S software*

A SOFTWARE GMBH BRAND

Adabas Manager

Adabas Utilities

Version 9.3.0

October 2024

ADABAS & NATURAL

This document applies to Adabas Manager Version 9.3.0 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 2014-2024 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: AMN-AADAOSUTILITIES-930-20241002

Table of Contents

PN - o T=I UL o1 L =Y SR UORRR SRR vii
1 About this DOCUMENTAIONcovvuiieeiiiieiiiiiieee e e e eee e e e e e e e e eeeeeeeeeeeeeaaaas 1
Document CONVENTIONScceeiiiiiiiiiiiieieeeeeeeeiiiiiieeeeeeeeeeetriieaaeeeeeeeerasreaaaeeeessessrsnnaaans 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
| DN =10 B 0] {=ai u o) o PPN RUPPRRRRPNE 3
2 OVEIVIEW ..etttnieiiiieeeeieiee e ettt tee e et eeeeeeatteeeseataeesasta e esestaeesestaeessstnaessstnaeessstneeesestaeesennnnns 5
3 ADABCK (Dump And Restore Database Or Files)cccccocciiviiiiiiniiiniiniiiiciiccens 9
Functional OVerview ... 10
Procedure FIOWoiiiiieee ettt e e e e e e e e e e eeaaaan 13
ChecKPOINtScc.eiiiiiiiiiiiii e 15
CONtrOl ParaImetersu.eeeiiiiiieiiicie e et e e e e e e e e e e e e e 16
Restart CONSIAEIAIONS ...coeeeeeeeieeeeeieieeens 38
4 ADACLP (Command Log Report)ccccuiiiiiiiiiiiiiiiiiiiiiiiiiiccccne 39
FUNCHONAl OVEIVIEW .uvuiieiiiiieiieiceee ettt e et e e e e e e e e e eeaaaes 40
PrOCeAUIE FIOW ..uuuiiiiiic e aennnannnannnnnnnnnnn 41
ChecKPOINtScoviiiiiiiicc e 42
COoNtrol Parameterscoovvviiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee ettt 42
Specifying Multiple Selection Criteriacccoccoviiiiiiiiiiiiii 47
5 ADACMP (Compression Of Data)ccceevuiiviiiiiiiiiiiiiiiiiiiiicieceeceeee e 49
FUNCHONAL OVEIVIEW .vvreiiiiiieeeeee ettt e e e e e e e e e eeaees 50
Procedure FIOW oottt e e e eee e e e e e e eeeaaan 51
CheckPOintsc.coiiiiiiiiiiiiiiiici 52
CONtrOl Parammetersuueeeeiiiiieeiiiieee et e e e e e e e e e e e e e e e 52
OUEPUL i 64
REPOTE oo 65
Restart CONSIAEIationsceeeeeieiieiiiiiiiieee e e eeeeeeeeeeeeeeeeeeeeeeeateeeeeeeeeeeresannns 65
6 ADADBM (Database ModifiCation)cccovvueeeiriiiieiiniiieeeiiitee e eiieeee e 67
FUNCHONAl OVEIVIEW ..vvuieiiiiiiieeeee ettt eeeee e e e e e et eeaeaaes 68
PrOCEAUIE FIOW ..euuiiiiiiiccccc e nananennnnnnnnnnnnnnn 70
ChecKPOINtSooviiiiiiicicccc s 72
Control Parametersooooviviiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee et 73
| DO 721 o a @) 153 o <) = L (o) o =R UUUR 97
7 ADADCU (Decompression Of Data)cccccovviiiiiiiiiiiiiiiiiiicceccceee, 99
FUNCHONAl OVEIVIEW ...vvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiitieteierereraresaaerereaaasaessrasassasrararararerrra———. 100
Procedure FIOWoooooiiiiiieeeeeeeeeeeeee ettt e e e e e e e 101
CheckPOintsccoiiiiiiiiiiiiic e 102
(@067 ahu o) B =V =1 4 (<) (<) o= S USSR 103
Input and Output Datacocceiiiiiiiiiiiiiic e 111
Restart ConSIdeTationscoovvviuuiieeeeeeeeeieeeeee e e e et e e e e e e e e eeeaanes 112
8 ADAERR (Error File Report)c.cocciiiiiiiiiiiiiiiiiii 113
FUNCHONAl OVEIVIEW ...vvviiiiiiiiiiiiiiiiiiiiiiiieiiiirereteaeveresaresaaeaaresaarassssasasssssararararerrrea——. 114
Procedure FIOWoooooiiiiieeeeeeeeeeeeee ettt e e e e 115
CheckPOintscoueiiiiiiiiiiiiic e 115

Adabas Utilities

Control Parameterovvuiieeiiiieeeeeeeee et e e 115
EXamPle ..o 116
Rejected Data RecOrdscccuiiviiiiiiiiiiiiiiiiiiiiiiiicie e 116
9 ADAFDU (File Definition)ccuveeeeriuiieeeniiiieeeeiieeeesiieeeeeiieeeesnraeeesssaeeessnsneeesnnnnns 117
FUNCHONAl OVEIVIEW ...vvvviiiiiiiiiiiiiiiiiiieiiieeeteteteaevaaasesaaesassasaesssrassssssssssssasasrrrrrrrae———. 118
Procedure FIOWooooiiiiieeeec ettt eeeeaeaaaas 119
ChecKPOINtSoouiiiiiiiii e 121
CONLIOL PATAIMETETS ...vvvvvviiiiiiiiiiiiiiiiiiittiiereietererererererereraaerereararr—rar—ra—.a—.—.——————————————. 121
EXAMPIES ..o 134
10 ADAFIN (File Information RePOIt)ccccecviiviiiiiiiiiiiiiiiiiiiiiiiiiccecccc 137
FUunctional OVeIVIEWc.oovviiiiiieeiiiieeeeeee ettt e e e e eeeeeees 138
Procedure FIOW ... 139
ChecKPOINtSoiuiiiiiiiiicic s 140
CONIOl PATamEET'S ...ueieeeeiiiiiiiee e et e e e e eee e e e e e e e e eetteeeeeeaaeenes 140
11 ADAFRM (Format And Create A New Database)ccoovvuuieeirniiieeinniieeeiniieeeens 153
FUuNctional OVEeIVIEWooviiiiiieiiiiieeeeeee ettt eeeeeaeeees 154
Procedure FIOW ... 156
ChecKPOINtSoouiiiiiiicc s 157
CONEIOL PATAINETETS ...vvvvvvviviriiiitiieieireetettaeteeessreeerererererereaeartear———————————————————————————————— 157
Restart ConSIAETationsooovvviuriieeeeeeeieeeiieeeee et e e e e e e e e e e e e eeeaanes 161
Control Statement Examples ..o 162
12 ADAINV (Creating, Removing And Verifying Inverted Lists)ccccccceininnnn. 163
FUuNctional OVEeIVIEWoooviiiiiieiiiieeeeeeee ettt eeeeeeeeees 164
Procedure FIOW ... 166
ChecKPOINtSooiuiiiiiiiiiccc s 167
CONEIOL PATAINETETS ...vvvvvvieieiiiieeieeeieteteeseeeesssssessserarsreasteeeerreara——————————————————————————————— 168
Restart Considerationsccoooviiiiiiiiiiii 178
EXAMPIES ..ot 179
13 ADAMUP (Mass Add And Delete)coocuiieiiiiiiieiiiiiieiiiiieee ettt 185
FUuNctional OVEeIVIEWooviiiiiiieiiieeeeeeeee ettt e e e e eeeeeeeeees 186
Procedure FIOW ... 187
ChecKPOINtSoouiiiiiiiiic s 190
CONIOl PATamIEET'Seeieieiiiiiieee et e e e e eie e e e e e e e e eevaeeeeeeaaeeees 191
Restart Considerationsccoooiiiiiiiiiiiii 197
SORT Data Set PIaCemeENtcccoeeeiiviiiieeeeeeeeeeeeeee et e e e eeeaaaa 198
TEMP Data Set PLaceIMEntieieieieieieieieieieieieeeeeeececeeeeeeee e e enens 198
EXAMPIES ...oooiiiiiiciiiicecc e 198
14 ADAQOPR (Operator UtIIITY)cooeiiiiiiiiiiiiiiiiiicieciccicee e 201
FUuNCioNal OVEIVIEWcoooiviiiiieee et eeeeeeeees 202
Procedure FIOWcooooiiiiiiieeeeeeeeeeeee ettt e e e e e eeaaaa 203
CheckPOintscc.ooiiiiiiiiiiiiii e 203
(@007 ahu o) B =V =10 4 (<] (<) o= SRS RRRTRNt 204
15 ADAORD (Reorder Database Or Files, Export/Import Files)c.cccccceevinninnnnen. 253
FUuNCtional OVEIVIEWcoooviiiiiiieiiiieeeeeeee et e e e eeeeeeeeeeeees 254
Procedure FIOW ... 255

iv Adabas Utilities

Adabas Utilities

ChecKPOINtSoouiiiiiiiic e 257
CONtIOl PATamEOI'Soiieeeeiiiiiieee et e e e e tee e e e e e e e et e e eeaeeeees 257
Restart Considerationsccoooiiiiiiiiiiiiii 266
EXAMPIES ..ot 266
16 ADAPLP (Protection Log Printout)ccccooeiiiiiiiiiiiiiiiiiiee, 269
FUuNCctional OVEeIVIEWoovviiiiieiiiiieeeeeeee ettt eeeeeeeeees 270
Procedure FIOW ... 271
CheckpPOintsc..ooviiiiiiiiiiiiii e 272
CONIOl PAT@mIEEI'Seeeeieeeiiieee ettt e e e et e e e e e e e e eeeeeeaaeeees 272
ADAPLP OUtput ...ooiiiiiiiiiiiiiiii i 281
17 ADAPRI (Print Adabas BIOCKS)cccouiiiiiiiiiiiiiiiieceeiiee et 285
FUNCHONAL OVEIVIEW ...vvvviiiiiiiiiiiiiiiiieietiieteeeseteteeeaassseaesasssssssssssssssssessasssssssssrrrraenane 286
Procedure FIOWcooooiiiiieeeeeeeeeeeeee ettt e e e e eaeaaaas 287
Checkpointsoooiiiiiiiiiii 288
CONLIOL PATAIMETETS ...vvvvvviiiiiiiiiiiiiiitiiiiiiieieatrtretererererarerraerereararasrsrararra..—r——————————————. 288
18 ADAREC (Recovery Of Database Or Files)cccccccoviiiiiiiiiiiiiiiiiien, 291
FUNCHONAl OVEIVIEW ...vvvviiiiiiiiiiiiiiiiiiietiittetireteaeteaeaesaaeaasaassessassssssasssssarasssarrararaaa——. 292
Procedure FIOWoooooiiiiieeece ettt e e e e 293
ChecKPOINtScoouiiiiiiiiiiiic e e 294
ADAREC Input Dataoooiiiiiiiiiiiiiiiiiiiiccc 294
CONIOl PATQmMIEET'S ..uueeiieeeeeiiiieee et e e e e ee e e e e e e et eeeeeeaaeeees 294
EXamPesooiiiiiiiiiiiiiii 300
ADAREC Restart Considerationscccceeeeeeeeeiuiiieeeeeeeeeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeaaann 307
19 ADAREP (Database RePOTt)ccceevouiiiiiiiiiiiiiiiiiiiiciicniccecccce e 309
FUuNCctional OVEIVIEWooviiiiiiieiiiiieeeeeee et e e e e e eeees 310
Procedure FIOW ... 311
CheckPOintscociiiiiiiiiiiii 311
CONLIOl PATQmMIELET'S ...uneieeeeiiiiieee e et e e e e tee e e e e e e e et taeeeeeaaeeees 312
20 ADAULD (File Unloading)cccecvviviiiiiiiiiiiiiiiiiiic e 329
FUuNCctional OVEeIVIEWooviiiiiiieiiieeeeeeeee ettt e e e eeeeeeeaeeees 330
Procedure FIOW ... 332
ChecKPOINtSoiiiiiiiiiic s 334
CONIOl PATamEEI'Seiieieiiiiiieee et e e e ettt e e e e e e e e e eatieeeeeaaeeees 335
EXamPLesoooiiiiiiiiiiiiiii 341
TEMP Data Set Space Estimationc.ocooviiiiiiiiiiiii, 342
Restart Considerationsoooviiiiiiiiiiii 342
21 ADAVFY (Database Consistency Check)ccccooviiiiiiiiiiiiiiiiiiiiiiice, 343
FUNCHONAL OVEIVIEW ...vvvviviiiiiiiiiiiiieiieeteteteeeteeeeetaeasesaastaasasassssssssssssssssssssarrerrrrraenna. 344
Procedure FIOWoooooiiiieeee et e e e e e e e e 345
ChecKpPOINtSooiiiiiiiiicc e 346
CONLIOL PATAINETETS ...vvvviiviiiiiiiiiiiiiiiiiieiiieittetetetsrarersraretaaarereaaara—.a—a—a—.————.——————————————. 346
EXAMPIES ...ooiiiiiiiiiiic 350

Adabas Utilities v

vi

Adabas Utilities

This manual describes the Adabas utilities. The database administrator (DBA) uses the Adabas
utilities to create and maintain Adabas databases. For each utility, the following information is
provided:

* adescription of the purpose of the utility;

* a functional overview of the utility;

® a description of the utility's control parameters;

" examples to illustrate the use of the utility, where appropriate.

The Overview provides a summary of the utilities available and their purpose.

Vii

viii

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON ..o e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Adabas Utilities

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software GmbH products provide functionality with respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

Adabas Utilities 3

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Overview

This chapter gives an overview of the Adabas utilities, which provide all of the functions necessary
to manage an Adabas database.

ADABCK
Backup and restore database or files

The Adabas backup utility dumps/restores the contents of the database (or a specific file or
files) to/from a sequential data file. The utility can also be used to copy an Adabas backup

copy.

ADACMP
Compression of data

The compression utility compresses user data. The compressed data is used as input for the
mass update utility ADAMUP. The input for this utility is the raw data together with the data
definitions that describe the structure of the data provided.

ADADBM
Database modification
The ADADBM utility consists of the following functions which can be used to make modific-
ations to the database:

® The ADD_CONTAINER function adds a new container file to the Associator or Data Storage
data set;

* The ADD_FIELDS function appends one or more new fields to the end of a file's FDT;

® The ALLOCATE functions increase the Normal Index, Upper Index, Address Converter or
Data Storage space assigned to a file. The DEALLOCATE functions are the inverse;

® The CHANGE function changes the standard length of a field in the FDT;
® The CHANGE_FIELDS function changes a field definition;
®" The DEFINE_REFINT function defines a new referential constraint;

Overview

® The DELCP function deletes old checkpoint records from the checkpoint file in the specified
range of dates;

® The DELETE function deletes an Adabas file or a range of files from the database;

® The DELETE_DATABASE function deletes a database. Depending on the keyword specified,
either just the containers are deleted, or the database directory and its content are deleted.

® The DISPLAY function displays the UCB;

® The DROP_FIELDS function marks the specified fields as not existing, which means that
they can no longer be accessed;

® The DROP_LOBFILE function is the inverse function of ADAFDU ADD_LOBFILE;

® The DROP_REFINT function drops an existing referential constraint;

® The EXTEND_CONTAINER function extends the last container file defined for the database;
® The NEW_DBID function changes the identifier of the database in use;

® The NEWWORK function allocates and formats a new Adabas WORK data set;

® The PGM_REFRESH function is used to disable or enable refreshing an Adabas file inside
an application program with an E1 command;

® The RECOVER function returns lost space to the FST;

" The REDUCE_CONTAINER function reduces the size of the last container file defined for
the database;

® The REFRESH function resets a file or a range of files to the state of zero records loaded;
® The REMOVE_CONTAINER function deletes a container file;

® The REMOVE_DROP function, used in conjunction with a subsequent REFRESH, removes
dropped fields from the FDT;

® The REMOVE_REPLICATION function stops all replication processing and deletes the
replication system files;

® The RENAME function changes the database name or the name of a loaded file;
* The RENUMBER function renumbers aloaded file or exchanges the numbers of loaded files;

® The REPLICATION_FILES function creates the systems files required for Adabas - Adabas
replication;

= The RESET function removes entries from the UCB;

® The RESET_REPLICATION_TARGET function resets the replication target flag of Adabas
files;

® The REUSE function controls the reuse of data storage space or ISNs by Adabas;
® The SECURITY function sets the security mode of the database;

® The SYEMAX function specifies the maximum number of values generated for a system
generated multiple-value field in the file specified.

6 Adabas Utilities

Overview

ADADCU
Decompression of data

The ADADCU utility decompresses records to be used with a non-Adabas application program,
or as input for the compression utility ADACMP. The file to be decompressed must be unloaded
from the database (unload utility ADAULD) before it can be used as input for this utility. With
ADADCU, complete records can be decompressed, fields can be rearranged within a record,
default lengths can be changed, some types of fields can be truncated, formats can be changed
and space can be allocated for the addition of new fields.

ADAFDU
File definition

The file definition utility ADAFDU defines a file in the database. It only loads the FCB and the
FDT into the database and allocates the requested space for ASSO and DATA for the specified
file.

ADAFIN
File information report

The ADAFIN utility displays information about one or more files, e.g. FDT, descriptor statistics
and the fill percentage of blocks in the Data Storage, Normal Index and Upper/Main Index.

ADAMUP
Mass add and delete

The ADAMUP utility adds or deletes large numbers of records to/from a file in the database.

ADAOPR
Operator utility

The operator utility is used to operate the Adabas nucleus.

ADAORD
Reorder database or files, export/import files

The reorder utility ADAORD provides functions to reorganize a database or files within a
database (REORDER function) and to migrate files between databases (EXPORT and IMPORT
functions).

ADAREP
Database report

The ADAREP utility produces the database status report. This report contains information
about the current physical layout and logical contents of the database.

The information in this report includes the following: the amount and location of the space
currently allocated for the Associator and Data Storage; the amount and location of unused
space available for Associator and Data Storage; database file summary; checkpoint information;

Adabas Utilities 7

Overview

Security information; information about each file in the database (space allocation, space
available, number of records loaded, MAXISN setting, field definitions).

ADAULD
File unloading

The unload utility ADAULD unloads a file from a database or an Adabas backup copy and
produces compressed records with the same format as those produced by the compression
utility ADACMP. Unloaded records may be used as input for the decompression utility
ADADCU or with the mass update utility ADAMUP. Records can be unloaded from a database
in the sequence in which they are currently stored in Data Storage, in the sequence of a
descriptor or in ISN sequence. However, records can only be unloaded from a backup copy
in the order in which they were stored by the utility.

8 Adabas Utilities

3 ADABCK (Dump And Restore Database Or Files)

B FUNCHONAI OVEIVIEW ...t e e e e e,

= Procedure Flow
= Checkpoints

= Control Parameters

B RESIAM CONSIABIAONS . .oeve e e

ADABCK (Dump And Restore Database Or Files)

This chapter describes the utility "ADABCK".

Functional Overview

The backup utility ADABCK provides protection against database corruption by creating Adabas
backup copies. ADABCK should be used at regular intervals.

The utility dumps or restores a database or selected files from/to a database.

ADABCK is able to process input files that were created on either the same platform or on a platform
with a different endian mode. The format in which the file was written is recognized by the restore
operation. During the restore, all endian-mode dependent data are converted to the requirements
of the target platform.

Making use of the internal structure of the database, this utility provides optimum performance.
Unused blocks do not have to be read and can be omitted when dumping. Even though such
blocks are not included in the Adabas backup copy, they can be re-created during a restore.

Furthermore, a backup copy may be directed to stdout in order to support the piping of the backup
data (this feature is only available on Linux platforms). This feature is enabled by setting the en-
vironment variable (BCKO001) to '-' (minus). In this case, the output messages are directed to stderr.
The RESTORE and OVERLAY functions can also be used in this way; i.e. a backup copy can be
read from stdin. In this case, the ADABCK control statements must be given in the command line.
See Adabas Basics, Using Utilities in the Adabas documentation for more information.

The following functions are available:

® The COPY function copies an Adabas backup copy. A backup data set can only be duplicated
on a machine with the same endian mode - attempting to duplicate a backup on a machine with
a different endian mode will be rejected;

* The DUMP function dumps a database or selected files from a database to one or more sequential
files, which is called an Adabas backup copy. The nucleus may be active and parallel updates
are permitted on the files to be dumped while the dump is in progress. The DUMP function
writes data in the endian mode of the processor;

® The EXU_DUMP function dumps a database or selected files from a database to one or more
sequential files, which is called an Adabas backup copy. Only ACC users are permitted on the
files to be dumped while the dump is in progress;

® The IOSTAT function prints information about the data transfer rate and the I/O waiting times.

® The OVERLAY function restores selected files or a database. The files to be restored may already
be loaded in the database: ADABCK performs an implicit delete before restoring such files;

10 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

* The READ_CHECK function checks the readability (i.e. absence of parity errors) and completeness
of the Adabas backup copy. These checks ensure that the dump file can be read by the RESTORE
or OVERLAY function;

® The RESTORE function restores a database or selected files from an existing Adabas backup
copy. If there are no security definitions for the files in the target database, the corresponding
entries (as they were defined at the time the files were dumped) are set up in the security table
when the file is restored;

® The list functions CONTENTS, FILES and SUMMARY display information about an Adabas
backup copy. When the list functions are used, the DBID does not have to be entered first.

The functions DUMP, EXU_DUMP, OVERLAY and RESTORE are mutually exclusive and only
one of them may be executed during a single run of this utility. The list functions can only be used
together with the READ_CHECK, RESTORE or OVERLAY function.

If you perform the RESTORE or OVERLAY function and the database is too small or database
containers are missing, ADABCK will automatically increase the size of the database or create the
missing containers.

The functions RESTORE and OVERLAY allow you to create an encrypted database from an Adabas
backup copy of a non-encrypted database, and vice versa. The target database is restored with the
encryption settings provided by the control parameters ENCRYPTION and KMSTARGET. The
new target database is restored or overlayed completely and must not already exist. The ENCRYP-
TION and KMSTARGET parameters are not permitted for existing databases because the encryption
settings of the existing target database are always retained. An encrypted backup copy is restored
unencrypted if the existing target database is not encrypted. In contrast, unencrypted backup
copies are always restored in encrypted form if the existing target database is encrypted. An en-
crypted backup copy will be restored using the encryption settings of the existing target database.
Different encryption algorithms and keys in the backup copy and database are possible but of
course require access to both keys via the configured KMS. To use the encryption functionality,
the Adabas Encryption for Linux (AEL) license is required.

Notes:

1. The RESTORE and OVERLAY functions can process backup files created with earlier Adabas
versions, but usually not backup files created with later Adabas versions. However, it is possible
to restore with earlier Adabas versions if the structures did not change. For example, version
6.6 backup files can be restored with version 6.5, unless superdescriptors with character-set
encoding are used. If features are not supported by the earlier version, the structure level check
will fail.

2. The RESTORE option PARALLEL=MULTIPROCESS is not supported for backup files created
on a platform with a different endian mode. However, a backup that is split into several extents
can be loaded.

Adabas Utilities 11

ADABCK (Dump And Restore Database Or Files)

o

Caution: If you do not use the Adabas INI files, but instead use environment variables to

specify the container file names, and if you forget to assign the environment variables/logical
names before you start ADABCK, a copy of the database will be created in the database
directory. If you perform a file overlay or restore when the Adabas nucleus is active, and
the database has to be extended, the database is extended by the nucleus, and not by AD-
ABCK. In this case, the nucleus extends the database even if OPTIONS=AUTO_EXPAND
was NOT specified. If you use environment variables to specify the database containers,
you must consider the following when a new container has to be created for the restore/over-
lay: it is important that the nucleus was started with the correct environment variable settings
for the new container - because the new containers are created by the nucleus, specifying
the environment variable for the ADABCK process has no effect.

This utility is a single-function utility. For more information about single- and multi-function
utilities. See Adabas Basics, Using Utilities in the Adabas documentation for more information.

12

Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

Procedure Flow

Adabas Utilities 13

ADABCK (Dump And Restore Database Or Files)

Data Set Environment Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Backup copy BCKO0n Disk, Tape (see note 1) |Output of DUMP/EXU_DUMP function,
stdin (see note 2), input for other functions
stdout (see note 3)
BCKOUT Disk (see note 1) Output of COPY function
Data storage DATAx Disk
DBnnn.INI Disk ManualAdabas Extended Operations
Control statements |stdin ManualUtilities
SYS$INPUT

ADABCK messages

stdout (see note 4),
stderr (see note 5)

Messages and Codes

Work

WORK1

Disk

Notes:

2

14

Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

1. A named pipe can be used for this sequential file (Linux platforms only). See Adabas Basics,

Using Utilities in the Adabas documentation.
2. For functions other than DUMP or EXU_DUMP (BCKO001 only).
3. For DUMP or EXU_DUMP (BCK001 only).
4. If BCKO01 is not stdout.
5. If BCKO001 is stdout.

The sequential files BCKOOn can have multiple extents. For detailed information about sequential

files with multiple extents, see Adabas Basics, Using Utilities in the Adabas documentation.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Function Nucleus must be active |Nucleus must NOT be active [Nucleus is NOT required | Checkpoint written
CONTENTS X -
COPY X -
DUMP X(see note 1) X SYNX
EXU_DUMP |X(see note 1) X SYNX
FILES X -
NEW_PLOG SYNC
OVERLAY X(see note 2) X(see note 3) SYNP
READ_CHECK X -
RESTORE X(see note 2) X(see note 3) SYNP
SUMMARY X -
] Notes:

1. Nucleus only required when AUTORESTART is pending at the end of this function.

2. For restore of database or system files.

3. For restore of files.

Adabas Utilities

15

ADABCK (Dump And Restore Database Or Files)

Control Parameters

The following control parameters are available:

O

CONT

COPY

DBID

DUMP

ENTS

[= number]

number

{*| (humber[-number][,number[-numberl]...)}
[.BLOCKSIZE = number [K|MI]

[{,DRIVES = number} |

{,INOIDUAL }]

[LET_SYNC_WAIT = number]

[,[NOINEW_PLOG]

[,REPLICATION]

[PRIMARY_ONLY]

EXU_DUMP = {*|(number[-number][,numberl-numberl]...)}

[[,BLOCKSIZE = number [K|M]]
[{,DRIVES = number} |
{,INOIDUAL}]
[,[NOINEW_PLOG]
[,REPLICATION]

FILES = { * | (number[-number][,number[-numberl]...)}

IOSTAT

OVER

PARA

LAY = {*|(number[-number][,number[-numberl]...)}
[,ENCRYPTION = keyword]
[,FMOVE [=(number [,number [-numberl]...)1]
[,FORMAT = (keyword [,keyword])]
[,KEEP_FILE_ALLOC]
[,KMSTARGET = string]
[,NEW_DBID = number]

[,RENUMBER = (number[-number] [,number [-numberl]..

[,REPLICATION]

LLEL = keyword

READ_CHECK

RESTORE = {*|(number[-number][,number[-numberl]...)}

[,ENCRYPTION = keyword]
[,FMOVE [=(number [,number [-number]]...)]]
[,FORMAT = (keyword [,keyword])]
[,KMSTARGET = string]
[,NEW_DBID = number]

1]

16

Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

[,RENUMBER = (number[-number] [,number [-number]]...)]1]
[,REPLICATION]

SUMMARY

= CONTENTS
= COPY

= DBID

= DUMP

= EXU_DUMP
= FILES

= |OSTAT

= OVERLAY
= PARALLEL
= READ_CHECK
= RESTORE
= SUMMARY

CONTENTS
CONTENTS

This parameter displays a list of files in an Adabas backup copy created with the DUMP or
EXU_DUMP function.

Example

adabck cont
%ADABCK-T-STARTED, 30-0CT-2015 11:42:37, <Version number>
Files dumped on 30-0CT-2015 10:51:14

Database 34, GENERAL-DATABASE

File 4, Update-log , loaded on 17-SEP-2014 14:44:19
File 9, EMPLOYEES , loaded on 8-0CT-2008 17:59:40
File 14, miscellaneous , loaded on 11-JUN-2015 13:22:19
File 17, Timezone , loaded on 19-SEP-2014 11:44:42
File 19, LARGE , loaded on 2-SEP-2014 15:37:18
File 51, PCA24SYSF1 , loaded on 14-APR-2014 16:55:22
File 91, ADAOS-2544 , loaded on 8-APR-2015 13:19:27
File 95, P299255 , loaded on 20-MAR-2014 11:35:30
File 98, ADA0S-4591 , loaded on 16-JUL-2015 10:03:16
File 1009, LOBFILE of 9 , loaded on 8-0CT-2008 17:59:40

ZADABCK-I-IOCNT, 1 I0s on dataset BCKOO1
%ADABCK-TI-TERMINATED, 30-0CT-2015 11:42:37, elapsed time: 00:00:00

Adabas Utilities 17

ADABCK (Dump And Restore Database Or Files)

COPY
COPY [= number]

This function creates a new file from an existing Adabas backup copy. The input file (BCKO0xx)
and the output file (BCKOUT) must be on disk, where xx is either the specified number, or 01 if
no number is explicitly specified.

You can also use COPY to create an encrypted copy of an existing not encrypted Adabas backup
copy. The DBID parameter must be set to the origin encrypted database from which the backup
was created to take the encryption settings from.

DBID

DBID = number

This parameter selects the database to be used.

DUMP

DUMP = { * | (number[-number][,number[-numberl]...)}

{

[,BLOCKSIZE = number [K|M]]
[{,DRIVES = number} |

{, [NOJDUAL }]
[LET_SYNC_WAIT = number]
[,[NOINEW_PLOG]
[,REPLICATION] «

At the file level, this function dumps the files specified by the numbers in the list. LOB files specified
are ignored, but the LOB files assigned to all base files are dumped too. An asterisk *' specifies
that the complete database is to be dumped. Parallel updates are permitted on the files to be
dumped while the dump is in progress.

If the nucleus is running in parallel (online backup), ADABCK must ensure that all transactions
affecting the dumped files are completed by all users before ADABCK terminates. This is called
ET synchronization - please refer to the section ET Synchronization in Administration for further
information. If you perform a dump at the file level with the option NONEW_PLOG, the ET syn-
chronization is performed at the file level; otherwise the ET synchronization is performed for the
complete database.

If you specify files with referential constraints, all files connected to these files via referential
constraints must also be specified in order to maintain referential integrity.

= BLOCKSIZE = number[K|M]
= DRIVES = number

= [NOJDUAL

= ET_SYNC_WAIT = number

18 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

= [NOJNEW_PLOG
= REPLICATION
= PRIMARY_ONLY

BLOCKSIZE = number{K|M]

This parameter can be specified to change the I/O transfer blocksize. If PARALLEL is specified,
the default blocksize is 512 KB. The following values can be specified: 64KB, 128KB, 256KB, 512KB,
1MB, 2MB, ... 12MB. The blocksize specified will be used in a subsequent RESTORE function.

DRIVES = number

This parameter limits the maximum number of output devices to be operated in parallel. It can
be used to split a backup file into several extents. The output is sent to BCKOxx.

The default value is 1 and the maximum value is 10.

The parameters DRIVES and DUAL are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

[NOJDUAL

DUAL specifies that two physical copies of the dumped information are to be created. The output
is sent to BCK001 and BCKO002.

The default is NODUAL.

The parameters DUAL and DRIVES are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

ET_SYNC_WAIT = number

This parameter defines the time (in seconds) that ADABCK waits for ET-logic users to come to ET
status at the end of the DUMP function: if a transaction is already active for the number of seconds
(or longer) specified by ET_SYNC_WAIT when the ET synchronization begins, its wait time is 0.
Otherwise, the wait time for a transaction, in seconds, is the value specified for the parameter
minus the number of seconds that the transaction is already active when the ET synchronization
begins. Transactions not yet terminated at the end of their wait times are rolled back.

If this parameter is omitted, the ET synchronization waits until all open transactions are terminated
using the normal Adabas timeout logic (ADANUC parameter TT).

The minimum value is 1 and the maximum value is 32767.

) Notes:

Adabas Utilities 19

ADABCK (Dump And Restore Database Or Files)

1. If you forgot to specify the ET_SYNC_WAIT parameter for ADABCK, and ADABCK is hanging
because of open transactions, you can do one of the following to let ADABCK continue: tempor-
arily set TT to a small value -after ADABCK terminates, you can set the value back to its original
value; or stop the user(s) that have open transactions (with ADAOPR STOP).

2. If updates were performed in the database during the ET synchronization, all modified blocks
must be written to the database containers and to the backup copy when all open transactions
have been committed or rolled back. Therefore, the total time for the ET synchronization, which
can be displayed via the IOSTAT parameter, may be longer than the time specified with the
ET_SYNC_WAIT parameter.

[NOJNEW_PLOG

This option specifies whether or not to close the protection log file and create a new log file at the
end of the DUMP function.

The default for a database dump is NEW_PLOG, and for a file dump it is NONEW_PLOG.

If NEW_PLOG is specified, it is safe to remove the protection log files after the DUMP function.
See Adabas Basics > Locations of Database Containers, Backup Files, and Protection Logs in the Adabas
for Linux and Cloud documentationfor specific notes on protection logs.

@ Caution: Before V6.3 SP1 Fix 13, the default for a file dump was NEW_PLOG. In most cases,

this change is of no consequence, but if you really need the PLOG switch, you must specify
NEW_PLOG explicitly.

REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the status of the replications of the files to
be dumped is automatically updated.

For further information refer to ADAOPR CHANGE_REPLICATION_ STATUS.

20 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

PRIMARY_ONLY

The Parameter PRIMARY_ONLY is for customer who are using Adabas Cluster.

This parameter allows only to take dump of primary database, if the secondary database id is
provided, ADABCK will terminate with success but no BCKxxx file will be created.

EXU_DUMP

EXU_DUMP = {*|(number[-number][,number[-number]]...)}

,BLOCKSIZE = number [K|MI]
{,DRIVES = number} |
,[NOIDUAL}]
,[NOINEW_PLOG]

{
[
L
{
[
[,REPLICATION] <

At the file level, this function dumps the files specified by the numbers in the list. LOB files specified
are ignored, but the LOB files assigned to all base files are dumped too. An asterisk *' specifies
that the complete database is to be dumped. Only ACC users are permitted on the files to be
dumped while the dump is in progress. ET-synchronization is not required.

If you specify files with referential constraints, all files connected to these files via referential
constraints must also be specified in order to maintain referential integrity.

BLOCKSIZE = number{K|M]

This parameter can be specified to change the I/O transfer blocksize. If PARALLEL is specified,
the default blocksize is 512 KB. The following values can be specified: 64KB, 128KB, 256KB, 512KB,
1MB, 2MB, ... 12MB. The blocksize specified will be used in a subsequent RESTORE function.

DRIVES = number

This parameter limits the maximum number of output devices to be operated in parallel. It can
be used to split a backup file into several extents. The output is sent to BCKOxx.

The default value is 1 and the maximum value is 10.

The parameters DRIVES and DUAL are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

Adabas Utilities 21

ADABCK (Dump And Restore Database Or Files)

[NOJDUAL

DUAL specifies that two physical copies of the dumped information are to be created. The output
is sent to BCK001 and BCK002.

The default is NODUAL.

The parameters DUAL and DRIVES are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

[NOJNEW_PLOG

This option specifies whether or not to close the protection log file and create a new log file at the
end of the EXU_DUMP function.

This option must not be used if dumping single files.

The default is NEW_PLOG for EXU_DUMP=*.
REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the status of the replications of the files to
be dumped is automatically updated.

For further information refer to ADAOPR CHANGE_REPLICATION_STATUS.
Examples for DUMP/EXUDUMP

Example 1

The database is dumped to three output devices in parallel.

adabck db=34 parallel=multi_process dump=* drives=3
%ADABCK-T-STARTED, 30-0CT-2015 11:05:25, <version number>
%ADABCK-T1-DBOFF, database 34 accessed offline

Database dumped on 30-0CT-2015 11:05:25

Database 34, GENERAL-DATABASE

File 1, CHECKPOINT-FILE , loaded on 4-SEP-2014 13:52:43
File 2, SECURITY-FILE , loaded on 4-SEP-2014 13:52:43
File 3, USER-DATA-FILE , Toaded on 4-SEP-2014 13:52:43
File 4, Update-Tog , loaded on 17-SEP-2014 14:44:19
File 9, EMPLOYEES , loaded on 8-0CT-2008 17:59:40

22 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

File 14, miscellaneou
File 17, Timezone
File 19, LARGE

File 30, FILE-30

File 51, PCA24SYSF1
File 80, P295170

File 91, ADA0S-2544
File 95, P299255

File 98, ADA0S-4591
File 101, COLLATION-TE
File 111, TESTOPT

File 113, Tob_LB

File 146, XMA-REPOSITO
File 215, ADAOS-4647
File 1009, LOBFILE of 9
File 1080, LOBFILE of 8
File 1113, LOBFILE of 1
File 22111, LOBFILE of 1

HADABCK-T-I0CNT, 2 I0s o
HADABCK-TI-IOCNT, 135 I0s
HADABCK-I-TOCNT, 275 I0s
HADABCK-TI-I0CNT, 41 I0s

KADABCK-I-TOCNT, 34 I0s

HADABCK-TI-I0CNT, 80 I0s

%ADABCK-T-TERMINATED,

Example 2

S , loaded on 11-JUN-2015 13:22:19
, loaded on 19-SEP-2014 11:44:42
, loaded on 2-SEP-2014 15:37:18
, loaded on 31-MAR-2015 13:40:33
, loaded on 14-APR-2014 16:55:22
, loaded on 4-AUG-2015 12:42:43
, loaded on 8-APR-2015 13:19:27
, loaded on 20-MAR-2014 11:35:30
, loaded on 16-JUL-2015 10:03:16
STS , lToaded on 14-APR-2014 16:47:30
, loaded on 29-NOV-2011 10:34:23
, loaded on 23-JUN-2015 15:48:48
RY , loaded on 10-DEC-2014 09:39:52
, loaded on 27-APR-2012 15:52:49
, loaded on 8-0CT-2008 17:59:40
0 , loaded on 4-AUG-2015 12:42:43
13 , loaded on 23-JUN-2015 15:48:48
11 , loaded on 29-NOV-2011 10:34:23

n dataset WORK

on dataset DATA

on dataset ASSO

on dataset BCKOO1

on dataset BCKOO0Z

on dataset BCKOO3

30-0CT-2015 11:05:26, elapsed time: 00:00:01

File 215 is dumped, and two physical copies of the backup are created. Only ACC users are allowed

on file 30 while the dump is

adabck db=34 exu_dump=21
%ADABCK-T-STARTED,
%ADABCK-T1-DBON, database

Files dumped on 30-0CT-2

in progress.

5 dual
30-0CT-2015 10:45:43, <version number>
34 accessed online

015 10:45:44

Database 34, GENERAL-DATABASE

File 215, ADAOS-4647

HADABCK-TI-I0CNT, 51 I0s
BADABCK-I-TOCNT, 29 I0s
HADABCK-T-I0CNT, 40 I0s
%ADABCK-I-TOCNT, 40 IOs
»ADABCK-T-TERMINATED,

, loaded on 27-APR-2012 15:52:49

on dataset DATA

on dataset ASSO

on dataset BCKOO1

on dataset BCKO0Z

30-0CT-2015 10:45:44, elapsed time: 00:00:01

Adabas Utilities

23

ADABCK (Dump And Restore Database Or Files)

Example 3

All base files in the database with a file number between 91 and 99 or equal to 51 or between 4
and 19 are dumped (including the corresponding LOB files, even if they are not in the specified
file ranges). ADABCK allows a maximum of 10 seconds for ET logic users to come to ET status.

adabck db=34 dump=\(91-99,51,4-19\) et_sync_wait=10

HADABCK-T-STARTED,

%ADABCK-1-DBON, database

Files dumped on 30-0CT-2015 10:51:14

Database 34, GENERAL-DATABASE

File
File
File
File
File
File
File
File
File
File

SADABCK-T-TIOCNT,
HADABCK-TI-TIOCNT,
BADABCK-T-TIOCNT,
»ADABCK-T-TERMINATED,

4,

9,
14,
17,
19,
51,
91,
95,
98,
1009,

Update-Tog
EMPLOYEES
miscellaneous
Timezone
LARGE
PCA24SYSF1
ADAOS-2544
P299255
ADAOS-4591
LOBFILE of 9

, loaded
, loaded
, loaded
, loaded
, loaded
, loaded
, loaded
, loaded
, loaded
, loaded

on
on
on
on
on
on
on
on
on
on

715 10s on dataset DATA
1145 I0s on dataset ASSO
1195 I0s on dataset BCKOO1

30-0CT-2015 10:51:16, elapsed time: 00:00:02

30-0CT-2015 10:51:14,
34 accessed online

17-
-0CT-
-JUN-
19-
-SEP-
-APR-
-APR-
-MAR-
-JUL-
-0CT-

11

14

20
16

SEP-

SEP-

2014
2008
2015
2014
2014
2014
2015
2014
2015
2008

<version

14
17:
13:

11

15z
16:
13:

11

10:

17

number>

44 .
59
22 :
144
37:
55 ¢
19:
:35:
03:
59k

19
40
19
42
18
22
27
30
16
40

Files 1,2, 4,6, 8,10, 11 and 13 are dumped. ADABCK allows a maximum of 5 seconds for ET-logic
users to come to ET status.

FILES

FILES = { * | (number[-number][,number[-numberl]...)}

This parameter displays status information of the specified files in a dump file.

24

Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

IOSTAT

IOSTAT

If this parameter is specified, the data transfer rate and the I/O (waiting) times on the various
devices are printed at the end of ADABCK processing.

Example:

adabck db=36 parallel=multi_process dump=* drives=3 jostat

Dump Method : parallel

Blocksizes : DB: 512 KB BCK: 512 KB
DB I/0 time : total: 27.09 sec average: 8084 us
BCK 1 I/0 time : total: 1.16 sec average: 7606 us
BCK 2 I/0 time : total: 0.00 sec average: 944 us
BCK 3 I/0 time : total: 1.24 sec average: 1375 us
Wait rates : waits nowaits rate mreq

DB : 1439 1898 43% 8

Transfer rate : 15215 KB/sec

%ADABCK-T-IOCNT, 2 I0s on dataset WORK
%ADABCK-I-I0CNT, 3147 I0s on dataset DATA
%ADABCK-I-IOCNT, 229 I0s on dataset ASSO
%AADABCK-TI-I0CNT, 153 I0s on dataset BCKOO1
%ADABCK-TI-IOCNT, 2 I0s on dataset BCKO0O02
%AADABCK-T-IO0OCNT, 906 I0s on dataset BCKO0O03

The IOSTAT statistics display the following information:

Dump Method
Either parallel or non-parallel, depending on the setting of the PARALLEL parameter.

DB I/O time
The total I/O time in seconds and the average time per I/O operation in microseconds for the
access to the ASSO and DATA containers.

BCK n I/O time
The total I/O time in seconds and the average time per I/O operation in microseconds for the
access to the backup files.

Note: The I/O time measured is the time required for the I/O system functions. This may be

different from the physical I/O times actually required to accessing the disks because of
caches in the operating system or in the storage system and because of usage of asynchronous
I/0O.

Adabas Utilities 25

ADABCK (Dump And Restore Database Or Files)

Wait rates (only for dump method parallel)
For a parallel backup/restore, the I/Os for the database containers are performed asynchronously.
The wait rate shows for how many ASSO or DATA 1/Os a wait operation is required. mreq is
the maximum number of parallel I/O requests for database containers.

| Note: Only the I/Os for the real backup or restore are counted. During the startup phase

of ADABCK, some additional I/Os are required; therefore the sum of wait and nowait
I/Os is less than the sum of ASSO and DATA I/Os.

BF sync count (only for a backup in online mode)
In the case of a backup in online mode during a buffer flush, synchronization with the nucleus
is required in order to guarantee that the modified database blocks written to disk by the
buffer flush are also written to the backup file(s). The BF sync count is the number of these
buffer flush synchronizations.

ET sync time (only for a backup in online mode)
At the end of a backup in online mode, an ET synchronization is required, i.e. ADABCK must
wait until all ET logic users come to ET status. The ET sync time is the time required for this
ET synchronization.

Transfer rate
This is the number of kilobytes read from or written to the backup file(s) per second.
. Notes:
1. For the transfer rate, only the pure backup/restore time is taken into consideration, but not
the time required for the preparation of the backup/restore. Therefore, the transfer rate may

be higher than the transfer rate you would get if you compute the transfer rate based on
the total elapsed time of ADABCK.

2. In the case of small backups, rounding errors may occur in the computation. Therefore, for
very small backups the transfer rate is not displayed, because the value would be too inac-
curate.

3. Because usually many database blocks are not filled completely, and because only the net
data are copied to the backup file(s), the transfer rate is less than the rate you would get if
you consider the processed database space.

26 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

OVERLAY

OVERLAY = {*|(number[-number][,number[-numberl]...)}

,ENCRYPTION = keyword]

,FMOVE [=(number [,number [-numberll...)1]

,FORMAT = (keyword [,keyword])]

,KEEP_FILE_ALLOC]

, KMSTARGET = string]

,NEW_DBID = number]

,RENUMBER = (number[-number] [,number [-numberl]...)]1]

,REPLICATION]

A~

This function restores the files specified by the numbers in the list at file level. LOB files specified
are ignored, but the LOB files assigned to all base files are restored too. The files to be restored
may already be loaded in the database. ADABCK performs an implicit delete before restoring
such files. If only one file of a LOB group is overlaid, the other file of the LOB group is also deleted.
An asterisk ("*') specifies that a restore is to be made at the database level. Exclusive control over
the database container files is required.

Only the specified files are overlayed, even if there are referential integrity constraints to other
files; these referential integrity constraints are removed.

ENCRYPTION = keyword

This parameter specifies that the created database is encrypted and assigns the encryption algorithm.
The keyword can take the values AES_256_XTS, AES_128_XTS and NO. Depending on the keyword
specified, the ASSO and DATA container files are encrypted using XTS Advanced Encryption
Standard with a key length of 256 bits (AES_256_XTS), a key length of 128 bits (AES_256_XTS),
or they are not encrypted (NO).

The default value is NO.

Notes:

1. Database encryption cannot be disabled.

2. The ENCRYPTION parameter can only be used for a full database restore (overlay=" or restore=*)
and the database must not exist. If the database exists, the encryption settings of the database
are retained.

3. File restore/overlay operations is applied according to the encryption settings of the existing
database.

Adabas Utilities 27

ADABCK (Dump And Restore Database Or Files)

FMOVE [=(number [,number [-number]]...)]

If this keyword is specified, ADABCK reallocates all files to be overlayed or the specified subset
rather than attempting to restore them in the same block ranges as in the backup. Using this
keyword reduces the number of file extents as much as possible.

FORMAT = (keyword [,keyword])

The keywords ASSO and/or DATA may be specified. This parameter is used to format Associator
and/or Data Storage blocks. When restoring at the file level, only blocks contained in the unused
areas of the files' extents are formatted.

KEEP_FILE_ALLOC

If this parameter is specified, ADABCK tries to keep the allocation of the file as it currently is in
the database, as opposed to restoring it with the same block ranges as on the backup. This keyword
can, for example, be used when a file has been reorganized since the backup was made or also if
more space has since been preallocated to the file. If the file on the backup has more blocks allocated
than are currently available in the database, the remaining blocks will be allocated in an arbitrary
location. This keyword can only be used in conjunction with a file list.

KMSTARGET = string

This parameter specifies the key management system that is used if the created database is encryp-
ted. Supported values are FILE and AWS. Depending on the specified value, encryption keys are
created, stored, and managed by either the Adabas file-based key management system or the AWS
key management service.

The default value is FILE.

| Note: You must specify the KMSTARGET parameter before the ENCRYPTION parameter.

Examples for KSMTARGET

Please see Examples for RESTORE/OVERLAY using ENCRYPTION and KMSTARGET.

28 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

NEW _DBID = number

This parameter can be used to change the identifier of the database to be restored. This parameter
can only be specified when restoring a complete database.

A new identifier can be used to restore a backup copy of an active database into a different set of
container files. The new identifier may not be identical to that of another active database.

If this parameter is omitted, the database identifier remains unchanged.

A\ Important: If a backup of e.g. database 100 is restored into an existing database 100, but a

NEW_DBID parameter with a different dbid is used, the database 100 will become inaccess-
ible. When accessing the database the Adabas utilities will report a DBID mismatch because
of a wrong dbid in the GCB RABN.

In such a case the following steps need to be performed to get access again to the database:

1. Rename the database directory from db100 to db101, change the container extensions from 100
to 101, and rename the DB100.INI file to DB101.INL

2. Update DB101.INI: Edit the content by changing the path and file name of each environment
variable value from 100 to 101.

3. Update assign.bsh: Edit the content by changing the path and file name of each environment
variable value from 100 to 101.

4. Update ADABAS.INI: In the DB_LIST section edit all values from the old dbid value 100 to the
new dbid val-ue 101.

RENUMBER = (number[-number] [,number [-number]]...)

RENUMBER is used to renumber the files to be overlayed in the target database. The following
restrictions and requirements apply:

® There must be a 1:1 relationship between the files specified in the OVERLAY file list and the
RENUMBER file list.

= If you specify a range in the OVERLAY file list, the corresponding range in the RENUMBER
file list must be the same size.

® Normally it is not necessary to specify LOB files in the OVERLAY file list. However, if the LOB
file is also to be renumbered, the LOB file must also be specified.

* Files may occur more than once in the OVERLAY file list, for example: (11-55),(44-99). In this
case, you are not allowed to specify different target file numbers for the same source file numbers.
For the example file list, it is correct to specify RENUMBER=(1011-1055,1044-1099), whereas
RENUMBER=(1011-1055,2044-2099) is incorrect.

*® Itis not allowed to renumber more than one file to the same target file number.

Adabas Utilities 29

ADABCK (Dump And Restore Database Or Files)

REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the Adabas file is automatically marked as
a replication target file.

For further information refer to ADAOPR CHANGE_REPLICATION_STATUS.

PARALLEL
PARALLEL = keyword

This parameter can be specified to increase processing speed when creating/restoring from backups
on slow devices by using parallel devices. The keyword MULTI_PROCESS can be used. If PAR-
ALLEL=MULTI_PROCESS is specified, the default value of the BLOCKSIZE parameter changes
to 512 KB.

The ADABCK operation is only performed in parallel if the number of backup files (ADABCK
subparameter DRIVES for DUMP or EXU_DUMP) is greater than 1.

Notes:

1. Inthe case of ADABCK RESTORE or ADABCK OVERLAY, PARALLEL must be specified before
the OVERLAY or RESTORE parameter.

2. The PARALLEL parameter is not supported on Windows platforms.

3. Itis possible to pass the output of ADABCK DUMP or ADABCK EXU_DUMP to named pipes,
which can be directly used as input for an ADABCK RESTORE or ADABCK OVERLAY in order
to copy a database or some files from one database to another database.

4. The PARALLEL parameter does not improve the performance of the READ_CHECK function.

5. The use of PARALLEL=MULTI_PROCESS is not recommended for the DUMP operation if the
data is to be restored on a computer with a different endian mode - the RESTORE operation
will reject backup files created with PARALLEL=MULTI_PROCESS on a computer with a dif-
ferent endian mode.

30 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

READ_CHECK

READ_CHECK

This function checks the readability (i.e. absence of parity errors) and completeness of the Adabas
backup copy. These checks are made to ensure that the dump file can be used to restore the database
or files with the RESTORE or OVERLAY function of this utility.

RESTORE

RESTORE = {*|(number[-number][,number[-number]]...)}

,ENCRYPTION = keyword]

,FMOVE [=(number [,number [-numberl]...)]1]

,FORMAT = (keyword [,keyword]) 1

, KMSTARGET = string]

,NEW _DBID = number]

,RENUMBER = (number[-number] [,number [-numberl]...)]1]

,REPLICATION]

o -

This function restores the files specified by the numbers in the list at the file level. LOB files specified
are ignored, but the LOB files assigned to all base files are restored too. If a file list is given, the
files to be restored must not be loaded in the database. An ™' specifies that a restore is to be made
at the database level. In this case, the files may already be loaded in the database and will implicitly
be deleted or substituted by files in the dump with identical file numbers. Exclusive control over
the database container files is required.

Only the specified files are restored, even if there are referential integrity constraints to other files;
these referential integrity constraints are removed.

Notes:

1. You can only use RESTORE=" if the dump file was created with DUMP=* or EXU_DUMP=*.

2. A backup created on a platform with different endian mode will not be restored if the backup
was created with the option PARALLEL=MULTI_PROCESS.

ENCRYPTION = keyword

This parameter specifies that the created database is encrypted and assigns the encryption algorithm.
The keyword can take the values AES_256_XTS, AES_128_XTS and NO. Depending on the keyword
specified, the ASSO and DATA container files are encrypted using XTS Advanced Encryption
Standard with a key length of 256 bits (AES_256_XTS), a key length of 128 bits (AES_256_XTS),
or they are not encrypted (NO).

The default value is NO.

Notes:

Adabas Utilities 31

ADABCK (Dump And Restore Database Or Files)

1. Database encryption cannot be disabled.

2. The ENCRYPTION parameter can only be used for a full database restore (overlay=" or restore=*)
and the database must not exist. If the database exists, the encryption settings of the database
are retained.

3. File restore/overlay operations will be applied according to the encryption settings of the existing
database.

4. When restoring a database with ENCRYPTION, ADABCK checks the database list inside the
ADABAS.INI file. If the restored database is not on the list, ADABCK attempts to recover this
entry using the data from the dump file.

FMOVE [=(number [,number [-number]]...)]

If this keyword is specified, ADABCK reallocates all files to be restored or the specified subset
rather than attempting to restore them in the same block ranges as in the backup. Using this
keyword reduces the number of file extents as much as possible.

FORMAT = (keyword [,keyword])

The keywords ASSO and/or DATA may be specified. This parameter is used to format Associator
and/or Data Storage blocks. When restoring at the file level, only blocks contained in the unused
areas of the files' extents are formatted.

KMSTARGET = string

This parameter specifies the key management system that is used if the created database is encryp-
ted. Supported values are FILE and AWS. Depending on the specified value, encryption keys are
created, stored, and managed by either the Adabas file-based key management system or the AWS
key management service.

The default value is FILE.

| Note: You must specify the KMSTARGET parameter before the ENCRYPTION parameter.

Examples for KSMTARGET

Please see Examples for RESTORE/OVERLAY using ENCRYPTION and KMSTARGET.

32 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

NEW _DBID = number

This parameter can be used to change the identifier of the database to be restored. This parameter
can only be specified when restoring a complete database.

A new identifier can be used to restore a backup copy of an active database into a different set of
container files. The new identifier may not be identical to that of another active database.

If this parameter is omitted, the database identifier remains unchanged.

A\ Important: If a backup of e.g. database 100 is restored into an existing database 100, but a

NEW_DBID parameter with a different dbid is used, the database 100 will become inaccess-
ible. When accessing the database the Adabas utilities will report a DBID mismatch because
of a wrong dbid in the GCB RABN.

In such a case the following steps need to be performed to get access again to the database:
1. Rename the database directory from db100 to db101, change the container extensions from 100

to 101, and rename the DB100.INI file to DB101.INI.

2. Update DB101.INI: Edit the content by changing the path and file name of each environment
variable value from 100 to 101.

3. Update assign.bsh: Edit the content by changing the path and file name of each environment
variable value from 100 to 101.

4. Update ADABAS.INI: In the DB_LIST section edit all values from the old dbid value 100 to the
new dbid val-ue 101.

REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the Adabas file is automatically marked as
a replication target file.

For further information refer to ADAOPR CHANGE_REPLICATION_STATUS.

Adabas Utilities 33

ADABCK (Dump And Restore Database Or Files)

Examples for RESTORE/OVERLAY

Example 1

The complete database is restored in parallel from several backup devices. Only database backups
can be processed (backups created with DUMP=* or EXU_DUMP=*). The backup of example 1 for
DUMP/EXUDUMP is used. The nucleus must be inactive.

adabck db=34 parallel=multi_process restore=*
%ADABCK-T-STARTED, 30-0CT-2015 11:13:24, <version number>
%ADABCK-T1-DBOFF, database 34 accessed offline

Restore database 34 dumped on 30-0CT-2015 11:10:29

Database 34, GENERAL-DATABASE

File 1, CHECKPOINT-FILE , loaded on 4-SEP-2014 13:52:43
File 2, SECURITY-FILE , loaded on 4-SEP-2014 13:52:43
File 3, USER-DATA-FILE , Toaded on 4-SEP-2014 13:52:43
File 4, Update-Tog , loaded on 17-SEP-2014 14:44:19
File 9, EMPLOYEES , loaded on 8-0CT-2008 17:59:40
File 14, miscellaneous , loaded on 11-JUN-2015 13:22:19
File 17, Timezone , loaded on 19-SEP-2014 11:44:42
File 19, LARGE , loaded on 2-SEP-2014 15:37:18
File 30, FILE-30 , loaded on 31-MAR-2015 13:40:33
File 51, PCA24SYSF1 , loaded on 14-APR-2014 16:55:22
File 80, P295170 , loaded on 4-AUG-2015 12:42:43
File 91, ADA0S-2544 , loaded on 8-APR-2015 13:19:27
File 95, P299255 , loaded on 20-MAR-2014 11:35:30
File 98, ADA0S-4591 , loaded on 16-JUL-2015 10:03:16
File 101, COLLATION-TESTS , Toaded on 14-APR-2014 16:47:30
File 111, TESTOPT , loaded on 29-NOV-2011 10:34:23
File 113, Tob_LB , loaded on 23-JUN-2015 15:48:48
File 146, XMA-REPOSITORY , loaded on 10-DEC-2014 09:39:52
File 215, ADAQS-4647 , loaded on 27-APR-2012 15:52:49
File 1009, LOBFILE of 9 , loaded on 8-0CT-2008 17:59:40
File 1080, LOBFILE of 80 , loaded on 4-AUG-2015 12:42:43

File 1113, LOBFILE of 113 , loaded on 23-JUN-2015 15:48:48
File 22111, LOBFILE of 111 , Toaded on 29-NOV-2011 10:34:23

%ADABCK-I-IOCNT, 1 I0s on dataset WORK

%#ADABCK-I-I0CNT, 133 I0s on dataset DATA

%ADABCK-TI-IOCNT, 244 10s on dataset ASSO

%ADABCK-TI-IOCNT, 41 I0s on dataset BCKOO1

%ADABCK-TI-TIOCNT, 34 I0s on dataset BCK002

%ADABCK-TI-I0OCNT, 80 I0s on dataset BCKO03

%ADABCK-T-TERMINATED, 30-0CT-2015 11:13:26, elapsed time: 00:00:02

34 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

Example 2

File 215 is restored; the file must not already exist in the database. Database backups and file
backups can be processed. If there is more than one backup file, the backup files are not processed
in parallel, even if the backup was created with option PARALLEL. The nucleus may be either
active or inactive.

adabck db=34 restore=215
SADABCK-T-STARTED, 30-0CT-2015 11:18:34, <version number>

%ADABCK-1-DBOFF, database 34 accessed offline

Restore files from database 34 dumped on 30-0CT-2015 11:10:29
Database 34, GENERAL-DATABASE

File 215, ADAOS-4647 , loaded on 27-APR-2012 15:52:49
%ADABCK-TI-IOCNT, 7 I0s on dataset DATA

%ADABCK-I-IOCNT, 28 I0s on dataset ASSO

%ADABCK-TI-TI0OCNT, 41 I0s on dataset BCKOO1

%ADABCK-I-IOCNT, 34 I0s on dataset BCK002

%ADABCK-I-I0OCNT, 80 I0s on dataset BCKO03
%ADABCK-I-TERMINATED, 30-0CT-2015 11:18:34, elapsed time: 00:00:00
Example 3

All base files in a backup file with a file number between 91 and 99 or equal to 51 or between 11
and 19 are restored (including the corresponding LOB files, even if they are not in the specified
file ranges). If a file already exists in the database, the file is overwritten. Database backups and
file backups can be processed. The nucleus may be either active or inactive.

adabck db=34 over=\(91-99,51,11-19\)

%ADABCK-I-STARTED, 30-0CT-2015 11:38:12, <version number>
%ADABCK-1-DBON, database 34 accessed online

Overlay files dumped on 30-0CT-2015 10:51:14

Database 34, GENERAL-DATABASE

File 14, miscellaneous , loaded on 11-JUN-2015 13:22:19
File 17, Timezone , loaded on 19-SEP-2014 11:44:42
File 19, LARGE , loaded on 2-SEP-2014 15:37:18
File 51, PCA24SYSF1 , loaded on 14-APR-2014 16:55:22
File 91, ADAOS-2544 , loaded on 8-APR-2015 13:19:27
File 95, P299255 , loaded on 20-MAR-2014 11:35:30
File 98, ADA0S-4591 , loaded on 16-JUL-2015 10:03:16

Adabas Utilities 35

ADABCK (Dump And Restore Database Or Files)

%ADABCK-I-I0CNT, 619 I0s on dataset DATA

%ADABCK-TI-IOCNT, 1122 I0s on dataset ASSO

%AADABCK-T-TIOCNT, 1195 I0s on dataset BCKOO1

%ADABCK-T-TERMINATED, 30-0CT-2015 11:38:13, elapsed time: 00:00:01

Example 4

Base file in a backup file with file number 98 will be restored as file 198. If that file already exists
in the database, the file is overwritten. Database backups and file backups can be processed. The
nucleus may be either active or inactive.

adabck db=34 overlay=98 renumber=198
SADABCK-T-STARTED, 30-0CT-2015 11:40:12, <version number>
%ADABCK-I1-DBON, database 34 accessed online

Overlay files dumped on 30-0CT-2015 10:51:14
Database 34, GENERAL-DATABASE

File 98 renumbered to file 198
File 198 loaded on 16-JUL-2015 10:03:16

%ADABCK-T-IOCNT, 619 I0s on dataset DATA

%#ADABCK-T-TOCNT, 1122 I0s on dataset ASSO

%ADABCK-TI-IOCNT, 1195 IOs on dataset BCKOO1

%ADABCK-T-TERMINATED, 30-0CT-2015 11:40:13, elapsed time: 00:00:01

Examples for RESTORE/OVERLAY using ENCRYPTION and KMSTARGET

Example 1

The complete database is to be restored as an encrypted database from an Adabas backup copy
of a non-encrypted database. The ASSO and DATA container files are encrypted with algorithm
AES_256_XTS. The encryption keys are created and managed by the Adabas file-based key man-
agement system (default: KMSTARGET=FILE).

adabck dbid=1 restore=* encryption=aes_256_xts <
Example 2

The complete database is to be overlayed as an encrypted database from an Adabas backup copy
of a non-encrypted database. The ASSO and DATA container files are encrypted with algorithm
AES_128_XTS. The encryption keys are created and managed by the Adabas file-based key man-
agement system.

36 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

adabck dbid=1 overlay=* kmstarget=file encryption=aes_128_xts
Example 3

The complete database is to be restored as a non-encrypted database from an Adabas backup copy
of an encrypted database. The Adabas container files are not encrypted.

adabck dbid=1 restore=* encryption=no

SUMMARY
SUMMARY

This parameter displays general information and physical layout of the database in the Adabas
backup copy created by a previous run of the DUMP/EXU_DUMP function.

Example

adabck summary
%#ADABCK-T-STARTED, 30-AUG-2020 12:01:46, <version number>

Database dumped on 30-AUG-2020 11:57:04

Database 34, GENERAL-DATABASE

Summary of Database 34 30-AUG-2020 12:01:46

DATABASE NAME GENERAL-DATABASE

DATABASE 1ID 34

MAXIMUM FILE NUMBER LOADED 22111

SYSTEM FILES 1 (CHK), 2 (SEC), 3 (USR)
150 (RBAC)

ACTUAL FILES LOADED 23

CURRENT PLOG NUMBER 99

CURRENT CLOG NUMBER 10

SECURITY ACTIVE

ENCRYPTION AES_256_XTS

KMSTARGET FILE

KEKNAME ©

1598876857F83BB64A01916FFA3ACFID39DB18537E80E3E48FD8A2333A3D77C8

Container Device Extents in Blocks Number of Block Total Size

File Type from to Blocks Size (Megabytes)
ASSO1 file 1 35,840 35,840 4,096 140.00
ASS02 file 35,841 166,400 130,560 2,048 255.00
ASS03 file 166,401 205,120 38,720 32,768 1,210.00

Adabas Utilities 37

ADABCK (Dump And Restore Database Or Files)

ASS04 file 205,121 210,240 5,120 16,384 80.00
ASS0O5 file 210,241 944,832 734,592 8,192 5,739.00
DATAL file 1 8,891 8,891 4,096 34.73
DATAZ file 8,892 24,379 15,488 8,192 121.00
DATA3 file 24,380 34,619 10,240 16,384 160.00
DATA4 file 34,620 388,763 354,144 32,768 11,067.00
WORK1 file 1 207,872 207,872 4,096 812.00

19,618.73

%SADABCK-T1-TIOCNT, 2 I0s on dataset BCKOO1
%ADABCK-I-TERMINATED, 30-AUG-2020 12:01:46, elapsed time: 00:00:00

The security information is only displayed if database security has been activated. Otherwise, the
information is not displayed.

The encryption information about the encryption algorithm, KMS target (Key Management System)
and KEK name (Key Encryption Key) is only displayed if the database is encrypted. Otherwise,
the information is not displayed.

The RBAC system file is only displayed if it has been defined. Otherwise, the information is not
displayed.

Restart Considerations

ADABCK has no restart capability. An abnormally-terminated ADABCK execution must be rerun
from the beginning.

An interrupted RESTORE/OVERLAY of one or more files will result in lost RABNs which can be
recovered by executing the RECOVER function of the utility ADADBM. An interrupted RE-
STORE/OVERLAY of a database results in a database that cannot be accessed.

38 Adabas Utilities

4 ADACLP (Command Log Report)

B FUNCHONAI OVEIVIEW ...t e e e e e,

= Procedure Flow
= Checkpoints

= Control Parameters

= Specifying Multiple SeleCtion CritEriaooiiiiiiiee e

39

ADACLP (Command Log Report)

This chapter describes the utility "ADACLP".

Functional Overview

The ADACLP utility prints the command log with a line width of 132 characters.

| Note: ADACLP can only process command logs of nucleus sessions that were started with

the ADANUC parameter CLOGLAYOUT=5 (5is the default value). Please refer to ADANUC,
CLOGLAYOUT in the documentation of Adabas for further information.

A record is written in the command log for each Adabas command issued. Command logging
must be enabled during Adabas startup with the nucleus parameter LOGGING, or when the
nucleus is already active with the ADAOPR parameter LOGGING.

] Note: For performance reasons, the Adabas nucleus determines the command start timestamp

only if command logging has been enabled. For this reason, the command start date and
the command duration are not displayed for Adabas commands that are already active but
not yet finished when command logging is switched on.

Any of the ADACLP parameters selects a subset of the command log information.

This utility is a single-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

40 Adabas Utilities

ADACLP (Command Log Report)

Procedure Flow

Command log CLPCLG |Disk (* see note) | Utilities Manual,
ADACLP

Control statements |stdin Utilities Manual

ADACLP report |stdout Messages and Codes

Adabas Utilities

41

ADACLP (Command Log Report)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

[NOJADDITIONS _2

[NOJADDITIONS_2

This option can be used to display the Additions 2 field instead of the command ID.

The default is NOADDITIONS 2.

CLASS

CLASS = (keyword [,keyword]...)

This parameter selects the log records whose command codes belong to the specified command
class. All records are selected if neither the CLASS parameter nor the COMMAND parameter is

specified.

CLASS and COMMAND are mutually exclusive.

The following keywords can be used:

KEYWORD |USE

CONTROL |Selects control commands such as “open' and “close’;

FIND Selects find commands;

READ Selects read commands;

UPDATE |Selects update commands.

42 Adabas Utilities

ADACLP (Command Log Report)

Example:

adaclp: class = find

The log records of the commands S1, 52, S4, S8 and S9 are selected.

CLOG
CLOG = (number [,number])

It is optional if the command log is within a file system. The CLOG number and the extension
count can be specified. If no extension count is specified, Adabas will open subsequent extents as
necessary. If an extent count is specified, then only the specified extent will be processed.

Note: This parameter applies to Linux platforms only.

COMMAND

COMMAND = (keyword [,keyword]...)

This parameter selects the log records with an Adabas command code specified by the keywords.
Up to ten keywords can be defined. If neither the COMMAND parameter nor the CLASS parameter
is specified, all records are selected.

COMMAND and CLASS are mutually exclusive.

All valid Adabas commands (A1...59) can be used as keywords (see the Comman Reference of the
Adabas documentation for further information).

DATE

DATE = ([absolute-date] [,[absolute-datell)

This parameter selects the log records in the range specified by the optional date strings. The date
strings must correspond to the following absolute date and time format:

Leading zeroes in the date and time specification may be omitted. Any numbers not specified are
set to 0, for example 28-jul-2012 is equivalent to 28-jul-2012:00:00:00.

By default, all log records are selected.

Adabas Utilities 43

ADACLP (Command Log Report)

Examples:

adaclp: date = 8-aug-2012

The log record written on 8-AUG-2012 00:00:00 is selected

adaclp: date = (8-aug-2012:12,)

All log records written from 8-AUG-2012 12:00:00 onwards are selected.

adaclp: date = (,8-aug-2012:12:34)

All log records written up to 8-AUG-2012 12:34:00 are selected.
DBID

DBID = number

This parameter selects the database to be used.

| Note: This parameter applies to Linux platforms only.

DISPLAY

DISPLAY = (keyword [,keyword]...)

This parameter is used to display various kinds of information from the command log. The
keywords shown in the following table are available. Information for these keywords can only be
displayed if corresponding data was logged during the nucleus session.

KEYWORD [MEANING

CB ® Command log record number

® Starting date and time of the command

® Duration of the command in microseconds

® User ID specified in the corresponding OP command

® Node ID

® Login ID or, if ES_ID was specified, environment-specific ID
= Selected fields of the control block

= *'in column 'X' indicates utility or exclusive file usage

® The thread which processed the command

= TJ/O statistics

44 Adabas Utilities

ADACLP (Command Log Report)

KEYWORD MEANING

Note: For command logs created with versions lower than Version 6.3 SP1, the duration of

the command is displayed in milliseconds.

FB Format buffer.

FULL_CB |All fields of the control block. Other information shown for DISPLAY=CB is not shown here.
1B ISN bulffer.

10 IO list.

NAT Natural information.

The following information is displayed in the output: NAT_APPL, NAT_PROG, NAT_UID,
NAT_STMT, NAT_LVL, NAT_CNT, NAT_EXEC, NAT_LIB, NAT_RPCCLUID, NAT_RPCID,
NAT_RPCCO, NAT_GRP.

Note: This option requires additional configuration in the NATPARM module. For more

information, see the appropriate Natural documentation.

RB Record buffer.

SB Search buffer.

STATISTICS |Command statistics of the selected records.
VB Value buffer.

The default is DISPLAY = CB.

ES_ID
ES_ID [= number]
This parameter causes the environment-specific ID to be displayed instead of the login ID.

If a number is specified, only records with information for the specified environment-specific ID
(process ID) will be selected.

By default, all records are selected.

FILE

FILE = (number [- number] [,number [- number]]...)

This parameter selects the log records with commands that reference the file(s) specified by
number or range of numbers. A maximum of 20 files may be specified.

By default, all records are selected.

Adabas Utilities 45

ADACLP (Command Log Report)

[NOJHEXADECIMAL
[NOJHEXADECIMAL

If this parameter is set to HEXADECIMAL, the record buffer and value buffer are displayed in
hexadecimal format (when DISPLAY=RB or DISPLAY=VB is specified).

The default is NOHEXADECIMAL.

LOGIN_ID
LOGIN_ID = string
This parameter selects all records with the specified login ID.

By default, all records are selected.

NODE_ID
NODE_ID = string
This parameter selects the log records from the specified node.

The node identification shown while processing ADAOPR with the parameter DISPLAY = UQ
must be used.

This parameter is valid only if ENTIRE NET-WORK is installed.

PAGE
PAGE = number
This parameter defines the page size, in lines, used for the printout.

The default is 59 lines.

RECORDS
RECORDS = number [-number]

This parameter selects the log records in the specified range of log record numbers. Log record
numbers start with 1 after the log is switched on.

By default, all records are selected.

46 Adabas Utilities

ADACLP (Command Log Report)

RESPONSE
RESPONSE = (number [- number] [,number [- numberl]] ...)

This parameter selects the records with the specified response code or range of response codes.

USER_ID
USER_ID = string
This parameter selects the records with the user ID specified in ‘string'.

By default, all users are selected.

Example

user_id = *adarep
All records that represent commands issued from the utility ADAREP are selected.
WIDTH

WIDTH = number
This parameter selects the output line width. Valid values are 80 and 132.

The default is 132.

Specifying Multiple Selection Criteria

If multiple selection criteria are specified, they are combined by a logical AND, e.g.

command = 13, file = 5

This selects all L3 commands on file 5.

Adabas Utilities 47

48

5 ADACMP (Compression Of Data)

B FUNCHONAI OVBIVIBWvvvie ettt e e e e e e e e e e e e e eees
B PROCEAUE FIOW .. evviieee e e et e e
B CNECKPOINES ...ttt e ettt ettt et s
B CONMTOI PAramELEIS ... e s

49

ADACMP (Compression Of Data)

This chapter describes the utility "ADACMP".

Functional Overview

The compression utility ADACMP compresses user raw data into a form which can be used by
the mass update utility ADAMUP.

The input data for this utility must be contained in a sequential file. LOB field values can also be
provided in separate files.

The logical structure and characteristics of the input data are described by a field definition table
(FDT). These statements specify the level number, field name, standard length and format together
with any definition options that are to be assigned to the field (descriptor, unique descriptor,
multiple-value field, null value suppression, fixed storage, periodic group).

Each field in the input record without the option SY (system generated) is compressed. Compression
consists of removing trailing blanks from alphanumeric fields and leading zeros from numeric
fields. Unpacked and packed fields are checked for correct data. Fields defined with the fixed
storage option are not compressed. A user exit is provided to allow additional editing of each input
record with a user-written routine.

System generated fields are either regenerated or decompressed, depending on the keyword
specified for the ADACMP parameter SYFINPUT.

This utility creates three types of output files:

® Compressed data.
® Descriptor values.

" Records with errors.
The sizes of the descriptor values of all descriptors are listed at the end of execution.
If the utility writes records to the error file, it will exit with a non-zero status.

. Note: Please be careful if you want to add data to a file that still contains ICU 3.2 collation
descriptors:

= If you specify the FDT with the parameters DBID and FILE, the FDT is taken unchanged from
the database. This means the ICU version is still 3.2. You can add the data to the file, and the
ICU version remains 3.2.

® If you take the FDT from the CMPFDT file, a new FDT is created from the CMPFDT file, where
the ICU version is set to 5.4. This means you can only add the data to the file if it is empty, and
if you specify the NEW_FDT option. The ICU version used is 5.4.

50 Adabas Utilities

ADACMP (Compression Of Data)

This utility is a single-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

Procedure Flow

Lser LOB Input Data

Cnm&'ﬁaed

Field Definitions Descriptor

Yalue Table

User Input Data Error Data

Adabas Utilities 51

ADACMP (Compression Of Data)

The sequential files CMPDTA, CMPDVT and CMPERR can have multiple extents. . CMPLOB is

a directory that contains files which may be stored as LOB values in the database.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASS0x Disk
Compressed data CMPDTA |Disk (* see note) |output by ADACMP
Descriptor Value Table [CMPDVT |Disk (* see note) |output by ADACMP
Rejected data CMPERR |Disk (* see note) |output by ADACMP
Input data FDT CMPFDT |Disk (* see note) | Utilities Manual
User input data CMPIN Disk (* see note) | Utilities Manual
User LOB input data |CMPLOB |Disk Utilities Manual
ADACMP stdin Utilities Manual
control statements
ADACMP messages |stdout Messages and Codes

Note: (*) A named pipe can be used for this sequential file.

If the SINGLE_FILE option is set, the Descriptor Value Table (DVT) and the compressed user data
are written together to the logical name CMPDTA.

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

DBID = number

D [NOIDST

FDT

FIELDS {uncompressed_field_definition | FDT}...[END_OF_FIELDS |

FILE = number

]

52

Adabas Utilities

ADACMP (Compression Of Data)

D [NOJLOBS
D [NOJLOWER_CASE_FIELD_NAME
D MAX_DECOMPRESSED_SIZE = number [K|M]
D MUPE_C_L = {1]2]|4}
D [NOJNULL_VALUE
D NUMREC = number
D RECORD_STRUCTURE = keyword
SEPARATOR = character | \character
D [NOJSHORT_RECORDS
D [NOJSINGLE_FILE
SKIPREC = number
D SOURCE_ARCHITECTURE = (keyword[,keywordl[,keyword])
D SYFINPUT = keyword
D TZ {=]:} [timezone]
D [NOJUSEREXIT
D [NOJUSERISN

D WCHARSET = char_set

DBID

DBID = number

This parameter selects the database that contains the file to be specified by the FILE parameter.

[NOJDST
[NO]DST

The parameter DST is required if a daylight saving time indicator is provided for date/time fields
with the option TZ. The daylight saving time indicator must be appended behind the date/time
value as a 2-byte integer value (format F) that contains the number of seconds to be added to the
standard time in order to get the actual time (usually 0 or 3600).

Adabas Utilities 53

ADACMP (Compression Of Data)

Without the parameter DST, it is not possible to define time values in the hour before the time is
switched back to standard time.

The default is NODST.

Notes:

1. The DST parameter is ignored if the FIELDS parameter is specified. In this case, you must specify
a D element for fields with the daylight saving time indicator.

2. The DST parameter is not compatible with the RECORD_STRUCTURE = NEWLINE_SEPAR-
ATOR parameter because the daylight saving indicator in format F contains non-printable
characters.

Example:

A DT field has the following definition: 1,DT,8,LDT=E(DATE_TIME), TZ

The following values must then be specified for this field:

® The local date/time value corresponding to the edit mask DATE_TIME as an 8-byte packed

value

® The daylight saving time indicator, usually 0 for standard time and 3600 for summer time as a
2-byte fixed point value

Case 1 (DT has a date/time value with daylight saving time): 0x0200910250230000E10
Case 2 (DT has a date/time value with standard time): 0x0200910250230000000

FDT
FDT

If this parameter is specified as the first parameter, or as the second parameter after
[NOJLOWER_CASE_FIELD_NAMES, ADACMP reads the FDT information contained in the se-
quential file CMPFDT and displays the FDT.

| Note: Alternatively, instead of FDT, you can specify DBID and FILE as the first parameters,

or as the second parameters after NOJLOWER_CASE_FIELD_NAMES (which is allowed
before DBID and FILE). In this case, the FDT of the file is used as the base for the compres-
sion.

The FDT parameter can be specified several times, but if you have already determined the FDT

to be used for the compression by specifying the FDT or DBID and FILE parameters, specifying
the FDT parameter again will only display the FDT; the FDT is not overwritten by the CMPFDT
file.

54 Adabas Utilities

ADACMP (Compression Of Data)

When handling standalone output from ADADCU, the corresponding DCUOUT and DCUFDT
files are not encrypted and do not contain encryption information. In order to make up for that,
ADACMP can accept a dbid. For example, the command “ADACMP dbid=100 fdt” will compress
the data in DCUOUT with the FDT from DCUFDT. Additionally, ADACMP will read the encryption
information stored in ASSO1 of database 100 and encrypt the output files if database 100 is encryp-
ted.

FIELDS
FIELDS {uncompressed_field_definition | FDT}...[END_OF_FIELDS | . 1]

This parameter is used to specify a subset of fields given in the FDT and their format and length.
This means that the input records do not have to contain all of the fields given in the FDT, or that
fields can be provided with a different format or length. The syntax and semantics are the same
as for the format buffer, with the exception that you can also specify an R-element (for LOB refer-
ences) if the decompressed record contains the name of a file containing the LOB value instead of
the LOB value itself.

While entering the specification list, the FDT function can be used to display the FDT of the file
to be decompressed. The specification list can be terminated or interrupted by entering
END_OF_FIELDS or ".". The "." option is an implicit END_OF_FIELDS and is compatible with the
format buffer syntax. FIELDS or END_OF_FIELDS must always be entered on a line by itself,
whereas the ".' may be entered on a line by itself or at the end of the format buffer elements.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

FILE
FILE = number

This parameter specifies the file from which the FDT information is to be read. This parameter
can only be specified after the DBID parameter.

Note: If you specified SCMPFDT, the FDT supplied through $CMPFDT and the FDT held

in the database must have the same structure. Otherwise, the execution aborts when a dis-
crepancy is detected. ADACMP stops on the first difference of the FDT field. If §CMPFDT
is empty or if it points to a nonexistent file, the comparison is skipped.

Adabas Utilities 95

ADACMP (Compression Of Data)

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The defaultis NOLOWER_CASE_FIELD_NAMES.

If lower case field names in the FDT are not to be converted to upper case, the parameter must be
specified as the first parameter before the FDT parameter; if lower case field names in the FIELDS
parameter are not to be converted to upper case, the parameter must be specified before the FIELDS
parameter.

“P) Caution: If the LOWER_CASE_FIELD_NAMES parameter is specified for the CMPFDT file,

not upper case conversion is done for the complete file. Lower case characters for field
formats and field options will cause FDT syntax errors. This problem also exists for lower
case characters in the FIELDS parameter.

[NOJLOBS
[NOJLOBS

This parameter specifies whether LA and LB field values are to be stored in a LOB file after loading
the compressed data into the database:

= If the parameters DBID and file number have been specified, this parameter is ignored, and the
field is handled as described below;

= If the parameters DBID and file number have not been specified and LOBS is specified, field
values for LA and LB fields are prepared for storage in a LOB file, except the field is defined as
a descriptor.

= If the parameters DBID and file number have not been specified and NOLOBS is specified, field
values for LA and LB fields are prepared for storage in the base file. In this case, the length of

field values for LA and LB fields must not exceed 16381 bytes and the compressed record must
fit into a 32 KB DATA block.

Please note that LA and LB fields which are descriptors or parent fields of a derived descriptor,
e.g. a super descriptor, are always handled as described for the NOLOBS parameter.

Default behaviour is as follows:

= If the parameters DBID and file number have been specified and the file is a base file with cor-
responding LOB file, LOBS is default.

= If the parameters DBID and file number have been specified and the file is not a base file with
corresponding LOB file, NOLOBS is default.

= If the parameters DBID and file number have not been specified, LOBS is default.

56 Adabas Utilities

ADACMP (Compression Of Data)

MAX_DECOMPRESSED_SIZE
MAX_DECOMPRESSED_SIZE = number [K|M]

This parameter specifies the maximum size of a decompressed record in bytes, kilobytes or
megabytes, depending on the specification of "K" or "M" after the number. This parameter is inten-
ded to recognize invalid CMPIN files as early as possible.

The default is 65536. This is also the minimum value.
Notes:

1. This parameter does not include the size of LOB values stored in separate files.

2. The exact definition of this parameter is the size of the I/O buffer required for the largest decom-
pressed record. Only multiples of 256 bytes are used for the I/O buffers, which means that you
must specify a value greater than or equal to the largest decompressed record (including the
preceding length field) rounded up to the next multiple of 256.

MUPE_C_L
MUPE_C_L = (1]2]4)

If the uncompressed data contain multiple-value fields or periodic groups, they are preceded by
a binary count field with the length of MUPE_C_L bytes.

The default is 1.

[NOJNULL_VALUE
[NOINULL_VALUE

The parameter NULL_VALUE is required if you are compressing data according to the standard
FDT and the status values of the NC option fields are given in the input data. Normally, such input
data is generated by ADADCU with the NULL_VALUE option set.

The default is NONULL_VALUE.

Example

The definition in the FDT for the field AAis: 1, AA, 2, A, NC

Case 1 (AA has a non-NULL value): input record (hexadecimal) = 00004142

Case 2 (AA has a NULL value): input record (hexadecimal) = FFFF2020

Adabas Utilities of

ADACMP (Compression Of Data)

NUMREC

NUMREC = number

This parameter specifies the number of input records to be processed. If this parameter is omitted,
all input records contained on the input file are processed.

Use of this parameter is recommended for the initial execution of ADACMP if the input data file
contains a large number of records. This avoids unnecessary processing of all records in cases
where a data definition error or invalid input data results in a large number of rejected records.

This parameter is also useful for creating small files for test purposes.

RECORD_STRUCTURE

RECORD_STRUCTURE = keyword

This parameter specifies the type of record separation used in the input file with the environment
variable CMPIN. The following keywords can be used:

Keyword

Meaning

ELENGTH_PREFIX

The records in the CMPIN file are separated by a two-byte exclusive length field.

E4ALENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte exclusive
length field.

ILENGTH_PREFIX

The records in the CMPIN file are separated by a two-byte inclusive length field.

[4LENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte inclusive
length field.

NEWLINE_SEPARATOR

The records in the CMPIN file are separated by a new-line character. This
keyword may only be specified if the field values do not contain characters
interpreted as new-line (i.e. if there are only unpacked, alphanumeric and
Unicode fields, and the alphanumeric and Unicode fields contain only printable
characters). This keyword and the USERISN parameter are mutually exclusive.

RDW

The records in the CMPIN file contain data that has been transferred from an
IBM host using the FTP site rdw option. ADACMP is able to process such data
without having to use cvt_fmt first (in previous versions, the unsupported tool
cvt_fmt was used for such format conversions). For example:

% ftp IBM-host

ftp> binary

200 Representation type is Image

ftp> site rdw

200 Site command was accepted

ftp> get decomp

% setenv CMPIN decomp

% adacmp fdt record_structure=rdw source=(ebcdic,high)

RDW_HEADER

Like RDW, for data decompressed on a mainframe with HEADER=YES.

58

Adabas Utilities

ADACMP (Compression Of Data)

Keyword Meaning

HEADER For data decompressed on a mainframe with HEADER=YES, if the decompressed
data do not contain any additional information about block or record length.

VARIABLE_BLOCKED |The variable blocked format from BS2000 or IBM.

The default is ELENGTH_PREFIX.

SEPARATOR
SEPARATOR = character | \character

If you specify this option, ADACMP expects the fields in the raw data record to be separated by
the character specified. You can omit the apostrophes round the character specification if the
character has no special meaning for the Adabas utilities. The same fields in different records are
then permitted to be of different lengths.

If a format buffer is specified using the FIELDS parameter, the order of the specified field names
must correspond with the order in which the fields are specified in the FDT. A mismatch results
if this is not the case.

If the FDT contains multiple value fields or periodic groups, a format buffer must be specified
with the FIELDS parameter. Members of periodic groups must be ordered by 1) periodic group
index and 2) field sequence in the FDT (see example 2 below).

Because no binary data is expected in the input file using the SEPARATOR option, the RE-
CORD_STRUCTURE parameter will be set to NEWLINE_SEPARATOR.

Example 1
FDT: 1, AA, 2, U
1, AB, 8, U
1, AC, 2, A
CMPIN: 12;12345678;AA
1234;5;B8B
adacmp
fdt

separator=\;

or for Linux

adacmp fdt separator=\\\;
or

adacmp fdt separator='\;

Adabas Utilities 59

ADACMP (Compression Of Data)

In this example, 2 records are compressed with the default FDT, the separator character is the
semicolon, and the default record structure is NEWLINE_SEPARATOR. Note that the semicolon
must be preceded by a backslash, otherwise it would be treated as the start of a comment. If you
enter the parameters under Linux directly from the command line, it is necessary to precede the
backslash and the semicolon by additional backslashes or to put them in quotes or double quotes
since they are special characters.

Example 2
FDT: 1, XX, PE
2, AA, 8, A
2, AB, 8, U
1, YY, 2, A
Correct: CMPIN: aaaa,l,bbbb,2,yy

Command: adacmp fdt separator=, fields AAl,AB1,AA2,AB2,YY.
First, the field values for the periodic group index 1 are
specified, and then the field values for periodic group index 2.

Invalid: CMPIN: aaaa,bbbb,1,2,yy
Command: adacmp fdt separator=, fields AA1-2,AB1-2,YY.
The fields specification is invalid because the 2nd value of
AA is specified before the 1st value of AB; you will get
the error SEPINV.

In this example, 1 record with fields given in the format buffer is compressed, the separator char-
acter is the comma.

Example 3

FDT: 1, AA, 8, A
CMPIN: aaaas2hA%B
bbbb%3%C%D%E
adacmp dbid=9 file=15 separator=%, fields "AA,MAC,1,U,MAI-N"

In this example, 2 records with fields given in the format buffer are compressed, the occurrence
count or the multiple value field MA is different in different records. The separator character is
the percent character.

60 Adabas Utilities

ADACMP (Compression Of Data)

[NOJSHORT_RECORDS
[NOJSHORT_RECORDS

If SHORT_RECORDS is specified, it is possible to omit fields at the end of the decompressed record
that contain null values.

The default is NOSHORT_RECORDS.
You can only omit complete fields; it is not possible to truncate the last value:
Example

Assuming you have specified the parameters for a file containing alphanumeric fields AA and
AB:

FIELDS
AA,20,AB, 20
END_OF_FIELDS
SHORT_RECORDS

Then the following record is allowed:

"Field AA "

The following record is not allowed:

"Field AA"

[NOJSINGLE_FILE

[NOJSINGLE_FILE

If the SINGLE_FILE option is set, ADACMP writes the Descriptor Value Table (DVT) and the
compressed user data to a single file (CMPDTA) instead of writing them to separate files.

The default is NOSINGLE_FILE.
SKIPREC

SKIPREC = number

This parameter specifies the number of records to be skipped before compression is started.

Adabas Utilities 61

ADACMP (Compression Of Data)

SOURCE_ARCHITECTURE
SOURCE_ARCHITECTURE = (keyword [,keyword [,keyword] 1)

This parameter specifies the format (character set, floating-point format and byte order) of the
input data records. The following keywords can be used:

Keyword Group Valid Keywords
Character set ASCII
EBCDIC

Floating-point format|IBM_370_FLOATING
IEEE_FLOATING

VAX_FLOATING
Byte order HIGH_ORDER_BYTE_FIRST

LOW_ORDER_BYTE_FIRST

If no keyword of a keyword group is specified, the default for this keyword group is the keyword
that corresponds to the architecture of the machine on which ADACMP is running.

| Note: The FDT is always input in ASCII format.

Example

If the input records that are to be compressed are in IBM format, the user must specify the following;:

SOURCE_ARCHITECTURE = (EBCDIC, IBM_370_FLOATING, HIGH_ORDER_BYTE_FIRST)

SYFINPUT

SYFINPUT = keyword

This parameter specifies the input used for the compression of system generated fields. The fol-
lowing keywords can be used:

Keyword (Meaning

SYSTEM |The system generated field values are regenerated by the system in ADACMP.

USER |The system generated field values are taken from the decompressed file.

The default is SYFINPUT = USER.

62 Adabas Utilities

ADACMP (Compression Of Data)

TZ
TZ {=|:} [timezone]

The specified time zone must be a valid time zone name that is contained in the time zone database
known as the Olson database (https://www.iana.org/time-zones). If a time zone has been specified,
this time zone is used for time zone conversions of date/time fields with the option TZ.

The default is UTC, which is used internally to store date/time fields with option TZ; no conversion
is required.

If you specify an empty value, no checks are made to ensure that date/time fields are correct.

| Note: The time zone names are file names. Depending on the platform, these file names

may or may not be case sensitive. Also, the time zone names, depending on the platform,
may or may not be case sensitive.

Examples:

tz:Europe/Berlin

This is correct on all platforms.

TZ=Europe/Berlin

With this specification, TZ is converted to upper case EUROPE/BERLIN. This is correct on Windows,
because file names are not case sensitive on Windows, but it is not correct on Linux, because Linux
file names are case sensitive.

[NOJUSEREXIT
[NOJUSEREXIT

This option specifies whether a user exit is to be taken or not. If USEREXIT is specified, the envir-
onment variable ADAUEX_6/logical name ADABAS$USEREXIT_6 must point to a loadable user-
written routine.

The default is NOUSEREXIT.

Adabas Utilities 63

https://www.iana.org/time-zones

ADACMP (Compression Of Data)

[NOJUSERISN
[NOJUSERISN

If this option is set to USERISN, the ISN for each record in the input file will be assigned by the
user.

If USERISN is specified, the user must give the ISN to be assigned to each record as a four-byte
binary number immediately preceding each data record.

ISN's may be assigned in any order and must be unique (for the file). The ISN must not exceed the
maximum number of records (MAXISN) specified for the file.

ADACMP does not check for unique ISNs or for ISNs which exceed MAXISN. These checks are
performed by the mass update utility ADAMUP (if an error is detected, the ADAMUP run termin-
ates with an error message).

If this option is set to NOUSERISN, the ISN is assigned by Adabas.

The default is NOUSERISN.

WCHARSET
WCHARSET = char_set

This parameter specifies the default encoding used in the decompressed file based on the encoding
names listed at http://www.iana.org/assignments/character-sets - most of the character sets listed
there are supported by ICU, which is used by Adabas for internationalization support.

The default is UTF-8.

Output

The ADACMP utility outputs three files:

1. Compressed data
2. Descriptor values

3. Records with errors

64 Adabas Utilities

http://www.iana.org/assignments/character-sets

ADACMP (Compression Of Data)

Compressed Data Records

The data records which ADACMP has processed, modified and compressed are output together
with the FDT information to a sequential file. This file is used as input for the mass update utility
ADAMUP.

If the output file contains no records (no records on the input file or all records rejected), the output
may still be used as input for the mass update utility ADAMUP.

Descriptor-Value Table File

This file contains the descriptor value tables (DVT).

Compressed data records and descriptor value tables are written to one file if the SINGLE_FILE
option is specified.

Rejected Data Records
Any records rejected by ADACMP are written to the ADACMP error file. The contents of this error

file should be displayed using the ADAERR utility. Do not print the error file using the standard
operating system print utilities since the records contain unprintable characters.

Report

The ADACMP report begins with a display of the field definition entered if CMPFDT is used for
input. Any statement which contains a syntax error will be printed with a message immediately
following the statement.

Following the display of the data-definition statements, a descriptor summary, the number of input
records processed, the number of input records rejected, and the number of input records com-
pressed are printed.

Restart Considerations

ADACMP does not have a restart capability. An interrupted ADACMP run must be re-started
from the beginning.

ADACMP does not change the database; therefore, no considerations need to be made concerning
database status before restarting ADACMP.

Adabas Utilities 65

66

6 ADADBM (Database Modification)

B FUNCHONAI OVEIVIEW ...t e e e e e,

= Procedure Flow
= Checkpoints

= Control Parameters

B RESIAM CONSIABIAONS . .oeve e e

67

ADADBM (Database Modification)

This chapter describes the utility "ADADBM".

Functional Overview

The ADADBM utility consists of the following functions which may be used to make modifications
to the database:

The ADD_CONTAINER function adds a new container file to the Associator or Data Storage
data set;

The ADD_FIELDS function adds new fields to the end of a file's FDT;

The ALLOCATE NI, UI, AC or DS function increases the Normal Index, Upper Index, Address
Converter or Data Storage space assigned to a file;

The BT function sets/clears the NOBT flag for an existing file;

The CHANGE function changes the standard length of a field in the Field Definition Table
(FDT);

The CHANGE_FIELDS function modifies one or more field specifications in a file;

The DEALLOCATE functions are the inverse functions of ALLOCATE. The NI, UI, AC or DS
function returns the Normal Index, Upper Index, Address Converter or Data Storage space
which is no longer required by a file to the free space table (FST);

The DELCP function deletes old checkpoint records from the checkpoint file in the specified
range of dates;

The DELETE function deletes a single Adabas file or a range of Adabas files from the database;

The DELETE_DATABASE function deletes a database. Depending on the keyword specified,
either just the containers are deleted, or the database directory and its content are deleted.

The DISPLAY function displays the utility communication block (UCB);

The DROP_FIELDS function marks the specified fields as not existing, which means that they
can no longer be accessed ;

The DROP_LOBFILE function is the inverse function of ADAFDU ADD_LOBFILE;

The DROP_REFINT function drops an existing referential constraint;

The EXTEND_CONTAINER function extends the last container file defined for the database;
The NEW_DBID function changes the identifier of the database in use;

The NEWWORK function allocates and formats a new Adabas WORK data set;

The PGM_REFRESH function enables or disables refreshing an Adabas file inside an application
program with an E1 command;

The RBAC_FILE function creates the RBAC system file required for Adabas authorization mode.
The RECORDSPANNING function enables/disables record spanning for a file;

68

Adabas Utilities

ADADBM (Database Modification)

® The RECOVER function returns lost space to the free space table;

" The REDUCE_CONTAINER function reduces the size of the last container file defined for the
database;

® The REFRESH function resets a single file or a range of files to the state of zero records loaded;

" The REMOVE_CONTAINER function removes a container file from the Associator, or Data
Storage data set;

® The REMOVE_DROP function, used in conjunction with a subsequent REFRESH, removes
dropped fields from the FDT;

® The REMOVE_REPLICATION function stops all replication processing and deletes the replication
system files;

® The RENAME function changes the database name or names of loaded files;
* The RENUMBER function renumbers a loaded file or exchanges the numbers of loaded files;

® The REPLICATION_FILES function creates the system files required for Adabas - Adabas rep-
lication;

® The RESET function removes entries from the UCB;

® The RESET_REPLICATION_TARGET function resets the replication target flag of Adabas files;
® The REUSE function controls the reusage of Data Storage space or ISNs by Adabas;

® The SECURITY function sets the security mode of the database;

® The SYFMAX function specifies the maximum number of values generated for a system generated

multiple-value field in the file specified.

This utility is a multi-function utility. For more information about single- and multi-function
utilities, Adabas Basics, Using Utilities in the Adabas documentation.

Adabas Utilities 69

ADADBM (Database Modification)

Procedure Flow

Online Mode

If the Adabas nucleus is active, ADADBM calls the nucleus to modify the database containers. For
some tasks, no checkpoints are written, but the activity is logged in the database log, and in the
case of a recovery, the activity is re-executed automatically.

70 Adabas Utilities

ADADBM (Database Modification)

Offline Mode

If the Adabas nucleus is not active, ADADBM itself modifies the database containers.

Associator ASSOx |Disk
Data storage DATAx |Disk
DBnnn.INI Disk |Adabas Extended Operations Manual

Protection Log NUCPLG |Disk|Utilities Manual:

(online mode only) ADANUC, ADAPLP
Temporary storage [TEMP1 |Disk|New WORK data set for the NEWWORK function. After this function
(offline mode only) is performed, the Work environment variable/logical name must be

changed to point to the new Work data set.

Work WORK1 |Disk

Adabas Utilities 71

ADADBM (Database Modification)

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must|Nucleus must NOT |Nucleus is NOT Checkpoint written
be active be active required
ADD_FIELDS X SYNP (offline)
SYNX (online)
BT X SYNP
CHANGE X -
CHANGE_FIELDS X SYNP (offline)
SYNX (online)
DELCP X SYNP
DELETE X SYNP (offline)
SYNX (online)
DELETE_DATABASE X -
DISPLAY X -
DROP_FIELDS X SYNP (offline)
SYNX (online)
DROP_LOBFILE X SYNP
EXTEND_CONTAINER for WORK for ASSO or DATA |SYNP
NEW_DBID X (see note 1) SYNP
NEWWORK X (see note 1) SYNP
PGM_REFRESH X SYNP
RBAC_FILE X SYNP (see note 3)
RECORDSPANNING X SYNP
REDUCE_CONTAINER for ASSO or DATA |SYNP
REMOVE_CONTAINER X SYNP
REMOVE_REPLICATION X SYNP (offline)

72

Adabas Utilities

ADADBM (Database Modification)

Function Nucleus must |Nucleus must NOT |Nucleus is NOT Checkpoint written
be active be active required
REPLICATION_FILES X SYNP (offline)
SYNX (online)

(see note 2)

RESET_REPLICATION_TARGET

REUSE X SYNP
SECURITY X SYNP (offline)
SYFMAX X SYNP (offline)
SYNX (online)
Notes:

|
1. Function requires exclusive access to the database container files.

2. Inaddition, ADADBM or ADAFDU checkpoints are generated (also in offline mode) to indicate
the system file numbers deleted or generated.

3. In addition, an ADABCK checkpoint is generated, indicating the RBAC system file number.

Control Parameters

The following control parameters are available:

ADD_CONTAINER

ADD_CONTAINER = keyword
[,BLOCKSIZE=number[K]]
,SIZE = number [B|M]

The ADD_CONTAINER function adds a new container file to an existing Associator or Data
Storage dataset in accordance with the keyword used. The keyword can take the values ASSO or
DATA .

The new container file may be allocated on the same device as the current container files or it may
be allocated on a different device type.

Adabas Utilities 73

ADADBM (Database Modification)

BLOCKSIZE = number[K]

This parameter specifies the block size in bytes (or in kilobytes, if "K" is specified after the number)
of the new container file.

The default value for BLOCKSIZE is the block size of the last container file of the dataset in question
that is currently present in the database.

Example

ADD_FIELDS

ADD_FIELDS = number {field_specification|FDT}... [END_OF_FIELDS]

The ADD_FIELDS function adds one or more new fields to the end of the file defined by ‘number".
Specifying a LOB file is not permitted. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

Note: It is not possible to add derived descriptors using ADADBM - you should use the
utility ADAINV to do this instead.

field_specification
The field specification list is entered in the same way as the FDT input in ADAFDU:

lTevel-number, name [,length] [,format] [(,option)...]
The first field to be added must be a level-one field.

The NN option is not permitted. DE is only permitted when the Adabas nucleus is active and to-
gether with the NU or NC option. Otherwise use the ADAINV utility to give the new fields
descriptor status. UQ is only permitted together with the DE option.

Note: When you add system-generated fields (fields with the field option SY) to a file, these

fields have null values in the records that are already in the database - this is the same be-
haviour as for fields without the SY option.

74 Adabas Utilities

ADADBM (Database Modification)

FDT

This parameter displays the FDT of the file to which the fields are to be added.

Example

adadbm: add_fields=12
adadbm: fdt

Field Definition Table:

Level I Name I Length I Format I

Options

1 I AA I 15 I A I
1 I AB I 4 I F I
1 I AC I 8 I A I
1 I CD I I I
2 I AD I 20 I A I
2 I AE I 20 I A I
2 I AF I 10 I A I
1 I AG I 2 I U I
1 I AH I 1 I A I
1 I AT I 1 I A [
1 I A 1 6 I U I
1 I AK I I [
2 I AL I 3 I A I
2 I AM I 4 I P I

DE,UQ,NU
FI
DE

DE,NU
NU
DE,NU
NU
DE,FI

NU

SP

SP

SP

adadbm: 01,dd,1,a
adadbm: 01,gr

adadbm: 02,91,20,a,fi
adadbm: fdt

Field Definition Table:

Level I Name I Length I Format I

Options

Ad (5 = 6) U
Ad 3 - 4) U
A 1 - 2) U
A 1 - 20 A
Flags

1 I AA I 15 I A I
1 I AB I 4 I F [
1 I AC I 8 I A I

DE,uQ,NU
FI
DE

Adabas Utilities

75

ADADBM (Database Modification)

1 I CD I I I I
2 I AD I 20 I A I DE,NU I SP
2 I AE I 20 I A I NU I
2 I AF I 10 I A I DE,NU I
1 I AG I 2 I U I NU I SP
1 I AH I 1 I A I DE,FI I
1 I AT I 1 I A I FI I
1 I A I 6 I U I NU I SP
1 I AK I I I I
2 I AL I 3 I A I NU I
2 I AM 1 4 I P I NU,MU I
1 I DD I 1 I A I I
1 I GR I I I I
2 I Gl I 20 I A I FI I
Type I Name I Length I Format I Options I Parent field(s) Fmt
SUPER I AN I 4 I B I NU I Ad (5 = 6) U
I I I I I Ad (3 = 4) U
SUPER I A0 I 22 I A I NU I AG 1 - 2) U
I I I I I AD 1 - 20 A

adadbm: end_of_fields
%ADADBM-T1-FUNC, function ADD_FIELDS executed

ALLOCATE

Depending on the keyword specified (AC, DS, NI or UI), the ALLOCATE function increases the
Normal Index (NI), Upper Index (UI), Address Converter (AC) or Data Storage (DS) by a given
size. Each extent for the required type is checked to see whether it can be extended or not. A new
extent is created if none of the current extents can be extended.

This function lets the DBA override the automatic extension method and can be used to preallocate
smaller or larger extents. This can be useful when adding a large number of records. Exclusive
control of the file is NOT required for this function.

76 Adabas Utilities

ADADBM (Database Modification)

FILE = number

This parameter specifies the file to be extended.

RABN = number

This parameter specifies the allocation start RABN. For NI or Ul allocation for a LOB file, the block
size of the RABN specified must be less than 16 KB. For DS allocation for a LOB file, the block size
of the RABN specified must be 32 KB.

Example

adadbm: allocate=ni, file=11l, size=100b
%ADADBM-T-ALLOC, 100 NI blocks allocated (611 - 710)

adadbm: allocate=ds, file=11, size=10
%ADADBM-T-DEALLOC, 2560 DS blocks allocated (245 - 2804)

BT

This function is used to set or clear the NOBT flag for an existing file. Specifying a LOB file is not
permitted. The keyword can take the values YES or NO. It is not permitted to set BT=NO for files
that are primary files of referential constraints. This function can only be executed in offline mode.

FILE = number

This parameter specifies the file for which the NOBT flag is to be set/cleared.

Examples

adadbm db=12 bt=yes,file=11 ; clear the NOBT flag for file 11
adadbm db=12 bt=no,file=11 ; set the NOBT flag for file 11
CHANGE

CHANGE = number, FIELD = string, LENGTH = number

This function changes the standard length of a field in the file specified by number. Specifying a
LOB file is not permitted. The length of fixed storage fields (option FI) and floating point fields
(format G) cannot be changed.

Changing the length of a field does not lead to any modifications within the Data Storage, but
may affect programs that use the standard length.

Fields defined with the option SY=OPUSER cannot be changed.

Adabas Utilities 77

ADADBM (Database Modification)

FIELD = string

This parameter specifies the field whose standard length is to be changed. The field must be defined
in the Field Definition Table for this file.

LENGTH = number
This parameter defines the new standard length of the field.

Example

adadbm: change=12, field=ac, len=11
%ADADBM-I-FUNC, function CHANGE executed

CHANGE_FIELDS
CHANGE_FIELDS = number {field_specification|FDT}... [END_OF_FIELDS]

The CHANGE_FIELDS function modifies one or more field specifications of the file defined by
‘number'. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

The changes that are allowed depend on the existence of records in the file. The following restric-

tions apply to all files:

® The field level number must not change;

® A group must remain a group;

" A periodic group must remain a periodic group;

® A field that is not a group or periodic group must not be converted to a group or a periodic
group.

The following additional restrictions apply to non-empty files:

® Field length: the new length must be compatible with the new field format and field options.

Such a change changes the behaviour of adabas commands in which the field length is not
specified in the format buffer;

" Field format: A may be changed to W and vice versa. It is the responsibility of the user to ensure
that the field contains UTF-8 values if the format is changed from A to W. After changing the
format from W to A, the field will contain UTF-8 values. Please note that the format specified
in the format buffer of Adabas commands must be identical to the format in the field definition

78 Adabas Utilities

ADADBM (Database Modification)

for A and W fields - therefore it may be necessary to adapt existing programs accordingly.
Other changes of the field format except for the change between A and W are not allowed.

* Field options: it is not allowed to add or remove the options DE, FI, HF, MU and UQ.

The following field option changes are allowed:

Old Field Options | New Field Options Comments
DT not set DT set, TZ not set or |No check is made to see whether the values in the database
set are compliant with the date/time edit mask specified. TZ may

not be set for edit mask names DATE, TIME and NATDATE.
Caution: Usually, the semantics of the field values defined
with the TZ option and the field values defined without the
TZ option are different: the field without the TZ value usually
contains local time values, whereas the field with the TZ value
contains UTC values. The field values are not updated
automatically; it is the user's responsibility to ensure that
necessary updates are made.

DT set DT not set Specifying a date/time edit mask for the field in the format
buffer is no longer allowed.

HF set HF not set The behaviour of cross-platform calls changes. The file must

HF not set HF set be empty to apply this change.

LA and LB not set|LA or LB set The behaviour of calls accessing the field with variable length

LA set LA not set, LB set changes.

LB set LB not set, LA set Only allowed if there is no LOB file defined for the file or if
the field is a descriptor of the parent of a derived descriptor.
The behaviour of calls accessing the field with variable length
changes.

NB not set NB set

NCand NN set |FI, NC, NU and NN |After this change, the field is no longer mandatory in the

not set format buffer for N1/N2 commands; if not specified, the field
gets the Adabas null value.

NCand NN set |NCset, NN notset |After this change, the field is no longer mandatory in the
format buffer for N1/N2 commands; if not specified, the field
gets the SQL null value.

NU set NC set Empty values are converted to NULL values. Note that NC
set -> NU not set because NU and NC are mutually exclusive.

NV set NV not set The behaviour of cross-platform calls changes.

NV not set NV set

SY not set SY set The behaviour of A1, N1 and N2 commands changes. The field
format must be compatible with the SY option. Note that no
check is made to ensure that the existing values are reasonable.

SY set SY not set The behaviour of Al, N1 and N2 commands changes.

Adabas Utilities

79

ADADBM (Database Modification)

Old Field Options |New Field Options Comments

TR not set TR set

TZ not set DT set | TZ set, DT unchanged | Values in the database will be converted from UTC to local
time when you specify a date/time edit mask.

TZ set TZ not set Values in the database are no longer converted from UTC to
local time when you specify a date/time edit mask.

field_specification
The field specification list is entered in the same way as the FDT input in ADAFDU:

Tevel-number, name [,length] [,format] [(,option)...]

The first field to be added must be a level-one field.

FDT

This parameter displays the FDT of the file to which the fields are to be added.
DBID

DBID = number

This parameter selects the database to be used.

. Note: Utility functions which require or allow the nucleus to be shut down need logical as-
signments for the data sets.

Examples

adadbm: dbid=76
%ADADBM-1-DBOFF, database 76 accessed offline

adadbm: dbid=76
%ADADBM-1-DBON, database 76 accessed online

80 Adabas Utilities

ADADBM (Database Modification)

DEALLOCATE

DEALLOCATE = keyword, FILE = number [,RABN = number],
SIZE = numberB

DEALLOCATE = AC, DS, Nl or Ul

Depending on the keyword specified (AC, DS, NI or Ul), this function releases a given amount of
space from the Address Converter (AC), Data Storage (DS), Normal Index (NI) or Upper Index
(Ul).

If too much space is allocated to an extent, either automatically or manually, the DBA can release
this space and return it to the Free Space Table (FST).

Deallocation is done for only one extent at a time. To release space from multiple extents, DEAL-
LOCATE has to be called several times.

FILE = number
This parameter specifies the file.
RABN = number

This parameter specifies the first RABN to be deallocated. If this parameter is omitted, deallocation
starts at the end of the last extent.

SIZE = numberB
This parameter specifies the size of the area to be deallocated, in blocks.
Example

adadbm: deallocate=ni, file=11, size=100Db
%ZADADBM-I-DEALLOC, 100 NI blocks deallocated (611 - 710)

adadbm: deallocate=ni, file=11, size=10b
%ADADBM-TI-DEALLOC, 10 NI blocks deallocated (323 - 332)

Adabas Utilities 81

ADADBM (Database Modification)

DEFINE_REFINT

DEFINE_REFINT = number constraint_specification

This function adds a referential constraint to the file 'number’, which contains a foreign key. The
syntax for the constraint is the same as that used in the FDT file for ADAFDU and is described in
Administration, FDT Record Structure, Referential Constraints. The constraint is also included in the

FDT of the primary file, therefore, the constraint name must not already be defined in the primary
file.

Adding a referential constraint is not allowed if the file specified as the primary file is defined
with PGM_REFRESH=YES.

If there are violations of the referential integrity, adding of the constraint will fail - no updates are
performed on the data of the file in order to establish referential integrity.

DELCP

DELCP = { * | ([absolute-date] [,[absolute-datell) !}
This function deletes checkpoint records from the checkpoint file.

If an asterisk *' is entered, all checkpoint records are deleted.

Examples

adadbm: delcp=13-N0OV-2006:15:09:48
%ADADBM-I-DELCP, 1 record deleted from CHECKPOINT file

adadbm: delcp=(13-NOV-2006:15:09:48,)
%ADADBM-I-DELCP, 81 records deleted from CHECKPOINT file

adadbm: delcp=(,14-NOV-2006:14:37:24)
%ADADBM-T1-DELCP, 41 records deleted from CHECKPOINT file

adadbm: delcp=(14-NOV-2006:14:37:25,14-N0V-1996:14:38:15)
%ZADADBM-I-DELCP, 42 records deleted from CHECKPOINT file

adadbm: delcp=*
%ADADBM-T1-DELCP, 20 records deleted from CHECKPOINT file

82 Adabas Utilities

ADADBM (Database Modification)

DELETE
DELETE = (number [-number][,number[-number]]...)

The DELETE function deletes one or more files or ranges of files from the database and returns
all space which was allocated for this file to the Free Space Table (FST). LOB files specified are ig-
nored, but the LOB files assigned to all base files specified are deleted too. There must not be a
referential constraint between a file that is to be deleted and another file, which is not specified.
Deletion of system files is not allowed.

Note: If you want to stop using Adabas-to-Adabas replication, and therefore want to delete

the replication system files, you must use ADADBM REMOVE_REPLICATION, not the
DELETE FUNCTION.

ADADBM does not request confirmation of the files to be deleted, i.e. care should be taken when
entering the file numbers.

Example

adadbm: delete=(4-11,14)
LADADBM-T-DELETED, file 11 deleted
%ADADBM-I-DELETED, file 14 deleted

DELETE_DATABASE
DELETE_DATABASE = (keyword [,keywordl)

The DELETE_DATABASE function deletes a database. Depending on the keyword specified
(CONTAINER or FULL), either just the containers are deleted, or the database directory and its
contents are deleted.

If you specify the keyword CONTAINER, the container files and the DBID entry in the [DB_LIST]
section of the ADABAS.INI file will be deleted. If you specify the keyword FULL, the database
directory and all of its contents will be deleted.

If the database you want to delete is encrypted, you can also remove the Key Encryption Key
(KEK) for that database by specifying the 'KEK' keyword.

@ Caution: Deleting the Key Encryption Key for an encrypted database renders all backups

of that database useless because you cannot restore from them without the key.

Adabas Utilities 83

ADADBM (Database Modification)

Examples:

adadbm: dbid=12 delete_database=container

The containers of the database with the DBID 12 will be deleted.

adadbm: dbid=12 delete_database=(container, kek)

The containers and Key Encryption Key (KEK) of the encrypted database with the DBID 12 will
be deleted.

DISPLAY

DISPLAY = UCB

The DISPLAY function displays the utility communication block. This function can also be executed
during a pending AUTORESTART.

Example:

adadbm: display=uchb

Date/Time Entry Id Utility Mode Files
14-NOV-2006 14:38:40 233 adaopr UTO 11
14-NOV-2006 14:38:42 234 adabck ACC *

The display shows the following items:

DATE/TIME shows the date and time on which the given files were locked.

ENTRY ID shows the allocated identification of the entry.

UTILITY shows the name of the utility.

MODE shows the mode in which the files are being accessed.
FILES shows the file numbers of the files that are locked.

84 Adabas Utilities

ADADBM (Database Modification)

DROP_FIELDS
DROP_FIELDS = number {field_name|FDT}... [END_OF_FIELDS]

The DROP_FIELDS function drops one or more fields from the file defined by ‘number’ - the
specified fields are marked as no longer existing and they cannot be accessed. Specifying a LOB
file is not permitted. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

If you specify a group or a periodic group, all of the fields that belong to the group or periodic
group are dropped. You must not specify a field that is a descriptor or from which a descriptor is
derived - if you want to drop such a field, you must first release all corresponding descriptors
with ADAINV.

Once the DROP_FIELDS function has been executed, you can redefine the names of the dropped
fields, for example using ADADBM's ADD_FIELDS function.

Notes:

1. The DROP_FIELDS function does not physically remove the fields. You should not drop and
then add fields repeatedly, since this can cause the data records or the FDT of the file in question
to overflow.

2. ADAMUP is not able to load data into a file that contains the same visible fields but which
contains different dropped fields.

FDT
This parameter displays the FDT of the file from which the fields are to be dropped.

DROP_LOBFILE
DROP_LOBFILE = number «

The number must specify the file number of a base file with an empty assigned LOB file to be de-
leted.

DROP_LOBFILE is not allowed if the assigned LOB file is not empty.

Adabas Utilities 85

ADADBM (Database Modification)

DROP_REFINT
DROP_REFINT = number, NAME {=|:} constraint_name

The function removes a referential constraint from the file specified by number', which contains
the foreign key. The constraint is also removed from the FDT of the primary file.

EXTEND_CONTAINER
EXTEND_CONTAINER = keyword, SIZE = number [B|M]

The EXTEND_CONTAINER function extends the last Associator, Data Storage or WORK container
file defined for the database in accordance with the keyword used. The keyword can take the
values ASSO, DATA or WORK.

Note: The WORK container can only be extended in the offline mode.

SIZE = number [B|M]

This parameter specifies the size of the expansion area in blocks (B) or megabytes (M). By default,
the size is in megabytes.

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the ADD_FIELDS, CHANGE_FIELDS or DEFINE_REFINT
parameters.

NEW_DBID
NEW_DBID = number

This function is used to change the identifier of the database in use. The new identifier may not
already be in use by another active database.

/), Important: The purpose of the NEW_DBID parameter is to change the DBID stored in the
ASSO1 (GCB RABN). Using the NEW_DBID parameter will NOT create a new database.

86 Adabas Utilities

ADADBM (Database Modification)

Possible use case for NEW_DBID usage:

A database backup of database 100 gets restored into an existing (!!!) database 101. I.e. the database
101 needs to be created first either with adafrm or crdemodb. Let environment variable BCK001
point to the backup file of database 100.

Run
adabck db=101 restore=* NEW_DBID=101

Without the NEW_DBID parameter the adabck would abort.

NEWWORK

This function removes the existing WORK1 container file and replaces it with a new WORK1
container file. The new WORKI1 container file is allocated and then formatted, if required.

Before a new WORK can be created, the nucleus and all utilities using the database must have
been successfully terminated. Since this function requires the current WORK, it must not be deleted
before NEWWORK has been executed. TEMP1 must point to the new work file when this function
is used.

BLOCKSIZE = number(K]

This parameter specifies the block size in bytes (or in kilobytes, if "K" follows the number) of the
new container file.

The minimum block size allowed is 3072 and the maximum block size allowed is 32768.

In addition to these minimum and maximum values, the following size restrictions apply in gen-
eral to the block sizes for ASSO and WORK:

MAX (ASSOBLS) < WORKBLS

where MAX(ASSOBLS) represents the largest ASSO block size and WORKBLS represents the
WORK block size.

The default value for BLOCKSIZE is the block size of the old WORK file.

Adabas Utilities 87

ADADBM (Database Modification)

PGM_REFRESH
PGM_REFRESH = keyword, FILE = number

This function is used to disable or enable refreshing an Adabas file inside an application program
with an E1 command (ISN =0, CID = BLANK). Specifying a LOB file is not permitted. The keyword
can take the values YES or NO. It is not allowed to set PGM_REFRESH=YES for files that are

primary files of referential constraints.
FILE = number

This parameter specifies the file for which refreshing is to be enabled/disabled.

RBAC_FILE

This function is deprecated. Use the ADARBA INITIALIZEfunction instead. .
RBAC_FILE = number

This function creates the RBAC system file and loads the initial security definitions.

This function makes use of the ADABCK restore functionality. The RBAC system file requires a
block size of 2K for the ASSO container, and a block size of 4K for the DATA container. If necessary,
corresponding extents are allocated automatically.

For further information please refer to ADABCK RESTORE.

Example

adadbm: rbac_file=200

RECORDSPANNING

This function is used to disable or enable record spanning for a file. The keyword can take the
values YES or NO. The RECORDSPANNING function can only be specified for a base file that
has a LOB file assigned.

88 Adabas Utilities

ADADBM (Database Modification)

FILE = number

This parameter specifies the file for which record spanning is to be enabled/disabled.

Examples

adadbm db=12 recordspanning=yes,file=9 ; enable record spanning for file 9
adadbm db=12 recordspanning=no,file=9 ; disable record spanning for file 9
RECOVER

RECOVER

This function returns lost space within the Associator and Data Storage to the Free Space Table
(EST).

Space can be lost by a non-successful termination of an Adabas utility.

Example

adadbm: recover
%ADADBM-I-FUNC, function RECOVER executed

REDUCE_CONTAINER
REDUCE_CONTAINER = keyword, SIZE = number B

The REDUCE_CONTAINER function deallocates free space at the end of the Associator or Data
Storage container defined for the database in accordance with the keyword used. The keyword
can take the values ASSO or DATA.

The requested number of blocks must not be in use at the end of the container specified. If the
complete space of one or more container extents is to be released, the container extents are removed.
Note that the message informing you that a container extent is removed is not displayed by
ADADBM if ADADBM is executed online - instead, it is included in the nucleus log.

If less blocks than requested are free at the end of the container, all free space at the end of the
container is deallocated, and the following warning is displayed:

Adabas Utilities 89

ADADBM (Database Modification)

%ADADBM-W-PREDCONT, not all requested blocks removed

SIZE = number B
This parameter specifies the size by which the container is to be reduced, in blocks.

REFRESH

REFRESH = (number [-number][,number[-number]]...)

This function resets the files specified by ‘number' to the state of zero records loaded. Only the
first extents for Normal Index, Address Converter and Data Storage are kept. The remaining extents
are returned to the Free Space Table (FST). The Upper Index is rebuilt and the unused Upper Index
extents are then returned to the Free Space Table. LOB files specified are ignored, but the LOB
files assigned to all base files specified are refreshed too. The primary file of a referential integrity
constraint may be refreshed only if the foreign file of the referential constraint is also refreshed.

ADADBM does not request confirmation of the files to be refreshed, i.e. care should be taken when
entering the file numbers.

This function is useful for clearing a test file in a test environment. This method is faster than de-
leting and reloading the file.

If the REMOVE_DROP function has been specified, dropped fields are removed from the FDT.

Example

adadbm: refresh=13
%ZADADBM-I1-REFRESH, file 13 refreshed

REMOVE_CONTAINER
REMOVE_CONTAINER = keyword

This function removes the last database container file from an existing Associator or Data Storage
data set in accordance with the keyword used. The keyword can take the values ASSO or DATA.

The container file to be removed must not be in use when this function is executed, i.e. all of the
blocks in the file must be free.

Before a container file can be removed, the nucleus and all of the utilities using the database must
have terminated successfully.

Note: If you remove a container, the corresponding entry for this container file in the DBn-
nn.INI file is deleted.

90 Adabas Utilities

ADADBM (Database Modification)

Example

adadbm: remove_container=data
%ADADBM-T1-DMCONREM, container DATA2 removed

REMOVE_DROP
[NOJREMOVE_DROP

If you specify REMOVE_DROP, subsequent REFRESH functions will remove dropped fields from
the FDT.

If you specifty NOREMOVE_DROP, subsequent REFRESH functions will not remove dropped
fields from the FDT.

The default is NOREMOVE_DROP.

Example

adadbm: remove_drop

adadbm: refresh=2
%ADADBM-T-REFRESH, file 2 refreshed
adadbm: refresh=3
%ADADBM-T-REFRESH, file 3 refreshed
adadbm: noremove_drop

adadbm: refresh=4
%ADADBM-T-REFRESH, file 4 refreshed

File 2 has been refreshed and dropped fields have been removed from the FDT. File 3 has been
refreshed and dropped fields have been removed from the FDT. File 4 has been refreshed and
dropped fields have not been removed from the FDT.

Note: REMOVE_DROP can only be used together with REFRESH. REFRESH deletes all records in

the file. Thus, the file is empty after REMOVE_DROP and REFRESH. A new ADACMP compress
with an FDT without the dropped fields is required to keep the data.

REMOVE_REPLICATION
REMOVE_REPLICATION
This function stops all replication processing and deletes all replication system files.

Note: This function is only relevant for customers who are using the Adabas Event Replic-

ator with Adabas - Adabas replication.

Adabas Utilities 91

ADADBM (Database Modification)

RENAME
RENAME = number, NAME {=|:} string

This function changes the name of a file or a database. 'number' is the number of the file whose
name is to be changed.

If 'number’ is 0, the name of the database is changed. When the ADABAS.INI file is in read-only
mode, the execution will be aborted and the name will roll back.

NAME {=|:} string

‘string’' is the new name of the specified file or database. If you specify an equals sign, the value
given for 'string' will be converted to upper case; if you specify a colon, no upper-case conversion
is performed.

Example

adadbm: rename=11, name=employee-file
%ADADBM-T-FUNC, function RENAME executed

RENUMBER
RENUMBER = (number, number)

This function changes the file number of a loaded Adabas file. If, however, the file's new number
already belongs to a loaded file, the numbers of these files are exchanged.

The first 'number" is the file number currently assigned to the file. The second ‘'number" is the new
file number to be assigned to the file.

Example:

adadbm: renumber=(12,14)
%ADADBM-I-RENUM, File 12 renumbered to 14
%ZADADBM-I-RENUM, File 14 renumbered to 12

92 Adabas Utilities

ADADBM (Database Modification)

REPLICATION_FILES
REPLICATION_FILES = (filel, file2, file3, file4)

This functions performs all of the necessary initialization steps for the Adabas - Adabas replication
and creates the replication system files.

filel
The metadata file.
file2
The replication transaction file.
file3
The replication command file.
filed
LOB file for the replication command file.

Notes:

1. This function is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas replication.

2. After having initialized the Adabas - Adabas replication, the Adabas nucleus will only work
after the Adabas Event Replicator has been installed - in particular, the replication exit is required.

3. The space required for the replication files is about 1 MB of ASSO space (small ASSO blocks
with block size <16 KB) and 5 MB of DATA space (block size 32 KB). If there is a high update
load or when a replication is in the status Recording, the replication system files can grow because
they store all of the update operations for the replicated files until they have been applied to
the target database.

RESET

RESET = UCB, IDENT = { (number [,numberl...) | * }

ucse

This function removes one or more entries from the utility communication block (UCB). This option
can also be used during a pending AUTORESTART.

The UCB is used to control access to certain resources (the whole database, one or more files, etc.)
within a database. It saves information about the Adabas utilities processing the database and the
resources attached to them.

An entry is made in the UCB each time a utility is granted access to a resource. This entry contains
information about the utility and the resources it locks. The utility automatically removes the entry
when the resource is no longer required. Please refer to the DISPLAY=UCB function of this utility
for information about how to display the contents of the UCB.

Adabas Utilities 93

ADADBM (Database Modification)

However, certain special conditions (e.g. an aborted ADAMUP) can cause entries to remain in the
UCB and keep allocated resources locked. The RESET function releases these resources by removing

one or more entries from the UCB.

IDENT = { (humber [,number]...) | * }

This parameter specifies the unique ID of the entry to be removed. *' removes all entries.

If the RESET UCB function is used offline, only *' may be specified.

Example

adadbm: reset=ucb, ident=233
%ADADBM-T-RESUCB1, 1 entry deleted from UCB

adadbm: reset=uch, ident=(235,234)
%ADADBM-T1-RESUCB, 2 entries deleted from UCB

adadbm: reset=ucb, ident=*
%»ADADBM-T-RESUCBI, 1 entry deleted from UCB

RESET_REPLICATION_TARGET

RESET_REPLICATION_TARGET = number

This function resets the replication target flag of Adabas files, after which they are handled as
normal files again. If you specify 0, the replication target flag of all replication target files is reset;
if you specify a file number, the replication target flag of the file with this file number is reset.

Notes:

1. This function is only relevant for customers who are using the Adabas Event Replicator with

Adabas - Adabas replication.

2. After performing this function, a replication to this replication target is no longer possible - if
the replication to this replication target is still active, a new update transaction on the replication
source will set the replication to status Error. If you want to replicate data to this replication

target again, a new initial state processing is required.

94

Adabas Utilities

ADADBM (Database Modification)

REUSE
REUSE = (keyword [,keywordl), FILE = number
The REUSE function controls the reuse of Data Storage space or ISNs by Adabas.

The File Control Block (FCB) for the specified file is modified to indicate the type of allocation
technique to be used when adding new records or moving updated records.

The valid keywords are [NO]DS and [NO]ISN.

If the DS keyword is specified, Adabas scans the Data Storage Space Table (DSST) in order to
locate a block with sufficient space. In this case, the first block found with sufficient space is used.

If the NODS keyword is specified, then all newly-added records, together with records that have
to be moved to another block (as a result of record expansion caused by updating), are placed in
the last used block in the Data Storage extent allocated to the file. If there is not sufficient space in
this block, the next block is used.

DS and NODS are mutually exclusive. The default is REUSE = DS.
If the ISN keyword is specified, Adabas may reuse the ISN of a deleted record.

If the NOISN keyword is specified, Adabas does not reuse the ISN of a deleted record for a new
record. Each new record will be assigned the next-highest unused ISN.

ISN and NOISN are mutually exclusive. The default is REUSE = NOISN.
FILE = number

This parameter specifies the file.

Example

adadbm: reuse=nods, file=11
%ADADBM-T1-FUNC, function REUSE executed

adadbm: reuse=(ds,isn), file=12
%ADADBM-T1-FUNC, function REUSE executed

Adabas Utilities 95

ADADBM (Database Modification)

SECURITY
SECURITY = keyword

The SECURITY function sets the security mode of the database. The keyword can either be ACTIVE
or WARN.

ACTIVE

The ACTIVE keyword enables the security functionality. ACTIVE implies that only authenticated
users are allowed access to the database. Security violations, like authentication or authorization
errors, are protocolled as “Error” in the Audit-Trail.

In case of a authentication violation, access to the database is rejected.

A\ Important: Database security cannot be disabled once it has been activated.

WARN

The WARN keyword enables the security functionality. WARN implies that all users are allowed
access to the database. Security violations, like authentication or authorization errors, are protocolled
as “Warning” in the Audit-Trail. In case of a security violation, access to the operation is not rejected.

This mode is intended for transitioning applications to use a secure database. See also Nucleus user
exit 21.

A\ Important: The security mode WARN can only be changed to mode ACTIVE.

Default Mode
By default security is not enabled.

SYFMAX
SYFMAX = number, FILE = number

This parameter specifies the maximum number of values generated for a system generated multiple-
value field in the file specified. There is no explicit maximum value, but you should bear in mind,
that you can get a record overflow if the value is defined too high; the compressed data record
should also fit into one DATA block is SYFMAX values are defined for system generated multiple-
value fields. If the SYFMAX value is decreased and a record contains more values for system
generated fields than the new value of SYFMAX, the excess values are removed during the next
update operation for this record.

96 Adabas Utilities

ADADBM (Database Modification)

FILE = number

This parameter specifies the file.

Restart Considerations

ADADBM has no restart capability. At the end of each function, however, the system reports
whether execution was successfully completed or not. If it is not successfully completed, the
function has to be re-started.

Adabas Utilities 97

98

7 ADA

DCU (Decompression Of Data)

= Functional Overview
= Procedure Flow
= Checkpoints
= Control Parameters

B nput and OQUIPUE DAEA ..o
B REStAM CONSIABIALIONS ... oo e e e,

99

ADADCU (Decompression Of Data)

This chapter describes the utility "ADADCU".

Functional Overview

The decompression utility ADADCU decompresses records produced by the ADACMP, ADAMUP
and ADAULD utilities.

The output of the decompression utility ADADCU can be used as input for a program using
standard operating system file access methods.

It can also be used as input for the compression utility ADACMP once any required changes have
been made to the data structure or once the data definitions of the file have been changed. A
warning message is issued if the decompressed output file (DCUOUT file) created by the utility
is empty.

ADADCU also decompresses files produced with the SINGLE option of the utilities ADAULD
and ADACMP, but no parameter is required since this can be determined by the utility.

With ADADCU, the following functions are available:
® Complete records can be decompressed to the formats and lengths described in the FDT. A one-

byte count field precedes each multiple-value field or periodic group in the output record.

® LOB field values can also be stored in separate files; the generated file names are put into the
decompressed records.

" Several fields can be decompressed.

If several fields are decompressed, the fields can be re-arranged within a record, i.e. the record

structure may be changed as follows:

* Field lengths can be changed;

* Field formats can be changed;

" Space can be allocated for subsequent addition of new fields using the literal element or blank
element.

If the utility writes records to the error file, it will exit with a non-zero status.

This utility is a single-function utility. For more information about single- and multi-function
utilities, Adabas Basics, Using Utilities in the Adabas documentation.

100 Adabas Utilities

ADADCU (Decompression Of Data)

Procedure Flow

LOB Data

Adabas Utilities 101

ADADCU (Decompression Of Data)

DCULOB is a directory where LOB values are stored in separate files. The sequential files DCUDTA
and DCUERR can have multiple extents. For detailed information about sequential files with
multiple extents, see Adabas Basics, Using Utilities in the Adabas documentation.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Compressed DCUDTA |Disk (* see note) |Output of ADACMP or ADAULD
data records
Rejected data DCUERR |Disk (* see note) |Output of ADADCU
Output data FDT DCUFDT |Disk (* see note) |Output of ADADCU
Utilities Manual
Decompressed records| DCUOUT | Disk (* see note) | Utilities Manual
LOB data DCULOB |Disk Utilities Manual
Control statements stdin Utilities Manual
ADADCU messages |stdout Messages and Codes

| Note: (*) A named pipe can be used for this sequential file.

Checkpoints

The utility writes no checkpoints.

102 Adabas Utilities

ADADCU (Decompression Of Data)

Control Parameters

The following control parameters are available:

D [NOIDCUFDT
D [NOIDST
FDT
FIELDS {field_specification | FDT},...[END_OF_FIELDS | .]
D [NOJLOWER_CASE_FIELD_NAMES
D MAX_DECOMPRESSED_SIZE = number [K|M]
D MUPE_C_L = {1]2]4)
MUPE_OCCURRENCES
D [NOINULL_VALUE
D NUMREC = number
D RECORD_STRUCTURE = keyword
SKIPREC = number
D TARGET_ARCHITECTURE = (keyword[,keyword[,keyword]l])
D [NOJTRUNCATION
TZ {=|:} [timezone]
D [NOJUSERISN

WCHARSET = char_set

Adabas Utilities 103

ADADCU (Decompression Of Data)

[NOJDCUFDT
[NOJDCUFDT

If this option is set to DCUFDT, the FDT information of the decompressed records is written to
the sequential file DCUFDT. The default is NODCUFDT.

If you have used the FIELDS parameter (see below), the fields are written to the sequential file
DCUEFDT in the order specified in FIELDS. Thus, the fields in DCUFDT might be in a different
order to those in the original FDT.

[NOJDST
[NOIDST

The parameter DST is required if a daylight saving time indicator is to be provided for date/time
fields with the option TZ. The daylight saving time indicator will be appended behind the date/time
value as a 2-byte integer value (format F) containing the number of seconds to be added to the
standard time to get the actual time (usually 0 or 3600).

This parameter is required if there are records containing date/time values with the option TZ in
the hour before the time is switched back to standard time, otherwise these values are written to
the error file.

The default is NODST.

Notes:

1. The DST parameter is ignored if the FIELDS parameter is specified. In this case, you must specify
a D element for fields with the daylight saving time indicator.

2. The DST parameter is not compatible with the RECORD_STRUCTURE = NEWLINE_SEPAR-
ATOR parameter because the daylight saving indicator in format F contains non-printable
characters.

FDT
FDT

This parameter displays the FDT of the file containing the compressed records.

104 Adabas Utilities

ADADCU (Decompression Of Data)

FIELDS
FIELDS {field_specification | FDT},...[END_OF_FIELDS | .]

This parameter is used to specify a subset of fields given in the FDT and their format and length.
This means that the decompressed records created do not have to contain all of the fields given
in the FDT, or that fields can be decompressed with a different format or length. The syntax and
semantics are the same as for the format buffer, with the exception that you can also specify an R-
element (for LOB references) if the decompressed record contains the name of a file containing
the LOB value instead of the LOB value itself.

While entering the specification list, the FDT function can be used to display the FDT of the file
to be decompressed. The specification list can be terminated or interrupted by entering
END_OF_FIELDS or ".". The "." option is an implicit END_OF_FIELDS and is compatible with the
format buffer syntax. FIELDS or END_OF_FIELDS must always be entered on a line by itself,
whereas the ".' may be entered on a line by itself or at the end of the format buffer elements. Pro-
cessing may be continued after setting any option or parameter by entering FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

Example

adadcu: fields

adadcu: ; This is a comment line
adadcu: AA,AB,6,A,AC,P ; - inline comment -
adadcu: AD,AF,CBC,CB1-N . ; implicit END_OF_FIELDS

Field AA is output with default length and format, field AB with 6 byte alphanumeric and field
AC with defaultlength packed. Fields AD and AF are output in default length and format, followed
by the one-byte binary multiple field count of field CB and all its occurrences.

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the FIELDS parameter.

Adabas Utilities 105

ADADCU (Decompression Of Data)

MAX_DECOMPRESSED_SIZE
MAX_DECOMPRESSED_SIZE = number [K|M]

This parameter specifies the maximum size of a decompressed record in bytes, kilobytes or
megabytes, depending on the specification of "K" or "M" after the number. This parameter is inten-
ded to prevent very large decompressed record files from being created unintentionally (if you
didn’t consider that a file contained LOB data).

The default is 65536. This is also the minimum value.

Note: The exact definition of this parameter is the size of the I/O buffer required for the

largest decompressed record. Only multiples of 256 bytes are used for the I/O buffers, which
means that you must specify a value greater than or equal to the largest decompressed record
(including the preceding length field) rounded up to the next multiple of 256.

MUPE_C_L
MUPE_C_L = {1]|2|4}

If the data contain multiple-value fields or periodic groups, they are preceded by a binary count
field with the length of MUPE_C_L bytes in the decompressed data.

The default is 1.

MUPE_OCCURRENCES
MUPE_OCCURRENCES

This parameter is used to print a list of all multiple fields and periodic groups together with their
maximum occurrence. Such information is important because the decompressed data can become
very large; if the range specified is too large, it is even possible to exceed the limit for the size of
a decompressed record.

Example

The FDT of the file containing the compressed records is as follows:

LAALA L ALCNU
,PE,PE
,PA,2,A,NU
,PB,2,A,NU,MU
MM, 2,0, NU, MU
,X1,4,8B

— NN

MUPE_OCCURRENCES might produce something of the form:

106 Adabas Utilities

ADADCU (Decompression Of Data)

PE 4
PB 8
MM 12

%ADADCU-T-DCUREC, Number of decompressed records: 5023
%ADADCU-T-DCUIR, Number of incorrect records: 0

The file can then be decompressed as follows:

adadcu fields "AA,PA1-4,PB1-4(1-8),MM1-12,P,X1" <«

Note: A record is considered to be incorrect if it has too many occurrences of a periodic

group containing an MU field, and thus causes an internal overflow. It is not possible to
decompress this record including the periodic group.

[NOJNULL_VALUE

[NOINULL_VALUE

This parameter can be used to decompress records according to the standard FDT if the record
contains NC option fields and their status values (S-elements). It is required if one or more fields
have the null value, otherwise these records are put in the error file.

Example

If the FDT entry for field AAis: 1, AA, 2, A, NC, the effect of NULL_VALUE is as follows:

® NULL_VALUE: 1st output record (in hex) 00004141 (AA has a value), 2nd output record (in
hex) FFFF2020 (A A has the null value).

® NONULL_VALUE: 1st output record (in hex) 4141 (AA has a value), 2nd output record (in hex)
AA is null, therefore the record will be put into the error file.

The default is NONULL_VALUE.

NUMREC

NUMREC = number

This parameter specifies the number of records to be read from the input file and decompressed.
If NUMREC is not specified and SKIPREC is also not specified, all records are processed.

Adabas Utilities 107

ADADCU (Decompression Of Data)

Example

adadcu: numrec = 100

100 records are read and decompressed.

RECORD_STRUCTURE

RECORD_STRUCTURE = keyword

This parameter specifies the type of record separation used in the output file with the logical name
DCUOUT. The following keywords can be used:

Keyword

Meaning

ELENGTH_PREFIX

The records in the DCUOUT file are separated by a two-byte exclusive length
field. There is no separator character and the use of this format is not subject to
any restrictions.

E4ALENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte exclusive
length field.

ILENGTH_PREFIX

The records in the DCUOUT file are separated by a two-byte inclusive length
field. There is no separator character and the use of this format is not subject to
any restrictions.

[4LENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte inclusive
length field.

NEWLINE_SEPARATOR

The records in the DCUOUT file are separated by a new-line character. If the
DCUOUT file is to be used as input for ADACMDP, this keyword can only be
specified if the field values of the output do not contain the new-line character
(i.e. if there are only unpacked, alphanumeric and Unicode fields, and if the
alphanumeric and Unicode fields only contain printable characters).

This keyword and the USERISN parameter are mutually exclusive.

RDW

The records in the DCUOUT file are formatted such that they can be transferred
to an IBM host using the FTP site rdw option.

RDW_HEADER

Like RDW, for decompressed records that can be compressed on a mainframe
with HEADER=YES.

VARIABLE_BLOCKED

The records are stored as blocks. Each record begins with an inclusive four-byte
length field.

The default is ELENGTH_PREFIX.

108

Adabas Utilities

ADADCU (Decompression Of Data)

SKIPREC

SKIPREC = number

This parameter specifies the number of records to be skipped before decompression is started.

TARGET_ARCHITECTURE
TARGET_ARCHITECTURE = (keyword[,keyword[,keyword]])

This parameter specifies the format (character set, floating-point format and byte order) of the
output data records. The following keywords can be used:

Keyword Group Valid Keywords
Character set ASCII
EBCDIC

Floating-point format|IBM_370_FLOATING
IEEE_FLOATING

VAX_FLOATING
Byte order HIGH_ORDER_BYTE_FIRST

LOW_ORDER_BYTE_FIRST

If no keyword of a keyword group is specified, the default for this keyword group is the keyword
that corresponds to the architecture of the machine on which ADADCU is running.

Note: The FDT is always output in ASCII format.

Example

If the output records are to be decompressed into IBM format, the user must specify the following:

TARGET_ARCHITECTURE = (EBCDIC, IBM_370_FLOATING, HIGH_ORDER_BYTE_FIRST)

Adabas Utilities 109

ADADCU (Decompression Of Data)

[NOJTRUNCATION
[NOJTRUNCATION
This option enables or disables the truncation of alphanumeric field values.

NOTRUNCATION is the default. In this case, all the records with truncated alphanumeric field
values are written to the error file.

Numeric values may not be truncated, and the value must fit into the standard or specified length.
If truncated numeric values occur, the records concerned are written to the error file.

TZ
TZ {=]:} [timezone]

The specified time zone must be a valid time zone name that is contained in the time zone database
known as the Olson database (https://www.iana.org/time-zones). If a time zone has been specified,
this time zone is used for time zone conversions of date/time fields with the option TZ.

The defaultis UTC, which is used internally to store date/time fields with option TZ; no conversion
is required.

If you specify an empty value, no checks are made to ensure that date/time fields are correct.

| Note: The time zone names are file names. Depending on the platform, these file names

may or may not be case sensitive. Also, the time zone names, depending on the platform,
may or may not be case sensitive.

Examples:

tz:Europe/Berlin

This is correct on all platforms.

T/=Europe/Berlin

With this specification, TZ is converted to upper case EUROPE/BERLIN. This is correct on Windows,
because file names are not case sensitive on Windows, but it is not correct on Linux, because Linux
file names are case sensitive.

110 Adabas Utilities

https://www.iana.org/time-zones

ADADCU (Decompression Of Data)

[NOJUSERISN
[NOJUSERISN

This parameter indicates whether the ISN is to be output together with each decompressed record
or not. The user can specify whether the ISN currently assigned to the record is to be output with
the decompressed data or whether it is to be omitted. If the user intends to reload the file with the
same ISNs, the USERISN option must be set.

This parameter cannot be specified if RECORD_STRUCTURE=NEWLINE_SEPARATOR is specified.
If this parameter is omitted, the ISN is not output with each record.

NOUSERISN is the default.

Example

adadcu: userisn

The ISN is output with each record.

WCHARSET

WCHARSET = char_set

This parameter specifies the default encoding used in the decompressed file based on the encoding
names listed at http://www.iana.org/assignments/character-sets - most of the character sets listed
there are supported by ICU, which is used by Adabas for internationalization support.

Input and Output Data

The input for ADADCU must be a file containing compressed records such as those output by the
unload utility ADAULD or by the compression utility ADACMP.

ADADCU decompresses each input record in accordance with the FIELDS specifications and
writes the resulting record to the file with the logical name DCUOUT. The records are written in
variable-length format. By default, the records are separated by a two-byte exclusive length field
(see the parameter RECORD_STRUCTURE in this section for more detailed information).

If USERISN is specified, the data record is preceded by its ISN in the form of a four-byte binary
number.

Adabas Utilities 111

http://www.iana.org/assignments/character-sets

ADADCU (Decompression Of Data)

ADADCU Output

The sequential file DCUFDT (field definition information of the decompressed records) can be
used as input for the file definition utility ADAFDU or for the compression utility ADACMP.

Rejected Data Records
Any records rejected by ADADCU are written to the ADADCU error file. The contents of this error

file should be displayed using the ADAERR utility. Do not print the error file using the standard
operating system print utilities since the records contain unprintable characters.

Restart Considerations

ADADCU does not have a restart capability. An interrupted ADADCU run must be re-executed
from the beginning.

ADADCU does not update the database, therefore, no considerations regarding the status of the
database need to be made before re-executing an interrupted ADADCU execution.

112 Adabas Utilities

8

ADAERR (Error File Report)

Functional Overview

Procedure Flow
Checkpoints
Control Parameter ..
Example

Rejected Data RECOIASottt

13

ADAERR (Error File Report)

This chapter describes the utility "ADAERR".

Functional Overview

The ADAERR utility displays the contents of error files generated by the utilities

ADACMP
ADADCU
ADAINV
ADAMUP
ADAREC

This utility is a single-function utility. For more information about single- and multi-function
utilities, Adabas Basics, Using Utilities in the Adabas documentation.

114 Adabas Utilities

ADAERR (Error File Report)

Procedure Flow

ADAERR
Error Data
Data Set Environment Storage Medium |Additional Information
Variable/
Logical Name
Error data ERRIN Disk (* see note)

Error messages

stdout / SYSOUTPUT

Checkpoints

The utility writes no checkpoints.

Control Parameter

The following control parameter is available:

D [NOIDUMP

Adabas Utilities

15

ADAERR (Error File Report)

[NOJDUMP
[NOIDUMP

If NODUMP is specified, only a description (length of record, ISN of the record etc.) of each error
record will be output, but not the actual record content. See the section Rejected Data Records in
this section for information on the contents of the error records.

If DUMP is specified, the record content will be dumped in addition to the record description. For
ADACMP, the decompressed record will be dumped, whereas for ADADCU the compressed record
will be dumped.

The default is NODUMP.

Example

$ adaerr

%ADAERR-T-STARTED, 11-0CT-2006 18:59:20, Version 6.1.1
%ZADAERR-T-RECNOTF, Record NOT found for ISN 317 in file 49
%AADAERR-T-PLOGRB, from record 1 in block 6 on PLOG 1
%AADAERR-T-TOCNT, 1 I0 on dataset ERRIN
%ZADAERR-T-TERMINATED, 11-0CT-2006 18:59:20, elapsed time: 00:00:01

Rejected Data Records

Any records rejected by the following utilities are written to the error file in variable-length format.

= ADACMP
= ADADCU
= ADAINV
= ADAMUP
= ADAREC

The structure of the error records is contained as a header file iodesam.h in the subdirectory
“Adabas/inc” of the installation directory on both Windows and Linux.

116 Adabas Utilities

9 ADAFDU (File Definition)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 118
B PIOCEAUIE FIOW ...t et e 119
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 121
B CONEIOl PArAMEIEIS ... e ettt e 121
B XAMIDIES L.ttt 134

"7

ADAFDU (File Definition)

This chapter describes the utility "ADAFDU".

Functional Overview

The file definition utility ADAFDU defines a new base file and/or a LOB file in a database. It does
not require the Adabas nucleus to be active.

The field definitions for a base file, including special descriptor definitions and referential integrity
definitions for foreign keys, are read from the sequential file FDUFDT; the field definition of a
LOB file is predefined. Additional input for ADAFDU is provided by parameters.

| Note: If the new file contains collating descriptors, they are always created with ICU Version
5.4.

See Administration, FDT Record Structure in the Adabas on Windows and for Linux and Cloud
documentation, for information about the syntax and use of the data definitions to define the lo-
gical structure of the file in the database.

See Administration, Loading And Unloading Data, File Space Estimation for information about formulae
for calculating the Associator and Data Storage space requirements for a file.

This utility is a single-function utility. For more information about single- and multi-function
utilities, please see Adabas Basics > Using Utilities > Single- and Multi-function utility in the Adabas
on Windows and for Linux and Cloud documentation.

118 Adabas Utilities

ADAFDU (File Definition)

Procedure Flow

Field Definitions

Offline Mode

If the nucleus is not active, ADAFDU itself creates the new file in ASSO and DATA

Adabas Utilities 119

ADAFDU (File Definition)

Field Definitions

Online Mode

If the nucleus is active, ADAFDU calls the nucleus to create the new file in ASSO and DATA. In
this case, no checkpoint is written, but the file creation is logged in the database log, and in case
of a recovery, the file is created automatically.

120 Adabas Utilities

ADAFDU (File Definition)

Associator ASSOx |Disk
Data storage DATAx |Disk

FDT information | FDUFDT |Disk (* see note)

Protection Log |NUCPLG |Disk Utilities Manual
ADAPLP

Checkpoints

The utility writes a SYNP checkpoint if it is performed offline. If the utility is performed online,
the file definition is written to the PLOG, a SYNX checkpoint is written.

Control Parameters

The following control parameters are available:

ACBLOCKSIZE

ACBLOCKSIZE = numberK

This parameter allows you to specify a block size for the allocation of the address converter extent.
Example:

acblocksize = 6k

The address converter will be allocated with a block size of 6 kilobytes.

If the database does not contain enough space with this block size, ADAFDU aborts.

Adabas Utilities 121

ADAFDU (File Definition)

ACRABN

ACRABN = number

This parameter specifies the RABN at which the space allocation for the Address Converter is to
start.

This parameter can be used to allocate the Address Converter to a given container file extent.

If this parameter is omitted, ADAFDU assigns the starting RABN.

ADAM_KEY
ADAM_KEY = key

If this parameter is specified, the file is defined as an ADAM file. The key can be either a descriptor
name or the keyword 'ISN'. If an ADAM key is used, it must be defined with the UQ option in
the FDT. It must not be a sub-, super-, phonetic or hyperdescriptor. It must not be a multiple-value
field or a field within a periodic group. It must not have the NU/NC option.

ADAM_OVERFLOW
ADAM_OVERFLOW = number

This parameter specifies the number of DATA overflow blocks for the file. Overflow blocks are
required in case ADAM-calculated blocks get full. The overflow blocks are taken from the end of
the file's DATA blocks.

File’s DSSIZE

ls——— Blocks used by ADGM ———|a+—— Overflow ——

At least one overflow block must be allocated.
The maximum is DSSIZE - 1.

Note: When checking the maximum value, and DSSIZE is specified in megabytes, it is as-

sumed that the Data Storage block size is 32 - independent of the actual value. If you want
to specify a larger value for ADAM_OVERFLOW, which is possible with a smaller Data
Storage block size, DSSIZE must be specified in blocks.

The default is 1.

122 Adabas Utilities

ADAFDU (File Definition)

ADAM_PARAMETER
ADAM_PARAMETER = number

This parameter specifies the number of consecutive ISNs to be stored in one block if the keyword
'ISN' is specified for the ADAM_KEY parameter.

If the ADAM key is a descriptor with fixed-point format, the parameter specifies the number of
consecutive values for one block. For other key formats, it specifies an offset into the values. See
Administration for more information.

A value may be specified in the range 1 to 10000.

The default value is 8.

ADD_LOBFILE
ADD_LOBFILE = (number, number)

The parameter ADD_LOBFILE is used to create a LOB file and assign it to an existing base file
that is specified by the first number, the base file must not yet have an assigned LOB file. A LOB
file, with the file number specified by the second number, is generated and assigned to the base
file, and the base file is enabled for LOB processing. A file with the specified file number must not
yet exist. The maximum number that can be specified is 32000. You can specify the parameters
describing the data storage, the address converter, the normal and upper index of the LOB file,
but the following should be taken into consideration:

= The block size for LOB file data blocks must be 32 KB.
= The block size for LOB NI blocks must be < 16 KB.

It is not possible to specify FILE if you specify ADD_LOBFILE, and vice versa.

Because there are some predefined requirements for a LOB file, not all the other ADAFDU para-
meters make sense in connection with ADD_LOBFILE, for example the ADAM_* parameters.
These parameters are ignored by ADAFDU when the LOB file is added.

ASSOPFAC
ASSOPFAC = number

This parameter specifies the padding factor to be used for the file's index. The number specified
is the percentage of each index block which is not to be used by a subsequent run of the mass update
utility ADAMUP. This padding area is reserved for future use if additional entries have to be added
to the block by the Adabas nucleus. This avoids the necessity of having to relocate overflow entries
to another block.

A value may be specified in the range 0 to 95.

Adabas Utilities 123

ADAFDU (File Definition)

A small padding factor (0 to 10) should be specified if little or no descriptor updating is expected.
A larger padding factor (10 to 50) should be specified if there is a large amount of descriptor up-
dating in which new descriptor values are created.

You can change the padding factor at a later time using the utility ADAORD.

The default padding factor is 5.
[NOIBT
[NOIBT

If NOBT is specified, this file will be a no-BT file, which means that modifications to this file are
not made within normal transaction logic, and all modifications are kept in the database even if
a transaction is backed out.

BT is the default.

. Note: The following points should be considered if the nucleus crashes:

® All database modifications for a no-BT file issued before the last ET command are applied to
the database.

" Jtis not defined whether database modifications for a no-BT file issued after the last ET command
are applied to the database or not.

[NO]JCIPHER
[NOJCIPHER
This option can be used to enable or disable data record ciphering.

The default is NOCIPHER.

CONTIGUOUS

CONTIGUOUS = ([AC] [,DS] [,NI] [,UI])

This parameter is used to control ADAFDU's space allocations. If specified, ADAFDU ensures
that only the first logical extent of the types specified is used.

By default, ADAFDU makes contiguous-best-try allocations.

124 Adabas Utilities

ADAFDU (File Definition)

DATAPFAC
DATAPFAC = number

This parameter specifies the padding factor to be used for the file's Data Storage. The number
specified is the percentage of each data block which is not to be used when subsequently adding
new records to the file with the mass update utility ADAMUP or with the Adabas nucleus. This
padding area is reserved for future use if any record in the block requires additional space as a
result of record updating by the Adabas nucleus. This avoids the necessity of having to relocate
the record to another block.

A value in the range 0 to 95 may be specified.

A small padding factor (0 to 10) should be specified if there is little or no record expansion. A larger
padding factor (10 to 50) should be specified if there is a large amount of record updating which
will cause expansion.

You can change the padding factor at a later time using the utility ADAORD.

The default padding factor is 5.

DBID

DBID = number

This parameter selects the database to be used.

DSBLOCKSIZE
DSBLOCKSIZE = numberK
This parameter allows you to specify a block size for the allocation of the data storage extent.

Example:

dsblocksize = 6k
Data storage will be allocated with a block size of 6 kilobytes.

If the database does not contain enough space with this block size, ADAFDU aborts.

Adabas Utilities 125

ADAFDU (File Definition)

DSRABN

DSRABN = number

This parameter specifies the RABN at which the space allocation for Data Storage is to start.
This parameter can be used to allocate Data Storage to a given container file extent.

If this parameter is omitted, ADAFDU assigns the starting RABN.
DSSIZE

A contiguous-best-try allocation is made unless CONTIGUOUS=DS has been specified.

For non-ADAM files, this parameter can be omitted; in this case Adabas calculates a reasonable
number of blocks to be used for Data Storage. If the size that is actually required is larger, the file
is automatically increased.

FDT

FDT

If this parameter is specified, the FDT contained in the sequential file FDUFDT is displayed.

FILE
FILE = number

This parameter is required when a base file is to be created; it specifies the file number to be assigned
to the file.

The 'number’ specified must not be currently assigned to another file in the database and must
not exceed the maximum file number defined for the database. The maximum number that can
be specified is 32000.

File numbers can be assigned in any sequence.

It is not possible to specify FILE if you specify ADD_LOBFILE, and vice versa.

126 Adabas Utilities

ADAFDU (File Definition)

[NOJFORMAT
[NOJFORMAT

This option is used to control whether the RABNs allocated for the file's index and Data Storage
are to be formatted or not. The RABNSs of the file's Address Converter are always formatted.

The default is NOFORMAT.

LOBFILE
LOBFILE = number [, LOBSIZE = number[B|M]]

If LOBFILE is specified, a LOB file with the specified number is generated and assigned to the
base file to be created, and the base file is enabled for LOB processing. A LOB file with the specified
file number must not already exist. The maximum number that can be specified is 32000. You
should take the following into consideration:

® The block size for LOB file data blocks will be 32 KB.

® The block size for LOB NI and UI blocks will be <16 KB.

® LOBSIZE specifies the size in Data storage of the LOB file, analogously to the parameter DSSIZE.

" Adabas calculates reasonable sizes for the Address converter, the normal and upper index of
the LOB file. If you want to specify these values yourself, you should create the base file first
without specifying LOBFILE, and then you should call ADAFDU again and add the LOB file
with the ADD_LOBFILE parameter.

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

MAXISN

MAXISN = number

This parameter specifies the highest ISN expected in the file. The file definition utility ADAFDU
uses this parameter to determine the amount of space to be allocated for the file's Address Con-
verter (AC). The default value for MAXISN is 5000.

A contiguous-best-try allocation is made unless CONTIGUOUS=AC has been specified.

Adabas Utilities 127

ADAFDU (File Definition)

| Note: The value is rounded up to the number of ISNs that fit into the Address converter

blocks required to store MAXISN ISNs in the Address converter, the exact value used as
MAXISN for the file is:

(MAXISN specified / (Address converter block size / 4) + 1) * (Address converter block size
/ 4) -1. For example, using an Address converter with a block size of 4KB, the default value
of 5000 is increased to (5000 / (4096 / 4) + 1) * (4096 / 4) -1 =5119.

128 Adabas Utilities

ADAFDU (File Definition)

NAME
NAME {=]:} string

This parameter specifies the name to be assigned to the file. This name will appear together with
data about this file in the database status report produced by the report utility ADAREP. A max-
imum of 16 characters are permitted. If you specify an equals sign, the value given for 'string’ will
be converted to upper case; if you specify a colon, no upper-case conversion is performed

NIBLOCKSIZE
NIBLOCKSIZE = numberK| (numberK,numberkK)

This parameter allows you to specify a block size for the allocation of the Normal Index. Note that
the Normal Index requires a block size >=16 KB for large index values > 253 bytes, while a smaller
block is allocated for descriptors with smaller descriptor values. The following must be taken into
consideration:

= If you specify one block size, the file is created with all normal index blocks having this size.

= If you specify two block sizes, one value should be < 16K, and one value should be >=16K. You
should also specify two values for NISIZE; the first value for NIBLOCKSIZE corresponds to the
first value of NISIZE, and the second value for NIBLOCKSIZE corresponds to the second value
of NISIZE.

Examples:

niblocksize = 6k

The normal index will be allocated with a block size of 6 kilobytes.

niblocksize = (8k,32k)
nisize = (1000b,10m)

The normal index will be allocated with 1000 blocks of block size 8 KB and 10 MB of block size 32
KB.

If the database does not contain enough space with this block size, ADAFDU aborts.

Adabas Utilities 129

ADAFDU (File Definition)

NIRABN

NIRABN = number| (number,number)

This parameter specifies the RABN at which the space allocation for the Normal Index is to start.
This parameter can be used to allocate the Normal Index to a given container file extent.

If two RABNs have been specified, one should have a block size < 16KB, and the other should
have a block size of >= 16KB.

If this parameter is omitted, ADAFDU assigns the starting RABNs.

If both NIBLOCKSIZE and NIRABN are specified, the block sizes of the RABNSs specified as
NIRABN must be equal to the values specified as NIBLOCKSIZE.

NISIZE

If the block size cannot be derived from the NIBLOCKSIZE or the NIRABN parameter, the first
value for NISIZE is used for blocks < 16KB, and the second value is used for blocks >= 16KB.

A contiguous-best-try allocation is made unless CONTIGUOUS=NI has been specified.

Examples:

adafdu: nisize = 100b

If the block size cannot be derived from the NIBLOCKSIZE or NIRABN parameter, 100 blocks
with block size < 16KB are allocated for the Normal Index.

adafdu: nisize = (10m,1000b)

If the block size cannot be derived from the NIBLOCKSIZE or NIRABN parameter, 10 MB of blocks
with block size < 16KB and 1000 blocks of block size >= 16KB are allocated for the Normal Index.

[NOJPGM_REFRESH
[NOJPGM_REFRESH

If PGM_REFRESH is specified, when the file loads, it can be refreshed by an E1 command, which
resets to a state of no loaded records.

The default is NOPGM_REFRESH.

Note: Referential constraint is not allowed if the file specified as the primary file is defined

with PGM_REFRESH=YES. Therefore, Response code 195 from ADABAS will come up
when PGM_REFRESH is enabled for primary file.

130 Adabas Utilities

ADAFDU (File Definition)

REUSE
REUSE = (keyword [,keyword])

The REUSE parameter controls the reuse of Data Storage space or ISNs by Adabas.
REUSE = [NO]DS

NODS causes all newly-added records, together with records that have to be moved to another
block (as a result of record expansion caused by updating) to be placed in the last used block in
the Data Storage extent allocated to the file. If there is not sufficient space in this block, the next
block is used.

If the DS keyword is specified, Adabas will scan the Data Storage Space Table (DSST) in order to
locate a block with sufficient space. In this case, the first block found with sufficient space will be
used.

The file control block for the specified file is modified to indicate the type of allocation to be used
when adding new records or moving updated records.

The default value is DS.
REUSE = [NO]ISN

If REUSE is set to NOISN, Adabas does not reuse the ISN of a deleted record for a new record.
Each new record will be assigned the next-highest unused ISN.

If REUSE is set to ISN, Adabas may reuse ISNs of deleted records. ISN reusage is done as follows:
when a new record is stored in the database, an Address Converter (AC) block is read and checked
for a free ISN. In order to keep the overhead for ISN reusage small, only one AC block is read - if
no free ISN is found in the AC block, handling is the same as when ISN reusage is switched off.

Note: Setting REUSE to ISN, does not necessarily mean that ISN reusage is actually done.

Because unsuccessful ISN reusage means an overhead for reading an additional AC block,
Adabas sets ISN reusage to inactive if the probability of finding a reusable ISN is small.
After deleting enough records, ISN reusage is then set to Active again.

The default value is NOISN.

Adabas Utilities 131

ADAFDU (File Definition)

Examples

adafdu: reuse = (isn, ds)

ISNs of deleted records can be reassigned to new records. The DSST is scanned for free space when
a record is added to the database or when an updated record is moved in the database.

adafdu: reuse = isn

Reuse of data storage and ISNs is allowed.

adafdu: reuse = <cr>

Reuse of data storage and no reuse of ISNs is specified. This is the default setting.

SYFMAX

SYFMAX = number

This parameter specifies the maximum number of values generated for a system generated multiple-
value field. There is no explicit maximum value, but you should bear in mind, that you can get a
record overflow if the value is defined too high; the compressed data record should also fit into
one DATA block is SYFMAX values are defined for system generated multiple-value fields.

The default value is 1.

UIBLOCKSIZE
UIBLOCKSIZE = numberK]| (numberK,numberK)

This parameter allows you to specify a block size for the allocation of the Upper Index. Note that
the Upper Index requires a block size >=16 KB for large index values > 253 bytes, while a smaller
block is allocated for descriptors with smaller descriptor values. The following must be taken into
consideration:

= If you specify one block size, the file is created with all normal index blocks having this size.

® If you specify two block sizes, one value should be < 16K, and one value should be >=16K. You
should also specify two values for UISIZE; the first value for UBBLOCKSIZE corresponds to the
first value of UISIZE, and the second value for UIBBLOCKSIZE corresponds to the second value
of UISIZE.

132 Adabas Utilities

ADAFDU (File Definition)

Examples:

uiblocksize = 6k

The upper index will be allocated with a block size of 6 kilobytes.

uiblocksize = (8k,32k)
uisize = (1000b,10m)

The upper index will be allocated with 1000 blocks of block size 8 KB and 10 MB of block size 32
KB.

If the database does not contain enough space with this block size, ADAFDU aborts.

UIRABN

UIRABN = number| (number,number)

This parameter specifies the RABN at which the space allocation for the Upper Index is to start.
This parameter can be used to allocate the Upper Index to a given container file extent.

If two RABNs have been specified, one should have a block size < 16KB, and the other should
have a block size of >= 16KB.

If both UIBLOCKSIZE and UIRABN are specified, the block sizes of the RABNs specified as UIR-
ABN must be equal to the values specified as UIBLOCKSIZE.

If this parameter is omitted, ADAFDU assigns the starting RABN.
UISIZE

If the block size cannot be derived from the UIBLOCKSIZE or the UIRABN parameter, the first
value for UISIZE is used for blocks < 16KB, and the second value is used for blocks >= 16KB.

A contiguous-best-try allocation is made unless CONTIGUOUS=UI has been specified.

Adabas Utilities 133

ADAFDU (File Definition)

Examples

134 Adabas Utilities

ADAFDU (File Definition)

Example:

adafdu: dbid = 1, file = 9, maxisn = 55000, dssize = 2000b, dsrabn = 30629,
adafdu: uisize = 50b, nisize = 300D,
adafdu: assopfac = 20, datapfac = 10

File 9 is to be loaded. The maximum number of expected records preset for the file is 55000. 2000
blocks are allocated for Data Storage. The Data Storage allocation will start at RABN 30629. 50
blocks are allocated for the Upper Index. 300 blocks are allocated for the Normal Index. The padding
factor for the Associator is 20 percent. The padding factor for Data Storage is 10 percent.

Adabas Utilities 135

136

10 ADAFIN (File Information Report)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 138
B PIOCEAUIE FIOW ...t et e 139
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 140
B CONEIOl PArAMEIEIS ... e ettt e 140

137

ADAFIN (File Information Report)

This chapter describes the utility "ADAFIN".

Functional Overview

The file information utility ADAFIN displays

= the FDT,
® descriptor information, and

® the number of blocks in the Data Storage, Normal Index or Upper Index and their usage
of one or more selected files.

This utility is a multi-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

138 Adabas Utilities

ADAFIN (File Information Report)

Procedure Flow

Associator ASSOx Disk

Data storage DATAX Disk

Control statements |stdin Utilities Manual
ADAFIN messages|stdout Messages and Codes
Work WORK1 Disk

Adabas Utilities

139

ADAFIN (File Information Report)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

ADAM_DS = keyword

M DBID = number

DESCRIPTOR = { = | : }{ * | (string [,stringl...) }
FDT
M FILE = { * | (number [-number] [,number [-number]l]...) |}

D [NOJHISTOGRAM

USAGE = (keyword [,keyword [,keyword]])
ADAM_DS
ADAM_DS = keyword

This parameter can be used in conjunction with USAGE=DS for ADAM files. It selects the data
section of the ADAM file for which information is to be displayed. The following keywords can
be used:

Keyword Meaning

FULL All of the DS space is selected

ADAM Only the ADAM area is selected
OVERFLOW |Only the ADAM overflow area is selected

140 Adabas Utilities

ADAFIN (File Information Report)

DBID
DBID = number

This parameter selects the database to be used.

DESCRIPTOR
DESCRIPTOR = { = | : }{ * | (string [,stringl...) |}

This function defines the list of descriptors for which information is to be displayed. If more than
one file is selected, information may only be requested for all descriptors (DESCRIPTOR = *).

The DESCRIPTOR function can only be executed if the selected files are not opened for update
with the nucleus running. This function can only be selected in conjunction with the FILE parameter.

The DESCRIPTOR function does not synchronize against parallel updates (for example ADAINV
REINVERT).

Examples

adafin: file=13, descriptor=ca

Database 76, File 13 (MISCELLANEOUS) 27-0CT-2006 08:08:17

Descriptor CA , Format: A , Options: NU

min ma x ave
Length 1 233 20.59
ISNs per value 1 2 1.08
Values: different: 86 total: 93
ASSO-Blocks: NI : 2 Ul: 1

adafin: file=(11,12), descriptor=*
Database 1, File 11 (EMPLOYEES-NAT) 27-0CT-2006 08:09:39

Descriptor AA , Format: A , Options: UQ

min max ave
Length 8 8 8.00
ISNs per value 1 1 1.00
Values: different: 1,107 total: 1,107
ASSO-Blocks: NT: 5 Ul: 1

Adabas Utilities 141

ADAFIN (File Information Report)

Descriptor AE , Format: A , Options: None

min
Length 3
ISNs per value 1
Values: different: 804
ASSO-Blocks: NI: 4

Descriptor AH , Format: P , Options: NC

min
Length 4
ISNs per value 1
Values: different: 921
ASSO-BTocks: NI : 4

Descriptor AJ , Format: A , Options: NU

min
Length 3
ISNs per value 1
Values: different: 307
ASSO-Blocks: NI: 3

Descriptor AO , Format: A , Options: None

min
Length 6
ISNs per value 1
Values: different: 167
ASSO-Blocks: NI: 2

Descriptor AP , Format: A , Options: NU

min
Length 2
ISNs per value 1

142

Adabas Utilities

ADAFIN (File Information Report)

Values: different: 237 total:
ASSO-BTocks: NI: 3 Ul:
Descriptor AZ , Format: A , Options: NU,MU
min max
Length 3 3
ISNs per value 1 843
Values: different: 21 total:
ASSO-BTocks: NI: 2 Ul:
Super-Descriptor H1 , Format: B , Options: NU
Parent field(s): AU (1 - 2) U
Av (1 - 2) U
min max
Length 4 4
ISNs per value 1 93
Values: different: 259 total:
ASSO-BTocks: NI: 2 Ul:

Phonetic-Descriptor PH , Format: A , Options: None

Parent field(s): AE A

min max
Length 3 3
ISNs per value 1 33
Values: different: 608 total:
ASSO-Blocks: NT: 3 Ul:
Sub-Descriptor S1 Format: A , Options: None
Parent field(s): AO (1 - 4) A

min max
Length 4 4
ISNs per value 1 208
Values: different: 13 total:
ASSO-Blocks: NI: 2 Ul:

1,107

Adabas Utilities

143

ADAFIN (File Information Report)

Super-Descriptor S2 , Format: A , Options: None
Parent field(s): AO (1 - 6) A
AE (1 - 20) A

min ma x ave
Length 9 23 12.78
ISNs per value 1 5 1.05
Values: different: 1,052 total: 1,107
ASSO-Blocks: NI: 6 Ul: 1

Super-Descriptor S3 , Format: A , Options: NU,PE

Parent field(s): AR (1 - 3) A
AS (1 - 9) P
min ma x ave
Length 12 12 12.00
ISNs per value 1 25 2.15
Values: different: 1,567 total: 3,383
ASSO-Blocks: NI: 10 Ul: 1
Highest PE-occurrence: b
Database 1, File 12 (VEHICLES) 10-0CT-2006 14:30:39

Descriptor AA , Format: A , Options: UQ,NU

min ma X ave
Length 6 10 7.91
ISNs per value 1 1 1.00
Values: different: 772 total: 772
ASSO-Blocks: NI: 4 Ul: 1

Descriptor AC , Format: A , Options: None

min ma X ave
Length 1 8 7.74
ISNs per value 1 24 1.16
Values: different: 662 total: 773

144 Adabas Utilities

ADAFIN (File Information Report)

ASSO-Blocks: NI: 3

Descriptor AD , Format: A , Options: NU

Ul:

min
Length 2
ISNs per value 1
Values: different: 45
ASSO-Blocks: NI: 1

Descriptor AF , Format: A , Options: NU

min
Length 3
ISNs per value 1
Values: different: 68
ASSO-BTlocks: NI: 1

Descriptor AH , Format: A , Options: FI

min
Length 1
ISNs per value 169
Values: different:
ASSO-BTlocks: NI: 1

Super-Descriptor AO , Format: A , Options:

Parent field(s): AG (1 - 2) U
AD (1 - 20) A

min
Length 4
ISNs per value 1
Values: different: 180
ASSO-BTlocks: NI: 2

Total of 18 descriptors

Information about all descriptors in the specified files is displayed.

Adabas Utilities

145

ADAFIN (File Information Report)

FDT
FDT

This parameter displays the Field Definition Tables (FDTs) of the files selected with the FILE
parameter. This function can only be selected in conjunction with the FILE parameter.

Example

adafin: file=9, fdt
Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:11:42

Field Definition Table:

Level I Name I Length I Format I Options I Flags I Encoding
1 I AA I 8 I A I DE,UQ I I
1 I AB I I I I |
2 I AC I 20 I W I NU I I
2 I AE I 20 I W [NU [SP |
2 I AD I 20 I W I NU I I
1 I AF I 1 I A I FI I I
1 I AG I 1 I A I FI I I
1 I AH I 8 I U I DE I I
1 I Al I I I I I
2 I AT I 20 I W I NU,MU I I
2 I A0 I 20 I W I DE,NU I I
2 I AK I 10 I A I NU I I
2 I AL I 3 I A I NU I |
1 I A2 1 I I I I
2 I AN I 6 I A [NU I I
2 I AM I 15 I A I NU I I
1 I A0 I 6 I A I DE I SB,SP I
1 I AP I 25 I W I DE,NU I I
1 I AQ I I I PE I I
2 I AR I 3 I A I NU I SP I
2 I AS I 5 I P I NU I SP I
2 I AT I 5 I P [NU,MU I |
1 I A3 I I I I I
2 I AU I 2 I U I [SP I
2 I AV I 2 I U I NU I SP I
1 I AW I I I PE I |
2 I AX I 8 I U I NU I I
2 I AY I 8 I U [NU I |
1 I AZ 1 3 I A I DE,NU,MU I I
Type I Name I Length I Format I Options [Parent field(s) Fmt
COLL I CN 11,144 I I NU,HE I AE de__ PHONEBOOK
I I I I I PRIMARY

146 Adabas Utilities

ADAFIN (File Information Report)

SUPER I HI I 4 I B I NU I AU (1 2) U
I [I I I AV (1 2) U
SUB I S1 1 4 I A I I AO (1 4) A
SUPER I S2 1 26 I A I NU I AO (1 6) A
I I I I I AE (1 20) W
SUPER I S3 1 12 I A I NU,PE I AR (1 3) A
I I I I I AS (1 9) P
FILE

FILE = { * | (number [-number] [,number [-number]]...) }

This parameter selects one or more files from a database and displays information about these
files in accordance with the following parameter. Specifying FILE = * selects all files.

[NOJHISTOGRAM
[NOJHISTOGRAM

If the HISTOGRAM option is selected, a graphical overview of the descriptor-value length distri-
butions will be provided in all the information that is subsequently displayed by the DESCRIPTOR
function.

If HISTOGRAM is used, it must be specified before the DESCRIPTOR parameter.
Using the HISTOGRAM option does not lead to additional I/Os on the data sets.

The default is NOHISTOGRAM.

Example (with HISTOGRAM)

adafin: file=9, histogram, descriptor=ap
Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:12:44

Descriptor AP , Format: W , Options: NU

min ma X ave
Length 2 26 12.71
ISNs per value 1 75 4.61
Values: different: 240 total: 1,107
ASSO-BTocks: NI: 3 Ul: 1

Adabas Utilities 147

ADAFIN (File Information Report)

Histogram of descriptor value length for descriptor AP

Length | 25% 50% 75% 100%| Frequency

------- dp====c=========dfcc===c-c======dizc====c=c=c===dhz=====cc=======dhz=====c===
2 | | 1
3 |* | 22
5 | | 7
6 |* | 26
7 |****** | 124
8 |**** | 83
9 |****** | 117
10 |****** | 119
11 |*** | 67
12 |**** | 83
13 | * | 23
14 | | 47
15 & | 46
16 s | 46
17 |* | 29
18 I***** i 101
19 e 27
20 | * | 29
21 |* | 33
22 |* | 17
23 |* | 20
24 |* | 21
25 | | 5
26 |* | 14

adafin:

The information that is displayed has the following meaning:

Keyword (Meaning

Length |Each value n shown in this column indicates that there is a descriptor value with a length of n
bytes in the file.

The range of values in this column lies between the minimum (column "min") and maximum
(column "max") values shown in the table before the histogram.

Frequency | The value shown in this column indicates the number of descriptor values for the given descriptor
length.

The sum of the values in the frequency column is equal to the total number of values for the
descriptor in question.

If all of the descriptor values are of the same length, the histogram will be of an unusual type, e.g.:

148 Adabas Utilities

ADAFIN (File Information Report)

adafin: file=9, histogram, descriptor=aa

Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:15:16

Descriptor AA , Format: A , Options: UQ

min max
Length 8 8
ISNs per value 1 1
Values: different: 1,107 total:
ASSO-BTocks: NI: 5 Ul:

Histogram of descriptor value length for descriptor AA

Length | 25% 50% 75% 100%| Frequency
——————— dh====c===c=====dhz===cccccc====dhccc=-=cc=cc===dhcccc==-=ccccc==dhcccc=-===-
8 |**| 1 107

This histogram shows that the file only contains descriptor values that have a length of 8 bytes.

The file contains a total of 1107 values for the descriptor AA.

Example (with NOHISTOGRAM)

adafin: file=9, histogram, descriptor=ap

Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:14:24

Descriptor AP , Format: W , Options: NU

min ma x
Length 2 26
ISNs per value 1 75
Values: different: 240 total:
ASSO-Blocks: NI: 3 Ul:

Adabas Utilities

149

ADAFIN (File Information Report)

USAGE
USAGE = (keyword [,keyword [,keywordl])

Depending on the keyword specified, this parameter displays the percentage of used blocks in
the file.

Keyword | Meaning

DS Displays statistics of used blocks in the Data Storage;

NI Displays statistics of used blocks in the Normal Index;

Ul Displays statistics of used blocks in the Main/Upper Index.

Example

adafin: file=13, usage=ds

Database 76, File 13 (MISCELLANEOUS) 27-0CT-2006 08:16:18

DS - Blocks allocated = 50 , used = 49 , unused = 1
Records: Number = 179
Length: max = 1,991 , min = 260 , avg = 997 .47
0%: 0 blocks
5%: 0 blocks
10%: 0 blocks
15%: 0 blocks
20%: 0 blocks
25%: 0 blocks
30%: 0 blocks
35%: 0 blocks
40%: 0 blocks
45%: 0 blocks
50%: 0 blocks
55%: 0 blocks
60%: 0 blocks
65%: 0 blocks
7O/ g #5esosss 2 blocks
75%: 0 blocks
80%:** 1 block
85%:************* 6 b]OCkS
90%:***************************** 13 b]OCkS

95%:*** 27 b]OCkS

100%: 0 blocks

Information about the used data blocks of file 13 in database 76 is displayed. 50 DS blocks are al-
located, of which 49 are in use and 1 is unused. The total number of records is 179, with the record

150 Adabas Utilities

ADAFIN (File Information Report)

length varying between a maximum of 1991 and a minimum of 260. The average record length is
997.47. The following lines give an overview of the number of blocks that are used up to a given
level. The majority of the blocks (27) is used up to between 90% and 95%.

Example (for ADAM file)
adafin: file = 8

adafin: adam_ds = full
adafin: usage = ds

Database 30, File 8 (ADAM_FILE) 11-0CT-2006 12:08:57
ADAM key = FF ADAM parameter = 5 ADAM_DS = FULL
DS - Blocks used for ADAM = 94
Total overflow blocks = 1, used =1
Records: Number = 3863
In ADAM area= 3860 , ovfl = 3
Length: max = 9 , min = 9 , avg = 9.00
0Fg trsiseserivesds 10 blocks
B7%g i 4 blocks
10%: 0 blocks
15%: 0 blocks
20%: 0 blocks
25%: 0 blocks
30%: * 1 block
35%: 0 blocks
40%: 0 blocks
45%: 0 blocks
50%: * 1 block
55%: 0 blocks
60%: 0 blocks
65%: *hkkhkkhkhkhkhkkhkhkhhkhkhhkhkkhhkhkhkhkhkhhkhhkhkkhkhkhhhkhkhkhkhkhhkhkhhkkhhkhkhkkhkhk 74 b]OCkS
70%: 0 blocks
75%: 0 blocks
80%: 0 blocks
85%: 0 blocks
90%: 0 blocks
95 = 3 blocks
100%: * 2 blocks

Information about all data blocks of file 8, which is an ADAM file, is displayed. The ADAM
parameter is set to 5. 94 blocks are used for the ADAM area, with 1 block reserved for overflow.
The ADAM area contains 3860 records, and 3 records are in the overflow area.

Adabas Utilities 151

152

11 ADAFRM (Format And Create A New Database)

B FUNCHONAI OVEIVIBW ..ot e e e e 154
B PTOCEAUIE FlOW .ottt et e 156
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 157
B G0N0l ParaMEIErS . et 157
B RES A CONSIAIAtIONS . .eeeee e e 161
B Control Statement EXAMPIESoiiiiiiie i 162

153

ADAFRM (Format And Create A New Database)

This chapter describes the utility "ADAFRM".

Functional Overview

The utility ADAFRM creates the container files (ASSO, DATA, WORK) assigned to the database
and establishes the database including the database system files. It can also be used to format the
TEMP and SORT files.

The database is included in the ADABAS.INI file.

If the file DBnnn.INI does not yet exist, ADAFRM creates the DBnnn.INI file, including the default
parameters derived from ADABAS.INI, and stores it in the appropriate database directory (please
refer to Adabas Extended OperationAdabas Extended Operation in the Adabas documentation for
further information about the DBnnn.INI files).

The following rules apply for determining the locations for the container extents to be created:

1. If an environment variable for the container extent exists, use the environment variable.

2. If the DBnnn.INI file already exists before ADAFRM is started, and it contains an entry for the
container extent, use the entry in the DBnnn.INI file.

3. Otherwise create the container extent in the database directory (SPADADATADIR/dbnnn on
Linux, %ADADATADIR% \ dbnnn on Windows) with name XXXXx.nnn, where XXXX is the
container type, x the container extent and nnn the database number.

Exceptions are the SORT and TEMP containers if they are created without creating a database at
the same time; here the following rules apply:

1. If an environment variable for the container extent exists, use the environment variable.

2. Otherwise create the container in the current directory with the name XXXXx, where XXXXis the
container type, and x the container extent.

3. If adatabase ID is specified, the corresponding encryption information stored in ASSO1 is read.
If the database has been created with encryption, TEMP containers are also encrypted.

If you create a database, but not if you only create the SORT or TEMP containers, the created
container extents are stored in theDBnnn.INI file. If the DBnnn.INI file already was created before
ADAFRM was started, all other values in the file are not changed; if the file didn't exist, it is created
with default values.

If you create only the SORT or TEMP containers without creating a database, no updates are per-
formed in a DBnnn.INI file. If a dbid is supplied, the corresponding entries are added in the DBn-
nn.INI file in case they are missing.

154 Adabas Utilities

ADAFRM (Format And Create A New Database)

If you try to reformat a container file, the utility terminates with an error message. This ensures
that the database is not accidentally overwritten.

If you create an encrypted database, the encryption algorithm and the key management system
have to be specified. The ASSO and DATA container files are encrypted with the specified encryp-
tion algorithm. The key management system manages the corresponding encryption keys.

| Note: In order to use the encryption functionality, the Adabas Encryption for Linux (AEL)

license is required.

This utility is a single function utility.

Adabas Utilities 155

ADAFRM (Format And Create A New Database)

Procedure Flow

If a database is to be formatted:

Data Set Environment (Storage Medium |Additional Information
Variable/
Logical Name
ADABAS.INI Disk Adabas Extended Operations Manual
Associator ASS50x Disk
Data storage DATAX Disk
DBnnn.INI Disk Adabas Extended Operations Manual
Control statements |stdin Utilities Manual
ADAFRM messages |stdout Messages and Codes
Work WORK1 Disk
156 Adabas Utilities

ADAFRM (Format And Create A New Database)

If a TEMP or SORT is to be formatted:

Data Set Environment |Storage Medium |Additional Information
Variable/
Logical Name
Sort storage SORTx Disk
Control statements |stdin Utilities Manual
ADAFRM messages |stdout Messages and Codes
Temporary storage |TEMPx Disk

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are only used when establishing a new database:

D ASSOBLOCKSIZE = (number[K] [,number[K]] ...)
M ASSOSIZE = (number[B|M] [,number[B|MI]...)
D DATABLOCKSIZE = (number[K] [,numberfK1] ...)
M DATASIZE = (number[B|M] [,number[B|MII...)
DBID = number
ENCRYPTION = keyword
KMSTARGET = string
D NAME {=]:} string
M SORTSIZE = (number[M] [,number[M1] ...)

D SYSFILES

(number, number, number)

M TEMPSIZE (number[M] [,numberfMI] ...)
D WORKBLOCKSIZE = number[K]

M WORKSIZE = number[M | B]

Adabas Utilities

157

ADAFRM (Format And Create A New Database)

ASSOBLOCKSIZE

ASSOBLOCKSIZE = (number[K] [,number[KI] ...)

This parameter specifies the block sizes that are to be used for the Associator container file(s). The
first block size corresponds to ASSO1, the second to ASSO2 etc.

If block sizes are not specified, the default of 4K will be used.

For ASSO1, only blocks sizes from 2K to 8K can be specified. For ASSO2 to ASSOn, block sizes
between 1K and 32K are permitted.

Note: The ASSOBLOCKSIZE parameter should be specified once for each ASSOSIZE that

is specified, i.e. these parameters should be specified in pairs. If ASSOSIZE is specified more
frequently than ASSOBLOCKSIZE, then the last specified block size will be used for the
containers that do not have a block size specified. The default value will be used if ASSOB-
LOCKSIZE is not specified at all.

ASSOSIZE

This parameter specifies the number of blocks or megabytes to be assigned to the Associator.

If the Associator is to be contained in more than one physical file, the size of each file must be
specified.

DATABLOCKSIZE

DATABLOCKSIZE = (number[K] [,number[KI]l ...)

This parameter specifies the block sizes that are to be used for the Data Storage container file(s).
The first block size corresponds to DATAT, the second to DATA?2 etc.

If block sizes are not specified, the default of 32K will be used.

Note: The DATABLOCKSIZE parameter should be specified once for each DATASIZE that
is specified, i.e. these parameters should be specified in pairs. If DATASIZE is specified
more frequently than DATABLOCKSIZE, then the last specified block size will be used for

the containers that do not have a block size specified. The default value will be used if
DATABLOCKSIZE is not specified at all.

158 Adabas Utilities

ADAFRM (Format And Create A New Database)

DATASIZE

DATASIZE = (number[B|M] [,number[B|M]]...) <

This parameter specifies the number of blocks or megabytes to be assigned to the Data Storage.
If the Data Storage is to be contained in more than one file, the size of each file must be specified.

If a 'B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

DBID

DBID = number

This parameter selects the database to be created.

The minimum value is 1 and the maximum value is 255.

Note: This parameter only needs to be set when formatting ASSO, DATA and WORK. When

formatting TEMP and/or SORT, for an encrypted database, a dbid is mandatory. The en-
cryption information stored in ASSO1 is read, and the TEMP and/or SORT container are
encrypted accordingly. For the unencrypted case, a dbid may be given, but is not mandatory.

ENCRYPTION

ENCRYPTION = keyword

This parameter specifies that the database to be created is encrypted, and assigns the encryption
algorithm. The keyword can take the values AES_256_XTS, AES_128_XTS and NO. Depending
on the keyword specified, the ASSO and DATA container files are encrypted using XTS Advanced
Encryption Standard with a key length of 256 bits (AES_256_XTS), a key length of 128 bits
(AES_256_XTS), or they are not encrypted (NO).

The default value is NO.

Note: Database encryption cannot be disabled.

KMSTARGET

KMSTARGET = string

This parameter specifies the key management system to be used if the database to be created is
encrypted. Supported values are FILE and AWS. Depending on the value specified, either the
Adabas file-based key management system or the AWS key management service is used to create,
store and manage encryption keys.

The default value is FILE.

Adabas Utilities 159

ADAFRM (Format And Create A New Database)

NAME
NAME {=]:} string

This parameter specifies the name to be assigned to the database. This name will appear in the
title of the database status report produced by the report utility ADAREP. If you specify an equals
sign, the value given for 'string’ will be converted to upper case; if you specify a colon, no upper-
case conversion is performed.

A maximum of 16 characters may be specified.

If this parameter is omitted, a default value of ‘GENERAL-DATABASE' is assigned.

SORTSIZE
SORTSIZE = (number[M] [,number[MI] ...)
This parameter specifies the number of megabytes to be assigned to the SORT dataset.

If the SORT dataset consists more than one extent, the size of each extent must be specified. Up
to 50 extents can be specified. The SORT dataset can be formatted independently.

If a SORT container is to be used with an encrypted database, a dbid has to be specified. The en-
cryption information stored in ASSO1 is read and the SORT container is encrypted accordingly.
For the unencrypted case, a dbid may be give, but it is not necessary.

SYSFILES
SYSFILES = (number, number, number)

This parameter specifies the file numbers to be reserved for the Adabas system files. These file
numbers must not be used subsequently for user files.

The first value specifies the file number of the checkpoint file.
The second value specifies the file number of the security file.
The third value specifies the file number of the user data file.

The default setting is SYSFILES=(1, 2, 3).

160 Adabas Utilities

ADAFRM (Format And Create A New Database)

TEMPSIZE
TEMPSIZE = (number [M] [,number[M]] ...)
This parameter defines the number of megabytes to be assigned to TEMPx.

If the TEMP dataset is to be contained in more than one physical file, the size of each file must be
specified.

This component may be formatted independently.

If a TEMP container is to be used with an encrypted database, you must specify a dbid. The en-
cryption information stored in ASSO1 is read, and the TEMP container is encrypted accordingly.
For the unencrypted case, a dbid may be given, but is not mandatory.

WORKBLOCKSIZE

WORKBLOCKSIZE = number[K]
This parameter specifies the block size that is to be used for the WORK file.

If no block size is specified, the default of 16K will be used.

WORKSIZE

WORKSIZE = number [B|M]
This parameter defines the number of blocks or megabytes to be assigned to WORKI1.

If a 'B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

Restart Considerations

ADAFRM does not have a restart capability. An interrupted ADAFRM run must be restarted from
the beginning. Associator, Data Storage and WORK must be formatted together.

Adabas Utilities 161

ADAFRM (Format And Create A New Database)

Control Statement Examples

Example: Formatting a database

adafrm: dbid = 1, name = DATABASE_1

adafrm: assosize = (200M, 100M), assoblocksize = (2K, 4K)
adafrm: datasize = (500M, 500M, 2M), datablocksize = (4K, 16k)
adafrm: worksize = 50M, workblocksize = 16K

A new database is created with the DBID 1 and the name "DATABASE_1". Two ASSO container
files are created: ASSO1 has a size of 200 megabytes and a blocksize of 2 kilobytes, and ASSO2
has a size of 100 megabytes and a blocksize of 4 kilobytes. There are three DATA containers.
DATA1 and DATAS3 have a blocksize of 4 kilobytes, DATA2 has a blocksize of 16 kilobytes. There
is a single WORK container file with a block size of 16 kilobytes. The file numbers 1, 2 and 3 will
be used for the 3 system files.

Example: Formatting an encrypted database

adafrm: dbid = 2, name = DATABASE_?2

adafrm: assosize = (200M, 100M), assoblocksize = (2K, 4K)
adafrm: datasize (500M, 500M, 2M), datablocksize = (4K, 16k)
adafrm: worksize = 50M, workblocksize = 16K

adafrm: encryption = aes_256_xts

A new database is created with DBID 2, and the name "DATABASE_2", and with the same layout
as in the example above. In this database, the ASSO and DATA container files are encrypted with
algorithm AES_256_XTS. The encryption keys are created and managed by the Adabas file-based
key management system (default: KMSTARGET = FILE).

Example: Formatting SORT and TEMP

adafrm: sortsize = (10M,10M)
adafrm: tempsize = 10M

Explanation: Two container files, each 10 megabytes in length, are to be formatted as SORT1 and
SORT?2. A container file, 10 megabytes in length, is to be formatted as TEMP1.

162 Adabas Utilities

12 ADAINV (Creating, Removing And Verifying Inverted Lists)

B FUNCHONAI OVEIVIBW ..ot e e e e 164
B PTOCEAUIE FlOW .ottt et e 166
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 167
B G0N0l ParaMEIErS . et 168
B RES A CONSIAIAtIONS . .eeeee e e 178
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 179

163

ADAINV (Creating, Removing And Verifying Inverted Lists)

This chapter describes the utility "ADAINV".

Functional Overview

The inverted list utility ADAINV creates, removes, and verifies inverted lists for loaded files in a
database. It does not require the Adabas nucleus to be active. The nucleus may, however, be active
or shut down while ADAINV is running. The following functions are available:

The INVERT function establishes new descriptors;
The REINVERT function performs an implicit RELEASE and INVERT;

The RELEASE function removes existing descriptors;

The RESET_UQ function removes the unique status from descriptors;

The SET_UQ function establishes a unique status for existing descriptors;

The VERIFY function checks the integrity of inverted lists.

A LOB file can only be specified for the functions REINVERT, SUMMARY, and VERIFY.

These functions are mutually exclusive and only one of them may be executed each time this
utility is run.

Notes:

1. When you perform ADAINV INVERT or REINVERT for a collation descriptor, the collation
descriptor is always created using the highest ICU version supported (for Adabas Version 6.5:
ICU 5.4, for older Adabas versions: ICU 3.2).

2. If you reinvert a collation descriptor created with ICU version 3.2 in order to upgrade to ICU
version 5.4, there may be differences in the syntax or semantics of the collation specification.
For example, with ICU version 3.2, the locale “fr” implies the FRENCH option, while with ICU
version 5.4, the FRENCH option must be specified explicitly. In such a case, instead of performing
ADAINV REINVERT, first perform ADAINV RELEASE for the collation descriptor and then
ADAINV INVERT with a new specification, which is equivalent to the old ICU version 3.2
specification.

When ADAINV is performed in online mode, Adabas users accessing the file may be active when
ADAINYV is running:

164 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

Function ACC Users |UPD Users
INVERT Yes No
REINVERT |No No
RELEASE |No No
RESET_UQ |Yes No
SET_UQ Yes No
SUMMARY |Yes Yes
VERIFY Yes No

An Adabas user is an ACC user if he has only performed read or search operations for the file, or
if he has executed an appropriate Open command. He is an UPD user if he has also performed
insert, update or delete operations for the file or placed an ISN of the file in exclusive hold status,
or if he has executed an appropriate open command.

If there are users of the file that are not permitted, as defined in the table shown above, ADAINV
fails with an error ADA048.

) Notes:

1. An UPD user remains an UPD user after the end of the current transaction until the end of the
user session.

2. You can determine which users are currently accessing a file with the ADAOPR DIS-
PLAY=UQ_FILES command.

This utility is a single-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

Adabas Utilities 165

ADAINV (Creating, Removing And Verifying Inverted Lists)

Procedure Flow

166 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

The sequential file INVERR can have multiple extents. For detailed information about sequential
files with multiple extents, see Adabas Basics, Using Utilities in the Adabas documentation.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name

Associator ASSOx Disk

Data storage DATAX Disk

Rejected data INVERR Disk (* see note) |output of ADAINV

Sort storage SORTx Disk Administration Manual, temporary working space
TEMPLOCx

Control statements |stdin Utilities Manual

ADAINYV messages |stdout Messages and Codes

Temporary storage |TEMPx Disk

Work storage WORK1 Disk

| Note: (*) A named pipe can be used for this sequential file.

In cases without an active nucleus and no pending AUTORESTART, the WORK may be used as
TEMP by setting the environment variable/logical name TEMP1 to the path name of a WORK
container.

Checkpoints

Checkpoints

ADAINYV handles checkpoints differently based on the status of the nucleus.

When the adabas nucleus is active, ADAINV doesn't write any checkpoints instead the parameters
INVERT, REINVERT, RELEASE and VERIFY will write a PLOG record when executed.

When the adabas nucleus is not active, all parameters except SUMMARY will write checkpoints.

The following table shows the nucleus requirements for each function and the checkpoints written:

Adabas Utilities 167

ADAINV (Creating, Removing And Verifying Inverted Lists)

Function Nucleus must |Nucleus must NOT be Nucleus is NOT Checkpoint written | Nucleus operations
be active active required allowed

INVERT X SYNP R

REINVERT X(* see note) X SYNP

RELEASE X SYNP R

RESET_UQ X SYNP R

SET_UQ X SYNP R

SUMMARY X \

VERIFY X(* see note) X SYNX R

Note: (*) When processing an Adabas system file.

R: read operations allowed for the processed file.
W: read and write operations allowed for the processed file.

Control Parameters

The following control parameters are available:

M DBID = number

INVERT = number,

FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT},

[END_OF_FIELDS]

[,FDT]
D [,LWP = number[K|M]]
D [,UQ_CONFLICT = keyword]

D [NOJLOWER_CASE_FIELD_NAMES

REINVERT = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}

[,FDT]
D [,[NOJFORMAT]
[,LWP = number[K|M]]
D [,UQ_CONFLICT = keyword]

O

RELEASE = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}

[,FDT]
D [,[NOJFORMAT]

RESET_UQ = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}

168

Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

[,FDT]

SET_UQ = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
D [,UQ_CONFLICT = keyword]

SUMMARY = number,
{ALL_FIELDS | FIELDS
{descriptor_name | derived_descriptor_definition | FDT},
[END_OF_FIELDST}
[,FDT]
D [,FULL]

VERIFY = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
D [,ERRORS = number]

[,FDT]
D [,LWP = number[K|M]]

DBID
DBID = number

This parameter selects the database to be used.

INVERT

INVERT = number,
FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT},
[END_OF_FIELDS]
[,FDT]
[,LWP = number[K|M]]
[,UQ_CONFLICT = keyword]

This function establishes new elementary, sub-, super-, hyper-, phonetic and collation descriptors
at any time after a file has been initially loaded. number’ specifies the file containing the fields to
be inverted. You are not allowed to specify the number of a LOB file.

Adabas Utilities 169

ADAINV (Creating, Removing And Verifying Inverted Lists)

FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the field specification list.

FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]

This parameter specifies fields to be inverted. It can contain one or more

* field name,
® phonetic descriptor or

® sub-, super-, hyper- or collation descriptor

specifications, each starting on a separate line. See Adabas Basics, FDT Record Structure in the
Adabas documentation, for valid specifications of field names, phonetic, sub-, super-, hyper- or
collation descriptors.

The options UQ and TR are used to specify whether the field in question is a unique descriptor
or whether index truncation will be performed. See Adabas Basics, Definition Options for further
information about the UQ and TR options.

. Note: Only fields for which the values are stored in the base file can be used as descriptors

or parent fields of derived descriptors. For this reason, an invert function will be aborted
if a field to be inverted or a parent field of a derived descriptor to be created has the LA or
LB option and values are stored in the LOB file. LA and LB fields can be used as descriptors
or parent fields of derived descriptors, but then all values are limited to 16 KB - 3, and the
base record including these LA or LB field values must fit into one data block.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

LWP = number[K|M]

For the sort of descriptor values, ADAINV uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAINV. The LWP parameter allows
you to increase the work pool; it defines the additional space added to the default work pool size
in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

= If you notice that in your environment the performance is better with a large work pool.

® If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter
can decrease the required size of the SORT container.

170 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

You can use the SUMMARY function to determine the required value for this parameter.
UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. ‘keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINYV terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, the UQ status of the descriptors in question is removed and processing
continues.

The default is UQ_CONFLICT = ABORT.

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMESis specified, Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the FIELDS parameter.

REINVERT

REINVERT = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[,[NOJFORMAT]
[,LWP = number[K|M]]
[,UQ_CONFLICT = keyword]

This function performs an implicit RELEASE and INVERT. This reduces the probability of a typing
error, especially for sub- and superdescriptors.

Note: The purpose of ADAINV REINVERT is to recreate a descriptor if the index tree becomes

unbalanced as a result of a large number of updates, or if an index error occurred. Descriptors
are always recreated with the same definition as before; if you want to change the definition
of a descriptor, for example a superdescriptor, you must perform ADAINV RELEASE fol-
lowed by ADAINV INVERT with the new descriptor definition.

Adabas Utilities 171

ADAINV (Creating, Removing And Verifying Inverted Lists)

ALL_FIELDS
This parameter specifies that all descriptors of the selected file are to be released/inverted.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors to be released/reinverted. It can be followed by one or
more field names, each starting on a separate line. See FDT Record Structure in the Adabas docu-
mentation for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

[NOJFORMAT

If a descriptor is released or reinverted, the new index created is generally smaller than the old
index and requires less disk space. The FORMAT option can be used to format the blocks that are
no longer used by the index but which are still allocated to the file.

The default is NOFORMAT.
LWP = number[K|M]

For the sort of descriptor values, ADAINV uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAINV. The LWP parameter allows
you to increase the work pool; it defines the additional space added to the default work pool size
in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

= If you notice that in your environment the performance is better with a large work pool.

= If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter
can decrease the required size of the SORT container.

172 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. 'keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINYV terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, the UQ status of the descriptors in question is removed and processing
continues.

The default is UQ_CONFLICT = ABORT.

RELEASE

RELEASE = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[,[NOJFORMAT]

This function removes elementary, sub-, super-, hyper-, phonetic and collation descriptors from
the file specified by 'number'. You are not allowed to specify the number of a LOB file.

ALL_FIELDS
This parameter specifies that all descriptors of the selected file are to be released.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors to be released. It can be followed by one or more field
names, each starting on a separate line. See FDT Record Structure in the Adabas documentation
for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

Adabas Utilities 173

ADAINV (Creating, Removing And Verifying Inverted Lists)

[NOJFORMAT

If a descriptor is released or reinverted, the new index created is generally smaller than the old
index and requires less disk space. The FORMAT option can be used to format the blocks that are
no longer used by the index but which are still allocated to the file.

The default is NOFORMAT.

RESET_UQ

RESET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]

This function removes the unique status from elementary, sub-, hyper-, super- and collation
descriptors defined in the file specified by 'number'. You are not allowed to specify the number
of a LOB file.

ALL_FIELDS

This parameter specifies that the unique status is to be removed from all unique descriptors in the
specified file.

FDT

This parameter displays the Field Definition Table (FDT) of the selected file. This option may be
specified before or within the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors that are to have unique status removed. It can be followed
by one or more field names, each starting on a separate line. See FDT Record Structure in the Adabas
documentation for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

174 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

SET_UQ

SET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[,UQ_CONFLICT = keyword]

This function establishes the unique status for elementary, sub-, hyper-, super- and collation
descriptors defined in the file specified by 'number'. You are not allowed to specify the number
of a LOB file.

ALL_FIELDS

This parameter specifies that the unique status is to be established for all elementary, sub-, hyper-
, super- and collation descriptors defined in the specified file.

FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors for which the unique status is to be established. It can be
followed by one or more field names, each starting on a separate line. See FDT Record Structure in
the Adabas documentation for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. 'keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINYV terminates execution and returns an error status if duplicate descriptor values are found.
If RESET is specified, the UQ status of the descriptors in question is not established and processing
continues.

The default is UQ_CONFLICT = ABORT

Adabas Utilities 175

ADAINV (Creating, Removing And Verifying Inverted Lists)

SUMMARY

SUMMARY = number,
{ALL_FIELDS | FIELDS
{descriptor_name | derived_descriptor_definition | FDT},
[END_OF_FIELDST}
[,FDT]
[,FULL]

This function displays the descriptor space summary (DSS) for the specified descriptors and the
required sizes to process the descriptors.

Note: Processing the exact size would be too complicated. It may be that sizes a little smaller

than those displayed are sufficient. If the file is updated during or after the SUMMARY
function, the displayed values might also be too small.

See Adabas Basics, Optimization of ADAMUP and ADAINV Processing in the Adabas documentation
for further information about ADAINV SUMMARY processing.

ALL_FIELDS
This parameter specifies that all descriptors of the selected files are to be checked.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors for which the unique status is to be established. It can be
followed by one or more field names, phonetic descriptors, subdescriptors, superdescriptors, hy-
perdescriptors or collation descriptors, each starting on a separate line. You can specify fields that
are descriptors or fields that are not descriptors. See FDT Record Structure in the Adabas document-
ation for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

176 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

FULL

If this is specified, each descriptor is displayed along with the sizes that are required for the
descriptor. This can be helpful if not all of the specified fields are to be processed.

VERIFY

VERIFY = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... L[END_OF FIELDS]}
[,ERRORS = number]
[,FDT]

[,LWP = number[K|M]]

This function checks the integrity of inverted lists of the file specified by ‘number".
ALL_FIELDS

This parameter specifies that all descriptors of the selected file are to be checked.
ERRORS = number

This parameter specifies the number of errors that have to be reported in order to terminate the
verification of a descriptor.

The default is 20.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptor fields to be verified. It can be followed by one or more field
names, each starting on a separate line. See FDT Record Structure in the Adabas documentation
for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

Adabas Utilities 177

ADAINV (Creating, Removing And Verifying Inverted Lists)

LWP = number[K|M]

For the sort of descriptor values, ADAINV uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAINV. The LWP parameter allows
you to increase the work pool; it defines the additional space added to the default work pool size
in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

® If you notice that in your environment the performance is better with a large work pool.

= If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter
can decrease the required size of the SORT container.

You can use the SUMMARY function to determine the required value for this parameter.

Restart Considerations

ADAINYV has no restart capability. However, it may or may not be possible to re-start an abnormally
terminated ADAINYV from the beginning.

If ADAINV terminates abnormally, it can usually be restarted from the beginning. However, if
ADAINYV has modified the index, the following points have to be considered:

® The function REINVERT ... FIELDS is the same as the function RELEASE ... FIELDS followed
by the function INVERT ... FIELDS. So if ADAINV has aborted in the INVERT phase, perform
the function INVERT ... FIELDS to restart the operation.

= If ADAINV is performed offline, there is a very small amount of time where a few records that
together form a logical unit are written to disk. If ADAINV terminates after the first of these
records has been written and before the last has been written, ADAINV cannot be restarted. In
this case, the function REINVERT ... ALL_FIELDS is required. This cannot happen if ADAINV
is performed online.

= If ADAINV terminates abnormally, it can happen that some index blocks are lost. These index
blocks can only be recovered by the function REINVERT ... ALL_FIELDS or by using the utility
ADAORD or by using the utilities ADAULD and ADAMUP.

178 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

Examples

Example 1

adainv:
adainv:
adainv:

dbid=1
invert=10, fields
HO

The elementary field HO in file 10 of database 1 is inverted.

Example 2

adainv: dbid=1

adainv: invert=10

adainv: Twp=600k

adainv: fields

adainv: ph=phon(na)

adainv: sp=na(l1,3),yy(1,2),uq
adainv: bb,uq

Three new descriptors are established for file 10 in database 1. PH is a phonetic descriptor based
on the field NA. SP is a unique superdescriptor derived from bytes 1 to 3 of field NA and bytes 1
to 2 of field YY. The elementary field BB is changed to descriptor status and the unique flag is set.
The size of the work pool to be used for the sort is increased to 600 K.

Example 3

adainv: dbid=l
adainv: release=10
adainv: fields
adainv: ho

adainv: ph

The two descriptors HO and PH from the examples above are released.

Adabas Utilities 179

ADAINV (Creating, Removing And Verifying Inverted Lists)

Example 4

adainv: dbid = 1, verify =1
adainv: errors =5

adainv: fields

adainv: sp

adainv: na

adainv: end_of_fields

0

The descriptors SP and NA are verified. The descriptor value table entries generated for descriptor
NA are checked against the decompressed values of this field. Verification is terminated if more
than five errors are reported for each descriptor.

Example 5

adainv: dbid = 1, reinvert =
adainv: fields
adainv: na

10

The descriptor NA in file 10 of database 1 is to be reinverted (this may be necessary if errors are

reported in example 4).

Example 6

adainv: db=12
adainv: reinvert=9
adainv: all_fields

The complete index is recreated for file 9 in database 12.

The following output is produced:

BADAINV-I-FILE, file 9, EMPL

AADAINV-T-UIUPD, upper index being modified

%AADAINV-1-SORTDESC, sorting
%ADAINV-T-LOADDESC, Tloading

HADAINV-I-SORTDESC, sorting
BADAINV-T-LOADDESC, loading

BADAINV-I-SORTDESC, sorting
HADAINV-I-LOADDESC, loading

%ZADAINV-1-SORTDESC, sorting
%ADAINV-T1-LOADDESC, Tloading

OYEES

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

KA
KA

S3
S3

S2
S2

PA
PA

180

Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

%ADAINV-T-SORTDESC, sorting descriptor FB
%ADAINV-T-LOADDESC, loading descriptor FB

HADAINV-T-SORTDESC, sorting descriptor AA
%ADAINV-T-LOADDESC, Tloading descriptor AA

HADAINV-T-SORTDESC, sorting descriptor BC
%ADAINV-T-LOADDESC, loading descriptor BC

HADAINV-T-SORTDESC, sorting descriptor CN
HADAINV-T-LOADDESC, loading descriptor CN

AADAINV-T-SORTDESC, sorting descriptor JA
%ADAINV-T-LOADDESC, Toading descriptor JA

HADAINV-T-SORTDESC, sorting descriptor H1
HADAINV-T1-LOADDESC, Toading descriptor H1

%ADAINV-TI-SORTDESC, sorting descriptor EA
AADAINV-T-LOADDESC, loading descriptor EA

AADAINV-T-SORTDESC, sorting descriptor LC
%ADAINV-T-LOADDESC, Tloading descriptor LC

%ADAINV-TI-SORTDESC, sorting descriptor S1
%ADAINV-T-LOADDESC, loading descriptor S1

ZADAINV-T-SORTDESC, sorting descriptor AC
%ADAINV-T-LOADDESC, loading descriptor AC

HADAINV-T-NULLDESC, no values for descriptor IJ
%ADAINV-T-LOADDESC, loading descriptor IJ

HADAINV-T-NULLDESC, no values for descriptor IB
HADAINV-T-LOADDESC, Toading descriptor IB

HADAINV-T-NULLDESC, no values for descriptor FI
%ADAINV-T-LOADDESC, Tloading descriptor FI

AADAINV-T-UIUPD, upper index being modified

%ADAINV-T-DSPASSES, data storage passes : 17

%#ADAINV-T-REMOVED, dataset SORT1, file C:\Program Files\Software AG\Adabas/db012
\SORT01_3664.012 removed

ZADAINV-I-TI0CNT, 1 I0s on dataset SORT

FADAINV-I-I0CNT, 85 I0s on dataset DATA

SADAINV-T-TOCNT, 49 10s on dataset ASSO
Notes:

Adabas Utilities 181

ADAINV (Creating, Removing And Verifying Inverted Lists)

1. The message NULLDESC indicates that no descriptor values exist for this descriptor. This may
happen for fields defined with option NU or NC if the field contains the null value/SQL null
values for all records.

2. The message DSPASSES shows how often the data records of the file were read. In this case the
number of data storage passesis 17, i.e. the data records were reread for each descriptor, because
no TEMP container was defined where descriptor values can be saved. The number of data
storage passes can be reduced by defining a TEMP container. This is recommended in particular
for large files, because it reduces the number of required I/O operations significantly. The
ADAINV parameter SUMMARY can be used to find out which size is useful for the TEMP
container.

3. The message REMOVED shows that a temporary SORT container created by ADAINV was
deleted. You can also use a persistent SORT container, which is not created and deleted by
ADAINYV (see ADAFRM for further details).

Example 7

adainv: dbid = 1, set_ug=10
adainv: fields

adainv: na

adainv: end_of_fields
adainv: ug_conflict=reset

The unique status is to be established for the descriptor NA in file 10 of database 1. If there is more
than one ISN per descriptor value, the conflicting ISNs are written to the error log and the unique
status is removed.

Example 8

adainv: dbid = 1, reset_ug=10
adainv: fields
adainv: sp

The unique status is to be removed from the descriptor SP in file 10 of database 1.

182 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

Example 9

adainv: dpb=33

adainv: summary=112

adainv: fields

adainv: ab

adainv: ae

adainv: sl=ap(l,1),aq(1,1),ar(1,1)
adainv: s2=ac(1,3),ad(1,8),ae(l1,9)
adainv: s3=ao0(2,3)

This produces the following output:

Descriptor summary :

Descriptor AB : 1,194,469 bytes,
Descriptor AE : 3,605,545 bytes,
Descriptor SI1 : 1,566,501 bytes,
Descriptor S2 : 1,520,169 bytes,
Descriptor S3 : 1,340,949 bytes,

Required sizes to process these descriptors:

- SORTSIZE (LWP= 0 KB)

- LWP for incore sort

- TEMPSIZE (1 pass)

- TEMPSIZE (2 passes)

- TEMPSIZE (recommended minimum size)

HADAINV-T-TOCNT, 1710 I0s on dataset DATA
ZADAINV-I-I0CNT, 3 I0s on dataset ASSO

HADAINV-T-TERMINATED, 24-N0V-2006 14:15:06, elapsed time: 00:

581,209
538,769
581,209

72,389
446,983

13,230
24
13

0CC
0cCC
0CC
0CC
QCC

MB
KB
MB
MB
MB

04:03

Adabas Utilities

183

184

13 ADAMUP (Mass Add And Delete)

B FUNCHONAI OVEIVIBW ..ot e e e e 186
B PTOCEAUIE FlOW .ottt et e 187
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 190
B G0N0l ParaMEIErS . et 191
B RES A CONSIAIAtIONS . .eeeee e e 197
B SORT Data Set PlaCemeNt ... oo e e 198
B TEMP Data Set PlaCement .. oo 198
L e 111 o] TSP PR RTOPUPPPPPPRR 198

185

ADAMUP (Mass Add And Delete)

This chapter describes the utility "ADAMUP".

Functional Overview

The mass update utility ADAMUP adds records to, or deletes records from a file in a database. It
does not require the Adabas nucleus to be active.

The output files produced by the compression utility ADACMP or the unload utility ADAULD
may be used as input for a mass add.

Note: The ADAMUP ADD function can process MUPDTA/MUPDVT files created with
earlier Adabas versions, but not MUPDTA/MUPDVT files created with later Adabas versions.

Input files produced by ADACMP or ADAULD with the SINGLE_FILE option or from a previous
run of ADAMUP using the DELETE function with the LOG option can also be used.

Input files produced without descriptor value tables (SHORT option in ADAULD or LOG=SHORT
option in ADAMUP) can be processed if the database file to be processed does not contain any
descriptors.

The input for the DELETE function is provided in an input file. Each record contains one or more
ISNs or ISN ranges.

Records may be both added to and deleted from a database file during a single run of ADAMUP.
If the utility writes records to the error file, it will exit with a non-zero status.

Note: FDTs that contain the same fields, but collation descriptors that belong to different

ICU versions are considered to be different. This means you can only load the data into a
file with a different ICU version if the file is empty, and if you use the NEW_FDT parameter.

This utility is a single-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

186 Adabas Utilities

ADAMUP (Mass Add And Delete)

Procedure Flow

LOE Data

Adabas Utilities 187

ADAMUP (Mass Add And Delete)

The sequential files MUPDTA, MUPDVT, MUPTMP, MUPLOB and MUPERR can have multiple
extents. For detailed information about sequential files with multiple extents, see Adabas Basics,
Using Utilities in the Adabas documentation.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Data storage DATAXx Disk
Compressed input |MUPDTA |Disk
data
Descriptor values |MUPDVT |Disk
Rejected data MUPERR |Disk (* see note)
LOB data MUPLOB |Disk Temporary working space, will be deleted again when
ADAMUP terminates
Normal index MUPTMP |Disk Temporary working space, will be deleted again when
ADAMUP terminates
Sort storage SORTx Disk Administration Manual, temporary working space
TEMPLOCx
Control statements |stdin Utilities Manual
ADAMUP messages|stdout Messages and Codes
Temporary storage |TEMPx Disk
Work WORK1 Disk

| Note: (*) A named pipe can be used for this sequential file.

In cases without an active nucleus and no pending AUTORESTART, the WORK may be used as
TEMP by setting the environment variable/logical name TEMP1 to the same value as WORK1.

188

Adabas Utilities

ADAMUP (Mass Add And Delete)

ssed Data
and Descriptor Values

ISMs to ba delatad

LOB I15Ns

The sequential files MUPTMP, MUPLBI, MUPLOG and MUPERR can have multiple extents.

Adabas Utilities 189

ADAMUP (Mass Add And Delete)

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Data storage DATAX Disk
Rejected data MUPERR |Disk (* see note)
ISNs to be deleted |MUPISN |Disk
LOB ISNs MUPLBI |Disk Temporary working space, will be deleted again when
ADAMUP terminates
Compressed data |MUPLOG |Disk
Normal index MUPTMP |Disk Temporary working space, will be deleted again when
ADAMUP terminates
Sort storage SORTx Disk Administration Manual, temporary working space
TEMPLOCx
Control statements |stdin Utilities Manual
ADAMUP messages|stdout Messages and Codes
Work WORK1 Disk

| Note: (*) A named pipe can be used for this sequential file.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must be active |Nucleus must NOT be active [Nucleus is NOT required | Checkpoint written
FDT X -
UPDATE | X(* see note 1) X(* see note 2) X(* see note 3) SYNP
SUMMARY X -

] Notes:

1. When deleting records in a file with LOB data.

2. When updating an Adabas system file.

3. Except when deleting records in a file with LOB data.

190

Adabas Utilities

ADAMUP (Mass Add And Delete)

Control Parameters

The following control parameters are available:

M DBID = number
FDT
SUMMARY
UPDATE = number [,FDT]

[ADD [,add_keywords]]
[DELETE [,delete_keywords]]

D [,[NOJFORMAT]
D [LWP = number[K|M]]
DBID

DBID = number

This parameter selects the database to be used.

FDT

FDT

This parameter displays the Field Definition Table (FDT) of the selected file in the database. If re-
cords are to be added to a file, the FDT of the sequential input file containing these records can
also be displayed. This parameter may also be used in an ADD/DELETE specification.

Depending on the context in which the FDT parameter is used, the Field Definition Table contained
in the sequential input file MUPDTA and/or the Field Definition Table contained in the selected
database file is displayed.

Examples

adamup db=2 fdt update=11 add

The FDT stored in the MUPDTA file is displayed.

Adabas Utilities 191

ADAMUP (Mass Add And Delete)

adamup db=2 update=11,fdt add <

The FDT of file 11 in database 2 is displayed.

adamup db=2 fdt update=11,fdt add <

The FDT stored in the MUPDTA file is displayed first; then the FDT of file 11 in database 2 is dis-
played.

SUMMARY
SUMMARY

This parameter displays the Descriptor Space Summary (DSS) on the sequential input file that
contains the compressed records. This display is identical to the one at the end of the ADACMP,
ADAULD or ADAMUP run which generated this input file, and can be used to estimate the space
required in the index.

Additionally, the following information is displayed:

® required SORT size (for default LWP)

® recommended TEMP size (the size required to do the index update in one pass)
" current size of SORT (if present)

® LWP needed for memory-resident sort

® Recommended size of LWP and SORT (if LWP is large enough to allow a smaller SORT size to
be used).

. Note: If the default LWP is large enough to do a memory-resident sort, SORT sizes are not
displayed.

UPDATE

UPDATE = number [,FDT]
[ADD [,add_keywords]]
[DELETE [,delete_keywords]]
[,[NOJFORMAT]
[LWP = number[K|M]]

This function specifies the file to which records are to be added/deleted. Since ADAMUP requires
exclusive control of the file, it cannot be used for an Adabas system file while the nucleus is active.
You are not allowed to specify a LOB file.

192 Adabas Utilities

ADAMUP (Mass Add And Delete)

ADD

ADD

,DE_MATCH = keyword]
,FDT]

,[LNOINEW_FDT]

,NUMREC = number]
,SKIPREC = number]
,UQ_CONFLICT = keyword]
,RI_CONFLICT = keyword]
,[NOJUSERISN]

This parameter indicates that records are to be added to the file specified by the UPDATE para-
meter.

The input for mass add is produced by the compression utility ADACMP, the unload utility
ADAULD or by a previous run of the mass update utility ADAMUP using the DELETE function
with the LOG option set.

ADAMUP compares the FDT in the sequential input file that contains the compressed records
with the FDT of the database file specified. The FDTs must have identical layouts and must use
the same field names, formats, lengths and options.

Descriptors in the database file can be a subset of the descriptors defined in the FDT in the sequential
input file, but the input file must contain descriptor value table (DVT) entries for all descriptors
defined in the database file. Therefore, input files produced without descriptor value tables (SHORT
option) can only be processed if there are no descriptors currently defined in the database file to
be updated.

If the input for mass update contains LOB data, the Adabas file must have an assigned LOB file.
DE_MATCH = keyword

This parameter is used to indicate which action is to be taken if a descriptor provided with the
input data is not a descriptor in the actual FDT of the file. If keyword = IDENTICAL, ADAMUP
terminates processing and returns an error message. If keyword = SUBSET, ADAMUP ignores a
descriptor which is in the input file, but which has been removed from the database file.

The default is DE_MATCH=IDENTICAL.
[NOINEW_FDT

If NEW_FDT is specified, the FDT of the file is replaced by the FDT of the MUPDTA file. NEW_FDT
can only be specified if the file is empty when ADAMUP is started.

NEW_FDT must be specified if the FDT of the file in the database and the FDT of the MUPDTA
file are different - a mass update is not possible if the FDTs are different and the file is not empty.

Adabas Utilities 193

ADAMUP (Mass Add And Delete)

The default is NONEW_FDT.
NUMREC = number

This parameter specifies the number of records to be added. If NUMREC is specified, ADAMUP
terminates after adding the predefined number of records, unless an end-of-file condition on the
input file causes ADAMUP processing to end. If NUMREC is omitted and SKIPREC is not specified,
all records in the input file are added.

SKIPREC = number

This parameter specifies the number of records in the input file to be skipped before starting to
add records.

UQ_CONFLICT = keyword

This parameter is used to indicate which action is to be taken if duplicate values are found for a
unique descriptor. 'keyword" may take the values ABORT or RESET. If ABORT is specified,
ADAMUP terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, conflicting ISNs are written to the error log, the UQ status of the
descriptors in question is removed and processing continues.

The default is UQ_CONFLICT=ABORT.
RI_CONFLICT

This parameter is used to indicate which action is to be taken if referential integrity is violated.
'keyword" may take the values ABORT or RESET. If ABORT is specified, ADAMUP terminates
execution and returns an error status. The index is marked as not accessible. If RESET is specified,
the violated constraint is removed. In both cases the violating ISNs are stored in the error log.

The default is RI_CONFLICT=ABORT.
[NOJUSERISN

This option indicates whether the ISN to be assigned to each record is to be taken from the input
file or not.

This option should be set to USERISN if the user wants to control ISN assignment for each record
added to the database file. Each ISN provided must be:
® a four-byte binary number immediately preceding each data record;

® within the current limit (MAXISN) for the file - the file's Address Converter is not automatically
extended;

" unique within the specified file.

Otherwise ADAMUP terminates execution and returns an error message.

194 Adabas Utilities

ADAMUP (Mass Add And Delete)

Note that problems could arise if this option is set to USERISN for an input file created by an unload
that is based on a descriptor which is a multiple-value field. This is because the same record may
have been unloaded more than once. Please refer to the ADAULD utility, SORTSEQ parameter
for more information.

If this option is set to NOUSERISN, the ISN for each record is assigned by ADAMUP. However,
the ISN of a DVT record that has been previously re-vectored by a hyperexit will not be changed
by ADAMUP.

The default is NOUSERISN.

DELETE

DELETE
[,DATA_FORMAT = keyword]
[,FDT]
[,ISN_NOT_PRESENT = keyword]
[,LOG = keyword | ,NOLOG]

This parameter indicates that records are to be deleted from the file specified by the UPDATE
parameter. The ISNs of the records to be deleted are given in an input file.

DATA_FORMAT = keyword

This parameter defines the data type of the records in the input file containing the ISNs to be de-
leted. Each record contains one or more ISNs or ISN ranges.

Valid ISNs are within the range 1... MAXISN.

In accordance with the formats supported, '’keyword' may take the following values:

Keyword (Meaning

BINARY |A single ISN is contained in a 4 byte binary value, an ISN range is contained in two consecutive
binary values, with the high-order bit set in the second value.

Blocks in this file start with 2 byte exclusive length field.

Note: ISNs >=2%*31 (2147483648) cannot be deleted with DATA_FORMAT=BINARY.

DECIMAL |Each record has the following layout:
[number[-number] [,number[-number]]...] [;comment]

where ‘number' is decimal number with 1 to 10 digits.

ADAMUP validates all input records in a first step. ADAMUP displays the line number and the
offset for each error that is detected. If an error is detected, ADAMUP terminates execution once
the input file has been completely parsed.

Adabas Utilities 195

ADAMUP (Mass Add And Delete)

The default is DATA_FORMAT = BINARY.

ISN_NOT_PRESENT = keyword

This parameter indicates the action to be taken when an ISN given in the input file of records to
be deleted is:

" not within the current limit (MAXISN) for the file;

= notin the file's Address Converter.

‘keyword' may take the following values:

Keyword [Meaning

ABORT |ADAMUP aborts execution and returns an error message if a conflicting ISN is detected.

IGNORE |ADAMUP writes the conflicting ISNs to the error log and continues processing.

The default is ISN_NOT_PRESENT=IGNORE

LOG = keyword
NOLOG

LOG=keyword indicates that the deleted records are logged in a sequential file. The records are
written in compressed format and are identical to those produced by the compression utility
ADACMP and the unload utility ADAULD. Because each data record is preceded by its ISN, these
ISNs can be used as user ISNs when reloading or mass-adding this file (see the USERISN option

described above).

‘keyword' may take the following values:

Keyword |Meaning

FULL |The descriptor values which are required to build the index, are included in the output file.

SHORT | The descriptor values which are required to build the index, are omitted from the output file.

ADAMUP writes both the compressed data records and the descriptor values generated to a single
file.

The default is NOLOG.

196 Adabas Utilities

ADAMUP (Mass Add And Delete)

[NOJFORMAT

This option may be used to format blocks at the end of the file's Normal Index (NI) and Upper
Index (UI) extents if the new index (after the modifications have been made) requires less space
than the old index did. This may be the result of deletions within the index, recovery of lost index
blocks or re-establishing the padding factor.

Because these blocks are returned to the file's unused blocks, there are no side-effects if the data
stored in these blocks is not deleted. If this option is set to FORMAT, ADAMUP overwrites these
blocks with binary zeros.

The default is NOFORMAT.
LWP = number[K|M]

For the sort of descriptor values, ADAMUP uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAMUP. The LWP parameter
allows you to increase the work pool; it defines the additional space added to the default work
pool size in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

® If you notice that in your environment the performance is better with a large work pool.

® If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter
can decrease the required size of the SORT container.

You can use the SUMMARY function to determine the required value for this parameter.

Restart Considerations

ADAMUP has no restart capability. An abnormally terminated ADAMUP must be rerun from the
beginning.

If the Data Storage space becomes exhausted, ADAMUP will not abort, but will attempt to build
the index for the records that have already been loaded; this means that the file is consistent, and
the remaining records can then be loaded with the SKIPREC option after additional Data Storage
space has been allocated.

Adabas Utilities 197

ADAMUP (Mass Add And Delete)

SORT Data Set Placement

It is recommended that the SORT data set does not reside on the same volume as the Associator
and the input file that contains the Descriptor Value Tables.

The SORT data set may be omitted when adding only small amounts of data. ADAMUP then
performs an in-core sort.

Use the SUMMARY function to get information about the required SORT and LWP sizes.

TEMP Data Set Placement

It is recommended that the TEMP data set does not reside on the same volume as the input file
that contains the Descriptor Value Tables and the SORT. Although the size of TEMP is closely related
to the performance when loading the Normal/Main Index, successful execution does not depend
on a given size or the presence of a TEMP.

Use the SUMMARY function to display the recommended TEMP size.

Examples

Example 1:

adamup: dbid=1
adamup: update=10
adamup: add, userisn

File 10 of database 1 is updated by adding new records. The ISN given with each input record is
used.

Example 2:

adamup: dbid=1
adamup: update=10
adamup: delete

The records identified by the ISNs provided on the input file are to be deleted from file 10 of
database 1. The ISNs to be deleted are in binary format.

198 Adabas Utilities

ADAMUP (Mass Add And Delete)

Example 3:

adamup: dbid=1

adamup: update=10

adamup: add, skiprec=1000

adamup:

delete, data_format=decimal, Tog=full

New records are to be added while old ones are deleted from file 10 of database 1. The first thousand
records found on the input file are not added. The ISN for each record added is assigned by
ADAMUP. The ISNs of the records to be deleted are supplied in decimal format on the input file.
All records which have been deleted are logged on an output file. The values required to re-create
the inverted list when reloading are included in the log.

Adabas Utilities 199

200

14 ADAOPR (Operator Utility)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 202
B PIOCEAUIE FIOW ...t et e 203
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 203
B CONEIOl PArAMEIEIS ... e ettt e 204

201

ADAOPR (Operator Utility)

This chapter describes the utility "ADAOPR".

Functional Overview

The DBA uses this utility to operate the Adabas nucleus.

This utility is a multi-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

202 Adabas Utilities

ADAOPR (Operator Utility)

Procedure Flow

ADANUC
ADAOPR
ADABAS
CSA file
S
Data Set Environment |Storage Medium |Additional Information
Variable/
Logical Name
Control statements |stdin Utilities Manual
ADAOPR messages |stdout Messages and Codes

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Adabas Utilities 203

ADAOPR (Operator Utility)

Function Nucleus must [Nucleus must |Nucleus is Checkpoint written
be active NOT be active |NOT required
FEOF=PLOG X SYNC (see note 1)

EXT_BACKUP=PREPARE |x

SYNX (EXT_BACKUP STARTED)
(see note 2)

EXT_BACKUP=CONTINUE |x

SYNX (EXT_BACKUP)

SYNC (FEOF=PLOG) (see note 1)

Notes:

1. After the FEOF=PLOG checkpoint, ADANUC writes a SYNC checkpoint for the start of the

new PLOG session.

2. Writing the checkpoint for EXT_BACKUP=PREPARE was introduced with Adabas Version 6.3

SP 4, and for Adabas Version 6.4 SP2.

Control Parameters

The following control parameters are available:

ABORT

ADD_REPLICATION [= number]
,FILE = number
,TARGET_DBID = number
,TARGET_FILE number

BFIO_PARALLEL_LIMIT = number
CANCEL

CHANGE_REPLICATION keyword
,REPLICATION_ID = (number [- number] [

CLEAR_FILE_STATS = (number [- number] [

, number

[- number]] ..

, number [- numberl] ...)

CLUSTER_LOG_LEVEL = [FATAL | ERROR | WARN | INEO | DEBUG]

CSA = string

DBID = number

DELETE_REPLICATION = (number [- number] [

DELUI = number

, number [- numberl]l] ..

204

Adabas Utilities

ADAOPR (Operator Utility)

DISPLAY = (keyword [,keyword]...)
ES_ID = number
D [NOJET_SYNC
[NOJEVENTING
EXT_BACKUP = [PREPARE | CONTINUE | ABORT]

FEOF

(keyword [,keyword])

FILE = number

FREE_CLQ
ID = number
D [NOJIO_TIME
ISN = (number [- number] [,number [- number] 1 ...)
[UNJLOCK = (number [,number]...)
LOGGING = (keyword [,keyword]...)
LOGIN_ID = string
NISNHQ = number

NODE_ID

string
OPTIONS = (keyword [,keyword]...)
RESET = keyword

D [NOJRESPONSE_ABORT

RESPONSE_CHECK = (number[-number][,number[-numberl]...)

SET_FILE_STATS (number[-number][,number[-number]]...)
SHUTDOWN
STATUS = (keyword [,keyword]...)

STOP = (number[-number][,number[-number]]...)

STOPI = number

Adabas Utilities 205

ADAOPR (Operator Utility)

THREAD = number

TNAA = number

TNAE

number

TNAX = number

TT = number
USER_ID = string
WCHARSET = <ICU encoding>

WRITE_LIMIT = [number]

ABORT
ABORT

This function terminates the Adabas session immediately. All command processing is immediately
stopped. The session is terminated abnormally with a pending AUTORESTART.

ABORT causes the following files to be written to the databases's default directory:

® The CSA dump file, which contains status information from the adabas nucleus. The name of
the file is ADABAS. xxx. hh:mm:ss (Linux) or ADABAS.xxx. hh-mm-ss (Windows),where xxx is
the database ID and hh:mm:ss (or hh-mm-ss) is the time at which the file was created. ADAOPR
can also display the same information that you can get for a running nucleus for a CSA dump
file if you specify the CSA parameter.

® The SMP dump file, which contains some diagnostic information. The name of the file is
SAGSMP.xxx. hh:mm:ss (Linux), SAGSMP.xxx . hh-mm-ss (Windows) , where xxx is the database
ID and hh:mm:ss (or hh-mm-ss) is the time at which the file was created.

ADD_REPLICATION

ADD_REPLICATION [= number]
,FILE = number
,TARGET_DBID = number
,TARGET_FILE = number

This parameter is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

A new Adabas - Adabas replication is defined with status Inactive. It is optional to specify a non-
zero number as the replication ID.

206 Adabas Utilities

ADAOPR (Operator Utility)

Note: A value may be specified in the range 1 to 524280.

This number must not be the replication ID of an existing replication. If no number is specified, a
replication ID is created by Adabas. You must specify the source file for the replication, the target
database, and the target file number.

BFIO_PARALLEL_LIMIT
BFIO_PARALLEL_LIMIT = number

This function sets the number of parallel I/O requests by a buffer flush, allowing earlier processing
of concurrent I/Os from other threads. A large buffer flush, for example, can cause the I/O queue
to be very busy, and other I/Os (such as buffer pool read I/Os and WORK I/Os) can be enqueued
for a long time, slowing down command throughput and possibly causing applications to stall if
a buffer flush is active.

If BFIO_PARALLEL_LIMIT is specified, the buffer flush sets up the specified number of I/Os and
waits until these have been processed before issuing the next packet. The maximum value for
‘number’ is defined by the Adabas system, If a value of 0 is specified, the number of buffer flush
I/Os is unlimited.

CANCEL

CANCEL

This function terminates the Adabas session immediately. A BT command is issued for each active
ET user and the session is terminated.

The communication link to the database is cut but the shared memory is still held. In this case,
display functions are still possible with ADAOPR but parameter modification commands are no
longer permitted.

CHANGE_REPLICATION

CHANGE_REPLICATION = keyword
, REPLICATION_ID = (number [- number] [, number [- number]] ..

This parameter is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

CHANGE_REPLICATION can be used to change the status of one or more replications. A replic-
ation can have one of the following status values:

Adabas Utilities 207

ADAOPR (Operator Utility)

Status Meaning

Inactive Currently no data are replicated to the target file, and no activities have been performed to
initiate the replication.

Prepare This indicates that it is planned to perform the Initial State processing for the replication. This
status is the prerequisite for creating a backup of the files to be replicated using ADABCK
with the parameter REPLICATION.

Initialization | This indicates that ADABCK with the parameter REPLICATION is running and creating a
backup that contains the initial state of files to be replicated.

Recording |Adabas is recording the update transactions within the replication command file and the
replication transaction file, but currently is not replicating the update operations to the target
database.

Active The replication is active; all modifications of the source file are replicated to the target file.

Error An unexpected error occurred during replication. In order to continue replication, a new

initial state processing is required.

The following options can be specified to change the replication status:

Keyword

Meaning

INACTIVE

Currently no data is replicated to the target file, and it is not currently planned to start
the replication. Transactions not yet replicated to the target database are deleted.

INITIALIZATION |Prepare the initial state processing: the status is set to Prepare. Then normally ADABCK

DUMP/EXUDUMP must be called with the parameter REPLICATION for the files to
be replicated; ADABCK first sets the status to Initializing, and then during ET
synchronization, when the current state in the database is the same as on the backup
file, ADABCK sets the status to Recording.

Alternatively you can perform your own initial state processing and then perform
ADAOPR CHANGE_REPLICATION=RECORDING.

RECORDING One of the following;:

= The data of the file to be replicated have been saved without using ADABCK with
the parameter REPLICATION. The replication status is set to Recording; this means
that new database modifications are recorded to be replicated to the target file as
soon as the copying of the data to the target file has been completed and you set the
status to Active.

Note: Performing ADAOPR CHANGE_REPLICATION = RECORDING is not required

if you use ADABCK with the parameter REPLICATION to save the data; in this case
ADABCK sets the status to Recording.

® The replication is to be stopped, and new database modifications are only recorded;
they will be replicated to the target database as soon as the replication is activated
again.

ACTIVE

The replication is active; all modifications of the source file are replicated to the target
file.

208

Adabas Utilities

ADAOPR (Operator Utility)

You must specify the replication IDs for which the status change is to be performed.

] Notes:

1. If the list of replications to be modified contains a file with a referential integrity constraint,
you must also specify replications for the related files and the same target database.

2. The following matrix shows the allowed options depending on the current replication status
and the resulting status changes:

Status/Keyword [INACTIVE | INITIALIZATION | RECORDING ACTIVE
Inactive Inactive |Prepare - -
Prepare Inactive |Prepare Recording (see note 1) |-

Initialization |Inactive |Init - -

Recording Inactive |Recording Recording Active
Active Inactive |Prepare Recording (see note 2) | Active
Error Inactive |Prepare - -

| Notes:

1. The recommended way for an initial state processing is to use ADABCK with the parameter
REPLICATION. ADABCK then sets the status first to Initialization, and later to Recording,
when the backup is finished. You must only set the status to Recording if you don’t use ADABCK
for initial state processing, for example because you want to start the replication with an empty
file.

2. Itis not necessary to set the replication to Recording if the target database is shutdown, for ex-
ample, for maintenance reasons. Then the database remains at status Active and the target
database is polled until it is available again. Setting the status to Recording may be useful, for
example, if you want to replicate the updates at night, which were done during the day, and if
your target database should contain the database state of the previous day.

CLEAR_FILE_STATS

CLEAR_FILE_STATS = (number [- number] [, number [- number]l 1 ...)

This function disables the collection of I/O statistics enabled by SET_FILE_STATS for the specified
file(s).

Adabas Utilities 209

ADAOPR (Operator Utility)

CLUSTER_LOG_LEVEL
CLUSTER_LOG_LEVEL = [FATAL | ERROR | WARN | INFO | DEBUG 1

This function changes the logging level of the cluster dynamically. The default logging level is
'INFO".

You can set the logging level to 'WARN' to reduce the number of cluster based log entries in the
nucleus log file.

Use the DISPLAY=CLUSTER command to display the current log level.

CSA
CSA = string

‘string' is a file specification of a file containing status information from an Adabas nucleus, a so-
called CSA dump file. This file may be created by an ADAOPR ABORT function, by an abnormal
termination of Adabas, or by response check trapping (refer to the RESPONSE_CHECK function
for further information).

The following naming conventions are used for the file:

Linux

ADABAS . xxx.hh:mm:ss
ADABAS . xxx.RSPyyy.hh:mm:ss

Windows

ADABAS . xxx.hh-mm-ss
ADABAS . xxx.RSPyyy.hh-mm-ss

(with the NORESPONSE_ABORT option set), where

" "xxx'is the three digit database ID;

" 'yyy'is the trapped three digit response code;

® "hh:mm:ss' is the time the file was created (Linux),

® "hh-mm-ss'is the time the file was created (Windows)

For example, if the database ID is 5, and the file creation was initiated by a trapped response code

113, the file name will start with ADABAS.005.RSP113, and then the time of creating will be ap-
pended, e.g. ADABAS.005.RSP113.12:16:50 (Linux) or ADABAS.005.RSP113.12-16-50 (Windows).

210 Adabas Utilities

ADAOPR (Operator Utility)

The file will be created in the directory that is pointed to by the environment variable/logical name
ADA_CSA_DUMP. The default is the directory from which the nucleus was started. If a file with
the same name already exists in this directory, it will be overwritten.

The DBID and CSA parameters are mutually exclusive.

DBID
DBID = number

This parameter selects the database to which all subsequent ADAOPR commands apply. Multiple
DBIDs are supported within one session.

The DBID and CSA parameters are mutually exclusive.

Example:

adaopr: dbid=1
adaopr: shutdown
adaopr: dbid=2
adaopr: shutdown
adaopr: dbid=3
adaopr: shutdown
adaopr: quit

DELETE_REPLICATION

DELETE_REPLICATION = (number [- number] [, number [- number]] ..

This parameter is relevant only for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

The replications with the specified replication IDs are stopped, if they are active, and deleted, in-
cluding the commands and transactions that have not yet been replicated to the target files.

DELUI
DELUI = number

Use the DELUI command to delete all users who have not executed a command during the specified
number of seconds. Any open transactions of the deleted users are backed out.

This command does not delete EXF or UTI users.

@ Caution: If Adabas is running NOT with options = OPEN_REQUIRED (specifying that users

are not required to issue an OP as the first command of the session), run the DELUI command
only if you are certain that the users to be deleted are no longer active. If a user with an

Adabas Utilities 211

ADAOPR (Operator Utility)

open transaction is deleted, but then returns (by sending a command), no indication is
given about the transaction backout. If the user continues the transaction, logical inconsist-
encies in the database could occur.

DISPLAY

DISPLAY = (keyword [,keywordl...)

This parameter displays various information during an Adabas session.

The following keywords can be used:

Keyword

Meaning

ACTIVITY

Database activities display.

BF_STATISTICS

Buffer flush statistics display.

BP_STATISTICS

Buffer pool statistics display.

CLUSTER Database cluster status display. For more information about this keyword
and a sample output, see Adabas Cluster -> Monitoring -> Minimal Requirements:
Health Check -> Health Check for Primary and Secondary Nodes.

COMMANDS Command table display.

CQ Command queue display.

DYNAMIC_PARAMETERS

Dynamic nucleus parameters display.

FILE_IO

File I/O display.

FP_STATISTICS

Format pool statistics display.

HIGH_WATER High water marks display.

HQ Hold queue display.

ICQ Internal command queue display.
I0_TIMES Container I/O times display.
PLOG_STATISTICS Protection log statistics.
REPLICATIONS Adabas - Adabas replications.
RPL_STATS Internally-collected replication statistics.
STATIC_PARAMETERS Static nucleus parameters display.
TCPCONNECTIONS ADATCP connections display.

1T Thread table display.

UCB Utility communication block.

uQ User queue display.

UQ_FILES User file list display.

UQ_FULL Full information about user queue element.

UQ_TIME_LIMITS

User time limits display.

212

Adabas Utilities

ADAOPR (Operator Utility)

The following examples show the information produced by the various keywords, together with
explanations of the information that is displayed.

Some of the following displays include percentages. The corresponding values are always truncated.
An undefined value (divided by 0) is specified with " *%" and an overflow with "***%".

Example: DISPLAY=ACTIVITY

adaopr: display=activity

ADANUC Version <version number>

Database 76 Activity on 22-JAN-2014 13:19:30

I/0 Activity Total Throwbacks Total
Buffer Pool 5,440 Waiting for UQ context 87
WORK Read 728 Waiting for ISN 53
WORK Write 647 ET Sync 0
PLOG Write 194 DWP Overflow 0
NUCTMP 1,600

NUCSRT 531

Pool Hit Rate Total Interrupts Current Total
Buffer Pool 99.6% WP Space Wait 0 0
Format pool 98%

The information has the following meaning:

= I/O ACTIVITY shows the total numbers of:

® physical buffer pool I/Os (physical read I/Os + physical write I/Os);

® read and write I/Os for WORK and PLOG.

® 1/Os for NUCTMP and NUCSRT
® INTERRUPTS shows the current and total number of workpool space waits;
® POOL HIT RATE shows:

* the buffer pool hit rate. This is the relationship between the logical read I/Os and the physical
read I/Os. The buffer pool hit rate is calculated using the following formula:

hit rate (in %) = ((logical read 1/0s - physical read I/0s) * 100)
/ Togical read I/0s

" the format pool hit rate. This is the relationship between the number of format buffer requests
(required FBs) and the required format buffers already translated in the format pool (translated
FBs). The format pool hit rate is calculated using the following formula:

Adabas Utilities 213

ADAOPR (Operator Utility)

hit rate (in %) = ((translated FBs * 100) / required FBs)

* THROWBACKS shows:
® the number of commands waiting for session context because internal commands were running;
® the number of commands waiting because ISNs are held by another user;
® the number of commands waiting for ET synchronization;

® the number of commands thrown back because of dynamic work pool overflow.

EXAMPLE: DISPLAY=BF_STATISTICS

adaopr: disp=bf_statistics
%ADAOPR-TI-STARTED, 18-0CT-2016 16:05:03 Version <version number>

Database 37, startup at 18-0CT-2016 16:04:40
ADANUC Version 6.5.1.0, PID 10448

ADANUC Version 6.5.1.0
Database 37 Buffer Flush Statistics on 18-0CT-2016 16:05:02

Buffer flush statistics:

Buffer flush Write Number of Type Size Average I0 Duration Rejected
start time Limit Blocks (MB) time (msec) (sec) Locks
18-0CT-2016 16:04:40 2 4 DB 0.04 0.00 0.00 0
18-0CT-2016 16:04:59 2 128 DB 0.54 0.35 0.04 0
18-0CT-2016 16:05:00 2 128 DB 0.53 0.96 0.12 1
18-0CT-2016 16:05:00 2 9 DB 0.06 0.00 0.00 0
18-0CT-2016 16:05:00 2 5 DB 0.04 3.00 0.01 0
18-0CT-2016 16:05:01 2 126 DB 0.53 0.98 0.12 1
18-0CT-2016 16:05:01 2 7 DB 0.05 11.00 0.07 0
18-0CT-2016 16:05:01 2 12 DB 0.07 0.00 0.00 0
18-0CT-2016 16:05:02 2 128 DB 0.54 0.85 0.10 0
18-0CT-2016 16:05:03 2 131 DB 0.55 0.10 0.01 0
Total number of flushes: 10
Explicit : 1
Write Timit 0
WORK Timit 5
Space 0
Emergency 0
Ignored blocks 4

This display shows the statistics of the buffer flushes; if more than 100 buffer flushes have been
performed in the current nucleus session, the last 100 buffer flushes are displayed. The following
information is displayed for each buffer flush:

214 Adabas Utilities

ADAOPR (Operator Utility)

The start time of the buffer flush.

The current write limit. The write limit for database blocks can be modified via ADAOPR
WRITE_LIMIT. The write limit for temporary blocks cannot be changed.

The number of blocks included in the buffer flush.

The type of buffer flush:

® DB means flush of database blocks

* Temp means flush of temporary blocks

The size in megabytes of the blocks included in the buffer flush.

The average 1/O time of the I/Os performed by the buffer flush in milliseconds.
The duration of the buffer flush in seconds.

The number of rejected locks is the number of blocks that were not written immediately during
the buffer flush, because the block was exclusively locked when the buffer flush tried to write
the block. The rejected blocks are either written after having written the other blocks - then the
buffer flush waits until the lock can be granted, or by a separate ignore-blocks buffer flush.

After the table the total number of buffer flushes is displayed, and a breakdown of the reasons for
the buffer flushes.

1.

i Notes:
The above displayed example database uses a small WORK container with the effect that the
condition for a WORK limit buffer flush occurs before the write limit is exceeded. Therefore,

the above example database displays WORK limit buffer flushes, but no write limit buffer
flushes.

. It may happen that two threads determine at nearly the same time that a buffer flush is required.

Then both threads set a flag that a buffer flush is required. When the first thread has set the
flag, the buffer flush thread starts a buffer flush and resets the flag. Then the second thread sets
the flag again. When the buffer flush is finished, a new buffer flush is started immediately. Be-
cause such unnecessary buffer flushes do not cause errors, no logic is implemented to avoid
such buffer flushes. In the example, the fifth and the eighth buffer flush are such unnecessary
buffer flushes. They are displayed as "Ignored blocks" buffer flushes; therefore 4 Ignored blocks
buffer flushes are displayed, although only 2 blocks were ignored.

Adabas Utilities 215

ADAOPR (Operator Utility)

EXAMPLE: DISPLAY=BP_STATISTICS

adaopr: display=bp_stati

stics

ADANUC Version
Database 34 Buffer Pool Statistics on 5-JUN-2014 13:11:28

Buffer Pool Size : 419,430,400

Pool Allocation

Current C 7%) :
Highwater (10%) :
Internal C 7%) :
Workpool (0%) :

I/0 Statistics

Logical Reads
Physical Reads
Pool Hit Rate

Physical Writes

32,835,584
42,676,224
30,770,176

1,408,000

340
17

95.

41

0%

The information is interpreted as follows:

= POOL ALLOCATION shows:

<version number>

RABNs present
ASSO

DATA

WORK

NUCTMP

NUCSRT

Buffer Flushes

Total
To Free Space
Temporary Blocks

Write Limit (2%):
Modified (0%):

Limit Temp.B.(50%):
Modified T.B.(0%):

O O O o1 W

3
0
0

8,388,600
108,544

209,715,000
0

" the size in bytes and percentage of the buffer pool that is currently in use;

= the size in bytes and percentage of the buffer pool high water mark (see also the display for
DISPLAY=HIGH_WATER).

= RABNs PRESENT shows:

“the number of ASSO, DATA and WORK RABNSs currently in the buffer pool.”

= J/O STATISTICS shows:

* the total number of logical and physical buffer pool read I/Os (both numbers are required in
order to calculate the buffer pool hit rate);

* the buffer pool hit rate (please refer to the example for DISPLAY=ACTIVITY for the buffer

pool hit-rate formula);

* the total number of physical buffer pool write I/Os.

216

Adabas Utilities

ADAOPR (Operator Utility)

= BUFFER FLUSHES shows:

" the total number of buffer flushes;

* the total number of buffer flushes that were made in order to get free space;

* the total number of buffer flushes for temporary blocks;

" the size and percentage of the buffer pool WRITE LIMIT for database blocks;

" the size in bytes and percentage of modified database blocks;

" the size and percentage of the buffer pool WRITE LIMIT for temporary blocks;

* the size in bytes and percentage of modified temporary blocks.

Example: DISPLAY=COMMANDS

adaopr: display=commands

Database 76

ADABAS Commands:

Al
BT
C1
€3
Ch
CL
El
ET
HI
L1

ADANUC Version <version number>
Commands

892
736
40

0

10

32
1,006
72

0

643

L2
L3
L4
L5
L6
L9
LF
MC
N1
N2

on 19-JAN-2014 14:58:10

553
1,124
569
420
436
456
20

0

877

0

0P
RC
RE
RI
S1
S2
S4
S8
S9

25

89

0

0
1,511
81

12
230
50

This command displays the total numbers of Adabas commands issued in the current session. For
MC commands, the value displayed is the number of MC calls plus the number of single Adabas

commands contained in the MC calls.

A read command that is issued while the multifetch option is set is counted as a single command.

Updates made by utilities are not included in the display.

Note: The command counts can be reset by ADAOPR RESET=COMMANDS.

Adabas Utilities

217

ADAOPR (Operator Utility)

Example: DISPLAY=CQ

adaopr: display=cq

O N O OB WD =

O

10
11
12

Selected: 12,

Database 2
Node Id Login I
PCO001 miller
PCO001 jones
PCO001 smith
PCO001L miller
PCO001 jones
PC0001 dba
PCO001 brown
PCO001 meyer
PCO001 smith
PCO001 king
PCO001 meyer
PCO001 brown
Used: 12,

ADANUC Version <version number>
Command Queue

d ES Id

Queue Size:

13

on 14-NOV-2014 13:41:53

APU Cmd File

—

NN DN NN PN

RC
S8
RC
S8
S9
Ul
S1
S8
S1
ET
RC
L6

This display shows the current command-queue entries:

® NODE ID shows the node identification string.

® LOGIN ID shows the login user identification string;

Status
Ready to
Running
Ready to
Running
Ready to
Running
Running
Running
Running
Ready to
Ready to
Ready to

run

run

run

run
run
run

® ES ID shows the environment-specific identification (for example, the process ID);

® APU shows the assigned Adabas Processing Unit of the command queue entry if the nucleus
parameter APU is set. If APU has not been specified, the column APU is not displayed;

® CMD shows the command string;

® FILE shows the file number;

= STATUS shows the status of the command-queue entry.

The final line of the display shows how many command queue entries were selected according
to the currently active selection criteria, and how many entries are used in total in the command

queue.

The possible status values are shown in the following table:

218

Adabas Utilities

ADAOPR (Operator Utility)

Status Meaning

Completed Command processing completion;

Marked For Deletion Command is marked for delete, user is no longer active;
New Command is ready to be inserted in the scheduling queue;
Ready To Run Placed in queue and ready for scheduling;

Running Running in a thread (see DISPLAY=TT);

Waiting For Complex Complex command is waiting to run;

Waiting For Et Sync Waiting for ET synchronization;

Waiting For Group Commit

Waiting for group ET. No entry in thread table;

Waiting For Isn <isn>

Waiting for ISN in file shown in column "File" in the display. No entry in
thread table;

Waiting For Space

Waiting for working space. No entry in thread table.

Waiting For Uqe

Waiting for user queue entry. The required entry is locked by an active internal
command;

Note: The display may show command codes such as "U0", which are only used internally

by Adabas (for example, during a utility run).
The "RUNNING" and "COMPLETED" values may differ even if the user has not specified
an explicit selection criterion.

Example: DISPLAY=DYNAMIC_PARAMETERS

adaopr: display=dynamic_parameters

Database 76

ADANUC Version <version
Dynamic Parameters

number>
on 19-JAN-2014 14:58:10

Resources: NISNHQ 100 WRITE_LIMIT: 50%

Time Slices: TNAA 900 TNAX 900
TNAE 900 TT 300

Logging: CLOG : OFF

Read limits: 200, 10, 30

Response check with ABORT

: 84,160,164-182,243,251-252

This display shows the current values of the dynamic nucleus parameters.

Adabas Utilities

219

ADAOPR (Operator Utility)

Example: DISPLAY=FILE_IO

adaopr: display=file_io

ADANUC Version <version number>

Database 76 File I/0 on 19-JAN-2014 14:58:10
Reads Hit
File Logical Physical Rate Writes
11 145,341 180 99% 2,869
12 99,070 148 99% 2,149

This display shows the logical and physical reads, their hit rate and the writes the buffer pool
manager has made for every file since the file I/O statistiscs for the file in question were enabled
(ADAOPR SET_FILE_STATYS) - files for which the I/O statistics have not been enabled or for which
no I/Os were performed are not displayed.

Notes:

1. The formula for the hit rate value is given in the description of DISPLAY=ACTIVITY.

2. A write operation is only counted if the block was not yet marked as modified. This means that
the physical write I/Os either already done in a previous buffer flush or still pending to be
performed in the next buffer flush are counted.

Example: DISPLAY=FP_STATISTICS

adaopr: display=fp_statistics

ADANUC Version <version number>
Database 76 Format Pool Statistics on 19-JAN-2014 14:58:10

Maximum Local Pool Size: 251,656

Maximum Global Pool Size: 251,656

Pool Allocation Pool Contents

Local Current (22%) : 57,540 Local Format Buffers: 162
Local Highwater (27%) : 70,000 Global Format Buffers: 1
Global Current (0%) : 84

Global Highwater (0%) : 84

Pool Statistics Local Global

220 Adabas Utilities

ADAOPR (Operator Utility)

Scans 11,780 3
Hits 11,547 2
Hit Rate 98% 66%
Replacements 0 0
Overflows 0 0

This display shows the format pool statistics:

® POOL ALLOCATION shows:
= the size in bytes and percentage of the local and global format pools that are currently in use;
" the size in bytes and percentage of the local and global format pool high water marks.

® POOL STATISTICS shows:

" the total number of scans and hits of valid format buffers in the format pool (both numbers
are required in order to calculate the format pool hit rate);

* the format pool hit rate (please refer to the example DISPLAY=ACTIVITY for the format pool
hit-rate formula);

*® the total number of valid format buffers that are overwritten in the format pool (replacements).

® Overflows. This is the number of times that a format buffer exceeded the format pool size,
resulting each time in a response 42.

® POOL CONTENTS shows:
* the number of valid local format buffers in the format pool;

® the number of valid global format buffers in the format pool.

Example: DISPLAY=HIGH_WATER

adaopr: display=high_water
ADANUC Version <version number>

Database 2 High Water Marks on 21-NOV-2014 11:44:19
Area/Entry Size In Use High Water % Date/Time
User Queue 100 13 13 13 21-NOV-2014 11:44:00
Command Queue = 12 13 - 21-NOV-2014 11:44:19
APU 01 = 2 12 - 21-NOV-2014 11:44:02
APU 02 = 13 15 - 21-NOV-2014 11:44:00
Hold Queue = 2 2 - 21-NOV-2014 11:44:00
Client Queue 100 13 13 13 21-NOV-2014 11:44:00
HQ User Limit = = 1 - 21-NOV-2014 11:44:00
Threads 6 4 6 100 21-NOV-2014 11:44:00
Workpool 524,288,000 0 131,072,016 25 21-NOV-2014 11:42:16
ISN Sort 65,536,000 = 380,000 0 21-NOV-2014 11:44:04
Complex Search 65,536,000 - 0 0
Attached Buffer 1,048,576 219,136 219,136 20 21-NOV-2014 11:44:02
Adabas Utilities 221

ADAOPR (Operator Utility)

ATBX (MB) 20 0 0 0
Buffer Pool(KB) 2,048,000 957,962 1,009,978 49 21-NOV-2014 11:42:16
Protection Area 127,990

Active Area 38,397 = 4 0 21-NOV-2014 11:44:04
Group Commit 50 1 1 2 21-NOV-2014 11:42:17
Transaction Time 3,000 = 0 0

This display shows the high water marks for the current session:

= SIZE shows the size in bytes of pools and buffers. For queues, threads and hold queue user
limit, it shows the number of entries.

= IN USE shows the size in bytes or number of entries currently in use.
® HIGH WATER shows the maximum quantity required simultaneously for the given area/entry.

® % shows the relationship between the high water mark and the size. If the high water mark ex-
ceeds the size, the value in this column can be larger than 100 %. For example, this can occur if
the value is decreased by ADAOPR, or if the original area has been dynamically increased. This
is normal Adabas behaviour, and no changes of Adabas parameters are required.

* DATE/TIME shows the date/time at which the high water mark occurred for the first time. There
is no output in this column if the high water mark is 0.

The entries in the column AREA/ENTRY correspond to the ADANUC parameters NU (user queue),
NCL (client queue), NISNHQ (hold queue user limit), NT (threads), APU (Adabas Processing
Units, only displayed if the nucleus parameter APU is set), LWP (workpool), LBP (buffer pool),
LAB (attached buffer), TT (transaction time). The hold queue and the command queue have no
predefined size and are increased dynamically if required.

The entry "ACTIVE AREA" is the largest part of WORK part 1 that can be used by a single trans-
action. If a transaction's protection information spans more space than allowed by "Active Area",
it receives a response 9 (LP), the nucleus displays a PLOVFL message and a value of more than
100 in the "%" column of the highwater display.

Users who have set user-specific timeout values in their OP call are not included in the values for
Transaction Time.

Note: 1. Values for Attached Buffer and Command Queue are not displayed correctly if the

nucleus cannot be contacted by ADAOPR (for example, if the ADAOPR parameter CSA is
used.

2. Threads are used in a round-robin manner. Therefore, the high water mark for threads
will be the same as the value shown in the Size column in most cases.

3. During an autorestart following an abnormal nucleus termination, user queue elements
are created for those users who are active during the time interval and for who the updates
must be recovered. Therefore, directly after the start of the new nucleus session, the high
water mark for the user queue can be relatively high, while the number of user queue ele-
ments in use is small.

222 Adabas Utilities

ADAOPR (Operator Utility)

Example: DISPLAY=HQ

adaopr: file=11, display=hq

ADANUC Version <version number>

Database 76 Hold Queue on 19-JAN-2014 14:58:10
Id Node Id Login Id ES Id User Id File ISN Locks Flg
15 sunxxx01 miller 6974 *adatst 11 2,222 X M
19 sunxxx01 smith 7056 *adatst 11 2 X

Selected: 2, Used: 8, Queue Size: 160

This display shows the current hold-queue entries:

ID shows the internal user identification of the user holding the ISN;

NODE ID shows the node identification string. The local node is represented by an empty string;
LOGIN ID shows the login user identification string;

ES ID shows the environment-specific identification (for example, process ID);

USER ID shows the user identification. Adabas utilities use the utility name preceded by an
asterisk as the USER ID;

FILE shows the number of the Adabas file in which the ISN is located;
ISN shows the number of the ISN in hold;
LOCKS shows the kind of lock for the ISN, where X = exclusive lock , S = shared lock.

Note: S is displayed for shared locks starting with Adabas version 6.3 SP 1; in previous
releases R is displayed.

An M for FLG indicates that the record has been modified.

The final line of the display shows how many hold queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Entries are displayed in unsorted sequence.

Adabas Utilities 223

ADAOPR (Operator Utility)

Example: DISPLAY=ICQ

adaopr: display=icq
ADANUC Version <version number>

Database 76 Internal Command Queue on 19-JAN-2014 14:58:10

Id Node Id Login Id ES Id Command Status
00000002 *system 00000000 SHUT Running
Selected: 1, Used: 1, Queue Size: 101

This display shows the internal command queue:

Command |Meaning

AR Autorestart
BT Back out transaction
BTCL Back out open transaction and close user

CANCEL |Cancel nucleus

DELUQE |Release file list and delete user queue element
SHUT Shut down nucleus

STOP STOP from ADAOPR

TIMEOUT |Non-activity timeout

The status of internal commands can be READY TO RUN, RUNNING, WAITING FOR ET SYNC
or WAITING FOR UQE.

The final line of the display shows how many internal command queue entries were selected ac-
cording to the currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=I0_TIMES

adaopr: display=io_times

ADANUC Version <version number>

Database 76 I0 Statistics on 19-NOV-2014 12:16:48
Number of I0s Maximum I0 time Average I0 time
ASSO Read : 735574 14397 1
ASSO Write g 12136 2 1

224 Adabas Utilities

ADAOPR (Operator Utility)

DATA Read 2023257
DATA Write 444
WORK Read 4
WORK Write 660
NUCSRT Read 4060
NUCSRT Write : 4060
NUCTMP Read 30
NUCTMP Write : 896

O
~
(@)
= O

The number of I0s shows the number of physical read and write I/O accesses to ASSO, DATA,
WORK, NUCSRT and NUCTMP.

The maximum IO time shows the maximum duration of a single I/O read and write access to
ASSO, DATA, WORK, NUCSRT and NUCTMP in microseconds.

The average 10 time shows the average time of a single I/O access to ASSO, DATA, WORK,

NUCSRT and NUCTMP in microseconds.

Logging of I/O times is only available if ADAOPR IO_TIME is enabled..

Example: DISPLAY=PLOG_STATISTICS

adaopr: display=plog_statistics

Database 76

PLOG Environment

NUCPLG (active)

Active PLOG

Session Number
Extent

Active Since
Duration

Allocated Space
Used Space ¢ 0%)

Average Growth Rate :

ADANUC Version <version number>

PLOG Statistics

37
2

19-JAN-2014 14:59:41
00:00:01

24,683 KB
32 KB
115,200 KB/h

on 19-JAN-2014 14:59:41

: /FS/fsxxxx/sag/ada6180102/ada/db076/NUCPLG

Adabas Utilities

225

ADAOPR (Operator Utility)

Example: DISPLAY=REPLICATIONS

adaopr: display=replications
ADANUC Version <version number>

Database 34 Replications on 19-JAN-2014 09:47:48
ID From FNR To DB To FNR Status Remark

1 111 37 111 Inactive

86 86 37 86 Active

2 transactions pending:

To DB Transactions

From FNR Commands
86 5
111 0

This display shows the Adabas - Adabas replications currently defined. This is only relevant for
customers who are using the Adabas Event Replicator with Adabas - Adabas replication.

Note: Replications to other replication targets, for example SQL databases, are not displayed.
Such replications can only be displayed with the administration tools of the event replication.

The display shows the following information:

“ID” is the ID of the replication that is also used in the replication administration.

"From FNR” is the file number of the file to be replicated to another Adabas file.
® “To DB” and “To FNR” are the database ID and file number of the target file for the replication.

"Status" can have the following values and meanings:

226 Adabas Utilities

ADAOPR (Operator Utility)

Status Meaning

Inactive Currently no data are replicated to the target file, and at the moment no activities have
been made to initiate the replication.

Prepare This status indicates that it is planned to perform the initial state processing for the
replication. This status is the prerequisite for creating a backup of files to be replicated via
ADABCK with parameter REPLICATION.

Initialization | This status indicates that ADABCK with parameter REPLICATION is running and creates
a backup containing the initial state of files to be replicated.

Recording |Adabas is currently recording the update transactions within the replication command file
and the replication transaction file, but currently does not replicate the update operations
to the target database.

Active The replication is active; all modifications of the source file are replicated to the target file.

Error An unexpected error occurred during replication. In order to continue replication, a new
initial state processing is required.

target file.

“Pending Transactions” is the number of transactions that have not yet been replicated to the

Notes:

. The number contains both transactions that have already been committed but not yet replicated
to the target database, and transactions that are still open and which can only be replicated
after an end of transaction.

. If a transaction contains commands to be replicated to more than one target database, the
transaction is counted only once, independent of the number of target databases. Therefore
the total number of pending transactions can be smaller than the sum of the transactions for
the different target databases.

“Pending Commands” is the number of commands that have not yet replicated to the target
file.

Notes:

. The number contains both commands belonging to transactions that have already been
committed but not yet replicated to the target database, and commands belonging to transac-
tions that are still open and which can only be replicated after an end of transaction.

. If a file is replicated to more than one target file, database modification commands of the
source file are counted only once, independent of the number of target files to which a com-
mand has to be replicated.

If ADAOPR DISPLAY=REPLICATIONS is executed in non-interactive mode, ADAOPR returns
one of the following exit status values:

Adabas Utilities

227

ADAOPR (Operator Utility)

Value |Meaning

0 At least one replication has been defined, and no replication is in status Error.

12 |There is a replication in status Error.

15 |Replication has not been activated, or no replication has been defined.

Example: DISPLAY=RPL_STATS

adaopr: start_rpl_stats
adaopr: display=rpl_stats

ADANUC Version <version number>
Database 6 Replication Statistics on 18-JUL-2016 11:24:47

Replication Statistics Summary - All Times in usec

Transact not yet Repl (Cur/Max) 0 2

Replicated Transactions 281

Transact Repl Time (Avg/Min/Max) 3,055 9 171,013
Transact Latency (Avg/Min/Max) 3,173 14 171,021
Replicated Commands 4,984

Command Repl Time (Avg/Min/Max) 1 1 18
Replicated Al Commands 1,536

A1l Repl Time (Avg/Min/Max) 1 1 11
Replicated E1 Commands 1,711

El Repl Time (Avg/Min/Max) 1 1 12
Replicated NX Commands 1,737

NX Repl Time (Avg/Min/Max) 1 1 18
Command Wait Counter 2

Command Wait Time (Avg/Min/Max) 15,518 41 30,995

Notes:

1. Before displaying the replication statistics, the replication statistics must be activated with the
command START_RPL_STATISTICS.

2. On Windows 7, the functions currently used to get the current time only have an accuracy of
1 millisecond; if the millisecond has not changed since the previous call, the time is increased
by 1 microsecond. This means that the time values displayed are not very precise - if a value is
significantly less than 1000, this only means that the time is less than one millisecond, but it
will be probably significantly larger than the value displayed.

The display shows the following information:

228 Adabas Utilities

ADAOPR (Operator Utility)

Value

Meaning

Transact not yet Repl

The number of replications that have been committed, but have not yet been
replicated. If the values are large, this means that the system is overloaded;
Adabas is not able to replicate update operations in time. An exception where
large values are normal is when the target database is down; then no
transactions can be replicated, and the number of transactions not yet replicated
increases.

Replicated Transactions

The number of transactions that have been replicated since the replication
statistics were activated.

Transact Repl Time

The time to replicate a single transaction.

Transact Latency

The time between the commit of a transaction in the source database and the
commit of the replicated transaction in the target database.

Note: When the target database is down, transactions must wait for replication

until the database is up again. This means you will get large values for
transaction latency.

Replicated Commands

The number of commands that have been replicated since the replication
statistics were activated.

Command Repl Time

The time required to replicate one command.

Replicated A1 Commands

The number of A1 commands that have been replicated since the replication
statistics were activated.

Command Al Repl Time

The time required to replicate one Al command.

Replicated E1 Commands

The number of E1 commands that have been replicated since the replication
statistics were activated.

Command E1 Repl Time |The time required to replicate one E1 command.

Replicated NX Commands|The number of N1 or N2 commands that have been replicated since the
replication statistics were activated.

Command NX Repl Time |The time required to replicate one N1 or N2 command.

Command Wait Counter

If more than one transaction is replicated at the same time, it may happen that
the replication of a command must wait for the termination of the replication
of another command belonging to another transaction in order to guarantee
the consistency of the replication. The counter shows how often this happened
since the replication statistics were activated.

Command Wait Time

The time until the replication of a command could continue when the command
replication had to wait for the termination of the replication of another command
belonging to another transaction.

Adabas Utilities

229

ADAOPR (Operator Utility)

Example: DISPLAY=STATIC_PARAMETERS

adaopr: display=static_parameters
ADANUC Version <version number>

Database 22 Static Parameters on 21-NOV-2014 11:13:25
Resources: LAB g 1,048,576 NT s 6
LBP g 104,857,600 NU 2 50
LWP : 1,000,000 NCL 2 50
LABX g 20,971,520
APU : (2, 3, 2)
TCP/IP Port: 49152

TCP/IP Receiver: 4

Logging: PLOG, BI
Options: AUTO_EXPAND

This display shows the static nucleus parameters.

Note: The nucleus parameter APU is only displayed if it has been specified.

Example: DISPLAY=TCPCONNECTIONS

adaopr: display=tcpconnections

ADANUC Version <version number>

Database 100 Connections on 5-SEP-2022 09:59:37

Connect Time Conn ID Recv ID User ID Remote Host IP «
Address Port
__ o

5-SEP-2022 11:03:44 1 1 bal Nodel ©
192.169.10.98 00000

5-SEP-2022 11:04:50 2 0 bal Node? o
192.169.10.99 00000

The ‘Remote Host’, also known as ‘Node Id” in the user queue, might not be the real client’s host
name. The host (node id) can be set by the client application (see also the client function
Ink_set_adabas_id() in the section Command Reference > Calling Adabas). If the real host’s name is
wanted, the environment variable ADATCP_DNSLOOKUP can be set to “YES’. The variable can
be set in the section ‘/ENVIRONMENT’ of the DBnnn.INI file database specific, or in the shell en-
vironment. The default value is ‘NO’. This prevents performance issues because a DNS (Domain
Name Service) lookup can be very time consuming.

230 Adabas Utilities

ADAOPR (Operator Utility)

Output after setting the environment variable:

adaopr: display=tcpconnections

ADANUC Version <version number>

Database 100 Connections on 5-SEP-2022 09:59:37

Connect Time Conn ID Recv ID User ID Remote Host IP «
Address Port
,, ©
5-SEP-2022 11:08:04 1 0 bal pcball.softwareag.com ©
192.169.10.98 36096

5-SEP-2022 11:08:14 2 1 bal pcbal2.softwareag.com ©
192.169.10.99 48454

The "Port’ number is the local port number of the connection which helps to identify a connection
with operating system tools.

Example: DISPLAY=TT

adaopr: display=tt
ADANUC Version <version number>

Database 2 Thread Table on 21-NOV-2014 11:49:38
No APU Cmd Count File Cmd Status
1 2 120,715 13 S9 Complex, waiting for DATA / 2785
2 1 120,146 13 S8 Complex, waiting for TEMP / 35794
3 2 124,364 0 Free
4 1 122,300 13 S8 Complex, waiting for TEMP / 168654
5 2 120,325 13 S8 Complex, active
6 1 123,210 13 S1 Simple , active

This display shows the entries in the thread table. The number of displayed entries is simultaneously
the high water mark for threads.

® APU shows the assigned Adabas Processing Unit of the thread if the nucleus parameter APU
is set. If APU has not been specified, the column APU is not displayed.

® CMD COUNT shows the total number of Adabas commands processed from the corresponding
thread context. The sum of these counts will normally differ from the sum shown by DIS-
PLAY=COMMANDS, because internal commands are also counted.

® FILE shows the file number of the Adabas command that is currently being processed from the
corresponding thread context. The file number is 0 if the corresponding thread context is not
active, or if the command is a global one which is not linked to a particular file.

Adabas Utilities 231

ADAOPR (Operator Utility)

® CMD shows the command string of the Adabas command that is currently being processed
from the corresponding thread context. There is no output in this column if the corresponding
thread context is not active.

" STATUS shows the command type and the status of the corresponding thread context.

Possible command types are:

® Update
® Simple

® Complex

Possible entries for the thread status are shown in the following table:

Status Meaning

free available for allocation
ready ready to run

active running

waiting for io
<rabn>/<block type>

waiting for I/o completion of block
<rabn>

waiting for
<rabn>/<block type>

waiting for access/update synchronization of
block <rabn>

waiting for space
<size> bytes

waiting for <size> bytes of work pool
space

PLOG processing

Log entries for PLOG and WORK are created.

Waiting for PLOG processing

The thread wants to perform PLOG processing, but another thread is already
performing PLOG processing - only one thread can create log entries at the
same time.

Note: The thread status entries are displayed one by one. Therefore, it can
happen that for more than one thread status “PLOG processing” is displayed,

or that status “Waiting for PLOG processing” is displayed for a thread,
although for no other thread status “PLOG processing” is displayed.

| Note: The display of the thread status is done for one thread after another. For this reason,

it can happen that status "PLOG processing" is displayed for more than one thread, or that
status "Waiting for PLOG processing" is displayed, although for no other thread status
"PLOG processing" is displayed.

The block type can be ASSO, DATA, WORK, FILE or PLOG.

232

Adabas Utilities

ADAOPR (Operator Utility)

Example: DISPLAY=UCB

adaopr: display=uch

ADANUC Version <version number>

Database 76 UcB on 19-JAN-2014 14:59:45
Date/Time Entry Id Utility Mode Files
19-JAN-2014 14:59:41 42 adaopr UTO 13

This display shows the utility communication block.

® DATE/TIME shows the date and time on which the given files were locked.
® ENTRY ID shows the allocated identification of the entry.
= UTILITY shows the name of the utility.
® MODE shows the mode in which the files are being accessed. The possibilities are:
® ACC open for access
® UPD open for update
® EXU open for exclusive update (parallel access allowed)
® UTO open for utilities only
® UTI open for exclusive access (no parallel access or update allowed)

= Files shows the file numbers of the files that are locked.

Example: DISPLAY=UQ

adaopr: display=uq

ADANUC Version <version number>

Database 76 User Queue on 19-JAN-2014 14:58:10
Id Node Id Login Id ES Id User Id Type Status
26 sunxxx01 dba 4473 *adaopr uT

23 sunxxx0l smith 3075 ET E
20 sunxxx0l Jjones 3178 ET I

19 sunxxx01 jones 1946 ET IE
18 sunxxx0l smith 4689 ET

16 sunxxx01l smith 4661 ET

17 sunxxx01 jones 4638 HHHHHHHHE T

14 sunxxx0l miller 4379 ET R

Adabas Utilities 233

ADAOPR (Operator Utility)

13 sunxxx01 dba 3967 *adatst AC
12 sunxxx01 dba 3651 *adatst EX,ET E
11 sunxxx01 dba 4025 DBADMIN EX RU

Selected: 11, Used: 11, Queue Size: 100
This display shows the current user queue entries.

= D shows the internal user identification;

® NODE ID shows the node identification string;
® LOGIN ID shows the login identification string;
® ESID is the process ID of the client process;

| Note: ES ID means "Environment Specific ID". This term was used, because in previous

Adabas versions on Windows, instead of the process ID, a random number was used as
the ESID in order to avoid double usage of the same Adabas session ID - this was because
on Windows, the process IDs could be reused after a short time. After adding a timestamp
to the Adabas session ID, reusage of the same Adabas session ID can no longer happen,
therefore the process ID can also be used as the ES ID on Windows. The timestamp is
displayed only with ADAOPR DISPLAY=UQ_FULL.

® USER ID shows the user identification specified in Additions 1 in the Open command for the
current Adabas session;

| Note: If you don't use the nucleus option OPEN_REQUIRED, the USER ID information

is deleted following a non-activity timeout. When this happens, the USER ID is displayed
as "######4#". 1f the nucleus option OPEN_REQUIRED is used, not only the user inform-
ation, but also the complete user queue element is deleted; this means that DISPLAY=UQ
no longer displays such user queue elements.

® TYPE shows the user type:
® AC access only user
" ET ET user
* EX exclusive update user
® EX,ET exclusive update user with ET logic
® UT utility user.
= STATUS shows the status of the user:
® E user at ET status
® T user session started with an implicit OPEN
" Rrestricted file list

® T user has received a time-out

234 Adabas Utilities

ADAOPR (Operator Utility)

® U user specific timeout interval value

Note: The description for the components of the Adabas session ID (Node ID, Login ID, ES

ID and the timestamp not displayed by ADAOPR DISPLAY=UQ) is only correct if the
function Ink_set_adabas_id is not used (see Command Reference). This function lets you
define your own Adabas session IDs.

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=UQ_FILES

adaopr: display=uq_files
ADANUC Version <version number>

Database 76 User Files on 19-JAN-2014 14:58:10

Id Type Mode Files

26 UT

23 ET UpD 11-12
20 ET UPD 11-12
19 ET UpD 11-12
18 ET UpD 11-12
l6 ET UPD 11-12
14 ET UpD 11-12
13 AC

12 EX,ET EXU 14

11 EX ACC 11

EXu 13
Selected: 10, Used: 11, Queue Size: 100
This display shows the file lists for active users.

=]D shows the internal user identification;
® TYPE shows the user type (please refer to the DISPLAY=UQ example for more information).
® MODE shows the mode in which the files are being accessed:

® ACC open for access

EXF open for exclusive access (no parallel access or update allowed)

EXU open for exclusive update (parallel access allowed)

UPD open for update

UTT open for exclusive access (no parallel access or update allowed)

Adabas Utilities 235

ADAOPR (Operator Utility)

® UTO open for utilities only

® FILES shows the Adabas file list of the user entry. If the list is too large to be displayed in one
line, several lines will be used: file numbers are not omitted.

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=UQ_FULL

adaopr: disp=uq_full
ADANUC Version <version number>

Database 36 Full User Queue Entry on 3-SEP-2014 17:12:24

User Entry: 1Id 8 ES Id 17937

Node Id sunada05 Login Id smith

User Id *adaopr

Timestamp Id 3-SEP-2014 17:12:18:182,671

User Type uT User Status
Time Stamps: Session Start : 3-SEP-2014 17:12:17

Trans. Start

Last Activity :
Time Limits: TT 0 TNA 0
Resources: ISN Lists 0 ISNs Held 0

Open Files 0
Activity: ADABAS Calls 1 Transactions 0
Settings: User Encoding : UTF-8
User Entry: Id 6 ES Id 15808

Node Id sunada05 Login Id Jjones

User Id JONESOO01

Timestamp Id 3-SEP-2014 17:11:32:113,750

User Type ET User Status
Time Stamps: Session Start : 3-SEP-2014 17:11:31

Trans. Start : 3-SEP-2014 17:11:56

Last Activity : 3-SEP-2014 17:11:56
Time Limits: TT 300 TNA 300
Resources: ISN Lists 0 ISNs Held 1

Open Files 1

236

Adabas Utilities

ADAOPR (Operator Utility)

Activity: ADABAS Calls : 3 Transactions : 1

Settings: User Encoding : UTF-8

This display shows detailed information about user queue elements.

Additionally to the information shown by ADAOPR DISPLAY=UQ, the following information is
shown:

® TIMESTAMP ID shows the timestamp added to the Adabas session ID to guarantee the uniquenes
of the Adabas session ID;

® The timestamps show when the current Adabas user session was started, when the last transaction
of the session was started, and when the last activity for the session was performed.;

® The time limits show the transaction time limit and the non-activity time limit defined for the
Adabas user session;

Note: Normally the time limits are the default values defined via ADANUC parameters,

but it is possible to override these default values in the Open command of the Adabas
user session.

" Resources shows the number of ISN lists currently active for the Adabas user session, the
number of ISNs in the hold queue for the session, and the number of Adabas files in use in the
session;

" Activity displays the number of Adabas calls and the number of transactions performed in the
Adabas user session.

= Settings displays the default user encoding for W fields used in the current Adabas sessions as
specified in the Open command of the session. If nothing was specified, the default UTF8 is
used.

Example: DISPLAY=UQ_TIME_LIMITS

adaopr: display=uq_time_limits

ADANUC Version <version number>

Database 76 User Time Limits on 19-JAN-2010 14:58:10

TNAA Interval
TNAE Interval

00:15:00
00:15:00

TNAX Interval
TT Interval

00:15:00
00:05:00

Id St Limit Timeout Interval Remaining Time Start Date/Time

23 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00

22 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00

Adabas Utilities

237

ADAOPR (Operator Utility)

21 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10
20 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10
19 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00
18 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:04:50 19-JAN-2014 14:58:00
17 TNAA 00:15:00 00:15:00 19-JAN-2014 14:58:10
16 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10
14 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10
13 TNAA 00:15:00 00:10:01 19-JAN-2014 14:53:11
12 TNAE 00:15:00 00:10:01 19-JAN-2014 14:53:11
TT 00:05:00
11 U TNAX 00:40:00 00:34:57 19-JAN-2014 14:53:07

Selected: 12, Used: 14, Queue Size: 100

This display shows the current timeout limits for the user queue entries.

ID shows the internal user identification;

ST shows the status of the entry. Possible values are:
® U user specific timeout value

® T a timeout is pending, response 9 has not been collected yet by the client.

LIMIT describes the timeout type;
TIMEOUT INTERVAL shows the current active timeout intervals.

REMAINING TIME shows the amount of time remaining until the next timeout mark.
START DATE/TIME shows the starting date and time of the entry.

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

ES ID
ES_ID = number

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL, UQ_TIME_LIMITS. Only entries with the specified environment-specific ID are dis-
played.

238 Adabas Utilities

ADAOPR (Operator Utility)

[NOJET_SYNC
[NOJET_SYNC

This option controls the behaviour of the FEOF=PLOG function. It must be specified before spe-
cifying FEOF=PLOG. Refer to the FEOF=PLOG function for more information.

The default is NOET_SYNC.

[NOJEVENTING

[NOJEVENTING

This starts and stops the Adabas Event Analytics for a running adanuc process. The adanuc process
will start to generate events based on the Adabas Event Analytics configuration in the database
INI file. If Adabas Event Analytics is configured to send the events to the Analytics Server, please
make sure that the Analytics Server is started.

Note: If Adabas Event Analytics is not configured, the default events will be written to a
NUCELG file located in the database directory.

The default is NOEVENTING.

EXT_BACKUP
EXT_BACKUP = [PREPARE | CONTINUE | ABORT]

This function is used to backup a database using an external backup system, which can be consid-
erably faster with very large databases than using ADABCK.

The keyword PREPARE prepares the database for backup. During this phase, the following restric-
tions apply:

" new transactions will be stalled

" no updating utility functions (e.g. ADADBM) can be started

" the functions SHUTDOWN, CANCEL, LOCK, STOPUSER, UNLOCK and FEOF=PLOG are not
permitted once the EXT_BACKUP = PREPARE call has finished processing

* all non-activity timeout checks are disabled

The keyword CONTINUE is used to resume normal database operations following completion
of the external backup. The following actions are performed:

® open a new PLOG with a new session number

" re-enable non-activity timeout checks

" re-enable update utilities

Adabas Utilities 239

ADAOPR (Operator Utility)

® wake up all waiting users (start of new transactions)

The keyword ABORT is used to abort an external backup for which a PREPARE has already been
issued. In this case, the PLOG isn't switched and no checkpoint is written.

@ Caution: Take care to ensure that your external restore does not overwrite the protection

logs created after the external backup. Without the protection logs, you cannot re-apply the
changes perforrmed after the external backup with ADAREC REGENERATE.

Example

The following scenario shows a backup and restore using a third-party backup tool (tar is not a
real alternative, and is used for demonstration purposes only):

Dumping the database

adaopr db=37 ext_backup=prepare
%ADAQPR-T-STARTED, 13-DEC-2023 03:29:10, Version 7.2.0.0 (Linux 64Bit)

Database 37, startup at 13-DEC-2023 03:29:07
ADANUC Version 7.2.0.0, PID 2079603

%ADAOPR-T-EXTBPREP, preparing for external backup, 13-DEC-2023 03:29:10
5ADAOPR-T-TERMINATED, 13-DEC-2023 03:29:10, elapsed time: 00:00:00

adaopr db=37 ext_backup=continue
%ADAOPR-T-STARTED, 13-DEC-2023 03:31:24, Version 7.2.0.0 (Linux 64Bit)

Database 37, startup at 13-DEC-2023 03:29:07
ADANUC Version 7.2.0.0, PID 2079603
During ET Sync (phase 2), for external backup

%ADAOPR-I-EXTBCONT, continue from external backup, 13-DEC-2023 03:31:24
HADAOPR-T-TERMINATED, 13-DEC-2023 03:31:24, elapsed time: 00:00:00

adarep

%ADAREP-T-STARTED, 13-DEC-2023 03:34:24, Version 7.2.0.0 (Linux 64Bit)
adarep: dbid=37

%ADAREP-T-DBON, database 37 accessed online

adarep: checkpoints=(12-dec-2023,14-dec-2023)

Name Date/Time Session User Id / Function
SYNP 13-DEC-2023 03:27:57 1 ADAORD IMPORT=9
SYNP 13-DEC-2023 03:27:57 1 ADAORD IMPORT=14
SYNP 13-DEC-2023 03:27:57 1 ADAORD IMPORT=12
SYNP 13-DEC-2023 03:27:57 1 ADAORD IMPORT=11

24 Adabas Utilities

ADAOPR (Operator Utility)

ADAORD IMPORT=13

ADANUC 7.2.0.0

ADAOPR EXT_BACKUP STARTED
ADAOPR EXT_BACKUP

SYNP 13-DEC-2023 03:27:57
SYNC 13-DEC-2023 03:29:07
SYNX 13-DEC-2023 03:29:10
SYNX 13-DEC-2023 03:31:24

— e

Restoring and recovering the database

% tar xvf $BACKUPDIR/backup.tar # external restore

% mv $ADADIR/db037/plog.0096 . 4 Assume current directory is not $ADADIR/db037
% adastart 37

% adarep

adarep: checkpoints=(12-dec-2023,14-dec-2023)

Name Date/Time Session User Id / Function

SYNC 13-DEC-2023 03:29:07 1 ADANUC 7.2.0.0

SYNX 13-DEC-2023 03:29:10 1 ADAOPR EXT_BACKUP STARTED
SYNX 13-DEC-2023 03:31:24 1 ADAOPR EXT_BACKUP

SYNC 13-DEC-2023 03:39:58 1 ADANUC CANCEL

SYNC 13-DEC-2023 03:40:12 2 ADANUC 7.2.0.0

adarep: @

%ADAREP-TI-TERMINATED, 13-DEC-2023 03:48:50, elapsed time: 00:08:34
% setenv RECPLG plog.0096 # Set RECPLG for ADAREC (C shell)

% adarec dbid=37 regenerate=* plog=96

After the restore, the checkpoint file contains the EXT_BACKUP STARTED checkpoint written by
EXT_BACKUP=PREPARE, but not the checkpoints written by EXT_BACKUP=CONTINUE. The
session number displayed for the current nucleus session is the number of the first PLOG that
must be used for ADAREC REGENERATE for re-applying the changes done after the external
backup.

The external backup is logged in the ADANUC log file

%ADANUC-T-DBSTART, Database 37, session 16 started, 14-NOV-2012 16:17:10
AADANUC-T-EXTBPREP, preparing for external backup, 14-NOV-2012 16:18:30
%ADANUC-T1-DBSTART, Database 37, session 17 started, 14-NOV-2012 16:18:45
%ADANUC-T-PLOGCRE, plog NUCPLG, file 'plogs/plog.0017' created

%ADANUC-T-EXTBCONT, continue from external backup, 14-NOV-2012 16:18:45

FEOF

FEOF = (keyword [,keywordl)

In accordance with the keywords specified, the log file(s) are closed and a new log file is created.

Adabas Utilities 241

ADAOPR (Operator Utility)
Keyword | Meaning
CLOG |closes command log file.
PLOG |closes protection log file.
This depends on the [NOJET_SYNC option:
If ET_SYNC is specified:
The current protection log file (PLOG) will be closed when all currently active ET logic users have
come to ET status, and a new PLOG is created with the next higher PLOG number.
Note: The protection log files are chained together with a "continuation pattern” to ensure they
are processed in the correct order. Creating a new extent means: The current extent file will be
extended with chaining information and at the same time creating the new extent file, leading to
two extent files with the same modification date. See Adabas Basics > Locations of Database Containers,
Backup Files, and Protection Logs in the Adabas for Linux and Cloud documentationfor specific notes
on protection logs.
ELOG |closes event log file.
The ELOG-keyword is only applicable if Adabas Analytics for LUW (EAL) is installed.
ALOG |Close NUCADT log file.

The FEOF command will be rejected if the keyword PLOG is used while running ADAREC RE-

GENERATE =*.
FILE
FILE = number

This influences the output of the DISPLAY options HQ, ICQ, UQ, UQ_FILES, UQ_FULL and
UQ_TIME_LIMITS. Only entries related to the specified file number are displayed.

FREE_CLQ

FREE_CLQ

Normally, obsolete entries in the client queue are released automatically when the client queue is
full. With ADAOPR FREE_CLQ), you can enforce the client queue cleanup before the client queue
becomes full.

242

Adabas Utilities

ADAOPR (Operator Utility)

ID
ID = number

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries related to the specified internal ID are displayed.

[NOJIO_TIME
[NOJIO_TIME

The parameter IO_TIME enables logging of the I/O times for the ASSO, DATA, WORK, NUCSRT
and NUCTMP containers. The times are given in microseconds.

If logging of I/O times is already enabled, enabling it again resets all I/O time and I/O counter
statistics.

The default is NOIO_TIME.

ISN

ISN = (number [- number] [,number [- numberl 1 ...)

This function influences the output of the DISPLAY option HQ. Only entries related to the specified
ISNs are displayed.

[UN]JLOCK
[UNJLOCK = (number [,number]...)

The file(s) specified by the file number(s) are locked or unlocked. The specified files are locked
for all non-utility use; Adabas utilities can use the file(s) normally. Specifying 0 means lock/unlock
the complete database.

For users who have one or more files to be locked in their open file list, a STOP <user-ID> command
is issued internally. Refer to the description of the ADAOPR STOP parameter for more details.

Notes:

1. You can also lock non-existent file numbers; if you subsequently create files with these numbers,
the files are locked.

2. Locking a LOB file does not prevent users from storing LOB data in the LOB file; disabling the
access to LOB data in the LOB file is part of locking the corresponding base file. Locking a LOB
file is only useful if you plan to use this file number for a base file at some time in the future.

3. LOCK=0 is equivalent to OPTIONS=UTILITIES_ONLY plus stopping all users; UNLOCK=0 is
equivalent to OPTIONS=NOUTILITIES_ONLY.

Adabas Utilities 243

ADAOPR (Operator Utility)

4. If files were locked on the file level, they must also be unlocked on the file level; UNLOCK=0
does NOT unlock such files.

5. If LOCK=() is used, it is equivalent to LOCK=0, which means that the full database will be
locked. Empty brackets are considered to be equivalent to 0. If you use brackets, you should
also use a file number.

LOGGING

LOGGING = (keyword [,keyword]...)
This parameter starts command logging for the buffers specified in the list of keywords.

The following keywords can be used:

Keyword |Meaning

CB Enables logging of control block

FB Enables logging of format buffers

RB Enables logging of record buffers

SB Enables logging of search buffer

VB Enables logging of value buffer
IB Enables logging of ISN buffer

ABD |Enables logging of Adabas buffer descriptions
10 Enables I/O list logging

NAT |Enableslogging of Natural information (Requires additional configuration in NATPARM module.
Please refer to the Natural documentation for further information.)

OFF Stops logging of all buffers, but keeps the command log file open

If the nucleus was started with LOGGING=OFF and buffer logging is requested, then the CLOG
file will be created.

LOGIN_ID
LOGIN_ID = string

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries with a login ID that begin with the specified string
will be selected. Please note that the string specification must be case sensitive. If you want to select
explicitly a login ID shorter than 8 characters, but not other login IDs beginning with this login
ID, you must add "* " (Windows platforms) or "\ " (non-Windows platforms) to the login ID.

244 Adabas Utilities

ADAOPR (Operator Utility)

NISNHQ

NISNHQ = number

This parameter specifies the maximum number of records that can be placed into hold at any time
by a single user.

If the specified value is less than the corresponding high-water value, a warning is issued.

The minimum value is 0, where 0 means unlimited.

NODE_ID
NODE_ID = string

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries with a node ID that begin with the specified string
will be selected. Please note that the string specification must be case sensitive. If you want to select
explicitly a node ID shorter than 8 characters, but not other node IDs beginning with this node
ID, you must add "* " (Windows platforms) or "\ " (non-Windows platforms) to the node ID.

OPTIONS
OPTIONS = (keyword[,keyword])

The available keywords are:

Keyword Meaning

[NOJLOCAL_UTILITIES |If LOCAL_UTILITIES is specified, the nucleus rejects all remote utility calls, i.e.
the Adabas utilities cannot be run from a remote node across a network.

[NOJUTILITIES_ONLY |If UTILITIES_ONLY is selected, all calls other than for utilities will be rejected.
Note, however, that this restriction only applies to new users; users who were
already active when OPTIONS=UTILITIES_ONLY was specified can continue
processing normally. If you want exclusive utility control over files or the entire
database, use the LOCK function of ADAOPR instead.

These options can be disabled using the prefix 'NO', e.g. OPTIONS=NOUTILITIES_ONLY.

Adabas Utilities 245

ADAOPR (Operator Utility)

RESET

RESET = keyword

RESET=HIGH_WATER resets the high water mark values to the value currently in use.
RESET=COMMANDS resets the command counts displayed by ADAOPR DISPLAY=COMMANDS.

RESET=RPL_STATS resets the replication statistic counters for all replicator threads, or in combin-
ation with the THREAD parameter for a specific thread only.This keyword is only relevant for
customers who are using the Adabas Event Replicator with Adabas - Adabas Replication.

[NOJRESPONSE_ABORT
[NOJRESPONSE_ABORT

If response checking is enabled with the RESPONSE_CHECK parameter of ADAOPR, the RE-
SPONSE_ABORT option determines whether the nucleus aborts when one of the specified responses
occurs (RESPONSE_ABORT), or whether the nucleus resumes operation and a database section
file is written to disk (NORESPONSE_ABORT).

The default is NORESPONSE_ABORT.

Refer to the RESPONSE_CHECK parameter for further information.

RESPONSE_CHECK
RESPONSE_CHECK = [(number[-number][,number[-numberl]...)]

This function enables the DBA to gather information if one of a list of Adabas response codes occurs.
The information written may be used to analyze possible problems in the database's operation. If
a response check for an Adabas response code is enabled, the database section file is written to
disk if this response code occurs.

Depending on the setting of the RESPONSE_ABORT option, the nucleus either aborts or continues
operation:

* if the RESPONSE_ABORT option is set, the database section file (Adabas.xxx.hh:mm:ss [Linux],
or Adabas.xxx.hh-mm-ss [Windows]) is written to the database's default directory. The database
section file is also called the CSA dump file. See ADANUC and the environment variable
ADA_CSA_DUMP for more information.

When the CSA dump file is written, the SMP dump file is also written (Linux platforms only);
the name of the SMP dump file is SMPPOS.APP:hh:mm:ss.

= if the NORESPONSE_ABORT option is set (default setting), the nucleus continues running and
the database section file (Adabas.xxx.RSPyyy.hh:mm:ss [Linux], or Adabas.xxx.RSPyyyhh-mm-
ss [Windows]) is written to the database's default directory. See ADANUC and the environment
variable ADA_CSA_DUMP for more information. Only one dump is generated for one response

246 Adabas Utilities

ADAOPR (Operator Utility)

code; if a response code occurs, the RESPONSE_CHECK option is deactivated for that response
code, but if it has been activated for other response codes, it remains active for the other response
codes.

Refer to the RESPONSE_ABORT action for further information.
By default, no response is trapped and the nucleus continues operation.

To disable response trapping, use "RESPONSE_CHECK =" without arguments.

SET_FILE_STATS

SET_FILE_STATS = [(number[-number][,number[-number]]...)]

This function enables the file level I/O statistics for the specified files. Only these files will be dis-
played by DISPLAY = FILE_IO.

SHUTDOWN
SHUTDOWN

This function terminates the Adabas session normally. No new users are accepted. ET-user updating
is continued until the end of the current transaction for each user. When all update activity has
ended as described above, the Adabas session is terminated.

The communication link to the database is cut but the shared memory is still held. In this case,
display functions are still possible with ADAOPR but parameter modification commands are no
longer permitted.

STATUS
STATUS = (keyword [,keywordl ,...)

This function influences the output of the DISPLAY parameter options HQ, ICQ, UQ, UQ_FILES,
UQ_TIME_LIMITS, UQ_FULL. Only entries in the specified state will be displayed.

The valid keywords are:

Keyword Meaning

[NOJTIMEOUT User without or with "T" status.
[NOJET_STATUS |Users at "ET" status with open transactions.
[NOJPENDING_ET |Users without or with "P" status.

Adabas Utilities 247

ADAOPR (Operator Utility)

STOP

STOP = (number[-nu

mber][,number[-number]]...)

This parameter terminates the user with the specified ID (internal identification). The ID can be
retrieved with DISPLAY = UQ.

n_n

The message "Stop handling started for n users" is displayed, where "n" is the number of users

who will be stopped.

Note: Utilities

cannot always be stopped in this way.

The actions that Adabas takes when a user is stopped depend on the user type, and also whether
the nucleus requires an explicit OP (open) command at the start of a user session, as shown in the

following table.

The abbreviation SUQE used in the table means "Stop user queue element", and consists of the
following actions: release all Command IDs, scratch the file list, scratch the user ID, scratch the
user type, set response 9 for the next call.

User Type Adabas Actions without ADANUC Adabas Actions with ADANUC
OPTIONS=OPEN_REQUIRED OPTIONS=0OPEN_REQUIRED
ACC For ID user: SUQE session closed
For non-ID user: session closed
ET, ET Status For ID user: SUQE session closed
For non-ID user: session closed
ET, no ET Status Backout transaction, SUQE Backout transaction, session closed
EX SUQE, CLSE checkpoint session closed
EX, ET with ET status|SUQE, CLSE checkpoint session closed
EX, ET, no ET status |Backout transaction, SUQE, CLSE checkpoint|Backout transaction, session closed
UT session closed session closed

If a STOP command is issued for a user while running

ADAREC REGENERATE

it will be rejected.

= *

248

Adabas Utilities

ADAOPR (Operator Utility)

STOPI

STOPI = number

Use the STOPI command to stop all users who have not executed a command during the specified
number of seconds. Any open transactions of the stopped users will be backed out. A stopped
user who returns (by sending a command) will receive response code 9.

This command does not stop EXF or UTI users.

THREAD

THREAD = number

This parameter is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

If you specify the parameter is before DISPLAY=RPL_STATS, the replication statistics are displayed
only for the replicator thread specified. Thread numbering starts with 1. If you specify “THREAD="
without a number, the subsequent DISPLAY=RPL_STATS will display the statistics for all threads
and the summary of all threads.

TNAA

TNAA = number

This parameter sets the non-activity time limit (in seconds) for access-only users who have not
explicitly specified a TNAA value in the OP command.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

TNAE

TNAE = number

This parameter sets the non-activity time limit (in seconds) for ET logic users who have not explicitly
specified a TNAE value in the OP command.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

Adabas Utilities 249

ADAOPR (Operator Utility)

TNAX
TNAX = number

This parameter sets the non-activity time limit (in seconds) for EXU and EXF users who have not
explicitly specified a TNAX value in the OP command.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

TT

TT = number

This parameter sets the transaction time limit for ET logic users who have not explicitly specified
a TT value in the OP command.

If the specified value is less than the corresponding high-water value, a warning is issued.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

USER_ID
USER_ID = string

This function influences the output of the DISPLAY parameter options CQ, HQ, ICQ, UQ,

UQ_FILES, UQ_TIME_LIMITS, UQ_FULL. Only entries with a user ID that begin with the specified
string will be selected. Please note that the string specification must be case sensitive. If you want
to select explicitly a user ID shorter than 8 characters, but not other user IDs beginning with this
user ID, you must add "* " (Windows platforms) or "\ " (non-Windows platforms) to the user ID.

WCHARSET

WCHARSET = <ICU encoding>

This parameter specifies the default encoding for W fields for user sessions. This encoding is used
if no other encoding is specified in the record buffer of the OP call, or in the format buffer of L or
A/N calls.

250 Adabas Utilities

ADAOPR (Operator Utility)

Example

adanuc: wcharset=utf-16be

WRITE_LIMIT

WRITE_LIMIT = [number]

This parameter specifies the percentage of modified blocks permitted in the buffer pool before an
implicit buffer flush is taken.

Note that "WRITE_LIMIT=" (keeping the equals sign but omitting the number) is equivalent to
"WRITE_LIMIT=0".

Supported values are 1-50; the default value is 50. For compatibility reasons, values of 0 and 51-
70 are also allowed - they are equivalent to 50.

Adabas Utilities 251

252

15 ADAORD (Reorder Database Or Files, Export/Import Files)

B FUNCHONAI OVEIVIBW ..ot e e e e 254
B PTOCEAUIE FlOW .ottt et e 255
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 257
B G0N0l ParaMEIErS . et 257
B RES A CONSIAIAtIONS . .eeeee e e 266
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 266

253

ADAORD (Reorder Database Or Files, Export/Import Files)

This chapter describes the utility "ADAORD".

Functional Overview

The reorder utility ADAORD provides functions to reorganize a whole database (REORDER) and
to migrate files between databases (EXPORT/IMPORT).

Depending on the function selected, ADAORD produces or requires a sequential file (ORDEXP).
The main reasons for running ADAORD are:
® To change the layout of a complete database. This includes increasing or decreasing the maximum

number of files permitted;

® To change the space allocation or placement of a file, to reduce the number of logical extents
assigned to its index, Address Converter or Data Storage and to change or re-establish the
padding factors;

® To create one or more test files that all contain the same data. This procedure requires a file to
be exported and then imported using a different file number;

® To archive and subsequently reestablish a file, independent of its original placement and the

database device types used.

When exporting files from a database, the Adabas nucleus is not required. If a system file is pro-
cessed, the nucleus must be inactive. For detailed information, please refer to the table of nucleus
requirements.

When importing files into a database, the Adabas nucleus is not required to be active. The nucleus
may be either started or shut down during this procedure.

When reordering the database, the nucleus must be inactive.

Note: The IMPORT and IMPORT_RENUMBER functions can process export files created
with earlier Adabas versions, but not export files created with later Adabas versions.

This utility is a single-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

254 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

Procedure Flow

Adabas Utilities 255

ADAORD (Reorder Database Or Files, Export/Import Files)

ADAORD

IMPORT /
IMPORT_RENUMBER
Export Copy
Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Data storage DATAX Disk
Export copy ORDEXP |Disk (* see note) |[Export (out),
Reorder (in/out),
other functions (in)
Control statements |stdin Utilities Manual
ADAORD messages|stdout Messages and Codes
Work storage WORK1 Disk

] Note: (*) A named pipe cannot be used for this sequential file. See Adabas Basics, Using

Utilities in the Adabas documentation for more information.

256 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must be active |Nucleus must NOT be active |Nucleus is NOT required | Checkpoint written
CONTENTS X -

EXPORT X(* see note) X SYNX

IMPORT X(* see note) X SYNP
IMPORT_ X(* see note) X SYNP
RENUMBER

REORDER X X SYNP

Note: (*) When processing an Adabas system file

In the case of the EXPORT function, ADAORD writes a single checkpoint and removes the UCB
entry when all of the specified files have been exported and the sequential output file (ORDEXP)
has been closed.

In the case of the IMPORT function, ADAORD writes a checkpoint and informs the nucleus that
the file has been loaded every time a file is successfully imported.

The UCB entry is removed when all of the specified files have been imported. When the utility is
executed offline, writing multiple checkpoints increases the probability of a checkpoint block
(CPB) overflow. The checkpoint file should, therefore, always be present to allow the Adabas
nucleus to be started in order to empty the CPB.

In the case of the REORDER function, ADAORD writes a single checkpoint and removes the UCB
entry when the function terminates.

Control Parameters

The following control parameters are available:

CONTENTS
DBID = number
EXPORT = (number[-number][,number[-number]]...)

[,FDT]
D [,SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)]

Adabas Utilities 257

ADAORD (Reorder Database Or Files, Export/Import Files)

FILES = (number[[-number], number[-number]] ...)

IMPORT =

o 11

number[-number][,number[-numberl]...)

,ACRABN = number]

,ASSOPFAC = number]

,DATAPFAC = number]

,DSRABN = number] [,DSSIZE = number[B|M]]
,LOBACRABN = number]

,LOBDSRABN = number]

,LOBNIRABN = number]

,LOBSIZE = numberM]

,LOBUIRABN = number]

,MAXISN = number]

,NIRABN = number | (number,number)]

,NISIZE = number[B|M]|(number[B|MI,number[B|M])]
,UIRABN = number | (number,number)]

LUISIZE = number[B|M]|(number[B|M],number[B|M])]

IMPORT_RENUMBER = (number, number[,number])

,ACRABN = number]
,ASSOPFAC number]
,DATAPFAC = number]

, LOBACRABN = number]

,LOBDSRABN = number]

, LOBNIRABN number]

,LOBSIZE = numberM]

,LOBUIRABN = number]

,MAXISN = number]

,NIRABN = number|(number,number)]
,NISIZE
,UIRABN
L,UISIZE

number | (number,number)]

(O s T s T s TN e TN e TN e T s T e O s Y s Y s Y e B |

REORDER = *

CONTENTS

CONTENTS

,DSRABN = number] [,DSSIZE = number[B|M] 1]

number[B|MI| (number[B|M],number[B|M])]

number[B|M]| (number[B|M],number[B|M])]

This function displays the list of files contained in the sequential output file (ORDEXP) created
by a previous run of the EXPORT function.

258

Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

DBID
DBID = number

This parameter selects the database to be used.

EXPORT

EXPORT = (number[-numberI[,number[-numberl]...)
[,FDT]
[,SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)]

This function exports (copies) one or more files from the database to a sequential output file (OR-
DEXP). In order to maintain referential integrity in the export copy, all files that are connected via
referential constraints to a specified file are also exported. The file numbers specified are only
taken into consideration if they are the file numbers of base files; the corresponding LOB files for
the selected files are exported automatically with the base files without having to be specified. If
files have referential constraints, and the base files are not specified during the export, the dependent
files will need to be specified during the import. An EXPORT consists of copying each file's Data
Storage, together with the information that is required to reestablish its index. All of the files to
be processed are written to ORDEXP in the sequence in which they are specified. Overlapping
ranges and numbers are removed.

Note: If the checkpoint file is included in the file list, it will be processed last.

FDT
This parameter displays the FDT of the file to be processed.
SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)

This parameter controls the sequence in which the Data Storage is processed. If specifies either
the field name of a descriptor, subdescriptor or superdescriptor, or the keyword "ISN' or "PHYS-
ICAL'".

The default is physical sequence.

The following values can be specified:

Adabas Utilities 259

ADAORD (Reorder Database Or Files, Export/Import Files)

Value Sequence

descriptor_name |If the name of a descriptor, sub- or superdescriptor is specified, the data records are
processed in ascending logical sequence of the descriptor values to which the field name
refers.

A field with the MU, MC or NU option or one that is contained in a periodic group or a
sub- or superdescriptor derived from such a field must not be specified.

Logical sequence can be used only if a single file has been selected.

ISN If ISN is specified, the data records are processed in ascending ISN sequence.

PHYSICAL If PHYSICAL is specified or if the SORTSEQ parameter is omitted, the data records are
processed in the physical sequence in which they are stored in the Data Storage.

The performance when processing in logical sequence and ISN sequence is better if the database
is online (provided that the buffer pool is large enough).

If one value is specified for SORTSEQ, that value is valid for all files. If more than one value is
specified, the number of values must be the same as the number of file ranges specified for the
EXPORT parameter. In this case, the first file range is exported in the first specified sort sequence,
the second file range is exported in the second specified sort sequence, and so on.

Example

EXPORT = (1, 20-30, 40)
SORTSEQ = (AA, PHYSICAL, ISN)

File 1 is exported in the sequence of descriptor AA, files 20-30 are exported in physical sequence
and file 40 is exported in ISN sequence.

FILES

FILES = (number[[-numberl, number[-numberl] ...)

This parameter is used to display information concerning the status of the specified files contained
on the sequential input file (ORDEXP).

IMPORT
IMPORT = (number[-number][,number[-numberl]...)
[,ACRABN = number]
[,ASSOPFAC = number]
[,DATAPFAC = number]
[,DSRABN = number] [,DSSIZE = number[B|M]]
[,LOBACRABN = number]
[,LOBDSRABN = number]
[,LOBNIRABN = number]
[,LOBSIZE = numberM]
[,LOBUIRABN = number]

260 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

,MAXISN = number]

,NIRABN = number | (number,number)]

,NISIZE = number[B|M1| (number[B|M],number[B|MI1)]
,UIRABN = number | (number,number)]

,UISIZE = number[B|M1| (number[B|M],number[B|M])]

(o I e B s B s W |

This function imports one or more files into a database, using the data on the sequential file (OR-
DEXP) produced by a previous run of ADAORD. In order to maintain referential integrity, all
files connected via referential constraints to a specified file are also imported. The file numbers
specified are only taken into consideration if they are the file numbers of base files; the correspond-
ing LOB files for the selected files are imported automatically with the base files without having
to be specified. If there are files that are connected via referential constraint, the base files need to
be specified during the import. The file numbers specified are sorted into ascending sequence.
Overlapping ranges and numbers are removed.

The file numbers specified must not be loaded in the database.

By default, ADAORD controls the file placement and the allocation quantities. The parameters
that can be used to overwrite these defaults may be used only if a single file has been selected.

Please refer to the IMPORT_RENUMBER function for the description of the parameters.

IMPORT_RENUMBER

IMPORT_RENUMBER = (number, number[,number])
,ACRABN = number]
,ASSOPFAC = number]
,DATAPFAC = number]
,DSRABN = number] [,DSSIZE = number[B|M]]
,LOBACRABN = number]
,LOBDSRABN = number]
,LOBNIRABN = number]
,LOBSIZE = numberM]
,LOBUIRABN = number]
,MAXISN = number]

,NIRABN = number | (number,number)]
,NISIZE = number[B|M1| (number[B|M],number[B|MI)]
,UIRABN = number |(number,number)]

s

LUISIZE = number[B|M]|(number[B|M],number[B|M]1)]

This function imports a file into a database, using the data on the sequential file (ORDEXP) produced
by a previous run of ADAORD. It is not possible to import and renumber a file that is connected
to another file via referential integrity. Constraints must either dropped before exporting the files,
or the files must be imported without renumbering and be renumbered later ADADBM RENUM-
BER). The first number given defines the base file to be imported, and the second number is the
new file number to be assigned to the file. The third, optional number is the new file number for
the LOB file. If the third number is not specified, the LOB file number (if it exists) remains un-
changed.

Adabas Utilities 261

ADAORD (Reorder Database Or Files, Export/Import Files)

The new file number must not be loaded in the database.

Unless otherwise specified, ADAORD controls the file placement and the allocation quantities.
ACRABN = number

This parameter specifies the RABN at which the space allocation for the Address Converter (AC)
is to start.

If this parameter is omitted, ADAORD assigns the starting RABN.
ASSOPFAC = number

This parameter specifies the new padding factor to be used for the file's index. The number specified
is the percentage of each index block which is not to be used by ADAORD or a subsequent run of
the mass update utility ADAMUP. This padding area is reserved for future use if additional entries
have to be added to the block by the Adabas nucleus. This avoids the necessity of having to relocate
overflow entries to another block.

A value may be specified in the range of 0 to 95.

A small padding factor (0 to 10) should be specified if little or no descriptor updating is expected.
A larger padding factor (10 to 50) should be specified if a large amount of descriptor updating is
expected in which new descriptor values are created.

If this parameter is omitted, the current padding factor in effect for the file's index is used.
DATAPFAC = number

This parameter specifies the new padding factor to be used for the file's Data Storage. The number
specified is the percentage of each data block which is not to be used by ADAORD. This padding
area is reserved for future use if any record in a block requires additional space as result of record
updating by the Adabas nucleus. This avoids the necessity of having to relocate overflow entries
to another block.

A value may be specified in the range of 0 to 95.

A small padding factor (0 to 10) should be specified if there is little or no record expansion. A larger
padding factor (10 to 50) should be specified if there is a large amount of record updating which
will cause expansion.

If this parameter is omitted, the current padding factor in effect for the file's Data Storage is used.

262 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

DSRABN = number

This parameter specifies the RABN at which the space allocation for the file's Data Storage (DS)
is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
DSSIZE = number[B|M]

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Data Storage (DS). By default, the size is given in megabytes.

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

LOBACRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Address Con-
verter (AC) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
LOBDSRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Data Storage
(DS) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
LOBNIRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Normal Index
(NI) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.

LOBSIZE=numberM

This parameter specifies the number of megabytes to be initially assigned to the LOB file's Data
Storage (DS). The AC size, NI size and Ul size for the LOB file are derived from this size.

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

Adabas Utilities 263

ADAORD (Reorder Database Or Files, Export/Import Files)

LOBUIRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Upper Index
(U]) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
MAXISN = number

This parameter specifies the highest permissible ISN for the file. ADAORD uses this parameter
to determine the amount of space to be allocated for the file's Address Converter (AC).

Because there is no automatic extension of the initial allocation, a value that is smaller than the
file's current first free ISN will cause ADAORD to terminate execution and return an error status
if there are ISNs outside the Address Converter.

If this parameter is omitted, the value of MAXISN currently in effect for the file's Address Converter
is used.

A contiguous-best-try allocation is used.
NIRABN = number|(number,number)

This parameter specifies the RABN(s) at which the space allocation for the file's Normal Index
(NI) is to start. Adabas usually stores small descriptor values (<= 253 bytes) in small index blocks
(block size <16 KB) and large descriptor values in large index blocks (block size >=16 KB. For this
reason, it is possible to specify 2 RABNSs - if you specify 2 RABNs, one must have a block size <
16 KB, and the other must have a block size >=16 KB.

If this parameter is omitted, ADAORD assigns the start RABN.
NISIZE = number[B|M]|(number[B|M],number[B|M])

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Normal Index (NI). By default, the size is given in megabytes. If two values are specified and
the NIRABN parameter is also specified, the first value corresponds to the first value of the NIRABN
parameter, and the second value corresponds to the second value of the NIRABN parameter. If
two values are specified and the NIRABN parameter is not specified, the first value specifies the
size of small normal index blocks (< 16 KB), and the second value specifies the size of large NI
blocks (>= 16 KB).

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

264 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

UIRABN = number|(number,number)

This parameter specifies the RABN(s) at which the space allocation for the file's Upper Index (UI)
is to start. Adabas usually stores small descriptor values (<= 253 bytes) in small index blocks (block
size <16 KB) and large descriptor values in large index blocks (block size >=16 KB. For this reason,
it is possible to specify 2 RABNs - if you specify 2 RABNs, one must have a block size <16 KB,
and the other must have a block size >=16 KB.

If this parameter is omitted, ADAORD assigns the start RABN.
UISIZE = number[B|M]|(number[B|M],number[B|M])

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Upper Index (UI). By default, the size is given in megabytes. If two values are specified and
the UIRABN parameter is also specified, the first value corresponds to the first value of the UIRABN
parameter, and the second value corresponds to the second value of the UIRABN parameter. If
two values are specified and the UIRABN parameter is not specified, the first value specifies the
size of small upper index blocks (<16 KB), and the second value specifies the size of large Ul blocks
(>=16 KB).

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

REORDER
REORDER = *

This function is used to change the layout of a whole database. It rearranges the database's global
areas, eliminates fragmentation in the DSST and the files' Address Converter, Data Storage, Normal
Index and Upper Index extents by physically changing their placement. It also re-establishes the
files' padding factors. Exclusive control of the database container files is required.

A REORDER database implicitly exports the files, deletes them from the database and then re-
imports them. The sequential file (ORDEXP) that is created during the REORDER is kept.

Note: ADAORD uses a best-fit algorithm for the allocation of the disk space for the files.

Therefore, it may occur that the first container of a given type remains empty if it is followed
by another container with adequate block size which is smaller than the first one.

Adabas Utilities 265

ADAORD (Reorder Database Or Files, Export/Import Files)

Restart Considerations

ADAORD has no restart capability.
An abnormally terminated EXPORT must be rerun from the beginning.

An abnormally terminated IMPORT of one or more files will result in lost RABNSs for the last file
being imported. These RABNs can be recovered by executing ADADBM's RECOVER function.
The files preceding the one being processed when the interrupt occurred will be available in the
database. Therefore, the IMPORT function should be rerun starting with the file number at which
the interrupt occurred.

An abnormally terminated IMPORT_RENUMBER will result in lost RABNs for the file being im-
ported. These RABNs can be recovered by executing ADADBM's RECOVER function. The IM-
PORT_RENUMBER function has to be rerun from the beginning.

An abnormally terminated REORDER at the database level may result in a database that cannot
be accessed if the interrupt occurred while reordering the database's global areas (GCB, FST, DSST,
etc.). In this case, either a new empty database has to be created using ADAFRM or the old database
has to be reestablished from an Adabas backup copy, using ADABCK's RESTORE database function.
If the interrupt occurred during the re-import phase, it will result in lost RABNs for the last file
being imported. These RABNs can be recovered by executing ADADBM's RECOVER function.
The files preceding the one being processed when the interrupt occurred will be available in the
database. The remaining files can be obtained from the sequential work file (ORDEXP) by using
ADAORD's IMPORT function.

Examples

In the examples below, the files 1, 2, 4, 6, 7, 8, 10, 11, 12 and 25 are loaded in database 1. Database
2 contains files 3, 6 and 11.

Example 1

adaord: dbid

=1
adaord: export =

(1-4,7,10-25)

Files 1, 2, 4,7, 10, 11, 12 and 25 are exported from database 1.

266 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

Example 2

adaord: dbid

= 2
adaord: import =

(1-10,12)

Files 1,2, 4,7,10 and 12 are imported into database 2. It is not possible to specify "import=(1-12)"
because ADAORD first checks to see if one of the files to be imported is already loaded , and if it
is, then the whole import is rejected - in this case file 11 is already loaded.

Example 3

adaord: dbid = 2
adaord: import_renumber = (11,19), acrabn = 131, datapfac = 20

File 11 is imported into database 2 using a new file number of 19 (because 11 is already in use).
The file's Address Converter (AC) is to be allocated at ASSO RABN 131. The new padding factor
for the Data Storage (DS) is 20 percent.

Example 4

adaord: dbid =1
adaord: reorder = *

The whole database is reordered.

Adabas Utilities 267

268

16 ADAPLP (Protection Log Printout)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 270
B PIOCEAUIE FIOW ...t et e 271
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 272
B CONEIOl PArAMEIEIS ... e ettt e 272
B ADAPLP QUIPUL ...ttt e et e e e e e e e e e 281

269

ADAPLP (Protection Log Printout)

This chapter describes the utility "ADAPLP".

Functional Overview

The ADAPLP utility prints the Protection Log or WORK.

This utility is a multi-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

] Note: LOB values are split into several records in a LOB file; when LOB values are stored

in the database, the Protection Log contains the log records for the modifications of the LOB
file. This means that ADAPLP does not display the LOB values as one value, but rather it
displays the modifications of the corresponding records in the LOB file instead. It is not
possible to decompress the LOB file records because the LOB records are too large to fit
into one block, and the continued Protection Log records cannot be decompressed.

270 Adabas Utilities

ADAPLP (Protection Log Printout)

Procedure Flow

ADAPLP
N o
' F"I.F"P'I.EI:
el 2 » - -
PLPLEX ASE0
Data Set Environment |Storage |Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Protection log PLPPLG |Disk |Utilities Manual

Protection log (last extent)|PLPLEX |Disk |Only required if you process a PLOG with an extension
count > 1 and if you use the DECOMPRESS or DELTA
option: you must provide the last PLOG extent before the
PLOG extent to be processed.

Control statements stdin Utilities Manual
ADAPLP report stdout Messages and Codes
Work storage WORK1 Disk

The sequential file PLPPLG can have multiple extents. For information about sequential files with
multiple extents, see Adabas Basics, Using Ultilities in the Adabas documentation.

Adabas Utilities 271

ADAPLP (Protection Log Printout)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

M

DATASET = keyword
DBID = number
[NOIJDECOMPRESSED
DELTA

[NOJDUMP

FILES = (number [-number][,number [-number]]...

[NOJHEADER

INTERNAL_ID = number

ISN = (number [,number] ...)
MODIFIED_RABN = number
NOFILETYPE

NONULL

PLOG = (number [,number])

RABN = {*|number[-number]}

RECORD ={*| (number [- number] [, number [-

SEQ = number

[NOJSHORT

THREAD = number

TSN = number

number]]. ..

272

Adabas Utilities

ADAPLP (Protection Log Printout)

D TYPE = (keyword [,keyword]...)

USER_ID = string
DATASET

DATASET = keyword

This parameter selects the file containing the Protection Log information to be processed. The
keyword can take the values PLOG or WORK.

DBID

DBID = number
This parameter selects the database to be used.

This parameter must be used when DATASET=WORK is requested. This parameter must be the
first parameter to be specified. Otherwise, if this parameter is not specified, the DBID stored in
the PLOG is used.

[NOJDECOMPRESSED
[NOJDECOMPRESSED

This option indicates whether for each selected DATA record from a protection log, one line per
field is printed with the field name and its decompressed value in hex (DECOMPRESSED) or not
(NODECOMPRESSED).

For an inserted record, an after image containing the field values of the record after the insert is
displayed.

For an updated record, a before image containing the field values before the update, and an after
image containing the field values of the record after the update are displayed.

For a deleted record, a before image containing the field values before the delete operation is dis-
played.

If you specify DECOMPRESSED and NONULL, no output is produced for the following:

® Fields with NU or NC option with null-value;
® MU fields with NU or NC option without a value that is not the null-value;

® PE groups containing only fields with NU or NC option without a value that is not the null-
value;

® Group names if the group is not PE.

The default is NODECOMPRESSED.

Adabas Utilities 273

ADAPLP (Protection Log Printout)

Note: Decompression (DECOMPRESSED output) is not possible for CONTINUED records.
CONTINUED records are created if a PLOG record plus the block header is larger than 32

KB in the PLOG or larger than the block size used for WORK.

Example output for DECOMPRESSED (without NONULL option)

>>> After Image <K<K

Length = 20, ISN = 2

Field : AA: ~30372E31322E3034

Group : AB

Field : AC: 720
Field : AE: 720
Field : AD: 720
Field : AF: 720

Field : AG: "20

Field : AH: ~0000000C

Group : Al

MU-field : AI, count = ~01
AI(1): 220

Field : AJ: 720

Field : AK: 720202020202020202020

Field : AL: 7202020

Group 1 A2

Field : AN: 7202020202020

Field : AM: ~202020202020202020202020202020

Field : AO0: ~202020202020

Field : AP: 720

PE-group : AQ, count = ~01
PE index (1)
Field : AR: 7202020
Field : AS: ~000000000C
MU-field : AT, count = ~01
ATC 1): ~000000000C
End of PE-group : AQ

Group : A3
Field : AU: 73030
Field : AV: 73030

PE-group : AW, count = 701
PE index (1)
Field : AX: ~3030303030303030
Field : AY: ~3030303030303030
End of PE-group : AW
MU-field : AZ, count = 701
AZ(1): 7202020

274

Adabas Utilities

ADAPLP (Protection Log Printout)

Example output for DECOMPRESSED (with NONULL option)

>>> After Image <KX

Length = 15, ISN = 2

Field : AA: ~30372E31322E3034
Field : AF: ~20

Field : AG: 20

DELTA

DELTA

This parameter indicates that only changed fields after an update are displayed.

For an inserted record, the same output is produced as with the options DECOMPRESSED,
NONULL.

For an updated record, a Delta containing the modified field values is displayed. Note that for
MU/PE fields, the value count displayed can be smaller than the displayed MU/PE indices if the
MU/PE count has been decreased - this is because all field values have been set to the null value.

If a record is deleted, no output is produced, however, you can see the deletion if you display
protection log entries of the type CE.

Note: Decompression (DELTA output) is not possible for CONTINUED records. CONTIN-

UED records are created if a PLOG record plus the block header is larger than 32 KB in the
PLOG or larger than the block size used for WORK.

[NOJDUMP

[NOJDUMP

This option indicates whether the variable part of a Protection Log record is included in the printout
(DUMP) or not (NODUMP).

If DUMP is specified, the variable part of each Protection Log record is displayed in both hexa-
decimal and uninterpreted ASCII format.

DUMP implicitly resets SHORT.

The default is NODUMP.

Adabas Utilities 275

ADAPLP (Protection Log Printout)

FILES

FILES = (number [-number][,number [-number]]...)

The Protection Log records are only displayed if they belong to the file(s) specified by this para-
meter.

Only records of the types DA, DV, EXT, INDEX and FCB are displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

[NOJHEADER

[NOJHEADER

This option indicates whether for each block of the Protection Log a header is displayed (HEADER)
or not (NOHEADER).

The default is HEADER.

INTERNAL_ID
INTERNAL_ID = number

This option displays only the records with the specified internal ID.

ISN

ISN = (number [,number] ...)

The Protection Log records are only displayed if they belong to the ISNs specified by this parameter.
Only records of the types DA and DV are displayed. Please refer to the tables at the end of this
section for a description of the various types of Protection Log records. This parameter can only
be used in conjunction with the FILE parameter.

MODIFIED_RABN
MODIFIED_RABN = number
This option displays only the records in which modifications for the specified RABN are logged.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

276 Adabas Utilities

ADAPLP (Protection Log Printout)

NOFILETYPE
NOFILETYPE

This keyword specifies that record types that are independent of file numbers (for example ET
and BT records) will be displayed in addition to the record types that are bound to file numbers.

Example

adaplp dbid=6 file=25 type=(da,dv,et,bt) nofiletype

The DA and DVT records of file 25 together with all ET and BT records will be displayed.

NONULL
NONULL

The NONULL parameter is only relevant if the DECOMPRESSED parameter is also specified.
Please refer to the DECOMPRESSED parameter for further information.

PLOG

PLOG = (number[,number])

This parameter is optional. The PLOG number and the extension count can be specified. If an ex-
tension count is specified, then only the specified extent will be processed. If no extension count
is specified, Adabas will open subsequent extents when necessary. The parameter PLOG must be
specified before DATASET=PLOG is specified.

Example:

Section layout

250000 260000 10001 30 PLG.36 created
377000 378000 1001 30 PLG.36(3) created

adaplp: plog=36
adaplp: dataset=plog

PLG.36 will be opened

Adabas Utilities 277

ADAPLP (Protection Log Printout)

adaplp: plog=(36,3)
adaplp: dataset=plog

PLG.36(3) will be opened.

RABN
RABN ={*| number [- number] }

This parameter selects one block or a range of consecutive blocks on the WORK or Protection Log
file. The information contained in the specified blocks is displayed.

If you specify "*", all blocks are displayed.

Notes:

1. If you start ADAPLP without specifying RABN, the utility will run, but will not produce any
output.

2. After specifying the RABN parameter, the requested output is generated immediately. Therefore,
you must specify all other parameters required for the output generation, for example the
DATASET parameter, before the RABN parameter.

Example

adaplp: rabn 123

adaplp: rabn = 123 - 1246

RECORD
RECORD ={*| (number [- number] [, number [- numberl]...) }

This parameter selects the records or ranges of records to be printed. All of the records are printed
if *' or nothing is specified.

Example:

adaplp: record = (2-5,9,11)

The records 2, 3, 4, 5, 9 and 11 are written while printing one or more PLOG blocks.

278 Adabas Utilities

ADAPLP (Protection Log Printout)

SEQUENCE
SEQUENCE = number

This option displays only the records written by the specified sequence number.

[NOJSHORT
[NOJSHORT

This option indicates whether only Protection Log block headers are printed out (SHORT), or
whether all the records in each block are included in the display (NOSHORT).

SHORT implicitly resets DUMP.

By default, the Protection Log block header is displayed followed by all of the records contained
in the block.

The default is NOSHORT.

THREAD

THREAD = number

This option displays only the records with the specified thread.

TSN

TSN = number
This option displays only the records with the specified transaction sequence number (TSN).

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

TYPE
TYPE = (keyword [,keyword]...)

This option displays only the protection log records specified by the given keyword(s). Each
keyword corresponds to one or more protection log record types, as shown in the following table.

Adabas Utilities 279

ADAPLP (Protection Log Printout)

Keyword | Protection Log record type

AB AB

ASSO |the record type AC and all record types that are selected by the keywords EXT, FCB and INDEX
AT AT

BF BS, BE, BF

BT BT

C1 C1

G5 C5

CE CE

CF CF

CT CT

DA DA

DATA |all record types that are selected by the keywords BT, CE, DA, DV, ET and OP.
DC DC

DT DT

ET ET, CL

EXT |ACEXT, UIEXT, NIEXT, DSEXT

FCB FCBDS, FCBIX, SPISN

INDEX |FE, INDEX, IB, INSRU, REMRU

opP oP

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

The default is to display all protection log record types.

USER_ID

USER_ID = string

This option displays only the records which start with the specified user ID.

Only records of the type BT, C1, C5, CL, DA, DV, ET, FCBDS, FCBIX and INDEX are displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

280

Adabas Utilities

ADAPLP (Protection Log Printout)

ADAPLP Output

Each block of the Protection Log or WORK is preceded by a header, which consists of the following:

the block sequence number;
the size of the block;
the number of the session that the block belongs to (identical to the PLOG number);

the time stamp showing when the block was created (internal time stamp for WORK).

The output for a record consists of the following entries:

" arecord sequence number (starting at 1 for each block);

® the internal length of the record;

® the command sequence number (uniquely identifies a command);

® the type of PLOG record (see the following table for more information);

" the number of the thread that executed the command.

In addition, most records also have the following entries:

“the internal user identification (in hexadecimal notation) that is uniquely assigned for each
command that opens a transaction.”

The table below shows the types of PLOG records:

Type Description

AB logs WORK wrap around (WORK only).

AC logs the relocation of a record during backout transaction (WORK only).

ACEXT |logs the extension of the address converter (WORK only).

AT logs the adding of a field (ADADBM).

BE logs the end of a buffer flush (WORK only).

BF logs the start and end of a buffer flush (WORK only).

BS logs the start of a buffer flush (WORK only).

BT logs the start of BT processing.

C1 log record from a C1 command. Contains the checkpoint name (PLOG only).

C5 log record from a C5 command (PLOG only).

CE indicates the last entry of a command (last entry with this sequence number). If the command
was a delete operation, the file number and the ISN of the deleted record is displayed.
Example

Adabas Utilities 281

ADAPLP (Protection Log Printout)

Type Description
>>> DELETE FILE 10 ISN 2 <K<

CF logs the creation of an FDT (ADAFDU).

CL logs the CLOSE of a user.

CT logs the creation of a file (ADAFDU).

DA logs a data record change. The file, RABN, and ISN of the data record are displayed. The record
is either an after image (AI), a before image (BI), or a delta image (DI) and is displayed when
DUMP is enabled. "'TSN' is an internal transaction sequence number. All entries that originate
from one transaction have the same TSN (see also the description of the ET command in the
Command Reference Manual). The output of "WB' is only displayed if DATASET=WORK has
been specified. It shows the WORK block where the previous PLOG record of the same TSN can
be found. A “clu' value that is not zero indicates an exclusive or privileged user.

DC logs the dropping of a field (ADADBM).

DSEXT |logs the extension of data storage (WORK only).

DT logs the deletion of a file (ADADBM).

DV logs a descriptor update (should always be preceded by a DA record). The entries for the file,
ISN, TSN, clu, and WB are the same as for the DA record type.

ET log entry from an ET command. The ET TSN gives the TSN of the last user data written by an ET
command.

FCBDS |logs an FCB change for data storage (WORK only).

FCBIX |logs an FCB change for the normal index (WORK only).

FE logs a change of an index block's first entry (WORK only).

1B logs an index block that is modified (WORK only).

INDEX |logs an index block that is split (WORK only).

INSRU |logs the insertion of an index block into a reusage chain (WORK only).

NIEXT |logs the extension of the normal index (WORK only).

0] logs the OPEN of a user.

REMRU |logs the deletion of an index block from a reusage chain (WORK only).

SPISN |logs changes in ISN reusage or space reusage.

UIEXT |logs the extension of the upper index (WORK only).

There are also several flags that may be displayed with DA or DV records:

Flag

Description

Al

the data of this PLOG record contain an after image of the data record (record type DA).

BACKOUT |indicates that the record was written during a backout within a single command.

BI the data of this PLOG record contain a before image of the data record (record type DA).
BT indicates that the record was written during the backout of a transaction.
DI the data of this PLOG record contain a delta image of the data record (record type DA).

282

Adabas Utilities

ADAPLP (Protection Log Printout)

Flag Description

FDATA indicates that this is the first DA record of this command.

FIRST_ENTRY |indicates that this is the first record with a given sequence number.
HIMERGE merge of the highest index level.
HISPLIT split of the highest index level.

USERD transaction carries user data.

Adabas Utilities 283

284

17 ADAPRI (Print Adabas Blocks)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 286
B PIOCEAUIE FIOW ...t et e 287
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 288
B CONEIOl PArAMEIEIS ... e ettt e 288

285

ADAPRI (Print Adabas Blocks)

This chapter describes the utility "ADAPRI".

Functional Overview

The ADAPRI utility prints the contents of a block (or range of blocks) in the Associator, Data
Storage, WORK, TEMP, or SORT for maintenance or auditing purposes.

The output is in hexadecimal and ASCII format. Subsequent identical lines and blocks are sup-
pressed.

This utility is a multi-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

286 Adabas Utilities

ADAPRI (Print Adabas Blocks)

Procedure Flow

Associator ASSOx Disk
Data storage DATAX Disk
Sort storage SORTx Disk
Control statements |stdin Utilities Manual

ADAPRI output |stdout

Temporary storage [TEMPx Disk
Work storage WORK1 Disk

Assignments to the ASSO container files are required in order to be able to process the DATA or
WORK container files.

Adabas Utilities 287

ADAPRI (Print Adabas Blocks)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

DATASET = keyword

DBID = number

RABN number [- number]

DATASET

DATASET = keyword

This parameter specifies the part of the database to be dumped. Valid keywords are:

Keyword |Meaning

ASSO | Associator
DATA |Data Storage
SORT |Sort Area

TEMP |Temporary Area
WORK |Work Area

Example

adapri: dataset = asso, rabn = 123 - 321

The Associator is dumped from RABN 123 to RABN 321

288 Adabas Utilities

ADAPRI (Print Adabas Blocks)

DBID

DBID = number

This parameter selects the database to be used.

This parameter is not required if DATASET = TEMP or SORT.
RABN

RABN = number [- number]

This parameter specifies one RABN or a range of RABNs to be dumped.

Examples

adapri: dbid = 1, dataset = data, rabn = 123

DATA RABN 123 of database 1 is to be dumped.

adapri: dataset = sort, rabn = 123 - 129

The RABNSs from 123 to 129 on the data set SORT are to be dumped.

Adabas Utilities

289

290

18 ADAREC (Recovery Of Database Or Files)

B FUNCHONAI OVEIVIBW ..ot e e e e 292
B PTOCEAUIE FlOW .ottt et e 293
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 294
B ADAREC INPUE DA ...ttt ettt e e e et e e e e e e e e 294
B GO0l ParAMOrS ... oo 294
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 300
B ADAREC Restart CONSIAErAtIONSovveeeieee e, 307

291

ADAREC (Recovery Of Database Or Files)

This chapter describes the utility "ADAREC".

Functional Overview

The ADAREC utility consists of the following database recovery functions:

® The LIST function lists information about a Protection Log.

® The REGENERATE function re-applies all of the updates made between two specified check-
points. The checkpoints used are normally the result of a checkpoint command (C1) but may
also be internal checkpoints taken by OP commands from EXU users or utility actions. If the
whole database is to be regenerated, certain files may be excluded by using the EXCLUDE_FILES
option. The files specified with this option are not regenerated, and the updates that are excluded
are reported.

If REGENERATE terminates at a SYNP checkpoint, ADAREC "looks ahead" on the current PLOG
to find an alternative restart point for the next run of this PLOG. The utility then displays a list of
other utility functions that have to be executed before ADAREC can be restarted. If one or more
SYNP checkpoints were found, ADAREC terminates

® with exit code 14, if the PLOG contains further transactions to be applied via a restart of ADAREC,
® otherwise with exit code 12.
The calculated restart point can be reset or overridden by entering BLOCK = or CHECKPOINT =.

Refer to the database report utility ADAREP in this manual for a description of the possible system
checkpoint types.

Normally, REGENERATE completes all fully-logged and confirmed transactions. This function
is most frequently used when the database (or one or more files) has been restored to a previous
status with the RESTORE function of the ADABCK utility.

If the utility writes records to the error file, it will exit with a non-zero status.

Notes:

1. If ADAREC is used more than once at the same time to regenerate files, you should first increase
the value of the nucleus parameter LBP - this is because ADAREC performs a large number of
database updates, and failure to provide a large enough value of LBP may lead to an Adabas
response code 162 being returned.

2. Exit code 12 was introduced with Version 6.3 SP2 - previous releases of Adabas always termin-

ated with exit code 14 when a SYNP checkpoint was found.

This utility is a single-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

292 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

Procedure Flow

REGENERATE Function

Adabas Utilities 293

ADAREC (Recovery Of Database Or Files)

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Control statements |stdin Utilities Manual
ADAREC messages |stdout Messages and Codes
Rejected data RECERR |Disk (* see note) |Output of ADAREC
Protection log RECPLG |Disk

| Note: (*) A named pipe can be used for this sequential file.

The sequential file RECPLG can have multiple extents. For detailed information about sequential
files with multiple extents, see Adabas Basics, Using Utilities in the Adabas documentation

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must be active |Nucleus must NOT be active [Nucleus is NOT required | Checkpoint written
LIST X -
REGENERATE | X SYNX

ADAREC Input Data

Data protection information, in the form of "before' and “after' images of all updated records, is
written to the Protection Log during each Adabas session. This information is needed to regenerate

the updates.

Control Parameters

The following control parameters are available:

M DBID =

LIST

number

keyword

REGENERATE = {* [,EXCLUDE_FILES =
(number[-number] [,number[-number]]

))

294

Adabas Utilities

ADAREC (Recovery Of Database Or Files)

(number[-number] [,number[-number] 1 ...)
PLOG = number
D [,[NOIBI_CHECK]
[,BLOCK = ([number]l,number])
,CHECKPOINT = ([stringll,stringl)]

D [,[NOJERROR_LOG]
D [,ON_ERROR = keyword]
DBID

DBID = number
This parameter selects the database to be used.

Note: Program functions which do not require the nucleus to be running need the environ-

ment variables/logical names set for the container files.

LIST
[PLOG=number,] LIST = keyword

Valid keywords are BRIEF, FULL and RESTART. BRIEF lists the Protection Log number and its
creation date. FULL lists additional information about the records on the Protection Log, e.g. the
checkpoints, the number of modifications for each file, etc. RESTART displays the restart points
that ADAREC writes when it encounters checkpoints while processing.

Note: The timestamps displayed for checkpoints are the timestamps that were made when
the checkpoints were included in the PLOG. When offline checkpoints are created, the
checkpoints are first written to the checkpoint block in the ASSO. The next time the nucleus
is started, they are written to the checkpoint file with the actual checkpoint creation date,
and to the PLOG with the current date. This implies that the timestamps for offline check-
points displayed with ADAREP CHECKPOINT and by ADAREC LIST are different.

The LIST=FULL function also checks the structure of the Protection Log to ensure that it is internally
consistent. If a structural error is detected, a message is output indicating the error type as well
as the record and block numbers.

If the Protection Log is within a disk section, the PLOG parameter must be set before LIST can be
specified.

Adabas Utilities 295

ADAREC (Recovery Of Database Or Files)

Examples

adarec: list=brief
Protection log 1 - 26-0CT-2006 11:39:03

The creation date of PLOG 1 is displayed.

REGENERATE

This function is used to regenerate a whole database or files within a database.

Database Regeneration

REGENERATE = PLOG = number
,EXCLUDE_FILES = (number[-number][,numberl[-numberl]...)]
,LNOIBI_CHECK]
,BLOCK = ([number][,number]),
CHECKPOINT = ([stringll[,stringl)]
[,[NOJERROR_LOG]

[,ON_ERROR = keyword]

/oo

This option of the REGENERATE function regenerates a database. A file exclusion list can be used
to exclude certain files from the regenerate. ET logic is supported.

During REGENERATE processing, ADAREC sets the database to utility-only mode. Processing
terminates if a SYNP checkpoint is encountered. In this case, ADAREC inspects the Protection
Log in order to calculate an alternative restart point. This restart point is then displayed together
with a list of utility functions that must be executed before processing can be continued. The next
call to REGENERATE automatically sets up at this point. The use of the calculated restart point
can be overridden by specifying "BLOCK=" or "CHECKPOINT=" (that is, supplying empty values
for these keywords). This procedure is repeated until the end of the PLOG is reached. After
ADAREC has terminated, the database remains in utility-only mode, because more calls to RE-
GENERATE may follow. After the database regeneration has finished, you can enable the database
for normal processing with the ADAOPR command OPTIONS=NOUTILITIES_ONLY.

[NO]BI_CHECK

If this option is set to BI_CHECK, ADAREC checks the consistency of the before images in the
Protection Log against the data in the database (is the ISN in use; does the record exist; is there a
before image mismatch?). If a mismatch is encountered, ADAREC issues messages containing the
relevant information and does not perform the update.

If this option is set to NOBI_CHECK, the consistency check is still made and the ERROR_LOG is
implicitly enabled; however, on finding a Bl inconsistency, the update is made and the mismatch
is reported to the ERROR_LOG (see below). If errors are encountered, only the first error for each

296 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

file will be displayed, all subsequent errors are logged to the ERROR_LOG. Note that the index
might become inconsistent in this case.

However, if the PLOG was written with the NOBI option of the nucleus, it will not contain any
before images and the BI_CHECK option cannot be set.

The default is Bl CHECK.
BLOCK = ([number][,number])

This parameter specifies the numbers of the blocks in the Protection Log files that contain the
corresponding checkpoint names. The block numbers can be taken from ADAREC LIST=FULL.

CHECKPOINT = ([string]l,string])

This parameter specifies the starting and ending checkpoint names. The checkpoint names can be
taken from the ADAREP database status report or ADAREC LIST=FULL.

If processing is to start at the beginning of the Protection Log file, the first parameter must be
omitted.

[NOJERROR_LOG

Setting this option to ERROR_LOG enables the automatic logging of any BI inconsistencies that
may be detected when using the NOBI_CHECK option. The contents of the error file produced
can be examined using the ADAERR utility. Do not print this error file using the standard operating
system print utilities, since the records contain nonprintable characters. See ADAERR for further
information.

The default is NOERROR_LOG.
EXCLUDE_FILES = (number[-number][, number[-number]]...)

This parameter specifies the files to be excluded when regenerating a complete database. The up-
dates that are excluded are written to a report.

ON_ERROR = keyword

Valid keywords are ABORT and EXCLUDE. The keyword used determines what action to take if
ADAREC detects non-fatal errors during processing (e.g. response code 17, file not loaded). ABORT
abnormally terminates regenerate processing, and EXCLUDE excludes the file in question from
the regenerate if Data Storage errors occur (nucleus response codes 17, 49, 75, 77 and 113).

If, however, an error occurs while updating a file's index (nucleus response codes 75, 76, 77, 98,
165, 166, 167 and 176), only the regeneration of the Data Storage for this file will continue. When
the regeneration process is complete, the index of this file is marked as invalid. The ADAINV
REINVERT function with the ALL_FIELDS option then has to be run for this file (please refer to
the ADAINV utility in this manual for more detailed information). If index errors occur and if the

Adabas Utilities 297

ADAREC (Recovery Of Database Or Files)

regenerate includes several Protection Logs, all of the Protection Logs should be processed before
reinverting the index. Reinverting the index each time a Protection Log results in index errors
would waste considerable amounts of time and computer resources.

The default is ON_ERROR=EXCLUDE.
PLOG = number

This parameter specifies the log number of the Adabas Protection Log to be used as input for the
REGENERATE function. This number can be found with ADAREC using the LIST = BRIEF function.

File Regeneration

REGENERATE = (number[-number][,number[-number]]...), PLOG = number
[,[NOIBI_CHECK]
[,BLOCK = ([number][,number]),
CHECKPOINT = ([stringl[,stringl)]
[,[NOJERROR_LOG]
[,ON_ERROR = keyword]

This option of the REGENERATE function re-applies all updates in a Protection Log for the specified
files or ranges of files. LOB files specified are ignored, but the LOB files assigned to all base files
specified are dumped too.

During regenerate processing, ADAREC locks the files for exclusive use. The regenerate terminates
if a SYNP checkpoint is found while processing a protection log. In this case, ADAREC inspects
the Protection Log in order to calculate an alternative restart point. This restart point is then dis-
played with a list of utility functions that must be executed before processing can be continued.
The next call to REGENERATE automatically sets up at this point. The use of the calculated restart
point can be overridden by specifying "BLOCK=" or "CHECKPOINT=" (that is, supplying empty
values for these keywords). This procedure is repeated until the end of the Protection Log is
reached.

The files remain locked, because more calls to REGENERATE may follow. After the files regener-
ation is finished, you must unlock the files with the ADAOPR command UNLOCK.

The following functions are not allowed while ADAREC is active:

= ADAOPR ET _SYNC FEOF = PLOG
= ADABCK DUMP
= ADAOPR STOP to a sub-user while the associated ADAREC user exists

[NOIBI_CHECK

If this option is set to B CHECK, ADAREC checks the consistency of the before images in the
Protection Log against the data in the database (is the ISN in use; does the record exist; is there a

298 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

before image mismatch?). If a mismatch is encountered, ADAREC issues messages containing the
relevant information and does not perform the update.

If this option is set to NOBI_CHECK, the consistency check is still made and the ERROR_LOG is
implicitly enabled; however, on finding a Bl inconsistency, the update is made and the mismatch
is reported to the ERROR_LOG (see below). If errors are encountered, only the first error for each
file will be displayed, all subsequent errors are logged to the ERROR_LOG. Note that the index
might become inconsistent in this case.

NOBI_CHECK improves performance at the expense of possible loss of data consistency. We advise
you therefore not to use NOBI_CHECK for mission critical databases.

The default is BI_CHECK.
BLOCK = ([number] [[number])

This parameter specifies the blocks in the Protection Log files that contain the corresponding
checkpoint names. The block numbers can be taken from ADAREC LIST=FULL.

CHECKPOINT = ([string] [,string])

This parameter specifies the starting and ending checkpoint names. The checkpoint names can be
taken from the ADAREP database status report.

If processing is to start at the beginning of the Protection Log file, the first parameter must be
omitted. However, if the first checkpoint name is supplied, it must be found in the first Protection
Log file.

If processing is to stop at the end of the last Protection Log file, the second checkpoint name must
be omitted.

[NOIERROR_LOG

Setting this option to ERROR_LOG enables the automatic logging of any Bl inconsistencies that
may be detected when using the NOBI_CHECK option. The contents of the error file produced
can be examined using the ADAERR utility. . Please refer to the ADAERR utility in this manual
for more detailed information.

The default is NOERROR_LOG.
ON_ERROR = keyword

Valid keywords are ABORT and EXCLUDE. The keyword used determines what action to take if
ADAREC detects non-fatal errors during processing (e.g. response code 17, file not loaded). ABORT
abnormally terminates regenerate processing, and EXCLUDE excludes the file in question from
the regenerate if Data Storage errors occur (nucleus response codes 17, 49, 75, 77 and 113).

Adabas Utilities 299

ADAREC (Recovery Of Database Or Files)

If, however, an error occurs while updating a file's index (nucleus response codes 75, 76, 77, 98,
165, 166, 167 and 176), only the regeneration of the Data Storage for this file will continue. When
the regeneration process is complete, the index of this file is marked as invalid. The ADAINV
REINVERT function with the ALL_FIELDS option then has to be run for this file (please refer to
the ADAINV utility in this manual for more detailed information). If index errors occur and if the
regenerate includes several Protection Logs, all of the Protection Logs should be processed before
reinverting the index. Reinverting the index each time a Protection Log results in index errors
would waste considerable amounts of time and computer resources.

The default is ON_ERROR=EXCLUDE.
PLOG = number

This parameter specifies the log number of the Adabas Protection Log to be used as input for the
REGENERATE function. This number can be found with ADAREC using the LIST = BRIEF function.

Examples

Example 1

In this example, database 2 is to be regenerated using the Protection Log 2. File 12 is to be excluded
from the regenerate.

adarec: regenerate=*,plog=2

adarec: exclude_files=12

adarec:

Protection log 2 - 26-0CT-2006 11:48:59

Block 3 - checkpoint SYNC - 11:49:00 - USERID ADANUC <version>
%ADAREC-TI-CHKIGN, Checkpoint ignored

The following utility functions were executed in the original session:

Block 4 - checkpoint SYNP - 11:50:02 - USERID ADADBM REFRESH=13
Block 5 - checkpoint SYNX - 11:50:03 - USERID ADADBM RESET=UCB,IDENT=7
Block 6 - checkpoint SYNP - 11:50:03 - USERID ADADBM RECOVER

Re-execute all SYNP utility functions starting from block 4.

REGENERATE summary

300 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

Calculated RESTART point - BLOCK=6,CHECKPOINT=SYNP

Processing of the Protection Log terminated at the SYNP checkpoint in block 4. However, no updates
were found on looking ahead and processing can be continued from the calculated restart point
inblock 6. ADAREC displays a list of the utility functions that must be executed before processing
continues. The next call to REGENERATE=* will automatically continue at this calculated restart
point.

adarec: regenerate=*,plog=2

%adarec-I-restartp, calculated restart point - block=6,checkpoint=synp
adarec: exclude_files=12

adarec:

Protection log 2 - 26-0CT-2006 11:48:59.86
Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
HADAREC-T1-CHKSTP, starting checkpoint

1 modifications in file 11
1 modifications EXCLUDED from file 12

4 ET commands issued
Block 7 - checkpoint SYNC - 11:52:38.98 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 2 processed

Processing of the Protection Log continues at the calculated restart point. The regenerate terminates
successfully.

Example 2

In this example, database 2 is to be regenerated using the Protection Log 2. Processing is to start
at the checkpoint SYNP in block 6 of the Protection Log. If Data Storage errors occur, the file in
question will be excluded from the regenerate. If index errors occur, the file's index will be excluded
from the regenerate and marked as invalid.

Adabas Utilities 301

ADAREC (Recovery Of Database Or Files)

adarec: regenerate=*,plog=2,block=6,checkpoint=synp

adarec: on_error=exclude

adarec:

Protection log 2 - 26-0CT-2006 11:48:59.86

HADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC
%ADAREC-W-RECUPD, Updates performed between Nucleus and REGENERATE'S startup
%ADAREC-W-RECCMD, 1 N1 command(s)

Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
%ADAREC-T-CHKSTP, starting checkpoint

1 modifications in file 11
3 ET commands issued
%ZADAREC-E-ISNINUSE, ISN 774 in use in file 12
AADAREC-T1-PLOGRB, from record 14 in block 7 in PLOG 2
%ADAREC-T-UPDEXC, ALL following updates in file 12 will be EXCLUDED
1 modifications EXCLUDED from file 12
1 ET command issued
Block 7 - checkpoint SYNC - 11:52:38.98 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 2 processed

An ISN conflict occurred in file 12 and all subsequent updates to this file were excluded. The cause
of the error has to be investigated. However, the nucleus was started without ‘'OPTIONS=UTILIT-
IES_ONLY' and an N1 command was issued before the regenerate was started.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

Example 3

This example is similar to the previous one, with the exception that processing will abort if Data
Storage or index errors are encountered.

302 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

adarec: regenerate=*,plog=2,block=6,checkpoint=synp

adarec: on_error=abort

adarec:

Protection log 2 - 26-0CT-2006 11:48:59.86

HADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC
%ADAREC-W-RECUPD, Updates performed between Nucleus and REGENERATE'S startup
%ADAREC-W-RECCMD, 1 N1 command(s)

Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
%ADAREC-T-CHKSTP, starting checkpoint

1 modifications in file 11
3 ET commands issued

%ZADAREC-E-ISNINUSE, ISN 774 in use in file 12
HADAREC-T1-PLOGRB, from record 14 in block 7 in PLOG 2

An ISN conflict occurred in file 12 and further processing was aborted.
Example 4

In this example, database 2 is to be regenerated using the Protection Log 3. The before images in
the Protection Log will be checked against the data in the database and mismatches will be displayed
on the terminal.

adarec: regenerate=*,plog=3
adarec:

Protection log 3 - 26-0CT-2006 12:10:25.12
%ZADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL O
%ADAREC-T-CHKIGN, Checkpoint ignored

1 ET command issued
%4ADAREC-E-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAREC-I-PLOGRB, from record 7 in block 2 in PLOG 3
%ADAREC-T-UPDEXC, ALL following updates in file 11 will be EXCLUDED

1 modifications EXCLUDED from file 11
1 modifications in file 12

3 ET commands issued

Adabas Utilities 303

ADAREC (Recovery Of Database Or Files)

Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 3 processed

One before image mismatch occurred during processing. As a result, one update was excluded
from file 11.

Having restored the files, the same example can be rerun with no consistency check of the before
images and with BI error logging enabled.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

adarec: regenerate=*,plog=3,nobi_check
adarec:

Protection log 3 - 26-0CT-2006 12:10:25.12
%ZADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL O
%ADAREC-T-CHKIGN, Checkpoint ignored

%LADAREC-W-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAREC-I-PLOGRB, from record 7 in block 2 in PLOG 3

1 modifications in file 11
1 modifications in file 12

4 ET commands issued

1 BI_CHECK error in file 11
Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored
REGENERATE summary

1 BI_CHECK error in file 11

Protection log 3 processed

One BI_CHECK error occurred during processing.

304 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

The source of the errors is written to an error file which can be displayed using the ADAERR
utility. The first error is logged and also written to the error file. All subsequent errors are written
to ERROR_LOG.

The following error file was produced:

%4ADAERR-E-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAERR-TI-PLOGRB, from record 7 in block 2 in PLOG 3

Example 5

In this example, database 2 is to be regenerated using the Protection Log 3.

adarec: regenerate=*,plog=3
adarec:

Protection log 3 - 26-0CT-2006 12:10:25.12
HADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL O
AADAREC-T-CHKIGN, Checkpoint ignored

%ADAREC-E-ERRIUP, Error response 165 during index update
%ADAREC-E-Adabas_165, * Invalid descriptor name in DVT
%ADAREC-I1-DESNAM, Descriptor name XA

HADAREC-T-ISNFILE, from ISN 3 in file 11

%ADAREC-T-PLOGRB, from record 7 in block 2 in PLOG 3
%ADAREC-T-REINVERT, REINVERT all descriptors to re-establish INDEX
%#ADAREC-T-REGDAT, Regenerating ONLY data-storage for file 11

1 modifications in file 11
1 modifications in file 12

4 ET commands issued
Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 3 processed

Adabas Utilities 305

ADAREC (Recovery Of Database Or Files)

An invalid descriptor name was encountered during processing. As a result, only the data storage
of file 11 was regenerated. All of the descriptors will have to be reinverted in order to reestablish
the index.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

If index errors occur and if the regenerate includes several Protection Logs, all of the Protection
Logs should be processed before reinverting the index. Reinverting the index each time a Protection
Log results in index errors would waste considerable amounts of time and computer resources.

Example 6

In this example, database 2 is to be regenerated using the Protection Log 4 after the regenerate
processing of Protection Log 3 resulted in an index error.

adarec: regenerate=*,plog=4
adarec:

Protection log 4 - 26-0CT-2006 12:12:00.15
Block 1 - checkpoint SYNC - 12:12:00.15 - USERID ADANUC <version>
%ADAREC-T-CHKIGN, Checkpoint ignored

%ADAREC-E-FCBNAC, file 11's index not accessible
%#ADAREC-I1-REGDAT, Regenerating ONLY data-storage for file 11

1 modifications in file 11
1 modifications in file 12

4 ET commands issued
Block 2 - checkpoint SYNC - 12:12:19.35 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 4 processed

The index error that occurred while processing Protection Log 3 (see example 5) means that file
11's index is no longer accessible. Only the Data Storage of file 11 is regenerated, whereas both
the Data Storage and the index of file 12 are regenerated.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

306 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

ADAREC Restart Considerations

An interrupted ADAREC run which leaves a UCB entry has to be re-started from the beginning.
Because modifications have already been made, a RESTORE database or RESTORE file has to be
executed before re-starting ADAREC. However, if there is no UCB entry, the database has not
been modified and ADAREC can be re-started.

An abnormally terminated ADAREC (RESTORE/RECOVER) leaves the database in a consistent

state, although it is not possible to tell exactly in which state. ADAREC cannot determine which

transactions have already been recovered, so it is necessary to repeat the RESTORE operation and
restart the ADAREC from the beginning in order to ensure that everything is recovered.

Having performed the first update, ADAREC writes a ‘started' checkpoint to the checkpoint file,
e.g.

SYNX 22-MAR-2007 16:49:46 192 ADAREC REG STARTED

Adabas Utilities 307

308

19 ADAREP (Database Report)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 310
B PIOCEAUIE FIOW ...t et e 31
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 311
B CONEIOl PArAMEIEIS ... e ettt e 312

309

ADAREP (Database Report)

This chapter describes the utility "ADAREP".

Functional Overview

The ADAREP utility generates the database status report. This contains information about the
current physical layout and logical contents of the database. Unless otherwise stated, the functions
can be executed when the nucleus is active or inactive.

The information contained in this report includes:

® The amount and location of space currently allocated for the Associator and Data Storage;

® The amount and location of unused space available for the Associator and Data Storage;

® Database file summary;

® Checkpoint information;

® Security information;

® Encryption information;

* Information about each file in the database (space allocation, space available, number of records

loaded, MAXISN setting, field definitions, etc.);

Only the CHECKPOINTS control parameter (see description below) requires the nucleus to be
active.

This utility is a multi-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

310 Adabas Utilities

ADAREP (Database Report)

Procedure Flow

ADANUC
ADAREP
Data Set Environment |Storage |Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Control statements |stdin Utilities Manual
ADAREP report |stdout Messages and Codes,
Utilities Manual

Checkpoints

The utility writes no checkpoints.

Adabas Utilities 311

ADAREP (Database Report)

Control Parameters

The following control parameters are available:

CHECKPOINTS = { * | ([absolute-date] [,[absolute-date] 1) }
CONSTRAINTS

CONTENTS

COUNT
M DBID = number
D [NOJIFDT

FILES = { * | (number [-numberl[,number[-number]]...) }
D [NOJFULL

FREE_SPACE
D [NOJLARGE

LAYOUT

SUMMARY

CHECKPOINTS

CHECKPOINTS = { * | ([absolute-date] [,[absolute-date]]) }

This function displays selected information from the checkpoint list and requires the nucleus to
be active.

Five types of system checkpoints (SYNP, SYNC, SYNX, OPEN and CLSE) are written to the
checkpoint file and to the protection log, together with the user checkpoints written by C1 com-
mands.

SYNC indicates a checkpoint made during nucleus initialization, termination or cancel processing;
during the ADAOPR function FEOF = PLOG; due to ADABCK NEW_PLOG processing; or during
the function ADAOPR EXT_BACKUP=CONTINUE.

SYNP indicates a checkpoint made by an Adabas utility that requires privileged control, i.e. the
module can make updates without using the nucleus. A SYNP checkpoint is, for example, written
at the end of an ADAMUP UPDATE run.

312 Adabas Utilities

ADAREP (Database Report)

SYNX indicates a checkpoint made by a utility that requires exclusive control of one or more files.
A SYNX checkpoint is, for example, written by ADAULD.

An OPEN checkpoint is written by the OP command of EXU/EXF users.
A CLSE checkpoint is written by the CL command of EXU/EXF users.

Note: If the ADAREC 'REGENERATE' function is executed using the Protection Log, this
utility stops at each SYNP checkpoint since DBA intervention is required.

If an asterisk " is entered, all checkpoints are displayed.

The date strings must correspond to the following absolute data and time format:

dd-mmm-yyyy[:hh[:mm[:ss]]]

Leading zeroes in the date and time specification may be omitted. Any numbers not specified are
set to 0, for example 28-jul-2006 is equivalent to 28-jul-2006:00:00:00.

The following table shows the possible values for parameter CHECKPOINTS, and the corresponding
checkpoints displayed by this value:

Value specified for parameter Checkpoints displayed for this specification

CHECKPOINTS

*or(,) All checkpoints

absolute-date Only the checkpoints written exactly at the date and time specified

(absolute-date,) Checkpoints written from date and time specified onwards

(,absolute-date) Checkpoints written up to the date and time specified

(absolute-date,absolute-date) Checkpoints written from first date and time value specified onwards
up to the second date and time value specified

Example

adarep: checkpoints=*

Name Date/Time Session User Id / Function
SYNP 28-JUL-2006 12:50:34 8 ADADBM DELCP

SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
SYNX 28-JUL-2006 12:50:37 8 ADABCK DUMP=*

OPEN 28-JUL-2006 17:23:53 8 otto

OPEN 28-JUL-2006 17:24:15 8 otto

CLSE 28-JUL-2006 17:24:24 8 otto

All checkpoints are displayed.

Adabas Utilities 313

ADAREP (Database Report)

The column "User ID / Function" contains

® for user checkpoints created via OP/CL commands for EXU/EXF users or via C1 command: the
user specified in the Additions 1 field of the relevant OP command;

® for utility checkpoints: the utility function executed.

Taking the output of the example above (checkpoints=¥), the selection criteria can be used to filter
the checkpoints selected as shown below.

Specifying

checkpoints=28-jul-2006:12:50:36

will produce the following output:

Name Date/Time Session User Id / Function
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
Specifying

checkpoints=(28-jul-2006:12:50:36,)

will produce the following output:

Name Date/Time Session User Id / Function
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
SYNX 28-JUL-2006 12:50:37 8 ADABCK DUMP=*
OPEN 28-JUL-2006 17:23:53 8 otto
8
8

OPEN 28-JUL-2006 17:24:15 otto
CLSE 28-JUL-2006 17:24:24 otto

Specifying

checkpoints=(,28-jul-2006:12:50:36)

will produce the following output:

314 Adabas Utilities

ADAREP (Database Report)

Name Date/Time Session User Id / Function
SYNP 28-JUL-2006 12:50:34 8 ADADBM DELCP

SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
Specifying

checkpoints=(28-jul-2006:17, 28-jul-2006:17:24)

will produce the following output:

Name Date/Time Session User Id / Function
OPEN 28-0UL-2006 17:23:53 5 otto
CONSTRAINTS
CONSTRAINTS

This function displays information about all referential constraints in the database that you specify
with the DBID parameter.

Example

adarep: constraints
Primary file Foreign file Name Action

9 (AA) <--- 12 (AC) HO DX UX

The referential constraint HO links the primary key field AA in the primary file 9 with the foreign
key field AC in the foreign file 12. The associated actions are delete no action (DX) and update no
action (UX).

CONTENTS

CONTENTS

This function displays information about the files in the database that you specify with the DBID
parameter.

Adabas Utilities 315

ADAREP (Database Report)

Example

adarep: contents

Content of Database 163 30-MAY-2017 11:36:07

Index Extents Pad % flags

File Filename loaded on Top ISN Tevel N U A D A D ALRCPM
1 EMPLOYEES 30-MAY-2017 1,107 31 1 1 1 5 5 R M
2 VEHICLES 30-MAY-2017 773 31 1 1 1 5 5 R M
3 MISCELLANEQUS 30-MAY-2017 1,779 31 1 1 1 5 5 R M
60 EMPL-REF 30-MAY-2017 1,107 31 1 1 1 5 5 R M
251 SECURITY-FILE 30-MAY-2017 0 31 1 1 1 5 5 R M
254 USER-DATA-FILE 30-MAY-2017 0 31 1 1 1 5 5 R M
255 CHECKPOINT-FILE 30-MAY-2017 0 31 1 1 1 5 5 S M

Allocated blocks

File Filename NI Ul AC DS
1 EMPLOYEES 90 15 10 75

2 VEHICLES 40 20 2 40

3 MISCELLANEOQUS 50 10 10 50

60 EMPL-REF 90 15 10 75
251 SECURITY-FILE 2 2 1 5
254 USER-DATA-FILE 24 2 6 57
255 CHECKPOINT-FILE 1 1 6 32
Total 297 65 45 334

File Filename NI Ul DS
1 EMPLOYEES 2 18

2 VEHICLES 16 12 26

3 MISCELLANEOUS 17 5 23

60 EMPL-REF 4 2 18
251 SECURITY-FILE 2 1 4
254 USER-DATA-FILE 24 1 56
255 CHECKPOINT-FILE 1 0 31
Total 68 23 176

The column "Extents' shows the number of logical extents currently assigned to the Normal Index
(N), the Main/Upper Indices (U), the Address Converter (A) and Data Storage (D).

316 Adabas Utilities

ADAREP (Database Report)

The column "Pad' shows the block padding factors in percent defined for the Associator (A) and
Data Storage (D) (please refer to the ASSOPFAC and DATAPFAC parameters of ADAFDU,
ADAMUP or ADAORD for more detailed information).

The column "Flags' contains the following information:

Subcolumn|Flag |Meaning
A A |Indicates an Adam file
L L [Fileisa LOB file
B |File is a base file with a corresponding LOB file
R R |ISN and space reusage enabled for the file
I |ISN reusage, but no space reusage enabled for the file
S |Space reusage, but no ISN reusage enabled for the file
C C |Ciphering enabled for the file
P P |Program Refresh enabled for the file
M M | The file was modified since the last backup

If ISNs are to be reused, the ISNs of deleted records can be reassigned to new records. If space is
to be reused, the space released within a block as a result of deleting a record can be reused for a
new record (please refer to the REUSE parameter of ADADBM or ADAFDU for more detailed

information).

The second and third tables show the number of blocks allocated for Normal Index (NI)
Main/Upper Indices (UI), Address Converter (AC) and Data Storage (DS) for each file. The remain-
ing columns show the number of unused blocks in the Main/Upper Indices (UI) and Data Storage
(DS).

COUNT

COUNT

This parameter displays the record count of the files in the database that you specify with the
DBID parameter.

Example

adarep: count

Record Count of Database 2 20-APR-2017 16:08:52
File Filename Records loaded

1 CHECKPOINT-FILE 0

2 SECURITY-FILE 0

3 USER-DATA-FILE 0

Adabas Utilities 317

ADAREP (Database Report)

9 EMPLOYEES 1,272

11 EMPLOYEES-NAT 1,107

12 VEHICLES 773

13 MISCELLANEQUS 1,779

14 LOBFILE of 9 210
DBID

DBID = number
This parameter selects the database to be used. Multiple DBIDs are supported within one session.

The DBID parameter must be the first ADAREP parameter specified.

Example

adarep: dbid 1, contents

adarep: dbid = 2, contents

adarep:.dbid 3, contents
[NOJFDT
[NOJFDT

If this parameter is set to FDT, the Field Definition Tables (FDTs) will be included in the status
information subsequently displayed by the FILES function.

The default is NOFDT.
FILES

FILES = { * | (number [-number][,number [-numberl]...) }

This function displays status information for the files selected.

318 Adabas Utilities

ADAREP (Database Report)

Example

adarep: fdt

adarep: file=9

Database 216, File 9 (EMPLOYEES) 30-MAY-2017 11:50:36
Highest Index Level: 3 Padding Factors: ASSO 5%, DATA 5%
Top ISN: 1,272 Maximum ISN expected: 8,191
SYFMAX : 9

Records loaded: 1,272 Corresponding LOB file: 14
Last FDT Modification: 4-SEP-2014 14:49:36.510905

Last ADABCK dump 5 30-MAY-2017 11:49:32

ISN reusage: Enabled, inactive Space reusage: Enabled

Program refresh: Disabled Ciphering: Disabled

Modified since last backup
Record spanning: Disabled

Container Block Extent Extents in Blocks Allocated Unused
File Size Type from to Blocks MB Blocks MB
ASSO
2 32KB AC 7,682 7,682 1 0 0 0
1 8KB NI 55 99 45 0 15 0
1 8KB Ul 100 107 8 0 0 0
1 8KB Ul 110 119 10 0 3 0
DATA:
1 32KB DS 14 45 32 1 21 0

Level I Name I Length I Format I Options I Flags I Encoding
1 I A0 I I I I I
2 I AA I 8 I A I DE,UQ,NC,NN I RP I
2 I AB I I I I I
3 I AC I 4 I F I DE I I
3 I AD I 8 I B I NU,HF I I
3 I AE I 0 I A I NU,NV,NB, LA I I
1 I BO I I I I I
2 I BA 1 40 I W I NU I I
2 I BB I 40 I W I NU I I
2 I BC I 50 I W I DE,NU I SP I
1 I CA I 1 I A I FI I I
1 I DA 1 1 I A I FI I I

Adabas Utilities 319

ADAREP (Database Report)

N NN NN

NN NN N

W W W w w

w W W w w

EA
FO
FA
FB
FC
FD
F1
FE
FF
FG
FH
FI
10
TA
18
IC
1D
1E
11
IF
16
TH
1
1J
JA
KA
L0
LA
LB
LC
MA
NO
NA
NB
00
0A

0B

PA
QA
RA
SO
SA
SB
SC
TC

TU

60
40
10

15
15
15
80

40
40
10

15
15
15
80

B~ oo Ww

wW N

> > > = = > > > > > > > = = e

= > > > > > >

G U U >

—

> T >

— > > =

DE,NC
PE
NU, MU
DE, NU
NU
NU

NU

NU

NU

NU
DE,NU,MU
PE
NU, MU
DE, NU
NU

NU

NU

NU

NU

NU

NU
DE,NU,MU
DE

DE,NU

PE

NU

NU
DE,NU,MU
NU

NU
PE
NU
DT(DATE)
NU
DT(DATE)
DE,NU,MU

NU,NV,NB, LB

PE

NU

NU
NU,MU,NV,NB, LB
DT(TIMESTAMP)
SY=TIME,CR

MU
DT(TIMESTAMP)
SY=TIME

SB,SP

SP
SP

SP
SP

320

Adabas Utilities

ADAREP (Database Report)

Type I Name I Length I Format I Options I Parent field(s) Fmt
CoLL I CN I1,144 I I NU,HE [BC de@collation=phonebook
I I I I I PRIMARY
SUPER I HI I 5 I B I NU I NA (1 2) U
I I I I I NB (1 3) U
SUB I S1 I 2 I A I I JA (1 2) A
SUPER I sz 1 46 I A I NU I JA (1 6) A
I I I I I BC (1 40) W
SUPER I S3 1 9 I A I NU,PE I LA (1 3)
I I I I I LB (1 6) P

Type I Name I Refer. I Primaryl Foreign I Rules
I I file I field I field I

PRIMARY I HO I 12 1 AA I AC I DELETE_NOACTION UPDATE_NOACTION

The FILES parameter shows the file number and file name as well as the date and time the file
was loaded, the highest index level, the padding factors for ASSO and DATA, the highest and
maximum ISNs, the number of records loaded, the corresponding base file number or LOB file
number if it exists, as well as the switches for ISN reusage, space reusage, program refresh and
ciphering. The time and date of the last FDT modification are also displayed.

The layout of the ASSO and DATA elements of a file are displayed: the block size on which the
various list elements are stored, the location of these extents and the number of corresponding
blocks/megabytes allocated or unused.

In addition, the FDT function displays the Field Definition Table of the file.

The flags which can be displayed in the Field Definition Table are as follows:

Flag [Meaning

HY |the field is part of a hyperdescriptor
P |the field is phoneticized

SB |part of this field is subdescriptor

SP |part of superdescriptor

Adabas Utilities 321

ADAREP (Database Report)

FREE_SPACE

FREE_SPACE

This function displays a summary of free blocks in ASSO and DATA. This is a subset of the inform-
ation that is displayed by the LAYOUT function.

Example

adarep: free_space

Free space of Database 76

Container
File

28-N0V-2006 12:

Extents in Blocks

from

to

Number of
Blocks

bl1:24

DATA:
1
2
3-4
[NOJFULL

[NOJFULL

611

245
769
869

1,546

768
868
888

936

524
100
20

2,048

4,096
3,072
6,144

If FULL is specified together with FDT, the following additional information is displayed for the

FDT:

® Dropped fields are included in the display of the fields of the file (but without the field names).

® The ICU version is included in the display of collation descriptors.

The default is NOFULL.

322

Adabas Utilities

ADAREP (Database Report)

[NOJLARGE

[NOJLARGE

This parameter changes the layout of adarep utility with the file parameter.
This layout can display large values. Default is NOLARGE.

Example

adarep: large
adarep: file=9

Database 44, File 12 (VEHICLES) 15-JUL-2014 17:46:11
Highest Index Level: 3 Padding Factors: ASSO 5%, DATA 5%
Top ISN: 773 Maximum ISN expected: 73,727
Records loaded: 773

Last FDT Modification: 15-JUL-2014 17:46:12.363000

ISN reusage: Enabled, inactive Space reusage: Enabled

Program refresh: Disabled Ciphering: Disabled

Modified since last backup
Recordspanning: Disabled

Container Block Extent Extents in Blocks Allocated ©
Unused
File Size Type from to Blocks MB <
Blocks MB
ASSO:
2 32KB AC 100 4,483,647 4,483,548 140,110 ©
4,475,962 139,873
1 8KB NI 100 4,483,647 4,483,548 35,027 ©
4,483,473 35,027
1 8KB Ul 100 4,483,647 4,483,548 35,027 ©
4,483,434 35,026
DATA:
1 32KB DS 100 4,483,647 4,483,548 140,110 ©

4,483,389 140,105

Adabas Utilities 323

ADAREP (Database Report)

LAYOUT

LAYOUT

This function displays a summary of the blocks in ASSO and DATA and reports lost blocks. Lost
blocks are blocks that are not listed in the Free Space Table (FST) and are not allocated to a file,
the DSST or the database's global area. This function also reports double-allocated blocks.

Example

adarep: layout

Layout of Database 76

Container
File from

28-N0V-2006 12:51:24

Extents in Blocks

to

Number of
Blocks

Extent
Type

File
Number

32
33
36
37
38
39
40
41
43
44
45
46
49
51
63
153
168
169
170
171
173
174
175
265
280
281
282
322

2 b b b b 1 b b b b b b b b b b b e) 3)) b b b by

30
31
32
35
36
37
38
39
40
42
43
44
45
48
50
62
152
167
168
169
170
172
173
174
264
279
280
281
321
341

AP EPSrEbEEErEPEPEEEEEEEEEEEEEEEEAEEEEEEEDEEPSD

,096

,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096
,096

CB
FCB
FDT
AC
Ul
NI
FCB
FDT
AC
UI
NI
FCB
FDT
AC
Ul
NI
NI
Ul
FCB
FDT
NI
UI
FCB
FDT
NI
UI
FCB
FDT
NI
UI

W O W WWWWLWWwWMNDMNPPNDMNMN

el e e
R) L)L, DB BSO

12
12

324

Adabas Utilities

ADAREP (Database Report)

342
343
344
394
404
405
407
,561
,562
,563
,564
,573
,582
,583

P PPN PP

RN NN NN

DATA:
1
5
6
14
46
171
203
213
223

T T T T T W Y

(NSRRI RCRE G RN NG CRE G) SR)

342
343
393
403
404
406

,560
,561
,562
,563
,572
,581
,582
,880

4

5
13
45
170
202
212
222
640

32
125
32
10
10
418

B T S S

32,
32,
32,
32,
32,
32,
32,
32,
32,

,096
,096
,096
,096
,096
,096
,096
,768
32,
32,
32,
32,
32,
32,

768
768
768
768
768
768

768
768
768
768
768
768
768
768
768

FCB
FDT
NI
UI
FCB
FDT
FREE
DSST
AC
AC
AC
AC
AC
FREE

DS
DS
DS
DS
DS
DS
DS
DS
FREE

12
12
13
13
13
13

14
11
12
13

W N =

11
12
13

LAYOUT provides a summary of all blocks in ASSO and DATA. The locations and lengths of
sections of contiguous blocks, the block size, the type of usage and the numbers of the corresponding
files are displayed. These blocks may be free (FREE) or used for the Global Blocks (CB), the File
Control Block (FCB), the FCB extension (FCBE), the FCB Root Block (FCBR), the Field Definition
Table (FDT), the Free Space Table (FST), the Data Space Storage Table (DSST), the Normal Index
(NI), the Upper/Main Index (UI), the Address Converter (AC) or the Data Storage (DS).

Note: The first FCBR block and the first FST block are part of the global blocks. For this
reason, the layout only displays FCBR and FST blocks if the database contains more than

one of these blocks.

SUMMARY

SUMMARY

SUMMARY provides general information about the database and the physical layout of ASSO,

DATA and WORK.

Adabas Utilities

325

ADAREP (Database Report)

Example

adarep: summary

Summary of Database 76

DATABASE NAME

DATABASE ID

MAXIMUM NUMBER OF FILES
SYSTEM FILES

ACTUAL FILES LOADED
AC SIZE

CURRENT PLOG NUMBER
CURRENT CLOG NUMBER
SECURITY

ENCRYPTION
KMSTARGET

KEKNAME

28-JUL-2020 12:51:24

DOKU-DATABASE
76
30
1 (CHK),
150 (RBAC)
6
3
8
0
ACTIVE
AES_256_XTS
FILE

PR}

2 (SEC), 3 (USR)

1598876857F83BB64A01916FFA3ACFID39DB18537E80E3E48FD8A2333A3D77C8

Extents in Blocks

from

Container Device
File Type
ASSO1 file
ASS02 file
DATAL file
DATA2 file
DATA3 file
DATA4 file
WORK1 file

1
1,537

769
869
879

Number of Block Total Size

to Blocks Size (Megabytes)
1,536 1,536 2,048 3.00
1,546 10 2,048 0.02
768 768 4,096 3.00
868 100 3,072 0.29
878 10 6,144 0.06
388 10 6,144 0.06
1,365 1,365 3,072 4.00
10.43

The security information is only displayed if database security has been activated. Otherwise, the
information is not displayed.

The encryption information, consisting of encryption algorithm, KMS target (Key Management
System) and KEK name (Key Encryption Key), is only displayed if the database is encrypted.
Otherwise, the information is not displayed.

326

Adabas Utilities

ADAREP (Database Report)

The RBAC system file is only displayed if it has been defined. Otherwise, the information is not
displayed.

| Note: If the database is running in READONLY mode, WORKT is not displayed.

Adabas Utilities 327

328

20 apauwn (File Unloading)

B FUNCHONAI OVEIVIBW ..ot e e e e 330
B PTOCEAUIE FlOW .ottt et e 332
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 334
B G0N0l ParaMEIErS . et 335
B XAMIDIES L.ttt 341
= TEMP Data Set Space ESMAtioNoooiiiiiiiii e 342
B RES A CONSIAEIAtIONS .. eeeee e e 342

329

ADAULD (File Unloading)

This chapter describes the utility "ADAULD".

Functional Overview

The utility ADAULD unloads an Adabas file, i.e. records are retrieved from a database or an
Adabas backup copy, and written to a sequential file.

The main reasons for unloading a file are:

* To change the space allocation, to reduce the number of logical extents assigned to the index,
Address Converter or Data Storage, and/or to change the padding factor. In this case, the file
has to be unloaded, deleted and reloaded. These features are also available with ADAORD;

® To create one or more test files, all containing the same data. This procedure requires a file to
be unloaded and then reloaded using a different file number. This feature is also available with
ADAORD;

® To extract data from a file for subsequent input to ADAMUP. This is useful for moving records
from a production database to an archive database;

® To re-establish a file that has been archived on an Adabas backup copy.
When unloading a file from a database, the records may be unloaded in:

Logical sequence
The records are unloaded in an ascending sequence based on the values of a user-specified
descriptor;

ISN sequence
The records are unloaded in ascending ISN sequence;

Physical sequence
The records are unloaded in the order in which they are physically located in Data Storage.

Unloading in logical or ISN sequence requires the nucleus to be active. The nucleus is not required
when unloading in physical sequence, provided ADAULD has access to the database container
files.

When unloading from an Adabas backup copy, the records are unloaded in the sequence in which
they were stored by ADABCK. This is generally in ascending data RABN sequence. However, this
sequence cannot be guaranteed when the DRIVES option was used or when the dump was made
online (please refer to the DRIVES option of the utility ADABCK for more detailed information).

The unloaded records are output in compressed format and are identical to the records produced
by the compression utility ADACMP. Since each data record is preceded by its ISN, these ISNs
can be used as user ISNs when reloading the file (please refer to the USERISN option of the utility
ADAMUP for more detailed information).

330 Adabas Utilities

ADAULD (File Unloading)

The user can specify that the descriptor values required to recreate the index for the file are omitted
during the UNLOAD process (SHORT option). This reduces the unload processing time. This
option must not be used if the output is intended as direct input for ADAMUP.

| Note: If the file contains collation descriptors, the ICU version is not changed for the unloaded

data. You can load the data with ADAMUP to a file with the same fields, but a different
ICU version only if the file is empty, and if you use the NEW_FDT option for ADAMUP.

After completion, ADAULD returns one of the following exit status values:

0
Records have been successfully unloaded, and no database corruption was detected.

12
The unload was successful, but corrupted data records were detected, which were not unloaded.
It is recommended that you run ADAVFY in order to obtain more information about the
database corruptions.

15
The unload was successful, but no records were unloaded. In scripts, you can check for this
status value if further activities are required only after unloading at least one record.

255
Unload was not successful.

This utility is a single-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

Encryption:

When using ADAULD on encrypted data, the corresponding encryption context is derived in the
following way:

® When unloading from an encrypted database, the encryption information stored in ASSO1 is
used.

® When unloading from one or multiple BCK-files, the encryption information in BCK001 is used.

Adabas Utilities 331

ADAULD (File Unloading)

Procedure Flow

BACKUP_COPY Function

The sequential files ULD00On, ULDDTA, ULDDVT can have multiple extents. For detailed inform-
ation about files with multiple extents, see Adabas Basics, Using Utilities in the Adabas documenta-
tion.

332 Adabas Utilities

ADAULD (File Unloading)

 ADANUC
ADAULD
DBID , :
USEREXIT . Unloaded
Mk Cata

-

______ i

L_I_niuadgd
Descriptor Walues

DBID Function

The sequential files ULDDTA, ULDDVT can have multiple extents. For detailed information about
files with multiple extents, see Adabas Basics, Using Utilities in the Adabas documentation.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk see note 2
Data storage DATAXx Disk see note 2
Backup copy ULDOOn |Disk Output of ADABCK's DUMP function, input
for ADAULD
Unloaded data ULDDTA |Disk (see note 1)
Unloaded descriptor values|ULDDVT |Disk (see note 1)
Control statements stdin Utilities Manual
ADAULD messages stdout Messages and Codes

Adabas Utilities 333

ADAULD (File Unloading)

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Temporary storage TEMPx Disk see note 3 and 4
Work storage WORK1 Disk see note 2

Notes:

. A named pipe can be used for this sequential file.
. Required by offline unload. Will also increase the speed of online unload using physical sequence.

. Only required if unloading from a backup copy with the online option being used. If the utility
is executed offline, WORK may be used as TEMP if there is no Autorestart pending, by setting
the environment variable TEMP1 to the same value as WORKI.

. The ADAULD BACKUP_COPY function does not read the DBxxx.INI file to find TEMP,

therefore you must specify TEMP via environment variables.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Function Nucleus must be active |Nucleus must NOT be active |[Nucleus is NOT required | Checkpoint written
BACKUP_COPY X -
DBID X(see note 1) X(see note 3) X(see note2) SYNX

Notes:

. When unloading in logical sequence or ISN sequence or when the database container file cannot
be accessed by ADAULD (e.g. when unloading from a remote node). Also applies if a file contains
LOB data, because LOB data must be unloaded in logical sequence. Also applies if the search
buffer and value buffer are provided.

. When unloading in physical sequence and ADAULD has access to the database container files.
. When unloading an Adabas system file.

334 Adabas Utilities

ADAULD (File Unloading)

Control Parameters

The following control parameters are available:

BACKUP_COPY =

number, FILE = number

[,FDT]

[,NUMREC = number]

[,[NOJONLINE]

[, [NOJSHORT | [NOJSINGLE_FILE 1]
[,SKIPREC = number]
[,[NOJUSEREXIT]

DBID = number , FILE = number

D

D

D
L

D L
L
L

D L
L
{
L

D L

BACKUP_COPY

BACKUP_COPY =

,FDT]

,[NOJLITERAL]

,NUMREC = number]

,SEARCH_BUFFER = string, VALUE_BUFFER = string]
, [NOJSHORT | [NOJSINGLE_FILE 1]

,SKIPREC = number]

,SORTSEQ = { string | ISN } 1]

,STARTISN = number]

,[NOJUSEREXIT]

number

,FILE = number

,FDT]

,NUMREC = number]

,[NOJONLINE]

,[INOISHORT | [NOJSINGLE_FILE]
,SKIPREC = number]
,[NOJUSEREXIT]

A

This function unloads records from an Adabas backup copy. You are not allowed to specify a LOB
file. "BACKUP_COPY=number" specifies the ID of the database from which the backup copy was
derived, and "FILE=number" specifies the file number. Both offline and online backup copies can
be used. If a LOB file is assigned to the file specified, a partial reload using the ADAMUP parameters
NUMREC, SKIPREC is not possible.

Adabas Utilities

335

ADAULD (File Unloading)

FDT

This parameter displays the FDT of the file to be unloaded.
FILE = number

This parameter specifies the file to be unloaded.

NUMREC = number

This parameter limits the number of data records retrieved from the file when unloading. All records
are unloaded if NUMREC is omitted and SKIPREC is not specified. You cannot use NUMREC if
a LOB file is assigned to the file to be reloaded.

[NOJONLINE

This option indicates whether the backup copy might contain online data storage blocks for the
file to be unloaded.

If the backup copy is expected to contain online data storage blocks, two passes are made when
processing the backup copy. This is because the most recent version of each data storage block
has to be found. Setting this option to NOONLINE unloads in one pass and saves a considerable
amount of processing time, at the risk of ADAULD terminating with an error message if an online
data storage block is detected.

The default used depends on whether or not the Adabas nucleus was active when the backup was
made.

[NOJSHORT

This option indicates whether the descriptor values used to build up the index should be included
in the output or omitted.

If SHORT is specified, no descriptor values are unloaded.

If the output is intended as direct input for the mass update utility, the file must be unloaded in
NOSHORT mode.

SHORT and SINGLE_FILE are mutually exclusive.

NOSHORT is the default.

336 Adabas Utilities

ADAULD (File Unloading)

[NOJSINGLE_FILE

If this option is set to SINGLE_FILE, ADAULD writes the DVT and DATA information to a single
data set (ULDDTA).

SINGLE_FILE and SHORT are mutually exclusive.

The default is NOSINGLE_FILE.
SKIPREC = number

This parameter specifies the number of records to be skipped before unloading is started. You
cannot use SKIPREC if a LOB file is assigned to the file to be reloaded.

[NOJUSEREXIT

A user-written routine is dynamically loaded. A pointer to an input parameter block and a pointer
to an output parameter are passed with each call (please see the include file adauex.h for more
information). For each record retrieved from the database, the decision can be made whether to
unload the record (write it to the unload file), skip it or terminate execution immediately.

The environment variable/logical name ADAUEX_7 must point to a user-written routine.

NOUSEREXIT is the default.

DBID

DBID = number
,FILE = number

[,FDT]

[,[NOJLITERAL

[,NUMREC = number]
[,SEARCH_BUFFER = string]
[,CNOJSHORT | [NOJSINGLE FILE]
[,SKIPREC = number]

[,SORTSEQ = { string | ISN }]
[,STARTISN = number]
[,[NOJUSEREXIT]

[

,VALUE_BUFFER = string]

This function unloads records from the specified database.

Adabas Utilities 337

ADAULD (File Unloading)

FDT

This parameter displays the FDT of the file to be unloaded.

FILE = number

This parameter specifies the file to be unloaded. You are not allowed to specify a LOB file.
[NOJLITERAL

If this option is set to LITERAL, leading blanks and lower case characters can be specified in the
value buffer and remain relevant in the string, i.e. they are not removed or converted to upper
case. If NOLITERAL is set, lower case characters will be transformed to upper case, and leading
blanks will be suppressed except when the value is specified as a hexadecimal value.

NOLITERAL is the default.
NUMREC = number

This parameter limits the number of data records retrieved from the file when unloading. All records
of the file are unloaded if NUMREC is omitted and SKIPREC or STARTISN are not specified.

SEARCH_BUFFER = string

This parameter is used to restrict the unloaded records to those which meet the selection criterion
provided. The selection criterion must be provided according to the syntax for search buffer entries
as described in the Command Reference Manual.

The maximum length of this parameter is 200 bytes. For complex entries, use the following
method:

adauld: search_buffer=aa,20,a,d,\
> ab,10,a.

ADAULD will concatenate this to:

aa,20,a,d,ab,10,a.

The values which correspond to the selection criterion are provided by the VALUE_BUFFER
parameter.

338 Adabas Utilities

ADAULD (File Unloading)

[NOJSHORT

This option indicates whether the descriptor values used to build up the index should be included
in the output or omitted.

If SHORT is specified, no descriptor values are unloaded.

If the output is intended as direct input for the mass update utility, the file must be unloaded in
NOSHORT mode.

SHORT and SINGLE_FILE are mutually exclusive.

NOSHORT is the default.
[NOJSINGLE_FILE

If this option is set to SINGLE_FILE, ADAULD writes the DVT and DTA information to a single
data set (ULDDTA).

SINGLE_FILE and SHORT are mutually exclusive.

The default is NOSINGLE_FILE.
SKIPREC = number

This parameter specifies the number of data records to be skipped before unloading is started.

When used together with the STARTISN parameter, positioning is carried out before skipping.
SORTSEQ = string

This parameter controls the sequence in which the file is unloaded. If specified, it may either
contain the field name of a descriptor, sub- or superdescriptor (1) or the keyword ISN' (2). The
default is physical sequence (3).

1. Logical sequence

If a string specifies a field name of a descriptor or sub/superdescriptor, the records are unloaded
in ascending logical sequence of the descriptor values to which the field name refers. The field
name must not refer to a descriptor contained within a periodic group.

If the field name refers to a descriptor which is a multiple-value field, the same record may be
unloaded more than once (once for each different descriptor value in the record). Therefore, it
is not recommended to use this type of descriptor to control the unload sequence.

If the field name refers to a descriptor defined with the NU or NC option, the records with a
null value for the descriptor are not unloaded.

Adabas Utilities 339

ADAULD (File Unloading)

2. ISN sequence

If "ISN' is specified, the records are unloaded in ascending ISN sequence.

3. Physical sequence

If the SORTSEQ parameter is omitted, the records are unloaded in the physical sequence in
which they are stored in the Data Storage.

If a search buffer has been specified and the SORTSEQ parameter has been omitted, the records
are unloaded in ascending ISN sequence.

STARTISN = number

If the SORTSEQ = ISN option is used or a search buffer is provided, the STARTISN parameter may
be specified to start unloading at a given ISN rather than from the lowest ISN in the file. If the
specified ISN does not exist, unloading starts at the next highest ISN found.

[NOJUSEREXIT
NOUSEREXIT is the default.
VALUE_BUFFER = string

If a selection criterion is specified with the SEARCH_BUFFER parameter, this parameter is used
to supply the values which correspond to the selection criterion. The maximum length of this
parameter is 2000 bytes.

| Note: See also [NOJLITERAL, which controls the conversion of the value buffer to upper

case.

340 Adabas Utilities

ADAULD (File Unloading)

Examples

Example 1

adauld: backup_copy = 3, file = 6

File 6 on the backup copy of database 3 is unloaded. A TEMP data set and two passes through the
backup copy may be required, depending on the default setting of the [NOJONLINE option.

Example 2

adauld: backup_copy = 3, file = 6
adauld: single, noonline

The same file is unloaded. Both data records and descriptor value table entries are written to the
same output file. The backup copy is processed in one pass as no online blocks are expected. No
TEMP data set is required.

Example 3

adauld: dbid = 3, file = 6, skiprec = 100

File 6 in database 3 is unloaded. The records are unloaded in the physical sequence in which they
are stored in the Data Storage. The first 100 records found are not written to the output files.

Example 4

adauld: dbid = 3, file = 6
adauld: numrec = 10
adauld: sortseq = ab
adauld: short

Ten records from file 6 in database 3 are unloaded. The values of the descriptor AB are used to
control the sequence in which the records are retrieved. The values required to re-create the inverted
list when reloading are omitted.

Adabas Utilities 341

ADAULD (File Unloading)

Example 5

adauld: dbid = 3, file = 6, sortseq = isn, startisn = 123

File 6 in database 3 is unloaded. The records are unloaded in ascending ISN sequence starting at
ISN 123.

TEMP Data Set Space Estimation

When unloading from an Adabas backup copy without the NOONLINE option set, the TEMP
data set is required to accumulate information about online block occurrences.

The formula TRH=DRH/1000 can be used as a rough estimate with the default TEMP block size
(4 kilobytes).

The following formula may be used to calculate the exact requirements:
X = ENTIRE ((DRH / BSTD) * 4)

TRH = X + ENTIRE (X / BSTD / 8) + 1

where:

ENTIRE

the next highest integer

BSTD
TEMP block size in bytes.

DRH
highest Data Storage RABN in the database on the backup copy. The SUMMARY function of
the ADABCK utility can be used to obtain this number.

TRH
highest RABN required on TEMP.

Restart Considerations

ADAULD has no restart capability. An interrupted ADAULD run must be re-executed from the
beginning.

342 Adabas Utilities

21 ADAVFY (Database Consistency Check)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 344
B PIOCEAUIE FIOW ...t et e 345
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 346
B CONEIOl PArAMEIEIS ... e ettt e 346
B XAMIDIES L.ttt 350

343

ADAVFY (Database Consistency Check)

The following topics are covered:

Functional Overview

The ADAVFY utility checks the consistency of the database. The General Control Block (GCB) is
validated together with each File Control Block (FCB) and each Field Definition Table (FDT) of
the loaded files. The index structure and Data Storage are validated. ADAVFY can also search for
lost RABNS.

Running ADAVFY against an active nucleus, or running in parallel with utilities that perform
database updates, may result in errors being reported. This is because further updates can be made
before the utility terminates and some of these updates are only reflected in the nucleus buffer
pool. ADAVFY does not require the Adabas nucleus to be active; it processes the database offline.

In general, ADAVFY only displays consistency errors that it detects and it does not modify the
database. However, there are some errors in FCB and FDT that will be corrected by ADAVFY in
offline mode when ADAVFY finds them, for example, an invalid value of the record counter in
the FCB for the number of records in the file.

This utility is a multi-function utility. For more information about single- and multi-function
utilities, see Adabas Basics, Using Utilities in the Adabas documentation.

344 Adabas Utilities

ADAVFY (Database Consistency Check)

Procedure Flow

Associator ASSOx Disk

Data storage DATAXx Disk

Control statements |stdin Utilities Manual
ADAVFY messages |stdout Messages and Codes
Work WORK1 Disk

Adabas Utilities

345

ADAVFY (Database Consistency Check)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

AC

DATA

M DBID = number

D ERRORS = number
FCB
FIELD

D FILES = { * | (number [-number][,number[-number]]...) }
FROM = number - number
INDEX

D LEVEL = number
LOB_REFERENCES
LOST
RECORD

The parameters AC, DATA, FCB, FIELD, INDEX, LOST and RECORD immediately invoke the
corresponding verification function. The remaining parameters are only evaluated if they have
been specified before such a parameter.

346 Adabas Utilities

ADAVFY (Database Consistency Check)

AC
AC

This function validates from the Address Converter to the Data Storage and checks that records
can be found in the specified Data Storage for the files specified with the FILES parameter (see
also DATA).

DATA
DATA

This function verifies Data Storage for the specified file number(s). This function validates from
the Address Converter to the Data Storage and from the Data Storage to the Address Converter
for the files specified with the FILES parameter. The ADAVFY DATA function corrects the following
error in offline mode if it is detected: the FCB contains a record counter for the number of records
in the file, and if this counter has an incorrect value, it will be corrected.

DBID

DBID = number

This parameter selects the database to be verified.

ERRORS
ERRORS = number

This parameter specifies the number of errors to be reported before the verification of a single file
terminates. The minimum number allowed is 1. The default value is 20.

FCB
FCB

This function validates the file control block together with the Field Definition Table for the files
specified with the FILES parameter (see also INDEX).

Adabas Utilities 347

ADAVFY (Database Consistency Check)

FIELD
FIELD

This function validates the Data Storage. It checks the record structure and validates the contents
of unpacked, packed and floating point values for the specified files.

FILES

FILES = { * | (number[-numberl][,number[-numberl]...) }

This parameter specifies the files to be verified. If an asterisk ™*' is entered, all files will be verified.
The FILES parameter is required for all functions except the LOST function.

The default is no files.

FROM

FROM = number - number

The values specified are used in conjunction with the LEVEL option to print various structures.
Please refer to the LEVEL parameter in this section for more detailed information.

INDEX
INDEX

This function verifies the complete index to level 1 (Normal Index). This includes verification of
the FCB and FDT.

ADAVFY also counts the number of used, free, reusable and lost NI (Normal Index, index level
1), MI (Main Index, index level 2) and UI (Upper Index, index level 3 or greater) blocks.

Example:

%ADAVFY-T-INDSTR, Index verification

%ADAVFY-I-INDCNT, NI: used: 210, free: 1773, reusage: 17, lost: O
HADAVEY-T-INDCNT, UI: used: 1, free: 87, reusage: 2, lost: 1
%ZADAVFY-T-INDCNT, MI: used: 9, free: 87, reusage: 2, lost: 1
HADAVFY-T-INDEND, Index verification completed =

Notes:

1. Used index blocks are index blocks that are currently in use.
2. Free index blocks are index blocks that have not yet been used.

3. Reusable index blocks are index blocks that already have been used, but that have become
empty again and were included in the reusage queue. These blocks can be used again.

348 Adabas Utilities

ADAVFY (Database Consistency Check)

4. Lostindex blocks are index blocks that are not currently used and that are missing in the reusage
queue, and therefore cannot be used again. A value of 1 lost block is normal - this can happen
after running ADAINV REINVERT.

5. The number of free, reusable and lost MI and UI blocks is the same, because these blocks are
taken from the same logical extent. Please note that the numbers displayed are the numbers for
MI and Ul together - if you use additional space for MI blocks, this also reduces the number of
space available for Ul blocks.

LEVEL

LEVEL = number

This parameter specifies how much information ADAVFY should output concerning the internal
structures. Specifying this parameter does not affect the degree of verification performed. If this
parameter is used, it must be specified before the function in question.

The default value is the highest possible index level plus 1.

with INDEX function

Level n|prints information about index level n and higher

Level 0 | prints more detailed structure of the index blocks

The FROM option is used to specify an index RABN range. Only the RABNSs specified will be
dumped.

with AC/DATA/RECORD/FIELD functions

Level 2 |prints which RABNs processed

Level 1| prints record structure (when RECORD or FIELD is used), or where each ISN points (when DATA
or AC is used), or which ISN with LOB ID is verified (when LOB_REFERENCES is used)

Level 0|dumps fields within records

with LOB_REFERENCES function

Level 0|dumps the ISN with LOB ID list found from the base file, and ISN with LOB record from the LOB
file

Adabas Utilities 349

ADAVFY (Database Consistency Check)

with LOST function

‘Level 0 ‘dumps the physical structure of the database

LOB_REFERENCES
This function verifies LOB references between the LOB file and the base file.

LOST

LOST

If this option is specified, ADAVFY searches for lost RABNs in the database. If any lost RABN's
are found, the space can be recovered by using the RECOVER function of ADADBM.

RECORD
RECORD

This function validates the Data Storage and checks the structure of each record for the specified
files (see also FIELD).

Examples

Example 1

adavfy: dbid=3,file=*,data,field,index

All files of database 3 are validated using the functions DATA, FIELD and INDEX. This combination
of functions gives the maximum degree of validation.

Example 2

adavfy: dbid=3, file=7, level=l, field

File 7 of database 3 is validated. The record structure in Data Storage is validated, as well as the
contents of unpacked, packed and floating point fields. ADAVFY prints a list of the RABNs which
have been processed and, for each record processed, its offset in the corresponding RABN, its
length and its ISN.

350 Adabas Utilities

	Adabas Utilities
	Table of Contents
	Adabas Utilities
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Overview
	3 ADABCK (Dump And Restore Database Or Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CONTENTS
	COPY
	DBID
	DUMP
	BLOCKSIZE = number[K|M]
	DRIVES = number
	[NO]DUAL
	ET_SYNC_WAIT = number
	[NO]NEW_PLOG
	REPLICATION
	PRIMARY_ONLY

	EXU_DUMP
	BLOCKSIZE = number[K|M]
	DRIVES = number
	[NO]DUAL
	[NO]NEW_PLOG
	REPLICATION
	Examples for DUMP/EXUDUMP

	FILES
	IOSTAT
	OVERLAY
	ENCRYPTION = keyword
	FMOVE [=(number [,number [-number]]...)]
	FORMAT = (keyword [,keyword])
	KEEP_FILE_ALLOC
	KMSTARGET = string
	Examples for KSMTARGET

	NEW_DBID = number
	RENUMBER = (number[-number] [,number [-number]]...)
	REPLICATION

	PARALLEL
	READ_CHECK
	RESTORE
	ENCRYPTION = keyword
	FMOVE [=(number [,number [-number]]...)]
	FORMAT = (keyword [,keyword])
	KMSTARGET = string
	Examples for KSMTARGET

	NEW_DBID = number
	REPLICATION
	Examples for RESTORE/OVERLAY
	Examples for RESTORE/OVERLAY using ENCRYPTION and KMSTARGET

	SUMMARY

	Restart Considerations

	4 ADACLP (Command Log Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]ADDITIONS_2
	CLASS
	CLOG
	COMMAND
	DATE
	DBID
	DISPLAY
	ES_ID
	FILE
	[NO]HEXADECIMAL
	LOGIN_ID
	NODE_ID
	PAGE
	RECORDS
	RESPONSE
	USER_ID
	Example

	WIDTH

	Specifying Multiple Selection Criteria

	5 ADACMP (Compression Of Data)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DBID
	[NO]DST
	FDT
	FIELDS
	FILE
	[NO]LOWER_CASE_FIELD_NAMES
	[NO]LOBS
	MAX_DECOMPRESSED_SIZE
	MUPE_C_L
	[NO]NULL_VALUE
	NUMREC
	RECORD_STRUCTURE
	SEPARATOR
	[NO]SHORT_RECORDS
	[NO]SINGLE_FILE
	SKIPREC
	SOURCE_ARCHITECTURE
	Example

	SYFINPUT
	TZ
	[NO]USEREXIT
	[NO]USERISN
	WCHARSET

	Output
	Compressed Data Records
	Descriptor-Value Table File
	Rejected Data Records

	Report
	Restart Considerations

	6 ADADBM (Database Modification)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADD_CONTAINER
	BLOCKSIZE = number[K]
	Example

	ADD_FIELDS
	field_specification
	FDT
	Example

	ALLOCATE
	FILE = number
	RABN = number
	Example

	BT
	FILE = number
	Examples

	CHANGE
	FIELD = string
	LENGTH = number
	Example

	CHANGE_FIELDS
	field_specification
	FDT

	DBID
	Examples

	DEALLOCATE
	DEALLOCATE = AC, DS, NI or UI
	FILE = number
	RABN = number
	SIZE = numberB
	Example

	DEFINE_REFINT
	DELCP
	Examples

	DELETE
	DELETE_DATABASE
	DISPLAY
	DROP_FIELDS
	FDT

	DROP_LOBFILE
	DROP_REFINT
	EXTEND_CONTAINER
	SIZE = number [B|M]

	[NO]LOWER_CASE_FIELD_NAMES
	NEW_DBID
	NEWWORK
	BLOCKSIZE = number[K]

	PGM_REFRESH
	FILE = number

	RBAC_FILE
	Example

	RECORDSPANNING
	FILE = number
	Examples

	RECOVER
	Example

	REDUCE_CONTAINER
	SIZE = number B

	REFRESH
	REMOVE_CONTAINER
	REMOVE_DROP
	REMOVE_REPLICATION
	RENAME
	NAME {=|:} string
	Example

	RENUMBER
	REPLICATION_FILES
	RESET
	UCB
	IDENT = { (number [,number]...) | * }

	RESET_REPLICATION_TARGET
	REUSE
	FILE = number

	SECURITY
	ACTIVE
	WARN
	Default Mode

	SYFMAX
	FILE = number

	Restart Considerations

	7 ADADCU (Decompression Of Data)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]DCUFDT
	[NO]DST
	FDT
	FIELDS
	Example

	[NO]LOWER_CASE_FIELD_NAMES
	MAX_DECOMPRESSED_SIZE
	MUPE_C_L
	MUPE_OCCURRENCES
	Example

	[NO]NULL_VALUE
	Example

	NUMREC
	Example

	RECORD_STRUCTURE
	SKIPREC
	TARGET_ARCHITECTURE
	Example

	[NO]TRUNCATION
	TZ
	[NO]USERISN
	Example

	WCHARSET

	Input and Output Data
	ADADCU Output
	Rejected Data Records

	Restart Considerations

	8 ADAERR (Error File Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameter
	[NO]DUMP

	Example
	Rejected Data Records

	9 ADAFDU (File Definition)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ACBLOCKSIZE
	ACRABN
	ADAM_KEY
	ADAM_OVERFLOW
	ADAM_PARAMETER
	ADD_LOBFILE
	ASSOPFAC
	[NO]BT
	[NO]CIPHER
	CONTIGUOUS
	DATAPFAC
	DBID
	DSBLOCKSIZE
	DSRABN
	DSSIZE
	FDT
	FILE
	[NO]FORMAT
	LOBFILE
	[NO]LOWER_CASE_FIELD_NAMES
	MAXISN
	NAME
	NIBLOCKSIZE
	NIRABN
	NISIZE
	[NO]PGM_REFRESH
	REUSE
	REUSE = [NO]DS
	REUSE = [NO]ISN
	Examples

	SYFMAX
	UIBLOCKSIZE
	UIRABN
	UISIZE

	Examples

	10 ADAFIN (File Information Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADAM_DS
	DBID
	DESCRIPTOR
	Examples

	FDT
	Example

	FILE
	[NO]HISTOGRAM
	Example (with HISTOGRAM)
	Example (with NOHISTOGRAM)

	USAGE
	Example
	Example (for ADAM file)

	11 ADAFRM (Format And Create A New Database)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ASSOBLOCKSIZE
	ASSOSIZE
	DATABLOCKSIZE
	DATASIZE
	DBID
	ENCRYPTION
	KMSTARGET
	NAME
	SORTSIZE
	SYSFILES
	TEMPSIZE
	WORKBLOCKSIZE
	WORKSIZE

	Restart Considerations
	Control Statement Examples

	12 ADAINV (Creating, Removing And Verifying Inverted Lists)
	Functional Overview
	Procedure Flow
	Checkpoints
	Checkpoints

	Control Parameters
	DBID
	INVERT
	FDT
	FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]
	LWP = number[K|M]
	UQ_CONFLICT = keyword

	[NO]LOWER_CASE_FIELD_NAMES
	REINVERT
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	[NO]FORMAT
	LWP = number[K|M]
	UQ_CONFLICT = keyword

	RELEASE
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	[NO]FORMAT

	RESET_UQ
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

	SET_UQ
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	UQ_CONFLICT = keyword

	SUMMARY
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]
	FULL

	VERIFY
	ALL_FIELDS
	ERRORS = number
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	LWP = number[K|M]

	Restart Considerations
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	13 ADAMUP (Mass Add And Delete)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DBID
	FDT
	SUMMARY
	UPDATE
	ADD
	DELETE
	[NO]FORMAT
	LWP = number[K|M]

	Restart Considerations
	SORT Data Set Placement
	TEMP Data Set Placement
	Examples

	14 ADAOPR (Operator Utility)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ABORT
	ADD_REPLICATION
	BFIO_PARALLEL_LIMIT
	CANCEL
	CHANGE_REPLICATION
	CLEAR_FILE_STATS
	CLUSTER_LOG_LEVEL
	CSA
	DBID
	DELETE_REPLICATION
	DELUI
	DISPLAY
	Example: DISPLAY=ACTIVITY
	EXAMPLE: DISPLAY=BF_STATISTICS
	EXAMPLE: DISPLAY=BP_STATISTICS
	Example: DISPLAY=COMMANDS
	Example: DISPLAY=CQ
	Example: DISPLAY=DYNAMIC_PARAMETERS
	Example: DISPLAY=FILE_IO
	Example: DISPLAY=FP_STATISTICS
	Example: DISPLAY=HIGH_WATER
	Example: DISPLAY=HQ
	Example: DISPLAY=ICQ
	Example: DISPLAY=IO_TIMES
	Example: DISPLAY=PLOG_STATISTICS
	Example: DISPLAY=REPLICATIONS
	Example: DISPLAY=RPL_STATS
	Example: DISPLAY=STATIC_PARAMETERS
	Example: DISPLAY=TCPCONNECTIONS
	Example: DISPLAY=TT
	Example: DISPLAY=UCB
	Example: DISPLAY=UQ
	Example: DISPLAY=UQ_FILES
	Example: DISPLAY=UQ_FULL
	Example: DISPLAY=UQ_TIME_LIMITS

	ES_ID
	[NO]ET_SYNC
	[NO]EVENTING
	EXT_BACKUP
	FEOF
	FILE
	FREE_CLQ
	ID
	[NO]IO_TIME
	ISN
	[UN]LOCK
	LOGGING
	LOGIN_ID
	NISNHQ
	NODE_ID
	OPTIONS
	RESET
	[NO]RESPONSE_ABORT
	RESPONSE_CHECK
	SET_FILE_STATS
	SHUTDOWN
	STATUS
	STOP
	STOPI
	THREAD
	TNAA
	TNAE
	TNAX
	TT
	USER_ID
	WCHARSET
	WRITE_LIMIT

	15 ADAORD (Reorder Database Or Files, Export/Import Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CONTENTS
	DBID
	EXPORT
	FDT
	SORTSEQ = ({descriptor_name|ISN|PHYSICAL} ,...)

	FILES
	IMPORT
	IMPORT_RENUMBER
	ACRABN = number
	ASSOPFAC = number
	DATAPFAC = number
	DSRABN = number
	DSSIZE = number[B|M]
	LOBACRABN=number
	LOBDSRABN=number
	LOBNIRABN=number
	LOBSIZE=numberM
	LOBUIRABN=number
	MAXISN = number
	NIRABN = number|(number,number)
	NISIZE = number[B|M]|(number[B|M],number[B|M])
	UIRABN = number|(number,number)
	UISIZE = number[B|M]|(number[B|M],number[B|M])

	REORDER

	Restart Considerations
	Examples

	16 ADAPLP (Protection Log Printout)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATASET
	DBID
	[NO]DECOMPRESSED
	DELTA
	[NO]DUMP
	FILES
	[NO]HEADER
	INTERNAL_ID
	ISN
	MODIFIED_RABN
	NOFILETYPE
	NONULL
	PLOG
	RABN
	RECORD
	SEQUENCE
	[NO]SHORT
	THREAD
	TSN
	TYPE
	USER_ID

	ADAPLP Output

	17 ADAPRI (Print Adabas Blocks)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATASET
	Example

	DBID
	RABN
	Examples

	18 ADAREC (Recovery Of Database Or Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	ADAREC Input Data
	Control Parameters
	DBID
	LIST
	Examples

	REGENERATE
	Database Regeneration
	File Regeneration

	Examples
	ADAREC Restart Considerations

	19 ADAREP (Database Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CHECKPOINTS
	Example

	CONSTRAINTS
	CONTENTS
	COUNT
	DBID
	Example

	[NO]FDT
	FILES
	Example

	FREE_SPACE
	[NO]FULL
	[NO]LARGE
	LAYOUT
	SUMMARY

	20 ADAULD (File Unloading)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	BACKUP_COPY
	FDT
	FILE = number
	NUMREC = number
	[NO]ONLINE
	[NO]SHORT
	[NO]SINGLE_FILE
	SKIPREC = number
	[NO]USEREXIT

	DBID
	FDT
	FILE = number
	[NO]LITERAL
	NUMREC = number
	SEARCH_BUFFER = string
	[NO]SHORT
	[NO]SINGLE_FILE
	SKIPREC = number
	SORTSEQ = string
	STARTISN = number
	[NO]USEREXIT
	VALUE_BUFFER = string

	Examples
	TEMP Data Set Space Estimation
	Restart Considerations

	21 ADAVFY (Database Consistency Check)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	AC
	DATA
	DBID
	ERRORS
	FCB
	FIELD
	FILES
	FROM
	INDEX
	LEVEL
	LOB_REFERENCES
	LOST
	RECORD

	Examples

