TIME event. For example:

&TIME (1)

A()

B()

&TIME (2)
cQ

Events A and B each have a timestamp of 1. Event C has a timestamp of 2.

If you specify the -xclock option, and you do not send «TIME events to the correlator,

it is as if time has stopped in the correlator. Every event receives the exact same
timestamp. While not sending time events is not strictly incorrect, it does mean that time
stands still.

You must use great care when implementing this facility. There are EPL operations
that rely on correct time-keeping. For example, all timer operations rely on time
progressing forwards. Timers will fail to fire if time remains at a standstill, or worse,
moves backwards. There is a warning message in the correlator log if you send a time
event that moves time backwards.

When sending s«TIME events into a multi-context application, the time ticks are delivered
directly to all contexts. This can be different than the way in which events in the .evt
file are sent in to the correlator and then sent between contexts in an application. This
difference can result in processing events at an incorrect simulated time. In these cases,

Developing Apama Applications Version 9.10 198

Defining Event Listeners

sending ¢ FLUSHING (1), for example, before sending time ticks and events can result in
more predictable and reliable behavior.

For more information, see "Event timing" in the correlator utilities section of Deploying
and Managing Apama Applications.
About repeating timers and &TIME events

You are not required to send &TIME events every tenth of a second. You can send them
at larger intervals and timers will behave as they would when the correlator generates
clock ticks. For a repeating timer, a single s TIME event can make it fire multiple times.
Consequently, sending an «TIME event can have a lot of overhead if it is a large time
jump and there are repeating timers. For example, consider the following pattern:

1. You start the correlator and specify the -Xclock option, which sets the time to 0.
2. You inject a timer into the correlator, for example, on all wait (0.1).

3. You send an &TIME event to the correlator and this event has a relatively large value,
for example, 1185898806.

The result of this pattern is that the timer fires many times because the «TIME event
causes each intermediate, repeating timer to fire. (Intermediate timers are timers that are
set to fire between the last-received time and the next-received time.) For the example

given, the timer fires 1010 times, which can take a while to process. You can avoid this
problem by doing any one of the following:

® Send the correlator an sTIME event and specify a sensible time before you set up any
timers. This is likely to be your best alternative.

®m Send the correlator an & TIME event and specify a sensible time before you inject any
monitors.

® Send the correlator an «SETTIME event before you send the sTIME event. See "Setting
the time in the correlator (&SETTIME event)" on page 199.

Setting the time in the correlator (&SETTIME event)

A &SETTIME event can have one of the following formats:

® It can contain a number of seconds:

&SETTIME (float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st
January 1970. For example:

&SETTIME (0) sets the time to "Thu Jan 1 00:00:00.0 BST 1970".
&SETTIME (1185874846.3) sets the time to "Tue Jul 31 09:40:46.3 BST 2007".

B Or it can contain a time string:

&SETTIME (string time)

The time is a string in extended ISO8601 form, with fractional seconds. For example:

Developing Apama Applications Version 9.10 199

Defining Event Listeners

&SETTIME ("2015-04-20T23:32:41.032+01:00")
&SETTIME ("2015-04-20T22:32:41.0324+00:00")
&SETTIME ("2015-04-20T22:32:41.0322")
&SETTIME ("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a
different timezone with an offset of 1 hour.

Normally, you do not need to send &«SETTIME events. You would just send sTIME
events. An «SETTIME event is useful only to avoid the problem pattern described
above. The only difference between an «SETTIME event and an &TIME event is that the
&SETTIME event causes an intermediate, repeating timer to fire only once while the
&TIME event causes intermediate, repeating timers to fire repeatedly. For example, on
all wait(0.1) fires ten times for every second in the difference between consecutive
&«TIME events. However, it fires only once when the correlator receives an &« SETTIME
event.

If you decide to send an &SETTIME event before an «TIME event, you typically want

to send the &« SETTIME event only before the first sTIME event. You should not send an
&SETTIME event before subsequent &« TIME events. Doing so causes a jumpy quality in the
behavior of time. There is a warning message in the correlator log if you set a time that
moves time backwards.

For information about when you might want to use external time events, see Deploying

and Managing Apama, "Correlator Utilities Reference", "Starting the correlator”,
"Determining whether to disconnect slow receivers".

Out of band connection notifications

Apama applications running in the correlator can make use of Apama out of band
notifications. Out of band notifications are events that are automatically sent to all public
contexts in a correlator whenever any component (an IAF adapter, dashboard, another
correlator, or a client built using the Apama SDKs) connects or disconnects from the
correlator.

For example, consider an environment where correlator A and correlator B both have
out of band notifications enabled and are connected so that events from correlator A are
sent to correlator B. In this case, correlator A will receive a ReceiverConnected event
and correlator B will receive a SenderConnected event. The Apama application running
in correlator A and B can listen for those events and execute some application logic. Note
that clients such as dashboards and IAF adapters typically connect as both receiver and a
sender together and, therefore, two events would be sent in quick succession.

Out of band events are defined in the com. apama. oob package and consist of:
B ReceiverConnected
B SenderConnected

B ReceiverDisconnected

Developing Apama Applications Version 9.10 200

Defining Event Listeners

B SenderDisconnected

The ReceiverConnected and SenderConnected events contain the name of the
component that is connecting. When correlators and IAF adapters send a notification
event, the format of the string that contains the component name is as follows:

"name (on port port number)"

The name is the name that was specified when the component was started. For
correlators and IAF adapters, you can specify a name with the ~-name option when you
start the component. The name defaults to correlator or iaf according to the type

of component. The port number is the port that the connecting receiver or sender is
running on.

Out of band events make it possible for developers of Apama components to add
appropriate actions for the component to take when it receives notice that another
component of interest has connected or disconnected. For example, an adapter can
cancel outstanding orders or send a notification to an external system.

Out of band notification events

The out of band events are defined as follows:

package com.apama.oob;
// Note that while the logicalld and physicalld are integers, they are
// unsigned 64-bit values. Using EPL integer types would result in some
// IDs being negative, and thus not matching the values given in log files.
/** Notification that a sender has connected */
event SenderConnected {

/**

* Component name, as supplied with the -N command line argument

* to iaf/correlator or enginelnit method

*/

string componentName;

/**

* Representation of the address component is connecting from

=/

string address;

/**

* Opaque representation of IDs; these are unique per

* instance of a process.

=/

string logicalId;

/**

* Opaque representation of IDs; these are unique per

* instance of a process.

*/

string physicalld;

}
/** Notification that a sender has disconnected */
event SenderDisconnected ({

/**

* Opaque representation of IDs; these are unique per

* instance of a process.

=/

string logicalld;

/**

* Opaque representation of IDs; these are unique per

* instance of a process.

Developing Apama Applications Version 9.10 201

Defining Event Listeners

*/

string physicalld;

}
/** Notification that a receiver has connected */
event ReceiverConnected {

/**

* Component name, as supplied with the -N command line argument

* to iaf/correlator or engineInit method

*/

string componentName;

/xx

* Representation of the address component is connecting from

*/

string address;

/**

* Opaque representation of IDs; these are unique per

* instance of a process.

*/

string logicalld;

/xx

* Opaque representation of IDs; these are unique per

* instance of a process.

*/

string physicalId;

}
/** Notification that a receiver has disconnected */
event ReceiverDisconnected {

/**

* Opaque representation of IDs; these are unique per

* instance of a process.

*/

string logicalId;

/**

* Opaque representation of IDs; these are unique per

* instance of a process.

*/

string physicalld;

}

Enabling out of band notifications

To enable out of band notifications in your Apama applications, you add the Out of band
event notifications bundle to your project in Software AG Designer.

Note: You can also enable out of band notifications for a correlator with the
engine management utility using the engine management -r setOOB
on command. Be sure to inject the event definitions before running that
command. For more information about using the engine management utility,
see "Shutting down and managing components" in Deploying and Managing
Apama Applications.

To enable out of band notifications
1. In the Project Explorer, right-click on the project and select Apama > Add Bundle.

2. From the Add Bundle dialog, select the Out of band event notifications bundle and click
OK to add the bundle to your Apama project.

Developing Apama Applications Version 9.10 202

Defining Event Listeners

The Out of band event notifications bundle contains the event definitions and the monitor
that enables the notifications.

3. Inyour Apama application, create a listener for out of band events specific to the
components you are interested in.

Developing Apama Applications Version 9.10 203

Developing Apama Applications Version 9.10 204

Working with Streams and Stream Queries

5 Working with Streams and Stream Queries

m Introduction to streams and stream NEWOTKScccoerirniniccses s 206
B DEfiNiNG SIEAMS ... 207
m Using output from SIrEAMSc.cviiriieiieire e 208
B DefiniNg SIrEAM QUEMIESo.oviviiciiiiieciee s 211
m Defining custom aggregate fUNCHONSccceviiiiciiiicce e 241
m Working with lots that contain multiple ITeMS ... 245
B Stream network lifEtimMecciiic s 250
m Using dynamic expressions in Stream QUEMIES ... 252
m Troubleshooting and stream query coding QUIdEIINESc.cvevevcvrieieeiiieiire e 260

Developing Apama Applications Version 9.10 205

Working with Streams and Stream Queries

EPL lets you create two kinds of queries:

®m Self-contained queries are processing elements that communicate with other
self-contained queries, and with their environment, by receiving and sending
events. Self-contained queries are designed to be multithreaded and to scale across
machines. A self-contained query is sometimes referred to as an Apama query. This
kind of query is defined in a . gry file, which cannot contain a monitor. See "Defining
Queries" on page 75.

B Stream queries operate on streams of items to generate more valuable streams that
contain derived items. Stream queries are defined in monitors. The following topics
provide information about stream queries.

In stream queries, derived items can be events, location types or simple types
(boolean, decimal, float, integer, string). You can use standard relational
operations, such as filters, joins, aggregation, and projection, to generate items. For
example, you can define a query that converts a stream of raw tick data into a stream of
volume-weighted average price (VWAP) items.

Stream-based language elements allow operations that refine events to be expressed
more clearly and concisely than when using procedural language constructs such as
event listeners. In particular, applications that need to calculate one value based on
multiple items from an input stream are simpler and more efficient when written with
stream queries.

Apama provides sample code that uses streams and stream queries in the samples
\monitorscript directory of your Apama installation directory. See also: "EPL Streams:
A Quick Tour" on page 977.

Introduction to streams and stream networks

A stream query is part of a stream network. A stream network starts with one or more
stream source templates (see "Creating streams from event templates” on page 208).

A stream source template collects matching events received by the monitor instance
and places them as items in a stream. Stream queries (see "Defining stream queries" on
page 211) take existing streams (a stream created by a stream source template or by
another stream query) and generate added-value streams that contain derived items.
Finally, stream listeners (see "Using output from streams" on page 208) bring items out
of the stream network and into procedural code. In a given stream network, upstream
elements feed into downstream elements to generate derived items.

When a monitor instance receives an event that matches a stream source template the
correlator activates the stream network. The passage of time can also cause the correlator
to activate a stream network. If, for example, a stream query operates on the items
received within the last 5.0 seconds, then 5.0 seconds after an item arrives the correlator
will again activate the stream network (see "Adding window definitions to from and join
clauses" on page 218).

In a given stream network activation, not all stream queries and not all stream listeners
necessarily receive items. Which queries and stream listeners receive items depends on
the definitions of the stream queries and stream listeners. However, in a given stream

Developing Apama Applications Version 9.10 206

Working with Streams and Stream Queries

network activation, the correlator passes items through all queries and stream listeners
in the network that receive items. A query or stream listener that receives an item is
considered to be activated. Only when processing of all activated queries and stream
listeners is complete does the correlator process the next event on the context's input
queue.

In a given stream network activation, various queries can produce multiple items
on their output streams. The items in a particular stream during a particular stream
network activation are called a lot. If a stream query or stream listener receives a lot
that contains multiple items, it processes all items as part of a single stream network
activation (see "Working with lots that contain multiple items" on page 245, and
"Coassigning to sequences in stream listeners" on page 211).

The items in a lot are always ordered, and the lots themselves are always ordered.

Defining streams

You can use a stream variable to reference a stream. A stream variable declaration has
the following form:

stream<type > name
Replace type with the type of the items in the stream. This can be any Apama type.

Replace name with an identifier for the stream. For example:

stream<Tick> ticks;

A stream variable can be a field in an event. However, you cannot route, enqueue, or
send an event that contains a st ream variable field.

There are two ways to create a stream:

B From an event template. See "Creating streams from event templates" on page
208.

® From the result of a stream query on some other stream. See "Defining stream
queries" on page 211.

To obtain a reference to an existing stream, you must assign from or clone another
stream value.

An inert stream never generates any output. There are a number of ways to create an
inert stream including, but not limited to, the following:

®m Calling new on a stream type or a type that contains a stream
®m Declaring a global variable of stream type, or a type that contains a stream
B Spawning a monitor instance that contains a stream value
Note: It is permissible to define a stream variable that references a stream of

stream type items. In such a definition, be sure to insert a space between the
consecutive right-angle brackets. For example: stream<stream<float> >.

Developing Apama Applications Version 9.10 207

Working with Streams and Stream Queries

You must insert this extra space in all stream definitions that contain a type
that encloses another type. For example: stream<sequence<integer> >.

Creating streams from event templates

A stream can be created from an event template using the a11 keyword. This is referred
to as a stream source template. For example:

stream<Tick> ticks := all Tick (symbol="APMA") ;
This creates a stream that contains all subsequent Tick events that have the symbol
APMA. You can use any single event template this way, however, you must specify the

all keyword and you cannot use any operators such as and or followed-by to combine
several event templates. See also "Stream network lifetime" on page 250.

Terminating streams

If a stream goes out of scope it continues to exist until the monitor instance terminates
or the stream is explicitly terminated in some fashion. Streams are not garbage-collected.
This means it is possible to leak streams, thereby consuming memory and potentially
performing unnecessary computation, if you do not explicitly terminate steams.

To terminate a stream, call the quit () method on a stream variable that refers to the
stream you want to terminate. For example:

stream<integer> foo := all A();
foo.quit () ;

This might also terminate connected streams. See "Stream network lifetime" on page
250. It is also possible to terminate connected streams by quitting a stream listener.

Using output from streams

A stream listener passes output items from a stream to procedural code. You use a from
statement to create a stream listener. The from statement has two forms.

The first form of the from statement creates a stream listener that takes items from an
existing stream. For example:
from sA: a {

/* Code here executes whenever an item is available from sA. */
}

The second form of the from statement contains a stream query definition, which creates
a new stream query. The stream listener takes items from the output stream of the
query. For example:

from a in sA select a : a {
/* Code here executes whenever the query produces output. */

}

The syntax for the first form is as follows:

[listener :=] from streamExpr : variable statement

Developing Apama Applications Version 9.10 208

Working with Streams and Stream Queries

Syntax Element

Description

listener

StreamExpr

variable

statement

Optional. You can specify a 1istener variable
to refer to the stream listener that the from
statement creates. You can declare a new
listener variable or a use an existing
listener variable.

Specifies any expression of type stream except
a stream query. This can be, for example, a
stream variable or a stream source template.
If you want to specify a stream query, use the
other form of the from statement.

Specifies a variable that you want to use to
hold the stream output. You must have already
declared the variable and the type of the
variable must be the same type as the stream
output. The from statement coassigns the
stream output to this variable.

For details about the characters you can specify,
see "Identifiers" on page 919.

The output from a stream is referred to as a

lot. Like an auction lot, a stream output lot can
contain one or more items. If the stream output
is a lot that contains more than one item, the
from statement coassigns each item, in turn, to
the variable. See "Working with lots that contain
multiple items" on page 245.

A from statement cannot specify multiple
coassignments.

Specifies an EPL statement. Specify a single
statement or enclose multiple statements in
braces. The from statement coassigns each
stream output item to the specified variable and
executes the statement or block once for each
output item.

If the steam output is a lot that contains more
than one item, and you want to execute the
statement or block just once for the lot rather
than once for each item in the lot, coassign
the result to a sequence. See "Coassigning to
sequences in stream listeners" on page 211.

Developing Apama Applications Version 9.10

209

Working with Streams and Stream Queries

The syntax for the second form of the from statement is as follows:

[listener :=] StreamQueryDefinition : variable statement

Syntax Element

Description

listener

StreamQueryDefinition

variable

statement

Optional. You can specify a 1istener
variable to refer to the stream listener that
the from statement creates. You can declare
anew listener variable or a use an existing
listener variable.

Specifies a stream query. See "Defining
stream queries" on page 211.

Specifies a variable that you want to use

to hold the query results. You must have
already declared the variable and the type
of the variable must be the same type as the
query results. The from statement coassigns
the query result to this variable.

For details about the characters you can
specify, see "Identifiers" on page 919.

If the query outputs lots that contain more
than one item, the from statement coassigns
each item in the lot, in turn, to the variable.
See "Working with lots that contain multiple
items" on page 245.

A from statement cannot specify multiple
coassignments.

Specifies an EPL statement. You can specify a
single statement or you can enclose multiple
statements in braces. The from statement
coassigns each stream output item to the
specified variable and executes the statement
or block once for each output item.

If you want the statement to be executed
once per lot rather than once per item
coassign the results to a sequence. See
"Coassigning to sequences in stream
listeners" on page 211.

Developing Apama Applications Version 9.10

210

Working with Streams and Stream Queries

Listener variables and streams

Like event listeners, you can assign a stream listener to a 1istener variable. A stream
listener exists until one of the following happens:

m The monitor instance that contains the stream listener is terminated
B The stream or streams the listener refers to are terminated

If you do not want to wait for one of the above to occur, you can stop a stream listener
by calling the quit () method on a 1istener variable that refers to it. Note that in many
cases this will also terminate the stream that is feeding the stream listener. See "Stream
network lifetime" on page 250.

Coassigning to sequences in stream listeners

Unlike event listeners, a stream query might generate multiple items for each external or
routed event. This is usually due to a batched window (a window that is updated after
every p seconds or after every mitems arrive) or to a join operation on two streams. In
this case, the correlator executes a stream listener action multiple times, once for each
generated item.

In a stream query definition, a window defines the set of items from the input stream
that the query operates on. See "Adding window definitions to from and join clauses" on
page 218.

To execute the stream listener action only once, and coassign all generated items at
once, specify a stream listener that coassigns to a sequence variable. The sequence must
contain items of the same type as the stream. For example:
sequence<A> seqh;
from batchedEvents: segA {

/* seqgA contains all events that arrive in this batch */

}

Defining stream queries

A stream query operates on one or two streams to transform their contents into a single
output stream. A stream query definition declares an identifier for the items in the
stream so that the item can be referred to by the operators in the stream query. Here is a
simple stream query definition:

stream<integer> ints := from a in sA select a.i;

When the correlator executes a statement that contains a stream query definition the
correlator creates a new stream query. Each stream query has an output stream (the type
of which might differ from that of the input stream).

A stream query definition is an expression that evaluates to a stream value. The value is
a reference to the output stream of the generated query.

Following is an example of a simple stream query in a stream listener:

from a in sA select a.b : b {

Developing Apama Applications Version 9.10 211

Working with Streams and Stream Queries

doSomethingWith (b) ;
}

The following table describes the user-defined parts of this stream listener. It is
important to understand the distinctive role each one serves.

Syntax Element Description

a This is an identifier that represents the current item in the
stream being queried. See "Specifying input streams in from
clauses" on page 216.

SA This variable represents the stream being queried.

a.b This expression describes what each query result looks like.
In this example, the query produces outputs from the b field
of the events in the stream.

o This is the variable that you coassign the query results to
so that the correlator can use the query result in the stream
listener's code block.

Linking stream queries together

A stream query definition is an expression and its result is a stream. Consequently, with
one exception described below, you can use a stream query definition anywhere that
you can use a stream value. For example, you can assign the resulting value to a stream
variable:

stream <float> values := from a in sA select a.value;

Alternatively, you can use a stream query definition as the return value from an action,
for example:
action createPriceStream (stream<Tick> ticks) returns stream<float> {

return from t in ticks select t.price;

}

Another option is to embed a stream query within another stream query, for example:

float vwap;
from p in (from t in ticks where t.price > threshold select t.price)
within period
select wavg (t.price,t.volume): vwap {
processVwap (vwap) ;
}

You can use stream variables to link stream queries together, as detailed in the next
section.

The exception is that you cannot use a stream query immediately after the from
keyword in the first form of the from statement. For example, the following is not a valid
statement:

from from t in ticks select t.price : tickPrice {

Developing Apama Applications Version 9.10 212

Working with Streams and Stream Queries

print tickPrice.toString() ;
}

Instead, use the second form of the from statement and specify a stream variable or a
stream source template. The following example specifies a stream variable:
from t in ticks select t.price : tickPrice({

print tick.price.toString() ;
}

Simple example of a stream network

Sometimes a single from statement is all that is required to achieve your goal. For
example, to obtain a VWAP (Volume-Weighted Average Price) for a stock you can add
the following from statement to a monitor:
float vwap;
from t in all Tick(symbol="APMA")

within period

select wavg(t.price,t.volume) : vwap {

processNewVwap (vwap) ; }

Often, however, you want to use the output from one query as the input to another
query. For example, here is an extract from the statistical arbitrage sample application,
which you can find in the samples\monitorscript\statarb directory of your Apama
installation directory:

action newStatArbOrder (StatArbOrder o) {
integer BUY:=1, HOLD:=0, SELL:=-1, instruction;

stream<float> spreads:=
from a in all Price(symbol=o.primary.symbol) retain 1
from b in all Price(symbol=o.secondary.symbol) retain 1
select (a.price - b.price);

stream<MeanSd> meanSds := from s in spreads within 20.0
select MeansSd(mean (s), stddev(s));

stream<integer> comparison := from s in spreads from m in meanSd
select compareSpreadAndBands (s, m.mean, m.sd, o.factor);

stream<integer> prevComparison := from ¢ in comparison
retain 1
select rstream c;

from ¢ in comparison from p in prevComparison
where c!=HOLD and c!=p select c: instruction {
if instruction = BUY {
buyPrimarySellSecondary () ;
} else {
sellPrimaryBuySecondary () ;

}
}

When queries are connected like this, the set of connected queries is referred to as a
stream network.

A stream network is strictly within a monitor instance. Routing an event takes that
event entirely out of the stream network since the event would not be received in the
same network activation even if it is received by the same monitor. Spawning a monitor

Developing Apama Applications Version 9.10 213

Working with Streams and Stream Queries

makes any stream variables point to inert streams so it is not possible to refer to a stream

network from a different monitor instance.

Stream query definition syntax

A stream query definition contains several elements, some of which are optional and
some of which are required. These elements, and their constituent parts, are described in
the following sections. The elements appear in a stream query in this order:

FromClause [FromClause | JoinClause]
Element Required or
Optional
FromClause Required
JoinClause Optional
WhereClause Optional

WhereClause] ProjectionDefinition

Description

Specifies the input stream for
the query. See "Specifying input
streams in from clauses" on page
216.

A from clause can also specify
which items from the input stream
the query should operate on. See
"Adding window definitions to
from and join clauses" on page
218.

If a second from clause appears
the correlator performs a cross-
join to combine items from the two
streams. See "Defining cross-joins
with two from clauses" on page
231.

Specifies a second stream for the
query to operate on. The correlator
performs an equi-join to combine
items from the two streams. See
"Defining equi-joins with the join
clause" on page 233.

A join clause can also specify
which items from the input stream
the query should operate on. See
"Adding window definitions to
from and join clauses" on page
218.

Applies a filtering criterion to the
items in the window or the items
produced by the join operation. See

Developing Apama Applications Version 9.10

214

Working with Streams and Stream Queries

Element Required or Description
Optional
"Filtering items before projection”
on page 235.
ProjectionDefinition Required Defines how the query generates

output items. See "Generating
query results" on page 236.

Identifier scope in stream queries

Consider the following code fragment:

integer a;

stream<float> prices := from a in ticks select a.price;

In this example, the a in the query refers to the current Tick item in the stream and not
to the a integer variable. In a stream query, you can use an identifier that you have not
previously declared. If there is a variable in a containing scope that has the same name
as an identifier in the query, then for expressions in the query the identifier in the query
hides the variable in the containing scope.

Following is another example of how scope works with steam queries:

integer a := 42;
float p;
from a in ticks select a.price:p {
print a.toString(); // Prints "42" rather than one of the ticks. }

The previous code fragment illustrates that identifiers in the listener action can have
the same name as identifiers in the stream query. While this is not good practice,

it is important to recognize that the listener action is not part of the stream query.
Consequently, an identifier in a stream query is out-of-scope in the stream query's
listener action.

Stream query processing flow

Each element of the stream query operates on the output of the previous part. To
correctly define stream queries, it can be helpful to understand that items flow through
the query and the correlator processes the parts of the query in the order shown in the
following figure. In the figure, the dashed outlines indicate optional elements.

Developing Apama Applications Version 9.10 215

Working with Streams and Stream Queries

Simple Query
—————— - S
Input f . A\ # ! e Outpuit
Stream — i TR ,.I'—-"\‘ LLITE _,_."'—P Stream
Joined Query
mput T T
Stream . Window _,f"“*---...
g ===
=
L = Stream
——————— 7
Input Window N
Straam - o

As items arrive on the input stream(s) and time elapses, the window definition for
each stream identifies which items from that stream the query should be processing at
any given moment. This includes partitioning, if it is specified. See "Adding window
definitions to from and join clauses" on page 218

In queries with two input streams, the correlator combines items from the two streams
by means of a cross-join operation (a second from clause) or an equi-join operation (a
join clause). See "Joining two streams" on page 231

The where clause, if there is one, filters items. See "Filtering items before projection” on
page 235.

The projection definition defines how the query generates output items. This includes
the select clause, which has appeared in examples such as "Simple example of a stream
network" on page 213. See "Generating query results" on page 236.

Specifying input streams in from clauses

In a stream query, each from clause specifies a stream that the query is operating on. The
syntax of the from clause is as follows:

from itemIdentifier in streamExpr [WindowDefinition]

Syntax description

Syntax Element Description

itemIdentifier Specify an identifier that you want to use
to represent the current item in the stream
you are querying. You use this identifier in
subsequent clauses in the query. For details
about the characters you can specify, see
"Identifiers" on page 919.

The type of the identifier is the same as the
type of the items that are in the stream you are
querying.

There is no link between an item identifier in
a query and a variable that you might define

Developing Apama Applications Version 9.10 216

Working with Streams and Stream Queries

Syntax Element Description

elsewhere in your code. In other words, it

is okay for an in-scope variable to have the
same name as an item identifier in a query.
Inside the query, the item identifier hides that
variable. See the second example below.

streamExpr Specify an expression that returns a stream
type. This is the stream that you want to query.

WindowDefinition Define which portion of the stream to query.
See "Adding window definitions to from and
join clauses" on page 218.

Examples

The query below generates a stream of float items. The item identifier is a. The stream
variable, ticks, refers to a stream of Tick events. The select clause specifies that each
query result item contains only the price value from the Tick event. Details about the
select clause are in "Generating query results” on page 236.

stream<float> prices := from a in ticks select a.price;

The a11 keyword followed by an event template is an expression of type stream
referred to as a stream source template. Consequently, you can use this in a from clause.
For example, you can modify the previous example to use the stream source template
directly within the stream query:

stream<float> prices :=
from a in all Tick(symbol="APMA") select a.price;

Notes

A stream query is an expression of type stream and so anywhere that you can specify

a stream expression you can use a stream query in its place. (There is one exception to
this. See "Linking stream queries together" on page 212.) This means you can nest
stream queries to create a compound stream query. For example, consider the following
non-nested stream queries:

stream<A> sA := all A();

stream<integer> derived :=
from a in sA retain 2 select mean(a.x);

stream sB :=
from a in derived within 10.0 select B(stddev(a));

An equivalent way to write this is as follows:

stream sB :=
from b in
from a in all A() retain 2 select mean(a.x)
within 10.0
select B(stddev (b)) ;

Developing Apama Applications Version 9.10 217

Working with Streams and Stream Queries

The compiler generates the same stream network in both cases so the performance
is exactly the same. However, nesting stream queries beyond one level can make the
compound stream query hard to understand.

To define a query that operates on two streams, specify two consecutive from clauses
or specify a from clause followed by a join clause. See "Joining two streams" on page
231.

Adding window definitions to from and join clauses

The items flowing through a stream are ordered. In any given activation, there are zero
or more items that are current. By default, the stream query operates on those current
items.

Alternatively, a window may be defined. Window definitions specify which items the
query should operate on in each activation, based on (but not limited to) the following;:

® The items within a given time period
B A maximum number of items
m The content of the items

As the window contents change, the items in the query projection will also change: new
items will be inserted and old ones removed. The output from a query is a stream of
items.

If the projection is an aggregate projection then the query output is the result of
evaluation of the select clause when the window contents change. See "Aggregating
items in projections” on page 238.

If the projection is a simple, non-aggregate projection, the default output is the insertion
stream or istream for short, of new projected items. Alternatively, if the restream
keyword is specified in the select clause, the output is the remove stream (or rstream)
of items that have become obsolete.

Window definition syntax

There are a number of different formats and keywords that you can use to define a
window on a stream. Following are the alternatives you can choose from. See the
subsequent topics for details.

[partition by partitionByExpr [, partitionByExpr]...]

(
within windowDurationExpr [every batchPeriodExpr]
[retain windowSizeExpr] [with unique keyExpr]

| retain windowSizeExpr [every batchSizeExpr] [with unique keyExpr]

)
| retain all

Every window definition specifies retain, within or both.

Developing Apama Applications Version 9.10 218

Working with Streams and Stream Queries

Syntax description

Syntax Element

Description

partitionByEXpr

windowDurationExpr

batchPeriodExpr

windowSizeExpr

keyExpr

batchSizeExpr

Optionally specifies an EPL expression

that should involve the input item in some
way and that returns a comparable type. A
partition by clause effectively creates a
separate window for each encountered distinct
value of partitionByExpr

Specifies a float expression that indicates a
duration of a number of seconds. The window
contains the items received within the last
windowDurationExpr seconds. See "Defining
time-based windows" on page 220.

Specifies a f1loat expression that indicates
an interval period of a number of seconds.
The window updates its contents every
batchPeriodExpr seconds. See "Defining
batched windows" on page 224.

Specifies an integer expression that indicates
the number of items you want to retain in the
window. The window contains the most recent
windowSizeExpr items. See "Defining size-
based windows" on page 222.

Specifies an EPL expression that must contain
at least one reference to the input item

and must return a comparable type. See
"Comparable types" on page 817.

If you add a with unique clause, if there
is more than one item in the window that
has the same value for the key identified by
keyExpr, only the most recently received
item is considered to be in the window. See
"Defining content-dependent windows" on
page 229.

Specifies an integer expression that indicates
a number of items. The window updates its
contents after every batchSizeExpr items

Developing Apama Applications Version 9.10

219

Working with Streams and Stream Queries

Syntax Element Description

that match the query are found. See "Defining
batched windows" on page 224.

Omitting the window definition

The window definition is optional in a stream query. If you do not specify any window
then, for any given activation of the stream query, the stream query operates on only the
items that are current for that activation. Typically this is a single event. However, if the
source for this query is, for example, a stream query with a batched window then the
items in each batch will be processed together as in the following example:

stream<A> sA := from a in all A() retain 4 every 4 select a;
from a in sA select count(): ¢ { ... }

The second query receives batches of four A events and will generate a single aggregate
value for each batch. For more details see "Stream queries that generate lots" on page
246.

Retaining all items

The simplest window is one that contains all items that have ever been in the stream.
The corresponding window definition is retain all. Conceptually, once an item enters
aretain all window, it remains in the window indefinitely (or until the stream query
is terminated). The following query evaluates the running mean of all items that have
ever been in the values stream:

stream <decimal> means := from v in values retain all select mean (v);

The retain all clause specifies an unbounded window. Unbounded windows have
restrictions on their use:

B You cannot have a partitioned or batched unbounded window.
B You cannot perform a join operation on an unbounded window.

B You cannot specify an unbounded window when you use rstreamin the select
clause of a query.

When you use a custom (user-defined) aggregate function in a query that contains an
unbounded window, you cannot also use a bounded aggregate function. You should
also be aware that, if you use a badly implemented custom aggregate function in a
query that contains an unbounded window, then this can result in uncontrolled memory
usage. See "Defining custom aggregate functions" on page 241.

Defining time-based windows

In a time-based window, the items are held in the window for a specific duration. The
syntax for defining a time-based window is:
within windowDurationExpr

Replace windowDurationExpr with an expression that returns the number of seconds
that items should remain in the window as a float value. For example, the following

Developing Apama Applications Version 9.10 220

Working with Streams and Stream Queries

query calculates the sum of all items that arrived in a stream of float values during the
last 1.5 seconds:

stream<float> sums := from v in values within 1.5 select sum(v);

The following diagram illustrates how this works in practice.

t=0.0 t=1.0 t=1.5 t=2.0 t=2.5 t=3.0 t=3.5 t=4.0 t=4.5

el 10,0 10.0 10L0

el 20,0 20.0 20.0

ed 30.0 30.0 | J0.0

a3 40.0 40.0
Simple istream Projection = 10.0 - 200 30.0 -- 40.0 -
Simple rstream Projection -- — - - 10,0 - 20.0 - 300
Aggregate Projection - 10.0 - 30.0 20.0 50.0 0.0 70.0 40.0

Each column represents a time when the query window contents change whereas each
row represents the arrival and lifetime of each event. As an event arrives in the window
it appears in bold purple. At each given time, the current window contents is indicated
by the items enclosed by boxes — bold purple items are new and lighter purple items
are old items still in the window. The numbers at the bottom give the contents of the
stream of insertions to and removals from the window in the case where each value

is being selected independently, or when the aggregate sum of the values in the set of
items in the window is being calculated. The query before the diagram corresponds to
the aggregate projection line. The queries shown here are:

Simple from v in values within 1.5 select v
istream
Projection

Simple from v in values within 1.5 select rstream v
rstream
Projection

Aggregate from v in values within 1.5 select sum(v)
Projection

In a simple, non-aggregate projection, when an event arrives in the window it appears
in the istream of the projection. It remains for 1.5 seconds, at which point it appears on
the rstream of the projection. The aggregate projection behaves differently. Whenever an
item arrives in or is removed from the window, a new sum appears on the istream of the
aggregate projection.

Developing Apama Applications Version 9.10 221

Working with Streams and Stream Queries

Defining size-based windows

As well as time, you can specify windows that contain only a certain number of items.
In a size-based window, as each new item arrives, it is added to the window. After the
number of items in the window reaches the window size limit specified in the query, the
arrival of a new item causes the removal of the oldest item from the window.

The syntax for defining a size-based window is as follows:
retain windowSizeExpr
Replace windowSizeExpr with an expression that returns how many items you want to

retain in the window as an integer value. For example, the following query calculates
the sum of the last 2 items in a stream of floats:

stream <float> sums := from v in values retain 2 select sum(v.number) ;

The following diagram, which uses the same notation as the previous section, illustrates
how this works in practice.

to t t2 t3 t4 ts 16 7

a0 a,10.0
e b20.0| |b20.0

2 a,30.0 [|&,30.0
e3 a40.0 | | a40.0
ed b, 50.0 b,50.0
e5 a,60.0 | |a60.0
e a,70.0] |a.70.0

ey b,80.0

Simple istream Projection 10.0 2000 30.0 40.0 50.0 G0.0 70.0 80.0

Simple rstream Projection - - 10,0 200 30.0 40.0 50.0 60.0
Agpragate Projection 10.0 300 500 70.0 90.0 1og 1300 1500

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple from v in values retain 2 select v.number
istream
Projection

Developing Apama Applications Version 9.10 222

Working with Streams and Stream Queries

Simple from v in values retain 2 select rstream v.number
rstream

Projection

Aggregate from v in values retain 2 select sum(v.number)
Projection

When an event arrives in the window it appears in the istream of a simple, non-
aggregate projection. The first item remains in the window when a second item arrives.
When a third item arrives, the first item is no longer in the window and it appears on the
rstream of the simple, non-aggregate projection. Likewise, when the fourth item arrives
in the window it appears in the istream and the second item appears on the rstream

of the simple projection, and so on. The behavior of the aggregate projection is that
whenever an item arrives in or is removed from the window, a new sum appears on the
istream of the aggregate projection.

Combining time-based and size-based windows

Sometimes you might want to focus on the last n items received in the last d seconds.
To define a window that retains items based on both time and size, use the following
format in the from clause:

within windowDurationExpr retain windowSizeExpr

The within keyword and expression must be first and the retain keyword and
expression must be second. As with separate size-based and time-based windows,
replace windowDurationExpr with an expression that returns a number of seconds, 4,
as a float value. Replace windowSizeExpr with an expression that indicates how many
items you want to retain in the window, n, as an integer value. The window contains the
last n items received in the last d seconds. If no items were received in the last d seconds,
the window is empty. For example:

from v in values within 2.5 retain 2 select sum(v):;

The following diagram, which uses the same notation as the previous section, illustrates
how this works in practice.

t=1.0 =1.5 t=2.0 t=2.5 t=3.0 =3.5 =4.0 t=4.5 t=5.0 t=5.5
el 10.0 10.0 10,0 0.0
el 20.0 20.0 20.0 20.0
&2 200 || 200 | [300][200][300
el 40.0 400 400 40.0
Simple istream Projection 10.0 - 20.0 - 30.0 - 40.0 - - -
Simple rstream Projection - - - - 0.0 - 2040 - - 30.0
Agoregate Projection 10.0 - 30.0 - 50.0 - 70.0 - - 40.0

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Developing Apama Applications Version 9.10 223

Working with Streams and Stream Queries

Simple from v in values within 2.5 retain 2 select v
istream

Projection

Shnpkf from v in values within 2.5 retain 2 select
rstream rstream v

Projection

Aggregate from v in values within 2.5 retain 2 select
Projection sum (v) ;

The important point to note in this example is that some items drop out of the window
before the 2.5 second period is passed. When e2 arrives, €0 and el are already in the
window. Even though e0 has been there for only 2 seconds, it is removed because e1
and e2 are now the two most recent items received in the last 2.5 seconds.

Defining batched windows

The default behavior is that the contents of a window change upon the arrival of each
item. The every keyword can be used to control when the contents of the window
change: it causes the items to be added to the window in batches. Time-based windows
can be controlled to update only every p seconds and size-based windows can be
controlled to update only after every m events.

The syntax for a batched window is one of the following:

within windowDurationExpr every batchPeriodExpr
| retain windowSizeExpr every batchSizeExpr
| within windowDurationExpr every batchPeriodExpr retain windowSizeExpr

Here, windowDurationExpr and windowSizeExpr retain their meaning from the
previous sections. The batchPeriodExpr is an expression that returns the time, p,
between updates as a f1oat value. The batchSizeExpr is an expression that returns the
number of events between updates, m, as an integer value.

When you specify within followed by every followed by retain, the every keyword
always indicates a number of seconds. That is, the window updates its content every p
seconds.

If no items have arrived or expired since the previous window update, the window
content is unchanged and consequently the query does not execute. The correlator
executes the query only when the window content changes.

Here is an example of a stream query that defines a batched, time-based window. The
correlator creates the query at t=0.0.

from v in values within 1.5 every 1.0 select sum(v)

The following diagram illustrates how this works in practice.

Developing Apama Applications Version 9.10 224

Working with Streams and Stream Queries

t=0.5 t=1.0 t=1.5 t=2.00 t=2.5 t=3.0 t=3.5 t=4.0 t=4.5 t=5.0

e0 100
&1 20.0 20.0 200
2 30.0 30,0 30.0
€3 40,0 40.0

Simgle istream Projection 100 - 200&300 - - - 40.0
Simple rstream Projection — - - 10,0 - 20.0 - 30.0 - 40.0
Aggregate Projection - 100 m 50.0 an 30.0 = 40.0 - 0.0

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple istream from v in values within 1.5 every 1.0 select v
Projection

Simple rstream from v in values within 1.5 every 1.0 select
Projection rstream v

Aggregate from v in values within 1.5 every 1.0 select
Projection sum (v)

The important things to note about the behavior of these queries is that the window
content changes only every second. Nothing appears on any insert or remove stream
between those points. This means that the items 10.0, 20.0 and 40.0 are not in the
window at the moment they arrive, but are kept until the next multiple of 1.0 second.
Item lifetimes are calculated from the item arrival time, not the point at which the
batching allows the item into the window. Consequently, the lifetime of the items in the
window is also affected by the batching. In these examples, you can see that the items
that were delayed entering the window are only in the window for one second because
they were already 0.5 seconds old at the point they entered the window. For contrast,
the item with the value 30. 0 remains in the window for 2.0 seconds because after 1.5
seconds the batching has not occurred, and so the window cannot change until the next
multiple of 1.0 second.

In the examples given here the batch period is smaller than the duration of the window.
If the batch period is larger than the duration of the window then some items can never
enter the window, if they would have already expired by the time the next batch arrives
in the window.

Batched size-based windows behave similarly to batched time-based windows, except
that the batch criteria is waiting for a number of items to arrive. In that case, items
always arrive in the window as a multiple of the batch size.

Developing Apama Applications Version 9.10 225

Working with Streams and Stream Queries

Batched windows produce multiple items at one time. A single group of items flowing
between queries together is called a lot. A lot can contain one item or several items. A
batched window is one way of producing a lot that contains several items.

Partitioning streams

The partition by clause splits a stream into partitions, based on one or more key
values. The subsequent window operators are applied to the partitioned stream; the
behavior is as if the window operators had been applied separately to each partition.
The result of using partition by followed by a window operator is referred to as a
partitioned window. You use a query with a partitioned window to retain particular
items for each partition specified by the partition by clause.

Partitioning is introduced with the following syntax:
partition by partitionByExpr [, partitionByExpr]...

The partition by clause precedes other window operators, so a complete query would
be:

from a in sA partition by a.x retain 2 select sum(a.y);

Each partitionByExpr is an expression that should contain at least one reference to the
input item and must return a comparable type. See "Comparable types" on page 817.
Some examples are in the following table. Assume that each partition by clause in the
table starts with the following:

from a in all A()

Definition Description

partition by a.x Partition on a single primitive type field of the input
event. This is likely to be the most common case.

partition by a Partition on an event's field values. The events that
have identical values for all fields are in the same
partition. For example:

from a in all A()
partition by a retain 2 select a;

Given the following input events:

A(1,1)
A(L,2)
A(1,1)

The first and third events are in the same partition, the

second is not. In this case, the event type A must itself
be a comparable type.

partition by 1 This is a valid partition expression, but it is not
recommended. A partition expression should reference
the input item in some way.

Developing Apama Applications Version 9.10 226

Working with Streams and Stream Queries

Definition Description

partition by f(a) This is a valid partition expression if f () is a function
that returns an appropriate type.

partition by Another valid partition expression.
a.x*globaldictla.y]

Example

from t in all Tick()
partition by t.symbol retain 1
select rstream t;

This query creates a separate partition for each new stock symbol it finds. Each partition
contains the most recent Tick event for that symbol. The query output, for each
encountered symbol, is the previous Tick event for that symbol. Note that it is possible
for this query to consume a large quantity of memory.

Partitions and aggregate functions

The partition by clause creates several partitions within the window. However, a
stream query has other parts in addition to the window. The other parts include the
projection and optional join or where elements. These other parts of the query operate
on a single window that contains all items from all partitions.

Likewise, when you partition a stream any specified aggregate functions aggregate over
all partitions. If you want to generate separate aggregate values for different groups of
events then you must specify a group by clause. See "Grouping output items" on page
238 . A common use case is to specify matching partition by and group by clauses.

Consider the following stream query:

from a in all A() partition by a.x retain 2 select sum(a.y):;

The window definition is retain 2, and this is partitioned by a.x, where x is the first
field in A. There is one retain 2 partition for each value of x. Suppose this stream query
receives the following input events:
A(1,1)
A(1,2)
A(2,1)
A(2,2)
A(1,3)
A(2,3)
After these events have all arrived, one partition contains A (1,2) and A (1, 3) while a
second partition contains & (2, 2) and 2 (2, 3). However, the parts of the query following
the window definition operate on the collection of all items in all partitions. In this
example, the sum () aggregate function generates 10. It does not generate a lot that
contains two values of 5. Now consider the following query:
from t in all Tick()

partition by t.symbol retain 10

group by t.symbol

select mean(t.price)

Developing Apama Applications Version 9.10 227

Working with Streams and Stream Queries

This query returns one mean value per symbol, which is the mean of the last 10 ticks for
that symbol. If you do not want all means for all symbols in one lot, you might prefer to
spawn monitors so that you have an instance of the following query for each symbol:
from t in all Tick (symbol=X)

retain 10
select mean (t.price)

If you do want the averages for all the symbols in the same stream, then you can specify
the group key in the select clause in order to later differentiate between the output
events, as in the following example:
from t in all Tick{()

partition by t.symbol retain 10

group by t.symbol
select Output (t.symbol, mean (t.price))

As you can see, the partition by clause is often used in conjunction with the group by
clause.

Tip: In EPL, it is common to use spawn in a monitor to create separate monitor
instances. For example, each monitor instance might process a separate stock
symbol. Spawning separate monitor instances might be preferable to using
a single monitor instance that specifies partition by in a stream query so
that it, for example, processes all stock symbols. Spawning separate monitor
instances can be more efficient because your application processes only the
subset of symbols that are of interest. Also, the subset of symbols of interest
can change through the day. Appropriate monitor instances and queries can
be created as required.

See also "IEEE special values in stream query expressions" on page 241.

Using multiple partition by expressions

To partition a window according to multiple criteria, you can insert multiple, comma-
separated expressions. For example, you can refine a previous query to produce values
for different volume bands, as follows:

from t in all Tick()

partition by t.symbol, t.volume.floor()/100 retain 1
select rstream t;

In this example, the correlator applies retain 1 to each set of ticks that share both the
same symbol and the same volume (to within 100). As a result, an item is output only
when a replacement tick arrives for an existing symbol in an existing volume band.

Partitioning time-based windows
If a window is purely time-based then there is no benefit to partitioning the window. For
example, consider the following two queries:

from t in all Tick() within 1.0 ...
from t in all Tick() partition by t.symbol within 1.0 ...

The first query outputs every Tick received in the last second. The second query
organizes the stream of Tick events by their symbols, then gives you each one that

Developing Apama Applications Version 9.10 228

Working with Streams and Stream Queries

arrived in the last second. This is still every Tick received in the last second. The
correlator ignores a partition by statement if it is used only with a within window.

If your window includes a retain clause as well as a within clause then it can be
helpful to use partition by, likewise if there is a with clause. See "Defining content-
dependent windows" on page 229. For example:

from t in all Tick() partition by t.symbol within 10.0 retain 5 ...

This window will contain at most 5 Tick events for each different symbol received
within the last 10 seconds.

Defining content-dependent windows

The contents of the window can also depend on the content of individual items in the
stream. Currently the only content-dependent window operator is the with unique
clause, which limits the window to containing only the most recent item for each key
value. The with unique clause can be added to a within or a retain window by
following it with:

with unique keyExpr

The keyExpr follows the same rules as a partition key expression. That is, it is an
expression that should contain at least one reference to the input item and must return
a comparable type. See "Comparable types" on page 817. Some examples are in the
following table.

If you add a with unique clause, if there is more than one item in the window that has
the same value for the key identified by keyExpr, only the most recently received item
is considered to be in the window. It is important to note that the with unique clause
processing happens after the rest of the window processing. Consider the following
query:

from p in pairs retain 3 with unique p.letter select sum(p.number)

If the most recent two events have the same letter, there will be only two events over
which the sum is calculated. This is illustrated in the following diagram:

Developing Apama Applications Version 9.10 229

Working with Streams and Stream Queries

to t1 i2 13 td t5 6

el ai a1 a,

e1 b2 b2 b2

ed c3 c.d

a3 a4 a4 ad

ed G2

el G
Simple istream Projection a1 b2 3 ad c5 b e, 7
Simple rstraam Projection - - == a1l bZ2&cd c5 ad&ch
Apgregate Projection 1 3 G 9 9 10 T

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

Simple istream from p in pairs retain 3 with unique p.letter
Projection select p

Simple rstream from p in pairs retain 3 with unique p.letter
Projection select rstream p

Aggregate from p in pairs retain 3 with unique p.letter
Projection select sum(p.number)

As you can see, when the last three items received all have a unique letter, the query
behaves like a retain 3 window. When the last three items received do not all have

a unique letter, the duplicate that arrived first is removed from the window. In this
example, the arrival of ¢, 5 causes the removal of c, 3 even though it was one of the last 3
items received. In other words, the with unique clause can cause an item to be removed
from the window and the sum earlier than it would otherwise be removed.

The difference between a partitioned window and a window that is using a with
unique clause can be described as “using partition by gives you the last 3 values for
each key” and “using with unique gives you one value of each key, from the last 3”.
You can combine both partition by and with unique if you are using different key
expressions in each clause.

Note that you cannot specify within followed by retain followed by with unique.

See also "IEEE special values in stream query expressions" on page 241.

Developing Apama Applications Version 9.10 230

Working with Streams and Stream Queries

Joining two streams

When a stream query operates over two input streams it is referred to as a join
operation. There are two forms of join operation available in EPL. Each form takes two
input streams and produces a single output stream of combined items. A cross-join joins
every event from one stream's window with every event in the other stream's window.
An equi-join joins events only when they have matching keys.

Join operations, particularly cross-joins, can create many more output events than input
events, not just the same or fewer.

Defining cross-joins with two from clauses

A cross-join is defined with two from clauses, one for each stream, optionally including
window definitions. A simple example of this is:
from pl in leftPairs retain 2

from p2 in rightPairs retain 2
select sum(pl.num * p2.num);

This is illustrated in the following diagram, whose notation differs from the previous
diagrams. Here, for each time point there are two columns, one for each side of the join.
The first column, with purple events, represents the items from the first from clause and
the second column, with cyan events represents the items from the second from clause.
Events in bold arrived during this activation of the stream query and the boxes enclose
the windows for each side. As in the previous diagrams, the output is given for each of
the three kinds of projections.

Developing Apama Applications Version 9.10 231

Working with Streams and Stream Queries

t3 4 t5 t6 t7

i)
=]

to t1 t2
mDiDm
a2 b3

el

83 a, a6 af

el a,r ary

Simple
istream - 2 G 8 15420 12 & 30 14 & 35 48 & 56
Projaction

Simiple
rstream - - - 2 - G&15 8 & 20 12&14
Projection

Aggregate 2 8 14 49 70 o 169
Projection

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

from pl in leftPairs retain 2

Simple istream from p2 in rightPairs retain 2
Projection select pl.num * p2.num
. from pl in leftPairs retain 2
Slmple rstream from p2 in rightPairs retain 2
Projection select rstream pl.num * p2.num
from pl in leftPairs retain 2
Aggregate from p2 in rightPairs retain 2
Projection select sum(pl.num * p2.num);

As shown in the diagram, in a cross-join whenever an item arrives in a window, it is
joined to every item in the other window to produce a separate output item for each
combination.

Because the number of output items is the product of the size of the two windows, cross-
joins are normally used for joins between at least one of:

® A window of size 1
® A stream where you have omitted the window definition

If both sides of the join omit the window definition then for output to occur an item
must arrive on each stream during the same activation of the query.

Developing Apama Applications Version 9.10 232

Working with Streams and Stream Queries

A more concrete example can be seen in the statistical arbitrage sample application (see
the samples/monitorscript/statarb directory of your Apama installation directory),
which includes the following statement:
stream <decimal> spreads :=

from a in all Price (symbol=symbolA) retain 1

from b in all Price(symbol=symbolB) retain 1
select (a.price - b.price);

This query generates the spread between the latest prices for the two identified stocks.
In each from clause, the window contains one item. Whenever a new item arrives in one
window the query executes the calculation defined in the select clause and outputs the
result.

To generate a running mean and a standard deviation for this spread value you can
define the following query:

stream<MeanSD> averages := from s in spreads within 20.0
select MeansSD (mean (s),stddev(s));

Then, to obtain all three current values for the spread, the mean and the standard
deviation you can perform a join between the spreads stream and the averages stream:
stream<SpreadMeanSD> all := from s in spreads

from a in averages
select SpreadMeansSD(s, a.mean, a.stddev);

This query outputs a result only when there is an item currently in both spreads and
averages.

In a cross-join, you cannot specify more than two from clauses.

Caution: Be aware that cross-joins have the potential to generate a great quantity of
output. It is preferable to use cross-joins only where the window size/duration
of any window involved in the cross-join is small. For example, putting 8000
events through a 100x100 cross-join produces 1.6 million output events. You
cannot specify a cross-join in a query that contains an unbounded window.

Defining equi-joins with the join clause

An equi-join has a key expression for each of the two streams that are being joined. Two
items are joined into an output item only if the values of their key expressions are equal.
The full syntax for an equi-join, consisting of a from clause followed by a join clause, is:
from itemIdentifierl in streamExprl [windowDefinitionl]

join itemIdentifier2 in streamExpr2 |[windowDefinition?2]
on joinKeyExprl equals joinKeyExprZ2

As with the partition and unique key expressions, each join key expression must return
a "comparable type" on page 817. Also, joinKeyExprl must include a reference to
itemIdentifierl and joinKeyExpr2 mustinclude a reference to itemIdentifier2
Each join key may not refer to the item from the other stream. An example of an equi-
join is:
from pl in leftPairs retain 2

join p2 in rightPairs retain 2

on pl.letter equals p2.letter
select sum(pl.num * p2.num);

Developing Apama Applications Version 9.10 233

Working with Streams and Stream Queries

This is illustrated in the following diagram:

%]

e

e3

es

eb

Simple
istraam
Projection

Simple
rstream
Projection

Aggregate
Projection

o L4 2 t3
. DHD a-

=y
L

- - - 2 - 15 8 12 8 14

The query before the diagram corresponds to the aggregate projection. The three queries
shown here are:

. from pl in leftPairs retain 2
Slmple join p2 in rightPairs retain 2
istream on pl.letter equals p2.letter
Projection select pl.num * p2.num

. from pl in leftPairs retain 2
Slmple join p2 in rightPairs retain 2
rstream on pl.letter equals p2.letter
Projection select rstream pl.num * p2.num

from pl in leftPairs retain 2
Aggregate join p2 in rightPairs retain 2
Projection on pl.letter equals p2.letter
select sum(pl.num * p2.num) ;

This diagram shows the input that was used in the cross-join example, but with the join
changed to be an equi-join. As you can see, only the items with matching letters appear
in the output. The first event on the right side of the join has the same letter as the event
on the left, so an output is produced as before. When the second event arrives on the left,
however, no output is produced, because the letter does not match the other side. When
a b event arrives on the right side of the join, that is joined with the b event on the left.

Developing Apama Applications Version 9.10 234

Working with Streams and Stream Queries

Finally, at the end of the table you can see that the join is empty because none of the
events on the left match any of the events on the right.

Here is a more concrete example of an equi-join:

from r in priceRequest
join p in prices partition by p.symbol retain 1
on r.symbol equals p.symbol
select p.price

For each new stock price request, this query generates the latest price for that stock/
symbol. In an equi-join, whenever an item enters a window on one side, the correlator
evaluates the join condition to determine if the item matches any of the items in the
window on the other side. The correlator joins and outputs each matching pair when it
finds one.

Typically, you want to create a derived event that is a function of the events on both
sides of the join operation. Here is another example:
from latest in latestSensorReadings
join average in averageSensorReadings
on latest.sensorId equals average.sensorId
select SensorAlert (latest.sensorId, latest.value, average.mean): alert({
send alert to "output";

}

This query joins a stream of the most recent readings from all the sensors with a stream
of averages of the same readings over some period. When a new reading appears it
causes an event on the stream of averages at the same time. This causes them to be
joined to create an alert that contains both the latest value and the latest average, which
is then sent.

See also "IEEE special values in stream query expressions” on page 241.

Filtering items before projection

In a stream query, after the window definition and any join clause, you can optionally
specify a where clause to filter the items produced by the window or join. The where
clause specifies an arbitrary EPL expression and can filter items based on any criteria
available to EPL.

Format

where booleanExpr

Replace booleanExpr with a Boolean expression. This expression is referred to as the
where predicate. Only those items for which the where predicate evaluates to true are
passed by the filter. For example:

from t in ticks retain 100

where t.price*t.volume>threshold
select mean (t.price)

To calculate the mean price, this query operates on only the items whose value (t.price
* t.volume) is greater than the specified threshold.

Developing Apama Applications Version 9.10 235

Working with Streams and Stream Queries

Performance

The filtering performed by the where clause happens after any window, with or join
operations. In some cases, it is possible to rephrase the query to improve operational
efficiency. For example:

from t in ticks within 60.0

where t.price*t.volume>threshold
select mean (t.price)

This query maintains a window of Tick items. Now consider this revision:

from p in
(from t in ticks where t.price*t.volume>threshold select t.price)
within 60.0
select mean (p)

In the first example, the within window contains all Tick events received in the last
minute. In the second example, the where clause is before the window definition so the
filtering happens before items enter the window. Consequently, the window contains
only float items for which the where predicate is true. These types of optimization are
of particular benefit in queries that include both a where clause and a join operation
(equi-join or cross-join). However, care must be taken when refactoring queries,
particularly when size-based windows are involved. For example, consider the two
queries below:

from t in ticks retain 100 where t.price*t.volume>threshold
select mean(t.price)

from p in
(from t in ticks where t.price*t.volume>threshold select t.price)
retain 100 select mean (p)

These queries are not equivalent. The first query generates the mean of a subset of the
last 100 items. The where predicate evaluated to true for only the items in the subset.
The second query generates the mean of the last 100 items for which the where predicate
evaluated to true.

Generating query results

The last component of a stream is the required projection definition, which specifies how
to generate items for the query's output stream. A projection definition has the following
syntax:

[group by groupByExpr [, groupByExpr]...] [having havingExpr]
select [rstream] selectExpr

Each groupByExpr is an expression that returns a value of a comparable type. These
expressions form the group key, which determines which group each output item is a

part of. Any aggregate functions in the having or select expression operate over each
group separately. See "Grouping output items" on page 238.

The havingExpr expression filters output items. See "Filtering items in projections” on
page 239.

Developing Apama Applications Version 9.10 236

Working with Streams and Stream Queries

The value you specify for selectExpr defines the items that are the result of the query.
The correlator evaluates selectExpr to generate each item that appears in the query's
output stream. The type of selectExpridentifies the type of the query's output stream.

A projection can be one of the following kinds:

® A simple projection does not specify any aggregate functions, nor does it specify a
group by or having clause. A simple projection can be a simple istream projection
or a simple rstream projection.

B An aggregate projection specifies at least one aggregate function across the having
and select expressions.

You can specify a group by clause as part of an aggregate projection. If there is a
group by clause, the group key must be one or more expressions that take the input
event and return a value of a comparable type.

You cannot specify rstreamin an aggregate projection.

The following table describes the kinds of expressions that can appear in the select
expression for each type of projection. In more complex expressions, the rules apply
similarly to each sub-expression within that expression.

Kind of Valid in Description Example
Expression Projections

Non- Simple An external select currentTime;
item and variable,
expression aggregate constant, or

method call, It

does not refer

to any of the

input items.

Item Simple A reference select a.i;

expression to the input
. select sqgrt(a.x)*5.0/a.y
item or a non-

aggregate
expression that
contains at least
one reference to
the input item.

Group Aggregate An expression group by a.i/10 select
key that returns one (a.1/10) *mean (a.x) ;
expression of the group

keys can also
occur in the
projection.

Developing Apama Applications Version 9.10 237

Working with Streams and Stream Queries

Kind of Valid in Description Example
Expression Projections

Aggregate Aggregate An expression select mean(a.i);
function that contains
expression at least one

aggregate

function.

Arguments to
the aggregate
function can
include item
expressions.

Note: An expression might not be syntactically equivalent to a group by expression
even though it might appear to be equivalent. For example, if the group by
expression is a.i*10, you cannot specify 10*a. i as an equivalent expression.
An equivalent group by expression must contain the exact sub-expression
specified in the group by clause.

Aggregating items in projections

An aggregate function calculates a single value over a window. If a select expression
contains any aggregate functions, then references to the input item can appear only

in the arguments to those aggregate functions. Any EPL expression can appear in the
arguments to the function, but other aggregate functions may not. EPL provides several
built-in aggregate functions and you can define additional ones. See "Defining custom
aggregate functions" on page 241 and "Built-in aggregate functions" on page 870.

Grouping output items

In a select clause, when you do not specify a group by clause any aggregate functions
in the projection operate on all values in the window. This is true even if you partitioned
the window. To group the items in the window into one or more separate groups and

to calculate an aggregate value for each group of items, use the group by clause. The
syntax of the group by clause is as follows:

group by groupByExpr [, groupByExpr]...

Each groupByExpr is an expression that returns a value of a comparable type. See
"Comparable types" on page 817.

These expressions form the group key, which determines which group each output item
is a part of. Any aggregate functions in the select expression operate over each group
separately.

In an aggregate projection, you can refer to any group key expressions anywhere in the
select expression. However, you can refer to a query input item only in an aggregate
function argument. For example:

from t in all Tick() within 30.0
group by t.symbol select TickAverage (t.symbol, mean (t.price));

Developing Apama Applications Version 9.10 238

Working with Streams and Stream Queries

Whenever a lot arrives, this query updates one or more groups. Every group that is
updated outputs a TickAverage event, and all TickAverage events are in the same lot.
Each TickAverage event contains the symbol and the average price for that symbol
over the last thirty seconds. If a group is not updated, it does not output a TickAverage
event.

You typically use a group by clause in a stream query in conjunction with a partition
by clause. In the following example, the window contains up to 10 events for each stock
symbol. The aggregate projection calculates the average price separately for each symbol
and each average is based on up to 10 events:

from t in ticks partition by t.symbol retain 10
group by t.symbol select mean (t.price);

Obtaining the query's remove stream

For each query, there are items that have been added to the window in a given query
activation and items that have been removed (they were previously in the window, but
are no longer in the window). By default, a simple, non-aggregate projection returns the
items that have been added to the window. This is the istream. To obtain the items that
have been removed from the window, add the rstream keyword to the select clause.

For aggregate projections, obtaining the rstream is not meaningful and therefore the
rstream keyword is not allowed in aggregate projections.

For examples of specifying rstream, see "Defining time-based windows" on page 220,
"Defining size-based windows" on page 222, "Defining cross-joins with two from
clauses" on page 231 and "Defining equi-joins with the join clause" on page 233.

When you specify retain all, you cannot specify rstream.

Filtering items in projections

In a stream query, as part of an aggregate projection definition, you can optionally
specify a having clause to filter the items produced by the projection. The having clause
specifies an arbitrary EPL expression and can filter items based on any criteria available
to EPL.

Format

having booleanExpr

Replace booleanExpr with a Boolean expression. This expression is referred to as the
having predicate. The having predicate is evaluated for each lot that arrives. When the
having predicate evaluates to false the projection does not generate output.

Unlike the where clause, the having clause

m Is part of the projection

m Filters the output of the projection rather than what comes into the projection
m Cannot refer to individual items
|

Can refer only to the group key or aggregates

Developing Apama Applications Version 9.10 239

Working with Streams and Stream Queries

A having clause can only be in an aggregate projection; it cannot be in a simple
projection. Each aggregate projection must contain at least one aggregate in a having
clause or in the select clause.Values for aggregates, whether in having expressions
or select expressions, are always calculated over the same window(s). See "Grouping
output items" on page 238.

For example:

from t in all Temperature() within 60.0
having count () > 10
select mean (t.value)

This query calculates a rolling average of temperatures over the last minute. In this
stream query, the having clause permits the average to be ouput only when it is a
reliable measure.. The count () aggregate function ensures that there are sufficient
measurements (at least 10) in the previous 60 seconds to compensate for any noise or
one-off errors in the readings.

Because the filtering occurs after the select exrpression has been processed, the average
is still being calculated invisibly in the background, and can be output the very moment
the measurement passes the reliability criterion. In the previous example, this means
that after ten items have arrived, the average of all values in the last minute is output.

Filtering grouped aggregate projections

If you specify the group by clause, the having clause operates separately on each group,
just as the select clause operates separately on each group. For example, the following
code changes the previous code so that it outputs a reliable rolling average for each
zone:
from t in all Temperature() within 60.0

group by t.zone

having count () > 10
select ZoneAverage (t.zone, mean(t.value))

Just as a distinct mean is output for each group (each zone), the criterion for the having
expression are applied separately to each group. A rolling average for a zone is output
only when count () > 10 is true for that zone.

Performance

It is possible for the stream network to avoid some calculations in a select clause when
the having clause evaluates to false. Since maintaining aggregates can be expensive, this
can be a useful optimization. When you know that a having clause can often evaluate
to false, you can obtain better performance by specifying a having clause in the stream
query as opposed to specifying a query like this:
from t in all Ticks (symbol="APMA") within 60.0 * 10.0

select MeanStddev (mean (t.value), stddev(t.value)) : avg sd {

if (shouldOutput ()) then {
send avg sd to "output";

}

This query computes a rolling average and standard deviation over the last ten minutes
of a stock, and sends them to a dashboard or similar. Optionally, the output feed that

Developing Apama Applications Version 9.10 240

Working with Streams and Stream Queries

sends out the rolling average and standard deviation can be turned off, and this is
indicated by the return value of the shouldoutput () action. However, even when the
output is turned off, Tick events still come in and the stream network still calculates the
rolling average and standard deviation.

You can rewrite the code such that turning off the output terminates the query and
turning on the output restarts the query. This option loses the state of the window and
introduces a 10-minute lag before accurate output is available. A better option is to add
a having clause so that turning off the output removes the performance penalty without
losing state. For example:
from t in all Ticks(symbols="APMA") within 60.0 * 10.0

having shouldOutput ()

select AvgStddev (mean (t.value), stddev(t.value)) : avg sd {

send avg sd to "output";

}

The mean () and stddev () aggregates continue to accumulate state when
shouldOutput () returns false, but they do not fully calculate the rolling average and
standard deviation for each incoming item.

IEEE special values in stream query expressions

The following information about IEEE special values applies to the following
expressions:

m The key expression in a with unique clause

B Apartition by expression

® The expressions that define the conditions in a join clause
B A group by expression

If one of these expressions is a decimal or float value, or a container that involves a
decimal or float value, and the decimal or float value is an IEEE special value then
the following applies:

m NaN — This value is illegal as all or part of an expression and terminates the
monitor instance.

®m Positive/negative infinity — These values are legal and all positive infinities are
treated as equal as are all negative infinities.

Defining custom aggregate functions

EPL provides a number of commonly used aggregate functions that you can specify in
the select clause of a query. See "Aggregating items in projections” on page 238.

If none of these functions perform the operation you need, you can define a custom
aggregate function. The format for defining a custom aggregate function is as follows:

aggregate [bounded|unbounded] aggregateName ([arglist])
returns retType { aggregateBody }

Developing Apama Applications Version 9.10 241

Working with Streams and Stream Queries

Element

Description

bounded | unbounded

aggregateName

arglist

retType

aggregateBody

Specify bounded when you are defining a
custom aggregate function that will work with
only a bounded window. That is, the query
cannot specify retain all.

Specify unbounded when you are defining a
custom aggregate function that will work with
only an unbounded window. That is, the query
must specify retain all.

Do not specify either bounded or unbounded
when you are defining a custom aggregate
function that will work with either a bounded or
an unbounded window.

If you do not specify bounded, you must define
the custom aggregate function so that it can
handle a window that never removes items. The
function should not consume memory per item
in the window.

Specify a name for your aggregate function. This
is the name you will specify when you call the
function in a select clause.

For details about the characters you can specify,
see "Identifiers" on page 919.

Optionally, specify one or more comma-
separated type/name pairs. Each pair indicates
the type and the name of an argument that you
are passing to the function. For example, (float
price, integer quantity).

Specify any EPL type. This is the type of the
value that your function returns.

The body of a custom aggregate function is
similar to an event body. It can contain fields
that are specific to one instance of the custom
aggregate function and actions to operate on
the state. The init (), add (), remove () and
value () actions are special. They define how
stream queries interact with custom aggregate
functions.

Developing Apama Applications Version 9.10 242

Working with Streams and Stream Queries

You define custom aggregate functions outside of an event or a monitor and the
function's scope is the package in which you declare it. To use custom aggregate
functions in other packages, specify the function's fully-qualified name, for example:

from a in all A() select com.myCorporation.custom.myCustomAggregate (a)

Alternatively, you can specify a using statement. For example, suppose you define the
myCustomAggregate () function in the com.myCorporation.custom package. To use
that function inside another package, insert a statement such as the following in the file
that contains the monitor in which you want to use the function:

using com.myCorporation.custom.myCustomAggregate;

Insert the using statement after the optional package declaration but before any other
declarations. You can then simply specify the function name. For example:

from a in all A() select myCustomAggregate (a)

Be sure to inject the file that contains the function definition before you inject the files
that contain monitors that use the function.

See also "Names" on page 929.

Example of defining a custom aggregate function
The following example shows the definition of a custom aggregate function that returns
the weighted standard deviation of the input values.

aggregate bounded wstddev(float x, float w) returns float ({
// 1lst argument is the value, 2nd is the weight.

float s0;
float sl1;
float s2;
action add(float x, float w) {
if (w != 0.0) then {
sO := sO0 + w;
sl := sl + w*x;
s2 = 82 + wr*x*x;

}
}

action remove(float x, float w) {
if (w != 0.0) then {
sO := s0 - w;
sl := sl - w*x;
s2 := 82 - Wr*x*x;

}
}

action value () returns float {
if (sO != 0.0) then { return ((s2 - sl*sl/s0)/s0).sqrt(); }
else { return float.NAN; }

Defining actions in custom aggregate functions

Certain actions in a custom aggregate function have special meanings and you must
define them as follows:

Developing Apama Applications Version 9.10 243

Working with Streams and Stream Queries

B init() — The init () action is optional. If a custom aggregate function defines an
init () action it must take no arguments and must not return a value. The correlator
executes the init () action once for each new aggregate function instance it creates
in a stream query.

B add() — A custom aggregate function must define an add () action. The add ()
action must take the same ordered set of arguments that are specified in the custom
aggregate function signature. That is, the names, types, and order of the arguments
must all be the same. The correlator executes the add () action once for each item
added to the set of items that the aggregate function is operating on.

B remove () — A bounded aggregate function must define a remove () action. An
unbounded aggregate function must not define a remove () action. If you do not
specify either bounded or unbounded, the remove () action is optional. The remove ()
action must take the same ordered set of arguments as the add () action and must
not return a value. The correlator executes the remove () action once for each item
that leaves the set of items that the aggregate function is operating on.The value that
remove () is called with is the same value that add () was called with.

B value() — All custom aggregate functions must define a value () action. The
value () action must take no arguments and its return type must match the return
type in the aggregate function signature. The correlator executes the value () action
once per lot per aggregate function instance and returns the current aggregate value
to the query.

Custom aggregate functions can declare other actions, including actions that are
executed by the above named actions. A custom aggregate function cannot contain a
field whose name is onBeginRecovery, onConcludeRecovery, init, add, value, or
remove, even if, for example, the custom aggregate function does not define a remove ()
action.

Overloading in custom aggregate functions

As with event types, the names of custom aggregate functions must be unique. Unlike
the built-in aggregate functions, there is no overloading, so it is not possible to declare
two aggregate functions with the same name and different parameters or two aggregate
functions with different bounded and unbounded specifiers and the same name. For
example:

aggregate unbounded max (float value) returns float {...}

aggregate bounded max(float value) returns float (...}
// Error! You cannot use the same function name.

aggregate unbounded maxu(float value) returns float {...}
aggregate bounded maxb (float value) returns float {...}

// Both of these queries are correct. They have different names.

In contrast, the built-in bounded and unbounded aggregate functions are overloaded.

Distinguishing duplicate values in custom aggregate functions

Each item in a stream is considered to be unique. However, when duplicate values
appear in the set of items that a custom aggregate function operates on, it is not possible

Developing Apama Applications Version 9.10 244

Working with Streams and Stream Queries

for the function to identify the particular instance of the value. If your implementation
requires being able to distinguish between instances of duplicate values, you can
accomplish this by extending the signatures of the function's add () and remove ()
actions.

For example, you might see the following set of f1oat values in a stream:
1.0 2.0 3.0 4.0 3.0 2.0 1.0

Each occurrence of a particular value in the stream represents an individual value,
separate from any other occurrences of that value. But when a query presents these
values to a custom aggregate function (by means of the add () and remove () actions) the
value alone is not enough to identify the particular occurrence that this value represents.

To distinguish one occurrence from another, extend the action signatures as follows:
B The add () action can return a value, which can be of any type.

®m If the add () action does return a value, then the remove () action must accept, as its
last argument in addition to its standard arguments, an argument of the same type
as that returned by the add () action.

When an item is added to the aggregate the value returned by the add () action is stored
with the item. When that item is removed from the aggregate the same value will be
passed to the remove () action. Thus, it is possible to distinguish between items with
duplicate values by comparing the additional data that is passed to the remove () action.

The following example shows an aggregate function that returns the entire window
contents, in order, as a sequence:
aggregate windowOf (float f) returns sequence<float> {

dictionary<integer, float> d;
integer 1i;

action init() { d.clear(); 1 := 0; }
action add(float f) returns integer ({
i := i+1;
d[i] := £;

return 1i;

}
action remove (float f, integer k) { d.remove(k); }
action value() returns sequence<float> { return d.values(); }

Working with lots that contain multiple items

Each time a stream query or stream listener is activated it might be processing more than
one item at a time. Each simultaneously processed group of items is referred to as a lot.
Like an auction lot, a lot can contain just one item or it can contain a number of items.
Stream listeners can be activated once per item or once per lot. Stream queries try to
process each item in a lot as if it arrived separately. See "Behavior of stream queries with
lots" on page 246 for a discussion of cases where this is not possible.

When a lot contains multiple items all items in the lot appear in the output stream at
the same time. However, the correlator preserves the order in which the stream query
generated the items in the lot. When that output stream is the input stream for another

Developing Apama Applications Version 9.10 245

Working with Streams and Stream Queries

stream query, the subsequent query uses the preserved order, if necessary, to determine
how to process the items.

Stream queries that generate lots

To generate a lot that contains multiple items, a stream query must specify a simple
projection or an aggregate projection that contains a group by clause. The stream query
must also either receive lots that contain multiple items or must contain one of the
following:

m A batched window

B A timed window with the rstream keyword (this must be a simple projection, and
not an aggregate projection)

B Ajoin of either type.

A query with a non-grouped aggregate projection never generates multiple items. It
generates a single item or nothing.

A timed window with the rstream keyword can generate lots because multiple

items can have the same timestamp. In a timed window, when items with the same
timestamp expire they all leave the window at the same time. However, the correlator
still maintains the order in which the items were generated or received.

Behavior of stream queries with lots

This topic provides advanced information about how queries process lots that they
receive on their input streams. The information here requires a thorough understanding
of streams, queries, and the information about lots presented so far.

To understand how stream queries behave when receiving lots that contain more than
one item, consider the window content of the query before the lot is input and the
window content of the query after the lot is input. The difference between these two
states determines the output of the query. For example, consider the following queries:
// event A { float x; }

stream<A> SA from a in all A() retain 3 every 3 select a;

stream<float> sB := from a in sA select a.x;
stream<float> sC := from a in sA select sum(a.x);

The following table shows the lot output by each stream on each activation of the query.

Developing Apama Applications Version 9.10 246

Working with Streams and Stream Queries

10 t t2 t3 t4 t5
al A1) A1) A1)
A2) Az
A(3.)
Ald) A | Age)
AlS) | AG
A[B.)
sA Output - - A1) - - A4
A2) AlS)
A3 A
sB Output - 1 - 4.
5.
3 G,
sC Cutput - - & - - 15,

As can be seen, in the queries that contain aggregate functions, the aggregate
expressions (and projections) are evaluated, at most, once per query activation. All
queries, with the exception of those containing a group by clause, behave in this way.

Size-based windows and lots

When a size-based window is processing a lot that contains more than one item, all
of the items are processed in the window before any of the rest of the stream query is
processed. None of the intermediate states are visible to the query. This means that in
the following query:

from a in sA retain 3 select sum(a.i);

if the window contains the events A(1), A(2) and A(3) and a lot containing both A(4) and
A(5) arrives, those will displace A(1) and A(2) immediately. The state of the window
A(2), A(3), A(4) will never have existed. This is more relevant when the lot contains
more items than will fit in the window. In this case, if five more events arrived in a single
lot, the three events will fall out of the window, the last three events will go into the
window and the two interim events will disappear — never having been in the window
at any point.

This behavior means that care must be taken with fixed-size windows when events
might be processed in lots.

Developing Apama Applications Version 9.10 247

Working with Streams and Stream Queries

Join operations and lots

The principle of updating the state of a query in a single operation without the
intermediate state being visible is most relevant for join operations. The two diagrams
that follow illustrate how a cross-join behaves when several events arrive in a single lot.

In the diagrams, the items on the left side of the join are represented by the numbered
items that come in from the left side and the items on the right side of the join are
represented by the lettered items that come in from the top. Each square in the grid
can be a joined event. In both diagrams, the results of the join before the lot arrives are
mostly highlighted in blue. The items joined after the lot arrives are mostly highlighted
in teal. The relevant stream query in both examples is:

from a in sA retain 3

from b in sB retain 3
select C(a, Db);

The complete set of values in the table represents all of the combinations of items from
sA and items from sB that could possibly be generated by the join when considering
alternative ways of ordering the sa and sB items arriving in the lot. In general, there is
no particular ordering of the sa and sB items that is superior (more meaningful) than

all other orderings. Thus, when considering the transitions, there is no preferred path
from the initial window content to the final window content. Hence, it is considered that
the correct output for the join is achieved by taking the difference between the initial
window content and the final window content, ignoring any intermediate states.

=B

In the first diagram, there are nine joined events before the lot arrives. These are
represented by the seven blue squares and the two orange squares. Two items, 4 and 5,
arrive on sA and displace items 1 and 2. Also, one item, d, arrives on sB. and displaces
item a. The result is nine joined events after the lot arrives, of which two were there
before (represented by the two orange squares, and seven are new, represented by

the teal squares. A non-aggregating query that outputs the istream (as given above)
would return the seven new items (shown in teal). If, instead, the query was selecting

Developing Apama Applications Version 9.10 248

Working with Streams and Stream Queries

the rstream then it would return the seven items that are no longer a result of the join
(shown in blue).

=B

In the second example, there are again nine joined events before the lot arrives. These
are represented by the nine blue squares. Four items, 4, 5, 6, and 7 arrive on sa and
displace items 1, 2, and 3. Because thisis a retain 3 window, item 4, as the oldest item
in the lot, never makes it into the window. Also, items d, e, £, and g arrive on sB, which
displaces items a. b, and ¢, and again, because itis a retain 3 window, item d never
appears in the window. After the lot arrives, the result is nine new joined events, which
are represented by the teal squares.

Since there are no joined events that are present both before the lot arrives and after the
lot arrives all nine events that were previously the result of the join would be returned
by a query selecting the remove stream of this join. The nine new events are output by
the query that selects the input stream. No events containing either '4' or 'd' are ever
visible as a result of the query even though both values were present on one of the
inputs.

Grouped projections and lots

Suppose that a query that contains a group by clause processes a lot that contains
several items. The query generates new projected items for the groups where the state of
the group after the lot is input differs from the state of the group before the lot is input.

Developing Apama Applications Version 9.10 249

Working with Streams and Stream Queries

Stream network lifetime

After you create a stream or stream listener, it exists until one of the following happens:
B You explicitly terminate it.
® The monitor that contains the stream or stream listener terminates.

B You terminate another stream or stream listener in the same stream network and that
causes the stream or stream listener to terminate.

A stream or stream listener is explicitly terminated by calling the quit () method on

a variable that refers to it. Hence, to explicitly terminate a stream or stream listener,
you must retain a reference it. You can also terminate a stream or stream listener by
terminating a related stream or stream listener in the same stream network (as detailed
below).

You can create a stream or stream listener that is not referenced by any variable and
cannot be terminated by quitting any other streams or stream listeners in the stream
network. If this is unintentional then we refer to it as a stream or stream listener leak.
This situation is similar to an event listener leak (see "Avoiding listeners and monitor
instances that never terminate" on page 427. Here is an example:

action createStreamListener () returns listener ({
stream <A> sA := all A();
return from a in all A() select a.x: x { print x.toString(); }

// error: meant to use sA in the query above

}

Although executing the code returns a listener variable that refers to the created stream
listener, it inadvertently creates an unreferenced stream (the local variable sa did refer to
this stream but is no longer in scope).

Calling quit () on a stream or stream listener in a stream network typically has side
effects. A side effect can be one of the following:

® Termination of additional streams, stream queries, stream listeners, or stream event
expressions.

m Disconnection between the terminated element and another element.

When determining which queries to terminate the correlator uses the following rule:
when, due to another stream or query terminating, a query can no longer generate
any output, it is also terminated. An example of how this works is probably beneficial.
The following diagram shows a stream network with two stream source templates
generating input events for five queries, eventually connected to two stream listeners.
There are four stream variables pointing to the streams in the network.

Developing Apama Applications Version 9.10 250

Working with Streams and Stream Queries

stream 1 stream 2

1 y

@ Chuery & Chuery B
* str&:|1n13 . s'r&:|1n14 ---"______
v v "

Query Query O

®_____""-~ stream 5 stream § -—""_____®

Chuery E

from... | @
stream7 «—

from

Suppose you call quit () on either r6 or r7 (the stream variables on the right). The
correlator terminates the whole of the branch from Query D down. This is because,
whichever stream you quit, nothing can be generated by anything connected to
those streams. Stream 4, however, is also feeding Query C, which can still generate
output. Therefore, the rest of the network, including Query B and both stream event
expressions, remains active.

If you subsequently call quit () on r5 this will terminate the stream listener and Query
¢, which will then terminate stream 3 and stream 4, since they are not connected to any
other queries, and also stream 1, stream 2 and both stream source templates.

The stream variables after their streams are terminated will be dummy references.
Subsequent attempts to create a query using those streams are ignored (the result is an
inert stream).

Disconnection vs termination

In the example above, quitting r6 disconnects Query D from stream 4.Because stream
4 has other stream queries using it this disconnection does not terminate stream 4
immediately. Streams terminate when all the queries using them have disconnected.

If you were instead to call quit () on r4, this would terminate everything on the right
side of the diagram, no matter how many queries are using stream 4. However, the
stream would just be disconnected from Query C. Whether this terminates Query ¢
depends on the state of the join in Query c.If it is joining a size-based window from
stream 4 the items in the window would remain to be joined against new items in

Developing Apama Applications Version 9.10 251

Working with Streams and Stream Queries

stream 3.If it was a time-based window then Query C would remain until everything
in the window had been discarded. At that point, since nothing can ever be added to that
side of a join, Query C terminates, causing the rest of the network to also be terminated.

Rules for termination of stream networks

The complete set of rules for when a part of a stream network is terminated are:

B Stream listeners:

quit () is called on a 1istener variable pointing at that stream listener.

The stream the listener is connected to is terminated.

®m Streams:

quit () is called on a stream variable pointing at that stream.
The stream query generating the stream is terminated.

All the stream queries using the stream are terminated.

®m Stream queries:

The stream the query generates is terminated.

All of the streams the query uses are terminated and either the query does not
define a window or it defines a within or within. . .every window and there
are no live items in the window.

A live item is an item whose expiration (the item falls out of the window) can
cause query output. For example, if the only items in a timed window fail to
satisfy a where clause in the window definition then those items cannot change
query output when they expire.

If none of the items in the window are live the query terminates when all items
have fallen out of the window. However, the query might terminate earlier if the
correlator can determine that none of the items are live and that all streams that
the query uses have terminated. Regardless of when such a query quits, there are
no observable effects except in two situations:

m The query is the only thing keeping the monitor active. That is, when the
query terminates then the monitor's ondie () action is called.

m Calculation of the size of the window has one or more side effects.

®m Stream source templates:

The stream the stream source template generates is terminated.

Using dynamic expressions in stream queries

The expressions in stream queries can contain variables and action calls from EPL.
Unlike parameters to event templates, the correlator evaluates these expressions each

Developing Apama Applications Version 9.10 252

Working with Streams and Stream Queries

time the query is used and not just when it is created. This allows the behavior of the
query to be altered during program execution.

Behavior of static and dynamic expressions in stream queries

A static expression is an expression that refers to only static elements. Static elements
are:

m Constants (defined with the constant keyword)

m Literal values, for example:

from a in all A() within 20.0 select sum(a.i);

®m Primitive types that are local variables, for example:

integer width := 10;
from a in all A() retain width select sum(a.i);

The correlator can fully evaluate static expressions when it creates the stream query.

A dynamic expression is an expression that refers to one or more dynamic elements.
In a query, the value of a dynamic expression can change throughout the lifetime of
that query. Consequently, the correlator must re-evaluate each dynamic expression at
appropriate points in the execution of the query.

Dynamic elements are:
® Any reference type
® Any monitor global variable

B Where the stream query is created by an action on an event, the members of that
event

® Any action, method or plug-in call

The correlator fully evaluates an event template in a stream source template when the
correlator creates the query. For example, consider the following two queries:

from a in all A (id=currentMatch) select a;
from a in all A() where i1d = currentMatch select a;

During execution, if currentMatch is a global variable, a change to the value of
currentMatch affects the behavior of the second query but it does not affect the
behavior of the first query.

When to avoid dynamic expressions in stream queries

Where possible, use static expressions in preference to dynamic expressions. This allows
the compiler to optimize the query to improve performance. For example, consider the
following query:

stream<float> vwaps := from t in all ticks

within vwapPeriod
select wavg(t.price,t.volume) ;

When vwapPeriod is a monitor global variable whose value does not change, then it is
preferable to copy the value to a local variable first. For example:

Developing Apama Applications Version 9.10 253

Working with Streams and Stream Queries

float period := vwapPeriod;
stream<float> vwaps := from t in all ticks
within period
select wavg(t.price,t.volume) ;
Similarly, if it is known that a given action call always returns the same value, then it is
preferable to copy the result to a local variable and use this in place of the action call. For
example:
float period := getVwapPeriod (symbol) ;
stream<float> vwaps := from t in all ticks
within period
select wavg(t.price,t.volume) ;

Ordering and side effects in stream queries

To determine when it is safe to use dynamic expressions in stream queries, it is
important to understand that:

® In a query, the order in which the correlator executes the action calls is not defined.
Although the order is not defined, the correlator always executes the action calls in
the same order for a particular Apama release.

® When processing each item passed to the query, if an action call with a given set of
arguments appears multiple times within a stream query, then the number of times
the correlator executes the action is not specified. It might be equal to or less than the
number of times that the action call appears within the query. However, this number
is always the same for a particular release.

® In a stream network, the order in which the correlator executes the queries is not
defined except for when the output of a query forms the input to a second query. In
this case, the correlator always executes the first query before the second. Again, in a
particular release, the execution order is always the same.

Because of these points, it is best to avoid actions with side effects in expressions
executed in stream queries. Such actions can make a program more difficult to
understand and debug. Instead, execute any such actions in stream listeners.

A method or expression that produces a value has a side effect if it modifies something
or interacts with something outside the program. This includes, but is not limited to:

Modifying a global variable

Changing the value of an argument

Calling plug-in methods

Routing, enqueuing, emitting or sending an event

Calling another action that has side effects

Setting up event listeners or new streams

Developing Apama Applications Version 9.10 254

Working with Streams and Stream Queries

Understanding when the correlator evaluates particular expressions

All expressions in a stream query can contain dynamic elements. To understand the

behavior of a query that specifies dynamic elements, it is necessary to know under what
circumstances the correlator re-evaluates an expression and uses the result in the query.

Using dynamic expressions in windows

A window definition can contain some or all of the following:

® A partition key expression

B The window duration, size or both duration and size

B An every batch period or size

® Thekey for awith unique clause

The following table shows when the correlator evaluates each of these:

Window Definition

Description

retain n

retain n every m

within d

within d every p

The correlator evaluates n every time an item arrives
on the stream. The correlator uses the new value of n
to calculate what should be in the window.

The correlator stores incoming items until the

current value of mis satisfied. When m is satisfied,

the correlator evaluates both n and m. The correlator
uses the new value of n to calculate what should be in
the window, including the stored items. Because mis
evaluated only after it has been satisfied, meeting that
condition is always based on the old value of m.

The correlator evaluates d every time an item arrives
on the stream and every time an item is due to be
removed from the window. The correlator uses the
new value of d to calculate what should be in the
window.

The correlator stores incoming items until p seconds
have elapsed. When p seconds have elapsed, the
correlator evaluates p and d only if there are any items
in the window or stored. The correlator uses the new
value of d to calculate what should be in the window,
including stored events. The correlator uses the new
value of p to determine the next time the window can
change.

Developing Apama Applications Version 9.10

255

Working with Streams and Stream Queries

Window Definition Description

If there are no items in the window or waiting to enter
the window then, for efficiency, the correlator does
not evaluate p. When the correlator evaluates p, it is
always based on the old value of p.

...retain n Ifawithinorwithin every window definition also
specifies retain, the correlator evaluates n whenever
the window content can change. The correlator uses
the new value of n to calculate what should be in the
window.

If the window definition specifies every, the window
content can change only when p is satisfied.

Otherwise, the window content can change when an
item arrives on the stream and when an item is due to
be removed from the window.

partition by kI[, If the window definition specifies a timed every

k2] ... p clause, the correlator evaluates each partition
expression when p seconds have elapsed. Otherwise,
the correlator evaluates each key expression when an
item arrives on the stream. The correlator uses the new
value of each key expression to calculate what should
be in each partition.

with unique w The correlator evaluates w once for each item
whenever that item is about to enter the window. If
there is an every clause, an item can enter the window
only when m or p is satisfied. Otherwise, an item can
enter the window when it arrives on the stream.

Using dynamic expressions in equi-joins

The format of a query that contains an equi-join is as follows:

from x in sl join y in s2 on jl equals j2 ...

Suppose that 51 and j2 are dynamic expressions that return the left and right join keys
for each input item. The correlator evaluates these expressions once for each input item

when it enters the window. This is regardless of how many items are joined from the
other side.

Developing Apama Applications Version 9.10 256

Working with Streams and Stream Queries

Using dynamic expressions in where predicates

The correlator evaluates the predicate in a where clause once for each item. This happens
as soon as a join operation produces an item, or if there is no join operation, as soon as
an item enters a window.

Using dynamic expressions in projections

In a simple projection, the correlator evaluates the select expression once for each item.
The correlator evaluates the select expression as soon as a join operation produces an
item, or if there is no join operation, as soon as an item enters a window.

In a simple projection, regardless of whether the select clause specifies the rstream
keyword, the correlator evaluates expressions in the projection when the items would
be present on the insert stream and the results are stored until needed for the remove
stream.

In an aggregate projection, the correlator evaluates expressions in the projection when
the items would be present on the insert stream.

If an aggregate projection contains a group by clause the correlator evaluates the group
key once for each item. This happens as soon as a join operation produces an item, or if
there is no join operation, as soon as an item enters a window.

The correlator evaluates aggregate and grouped expressions in two stages. The
correlator evaluates arguments to aggregate functions once for each item as soon as
it is produced by a join or if there is no join, as soon as it arrives in the window. The
correlator evaluates the rest of the aggregate expression once for each lot.

Examples of using dynamic expressions in stream queries

Following are some examples of using dynamic elements in stream queries. These
examples are simplified, for brevity.

Example of altering query window size or period

The following code fragment shows part of a monitor that accepts requests from external
entities to monitor/generate the VWAP for a given symbol. After you create a monitor
like this, an external entity can, at any time, change the parameters that control the
period over which the monitor calculates the VWAP and/or the output frequency of the
VWAP events.

monitor VwapMonitor ({
VwapRequestParams params;
action onload() {
VwapRequest v;
on all VwapRequest () :v spawn monitorVwap (v) ;
// Simplified. Assumes no duplicate requests.
}
action monitorVwap (VwapRequest v) {
params := v.params;
Vwap vwap;
from t in all Ticks (symbol=v.symbol)
within params.duration
every params.period

Developing Apama Applications Version 9.10 257

Working with Streams and Stream Queries

select Vwap (t.symbol,wavg(t.price,t.volume)) :vwap {
route vwap;

}

VwapRequestUpdate u;

on all VwapRequestUpdate (symbol=v.symbol) : u ({
params := u.params;

}
}

When accumulating the raw tick data to generate the VWAP price, no prescience is
involved. There is no anticipation that the window size is to be increased. Changing

the within duration to a larger value causes the window duration to increase but does
not recover historic events. Hence the effective sample duration over which the monitor
calculates the VWAP will, over time (as new tick items arrive), extend from the smaller
setting to the larger setting. When switching from a larger within duration to a smaller
one, the change takes effect immediately. The correlator discards the items that are no
longer in the within duration.

Example of altering a threshold

The following code fragment shows part of a monitor that accepts requests from external
entities to monitor the value of the trades for a given symbol. After you create a monitor
like this, an external entity can, at any time, change the thresholds at which the monitor
recognizes the trade as a high value trade.

monitor CountHighValueTicks ({
float threshold;
action onload() {
CountHighValueTicksRequest r;
on all CountHighValueTicksRequest () :r spawn
monitorHighValueTicks (r);
// Simplified. Assumes no duplicate requests.
}
action monitorHighValueTicks (CountHighValueTicksRequest r) {
threshold := r.threshold;
stream<Tick> filtered := from t in all Ticks (symbol=v.symbol)
where t.price*t.volume > threshold
select t;
integer c;
from t in filtered within 60.0 every 60.0 select count(): c {
print "Count of high value trades in previous minute: " +
c.toString() ;
}
on all CountHighValueTicksRequestUpdate (symbol=r.symbol) : u {
threshold := u.threshold ; }

}

This example uses two queries. The first query filters out any ticks with values below the
threshold. The second query accumulates the high-value ticks received in the last minute
and outputs the count of high-value ticks in that period. This could have been written as
a single query with the filtering performed after the window operation. For example:

from t in all Ticks(symbol=v.symbol) within 60.0 every 60.0
where t.price*t.volume > threshold select count();

Developing Apama Applications Version 9.10 258

Working with Streams and Stream Queries

However this query's window contains all of the low value ticks received in the last 60
seconds, as well as the high value ticks. This is not an optimal use of memory resources.
Hence the two query approach is preferred.

Alternatively, you can specify an embedded query to amalgamate the two queries into a
single statement:
from t in

(from t2 in ticks where t2.price*t2.volume > threshold select t2)

within 60.0 every 60.0
select count(): ¢ { ... }

The parentheses around the embedded query are optional.

Example of looking up values in a dictionary

The following statement shows a query that calculates the current value of a basket of
stocks based on the most recent prices for those stocks. When using dictionaries in this
way, be careful to ensure that all values used as keys are in the dictionary. A missing key
value causes a runtime error and the correlator terminates the monitor instance. In the
example, it is assumed that the prices stream was filtered to contain prices for only the
stocks in the basket.
stream<Tick> basketPrices :=

from p in prices

partition by p.symbol

retain 1
select sum(p.price * basketVolume[t.symbol]);

Example of actions and methods in dynamic expressions

Actions and methods can be considered to be dynamic elements. There are various
reasons why you might want to use actions and methods in queries:

®m If you are using a particular common complex expression in several places in queries
within a monitor, it might be preferable to implement this as an action.

®m If you are using a method that is implemented in a plug-in.

® To add protection to expressions that, if unprotected, might cause run-time errors.
For example:

stream<Tick> basketPrices :=
from p in prices
partition by p.symbol
retain 1
select sum(p.price * getBasketVolume (t.symbol));

action getBasketVolume (string symbol) returns float {

if (basketVolume.hasKey (t.symbol)) then {
return basketVolume[t.symbol];
} else {

return 0.0;

}

Developing Apama Applications Version 9.10 259

Working with Streams and Stream Queries

Troubleshooting and stream query coding guidelines

This section provides high-level guidelines for writing stream query applications that
implement best practices.

For examples of common stream query coding patterns, see "EPL Streams: A Quick
Tour" on page 977.

Prefer on statements to from statements

Do not use streams unnecessarily. If an event expression in an on statement meets
your needs, use it. Take advantage of mixing code elements for listeners and event
expressions, stream processing, and responsive program actions, all in the same
monitor.

Know when to spawn and when to partition

As a rule, you should listen for only those events or streams that you are interested

in now. Apama applications typically define monitors that spawn to handle a new
situation, for example, to automatically manage the trading of a new large order. Each
monitor instance is usually interested in only one particular substream of a larger
stream, for example, Tick events for a particular stock rather than all Tick events.

Consequently, the common pattern is to create a new monitor instance and for that
instance to set up stream queries that process the events of interest, for example, to
calculate the average price. This is more efficient than defining a monitor that processes
all events (for example, all Tick events for all stocks), generates added-value items and
then forwards these items to client monitors. However, there are situations when the
latter approach is required. You should decide which solution approach is best in which
circumstances.

Filter early to minimize resource usage

To minimize processing and memory overhead it is preferable to filter streams as early
as possible in the processing chain or network. Filtering early can reduce the number of
items processed or retained in memory and can also reduce the size of the items held.
If possible, filter items right at the beginning of the query chain, that is, in the event
template.

For example, it is preferable to rewrite this query:

from 1 in all LargeEvent ()
within largeWindowPeriod
where l.key = key
select mean (l.value);

If the key is static, rewrite it this way:

from 1 in all LargeEvent (key=key)
within largeWindowPeriod
select mean(l.value);

Developing Apama Applications Version 9.10 260

Working with Streams and Stream Queries

If the key is dynamic, rewrite it this way:

from v in
from 1 in all LargeEvent ()
where l.key = key select l.value
within largeWindowPeriod select mean (v) ;

In the static case, the correlator filters the large event before the event gets to the
window. In the dynamic case, the embedded query filters the event before the event
gets to the window in the enclosing query. Because the select statement specifies only
1.value, the correlator discards the rest of the event. There is no need to bring the
whole event into the window.

Avoid duplication of stream source template expressions

When you are maintaining code, you might add a stream query whose streamexpr is an
event template that is already used in a query elsewhere in the same monitor. However,
duplicated stream source template expressions do not always produce the behavior you
want. Consider the following two code fragments:

float d;
stream<float> means := from t in all Temperature ()
within 10.0
select mean (t.temperature) ;
from t in all Temperature ()
from m in means select t-m : d {
print "Difference from mean is " + d.toString():;

}
The first fragment behaves differently than this fragment:

float d;
stream<float> temperatures := all Temperature ()
stream<float> means := from t in temperatures

within 10.0
select mean (t.temperature) ;
from t in temperatures
from m in means
select t-m : d {
print "Difference from mean is " + d.toString();

}

Of the two code fragments above, the second one has the desired behavior. The first
example creates two event listeners — one for each all Temperature () clause.
Each listener matches each incoming Temperature event, but the listeners trigger
independently, one after the other. This means that there is no time when the second
query has an item in each of its source streams. Consequently, the cross-join never
produces any output.

In the second example, there is a single Temperature event listener that places matching
events in the temperatures stream. The temperatures stream is the source stream for
two queries. Now both source streams of the last query contain items at the same time
and the query generates output.

Developing Apama Applications Version 9.10 261

Working with Streams and Stream Queries

Avoid using large windows where possible

In Apama, all data being processed is held in memory, including data within stream
windows. If you specify query windows that contain a large number of items or
hold items for a long period of time the memory that the application uses necessarily
increases

A memory requirement that is more than the memory available to the application causes
paging to occur, which can decrease application throughput. Where possible, consider
reducing the size of any stream query windows by doing one or more of the following:

m Filter items to reduce the number or size of the items in the window.
® Use a complex event expression to achieve the same result.

m Use retain all instead of specifying a within clause. See the next topic for details.

In some cases prefer retain all to a timed window

When you specify retain all in a stream query the correlator does not retain the items
indefinitely. The correlator processes each new item when it arrives (for example, it
might execute an aggregate function) and then discards it. Consequently, queries that
specify retain all use less memory than queries that define time-based or size-based
windows.

A situation that typically tempts you to define a time-based window is when you want
to calculate some aggregate values for a session. For example, a session could be from
the start of a day to the end of a day, or an incoming event could initiate a session that
requires aggregated values such as placing an order in an automated trading system.

After the session begins, interest in the aggregated values usually continues until the
session ends, for example at the end or day or when the full volume of the placed order
has been traded. In situations such as these, use a retain all window instead of a
within session window.

Prefer equi-joins to cross-joins

In a query using an equi-join, the items from the two input sets are joined based on
equality of key values. The identification of matching items is very efficient.

Cross-joins have no expressions so it is more efficient to calculate them than equi-joins.
However, cross-joins are less preferable to equi-joins if they produce unwanted items
that must subsequently be filtered out.

Be aware that time-based windows can empty

Consider the query below:

from s in Shipment (destination="SPQ")
within 604800.0
select sum(s.qty)/count ()

Developing Apama Applications Version 9.10 262

Working with Streams and Stream Queries

After creation of the query, suppose that several shipments are sent in the first week and
no shipments are sent in the second week. The value of the count () aggregate function
drops to zero, which results in an attempt to divide by zero. This terminates the monitor
instance.

Be aware that fixed-size windows can overflow

Consider the following example:

stream<temperature> batchedTemperatures :=
from t in all Temperature (sensorId="S001")
within 60.0 every 60.0 select t;

from t in batchedTemperatures
retain 5
select count():c { print c.toString(); }

During execution of the first query, suppose that more than 5 matching events are found
within one minute. The query outputs all of the matching events as a single lot. A lot
that contains more than 5 items overflows the retain window in the second query. All
but the most recent five items are lost. Calculations operate on only the most recent 5
items.

Note that you are unlikely to need the query combination shown in the code example
above.

Beware of accidental stream leaks

Just as it is possible to leak event listeners, it is also possible to leak streams. Suppose
that you create a stream but you do not specify the stream as input to any query. This
stream still remains in existence, keeps a monitor instance alive, and consumes resources
so it is considered to be a stream leak. A stream leak causes memory to be used and not
freed. It can also cause unnecessary computation to occur.

A stream leak can happen if you create a stream that you want to use later on in your
code. To be able to use this stream you must assign it to a stream variable that is in
scope in the location where you want to use the stream. If the stream variable goes out
of scope or you assign another stream to that variable, the original stream still exists
within the monitor instance's internal stream network but it is no longer accessible. For
example:

B The stream variable that references the stream goes out of scope:

action streamlLeakExamplel (string s) {
stream<float> prices :=
from t in all Tick(symbol=s) select t.price;
. // If the elided code does not use the stream
} // a leak occurs when the prices variable goes out of scope.

B You overwrite the stream variable that refers to an unused stream:

action streamLeakExample2 (pattern<string> symbols) {
string s;
stream<float> prices;
for s in symbols {
prices := from t in all Tick (symbol=s) select t.price;
. // If the elided code does not use the prices stream
// a leak occurs when you overwrite prices.

Developing Apama Applications Version 9.10 263

Working with Streams and Stream Queries

}

Any code that creates a stream leak is erroneous. Code that repeatedly creates unused,
inaccessible streams quickly uses up machine resources.To avoid leaking streams:

B Avoid creating streams you do not intend to use immediately.

® Quit a stream before the variable referring to it goes out of scope.

Developing Apama Applications Version 9.10 264

Defining What Happens When Matching Events Are Found

6

Defining What Happens When Matching Events Are

Found
B USING VAMHADIES ...ttt 266
B DEfiNING ACHONScoovieivvieices bbb bbb 271
B Getting the CUMENt tIME ..o 283
B GENEratiNg BVENTScccviiicecieiee et bbbttt bbb 284
B ASSIGNING VAIUES ..ottt 290
B Defining conditional [0giCccueviveiiiiicieescce et 290
B DEfiNING JOOPS .vviiiiecieee ettt 291
B Catching EXCEPHONSoieceieeiecce et 293
B Logging and PriNHING ...c.cceeiiceece et 295
m Sample financial applCAtioNcociirriice e 299

Developing Apama Applications Version 9.10 265

Defining What Happens When Matching Events Are Found

In a monitor, when the correlator detects a matching event, it triggers the action defined
by the listener for that event. This section discusses what you can specify in the triggered
actions.

In a query, when a match set is found, it triggers execution of the procedural code block
in the find statement. A subset of the EPL constructs that are available in a monitor are
available in a query. See "Restrictions in queries" on page 151 to understand what is not
allowed in a query.

Using variables

EPL supports the use of variables in monitors. Depending on where in the monitor you
declare a variable, that variable is global or local:

® Global. Variables declared in monitors and not inside actions or events are global
variables. Global variables are in monitor scope.

m Local. Variables declared inside actions are local variables. Local variables are in
action scope.

A variable can be of any of the following types: boolean, decimal, float, integer,
string, action, context, dictionary, event, listener, location, sequence Or
stream. For details about these types, see "Types" on page 767.

Information about variables is presented in the topics below.

See also "Using action type variables" on page 276.

Using global variables

Variables in monitor scope are global variables; you can access a global variable
throughout the monitor. You can define global variables anywhere inside a monitor
except in actions and event definitions. For example:

monitor SimpleShareSearch {
// A monitor scope variable to store the stock received:
//
StockTick newTick;

This declares a global variable, newTick, that can be used anywhere within the
SimpleShareSearch monitor including within any of its actions.

The order does not matter. In the following example, £ is a global variable:

monitor Test {

action onload() {
print getZ () .toString() ;

}

action getZ () returns integer {
return f.z;

}

Foo f;

event Foo{
integer z;

}

Developing Apama Applications Version 9.10 266

Defining What Happens When Matching Events Are Found

If you do not explicitly initialize the value of a global variable, the correlator
automatically assigns a value to that global variable. (Note that the correlator does not
automatically initialize local variables.) The following table shows the values that the
correlator assigns to uninitialized global variables.

Global Variable Type

Value Correlator Assigns to Uninitialized Global Variable

action

boolean

chunk

context

decimal

dictionary

event

float

integer

listener

location

sequence

stream

string

A null value that causes the monitor instance to die if you
try to execute the action. In the correlator log file, the error
message is Called uninitialized action value.

false

Contains no state. Each plug-in must define what to do
upon receiving a default-initialized chunk as an argument.

A null context that cannot be used in any meaningful way.
To use this variable, you must explicitly assign a context
that was created with a name.

0.0d
Empty dictionary

Instance of the event where each of its fields has the
standard default values as per this table.

A null listener that cannot be used in any meaningful way.
To use this variable, you must assign a listener to it from
within an on statement, from another listener variable, or
from a stream listener in a from statement.

(0.0, 0.0, 0.0, 0.0)
Empty sequence

A null stream that cannot be used in any meaningful way.
To use the variable you must assign a non-null stream to it.

(empty string)

Developing Apama Applications Version 9.10 267

Defining What Happens When Matching Events Are Found

Using local variables

A variable that you declare inside an action is a local variable. You must declare a local
variable (specifying its type) and initialize that variable before you can use it.

Although the correlator automatically initializes global variables that were not explicitly
assigned a value, the correlator does not do this for local variables. For local variables,
you must explicitly assign a value before you can use the variable.

If you try to inject an EPL file that declares a local variable and you have not initialized
the value of that local variable before you try to use it, the correlator terminates injection
of that file and generates a message such as the following: Local variable ‘var2'
might not have been initialized. EPL requires explicit assignment of values to
local variables as a way of achieving the best performance.

When you declare a variable in an action, you can use that variable only in that action.
You can declare a variable anywhere in an action, but you can use it only after you
declare it and initialize it.

For example,

action anAction (integer a) returns integer {
integer i;
integer j;
i := 10;
J o= a;
return j + 1i;

}

You can use the local action variables, i and j in the action, anAction (), after you
initialize them. The following generates an error:
action anAction2 (integer a) returns integer {

i := 10; // error, reference to undeclared variable i

J := a; // error, reference to undeclared variable j

integer i;

integer j;

i = 2;

J = 5;

return j + 1i;

}

Suppose that an action scope variable has the same name as a monitor scope variable.
Within that action, after declaration of the action scope variable, any references to the
variable resolve to the action scope variable. In other words, a local action variable
always hides a global variable of the same name.

Consider again the definition for anAction2 () in the previous code fragment, but

with i and j variables declared in the monitor scope. The first use of i and j resolves
successfully to the values of the i and j monitor scope variables. The second use occurs
after the local declaration and initialization of i and . That use resolves to the local
(within the action) occurrence. This results in the following values:

m Global variable i is set to 10.

m Local variable 1 is set to 2.

Developing Apama Applications Version 9.10 268

Defining What Happens When Matching Events Are Found

m Global variable 7 is set to the value of a.
m Local variable 5 is set to 5.

Since you must explicitly initialize local variables before you can use them, the following
example is invalid because j and i are not initialized to any value before they are used.

action anAction3 (integer a) returns integer {
integer 1i;
integer j;
return j + i; // error, i and j were not initialised

}

It is possible to initialize a variable on the same line as its declaration, as follows:

action anActiond (integer a) returns integer {
integer i := 10;
integer j := a;
return j + 1i;

}

It is also possible to initialize a local variable by coassigning to it in an event listener. For
example, the following is correct:
action onload() {
Event e;
on all Event () :e {
log e.toString() ;

}
}

You can also initialize a local variable by coassigning to it from a stream. For example:

action onload() {
float £;
from x in all X () select x.f : £ {
log f.toString();
}

Using variables in listener actions

Suppose you use a local variable in a listener action, as in the following example:
monitor MyMonitor ({
integer x;
action onload() {
integer y := 10;
on all StockTick(*,*) {

log x.toString() ;
log y.toString() ;

}
y := 5;
}

In this example, x is a global variable, and y is a local variable. There are references to
both variables in the listener action.

A reference to a global variable in a listener action is the same as a reference to a global
variable anywhere else in the monitor. However, a reference to a local variable in a

Developing Apama Applications Version 9.10 269

Defining What Happens When Matching Events Are Found

listener action causes the correlator to retain a copy of the local variable for use when the
event listener triggers. The value held by this copy is the value that the local variable has
when the correlator instantiates the event listener.

When the event listener triggers the correlator executes the listener action. This will be at
some point in the future, and after the rest of the body of the enclosing action has been
executed. Since the action has already been executed, any of the original local variables
no longer exist. This is why the correlator retains a copy of the local variable to make
available to the listener action when it is executed.

In the example above, when the event listener triggers and the correlator executes the
listener action

B x has a value of 0, which is the value that the correlator automatically assigns

B v hasa value of 10, which is the value it was set to when the event listener was
instantiated

The value of y that the correlator retained when it instantiated the event listener is not
affected by the subsequent statement (after the on statement) that sets the value of y to 5.

Note: For "reference types" on page 785, retaining as a copy of the variable really
means only retaining as a copy of its reference. Hence, if any code changes the
contents of the referenced object(s) between event listener creation and event
listener triggering, then this does affect the values used by the triggered event
listener.

Specifying named constant values

In a monitor or in an event type definition, you can specify a named boolean, decimal,
float, integer, or string value as constant. The format for doing this is as follows:

constant type name := literal;
Element Description
type Specify boolean, decimal, float, integer, or string. This is

the type of the constant value.

name Specify an identifier for the constant. This name must be unique
within its scope — monitor, event, or action.

literal Specify the value of the constant. The type of the value must be
the type that you specify for the constant.

Benefits of using constants include:

® Using a named constant can often be better than using a literal because it lets you
define that constant in a single place. There is no chance of one instance becoming
incorrect when the value is changed elsewhere. An alternative to using a constant
would be to define a variable to contain the value. The disadvantage with this

Developing Apama Applications Version 9.10 270

Defining What Happens When Matching Events Are Found

approach is that someone could accidentally assign a new value to the "constant”,
which would cause errors.

® A named constant can make code easier to read because the name can be meaningful
in a way that a magic number, such as 42, is not.

m Constants appear in memory once. For example, spawning multiple copies of a
monitor that contains a constant does not consume memory to store extra copies of
the constant. A non-constant variable takes up space in memory for every copy of
the event or monitor in the correlator.

You can refer to a declared constant in any code in the event or monitor being
defined. When you define a constant in an event you can refer to it from outside
the event by qualifying the name of the constant with the event name, for example,
MyEvent.myConstant.

Following is an example of specifying and using a constant:

event Paper ({
constant float GOLDEN := 1.61803398874;
float width;
action getLength() {
return GOLDEN * width;
}
action getwWidth() {
return width;
}
}

You cannot declare a constant in an action.

Defining actions

Actions are similar to procedures.

A monitor can define any number of actions. Finding an event, or pattern of events, of
interest can trigger an action.

A query can define any number of actions. If defined, actions must be after the find
statement. Expressions in the find pattern or find block can invoke the actions defined
in that query.

You can also trigger an action by invoking it from inside another action. You can also
declare an action as part of an event type definition, and then call that action on an
instance of that event.

The topics below provide information about defining actions.

Format for defining actions

The format for defining an action that takes no parameters and returns no value is as
follows:
action actionName () {

// do something
}

Developing Apama Applications Version 9.10 271

Defining What Happens When Matching Events Are Found

Optionally, an action can do either one or both of the following:
B Accept parameters
B Return a value

The format for defining an action that accepts parameters and returns a value is as
follows:
action actionName (typel paraml, type2 param2, ...) returns >type3 ({
// do something
return type3 instance;

}

For example:

action complexAction (integer i, float f) returns string {
// do something
return "Hello";

}

An action that accepts input parameters specifies a list of parameter types and
corresponding names in parentheses after the action name. Parentheses always follow
the action name, in declarations and calls, whether or not there are any parameters.
Parameters can be of any valid EPL type. The correlator passes primitive types by value
and passes complex types by reference. EPL types and their properties are described in
"Types" on page 767.

When an action returns a value, it must specify the returns keyword followed by the
type of value to be returned. In the body of the action, there must be a return statement
that specifies a value of the type to be returned. This can be a literal or any variable of
the same type as declared in the action definition.

An action can have any name that is not a reserved keyword. Actions with the names
onload (), onunload () and ondie () can only appear once and are treated specially as
already described in "About monitor contents" on page 50. It is an EPL convention to
specify action names with an initial lowercase letter, and a capital for each subsequent
word in the action name.

Before Apama Release 4.1, actions and variables were allowed to have the same names.
For example, you were allowed to coassign an event to a variable that had the same
name as the action that handled the event:

on all Update () :update update() ;
With Apama 4.1, this is no longer allowed since you can now declare action type

variables. See "Using action type variables" on page 276. If you have any code that
uses the same identifier for an action and a variable, you must change it. For example:

on all Update () :update handleUpdate() ;

Invoking an action from another action

To invoke an action from another action, specify the action name followed by
parentheses. If the action takes one or more input parameters, specify values for the
parameters inside the parentheses. For example:

// First action:

Developing Apama Applications Version 9.10 272

Defining What Happens When Matching Events Are Found

action myActionl () {
myAction2 () ;
}

// Second action that is called by the first action:
action myAction2 () {

//
}

In the example above, myActionl () calls myAction2 () from inside the myActionl ()
declaration block. myAction2 () takes no parameters and does not return a value.

When an action returns a value, you can invoke that action only from within an
expression. You cannot specify a standalone statement that invokes an action that
returns a value. Discarding the return value is illegal in EPL. For example:

action myAction3 () returns string {

return "Hello";

}

action myAction4 () {
string response;
response := myAction3(); // Valid
myAction3 () ; // Invalid

}

Consider this extended example:

// First action:

//

action myActionl () {
myAction?2 () ;

}

// Second action that is called by the first action:
//
action myAction2 () {
string answerl, answer2;
myAction5 (5, 10.5);
on anEvent () myAction5 (5, 10.5);
answerl := myAction6 (256, 1423.2);
answer2 := myAction7();
}

// Action that is called by myAction2:
//

action myAction5 (integer i, float f) {

}

// RAnother action that is called by myAction2:

//

action myAction6 (integer i, float f) returns string {
return "Hello";

}

// Yet another action that is called by myAction2:
//
action myAction7 () returns string {
return "Hello again";
}

myAction2 () takes no parameters and does not return a value.

Developing Apama Applications Version 9.10 273

Defining What Happens When Matching Events Are Found

myAction5 () accepts input parameters. You can invoke it from a standalone statement:
myAction5(5, 10.5);

You can also invoke it as a listener action:

on anEvent () myAction5(5, 10.5);

myAction6 () accepts input parameters and returns a value. You can invoke
myActioné6 () only from within an expression:

answerl := myAction6 (256, 1423.2);

myAction7 () returns a value but does not take any parameters. You can invoke it only
from within an expression:

answer?2 := myAction7();

Specifying actions in event definitions

You can specify an action in an event type definition. This lets you call that action on an
instance of the event, just as you would call a built-in method on some other type, such
as calling the tostring () method on the integer type.

When you define an action in an event, it behaves almost the same way as an action in
a monitor or query. For example, an action in an event can

m Set up event or stream listeners (only in a monitor)
m Call other actions within that event
B Access members of that event

In a monitor, but not in a query, an action in an event has an implicit se1f argument that
refers to the event instance that the action was called on. The self argument behaves in
the same way as the this argument in C++ or Java.

Example

For example, consider the following event type definition:

event Circle {

action area () returns float {
return 3.14159 * radius * radius;

}

action circumference () returns float {
return 2.0 * 3.14159 * self.radius;

}

float radius;

}

The specifications here of radius and self.radius are equivalent.

You can then write code that looks like this:

Circle ¢ := Circle(4.0);
print "Circle area = " + c.area().toString();
print "Circle circumference = " + c.circumference () .toString() ;

Of course, the output is as follows:
Circle area = 50.26544

Developing Apama Applications Version 9.10 274

Defining What Happens When Matching Events Are Found

Circle circumference = 25.13272

Behavior

The correlator never executes actions in events automatically. In an event, if you define
an onload () action, the correlator does not treat it specially as it does when you define
the onload () action in a monitor.

When you call an action in an event, the correlator executes the action in the monitor
or query instance in which the call was made. In a monitor, if the action sets up any
listeners, these listeners are in the context of this monitor instance. If this monitor
instance dies, the listeners also die.

You can use plug-ins from within event actions. In the event definition, specify the
import statement to give the plug-in an alias within the event. Specify the import
statement in the same way that you specify it for a monitor or query. You use the plug-
in alias to call functions on the plug-in in the same way as you use it for a monitor or

query.

When you define an event, there are no ordering restrictions for the definition of fields,
imports, or actions. You can define them in any order.

Spawning

From an action within an event, you can spawn to an action in the same event. The
correlator spawns a monitor instance and executes the specified action on the event
instance in the new monitor instance.

Note: In a query, spawn and spawn. . . to statements are not needed and so they are
not allowed.

It is not possible to spawn from outside a particular event to an action that is a member
of that particular event. Instead, spawn to an action that calls the action that is the event
member. For example:

event E {
action spawntotarget () {
spawn target () ; // legal
}
action target () {
log "Spawned "+self.toString();
}
t

monitor m {
action onload() {

E e;
spawn e.target(); // not legal
spawn calltarget (e); // legal

e.spawntotarget () ;

}

action calltarget (E e) {
e.target () ;

}

Developing Apama Applications Version 9.10 275

Defining What Happens When Matching Events Are Found

Be sure to follow the spawn keyword with an action name identifier. Actions spawned
to must have no return value, as before. See also "Ultilities for operating on monitors" on
page 73.

Restrictions
To summarize, when you define an action in an event, the following restrictions apply:

m If the action contains an on statement, you can coassign a matching event only to
local variables. You cannot coassign a matching event to the event's fields nor to
items outside the event or in the monitor.

® In a monitor, if you declare an instance of an event that has an action member, you
cannot specify a call from that action to an action that is defined in the monitor.

B You cannot assign values to the implicit self parameter, any more than you can
assign to this in Java.

® The following event listener call syntax is not valid within event actions:
on A() foo;

Instead, specify this:

on A() fool();

Using action type variables

In addition to defining an action, you can define a variable whose type is action. This
lets you assign an action to an action variable of the same action type. An action is of
the same type as an action variable if they have the same argument list (the same types
in the same order) and return type (if any).

Defining action variables
The format for defining an action type variable is as follows:
action<[typel [, type2]...]>[returns type3]name ;

Specity the keyword, action.

Follow the action keyword with zero, one or more parameter types enclosed in angle
brackets and separated by commas. The angle brackets are required even when the
action takes no arguments.

Optionally, follow the parameter list with a returns clause. Specify the returns
keyword followed by the type of the returned value.

Finally, specify the name of the variable. For example:

action<string> a;
action<integer, integer> returns string b;

You can use an action variable anywhere that you can use a sequence or dictionary
variable. For example, you can

®m DPass an action as a parameter to another action.

Developing Apama Applications Version 9.10 276

Defining What Happens When Matching Events Are Found

B Return an action from execution of an action.

®m Store an action in a local variable, global variable, event field, sequence, or
dictionary.

You cannot route, emit, enqueue or send an event that contains an action variable field.
You must initialize an action variable before you try to invoke it.

When an action variable is a member of an event the behavior of the action depends on
the instance of the event that the action is called on. Consequently, it can be handy to
bind an action variable member with a particular event instance. See "Creating closures"
on page 280.

Built-in methods are treated exactly the same as user-defined actions. This means you
can assign a built-in method to an action variable. For example:

action<float> returns string f := float.toString;

Invoking action variables

The only operation that you can perform on an action variable is to call it. You do this
in the normal way by passing a set of parameters in parentheses after an expression that
evaluates to the action variable. For example:

monitor Test;
integer i;
action<string> x; // Uninitialized global action variable.
action onload() {

// Invoke the runMe action. The first argument to runMe is an
// action variable for an action having a single argument of
// type integer and no return value.

// Since the printInteger action conforms to the argument

// expected by runMe, you can pass printInteger to runMe.
runMe (printInteger, 10);

// Declare a local action variable, g. This action takes one
// integer argument and does not return a result.

// The printInteger action conforms to this so

// assign printlInteger to g.

action<integer> g := printInteger;

// Invoke the runMe action again.
// Pass g instead of explicitly passing printInteger.
runMe (g, 20);

// Declare a local dictionary that contains action variables.
// Each action variable takes a single integer argument and
// and does not return a result.

// Add printInteger to the dictionary.

// Invoke printInteger and pass 30 as the argument.

dictionary<string, action<integer> > do := {};
do["printIt"] := printInteger;
do["printIt"] (30);

// Invoke x. Since this global variable was never
// initialized, the monitor instance terminates.
x("hello!");

Developing Apama Applications Version 9.10 277

Defining What Happens When Matching Events Are Found

action runMe (action<integer> f, integer i) {
f(i);
}

action printInteger (integer i) {
print i.toString();
}
}

After injection, this monitor prints

10
20
30

and then terminates upon invocation of x because x was never initialized.

Calling an uninitialized, local action variable causes an error that prevents the
correlator from injecting the monitor. While the correlator injects code that contains an
uninitialized, global action variable, trying to call the uninitialized variable causes a
runtime error and the monitor instance terminates.

Declaring action variables in event definitions

When you define an action as a member field in an event, that action has an implicit
self argument as the first argument. (See "Specifying actions in event definitions" on
page 274.) You must include this implicit argument when determining whether an
action definition conforms to an action variable declaration. For example, the following
is illegal:
event A {

action foo (float) returns string {

return "Hello";

}
action bar () {
action<float> returns string f := A.foo;

}
}

In the previous code, you cannot assign the A. foo action to £ because £ takes a single
float argument whereas A. foo has two arguments — the implicit A argument and then
the float argument. To correct this example, specify A as the first action argument in
the body of the bar action.
event A {
action foo (float) returns string {
return "Hello";

}
action bar () {
action<A, float> returns string f := A.foo;
}
}

Actions in place of routed events

In some situations, you might find it more efficient to use action type variables instead
of routing events. For example, suppose you implement a service that takes an action
variable as one of its parameters. Now suppose that the service needs a response

from an adapter or some other service before it can send a response. When ready, the

Developing Apama Applications Version 9.10 278

Defining What Happens When Matching Events Are Found

service can respond with a routed event, but that means you have to set up an event
listener for that event. Routing events and setting up event listeners is more expensive
than invoking actions. So instead of routing and listening, the service can respond by
invoking the action on the event that initiated the service request. For example:

My application Some service

Usmﬂ events Define a doRaequest action that takes parameters, one of which is a

request |0

Add an event listener for ServiceResponse events that match a known
1D value,

Imvake the remole doRequest action and pass the request ID
as a parameler. —

Route ServiceResponse events with result and include the request |D.

-
Match the ServiceResponse avent by ID and remove event listener,

Using actions

Dafine the onServiceResponse action to act as a callback. Define a doRegquest action that lakes parameters, one of which is an
action type.
Invoke the remote doRequest action and pass the onServiceResponse
action as a parameter, —
The deRequest action executes and then invokes the action
. passed oit.

The enServiceRasponse action is invoked with parameters derived from the
the doRegquest action.

The following sample code uses a routed event. Following this code there is a sample
that uses an action on an event.

event ServiceResponse {
string requestId;

}

event Service ({
action doRequest(string requestId, ...) {

// when asynchronous 'service actions' are complete
route ServiceResponse(requestId, ...);

}
}

monitor Client {
Service service;
action onload() {
string id := ...;
ServiceResponse r;
on Response(requestId=id): r {

}

service.doRequest (id, ...);

}

The following sample code uses an action on a Client monitor:

Developing Apama Applications Version 9.10 279

Defining What Happens When Matching Events Are Found

event Service {
action doRequest(action< ... > callback, ...) {

// when asynchronous 'service actions' are complete
callback(...);

}

monitor Client {
Service service;
action onload() {

string id := ...;

service.doRequest (onServiceResponse, ...);

}

action onServiceResponse(...) {

}
}

Creating closures

When an action is a member of an event the behavior of the action depends on the
instance of the event that the action is called on. Consequently, you might want to bind
an action member with a particular event instance. When you bind an action member to
an event instance you are creating a closure. The advantages of creating a closure are:

®m Simpler syntax for executing the action
®m Greater flexibility in making assignments to action variables

Consider the following event definition:

event E {
integer i;
action foo() { print "Foo "+i.toString(); }
action times (integer j) returns integer { return i*j; }

}

With this definition, E (1) . foo () would print "Foo 1", while E (42) . foo () prints
"Foo 42". The action E. foo always has a specific instance of E to work with. You can
achieve this by specifying the action's implicit self argument when you call the action,
as described earlier in this topic. When you use this technique you identify the event
instance when you call the action variable.

Alternatively, you can create a closure that binds an action member with an event
instance. You store the closure in an action variable. The action variable and the action
member must be of the same action type. That is, they must take the same argument(s),
if any, and return the same type, if any.

When you use this technique you identify the event instance when you assign the
event's action member to the action variable.

The following code shows an example of binding an event instance to an action member
by storing the closure in an action variable.
monitor m {

action <> a;
action onload() {

Developing Apama Applications Version 9.10 280

Defining What Happens When Matching Events Are Found

E e := E(42);
a := e.foo;
a(); // Prints "Foo 42"

}

In this example, e. foo denotes E. foo called on e. That is, when you assign the action
e. foo to the a action variable you are identifying which instance of £ to use when you
call the a action. This closure binds a reference to E to the E. foo action and stores it

in the a action variable. After you create a closure, you can call an action on an event
as though it is a simple action. This gives you considerable flexibility in what you can
assign to an action variable.

More about closures

EPL performs its own garbage collection. Consequently, you do not need to consider
how long a bound object must last. This is handled automatically.

A closure binds by reference. Consider the following example, which uses the same
event E as above:

monitor m {
action <integer> returns integer a;
action onload() {
E e := E(3);
a := e.times;
print a(2).toString(); // Prints "6"
e.i := 5;
print a(2).toString(); // Prints "10"

}

In a portion of code, you can define multiple action variables that contain closures for
the same object. For example:

event Counter {

integer i;

action increment () { i := i+1; }

action output() { print i.toString(); }
t

event Increment {}
event Finish {}
monitor m {

action <> incrementAction;
action <> outputAction;

action onload() {
Counter counter := new Counter;
incrementAction := counter.increment;
outputAction := counter.output;
on all Increment () and not Finish () { incrementAction(); }
on all Finish() { outputAction(); }

}

In an event type, when an action member refers to another action member in the same
event type a closure happens implicitly. For example:
event E {

action <integer> returns integer a;

}

Developing Apama Applications Version 9.10 281

Defining What Happens When Matching Events Are Found

event Plus {
integer i;
action f (integer j) returns integer { return i+j; }
action setA(E e) { e.a := f; }

}

Here, the fine.a := fisequivalentto self. £, just as it would be if seta had called £
instead of assigning it to an action variable. This creates a closure. After seta is called on
some instance of Plus, e.a will call £ on that same instance.

Other ways to specify closures

You can create a closure using any value and any action on that value. Thus, it is possible
to:

®m Bind a built-in method to a value.
B Bind actions to primitive types and other reference types instead of to events.
®m Bind actions to a literal or a function's return value instead of a variable's value.

For example:

// Print "E(42)"
E e := E(42);
action <> printE42 := e.toString;

// Print "Foo 12345"
action <> printFool2345 := E(12345).foo0;

// Take a floating-point number and return e to that power:
action <float> returns float eToTheX := 2.718282.pow;

// Return a random integer from 0 to 9 inclusive.

// (The brackets around 10 are needed so that "10." is not treated as a
// floating-point number.)
action <> returns integer randomDigit := (10) .rand;

// Return the strings in a sequence, separated by colons.
action <sequence<string> > returns string j := ":".join;

Restrictions

You cannot route, enqueue, emit or send an event that contains an action variable field.
It is okay to route, enqueue, emit or send an event that contains an action definition.

An action variable cannot be a key in a dictionary. An event that contains an action
field cannot be a key in a dictionary.

JMon

In a JMon application, you cannot declare event types that have action type members.
Consequently, events that contain action type fields are invisible to J]Mon applications.

Developing Apama Applications Version 9.10 282

Defining What Happens When Matching Events Are Found

Getting the current time

In the correlator, the current time is the time indicated by the most recent clock tick.
However, there are some exceptions to this:

m If you specify the -Xclock option when you start the correlator, the correlator does
not generate clock ticks. Instead, you must send time events (¢TIME) to the correlator.
The current time is the time indicated by the most recent received, externally
generated, time event. See "Externally generating events that keep time (&TIME
events)" on page 197.

m If you have multiple contexts, it is possible for the current time to be different in
different contexts. A particular context might be doing so much processing that
it cannot keep up with the time ticks on its queue. In other words, if contexts are
mostly idle, then they would all have the same current time.

B When the correlator fires a timer, the current time in the context that contains the
timer is the timer's trigger time. See "About timers and their trigger times" on page
195.

The information in the remainder of this topic assumes that the current time is the time
indicated by the most recent clock tick.

Use the currentTime variable to obtain the current time, which is represented as
seconds since the epoch, January 1st, 1970 in UTC. The currentTime variable is similar
to a global read-only constant of type f1oat. However, the value of the currentTime
variable is always changing to reflect the correlator's current time.

In the correlator, the current time is never the same as the current system time. In most
circumstances it is a few milliseconds behind the system time. This difference increases
when the input queues of public contexts grow.

When a listener executes an action, it executes the entire action before the correlator
starts to process another event. Consequently, while the listener is executing an action,
time and the value of the currentTime variable do not change. Consider the following
code snippet,

float a;
action checkTime () {
a := currentTime;
}
// ... Lots of additional code
// A listener calls the following action some time later
action logTime () {
log a.toString(); // The time when checkTime was called
log currentTime.toString(); // The time now

}

In this code, an event listener sets f1oat variable a to the value of currentTime, which
is the time indicated by the most recent clock tick. Some time later, a different event
listener logs the value of a and the value of currentTime. The values logged might not
be the same. This is because the first use of currentTime might return a value that is
different from the second use of currentTime. If the two event listeners have processed

Developing Apama Applications Version 9.10 283

Defining What Happens When Matching Events Are Found

the same event, the logged values are the same. If the two event listeners have processed
different events, the logged values are different.

Generating events

As discussed previously, actions can perform calculations and log messages. In addition,
actions can dynamically generate events. Specify the route, send, enqueue, or emit
statement to generate an event.

Note: In a query, route is not allowed.

The topics below discuss this.

Generating events with the route command

The route command generates a new event that goes to the front of the input queue of
the current context.

Note: In a query, route is not allowed.

Any active listeners seeking that event then receive it. There is only one difference
between an externally sourced event (passed in through a live message feed) and an
event that was generated internally through a route command. The difference is that
internally routed events are placed at the front of the context's input queue in the same
order as they are routed within an action, and after any previously internally routed
events where multiple listener actions have been triggered by an event. The correlator
processes the routed events on the input queue before it processes the next non-routed
event on the input queue. See "Event processing order for monitors" on page 61.

For example:

action simulateCrash () {
route StockTick (currentStock.name, 50.0);
route StockTick (currentStock.name, 30.0);
route StockTick (currentStock.name, 20.0);
route StockTick (currentStock.name, 10.0);
route StockTick (currentStock.name, 5.0);
route StockTick (currentStock.name, 1.0);

}

The simulateCrash () action shown above routes six StockTick events for the
monitor's specific stock name, with drastically reducing prices. Other monitors (or the
same monitor) may receive these events and process them accordingly.

You cannot route the following types:

B action, chunk, listener, stream

B A sequence that contains a type that is unroutable

B A dictionary whose key or value is a type that is unroutable
B

An event that contains a type that is unroutable

Developing Apama Applications Version 9.10 284

Defining What Happens When Matching Events Are Found

Note that you can route an event whose type is defined in a monitor.

Generating events with the send command

The send command sends an event to a channel, a context, a sequence of contexts, or a
com.apama.Channel object.

When you send an event to a channel the correlator delivers it to all contexts and
external receivers that are subscribed to that channel. To send an event, use the
following format:

send event expression to expression;

The result type of event expression must be an event. It cannot be a string
representation of an event.

To send an event to a channel, the expression must resolve to a string or a
com.apama.Channel object that contains a string. If there are no contexts and no
external receivers that are subscribed to the specified channel then the event is
discarded. See "Subscribing to channels" on page 70.

The only exception to this is the default channel, which is the empty string. Events sent
to the default channel go to all public contexts. All running Apama queries receive
events sent on the default channel as well as events sent on the com.apama.queries
channel. See "Defining Queries" on page 75.

To send an event to a context, the expression must resolve to a context, a sequence
of contexts, or a com.apama.Channel object that contains a context. You must create a
context before you send an event to the context. You cannot send an event to a context
that you have declared but not created. For example, the following code causes the
correlator to terminate the monitor instance:
monitor m {

context c;

action onload()

{
send A() to c;

}
}

If you send an event to a sequence of contexts and one of the contexts has not been
created first then the correlator terminates the monitor instance. Sending an event to
a sequence of contexts is non-deterministic. You cannot send an event to a sequence
of com.apama.Channel objects. For details, see "Sending an event to a sequence of
contexts" on page 314.

All routable event types can be sent to contexts, including event types defined in
monitors.

If a correlator is configured to connect to UM then a channel might have a corresponding
UM channel. If there is a corresponding UM channel then UM is used to send the event
to that UM channel.

See Choosing when to use UM channels and when to use Apama channels in Connecting Apama
Applications to External Components.

Developing Apama Applications Version 9.10 285

Defining What Happens When Matching Events Are Found

Sending events to com.apama.Channel objects

A com.apama.Channel object is particularly useful when writing services that can be
used in both distributed and local systems. For example, by using a Channel object to
represent the source of a request, you could write a service monitor so that the same
code sends a response to a service request. You would not need to have code for sending
responses to channels and separate code for sending responses to contexts.

Consider the following Request event and Service monitor definitions:

event Request {

Channel source;

}

monitor Service {
action onload() {
monitor.subscribe ('Requests') ;
Request reqg;
on all Request () :reqg {
Response rep := Response(...);
send rep to reg.source;

}

EPL code in a context in the same correlator as the Service monitor could send a
Request event with the source field set to context.current () and would receive the
Response event that the Service monitor sends. For example:

monitor LocalRequester {

action onload() {
Request req := Request(...);
reqg.source := Channel (context.current());

send req to 'Requests';

Response rep;
on all Response() :rep {

}
}

Now consider a monitor that is in a correlator that is connected to the Service

monitor host correlator. For example, the correlators can be connected by means of
engine connect. The remote monitor could send a Request event with the source field
set to a Channel object that contains the name of a channel that the remote monitor is
subscribed to. For example:

monitor RemoteRequester ({

action onload() {
monitor.subscribe ('Responses') ;

Request req := Request(...);
reqg.source := Channel ('Responses');
send reqg to 'Requests';

Response rep;
on all Response() :rep {

Developing Apama Applications Version 9.10 286

Defining What Happens When Matching Events Are Found

}

In this example, if the correlators are connected by means of engine connect then the
connections would need to be subscribed to the Requests channel and the Responses
channel. As you can see, the service monitor does not require different code according
to whether the request is coming from a local or remote context. The service monitor
simply sends the response back to the source and it does not matter whether the source
is a context or a channel.

You can send a Channel object from one Apama component to another Apama
component only when the Channel object contains a string. You cannot send a Channel
object outside a correlator when it contains a context.

Generating events with the enqueue command

The enqueue command generates an event and places the event on a special queue

just for events generated by the enqueue command. A separate thread moves these
events to the input queue of each public context. This arrangement ensures that if the
input queue of a public context is full, the event generated by enqueue still arrives on its
special queue, and is moved to each public context's input queue as soon as that queue
has room. Active listeners will eventually receive events that are enqueue'd, once those
events make their way to the head of the input queue alongside normal events.

There are two formats available for using enqueue. You can directly enqueue an event,
as the example below does first, or else place the event in a string and enqueue that. If
you use this latter format, you must ensure that you define the string to represent a valid
event.

Use the enqueue statement when you want to ensure that the correlator processes
the generated event after it has processed all routed events. Note that other external
or enqueued events may be processed prior to processing this enqueued event. To
defer processing an event until after processing of all routed events, enqueueing to
context.current () might be preferable. The enqueue statement is also useful when
you want to send events into all public contexts.

For example, consider a further revised version of the earlier example:

event StockTickPriceChange ({
string owner;
string name;
float price;

}

// A new processTicks action that dispatches an event to
// the input queue instead of logging
action processTicks () {

// The following enqueue format sends the event itself.
enqueue StockTickPriceChange (currentStock.owner,
newTick.name, newTick.price);

// Or, use the following enqueue format, which sends a string that
// contains the event.
enqueue "StockTickPriceChange (\""+currentStock.owner+

Developing Apama Applications Version 9.10 287

Defining What Happens When Matching Events Are Found

"\",\""+newTick.name+"\", "+newTick.price.toString()+")";

}

If the string does not represent an event that fully complies with an event type that

has been defined elsewhere in EPL then it will be thrown away before being placed

on the input queue. This is the same behavior as for any normal event received by the
correlator. Unless the correlator understands its event type (by having had it defined in
EPL) it ignores it.

You cannot enqueue the following events:
B An event whose type is defined inside a monitor.

B Anunroutable event type, that is, an event type that contains a field whose type is
something other than a primitive type, a location type, or a context type.

Enqueuing to contexts

To enqueue an event to a particular context, use the following form of the enqueue
statement:

enqueue event expression to context expression;

Note: The enqueue. . . to statement is superseded by the send. . . to statement.
The enqueue. . . to statement will be deprecated in a future release. Use
the send. . . to statement instead. See "Generating events with the send
command" on page 285.

The result type of event expressionmust be an event. It cannot be a string
representation of an event. The result type of context expressionmust be a context
or a variable of type context. It cannot be a com.apama.Channel object that contains a
context.

The enqueue. . . to statement sends the event to the context's input queue and not to
the special enqueue queue. Even if you have a single context, a call to enqueue x to
context.current () is meaningful and useful.

You must create the context before you enqueue an event to the context. You cannot
enqueue an event to a context that you have declared but not created. For example, the
following code causes the correlator to terminate the monitor instance:
monitor m {

context c;

action onload()

{

enqueue A() to c;
}
}

If you enqueue an event to a sequence of contexts and one of the contexts has not been
created first then the correlator terminates the monitor instance. For details, see "Sending
an event to a particular context" on page 312.

"Sending an event to a sequence of contexts" on page 314 is non-deterministic.

All routable event types can be enqueued to contexts, including event types defined in
monitors.

Developing Apama Applications Version 9.10 288

Defining What Happens When Matching Events Are Found

Generating events to emit to outside receivers

The emit command dispatches events to external registered event receivers, which
means that the events leave the correlator. Active listeners do not receive emitted events.

Note: The emit command is superseded by the send command. See "Generating
events with the send command" on page 285. The emit command will be
deprecated in a future release. Use send rather than emit.

There are two formats available for using emit. You can directly emit an event, as

the example below does first, or else place the event in a string and emit that. If you
use this latter format, you must ensure that you define the string to represent a valid
event. The correlator does not check whether the string you specify represents an event
that is compliant with any event type that has been injected. In fact, you can use this
mechanism to emit an event of a type that has not been defined in EPL anywhere else.

For example, consider a revised version of an earlier example. The result, instead of
being printed as a message on the screen, is now being sent out as an event message:
event StockTickPriceChange ({

string owner;

string name;

float price;

}

// A new processTicks action that dispatches an output event
// to external applications instead of logging
action processTicks () {

// The following emit format sends the event itself.
emit StockTickPriceChange (currentStock.owner,
newTick.name, newTick.price) to
"com.apamax.pricechanges";

// Or, use the following emit format, which sends a string that
// contains the event.
emit "StockTickPriceChange (\""+currentStock.owner+
"\",\""+newTick.name+"\", "+newTick.price.toString()+")" to
"com.apamax.pricechanges";

Events are emitted onto named channels. In the above code the StockTickPriceChange
event is being published on the com. apamax.pricechanges channel. For an application
to receive events from Apama it must register itself as an event receiver and subscribe
to one or more channels. Then if events are emitted to those channels they will be
forwarded to it.

Channels effectively allow both point-to-point message delivery as well as through
publish-subscribe. As in the above example, channels can be set up to represent topics.
External applications can then subscribe to event messages of the relevant topics.
Otherwise a channel can be set up purely to indicate a destination and have only one
application connected to it.

You cannot emit the following events:

B An event whose type is defined inside a monitor

Developing Apama Applications Version 9.10 289

Defining What Happens When Matching Events Are Found

® Anunroutable event type

If a correlator is configured to connect to UM then a channel might have a corresponding
UM channel. If there is a corresponding UM channel then UM is used to emit the event
to that UM channel.

See "Choosing when to use UM channels and when to use Apama channels" in
Connecting Apama Applications to External Components.

Assigning values

Valid examples of an assignment statement are:

integerVariable := 5;
floatVariable := 6.0;
stringVariable := "ACME";
stringVariable2 := stringVariable;

Assignments are only valid if the type of the literal or variable on the right hand side
corresponds to the type of the variable on the left hand side.

When doing an assignment from a variable to another variable the behavior of EPL
depends on the type of the variable.

® In the case of primitive types the variable on the left hand side is set to the same
value as the variable on the right hand side. The value is therefore copied and the
two variables remain distinct.

® In the case of complex reference types the variable on the left hand side is set to
reference the same object as the variable on the right hand side. Only the reference
is copied, while the underlying object remains the same. If the object is subsequently
changed, both variables would reflect the change.

Defining conditional logic
EPL supports conditional i f-then and if-then-else statements.

Syntactically an if-then statement consists of an if keyword followed by a boolean
expression followed by a then keyword followed by a block. A block consists of one

or more statements enclosed in curly braces, {}.If the boolean expression is true the
contents of the block are executed. If the expression is false, the i £-then statement exits.

The boolean expression must evaluate to the boolean values true or false.

An if-then-else consists of if followed by a boolean expression followed by then
followed by a 'then' block followed by an else keyword followed by an 'else' block. If
the boolean expression is true, the first block is executed, otherwise the second block is
executed.

There is a special variant of the i f-then-else allowed where a second nested i f-then
or if-then-else statement can replace the second block. This is only of relevance in
that no curly braces are required in this special case.

Developing Apama Applications Version 9.10 290

Defining What Happens When Matching Events Are Found

In standard BNF notation this syntactic definition looks as follows:

ifStatement ::= if booleanExpression then block

| if booleanExpression then blockl else blockZ2

| if booleanExpression then block3 else ifStatement block ::= {statementList }
Note: BNF is an acronym for "Backus Naur Form". John Backus and Peter Naur

introduced for the first time a formal notation to describe the syntax of a given
language in 1960, and since then BNF notation is the standard notation used
to specify the syntax rules of programming languages.

An EPL example follows:
if floatVariable > 5.0 then {
integerVariable := 1;
} else if floatVariable < -5.0 then {
integerVariable := -1;
} else {
integerVariable := 0;

}

Note that i f-then-else statements can be nested. In other words, the body of a then
or an else can contain another if-then-else, in addition to the explicit else if
combination.

Defining loops
EPL supports two loop structures, while and for.

The while statement's BNF definition is:

whileStatement ::= while booleanExpression block
An EPL example is:
integerVariable := 20;
while integerVariable > 10 {
integerVariable := integerVariable - 1;

on StockTick ("ACME", integerVariable) doAction();
}

The for looping structure allows looping over the contents of a sequence. In BNF its
definition is:
forStatement ::= for counter in sequence block

The counter must be an assignable variable of the same type as the type of elements of
the sequence. For example:

sequence<integer> s;
integer i;
s.append (0) ;
s.append (1) ;
s.append(2) ;
s.append (3) ;
for i in s {

print i.toString();
}

Developing Apama Applications Version 9.10 291

Defining What Happens When Matching Events Are Found

The loop will iterate through all the indices in the sequence, checking whether there are
any more indices to cover each time. In the example above, i will be set to s[0], then
s[1], and so on up to s [3]. The counter continues incrementing by one each time, and
is checked to verify whether it is less than s.size () before a further iteration is carried
out. Looping only terminates when the next index would be beyond the last element of
the sequence, or equal to size () (since indices are counted from 0).

When the correlator executes a for loop, it operates on a reference to the sequence.
Consequently, if the code in the for loop assigns some other sequence to the sequence
expression specified in the for statement this has no effect on the iteration. However,
if the code in the for loop changes the contents of the sequence specified in the for
statement, this can affect the iteration. For example:
sequence <string> tmp := ["X", "Y", "zZ"];
sequence <string> seq := ["A", "B", "C", "D", "E"];
string s;
for s in seq {

seq := tmp;

print s;

}

The for loop steps through whatever seq referred to when the loop began. Therefore,
assigning tmp to seq inside the loop does not affect the behavior of the loop. This code
prints 2, B, C, D, and E on separate lines.

In the following example, the code in the for loop changes the contents of the sequence
specified in the for statement and this affects the behavior of the loop.
sequence<string> seq := (["A", "B", "C", "D", "E"];
string s;
for s in seq {

seq[2] := "c";

print s;

}

This code prints 2, B, ¢, D, and E on separate lines.

In the following code, the changes to the contents of the specified sequence would
prevent the for loop from terminating.

sequence<string> seq := ["x"];

string s;

for s in seq {

seqg.append(s) ;
}

EPL provides the following statements for manipulating while and for loops. Usage is
intuitive and as per other programming language conventions:

B Dbreak exits the innermost loop. You can use a break statement only inside a loop.

B continue moves to the next iteration of the innermost loop. You can use a continue
statement only inside a loop.

B return terminates both the loop and the action that contains it.

Developing Apama Applications Version 9.10 292

Defining What Happens When Matching Events Are Found

Catching exceptions

EPL supports the try-catch exception handling structure. The try-catch statement's BNF
definition is:
tryCatchStatement ::= try blockl catch(Exception variable) block2

The statements in each block must be enclosed in curly braces. For example:

using com.apama.exceptions.Exception;

action getExchangeRate (
dictionary<string, string> prices, string fxPair) returns float ({
try {
return float.parse (prices[fxPair]);
} catch (Exception e) {
return 1.0;
}
}
Exceptions are a mechanism for handling runtime errors. Exceptions can be caused by

any of the following, though this is not an exhaustive list:

® Invalid operations such as trying to divide an integer by zero, or trying to access a
non-existent entry in a dictionary or sequence

B Methods that fail, for example trying to parse an object that cannot be parsed
® Plug-ins

m Operations that are illegal in certain states, such as spawn-to in an ondie () or
onunload () action, or sending an event to a context and specifying a variable that
has not been assigned a valid context object

An exception that occurs in try blockl causes execution of catch block2. An
exception in try blockl can be caused by:

m Code explicitly in try blockl
® A method or action called by code in try blockl

® A method or action called by a method or action called by code in try blockl, and
SO on.

Note that the die statement always terminates the monitor, regardless of try-catch
statements.

The variable specified in the catch clause must be of the type
com.apama.exceptions.Exception. Typically, you specify using
com.apama.exceptions.Exception to simplify specification of exception variables in
your code. The Exception variable describes the exception that occurred.

The com.apama.exceptions namespace also contains the StackTraceElement built-in
type. The Exception and StackTraceElement types are always available; you do not
need to inject them and you cannot delete them with the engine delete utility.

An Exception type has methods for accessing:

Developing Apama Applications Version 9.10 293

Defining What Happens When Matching Events Are Found

® A message — Human-readable description of the error, which is typically useful for
logging.

® A type — Name of the category of the exception, which is useful for comparing
to known types to distinguish the type of exception thrown. Internally generated
exceptions have types such as ArithmeticException and ParseException. For a

list of exception types, see "Exception” on page 800.

m A stack trace — A sequence of StackTraceElement objects that describe where the
exception was thrown. The first StackTraceElement points to the place in the code
that immediately caused the exception, for example, an attempt to divide by zero or
access a dictionary key that does not exist. The second StackTraceElement points
to the place in the code that called the action that contains the immediate cause. The
third stackTraceElement element points to the code that called that action, and so
on. Each stackTraceElement object has methods for accessing:

Information in an Exception object is available by calling these built-in methods:

The name of the file that contains the relevant code
The line number of the relevant code
The name of the enclosing action

The name of the enclosing event, monitor or aggregate function

Exception.getMessage ()
Exception.getType ()
Exception.getStackTrace ()
StackTraceElement.getFilename ()
StackTraceElement.getLineNumber ()
StackTraceElement.getActionName ()

StackTraceElement.getTypeName ()

In the catch block, you can specify corrective steps, such as returning a default value or

logging an error. By default, execution continues after the catch block. However, you

can specify the catch block so that it returns, dies or causes an exception.

You can nest try-catch statements in a single action. For example:

action NestedTryCatch () {
try {

print "outer";

try {
print "inner";
integer i:=0/0;

} catch (Exception e) {
// inner catch

}

} catch (Exception e) {

}

// outer catch

Developing Apama Applications Version 9.10

294

Defining What Happens When Matching Events Are Found

The block in a try clause can specify multiple actions and each one can contain a try-
catch statement or nested try-catch statements. An exception is caught by the innermost
enclosing try-catch statement, either in the action where the exception occurs, or walking
up the call stack. If an exception occurs and there is no enclosing try-catch statement
then the correlator logs the stack trace of the exception and terminates the monitor
instance.

Logging and printing

The following operations are provided for debugging and textual output:
B print string

B log string [at identifier]

The print statement outputs its text to standard output, which is normally the active
display or some file where such output has been piped. See also "Strings in print and log
statements" on page 299.

The 1og statement sends the specified string to a particular log file depending on

the applicable log level. For details, see Deploying and Managing Apama Applications,
"Correlator Utilities Reference", "Shutting down and managing components", "Setting
logging attributes for packages, monitors, and events".

The topics below provide information for using the 1og statement.

Specifying log statements

The format of a 1og statement is as follows:

log string [at identifier]

Syntax description

Syntax Element Description
string Specify an expression that evaluates to a string.
identifier Optionally, specify the desired log level. Specify

one of the following values: CRIT, FATAL, ERROR,
WARN, INFO, DEBUG or TRACE. If you do not specify an
identifier, the default is CRIT.

For each encountered 1og statement, the correlator compares the specified identifier
with the applicable log level to determine whether to send the specified string to a log
file. If the string is to be sent to a log file, the correlator determines the appropriate log
file to send it to.

The correlator uses the tree structure of EPL code to identify the applicable log level
and the appropriate log file. See "Setting logging attributes for packages, monitors, and

Developing Apama Applications Version 9.10 295

Defining What Happens When Matching Events Are Found

events" in the "Correlator Utilities Reference" section of Deploying and Managing Apama
Applications.

Log levels determine results of log statements

The correlator supports the following log levels:

0 OFF No entries go to log files.

1 CRIT Least amount of entries go to log files.

2 FATAL |

3 ERROR |

4 WARN |

5 INFO |

6 DEBUG |

7 TRACE Greatest amount of entries go to log files.

You use log levels to filter out log strings. If the log level in effect is lower than the log
level in the 1og statement the correlator does not send the string to the log file. For
example, if the log level in effect is ERROR (3) and the log level in the 10g statement is
DEBUG (6) the correlator does not send the string to the log file since the log level in effect
is lower than the log level in the 1og statement.

Suppose that a string expression in a 1og statement executes an action or has side effects.
In this situation, the correlator executes the 1og statement so that side effects always take
place. However, if the log level in effect is lower than the log level in the 1og statement
the correlator still does not send the string to the log file.

Here are some examples where the log level in effect is WARN:

log "foo bar" at CRIT; // Sends "foo bar" to the log file.
log "foo bar" at INFO; // Does not send anything to the log file.

log "foo" + "bar" + 12345.toString() at INFO;
// Does not send anything to the log file.
// The expression in the log statement is not evaluated as
// the log level is too low to send output to the log file,
// and the expression does not have side effects.

log "foo" + bar() + 12345.toString() at INFO;
// Does not send anything to the log file.
// Calls bar () since that action might have side effects,
// for example, the action could send an event.

Developing Apama Applications Version 9.10 296

Defining What Happens When Matching Events Are Found

Actions on events or monitors are assumed to have side effects. The
com.apama.epl.SideEffectFree annotation (see "Adding predefined annotations”

on page 68) can be added to an action definition to mark it as side effect free. Note that
with this annotation, actions will only be called from log statements if the log statement
would write to the log file. This is more compact than checking the log level before
executing the log statement. If the action does in fact have side effects, then changing the
log level can change the behavior of your program. It is recommended to only add the
SideEffectFree annotation on an action if a profile shows that a lot of time is spent in
calling that action (premature optimizations add to program complexity for no benefit).
Actions called via an action variable are always assumed to have side effects, as the EPL
runtime does not know which action is invoked.

For more information on the profile, see Profiling EPL Applications in Using Apama with
Software AG Designer.

To determine the log level in effect, the correlator checks whether you set a log level for
the following in the order specified below:

1. The monitor or event that contains the 1og statement.

2. A parent of the monitor or event that contains the 1og statement. The correlator
starts with the immediate parent and works its way up the tree as needed.

3. The correlator.

The log level in effect is the first log level that the correlator finds in the tree structure.
See "Setting logging attributes for packages, monitors, and events" in Deploying and
Managing Apama Applications, "Correlator Utilities Reference"”, "Shutting down and
managing components". If the correlator does not find a log level, the correlator uses the
correlator's log level. If you did not explicitly set the correlator's log level, the default is

INFO.

After the correlator identifies the applicable log level, the log level itself determines
whether the correlator sends the 1o0g statement output to the appropriate log file as
follows:

Log For Log Statements With These For Log Statements With These
Level in Identifiers, the Correlator Sends Identifiers, the Correlator Ignores
Effect the Log Statement Output to the Log Statement Output

Appropriate Log File

OFF None CRIT, FATAL, ERROR, WARN,
INFO, DEBUG, TRACE

CRIT CRIT FATAL, ERROR, WARN, INFO,
DEBUG, TRACE

FATAL CRIT, FATAL ERROR, WARN, INFO, DEBUG,
TRACE

Developing Apama Applications Version 9.10 297

Defining What Happens When Matching Events Are Found

Log For Log Statements With These For Log Statements With These
Level in Identifiers, the Correlator Sends Identifiers, the Correlator Ignores
Effect the Log Statement Output to the Log Statement Output
Appropriate Log File
ERROR CRIT, FATAL, ERROR WARN, INFO, DEBUG, TRACE
WARN CRIT, FATAL, ERROR, WARN INFO, DEBUG, TRACE
INFO CRIT, FATAL, ERROR, WARN, DEBUG, TRACE
INFO
DEBUG CRIT, FATAL, ERROR, WARN, TRACE
INFO, DEBUG
TRACE CRIT, FATAL, ERROR, WARN, None
INFO, DEBUG, TRACE

An advantage of this framework is that there is no performance penalty for having 1og
statements that do not specify actions in your application. You control the overhead of
executing such log statements by specifying the appropriate log level.

Where do log entries go?

When the correlator needs to send the 1og statement output to a log file, the correlator
checks whether you set a log file for the following in the order specified below:

1. The monitor or event that contains the 1og statement.

2. A parent of the monitor or event that contains the 1og statement. The correlator
starts with the immediate parent and works its way up the tree as needed.

3. The correlator.

The log file that receives the 1og statement output is the first log file that the correlator
finds. If the correlator does not find a log file, the default is that the correlator sends the
string and identifier to stdout.

Examples of using log statements

Suppose you insert DEBUG log statements without actions in a monitor. You specify
ERROR as the log level for that monitor. The correlator ignores 1og statement output of
log statements with identifiers of INFO or DEBUG. But then there are some problems. You
use the engine management correlator utility to change the log level to DEBUG. Now the
correlator sends output from all 1og statements to the appropriate log file.

Following is another example:

log "Log statement number " + logNo () at DEBUG;
action logNo () {

Developing Apama Applications Version 9.10 298

Defining What Happens When Matching Events Are Found

logNumber := logNumber + 1;
return logNumber.toString() ;

}

In this example, the correlator always executes the 1og statement because it calls an
action. However, the log level in effect must be DEBUG for the correlator to send the
string to the log file. If the log level is anything else, the correlator discards the string
because the log level in effect is lower than the log level in the 1og statement.

Strings in print and log statements
In both print and log statements, the string can be any one of the following:
m Literal, for example: print "Hello";

®m Variable, for example:

string welcomeMessage;
log welcomeMessage;

® Combination of both, for example:

string welcomeMessage;
print "Hello " + welcomeMessage + " Bye";

Internally, the correlator encodes all textual information as UTF-8. When the correlator
outputs a string to a console or stdout because of a print statement, or sends a string to
the log, the correlator translates the string from UTF-8 to the current machine's (where
the correlator is running) local character set. However, if you redirect stdout to a file,
the correlator does not translate to the local character set. This ensures that the correlator
preserves as much information as possible.

Sample financial application

This section describes a complete financial example, using the monitor techniques
discussed earlier in this chapter. See also: "Example of a query" on page 76.

This example enables users to register interest, for notification, when a given stock
changes in price (positive and negative) by a specified percentage.

Users register their interest by generating an event, here termed Limit, of the following
format:

Limit (userID, stockName, percentageChange)

For example:

Limit (1, "ACME", 5.0)

This specifies that a user (with the user ID 1) wants to be notified if ACME's stock price
changes by 5%. Any number of users can register their interests, many users can monitor
the same stock (with different price change range), and a single user can monitor many
stocks.

In EPL, the complete application is defined as:

event StockTick {

Developing Apama Applications Version 9.10 299

Defining What Happens When Matching Events Are Found

}

string name;
float price;

event Limit {

}

integer userID;
string name;
float limit;

monitor SharePriceTracking {

}

The important elements of this example lie in the life-cycle of different monitor states.
Firstly a monitor instance is spawned on every incoming Limit event where the limit
is greater than zero. Within setupNewLimitMonitor, the first on command listens for

// store the user's specified attributes
Limit limit;

// store the initial price (this may be the opening price)
StockTick initialPrice;

// store the latest price - to give to the user
StockTick latestPrice;

// when a limit event is received spawn; creating a new
// monitor instance for each user's request
action onload() {
on all Limit(*,*,>0.0):1limit spawn setupNewLimitMonitor () ;

// If an identical request from a user is discovered
// stop this monitor and die
// 1if a StockTick event is received for the stock the
// user specified, store the price and call setPrice
action setupNewLimitMonitor () {

on Limit (limit.userID, limit.name, *) die;

on StockTick (limit.name, *):initialPrice setPrice();

}

// Search for StockTick events of the specified stock name
// whose price is both greater and less than the value
// specified - also converting the value to percentile format
action setPrice() {
on StockTick(limit.name, > initialPrice.price * (1.0 +
(limit.limit/100.0))) :latestPrice notifyUser () ;

on StockTick(limit.name, < initialPrice.price * (1.0 -
(limit.limit/100.0))) :latestPrice notifyUser () ;
}

// display results to user
action notifyUser () {
log "Limit alert. User=" +
limit.userID.toString () +
" Stock=" + limit.name +
" Last Price=" + latestPrice.price.toString() +
" Limit=" + limit.limit.toString() ;
die;

other Limit events from the same user, upon detection of which the monitor instance is

Developing Apama Applications Version 9.10

300

Defining What Happens When Matching Events Are Found

killed. This effectively ensures that there is a unique monitor instance per user per stock.
This scheme also allows a user to send in a Limit event with a zero limit to indicate that
they actually no longer want to monitor a particular stock. While this will not be caught
by the original monitor instance's event listener and will not cause spawning, it will
trigger the event listener in the monitor instance of that user for that stock and cause it to
die.

Then a single on command (without an all) sets up an event listener to look for

all stockTick events for that stock type for that user. Once a relevant StockTick is
detected, new event listeners start seeking a specific price difference for that user. If such
a price change is detected it is logged. Note that the 1og command exploits data from
variables used before and after the spawn command (thatis, 1imit and latestPrice,
respectively).

This example also demonstrates how mathematical operations may be used within event
expressions. Here, two on commands create event listeners that look for stockTicks
with prices above and below the calculated price. The calculated price in this case is
based on the initial price multiplied by the percentage specified by the user. The first
event listener is looking for an increase in the share price to 105% of its original value,
while the second is looking for a decrease to 95% of its original value.

Developing Apama Applications Version 9.10 301

Developing Apama Applications Version 9.10 302

Implementing Parallel Processing

7 Implementing Parallel Processing

B INroduCtion 10 CONEEXES ...vvieiiciiciei s 304
B Creating CONEXES ...ttt 306
B How many Contexts Can YOU CrEAIET ..o 307
m Using channels to communicate between CONtEXIScovvricrriiiiniieiierce e, 307
B Obtaining CONEXt FEErENCESc.cviviveiciciicce e 308
B SPAWNING 10 CONTEXESvvrierieciecie bbb 309
B Channels and CONTEXESciiiriiiiiicci e 310
B Sending an event t0 @ ChaNNE! ..o 311
B Sending an event to @ particular CONTEXEcccoviiucviiiciicee e 312
m Sending an event to @ SeqUENCE Of CONEXEScuveivreiiririeire e 314
B Common USE CASES fOr CONEXEScuiuiiiiiiieiciec e 316
m Samples for implementing CONEXES ..o 316
m Contexts and correlator determiniSMccoeriirii s 323
m How contexts affect other parts of your Apama applicationccccccevvrieeviieceeicecens 323
Developing Apama Applications Version 9.10 303

Implementing Parallel Processing

By default, the correlator operates in a serial manner. In a monitor, you have the option
of implementing contexts for parallel processing.

Note: Queries automatically take advantage of parallel processing. You do not need
to implement parallel processing in queries. The information in this section of
the documentation is for application developers who are writing monitors.

During serial correlator operation, the correlator processes events in the order in which
they arrive. Each external event matches zero or more listeners. The correlator executes
a matching event's associated listeners in a rigid order. The correlator completes the
processing related to a particular event before it examines the next event.

For some applications, this serial behavior might not be necessary. In this case, you
might be able to improve performance by implementing parallel processing. Parallel
processing lets the correlator concurrently process the EPL in multiple monitor
instances. To implement parallel processing, you create one or more contexts.

Note: If a license file cannot be found, the number of contexts that the correlator
allows to be created is limited. See "Running Apama without a license file" in
Introduction to Apama.

Parallel processing in the correlator is quite different from the parallel processing
provided by Java, C++, and other languages. These languages allow shared state,

and rely on mutexes, conditions, semaphores, monitors, and so on, to enforce correct
behavior. The correlator does not automatically provide shared state. Data sharing
happens by sending events between contexts and by using the MemoryStore. See "Using
the MemoryStore" on page 365. Parallel processing in the correlator is a message-
passing system.

Introduction to contexts

Contexts allow EPL applications to organize work into threads that the correlator can
execute concurrently.

In EPL, context is a reference type. When you create a variable of type context, or an
event field of type context, you are actually creating an object that refers to a context.
The context might or might not already exist. You can then use the context reference to
spawn to the context or send an event to the context. When you spawn to a context, the
correlator creates the context if it does not already exist.

What is inside/outside a context?

When you start a correlator it has a single main context. You can then create additional
contexts. A context consists of the following;:

B One or more monitor instances. Except, the main context exists even if it does not
contain any monitor instances.

B Anevent input queue.

Developing Apama Applications Version 9.10 304

Implementing Parallel Processing

®m Listeners that belong to the contained monitor instances.

The correlator maintains event definitions and monitor definitions outside contexts. This
lets all contexts share the same event and monitor definitions.

Instances of the same monitor can exist in multiple contexts. Each monitor instance
belongs to a single context. For example, suppose you inject monitor A. Monitor &
spawns within its own context (the main context) twice and spawns once to the alpha
context. This creates three additional monitor instances. Two instances are in the main
context and one instance is in the alpha context. These instances do not share any data,
other than by means of passing events.

About context properties
A context has the following properties:

® Name — A string that you specify when you create the context. This name does not
need to be unique. The name is a convenient identifier that you can use in your code.

® ID — The correlator assigns a unique integer.

B receivelnput flag — A Boolean value that indicates whether the context can receive
external input events on the default channel, which is the empty string ("").

A value of true lets the context receive external events on the default channel; this
is a public context. A value of true is equivalent to a subscription to the default
channel; there is no requirement for a monitor instance in this context to subscribe to
the default channel.

A value of false indicates a private context that does not receive external events on
the default channel. This is the default.

Note that the main context is public.

® Channel subscriptions — A context is subscribed to the union of the channels each
of the monitor instances in that context is subscribed to. This is a property of the
monitor instances running in a context and is not accessible by means of the context
reference object.

You can spawn to other contexts. When the last monitor instance in a context terminates,
that context stops doing work and stops consuming resources until you spawn another
monitor instance to it.

In a context, when you route an event, the event goes to the front of that context's input
queue. You can route events only within a context.

You can send an event to a particular context. When you do this, the event goes to the
end of the specified context's input queue. The correlator processes it after it processes
any other events that are already on the context's input queue. See "Sending an event to
a particular context" on page 312.

You can use a context as part of the key for a dictionary. You can route an event that
contains a context field. You cannot parse a context. Context objects are immutable
reference objects.

Developing Apama Applications Version 9.10 305

Implementing Parallel Processing

Context lifecycle

A context has a lifecycle that starts when a spawn. . . to operation occurs and ends when
the last monitor instance in the context terminates. This is completely independent of
any context objects that refer to the context. It is possible for a context to be running
when no references to it exist, and it is possible for a context object to refer to a context
that is no longer running. In the latter case, spawning to a context that is not running is
permissible. The correlator restarts the context as required.

Note: If a license file cannot be found, the number of contexts that the correlator
allows to be created is limited. See "Running Apama without a license file" in
Introduction to Apama.

Comparison of a correlator and a context

Upon injection, each monitor's initial instance runs in the main context. You must
explicitly create additional contexts. Conceptually, a context is like a correlator but with
the following differences:

®m All contexts share the same namespace, and thus share all monitor and event
definitions that have been injected.

® A monitor instance must have a context reference to pass an event to that context.

®m There is one enqueued events queue for all contexts. When you specify the enqueue
command (not the enqueue event to context command), the enqueued event
goes to the special queue for enqueued events. The correlator then places the event
on the input queue of each public context. The correlator ensures that an enqueued
event always arrives on the appropriate input queue(s). An enqueue operation never
blocks. However, if the input queue of a context is full and the enqueued events
queue gets very large, the result can be an unbounded memory usage error.

® Execution of Java is allowed in only the main context.

B The engine receive utility receives events from all contexts or it can be configured
to receive events from only specified channels.

B The engine_ send utility sends events to all public contexts or to the contexts that are
subscribed to the channels it is configured to send events on.

Creating contexts

In EPL, you refer to a context by means of an object of type context. The context type
is a reference type.

The recommendation is to use private contexts and have monitor instances subscribe

to the channels they require events from. This gives greater flexibility over using public
contexts. For information on the constructors needed to create a context, see "context" on
page 790.

Developing Apama Applications Version 9.10 306

Implementing Parallel Processing

The name of a context does not have to be unique, and is only used for diagnostic
purposes (it is recommended that context names be meaningful and distinct). Creating
a new context object with the same name as another context creates a reference to a
different context, not the same context. Context references are independent to the actual
context where monitors run. A context continues running if there are no references to it.
A reference to a context may exist even though no active monitors are running in that
context. You use the context reference to spawn to the context or send an event to the
context. When you spawn to a context, the correlator creates the context if it does not
already exist.

When you start a correlator, it has a single main context. You can then create additional
contexts. Context reference objects are lightweight and creating one only creates a stub
object and allocates an ID. In other words, when you create an EPL context object, you
are actually creating a context reference.

The following example creates a reference, c, to a private context whose name is test:

context c:=context ("test");
For information on the methods you can call on a context, see "context" on page 790.

See also "How many contexts can you create?" on page 307.

How many contexts can you create?

You can create any number of contexts. A context is a very lightweight object. Creating a
context just allocates an identifier and creates a small object. Consequently, it is possible
to create a thousand contexts with little performance penalty.

You can have any number of running contexts. A running context means that the context
contains at least one monitor instance that has work to do. The more CPU cores you
have, the more contexts it is practical to be running at a given time. The performance

of multiple contexts running concurrently should scale approximately according to the
number of CPU cores available on the host.

Because the cost of each context is low, it is possible to divide applications into the finest
level of parallelism possible and let the correlator balance running those contexts across
all CPU cores. This is true even if that means creating very many contexts.

Using channels to communicate between contexts

Contexts can subscribe to channels, using the monitor.subscribe (channelName)
operation. When a monitor executes monitor.subscribe (channelName), it causes
the context it is running in to be subscribed to that channel. The subscription's
lifetime is tied to the lifetime of the monitor instance that executes subscribe ().
The subscription is active until that monitor instance terminates or executes
monitor.unsubscribe (channelName).

Subscriptions are reference counted. That is, if one monitor instance subscribes twice to
the same channel then it needs to unsubscribe twice from that channel. If two monitor
instances each subscribe once to the same channel then the subscription is active while

Developing Apama Applications Version 9.10 307

Implementing Parallel Processing

either monitor instance exists or until both monitor instances unsubscribe from that
channel.

When a context is subscribed to a channel it receives all events sent on that channel. This
includes:

m Events sent to the correlator from

m AnIAF adapter
B engine send
®m Another correlator connected with engine connect and using parallel mode
m Clients
m Universal Messaging
® Events sent from EPL using the send. . . to command
m Events sent from correlator plug-ins to a specific channel

It does not include events emitted with the emit. . .to command. Even if the target of an
emit...to statement is a channel that the context is subscribed to, an event sent by the
emit statement goes only to external receivers and not to any contexts.

By using a channel for each stream of data an application may be interested

in, an application can control which streams of data it receives through

execution of the appropriate monitor.subscribe (channelName) and
monitor.unsubscribe (channelName) commands. The correlator can efficiently
distribute events within the correlator to multiple contexts, plug-ins or receivers
subscribed to channels. If further scale-out is required, using channels allows some
application components to be deployed to correlator processes running on other
hosts, which are connected using the engine_connect correlator utility or Universal
Messaging. See "Tuning Correlator Performance" in Deploying and Managing Apama
Applications.

Obtaining context references

To obtain a reference to the context that a piece of code is running in, call the
context.current () method. This is a static method that returns a context object that
is a reference to the current context. The current context is the context that contains the
EPL that calls this method.

For a monitor instance to interact with the EPL by means of a context object in another
context, the monitor instance must have a reference to that context. A monitor instance
can obtain a reference to another context in only the following ways:

m By creating the context.

B By receiving a context reference, which must be of type context. A monitor instance
can receive this reference by means of a routed or sent event, or a spawn operation.

For example:

Calculate calc;

Developing Apama Applications Version 9.10 308

Implementing Parallel Processing

on all Calculate() :calc {
integer calcId:=integer.getUnique () ;
spawn doCalculation(calc, calcId, context.current())
to context (“Calculation”) ;
do something

}

action doCalculation (Calculate req, integer id, context caller) {
do something
send CalculationResponse (id, value) to caller;

}

If a monitor instance that creates a context does not send a context reference outside
itself, and does not subscribe to any channels, no other context can send events to that
context, except by means of correlator plug-ins. This affords some degree of privacy for
the context.

A context object (a context reference) does not do anything. It is simply the target of the
following:

B spawn ActionIdentifier([ArgumentList]) to ContextExpression;
See "Spawning to contexts" on page 309.
B send EventExpression to ContextExpression;

See "Sending an event to a particular context" on page 312.

Spawning to contexts

In a monitor, you can spawn to a context. The format for doing this is as follows:

spawn ActionIdentifier ([ArgumentList]) to ContextExpression ;

Replace ContextExpression with any valid EPL expression that is of the context
type. Typically, this is the name of a context variable. It is possible to spawn to only a
context; it is not possible to spawn to a channel.

This statement asynchronously creates a new monitor instance in the target context. The
correlator can immediately create the new monitor instance and begin processing it.
The correlator does not need to finish processing the monitor instance that spawned to
the context before it starts processing the spawned instance. The correlator might create
the spawned monitor instance before it finishes processing the action that spawned the
new instance. Or, the correlator might create the spawned monitor instance some time
after it completes processing the action that spawned the new instance. The order is
unpredictable. For example:

action analyse(string symbol) {

context c:=context (symbol) ;
spawn submon (symbol) to c;

}

action submon (string symbol) {

}

If the target context does not yet exist, the correlator creates it.

Developing Apama Applications Version 9.10 309

Implementing Parallel Processing

It is possible for an operation that spawns to a context to block if the input queue of the
target context is full. See "Deadlock avoidance when parallel processing" on page 324.

Like the regular spawn operation, the spawn. . . to operation does the following:

m Creates a new monitor instance by taking a deep copy of all of the spawning monitor
instance's global variables

® Does not copy any listeners into the new monitor instance
B Runs the specified action in the new monitor instance
For general information about spawning, see "Spawning monitor instances" on page 55.

Unlike the regular spawn operation, the correlator runs the new monitor instance in the
specified context. The correlator concurrently processes the new monitor instance and
the instance that spawned it.

A context processes spawn operations and events in the order in which they arrive. For
example, suppose a monitor contains the following statements:

spawn actionl () to ctx;
send el to ctx;
spawn action2 () to ctx;

send e2 to ctx;

The ctx context processes this in the following order: actionl (), el, action2 (), e2.

Channels and contexts

Contexts can subscribe to particular channels to receive events delivered to those
channels from adapters and from other contexts. See "Channels and input events" on
page 46 and "Subscribing to channels" on page 70. Contexts that are public, that is, they
were created with a true flag in the context constructor, have a permanent subscription
to the default channel. The name of the default channel is the empty string.

Contexts can send events to channels without knowledge of whether the event is
required by contexts, clients, adapters, or some combination. When an event is sent from
a context to a channel the event is received by all contexts subscribed to that channel and
by all external receivers that are listening on that channel. See "Generating events with
the send command" on page 285.

An Apama query automatically runs in a context that has a permanent subscription to
the default channel and to the com. apama.queries channel.

Channels are useful for:

® Identifying service monitors — If many monitors need to send events to a service
monitor you can use a well known name (which can appear in EPL as a string literal
or string constant) as a channel name. The service monitor (and only the service
monitor) should subscribe to the channel and other monitors send events to that
channel. When a request-response event protocol is required the sender can specify a
channel to which it is subscribed, or a context to send the response to.

Developing Apama Applications Version 9.10 310

Implementing Parallel Processing

B Applications that have different contexts that consume different streams of data
can use channels to send the data to the intended contexts, even if many contexts
require the same data stream or one context requires multiple data streams. For
example, statistical arbitrage trading strategies could run in many contexts, each
subscribed to a channel for the pair of stock symbols it is trading against each other.
If the adapter where the events are coming from is able to use a separate connection
per channel, then the application will scale very well as more trading strategies on
different symbols are added.

m Different components of an application can be de-coupled by using an event protocol
that sends events to channels for each interaction point between components. This
allows adapters to be replaced with monitors that simulate those adapters for
testing, and makes it easy to scale an application across several hosts by running
different parts on different correlators and then connecting them.

Sending an event to a channel

In a monitor, you can send an event to a channel by using either
B A string value that identifies the channel name
B A com.apama.Channel type that either names a channel or holds a context reference

The format for sending an event to a particular context is as follows:

send EventExpression to ChannelExpression ;
Replace EventExpression with any valid EPL expression that is of an event type.

Replace channelExpression with any valid EPL expression that is of the string or
com.apama.Channel type. Typically, this is a string value.

This statement asynchronously sends an event to everything subscribed to the specified
channel. Subscribers can include

m Contexts

B Receivers connected to external components by means of Apama's messaging, JMS
or Universal Messaging

m Correlator plug-ins that have subscribed an EventHandler object

For each target subscribed to a channel, the event goes to the back of the context's input
queue.

In a target context, the correlator can immediately process the sent event. The correlator
does not need to finish executing the action that sends the event before it processes

the sent event in a target context. The correlator might process the sent event before it
finishes executing the action that sent the event. Or, the correlator might process the sent
event some time after it completes executing the action that sent the event. The order

is unpredictable. The order in which the target contexts receive the sent event is also
unpredictable. For example:

action analyse (string symbol) {
spawn submon (symbol) to context (symbol) ;

Developing Apama Applications Version 9.10 311

Implementing Parallel Processing

com.apama.marketdata.Tick tick;

log "Listening for "+symbol;

on all com.apama.marketdata.Tick (symbol=symbol) :tick {
send tick to symbol;

}

on com.apama.marketdata.Finished() {
send com.apama.marketdata.Finished() to symbol;

}

}

action submon (string symbol) {
monitor.subscribe (symbol) ;...

}

It is possible for a send. . . to operation to block the sending context from further
processing if the input queue of any target (context, receiver or plug-in) is full. Either
an event that you send to a particular target arrives on the target's input queue or the
sending context waits for room on the target's input queue.

If you send an event to a channel that has no subscribers, the correlator discards the
event because there are no listeners for it. This is not an error.

See also:

B '"Generating events with the send command" on page 285
B "Working with channels in C++ plug-ins " on page 742

B '"Using Java plug-ins" on page 754

Sending an event to a particular context

In a monitor, you can send an event to a particular context, as described here, or you
can send an event to a sequence of contexts, described in the next topic. The format for
sending an event to a particular context is as follows:

send EventExpression to Expression ;

or:

enqueue EventExpression to ContextExpression ;

Note: The enqueue. . . to statement will be deprecated in a future release. Use the
send. . .to statement. Both statements perform the same operation.

B Replace EventExpression with any valid EPL expression that is of an event type.
You cannot specify a string representation of an event. For example, you cannot
send &TIME pseudo-ticks.

® Replace Expression, in the first format, with any valid EPL expression that is of
the context type or with a com. apama.Channel object that contains a context. See
"Sending events to com.apama.Channel objects" on page 286.

B Replace contextExpression with any valid EPL expression that is of the context
type. This can be the name of a context variable or a method that returns a context.
This cannot be a com.apama.Channel object that contains a context.

Developing Apama Applications Version 9.10 312

Implementing Parallel Processing

This statement asynchronously sends an event to the specified context. The event goes to
the back of the context's input queue.

In the target context, the correlator can immediately process the sent event. The
correlator does not need to finish executing the action that sent the event before it
processes the sent event in the target context. The correlator might process the sent
event before it finishes executing the action that sent the event. Or, the correlator might
process the sent event some time after it completes executing the action that sent the
event. The order is unpredictable. The order in which the target contexts receive the sent
event is also unpredictable. For example:
action analyse(string symbol) {

context c:=context (symbol) ;

spawn submon (symbol) to c;

com.apama.marketdata.Tick tick;

log "Listening for "+symbol;

on all com.apama.marketdata.Tick (symbol=symbol) :tick ({

send tick to c;

}
on com.apama.marketdata.Finished() {
send com.apama.marketdata.Finished() to c;
}
}

action submon (string symbol) {

}

The send. . .to and enqueue. . . to statements do not place the event on the special
enqueued events queue. Instead, they put the event on the end of the target context's
input queue. Consequently, it is possible for a send. . . to or enqueue. . . to operation to
block the sending context from further processing if the input queue of the target context
is full. Either an event that you send to a particular context arrives on the target context's
input queue or the sending context waits for room on the target context's input queue.

If you send an event to a context that does not contain any monitor instances, the
correlator discards the event because there are no listeners for it.

If you do not have a reference to a particular context, then send an event to a channel.
See "Generating events with the send command" on page 285.

In some situations, for example when you change a single-context application to use
parallel processing, you might want to explicitly send an event to only the context that
contains the monitor instance that contains the send statement. To send an event to only
this context specify:

send eventExpression to context.current ()

You must set a valid value to a context variable before you send an event to the context.
You cannot send an event to a context that you have declared but has not been set to

a valid value. For example, the following code causes the correlator to terminate the
monitor instance:

monitor m {
context c;
action onload()
{
send A() to c;
}

Developing Apama Applications Version 9.10 313

Implementing Parallel Processing

}

See also "Generating events with the enqueue command" on page 287. and "Generating
events with the send command" on page 285.

Sending an event to a sequence of contexts

In a monitor, you can send an event to a sequence of contexts. The format for doing this
is as follows:

send EventExpression to ContextSequenceExpression ;

or

enqueue EventExpression to ContextSequenceExpression ;

Note: The enqueue. . . to statement will be deprecated in a future release. Use the
send. . .to statement. Both statements perform the same operation.

B Replace EventExpression with any valid EPL expression that is an event. You
cannot specify a string representation of an event.

B Replace ContextSequenceExpression with any valid EPL expression that
resolves to sequence<context>. You cannot specify a sequence that contains
com.apama.Channel objects.

Each statement asynchronously sends a copy of an event to each context in the specified
sequence. The event goes to the back of the input queue of each context.

In each target context, the correlator can immediately process the sent event. The
correlator does not need to finish executing the action that sent the event (in the source
context) before it processes the sent events in the target contexts. The correlator might
process a sent event before it finishes executing the action that sent the event. Or, the
correlator might process a sent event some time after it completes executing the action
that sent the event. The order is unpredictable, depending on the relative execution
speeds of the contexts.

The following example uses the sequence type:

action analyse(string symbol)
context cl:=context (symbol
context c2:=context (symbol
context c3:=context (symbol

+ o+ o+ -
2
|

w N =
N

S

= <o ©

spawn submon (symbol) to cl;
spawn submon (symbol) to c2;
spawn submon (symbol) to c3;
sequence <context> ctxs := [cl, c2, c3];

com.apama.marketdata.Tick tick;

log "Listening for "+symbol;

on all com.apama.marketdata.Tick (symbol=symbol) :tick {
send tick to ctxs;

}

on com.apama.marketdata.Finished() {
send com.apama.marketdata.Finished() to ctxs;

}

Developing Apama Applications Version 9.10 314

Implementing Parallel Processing

action submon (string symbol) {

}

The following example uses the values () method on a dictionary of contexts to obtain a
sequence of contexts:

action analyse(string symbol)

{
context cl:=context (symbol + “-17);
context c2:=context (symbol + “-27);
context c3:=context (symbol + “-37);

spawn submon (symbol) to cl;
spawn submon (symbol) to c2;
spawn submon (symbol) to c3;

dictionary <string, context>
cexs = [Nel?”s el, “e2¥s e2, “ed¥s e3 ¢

com.apama.marketdata.Tick tick;

log "Listening for "+symbol;

on all com.apama.marketdata.Tick (symbol=symbol) :tick {
send tick to ctxs.values();

}

on com.apama.marketdata.Finished() {
send com.apama.marketdata.Finished() to ctxs.values();

}

}

action submon (string symbol) {

}

The send. . .to and enqueue. . . to statements do not place the event on the special
enqueued events queue. Instead, they put the event on the end of the input queue of
each target context. Consequently, it is possible for a send. . .to or enqueue. . .to
operation to block the sending context from further processing if the input queue of a
target context is full. The sending context does not continue beyond a send. . . to or
enqueue. . . to statement until the event has been placed on the input queues of all
target contexts.

If one of the contexts in the sequence does not contain any monitor instances the
correlator ignores the sent event in that context because there are no listeners for it.

If one of the contexts in the sequence does not have a valid value before you send an
event to it then the correlator terminates the monitor instance.

Consider the following two code fragments:

for ¢ in mySequence {
send myEvent to c;

}
send myEvent to mySequence;

Execution of each of these fragments is typically equivalent. However, you cannot rely
on equivalence. When the correlator executes the first fragment, it always delivers the
event to the contexts according to their order in the sequence. When the correlator
executes the second fragment it can deliver the event to contexts in any order. For
example, if a context's input queue is full this can affect the order in which the correlator
delivers the event to the contexts.

Developing Apama Applications Version 9.10 315

Implementing Parallel Processing

Common use cases for contexts

See "Tuning contexts" on page 429.

Samples for implementing contexts

Apama provides a number of applications that illustrate the use of contexts. These
examples are in the samples\monitorscript\contexts directory and in the samples
\monitorscript\concurrency-theory directory.

Information for using these examples is given in the topics below.

Simple sample implementation of contexts

In your Apama installation directory, in the samples\monitorscript\contexts
directory, there are two versions of a simple application. One version implements

serial processing and the other implements parallel processing. Open the analyse-
parallel.mon and analyse-serial.mon files in Software AG Designer to compare the
implementations.

To run the applications, execute run-sample.bat on Windows or run_sample.sh on
UNIX. The script runs the serial application and then the parallel version.

On a 2.4GHz Quad core Intel Q6600 machine, the serial implementation completes in
about 63 seconds, while the parallel implementation completes in about 17 seconds.
For an equivalent dual-core processor, you can expect the parallel implementation to
complete in about 30 seconds.

Look at serial-results.evt and parallel-results.evt to compare the results.
While the per-symbol output for each implementation is identical, the ordering of sent
events for different symbols is different. Also, in the parallel implementation, there is
more variation in the time taken to process all events for one symbol. The sample uses
eight worker contexts — each context is doing much the same work, but on different
segments of the data. While it is not required, an application that has eight contexts
typically working most of the time benefits from running on an 8-core host. You can
expect an 8-core processor to run the sample parallel implementation more than seven
times faster than it runs the serial implementation.

Running samples of common concurrency problems

Sample applications in the samples\monitorscript\concurrency-theory directory
illustrate a few common concurrency problems. There are three implementations of a
simple deposit bank:

B Race — implements Get and Set events, and corresponding Response events, so
that a teller can find the value of an account, perform some modification and then set
the new account value.

m Deadlock — lets tellers lock an account.

Developing Apama Applications Version 9.10 316

Implementing Parallel Processing

® Compareswap — is similar to the Race implementation but it does not rely on
locking and it does not compute values based on out-of-date information.

To run these samples

1. Start an Apama Command Prompt as described in Deploying and Managing Apama
Applications in the topic Setting up the environment using the Apama Command Prompt.

2. Change to the sAPAMA INSTALL DIR/samples/monitorscript/concurrency-
theory directory.

3. Invoke run sample.bat (Windows) or run_ sample.sh (UNIX) with an argument of
race, deadlock or compareswap, according to which sample you want to run. The
subsequent topics describe each sample.

The script starts a correlator on the default port (15903). Consequently, you should not
have a correlator already running on the default port. If you do, the script causes the
application to be injected into the running correlator and it also shuts the correlator
down when the sample execution is complete. The script creates an event file in the
output directory (which it creates). The event file has the name of the sample with an
evt file suffix (for example, race.evt, deadlock.evt Or compareswap.evt.

About the samples of concurrency problems

The sample of concurrency problems try to implement a simple deposit bank. The
customer-visible part of the bank consists of a number of tellers, who have the ability
to transfer money from one account to another. In an effort to scale well, the bank is
implemented with each teller running in a separate context, which lets all tellers work
concurrently. Of course, the simple work of the tellers does not require or even justify
this, but the purpose of these samples is to show potential bugs, not to be a practical
system. Similarly, no security checks are enforced.

Because data cannot be shared between contexts, the application requires a separate
monitor that acts as the bank's database. The tellers send requests to the bank's database
and receive responses from the database. There is also a simple mechanism to initialize
the state of the bank database (SetupAccount event) and for tellers to discover the
context in which the database is running. The communication between the bank and
the tellers typically needs to get or set an account's value. The tellers perform the

actual arithmetic on a bank account's value. Each implementation (Race, Deadlock, and
Compareswap) differs mainly in the way the tellers and database interact with each
other.

Customer interactions with tellers are the same across all implementations. The
customer sends a TransferMoney event, specifying which teller to use. It is assumed
that customers know the names of tellers, the from and to account, and the amount to
transfer. The customer receives a TransferMoneyComplete event when the transfer is
complete.

The state of the bank's accounts can be inspected by sending a SendBalances event to
the correlator, which causes the correlator to log and send the balances.

Developing Apama Applications Version 9.10 317

Implementing Parallel Processing

To expose the problems, there are calls to the spinSleep action at key places in the
implementations. If the correlator receives an ExposeRaces event, the spinSleep
action suspends work by the specified teller for the specified time. This simulates tellers
working at different rates, and means that difficult to reproduce conflicts are easier to
identify. While this is useful for exposing bugs, it is not suitable for general-purpose
sleeps because it consumes CPU time while sleeping and does not let other work in that
context get done. This strategy is useful for exposing problems only when you know
exactly where to place the sleeps.

Each implementation has its own transfer-sample name.evt file, which the script
sends as each bug is exposed with a different set of input data.

About the race sample

The race sample is in Bank-race.mon. It implements Get and set events, and
corresponding Response events. A teller can find the value of an account, perform some
modification and then set the new account value. To take money from one account, the
protocol is as follows:

1. Send a Get event to obtain the current value of the account.

2. Wait for a GetResponse event that contains the current value.
3. Compute the new account value.

4. Send a set event to set the new account value.

5. Wait for a SetResponse event.

This works well when a single transfer occurs at a time. However, there is a bug because
between the time that teller 1 obtains an account value and the time that teller 1 sets the
new account value, teller 2 can obtain the account value, compute a new value, and set a
new account value. The following time line demonstrates this:

Time Teller 1 Teller 2 Bank Database

0 Transfer 50 from A A:100 B: 100 C: 100
(setup) toB

Get A, Get B

A=100, B=100

Sleep 1 second

0.5 Transfer 25 from B
to C

Get B, Get C

Developing Apama Applications Version 9.10 318

Implementing Parallel Processing

Time Teller 1 Teller 2 Bank Database

B=100, C=100

newB=75, newC=125

Set B, Set C

A:100, B: 75, C: 125

1.0 newA=50, newB =
150

Set A, Set B

A: 50, B: 150, C: 125

B's account should have 100 + 50 — 25 = 125. But it ends up with 150 because teller 1
overwrites teller 2's value for B's account (75). Teller 1 based its calculation on values that
were out of date at the point they were sent to the database.

About the deadlock sample

While EPL does not provide any mutual exclusion locking primitives, you can
implement something similar in a monitor. The deadlock sample's bank implements

a locking mechanism. Tellers can send a Lock event for an account, and the database
returns a LockResponse event when the account is locked. If another teller tries to lock
the same account, the correlator queues the request until it processes an Unlock event
to unlock the account. Note that the locking is fair; the correlator allocates locks in the
order in which they are requested.

The deadlock implementation does no checking. For example, it does not check that the
unlock event comes from the teller that locked an account, nor that a teller holds a lock
for an account before performing an operation on that account. (A robust application
would of course perform such checking.)

The deadlock sample fixes the problem shown in the Race sample where a value was
overwritten by a value that resulted from computation on out-of-date values. If you
replicate the Race pattern of events, teller 2 would wait to lock B's account until teller
1 had finished with it. (This assumes all tellers follow the correct protocols. A robust
implementation would perform checks to ensure that was the case).

However, even when all tellers follow the locking protocol correctly, there is a different
problem. If teller 1 locks account A and teller 2 locks account B, and teller 1 tries to lock
account B and teller 2 tries to lock account A, then each teller waits for the other teller to
release a lock. The following timeline shows this:

Developing Apama Applications Version 9.10 319

Implementing Parallel Processing

Time Teller 1 Teller 2 Bank Database

0 Transfer 50 from A A: 100 B: 100 C: 100
toB
Lock A

A: Locked by t1

Sleep 1 second

0.5 Transfer 25 from B
to A
Lock B
A:locked by t1 B:
locked by t2
Lock A A:locked by t1, t2
waitingB: locked by
t2
(waiting for
LockResponse (A))
Lock B A:locked by t1, t2

waitingB: locked by
t2, t1 waiting

1.0 (waiting for
LockResponse (B))

At this point, neither teller can make any further progress.

One solution to this (not implemented here) is to implement a timeout. If a lock request
is outstanding for more than some threshold, the correlator abandons the lock. When
this happens, the tellers would wait a random amount of time and try again. The
random wait should prevent the retries from overlapping, if not on the first retry, then
on a subsequent retry. However, such a mechanism invariably performs poorly in the
(hopefully rare) case that a lock times out.

Developing Apama Applications Version 9.10 320

Implementing Parallel Processing

Alternatively, you can prevent deadlock by defining priority orders for locks. For
example, you can specify that A must always be locked before B. Applying this priority
order to all transactions would prevent deadlock.

About the compareswap sample

This compareswap sample is more like the race sample. The protocol between tellers and
the database consists of Get and set events, except the Set event is a Compareset event,
which contains an expected old value. If the old value does not match the database
account value, then the teller retries the operation — getting a new value and re-
computing the account value.

This has the advantage that it does not rely on locking (so does not suffer from deadlock)
and does not result in values computed from out of date data being set in the database.

The only disadvantage is that under some circumstances (the same as for the race
sample), the tellers need to re-try a calculation. However, unlike the timeout on locking,
tellers know about this as soon as they receive an event back from the database, and no
timeouts are involved.

This strategy is the recommended way to share state between different contexts. Note
that while it guarantees progress is made by at least one context, an interaction between
the database and a single context can take an unbounded amount of time, as other
contexts can require the context to re-try its transaction. A further refinement would

be to use a generation counter that the correlator increments on every successful Set
event. This detects the difference between the database's value being unchanged and the
database's value being changed back to a previous value. While such a difference might
not matter in many situations, it might when you are computing interest.

Note: Due to the requirement to retry, the compareswap implementation is slightly
different from the race implementation. One account is modified at a time;
the teller transfers money from the fromaAccount, and then adds it to the

toAccount.
Time Teller 1 Teller 2 Bank Database
0 Transfer 50 from A A:100 B: 100 C: 100

(setup) toB

Get A

A=100

newA=50

A: 50, B: 100, C:100

Developing Apama Applications Version 9.10 321

Implementing Parallel Processing

Time Teller 1

Teller 2 Bank Database

Set A success

GetB

B =100

Sleep 1

0.5 Transfer 25 from B

toC
GetB
B=100
newB=75

Set B (old=100)

A: 100, B: 75, C: 100

Set B success

Get C

C=100

newC=125

Set C (old=100)

A:50,B:75,C: 125

Set C success

1.0 newB =150

Set B (old=100)

Developing Apama Applications Version 9.10

322

Implementing Parallel Processing

Time Teller 1 Teller 2 Bank Database

A:50,B:75,C:125

Set B FAILED

newB =125

Set B (old=75)

A:50,B: 125, C: 125

Set B success

Contexts and correlator determinism

Creating one or more contexts makes the correlator non-deterministic. In other words,
injecting the same monitor can produce different results if the monitor contains
statements that spawn to contexts.

For example, suppose an application creates two contexts, spawns to each of them, and
each context runs code that calls integer.getUnique (). The assignment of unique
integers to contexts is not deterministic; if you re-run the code, each context might
receive an integer that is different from the integer it received during the previous

run. Other behavior that can be non-deterministic in a parallel processing application
includes the following:

® The assignment of particular IDs to particular contexts
B The order in which contexts send events
® The order in which contexts spawn to other contexts

See also "About input logs and parallel processing" on page 324.

How contexts affect other parts of your Apama application

When you implement contexts in an EPL application, an understanding of how contexts
affect other parts of your Apama application is required.

The topics below provide information to help you understand the behavior.

Developing Apama Applications Version 9.10 323

Implementing Parallel Processing

About input logs and parallel processing

Applications that implement parallel processing might have non-deterministic behavior.
While you can inject a parallel application into a correlator that you started with the --
inputLog option, you cannot expect to use that input log to exactly duplicate correlator
execution.

For applications that use multiple contexts or that send events, just re-sending the events
and EPL sent to the correlator is insufficient to reproduce the same output and state.

The timing of which context ran which send, emit, enqueue. . .to or other operation

is important. Operations that can affect the state of other contexts or the sent events are
non-deterministic when run in parallel.

Deadlock avoidance when parallel processing

Parallel processing in the correlator uses a message passing system. Each context has
a fixed-size input queue for events (messages). A deadlock is possible when all of the
following conditions are true:

m Context 1 is enqueuing an event to context 2.
m Context 2 is enqueuing an event to context 1.
® The input queues for context 1 and context 2 are both full.

In this situation, each context is blocked from further processing until the queue of the
other context is no longer full. Neither context can process the next event on its input
queue. Such a deadlock is not limited to two contexts but can occur with any number of
contexts enqueuing events to each other.

The correlator avoids such a deadlock by detecting the potential for it to occur and then
expanding input queues as needed. Also, the correlator logs a warning that a potential
deadlock was detected. The correlator expands input queues only when not doing so
causes a deadlock. The correlator does not expand input queues when one or more
contexts are blocked from further processing while one or more contexts are processing
as usual. However, it is still possible to create applications that result in out of memory
errors or other kinds of deadlocks. Out of memory errors can result from requiring
excessive expansion of input queues through the deadlock avoidance mechanism, or
other means, such as creating a very large sequence.

Clock ticks when parallel processing

Since all contexts receive clock ticks, timers work in all contexts. However, it is possible
for some contexts to run behind others. That is, a timer in a particular monitor for which
there are monitor instances in multiple contexts might fire at different points in real
time. In each context, the timer can process the series of clock ticks at a speed that is
different from the other contexts.

A context that is running a monitor instance in a very long running loop might not
remove entries from its input queue for a long time. If a context has a full input queue
the clock tick distributer thread does not block. Instead, the correlator quashes clock

Developing Apama Applications Version 9.10 324

Implementing Parallel Processing

ticks onto the end of the context's input queue. This means that the correlator unpacks
the clock tick event when the context input queue either drains or accepts a new event.
There is no perceptible difference between normally received clock ticks and quashed
clock ticks.

Using correlator plug-ins in parallel processing applications

The standard MemoryStore and Time Format plug-ins are thread safe, which means that
you can use them in parallel applications. The MemoryStore can be quite helpful in a
parallel application and is very efficient when used simultaneously by multiple contexts.

For information about writing correlator plug-ins for use with parallel applications, see
"The EPL Plug-in APIs for C and C++" on page 747.

Note: The C class AP Context, and the C++ class Context, which you use for
correlator plug-in development, are completely different and unrelated to
contexts that you define for parallel processing.

Developing Apama Applications Version 9.10 325

Developing Apama Applications Version 9.10 326

Using Correlator Persistence

8 Using Correlator Persistence

m Description of state that can be persistent ... 328
B When persiSteNCe iS USETULccccuiiiiiiiicicee ettt 329
m When non-persistent monitors are USEUl ..o 329
B How the correlator Persists State ... 329
B Enabling correlator PErsiStENCE ... 330
B How the COrrelator reCOVErS STALEooiviiiiiiiie 333
m Designing applications for persistence-enabled correlatorsccoceeeviiiceessciccsen 336

m Upgrading monitors in a persistence-enabled COrrelatorc.coooviirerniiieeissieecen 337
B Sample code for persistence appliCationsccccvviiieeeiiieeee e 338
B ReqUESHNG SNAPSNOLScoiiiicicee b 340
m Developing persistence appliCationsccccceeeiiciieceeere s 340
m Using correlator plug-ins when persistence is enabledc.cooceeeviiicciencieeescen, 341

m Using the MemoryStore when persistence is enabled ..., 341

m Comparison of correlator persistence with other persistence mechanismsccccoeveveinee. 342

m Restrictions on correlator PErsiStENCEccvrriiireeeee s 344

Developing Apama Applications Version 9.10 327

Using Correlator Persistence

When the correlator shuts down, the default behavior is that all state is lost. When you
restart the correlator, no state from the previous time the correlator was running is
available. You can change this default behavior by using correlator persistence.

Correlator persistence means that the correlator automatically periodically takes a
snapshot of its current state and saves it on disk. When you shut down and restart that
correlator, the correlator restores the most recent saved state.

To enable persistence, you indicate in your EPL code which monitors you want to be
persistent. Optionally, you can write actions that the correlator executes as part of the
recovery process. When code is injected for a persistence application, the correlator that
the code is injected into must have been started with a persistence option.

Persistent monitors must be written in EPL. State in JMon monitors cannot be persistent.
State in chunks, with a few exceptions, also cannot be persistent.

Note: If a license file cannot be found, the number of persistent monitors that the
correlator allows is limited. See "Running Apama without a license file" in
Introduction to Apama.

Description of state that can be persistent

A correlator that is running with persistence enabled automatically stores state on disk
and automatically recovers state when it restarts. Saved state includes the following;:

m For a persistent EPL monitor, all of that monitor's state is saved. This includes all
events, strings, primitives, sequences, dictionaries, action variables, closures, and
global variables. It also includes all the state of listeners, streams and queries —
local variables captured by them and all active listeners, sublisteners and queries,
including the events currently flowing through them.

m All source code that was injected into the correlator, including any non-persistent
EPL monitors and JMon monitors. EPL files that were injected from a Correlator
Deployment Package are not stored in plain text.

Code that is not injected includes the following:

m Correlator plug-ins, which are imported at runtime. The actual plug-in file must
be on a specified path that the correlator can load it from.

®m Any Java class files on the correlator's classpath but not injected.
m The correlator runtime itself.
m Contents of all context queues.
B Some correlator-global state including integer.getUnique () IDs and context IDs.
Note: In general, chunks cannot be persistent. However, chunks used by the Apama

Time Format correlator plug-in and the Apama MemoryStore plug-in can be
persistent.

Developing Apama Applications Version 9.10 328

Using Correlator Persistence

When persistence is useful

Enabling correlator persistence is a good fit for applications in which it is unacceptable
to lose any information. For example, an application for processing mortgage requests
does not need to be available continuously. A small amount of downtime, especially
outside business hours, might be acceptable. However, losing any state associated with a
mortgage application would be unacceptable.

In such a mortgage processing application, there is unlikely to ever be a point at which
there are no open applications and thus no state to preserve. But state might change
over the course of weeks, rather than seconds. Enabling correlator persistence lets you
implement complex event expressions such as the following;:

on all LoanRequest () -> (PropertyValuation() and ProofOfIncome ())
within (4 * week)

With persistence enabled, the event expression can still be running even if weeks elapse
between when it is created and when it finally completes. Without persistence, the
event expression's state is susceptible to being lost if there are system restarts, software
upgrades, and the like.

When non-persistent monitors are useful

A correlator that is running with persistence enabled can have persistent and non-
persistent monitors injected. Non-persistence is a good choice for a monitor that does
one or more of the following;:

m Uses legacy code that does not use the persistence feature. See "Designing
applications for persistence-enabled correlators" on page 336.

®m Interacts with user-defined correlator plug-ins or Apama correlator plug-ins other
than the Time Format or MemoryStore plug-ins.

®m Contains large amounts of fast-changing state that is undesirable to persist for
performance reasons.

m Operates as a stateless utility that just responds to incoming events.

® Contains minimal state that can be reconstructed by the onBeginRecovery () action
on a persistent monitor.

Also, all JMon monitors are non-persistent monitors.

How the correlator persists state

When persistence is enabled the correlator periodically writes data to disk to reflect the
correlator's runtime state. To do this, the correlator

1. Suspends all execution in the correlator across all contexts.

2. Takes an in-memory snapshot of what needs to be stored.

Developing Apama Applications Version 9.10 329

Using Correlator Persistence

3. Resumes processing while the state is written to disk.

The correlator waits to suspend execution until all contexts have completed any in-
progress event processing and any in-progress deletions. It can take time for the
correlator to pause all contexts. Consequently, it is best practice that a single event
listener does not take a long time to process. When there is a need to perform a large
amount of work try to split the work across multiple events.

How fine-grained to split work depends on the performance requirements of the
application. Avoid very fine-grained work units as the overhead of scheduling will start
to dominate and lead to the application running slowly.

Committing the snapshot to disk is an atomic operation. That is, a failure while storing
state reverts the stored data to the previously successfully stored snapshot.

By default, when you enable persistence the correlator does the following:

m Takes a snapshot of state changes every 200 milliseconds. This is the snapshot
initerval. The correlator tracks the in-memory objects that have changed since
the last snapshot and writes only that state to disk. If only a small fraction of the
correlator's state changes then only a fraction of the correlator's state must be stored
for each snapshot.

® Automatically adjusts the snapshot interval. For example, if a significant percentage
of the correlator's state changes then the correlator increases the snapshot interval, so
that the overall throughput is not adversely affected.

m Stores persistent state in the current directory, which is the directory in which the
correlator was started.

B Uses persistence.db as the name of the file that contains persistent state. This is
the recovery datastore.

m Copies the recovery datastore to the input log if one was specified when the
correlator was started. This happens only upon restarting the correlator.

®m For applications that do not use the correlator's internal clock (correlators started
with the -Xclock option), the correlator uses the time of day in the last committed
snapshot as the current time in the restarted correlator.

Enabling correlator persistence

Before you enable persistence, you should design and develop your application to
handle persistence and recovery. See "Designing applications for persistence-enabled
correlators" on page 336.

Note: If a license file cannot be found, the number of persistent monitors that the
correlator allows is limited. See "Running Apama without a license file" in

Introduction to Apama.

To enable correlator persistence, you must proceed as follows:

Developing Apama Applications Version 9.10 330

Using Correlator Persistence

Insert the word persistent before the monitor declaration for each monitor written
in EPL that you want to be persistent. For example:

persistent monitor Order {
action onload() {

}
}

For a monitor declared as persistent, the correlator persists the state of all monitor
instances of that name, and all instances of events that the monitor instances create.

You do not mark event types as persistent. Whether or not an event is persisted
depends on whether it is used from a persistent or non-persistent monitor. If
an event is on a context queue when the correlator takes a snapshot the event is
persisted.

Optionally, define onBeginRecovery () and onConcludeRecovery () actions in your
persistent monitors. The correlator executes any such actions as part of the recovery
process. To determine whether you need to define these actions, see "Designing
applications for persistence-enabled correlators" on page 336, "Defining recovery
actions" on page 335 and "Sample code for persistence applications" on page

338.

Specify one or more persistence options when you start the correlator. You must
always specify the -p option to enable correlator persistence.

Specity only the -P option to implement default behavior for correlator persistence.
To change default behavior, also specify one or more of the options described in

the table below. The correlator uses the default when you do not specify an option
that indicates otherwise. For example, if you specify -P, -PsnapshotInterval

and -PstoreLocation, the correlator uses the values you specify for the snapshot
interval and the recovery datastore location and uses the default settings for all other
persistence behavior. For more information on these options, see "Starting the event
correlator" in Deploying and Managing Apama Applications.

Note: During development of a persistence application, it varies whether you
want to specify a persistence option when you start the correlator. In
the earlier stages of development, you might choose not to specify a
persistence option since you might make many and frequent changes to
early versions of your program, thereby making recovery of a previous
version impossible. For example, you might have changed the structure
and perhaps added new variables. Once your program structure
becomes relatively stable, you must take into account what happens
during recovery and you will want to define onBeginRecovery () and
onConcludeRecovery () actions. These actions never get called in a
correlator that was not started with a persistence option. To deploy a
persistence application, the correlator must be started with a persistence
option.

If you are using both correlator persistence (- option) and the compiled runtime (--
runtime compiled option), we recommend the use of the --runtime-cache option

Developing Apama Applications Version 9.10 331

Using Correlator Persistence

to improve recovery times. For more information on these options, see "Starting the
event correlator" in Deploying and Managing Apama Applications.

The following table describes correlator persistence behavior, the default behavior, and
the options you can specify to change default behavior.

Correlator Persistence Default Option for Changing
Behavior
The correlator waits 200 -PsnapshotInterval=interval
a specified length milliseconds . . .1
P & Specify an integer that indicates the
of time between s .
number of milliseconds to wait.
snapshots.
The correlator True. The -PadjustSnapshot=boolean
can automatically correlator
adjust the snapshot automatically
interval according to adjusts the
application behavior. snapshot
interval.
It can be useful to
set this to false to
diagnose a problem
or test a new feature.
The correlator The -PstorelLocation=path

puts the recovery
datastore in a
specified directory.

directory in
which the
correlator
was started.
That is,

the current
directory.

You can specify an absolute or
relative path. The directory must
exist.

The correlator copies
the snapshot into

persistence.db

-PstoreName=filename

Specity a filename without a path.

a specified file.

This is the recovery

datastore.

For correlators that The time of
use an external clock, day captured
the correlator uses a in the last
specified time of day committed
as its starting time snapshot.

when it restarts.

-XrecoveryTime num

To change the default, specify an
integer that indicates seconds since
the epoch.

Developing Apama Applications Version 9.10

332

Using Correlator Persistence

Correlator Persistence Default Option for Changing
Behavior

This behavior is
useful only for

replaying input logs

that contain recovery

information.

The correlator The -noDatabaseInReplayLog

can automaticall correlator . . oo

copy the reccl)verilf copies the You might set this option if you

datastore to the recovery are using an input log as a record

input log when a datastore of what the correlator received.
put o8 . The recovery datastore is a large

persistence-enabled to the input head b

correlator restarts. log. overhead that you probably do

not need. Or, if you maintain an
independent copy of the recovery
datastore, you probably do not
want a copy of it in the input log.

How the correlator recovers state

When you restart a correlator for which persistence has been enabled the correlator

®m Detects, recompiles, and reinjects all code that was injected and not deleted as of the
last committed snapshot

m Restarts and restores the state of all persistent monitors as of the last committed
snapshot

B Restarts non-persistent EPL monitors and J]Mon monitors at their onload () action

® Executes any onBeginRecovery () and onConcludeRecovery () actions. See
"Defining recovery actions" on page 335 .

B Recovers persistent connections (connections created with engine connect -p)and
resumes them at the first opportunity

Code is reinjected in the order in which it was originally injected. The correlator tracks
which objects (monitors, events, Java objects) were deleted and does not re-inject them.
Such objects might have been deleted explicity with the engine delete utility or
implicity as when all instances of a monitor have terminated. If a snapshot shows that an
object was deleted and then re-injected, recovery ignores the first injection and re-injects
the monitor or event at the point of its second injection.

For a persistent monitor, recovery appears to be a pause in processing. This pause has
the potential to be long enough to cause some events to be stale. All non-persistent
monitors appear to have spontaneously reverted to their onload state. Communication
channels to external components have been interrupted and can be assumed to not yet

Developing Apama Applications Version 9.10 333

Using Correlator Persistence

be connected. Except, the correlator treats connections created with engine connect
-p, which are persistent connections, the same as it treats persistent state. Persistent
connections continue until you explicitly remove them. Upon recovery, the correlator
tries to reconnect to the external components that were connected with persistent
connections. However, events sent or received after the last committed snapshot might
have been dropped because there is no reliable delivery on persistent connections.

For a non-persistent monitor, recovery appears the same as starting the correlator. The
correlator's current time is up-to-date. The monitor is in the state it would be if it were
just injected. External components have not yet connected to the correlator. If a monitor
initiates a request of a non-persistent monitor then the non-persistent monitor might
have to queue the request until a connection is made to an external component, for
example, the correlator subscribes to a data stream from an external adapter.

Recovery order

When the correlator recovers state from a recovery datastore it does the following in the
following order:

1. Recompile and reinject all source except for deleted events and monitors, which are
ignored.

2. Restore objects and listeners in persistent monitors. The correlator does not execute
any user code in the first two steps. While it sets up listeners, the listeners cannot yet
change state.

3. Set currentTime to the currentTime of the last committed snapshot, which might
be considerably earlier than the current time of day if the correlator was down for
some time before recovering.

4. Initiate execution of any onBeginRecovery () actions on instances of restored events,
monitors, and custom aggregate functions in all persistent monitor instances in all
contexts. The order of execution of these actions is undefined. See "Defining recovery
actions" on page 335.

5. Quiesce — The correlator waits for all events that have been sent to a context to be
processed, and also waits for any events that are sent to a context as a result of those
events to be processsed, and so on, until no more events are generated and sent to
a context. The correlator also does this for spawn. . . to statements. This is similar
to processing all events in all queues. Be careful not to generate an infinite loop of
send. . .to statements.

6. Restore events, clock ticks, pending spawn. . . to statements, and so on, that were
waiting on context queues when the snapshot was taken.

7. Send a single clock tick of the time at which the correlator is recovered, that is, the
current time of day. If -XrecoveryTime was set when the correlator was started, the
correlator uses that time for the current time of day.

8. Initiate execution of onload () actions in all non-persistent monitors in injection
order.

9. Quiesce.

Developing Apama Applications Version 9.10 334

Using Correlator Persistence

10. Initiate execution of any onConcludeRecovery () actions on instances of restored
events, monitors, and custom aggregate functions in all persistent monitor instances
in all contexts. The order of execution of these actions is undefined. See "Defining
recovery actions" on page 335.

11. Quiesce.
12. Start generating clock ticks.
13. Start taking persistence snapshots.

14. Open the server port. External components can now connect with the correlator, for
example, IAF, engine send, and engine receive.

Defining recovery actions

In a persistent monitor, you can define one or two actions that the correlator executes as
part of the recovery process:

B onBeginRecovery () — The correlator executes this action after it reinjects all
source code and restores state in persistent monitors. The order of execution of
onBeginRecovery () actions is undefined.

B onConcludeRecovery () — The correlator executes this action just before
it begins sending clock ticks, taking persistent snapshots, and becoming
available for connections to external components. The order of execution of
onConcludeRecovery () actions is undefined.

Whether you define zero, one or both actions in each persistent monitor is application-
dependent. See "Designing applications for persistence-enabled correlators" on page
336 and "Sample code for persistence applications" on page 338.

You can define an event and specify one or both of these actions as fields in the event.
If an event defines a recovery action and an instance of the event is live in a persistent
monitor, then the correlator calls the action(s) on those objects as well. A live event is
reachable from a global variable or listener-captured local variable and consequently is
not a candidate for garbage collection.

You can define onBeginRecovery () and onConcludeRecovery () actions in custom
aggregate functions in the same way as you define them in events. When an aggregate
function contains an onBeginRecovery () or onConcludeRecovery () action this action
is called on each custom aggregate function instance in a live query in a persistent
monitor along with the onBeginRecovery () and onConcludeRecovery () actions in
persistent monitors and events.

The order in which the correlator executes instances of onBeginRecovery () actions and
instances of onConcludeRecovery () actions for objects in a monitor is not defined. If a
monitor terminates after execution of onBeginRecovery () and before recovered queues
have been flushed, the correlator does not call that monitor's onConcludeRecovery ()
action (if it has one). If the correlator terminates all of a monitor's listeners in one
execution of onBeginRecovery (), later calls to onBeginRecovery () for that monitor
instance still occur because they might instantiate new listeners. If no listeners exist in a

Developing Apama Applications Version 9.10 335

Using Correlator Persistence

monitor after onBeginRecovery () and onConcludeRecovery () have been executed for
every object in that monitor, the monitor instance terminates as usual.

See "Recovery order" on page 334 for more details about when onBeginRecovery ()
and onConcludeRecovery () are executed.

Simplest recovery use case

When you observe the following restrictions the correlator's recovery behavior is
straightforward:

® All monitors are persistent. The correlator contains no Java and no chunks.

® There are no implementations of onBeginRecovery () or onConcludeRecovery ()
actions.

EPL code that adheres to these restrictions appears to behave as if it is running in a
completely reliable and fault tolerant system. The downside is that while the correlator
is down, incoming or outgoing events are dropped. If you implement a "retransmit
until acknowledge" protocol then the correlator can have a large number of events (and
retransmits) to process when it restarts, depending on how long it is down.

Designing applications for persistence-enabled correlators

When you are designing an application that you will deploy on a persistence-enabled
correlator you should consider the following issues.

B You do not need to re-inject code after you restart a persistence-enabled correlator.
During recovery, the correlator obtains injected code from the recovery datastore.

® To recover from a hardware failure, you must maintain a copy of the recovery
datastore on some form of reliable, shared storage. You want to ensure that the
storage medium for the recovery datastore is not a single point of failure. This
typically means putting it on a fileserver with suitable levels of redundancy (disk,
power supply, network and controller) that is accessible by two correlator host
servers.

m The length of time between when a correlator shuts down and when it restarts is
unpredictable. Consequently, you might want to implement onBeginRecovery ()
actions that do the following:

m Specify behavior according to how long the down time was. For example, you
could write a listener that ignores a subset of old events but matches on a new
event.

m Terminate on all wait(...) listeners. Such listeners have the potential to fire
many times because the time jumps from the time of the last committed snapshot
to the time at which the correlator was restarted.

m Itis possible for persistent monitors to communicate with non-persistent monitors
and to set up state, such as subscriptions to a stream of data, in a non-persistent
monitor. If you need to recover this state, you must write code to do it in the
onConcludeRecovery () action of a persistent monitor or an event within a

Developing Apama Applications Version 9.10 336

Using Correlator Persistence

persistent monitor. In a persistent monitor, having an event that manages an activity
in a non-persistent monitor is a recommended practice.

Upgrading monitors in a persistence-enabled correlator

While injection order is fixed and you cannot change it, you might want to upgrade a
monitor and this would appear to require a change in the injection order. That is, upon
recovery, you want the correlator to restore the upgraded monitor and not the older
version of the monitor.

Remember that it is an error if you try to inject a monitor while instances of that monitor
are already running in the correlator. The correlator never injects a duplicate monitor
definition.

In a correlator without persistence enabled, you can terminate all monitor instances and
then inject the updated monitor definition. Since all old versions of the monitor had
terminated, the correlator would correctly inject the updated monitor even though it had
the same name. Also, since persistence is not enabled, there is no recovery process and
so recovery of the older version of the monitor is not an issue.

In a persistence-enabled correlator, terminating all instances of a monitor you want to
upgrade is unlikely to be an option. To upgrade a monitor without first terminating all
old instances of the monitor:

1. Initially deploy a monitor that contains code that enables that monitor to give
its state to a new version of the monitor and to terminate upon request. If a
deployed monitor does not contain such code it is not possible to upgrade it without
terminating all instances.

2. Modify your monitor code to the new behavior you want and be sure to change the
name of the monitor. For example, if the old monitor is RequestLoan, you might
name the new monitor RequestLoan?2.

3. Add code to your upgraded monitor so it atomically routes events that do the
following:

Retrieves the current state of the old monitor.
b. Checks that the new monitor can upgrade from the old monitor.
c. Requests the old monitor version(s) to terminate.
d. Sets up its own listeners.
4. Inject the new version of your monitor.

When your upgrade procedure terminates all instances of the old monitor the recovery
process does not restore that monitor since all instances were deleted.

You might find that it makes more sense for your upgrade procedure to leave the
instances of the old monitor running while changing the interface for whatever creates
new instances of the monitor to create instances of the upgraded monitor instead of
instances of the old monitor. The correlator would then be running some old versions
of the monitor and some new versions of the monitor. Upon recovery, the correlator

Developing Apama Applications Version 9.10 337

Using Correlator Persistence

would recover both versions until all instances of the old monitor had terminated.
This approach might be appropriate when the logic has changed so much that it is
not practical to upgrade monitor instances, or when maintaining behavior for existing
instances is desired.

Sample code for persistence applications

The topics below provide sample code for persistence applications.

Sample code for discarding stale state during recovery

The following code provides an example of discarding stale data during recovery. This
application discards all recovered Data events because their data has become stale.
However, the application always processes and does not discard ControlEvent events.

persistent monitor egl {
listener 1;
listener 1t;
action onload() {
initializeState();
initiatelListeners();
ControlEvent c;
on all ControlEvent():c { handleControl(c); }
}

action initiatelListeners() {

Data d;
l:=on all Data():d { process(d); } // Process is moderately expensive
lt:=on all wait(0.1) { send Average (state) to "output"; }
}
action onBeginRecovery () {
l.quit(); // Discard all recovered Data events.
lt.quit(); // Stop sending intermittent updates.

// Do not flood receivers.

// Note that the ControlEvent listener is still present.
// The code throttles only Data events. If the

// ControlEvent listener is not present, this monitor

// would have no listeners and would terminate

// after this action.

}
action onConcludeRecovery () {
initiateListeners(); // Go back to normal.

}

Sample code for recovery behavior based on downtime duration

The following sample is the same as the discard-stale-data sample with some changes
that provide a downtime policy. Downtime is the duration between the last committed
snapshot and the time of day upon recovery.

This code sample ignores downtimes that are less than two hours. However, if recovery
starts just under the two-hour limit the processing of old data might appear to be
beyond the two hour threshold. The downtime policy must take this into account.

persistent monitor egl {

import "TimeFormatPlugin" as timeFormatPlugin;

Developing Apama Applications Version 9.10 338

Using Correlator Persistence

// ... onload() and so on
boolean longDowntime;

action onBeginRecovery () {
// currentTime is the time of the last snapshot, which is

// approximately when the correlator went down.

// timeFormatPlugin.getTime () is the actual time of recovery.
if (timeFormatPlugin.getTime () - currentTime > (60.0 * 60.0 * 2)
then {

// If we were down for less than 2 hours, pretend nothing
// happened. For longer gaps, skip stale data as it will be
// too expensive to process it.
longDowntime:=true;
log "Correlator was down for a long time - will discard stale
data.";
l.quit(); // Discard all recovered Data events.
lt.quit(); // Stop sending intermittent updates.
// Do not flood receivers.

}
}

action onConcludeRecovery () {
if longDowntime then {
longDowntime:=false;
initiateListener(); // Go back to normal.

Sample code that recovers subscription to non-persistent monitor

This sample code defines a persistent monitor that subscribes to a non-persistent service
monitor. Note that the service monitor can handle the case where the subscription is
received before the adapter is connected.

monitor service monitor {

}

action onload() {
Subscribe s;
on all Subscribe():s {
if not connected then {
pendingSubscribes.append (s) ;
} else {
if (incrRefCount (s.subkey) then {
send Adapter Subscribe (s.subkey) to "output";
}
}
t
on all wait(1.0) {
send IsAdapterUp () to "output";
t
on all AdapterUp () {
connected:=true;
for s in pendingSubsscribes {
route s;

}

pendingSubscribes.clear () ;

}

persistent monitor eg2 {

listener 1;

Instance 1i;

context svcCtx;

action spawnedInstance (context c) {

Developing Apama Applications Version 9.10 339

Using Correlator Persistence

sveCtx:=c; // Contains anything required to recover subscription.
send Subscribe (i.subkey) to svcCtx;
Data d;
l:=on all Data():d { process(d); }
}
action onConcludeRecovery () {
// Non-persistent service monitor is now reset to its onload state.
// Re—-subscribe.
send Subscribe (i.subkey) to svcCtx;

Requesting snapshots

A persistent or non-persistent monitor can request a snapshot to occur as soon as
possible, and be notified of when that snapshot has been committed to disk. You use
Apama's Management interface to do this. The Management interface lets you create
instances of Persistence events and then call the persist () action on those events.
When the correlator processes a Persistence event it takes and commits a snapshot
and executes the specified callback action after the snapshot is committed.

To use the Management interface, you add the Correlator Management bundle to your
Apama project. For details, see "Using the Management interface” on page 399.

Developing persistence applications

While you are writing the EPL code for your persistence application, use Software
AG Designer as you usually do and do not enable persistence. When your application
is near completion and has been successfully tested, start testing execution of the
onBeginRecovery () and onConcludeRecovery () actions you defined in your
application. Do this as follows:

1. Select Run, Run configurations, Correlator component.
2. Add -p to the command line of the correlator.

3. Start the correlator.
4

In the Run configuration, Correlator component, Initialization tab, disable all checkboxes
so that nothing is reinjected.

o

Stop and restart the correlator. It will have persisted the injected monitors.
6. Test the behavior of onBeginRecovery () and onConcludeRecovery () actions.

7. If everything is working correctly, you can stop here. Otherwise, modify your code
and continue with the following steps.

8. Delete the persistence.db file.

9. In the Run configuration, Correlator component, Initialization tab, re-enable all
checkboxes so that your code is injected.

10. Start again at step 3 and continue until your code is working as desired.

Developing Apama Applications Version 9.10 340

Using Correlator Persistence

Ensure that you delete the persistence.db file and re-inject fresh monitors only when
loss of all state is acceptable, for example, during testing.

Using correlator plug-ins when persistence is enabled

A persistent monitor can import a correlator plug-in only when one of the following
conditions is met:

® None of the plug-in's functions/actions, including unused functions/actions, refer to
a chunk type.

m The plug-in is capable of persisting its chunks. In this release, only the Time Format
plug-in and the MemoryStore plug-in are capable of persisting chunks. User-defined
correlator plug-ins and other Apama-provided plug-ins cannot persist chunks.

Using the MemoryStore when persistence is enabled

When persistence is enabled a persistent monitor can use the MemoryStore only with
a correlator-persistent store. A correlator-persistent store is a store that was created

by execution of the storage.prepareCorrelatorPersistent (store name) action.
A persistent monitor cannot use a store that was created by executing any other
storage.prepare () action. The only exception to this is if the persistent monitor is in
a correlator for which persistence is not enabled. In this situation, the correlator treats
persistent monitors in the same way it treats non-persistent monitors.

In a persistence-enabled correlator, both persistent and non-persistent monitors can use
correlator-persistent stores. If you try to prepare an in-memory, on-disk or distributed
store from a persistent monitor in a persistence enabled correlator, the correlator
terminates the monitor that tries to do this. These are runtime errors. The compiler
cannot catch these errors. The following table shows when you can use each kind of
store.

Store type Persistent Persistent Non-persistent Non-persistent
correlator and correlator and correlator and correlator and
persistent non-persistent persistent non-persistent
monitor monitor monitor monitor

In-memory Yes Yes Yes

On-disk Yes Yes Yes

Correlator- Yes Yes* Yes* Yes*

persistent

Distributed Yes Yes Yes

Developing Apama Applications Version 9.10

341

Using Correlator Persistence

* Correlator-persistent store behaves as an in-memory store.

Snapshots include the contents of all correlator-persistent stores that are open. A
snapshot can occur at any time, and it is not possible to commit only certain states

of correlator-persistent stores or the tables in them. However, when using corelator-
persistent stores from persistent monitors, failure and recovery of a correlator should
appear as though nothing has happened. That is, all monitor state and table state should
be as it was when the most recent snapshot was taken.

Just as you cannot execute Store.persist () for in-memory stores, you cannot execute
the Store.persist () action on correlator-persistent stores. You can, however, use
Apama's Management interface to request a snapshot of the entire correlator state and
wait for that to complete. See "Using the Management interface" on page 399.

In persistent monitors, Store, Table, Row and Iterator events are persistent and their
state can be recovered to the latest snapshot. Persistent monitors should not see any
inconsistency between the contents of the table and any state in the monitor, including
Store, Table, Row, and Iterator events. Correlator-persistent stores behave the same
as an in-memory stores, except that the state of correlator-persistent stores is preserved
across correlator restarts.

When the correlator takes a snapshot, it includes Row events held by persistent monitors.
Such Row events are, of course, versions of rows in a table that is in a correlator-
persistent store. A persistence snapshot does not include rRow events held by non-
persistent monitors, even if they represent rows in tables that are in correlator-persistent
stores.

Note: The recovery datastore in which the correlator saves snapshots is different
from the stores used with the MemoryStore. The recovery datastore contains
the state of all persistent monitors, which might include Row events, Iterator
events, and other MemoryStore-related events, and also the state of any
correlator-persistent stores created with the MemoryStore. Thus, the
recovery datastore contains any correlator-persistent stores. If non-persistent
monitors have opened in-memory and/or on-disk stores, those stores operate
independently of the recovery datastore. For example, a non-persistent
monitor can request persistence for an on-disk store and this on-disk store
would not be persisted in the recovery datastore.

In a DataView, you can expose only in-memory and on-disk stores; you cannot expose
correlator-persistent stores.

See also "Using the MemoryStore" on page 365.

Comparison of correlator persistence with other persistence
mechanisms
Correlator persistence is not the only way to persist Apama application data. The table

below compares the various features you can use to persist Apama data. As you can see,
correlator persistence provides the most comprehensive, automatic persistence.

Developing Apama Applications Version 9.10 342

Using Correlator Persistence

Persistence Correlator MemoryStore Apama Database
characteristic persistence Connector Adapter
(ADBC)
Completeness All state in Only state Only state
of what is persistent EPL that you that you
persisted monitors explicitly store. explicitly store.
Partial listener Partial listener
evaluations are evaluations are
impossible to impossible to
store. store.
Recovery Automatic Manual Manual
mechanism
EPL monitors Yes Yes Yes
can be notified
about recovery
Supported Yes * Yes Yes
across Apama
versions
Incremental Yes Yes Yes
snapshots
Storage type Embedded Embedded Shared servers
are supported.
You can use any
database server
or driver.
Atomic Yes Yes Yes
snapshots
Performance Yes Yes Yes
benefit from
pipelining disk
writes with
processing
Supports Yes Yes Yes
multiple
contexts

Developing Apama Applications Version 9.10

343

Using Correlator Persistence

* Please note those upgrading to 5.3 onwards with applications using persistence should
read the information about backwards incompatibility at Release Notes, "What's New In
Apama 5.3", "Backwards Incompatibility with persisted projects recovered to 5.3 from
older versions".

Restrictions on correlator persistence

JMon monitors cannot be persistent.

A persistent monitor can use the Apama Time Format and MemoryStore correlator
plug-ins and the chunk types contained by the events defined by those plug-ins. A
persistent monitor cannot use any other chunk types. This means that a persistent
monitor cannot use an event or plug-in that references a chunk type even if the
application does not use those chunks.

Please note those upgrading to 5.3 onwards with applications using persistence should
read the information about backwards incompatibility at Release Notes, "What's New In
Apama 5.3", "Backwards Incompatibility with persisted projects recovered to 5.3 from
older versions".

Developing Apama Applications Version 9.10 344

Common EPL Patterns in Monitors

9 Common EPL Patterns in Monitors

m Contrasting using a dictionary With SPAWNINGcceoverinnierees s 346
B FACIOrY PABIM oo 347
m Using quit() to terminate event lIStENErS ..o 348
m Combining the dictionary and factory patterns ... 349
B TESHNG UNIGUENESS .vovivieieeriririiiie ittt sttt s e se e st 349
B REfErenCe COUNLING ...cooviiiieieie e 350
B Inline request-reSpoNSe PAtErN ... s 352
m Writing echo monitors for debUgingccveriiiriiiicee s 353

Developing Apama Applications Version 9.10 345

Common EPL Patterns in Monitors

When developing EPL monitor applications it can be helpful to be familiar with
common EPL patterns.

Contrasting using a dictionary with spawning

The sample code in this topic contrasts the use of a dictionary with spawning. Usually,
the dictionary approach is preferred. This is because the spawning approach uses an
unmatched event expression, which is vulnerable to maintenance issues if someone else
loads an event listener for a pattern that you expect to have no other matches.

Translation using a dictionary

The events to be processed:

event Input { string value; }
event Output { string value; }
event Translation {

string raw;

string converted;

}

The monitor:

monitor Translator {
dictionary < string, string > translations;

action onload() {
Translation t;
on all Translation():t addTranslation(t);
Input i;
on all Input():1 translate(i);

}

action addTranslation (Translation t) {
translations[t.raw] := t.converted ;

}

action translate (Input i) {
if translations.hasKey(i.value) then {

send Output (translations[i.value]) to "output";

}
else { fail(i); }

}

action fail (Input 1) {
print "Cannot translate: " + i.value;

}

Translation using spawning
Same events as translation using dictionary.

The monitor:

monitor Translator {
action onload() {
Translation t;
on all Translation() :t addTranslation(t);
Input i;
on all unmatched Input():i fail(i);

Developing Apama Applications Version 9.10 346

Common EPL Patterns in Monitors

}
action addTranslation(Translation t) {
spawn translation (t);
}
action translation(Translation t) {
on all Input(t.raw) translate(t.converted);

}
action translate(string converted) {
send Output (converted) to "output";

}
action fail (Input i) {
print "Cannot translate: " + i.value;

}

Factory pattern

The factory pattern creates a new monitor instance to handle each new item/request. Its
essential features include:

B The onload () action sets up an event listener for creation events,
® Each creation event causes a monitor instance to be spawned.
There are two common forms of the factory pattern:

® Canonical form

The monitor instance spawns to an action that initializes the state of the new monitor
instance and creates event listeners specific to that monitor instance. The spawned
monitor instances use local variables for coassignment and passes them into the
action.

It is likely that some of the data from the creation event is copied into global
variables.

m Alternate form

The initial monitor instance uses coassignment to global variables to set some state
before spawning.

This is a "lazy" form in that it stores the complete creation event inside the monitor.
You should not use this form if you are spawning large number of monitor instances
and you have a large creation event, where only part of the creation event data needs
to be retained.

As an exercise, consider rewriting the example in "Translation using spawning" on page
346, to use the alternate factory form.

Canonical factory pattern

The event:

event NewOrder {...}

The monitor:

monitor OrderProcessor {

Developing Apama Applications Version 9.10 347

Common EPL Patterns in Monitors

action onload() {
NewOrder order;
on all NewOrder () :order spawn processNewOrder (order) ;

}

action processNewOrder (NewOrder order) ({

}

Alternate factory pattern

The event:

event NewOrder {...}

The monitor:

monitor OrderProcessor {
NewOrder order;
action onload() {
on all NewOrder () :order spawn processOrder () ;
}

action processOrder () {

}

Using quit() to terminate event listeners

The example below demonstrates the use of quit () to terminate an event listener. This
example is somewhat contrived in order to demonstrate a situation where it might

be desirable to use quit (). Typically, other methods are often more appropriate, for
example, you can use die to kill a monitor instance and you can specify and not to
terminate an event listener.

The example shows a monitor that trades received orders by breaking them into smaller
orders, which it might place concurrently (perhaps on several exchanges). The monitor
listens for fills on these orders, and sums up the fills. (A real monitor might also send
status on what the filled volume is for each child order together with the total volume
filled for the order. The logic for this is not shown here.) When each order is completely
filled the monitor terminates the Trade event listener for that order.

The events:

event OrderIn {integer id; ... }

event OrderOut {integer id; integer volume; ... }
event Trade {integer orderOutId; integer volume; ... }

The monitor:

monitor TradeOrderAsSeveralSmallerOrders {
event PlacedOrderRecord {
listener listener;
integer volumeToTrade;
integer volumeTraded;
}
dictionary < integer, PlacedOrderRecord > records;
OrderIn theOrder;
action onload() {

Developing Apama Applications Version 9.10 348

Common EPL Patterns in Monitors

on all OrderIn() :theOrder spawn tradeOrder () ;
}

action tradeOrder () {
// some logic determining when and what volume to trade

placeOrder (volume); //called multiple times

}

action placeOrder (integer volume) {

PlacedOrderRecord r := new PlacedOrderRecord;

integer id := integer.getUnique () ;

Trade t; r.listener := on all Trade (orderOutId=id) :t
processTrade (t) ;

records[id] := r;

r.volumeToTrade := volume;

route OrderOut (id,volume, ...);

}

action processTrade (Trade t) {

PlacedOrderRecord r := records[t.orderOutId];
r.volumeTraded := r.volumeTraded + t.volume;
if (r.volumeToTrade - r.volumeTraded) <= 0 then {

r.listener.quit();

}

As stated earlier, for real-world solutions there is generally a better option that using
quit (). For example, the exchange(s) probably also send o0rderComplete events. In this
case you can change the on statement as follows:

on all Trade (orderOutId=id) :t and not OrderComplete (orderOutId=id)
processTrade (t) ;

Of course, you must be certain that the 0rderComplete event can be received only after
all trades for that order have been received.

Combining the dictionary and factory patterns

The dictionary and factory patterns are often combined. This pattern achieves separation
of concerns by using two monitors. The first monitor is responsible for managing

global concerns, for example, it ensures that each order has a unique key. The second
monitor is responsible for local concerns, for example, it manages all data associated
with processing that order.

The example does the following:

1. The orderFilter monitor accepts NewOrder events and checks for uniqueness of the
order key.

2. For all orders with unique keys, the OrderFilter monitor routes a validOrder
event.

Testing uniqueness

The events:

Developing Apama Applications Version 9.10 349

Common EPL Patterns in Monitors

event OrderKey{...}
event NewOrder {
OrderKey key; //You can use anything for key as long as it is unique

}
event ValidNewOrder {
NewOrder order;

}

The monitors:

monitor OrderFilter {

dictionary < OrderKey, NewOrder > orders;
action onload () {

NewOrder order;

on all NewOrder () :order validateOrder (order) ;
}
action validateOrder (NewOrder order) {

if orders.hasKey (order.key) then{

print "Duplicate order!"

print "Original: " + orders[order.key].ToString() ;
print "Incoming: " + order.ToString();

}

else {

orders.add (order.key, order) ;
route validNewOrder (order) ;

}
monitor OrderProcessor {

action onload() {
ValidNewOrder valid;
on all ValidNewOrder () :valid spawn processOrder (valid.order) ;

}

action processOrder (NewOrder order) ({

}

Reference counting

The following pattern is another example that you can use to to keep a count of how
many clients are using a particular service object, which in turn can be used to determine
the lifetime of these service objects. The example subscription management mechanism
is fairly sophisticated, possibly too sophisticated, but it provides the big advantage of
separating the concerns by using two monitors. If you decide to change the subscription
mechanism, you can do so simply by changing the ServiceManager monitor. There is
no impact at all on the serviceItem monitor.

The events:

package com.apamax.service;
event Subscribe {
string toWhat;
string originator;
}
event Unsubscribe {
string fromWhat;
string originator;

Developing Apama Applications Version 9.10 350

Common EPL Patterns in Monitors

}

event CreateServiceItem {
string what;

}

event DestroyServiceltem ({
string what;

}

The monitors:

monitor ServiceManager {
dictionary < string, dictionary < string, integer > > items;

action onload() {
Subscribe s;
Unsubscribe u;
on all Subscribe () :s subscribe(s);
on all Unsubscribe () :u unsubscribe (u) ;

}

action subscribe (Subscribe s) {
if items.hasKey (s.toWhat) then ({
dictionary < string, integer > subscriptions :=
items[s.toWhat];
if subscriptions.hasKey(s.originator) then ({
subscriptions[s.originator] :=
subscriptions[s.originator] + 1;

}

else {
subscriptions([s.originator] := 1;
}
}
else {
items[s.toWhat] := subscriptions;

route CreateServicelItem(s.toWhat);

}

action unsubscribe (Unsubscribe u) {
if items.hasKey (u.fromWhat) then ({
dictionary < string, integer > subscriptions :=
items[u.fromWhat] ;
if subscriptions.hasKey (u.originator) then {
if subscriptions[u.originator] <= 1 then {
subscriptions.remove (u.originator) ;
if subscriptions.size() = 0 then ({
items.remove (u.fromwhat) ;
route DestroyServiceltem (u.fromWhat) ;

}
}

else {
subscriptions[u.originator] :=
subscriptions[u.originator] - 1;
}
}
else {
print "Unsubscribe failed: no originator: " +

u.toString () ;
}
}
else {
print "Unsubscribe failed: no item: " + u.toString();

}

Developing Apama Applications Version 9.10 351

Common EPL Patterns in Monitors

}

monitor ServicelItem {

Voo

action onload() {
CreateServiceltem c;
on all CreateServiceltem():c spawn createServiceltem(c) ;

}

action createServiceltem(CreateServiceltem c) {
/...
DestroyServiceltem d;
on all DestroyServiceItem() :d destroyServiceltem(d) ;

}

action destroyServiceltem(DestroyServiceltem d) {
//...die;
}

Inline request-response pattern

You can use the route command to write EPL that exhibits inline (synchronous) request-
response behavior. The following example shows that when you want to perform

an ordered pattern of operations that contain (as one operation) a request to another
monitor, the subsequent operations must wait until the requesting monitor receives the
response.

The ordering of the route and on statements is not relevant. The correlator sets up the
event listener before processing the routed event.

A common mistake is to place code after the on statement code block and expect that
code to execute after the code in the on statement code block.

Routing events for request-response behavior

The events:
event Request { integer requestId; ... }
event Response { integer requestId; ... }

The monitors:

monitor Client {
action doWork () {
//do some processing

integer id := integer.getUnique () ;
route Request (id, ...);

Response r;

on Response (requestId=id):r {

// continue processing

// Beware! Any code here will execute immediately
// (before processing the response)

Developing Apama Applications Version 9.10 352

Common EPL Patterns in Monitors

monitor Server {

action processRequests () {
Request r;
on all Request () :r {

// evaluate response
route Response(r.id,...);

Canonical form for synchronous requests

The next example show the canonical form for when you want to code a pattern that
specifies two or more synchronous requests.

The events:

event RequestA { integer requestId; ... }
event ResponseA { integer requestId; ... }
event RequestB { integer requestId; ... }
event ResponseB { integer requestId; ... }

The monitor:

monitor Client {
action doWork () {
//do some processing
integer requestId := integer.getUnique() ;
route RequestA (requestId,...);
ResponseA ra;
on ResponseA (id=requestId) :ra doWork2 (ra);
}
action doWork2 (ResponseA ra) {
//do some more processing
integer requestId := integer.getUnique () ;
route RequestB (requestId,...);
Response rb;
on ResponseB (id=requestId) :rb doWork3 (rb) ;
}
action doWork3 (ResponseB rb) {
//do yet more processing

}

Writing echo monitors for debugging

A common practice is to write an echo monitor for debugging purposes. Typically, an
echo monitor listens for the same events as your production monitor and tracks various
behavior.

Writing an echo monitor is typically straightforward, but keep the following caveat in
mind. If your production monitor uses the unmatched keyword for a certain event, and
your echo monitor listens for the same event, and both monitors are in the same context,
your unmatched event listener will never trigger. This is because the event listener in
the echo monitor matches the event and this prevents the unmatched event listener from
ever triggering. The scope of an unmatched event listener is the context that it is in.

Developing Apama Applications Version 9.10 353

Common EPL Patterns in Monitors

To avoid an unmatched event listener that never triggers, specify the completed
keyword in the event listener in the echo monitor. For example, suppose you have the
following code in your production monitor:

on all unmatched SubscribeDepth () :subDepth {

doSomething () ;
}

If you want to track subscribeDepth events in your echo monitor, write the event
expression in the echo monitor as follows:
on all completed SubscribeDepth () :subDepth {

doSomethingElse () ;
}

The completed event listener in the echo monitor triggers after the correlator finishes
processing the unmatched event listener in the production monitor.

Developing Apama Applications Version 9.10 354

Using Correlator Plug-ins in EPL

10 Using Correlator Plug-ins in EPL

B Overhead Of USING PIUG-INSooviriiiieicieicce e 356
B WHEN 10 USE PIUG-INS ..t 356
B When NOt t0 USE PIUG-INS ...vviiiieieieirc et 356
m Using the TimeFormat Event LIDrary ... 357
B USING the MEMOIYSIOrEcciiiiicieecicce s 365
m Using the distributed MEMOIYSIOreccooiiniiniicc e 379
B Using the Management iNtErfaceccovcueveiiiieiccee e 399
m Using MATLAB® products in an applicationccccerrviiiennceeeeeeeise e 403
m Interfacing with user-defined correlator pIUG-iNScccevviicrieiicccce e, 410
B ADOUL the ChUNK TYPE ... 411

Developing Apama Applications Version 9.10 355

Using Correlator Plug-ins in EPL

In EPL programs (monitors and queries), you can use standard correlator plug-ins
provided with Apama and you can also use correlator plug-ins that you define yourself.
A correlator plug-in consists of an appropriately formatted library of C or C++ functions
that can be called from within EPL. The event correlator does not need to be modified to
enable or to integrate with a plug-in, as the plug-in loading process is transparent and
occurs dynamically when required.

To write custom correlator plug-ins, see "Developing Correlator Plug-ins" on page
717.

When using a plug-in, you can call the functions it contains directly from EPL,
passing EPL variables and literals as parameters, and getting return values that can be
manipulated.

Overhead of using plug-ins

The overhead when using correlator plug-ins is very small.

However, you do need to ensure that you do not block the correlator for a long period of
time. For example, you do not want to use a plug-in for doing extensive, synchronous,
time-consuming calculations.

If you need to perform a time-consuming operation, use asynchronous processing
and use the Apama client SDK to write a separate process that does the computations.
For example, the correlator might communicate with this external process by sending
ComputeRequest events on a particular channel and the process would respond by
sending ComputeResult events.

When to use plug-ins

A custom plug-in is a suitable solution in the following situations:

B You have an in-house or third-party library of (possibly complex) C/C++ functions
that you want to re-use.

m The operations you need to perform are more easily/efficiently performed using the
C/C++ language than using EPL. For example, you need to use data structures that
are not easily represented in EPL.

When not to use plug-ins

In general, when you can efficiently write the desired operation in EPL, an all-EPL
solution is preferable to one that involves custom-developed plug-ins. Apama customers
who experience problems with correlator stability when using custom-developed
plug-ins will be asked by Software AG Global Support to remove the plug-in and
reproduce the problem prior to being offered further technical help. Software AG Global
Support lifts this restriction only if the plug-ins have certification from Apama product
management.

Developing Apama Applications Version 9.10 356

Using Correlator Plug-ins in EPL

Using the TimeFormat Event Library

The TimeFormat event library uses the Time Format plug-in.

The TimeFormat event provides routines to obtain the current time and convert to or
from string representations of time.

Internally, the correlator expresses time as seconds since the Unix Epoc (1 Jan 1970,
midnight UTC) - this is the form of currentTime and is convenient for performing
arithmetic, such as differences between times. For more information on this variable, see
"currentTime" on page 912.

To convert from string form to float form, use a parseTime method. To convert from
float form to string form, use a format method. Both take a format String, which is a
string which describes the string form of the time. For more information, see "Format
specification for the TimeFormat functions" on page 359.

The parseTime method is available on the TimeFormat event directly. Or you can
pre-compile a pattern and then perform parsing using the compiled pattern. A
CompiledPattern object is obtained from the TimeFormat event using one of the
compilePattern methods (depending on which time zone the pattern should use by
default). The CompiledPattern object can be stored in a monitor variable, as an instance
of an event or in a local variable and used by listeners. Re-using a CompiledPattern is
more efficient than calling one of the TimeFormat.parseTime methods as the format
String only needs to be read and compiled once. Calling parse on the TimeFormat event
is equivalent to passing the same format String to generate a CompiledPattern and
calling parse on that event. It is also possible to create multiple CompiledPattern events
if your application needs to use several different formats for time.

For example, the following will behave the same:

TimeFormat timeFmt := new TimeFormat;
timeFmt.parseTime (pattern, time);
timeFmt.compilePattern (pattern) .parseTime (time) ;

There are also functions to obtain the current system time. getSystemTime () provides
an absolute time while getMicroTime () provides a high precision time, which is
suitable for high precision relative times (the absolute value of getMicroTime ()
depends on the host operating system).

Patterns with textual elements operate by default in English, but will instead both
produce output and expect input in another language if that has been set in the
environment. For example, under Linux, if the correlator is running with the L.c ALL
environment variable set to "fr FR", the format "EEEE dd MMMM yyyy G" produces
and expects "jeudi 01 janvier 1970 ap. J.-C." for time 0.0.

When you use the TimeFormat event library you can use the Tz environment variable to
select a particular locale to be used by the event library. Specify the value in either of the
following formats:

Continent /City
Ocean /Archipelago

Developing Apama Applications Version 9.10 357

Using Correlator Plug-ins in EPL

For example: Tz=Europe/London. The alternative shortened format will not work
correctly. For example, Tz=GB will not be recognized. If you specify something like this,
Coordinated Universal Time (UTC) is used instead.

Note: For a list of time zones, see "Timezone ID Values" in the "Using Dashboard
Viewer" part of Building and Using Dashboards.

TimeFormat format functions

The format functions convert the time parameter to the local time and return that time
in the format you specify.

For usage information, see the API Reference for EPL (ApamaDoc).

TimeFormat parse functions

The parse functions parse the value contained by the timeDate parameter according to
the format passed in the format parameter or wrapped by the CompiledPattern.

All functions return the result as a float of seconds since the epoch.

For usage information, see the API Reference for EPL (ApamaDoc).

Notes
For all parse functions:

®m If the timeDate parameter specifies only a time, the date is assumed to be 1 January
1970 in the appropriate timezone. If the timeDate parameter specifies only a date,
the time is assumed to be the midnight that starts that day in the appropriate
timezone. Adding them together as seconds gives the right result.

®m If timeDate string specifies a time zone, and there is a matching z, z, v, or v in the
format string, the time zone specified in the timeDate string takes precedence
over any other ways of specifying the time zone. For example, when you call
the parseUTC () or parseWithTimeZone () function, and you specify a time
zone or offset in the timeDate string, the time zone or offset specification in
the timeDate string overrides the time zone you specify as a parameter to the
parseWithTimeZone () function and the normal interpretation of times and dates as
UTC by the parseUTC () function.

m Parsing behavior is undefined if the format string includes duplicate elements such
as "MM yyyy MMMM", has missing elements such as "MM", or it includes potentially
contradictory elements and is given contradictory input, for example, "Tuesday 3
January 1970" (it was actually a Saturday).

®m Dates before 1970 are represented by negative numbers.

Example

The following example returns 837007736:
timeFormat.parseTime ("yyyy.MM.dd G 'at' HH:mm:ss", "1996.07.10 AD at 15:08:56")

Developing Apama Applications Version 9.10 358

Using Correlator Plug-ins in EPL

See also "Midnight and noon" on page 365.

The following examples both parse the timeDate string as having a time zone of UTC
+0900.

timeFormat.parseWithTimeZone ("DD.MM.YY Z", "01.01.70 +0900", "UTC"):;
timeFormat.parseUTC ("DD.MM.YY Z", "01.01.70 +0900") ;

In the first example, the +0900 specification in the timeDate string overrides the

UTC specification for the time zone name parameter. In the second example, the
+0900 specification in the timeDate string overrides the UTC specified by calling the
parseUTC () function.

Format specification for the TimeFormat functions

The format and parse functions make use of the simpleDateFormat class provided in
the International Components for Unicode libraries. sSimpleDateFormat is a class for
formatting and parsing dates in a language-independent manner.

Pattern letters in format strings

The TimeFormat functions use the simpleDateFormat class to transform between a
string that contains a time and/or date and a normalized representation of that time and/
or date. In this case, the normalized representation is the number of seconds since the
epoch.

For the operation to succeed, it is important to define the format string so that it exactly
represents the format of the time and/or date you provide as a string in the timeDate
parameter to a parse function, or expect to be returned from a format function. You
specify the format as a time pattern. In this pattern, all ASCII letters are reserved as
pattern letters.

The number of pattern letters determines the format as follows:
m For pattern letters that represent text

m If you specify four or more letters, the SimpleDataFormat class transforms the
tull form. For example, EEEE formats/parses Monday.

m If you specify fewer than four letters, the SimpleDataFormat class transforms the
short or abbreviated form if it exists. For example, E, EE, and EEE each formats/
parses Mon.

®m For pattern letters that represent numbers
m Specify the minimum number of digits.

m Ifnecessary, SimpleDateFormat prepends zeros to shorter numbers to equal the
number of digits you specify. For example, m formats/parses 6, mm formats/parses
06.

®m Year is handled specially. If the count of y is 2, the year is truncated to 2 digits.
For example, yyyy formats/parses 1997, while yy formats/parses 97.

m Unlike other fields, fractional seconds are padded on the right with zeros.

Developing Apama Applications Version 9.10 359

Using Correlator Plug-ins in EPL

®m For pattern letters that can represent text or numbers

m If you specify three or more letters, the SimpleDataFormat class transforms text.
For example, MMM formats/parses Jan, while MMMM formats/parses January.

m If you specify one or two letters, the simpleDataFormat class transforms a
number. For example, M formats/parses 1, and MM formats/parses for 01.

The following table provides the meaning of each letter you can specify in a pattern.
After the table, there are a number of combined examples.

Descriptions of pattern letters in format strings:

Symbol Meaning Presentation Example Sample Result
G Era designator Text G AD
G BC
% Year Number vy 96
(lowercase)
YYVY 1996
Y Year for Number See example
(uppercase) indicating for "Week in
which week year".
of the year.
Use with the
w symbol. See
"Week in year"
later in this
table.
u Extended year Number uuuu 5769
M Month in year Text or M 9
Number
MM 09
MMM Sep
MMMM September
d Day in month Number d 7
dd 07
dd 25

Developing Apama Applications Version 9.10 360

Using Correlator Plug-ins in EPL

Symbol Meaning Presentation Example Sample Result
h Hour in AM or Number hh 05
PM (1-12)
H Hour in day Number H 0
(0-23)
HH 05
See also 4
"Midnight and i
noon" on page
365.
m Minute in hour Number m 3
See also mm 03
"Midnight and
" mm 55
noon" on page
365.
s Second in Number s 5
minute
ss 05
ss 59
S Fractional Number S 2
second
SS 20
5SS 200
E Day of week Text E Fri
EE Fri
EEE Fri
EEEE Friday
e Day of week Number e 4
(1-7)
This is locale
dependent.
Typically,
Monday is 1.
D Day in year Number D 7

DD 07

Developing Apama Applications Version 9.10 361

Using Correlator Plug-ins in EPL

Symbol Meaning Presentation Example Sample Result
DDD 007
DDD 123
F Day of Number See example
particular week for "Week in
in month (1-7). month".
Use with w
(uppercase) for
week in month.
See "Week in
month" later in
this table.
W Week in year. Number The first Suppose
(lowercase) Use with example below you are
uppercase Y. uses uppercase transforming
Y. The second December
The week
; example 31st, 2008,
that contains S
Ist] shows the which is a
January 1st is difference Wednesday.
week 1.
when you use
"Week 1
For example, lowercase y. 005"
if a week starts
"'"Week' w
on Monday N "Week 1
YYYY
and ends on 2008"
Sunday, and if "'Week' w
January 1st is yyyy"
a Sunday, then
week 1 contains
December 26 -
31 plus January
1.
W Week in month. Number "'Day' F 'of "Day 2 of
(uppercase) Week' W" Week 3"

The week that
contains the 1st
of the month is
week 1.

For example,

if a week starts
on Monday and
ends on Sunday,
and if July 1isa

Developing Apama Applications Version 9.10

362

Using Correlator Plug-ins in EPL

Symbol Meaning Presentation Example Sample Result
Friday (5), then
week 1 of July
contains June 27
-30and July 1 -
3.
a AM/PM marker Text a AM
a PM
k Hour in day Number k 1
(1-24)
kk 01
kk 24
K Hour in AM/PM Number K 0
(0-11)
KK 07
KK 11
z Time zone Text z Pacific
Standard
Time
z Time zone (RFC Number z -0800
822)
v Generic time Text v Pacific
zone Time
v Time zone Text \Y PT
abbreviation
VVVV Time zone Text VVVV United
location States (Los
Angeles)
g Julian day Number g 2451334
A Milliseconds in Number A 69540000

day

Developing Apama Applications Version 9.10

363

Using Correlator Plug-ins in EPL

Symbol Meaning Presentation Example Sample Result

' Escape for text Delimiter — "'Week' w "Week 1
YYYy" 2009"

v Single quote Literal "KK "11
'o''clock"" o'clock"

Any character in the format pattern that is not in the range of ['a'..'z'] or ['A".."z'] is
treated as quoted text. For example, the following characters can be in a timeDate string
without being enclosed in quotation marks:

7

#
@

A pattern that contains an invalid pattern letter results in a -1 return value.

The following table gives examples that assume the US locale:

Format pattern Suitable timeDate string

yyyy.MM.dd G 'at' HH:mm:ss 1996.07.10 AD at 15:08:56 PDT

z

EEE, MMM d, ''yy Wed, July 10, '96

h:mm a 12:08 PM

hh 'o''clock' a, zzzz 12 o'clock PM, Pacific Daylight
Time

K:mm a, z 0:00 PM, PST

VYyyyy.MMMMM.dd GGG hh:mm 1996.July.10 AD 12:08 PM

aaa

When parsing a date string using the abbreviated year pattern (y or yy),
SimpleDateFormat (and hence all parse functions) must interpret the abbreviated year
relative to some century. It does this by adjusting dates to be within 79 years before and
19 years after the time the simpleDateFormat instance is created. For example, using

a pattern of MM/dd/yy and a SimpleDateFormat instance created on Jan 1, 1997, the
string 01/11/12 would be interpreted as Jan 11, 2012 while the string 05/04/64 would
be interpreted as May 4, 1964. During parsing, only strings consisting of exactly two

Developing Apama Applications Version 9.10 364

Using Correlator Plug-ins in EPL

digits, as defined by Unicode: :isDigit (), will be parsed into the default century. Any
other numeric string, such as a one digit string, a three or more digit string, or a two
digit string that is not all digits (for example, -1), is interpreted literally. So 01/02/3 or
01/02/003 are parsed, using the same pattern, as Jan 2, 3 A.D. Likewise, 01/02/-3 is
parsed as Jan 2, 4 B.C. Behavior is undefined if you specify a two-digit date that might
be either twenty years in the future or eighty years in the past.

If the year pattern has more than two y characters, the year is interpreted literally,
regardless of the number of digits. So using the pattern MM/dd/yyyy, 01/11/12 parses to
Jan 11,12 A.D.

When numeric fields abut one another directly, with no intervening delimiter characters,
they constitute a run of abutting numeric fields. Such runs are parsed specially. For
example, the format Himmss parses the input text 123456 to 12:34:56, parses the input
text 12345 to 1:23:45, and fails to parse 1234. In other words, the leftmost field of the run
is flexible, while the others keep a fixed width. If the parse fails anywhere in the run,
then the leftmost field is shortened by one character, and the entire run is parsed again.
This is repeated until either the parse succeeds or the leftmost field is one character in
length. If the parse still fails at that point, the parse of the run fails.

For time zones that have no names, SimpleDateFormat uses strings GMT
+hours:minutes Or GMT-hours:minutes.

The calendar defines what is the first day of the week, the first week of the year, whether
hours are zero based or not (0 vs. 12 or 24), and the time zone. There is one common
number format to handle all the numbers; the digit count is handled programmatically
according to the pattern.

Midnight and noon

The format "HH:mm" parses "24:00" as midnight that ends the day. Given the formal
"hh:mm a", both "00:00 am" and "12:00 am" parse as the midnight that begins the
day. Note that "00:00 pm" and "12:00 pm" are both midday.

Using the MemoryStore

The MemoryStore provides an in-memory, table-based, data storage abstraction within
the correlator. All EPL code running in the correlator in any context can access the data
stored by the MemoryStore. In other words, all EPL monitors running in the correlator
have access to the same data.

The Apama MemoryStore can also be used in a distributed fashion to provide access to
data stored in a MemoryStore to applications running in a cluster of multiple correlators.
For more information on the distributed MemoryStore, see "Using the distributed
MemoryStore" on page 379.

The MemoryStore can also store data on disk to make it persistent, and copy persistent
data back into memory. However, the MemoryStore is primarily intended to provide all
monitors in the correlator with in-memory access to the same data.

Use the MemoryStore to share data among monitors in the correlator or to persist
data on disk. If the situations listed below apply to you, the standard Apama ADBC

Developing Apama Applications Version 9.10 365

Using Correlator Plug-ins in EPL

(Apama Database Connector) adapter is likely to be a better option for you than the
MemoryStore.

® You want to interoperate directly with data users other than Apama.

B You need access to more data than can fit in memory.

B You need to key on more than one field.

® You want to join tables.

See also "Using the MemoryStore when persistence is enabled" on page 341.

See "Using the Apama Database Connector" in Connecting Apama Applications to External
Components.

For details about the event types that provide the MemoryStore interface, see the API
Reference for EPL (ApamaDoc).

Introduction to using the MemoryStore

Data that the MemoryStore stores must be one of the following types: boolean, float,
integer Or string.

To use the MemoryStore, you add the MemoryStore Plugin bundle to your Apama project.
This lets you create instances of MemoryStore events and then call actions on those
events. Available actions include the following:

Creating stores that contain tables

Defining the schema for the rows in a table

Creating tables and associating a schema with each table
Storing, retrieving, updating, and committing rows of data

Copying tables to disk to make the data persistent

Making stored data available in data views for use by dashboards

You can use the MemoryStore in parallel applications. You can use the MemoryStore in
a persistent monitor in a persistence-enabled correlator. See "Using the MemoryStore
when persistence is enabled" on page 341.

For information on using the MemoryStore in a distributed fashion, see "Using the
distributed MemoryStore" on page 379.

Overview of MemoryStore events

The MemoryStore defines the following events in the com. apama.memorystore package.
Most of these events contain action fields that serve as the MemoryStore interface.

B storage — The event type that provides the interface for creating stores.

B Store — A Store event represents a container for a uniquely named collection of
tables.

Developing Apama Applications Version 9.10 366

Using Correlator Plug-ins in EPL

B Table — A Table event represents a table in a store. A table is a collection of rows.
Each table has a unique name within the store. A table resides in memory and you
can store it on disk if you want to.

B schema — A Schema event specifies a set of fields and the type of each field. Each
Schema event represents the schema for one or more tables. Each table is associated
with one schema. All rows in that table match the table's schema.

B Row — A Row event represents a row in a table. A row is an ordered and typed set of
named fields that match the schema associated with the table that the row belongs
to. Each row is associated with a string that acts as its key within the table. You can
change the values of the fields in a row.

B Iterator — Provides the ability to manipulate each row of a table in turn.

B Frinished — The MemoryStore enqueues a Finished event when processing of an
asynchronous action is complete.

B RowChanged — The RowChanged event is used only in a distributed store. In
a distributed store, the RowChanged event is sent to all applications that have
subscribed to a specific table whenever changes to data in a row in that table have
been successfully committed. This behavior is optional and is supported by some,
but not all, third-party distributed cache providers.

For details about these events, see the ApamaDoc documentation for MemoryStore.

Adding the MemoryStore bundle to your project

To use the MemoryStore, you need only add the Memorystore bundle to your project as
described below.

Note: To use the distributed MemoryStore, you add the Distributed MemoryStore
adapter instead. The procedure for this is different and is described in
"Adding distributed MemoryStore support to a project” on page 384.

Adding the MemoryStore bundle to your project makes the MemoryStore.mon file
available to the monitors in your project. When you run your project, Software AG
Designer automatically injects MemoryStore.mon. If you want to examine this file, it
isin the monitors/data storage directory of your Apama installation directory.
MemoryStore.mon is the interface between the monitors in your application and the
MemoryStore plug-in. Your application creates events of the types defined in that file
and calls actions on those events to use the MemoryStore's facilities. There is never any
need to import or call the plug-in directly.

Note: If you use the engine inject utility to manually inject your EPL, instead of
using Software AG Designer, and you want to expose MemoryStore tables to
dashboards, you need to inject the MemoryStoreScenarioImpl.mon monitor,
which is in the same directory as the MemoryStore.mon file.

Developing Apama Applications Version 9.10 367

Using Correlator Plug-ins in EPL

To add the MemoryStore bundle
1. In Software AG Designer, open the project in the Apama Developer perspective.

2. In the Project Explorer, right-click the project name and select Apama > Add Bundle from
the context menu. The Add Bundle dialog is displayed.

3. Inthe Add Bundle dialog, select The MemoryStore bundle and click OK.

Steps for using the MemoryStore

To use the MemoryStore, you must first add the MemoryStore bundle to your

project, unless you are using the distributed MemoryStore. (If you are using the
distributed MemoryStore, instead of adding the MemoryStore bundle, you need to
add the Distributed MemoryStore adapter. For more information on this, see "Adding
distributed MemoryStore support to a project” on page 384.) After you add the
MemoryStore bundle, you write EPL that does the following;:

1. Prepare and then open a store that will contain one or more tables.
2. Define the data schema for the rows that will belong to the table.

3. Prepare and then open a table in a store.
4

For applications that will access data in a distributed store, if the underlying third-
party distributed cache provider supports notifications, optionally subscribe to
the table in order to receive notifications when data has changed. For see further
information, "Notifications" on page 387.

5. Get anew or existing row from the table.

6. Modity the row.

7. Commit the modified row to the table.

8. Repeat the three previous steps as often as needed.

9. Optionally, use an iterator to step through all rows in the table.

10. Optionally, store the in-memory table on disk.

Preparing and opening stores

The first step for storing data in memory is to create an instance of a storage event. You
use the Storage event to prepare and open a store to which you can add tables. Storage
events define actions that do the following:

® Request preparation of a store.
® Open a store that has been prepared.

Storage events contain no data. All Storage events are alike and exist only to provide
the interface for preparing and opening stores.

If you do not require on-disk persistence, you can prepare a store in memory. If you do
require on-disk persistence, you can specify the file that contains (or that you want to

Developing Apama Applications Version 9.10 368

Using Correlator Plug-ins in EPL

contain) the store. Depending on the action you call to open the store, the MemoryStore
does one of the following:

®m Opens the store for read-write access.
® Opens the store for read-only access.
B Opens the store for read-write access. Create the store if it does not already exist.

Preparation of stores is asynchronous. Actions that prepare stores return an ID
immediately. When the MemoryStore completes preparation it enqueues a Finished
event that contains this ID. You should define an event listener for this Finished event.
The Finished event indicates whether or not preparation was successful.

You can open a store only after receiving a Finished event that indicates successful
preparation.

For example, the following code fragment declares a Storage type variable and a Store
type variable. It then calls the prepareOrCreate () action on the storage type variable
and saves the returned ID in the Store type variable. The name of the new store is
storename and the store will be made persistent by saving it in the example.dat file.
Finally, this code fragment declares a Finished event variable and an event listener for a
Finished event whose ID matches the ID returned by the preparation request.

using com.apama.memorystore.Storage;

using com.apama.memorystore.Store;
using com.apama.memorystore.Finished;

monitor Test {
Storage storage;
Store store;

action onload() {
integer id := storage.prepareOrCreate ("storename", "/tmp/example.dat"):;
Finished f£;
on Finished(id, *,*):f
onStorePrepared(f) ;

}
}

After a store has been successfully prepared, you can open it:

action onStorePrepared (Finished f) ({
if not f.success then { log "Whoops"; die; }
store := storage.open("storename") ;

All subsequent examples assume that the appropriate using statements have been
added.

Any monitor instance can open a store after that store has been successfully prepared.
However, monitor 2 has no information about whether or not monitor B has prepared a
particular store.

Therefore, each monitor should prepare any store it needs, and then prepare any tables
it needs within that store. There is no way to pass Store or Table events from one
monitor to another. Multiple monitors can prepare and open the same store or table at
the same time.

Developing Apama Applications Version 9.10 369

Using Correlator Plug-ins in EPL

There are several different actions available for preparing a store:

B Storage.preparelnMemory (string name) returns integer preparesan in-
memory store with the name you specify. All tables are empty when prepared for
the first time. Persistence requests are ignored and immediately return a successful
Finished event.

B Storage.prepare (string name, string filename) returns integer does the
same thing as Storage.prepareInMemory and it also associates that store with the
database file you specify. If there is data in the database file the MemoryStore loads
the store with the data from the file when you prepare a table. Persistence requests
write changes back to the file. The specified file must exist.

B Storage.prepareOrCreate (string name, string filename) returns integer
does the same thing as storage.prepare () except that it creates the file if it does
not already exist.

B Storage.prepareReadOnly(string name, string filename) returns integer
does the same thing as Storage.prepare and it also opens for read-only access the
database file you specify. The MemoryStore will load the store with data from the
file when you prepare the table. Persistence requests are refused and return a failure
Finished event

B Storage.prepareCorrelatorPersistent (string name) returns integer
prepares a store that the correlator automatically persists. Each time the correlator
takes a snapshot, the snapshot includes any correlator-persistent stores along with
the contents of those stores.

B Storage.prepareDistributed(string name) returns integer preparesa
distributed store which will be available to applications running in a cluster of
correlators. The name argument is a unique identifier that specifies the name of a
configured distributed store. For information on adding a distributed store to a
project, see "Adding a distributed store" on page 385.

Suppose a monitor instance calls one of the Storage.prepare () actions and

the action is successful. Now suppose another monitor instance calls the same
Storage.prepare () variant with the same table name and, if applicable, the same
filename, as the previously successful call. The second call does nothing and indicates
success immediately. However, if a monitor instance makes a Storage.prepare () call
and specifies the same table name as was specified in a previously successful prepare ()
call, that call fails immediately if at least one of the following is different from the
successful call:

m The variant of the prepare () action called
® The specified file name or store name (if applicable)

For example, suppose a monitor made the following successful call:

Storage.prepare ("foo", "/tmp/foo.dat")

After this call, the only prepare call that can successfully prepare the same table is

Storage.prepare ("foo", "/tmp/foo.dat")

Developing Apama Applications Version 9.10 370

Using Correlator Plug-ins in EPL

The following calls would all fail:

Storage.prepareInMemory ("foo")
Storage.prepareOrCreate ("foo", "/tmp/foo.dat")
Storage.prepareReadOnly ("foo", "/tmp/foo.dat")
Storage.prepare ("foo", "/tmp/bar.dat")

If a monitor makes a call to prepare () that matches a prepare action that is in progress,
the result is the same as the result of the prepare that is in progress.

Description of row structures

A schema consists of an ordered list of the names and types of fields that define the
structure of a row. For example, the following schema consists of one field whose name
is times run and whose type is integer:

Schema schema := new Schema;

schema.fields : ["times run"];
schema.types := ["integer"];

The Schema event has additional members that indicate how to publish the table. See
"Exposing in-memory or persistent data to dashboards" on page 378.

The schema does not include the row's key. The key is always a string and it does not
have a name. Each row in a table is associated with a key that is unique within the table.
The key provides a handle for obtaining a particular row. The row does not contain the
key.

Two schemas match when they list the same set of field names and types in the same
order and choose the same options for exposing dataviews.

Table events define actions that do the following:

Retrieve a row by key. The returned object is a Row event.
Remove a row by key

Remove all rows

Obtain a sequence of keys for all rows in the table
Obtain an iterator to iterate over the rows in the table
Determine if any row in the table has a particular key

Store on disk the changes to the in-memory table

Subscribe (and unsubscribe) to a table to be notified when a row has changed. (Note,
this is only supported for tables in a distributed store, and only if the underlying
provider supports this feature.)

Modity a row by key
Modify all rows

Obtain the position in a schema of a specified field.

Obtain the name of the table

Developing Apama Applications Version 9.10 371

Using Correlator Plug-ins in EPL

m Obtain the name of the store that contains the table

For details about these Table event actions, see the MemoryStore ApamaDoc at
APAMA HOME\doc\ApamaDoc\index.html.

Retrieval of a row from a table by key always succeeds (although retrieving a row from
a table in a distributed store can throw an exception). If the row already exists, the
MemoryStore returns a Row event that provides a local copy of the row. The content of
this Row event does not change if another user modifies the in-memory version of the
row in the table. If the row does not already exist, the MemoryStore populates a Row
event with default values and returns that with field values as follows:

B Dboolean types are false

B floattypesare0.0

B integer typesare 0

B stringtypes are empty ("")

Row events define actions that do the following:

B Getand set boolean, float, integer, and string fields by name. These actions
modify only the local copy (your Row event) and not the in-memory version of the
row. The in-memory version of the row is available to all monitors. If another user
of the table retrieves the same row, that user receives a Row event that contains a
copy of the in-memory version of the row; that user does not receive a copy of your
modified, local version of the row.

B Commit a modified Row event. That is, you modify your local Row event, and commit
the changes, which updates the shared row in the table. This makes the update
available to all monitors.

B Get the value of a row's key.

B Determine whether a row was present in the table when the local copy was
provided.

m Obtain the name of the table the row is in.
m Obtain the name of the store the row's table is in.

The Row.commit () action modifies only the in-memory copy of the row so it is a
synchronous and non-blocking operation. Note, in a distributed store, Row. commit ()
writes the value to the distributed store, which may be a fast, local operation or it may
involve writing data to one or more remote nodes. If any other user of the table modifies
the in-memory row between the time you obtain a Row event that represents that row
and the time you try to commit your changes to your Row event, the Row. commit ()
action fails and the monitor instance that called Row. commit () dies. Therefore, if you
are sharing the table with other users or using a distributed store, you should call
Row.tryCommit () instead of Row.commit (). If it fails you must retry the commit
operation by retrieving the row again (that is, obtaining a new Row event that contains
the latest content of the in-memory row), reapplying the changes, and then calling the

Developing Apama Applications Version 9.10 372

Using Correlator Plug-ins in EPL

Row. tryCommit () action. This ensures that you always make changes that are consistent
and atomic within the shared version of the row.

However, it is not possible to make atomicity guarantees across rows or tables.

Preparing and opening tables

After you have an open store, you can add one or more tables to that store. You call
actions on store events to create tables. Store events define actions that do the
following:

B Prepare a table. You specify a table name and a schema. This call is asynchronous.
The MemoryStore enqueues a Finished event that indicates success or failure. If the
table does not exist, the MemoryStore creates an empty table.

® Open a table that has been prepared
®m Store on disk the in-memory changes to tables.

If the store that contains the table is persistent and the table exists on disk then the on-
disk schema must match the schema that you specify when you call the action to prepare
the table. The schemas must also match if the table is a distributed table that already
exists in a distributed store. If the schemas do not match, the Finished event that the
MemoryStore enqueues includes an error message.

Note: A persistent table can be an on-disk table or a table in a correlator-persistent
store.

If a monitor instance calls Store.prepare () with the same table name and schema

as those of a previously successful Store.prepare () call, the call does nothing and
indicates success immediately. If a monitor instance calls Store.prepare () and
specifies the same table name but the schema does not exactly match, that call fails
immediately. If a monitor makes a call to Store.prepare () that matches a preparation
that is in progress, the result is the same as the result of the preparation that is in
progress.

If the table you want to prepare is persistent and it has not yet been loaded into memory
then the MemoryStore loads the table's on-disk data into memory in its entirety. The
MemoryStore enqueues the Finished event when loading the table is complete.

To use a table that is in memory, you must retrieve a handle to it from the store that
contains it. Obtaining a handle to a prepared (loaded) table is a synchronous action that
completes immediately and does not block. The calling monitor instance dies if you

try to obtain a handle to a table that is not prepared or that is in the process of being
prepared.

For example:

integer id := store.prepare ("tablename", schema);
on Finished(id, *, *) :f onTablePrepared(f) ;

action onTablePrepared (Finished f) ({
if not f.success then { log "Whoops"; die; }
Table tbl := store.open("tablename");

Developing Apama Applications Version 9.10 373

Using Correlator Plug-ins in EPL

Note: The term "table" is a reserved keyword. Consequently, you should not use
"table" as a variable name.

Preparation of a table can fail for a number of reasons including, but not limited to, the
following:

B You call prepare () on an existing table and the schema of that table and the schema
specified in the prepare () call do not match.

B You call prepare () on an existing in-memory table and the exposePersistentView
setting is true for the schema you specify in the prepare () call.

B You call prepare () on a table that does not exist and the store has been opened
read-only.

B You call prepare () on a table that does not exist in a persistent store and the attempt
to create a new table in the persistent store fails, perhaps because the disk is full.

® The on-disk version of the table is corrupt in some way.
B You set exposePersistentView on a table in a correlator-persistent store.

B You set exposeMemoryView Or exposePersistentView to true for a distributed
store .

B The third-party distributed store implementation throws an exception for some
reason such as unrecoverable network failure.

Using transactions to manipulate rows

In a monitor, any changes you make to Row events are local until you commit those
changes. In other words, any changes you make actually modify the Row events that
represent the in-memory rows. After you commit the changes you have made to your
Row events, the updated in-memory rows are available to all monitors in the correlator
and to all other members of the distributed cluster if you are using a distributed store.

Note: When you modify a Row event and you want to update the actual row with
your changes, you must commit your changes. It does not matter whether or
not the table is in a correlator-persistent store.

The row event defines the following actions for committing changes:

B Row.commit () —Tries to commit changes to Row events to the in-memory table. If
nothing else modified the in-memory row in the table since you obtained the Row
event that represents that row the MemoryStore commits the changes and returns.
The update is available to all monitors. If the in-memory row in the table has been
modified, the monitor instance that called this action dies, leaving the in-memory
table unchanged.

B Row.tryCommit () — Behaves like commit () except that it does not kill the monitor
instance upon failure. If the in-memory row in the table has been modified, this
action returns false and leaves the in-memory table unchanged. If this action is
successful, it returns true.

Developing Apama Applications Version 9.10 374

Using Correlator Plug-ins in EPL

B Row.tryCommitOrUpdate () — Behaves like tryCommit () except that when it
returns false it also updates your local Row event to reflect the current state of the in-
memory row. In other words, if the in-memory row has been modified, this action
does the following:

m Leaves the in-memory row unchanged.

m Updates the local Row event that represents this row to reflect the current state of
the table. Any local, uncommitted modifications are lost.

m Returns false.

Determining which commit action to call

If you are certain that you are the only user of a table and if it is okay for your monitor
instance to be killed if you are wrong, you can use commit ().

If you want to use a simple loop like the one below, or if you intend to give up if your
attempt to commit fails, then use tryCommit ().

boolean done := false;

while not done {
Row row := tbl.get ("foo");
row.setInteger ("a",123);
done := row.tryCommit () ;

}

However, the loop above calls tbl.get () every time around. If you think there might be
a high collision rate, it is worth optimising to the following, more efficient design:

Row row := tbl.get ("foo"):;
boolean done := false;
while not done {
row.setInteger ("a",123);
done := row.tryCommit () ;
if not done then { row.update(); }

}

The row. tryCommitOrUpdate () action makes the example above a little simpler and
considerably more efficient:

Row row := tbl.get ("foo"):;
boolean done := false;
while not done {
row.setInteger ("a",123);
done := row.tryCommitOrUpdate () ;
}

Alternatively, there is a packaged form of that loop that you might find more
convenient:
action doSomeStuff (Row row) {

row.setInteger ("a",123);

}
tbl.mutate ("foo", doSomeStuff);

This example is equivalent to the previous one, both in behavior and performance.
Which to use is a matter of context, style and personal preference.

Developing Apama Applications Version 9.10 375

Using Correlator Plug-ins in EPL

Creating and removing rows

To create a row in a table, call the get () or add () action on the table to which you want
to add the row. The action declaration for the get () action is as follows:

action get(string key) returns Row

The Table.get () action returns a Row event that represents the row in the table that has
the specified key. If there is no row with the specified key, this action returns a Row event
that represents a row that contains default values. A call to the Row. inTable () action
returns false. For example:
boolean done := false;
integer n := -1;
while not done {

Row row := tbl.get ("example-row") ;

n := row.getInteger ("times run");

row.setInteger ("times run", n+l);

done := row.tryCommit () ;

}
send Result (

"This example has been run " +n.toString() +" time(s) before")

to "output";
The add () action does the same as the get () action, except that it does not check if
the row that is to be added already exists in the table until commit () is called and it
therefore never throws an exception. If you are sure that the row does not yet exist, you
can use add () as this is faster than get ().

To remove a row from a table, call the Table.remove () action on the table that contains
the row. The action declaration is as follows:
action remove (string key)

The Table.remove () action removes the row with the specified key from the table. If
the row does not exist, this action does nothing.

It is also possible to remove a row transactionally, by calling Table.get () and then
Row.remove () and Row.commit (). This strategy lets you check the row's state before
removal. The Row. commit () action fails if the shared, in-memory row has been updated
since the Table.get () action.

In some circumstances, using Row. remove () is essential to guarantee correctness. For
example, when decrementing a usage counter in the row and removing the row when
the count reaches zero. Otherwise, another correlator context might re-increment the
count between it reaching zero and the row being removed.

Iterating over the rows in a table

Iterators have operations to step through the table and determine when the end has been
reached. Provided an iterator is not at the table's end, the key it is at can be obtained.

Iterator events define actions that do the following:
m Step through the rows in a table.

®m Determine when the last row has been reached.

Developing Apama Applications Version 9.10 376

Using Correlator Plug-ins in EPL

® Obtain the key of the row that the iterator is at. The iterator must not be at the end of
the table for this action to be successful.

® Obtain a Row event to represent the row that the iterator is at.

The following sample code reads table content:

Iterator i1 := tbl.begin();
while not i.done () {
Row row := i.getRow();
if row.inTable () then {
// Put code here to read the row in the way you want.
}
i.step();
}

The following sample code modifies table content:

Iterator 1 := tbl.begin();
while not i.done() {
Row row := i.getRow() ;
boolean done := false;

while row.inTable () and not done {
// Put code here to modify the row in the way you want.
done := row.tryCommitOrUpdate () ;

}
i.step();

}

Iterating through a table is always safe, regardless of what other threads are doing.
However, if another context adds or removes a row while you are iterating in your
context, it is undefined whether your iterator will see that row.

Furthermore, it is possible for another context to remove a row while your iterator is
pointing at it. If this happens, a subsequent Iterator.getRow () returns a Row event
that represents a row for which Row. inTable () is false.

If an EPL action loops, the correlator cannot perform garbage collection within that loop.
(See "Optimizing EPL programs" on page 422.) Performing intricate manipulations

on many rows of a large table could therefore create so many transitory objects that the
correlator runs out of memory. If this becomes a problem, you can divide very large
tasks into smaller pieces, each of which is performed in response to a routed event. This
gives the correlator an opportunity to collect garbage between delivering successive
events.

Requesting persistence

After changing a MemoryStore table, you can call the Table.persist () action to

store the changes on disk. Note that you can call persist () only on tables in an on-
disk store; you cannot call persist () on tables in correlator-persistent, in-memory, or
distributed stores. The correlator automatically persists correlator-persistent stores and
their contents at the same time as the rest of the correlator runtime state. Updating a
table on disk is an asynchronous action. The MemoryStore enqueues a Finished event
to indicate success or failure of this action. The persistent form of the database that
contains the tables is transactional. Consequently, if there is a hardware failure either all
of the grouped changes are made or none of them are made.

Developing Apama Applications Version 9.10 377

Using Correlator Plug-ins in EPL

Following is an example of storing a table on disk:

integer id := tbl.persist();
on Finished(id, *,*):f onPersisted(f):;

action onPersisted(Finished f) {
if not f.success then { log "Whoops"; die; }
emit "All OK";

When you update a table, the MemoryStore copies only the changes to the on-disk table.

To improve performance, the MemoryStore might group persistence requests from
multiple users of a particular store. This means that calling persist () many times in
rapid succession is efficient, but this does not affect correctness. If the MemoryStore
indicates success, you can be certain that the state at the time of the persist () call (or at
the time of some later persist () call) is on disk.

You can call the store.backup () action to backup the on-disk form of a store while it is
open for use by the correlator. This is an asynchronous action that immediately returns
an ID. The MemoryStore enqueues a Finished event that contains this ID to indicate
success or failure of this action. Be sure to define an event listener for this event.

Exposing in-memory or persistent data to dashboards

You can expose committed in-memory data or committed persistent data as DataViews
for use by dashboards. Note, however that is not supported for distributed stores. The
Schema event defines the following fields for this purpose:

B exposeMemoryView — When this field is true, the MemoryStore makes the rows
in the in-memory table associated with this schema available to Apama's scenario
service. That is, the MemoryStore creates DataViews that contain this data.

B exposePersistentView — When this field is true, the MemoryStore makes the
rows in the on-disk table associated with this schema available to Apama's scenario
service. That is, the MemoryStore creates DataViews that contain this data. You
cannot expose a persistent view of a table in a correlator-persistent store.

B memoryViewDisplayName — Specifies the display name for the exposed DataView
created from the in-memory table.

B memoryViewDescription —Specifies the description for the exposed DataView
created from the in-memory table.

B persistentViewDisplayName — Specifies the display name for the exposed
DataView created from the on-disk table.

B persistentViewDescription — Specifies the description for the exposed DataView
created from the on-disk table.

The MemoryStore exposes in-memory changes after successfully committing them to the
table. The MemoryStore exposes on-disk changes after the transaction that contains the
changes is committed.

Developing Apama Applications Version 9.10 378

Using Correlator Plug-ins in EPL

The exposeMemoryView and exposePersistentView fields have an impact on the time
it takes to prepare a table for the first time. When a table is prepared the rows that are
loaded from disk need to be reflected to the Scenario Service.

If you prepare the same table multiple times the display names and descriptions must
match or the MemoryStore rejects the contradicting request.

When a display name or description field is blank (an empty string), the MemoryStore
chooses the display name or the description for the exposed DataView. You can specify a
non-empty string for one or more fields to override the default. Leave the display name
and description fields blank when you are not exposing the corresponding DataView.

The fields of the exposed views are the same as those of the table, in the same order as
they are defined in the table schema. The key is not part of the exposed views. Each row
in the table forms a single exposed view.

See "Making Application Data Available to Clients" on page 413. See also: Building
and Using Dashboards.

Restrictions affecting MemoryStore disk files

At any one time, only one correlator should be accessing a particular MemoryStore disk
file.

To minimize the risk of data corruption in the event of a system failure, keep
MemoryStore files on your local disk and not on a remote file server.

Do not create hard or symbolic links to MemoryStore files. Linking to the directory that
contains a MemoryStore file is not a problem.

Using the distributed MemoryStore

The topics below describe Apama's distributed MemoryStore. With a distributed
MemoryStore you can access data shared among Apama applications running in
separate correlators. Distributed stores make use of distributed caching software from
a variety of third-party vendors. The topics below describe typical use cases for the
distributed MemoryStore, how to add and configure distributed stores, and how to
write drivers for integrating with third party caching software.

Note: If a license file cannot be found, the correlator refuses to start if a distributed
MemoryStore is enabled. See "Running Apama without a license file" in
Introduction to Apama.

Overview of the distributed MemoryStore

The MemoryStore supports several types of stores as described in "Using the
MemoryStore" on page 365. In addition to those stores that are local to a single
Apama process, Apama also supports a distributed store in which data can be accessed
by applications running in multiple correlators. You prepare a distributed store with a

Developing Apama Applications Version 9.10 379

Using Correlator Plug-ins in EPL

prepareDistributed call on a Storage object. When this sends a Finished event with
success set to true, the Store can be opened, and Table objects created.

A distributed store makes use of Terracotta's BigMemory Max or a third party
distributed cache or datagrid technology that stores the data (table contents) in memory
across a number of processes (nodes), typically across a number of machines. The
collection of nodes is termed a cluster.

Advantages
Arranging a number of nodes into a cluster provides the following advantages:

m Itis possible to store more data than would fit on one node.

B As the data is in memory, a distributed store is typically faster than persisting the
store contents to disk.

m Every piece of data is typically stored on more than one node, so the failure of any
one node should not cause the loss of any committed data.

m If a node fails, other nodes can access any of the data without waiting to 'recover' or
reload the entire datastore. Note, however, that it may take time to detect that the
failed node is down.

® The number of correlators can be changed at runtime, allowing the processing
capacity of the system to be increased.

m Different providers can be used, allowing a single Apama application to integrate
with different distributed caches. However, each provider must have a driver.
Apama provides a Service Programming Interface (SPI) with which you can write a
custom driver.

m Data is accessible to multiple correlators; if they distribute workload appropriately,
more processing capacity can use the same shared store of data. A distributed store
is a building block for such a system, not a complete solution in itself.

m Applications can be notified of changes to data in the store; see "Notifications" on
page 387.
Disadvantages

A distributed store has the following disadvantages compared with the other types of
store:

B A network request may be required to get or commit any Row; this is slower than the
in-process local-memory get and commit requests made against local stores.

® The network request may fail because either more than one node has failed, or there
is a network failure such that the correlator cannot contact other nodes in the cluster.

® Multiple access to a single row will cause contention and will not scale (and will be
slower than an in-memory store).

®m Itis not permitted to expose dataviews with a distributed store. A distributed store
may contain a very large number of entries, which would not be practical to expose

Developing Apama Applications Version 9.10 380

Using Correlator Plug-ins in EPL

as dataviews (as it requires storing a copy of the entire table in the dashboards/
scenario service client).

Use cases

Based on the advantages and disadvantages of distributed stores, the typical use cases
for using them are:

® Requires more data to be stored than will fit on any single node.
®m Elastic (changing) processing capacity required.

® Highly available system needs continuous access to data, even if some nodes fail,
and with minimal recovery time.

® High throughput across a large number of different rows, with only a small amount
of contention for a single row.

The typical use cases where a distributed store is not suitable:
m Very low latency (sub-millisecond) access to data.

®m Very high throughput (>10,000 requests/second) to a single row - the distributed
store only scales out well if different rows are being accessed.

Supported providers

Apama includes a driver for connecting to Terracotta BigMemory Max, which provides
unlimited in-memory data management across distributed servers. See "BigMemory
Max driver specific details" on page 391 for using the BigMemory Max driver.

Apama also provides an interface to integrate with third-party distributed
caching software that provides compare-and-swap operations for adding,
updating, and removing data. For example, software that provides
methods similar to the putIfAbsent, replace, and remove operations on
java.util.concurrent.ConcurrentMap.

For other distributed cache providers, you need to write a driver using the Apama
Service Provider Interface (SPI) to serve as a bridge between the MemoryStore and
the caching software. For information on creating a driver, see "Creating a distributed
MemoryStore driver" on page 397.

Configuration

In order to use a distributed memory store, a set of configuration files must be created
in your project and provided to the correlator. These configuration files typically come
in pairs, a .properties and -spring.xml. Multiple pairs of files can be created and can
make use of more than one distributed cache provider. See "Configuring a distributed
store" on page 385.

Distributed store transactional and data safety guarantees

The commit () action on a Row object from a distributed store by default behaves
similarly to an in-memory store's Row object, in that the commit succeeds only if there

Developing Apama Applications Version 9.10 381

Using Correlator Plug-ins in EPL

have been no commits to the Row object since the most recent get () or update () of the
Row object.

However, providers can be configured differently. For example, if using BigMemory
Max, and the .properties specifies useCompareAndSwap as false then the commit will
always succeed, even if another monitor committed a different value for that entry.

Unlike in-memory stores, for Row objects from a distributed store, a Table.get () or
Row.update () may return an older value, that is, a previously committed value, even if
a more recent commit has completed. This is because a distributed store may perform
caching of data. After some undefined time, the get () should be eventually consistent
- alater get () or update () of the Row object should retrieve the latest value. Typically,
a commit of a Row object where the get () has not retrieved the latest value will flush
any local cache of the value, thus the first commit will fail, but a subsequent update and
commit will succeed.

Again, providers can be configured differently. For the BigMemory Max driver, setting
the terracottaConfiguration.consistency property to STRONG will ensure that
after a commit (), a get () on any node will retrieve the latest version. This STRONG
consistency mode is more expensive than EVENTUAL consistency.

An example: Monitorl gets and modifies a row and sends an EPL event to Monitor2
which in response to the event gets and updates the row. In the table below, the event
has "overtaken" the change to the row; the effects of changing the row and sending the
event are observed in the reverse order (the event is seen before the change to the row).

Time Monitor1 (on node 1) Monitor2 (on node 2)
1 Table.get ("rowl") =
" abc "
1.2 Change row to be "abcdef" Table.get ("rowl"™) = "abc"
(cached locally)
1.3 Row.commit ("rowl" as

"abcdef") succeeds

1.301 Send event to Host 2

1.302 Receive event from Host 1

1.303 Table.get ("rowl") = "abc"
from local cache)

1.4 Update row to be "abcghi”

Developing Apama Applications Version 9.10 382

Using Correlator Plug-ins in EPL

Time Monitor1 (on node 1) Monitor2 (on node 2)

1.5 Row.commit ("rowl as
"abcghi") fails (not last value)

1.6 Row.update () = "abcdef"
1.7 Update row to be "abcdefghi”
1.8 Row.commit ("rowl" as

"abcdefghi™) succeeds

At 1.303, an in-memory cache (when two contexts are communicating in the same
process) would be guaranteed to retrieve the latest value, "abcdef" - but a distributed
store may cache values locally. The commit is guaranteed to fail when a stale value is
read, as it does not rely on cached values for checking whether the row is up to date or
not.

Using a distributed store

Distributed stores make use of Java Distributed cache technologies (the specific
technologies depend on the driver you select). When you start a correlator with the
--distMemStoreConfig option (enabled automatically if you use the Software AG
Designer to add a Distributed MemoryStoretore configuration to your Apama project),
the correlator automatically starts with an embedded Java virtual machine. This JVM
is shared by any Apama applications using a distributed MemoryStore or correlator-
integrated messaging for JMS and any Apama JMon applications.

A distributed store is defined by a bean in a Spring XML configuration file. The bean
specifies the properties that configure the distributed store and the bean's name, which
is the name of the store. When an Apama application prepares a distributed store,
using the prepareDistributed () action, it supplies the name of the bean. For more
information on properties used in the configuration file, see "Configuring a distributed
store" on page 385 and "Configuration files for distributed stores" on page 387.

Depending on the distributed cache provider you select, the data may be stored in the
Java heap. If so, you may need to set an appropriate size for the Java heap, for example,
by specifying -J-xmx2048M (to specify a 2GB heap) on the command line that starts the
correlator. If you are using BigMemory Max off-heap data, you may need to supply

a -J-XX:MaxDirectoryMemorySize= command line argument as well. For details,

see BigMemory Max documentation. JVM options must be placed on the correlator
command line and prefixed with -J. In Software AG Designer, this can be configured
by opening the project's launch configuration, editing the properties of the Correlator
component and selecting the Maximum Java off-heap storage in Mb option. See Correlator
arguments in Using Apama with Software AG Designer.

The main steps in configuring a distributed store are:

Developing Apama Applications Version 9.10 383

http://documentation.softwareag.com/terracotta/index.htm

Using Correlator Plug-ins in EPL

®m If using BigMemory Max, configure and start at least one Terracotta Server Array
Node.

® In Software AG Designer, add the Distributed MemoryStore adapter to the project.
B Add a store to the Distributed MemoryStore settings.

m Choose a store name that will be used in the EPL application to refer to the store.
This is used as the bean's name in the configuration files.

® Provide a driver class name to use a distributed cache of your choice. (If using
BigMemory Max, Software AG Designer creates a BigMemory Max configuration
with the classpath already set)

B Specify a "cluster name". The exact meaning of "cluster name" depends on the driver.
For the BigMemory Max driver, it is a comma-separated list of the host: port pairs
that identify the Terracotta Server Array nodes. Best practice is to list all nodes
configured in the cluster.

m Specify the classpath for both the driver and the distributed cache implementation
.jar files. (If using Apama's BigMemory Max support in Software AG Designer, you
only need to specify the installation directory for BigMemory Max)

®m Specify any other parameters needed by the driver. For further reference, see
"Creating a distributed MemoryStore driver" on page 397.

Specifying a cluster name

A cluster name should be provided when opening a distributed store. Some third-party
drivers and distributed caches use the cluster name as an identifier, that is, they do not
interpret the name in any way. Many distributed caches use broadcast or multicast to
automatically discover other cluster nodes on the same network with the same name
configured. Thus, during development and testing, a name that is different to the name
used by your production system should be used. This is a good practice to follow even
if the systems are on separate networks. Cluster names are specified in properties files,
which should be different between development and production environments.

You should not create more than one store with the same cluster name on any one
correlator.

Configuring a distributed store

Configuring a distributed store consists of adding the Apama Distributed MemoryStore
adapter bundle to an Apama project, adding a distributed store to the project, and
specifying property settings.

Adding distributed MemoryStore support to a project

To add a distributed store to a project using Software AG Designer

1. In the Project Explorer, right-click the project name and select Apama > Add Adapter
from the pop-up menu. The Add Adapter Instance dialog is displayed.

Developing Apama Applications Version 9.10 384

Using Correlator Plug-ins in EPL

2. In the Choose adapter field, select Distributed MemoryStore (Supports using a distributed
cache from MemoryStore) from the list of available adapters.

3. Click OK.

The adapter bundle is added to the project's Adapters node and the adapter instance
is opened in the Distributed MemoryStore editor. The editor is initially blank and the
Distributed Stores field contains no distributed stores.

Adding a distributed store

To configure a new distributed store for use in this project

1. In the Distributed MemoryStore editor's Distributed Stores panel, click the Add Store
button (57). The Distributed MemoryStore Configuration wizard appears.

2. In the Distributed MemoryStore Configuration wizard, specify the following;:

a. In the Store Provider field, select the third-party cache provider from the drop-
down list. If you are using a driver supplied by Apama, such as BigMemory
Mayx, select it from the drop-down list; otherwise select Other.

b. In the Store Name field, specify the name of the store as it will be known in the
configuration files and EPL code. The name must be unique and cannot contain
spaces.

3. Click Finish.

Software AG Designer adds the name of the store to the Distributed Stores panel in the
editor and adds the resources for the store to the project. The default configuration
settings for the store are displayed in the editor.

Configuring a distributed store

You can configure the frequently used settings for a distributed store in Apama's
Distributed MemoryStore editor in Software AG Designer. These settings are those in
the .properties file. For other settings, you need to edit the . xm1 file directly.

To configure a distributed store

1. In the Standard Properties section of the editor, specify the properties required by the
third-party distributed cache in use.

2. (Only required if Other was used as the store type.) In the Classpath section, specify
the names of the required provider-specific . jar files.

a. (Click the Add Location button (=7).

b. In the new entry, specify the name of the . jar file. When you specify the path to
a .jar file, you should use substitution values rather than a full path name. (e.g.
use ${installDir.mystore}/lib/my.jar)

3. In the Custom Property Substitution Variables section, specify the name and values
of additional substitution ${...} variables (if any) used by the distributed cache.

Developing Apama Applications Version 9.10 385

Using Correlator Plug-ins in EPL

The .properties file contains substitution variables that are used by the .xml
configuration file.

a. (lick the Add button (=). A new line will be added to the list of substitution
variables.

b. In the new entry, specify the name and value of the substitution variable you
want to add.

4. (If needed.) In the Configuration Files you can access the Spring .xm1 and
.properties files. Click on the file name link to open them in the appropriate editor.

For more information on specifying property values, see "Configuration files for
distributed stores" on page 387

Launching a project that uses a distributed store

When you add the Distributed MemoryStore adapter bundle to an Apama project in
Software AG Designer, the launch configuration is automatically updated to set the --
distMemStoreConfig start-up option.

The maximum Java heap size and off-heap storage can be set in the Correlator
Configuration dialog in the Run Configurations dialog.

Interacting with a distributed store

Once prepared, a distributed store behaves much like other MemoryStore Store objects
as described in "Using the MemoryStore" on page 365. However, be aware of the
following differences:

B The schema for tables in a distributed store is not allowed to expose dataviews.

®m A distributed store (as opposed to other, non-distributed stores) supports
notifications. For more information, see "Notifications" on page 387, below.

® Exceptions — In an in-memory store, only the Row. commit () action can throw
exceptions. However, in a distributed store, most actions can throw exceptions.
Exceptions represent a runtime error that can be caught with a try-catch statement.
This allows developers to choose what corrective action to take (such as logging,
sending alerts, taking corrective steps, retrying later, or other actions). If no try-catch
block is used with these actions and an exception is thrown, the monitor instance
will be terminated, the ondie () action will be called if one exists, and the monitor
instance will lose all state and listeners. Exceptions can be thrown because of errors
raised by third-party distributed cache providers. To discover what errors could be
thrown because of third-party integration, you should refer to the documentation for
the third-party provider in use. For more information on exceptions, see "Catching
exceptions" on page 293. The following are some of the actions that can throw
exceptions:

B Table.get()
B Table.begin()

B TIterator.next ()

Developing Apama Applications Version 9.10 386

Using Correlator Plug-ins in EPL

B Row.commit ()
B Row.update()

B Performance differences — See "Overview of the distributed MemoryStore" on
page 379 for the advantages and disadvantages of using a distributed store as
compared to an in-memory store.

Notifications

Distributed store Table objects may support the subscribeRowChanged () and
unsubscribe () actions. If subscribed to a table, RowChanged events will be sent to that
context. Subscriptions are reference counted per context, so multiple subscriptions to the
same table in the same context will only result in one RowChanged event being sent for
every change. Monitors should unsubscribe when they terminate (for example, in the
ondie () action) to avoid leaking subscriptions.

The store factory bean property rowChangedoldvValueRequired indicates whether
subscribers receive previous values in RowChanged notification events for updated rows.
When this property is set to true and the RowChanged. changeType field is set to UPDATE
the RowChanged.oldFieldvalues field is populated.

Notifications can impact performance, so are not recommended for tables in which a
large number of changes are occurring. While BigMemory Max supports notifications,
it does not support population of the old value in RowChanged. changeType = UPDATE
events.

Within a cluster of correlators, if a table has subscriptions to RowChanged notifications,
then all correlators must subscribe RowChanged notifications for that table, even if some
correlators do not consume the events. This ensures all nodes receive all events correctly.

Support for notifications is optional, but if the driver does not support notifications,
calls to Table.subscribeRowChanged () and Table.unsubscribe () will throw
OperationNotSupportedException errors.

Configuration files for distributed stores

The configuration for a distributed store consists of a set of . xm1 and .properties files.
Each distributed store in a project will have the following files:

B storeName-spring.xml
B storeName.properties

A distributed store is configured using a bean element in the Spring XML configuration
file. The bean element has the following attributes:

B id-The unique name for this distributed store, which must match the name used in
calls to Storage.prepareDistributed () and Storage.open () in EPL.

B class - The name of the StoreFactory implementation used by this distributed
store.

Developing Apama Applications Version 9.10 387

Using Correlator Plug-ins in EPL

When the correlator is started with the --distMemStoreConfig configDir argument,
it will load all XML files matching *-spring.xml in the specified configuration
directory, and also all *-spring.properties files in the same directory. (Note, the
correlator will not start unless the specified directory contains at least one configuration
file.)

When using Software AG Designer, these files are generated automatically. New
storeName-spring.xml and storeName.properties files are created when a Store is
added to a project. The most commonly used settings can be changed at any time using
the Distributed MemoryStore editor (which rewrites the . properties file whenever the
configuration is changed). In addition, the storeName-spring.xml files can be edited
manually in Software AG Designer to customize more advanced configuration aspects.
To edit the XML, open the Distributed MemoryStore editor and in the Configuration Files
section, click the name of the file to open it in the appropriate editor. Once the editor for
an XML file has been opened, you can switch between the Design and Source views using
the tabs at the bottom of the editor window.

Some property values usually need to be changed when a development and testing
configuration is deployed to a different environment such as one for production use.
Making use of substitution variables is the best way to maintain different bean property
values in different environments, as you can use the same XML file, with a different
.properties file for each environment. For more details on using substitution variables
to specify configuration properties, see "Substitution variables" on page 389. For more
information on modifying property values when moving from a test environment to a
production environment, see "Changing bean property values when deploying projects”
on page 397.

XML configuration file format

The configuration files for a distributed store use the Spring XML file format, which
provides an open-source framework for flexibly wiring together the different parts of
an application, each of which is represented by a bean. Each bean is configured with an
associated set of properties, and has a unique identifier which can be specified using the
id attribute.

It is not necessary to have a detailed knowledge of Spring to configure a distributed
store, but some customers may wish to explore the Spring 3.0.5 documentation to obtain
a deeper understanding of what is going on and to leverage some of the more advanced
functionality that Spring provides.

The Apama distributed MemoryStore configuration will load any bean that extends the
Apama AbstractStoreFactory class.
Setting bean property values

Most bean properties have primitive values (such as string, number, boolean) which are
set like this:

<property name="propName" value="my value"/>

However, it is also possible to have properties that reference other beans, such as
a configuration bean defined by the third-party distributed cache provider. These

Developing Apama Applications Version 9.10 388

http://static.springsource.org/spring/docs/3.0.5.RELEASE/spring-framework-reference/htmlsingle/spring-framework-reference.html

Using Correlator Plug-ins in EPL

property values can be set by specifying the id of a top-level bean as in the following
example (where it is assumed that myConfig is the id of a bean defined somewhere in
the file):

<property name="someConfigProperty" ref="myConfig"/>

Any top-level bean may be referenced in this way, that is, any bean that is a child of the
<beans> element and not nested inside another bean. Referencing a bean that is defined
in a different configuration file is supported.

Instead of referencing a shared bean, it is also possible to configure a bean property by
creating an 'inner' configuration bean nested inside the property value like this:
<property name="terracottaConfiguration">
<bean class="net.sf.ehcache.config.TerracottaConfiguration">
<property name="consistency" value="STRONG"/>
</bean>
</property>

Note, advanced users may want to exploit Spring's property inheritance by using the
parent attribute on an inner bean to inherit most properties from a standard top-level
bean while overriding some specific subset of properties or by type-based 'auto-wiring'.

You can use the Spring syntax for compound property names to set the value of a
property held by another property. For example to set a property stringProp on a bean
held by the property beanprop, use the following:

<property name="beanProp.stringProp" value="myValue"/>

Or, to set the value of the key myKey in a property that holds a Map called mapProp, use
the following:

<property name="mapProp |[myKey]" value="myValue"/>

Substitution variables

Substitution variables in the form $ { varname} can be used to specify bean property
values. Instead of specifying bean property values directly in an XML configuration file,
you use ${ varname} substitution variables in the XML file and specify the values of
those variables in a . properties file inside the configuration directory. This makes it
possible to edit the variable values in Software AG Designer and to use different values
during deployment to a production environment using the Apama Ant macros.

Although .properties and -spring.xnl files often have similar names, there is no
explicit link between them, so any properties file can define properties for use by any-
spring.xml file. Although in some cases it may be useful to share a single substitution
variable across multiple XML files, this is not normally the desired behavior, and
therefore the recommendation is that all properties follow the naming convention
${varname.storeName}.

In addition to the standard substitution variables shared by most drivers, you can

add your own substitution variables for important or frequently changed properties
specific to the driver specific to the cache integrated with your application. This is
especially important when changing from a development environment to a production
environment.

Developing Apama Applications Version 9.10 389

Using Correlator Plug-ins in EPL

It is also possible to provide property values at runtime as Java system properties, such
as specifying -J-Dvarname=value on the correlator command line.

The special variables $ {APAMA HOME} and ${APAMA WORK} are always available.

Substitution variables are evaluated recursively, so a substitution variable can refer to
another substitution variable, for example, classpath=${installDir}/foo.jar.

Standard configuration properties

The following four standard properties are supported by Apama distributed cache
drivers. These properties should be supported by customer-developed implementations
as well.

clusterName — This is a required property. It is a provider-specific string. For
BigMemory Max, this is a comma-separated list of host: port pairs that identify
the servers in the Terracotta Server Array. Some other caches use this as just a name,
used to group together distributed store nodes that communicate with each other
and share data. Store objects with the same clusterName values should operate as
a single cluster, sharing data between them. Most providers require this property
and will fail to start if it is not set. Care must be taken to ensure that different
clusters, and thus clusterName values, are used for development/testing and
production environments, as serious errors would be introduced if the production
and testing nodes were able to communicate with each other. Apama's BigMemory
Max driver makes it easy to avoid this pitfall since it requires a list of host:port
pairs. However, if you are using another driver, then for this reason, as well as
whatever firewalls may exist between development/testing and production, the
recommendation is to explicitly add a suffix such as _testingor production to
the clusterName to indicate clearly which environment it belongs to.

logLevel — This is an optional property; the default is provider-specific, but
typically is the same as the correlator log level. The 1ogLevel property is an Apama
log level string (compatible with com.apama.util.Logger) such as ERROR, WARN,
INFO, DEBUG which will be used to set the log level for the provider if possible (some
providers will write to the main correlator log file, through log4j or the Apama
Logger, but others may write to a separate file). If not specified, the default log

level is determined by the author of the driver, based on the criteria of avoiding the
correlator log or stdout being filled with third party distributed store messages while
logging a small number of the most important messages.

backupCopies — This is an optional property; the default is 1. The backupCopies
property specifies the number of additional redundant nodes that should hold a
backup copy of each key/value data element. The minimum value for this property
is 0 (indicating no redundancy, that is, all data is held by a single node). Note, some
providers may allow customizing the backup count on a per-table basis, in which
case this property specifies an overridable default value for tables that do not specify
it explicitly. For BigMemory Max, this setting has no effect. The number of backup
copies is determined by the Terracotta Server Array configuration, which is separate
from the Apama configuration.

Developing Apama Applications Version 9.10 390

Using Correlator Plug-ins in EPL

B initialMinClusterSize — This is an optional property. It specifies the minimum
number of nodes a cluster must have before the Finished event is sent in response
to a call to prepareDistributed. This provides a way to make sure that a cluster is
fully ready for correlator nodes to request and process data. The default is 1, which
specifies that a Finished event is sent without waiting for additional nodes when
preparing the distributed store.

B rowChangedOldValueRequired - Indicates whether the old value is required
when there is a notification that a row has changed. If set to false, the value of
oldFieldValues is empty for RowChanged.changeType.UPDATE events. If true, the
previous value is available. This currently cannot be set to true for BigMemory Max.
The default is true.

If all four standard properties were set, the bean configuration would look like:

<bean id="MyStore" class="com.foobar.MyStoreFactory">
<property name="clusterName" value="hostl:portl, host2:port2"/>
<property name="logLevel" value="WARN"/>
<property name="backupCopies" value="1"/>
<property name="initialMinClusterSize" value="2"/>
</bean>

BigMemory Max driver specific details

You can create configuration files for BigMemory Max when using Apama in Software
AG Designer. The BigMemory Max installation directory (where the zip files were
unpacked) needs to be specified as the providerDir property.

See the BigMemory Max documentation for information about the following;:

B The .properties file for a distributed store contains an option for choosing
consistency. The options are STRONG or EVENTUAL consistency you will want to
understand the trade-offs between these two modes.

B You can set BigMemory Max driver properties (described in the table below) in
the -spring.xml configuration file. Alternatively, you can specify many of these
properties in an ehcache. xml configuration file and then specify the path for that
file in the -spring. xmlconfiguration file using the ehcacheConfigFile property.
If this is done, many of the properties in the spring.xml configuration file will be
ignored; the settings derived from the ehcache.xml file will be used instead.

B Use the storeName-spring.properties file to set configuration properties for the
BigMemory Max driver.

m Using off-heap storage requires setting -xX:MaxDirectMemorySize=. Specify this in
the command line for starting the correlator as -J-xX:MaxDirectMemorySize=. The
documentation provides recommendations for specifying the value of this property.
When you add a correlator to a correlator launch configuration in Software AG
Designer, you can select the Maximum Java off-heap storage in Mb option. See Correlator
arguments in Using Apama with Software AG Designer.

For more information on Ehcache types, see the Ehcache Javadoc and search for the
required type such as CacheConfiguration.

Developing Apama Applications Version 9.10 391

http://documentation.softwareag.com/terracotta/index.htm

Using Correlator Plug-ins in EPL

Property Name

Type / Description

cacheConfiguration

cacheDecoratorFactory

cacheDecoratorFactoryProperties

clusterName

configuration

maxMBLocalOffHeap

pinning

Type: CacheConfiguration

Ehcache CacheConfiguration

bean, shared by all caches

(Tables). Typically used as a

compound bean name, for example,
cacheConfiguration.overflowToOffHeap.

Type: string

Name of a class to use as a
cacheDecoratorFactory. The
named class must be on the classpath
and must implement Ehcache's
CacheDecoratorFactoryinhﬂface

Type: Properties

Properties to pass to a
cacheDecoratorFactory. Allows use of
the same class for many caches.

Type:String

Comma-separated list of host:port
identifiers for the servers, or a tc-
config.xml file name. Best practice is
to list all Terracotta Server Array (TSA)
nodes.

Type: Configuration

Ehcache Configuration bean. Typically
used as a compound bean name, for
example, configuration.monitoring.

Type: long

Number of MB of local off-heap data. Total
across all tables, per correlator process.

Type: string

Either an attribute value of "inCache"
(default) or "1localMemory" or a
<null/> XML element (i.e.<property
name:"pinning"><null/></property>)

Developing Apama Applications Version 9.10

392

Using Correlator Plug-ins in EPL

Property Name Type / Description

Pinning prevents eviction if the cache size
exceeds the configured maximum size.
Recommended if the cache is being used
as a system of record.

terracotta Configuration Type: Terracotta Configuration

Ehcache TerracottaConfiguration
bean. Typically used as a

compound bean name, for example,
terracottaConfiguration.consistency

ehcacheConfigFile Type: string

Path to an ehcache. xml configuration file.

Noteif this is specified, any other properties
listed in this table will be ignored.

You can set the following BigMemory Max driver properties in the spring. xml
configuration file, but not in the ehcache.xml configuration file as they modify how the
driver accesses the BigMemory Max Cache.

Property Name Type / Description

backupCopies Type: int

Ignored. Not supported. The number

of backups is governed by the TSA
topology defined in the BigMemory Max
documentation and used to configure the
TSA nodes.

initialMinClusterSize Type: int

The minimum cluster size (number of
correlators) that must be connected for

prepare to finish.
logLevel Type: string

The log level.
rowChangedOldValueRequired Type:boolean

Whether to expose old values in
rowChanged events. Must be set to false.

Developing Apama Applications Version 9.10 393

http://documentation.softwareag.com/terracotta/index.htm
http://documentation.softwareag.com/terracotta/index.htm

Using Correlator Plug-ins in EPL

Property Name

Type / Description

useCompareAndSwap

useCompareAndSwapMap

exposeSearchAttributes

exposeSearchAttributesSet

Type: boolean

Whether to use compare and swap (CaS)
operations or just put/remove. Some
versions of BigMemory Max support only
CaS in strong consistency.

Type: Map (String, Boolean)

Per-table (cache) configuration for whether
to use CaS or put/remove.

Type: boolean

Enable exposing search attributes. If true,
then the MemoryStore schema columns are
exposed as BigMemory search attributes
and are indexed, so that other clients of
BigMemory can perform searches on the
data set. If exposeSearchAttributesSet
is non-empty, then only the named
columns are exposed as BigMemory search
attributes. See notes below about non-
Apama applications accessing the data in a
BigMemory cluster.

Type: set (String)

Limits the set of columns in each table

that should be exposed as search

attributes. Entries are in the form

tableName .columnName . If empty, all schema
columns are exposed as search attributes.
There is an incremental cost per column

that is exposed, so for performance, only
expose the columns which need to be used
in searches.

For example, to expose only the "Surname"
and "FirstName" columns of "myTable":

<property name="exposeSearchAttributes"
value="true"/>
<property name="exposeSearchAttributesSet">
<set>
<value>myTable.Surname</value>
<value>myTable.FirstName</value>
</set>
</property>

Developing Apama Applications Version 9.10

394

Using Correlator Plug-ins in EPL

The following compound properties are also exposed in the . properties file, or set by
default in the spring.xmlconfiguration file:

Property Name

Type / Description

cacheConfiguration.eternal

cacheConfiguration.
maxEntriesLocalHeap

cacheConfiguration.
overflowToOffHeap

pinning

terracottaConfiguration.
localCacheEnabled

terracottaConfiguration.
clustered

terracottaConfiguration.
consistency

Type: boolean

Disables expiration (removing old,
unused values) of entries if true. Set
to true in the default spring.xml
configuration file.

Type: int
The number of entries for each table.

This is the maxEntriesLocalHeap
entry in the .properties file.

Type: boolean

Whether to use off-heap storage. For
scenarios where data is fast changing
and being written from multiple
correlators, the cache may perform
better if this is disabled.

This is the

cacheConfiguration.overflowToOffHeap
entry in the .properties file.

Type: String
Set to inCache by default.

Type: boolean

Whether to cache entries in the
correlator process. Set to true in the
default spring.xml configuration file.

Type: boolean

Whether to use a TSA. Set to true in the
default spring.xml configuration file.

Type: String

Either 'STRONG' or 'EVENTUAL'.
STRONG gives MemoryStore-like

Developing Apama Applications Version 9.10

395

Using Correlator Plug-ins in EPL

Property Name Type / Description

guarantees, while EVENTUAL is faster
but may have stale values read.

This is the

terracottaConfiguration.consistency
entry in the .properties file.

terracottaConfiguration. Type:boolean

synchronousWrites .
Y If true, then data is guaranteed

to be out of process by the time a
Row.commit () action completes.
Disabling this can increase speed.

This is the

terracottaConfiguration.synchronousWrites
entry in the .properties file.

Note: When using the BigMemory Max driver, all correlators accessing the
same data in a BigMemory cluster must have the same configuration. If
accessing from non-Apama applications, clients will need the correct cache
configuration (available from the Terracotta Management Console) and have
the appropriate Apama classes available on their classpath (available in the
distmemstore and ap-distmemstore-bigmemory.jar files) in order to
access the cache.

For reference, the following table maps Apama MemoryStore terminology to
BigMemory Max classes; this may be useful when referring to the BigMemory Max
documentation:

MemoryStore Event Object BigMemory Max Class
Store CacheManager
Table Cache

Row Element

By default, a distributed MemoryStore store uses the BigMemory Max default cache
manager. To specify the use of a different cache manager, specify the name property on
the configuration bean. For example:

<property name="configuration.name" value="myCacheManager"/>
In a cluster, if one correlator calls subscribeRowChanged () for a given MemoryStore

table, then all correlators in that cluster that modify the entries in that table must also
call subscribeRowChanged () on that table even if they do not consume the events.

Developing Apama Applications Version 9.10 396

Using Correlator Plug-ins in EPL

Iterating over a table may require pulling the entire table into memory. It may fail if the
table is being modified.

Changing bean property values when deploying projects

Some bean property values will usually need to be changed when a development/
testing configuration is deployed to a different environment such as production, which
is typically achieved by ensuring all such bean property values are specified using
${varname} substitution variables specified in .properties files for test vs. production
environments. For example, for distributed memory stores the clusterName should be
changed so that the nodes cannot talk to each other (although Apama also recommends
production nodes to be located on a different network to reduce the chance of accidental
errors). For more details on using substitution variables to specify configuration
properties, see "Substitution variables" on page 389.

Tip: Due to the flexibility and simplicity of .properties files, there are many ways

this requirement can be addressed. For customers using Apama's Ant macros for
deployment, one option is to maintain a separate set of . properties files for each
environment, and customize your project's Ant script to copy the correct version of the
files into the distMemStoreConfig directory just before starting the correlator. Another
option is to use Ant's <propertyfile> task (see the Apache Ant documentation

for more information on how to do this) to modify the .properties files in-place,
overriding or adding to existing property values as required for the new deployment.

Creating a distributed MemoryStore driver

The Apama installation includes a driver for integrating the distributed MemoryStore
with the BigMemory Max distributed caching software. If you use other third-party
distributed caching software, you need to write a driver that provides the bridge
between Apama's MemoryStore and the third-party software in use. Apama provides
a Service Provider Interface (SPI) for you to use when writing drivers. This section of
the Apama documentation presents an introduction to the SPI and a description of its
essential elements.

Complete Javadoc information for the SPI is available in doc/javadoc/index.html in
your Apama installation. See the com.apama.correlator.memstore package.
Overview

A driver for a distributed cache needs to extend the following abstract classes:

B AbstractStoreFactory

B AbstractStore

B AbstractTable

Implementation details:

B AbstractStoreFactory — This is the abstract class that holds the configuration
used to instantiate a distributed Store. The starting point for creating an Apama

Developing Apama Applications Version 9.10 397

Using Correlator Plug-ins in EPL

distributed cache driver is to create a concrete subclass of AbstractStoreFactory.
The subclass should have the following;:

®m A public no-args constructor

m JavaBean-style setter and getter methods for all provider-specific configuration
properties

® Animplementation of createStore () that makes use of these product-specific
properties, in addition to the generic properties defined on this factory, which are
getClusterName (), getLogLevel (), and getBackupCopies ().

®m afterPropertiesSet () (optional, but useful)

Implementers are encouraged to do as much validation as possible of the
configuration in the afterPropertiesset () method. This method will be called by
Spring during correlator start-up after setters have been invoked for all properties in
the configuration file. The createstore () action will never be called before this has
happened.

The StoreFactory class that is implemented must then be named in the distributed
store -spring.xml configuration file.

B AbstractStore — This is the abstract class that provides access to Tables whose
data is held in a distributed store. Implementers should create a subclass of
AbstractStore

A driver's implementation of the AbstractStore needs to implement or override the
following methods:

B createTable()

m init ()

B close()

B getTotalClusterMembers ()

B AbstractTable — This is the abstract class that holds Row objects whose data is held
in a distributed store.

If the distributed store provides a java.util.concurrent.ConcurrentMap, Apama
recommends that implementers of Apama distributed stores create a subclass of the
ConcurrentMapAdapter abstract class for ease of development and maintenance. If
the distributed store does not provide a ConcurrentMap, implementers should create
a subclass of Apama's AbstractTable class.

If you are implementing from AbstractTable you need to implement or override
the following methods:

m get()
B clear()
B remove ()

B replace()

Developing Apama Applications Version 9.10 398

Using Correlator Plug-ins in EPL

B putIfAbsent()
B containsKey ()
B size()

Drivers may also optionally provide support for EPL subscribing to 'row changed'
data notifications. To allow EPL application to subscribe to these notifications,
subclasses of AbstractTable (or ConcurrentMapAdapter) must provide an
instance of RowChangedSubscriptionManager that provides implementations
of addRowChangedListener and removeRowChangedListener, and calls
fireRowChanged when changes are detected. Also, if a subclass implements
notifications, it should override the getRowChangedSubscriptionManager
method and have it return the instance of RowChangedSubscriptionManager for
this table. Calls to subscribeRowChanged and unsubscribe are passed to this
instance. The default implementation of getRowChangedSubscriptionManager
returns null, indicating that row changed notifications are not supported;

in this case calls to subscribeRowChanged and unsubscribe will throw
OperationNotSupportedException.

B RowValue — The RowValue class is not inherited from or implemented, but a
driver must be able to store and retrieve objects of the Apama RowValue class.
Typically a cache can store any suitable Java class, but some mapping may be
required as well. For more information about this class, see the Javadoc for
com.apama.correlator.memstore.RowValue

Sample driver

To help get started writing a driver, the BigMemory Max driver is provided in source
form as a sample; it implements the SPI described above and invokes the EHCache

APl in order to use BigMemory Max. The sample is provided under the samples/
distmemstore driver/bigmemory path in the Apama installation directory. To avoid
confusion with the pre-compiled driver supplied in the product, the sample BigMemory
Max driver uses the package name com.apamax.memstore.provider.bigmemory. A
README. txt file describes how to build the sample.

Using the Management interface

The Management interface defines actions that let you do the following;:
® Obtain information about the correlator

® Control logging

B Request a persistence snapshot

® Manage user-defined status values

Actions in the Management interface are defined on several event types, which are
documented in the API Reference for EPL (ApamaDoc).

Developing Apama Applications Version 9.10 399

Using Correlator Plug-ins in EPL

To use the Management interface, add the Correlator Management bundle to your
Apama project. Alternatively, you can directly use the EPL interfaces provided in
APAMA HOME\monitors\Management.mon.

Obtaining information about the correlator

The Management interface provides the following actions for obtaining information
about the correlator that the Management interface is being used in:

B getHostname () - Returns the host name of the host the correlator is running on. The
host name is dependent on the environment's name resolution configuration, and the
name can be used only if the name resolution is correctly configured. The name is
the same as that logged in the correlator log file, for example, dev3.acme. com.

getComponentPort () - Returns the port the correlator is running on.
getComponentPhysicalld () - Returns the physical ID of the correlator.

getComponentLogicallId() - Returns the logical ID of the correlator.

getComponentName () - Returns the name that is used to identify the correlator. You
can set this name by specifying the -N correlator command line flag (or by means

of the extraArgs attribute in the Ant macros). The default name of the correlator is
correlator.

These actions are defined in the com.apama.correlator.Component event.
There are engine management utility options that you can specify

® To retrieve the same information from outside the correlator

m Or to retrieve the same information for IAF or sentinel agent processes

The correlator also logs all of these values to its log file at startup.

Controlling logging

You can configure logging using the Management interface. The
com.apama.correlator.Logging event provides actions such as
setApplicationLogFile, setLogFile and setApplicationLogLevel. These actions
are the equivalent of using the engine management options to configure logging (see
also "Shutting down and managing components" in Deploying and Managing Apama
Applications).

The rotatelLogs () action, which is also defined in the
com.apama.correlator.Logging event, is used for closing the log files in use, opening
new log files, and then sending messages to the new log files. This action applies to:

B The correlator status log file
® The correlator input log file if you are using one
B Any application log files you are using

For details about log file rotation, see "Rotating the correlator log file" and "Rotating all
log files" in Deploying and Managing Apama Applications.

Developing Apama Applications Version 9.10 400

Using Correlator Plug-ins in EPL

You can write an EPL monitor that triggers log rotation on a schedule. For example, the
code below rotates logs every 24 hours at midnight:

using com.apama.correlator.Logging;

monitor Rotator {
Logging logging;

action onload() {
on all at (0, 0) {
logging.rotatelogs () ;
}

Requesting a snapshot

In a persistence-enabled correlator, you can use the Management interface to request

a snapshot to occur as soon as possible, and be notified of when that snapshot has

been committed to disk. The Management interface lets persistent and non-persistent
monitors create instances of Persistence events and then call the persist () action on
those events.

When the correlator processes the persist () call it takes and commits a snapshot and
executes the specified callback action at some point after the snapshot is committed.
There are no guarantees about the elapsed time between the persist () call, the
snapshot and the callback, especially when large amounts of correlator state are
changing. Your code resumes executing immediately after the call to the persist ()
action. See "Using Correlator Persistence” on page 327.

The Management interface defines the Persistence event:

package com.apama.correlator;
event Persistence {
action persist (action<> callback) {

}
}

Consider the following sample code:

using com.apama.correlator.Persistence;
event Number {
integer i;

}

persistent monitor MyApplication {

integer counter := 0;
sequence<integer> myNumbers;
action onload() {

Number n;
on all Number (*):n {
myNumbers.append (n.i) ;

counter := counter + 1;
if (counter % 10 = 0) then {
doCommit () ;

}

Developing Apama Applications Version 9.10 401

Using Correlator Plug-ins in EPL

action doCommit () {
Persistence p := new Persistence;
p.persist (logCommit) ;

}

action logCommit () {
log "Commit succeeded";
}
}

Because MyApplication is a persistent monitor the correlator copies its state to disk as
that state changes. This monitor listens for Number events and stores their content in the
myNumbers sequence. After every tenth Number event, the code executes the doCommit ()
action, which uses the persistence event in the Management interface to request that
the correlator commits persistent state to disk. When that commit has succeeded, the
Management interface calls the action variable that was passed to the persist () action.
This action writes "Commit succeeded" to the correlator log.

The Management interface guarantees that at the moment the callback action
(LogCommit () in this example) is executed, the state of all persistent monitors at a
particular point in time will have been committed. The particular point in time is
guaranteed only to be between the point at which persist () was called and the point
at which the callback action was executed. For example, suppose the following event
stream is being sent into the correlator:

Number (1)

Number (2)
Number (3)

Number (10)
Number (11)
Number (12)

At the point that Number (10) is received, the myNumbers sequence contains the ten items
1,2,3,4,5,6,7,8,9, 10 and so the application initiates a snapshot commit. Suppose
that the correlator suddenly terminates after notification of success appears in the log.
When the correlator recovers, MyApplication has a myNumbers sequence that contains
at least ten items. However, the sequence might contain 11 or even 12 items, if more
Number events were received after the commit was requested but before the snapshot
was actually taken. The correlator also persists state periodically, or as directed by other
monitors that call the Management interface, so the sequence can be persisted at other
points as well.

Managing user-defined status values

The Management interface provides actions for managing the user-defined status values.

m Use the following action to set a user-defined status value, note that the name of
the status and the value of the status passed in are stored as strings and must be
converted as required:

B setUserStatus()
m Use the following actions to return the user-defined status values:

B getUserFloat () - Returns float values.

Developing Apama Applications Version 9.10 402

Using Correlator Plug-ins in EPL

®m getUserlInteger () - Returns integer values.
B getUserBoolean () - Returns Boolean values.
B getUserString() - Returns string values.

There are also matching actions for the above get actions that allow for default
values if a status does not exist. These actions have an additional "Or" in their names,
for example, getUserFloatOr ().

m Use the following action to delete any of the user-defined status values:
B deleteUserStatus()

Note that the correlator status statements that appear in the log files will not have the
user-defined status values, and will remain unaffected.

Using MATLAB® products in an application

To use MATLAB analysis and modeling capability in an Apama application or in an
application built using the Apama Capital Markets Foundation, you need to add the
MATLAB bundle to your project and ensure that MATLAB executables and libraries
are available to the correlator. The MATLAB bundle provides access to the MATLAB
analysis and modeling toolkit from Apama EPL code and includes a correlator plug-in.

For information about supported versions, see the Supported Platforms document for
the current Apama version. This is available from the following web page: http://
documentation.softwareag.com/apama/index.htm.

This MATLAB plug-in lets you connect to and use the MATLAB engine. However, there
are some functions/toolkits for which MATLAB does not support integration with C or

Fortran on some operating platforms. Check the MATLAB documentation before using
the MATLAB correlator plug-in.

The recommended way to use the MATLAB plug-in is to use the MatlabManager event,
and call the relevant action and supply a callback. The call goes directly to the MATLAB
plug-in so you do not need to route a request event. *Response events are routed from
the MATLAB plug-in to the calling context. Each request action automatically sets up a
listener for the *Response event that will call the supplied callback. You can supply the
relevant doesNothing*Callback () action from the MatlabManager event if you are not
interested in the results of the callback. If you use the MatlabManager actions you do not
need to call the #initialize () action.

The legacy way to use the MATLAB plug-in is to route *Request events and set up
listeners for the *Response events. If you are using the MATLAB plug-in in only

the main context, injecting MatlabService.mon sets up all required listeners for the
*Request events that call into the MATLAB plug-in. To use the MATLAB plug-in from
another context, instantiate a Mat1abManager variable, spawn to the other context, and
call #initialize () on the variable. This sets up the required listeners in the current
(non-main) context, and the *Response events are routed to this context.

Developing Apama Applications Version 9.10 403

http://documentation.softwareag.com/apama/index.htm
http://documentation.softwareag.com/apama/index.htm

Using Correlator Plug-ins in EPL

Note: The MATLAB plug-in is asynchronous (except the OpenSession requests)
so the processing of the input queue, or calling the request actions, does not

block.

The MATLAB plug-in is multi-context aware. The *Response events are routed to the

calling context.

To include MATLAB capabilities in your application, follow these steps:

1. Ensure that the directory containing the MATLAB plug-in library is included in
the library search path: sApAMA HOME%\bin should be in the PATH on Windows
platforms, or for deployment on Linux operating systems, $APAMA HOME/1ib should

be in the LD LIBRARY PATH.

2. Import the MATLAB plug-in in the application's EPL code.

3. Set the appropriate values for your PATH environment variable:

m 64-bit Windows: Add MATLAB HOME/bin and MATLAB HOME/bin/win64 to $PATH

5.

m 64-bit Linux: Add MATLAB HOME/bin to $PATH. Also, add MATLAB HOME/sys/os/
glnxa64 and MATLAB HOME/bin/glnxa64 to $SLD LIBRARY PATH.

MatlabManager actions

The MatlabManager event provides the following actions. For complete reference
information, see the API Reference for EPL (ApamaDoc).

Action

Description

openSession (
string sessionID,
string messagelD,
boolean singleUse,
integer precision,
action<string, string,

boolean, string>

callback)

Starts a MATLAB process for

the purpose of using MATLAB

as a computational engine.

Uses the MATLAB API function
engOpen () if singleUse = false and
engOpenSingleUse () if singleUse =
true. Single use is unavailable on Linux.
The response to this action call is an
OpenSessionResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

closeSession (
string sessionID,
string messagelD,
action<string, string,
boolean, string>
callback)

Closes a MATLAB session. Uses the
MATLAB API function engClose ().
The response to this action call is a
CloseSessionResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

Developing Apama Applications Version 9.10

404

Using Correlator Plug-ins in EPL

Action Description

initialize ()

You must call this action when you are
using MATLAB by means of routed
events in a context other than the main
context. Spawn to another context, set up
the relevant listeners in the new context,
and then call initialize (). You do not
need to call initialize () when you are
calling the MatlabManager actions.

putFloat (

string sessionID,

striing messagelD,

string name,

float value,

action <string, string,
boolean, string>

callback)

Puts a float variable into a MATLAB
engine workspace. Uses the MATLAB
API function engPutVariable ().

The response to this action call is a
PutFloatResponse event routed from
the plug-in to the calling context and the
supplied callback is invoked.

NoteBy default, this event creates a local
variable in the MATLAB session. If
you need the variable to have a global
scope, call evaluate () before you
call the putFloat () action. In the
evaluate () call, declare the variable

as being global (for example, "global

x").

getFloat (

string sessionID,

string messagelD,

string name,

action<string, string,
float, boolean, string>

callback)

Gets a float variable from the MATLAB
engine workspace. Uses the MATLAB
API function engGetvariable ().

The response to this action call is a
GetFloatResponse event routed from
the plug-in to the calling context and the
supplied callback is invoked.

putFloatSequence (

string sessionID,
string messagelD,
string name,
sequence<float> values,
action<string, string,

boolean, string>
callback)

Puts a float sequence variable

in a MATLAB engine workspace.
Uses the MATLAB API function
engPutVariable (). The

response to this action call is a
PutFloatSequenceResponse event
routed from the plug-in to the calling
context and the supplied callback is
invoked.

Developing Apama Applications Version 9.10

405

Using Correlator Plug-ins in EPL

Action

Description

getFloatSequence (

string sessionID,

string messagelD,

string name,

action<string, string,
sequence<float>, boolean,

Gets a float sequence variable
from the MATLAB engine
workspace. Uses the MATLAB
API function engGetVariable ().

string> The response to this action call is a
callback) GetFloatSequenceResponse event
routed from the plug-in to the calling
context and the supplied callback is
invoked.
putFloatMatrix (

string sessionID,
string messagelD,
string name,

sequence<sequence<float>> values,

action<string, string,
boolean, string>
callback)

Puts a two-dimensional matrix variable
into a MATLAB engine workspace. Uses
the MATLAB API function engEval ().
The response to this action call is a
PutFloatMatrixResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

getFloatMatrix (

string sessionID,

string messagelD,

string name,

action<string, string,
sequence<sequence<float>>,
boolean, string>

Gets a two-dimensional matrix
variable from the MATLAB engine
workspace. Uses the MATLAB
API function engGetvariable ().
The response to this action call is a

CalRioaclc) GetFloatMatrixResponse event routed
from the plug-in to the calling context
and the supplied callback is invoked.

evaluate (

string sessionID,

string messagelD,

string expression,

integer outputSize,

action<string, string,
string, sequence<string>
boolean, string>

Evaluates an expression for the MATLAB
engine session and returns textual
output from evaluating the expression,
including possible error messages.

Uses the MATLAB API function
engEvalString (). The response to this

callback) . .
action call is an EvaluateResponse
event routed from the plug-in to the
calling context and the supplied callback
is invoked.
setVisible (

string sessionID,
string messagelD,
boolean value,
action<string, string,

boolean, string>
callback)

Makes the window for the MATLAB
engine session either visible or
invisible on the Windows desktop.
Uses the MATLAB API function
engSetVisible (). The response to this
action call is a SetVisibleResponse
event routed from the plug-in to the

Developing Apama Applications Version 9.10

406

Using Correlator Plug-ins in EPL

Action Description
calling context and the supplied callback
is invoked.

getVisible (

string sessionID,

string messageld,

action<string, boolean,
boolean, string>

Returns the current visibility setting
for the MATLAB engine session.

Uses the MATLAB API function
engGetVisible (). The response to this

callback)
action call is a GetVisibleResponse
event routed from the plug-in to the
calling context and the supplied callback
is invoked.
MATLAB examples

To use MATLAB features in your Apama or Apama Capital Markets Foundation
application, you must create a MATLAB session. The following examples show how
to create a MATLAB session and how to use it to set or get floating point scalar values,
arrays or matrices. Each get or set request has an associated response that indicates
whether the request successfully completed.

Creating a MATLAB session

The following example creates a MATLAB session. A boolean value indicates whether
MATLAB should open a new session or re-use an existing session.

monitor MatlabEx