S software*

A SOFTWARE GMBH BRAND

Adabas for Linux and Cloud

Adabas Security Features

Version 7.4.0

October 2025

ADABAS & NATURAL

This document applies to Adabas for Linux and Cloud Version 7.4.0 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1987-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: ADAOS-SECFAC-740-20251030

Table of Contents

Adabas Security Featuresccccocoiiiiiiiiiiiiiiiiiii v
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 Adabas Role-Based Security (ADARBA)cccoooiiiiiiiiiiiiiiiiic 5
Adabas Role-Based Security Modelccccooiiiiiiiiiiiiiiiiiiiiccccee 6
Security Definitionscccoiviiiiiiiiiiiiiiiii i 8
Authentication ... 9
AUthOTiZatioNnooviiiiiiiiiii 11
Audit Trail ...ooooiiiiiiii 16
CONIGUIAtION ..c.eviiiiiiiiiiiiicii s 20
AdmINIStrationccoociiiiiiiiiiiiii 22
Performance Considerationsccccccoviiiiiiiiiiiiiiiiiiii 24
Application Developmentcccocciiiiiiiiiiiiiiiiiiii 25
Getting Startedocooiiiiiii 27
Infrastructure Security Libraryccccccooiiiiiiiiiiiiii 39
3 Adabas Password Security (ADASCR)ccccociiviiiiiiiiiiiiiii 53
INtrodUCHON ...ooiiiiii 54
File Protection Levelsccccioiiiiiiiiiiiiiiiiiicicceicceeee e 54
User PassWordsc.cooiiiiiiiiiiiiiiiiiicicicccc e 55
Security by Value Criteriacccoooiiiiiiiiiiiiiiiiiiii 55
Adabas Security Processingcccoceviiiiiiiiiiiiiiicccce 56
4 Adabas Encryption for LINUXccccciiiiiiiiiiiiiiiiiiiiiccieecccccc e 59
PrerequiSite ... 60
Encryption of Data-At-Restcccoeviiiiiiiiiiiiiiiiicieiecee e 60
Key Management SyStemcccccoiviiiiiiiiiiiiiiiiiii 61
AdmIniStrationccoooiiiiiiiiiiii 68
Database ACCESScccoviiiiiiiiiiiiiiicccc s 73
5 CIPhETING ..eveoeiiiie 75
6 Security Considerationsccccoeviiiiiiiiiiiiiiiiiie e 77
Using the Linux Group Conceptccoovviviiiiiiiiiiiiiiccceccceccc 78
Securing Administration of Adabas Role-Based Securityccccccociviiiiiiinnnnne 79
Preventing Loss of Administration Privilegescccccovviiiiiiiiiiiiiiininnnnn. 80
Securing PUBLIC Access Privilegesc.coccooiiiiiiiiiiiiiiiccccc 81
Securing the Audit Trail Log Filecccccooiiiiiiiiiiiiiic 81
7 SSL Trusted Relationship for Naturalcccooooiiiiiiii, 83
RESIICHONS ..uvviiiiiiiciiicccc e 84
Adabas Operationcccccociiiiiiiiiiiiiiiiii s 84
Client Configurationccociviiiiiiiiiiieecc s 85
Adabas Configurationcccoecuiiiiiiiiiiiiiiiiiiii 85
8 GDPR COMPHANCEooviiiieiiiiicieeiccc et 87
Adabas Role-Based Securityccoceiviiiiiiiiiiiiiiiiiiiiiciccccc e 88

Adabas Security Features

Adabas Audit Trailcccoociiiiiiiiiiiii 89
Adabas Command LOgccociiiiiiiiiiiiiicc 89
Adabas Log Fileccccoiiiiiiiiiiiiiiiii 90

iv Adabas Security Features

Adabas Security Features

This document describes the security facilities provided by Adabas and its subsystems.

Adabas Role-based Security (ADARBA)
Adabas Role-based Security (ADARBA) provides facilities for controlling access to database
resources; for example:

" Restricting the execution of an Adabas utility;
" Restricting access to data via Adabas commands.

Adabas Password Security (ADASCR)
Adabas Password Security (ADASCR) provides facilities for controlling access and update to
Adabas files; for example:

" Restricting user read and/or update requests on the basis of a whole file;
" Restricting user access to individual records within a file.

Adabas Encryption for Linux
Adabas Encryption for Linux prevents the unauthorized analysis of Adabas data-at-rest. It
provides functionality to encrypt ASSO and DATA container files as well as PLOG and backup
copies.

Ciphering

Ciphering prevents the unauthorized analysis of Adabas container files.

] Notes:

1. Ciphering is no longer recommended for safe implementations.
2. Ciphering does not fulfill modern encryption standards and security regulations.

3. Ciphering is maintained for historic and maintenance reasons only.

Adabas Encryption for Linux is highly recommended as a state-of-the-art replacement.

SSL Trusted Relationship for Natural
SSL Trusted Relationship for Natural enables Natural to make use of the Role Based Access
Control without providing user credentials or using the Adabas user exit 21.

The following topics are covered:

® Adabas Role-Based Security (ADARBA)
® Adabas Password Security (ADASCR)
® Adabas Encryption for Linux

® For maintenance only: Ciphering

Adabas Security Features

® Security Considerations
® SSL Trusted Relationship for Natural
® GDPR Compliance

vi

Adabas Security Features

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Adabas Security Features

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Adabas Security Features 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Adabas Role-Based Security (ADARBA)

= Adabas Role-Based Security MOGE!ooiiiiiiiiiiii e 6
B SeCUMLY DEFINIIONSiieiii e e e e e e 8
LU 11T 01107 o o PSSP 9
B AUTNOMIZATION ...t e e e e e 11
L o 1 G I - PSSR 16
B CONFIGUIALION ...t 20
B AAMINISITATION ettt e et e e ettt e e e e e e aa e 22
m Performance CONSIAEIAtIONScciiiiiiiiiiie e a e 24
B Application DEVEIOPMENT e 25
B GELtiNG STAMEA ..oeeeiiii e e e e e e e 27
m |nfrastructure SECUrity LIDFaryooo i 39

Adabas Role-Based Security (ADARBA)

/A Important: Before securing databases with Adabas Role-based Security, please familiarize

yourself with the concepts and implementation of this feature. Once enabled, security cannot
be disabled.

Adabas Role-based Security implements Role-Based Access Control (RBAC) and restricts access
based on the roles assigned a user and the permissions that are assigned to the role.

With Adabas Role-based Security, you can control what end-users can do at both broad and
granular levels. You can designate the roles assigned a user and align the roles and access privileges
with your users’ tasks. This means a user can be assigned a minimum of privileges, only the
privileges essential to perform a specific task.

This feature includes the functionality:

Authentication
This provides a means of validating credentials against an authority.

Authorization for Direct Call Interface
This provides a means of restricting the usage of Adabas commands, which access a file, by
assigning users a role which represents selective access privileges.

Authorization for Adabas Utilities
This provides a means of restricting the execution of Adabas utilities by assigning users a role
which has the execute privilege.

Audit Trail
This provides a means of tracking access attempts and security violations.

The utility ADARBA provides the functionality required to administer security definitions.

Adabas Role-Based Security Model

The RBAC reference model used by Adabas is based on the Core RBAC (RBACO) of the ANSI
Specification (ANSI INCITS 359-2004).

Core RBAC defines a minimum Role-Based Access Control system. This includes user-role assign-
ment and permission-role assignment relations, considered fundamental in any RBAC system.

In the standard, the core RBAC model includes a set of sessions, where each session is a mapping
between a user and an activated subset of roles that are assigned to the user. Sessions are currently
not supported and are thus not part of the Adabas role-based security model.

6 Adabas Security Features

Adabas Role-Based Security (ADARBA)

PERMISSIONS

Assignment Assignment

The Adabas RBAC reference model enables the database or security administrator to implement
the following;:

® The assignment of USERS to ROLES,

® The assignment of ROLES to PERMISSIONS,

® where a PERMISSION consists of a set of OPERATIONS which can be performed on OBJECTS.

A user (USER) is defined as a human being. Although the concept of a user can be extended to
include applications, the definition is limited to a person here for simplicity reasons.

A role (ROLE) is a job function within the context of an organization, with some associated semantics
regarding the authority and responsibility conferred on the user assigned to the role.

Permissions (PERMISSIONS) are an approval to perform an operation on one or more RBAC pro-
tected objects.

An operation (OPERATION) is an action or function, such as the execution of an Adabas utility,
Adabas command, etc.

An object (OBJECT) is a resource that is subject to access control, such as an Adabas database, file,
etc.

Adabas Security Features 7

Adabas Role-Based Security (ADARBA)

Security Definitions

This section describes the location and content of the security definitions.

The security definitions are stored in the RBAC system file of a security-enabled database. The
contents of the system file constitute the security repository.

The security repository stores granted privileges, the denial of specific operations is not supported.
It is accessible when the database is online or offline.

Initial Security Definitions

The initial security definitions implement unrestricted access to all operations and can be adapted
and extended as required.

The unrestricted access to operations is achieved via the PUBLIC user and PUBLIC role security
definitions.

PUBLIC User

The PUBLIC user is a pre-defined security definition. It is a convenience definition that is used
when the provided credentials cannot be validated. This user has the permissions that can be de-
rived from the assigned roles.

The PUBLIC user may be modified as follows:

® The PUBLIC user may be dropped;

® The roles assigned to the PUBLIC user may be modified or removed as required. Additional
roles may be assigned.

By default, the PUBLIC user is assigned the PUBLIC role.
PUBLIC Role

The PUBLIC role is a predefined security definition. All users have the permissions which are
assigned to the PUBLIC role.

The PUBLIC role may be modified as follows:

® The PUBLIC role is a system definition and as such should not be dropped.

® The permissions assigned to the PUBLIC role may be modified or removed as required. Addi-
tional permissions may be assigned.

8 Adabas Security Features

Adabas Role-Based Security (ADARBA)

By default, the PUBLIC role has “legacy privileges”; for example, the privilege to execute to all
Adabas utilities.

Authentication

Authentication provides a means of identifying a user, by having the user provide a valid user
name and a valid password before access is granted.

The credentials are checked against an authentication authority, for example against an external
authentication system such as LDAP, Active Directory, operating system, or an internal user re-
pository. If the credentials match, the user is provided access to the database. If the credentials
are at variance, authentication fails and access to the database is denied.

The results of the authentication check are protocolled in the audit trail log.

Please refer to the section Configuration of the Infrastructure Security Libraries for further information
about the possible authentication authorities.

= Architecture
= Credentials

Adabas Security Features 9

Adabas Role-Based Security (ADARBA)

= Default State

Architecture

Authentication i
Authority ¢ *rRSE’WEF : si“gw

Adabas Adabas
Client ¢ >

Adabas uses the Infrastructure Security Libraries to access the authentication authority for valid-
ation of credentials. These libraries enable the authentication of credentials against LDAP, Active
Directory, and internal repository or the operating system.

The installation of the Infrastructure Security Libraries is mandatory for usage of this feature.

Please refer to the section on configuration for further details on how to configure the authentication
feature.

Credentials

The credentials used by Adabas are user identification and password. The user identification
consists of the user account name. In the case of Windows, the user identification also contains
the domain of the user.

Adabas Direct Call Interface

Credentials can be provided by one of the following means:

® The application provides the credentials;

® The credentials are provided by the nucleus user exit 21.

The application should always provide the credentials to ensure that the application user can be
identified. How applications credentials are supplied is described in the section Developing Applic-
ations of Application Development.

The nucleus user exit 21 can be used to transition existing applications to a secure database. Further
information on this topic is provided in the section Modifying Legacy Applications.

The authentication authority that is to be used is defined in a database configuration file.

10 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Adabas Utilities

Currently, the supported credentials are the local system credentials, which have been authenticated
by the operating system.

®" Linux: User ID

= Windows: Domain and User ID

/) Important: The Adabas utilities currently do not perform authentication checks. The local

system credentials are used to perform the authorization check. This is subject to change
in a future release.

Default State

By default, authentication is not enabled.

The configuration and usage of the authentication feature are described in Configuration > Authen-
tication below.

Authorization

Authorization provides the means of restricting operations which are to be performed on a resource
or, in other words, the execution of

® An Adabas command on a file, or

" An Adabas utility on a database.
An access request can be issued by either the Adabas nucleus or an Adabas utility.

® The Adabas nucleus issues an access request prior to processing an Adabas command.

" An Adabas utility issues an access request prior to executing the requested utility.

The access request is validated by the authorization authority. It is validated against the security
repository stored in the database. The credentials used to process the access request were validated
previously by the authentication authority.

The results of the authorization check are protocolled in the audit trail log.

Adabas Security Features "

Adabas Role-Based Security (ADARBA)

Adabas -
Mucleus _————____.L
Authorization
Authority > msmﬂ.g’?
Adabss
Utility

= Adabas Direct Call Interface

= Adabas Utilities

= Protection on Utility Control Parameter Level
= Default State

Adabas Direct Call Interface

Authorization for Adabas Direct Call Interface allows you to secure specific database files against
unauthorized access via Adabas commands.

This feature uses role-based security definitions to restrict and monitor the usage of the Adabas
commands, which can be performed on a specific file in the database.

If a matching access privilege is found, the user is authorized to execute the requested operation,
otherwise the request is rejected.

Attempts to execute a controlled operation, here an Adabas command, are documented in an audit
trail. The configuration of the audit trail log is described in Configuration > Audit Trail below.

The following table is a list of controlled access operations on files:

Operation |Description Commands
READ Read data stored in file L1, L2, L3,1L4 L5 L6,L9,S1,S2, 54,
S8, S9

INSERT |Insert data into the file N1, N2

UPDATE |Update data that is stored in a file Al

DELETE |Delete data that is stored in a file El

ANY This is a convenience notation. It includes the READ, All of the commands above
INSERT, UPDATE and DELETE operations.

] Note: In the current version, the execution of Adabas commands, which are not listed above,

is not restricted. This will change in a future release.

The operation names above are the external representation of the security definitions.

12 Adabas Security Features

Adabas Role-Based Security (ADARBA)

When using the LIST function of the ADARBA utility, the internal representation of the security
definition is shown.

Operation |Description LIST Layout
READ Read data stored in a file ada.dml.read
INSERT |Insert data into a file ada.dml.insert

UPDATE |Update data that is stored in a file |ada.dml.update
DELETE |Delete data that is stored in a file |ada.dml.delete

Adabas Utilities

Authorization for Adabas Ultilities allows you to secure a specific database against unauthorized
access via Adabas utilities.

This feature uses role-based security definitions to restrict and monitor the usage of the Adabas
utilities, which can be performed on a specific database.

If a matching access privilege is found, the user is authorized to execute the requested operation,
otherwise the request is rejected. The authorization of a request implies the privilege to execute
the Adabas utility.

All attempts to execute an Adabas utility are documented in an audit trail.

The following table is a list of possible access operations on Adabas utilities; all values are case-
sensitive:

Operation Name | Utility Description

ada.utibck |ADABCK |Backup and restore database or files
ada.uti.clp ADACLP |Command log report

ada.uticmp |ADACMP |Compression of data

ada.uti.cvt ADACVT |Convert a database from a previous version
ada.utidbm |ADADBM |Database modification
ada.utidcu |ADADCU |Decompression of data

ada.utidev |ADADEV |Disk space management

ada.uti.ela ADAELA |Event anaylitics administration

ada.uti.elp ADAELP |Event log report
ada.uti.err ADAERR |Error file report
ada.uti.fdu ADAFDU |File definition
ada.uti.fin ADAFIN |File information report

ada.utiinv ~ |ADAINV |Creating, removing and verifying inverted lists

ada.utimon |ADAMON [Monitoring the database nucleus

Adabas Security Features 13

Adabas Role-Based Security (ADARBA)

Operation Name | Utility Description

ada.utimup |ADAMUP |Mass add and delete

ada.utinuc |ADANUC [Starting the database, defining nucleus parameters
ada.uti.opr |ADAOPR |Operator utility

ada.utiord |ADAORD |Reorder the database or export/import files
ada.uti.plp |ADAPLP |Protection log printout

ada.uti.pri ADAPRI |Print Adabas blocks

ada.uti.rba ADARBA |RBAC administration

ada.uti.rec ADAREC |Recovery of database or files

ada.uti.rep ADAREP |Database report

ada.uti.scr ADASCR |Manage and enable security functionality
ada.utiuld |ADAULD (File unloading

ada.uti.vfy = |ADAVFY |Database consistency check

| Note: The operation names listed above are subject to change.

Protection on Utility Control Parameter Level

This part of authorization allows you to secure specific functions in the Adabas utilities ADADBM
and ADAOPR. This is a fine- grained extension of the utility authorization. The following table
shows the specific operations on Adabas utilities; all values are case-sensitive:

Operation Name

Utility Operation

ada.uti.dbm.add_container

ADADBM add_container

ada.uti.dbm.add_fields

ADADBM add_fields

ada.uti.dbm.allocate ADADBM allocate
ada.uti.dbm.bt ADADBM bt
ada.uti.dbm.change ADADBM change
ada.uti.dbm.change_fields ADADBM change_fields
ada.uti.dbm.deallocate ADADBM deallocate

ada.uti.dbm.define_refint

ADADBM define_refint

ada.uti.dbm.del_cp

ADADBM del_cp

ada.uti.dbm.delete

ADADBM delete

ada.uti.dbm.delete_database ADADBM delete_database

ada.uti.dbm.drop_fields

ADADBM drop_fields

ada.uti.dbm.drop_lobfile

ADADBM drop_lobfile

ada.uti.dbm.drop_refint

ADADBM drop_refint

ada.uti.dbm.extend_container ADADBM extend_container

14

Adabas Security Features

Adabas Role-Based Security (ADARBA)

Operation Name

Utility Operation

ada.uti.dbm.newwork ADADBM newwork
ada.uti.dbm.pgm_refresh ADADBM pgm_refresh
ada.uti.dbm.recordspanning ADADBM recordspanning
ada.uti.dbm.reduce_container ADADBM reduce_container
ada.uti.dbm.refresh ADADBM refresh

ada.uti.dbm.remove_container

ADADBM remove_container

ada.uti.dbm.remove_replication

ADADBM remove_replication

ada.uti.dbm.rename ADADBM rename
ada.uti.dbm.renumber ADADBM renumber
ada.uti.dbm.replication_files ADADBM replication_files
ada.uti.dbm.reset ADADBM reset

ada.uti.dbm.reset_replication_target

ADADBM reset_replication_target

ada.uti.dbm.reuse ADADBM reuse
ada.uti.dbm.security ADADBM security
ada.uti.dbm.syfmax ADADBM syfmax
ada.uti.opr.abort ADAOPR abort

ada.uti.opr.add_replication

ADAORPR add_replication

ada.uti.opr.bfio_parallel_limit

ADAOQOPR bfio_parallel_limit

ada.uti.opr.cancel

ADAOPR cancel

ada.uti.opr.change_replication

ADAOPR change_replication

ada.uti.opr.cluster_log_level

ADAOQOPR cluster_log_level

ada.uti.opr.delete_replication

ADAOPR delete_replication

ada.uti.opr.delui ADAOPR delui
ada.uti.opr.ext_backup ADAOPR ext_backup
ada.uti.opr.feof ADAORPR feof
ada.uti.opr.free_clq ADAORPR free_clq
ada.uti.opr.lock ADAOPR lock
ada.uti.opr.logging ADAOPR logging
ada.uti.opr.nishnq ADAOPR nishnq
ada.uti.opr.options ADAOQOPR options
ada.uti.opr.response_check ADAOPR response_check
ada.uti.opr.shutdown ADAOPR shutdown
ada.uti.opr.stop ADAOPR stop
ada.uti.opr.stopi ADAOQOPR stopi
ada.uti.opr.tnaa ADAOPR tnaa
ada.uti.opr.tnae ADAOPR tnae

Adabas Security Features

15

Adabas Role-Based Security (ADARBA)

Operation Name Utility Operation
ada.uti.opr.tnax ADAORPR tnax
ada.uti.opr.tt ADAORPR tt
ada.uti.opr.unlock ADAOQOPR unlock
ada.uti.opr.wcharset ADAOPR wcharset
ada.uti.opr.write_limit ADAOQOPR write_limit
Default State

By default, authorization is not enabled.

The configuration and usage of the authorization feature are described in Configuration > Author-
ization below.

Audit Trail

An audit trail entry is written to the audit trail log file for each authentication and authorization
attempt. The audit trail logs both successful and failed attempts to access the database.

The content of each audit trail entry provides the following information on the attempted access:

* Timestamp of access attempt;

® Information about the application or utility, which attempted access;
= User and session identification of access attempt;

* Information about the attempted operation;

* Information about the object of the operation.
The following requirements apply to the audit trail log file:

® The audit entries are appended to the log file;

® The size of the log file should be monitored and the log file should be backed-up or moved as
required.

= Authentication
= Authorization for Adabas Direct Call Interface
= Authorization for Adabas Ultilities

16 Adabas Security Features

Adabas Role-Based Security (ADARBA)

= Default State
Authentication

The location and layout of the audit trail log file is described in the section Authorization for Adabas
Direct Call Interface.

Authorization for Adabas Direct Call Interface

Location

The audit trail log is database-specific and is located in the database directory. The file name is
NUCADT.log.

Layout of Audit Trail Entry

The layout of the audit trail log file is CSV format. The values of the audit trail entry are separated

“" 7

by comma “,”.

The following table contains a description of the audit trail entries for authentication and author-
ization, the values provided in each audit trail entry are dependent on the type of entry.

Column Description Value

Timestamp Timestamp

Security Mode |Security Mode Alctive]
Wlarn]

Result Processing result - access is allowed or not YES
NO

DBID Database ID

DBName Database name

Session ID Client information, as specified in the Adabas User Queue

ET User ET User

Security User |User credential provided for authentication

RBAC User User credential used to determine access privileges

RBAC Role Role with which access privilege was given

Operation Adabas command category INSERT
READ

UPDATE

DELETE

Adabas Security Features 17

Adabas Role-Based Security (ADARBA)

Column Description Value

Command Adabas command code

File Number |Adabas file number

File Name Adabas file name
ISN ISN accessed in Adabas file
Authority Authentication or Authorization authority SSX

RBAC

Response Code|Adabas response code
Subcode Adabas subcode

SSX Response |SSX response

SSX Message |SSX message

An ISN can only be displayed for commands that require an ISN input. These commands are Al,
E1, HI, L1, L2, L3, L4, L5, L6, N2 and RI and in case of multi fetch BT and ET, as well. For all other
commands and in case of a failed authentication or authorization, the value 0 will be displayed.

Authorization for Adabas Utilities

The location of the audit trail file is defined in the RBAC security definition file, which is stored
in the RBAC system file of the database.

Please refer to the section Location of Configuration and Logging Files for further information about
the location, configuration and content of the audit trail for Authorization for Adabas Utilities.

= Layout of Audit Trail Entry
= | ogging of Administrative Operations
= Example

Layout of Audit Trail Entry

Column Description Prefix Values
Timestamp Timestamp yyyy-mm-ddThh:mm:ssZ
Message Type |Message indicator %AUTHORIZATION- |I[nformation]

E[rror]
Hostname Host name of machine HOST= <hostname>
Opsys Version |Name and version of operating system |OS= <operating_system>
Credentials |Name of user account USER= [<domain>/]<user>
Operation Name of attempted operation OPERATION= <operation>
DBID Database ID DBID= <number>
Result Result of authorization RESULT= OK

18 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Column Description Prefix Values

FAIL

Logging of Administrative Operations

The administrative changes made in ADARBA are also logged in the audit trail.

Operation

Syntax

initialize

OPERATION=ada.uti.rba.initialize,<file>

create_user

OPERATION=ada.uti.rba,create_user,<user>

drop_user

OPERATION=ada.uti.rba,drop_user,<user>

create_role

OPERATION=ada.uti.rba,create_role,<role>

drop_role

OPERATION=ada.uti.rba,drop_role,<role>

create_operation

OPERATION=ada.uti.rba,create_operation,<operation>

drop_operation

OPERATION=ada.uti.rba,drop_operation,<operation>

create_object

OPERATION=ada.uti.rba,create_object,<object>

drop_object

OPERATION=ada.uti.rba,drop_object,<object>

grant_role

OPERATION=ada.uti.rba,grant_role <role> <user>

revoke_role

OPERATION=ada.uti.rba,revoke_role,<role><user>

grant_permission

OPERATION=ada.uti.rba,grant_permission,<operation><object>,<role>

Example

The following example shows an audit trail entry for a failing ADARBA create_user=newuser

command.

2025-01-01T00:00:00Z %AUTHORIZATION-E HOST=redada6c 0S="Linux x86_64" USER=user <«
OPERATION=ada.uti.rba.create_user.newuser DBID=189 RESULT=FAIL

Default State

The audit trail is automatically enabled when either authentication or authorization is enabled.

Please refer to the section Location of Configuration and Logging Files for further information on the
configuration of the contents of the audit trail log file.

The configuration and usage of the authorization feature are described below.

Adabas Security Features

19

Adabas Role-Based Security (ADARBA)

Configuration

This section describes the configuration of the Adabas Role-based Security feature.

= |nitial Security Configuration
= Authentication

= Authorization

= Audit Trail

Initial Security Configuration

An initial security configuration is created during installation.

® Authentication is not enabled;
= Authorization is not enabled;

= Audit Trail is not enabled.
Authentication

A\ Important: Database security cannot be disabled once it has been activated.

Enable Authentication

Use the SECURITY function of the ADADBM utility to enable the authentication. The security
mode can either be set to WARN or ACTIVE.

The security mode ACTIVE implies that only authenticated users are allowed access to the database.
Security violations, such as authentication errors, are protocolled as “Error” in the audit trail.

The security mode WARN is intended for transitioning applications to use a secure database. It
implies that all users are allowed access to the database. Security violations, like authentication
or authorization errors, are protocolled as “Warning” in the audit trail. In case of a security violation,
access to the operation is not rejected.

Once enabled, the security mode can only be changed from mode WARN to ACTIVE.

When you introduce this feature, we strongly recommend that you initially start with security
mode WARN.

Please refer to the section Nucleus user exit 21 for detailed information on how to provide authen-
tication credentials for legacy applications.

20 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Configure Authentication Authority

The following types of authentication authority are supported:

® Authentication Type OS (Operating System)

® Authentication Type TEXT (Internal User Repository)
" Authentication Type LDAP

® Authentication Type ADSI

These settings are described in the section Configuration of the Infrastructure Security Library, where
you can find example templates for the different authentication types. These templates are not
complete as some of the settings are customer-specific and must be modified where necessary.

These configuration settings are stored in the section [SSX_CONFIGURATION] of the DBnnn.INI
file. Use the administration command ADAINI to set and modify these settings.

Authorization

Enable Authorization

Use the INITIALIZE function with the RBAC_FILE parameter of the ADARBA utility to load the
RBAC system file.

Define Security Definitions
Use the ADARBA utility to manage customer-specific security definitions.

Please refer to the examples in section Getting Started for further information.

Note: The RBAC System File is closely related to the database. It has to be backed up and

restored together with the complete database and cannot be restored individually.

Audit Trail

Authentication and Authorization for Direct Call Interface

The audit trail log is written to the file NUCADT.log, which is located in the database directory.

The configuration settings are stored in the section [AUDIT_TRAIL] of the DBnnn.INI file. Use the
administration command ADAINI to set and modify these settings.

The following AUDIT_TRAIL settings can be used to configure the audit trail:

ACTION
Enable or disable Audit Trail logging for authentication and authorization.

Adabas Security Features 21

Adabas Role-Based Security (ADARBA)

FILTER
Log ALL audit trail entries or just the entries for REJECTED authentications and authorizations.

MAXFILESIZE
Create a new audit file with the next sequential number if the current NUCADT log file exceeds
the value given to MAXFILESIZE. The default value of MAXFILESIZE is 100 MB.

TIMEZONE
Choose the timestamp layout in Universal Coordinated Time (UTC) or local time.

The possible options are UTC and LOCAL. If you do not specify TIMEZONE or you provide
an invalid option, the system uses the default setting TIMEZONE=UTC.

Please refer to the section Configuration Files in Adabas Extended Operation for further information
on AUDIT_TRAIL settings .

Authorization for Utilities
The configuration settings for the audit trail log file are stored in the database.

The following options are available:

® The item FORMAT defines the layout of an audit log entry.
® The item SEPARATOR defines the character to be used to separate values in CSV format.
® The item LOG_FILE defines the location and file name of the audit log.

Please refer to the section Configuring Adabas Role-based Security for further information.

Administration

The utilities required to configure and administer the authorization feature are:

= ADADBM
= ADAINI
= ADAREP

22 Adabas Security Features

Adabas Role-Based Security (ADARBA)

= ADARBA
ADADBM

® Use the SECURITY function to enable Adabas RBAC Security;

| Note: These functions require that the database is offline.

ADAINI

Use the administration command ADAINI to set and modify the configuration of security fea-
tures;

Configure the authentication authority;

® Configure the audit trail;

Display the configuration settings.
ADAREP

" Use the SUMMARY function to display the database system files and whether security is enabled;
® The SECURITY setting is displayed if security is enabled;
® The RBAC system file information is displayed if the RBAC system file is defined.

ADARBA

= Use the CREATE, DROP, GRANT, REVOKE functions to create, modify and delete security
definitions;

® Use the LIST functions to display the security definitions.
® Use the RBAC_FILE function to create the RBAC system file.

| Note: These functions require that the database is online.

Adabas Security Features 23

Adabas Role-Based Security (ADARBA)

Performance Considerations

Authentication

This feature could have a detrimental effect on the overall system performance for the following
reasons:

® Due to the effort required to authenticate the credentials;

® Due to the large number of entries being written to the audit trail log file.
Authorization for Direct Call Interface

This feature could have a detrimental effect on the overall system performance for the following
reasons:

® Due to the effort required to authenticate the credentials;
® Due to the effort required to determine the user’s access privileges;

® Due to the large number of entries being written to the audit trail log file.
Authorization for Adabas Utilities

This feature only has minimal impact on the overall system performance.
Audit Trail

Due to the high number of synchronized file I/Os, this feature could have a detrimental influence
on the overall system performance.

The impact can be minimized by using the AUDIT_TRAIL parameter setting FILTER=REJECTED
for authentication and authorization for Direct Call Interface requests.

The following configuration options have a detrimental influence on performance, and should be
used with care:

Feature Option Explanation

Audit Trail Filter A large number of user sessions or Adabas commands will result in
a large number of security entries being written to the audit trail log
file. The size of the audit trail log file increases rapidly with the
numbers of user sessions or Adabas commands.

Default value: FILTER = ALL

Recommended value: FILTER = REJECTED

24 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Feature Option Explanation
SSX nativeloglevel |Multiple user sessions attempting to write diagnostic information
Logging/Diagnostics concurrently to the security infrastructure log file.

Default value: None

Recommended value: 0 or None

Application Development

This section covers the following topics:
= Developing Applications
= Modifying Legacy Applications

= Error Handling
= Messages and Codes

Developing Applications

The application is responsible for setting the user credentials prior to opening a database session.

The following Adabas client functions are provided to manage client sessions and set credentials:

Step |Function Description

1 |Ink_set_adabas_id()|Set the session identification.

2 |Ink_set_uid_pw() |Set the authentication credentials for a specific database.

Details about the above Adabas client functions can be found in the section Calling Adabas with
Authentication in the section Calling Adabas in the Command Reference.

It is recommended to use OPTIONS=OPEN_REQUIRED.
Modifying Legacy Applications

Without modification, legacy applications will receive the nucleus response 200 “security violation”,
when accessing secured databases.

The Adabas nucleus user exit 21 can be used to set authentication credentials via the Adabas
server API functions. The routine is called when the processing of a session begins.

This routine should be used as briefly as possible. It is intended for use during the transition
period, until all applications use and support the Adabas security authentication feature.

For further details, see the nucleus user exit 21 in the section User Exits and Hyperexits.

Adabas Security Features 25

Adabas Role-Based Security (ADARBA)

Error Handling

Security Mode Active

If a security violation occurs during authentication processing, Adabas issues a response code,
backs out the user's current transaction, and closes the user session.

" Response code 9, subcode SE

" Response code 200, subcode 31
If a security violation occurs during authorization processing, Adabas issues a response code,
" Response code 200, subcode 175

Security Mode WARN

The error handling for security mode WARN is intended for transitioning to a secure database.
The error handling is described below. It differs to that of mode ACTIVE.

® The current transaction is not backed out;
® The response code returned indicates “success” (response 0);

" A “Warning” entry is entered in the audit trail log file.
Messages and Codes

The following Adabas nucleus response codes indicate that a security issue has occurred:

Authentication
Response Code | Explanation Action
9/SE The credentials have been modified since the |Ensure that the credentials are not set or

start of the session. Hence the credentials are
invalid, and the user session has been
terminated.

modified during a user session.

To proceed processing, set the credentials and
open a new user session.

200/31 The credentials could not be validated by the|Ensure that the credentials have been
authentication authority. provided and that they are valid.
26 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Authorization

Response Code |Explanation Action

200/175 The user identified by the provided credentials does | Ensure that the credentials have the
not have the privileges to perform the requested required privileges.
operation.

Getting Started

This section covers the following topics:

= Prerequisites

= Configuration

= Authentication

= Authorization for Direct Call Interface
= Authorization for Adabas Utilities

Prerequisites

In order to execute the steps described in the following section, you will require a database.
The following prerequisites are mandatory:

® The Infrastructure Security Libraries are installed.

® The security feature is enabled.
Authentication has the following prerequisites:

® The security mode is enabled.

® The user credentials that are to be validated by the authentication authority.
Authorization has the following prerequisites:

® The RBAC system file is loaded.

® Security definitions will be required.
You, or an administrator, will require the necessary access privileges:

* To modify the security configuration files.
® To create and configure a database.

® To start and stop a database.

Adabas Security Features 27

Adabas Role-Based Security (ADARBA)

& Important: When starting with the Adabas RBAC security feature, it is recommended to

create a database and to initially use the SECURITY mode WARN. Once the Adabas role-
based security feature has been enabled, it cannot be disabled.

Configuration
This section describes how to configure Adabas role-based security (ADARBA).
Authentication

The following steps describe how to enable authentication.

1. Ensure the database is offline.

2. Configure the authentication authority for the database.
3. Enable authentication by setting the SECURITY mode.
4. Start the database.

Note: Authentication is not required and does not have to be enabled for Authorization for
Adabas Utilities.

The authentication examples below use the internal user repository as the authentication authority.
Example: Create Credential in an Internal User Repository

This example shows how to create a user, password credential in an internal user repository.

> ssxtxtpasswd -f SAGInternalUserRepository.txt -c -p mypsw myuid

Hash: <
POEOAPEEEJBKv+4Zz0ELiYcFqY7qFhTLZz1ha7Ztf7j/drdHGY2MLOLXEU/kX7TD52Aj7XfwiZ+vpI19DgRbVkA=
User entry for "myuid" successfully added

The contents of the file SAGInternalUserRepository.txt are shown below:

* % % of

SAG Internal User Repository

version:3.0
*

user:myuid:$6a$bOEOAPEEEIBKV+4ZOELTYCFqY7qFh1LZz1ha7Ztf7]/drdHGy2MLOLXEU/KX7TD52A] 7 X fwiZ+vpl19DgRbVk

Please refer to the section Configuring the Infrastructure Security Libraries for further information
about how to create and administer an internal user repository.

28 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Example: Configure the Authentication Authority

This example shows the configuration of authentication with a text file. This file contains authen-
ticated credentials and passwords. Please refer to the section describing the Configuration for
further information on the creation and administration of an authentication text file.

DBnnn.INI

> adaini dbid=nnn add topic=DB_PARAMETER topic=SSX_CONFIGURATION item=authType=TEXT
> adaini dbid=nnn add topic=DB_PARAMETER topic=SSX_CONFIGURATION <
item=internalRepository=SAGInternalUserRepository.txt

Please refer the section Validating the Configuration for an example on how to display the
SSX_CONFIGURATION settings.
Example: Enable Security Mode

This example shows how to enable the security mode, which enables authentication. When starting
with the Adabas RBAC security feature, it is recommended to initially use the SECURITY mode
WARN.

Use the SECURITY function of the ADADBM utility to activate the authentication feature.

> adadbm dbid=nnn security=warn

%ADADBM-T-STARTED, 15-AUG-2018 11:13:39, Version 6.7.0.0
%ADADBM-T1-DBOFF, database 224 accessed offline
%ADADBM-T-FUNC, function SECURITY executed

Authorization

The following steps describe how to enable authorization.

1. Ensure the database is offline.
2. Load the RBAC system file.
3. Start the database.

Example: Load the RBAC System File

Use the INITIALIZE function of the ADARBA utility to load the RBAC system file. The RBAC_FILE
function of the ADADBM utility, which was previously used to load the RBAC system file, has
been deprecated.

Adabas Security Features 29

Adabas Role-Based Security (ADARBA)

> adarba dbid=190 initialize rbac_file=250

%ADARBA-T-STARTED, 05-JUN-2023 10:35:21, Version 7.2.0.0 (Linux 64Bit)
%ADARBA-T-INP, dbid=190

%ADARBA-T-DBON, database 190 accessed online

%ADARBA-T-INP, initialize,rbac_file=250

%ADARBA-T-LOADED, file 250, "RBAC-FILE" Toaded

%ADARBA-T-STATCMD, 0 error(s) occurred

Restore files dumped on 27-JUL-2018 09:00:19

%ADARBA-T-TERMINATED, 05-JUN-2023 10:35:22, elapsed time: 00:00:01

Please refer the section Validating the Configuration for an example of how to display the RBAC
system file information.

Audit Trail

Authentication and Authorization Adabas Direct Call Interface

The audit trail log file for authentication and authorization for Adabas direct call interface is located
in the database directory. The file name is NUCADT.LOG.

The following steps describe how to enable the audit trail for authentication and authorization
for Adabas direct call interface.

1. Configure the audit trail for authentication and authorization for Adabas direct call interface.

2. Restart the database, so that the modifications are active.

The following example shows the configuration of the audit trail for authentication and authoriz-
ation for Adabas direct call interface.

DBnnn.INI

> adaini dbid=nnn add topic=DB_PARAMETER topic=AUDIT_TRAIL item=FILTER=ALL
> adaini dbid=nnn add topic=DB_PARAMETER topic=AUDIT_TRAIL item=ACTION=YES

Please refer the section Validating the Configuration for an example of how to display the audit trail
settings.

Authorization Adabas Utilities

The modification of the audit trail configuration file settings is described in the section Configuration
for Authorization for Adabas Ultilities.

Example: Display Audit Definitions

The example shows the initial values for audit of utility authorization. Start the database and
display the audit definitions.

30 Adabas Security Features

Adabas Role-Based Security (ADARBA)

> adarba db=nnn audit,display

%ADARBA-T-STARTED, 26-MAR-2024 14:58:52, Version 7.3.0.0 (Linux 64Bit)
%ADARBA-T-INP, dbid=nnn

%ADARBA-T1-DBON, database nnn accessed online

%ADARBA-T-INP, audit,display

AUDIT=YES

FORMAT=TEXT

SEPARATOR=;
LOGFILE=${ADADATADIR}/dbnnn/adaaudit.log

%ADARBA-I-STATCMD, 0O error(s) occurred
%LADARBA-TI-TERMINATED, 26-MAR-2024 14:58:52, elapsed time: 00:00:00

Validating the Configuration

The following examples show how you can validate the configuration of authentication and au-
thorization.

Example: Database Report - Security Configuration

Use the SUMMARY function of the ADAREP utility to display the SECURITY mode setting and
the RBAC system file information.

When enabled, the SECURITY mode will be displayed with a value of either WARN or ACTIVE.
When not enabled, the SECURITY mode is not displayed.

When loaded, the file number of RBAC system file will be shown.

> adarep dbid=nnn summary

%ADAREP-I-STARTED, 15-AUG-2018 15:37:23, Version 6.7.0.0
Summary of Database nnn 15-AUG-2018 15:37:23
DATABASE NAME EXAMPLE-DB
DATABASE ID 224
MAXIMUM FILE NUMBER LOADED 255
SYSTEM FILES 255 (CHK), 251 (SEC), 254 (USR)
250 (RBAC)
ACTUAL FILES LOADED 8
CURRENT PLOG NUMBER 4
CURRENT CLOG NUMBER 0
SECURITY WARN
Container Device Extents in Blocks Number of Block Total Size
File Type from to Blocks Size (Megabytes)

Adabas Security Features 31

Adabas Role-Based Security (ADARBA)

ASSO1 file 1 2,000 2,000 2,048 3.91
ASS02 file 2,001 10,000 8,000 2,048 15.63
DATAL file 1 2,000 2,000 4,096 7.81
DATAZ file 2,001 10,000 8,000 4,096 31.25
WORK1 file 1 2,000 2,000 4,096 7.81

66.41

SADAREP-T-TOCNT, 17 I0s on dataset ASSO
%ADAREP-T-TERMINATED, 15-AUG-2018 15:37:23, elapsed time: 00:00:00

Example: Display Authentication Configuration

Use the SHOW function of the administration command ADAINI to display the authentication
configuration.

Show the configuration of the authentication authority.

> adaini dbid=nnn show topic=DB_PARAMETER topic=SSX_CONFIGURATION
authType=TEXT

internalRepository=path_and_name_ssxuser_file

Display Audit Trail Configuration

Use the SHOW function of the administration command ADAINI to display the audit trail config-
uration.

Show the audit trail configuration for authentication and authorization for Adabas direct call in-
terface.

> adaini dbid=nnn show topic=DB_PARAMETER topic=AUDIT_TRAIL

ACTION=YES
FILTER=ALL

Example: Security Infrastructure Initialized

The security infrastructure is initialized during the start of the ADANUC utility. This infrastructure
is used for authentication and indicates that the authentication feature is enabled and that the
SSX_CONFIGURATION parameters have been processed.

32 Adabas Security Features

Adabas Role-Based Security (ADARBA)

> adanuc dbid=nnn

%ADANUC-TI-STARTED, 15-AUG-2018 16:21:59, Version 6.7.0.0

HADANUC-T-SSXINI, SSX Security Infrastructure initialized

%ADANUC-I-CREATED, dataset NUCTMP1, file D:\ ADADATADIR\dbnnn\NUCTMP1.nnn created
%ADANUC-T-PLOGCRE, plog NUCPLG, file 'D:\ADADATADIR\dbnnn\NUCPLG.0001" created
%“ADANUC-I-DBSTART, Database nnn, session 5 started, 15-AUG-2018 16:22:02
Example: Display Security Definitions

The examples below show the initial values of the security definitions stored in the security repos-
itory. Start the database and display the security definitions.

> adarba dbid=nnn Tist,user

This shows the user PUBLIC.

> adarba dbid=nnn 1list,role

This shows the role PUBLIC.

> adarba dbid=nnn 1list,assignment,user

This shows the assignment PUBLIC,PUBLIC. That is the role PUBLIC has been assigned to the
user PUBLIC.

Authentication

The usage of authentication requires that the credentials be set by the application, or be provided
by the Adabas nucleus user exit 21. Please refer the section Application Development for further
information on the setting credentials.

Example: Use ADATST to validate Credentials

The example below show how ADATST can be used to verify the authentication of credentials.

> adatst
FADATST-I1-STARTED, 16-AUG-2018 12:11:22, Version 6.7.0.0
> adatst: ;-------- Database ID

> adatst: dbid=<dbid>

> adatsty g======== Credentials (without trailing whitespace)
adatst: sec_uid=<userid>
> adatst: sec_pwd=<password>

%

Adabas Security Features 33

Adabas Role-Based Security (ADARBA)

> adatst: ;-------- Session Open
> adatst: cc=op
> adatst: rp=.
> adatst: go
Command : OP Test-Nr : 1 Started
HADATST-T-NORMAL, normal successful completion
Command : OP Test-Nr : 1 Completed
> adatst: ;-------- Session Close
> adatst: cc=cl
> adatst: go
Command : CL Test-Nr : 2 Started
%ADATST-I-NORMAL, normal successful completion
Command : CL Test-Nr : 2 Completed

> adatst: quit
HADATST-T-TERMINATED, 16-AUG-2018 12:11:22, elapsed time: 00:00:00

A nucleus response code 200 with subcode 31 indicates a security violation; the authentication
check in the external security system failed.

Possible causes of a security violation are:

® The credentials are invalid.
® The configuration of the authentication authority is invalid.
® The authentication authority is not accessible.

A nucleus response code 9 with subcode SE indicates that the credentials have been modified; for
example by altering the credentials during the open session.

Example: Use ADATST to validate the usage of Nucleus user exit 21

The example below shows how ADATST can be used to verify that valid credentials are provided
by nucleus user exit 21. The user exit is called to provide credentials if the calling application has
not provided credentials.

> adatst
FADATST-I1-STARTED, 16-AUG-2018 12:11:22, Version 6.7.0.0
> adatst: ;-------- Database ID

> adatst: dbid=<dbid>

> adatst: ;-------- Session Open
> adatst: cc=op

> adatst: rp=.

> adatst: go

34 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Command : OP Test-Nr : 1 Started
HADATST-T-NORMAL, normal successful completion
Command : OP Test-Nr : 1 Completed
> poatsts g======== Session Close
> adatst: cc=cl
> adatst: go
Command : CL Test-Nr : 2 Started
HADATST-T-NORMAL, normal successful completion
Command : CL Test-Nr : 2 Completed

> adatst: quit
HADATST-T-TERMINATED, 16-AUG-2018 12:11:22, elapsed time: 00:00:00

A nucleus response code 200 with subcode 31 indicates a security violation; the authentication
check in the external security system failed.

Possible causes of a security violation are:

" Nucleus user exit 21 is not enabled.

The provided credentials are invalid.

The configuration of the authentication authority is invalid.

The authentication authority is not accessible.
Authorization for Direct Call Interface

This section describes how to secure access to application data, for example allowing all users
READ access to the EMPLOYEES file, and at the same time restricting the privilege to modify
data.

In this example, you will create and modify the security definitions. In the end, only users assigned
the HR_department role are able to modify data in the EMPLOYEES file, but all users are allowed
to READ the file.

To achieve this, you need to:

® Create a HR_department role;

® Grant the role permission to modify the EMPLOYEES file;

" Create an HR_userid user;

® Grant the user the HR_department role;

Grant the PUBLIC role permission to READ the EMPLOYEES file.

Adabas Security Features 35

Adabas Role-Based Security (ADARBA)

Example: Secure access to the EMPLOYEES File

The examples below show the security definitions required to restrict access to the EMPLOYEES
file.

v

adarba
> adarba: dbid=nnn

> adarba: create,role=HR_department
> adarba: grant,operation=ANY,object=11,to,role=HR_department

> adarba: create,user=HR_userid
> adarba: grant,role=HR_department,to,user=HR_userid

> adarba: grant,operation=READ,object=11,to,role=PUBLIC
The following security definitions are created or modified:

® Created:

® Role: HR_department

® User: HR_userid

" Permission to Operation and Object: ANY, File 11 (EMPLOYEES-NAT)
® Modified:

® Role: PUBLIC

® Permission to Operation and Object: READ, File 11 (EMPLOYEES-NAT)

Note: The role name and the user name are site-specific.

The user name used for authorization is the same as the one used for authentication.
The user name must be defined for both authorization and authentication.
List Security Definitions

The example below shows the security definitions which secure access to the EMPLOYEES file.

> adarba
> adarba: dbid=nnn

> adarba: ; ---------- USERS
> adarba: Tist,user

PUBLIC

HR_userid

36 Adabas Security Features

Adabas Role-Based Security (ADARBA)

> adarba: ; ---------- ROLES
> adarba: Tist,role

PUBLIC

HR_department

> adarba: ; ---------- USER-ROLE ASSIGNMENTS
> adarba: list,assignment,user

PUBLIC,PUBLIC

HR_department,HR_userid

> adarba: ; ---------- PERMISSIONS
> adarba: list,assignment,permission
ada.uti....,DBID.CURRENT,PUBLIC
ada.uti...., DBID.CURRENT,PUBLIC
ada.uti....,DBID.CURRENT,PUBLIC

ada.dml.delete,FILE.00000011,HR_department
ada.dml.insert,FILE.00000011,HR_department
ada.dml.read,FILE.00000011,HR_department

ada.dml.update,FILE.00000011,HR_department

ada.dml.read,FILE.00000011,PUBLIC
Authorization for Adabas Utilities

This section describes how to secure access to an Adabas utility, for example the ADADBM utility.

In this example, you will create and modify the security definitions. By default, all users with the
PUBLIC role have access to and can execute the ADADBM utility. In the end, only users assigned
the database administrator role are able to execute the utility.

To achieve this, you need to:

B Create a database administrator role;
® Grant the role permission to execute the utility;
® Create a user that is to be assigned the database administrator role;

= Grant the user the database administrator role;

Revoke the permission to execute the utility from the role PUBLIC.

Adabas Security Features 37

Adabas Role-Based Security (ADARBA)

Example: Secure access to the ADADBM utility

> adarba
> adarba: dbid=nnn

> adarba: create,role=database_administrator
> adarba: grant,operation=ada.uti.dbm,to,role=database_administrator

> adarba: create,user=dba_userid
> adarba: grant,role=database_administrator,to,user=dba_userid

> adarba: revoke,operation=ada.uti.dbm,from,role=PUBLIC
In this example, the following security definitions are created or modified:

® Created:

® Role: database_administrator

® User credentials: dba_userid

® Permission to operation: ada.uti.dbm
® Modified:

® Role: PUBLIC

® Permission to operation: ada.uti.dbm

Note: The role name and the user credentials are site-specific. The user credentials used for

authorization are local system credentials.
Example: List Security Definitions

The example below shows the security definitions that secure access to the ADADBM utility.

> adarba
> adarba: dbid=nnn

> adarbgs g ========== USERS
> adarba: Tist,user

PUBLIC

dba_userid

> adarpag g =========-= ROLES
> adarba: Tist,role

PUBLIC
database_administrator

> adarba: ; ---------- USER-ROLE ASSIGNMENTS

38 Adabas Security Features

Adabas Role-Based Security (ADARBA)

> adarba: list,assignment,user
PUBLIC,PUBLIC
database_administrator,dba_userid

> adarbgg 5 ========== PERMISSIONS

> adarba: Tist,assignment,permission
ada.uti...., DBID.CURRENT,PUBLIC
ada.uti...., DBID.CURRENT,PUBLIC
ada.uti...., DBID.CURRENT,PUBLIC

ada.uti.dbm,DBID.CURRENT,database_administrator

Infrastructure Security Library

The infrastructure security libraries are used to access the authentication authority. The following
sections contain configuration templates for the SSX_CONFIGURATION parameters, organized by

type.

= Authentication Type OS (Operating System)

= Authentication Type TEXT (Internal User Repository)
= Authentication Type LDAP

= Authorization Type ADSI

= Creating Internal User Repository Files

Authentication Type OS (Operating System)
The security definitions for authentication type OS are managed by the local operating system.

[SSX_CONFIGURATION]

This is a sample properties file for the case
when authType is 0S and the user database is

the local operating system -

On Linux Systems it is using PAM authentication
On Windows a local LogonUser()

Specifies the authentication type.

Is Required: Yes

Valid values: {"0S", "TEXT", "LDAP", "ADSI"}
Default Value: None

authType=0S
Specifies the explicit path of the privileged daemon process.

Specify this parameter -
if the sagssxauthd2 executable file is not in the current directory.

Adabas Security Features 39

Adabas Role-Based Security (ADARBA)

Valid value is the valid path to the sagssxauthd2 module.

Default Value: None
Note: Linux only.

jHtauthDaemonPath

Specify a default group name here to be returned

with any of the group results that are returned by the repository manager.

A valid value is any valid group name.

Default Value: None
Optional.

fHidefaultGroup

If this parameter is specified, its value is used at authentication time

when domain name is not specified by the user.

If a domain name is specified, the value of this parameter is not used.

A valid value is any valid domain name.

Default Value: None
Optional.

jHtdefaultDomain

Specifies how to access data.

Valid values are:

o true - Access is under the account of the running process.

o false - Access is under the impersonated user ID of the logged on user.

Default Value: FALSE
Note: Windows only.
Optional.

fHioImpersonation

Specifies the local machine name (on which the user is authenticated).

The machine name is added before users and groups;
for example,machine_name\user.

Valid values are:

o true - If set to TRUE (and there is no domain field), you are authenticated «

against the local machine only.

o false - You are authenticated on the domain that you logged on.

Default Value: FALSE
Optional.

jHH inuxAddMachineName

Specifies the log level.

Is Required: No

Valid values:

i 0 - No logging

i Min: 1

i Max: 6

Default Value: None

40

Adabas Security Features

Adabas Role-Based Security (ADARBA)

fHinativeloglevel=0

Specifies the log file.

Is Required: No

Valid values:

i fully qualified file name
Default Value: None

jHfnativelogFi1e=SAGSSXCLIENTA_SSX.LOG

[SSX_CONFIGURATION-END]
Authentication Type TEXT (Internal User Repository)

The security definitions for authentication type TEXT are stored in a text file. The definitions can
either be database-specific or be shared by multiple databases.

[SSX_CONFIGURATION]

This is a sample properties file for the case
when authType is TEXT and the user database is
an SAG Internal User Repository

created by the ssxtxtpasswd utility

Specifies the authentication type.

Is Required: Yes

Valid values: {"0S", "TEXT", "LDAP", "ADSI"}
Default Value: None

authType=TEXT

Specifies the internal repository file

which has been created with ssxtxtpasswd utility
Is Required: No

Valid values:

fully qualified file name

Default Value: None

internalRepository=<fullpath>/<filename>.<ext>

#f Specifies the log level.
Is Required: No

Valid values:

i 0 - No logging

i Min: 1

i Max: 6

Default Value: None

fHinativeloglLevel=0

Adabas Security Features 41

Adabas Role-Based Security (ADARBA)

Specifies the log file.

Is Required: No

Valid values:

i fully qualified file name
No default value

fHinativelogFile=SAGSSXCLIENTA_SSX.LOG

[SSX_CONFIGURATION-END]

Authentication Type LDAP

[SSX_CONFIGURATION]

This is a sample properties file for the case
when authType is LDAP and the user database is OpenlDAP

Specifies the authentication type.

Is Required: Yes

Valid values: {"0S", "TEXT", "LDAP", "ADSI"}
Default Value: None

authType=LDAP

Specifies which server type will be used.

Is Required: No

Valid values: {"ActiveDirectory", "SunOneDirectory", "OpenlLdap"}
Default value: "OpenlLdap"

serverType=0penlLDAP

Property name that denotes a user entry.

Is Required: No

Valid values: (attribute name according to LDAP conventions)
Default Value: None

userIdField=cn

Enumeration of LDAP objectclasses that the user entries use in
the target LDAP server.

Is Required: No

Valid values: (Comma separated T1ist of objectclass names,
according to LDAP conventions)

Default value - depending on serverType:

Openldap:

"top,person"

SunOneDirectory:

"top,person,organizationalperson, inetorgperson"

ActiveDirectory:

"top,person,organizationalPerson,user"

42 Adabas Security Features

Adabas Role-Based Security (ADARBA)

person0bjClass=inetOrgPerson

Enumeration of LDAP objectclasses that the group entries use in
the target LDAP server.
Is Required: No
Valid values: (Comma separated Tist of objectclass names,
according to LDAP conventions)
Default value - depending on serverType:
OpenlLdap:
"top,group0fUniqueNames"
SunOneDirectory:
"top,groupofuniquenames"
ActiveDirectory:
"top,group"

group0bjClass=group0fUniqueNames

Property name that denotes a group entry.

Is Required: No

Valid values: (attribute name according to LDAP conventions)
Default value: cn

groupldField=cn

Property name of a user entry that points to the group that
the user is member of.

Is Required: No
Valid values: (attribute name according to LDAP conventions)
Default value:

depending on serverType:

Openldap:

"ou"

SunOneDirectory:

NULL

ActiveDirectory:

"memberQf"

personGrpAttr=ou

Property name of a group entry that points to users (members)
Is Required: No
Valid values: (attribute name according to LDAP conventions)
Default value:

depending on serverType:

Openldap:

"uniqueMember"

SunOneDirectory:

"uniqueMember"

ActiveDirectory:

"member"

groupPrsAttr=uniqueMember

Adabas Security Features 43

Adabas Role-Based Security (ADARBA)

Seconds how long auth. user remains in cache.

Is Required: No

Valid values:

0 - No cache

Min: 1, Max: No limit
Default value: 180

cacheTime=12

Specify the max. number of cached users that have been successfully

authenticated. When the cache overflows,

Is Required: No

Valid values:

0 - No cache

Min: 1, Max: No limit
Default value: 300

cacheSize=4

the oldest entry is removed.

Time (in seconds) how long to ignore any further authentication

requests for a particular User-Id.
Is Required: No

Valid values:

Min: 1, Max: No limit

Default value: 100

denyTime=4

Number of invalid logon attempts.
Is Required: No

Valid values:

Min: 1, Max: No limit

Default value: 3

denyCount=3

Specifies an output file for logging.
Is Required: No

Valid values: (Valid log file path)
Default Value: None

lTogCallback=true

Specifies the log level.
Is Required: No

Valid values:

i 0 - No Togging

i Min: 1

i Max: 6

Default Value: None

44

Adabas Security Features

Adabas Role-Based Security (ADARBA)

fHinativeloglevel=0

Specifies the log file.

Is Required: No

Valid values:

fully qualified file name
No default value

fHinativelLogFile=SAGSSXCLIENTA_SSX.LOG

Default group to be automatically included for all requests
that return any groups
Is Required: No

jHFdefaultGroup=DefGroup

BaseBindDN where to find the users.
Is Required: Yes
and should contain the most detailed DN to find the users

personBindDn=ou=User,o0=0rg,dc=mycom,dc=com

BaseBindDN where to find the groups.
Is Required: Yes
and should contain the most detailed DN to find the groups

fHEgroupBindDn=ou=Groups,0=0rg,dc=mycom,dc=com

Attribute name of the password.
Required when changeing the password
Is Required: Not always

Default value:

depending on serverType:

Openldap:

"userPassword"

SunOneDirectory:

"userPassword"

ActiveDirectory:

"unicodePwd"

jHipasswdField=userPassword

Allow to pass a complete BaseBindDN
via the domain parameter.

Is Required: No

Valid values: 0, 1

jHtallowdomainasbasebinddn=0
Allow to specify which fields to search for as properties

of a user entry
Is Required: No

Adabas Security Features 45

Adabas Role-Based Security (ADARBA)

Valid values: string, for example: "cn,sn,description"
fHipersonPropAttr

Allow to specify which fields to search for as properties
of a group entry

Is Required: No

Valid values: string, for example: "cn,description”

jHFgroupPropAttr

Allow to use the special secure authentication using SASL,
providing the directory supports this mechanism.

Is Required: No

Valid values: 0, 1 (default: 0)

fHF1 dapSas1Bind

Allow to switch from a non-secure connection to a TLS connection,
providing the directory supports this mechanism.

of a group entry

Is Required: No

Valid values: 0, 1 (default: 0)

fHE1dapStartTls

By default, the first "dc=" occurrence within the distinguished name

name string denotes the domain name.

If additional abbreviations want to be defined, one can use

the following 2 parameter.

Example: Short="RnD;Admins;board"

with <

Long="ou=Rnd, ou=user,dc=mycom,dc=com;ou=Administrators,dc=mycom,dc=com;ou=VIP,dc=mycom,dc-com"

fHEF1 dapDomainShort
fHF1dapDomainlLong

If NOT the automatic domain name should be used to compose
the canonical user id (SSXGetCanonicalUserId_A/W),
specify this part of the ID here.

jHtcanonicalDomainName

Three algorithms are supported to find the groups of a user:
"ru", recurse up: take the group pointer from the user entry

i and continue to search up for all groups
1 found

"rd", recurse down: search for all groups that have the

user as member (no recursion)

"cp", computed property: use a special field in the user
i entry to find all groups

i --> computedGroupProp retired

46 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Default: "ru"
fHiresolveGroups

If resolveGroup is set to "cp", this parameter must provide
the field name to look for in the user entry that denotes

the user groups

Default: None

fHEcomputedGroupProp=

If the LDAP connection is protected by SSL/TLS, this
parameter must be set.

Valid Values: 0, 1

Default: O

fHE1dapSSLConnection=1

[SSX_CONFIGURATION-END]

Authorization Type ADSI

[SSX_CONFIGURATION]

This is a sample properties file for the case
when authType is ADSI and the user database is Active Directory

Specifies the authentication type.

Is Required: Yes

Valid values: {"0S", "TEXT", "LDAP", "ADSI"}
Default Value: None

authType=ADSI

#f Specifies the name of the AD Forest.

Is Required: No, but should be specified

Example: "dc=mycom,dc=com"

(with a possible domain called "dc=eur,dc=mycom,dc=com")
Default Value: None

jHtadsiForestDn

Seconds how long auth. user remains in cache.
Is Required: No

Valid values:

0 - No cache

Min: 1, Max: No Tlimit

Default value: 180

cacheTime=12

Adabas Security Features 47

Adabas Role-Based Security (ADARBA)

Specify the max. number of cached users that have been successfully
authenticated. When the cache overflows, the oldest entry is removed.
Is Required: No

Valid values:

0 - No cache

Min: 1, Max: No limit

Default value: 300

cacheSize=4

Time (in seconds) how long to ignore any further authentication
requests for a particular User-Id.

Is Required: No

Valid values:

Min: 1, Max: No limit
Default value: 100

denyTime=4

Number of invalid logon attempts.
Is Required: No

Valid values:

Min: 1, Max: No limit

Default value: 3

denyCount=3

Specifies an output file for logging.
Is Required: No

Valid values: (Valid log file path)
Default Value: None

nativelogFile=SIN_SSX.log

logCallback=true

Specifies the log level.
Is Required: No

Valid values:

i 0 - No logging

i Min: 1

1 Max: 6

Default Value: None

jHinativeloglLevel=0

Specifies the log file.

Is Required: No

Valid values:

fully qualified file name
No default value

48 Adabas Security Features

Adabas Role-Based Security (ADARBA)

jHinativelogFi1e=SAGSSXCLIENTA_SSX.LOG

In case the scope for the node to access users needs to be limited,
one can specify a particular subtree:
Example: "ou=user,ou=Rnd,dc=mycom,dc=com"

jHtadsiPersonBindDn

In case the scope for the node to access groups needs to be limited,
one can specify a particular subtree:
Example: "ou=groups,ou=Rnd,dc=mycom,dc=com"

fHFadsiGroupBindDn

By default, the first "dc=" occurrence within the distinguished name

name string denotes the domain name.

If additional abbreviations want to be defined, one can use

the following 2 parameter.

Example: Short="RnD;Admins;board"

i with ©

Dn="ou=Rnd, ou=user,dc=mycom, dc=com;ou=Administrators,dc=mycom,dc=com;ou=VIP,dc=mycom,dc-com"

jHtadsiDomainShort
jHtadsiDomainDn

If NOT the automatic domain name should be used to compose
the canonical user id (SSXGetCanonicalUserId_A/W),
specify this part of the ID here.

jHEcanonicalDomainName

Three algorithms are supported to find the groups of a user:
"ru", recurse up: take the group pointer from the user entry

it and continue to search up for all groups
found

"rd", recurse down: search for all groups that have the

i user as member (no recursion)

"cp", computed property: use a special field in the user
i entry to find all groups

--> computedGroupProp retired

Default: "ru"

fHiresolveGroups

If resolveGroup is set to "cp", this parameter must provide
the field name to look for in the user entry that denotes

the user groups

Default: None

jHFcomputedGroupProp=

[SSX_CONFIGURATION-END]

Adabas Security Features 49

Adabas Role-Based Security (ADARBA)

Creating Internal User Repository Files

The following section describes the creation and administration of the internal user repository
file, which is used with Authorization Type TEXT.

You can create and/or modify internal user repository files with the ssxtxtpasswd tool.

To start the ssxtxtpasswd tool, you use a command prompt. When you start the tool, you enter
a user name and a password which are then encrypted (SHA512 and Base64) and provided in the
result text file. The tool adds new or replaces existing user credentials in the text file.

Note: When you enter a user name, you can use only digits, Latin letters, and the following

characters:! ()-.?[]_~.When you enter a password, you can use only digits, Latin letters,
and the following characters: "#$%&'()*+,-./;<=>?[\]"_"{l}~.

Example: Usage of ssxtxtpasswd tool

Tool to create or update an entry in the SSX text file based
user repository.

Usage: ssxtxtpasswd [-f filenamel [-c] [-p password] [-d | -el userld

Use "-c" to create a new file.
Usually, the file should exist and user entries are
replaced/added.

Use "-p" to provide the password on the command Tine instead
via an extra prompt.

Use "-d" to remove the specified user entry from the text file.

Use "-e" to check, whether the userlId is already stored in the text file.

Note: The password usually will be read via a non-echo command input.
When no filename is specified, a default of "ssx_user" is assumed.

Example: Add User and Password

ssxtxtpasswd -f SAGInternalUserRepository.txt -c -p mypsw myuid

Hash: <
POEOAPEEEJBKv+4Zz0ELiYcFqY7qFhlLZz1ha7Ztf7j/drJHGY2MLOLXEuU/kX7TD52Aj7XfwiZ+vpI19DqRbVkA==
User entry for "myuid" successfully added

50 Adabas Security Features

Adabas Role-Based Security (ADARBA)

Contents of SAGInternalUserRepository.txt

* % X of

SAG Internal User Repository

version:3.0
*

user:myuid: $6a$bOEOAPEEEJBKv+4Z0ELTYcFqY7qgFhl LZz1ha7Ztf7]/drdHGy2MLOLXEu/KkX7TD52A] 7 Xfwi Z+vpI19DgRbVkA=

Adabas Security Features 51

52

3 Adabas Password Security (ADASCR)

= |ntroduction

I L o (0] C=Yed i o W) SRR

= User Passwords

B SeCUrity DY ValUE CrIEEIA .. .eee ettt e e e e e e e e e e e
B Adabas SECUMLY PrOCESSINGvvvviiiiie ettt e et e e e e e s e e e e e e e

53

Adabas Password Security (ADASCR)

Introduction

The Adabas database security utility ADASCR provides facilities for controlling access and update
to Adabas files.

Adabas supports two classes of data access/update security: the first restricts user read and/or
update requests on the basis of a whole file; the second restricts user access to individual records
within a file.

Protection at File Level

Adabas files are security-protected if a file protection level greater than zero is assigned to the file.
File protection levels are assigned separately for access (i.e. read) and update.

A user can access/update a security-protected file by entering a password with a permission level
that is equal to or greater than the file protection level. Protection levels and password permission
levels are assigned with the security utility ADASCR.

The file numbers that can be protected are limited by the block size of the ASSO1 container file.
If the block size is 2KB, only files in the range 1 - 2047 can be protected (for 3KB the limit is 3071).

Protection at Record Level - Security by Value

Security by Value extends the Adabas File Protection Level security by enabling a user to further
define separate data access and update restrictions according to the content of one or more fields
in a data record.

Security by Value criteria are defined by using the ADASCR security utility. Each password may
include value criteria for up to 99 separate Adabas files.

Record level security can only be used with security-protected files.

File Protection Levels

An Adabeas file can be security-protected by assigning an access protection level and/or an update
protection level greater than zero to the file.

File protection levels range from 0 to 15, with 15 being the maximum level of protection. A protec-
tion level of 0 means that all users can access/update the file. A value of 15 prevents all users from
accessing/updating the file.

All Adabas files that have no protection levels assigned have a default protection level of zero.
All users can access and/or update such files.

54 Adabas Security Features

Adabas Password Security (ADASCR)

File | Protection Level Number

Access Update
10 |7 11
11 |2
12 |4

User Passwords

Separate access and update levels for each Adabas file can be assigned for each password. Password
permission levels can be assigned in the range from 0 to 14.

Password FILE10 |FILE11 |FILE 12
ACC/UPD |ACC/UPD |ACC/UPD
PASSWRD1 |4/0 4/0 4/0
PASSWRD2 |2/2 2/2 2/2
PASSWRD3|14/0 0/0 14/0
PASSWRD4 |14/14 |14/14 |14/14
PASSWRDS5 |7/7 0/0 7/0

If the password access/update permission level is equal to or greater than the file access/update
protection level, the password can be successfully used to access/update the file in question.

Using the examples for file protection levels and for password permission levels shown above,

® PASSWRDI1 can be used to access file 11 or file 12.

® PASSWRD?2 can be used to access/update file 11.

® PASSWRD3 and PASSWRDS5 can each be used to access file 10 or file 12.
® PASSWRD4 can be used to access/update file 10, file 11 or file 12.

Security by Value Criteria

Separate access and update criteria for each Adabas file can be assigned for each password. Each
value criterion consists of an Adabas search buffer and an associated value buffer.

The search and value buffers are constructed in the same manner as for regular Adabas search
commands, including the use of non-descriptor fields and multiple value fields. However, soft-
coupling and sub-, super-, hyper- and phonetic descriptor fields are not supported in Security by
Value search criteria.

Adabas Security Features 55

Adabas Password Security (ADASCR)

For further information on the syntax and construction of search buffers and value buffers, see
the Command Reference Manual, Calling Adabas, Search and Value Buffers.

Value checking is performed only if data storage is either read or updated by the Adabas command.

The following table illustrates which criteria are tested for the various Adabas commands:

Adabas Command |Security by Value Check Performed
Test Criterion Test Data
Al Update Before Image
El Update Before Image
L1-L6 Access Before Image
L9 (Access to index only, no value check performed)
N1, N2 Update After Image
S1(%) Access Before Image

Note: * An S1 command with a valid format buffer is handled in the same manner as if an

S1 command followed by an L1 command with a given User ISN had been issued.

Security by Value criteria are ignored if the associated security level of the requested file is zero.

Adabas Security Processing

Using the password entered by a user and the file-protection information defined for the file,
Adabas checks whether the user is authorized to access/update a given Adabas file. If the file is
not security-protected, Adabas ignores any password that is entered. The following describes
Adabas security processing for read and update commands.

Adabas determines whether the file to be accessed or updated is security-protected. If there is no
security protection, security processing stops.

Security Response Codes

If the file to be processed is security-protected, Adabas checks whether the password supplied is
defined in the password table.

If the password is undefined or if no password has been supplied, response code 201 is returned.
If the password is defined but not valid for the file to be processed, response code 202 is returned.

If the password is valid for the file to be processed, Adabas checks the permission level associated
with this password against the file's access or update protection level. Response code 200 is returned
if the password's permission level is less than the file's protection level.

56 Adabas Security Features

Adabas Password Security (ADASCR)

If the permission level is sufficient, the password is further checked for Security by Value criteria
for the current file. If a search criterion has been defined for the supplied password, this is tested
against either the before or after image of the data, depending on the Adabas command issued.
If the Security by Value check is unsuccessful, response code 200 is returned, otherwise the user's
request is finally granted and the Adabas command is processed.

The following is a summary of the response codes that may be returned by Adabas security pro-
cessing:

RESPONSE 200

Explanation Security violation detected.

User Action Supply the correct password.

RESPONSE 201

Explanation The password specified was not found.

User Action Supply the correct password.

RESPONSE 202

Explanation An attempt was made to use a file for which the user is not authorized.
User Action Supply the correct password.

If an ET logic user receives the response codes 200 - 202, processing continues as if the user had
exceeded the transaction time limit (see the TT parameter of ADANUC in the Utilities Manual for
further information).

All Security by Value security violations cause response code 200 to be returned.

Adabas Security Features 57

58

4

Adabas Encryption for Linux

= Prerequisite

B ENCryption Of Data-At-RESEeoiii s
B Key Management SYSIEMooiiiiii e
B AAMINISITATION .ottt ettt e et e e e e e e e ea e
B DAADASE ACCESS ...ttt

59

Adabas Encryption for Linux

Adabas Encryption for Linux provides functionality to protect data-at-rest from unauthorized
access. With Adabas Encryption for Linux, data-at-rest refers to container files, backup copies,
PLOG files and other files created by Adabas, containing sensitive data container files and also
PLOG and backup copies. Access to the information in these containers is controlled by means of
encryption.

Prerequisite

A license for Adabas Encryption for Linux (AEL) is required.

Encryption of Data-At-Rest

Encryption Object

In the context of Adabas Encryption for Linux, data-at-rest refers to the following containers and
files:

= ASSO

= DATA

= WORK

= TEMP

= SORT

* PLOG

® backup copies

® CMPDTA, DCUDTA, MUPDTA, ULDDTA (Compressed data)
* CMPDVT, MUPDVT, ULDDVT (Descriptor Value Table)

* MUPLOG and MUPLOB (Compressed data and LOB data)

® ORDEXP (Export copy)

60 Adabas Security Features

Adabas Encryption for Linux

Encryption Algorithm

Encryption is the process of converting plain data into cipher text which cannot be deciphered
without access to the encryption key.

Decryption is the process of converting encrypted data back to its original form. Decryption of
encrypted data requires the key. Without the key the original information cannot be recovered.

Adabas Encryption for Linux supports Advanced Encryption Standard (AES) in XTS mode, a
symmetric-key algorithm, where the same key is used for both processes, encrypting and decrypting
the data.

XTS-AES with a key length of 128 and 256 bits are supported.
Encryption Process

When formatting a database, the corresponding containers are encrypted according to the given
parameters. All blocks written to disk are encrypted as well. Keys for encryption are managed by
Adabas using the given Key Management System.

Note: Encryption cannot be disabled for existing databases. Encryption can only be undone
by dumping and restoring a backup with the option ENCRYPTION=NO.

Key Management System

A key management system (KMS), also known as a cryptographic key management system (CKMS)
or enterprise key management system (EKMS), is an integrated approach for generating, distrib-
uting, and managing cryptographic keys for devices and applications.

Adabas currently supports the following types of key management systems:

® File-based management system on the local disk
" Microsoft Azure Key Management System

® Amazon AWS Key Management Service

Google GCP Key Management Service

HashiCorp Vault Key Management System

This section describes how Adabas uses the KMS.

Adabas Security Features 61

Adabas Encryption for Linux

ADATED Key Management Design

Exec ADABASUtility - E';g’; | oisk

Library ADATED

ssL | ‘CRYPTHK_M?J_

- [- » ——

Plugin FILE AWS AZURE GCP HCV
Library
Lib : ! ! Vault SDK
arary AWS SDK AZURE SDK Google SDK
4
| HashiCorp Vault
T YT _tma B ..v--r--‘.
— I_" | J' : { y
Disk L AWS AZURE. | ©Gep P
— - < M \ S .:__‘\.) .;_._P L Disk]

Adabas provides the ADATED library for the cryptographic functionality. The KMS function of
ADATED uses plugin libraries, also provided by Adabas, for each supported key management
system.

Adabas uses two types of encryption keys, the key encryption key (KEK) and the encrypted data
encryption key (DEK). The KEK encrypts the DEK, which in turn encrypts the data in the database.
The advantage of using two keys is that you can regularly change the key encryption key, so only
the data encryption key is decrypted and newly encrypted. The data itself does not have to be
decrypted and encrypted again.

A\ Important: If the KEK is lost or corrupted, the data in the database is also lost regardless of
which KMS is used.

= File-Based Key Management System

= Amazon AWS Key Management System
= Microsoft Azure Key Management System
= Google GCP Key Management Service

62 Adabas Security Features

Adabas Encryption for Linux

= HashiCorp Vault Key Management System
File-Based Key Management System

The file-based key management system uses a local disk file to store the key encryption keys.
Database operations are performed only with the KMS file.

Select the file-based KMS by configuring the KMSTARGET=FILE parameter for either the ADAFRM
or ADABCK utility when creating a database. The selected KMS type is stored in the database.

The file to store the keys is specified by the ADAKMSFILE environment variable. You can specify
a fully qualified path name or directory name. The default location is SADADATADIR/etc and
the default file name is adatedkmsfile.db.

A\ Important: If the Adabas file-based key management system is used, all Adabas utilities re-

quire access to the file JADADATADIR/etc/adatedkmsfile.db. Otherwise an encrypted
database becomes unusable.

The KMS file is stored encrypted in the file system. Nevertheless, access to it must be restricted
with operating system features. File permissions must allow access only to the user/group that
will run Adabas utilities.

@ Caution: Itis recommended to implement a dedicated backup strategy to have the file-based

KMS available in case of a disaster recovery. Without the corresponding KEK, it is not
possible to restore Adabas backup copies or use encrypted data. To avoid this effort and
possible risks, cloud-based key management services should be preferred.

Amazon AWS Key Management System

Amazon Web Services (AWS) provides a built-in key management service which you can use
when Adabas is on an AWS virtual machine. The AWS KMS allows for the creation and storage
of the key encryption key. The encrypted DEK is passed to the AWS KMS for decryption.

Select the AWS KMS by configuring the KMSTARGET=AWS parameter for either the ADAFRM
or ADABCK utility when creating a database. The selected KMS type is stored in the database.

Within AWS, you must configure your virtual machine to be able to access the AWS Key Manage-
ment System. The Adabas AWS plugin uses a number of AWS APIs and KMS resources, which
are managed through AWS Identity and Access Management (IAM). To use the APIs and access
the specific KMS resources you must create an IAM role with a permission policy. The IAM role
must be assigned to an EC2 instance (Amazon Elastic Compute Cloud) so that the EC2 instance
can assume that role during its lifetime. The IAM role can be used for multiple EC2 instances.

For more information on how to create an IAM role and assign it to an EC2 instance, see the AWS
Identity and Access Management and Amazon Elastic Compute Cloud documentation.

Adabas Security Features 63

Adabas Encryption for Linux

Microsoft Azure Key Management System

Azure provides a key management service for generating, storing, and accessing secrets, such as
cryptographic keys. You can use this service when running Adabas in the Azure cloud. The
cryptographic keys are stored and accessed in an Azure Key Vault. Adabas can use the Azure Key
Management Service to store the keys used in an encrypted database.

To use the Azure Key Vault for Key Management purposes, specify KMSTARGET=Azure for
either the ADAFRM or ADABCK utility when creating a database. The selected KMS type is stored
in the database.

You must reference the key vault with the environment variable AZURE_KEY_VAULT.

export AZURE_KEY_VAULT=<key-vault-name>
Authentication

To access the key vault, you must be an authenticated user with access rights. It is recommended
to use a managed identity if Adabas is run on the Azure Cloud.

To create a managed identity:

® Go to the Azure Portal and navigate to the virtual machine or container Adabas is running on.
" Select Identity.

® In the tab System assigned, set the Status to On. This creates a service principal that is tied to
the resource.

To authenticate multiple resources, you can use a User assigned managed identity. If you require
a different form of authentication, visit the Azure resources.

Key Vault Access

The created security principal needs to be given access to the Azure Key Vault resource. You can
do this on the Azure Portal.

® Navigate to the used Key Vault and select Access Policies.

® (Click Create.

From the Permissions, check Select all for Key Management Operations and Cryptographic
Operations.

Choose the created managed identity for authentication with the Key Vault.

Create the access policy.

Note: As the Key Vault holds the key encryption key of your database, the access rights to

this resource should be kept to a minimum.

64 Adabas Security Features

Adabas Encryption for Linux

For more information about the Azure Key Vault, managed identities, or authentication with
Azure, you can visit Microsoft Learn.

Google GCP Key Management Service

Google Cloud Portal (GCP) provides a key management service for generating, storing, and ac-
cessing secrets, such as cryptographic keys. This key management service can be used when running
Adabas in the Google Cloud. The cryptographic keys are stored and accessed in a Google key
ring. Adabas can use the Google Key Management Service to store the keys used in an encrypted
database.

To use the key ring for key management purposes, specify the KNSTARGET=GCP parameter for either
the ADAFRM or ADABCK utility when creating a database. The selected KMS type is stored in
the database.

The key ring resource must be located in the same region as your virtual machine. You must ref-
erence the key ring with: export GCP_KEY_RING=key-ring-name

Within the GCP, you must configure your VM service account to be able to access the key ring
resource. Ensure that the VM service account has access to the following permissions:

cloudkms.cryptoKeyVersions.create
cloudkms.cryptoKeyVersions.destroy
cloudkms.cryptoKey Versions.get
cloudkms.cryptoKeyVersions.list
cloudkms.cryptoKey Versions.useToDecrypt
cloudkms.cryptoKey Versions.useToEncrypt
cloudkms.cryptoKeys.create
cloudkms.cryptoKeys.get
cloudkms.cryptoKeys.list

| Note: As the key ring holds the encryption key of your database, the access rights to this

resource should be kept to a minimum.

For more information about the hierarchy of resources and roles within Cloud KMS, see the Google
Cloud Key Management Service documentation.

Adabas Security Features 65

https://learn.microsoft.com/en-us/

Adabas Encryption for Linux

HashiCorp Vault Key Management System

HashiCorp Vault provides a key management service for generating, storing, and accessing secrets,
such as cryptographic keys. Adabas uses Vault to securely manage cryptographic keys, particularly
for encrypting databases.

Select the file-based KMS by configuring the KMSTARGET=HCV parameter for either the ADAFRM
or ADABCK utility when creating a database. The selected KMS type is stored in the database.

Using the Vault Transit Engine with Adabas

To use Vault for key management, the following environment variables must be set:

export HCV_VAULT_ADDR=<vault-address>

export HCV_AUTH_METHOD=<auth-method>

export HCV_BASE_PATH=<base-path> # Required: Set the base path for transit and metadata
export HCV_EXPIRATION_DAYS=<expiration-days> # Optional: Set the number of days after which
the key expires (Default: 7 days)

® The HCV_BASE_PATH is not optional and must be set. This path defines the base path for transit
and metadata in Vault.

® The HCV_EXPIRATION_DAYS environment variable is optional. If not set, the defaultis 7 days. You
can specify a different number of days for the key expiration. If set to 0, the key will be immedi-
ately deleted.

Automatic Path Mounting by Adabas

After configuring the HCV_BASE_PATH, Adabas automatically mounts the necessary paths in Vault
for managing cryptographic keys. These paths are used for encryption operations in the Adabas
database, ensuring seamless integration between Adabas and Vault.

Soft Deletion of Keys by Adabas

Adabas implements a Soft Deletion feature, allowing keys marked for deletion to be recovered
within a specified time frame. This helps prevent accidental data loss and provides an additional
layer of security.

1. Mark for Deletion: A key is marked for deletion but not removed immediately.
2. Recovery: The deleted key can be restored within the specified recovery period.
3. Permanent Deletion: After the recovery period expires, the key is automatically permanently

deleted.

Note: Adabas will show the keys, and once the key is marked for deletion and the recovery

period has expired, these keys will be automatically deleted from Vault when displayed
by Adabas.

66 Adabas Security Features

Adabas Encryption for Linux

Authentication and Access Control

To use Vault, Adabas must authenticate either via AppRole or UserPass. The relevant environment
variables must be set:

AppRole Authentication
For AppRole authentication, the following environment variables must be set:

® HCV_ROLE_ID: The Role ID for AppRole authentication.
® HCV_SECRET_ID: The Secret ID for AppRole authentication.
® HCV_APPROLE_PATH: The path where the AppRole is configured (e.g., approle).

Example:

export HCV_ROLE_ID=<role-id>
export HCV_SECRET_ID=<secret-id>
export HCV_APPROLE_PATH=<approle-path>

UserPass Authentication
For UserPass authentication, the following environment variables must be set:

HCV_USERNAME: The username for authentication.
HCV_PASSWORD: The password for the user.
HCV_USERPASS_PATH: The path where the UserPass authentication is configured (e.g., userpass).

Example:

export HCV_USERNAME=<username>
export HCV_PASSWORD=<password>
export HCV_USERPASS_PATH=<userpass-path>

Vault Policies

Itis highly recommended to grant AppRole or UserPass users only the minimum necessary rights.
Use appropriate Vault Policies to restrict access to sensitive data to the minimum required. The
Principle of Least Privilege should be strictly followed to ensure that only authorized entities can
access keys and other resources.

Adabas Security Features 67

Adabas Encryption for Linux

Important Note on Access Control

Vault uses policies to control which users and applications can access specific resources. Policies
allow you to define precisely which permissions are required for key operations such as create,
read, update, delete, and list.

Example of a Vault Policy

Here is an example of a Vault policy that restricts access to the necessary paths:

Required permissions for AppRole or UserPass authentication
path "sys/mounts/*" {

capabilities = ["create", "read", "update", "delete", "list"]

}

path "<HCV_BASE_PATH>/*" { 4 Replace <HCV_BASE_PATH> with your specific base path
capabilities = ["create", "read", "update", "delete", "list"]

}
Security Notes

It is recommended to restrict access to Vault and the associated key resources to authorized users
and machines only. Apply the principle of least privilege and ensure that only users and applications
that genuinely need access to the keys have it. A regular review of access rights should also be
conducted to ensure no unnecessary permissions exist.

For detailed information on the Vault API, Vault policies and other Vault configuration options,
please refer to the official HashiCorp Vault Documentation.

Administration

Database Creation

Adabas automatically creates a new KEK with a unique name (KEKNAME) within the KMS. The
KMS API provides a function to create an encrypted DEK. Adabas stores the encrypted DEK along
with the unique KEKNAME of the corresponding KEK and other encryption related settings in
the ASSO1 container file.

Encrypted databases are created with Adabas utilities ADAFRM and ADABCK.
* ADAFRM

The control parameters ENCRYPTION and KMSTARGET specify the encryption algorithm and
the key management system to be used. The container files are encrypted according to the
parameter values.

68 Adabas Security Features

https://www.vaultproject.io/docs

Adabas Encryption for Linux

ADAFRM ENCRYPTION=AES_256_XTS | AES_128_XTS
KMSTARGET=FILE (default) | AWS | Azure | GCP | HCV

Example 1:

The following example shows how to create an encrypted database with the encryption algorithm
AES_256_XTS. The Adabas file-based key management system is used (default: KMSTAR-
GET=FILE)

adafrm dbid=100 datasize=100 assosize=100 worksize=100 encryption=aes_256_xts

* ADABCK RESTORE/OVERLAY

The control parameters ENCRYPTION and KMSTARGET specify the encryption algorithm and
the key management system to be used. The container files are encrypted according to the
parameter values.

As the target database is created and containers are encrypted, it must not already exist. For
existing databases, these ADABCK control parameters ENCRYPTION and KMSTARGET will
be rejected. An existing database will always retain its encryption settings, even in the case of
"no encryption".

ADABCK ENCRYPTION=AES_256_XTS | AES_128 XTS
KMSTARGET=FILE (default) | AWS | Azure | GCP | HCV

Example 1:

The following example shows how to restore an encrypted database with the encryption al-
gorithm AES_256_XTS from an non-encrypted Adabas backup copy. The Adabas file-based key
management system is used (default: KMSTARGET=FILE). In this example, BCK001 is a backup
copy of a non-encrypted database.

adabck dbid=100 restore=* encryption=aes_256_xts
Example 2:

The following example shows how to overlay an encrypted database with the encryption al-
gorithm AES_128_XTS from an non-encrypted Adabas backup copy. The Adabas file-based key
management system is used. In this example, BCK001 is a backup copy of a non-encrypted
database.

Adabas Security Features 69

Adabas Encryption for Linux

adabck dbid=100 overlay=* encryption=aes_128_xts kmstarget=file

Note: The control parameter ENCRYPTION is rejected if the database to be created already

exists.

Creating a Non-encrypted Database from an Encrypted Database

ADABCK, can be used to restore or overlay a non-encrypted database from the backup of an en-
crypted database.

= ADABCK

ADABCK ENCRYPTION=NO
Example:

The following examples show how to restore or overlay a non-encrypted database from an
Adabas backup copy of an encrypted database. In these examples, BCK001 is a backup copy of
an encrypted database.

adabck dbid=100 overlay=* encryption=no

adabck dbid=100 restore=* encryption=no

Database Report

The encryption settings include the encryption algorithm, the key management system and name
of the key encryption key.

The ADAREP control parameter SUMMARY shows the encryption settings of an encrypted
database.

The ADABCK control parameter SUMMARY shows the encryption settings of an Adabas backup
copy of an encrypted database.

" ADAREP

ADAREP SUMMARY
Example:

The following example shows the encryption settings of an encrypted database.

70 Adabas Security Features

Adabas Encryption for Linux

adarep dbid=100 summary

»ADAREP-T-STARTED,

02-MAY-2024 18:10:26

%ADAREP-T-DBOFF, database 100 accessed offli
Summary of Database 100 2-MAY-2024
DATABASE NAME Database-10
DATABASE 1ID 100
MAXIMUM FILE NUMBER LOADED 3
SYSTEM FILES 1 (CHK)
ACTUAL FILES LOADED 3
CURRENT PLOG NUMBER 0
CURRENT CLOG NUMBER 0
ENCRYPTION AES_256_XTS
KMSTARGET FILE
KEKNAME ©

, Version 7.3.
ne
18:10:26

0

, 2 (SEC),

0.0 (Linux 64Bit)

3 (USR)

1714666215B382A0FD089977264681686464A029C3FA4497EETEF150C0217295

Number of
Blocks

Container Device
File Type
ASSO1 file
DATAL file
WORK1 file

Extents in Blocks
from to
1 25,600
1 3,200
1 6,400

25,600
3,200

6,400

HADAREP-T-TIOCNT,

HADAREP-T-TERMINATED,

ADABCK

ADABCK SUMMARY

Example:

7 10s on dataset ASSO

BTlock Total Size

Size (Megabytes)

4,096 100.00

32,768 100.00
16,384 100.00
300.00

02-MAY-2024 18:10:26, elapsed time: 00:00:00

The following example shows the encryption settings of an encrypted database within a backup

copy (BCKO001).

Adabas Security Features

7"

Adabas Encryption for Linux

adabck summary

2024-05-02 18:25:55 %ADABCK-T-STARTED, 02-MAY-2024 18:25:55, Version 7.3.0.0 <
(Linux 64Bit)

Database dumped on 2-MAY-2024 18:25:50

Database 100, Database-100

Summary of Database 100 2-MAY-2024 18:25:55
DATABASE NAME Database-100
DATABASE 1ID 100

MAXIMUM FILE NUMBER LOADED 3

SYSTEM FILES 1 (CHK), 2 (SEC), 3 (USR)
ACTUAL FILES LOADED 3

CURRENT PLOG NUMBER 0

CURRENT CLOG NUMBER 0

ENCRYPTION AES_256_XTS
KMSTARGET FILE

KEKNAME ©

1714666215B382A0FD089977264681686464A029C3FA4497EEIEF150C0217295

Container Device Extents in Blocks Number of BTlock Total Size
File Type from to Blocks Size (Megabytes)
ASSO1 file 1 25,600 25,600 4,096 100.00
DATAL file 1 3,200 3,200 32,768 100.00
WORK1 file 1 6,400 6,400 16,384 100.00
300.00

2024-05-02 18:25:55 ZADABCK-I-IOCNT, 1 I0s on dataset BCK0O1
2024-05-02 18:25:55 %ADABCK-I-TERMINATED, 02-MAY-2024 18:25:55, elapsed time: <
00:00:00

Both reports show the current encryption algorithm, the key management system and the name
of the key encryption key.

72 Adabas Security Features

Adabas Encryption for Linux

Database Backup and Restore

The Adabas backup copy of an encrypted database contains the encryption settings such as the
encryption algorithm and key management system of the encrypted database. This data itself is
not encrypted, while all database blocks within the backup copy are encrypted with the encryption
settings of the database. The KMS containing the KEK of the database must be available to restore
this backup.

Restore as new database
To restore the Adabas backup copy of an encrypted database as a new database you can

® omit the control parameter ENCRYPTION. The encryption settings are taken from the Adabas
backup copy.
= specify the control parameter ENCRYPTION. The encryption settings are taken from the para-

meter.

To restore an Adabas backup copy of an encrypted database as a new non-encrypted database,
set the control parameter ENCRYPTION=NO.

Restore to an existing database

To restore an Adabas backup copy to an existing database, whether encrypted or not encrypted,
omit the control parameter ENCRYPTION. The data is restored according to the target database’s
encryption settings.

Database Access

Access to an encrypted database is transparent to the Adabas utilities and to the Adabas direct
call interface. The data are encrypted on write access, and decrypted on read access, according to
the database’s encryption settings.

Adabas Utilities

For all ADABAS utilities when reading encrypted data, access is transparent. The goal in imple-
mentation was not to change utility syntax. This could not always be achieved and will be explained
in more detailed in the corresponding utility pages. The current syntax changes include:

® ADAFRM can accept a dbid when using tempsize or sortsize.

® ADACMP can accept a dbid when compressing output from ADADCU.

Adabas Security Features 73

74

5 Ciphering

A\ Important: The implementation of the ciphering feature is different to that available in
Adabas for mainframes. The cipher code in Adabas for Linux and Windows is static and is
not provided in Additions 4. Adabas Encryption for Linux is highly recommended as a
state-of-the-art replacement.

] Notes:

1. Ciphering is no longer recommended for safe implementations.
2. Ciphering does not fulfill modern encryption standards and security regulations.

3. Ciphering is maintained for historic and maintenance reasons only.

The purpose of the ciphering in Adabas for Linux and Windows is to prevent unauthorized ana-
lysis of Adabas container files; e.g. via file dumps, editors, etc.

Unlike ciphering on the mainframe, it does not prohibit unauthorized access to the data; as both
database utilities and database applications can access the data without the cipher code.

Adabas can cipher the data that it stores in container files. This, however, only applies to the data
records that are stored in the Data storage, but not the values stored in the inverted lists on the
Associator.

Ciphering prevents the unauthorized analysis of Adabas container files. If ciphering is enabled
(see below), data records are ciphered when they are stored in a database by either the Adabas
nucleus or by the mass update utility ADAMUP. The data records are then deciphered when they
are requested by a user or application. This means that the ciphering is completely transparent to
the user or application.

Ciphering can be enabled for individual Adabas files. This is done when defining the file with
ADAFDU by setting the CIPHER/NOCIPHER option. The ciphering process uses internal parameters
in order to achieve a maximum level of security. In some systems, identical fields and records

75

Ciphering

present a possible security risk: if an unauthorized user can decipher one, the other can also be
deciphered. The Adabas ciphering process, however, treats identical fields and records as follows:
® Two identical fields within one record will be ciphered differently;

® Two identical records within one Adabas file will be ciphered differently;

® Two Adabas files with identical contents will be ciphered differently.

The following example demonstrates this on the basis of two fields in a record which both contain
the value "TEST' (representations are hexadecimal):

Record 1 Unciphered=0x54455354 Ciphered=0xDD022537
Record 2 Unciphered=0x54455354 Ciphered=0x55EF0AbL]

| Note: The ciphered values shown above are just examples, and do not represent the actual

ciphering mechanisms used.
The Adabas ciphering mechanism is characterized by the following features and restrictions:

" System files (checkpoint and security) cannot be ciphered.
® ADAM key files cannot be ciphered.

® The output files produced by the utilities ADACMP (compression) and ADAULD (unload) are
not ciphered.

* The data saved on files produced by the backup utility ADABCK, and the EXPORT files produced
by the export utility ADAORD are ciphered.

" The restart and recovery records that are written to the WORK and PLOG files are ciphered.

® The output produced by the FILE function of the report utility ADAREP contains information
about file ciphering.

76 Adabas Security Features

6 Security Considerations

= Using the Linux Group Concept

= Securing Administration of Adabas Role-Based SECUIItYcoiiiiiiiiiiiiiieeiiiee e
= Preventing Loss of Administration PriVIIEIESccouiriiiiiiii e
® Securing PUBLIC ACCESS PIIVIIEGESuvviiiiiiiii e

= Securing the Audit Trail Log File

77

Security Considerations

This section describes means or actions that that can or should be taken to secure (“harden”) the
database.

Using the Linux Group Concept

If the Adabas users belong to different Linux groups, you can restrict the Adabas access to databases
assigned to this group.

i Note: This feature is only available for Linux, not for Windows platforms.

Example:

Assume you have two Linux groups called Production and Test. There are users belonging to the
group Production, who should have access only to the production databases, and there are users
belonging to the group Test, who should have access only to the test databases. Assume you have
the following users for starting the database:

® dbaprod belongs to the group Production and should start the production databases
® dbatest belongs to the group Test and should start the test databases

The following is necessary to restrict the Adabas access to users of the group to which the databases
belong;:

® You must use two different NET_WORK_IDs, even if you are not using Net-Work. Because
Adabas does not know if a Net-Work server will be started later, Adabas creates a shared memory
section common with Net-Work, a GDT (global database table). The permission for GDT access
is restricted to the group to which the Adabas nucleus belongs. Therefore, starting a nucleus
fails if the same GDT is accessed as used by another nucleus belonging to a different group.

You can use different GDTs if you start the nucleus with a different NET_WORK_ID because a
separate GDT is created for each NET_WORK_ID. NET_WORK_ID is an environment variable,
which must be set when the Adabas nucleus is started - two NET_WORK _IDs are considered
to be equal if the first character is equal. If the environment variable NET_WORK_ID is not set,
an empty NET_WORK_ID is used.

In this example, you could start the production databases after setting NET_WORK_ID to P,
and the test databases after setting NET_WORK_ID to T.

* The nucleus must be started with the parameter ADABAS_ACCESS=GROUP. Assume that you
start in this example the Production databases with ADABAS_ACCESS=GROUP, but the Test
databases with ADABAS=ACCESS=ALL (or without the parameter ADABAS_ACCESS). Then
only the Production users can access the production databases, but all users can access the test
databases.

78 Adabas Security Features

Security Considerations

| Note: If you are using Net-Work, it is also necessary to start different Net-Work servers for

different groups. You must take care to ensure that it is not possible for users to access
databases via Net-Work for which they have no permissions.

Securing Administration of Adabas Role-Based Security

This section describes how to secure access to the ADARBA utility, which provides the function-
ality to administer the security definitions.

By default, all users with the PUBLIC role have access to and can execute the ADARBA utility.

The example below shows how access to ADARBA can be restricted by:

>

Creating a security administrator role;

Granting the role permission to execute the utility;

Creating a user credential that is to be assigned the security administrator role;

Granting the user security administrator role; and

Revoking the permission to execute the utility from the role PUBLIC.

adarba

adarba:

adarba:
adarba:

adarba:
adarba:

adarba:

dbid=nnn

create,role= security_administrator
grant,operation=ada.uti.rba,to,role= security_administrator

create,user=dbasec_userid
grant,role= security_administrator,to,user=dbasec_userid

revoke,operation=ada.uti.rba,from,role=PUBLIC

In this example, the following security definitions are created or modified:

" Created:

® Role: security_administrator

® User Credentials: dbasec_userid

® Permission to Operation: ada.uti.rba
" Modified:
* Role: PUBLIC

" Permission to Operation: ada.uti.rba

Notes:

Adabas Security Features 79

Security Considerations

1. The role name and the user credentials are site-specific.

2. The credentials used for authorization must also be defined for authentication.

Preventing Loss of Administration Privileges

Lock Out Scenario

A 'lock out' scenario is possible. You must take appropriate action to prevent the 'loss of adminis-
tration permissions'.

There is no recovery from a loss of administration privilege or alock out scenario. This is a scenario
in which no individual has access to the administration utilities, and the administration privilege
for the security definitions has been lost.

The situation can be avoided by ensuring access to the following administration utilities.

= ADABCK
= ADADBM
= ADARBA

Recommended procedures to prevent a lock out scenario are to:

= Create more than one administration role;
" Assign access privileges to these administration roles;

" Assign the administration roles to more than one user credential.

In order to prevent an accidental loss of privileges, it is important to understand the processing
logic behind the DROP function in ADARBA.

Drop Role Function

The DROP ROLE function in ADARBA deletes the following security definitions:

® All references to the ROLE definition are deleted:
® The permissions granted to the ROLE are revoked;
® The ROLE assignments to all USERS are revoked.
® The ROLE definition is deleted.

The function performs a cascading delete without issuing a warning message.

A loss of privileges scenario can occur if the administrator role is dropped, and no other role has
access to the administration utilities.

80 Adabas Security Features

Security Considerations

Securing PUBLIC Access Privileges

You should review and restrict access privileges assigned to the role PUBLIC. This includes the
roles assigned to the PUBLIC user, and the privileges assigned to the PUBLIC role.

PUBLIC access is provided when the RBAC system file has not been loaded, even though security
is enabled.

You should take the following actions to secure access privileges assigned to PUBLIC:

* Ensure that the RBAC system file is loaded;
" Review the roles that are assigned to the PUBLIC user;
® Review the privileges that are granted to the PUBLIC role.

Securing the Audit Trail Log File

This section describes how to secure the audit trail log file used by the Authorization for Adabas
utilities.

File Description

adaaudit.log|Audit Trail log file for Authorization for Utilities

To secure the audit trail log file, please ensure the following;:

* READ/WRITE-ACCESS
All users, which execute an Adabas utility, must be able to write to the audit trail log file.

Adabas Security Features 81

82

7

SSL Trusted Relationship for Natural

= Restrictions

B AJADAS OPEIALONeiiiiiiiiiiiiie e e et e e e e a e e
B Client CONfIGUIATION ..ot e e e e e e s
B Adabas CONFIGUIALIONc..uiiieiii et

83

SSL Trusted Relationship for Natural

The main goal is to use the Adabas RBAC facility from Natural as client. Natural is at the moment
not able to provide the user and password through the Adabas Client (using the Tnk_set_uid_pw()
function). The SSL Trusted Relationship should overcome this restriction. Neither Natural itself,
nor any customer application should need to be changed.

The idea behind the SSL Trusted Relationship is that a client provides certificates over an SSL con-
nection which are validated in Adabas. If the client provides certificates and they are successfully
validated by Adabas, Adabas would assume that the client is allowed to access Adabas without
presenting a password. The user id for the RBAC facility in Adabas will be taken from the so called
Adabas Session or Adabas ID. The client (Natural) must make sure that the session (especially the
user id) will be set up correctly.

Restrictions

We restrict the mechanism of trusted relationship on Natural as client. Only if these three conditions
are fulfilled, Adabas trusts the incoming request:

1. Client uses ADATCPS (SSL) for the communication with Adabas
2. Client provides valid certificates that can be validated by Adabas
3. The client is Natural

The client is responsible to provide the user that will be authorized with the RBAC facility of
Adabas. The user is taken from the Adabas Session (Adabas ID).

Adabas Operation

Adabas will check the validity of certificates at the connection level. As soon as a client connects
via ADATCPS, Adabas will check whether the client provides client certificates. If so, they are
validated in any case, regardless the setting of the SSLVERIFY nucleus parameter. A failed verific-
ation might not be an error, for example, if the SSLVERIFY is not set, clients need not to provide
certificates, but credentials. If the SSLVERIFY option is set and the client certificate is invalid, then
the connection will be rejected in any case. Adabas can be accessed in the traditional way in parallel.
If using a secured database (RBAC), the clients must provide the user id and password (via the
Adabas Client Interface) or use the user exit 21.

84 Adabas Security Features

SSL Trusted Relationship for Natural

Client Configuration

On the client side ADATCP must be configured to use SSL and SSL certificates. This is done in
normal cases in the $ACLDIR/config/dbmapping.txt file.

Example:

<dbid> = «
adatcps://<host>:<sslport>?cert_file=<path>/client_cert.pem&key_file=<path>/client_key.pem

Adabas Configuration

The Adabas nucleus must be configured to use SSL and SSL certificates. In any case, Adabas will
not start without server certificates when SSL should be used. That is the minimum requirement.

To enable Adabas to accept trusted Natural users, the nucleus must be configured with the para-
meter:

SSLTRUST = NATURAL

Example:

[NUCPARMS]

ADATCP

PORTNUMBER = 0

SSLCAFILE = /atc/certs/ca_chain.pem
SSLCERTFILE = /etc/certs/adabas_cert.pem
SSLKEYFILE = /etc/certs/adabas_key.pem
SSLPORTNUMBER = 56220

SSLTRUST = NATURAL

SSLVERRIFY = 0

[NUCPARMS-END]

Setting the PORTNUMBER parameter to ‘0" disables the classic TCP/IP port and only SSL can be used.

Adabas Security Features 85

86

8 GDPR Compliance

® Adabas ROIE-BASEA SECUIMLYuviiiiiiiii e
B AdADas AUGIE Tl ...
B Adabas CoOMMENG LOGuvveeieeiiiit ettt e e

= Adabas Log File

87

GDPR Compliance

Adabas on Linux and Windows stores the following personal data in log and audit files:

® Hostname of the machine

® User Identification (Local system credentials)

Therefore, so that your applications can be GDPR compliant, it is important for the Adabas admin-
istrator to be aware of the following files where personal data may be stored.

® Adabas Role-based Security
" Adabas Audit Trail

® Adabas Command Log

" Adabas Log file

Basic Actions to be taken

It is the responsibility of the database administrator to configure and delete files containing per-
sonal data. Adabas does not provide functionality to automatically delete personal data.

To ensure that personal data is not stored, the following is recommended:

* Disable logging features (when possible)

® Define a schedule and procedure to delete log files

The location and configuration of the database features storing personal data are described below.

Adabas Role-Based Security

When the Adabas Role-based Security feature is enabled, the following personal data is stored in
the RBAC system file as a security definition:

® User Identification
This information is required and is used to determine the access privileges of a user.

Use the utility ADARBA to manage the security definitions.

88 Adabas Security Features

GDPR Compliance

Adabas Audit Trail

When the Adabas audit trail feature is enabled, the following personal data is logged:

= User Identification

® Hostname of the Adabas client
" Process Identification

* Timestamp of Access Request

= ET data

Name of the access operation and the object of the operation

The location and configuration of the audit trail is feature-specific. For more information, please
refer to Configuration in the section Adabas Role-Based Security (ADARBA).

The Audit Trail for Authorization for the Adabas Direct Call Interface is automatically enabled
with the feature and cannot be disabled.

Adabas Command Log

When the Adabas Command Log feature is enabled, the following personal data is logged:

= User Identification

® Hostname of the Adabas client
® Process Identification

" Timestamp

® Adabas Command

When enabled, a command log file is created in the database directory. The file is identified by
the value of the environment variable NUCCLG. The file can have multiple extends.

The Adabas Command Log feature can be enabled or disabled via the LOGGING control parameter
of either utility:

= ADANUC
= ADAOPR

Please refer to either the ADANUC or ADAOPR section of the Adabas Utilities, for further inform-
ation on the LOGGING control parameter.

Adabas Security Features 89

GDPR Compliance

Adabas Log File

When the Adabas log feature is enabled, the following personal data is logged:

= User Identification
B Process Identification
" Timestamp

® Name of the Adabas Utility with the requested function
The configuration file ADABAS.INI contains the location and configuration of the Adabas log file.

By default, the file name is $ADADATADIR \etc\ADABAS.LOG. The logging functionality is
configured using the topic NODE_PARAMETER and its subtopics:

Subtopic Description
ANALYSER Enable the Adabas Extended Operations (AEO) feature
LOGGING The Adabas log file is configured with the items:

= ACTION - enables logging and
® LOG_PATH - defines the file location

ARCHIVE_LOGFILE [Enables the archiving of the Adabas log file

ALERT The Adabas log file entry can be processed by an alert routine. This is enabled and
configured with the items:

= ACTION - enables alert processing and
= ACTION_ROUTINE - defines the alert routine

Please refer to the section ADABAS.INI under Configuration Files in the Adabas Extended Operations
documentation, for further information on the location and configuration of the Adabas log file.

90 Adabas Security Features

	Adabas Security Features
	Table of Contents
	Adabas Security Features
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Adabas Role-Based Security (ADARBA)
	Adabas Role-Based Security Model
	Security Definitions
	Initial Security Definitions
	PUBLIC User
	PUBLIC Role

	Authentication
	Architecture
	Credentials
	Adabas Direct Call Interface
	Adabas Utilities

	Default State

	Authorization
	Adabas Direct Call Interface
	Adabas Utilities
	Protection on Utility Control Parameter Level
	Default State

	Audit Trail
	Authentication
	Authorization for Adabas Direct Call Interface
	Location
	Layout of Audit Trail Entry

	Authorization for Adabas Utilities
	Layout of Audit Trail Entry
	Logging of Administrative Operations
	Example

	Default State

	Configuration
	Initial Security Configuration
	Authentication
	Enable Authentication
	Configure Authentication Authority

	Authorization
	Enable Authorization
	Define Security Definitions

	Audit Trail
	Authentication and Authorization for Direct Call Interface
	Authorization for Utilities

	Administration
	ADADBM
	ADAINI
	ADAREP
	ADARBA

	Performance Considerations
	Authentication
	Authorization for Direct Call Interface
	Authorization for Adabas Utilities
	Audit Trail

	Application Development
	Developing Applications
	Modifying Legacy Applications
	Error Handling
	Security Mode Active
	Security Mode WARN

	Messages and Codes

	Getting Started
	Prerequisites
	Configuration
	Authentication
	Authorization
	Audit Trail
	Validating the Configuration

	Authentication
	Authorization for Direct Call Interface
	Authorization for Adabas Utilities

	Infrastructure Security Library
	Authentication Type OS (Operating System)
	Authentication Type TEXT (Internal User Repository)
	Authentication Type LDAP
	Authorization Type ADSI
	Creating Internal User Repository Files
	Example: Usage of ssxtxtpasswd tool
	Example: Add User and Password

	3 Adabas Password Security (ADASCR)
	Introduction
	Protection at File Level
	Protection at Record Level - Security by Value

	File Protection Levels
	User Passwords
	Security by Value Criteria
	Adabas Security Processing
	Security Response Codes

	4 Adabas Encryption for Linux
	Prerequisite
	Encryption of Data-At-Rest
	Encryption Object
	Encryption Algorithm
	Encryption Process

	Key Management System
	File-Based Key Management System
	Amazon AWS Key Management System
	Microsoft Azure Key Management System
	Google GCP Key Management Service
	HashiCorp Vault Key Management System
	Using the Vault Transit Engine with Adabas
	Automatic Path Mounting by Adabas
	Authentication and Access Control
	Vault Policies
	Important Note on Access Control
	Example of a Vault Policy
	Security Notes

	Administration
	Database Creation
	Creating a Non-encrypted Database from an Encrypted Database
	Database Report
	Database Backup and Restore

	Database Access
	Adabas Utilities

	5 Ciphering
	6 Security Considerations
	Using the Linux Group Concept
	Securing Administration of Adabas Role-Based Security
	Preventing Loss of Administration Privileges
	Lock Out Scenario
	Drop Role Function

	Securing PUBLIC Access Privileges
	Securing the Audit Trail Log File

	7 SSL Trusted Relationship for Natural
	Restrictions
	Adabas Operation
	Client Configuration
	Adabas Configuration

	8 GDPR Compliance
	Adabas Role-Based Security
	Adabas Audit Trail
	Adabas Command Log
	Adabas Log File

